
MATLAB
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------1

The Language of Technical Computing

Computation 
--------- 1

Visualization 
-------- 1

Programming 
--------- 1

The

MATH

Using MATLAB
Version 5



а

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

Sc
@

The M athW orks , Inc.
24 P r im e  Park W ay 
N at ick , M A  01760-1500

ht t p: / / www. mat hwor ks. com 
f t p .  mat hwor ks. com 
comp, sof t - sys. mat I ab

suppo rt @rat hwor ks. com 
suggest @rat hwor ks. com 
bugs@rat hwor ks. com 
doc@nat hwor ks. com 
subscr i be@nat hwor ks. com 
ser vi ce@rat hwor ks. com 
i nf o@rat hwor ks. com

Mail

Web
Anonym ous FTP server 
Newsgroup

Technical support
Product enhancement suggestions
Bug reports
Documentat ion error reports  
Subscrib ing user reg is tra t ion  
Order status, license renewals, passcodes 
Sales, pric ing, and general in form ation

Using MATLAB
© COPYRIGHT 1984 -1999 by The MathWorks, Inc.
The softw are described in th is  document is fu rn ished  under a license agreem ent. The software may be used 
or copied on ly  under the  te rm s  of the  license agreem ent. No part of th is  m anual may be photocopied or repro
duced in any form  w ith o u t p rio r w ritte n  consent from  The M athW orks, Inc.

U .S. GOVERNM  ENT: I f  Licensee is acqu iring  the  Program s on behalf of any un it or agency of the  U .S. 
G overnm ent, the  fo llow ing  shall apply: (a) For u n its  of th e  D epartm ent of Defense: the  Governm ent shall 
have on ly the  r ig h ts  specified in the  license under w hich the  com mercial com puter softw are or commercial 
so ftw are docum entation was obtained, as set fo rth  in subparagraph (a) of the  R ights in Comm ercial 
C om puter S oftw are or Comm ercial S oftw are D ocum entation C lause at DFARS 227.7202-3, the re fo re  the  
r ig h ts  set fo rth  herein sha ll apply; and (b) For any other u n it or agency: N O TIC E : N o tw iths tand in g  any 
other lease or license agreement th a t may perta in  to, or accompany the  de live ry  of, th e  com puter software 
and accompanying docum entation, the  r ig h ts  of the  Governm ent regard ing its  use, reproduction , and d isclo
sure are as set fo rth  in C lause 52.227-19 (c)(2) of th e  FAR.

M A T L A B , S im u lin k , S ta te flow , H and le  Graphics, and Real-Tim e W orkshop are registered tradem arks, and 
Target Language Com piler is a tra dem ark  of The M athW orks, Inc.

© C O P YR IG H T 1995 B ris to l Technology, Inc. A ll r ig h ts  reserved.

© C O P YR IG H T 1995 M icrosoft Corpora tion. A ll r ig h ts  reserved.
O ther product or brand names are tra dem arks  or registered tra dem arks  of th e ir respective holders. 

Printing History: December 1996 First prin ting for MATLAB 5.0 
June 1997 Revised for MATLAB 5.1 
January 1998 Revised for MATLAB 5.2 
January 1999 Revised for MATLAB 5.3 (Release 11)



Contents
I n t r o d u c t io n

11-------------------------------------------
MA TLA B W ork in g  E n v i r on m en t21-------------------------------------------

U s in g  th e  E n v i r o n m e n t .........................................................................  2-2

T h e  C o m m a n d  W in d o w  .........................................................................  2-5

T h e  F ig u r e  W in d o w  ..............................................................................  2-18

H e lp  and  O n l in e  D o c u m e n ta t io n  .................................................. 2-20

D is k  F i le  M a n ip u la t i o n  and  S h e l l  Escape  ............................... 2-25

D a ta  I m p o r t / E x p o r t  ..............................................................................  2-26

M e m o ry  U t i l i z a t io n  ..............................................................................  2-33

M ic r o s o f t  W in d o w s  H a n d b o o k  ......................................................  2-35

U N IX  H a n d b o o k  .....................................................................................  2-54

Debugger and Prof i l er

3i-------------------------------------------
M A T L A B  D e b u g g e r  ................................................................................  3-2

M -F i le  P r o f i l e r .......................................................................................... 3-17

i



Mat r i ces  and L inear  A lgebra4 I-------------------------------------------
M a t r i c e s  and  L in e a r  A l g e b r a ............................................................. 4-2

M a t r i c e s  in M A T L A B  ..............................................................................4-4

S o lv in g  L in e a r  E q u a t i o n s .................................................................. 4-13

In v e rs e s  and  D e t e r m in a n ts  ............................................................. 4-20

L U , QR, and  C h o le s k y  F a c t o r i z a t io n s  ........................................ 4-24

M a t r i x  P o w e rs  and  E x p o n e n t ia ls  ..................................................4-31

E ig e n v a lu e s  .............................................................................................. 4-34

S in g u la r  V a lu e  D e c o m p o s i t io n  ...................................................... 4-38

Polynomia ls  and In te rpo la t ion

5 I-------------------------------------------
P o ly n o m ia ls  .................................................................................................5-2

In t e r p o la t io n  ...............................................................................................5-9

Data Ana lys is  and Stat is t ics

6 I-------------------------------------------
C o lu m n -O r ie n te d  D a ta  Se ts  ................................................................6-3

B a s ic  D a ta  A n a ly s is  F u n c t io n s  .........................................................6-7

D a ta  P r e - P r o c e s s in g ..............................................................................6-12

ii Contents



Case S tu d y :  C u r v e  F i t t i n g .................................................................. 6-20

D i f fe re n c e  E q u a t io n s  and  F i l t e r i n g  .............................................6-29

F o u r ie r  A n a ly s is  and  th e  Fast F o u r ie r  T r a n s f o r m  (F F T )  . 6-31

Fun c t i on  F u n c t i o n s7 I-------------------------------------------
R e p re s e n t in g  F u n c t io n s  in M A T L A B  .............................................  7-3

P lo t t i n g  M a th e m a t ic a l  F u n c t io n s  ....................................................  7-4

M in im iz in g  F u n c t io n s  and  F in d in g  Z e r o s ................................... 7-7

N u m e r ic a l  I n t e g r a t i o n  ( Q u a d r a t u r e ) ........................................... 7-14

O r d in a r y  D i f fe ren t i a l  Equa t ions

8 I-------------------------------------------
Q u ic k  S ta r t  ...................................................................................................  8-3

R e p re s e n t in g  P ro b le m s  .........................................................................  8-5

O D E  S o l v e r s ..............................................................................................  8-10

C re a t in g  O D E  F i l e s ................................................................................  8-14

Im p r o v in g  S o lv e r  P e r f o r m a n c e ......................................................  8-17

E x a m p le s :  A p p ly in g  th e  O D E  S o lv e rs  ........................................  8-34

R e g re s s io n  and  C u rv e  F i t t in g  .........................................................6-15

i i i



Q u e s t io n s  and  A n s w e rs 8-50

Sparse Mat r i ces

9 I-------------------------------------------
I n t r o d u c t i o n  .................................................................................................  9-5

V ie w in g  S p a rs e  M a t r i c e s ....................................................................  9-11

E x a m p le :  A d ja c e n c y  M a t r i c e s  and  G r a p h s ............................... 9-15

S p a rse  M a t r i x  O p e r a t i o n s ..................................................................  9-23

M-Fi le  P rog ra m m ing

1 0  i---------------------------------------------------------------------------------------------------------------------------------------------------------

M A T L A B  P r o g r a m m in g :  A Q u ic k  S ta r t  ...................................... 10-2

S c r ip t s  ..........................................................................................................  10-5

F u n c t io n s  ...................................................................................................  10-6

Loca l  and  G lo b a l  V a r i a b l e s .............................................................  10-16

D a ta  T y p e s  ............................................................................................... 10-19

O p e r a to r s  .................................................................................................  10-21

F lo w  C o n t r o l  .......................................................................................... 10-30

S u b f u n c t io n s  .......................................................................................... 10-38

In d e x in g  and  S u b s c r i p t i n g .............................................................  10-40

iv  Contents



S t r in g  E v a lu a t io n  ................................................................................  10-46

C o m m a n d /F u n c t io n  D u a l i t y ...........................................................  10-48

E m p ty  M a t r i c e s .....................................................................................  10-49

E r r o r s  and  W a r n in g s  .........................................................................  10-51

T im e s  and  D a tes  ................................................................................... 10-54

O b ta in in g  U ser I n p u t .........................................................................  10-61

She l l  Escape  F u n c t i o n s ..................................................................... 10-62

O p t im iz in g  t h e  P e r fo r m a n c e  o f  M A T L A B  C o d e ................... 10-63

Charac te r  A r ra y s  (St r ings)11 I------------------------------------------
C h a ra c te r  A r r a y s  ................................................................................... 11-4

Cell A r r a y s  o f S t r i n g s ............................................................................ 11-7

S t r in g  C o m p a r is o n s  ..............................................................................  11-9

S e a rc h in g  and  R e p la c in g  ................................................................ 11-12

S t r i n g / N u m e r i c  C o n v e rs io n  ...........................................................  11-13

M ul t id im ens io na l  A r ra y s12 I-------------------------------------------
M u l t i d im e n s io n a l  A r r a y s  ..................................................................  12-3

v



C o m p u ta t io n  w i t h  M u l t i d im e n s io n a l  A r r a y s ..........................12-15

O r g a n iz in g  D a ta  in M u l t i d im e n s io n a l  A r r a y s ..................... ..12-17

M u l t i d im e n s io n a l  C e ll  A r r a y s  ...................................................... ..12-19

M u l t i d im e n s io n a l  S t r u c t u r e  A r r a y s .............................................12-20

S t ruc tu re s  and Cell A r r a y s13 I-------------------------------------------
S t r u c t u r e s ...................................................................................................  13-3

Cell  A r r a y s  ..............................................................................................  13-19

M ATLA B Classes and Objects14 l-------------------------------------------
C lasses and  O b je c ts :  An  O v e rv ie w  ...............................................  14-2

D e s ig n in g  U ser C lasses in M A T L A B .............................................  14-9

O v e r lo a d in g  O p e r a to r s  and  F u n c t io n s  ...................................  14-20

E x a m p le :  A  P o ly n o m ia l  C l a s s ......................................................... 14-23

B u i ld i n g  on O th e r  C lasses .............................................................  14-34

E x a m p le :  A sse ts  and  Asset S u b c la s s e s ...................................... 14-37

E x a m p le :  T h e  P o r t f o l i o  C o n ta in e r  .............................................  14-54

S a v in g  and  L o a d in g  O b j e c t s ...........................................................  14-61

v i Contents



O b je c t  P re c e d e n c e  ..............................................................................  14-66

H o w  M A T L A B  D e t e r m in e s  W h ic h  M e th o d  to  C a l l ..............  14-68

F i le  I/O15 I-------------------------------------------
O p e n in g  and  C lo s in g  F i le s  ................................................................ 15-3

T e m p o r a r y  F i le s  and  D i r e c t o r i e s  .................................................. 15-6

B in a r y  F i le s  ..............................................................................................  15-7

C o n t r o l l i n g  P o s i t io n  in a F i l e ......................................................... 15-10

F o r m a t te d  F i le s  15-13

v i i



v i i i  Contents



1

Introduction

W hat Is M A T L A B ? ................................................................................ 1-3
The M A T L A B  S y s t e m ............................................................................1-4
How to  Use th e  Documentat ion S e t ............................................... 1-6
About S i m u l i n k .....................................................................................1-8
About Tool b o x e s ..................................................................................... 1-8



1 Introduction

A b o u t  t h e  Cover

The cover of th is  gu ide  depicts a so lution to  a problem th a t has played a small, but 
in te res t ing  role in th e  h is to ry  of numerical methods d u r in g  th e  last 30 years. The 
problem involves f in d ing  th e  modes of v ib ra t ion  of a m em brane  supported by an L-shaped 
domain consisting of th re e  u n it  squares. The nonconvex corner in th e  domain generates 
s ing u la r i t ie s  in th e  solutions, thereby prov id ing  challenges for both th e  under ly ing  
m athem atica l theory  and th e  computationa l a lgor i thm s. There  are im portan t 
applications, inc lud ing  w ave  guides, s tructures, and semiconductors.

Tw o of th e  founders of modern numerical analysis, George Forsythe  and J.H . W ilk inson , 
worked on th e  problem in th e  1950s. (See G.E. Forsythe  and W.R. Wasow, 
F in ite-D iffe rence Methods for Pa r t ia l D iffe rentia l Equations, W iley, 1960.) One of th e  
au thors  of th is  gu ide  (Moler) used f in i te  differences by combina tions of d is t ingu ished 
fundam enta l so lu tions to  th e  under ly ing  d if fe ren t ia l equation formed from Bessel and 
tr ig o n o m e tr ic  functions. The  idea is a generalizat ion of th e  fact th a t th e  real and 
im ag inary  parts  of complex a n a ly t ic  func t ions  are so lu tions to  Lap lace ’s equation. In th e  
early  1970s, new m a tr ix  a lgor i thm s, p a r t icu la r ly  Gene G o lub ’s orthogonaliza tion 
techinques for least squares problems, provided fu r th e r  a lg o r i th m ic  improvements.

Today, M A T L A B  a llows us to  express th e  e n t ire  a lgo r i thm  in a few dozen lines, to  
compute th e  solution w i th  great accuracy in a few m inu tes  on a computer at home, and 
to  read i ly  m an ipu la te  color th ree-d im ensiona l d isp lays of th e  results. We have included 
our M A T L A B  program, membrane.m w ith  th e  M -f i les  supplied along w i th  M A T L A B .
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W h a t  Is MATLAB?
M A T LA B ®  is a h igh-perform ance language for technical computing. It 
in tegra tes computation, v isua l iza t ion , and p rogram m ing  in an easy-to-use 
env ironm ent w he re  problems and so lu tions are expressed in fa m i l ia r  
m athem atica l notation. Typical uses include:

• M ath  and computation

• A lg o r i th m  development

• Modeling, s im u la t ion , and p ro to typ ing

• Data  analysis, explora tion, and v isua l iza t ion

• Sc ien t i f ic  and eng ineering graphics

• App lica t ion  development, inc lud ing  graphical user in terface bu i ld ing

M A T L A B  is an in te rac t ive  system whose basic data  element is an a rray  tha t 
does not requ ire  d imension ing. T h is  a llows you to  solve many technical 
computing  problems, especially those w i th  m a t r ix  and vector fo rm u la t ions , in 
a fract ion  of th e  t im e  it would  ta ke  to  w r i te  a program in a scalar non in te rac t ive  
language such as C or Fortran .

The  name M A T L A B  stands for m a t r ix  laboratory. M A T L A B  was o r ig ina l ly  
w r i t te n  to  provide easy access to  m a t r ix  so ftware  developed by th e  L IN P A C K  
and E IS P A C K  projects, which together represent th e  s tate-of-the-art in 
so ftware  for m a t r ix  computation.

M A T L A B  has evolved over a period of years w i th  inpu t from  m any users. In 
un ive rs i ty  env ironments , it is th e  s tandard  ins truc t iona l tool for in t roduc to ry  
and advanced courses in mathematics, engineering, and science. In industry , 
M A T L A B  is th e  tool of choice for h ig h -p roduc t iv i ty  research, development, and 
analysis.

M A T L A B  features a fa m i ly  of app lica tion-specif ic  so lu tions called toolboxes. 
Very  im por tan t to  most users of M A T L A B , toolboxes a llow you to  learn and 
app ly  specialized technology. Toolboxes are comprehensive collections of 
M A T L A B  func t ions  (M-fi les) th a t  extend th e  M A T L A B  env ironm ent to  solve 
p a r t icu la r  classes of problems. A reas in which toolboxes are ava i lab le  include 
signal processing, control systems, neural networks, fuzzy logic, wavelets, 
s im u la t ion , and m any others.
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1 Introduction

The MATLAB System
The M A T L A B  system consists of f ive  main parts:

The MATLAB Language. T h is  is a high-level m a tr ix /a rra y  language w ith  control 
f low sta tements, funct ions, data  s truc tures , inpu t /ou tpu t ,  and object-oriented 
p rogram m ing  features. It a llows both “ p rogram m ing  in th e  s m a l l ” to  rap id ly  
create qu ick  and d i r t y  th row -aw ay  programs, and “ p rogram m ing  in th e  large” 
to  create complete large and complex applica tion programs. The  language 
features are organized in to  s ix  d irector ies  in th e  M A T L A B  Toolbox:

ops O perators  and special characters.

lang Program m ing  language constructs.

s t r f u n Character s tr ings.

io fu n F i le  inpu t /ou tpu t .

t im e fu n T im e  and dates.

d a ta typ es Data  types and s tructures.

The MATLAB Working Environment. T h is  is th e  set of tools and fac i l i t ies  th a t  you 
w o rk  w i th  as th e  M A T L A B  user or p rogram m er. It includes fac i l i t ies  for 
managing th e  variab les in your workspace and im p or t in g  and export ing  data. 
It also includes tools for developing, managing, debugging, and p ro f i l ing  
M-files, M A T L A B ’s applications. The  w o rk in g  env ironm ent features are 
located in a s ing le  d irectory.

general General purpose commands.

Handle Graphics®. T h is  is th e  M A T L A B  graph ics system. It includes high-level 
commands for two-d im ensiona l and th ree-d imensiona l data  v isua l iza t ion , 
image processing, an im ation , and presentation graphics. It also includes 
low-level commands th a t  a llow you to  fu l ly  customize th e  appearance of 
g raph ics as well as to  build  complete graphical user interfaces (GUIs) for your
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M A T L A B  applications. The g raph ics func t ions  are organized in to  f ive  
d irector ies  in th e  M A T L A B  Toolbox.

gr aph2d Two-dimensional graphs.

gr aph3d Three-d imensional graphs.

specgraph Specialized graphs.

gr aph ics H and le  Graphics.

ui t o o l s Graphica l user in terface tools.

The MATLAB Mathematical Function Library. T h is  is a vast collection of 
com putationa l a lg o r i th m s  rang ing  from e lementary  func t ions  l ik e  sum, sine, 
cosine, and complex a r i thm e tic ,  to  more sophisticated func t ions  l ike  m a tr ix  
inverse, m a t r ix  eigenvalues, Bessel funct ions, and fast Four ie r  trans fo rm s. The 
math and a n a ly t ic  func t ions  are organized in to  eight d irector ies in the  
M A T L A B  Toolbox.

el mat E lem enta ry  m atr ices and m a t r ix  m an ipu la t ion .

el fun E lem enta ry  math functions.

specfun Specialized m ath  functions.

matfun M a t r ix  func t ions  -  numerical l inear algebra.

d a ta fu n Data ana lys is  and Fourie r trans fo rm s.

p o ly fu n In te rpo la t ion  and polynomials.

fu n fu n Function func t ions  and ODE solvers.

sp a r fun Sparse matrices.

The MATLAB Application Program Interface (API). T h is  is a l ib ra ry  th a t  a llows you to  
w r i te  C and Fortran  program s tha t in teract w i th  M A T L A B . It includes 
fac i l i t ies  for ca ll ing  rou t ines from  M A T L A B  (dynam ic  l ink ing ) ,  ca ll ing 
M A T L A B  as a com putationa l engine, and for reading and w r i t in g  M AT-f iles .
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1 Introduction

How to Use the Do cum e n ta t io n  Set
M A T L A B  comes w ith  an extensive set of documentation consisting of an on line
Help  fa c i l i ty  and on l ine  M A T L A B  Function Reference as well as p rin ted
manuals. The  fu l l  set of p r in ted  documentation includes th e  fo l low ing  t i t les :

• The  M A T L A B  Ins ta l la t ion  G u ide  describes how to  ins ta ll M A T L A B  on your 
p la tfo rm .

• Getting Started w i th  M A T L A B  expla ins how to  get s tarted w i th  th e  
fundam enta ls  of M A T L A B .

• Using M A T L A B  provides in depth m ater ia l on th e  M A T L A B  language, 
w o rk in g  env ironm ent, and m athem atica l topics.

• Using M A T L A B  G raph ics  describes how to  use M A T L A B ’s g raph ics and 
v isua l iza t ion  tools.

• The  M A T L A B  A pp lica t ion  Program Interface G u ide  expla ins how to  w r i te  C 
or F or tran  programs th a t  in teract w i th  M A T L A B .

• M A T L A B  New Features provides in fo rm a tion  useful in m ak ing  the  
t ran s it ion  from  th e  latest release of M A T L A B .

W h a t I W ant W h a t I Should Do

I need to  ins ta l l  M A T L A B . See th e  Ins ta l la t ion  G u ide  for your p la tfo rm .

I ’m new to  M A T L A B  and Start by reading Getting Started w i th  M A T L A B . The most
w an t to  learn it quickly. im portan t th in g s  to  learn are how to  enter matrices, how to  use 

th e  : (colon) operator, and how to  invoke funct ions. A f te r  you 
master th e  basics, you can access th e  rest of th e  documentation 
as needed, or you can use on l ine  help and th e  dem onstra t ions  to  
learn other commands.

I ’m upgrad ing  from  an Read th e  New Features document to  f ind  out about th e  new
earlie r release. features in th e  latest release. Pay special a tten t ion  to  th e  section 

about upgrad ing  for guidance on convert ing your M-fi les. You 
should then refer to  Using M A T L A B  and Using M A T L A B  
G raphics for specific de ta i ls  about th e  new features.
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W hat I W ant W ha t I Should Do

I w an t to  know how to  use a 
specific funct ion.

I w an t to  f ind  a funct ion for 
a specific purpose but I don ’t 
know i ts  name.

I w an t to  learn about a 
specific top ic  l ike  sparse 
matrices, o rd ina ry  
d if fe ren t ia l equations, or cell 
arrays.

I w an t to  know w ha t 
func t ions  are ava i lab le  in a 
general area.

I have a problem I w an t  help 
w i th .

I w an t to  report a bug or 
m ake a suggestion.

I w an t to  contact The 
M a thW orks  Technical 
Support.

Use th e  on l ine  Help  fac i l i ty .  You can use th e  M -f i le  help w indow  
to  get b r ie f on l ine  help or access th e  M A T L A B  Function 
Reference v ia  th e  Web-based Help  Desk. These are ava ilab le  
using th e  commands he lpw in  and he lpdesk or from  th e  Help  
menu on th e  PC. The Function Reference is also ava i lab le  on th e  
Help  Desk in PDF fo rm at i f  you w an t to  p r in t  out any of the  
funct ion descr ip tions in h igh -qua li ty  form.

There  are th ree  choices.

• Use lo o k fo r  (e.g. lo o k fo r  i nverse) from th e  command line.

• Use th e  on l ine  keyword search from  th e  Help  Desk.

• V is i t  The  M a th W o rk s  Web s ite  and see i f  th e re  is a 
user-contr ibuted f i le  to  solve your problem.

See th e  app ropr ia te  chapter in Using M A T LA B .

Use th e  help w indow  (type h e lpw in  or select from  Help  menu) to  
see a tab le  of contents w i th  func t ions  grouped by subject area, or 
use th e  Help  Desk (type he lpdesk or select from  Help  menu) to  
see th e  Function Reference grouped by subject.

For t ip s  and troub leshooting  problems, use th e  Help  Desk (type 
he lpdesk or select from Help  menu) to  v is i t  th e  Technical 
Support section of The M a th W o rk s  Web site  
(www.mathworks.com) and use th e  Solution Search Engine  to  
search th e  Technical Support database of problem solutions.

Use th e  Help  Desk ( type he lpdesk or select from  Help  menu) or 
send e-mail to  bugs@mBthworks.com or suggest@mBthworks.com

Use th e  Help  Desk ( type he lpdesk or select from  Help  menu) to  
subm it an e-mail help request form  describ ing your question or 
problem.
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1 Introduction

A b o u t  S imu l ink
Simulink® , a companion program to  M A T L A B , is an in te rac t ive  system for 
s im u la t in g  non linear d yna m ic  systems. It is a graphical mouse-driven program 
th a t  a llows you to  model a system by d ra w in g  a block d iagram  on th e  screen 
and m a n ip u la t ing  it dynam ica lly . It can w o rk  w i th  l inear, nonlinear, 
continuous-t ime, d iscrete-t ime, m u lt iva r iab le ,  and m u l t i r a te  systems.

Blocksets are add-ins to  S im u l in k  th a t  provide add it iona l l ib ra r ies  of blocks for 
specialized app lica tions l ike  communications, signal processing, and power 
systems.

Real-t im e Workshop® is a program th a t a llows you to  generate C code from  
your block d iagram s and to  run it on a va r ie ty  of rea l- t im e  systems.

A b o u t  Too lboxe s
M A T L A B  features a fa m i ly  of app lica tion-specif ic  so lu tions called toolboxes. 
Very im por tan t to  most users of M A T L A B , toolboxes allow you to  learn and 
app ly specialized technology. Toolboxes are comprehensive collections of 
M A T L A B  func t ions  (M-fi les) th a t  extend th e  M A T L A B  env ironm ent in order to  
solve p a r t icu la r  classes of problems. M any  toolboxes are availab le  from The 
M athW orks . Some of these are listed on th e  fo l low ing  page; contact The 
M a th W o rks  or v is i t  wwwmathworks. com for a complete up-to-date  list.
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The MATLAB Product Family
How The  M a th W o rks  products f i t  together

M A T L A B  is th e  foundation for all 
The  M a th W o rks  products.
M A T L A B  combines num er ic  
computation, 2-D and 3-D graphics, 
and language capabil it ies  in a 
single, easy-to-use env ironm ent.

M A T L A B  E x te n s io n s  are optional 
tools th a t  support the  
im p lem en ta t ion  of systems 
developed in M A T L A B .

T oo lboxes  are l ib ra r ies  of 
M A T L A B  func t ions  th a t  customize 
M A T L A B  for so lv ing par t icu la r  
classes of problems. Toolboxes are 
open and extensible; you can view 
a lg o r i th m s  and add your own.

S im u l in k  is a system for non linear 
s im u la t ion  th a t  combines a block 
d iagram  interface and “ l ive ” 
s im u la t ion  capabil i t ies  w i th  the  
core numeric, graphics, and 
language fu nc t io na l i ty  of M A T L A B .

S im u l in k  E x te n s io n s  are optional 
tools th a t  support the  
im p lem en ta t ion  of systems 
developed in S im u l in k

B lo ckse ts  are collections of 
S im u l in k  blocks designed for 
use in specific app lica tion areas.

S im u l i n k  E x te n s io n s
• S im u link  Accelerator
• Real-Time Workshop

• Real-Time W indows 
Target

• Stateflow®

B lo c k s e ts
• DSP

• Fixed-Point
• N onlinear Control Design
• Power Systems

M A T L A B  E x te n s io n s

• M ATLAB Compiler
• M A T L A B  C/C++

M ath  L ib ra r ie s
• M ATLAB Web Server

• M ATLAB Report 
Generator

T o o lb o x e s

• Control System
• Communications
• Database
• F inancial
• Frequency Domain 

System Identifica tion
• Fuzzy Logic
• H igher-O rder Spectral 

Analysis
• Im age Processing
• LM I Control
• Model Predictive C ontro l
• m -Analysis and 

Synthesis
• NAG® Foundation
• Neural Netw ork
• O ptim ization
• Partia l D iffe ren tia l 

Equation
• QFT Control Design
• Robust Control
• Signal Processing
• Spline
• S ta tistics
• Symbolic Math
• System Iden tifica tion
• Wavelet

Contact The  M a th W o rk s  or v is i t  www.mBthwDrks.com for an up-to-date product l ist.
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2 MATLAB Working Environment

Using the Environment
M A T L A B  is both a language and a w o rk in g  env ironm ent. T h is  chapter focuses 
on th e  M A T L A B  w o rk in g  env ironm ent. As  a w o rk in g  env ironm ent, M A T L A B  
includes fac i l i t ies  for managing th e  variab les in your workspace and for 
im p or t in g  and exporting  data. M A T L A B  also includes tools for developing and 
m anag ing  M-files, M A T L A B ’s applications.

The f irs t part of th is  chapter describes general aspects of using th e  M A T L A B  
w o rk in g  env ironm ent. In th is  and subsequent chapters, when it is necessary in 
th is  general m ate r ia l to  call out features specific to  a pa r t icu la r  p la tfo rm , we 
use icons in th e  tex t m arg in  to  h igh l igh t th e  in fo rm a tion  pert inent to  your 
p la tfo rm . Look for:

for M icrosoft W indow s in fo rm a tion  

for U N IX  in fo rm ation

Add it iona l sections at th e  end of th is  chapter discuss fu r th e r  p la tfo rm -spec if ic  
M A T L A B  env ironm ent features:

• “ M icrosoft W indow s Handbook”

• “ U N IX  Handbook”

Star t ing  MATLAB
щ п  On W indow s p la tform s, th e  ins ta l le r  creates a shortcut to  th e  program 

f i le  in th e  ins ta l la t ion  d irectory. You can move th is  shortcut to  your 
desktop i f  you w an t.  Double-click on th is  shortcut icon to  s ta rt  M A T L A B .

x /  T o s ta r t  M A T L A B  on a U N IX  system, type  mat I ab at th e  operating 
system prompt.

Startup Files
A t s ta r tup , M A T L A B  au tom atica lly  executes th e  master M -f i le  mat la b r c . m  
and, i f  it exists, s t a r t u p . m

The f i le  m at lab rc .  m which l ives in th e  loca l d irectory, is reserved for use by 
The M a th W o rks  and, on m u lt iuse r  systems, by your system manager.
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Using the Environment

The  f i le  s t a r t u p . m  is for you to  use. You can set defau lt paths, define H and le
Graphics defaults, or predefine var iab les  in your workspace. For example,
creating a s ta r tu p .  m with  th e  l ine

addpath /hom e/m e/m ytoo ls

adds a tools d irectory  to  your default search path.

On W indow s p la tform s, place th e  st a r t  up. m fi le  in th e  fo lder named 
loca l in t h e t  ool box fo lder.

y y  On U N IX  w orks ta t ions , p la c e th e s t  a r t  up. m f i le in  th e d i re c to ry  named 
mat I ab off of your home d irectory, e.g., - /  mat I ab.

Startup Options
You can specify s ta r tu p  options for M A T L A B .

Add these options to  th e  ta rget path for your W indow s shortcut for 
M A T L A B . I f  you run M A T L A B  from a DOS w indow , inc lude these  
options w i th  th e  s ta r tu p  command.

Startup Option Description

au tom a tion  S tart M A T L A B  as an automation  server, m in im ized,
and w i th o u t  th e  M A T L A B  splash screen. (For more 
in fo rm a tion , see Chapter 7 of th e  App lica t ion  
Program In terface Guide.)

l o g f i l e  lo g f i le n a m e  A u to m a t ica l ly  w r i te  outpu t from  M A T L A B  to  the
specified log file.

m in im ize  S tart M A T L A B  m in im ized  and w i th o u t  th e  M A T L A B
splash screen.

nosp lash  S tart M A T L A B  w ith o u t  d isp lay ing  th e  M A T L A B
splash screen.

r M_fi l e  A u to m a t ica l ly  run th e  specified M -f i le  im m ed ia te ly
after M A T L A B  starts .
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2 MATLAB Working Environment

reg se rve r  M od ify  th e  W indows reg is try  w i th  th e  app ropr ia te
Act iveX  entr ies  for M A T LA B . (For more in fo rm a tion , 
see Chapter 7 of th e  App lica t ion  Program Interface 
Guide.)

unregserver  M od ify  th e  W indows reg is t ry  to  remove th e  Act iveX
entr ies  for M A T LA B . Use th is  to  reset th e  registry. 
(For more in fo rm a tion , see C hapter 7 of the  
A pp lica t ion  Program Interface Guide.)

For example, to  s ta rt  M A T L A B  and au tom a tica l ly  run th e  f i le  r e s u l t s .  m use 
th is  ta rget path for your W indow s shortcut:

D : \ b in \ n t  \m a t la b .e x e  / r  r e s u l t s

For th e  same example, i f  you s ta r t  M A T L A B  from  a DOS w indow , 
au tom a tica l ly  run th e  f i le  r e s u l t s . m  upon s ta r tu p  by typ ing

m atlab  / r  r e s u l t s

у  For a l ist of M A T L A B  s ta r tu p  options a v a i la b le fo r  U N IX ,  at th e  U N IX  
prompt type

m atlab  -h

Qui t t i ng  MATLAB
To qu it  M A T L A B  at any t im e, type  q u i t  at th e  M A T L A B  prompt.

On W indow s p la tforms, you can a lso qu it  by selecting E x i t  f r o m th e F i le  
menu, or by using th e  close box.

q u i t  runs  th e  script f i n i s h . m ,  i f  f i n i s h . m  exists anyw here  on th e  M A T L A B  
path. f i n i s h . m  is a f i le  you create th a t  conta ins commands you w an t to  run 
when M A T L A B  te rm ina tes . For example, inc lude a save command in your 
f i n i s h . m  fi le to  save th e  workspace when M A T L A B  qu its . Or in your f i n i s h .  m 
fi le, inc lude code th a t w i l l  d isp lay a confirm ation  dia log box when you qu it  
M A T L A B . Tw o sample f i n i s h .  m f i les  are in / t o o lb o x / l  ocal :

• f i n i s h s a v . m -  saves th e  workspace to  a M A T - f i le  when M A T L A B  q u its

• f i n i s h d l g . m  -  d isp lays a dia log a llow ing  you to  cancel q u i t t in g
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The Command Window
The Command W indow  is th e  main w indow  in which  you com m unicate  w i th  
M A T L A B .

щ п  On W indow s p la tforms, M A T L A B  provides a special w indow  w ith  
W indows-on ly  features.

\ /  On U N IX  systems, th e  Command W indow  is th e te rm in a l  w indow  from 
w hich  you s ta r t  M A T L A B .

The  M A T L A B  in te rp re te r  d isp lays a prompt (>>) ind ica t ing  th a t it is ready to  
accept commands from  you. For example, to  enter a 3-by-3 m a tr ix ,  you can type

A = [1 2 3; 4 5 6; 7 8 10]

When you press th e  E n te r  or R e tu rn  key, M A T L A B  responds w i th

A =

1 2 3 
4 5 6 
7 8 10

To inve rt th is  m a tr ix ,  enter 

B = in v (A )

M A T L A B  responds w i th  th e  result.

C o m m a n d  Line Edit ing
A rro w  and control keys on your keyboard a llow  you to  recall, edit, and reuse 
commands you have typed earlie r. For example, suppose you m is taken ly  enter

rho = (1+ s q t ( 5 ) ) / 2  

You have misspelled s q r t .  M A T L A B  responds w ith

U ndefined f u n c t io n  or v a r i a b le  ’ s q t ’ .

Instead of re typ ing  th e  e n t ire  l ine, s im p ly  press th e  ^  key. The misspelled 
command is redisplayed. Use th e  <— key to  move th e  cursor over and insert 
th e  m issing r .  Repeated use of th e  ^  key recalls earl ie r lines.

2-5
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The commands you enter d u r in g  a M A T L A B  session are stored in a buffer. You 
can use sm art recall to  recall a previous command whose f i rs t  few characters 
you specify. For example, typ in g  th e  le t te rs  p lo  and pressing th e  ^  key recalls 
th e  last command th a t  s tarted w i th  pl o, as in th e  most recent pl ot command.

The complete list of a rrow  and control keys provides add it iona l control. M any 
of these keys should be fa m i l ia r  to  users of th e  Emacs editor.

A rrow  Key Control Key O perat ion

t C tr l -p Recall previous line.

C tr l-n Recall next line.

< E - C tr l-b Move back one character.

- > C t r l - f Move fo rw ard  one character.

c t r l — > C tr l - r Move r igh t one word.

c t r l -  < — C tr l- l Move left one word.

hom e C tr l-a Move to  beg inning of line.

end C tr l-e Move to  end of line.

esc C tr l-u Clear line.

del C tr l -d Delete character at cursor.

backspace C tr l-h Delete character before cursor.

C tr l - k Delete (k i l l )  to  end of line.

Clearing the Command Window
Use cl c to  clear th e  Command W indow . T h is  does not clear th e  workspace, but 
only clears th e  view. A f te r  using c lc ,  you s t i l l  can use th e  up arrow  key to  see 
th e  h is to ry  of th e  commands, one at a t im e.
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Paging of Output in the Command Window
To control paging of output in th e  Command W indow, use more. By default,  
more is o f f . When you set more on, a page (a screen fu l l)  of output d isp lays at 
one t im e . You then use

R e tu rn  To advance to  th e  next l ine

Space Bar To advance to  th e  next page 

q To stop d isp lay ing  th e  output

I n te r ru p t in g  a Running Prog ram
You can in te r ru p t  a run n in g  program by pressing C tr l - c  at any t im e.

On W indow s p la tform s, you may h a v e to w a it  u n t i l  an executing bu i l t - in  
funct ion or M E X -f i le  has f in ished i ts  operation.

^  On U N IX  systems, program execution w i l l  te rm in a te  im m edia te ly .

The f o r m a t  C o m m an d
The fo r  mat command contro ls th e  num er ic  fo rm at of th e  va lues d isplayed on 
th e  screen. The  command affects only how num bers are displayed, not how 
M A T L A B  computes or saves them.

On W indow s p la tform s, you can change th e  default fo rm at by selecting 
P re fe ren ce s  from  th e  F i le  menu, and selecting th e  desired fo rm at from 
th e  G enera l tab.
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Here are va r ious  fo rm a ts  and th e  outpu t produced from  a two-e lement vector 
w i th  components of d if fe ren t magnitudes.

x = [ 4 / 3  1 .2345e-6 ] 

fo rmat short

1.3333 0.0000 

format short e

1.3333e+000 1.2345e-006 

format short g

1. 3333 1. 2345e-006 

format long

1.33333333333333 0.00000123450000 

format long  e

1.333333333333333e+000 1.234500000000000e-006 

format long  g

1.33333333333333 1.2345e-006 

format bank

1.33 0 .00
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form at +

++

form at ra t

4/ 3 1/ 810045

form at hex

3ff5555555555555 3eb4b6231abfd271

I f  th e  largest element of a m a tr ix  is larger than  103 or sm alle r  than  10-3, 
M A T L A B  applies a common scale factor for th e  short and long formats.

I n add it ion to  th e  format commands shown above

form at compact

suppresses many of th e  b lank l ines th a t  appear in th e  output.  T h is  lets you 
view more in fo rm a tion  on a screen or w indow . To show th e  b lank lines, use

form at loose

I f  you w an t more control over th e  output fo rm at, use th e  s p r i n t f  and f p r i  n t f  
functions.

Suppress ing O u tp u t
I f  you s im p ly  type  a sta tement and press R e tu rn  or E n t e r , M A T L A B  
au tom a tica l ly  d isp lays th e  resu lts  on screen. However, i f  you end th e  l ine  w ith  
a semicolon, M A T L A B  performs th e  computation but does not d isp lay any 
output.  T h is  is p a r t ic u la r ly  useful when you generate large matrices. For 
example,

A = magic(100);
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Long C o m m a n d  Lines
I f  a s ta tement does not f i t  on one line, use an e ll ips is  (three periods, . . . ) ,  
fo llowed by R e tu rn  or E n te r  to  ind icate  th a t th e  sta tem ent continues on th e  
next l ine. For example,

s = 1 -  1 /2  + 1 /3  -  1 /4  + 1 /5  -  1 /6  + 1 /7  . . .
-  1 /8  + 1 /9  -  1 /10 + 1/11 -  1/12;

B lank  spaces around th e  =, +, and -  signs are optional, but they  improve 
readab il i ty .  The m ax im um  num ber of characters allowed on a s ing le  l ine  is 
4096.

MATLAB W o r k s p a c e
The M A T L A B  workspace conta ins a set of va r iab les  (named arrays) th a t  you 
can m an ip u la te  from th e  M A T L A B  command line. You can use th e  who and 
whos commands to  see w ha t is cu rren t ly  in th e  workspace. The who command 
gives a short l is t, w h i le  th e  whos command also gives size and data  type  
in fo rm ation .

Here is th e  output produced by whos on a workspace conta in ing  eight variab les 
of d if fe ren t data  types.

whos
Name Size Bytes Class

A 4x4 128 double  a r ra y
D 3x5 120 double  a r ra y
M 10x1 40 c e l l  a r ra y
S 1x3 628 s t r u c t  a r ra y
h 1x11 22 char a r ra y
n 1x1 8 double  a r ra y
s 1x5 10 char a r ra y
v 1x14 28 char a r ra y

Grand t o t a l  i s  93 e lements us ing  984 bytes 

To delete all ex is t ing  variab les from  th e  workspace, enter 

c le a r
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Loading and Saving the Workspace 
M A T L A B ’s save and load  commands let you save th e  contents of th e  M A T L A B  
workspace at any t im e  d u r in g  a session and then reload th e  data  back in to  
M A T L A B  d u r in g  th a t  session or a la ter  one. load  and save can also im port and 
export text data  files.

Saving the Workspace 
The save command saves th e  contents of th e  workspace in to  a b inary  M A T -f i le  
th a t  you can read back la ter w i th  th e  load  command. For example,

saves th e  e n t ire  workspace contents in th e  f i le  june10. mat. I f  desired, you can 
save only certa in var iab les  by specifying th e  va r iab le  names after th e  fi lename.

For example,

save june10  x y z 

saves only variab les x, y, and z.

I On W indow s p la tform s, th e  save operation is also ava i lab le  by selecting 
' Save W o rk s p a c e  As from  th e  F i le  menu.

N o te  The M A T LA B  App lica t ion  Program Interface G u ide  provides de ta i ls  on 
reading and w r i t in g  MAT-f iles from  external C or Fortran  programs.
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Specifying File Format
You can control th e  fo rm at in which save stores data  by appending f lags to  the  
f i lenam e/var iab le  name list:

-mat Use b ina ry  M AT-f i le  form  (default).

- a s c i i  Use 8-dig it ASCII form.

- a s c i i  - d o u b le  Use 16-digit ASCII form.

- a s c i i  - d o u b le  - ta b s  D e l im it  a rray  elements w i th  tabs.

-v 4  Save in fo rm at th a t  M A T L A B  version 4 can
open.

-append Append data  to  ex is t ing  MAT-file.

I f  you use th e  v4 flag, you can only save data  constructs th a t  are compatib le  
w i th  versions of M A T L A B  4; therefore, you cannot save s tructures, cell arrays, 
m u lt id im ens iona l arrays, or objects. In add it ion, you must use fi lenam es th a t 
are supported by M A T L A B  version 4.

When you save workspace contents in ASCII fo rm at, save only one va r iab le  at 
a t im e . I f  you save more than  one variab le, M A T L A B  w i l l  create th e  ASCII file, 
but you w i l l  be unable  to  load it back in to  M A T L A B  later using load.

Loading the Workspace
The load  command loads a M A T - f i le  th a t  you have previously created w i th  
save. For example,

load  june10

loads june10.m at in to  th e  workspace. I f  th e  saved M A T - f i le  jun e1 0  conta ins 
th e  variab les A, B, and C, then loading j une10 places th e  variab les A, B, and C 
back in to  th e  workspace. I f  th e  variab les a lready exist in th e  workspace, they 
are overw r it ten .

I f  your M A T - f i le  has a f i lenam e extension other than  mat, you must use th e  
-mat switch or else M A T L A B  expects th e  f i le  to  be ASCII tex t form at.

load  f i le n a m e  -mat

On W indow s p la tform s, th e  I oad operation is also ava i lab le  by selecting 
Load W o rk s p a c e  from  th e  F i le  menu.
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Loading ASCII Data Files
The l oad command also im ports  ASCII data  fi les. It reads th e  contents of th e  
f i le  in to  a va r iab le  w i th  th e  same name as th e  f i le  (w ithou t th e  extension). For 
example,

load t i d e s . d a t

creates a va r iab le  named t i d e s  in th e  workspace. I f  th e  ASCII data  f i le  has m 
l ines w i th  n va lues on each line, th e  result is an m-by-n n um er ic  array.

Filenames Stored in String Variables
I f  th e  f i lenam es and va r iab le  names you are w o rk in g  w i th  are stored in s tr ing  
variables, you can use command/function d u a l i ty  to  call l oad and save as 
functions. In th is  case, th e  inpu t a rgum en ts  appear in th e  same order as they 
wou ld  at th e  command line. For example, th e  s ta tem ents

s a v e ( ’ m y f i l e ’ , ’ VAR1’ , ’ VAR2’ )
A = ’ m y f i l e ’ ; 
l oad(A)

are th e  same as

save m y f i l e  VAR1 VAR2 
l oad m y f i l e

To load or save m u l t ip le  f i les  w i th  th e  same p re f ix  and successive integer 
suffixes, use a loop. For example, th is  code saves th e  squares of th e  num bers 1 
th rough  10 in f i les  data1 th rough  data10:

f i l e  = ’ d a t a ’ ; 
f o r  i = 1:10 

j = i . A2;
s a v e ( [ f i l e  i n t 2 s t r ( i ) ] , ’ j ’ );

end

Wildcards
The l oad and save commands let you specify a w i ldcard  character (*) to  search 
for pa tte rns  of va r iab le  names. For example,

save runda te  x*
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saves all variab les in th e  workspace th a t  s ta rt  w i th  x in th e  f i le  r u n d a ta .m a t . 
S im i la r ly ,

l oad t e s t  dat a ex1*95

loads from  t e s t d a t a .  mat all th e  variab les whose f irs t th ree  characters are 
’ ex1’ and last tw o  characters are ’ 95’ , regardless of th e  characters between 
them.

Search Path
M A T L A B  uses a search path to  f ind  M-files. M A T L A B ’s M -f i les  are organized 
in d irector ies  or fo lders on your f i le  system. M any  of these d irector ies  of M -fi les  
are provided along w i th  M A T L A B , w h i le  others are ava i lab le  separate ly  as 
toolboxes.

I f  you enter th e  name fo o  at th e  M A T L A B  prompt, th e  M A T L A B  in te rpre ter :

1 Looks for fo o  as a variab le.

2 Checks for fo o  as a b u i l t - in  funct ion.

3 Looks in th e  cu rren t d irec to ry  for a f i le  named f o o . m

4 Searches th e  d irector ies  on th e  search path for f o o . m

A lthough  th e  actual search ru les are more complicated because of th e  
restr ic ted scope of p r iva te  funct ions, subfunctions, and object-oriented 
funct ions, th is  s im p l if ied  perspective is accurate for th e  o rd ina ry  M -f i les  th a t 
you usua lly  w o rk  w i th .

I f  you have more than  one funct ion w i th  th e  same name, only th e  f irs t  one in 
th e  search path order is found; other func t ions  w i th  th e  same name are 
considered to  be shadowed and cannot be executed.

Changing the Search Path
You can d isp lay and change th e  search path for th e  dura t ion  of your current 
session using th e  path, addpat h, and rmpat h functions:

• path, by itself, re tu rns  th e  curren t search path.

• p a t h ( s ) , w he re  s is a s tr ing , sets th e  path to  s.
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• addpath /home/l i b  and p a t h ( p a t h , ’ /home/  l i b ’ ) both append a new 
d irec to ry  to  th e  path.

• rmpath / h ome / l i  b removes th e  path / h ome / l i  b.

The  default search path remembered between sessions is defined in th e  f i le  
p a t h d e f . m i n  th e  d irec to ry  named l ocal  on your system. pathdef executes 
au tom a tica l ly  each t im e  you s ta rt M A T L A B .

зал On W indow s p la tfo rm s, you can d irec t ly  edit pat h d e f . m w ith  your text 
editor.

у /  On U N IX  w o rks ta t ions  you may not have f i le  system permission to  edit 
pat h d e f . m In th is  case, put pat h and addpat h commands in your 
s t a r t u p . m  f i le  to  change your path defaults.

M A T L A B  also provides a Path Browser w i th  a convenient in terface for v iew ing  
and changing th e  search path. Use pat h t oo l  to  s ta rt  th e  Path Browser.

Files on the Search Path
To d isp lay th e  search path, use path. Use what to  see all of th e  M A T L A B  fi les 
in a d irectory. W ith  no arguments, what d isp lays th e  f i les  in th e  current 
d irectory.

W ith  a fu l l  or part ia l path, what l is ts  th e  f i les  in any d irectory  on th e  path, for 
example,

what m a t l a b / e l f  un

To see th e  code in a specific M-fi le , use th e  t y p e  command, for example, 

t y pe  rank 

To edit th e  M-fi le , use e d i t , for example, 

ed i t  rank

N o t e  Save any M -f i les  you create or any M A T LA B -supp l ied  M -f i les  tha t you 
edit in a d irec to ry  tha t is not in th e  MATLAB d irec tory  tree. I f  you keep your 
f i les  in th e  MATLAB d irectory  tree, they  m ight be overw r i t ten  when you ins ta l l  a 
new version of M A T LA B . A no the r  consideration is th a t  f i les  in th e  MATLAB/ 
t o o l b o x  d irectory  t ree  are loaded and cached in to  memory at th e  beg inning of
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each M A T L A B  session to  im prove  performance. T h is  cache is not updated 
u n t i l  M A T L A B  is restarted. I f  you add any f i les  or m ake changes to  any fi les 
in th e  t o o l b o x  directory, you w i l l  not be able to  see th e  changes u n t i l  you 
restart M A T LA B .

Cur rent  Di rec tory
M A T L A B  m a in ta in s  a current d irectory  for w o rk in g  w i th  M -f i les  and 
MAT-f iles.

On W indow s p la tforms, th e  in i t ia l  curren t d irec to ry  is specified in the  
shortcut f i le  you use to  s ta rt  M A T L A B . R igh t-c l ick  on th e  shortcut fi le, 
and select P ro p e r t ie s  to  change th e  default.

^  On U N I X  systems, th e  in i t ia l  curren t d irec to ry  is th e  d irectory  you are 
in on your U N I X  f i le sys tem  when you invoke M A T L A B .

To d isp lay your curren t d irectory , use th e  cd command w i th  no arguments. For 
example, on U N IX :

cd
/ home/ roger

To change your curren t d irectory, use cd w i th  a path. For example, for 
W indow s

cd \ b i g p r  o j \ phase1 

changes th e  curren t d irectory  to  th e  phase1 d irectory, located in bi gproj .

O pe n ing  Files in MATLAB
You can open f i les  in M A T L A B  based on th e ir  extension using th e  open 
funct ion. open is a user-extensib le funct ion th a t  provides an in terface  to  f i le  
open operations. Defau lt behavior is provided for these standard  M A T L A B  f i le
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types. You can extend th e  in terface  to  inc lude other f i le  types and to  overr ide 
th e  default behavior for th e  s tandard  fi les.

Name Action

F igu re  f i le  ( * . f i g ) Open f igu re  in a f igu re  w indow

M -f i le  (name.m) Open M -f i le  name in Ed ito r

Model (name.mdl) Open model name in S im u l in k

P-fi le  (name.p) Open th e  corresponding M -fi le , name. m, i f  it exists, 
in th e  Ed ito r

Variab le Open a rray  name in th e  A r ra y  Ed ito r  (the a rray  
must be numeric); open calls openvar

O ther extensions 
(name.custon)

Open name.custom by ca ll ing  th e  helper funct ion 
opencustom, w here  opencustom is a user-defined 
funct ion.
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The Figure Window
M A T L A B  d irects  g raph ics outpu t to  a w indow  th a t  is separate from  th e  
Command W indow. In M A T L A B , th is  w indow  is referred to  as a f igure. 
G raph ics func t ions  a u tom a tica l ly  create new f ig u re  w indow s i f  none cu rren t ly  
exist. I f  a f igu re  w indow  a lready exists, M A T L A B  uses th a t  w indow . I f  m u l t ip le  
f igu re  w indow s exist, one is designated as th e  curren t f igu re  and is used by 
M A T L A B  ( th is  is genera lly  th e  last f igu re  used or th e  last f igu re  you clicked th e  
mouse in).

The f i g u r e  funct ion  creates f igu re  w indows. For example, 

f i g u r e

creates a new w indow  and makes it th e  curren t f igure.

The plot funct ion  creates a plot in a f igu re  w indow . For example,

t = 0 : p i / 1 0 0 : 2 * p i ;  
y = s i n ( t ) ;  
p l o t ( t , y )

d raw s a graph of th e  s ine funct ion  from  zero to  2л in th e  curren t f igu re  w indow , 
i f  one exists, or in a new f igu re  w indow  i f  none exists.

A n n o ta t i n g  Plots Using the Plot Edi tor
A fte r  creating a plot, you can m ake changes to  it and annota te  it w i th  th e  Plot 
Ed ito r ,  which is an easy-to-use graphical interface. The i l lu s tra t io n  below 
shows th e  plot in a f ig u re  w indow  and labels th e  main features of th e  f igu re  
w indow  and th e  Plot Ed itor.
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lteth8 Tools Click thsELttcn Gfet Ffeip fcr Anctate ZbemardFttctethe
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To save a f igure, select Save from  th e  Fi l e  menu. To save it using a d if feren t 
fo rm at, such as T IF F , for use w i th  other applications, select Ex p o r t  from  th e  
F i l e  menu. You can also save from  th e  command l ine  -  use th e  saveas 
command, inc lud ing  any options to  save th e  f igu re  in a d if fe ren t fo rm at.

MATLAB Graph ics
For more in fo rm ation  about v isua l iza t ion  w i th  M A T L A B , see Using M A T L A B  
Graphics.
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Help and Online Documentat ion

C o m m a n d  Line Help
There  are several d if fe ren t ways to  access on l ine  in fo rm a tion  about M A T L A B
funct ions:

Command Description

he l p  D isp lay in th e  Command W indow  a description of th e  specified
command

hel pwi n  D isp lay a help w indow  tha t describes th e  specified command 
and a llows v iew ing  help for other topics

l o o k f o r  D isp lay in th e  Command W indow  a b r ie f descrip tion for all 
commands whose descrip tion includes th e  specified keyword

he lpdesk D isp lay th e  Help  Desk page in a Web browser, p rov id ing  direct 
access to  a comprehensive l ib ra ry  of on l ine  help, PDF-form atted  
documentation, troub leshoot ing  in fo rm ation , and The 
M a th W o rks  Web s ite

doc D isp lay in a Web browser th e  reference page for th e  specified
command, p rov id ing  a descrip tion, add it iona l rem arks, and 
examples

The help Command
The hel p  command is th e  most basic w ay  to  de te rm ine  th e  syn tax  and behavior
of a pa r t icu la r  funct ion. In fo rm at ion  is d isplayed d irec t ly  in th e  Command
W indow. For example,

he l p  magi c

d isp lays

MAGIC Magic square.
MAGC(N) i s  an N-by-N ma t r i x  c o n s t r u c t e d  f r o m  
t h e  i n t e g e r s  1 t h r ough  NT2 w i t h  equal row, 
column, and d iagonal sums.
Produces v a l i d  magic squares f o r  N = 1 , 3 , 4 , 5 . . . .
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N o t e  M A T L A B  Command W indow he l p  en tr ies  use uppercase characters for 
th e  funct ion  and va r iab le  names to  m ake them  stand out from th e  rest of th e  
text. When typ in g  funct ion names, however, a lways use th e  corresponding 
lowercase characters since M A T L A B  is case sens it ive  and all funct ion names 
are ac tua l ly  in lowercase.

A ll  th e  M A T L A B  func t ions  are organized in to  logical groups, and M A T L A B ’s 
d irectory  s tru c tu re  is based on th is  grouping. For instance, all th e  l inear 
algebra func t ions  reside in th e  mat fun d irectory. To list th e  names of all the  
func t ions  in tha t d irectory, w i th  a b r ie f description of each, use

hel p  mat fun

Ma t r i x  f u n c t i o n s  -  numerical l i n e a r  a l gebra.

Matr i x  ana l y s i s .
norm -  Ma t r i x  or ve c t o r  norm
normest -  Es t i ma t e  t he ma t r i x  2 -n o rm

The command

help

by itself, l is ts  all th e  d irectories, w i th  a description of th e  funct ion  category 
each represents:

matl ab /genera l 
matl ab/ops

The helpwin Command
The M A T L A B  Help  W indow  is ava i lab le  by typ ing

hel pwi n

The  Help  W indow  gives you access to  th e  same in fo rm a tion  as th e  hel p  
command, but th e  w indow  in terface provides convenient l in k s  to  other topics.

2-21



2 MATLAB Working Environment

To use th e  Help  W indow  on a p a r t icu la r  topic, type  

he l pwi n  t o p i c

On W indow s p la tform s, you can also access th e  Help  W in d o w  by 
selecting th e  Help  W in d o w  option under th e  H e lp  menu, or by c l ick ing  
th e  question m ark  button on th e  menu bar.

The lookfor Command
The l o o k f o r  command a llows you to  search for func t ions  based on a keyword. 
It searches th rough  th e  f i rs t  l ine  of he l p text,  which is known as th e  H1 line, 
for each M A T L A B  funct ion, and re tu rns  th e  H1 l ines conta in ing  a specified 
keyword. For example, M A T L A B  does not have a funct ion  named i nve r se .  So 
th e  response from

hel p  i n v e r s e
is

i n v e r s e . m  not found.

But

l o o k f o r  i nverse

f inds  over a dozen matches. Depending on which  toolboxes you have insta lled, 
you w i l l  f ind  entr ies  l ike

INVHILB I nverse H i l b e r t  ma t r i x
ACC6H I n v e r s e  h y p e r b o l i c  cos i ne
ERFINV I n v e r s e  of t h e  e r r o r  f u n c t i o n
INV Ma t r i x  i n v e r s e
PINV Pseudo inverse
IFFT I n v e r s e  d i s c r e t e  Fou r i e r  t r a n s f o r m
IFFT2 Two-dimensional i nv e r s e  d i s c r e t e  Fou r i e r  t r a n s f o r m
ICCEPS I n v e r s e  complex c e ps t r um
IDCT I n v e r s e  d i s c r e t e  cos i ne  t r a n s f o r m

A dd ing  - a l l  to  th e  l o o k f o r  command searches th e  e n t ire  help entry, not jus t 
th e  H1 line.

The helpdesk Command
The M A T L A B  Help  Desk provides access to  a w ide  range of help and reference 
in fo rm a tion  stored on a d isk or CD in your local system. M any  of th e  under ly ing
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documents use HyperText M a rk u p  Language (H T M L )  and are accessed w ith  
an In te rne t Web browser such as Netscape Nav iga to r  or M icrosoft In te rne t 
Explorer.

To access th e  Help  Desk, type  

hel pdesk

n On W indow s p la tform s, you can also access th e  Help  Desk by selecting
4 th e  Help  Desk option under th e  Help  menu.

A ll  of M A T L A B ’s operators and funct ions  have on l ine  reference pages in H T M L  
fo rm at, w h ich  you can reach from  th e  Help  Desk. These pages provide more 
de ta i ls  and examples than  th e  basic hel p  entr ies. H T M L  versions of other 
documents are also availab le. A  search engine can query all th e  on line  
reference m ater ia l.

PDF-formatted Documentation. Vers ions of all M A T L A B  documentation are 
ava i lab le  in Portab le  Document Form at (PDF) th rough  th e  Help  Desk. These 
pages are processed by Adobe’s Acrobat Reader. They reproduce th e  look and 
feel of th e  p r in ted  page, complete w i th  fonts, graphics, fo rm a tt ing , and images. 
You can use l in k s  from  one tab le  of contents or index of a manual, as well as 
in te rna l l inks, to  go d irec t ly  to  th e  page of interest.

Acrobat Reader also a llows you to  p r in t  selected pages w i th in  a document. T h is  
is th e  best w ay  to  get p r in ted  copies of th e  on l ine  M A T L A B  Function Reference, 
which is not o therw ise  ava i lab le  in hard copy.

MathWorks Web Site. I f  your computer is connected to  th e  In te rne t,  th e  Help 
Desk provides connections to  The  M athW orks , th e  home of M A T L A B . You can 
use e lectron ic mail to  ask questions, m ake suggestions, and report possible 
bugs. You can also use th e  Solution Search Eng ine  at The M a th W o rk s  Web site 
to  query  an up-to-date  data  base of technical support in fo rm ation .

A l te rna t ive ly ,  you can point your Web browser d irec t ly  at www. i rathworks . com 
to access The  M a th W o rk s  Web site.

The doc Command
The doc command accesses th e  H T M L  reference documentation for M A T L A B  
func t ions  and all ins ta lled toolboxes.
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For example, i f  you have th e  Control System Toolbox and Sym bolic  M ath  
Toolbox ins ta lled as well as M A T L A B , when you enter at th e  M A T L A B  
command l ine

doc e ig

you w i l l  see th e  H T M L  reference documentation page reflecting th e  M A T L A B  
version of e i g .  In add it ion , in th e  Command W indow  you w i l l  see

Overloaded f u n c t i o n s :  
doc c o n t r o l / e i g  
doc s y m b o l i c / e i g

To see t he  documentation for e ither of those versions of th e  ei g funct ion, issue 
th e  app ropr ia te  doc command w i th  th e  proper path, as shown above.

The doc command s ta r ts  your Web browser i f  it is not a lready runn ing .

Help M enus  and Help But tons
In th e  f igu re  w indow  use th e  Help  menu to  access help for th e  Plot Ed ito r ,  for 
M A T L A B  Graphics and to  access th e  Help  W indow  and Help  Desk. In th e  
P r i n t F r a m e  E d i to r  w indow , use th e  Help  menu to  access help for ed it ing  
p r in t fram es.

In th e  Page Setup dia log box and in th e  Plot Ed ito r  d ia log boxes, click th e  Help  
button to  access help for those dia log boxes.
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Disk File Manipulat ion and Shell Escape
The commands di r , t ype,  del ete,  and cd im p lem ent a set of generic  operating 
system commands for m a n ip u la t ing  fi les. T h is  ta b le  ind icates how these 
commands map to  other operating systems.

MATLAB Commands Wi n do w s UNIX

d i r d i r l s

t ype t ype cat

d e l e t e del or erase rm

cd chd i r cd

For most of these commands, you can use pathnames, w ildcards, and d r ive  
designators in th e  usual way.

Running Exte rna l  P ro g ra m s
The exclamation point character ! is a shell escape and ind icates th a t  th e  rest 
of th e  inpu t l ine  is a command to  th e  operating system. T h is  is q u ite  useful for 
invok ing  u t i l i t ie s  or ru n n in g  other p rogram s w i th o u t  q u i t t in g  from  M A T L A B . 
On U N IX , for example,

!v i  d a r w i n . m

invokes th e  v i ed itor for a f i le  named darwin.  mi A f te r  you qu it  th e  program, the  
operating system re tu rns  control to  M A T L A B .

See th e  commands un i x  and dos in on l ine  help to  run external p rograms th a t 
re tu rn  resu lts  and status.

2-25



2 MATLAB Working Environment

Data Impor t /Expor t
There  are m any w ays to  move data  between M A T L A B  and other applications.
I n most cases, you can s im p ly  use M A T L A B ’s na t ive  data  exchange capabil it ies  
to  read in or w r i te  out fi les. For more complicated data  sets, you may w an t to  
create your own C or Fortran  program to  read or w r i te  a file.

Im p o r t in g  Data into MATLAB
You can in troduce  data  from other p rogram s in to  M A T L A B  using several 
methods. The best method for im p o r t in g  data  depends on th e  amount and 
fo rm at of th e  data.

M ethod When to Use

E n te r  data  as an I f  you have a small amount of data, it is easy to
explic it  l ist of type  th e  data  exp l ic i t ly  using brackets ([ ] ) .  T h is
elements method is a w kw ard  for larger am ounts  of data 

because you can’t edit your inpu t i f  you m ake a 
m istake, but must correct it using assignment 
s tatements. See Gett ing Started w i th  M A T L A B  for 
more in fo rm a tion  on th is  technique.

Create  data  in an Use a text editor to  create an M -f i le  th a t enters
M -f i le th e  data as an explic it l ist of elements. T h is  

method is useful when th e  data  is not a lready in 
d ig ita l fo rm  and must be entered anyway. 
A lthough  s im i la r  to  th e  f irs t  method, th is  method 
has th e  advantage of a l low ing  you to  use your text 
editor to  change th e  data  and to  f ix  m istakes. You 
can then jus t  rerun th e  M -f i le  to  re-enter th e  data.
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Load data  from an 
ASCII data  f i le

Read data  using 
f o p e n , f r e a d , a n d  
M A T L A B ’s f i le  I/O 
func t ions

Use a specialized f i le  
reader funct ion  for 
app lica tion-specif ic  
fo rm ats

An ASCII data  f i le  stores th e  data  in ASCII form, 
w i th  each row having th e  same num ber of values, 
and te rm in a t in g  w i th  new l ines (carriage returns), 
w i th  spaces separa ting  th e  numbers. You can edit 
ASCII data  f i les  using a normal tex t editor. You 
can read ASCII data  f i les  d irec t ly  in to  M A T L A B  
using th e  l oad funct ion. T h is  creates a va r iab le  
whose name is th e  same as th e  fi lename. See 
“ Loading and Saving th e  Workspace” for de ta i ls  on 
l oad.  You can also use dlmread i f  you need to  
specify a lte rna te  va lue  de l im ite rs . d lmread is 
discussed in “ Delim ite r-Separated  Text F iles” .

T h is  method is useful for loading data  f i les  from 
other app lica tions th a t  have th e ir  own established 
f i le  formats. These func t ions  are discussed in 
deta il in Chapter 15.

dlmread Read ASCII data  fi le.

t e x t r e a d  Read s tr ing  and n um er ic  data  from  a 
f i le  in to  M A T L A B  variab les using 
conversion specifiers.

wk1read Read spreadsheet (WK1) fi le.

imread Read image from graph ics fi le.

auread Read Sun ( a u )  sound file.

wavread Read Microsoft WAVE ( wa v )  sound 
file.
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Develop a M E X -f i le  
to  read th e  data

Develop a F ortran  or 
C trans la t ion  
program

T h is  is th e  best method i f  C or Fortran  rou tines 
are a lready ava i lab le  for reading data  f i les  from  
other applications. See th e  M A T L A B  App lica t ion  
Program In terface G u ide  for more in fo rm ation .

Develop a program to  t ra n s la te  your data  in to  
M AT-f i le  format and then read th e  M AT-f i le  in to  
M A T L A B  w i th  th e  load command. See th e  
M A T L A B  A pp lica t ion  Program Interface G u ide  for 
more in fo rm a tion .

Exp or t in g  Data f r om  MATLAB
There  are several methods for ge tt ing  M A T L A B  data  to  other applications:

M ethod When to Use

Use th e  d i a r y For small arrays, use th e  d i a r y  command to  create
command a d ia ry  f i le  and d isp lay th e  variables, echoing them  

in to  th is  fi le. The output of d i a r y  includes the  
M A T L A B  commands used d u r in g  th e  session, 
which is useful for inclusion in documents and 
reports. You can use your text editor to  edit th e  
d ia ry  fi le, removing unwanted text.

Save th e  data  in Use th e  save command w i th  th e  - a s c i i  option.
ASCII form See “ Loading and Saving th e  Workspace” for 

de ta i ls  on save. You can also use d l m w r i t e  i f  you 
need to  specify a lte rna te  va lue  de l im ite rs . 
d l mw r i t e  is discussed in “ Delim ite r-Separated  
Text F iles” .

W r i te  th e  data  in a Use f w r i t  e and t he  other low-level I/O functions.
special fo rmat T h is  method is useful for w r i t in g  data  f i les  in th e  

f i le  fo rm a ts  required by other applications. These 
func t ions  are discussed in detail in Chapter 15.
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Use a specialized f i le  
w r i te  funct ion for 
app lica tion-specif ic  
fo rm ats

dl mwr i t e W r i te  ASCII data  file.

w k l w r i t e W r i te  spreadsheet (WK1) fi le.

i m w r i t e W r i te  image to  g raph ics fi le.

a u w r i t e W r i te  Sun ( a u )  sound fi le.

wavwr i t e W r i te  Microsoft WAVE (. wav) sound 
fi le.

Develop a M E X -f i le  
to  w r i te  th e  data

T h is  is th e  best method i f  C or F ortran  rou tines  are 
a lready ava i lab le  for w r i t in g  data  f i les  in th e  form 
needed by other applications. See th e  M A T L A B  
A pp lica t ion  Program Interface G u ide  for more 
in fo rm a tion .

W r i te  out th e  data  as 
a M AT-f i le

Use th e  save command, and then w r i te  a program 
in Fortran  or C to  t ran s la te  th e  M AT-f i le  in to  the  
desired fo rm at. See th e  M A T L A B  App lica t ion  
Program In terface G u ide  for more in fo rm ation .

D e l im i te r -Sep ar a ted  Text Files
The func t ions  dlmread and d l mw r i t e  let you read and w r i te  
de l im ite r-separa ted  va lues from  an ASCII data  fi le. A  de l im ite r  is any 
character th a t separates th e  f i le ’s values. These func t ions  are also useful for 
reading or w r i t in g  in to  a specific M A T L A B  va r iab le  name.

For example, consider a f i le  named ph. dat whose contents are separated by 
semicolons.

7.2;  8 . 5 ; 6 . 2 ; 6 . 6  
5.4;  9 . 2 ; 8 . 1 ; 7 . 2

To read th e  e n t ire  contents of th is  f i le  in to  an a rray  named A, use

A = d l mr ea d ( ’ p h . d a t ’ , ’ ; ’ );
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The second argum ent to  dlmread specifies th e  de l im ite r ,  which in th e  previous 
example is a semicolon. In add it ion  to  th e  d e l im i te r  you specify, dlmread also 
in te rp re ts  all whitespace characters as de l im ite rs . So, th e  preceding dl mread 
command w o rks  even i f  th e  contents of ph. dat are

7.2;  8. 5; 6 . 2 ; 6 . 6
5.4;  9 . 2  ; 8 . 1 ; 7 . 2

N o t e  The  f irs t a rgum ent to  dlmread is a fi lename, not a f i le  identif ie r. Do not 
open th e  f i le  w i th  fopen before using dlmread or d l mwr i t e .

S im i la r ly ,  d l m w r i t e  w r i te s  de l im ite r-separa ted  text to  an external fi le.

A =

1 2 3 
4 5 6

d l m w r i t e ( ’ m y f i l e ’ , A , ’ ; ’ ) 

m y f i l e  now conta ins

1 ; 2 ; 3
4 ; 5 ; 6

Reading Files t ha t  Have  a Un i fo rm  Format
The funct ion t e x t  read reads s tr ing  and num er ic  data  from  a f i le  in to  M A T L A B  
variab les  using th e  conversion specifiers you indicate. Conversion specifiers 
denote, for example, th e  length of th e  fie ld  and th e  data  fo rm at. t e x t r e a d  is 
most useful for f i les  w i th  a known and un ifo rm  fo rm at, such as comma- or 
tab -de l im ited  fi les, but you can also use it for reading free fo rm at fi les.

For example, th e  f i le  mydata.dat is

S a l l y  Typel 12.34 45 Yes

To read mydata.dat as a free fo rm at fi le, use th e  % conversion format.

[ n a me s , t y p e s , x , y , a n s w e r ]  = t e x t r  ead ( ’ my da t a . da t ’ , ’ %s %s 0Д . . .
%d %s’ ,1)
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w he re  %s reads a whitespace-separated s tr ing , %f reads a f loa t ing  point value, 
and reads a signed integer.

M A T L A B  re tu rns

names =
’ S a l l y ’ 

t ypes  =
’ T y p e l ’

x =
12.34000000000000 

y =
45

answer =
’ Yes’

See all of t he  a llowable  d e l im i te rs  on th e  reference page for t e x t r e a d .

Exchang ing  Data Files Be tween P la t fo rm s
I t ’s sometimes necessary to  w o rk  w i th  M A T L A B  im p lem en ta t ions  on d if feren t 
computer systems, or to  t ra n s m it  M A T L A B  app lica t ions to  users on other 
systems. M A T L A B  app lica t ions consist of M-files, conta in ing  func t ions  and 
scripts, and MAT-f iles, conta in ing  b ina ry  data. Both types of f i les  can be 
transported  d irec t ly  between d if feren t computers:

• M -f i les  consist of o rd ina ry  text.  They are machine independent. W h i le  
d if fe ren t p la t fo rm s te rm in a te  l ines w i th  var ious  combina tions of CR 
(carriage re tu rn )  and LF  ( l ine  feed) characters, th e  M A T L A B  in te rp re te r  
to lera tes all possible combinations. (However, text ed ito rs  and other tools 
may not w o rk  correctly w i th  M -f i les  from  other p la tforms.)

• M A T -f i le s  are b ina ry  and machine dependent, but they  can be transported  
between machines because they  contain a m achine s igna tu re  in th e  f i le  
header. M A T L A B  checks th e  s igna tu re  when it loads a f i le  and, i f  a s igna tu re  
ind icates th a t  a f i le  is foreign, performs th e  necessary conversion.

To use M A T L A B  across d if fe ren t p la tforms, you need a program for exchanging 
both b ina ry  and text data  between th e  machines. When using these programs, 
be sure  to  t ra n s m it  M A T -f i le s  in b in a ry  f i le  mode and M -f i les  in ASC II f i le  
mode. F a i lu re  to  set these modes correct ly  usua lly  co rrup ts  th e  data.
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The d i a r y  C o m m a n d
The d i a r y  command creates a ve rba t im  copy of your M A T L A B  session in a d isk 
f i le  (excluding graphics). You can view and edit th e  resu lt ing  text f i le  using any 
word  processor. To create a f i le  on your d isk called sept 23 . ou t  th a t  conta ins 
all th e  commands you enter, as well as M A T L A B ’s output,  enter

d i a r y  sep t 23 . ou t  

To stop recording th e  session, use 

d i a r y  o f f
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Memory Uti l ization
M A T L A B  requ ires a contiguous area of memory to  store each m a tr ix .  In 
pa r t icu la r ,  images and movies can consume large am ounts  of memory. In 
add it ion  to  th e  storage required for th e  m a tr ix ,  th e  p ixm ap used to  d raw  th e  
image requires memory proport iona l to  th e  area of th e  image on th e  screen. A 
color image of 500-by-500 p ixels uses one megabyte of memory. To l im i t  th e  
amount of memory required for these operations, l im i t  th e  size of th e  images 
you display.

Resolving Memory Errors
I f  you do not have a “ch u n k ” of memory large enough to  a llocate a m a tr ix ,  an 
out of memory error may occur even though you seem to  have enough ava i lab le  
memory. To consolidate th e  fragm ented  memory, you can use th e  M A T L A B  
pack command, or you can a llocate larger m atr ices ear l ie r in th e  M A T L A B  
session.

I f  you run out of memory often, use these tips:

For Windows, increase v i r tu a l  m em ory by using System P r o p e r t i e s  for 
Pe r f o r man c e ,  w hich  you can access from  th e  C o n tro l  P a n e l .

X For UN I X ,  ask your system manager to  increase your swap space. For 
V A X /VM S, ask your system manager to  increase your w o rk in g  set and/ 
or pagefile quota.

MATLAB’s Memory Management
M A T L A B  uses th e  standard  C funct ions  mal l oc  and f r e e  to a llocate d ynam ic  
memory. These rou t ines  m a in ta in  a pool of memory th a t  is allocated from the  
operating system re la t ive ly  s lowly. mal l oc  and f r  ee a llocate memory from  th is  
pool for M A T L A B  much more qu ick ly . I f  th e  pool runs  low, ma l l oc  asks th e  
operating system for another large chunk of memory to  replenish th e  pool.

As  M A T L A B  releases memory, th e  pool can grow very large. To m a in ta in  
speed, mal l oc  and f r e e  do not re tu rn  th e  add it iona l memory to  th e  operating 
system. These rou t ines  m ake th e  assumption th a t  i f  you need a large amount 
of memory once, you w i l l  need it again. A  side effect of th is  a lgo r i thm  is tha t ,  
once M A T L A B  has used a certa in  amount of memory, it is no longer availab le  
to  other p rograms even i f  M A T L A B  is no longer using it. The memory in the  
pool only re tu rn s  to  th e  operating system when M A T L A B  te rm ina tes .
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-w  I f  you use an operating system tool such as ps on UNI X ,  t he  d isp lay 
^  ind icates th e  to ta l sum of th e  memory allocated by M A T L A B  p l u s t h e  

contents of th e  pool. T h is  num ber can be deceiving because it ind icates 
th e  highest level of memory use, which may or may not be th e  current 
usage.
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Microsoft W in d o w s  Handbook
T h is  section describes several M A T L A B  env ironm ent tools and th e i r  use in th e  
W indow s env ironm ent.

C o m m a n d  W i n d o w
The Command W indow  appears when you f i rs t  s ta rt  M A T L A B . You use it to  
run M A T L A B  commands, to  launch M A T L A B  tools such as th e  E d ito r /  
Debugger, and to  s ta r t  toolboxes.

IteMfenusasan Aternativeto Typing Commands

Status Ear

UeTodbar — 
for EayAiesB 
to Popular 
Operations

» nagic(4)

16 2 0 13
5 11 10 8
9 7 6 12
4 14 15 1

l i
.Ready

-\----------------
Delays DesTiptim cf

•) MATLAB Command Window

^ Eie Edit View Window Help

- D c ? | ^ ®  ^  в  t g | f e ?

3

__ I

NUM

□ l̂aysStatuscf C&p NUm and Srdl Inks
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Toolbar
The toolbar in th e  Command W indow  provides easy access to  popular 
operations. Hold th e  cursor over a button; a to o l t ip  appears describ ing the  
button and add it iona l in fo rm a t ion  appears in th e  s ta tus  bar.

Open
File

Pfeste

Wrk^ace 
Undo ЕТсмш-

New
Path Simulink 
Войт мхй

Tooltip Cesribes 
EUtton

Show or Hide the Toolbar. To remove th e  too lbar from th e  Command Window, 
select T o o lb a r  from th e  V ie w  menu; th e  menu item becomes unchecked. To 
d isp lay th e  toolbar, select T oo lba r  from  th e  V ie w  menu; th e  menu item 
becomes checked and th e  too lbar appears. T h is  does not affect th e  se tt ing  for 
Show  T o o lb a r  in th e  P re fe ren ce s  dia log box. The preferences se tt ing  perta ins  
to  th e  toolbar s ta tus  when you f i rs t  s ta rt M A T L A B .

Move the Toolbar. You can move th e  too lbar to  another position. C lick  and hold 
on any separator bar (the l ine  between groups of buttons) and then drag th e  
too lbar to  a new location. I f  you move th e  too lbar to  an inside edge of the  
Command W indow, it w i l l  become docked, meaning it w i l l  not overlap th e  
contents of th e  Command W indow. The  new toolbar position is m ain ta ined  
when you resta rt M A T LA B .
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Menus
The Command W indow  menus provide access to  some operations not ava ilab le  
from  th e  toolbar. Hold th e  cursor on a menu item and a description of th e  i tem 
appears in th e  s ta tus  bar.

J  Edit V iew W indow  Help

Preferences
Set preferences to  control th e  appearance and operation of th e  Command 
W indow. Select P re fe ren ce s  from  th e  F i l e  menu. The P re fe ren ce s  dia log box
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appears, from  w hich  you set G e n e ra l , C o m m a n d  W in d o w  Font ,  and C o p y in g  
O p t io n s  preferences.

ГТГх1

General Preferences.

• N u m e r i c  F o r m a t  -  Specify th e  default n um er ic  fo rm at. For more 
in fo rm a tion  see “The  fo rm at C om m and” , or th e  reference page for f o r m a t .

• E d i to r  P re fe re n c e  -  Use M A T L A B ’s Ed itor, or specify another. For more 
in fo rm ation  about M A T L A B ’s Ed ito r ,  see “ Ed itor /Debugger” .

• He lp  D i r e c t o r y  -  Specify th e  d irec tory  in which M A T L A B  help f i les  reside.

• Echo On -  T u rn  M -f i le  echoing on; see th e  echo reference page for more 
in fo rm ation .

• Show T o o lb a r  -  Show or h ide th e  too lbar in th e  Command Window.

• Enab le  Gr aph i c a l  D eb u g g in g  -  A t each breakpoin t, au tom a tica l ly  show th e  
Debugger.

P re fe rences
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Command Window Font. Specify th e  font character is t ics for th e  text d isplayed in 
th e  Command Window.

Copying Options. Specify options used when copying i tems from M A T L A B  to  th e  
W indow s clipboard for pasting in to  other applications.

Ed i t o r / D e b u g g e r
The Ed itor/Debugger provides basic tex t ed it ing  operations as well as access to  
M -f i le  debugging tools. The Ed itor/Debugger offers a graphical user interface. 
It supports  a u to m a t ic  inden t ing  and syn tax  h ig h l igh t in g ; for de ta i ls  see the  
“General O p tions” section under “V iew M en u ” . You can also use debugging 
commands in th e  Command W indow . See C hapter 3 for more in fo rm ation  
about M A T L A B ’s debugging capabilit ies.

To specify th e  default editor for M A T L A B , select P re fe ren ce s  from  th e  Fi l e  
menu in th e  Command W indow. On th e  G enera l page, select M A T L A B ’s 
Editor/Debugger or specify another.

Starting the Editor/Debugger
To s ta rt th e  Editor/Debugger, select New from th e  F i l e  menu, or click th e  new 
f i le  (page icon) button on th e  toolbar, or type  ed i t  at t he  command line.

To s ta rt  th e  Editor/Debugger, opening it to  a p a r t icu la r  fi le, select Open from 
th e  F i l e  menu, or click th e  open f i le  (folder icon) button on th e  toolbar, or type  
ed i t  f i l e n a m e  at t he  command line.

Do not use th e  Ed itor/Debugger w h i le  you are run n in g  an M -f i le  in th e  
Command W indow  or you w i l l  get an error.

When you run th e  Editor/Debugger w i th o u t  M A T L A B  open, it becomes a pure 
text editor; you cannot use it as a debugger. To use th e  debugger, launch the  
Editor/Debugger from  w i th in  M A T L A B  or w i th  M A T L A B  open.
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IVemsftcMcteAceKto Operations

MUtipleFilesCpen ii 
the Edftcr

Toolbar: ЗлеМЬти itemsare As) Avsiiafcle frcmthe Todber 
/

AutcmaticGacr 
Hichlichting toDstingJSi 
Dfferert Êemerts

Autcmsticircentirg

Status Ear: HddtheOncr cn a Menu itemcr Tcdbar EUttcni a Current LineNunter 
Cteripticn cf it then Appearsin the Status Ear

N6w Save ccpy Rirt Set/Oear Stepin Qntinue
File to Osk

Htcr/Ceaugcer 
Tcdbar _

Ereakpcint
FUncticn List cf FUrcticnscn the Call 

Stack

Faste Help Clear All Si^e CUit
Er6ekpcirts Step Debugging

Title Bar
The name of the  file  you are editing appears in the  t i t le  bar. I f  there is an 
asterisk (*) appearing after the  name in the t i t le  bar, it indicates tha t you have 
made changes to  the  file  but have not saved those changes.
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File Menu
Use the  F ile  menu items to  open, save, and p rin t files, and to  exit from the 
Editor/Debugger. I f  you have a color p rin te r and want to  p rin t in color, before 
p rin ting , select O p tions  from the  Tools menu and check the  P r in t in color 
checkbox.

Edit Menu
Use the  Edit menu items to  find  and replace text, and to  go to  the  line  you 
specify.

View Menu
Use E va lua te  Selection to  evaluate an expression and display the  answer in 
the Command W indow. Use A u to  Inden t Selection to  indent the  selected text 
according to  M ATLAB syntax.

Debug Menu
The Debug menu provides an interface to  the  graphical M -file  Debugger. See 
Chapter 3 for in form ation about debugging w ith in  M ATLAB.

Tools Menu
The Tools menu provides access to  several dialog boxes tha t allow you to 
control existing features and to  define new features for use w ith  the  E d ito r/ 
Debugger.

Run. In it ia lly  present on the  Tools menu, Run saves all files and runs the 
current file. It is an example of the  type of command you can create and add to 
the Tools menu using the  Custom ize menu item.
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Custom ize. Use Custom ize to  create your own custom tool tha t can run any 
M ATLAB command.

There are tw o edit fie lds in the  Custom ize Tools Menu:

• Menu Text: Supply the name for the  menu item tha t you want to  add to  the 
Tools menu. To create a mnemonic for the  menu command, precede a 
character w ith  &. Use th is  mnemonic by typ ing  A lt followed by t (the t 
indicates the Tools menu) followed by the  mnemonic character. (Note: The 
A lt key need not be held down w h ile  pressing the  keys tha t follow.) For 
instance, in the  example above, you can execute the Run command by 
choosing Run on the Tools menu or by typ ing  A lt, t, and r in sequence.

• M ATLAB E xp ress ion : In th is  box, type the  expression you want M ATLAB 
to  evaluate when you select the  custom tool from the  Tools menu. Any valid 
M ATLAB expression is allowed. You can also include any of s ix special 
substitu tion variables. The variables may be typed d irectly  or inserted via 
the submenu, as shown above.

When your custom tool is chosen, in form ation about the  current file  is 
substituted in to  the  expression, replacing the  substitu tion variables, and 
the  expression is evaluated in M ATLAB. D ifferent in form ation is
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substituted for the  substitu tion  variables depending upon whether the 
expression is executed by the  Editor, Path Browser, or A rray  Editor.

The tab le  summarizes the  variables and the  substitu tions made for them 
w ith in  the  various environment tools.

Submenu
Item

Variable
Inserted

Invoked 
from Editor

Invoked 
from Path 
Browser

Invoked 
from Array 
Editor

Inserts Inserts Inserts
complete complete name of
pathname of pathname variable.
th is  file. of file  

selected in 
right-hand 
panel.

Inserts Inserts Inserts
name of th is name of name of
function file variable.
w ithou t its selected in

extension. right-hand
panel
w ithou t
extension.

Inserts the Inserts Inserts
text tha t is complete indexing
highlighted pathname expression
in th is  view. of file correspond

selected in ing to
right-hand selection
panel. (numbers 

in bottom 
righ t 
panel).

Pathname $( Pat hname)

F ile $( Fil e)

Selection $( Sel )
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Submenu
Item

Variable
Inserted

Invoked 
from Editor

Invoked 
from Path 
Browser

Invoked 
from Array 
Editor

Quoted $( Quot edSel Adds Adds - -
Selection ) additional 

single 
quotes to 
strings to  
preserve 
quotes ( e.g., 
who’ s 
becomes 
'who’ ’ s’ ) .

single 
quotes to 
selected 
pathname 
and
transm its
to
M ATLAB.

Beginning 
of Selection

$( Begi nSel) Inserts 
character 
offset of firs t 
character in 
the  selection.

End of 
Selection

$( EndSel) Inserts 
character 
offset of last 
character in 
the  selection.

When you invoke your custom tool:

1 A ll open files are saved.

2 Appropria te  values are substituted for all substitu tion variables in the too l’s 
M ATLAB expression.

3 The expression is evaluated in M ATLAB.

4 The current file  is reloaded if  it has changed.
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Here are some examples of expressions you can create using the  Custom ize 
command and several substitu tion variables. Observe the  d iffe ring  results 
when you invoke the  expression in the Editor, Path Browser, or A rray  Editor.

Expression Result

(DCS) !copy /Y  $(Pathname) 
$( Pathname)-
(UNIX) ! /b in /c p  $(Pathname) 
$( Pathname)-

Backup file.

mex $(Pathname) Runs Mex script on a C 
file.

which $ (F ile ) D isplay pathname of 
function.

doc $ (S e l) Call Help Desk for 
selected function.

e d it $ (S e l) Edit selected function.

di s p ( ’ S e le c tio n : 
$( EndSel)’ )

$ (Beg inSe l) th rough Indicates in Command 
Window beginning and 
end of selected Editor 
text.

$( F i le ) ( $ ( S e l) ) = $ (F i le ) ($ (S e l) ) * 2 ; When invoked from 
A rray  Editor, doubles the 
values of selected array 
elements.
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Here is a longer example dem onstrating how to  create a custom tool using 
M ATLAB to  script the  Editor. F irs t, create an M -file  called censor .m

fu n c t io n  ce n so r(p a th n a m e ,se ls ta rt,se le n d )
% Read the  s p e c if ie d  f i l e  in to  an a rray
fp=fopen( pathname,’ r+ ’ );
tx t= f re a d ( fp ) ;
fs e e k (fp , 0 ,-1 ) ;
tx t  = c h a r ( tx t ’ );

% In se rt your code here.
% For example, the  next l in e  rep laces the  s e le c t io n  w ith  X’ s; 
t x t ( s e ls ta r t : s e le n d ) = ’ X’ ;

% W rite  th e  m od ified  a rray  back to  the  f i l e
f w r i t e ( f p , t x t ’ );
fc lo s e ( fp ) ;

Now, use Custom ize from the Tools menu to  create the  M ATLAB expression:

ce n so r(’ $(Pathname)’ , $ (BeginSe l) ,$ (E n d S e l)) ;

Also, create the menu text for th is  expression by typ ing  &Censor in the 
Menu Text box. In the example we have provided, when you run Censor from 
the  Tools menu, text you have highlighted in the Editor is replaced w ith  X’s.
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General Options. Choose O ptions  from the Tools menu and select the  General 
tab.

Show w orkshee t-s ty le  tabs: controls if  the  E d ito r w indow displays tabs for 
navigating among open files.

I test.m - C:\... 1/] acrubond.m... 1/1 t.m - C:WIN..

Ready
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• Show D ataT ips: When the  cursor remains positioned over a variable, the 
item is expanded and the results are displayed in the  E d ito r window.

I I I ' M A T LA B  E d ito r /D e b u g g e r
File Edit V iew Debug Tools W indow Help

□  | g ? | d |  IH©I <» | ? |

:iewmatrix

n e m a t r i x
17 24 1 S 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 IB 25 2 9

• A u to m a tica lly  re load e x te rn a lly  m od ified  files : Files changed outside of 
the  Editor are autom atica lly reloaded. Otherwise, the  Editor asks if  you 
want to  reload the  file.

• D isable ove rtype  mode (In se rt key): Disables the  Inse rt key, which 
switches overtype mode on and off.

• Append “ m ” to  filenam e on Save As: The .m  extension is appended to  the 
filenam e provided in the Save As dialog box if  tha t extension is not already 
present. I f  th is  option is not checked, the  file  is saved w ith  the  filenam e 
exactly as typed.

• P r in t in co lo r: P rin ts  the M -file  in color when a color p rin te r is used.
• R ecently used f ile  lis t: Controls number of files listed on the  recently used 

file  lis t under the  F ile  menu. The Editor must be restarted for the  new 
number to  take effect.
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Editor Options. Choose O p tions  from the  Tools menu and select the  E d ito r tab.

• M -file  syntax-based fo rm a ttin g :
- Syntax h ig h lig h tin g : As you type in to  the  Editor, the  text is colored 

according to  the  k ind of text entered.
- A u to  ind e n t on re tu rn : Pressing the  R eturn  or E nter key indents the  

current and next lines.
- A u to  ind e n t size: Type the  number of columns to  indent for each level of 

nested code. The default accelerator for indenting in the  M ATLAB Editor 
is C t r l- I .

- Em acs-style tab key auto in d e n tin g : The Emacs editor uses the  Tab key 
to  indent the  current line. I f  you want the  Tab key to  indent the  current 
line, check th is  option.

• B racke t and quote  m atch ing : The Editor can indicate which bracket,
parenthesis, brace, or quote balances another in your file. Four settings
control th is  matching:
- B racke t M atch ing : Enables m atching for brackets, braces, and 

parentheses.
- Quote M a tch ing : Enables m atching for quotes.
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- Search d istance: Controls the  number of lines forward or backward the 
Editor searches for a match.

- Show match fo r : Controls duration of the  match indicator.
Tab key settings: These settings control what happens when you type a tab
character (w ith Em acs-style tab key auto in d e n tin g  off) and when the
Editor encounters a pre-existing tab in your file.

- Tab key inserts : Chooses whether the  Tab key inserts a tab characte r or 
a number of spaces equivalent to  a tab character.

- Tab size: Controls number of space equivalents between tab stops. Note 
tha t the  A u to  ind e n t size parameter is separately tunab le  from th is  
setting. Autom atic  indenting always inserts spaces.

Font. Use the  Font submenu to  change the  font fam ily , style, and size for the 
text in the  Editor/Debugger and the  Path Browser.

Path Browser
The Path Browser lets you view and modify M A T LA B ’s search path and see all 
of its  files. To open the Path Browser, select Set Path from the  F ile  menu, or 
click the  Path Browser toolbar button. You can also access the  Path Browser
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□retteries 
cn Search" 
Ffeth

using the  path too l command or, from the  Editor/Debugger, select Path 
Browser from the  V iew  menu.

Qxbedick cn a Fileto 
Open It

P a th  B row se i

File E d it V ie w  P ath  Too ls  H e lp

J  J j
C u rre n t D ire c to ry Files in general

Browse..| \ \ D evt о о 1 s \ ill at- 1аЬ5\n  i ght ly  \ b in\ nt 

Path
\ \Devtools\m atlab5\nightly\toolbox\m atlab\ general

\  \  D e v t  о о 1 s  \ mat 1 ab 5 \  n i  ght ly  \ too lb  о x \ mat-1 ab \  op s  
\ \ D evt о о1 s \mat1 ab 5\ni gh tly  \toolb о x \mat1ab\1ang 

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ elmat 

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ el fun 

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ spec fun 

\ \ D evt о о 1 s \ mat 1 ab 5 \ n i  ght ly  \ too lb  ox\mat 1 ab \ mat fun 

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ data fun 

\  \  D evt о о 1 s \  mat 1 ab 5 \  n i  ght ly  \  too lb  ox\mat 1 ab \  p о ly  fun 

\ \ Devt Dols\matlab5\nightly\toolbox\m atlab\ fun fun 

\ \Devt Dols\matlab5\nightly\toolbox\m atlab\ spar fun
1 x.-. 1 - У . T.-. -i 1 т т -I- 1 V..-. -ir-. 1 .-.V.

R e a d y

11

л> г

E l L J  |Ё(5цц{[|3|
1  addpath.m 

jitl b inpat ch. и

1  Cd.lii

clear.m 

computer. щ 

С ont ent s . ill 

copyfile.iii 

1  dbcl . m 

1  db n t . m 

551 'it- down. m 

Э] dbmex 

Й] dbquit.m 

Й] dbstack.m

G:08 PM

Ю MCve a Cir̂ ery, Drag It to the Hfê red FCstien

Use the  menus in the  Path Browser to:

• Add a d irectory to  the  front of the  path.
• Remove a selected d irectory from the  path.
• Save settings to  the  pa thde f.m  file.
• Restore default settings.

C lick B rowse to  find a d irectory to  add to  the  path. The Brow se for Folder 
dialog box opens. Note that the  current d irectory displayed in th is  dialog box is 
the  d irectory you had selected in the  Path Browser w indow. I f  you want the 
Browse for Folder dialog box to  open to  the  current d irectory, click in the 
C u rre n t D ire c to ry  fie ld in the  Path Browser w indow and then click Browse.
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Workspace  Browser
The Workspace Browser lets you view the  contents of the  current M ATLAB 
workspace. It provides a graphical representation of the  whos display.

To open the  Workspace Browser, select Show W orkspace from the F ile  menu, 
click the  W orkspace Browser toolbar button, or type workspace at the 
command line.

Name Size Bytes Class

SEE a 1x1 8 double array
■■■ LSSSb 1x3 24 double array

Е Е :  с 2x3 48 double array
□be e 1x12 24 char array

5x5 84 sparse array

E E :  s 4x3x2 192 double array

- i h 1x1 132 struct array

□ □ 1 2x3 600 cell array
@ 1 1x1 830 inline object

|G rend total is 1 0 8  elem ents usin g 19 4 2  bytes

Q p en  | Q elete  | I c i o s s ^ J

You can resize the  columns of in form ation by dragging the  column header 
borders. The workspace is sorted by variab le name. Sorting by other fie lds is 
not supported.

To clear a variable, select the  variab le and click Delete. Shift-c lick to  select 
m u ltip le  variables.

To rename a variable, firs t select it, then click its  name. A fte r a short delay, 
type a new name and press E nter to  complete the  name change.

Editing Arrays
The M ATLAB Editor/Debugger provides a visual representation of 
two-dimensional num eric arrays, which allows for easy editing. To see and edit 
a graphical representation of a variable, select a variab le ’s icon in the 
Workspace Browser and click O pen, or double-click the  icon. The variab le  is 
displayed in the  E d ito r/D ebugger w indow, where you can edit it. You can only 
use th is  feature w ith  num eric arrays.

W o r k s p a c e  B ro w s e r  -

2-52



Microsoft Windows Handbook

CUrrent Values ChangeAy ValueEy Editing It in the CM

CUrrent Dmenscns АИ cr FentveFtwsard GaumnsEy Editing thesDmanacns GUrrert CM
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UNIX Handbook
This section describes several M ATLAB environment tools and the ir use w ith  
the  U N IX  operating system.

Ed i to r /Debugger
M ATLAB provides a bu ilt-in  combined Editor/Debugger tha t offers basic text 
editing operations as well as access to  M -file  debugging tools. Th is is 
essentially the  same Editor/Debugger as the  one provided for W indows 
platforms. See the section, “M icrosoft W indows Handbook,” for a discussion of 
file  editing w ith  th is  tool.

The Editor/Debugger offers a graphical user interface. To use the Ed ito r/ 
Debugger, type edi t at the  M ATLAB prompt. You can also use debugging 
commands in the  Command Window. Refer to  Chapter 3 for a discussion of 
M A T LA B ’s debugging capabilities.

File Edit View Debug Tools Window Help

D ig ita l * n p |  1^1 е Ы  ^ I i b i I q I  ■ i *

polynom.m - /Tionie/ron/polynoni.m*

function p = polynom(a) 
if  nargin ==00 

p . с = [];
p = c la s s (p ,' polynom') ; 

e 1 s e i f i s a (a , ' polynom') 
p = a;

else
p . с = a ( : ) . ' ;  
p = c la s s (p ,'polynom ') ; 

end_________________________________

Untitiedl | -  /home... polynom....

Ready 11:33 AM J;

N ote  You cannot use the  Editor on U N IX  platform s to  cut and paste to  and 
from X Window Systems applications. The Editor on U N IX  platform s does not 
accept Japanese characters as input.
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Setting the Default Editor
The editing and debugging features are both set Cn by default when M ATLAB 
is installed. I f  you want to  substitu te  a d ifferent editor (such as Emacs) or not 
use graphical debugging, you can tu rn  these tools C ff by setting the 
appropria te variab le  in your ~hom e/.Xdefau lts  file:

matl a b * b u ilt In E d ito r :  Off 
m atlab*graphica lD ebugger: Off

Run

xrdb -merge ~hom e/.Xdefau lts  

before s ta rting  M ATLAB.

If  you set the  Editor Cf f , the  option

matl ab*externa l EditorCoimnand: $EDITCR $FILE &

controls what the  e d it command does. M ATLAB substitu tes $EDI TCR w ith  the 
name of your default editor and $FILE w ith  the  filename. Th is option can be 
modified to  any sort of command line  you want.

Changing the Editor During a Session
To tu rn  off the  b u i l t i  nE d ito r during  a M ATLAB session, use

syst e n _ d e p e n d e n t ( 'b u i l t in E d ito r ', 'o f f ' )

Then ed it uses the  editor defined for your U N IX  EDITOR environment variable. 
To tu rn  the  M ATLAB Editor/Debugger back on during  the  session, use

syst e n _ d e p e n d e n t( 'b u i l t in E d ito r ', 'o n ')

You can include the  systen_dependent command in your s ta r tu p .m  file . See 
the m atlabrc reference page for more inform ation.

Saving Editor Options
The M ATLAB Editor stores your options in a reg istry file  located under the 
d irectory $HCME/.windu. Communication w ith  th is  file  is handled through a 
daemon (called w indu_regi s tryd41 or w indu_reg is tryd 40 ), which is started 
autom atica lly when you start M ATLAB, and is shut down shortly  after you 
quit M ATLAB.
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To view the  registry, type the  command re g e d it . The reged it command starts  
the  registry editor. Your settings are located under HKEY_CURRENT_USER/ 
Software/Vat hWOrks.

Th is registry is not portable across d ifferent U N IX  platforms. The reg istry can 
only be read and w ritten  to  on the  p latform  on which it was created. I f  you start 
the  M ATLAB Editor on a d ifferent platform , it w ill s tart a registry daemon 
w ith  the default options. These options can be saved and retrieved from the 
registry daemon, but once the  daemon is shut down, the options w ill be lost.

When you start the  Editor, if  you get messages about missing options, it is 
possible tha t your reg istry has somehow been corrupted. To f ix  th is  problem, 
k ill your registry daemon and delete the  registry database directory. Then 
restart M ATLAB and it w ill create a new registry w ith  the  default options.

Path Browser
The Path Browser lets you view and modify M A T LA B ’s search path and see all 
of its  files. To open the  Path Browser, type pat htool at the  command line. This 
is essentially the  same Path Browser as the one provided for W indows 
platforms. See the  section, “ Microsoft W indows Handbook,” for a discussion of 
th is  tool.
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Workspace  Browser
M ATLAB provides a Workspace Browser tha t lets you view the contents of the  
current M ATLAB workspace. It provides a graphical representation of the  whos 
display. To open the  Workspace Browser, type workspace at the  command line 
This is essentially the  same Workspace Browser as the one provided for 
W indows platform s. See the  section, “Microsoft W indows Handbook,” for a 
discussion of th is  tool.

-  W orkspace B ro w s e r  ___________________________________________ Ы  - l |

Name | Size | Bytes | Class'
■■■a 1x1 8 double array
ii ib 1x3 24 double array
Hi с 2x3 48 double array
abc e 1x12 24 char array
\ f 5x5 84 sparse array
! ! !g 4x3x2 192 double array
- ih 1x1 138 struct array□□□□ 1x2 288 cell array
@1 1x1 824 inline object

Grand total is 93 elements using 1534 bytes

Editing Arrays
The M ATLAB Editor/Debugger provides a visual representation of 
two-dimensional num eric arrays, which allows for easy editing. This is 
essentially the  same array editing fa c ility  as the one provided for W indows
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platforms. See the section, “M icrosoft W indows Handbook,” for a discussion of 
th is  tool.

Preferences
An optim ization option in the  .X de fau lts  file  s ta rts  the  environment tools but 
does not display them un til you exp lic itly  ask for them. I f  you want to  tu rn  th is  
feature off, set the  m atlab*pre l oadlDE variab le  to  Cf f . (The default is on.)

The environment tools w ill not display well on 16-bit X displays. I f  you are 
using such a display, tu rn  the  environment tools off in your Xdef a u lts  file:

m a tla b *b u ilt In E d ito r :  Cff 
m atlab*graphica lD ebugger: 
m atlab*preloadIDE: C ff

Cff

License M a n agem en t  Tools
Although your system adm in is tra to r has probably taken care of the  deta ils of 
ins ta lling  and configuring M A T LA B ’s license manager, some background 
inform ation is helpful for you to  know. This section contains some of the  same
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inform ation provided for the  system adm in istra tor. For complete details, see 
the section by the  same name in the  M ATLAB Insta lla tion  Guide for U N IX .

On U N IX  platforms, M ATLAB uses a license manager called FLEXlm  to 
manage the per-computer or per-user licensing. FLEXlm  manages per-user 
licenses w ith  a key system. Each tim e  a user invokes M ATLAB, the  license 
manager considers tha t one key in use. When the  to ta l number of licensed keys 
are in use, no more users can invoke M ATLAB.

FLEXlm  consists of a license daemon and a product daemon tha t run on a 
server node. On U N IX  computers, the  server node is usually the  file  server on 
which M ATLAB is installed. Throughout th is  section, references to  the  matlab 
d irectory refer to  the d irectory where the contents of the  M ATLAB CD is 
installed.

The license and product daemons run in the background on the  server node. 
They are responsible for checking in and out licenses as users invoke and quit 
M ATLAB.

License Administration
A number of license adm in istra tion  tools are available in m a tla b /e tc , 
including

lmdown Shut down all license daemons.

lm hos tid  D isplay hostid of the  machine on which you are running.

lm sta t Show the  current status of all network licensing activities.
The command l mstat -a  displays all in form ation. Use the 
switch - f  instead of -a  to  display a lis t of who is using what 
features. Im stat -h  displays usage help.

Im sta rt S tart license daemons. ( If license daemons are already
running, you must firs t use lmdown to  shut them down.)

Understanding the License File
The License F ile  l i  cense.dat contains the  deta ils of your license, such as the 
number of keys you have for M ATLAB, the  toolboxes tha t you purchased, and 
the hostids of the  licensed CPUs. If you upgrade your license or need to  move
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the  license server to  a d ifferent machine, The M athW orks can give you new 
inform ation by e-mail or telephone.

Your system adm in is tra to r should edit the  License F ile  to  reflect your licensing 
inform ation. I f  you edit the  file  yourself, follow the instructions in the 
I nsta lla tion Guide, or run lmdown followed by lm s ta r t . To run lmdown, you 
must be a member of the  U N IX  group lmadmn, or a member of group 0 if 
lmadmn does not exist.

The matlab script in m a tla b /b in  sets the  environment variab le  
LM_LICENSE_FILE to  contain the  pathname where lic e n s e .d a t is stored. This 
pathname is norm ally m a tla b /e tc / lic e n s e .d a t wherever M ATLAB is stored. 
I f  necessary, you can change th is  environment variab le to  point to  some other 
location.

The file  /usr/tm p /ln_TM W 8.log , where the  license daemon’s output usually is 
redirected, contains a log of all license check-outs, check-ins, and denials. A 
new entry is recorded in the  log each tim e  a transaction occurs. To save file  
space, you can delete it occasionally.

Creating a Local Options File
You can instruct the  license manager to:

• Reserve one or more keys for a particu la r user, group of users, or host
• Specify the  users, groups of users, or hosts tha t have permission to  access one 

or more products

To use these options, you can create a local options file  and lis t its  pathname 
as the  fourth  fie ld on the DAEMON line  in the  lic e n s e .d a t file. Depending on the 
length of your path, th is  line  may become fa ir ly  long. In the  follow ing example, 
th is  line is shown on tw o lines; however, you should keep it all on one line:

DAEMON MLM /u s r / lo c a l /m a tla b /e tc / ln _ m a tla b  
/u s r / lo c a l/m a t la b /e tc / lo c a l.o p t i  ons

A local options file  is not required. If it does exist, it can have one line  or many 
lines, reflecting your special needs. The license manager allocates keys 
according to  these options un til all keys are in use. I f  you try  to  reserve more 
than the authorized number of keys in the  options file, a w arn ing message 
appears in the  l ic e n s e .lo g  file.
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A local options file  m ight look s im ila r to  th is  one:

RESERVE 1 MATLAB USER p a t r ic ia  
RESERVE 3 MATLAB HCST pegasus 
RESERVE 1 CONTROL GROUP devels

INCLUDE SIGNAL HOST lab rea  
INCLUDE SIGNAL USER tom  
EXCLUDE SIMULINK GROUP devels 
GROUP devels andrea tom  fre d

The lines s ta rting  w ith  RESERVE contain the  number of keys for a particu lar 
product set aside for a specific user, group, or host. Th is does not lim it the  
number of keys for tha t group or host; it s im ply ensures tha t a key w ill be 
available when you want it (unless the  specified number of reserved keys has 
already been reached).

The lines s ta rting  w ith  INCLUDE contain the  products to  be restricted to  a 
particu lar user, group, or host; only tha t user, group, or host is allowed to  use 
th is  product. You can have m u ltip le  INCLUDE lines for the  same feature, 
including d ifferent users, groups, or hosts.

The lines s ta rting  w ith  EXCLUDE contain the  features to  be restricted from a 
particu la r user, host, or group; tha t user, group, or host is not allowed to  use 
tha t product. You may have m u ltip le  EXCLUDE lines for the  same feature as 
well.

Any line  s ta rting  w ith  GROUP defines the  members of a group name used in the 
previous lines of th is  file. (License manager groups are d istinct from U N IX  
protection groups and any other groups defined outside of M ATLAB.) I f  a group 
name is used in a RESERVE, INCLUDE, or EXCLUDE line, the  group membership 
must be defined in a GROUP line.
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3 Debugger and Profiler

MATLAB Debugger
The M ATLAB Debugger helps you iden tify  programming errors in your 
M ATLAB code. Using the  Debugger, you can view the contents of the  
workspace at any tim e  during  function execution, view the  function call stack, 
and execute M -file  code line  by line.

M A T LA B ’s Debugger has a graphical user interface and provides a command 
line  interface as well.

These sections step you through an example debugging session. A lthough the 
example M -files m ight be sim pler than your own M ATLAB code, the  debugging 
concepts demonstrated here remain the  same.

Debugging :  An Overv iew
Debugging is the  process by which you isolate and fix  problems w ith  your code. 
Debugging helps to  correct tw o kinds of errors:

• Syntax errors, such as m isspelling a function name or om itting  a 
parenthesis. M ATLAB detects most syntax errors and displays a message 
describing the  error and showing its  line  number in the  M-file.

• Runtim e errors. These errors are usually a lgo rithm ic  in nature; for example, 
you m ight modify the  wrong variab le  or perform a calculation incorrectly. 
Runtim e errors are apparent when an M -file  produces unexpected results.

You can usually correct syntax errors easily based on M A T LA B ’s error 
messages. Runtim e errors are more d ifficu lt to  track down because the 
function ’s local workspace is lost when the  error forces a re turn to  the 
M ATLAB base workspace. Use any of the  fo llow ing techniques to  isolate the  
cause of run tim e  errors:

• Remove selected semicolons from the  statements in your M -file. Semicolons 
suppress the display of in term ediate calculations in the  M -file. By removing 
the semicolons, you instruct M ATLAB to  display these results on your screen 
as the M -file  executes.

• Add keyboard statem ents to  the  M-file. Keyboard statements stop M -file  
execution at the  point where they appear and allow you to  examine and 
change the  function ’s local workspace. Th is mode is indicated by a special 
prompt, “K>>.” Resume function execution by typ ing  re tu rn  and pressing the 
R eturn  key.
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• Comment out the  leading function declaration and run the  M -file  as a script. 
Th is makes the  interm ediate results accessible in the base workspace.

• Use the  M ATLAB Debugger.
The Debugger is useful for correcting run tim e  errors precisely because it 
enables you to  access function workspaces and examine or change the  values 
they contain. The Debugger allows you to  set and clear breakpoints, specific 
lines in an M -file  at which execution halts. It also lets you change workspace 
contexts, view the  function call stack, and execute the lines in an M -file  one 
by one. Th is section describes these tasks in detail.

N o te  The M -file  breakpoint in form ation is closely associated w ith  the  copy of 
the  M -file  tha t M ATLAB holds in memory. I f  you clear the  M -file  by editing or 
by issuing c le a r M file , all of M f i le ’s breakpoints are also cleared.

M-Files For An Example Session
To try  the  Debugger, firs t create an M -file  called va ria n ce .m th a t accepts an 
input vector and re turns an unbiased variance estimate. Th is file  calls another 
M -file, sqsuim tha t computes the mean-removed squared sum for the  input 
vector.

fu n c t io n  y = v a ria n ce (x ) 
mu = s u m jx ) / le n g th (x ) ; 
to t = sqsumjx,mu); 
y = t o t / ( le n g th ( x ) —1);

Create the  sqsumm file  exactly as it is shown below, complete w ith  a planted 
bug.

fu n c t io n  to t = sqsum(x,mu) 
to t = 0;
fo r  i = 1 :le n g t h(mui)

to t = to t + ( (x ( i) -m u i)  . л2);
end
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N o te  The example above is coded for illu s tra tive  purposes only. Whenever 
possible, avoid fo r  loops and use vectorization for the  most efficient execution.

Trial Run
Try out the  M -files to  see if  they w ork correctly. Use M A T LA B ’s s td  function 
to  compute results.

Create a test vector at the  command line.

v = [1 2 3 4 5];

Compute the  variance using std . 

v a r l = st d ( v ) .A2

var1 =

2.5000

Now try  the  va ria n ce  function from above. 

myvarl = v a ria n ce (v )

myvarl =

1

The answer is wrong. Le t’s use the  Debugger to  isolate the  error in the  M-files. 
The follow ing section shows a sample session using the  Editor/Debugger 
graphical user interface, as well as one from the command line.

Debugg ing Using the Graphical  User Interface
To start debugging:

• I f  you have jus t created the  M -files using the  E d ito r/D ebugger window, you 
can continue from th is  point.

• I f  you’ve created the  M -files using an external text editor, s tart the  E d ito r/ 
Debugger and then click the  Open M -file  button on the toolbar.
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The Editor/Debugger toolbar contains a series of debugging icons.

Toolbar
Button

Purpose Description Equivalent
Command

m

Set/Clear Breakpoint

Clear A ll Breakpoints

Step In

Single Step

Continue

Q uit Debugging

Set or clear a 
breakpoint at the  line 
containing the  cursor.

Clear all breakpoints 
tha t are cu rren tly  set.

Execute the  current 
line of the  M -file  and, 
if  the  line  is a call to 
another function, 
step in to  that 
function.

Execute the  current 
line of the  M-file.

Continue execution of 
M -file  un til 
completion or un til 
another breakpoint is 
encountered.

Exit the  debugging 
state.

dbstop/
dbclear

dbclear a ll

dbstep in

dbstep

dbcont

dbqui t

A righ t-button  mouse click in the  E d ito r w indow produces a pop-up menu of 
some of the  options.

Setting Breakpoints
Most debugging sessions start by setting a breakpoint. B reakpoints stop M -file  
execution at specified lines and allow you to  view or change values in the
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function ’s workspace before resuming execution. A breakpoint is set or cleared 
at the  line  containing the  cursor. A red stop sign (ф ) next to  a line indicates 
tha t a breakpoint is set at tha t line. I f  the  line selected for a breakpoint is not 
a valid executable line, then the  breakpoint is set at the  next executable line.

N o te  The Debugger’s B re a kp o in ts  menu also lets you halt M -file  execution 
if  your code generates a warning, error, or NaN or In f value.

A t the  beginning of the  debugging session, you’re not sure where the error in 
the  va ria n ce  function is, or even if  i t ’s in the  va ria n ce .m  or sqsumm file . A 
logical place to  insert a breakpoint is after the  computation of the  mean and the 
mean-removed squared sum. Open va ria n ce .m  and set a breakpoint at line  4.

y = t o t / ( le n g th ( x ) —1 ) ;

The line number is indicated at the  bottom righ t of the  status bar. Set the  
breakpoint by positioning the cursor in the  line of text and click on the 
breakpoint icon in the  toolbar. A lte rna tive ly , you can choose Set B reakpo in t 
from the Debug menu, or righ t-c lick to  bring up the  context menu and choose 
Set/Clear B re a kp o in t.
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Examining Variables
To get to  the  breakpoint and check the  values of interest, firs t execute the 
function from the  Command Window.

vari ance(v)

When execution of an M -file  pauses at a breakpoint, the  yellow arrow to th e  left 
of the  text ( ф )  shows the  next line to  execute. A downward yellow arrow (Q ) 
appearing to th e  left of the  text indicates a pause at the  end of the  script or 
function. Th is allows you to  examine variables before re tu rn ing  to  the calling 
function.

Check the  values of mu and to t from the  Debugger. H igh ligh t the  text of each 
variab le  and righ t-c lick to  bring up the  context menu and choose E va luate  
S e le c tio n . Or, a lte rna tive ly, choose E va lua te  Selection from the V iew  menu.

Both the  selection and the result are displayed in the Command Window.

K>> mu

mu =
3

K>> to t 

to t =
4

The problem is in the  sqsum function.
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Changing Workspace Context
Use the Stack pull-down menu in the  upper-right corner of the  Debugger 
w indow to  change workspace contexts. To step out from the  var iance function 
and see the base workspace contents, select Base W orkspace from the  menu.

Check the  workspace context using whos or the  graphical Workspace Browser.

The variables v and m yvarl, as well as any other variables you may have 
created, show up in the lis ting. To return to  the va ria n ce  workspace context, 
select V a riance  from the  menu.

Stepping Through Code and Continuing Execution
Clear the breakpoint at line 4 in var iance .m  by placing the cursor on the  line 
and selecting C lear B re a kp o in t from the  Debug menu. (Or a lte rna tive ly  
righ t-c lick to  bring up the  context menu and choose Clear B reakpo in t). 
Continue executing the  M -file  by selecting C on tinue  from the  Debug menu.

Open the  sqsumm file  and set a breakpoint at line  4 to  check both the  loop 
indices and the computations tha t take  place inside the loop. Run variance 
again, s till using the vector v as input. Execution pauses at line  4 of sqsum If
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we look at the  va riance  function in the  Editor/Debugger, we see the  call to  
sqsum indicated by an arrow w ith  a vertical line through it.

I" M ATLAB E d ito r/D e b u g g e r - [C : \W IND O W S'iD esktopV. va rian ce .m ] Г Г Г
£ 3  f ile  Edit View Debug Window Help - H * l

D  f S  У  g ’ | P i  # | f  € l h a  4Q) 4 U  id )  Still Stack : |variance d

f u n c t i o n  у  =  v a r i a n c e ( x )  

mu =  s u m ( x ) / l e n g t h ( x ) ; 
O t o t  -  s q s u m  ( x ,  m u ) ;  

у  =  t o t / ( l e n g t h [ x ) - 1 ) ;

FI eady Э:3 7 АМ Ж

Evaluate the loop index i .

K>> i

i =
1

Then select S ing le Step from the  Debug menu to  execute the next line. 

Evaluate the variab le  t o t .

K>> to t

to t =
4

Select S ing le  Step again. sqsum only goes through the  fo r  loop once.

fo r  i = 1 :length (m u)

The loop only iterates un til the  length of mu, a scalar, rather than the length of 
x, the  input vector.

Select Q u it Debugging from the  Debug menu to  end the  M -file  execution.
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To see if  changing to t to  its  expected value produces the  correct answer, clear 
the  breakpoint from sqsum and set a breakpoint on line  4 of va r ia n ce .m  Run 
va ria n ce  once again.

va riance ( v)

Execution pauses after control re tu rns from sqsum, but before va ria n ce  uses 
the  returned value of t o t . From the  Command W indow, set to t to  its  correct 
value of 10.

K>> to t = 10

to t =
10

Select C on tinue  Execution from the  Debug menu, and the result is correct. 

End the Debug Session
Select the  E x it E d ito r/D ebugger from the  F ile  menu to  end the  debugging 
session.

Debugging f rom the Command Line
The M ATLAB debugging commands are a set of tools tha t allow you to  debug 
your M -files from the  command line. The most general form  for each debugging 
command is shown below.

Description Syntax

Set breakpoint. dbstop at line_num  in
file_nam e

Remove breakpoint. dbclear at l i  ne_num in
file_nam e

Stop on warning, error, or NaN/Inf dstop i f warning
generation. e rro r

naninf
in fnan

Resume execution. dbcont
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Description Syntax

List function call stack. dbstack

List all breakpoints. dbsta tus  file_nam e

Execute one or more lines. dbstep n lin e s

List M -file  w ith  line numbers. dbtype file_nam e

Change local workspace context 
(down).

dbdown

Change local workspace context (up). dbup

Quit debug mode. dbquit

For more inform ation about any of these debugging commands, type he lp or 
doc followed by the command name.

Example Command Line Debugging Session
You can perform all debugging tasks from the command line. To follow th is  
example, use the  M -files from the  beginning of th is  chapter.

fu n c t io n  y = v a r ia n c e (x ) fu n c t io n  to t = sqsum(x,mu) 
mu = s u m (x ) / le n g th (x ) ; to t  = 0; 
to t=  sqsum (x,m u);fo r i = 1 :length(m u) 
y = to t / ( le n g th ( x ) - 1 ) ;  to t = to t + ( ( x ( i ) - m u ) .A2); 

end

Setting Breakpoints
dbstop inserts a breakpoint at a specified line. The M -file  ha lts before the  line 
actually executes. Set breakpoints in va ria n ce  after the  computation of the  
mean (line 2), and after the  computation of the  mean-removed squared sum 
(line 3) using

dbst op va riance  3 
dbst op va riance  4
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Stepping Through Code and Using Keyboard Mode 
Take the  vector v = [1 2 3 4 5] as example input. The expected values for 
the  mean and the mean-removed squared sum are 3 and10, respectively. See if  
you get the  expected results at the  breakpoints. Execute the function from the 
command line.

va riance ( v)

M ATLAB displays the  next line to  be executed, and its  line  number.

3 to t = sqsum(x,mu);
K>>

When execution stops at a breakpoint, you’re autom atica lly in keyboard mode, 
as indicated by the K>> prompt. A t th is  prompt, you can type standard 
M ATLAB commands. When you’re finished, type dbcont to  resume execution.

N o te  On some platforms, a debugging window may autom atica lly appear 
when a function stops at a breakpoint.

When execution halts at the  firs t breakpoint, use whos to  see what variables 
are now in the  workspace.

whos

To check the  value of mu

K>> mu

mu =

3
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Use dbstep to  step one line  in the  function. When execution stops again before 
line 4, check the  value of to t  to  see if  the  mean-removed squared sum 
calculation matches the  expected value.

K>> dbstep
4 y = to t / ( le n g th ( x ) - 1 ) ;
K>> to t

to t =

4

It appears the problem may be in the  sqsum function.

Changing Workspace Context
Use dbup and dbdown to  move between function workspaces and the  base 
workspace. To step up from the  va ria n ce  function and see the  base workspace 
contents, use

dbup
whos

The test variab le  v, as well as any other variables you may have created, shows 
up in the  lis ting . To step back down to  the  va riance  workspace, use

dbdown

Displaying an M-File w ith Line Numbers
W ithout leaving keyboard mode, use dbtype to  view sqsum Set breakpoints to 
check both the  loop indices and the computations tha t take place inside the 
loop.

K>> dbtype sqsum

1 fu n c t io n  to t  = sqsumjx.mu)
2 to t = 0;
3 fo r  i = 1 :length (m u)
4 to t = to t + ( ( x ( i ) - m u ) .A2);
5 end

K>> dbstop sqsum 4 
K>> dbstop sqsum 5
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Viewing the Function Call Stack and Continuing Execution 
Return from keyboard mode using d b q u it . A t the  M ATLAB prompt, type

dbclear va riance

to  clear the  breakpoints from the va ria n ce  function, w h ile  re ta in ing the  new 
sqsum breakpoints.

Run va riance  again, s till using the  vector v as input:

va riance ( v)
4 to t  = to t + ( ( x ( i ) - m u ) .A2);

Use dbstack to  view the  function call stack, verify ing  tha t va ria n ce  did call 
sqsum

K>> dbstack
In  Pat: A p p lic a tio n s :V 5 :s q s u m m  at l in e  4 
In  P a t:A p p lic a tio n s :V 5 :v a r ia n c e .m  at l in e  3

Check the value of the  loop index i , then the  value of t o t . A fte r checking t o t , 
dbstep again to  check the  next value of i .

K>> i 

i =

1

K>> dbstep
5 end 
K>> to t

to t =

4

K>> dbstep
End of M - f i le  fu n c t io n  P a t:A pp li ca tions :V 5 : sqsumm

The function only goes through the loop once, ending after the  firs t ite ration. 
From the fo r  statement

fo r  i = 1 :length(m u)
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you can see tha t there  is a m istake in the  line. The loop only iterates un til the  
length of mu, a scalar, rather than the length of x, the  input vector.

To see if  changing to t to  its  expected value produces the correct answer, type

K>> to t = 10

to t =

10

Use the  dbup command to  move up one workspace context, in to  the va riance  
function workspace. I t ’s clear tha t the  va ria n ce  function was tak ing  the 
returned to t value of 4, d iv id ing  by le n g th (x ) -1 , also 4 in th is  case, and 
coming up w ith  the  incorrect answer of 1. V erify  tha t it comes up w ith  the 
correct answer now tha t to t  has the correct value, using dbcont to  continue 
execution.

K>> dbup
In workspace be long ing to  P a t:A p p lica t io n s :V 5 :va r iance .m  
K>> dbcont

ans =

2.5000

Ending A Debugging Session
Use dbquit to  end the debugging session and return to  the  base workspace. 
Edit sqsummso tha t its  fo r  statement runs from 1 to  le n g th (x ) ra ther than 1 
to  le n g th (m u ).

fo r  i = 1 :le n g t h(x)
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Repeating the  orig inal tr ia l run, we now get the  expected results:

va riance ( v)

ans =

2.5000 

va riance ( w) 

ans =

468.3876
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M-File Profiler
One way to  improve the performance of your M -files is to  profile  them. 
M ATLAB provides an M -file  profiler tha t lets you see how much computation 
tim e  each line  of an M -file  uses.

Prof i l ing:  An Overv iew
P ro filing  is a way to  measure where a program spends its  tim e. Measuring is a 
much better method than guessing where the  most execution tim e  is spent. You 
probably deal w ith  obvious speed issues at design tim e  and can then discover 
unanticipated effects through measurement. One key to  effective coding is to 
create an original implem entation tha t is as sim ple as possible and then use a 
profiler to  identify  bottlenecks if  speed is an issue. Prem ature optim ization 
often increases code complexity unnecessarily w ithou t providing a real gain in 
performance.

Use a profiler to  identify  functions tha t are consuming the most tim e, then 
determ ine why you are calling them and look for ways to  m in im ize th e ir use. It 
is often helpful to  decide whether the  number of tim es a particu la r function is 
called is reasonable. Because programs often have several layers, your code 
may not exp lic itly  call the  most expensive functions. Rather, functions w ith in  
your code may be calling other, time-consuming functions tha t can be several 
layers down in the  code. In th is  case i t ’s im portant to  determ ine which of your 
functions are responsible for such calls.

The profiler often helps to  uncover problems tha t you can solve by:

• Avoid ing unnecessary computation, which can arise from oversight.
• Changing your a lgorithm  to  avoid costly functions.
• Avoiding recomputation by storing results for fu tu re  use.

When you reach the point where most of the  tim e  is spent on calls to  a small 
number of bu ilt-in  functions, you have probably optim ized the  code as much as 
you can expect.

How the Prof i ler  W o rk s
Use the  p r o f i l e  command to  generate and view statistics. S tart the  profiler 
using p r o f i l e  on, and specify any options you want to  use. Then execute your 
M -file. The profiler counts how many seconds each line  in the M -files use. The
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profiler works cum ulatively, tha t is, adding to  the count for each M -file  you 
execute un til you clear the  statistics. Use p r o f i l e  repo rt to  display the 
sta tis tics  gathered in an H TM L-form atted report in a Web browser.

The prof i le Command
Here is a sum m ary of the  main forms of p r o f i l e .  For deta ils about these and 
other options, type help p r o f i l e  or doc p r o f i l e .

Syntax 

p r o f i l e  on

Options

-detai  l l evel

h i s t o r y

p r o f i l e  report

basename

p r o f i l e  plot

Description

S tarts the  profiler, clearing 
previously recorded 
statistics.

Specifies the level of 
function to  be profiled.

Specifies tha t the  exact 
sequence of function calls 
is to  be recorded.

Suspends the  profiler, 
generates a profile  report 
in HTM L form at, and 
displays the  report in your 
Web browser.

Saves the  report in the  file  
basename in the  current 
directory.

Suspends the  profiler and 
displays in a figure  
w indow a bar graph of the 
functions using the  most 
execution time.
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p r o f i l e  resume

p r o f i l e  clear

p r o f i l e  of f

p r o f i l e  s t a t us

s t a t s  = p r o f i l e ( ’ i n f o ’ )

Restarts the profiler 
w ithou t clearing 
previously recorded 
statistics.

Clears the  s ta tistics 
recorded by the  profiler.

Suspends the  profiler.

Displays a s tructu re  
containing the  current 
profiler status.

Suspends the  profiler and 
displays a s tructu re  
containing pro file r results.

An Example Using the Prof i ler
This example demonstrates how to  run the  profiler.

1 S tart the  profiler.

p r o f i l e  on - de t a i l  b u i l t i n  - h i s t o r y

The - deta i l  b u i l t i n  option instructs  the profiler to  gather sta tis tics for 
bu ilt-in  functions, in addition to  the  default M-functions, M-subfunctions, 
and M EX-functions.

The - h i s t o r y  option instructs the  profiler to  track the  exact sequence of 
entry and exit calls.

2 Execute an M-file. Th is example runs the  Lotka-Vo lte rra  predator-prey 
population model. For more inform ation about th is  model, type lotkademo 
to  run a demonstration.

[ t , y ]  = ode23( ’ l o t k a ’ , [ 0  2 ] , [ 2 0 ; 2 0 ] ) ;
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3 Generate the  profile  report and save the  results to  the  f ile  l o t k a p r o f . 

p r o f i l e  repor t  l o t kap r o f

Th is suspends the  profiler, displays the  profile  report in a Web browser 
w indow, and saves the  results. See “V iew ing Profiler Results” for more 
inform ation.

4 Restart the  profiler, w ithou t clearing the  existing statistics. 

p r o f i l e  r esuire

The pro file r is now ready to  continue gathering sta tis tics for any more 
M -files you run. It w ill add these new sta tis tics to  those generated in the 
previous steps.

5 Stop the  profiler when you are finished gathering statistics. 

p r o f i l e  o f f

V iew ing  Prof i ler  Results

Profile Reports
To display profiler results, type 

p r o f i l e  r eport

p r o f i l e  repor t  suspends the  profiler. The results appear in a report in a Web 
browser window. The report opens w ith  a sum m ary report, and from tha t page, 
you can access the  detail and h istory reports.

Summary Profile Report. The sum mary report presents sta tis tics about the  
overall execution and provides sum mary sta tis tics  for each function called. 
Values reported include:

• C lock prec is ion  -  the  precision of the  p ro file r’s tim e  measurement. When 
T im e for a function is 0, it is actua lly a positive value, but sm aller than the 
profiler can detect given the  clock precision.

• T ime columns -  the  to ta l tim e  spent in a function, including all child 
functions called. Because the tim e  for a function includes tim e  spend on child
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functions, the  tim es do not add up to  the  Tota l recorded t i me  and the 
percentages add up to  more than 100%.

• Self t i me  columns -  to ta l tim e  spent in a function, not includ ing tim e  for any 
child functions called. Adding the  Self t i me  values for all functions listed 
equals the  Total recorded tim e . The Self t i me  percentages for all functions 
add up to  approxim ately 100%.

Below is the  summary report for the  Lotka-Volte rra  model described in “An
Example Using the  P ro file r” .
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Function Details Frofile Report. The function deta ils report provides sta tis tics for 
the  parent and child functions of a function, and reports the  line  numbers on 
which the  most tim e  was spent. Below is the  detail report for the  l otka 
function, which is one of the  functions called in “An Example Using the 
P ro file r” .

Tmein Sffirds Fercertageaf the LineNLmter 
FlncticnisTme 
Spert cn that Line
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Function Call History Frofile Report. The function call h istory displays the exact 
sequence of functions called. To view th is  report, you must have started the  
profiler using the  - h i s t o r y  option.

p r o f i l e  on - h i s t o r y

The profiler records up to  10,000 function entry and exit events. For more than 
10,000 events, the  profiler continues to  record other pro file  statistics, but not 
the  sequence of calls. Below is the  h istory report generated from “An Example 
Using the  P ro file r” .

Ekcct Sequence of Calls
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Profile Plot
To view a bar graph for the  functions using the  most execution tim e, type 

p r o f i l e  plot

p r o f i l  e plot  suspends the  profiler. The bar graph appears in a figure  window. 
This is the  bar graph generated from “An Example Using the P ro file r” .

Saving Prof i le Reports
Type

p r o f i l e  repor t  basename

The profiler saves the report to  the  file  basename in the  current directory. Later 
you can view the  saved results using your Web browser.
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Another way to  save results is w ith  the  i n f o  = p r o f i l e  command, which 
displays a s tructu re  containing the  profiler results. Save th is  structu re  so that 
la ter you can generate and view the  profile  report using p r o f r e p o r t ( i n f o ) .

Example Using Structure of Profiler Results
The profiler results are stored in a s truc tu re  tha t you can view or access. Th is 
example illus tra tes  how you can view the results.

1 Run the  profiler for code tha t computes the  Lotka-Vo lte rra  predator-prey 
population model.

p r o f i l e  on - d e t a i l  b u i l t i n  - h i s t o r y  
[ t , y ]  = ode23( ’ l o t k a ’ , [ 0  2 ] , [ 20 ;  20] ) ;

2 To view the s tructu re  containing profiler results, type

s t a t s  = p r o f i l e ( ’ i n f o ’ )

M ATLAB re turns

s t a t s  =
FunctionTab le: [28x1 s t r uc t ]
Funct i onHi s tory :  [2x774 double]
ClockPrecis i  on: 0.00999999999840

3 You can view and access the  contents of the  structure. For example, type 

s t a t s . Func t i onTab l e

M ATLAB displays the FunctionTab le  structure.

ans =
28x1 s t r uc t  ar ray w i t h  f i e l d s :

Funct ionName 
MMleName 
Type 
NumCalls 
Total Time
Total RecursiveTime 
Chi l dren 
Parents 
ExecutedLines
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4 To view the  contents of an element in the  FunctionTab le  structure, type, for 
example,

s t a t s . Func t i onTab l e ( 2 )

M ATLAB re tu rns the  second element in the structure.

ans =
Funct ionName: ’ ode23’

MfileName: [1x56 char]
Type: ’ M- f unc t i on ’

NumCalls: 1
TotalT im e: 0.65100000000166

Tota lR ecursiveT im e: 0. 65100000000166
Chi ldren:  [21x1 s t r uc t ]

Parents: [0x1 s t r uc t ]
ExecutedLines: [159x3 double]

5 Save the  results.

save p r o f s t a t s

6 In a later session, generate the  profiler report using the  saved results. Type

load p r o f s t a t s  
prof  r ep o r t ( s t a t s )

M ATLAB displays the  profile  report.
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4 Matrices and Linear Algebra

Matrices and Linear A lgebra
A m a trix  is a two-dimensional array of real or complex numbers. Linear 
algebra defines many m a trix  operations tha t are d irectly  supported by 
M ATLAB. M a tr ix  a rithm etic , linear equations, eigenvalues, singular values, 
and m a trix  factorizations are included.

The linear algebra functions are located in the  matfun d irectory in the  
M ATLAB Toolbox.

Category Function Description

M a trix  analysis norm M a tr ix  or vector norm.

normest Estim ate the  m a trix  2-norm.

rank M a trix  rank.

det Determ inant.

t r  ace Sum of diagonal elements.

nul l N u ll space.

or th Orthogonalization.

r ref Reduced row echelon form.

subspace Angle between tw o subspaces.

L inear equations \ and / L inear equation solution.

inv M a trix  inverse.

cond Condition number for inversion.

condest 1-norm condition number estimate.

chol Cholesky factorization.

chol i  nc Incomplete Cholesky factorization.

lu LU factorization.

l u i nc Incomplete LU factorization.
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Category Function Description

qr O rthogona l-triangu lar decomposition.

nnls Nonnegative least-squares.

pinv Pseudoinverse.

l scov Least squares w ith  known covariance.

Eigenvalues and 
singular values

ei g Eigenvalues and eigenvectors.

svd S ingular value decomposition.

eigs A few eigenvalues.

svds A few singular values.

poly C haracteristic polynomial.

polyei g Polynomial eigenvalue problem.

condei g Condition number for eigenvalues.

hess Hessenberg form.

qz QZ factorization.

schur Schur decomposition.

M a trix  functions expm M a trix  exponential.

l ogm M a trix  logarithm .

sqrt m M a tr ix  square root.

f unm Evaluate general m a trix  function.
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Matrices in MATLAB
I n form ally, the  term s m a trix  and array are often used interchangeably. More 
precisely, a m a trix  is a two-dimensional rectangular array of real or complex 
numbers tha t represents a linear transform ation. The linear algebraic 
operations defined on matrices have found applications in a w ide varie ty of 
technical fields. (The Symbolic Math Toolboxes extend M A T LA B ’s capabilities 
to  operations on various types of nonnum eric matrices.)

M ATLAB has dozens of functions tha t create d ifferent kinds of matrices. Two 
of them can be used to  create a pair of 3-by-3 example matrices for use 
throughout th is  chapter. The firs t example is symmetric.

A = pascal (3)

A =

1 1 1 
1 2 3
1 3 6

The second example is not symmetric.

B = magic(3)

B =

8 1 6
3 5 7
4 9 2

Another example is a 3-by-2 rectangular m a trix  of random integers.

C = f i x ( 1 0 * r a n d ( 3 , 2 ) )

C =

9 4
2 8
6 7
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A column vector is an m-by-1 m atrix , a row vector is a 1-by-n m a trix  and a 
scalar is a 1-by-1 m atrix . The statements

u = [3 ; 1; 4] 

v = [2  0 -4 ] 

s = 7

produce a column vector, a row vector, and a scalar.

u =

3 
1
4

v =

2 0 -1

s =

7
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Addi t ion  and Subtract ion
Addition and subtraction of matrices is defined jus t as it is for arrays, 
element-by-element. Adding A to  B and then subtracting A from the  result 
recovers B.

X = A + B 

X =

9 2 7
4 7 10
5 12 8

Y = X -A

Y =

8 1 6
3 5 7
4 9 2

Addition and subtraction require both matrices to  have the same dimension, or 
one of them be a scalar. I f  the  dimensions are incompatible, an error results.

X = A + C

Error  using ==> +
Mat r i x  dimensions must agree.

w = v + s

w =

9 7 6
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Vector Products and Transpose
A row vector and a column vector of the  same length can be m u ltip lied  in either 
order. The result is e ither a scalar, the  inner product, or a m atrix , the  outer 
product.

x = v*u 

x =

2

X = u*v 

X =

6 0 - 3
2 0 - 4  
8 0 -4

For real matrices, the  transpose operation interchanges ay and aji . M ATLAB 
uses the apostrophe (or single quote) to  denote transpose. Our example m a trix  
A is symmetric, so A' is equal to  A. But B is not symmetric.

X = B'

X =

8 3 4
1 5 9
6 7 2

Transposition tu rn s  a row vector in to  a column vector.

x = v'

x =

2
0

-1
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If  x and y are both real column vectors, the  product x *y  is not defined, but the  
tw o products

x ’ *y

and

y ’ *x

are the  same scalar. Th is quan tity  is used so frequently, it has three d ifferent 
names: inner product, scalar product, or dot product.

For a complex vector or m atrix , z, the  quan tity  z ’ denotes the  complex 
conjugate transpose. The unconjugated complex transpose is denoted by z . ’ , in 
analogy w ith  the other array operations. So if

z = [1+2i 3+4i ]  

then z ’ is

1 —2i 
3—4i

w h ile  z. ' is

1+2i
3+4i

For complex vectors, the  tw o scalar products x ' * y  and y ' * x  are complex 
conjugates of each other and the  scalar product x ' * x  of a complex vector w ith  
itse lf is real.

Matr ix  Mul t ip l i cat ion
M ultip lica tion  of matrices is defined in a way tha t reflects composition of the  
underlying linear transform ations and allows compact representation of 
systems of sim ultaneous linear equations. The m a trix  product С = AB is 
defined when the column dimension of A is equal to  the  row dimension of B, or 
when one of them is a scalar. I f  A is m-by-p and B is p-by-n, the ir product С is 
m-by-n. The product can actually be defined using M A T LA B ’s for loops, colon 
notation, and vector dot products.
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fo r  i = 1:m
fo r  j = 1:n

C ( i , j )  = A ( i , : ) * B ( : , j ) ;
end

end

M ATLAB uses a single asterisk to  denote m a trix  m u ltip lica tion . The next tw o 
examples illu s tra te  the  fact tha t m a trix  m u ltip lica tion  is not commutative; AB 
is usually not equal to  BA.

X = A*B 

X =

15 15 15
26 38 26
41 70 39

Y = B*A

Y =

15 28 47
15 34 60
15 28 43

A m a trix  can be m u ltip lied  on the righ t by a column vector and on the left by a 
row vector.

x = A*u 

x =

8
17
30

y = v*B

y =

12 —7 10
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Rectangular m a trix  m u ltip lica tions  must satisfy the  dimension com patib ility  
conditions.

X = A*C 

X =

17 19
31 41 
51 70

Y = C*A

Error using ==> *
Inner m a trix  dimensions must agree.

A nyth ing  can be m u ltip lied  by a scalar.

w = s*v

w =

14 0 -7

The Ident i ty Mat r ix
Generally accepted mathematical notation uses the  capital le tte r I to  denote 
identity m atrices, matrices of various sizes w ith  ones on the  main diagonal and 
zeros elsewhere. These matrices have the  property tha t AI = A and IA = A 
whenever the dimensions are compatible. The orig inal version of M ATLAB 
could not use I for th is  purpose because it did not d istinguish between upper 
and lowercase le tters and i already served double duty as a subscript and as 
the  complex un it. So an English language pun was introduced. The function

eye(min)

re tu rns an m-by-n rectangular iden tity  m a trix  and eye(n) re turns an n-by-n 
square iden tity  m atrix.
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The Kronecker Tensor Product

The Kronecker product, k ro n (X ,Y ), of tw o  matrices is the  larger m a trix  formed 
from all possible products of the  elements of X w ith  those of Y. I f  X is m-by-n 
and Y is p-by-q, then kron(X ,Y) is mp-by-nq. The elements are arranged in 
the order

[X (1 ,1 )*Y  X (1 ,2 )*Y  . . . X (1 ,n )*Y

X (m 1 )*Y  X (m 2 )*Y  . . . X (m n )*Y ]

The Kronecker product is often used w ith  matrices of zeros and ones to  build 
up repeated copies of small matrices. For example, if  X is the  2-by-2 m a trix

X =

1 2
3 4

and I = eye(2 ,2 ) is the  2-by-2 iden tity  m atrix , then the  tw o matrices

kr o n (X ,I)

and

kr o n (I,X )

are

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

and

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4
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Vector and Mat r ix  Norms
The p-norm of a vector x

t  \1 7 p
• ix ip  -  ( l l x i | pJ

is computed by n o rm (x ,p ). Th is is defined by any value of p > 1, but the  most 
common values of p are 1, 2, and ¥ . The default value is p = 2, which 
corresponds to  Euclidean length.

[no rm (v ,1 ) norm(v) n o rm (v , in f) ]  

ans =

3.0000 2.2361 2.0000 

The p-norm of a m a trix  A,

IIAllp - m ^ l |A x | |p /I |x||p

can be computed for p = 1, 2, and ¥  by n o rm (A p ). Again, the  default value is 
p = 2.

[norm (C ,1) norm(C) n o rm (C ,in f) ] 

ans =

19.0000 14.8015 13.0000

4-12



Solving Linear Equations

Solving Linear Equations
One of the  most im portant problems in technical computing is the  solution of 
sim ultaneous linear equations. In m a trix  notation, th is  problem can be stated 
as follows:

Given tw o matrices A and B, does there  exist a unique m a trix  X so tha t AX = В 
or XA = B?

It is ins truc tive  to  consider a 1-by-1 example.

Does the equation 

7x = 21 

have a unique solution ?

The answer, of course, is yes. The equation has the  unique solution x  = 3. The 
solution is easily obtained by divis ion:

x  = 21/7 = 3

The solution is not o rd ina rily  obtained by computing the  inverse of 7, tha t is 
7-1 = 0.142857..., and then m u ltip ly ing  7-1 by 21. This would be more work and, 
if  7-1 is represented to  a fin ite  number of d ig its, less accurate. S im ila r 
considerations apply to  sets of linear equations w ith  more than one unknown; 
M ATLAB solves such equations w ithou t computing the inverse of the  m atrix.

A lthough it is not standard mathematical notation, M ATLAB uses the  division 
term inology fam ilia r in the  scalar case to  describe the  solution of a general 
system of sim ultaneous equations. The tw o division symbols, slash, /, and 
backslash, \ ,  are used for the  tw o s itua tions where the  unknown m a trix  
appears on the  left or righ t of the  coefficient m atrix.

X = A\B denotes the  solution to  the  m a trix  equation AX = B.

X = B/A denotes the  solution to  the  m a trix  equation XA = B.

You can th in k  of “d iv id ing ” both sides of the  equation AX = B or XA = B by A. 
The coefficient m a trix  A is always in the  “denom inator” .

The dimension com patib ility  conditions for X = A\B require the tw o matrices A 
and B to  have the  same number of rows. The solution X then has the  same 
number of columns as B and its  row dimension is equal to  the  column dimension 
of A. For X = B/A, the  roles of rows and columns are interchanged.

4-13



4 Matrices and Linear Algebra

In practice, linear equations of the  form AX = B occur more frequently than 
those of the  form XA = B. Consequently, backslash is used far more frequently 
than slash. The remainder of th is  section concentrates on the  backslash 
operator; the  corresponding properties of the  slash operator can be inferred 
from the iden tity

(B /A ) ’ = (A ’ \B ’ )

The coefficient m a trix  A need not be square. I f  A is m-by-n, there are three 
cases.

m = n. Square system. Seek an exact solution.

m > n. Overdeterm ined system. Find a least squares solution.

m < n. Underdeterm ined system. Find a basic solution w ith  at most m 
nonzero components.

The backslash operator employs different a lgorithm s to  handle d ifferent kinds 
of coefficient matrices. The various cases, which are diagnosed autom atically 
by exam ining the coefficient m atrix , include:

• Perm utations of tr iangu la r matrices

• Symmetric, positive defin ite  matrices

• Square, nonsingular matrices

• Rectangular, overdetermined systems

• Rectangular, underdeterm ined systems

Square Systems
The most common situation involves a square coefficient m a trix  A and a single 
right-hand side column vector b. The solution, x = A\b, is then the same size 
as b. For example

x = A\u 

x =

10
-42

5
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It can be confirmed tha t A*x is exactly equal to  u.

I f  A and B are square and the same size, then X = A\B is also tha t size.

: A\B

19 -3 -1
-47 4 13

6 0 -6

It can be confirmed tha t A*X is exactly equal to  B.

Both of these examples have exact, integer solutions. Th is is because the 
coefficient m a trix  was chosen to  be p a s c a l(3 ) , which has a determ inant equal 
to  one. A later section considers the effects of roundoff error inherent in more 
rea lis tic  computation.

A square m a trix  A is s ingular if  it does not have linearly  independent columns. 
I f  A is singular, the  solution to  AX = B either does not exist, or is not unique. 
The backslash operator, A\B, issues a w arn ing if  A is nearly singular and raises 
an error condition if  exact s ingu la rity  is detected.

Overdete rm ined  Systems
Overdeterm ined systems of sim ultaneous linear equations are often 
encountered in various kinds of curve f itt in g  to  experimental data. Here is a 
hypothetical example. A quan tity  y is measured at several d ifferent values of 
tim e, t, to  produce the  fo llow ing observations:

t y
0.0 0.82
0.3 0.72
0.8 0.63
1.1 0.60
1.6 0.55
2.3 0.50

This data can be entered in to  M ATLAB w ith  the  statements

t = [0  .3  .8  1.1 1.6 2 .3 ] ' ;  
y = [ .8 2  .72 .63 .60 .55 .5 0 ] ' ;
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It is believed tha t the  data can be modeled w ith  a decaying exponential 
function.

y (t )»  c1 + c2 e-

This equation says tha t the  vector y should be approximated by a linear 
combination of tw o other vectors, one the  constant vector containing all ones 
and the  other the  vector w ith  components e"(. The unknown coefficients, c1 and 
c2, can be computed by doing a least squares fit, which m inim izes the  sum of 
the  squares of the  deviations of the  data from the  model. There are six 
equations in tw o unknowns, represented by the  6-by-2 m atrix .

E = [o n e s (s iz e ( t ) )  e x p ( - t ) ]

E =

1 0000 1.0000
1 0000 0.7408
1 0000 0.4493
1 0000 0.3329
1 0000 0.2019
1 0000 0.1003

The least squares solution is found w ith  the  backslash operator.

c = E\y

c =

0.4760
0.3413

I n other words, the  least squares fit to  the  data is

y (t )»  0.4760 + 0.3413 e-

The follow ing statem ents evaluate the model at regularly spaced increments in 
t, and then plot the  result, together w ith  the  orig inal data.

T = ( 0 :0 .1 :2 .5 ) ' ;
Y = [o n e s (s iz e (T ))  e x p (-T ) ]*c ; 
p l o t ( T , Y , ' - ' , t , y , 'o ' )
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You can see tha t E*c is not exactly equal to  y, but tha t the  difference m ight well 
be less than measurement errors in the  orig inal data.

A rectangular m a trix  A is rank deficient if  it does not have linearly  independent 
columns. I f  A is rank deficient, the  least squares solution to  AX = В is not 
unique. The backslash operator, A\B, issues a w arn ing i f  A is rank deficient and 
produces a basic solution tha t has as few nonzero elements as possible.

Undetermined Systems
Underdeterm ined linear systems involve more unknowns than equations. 
When they are accompanied by additional constraints, they are the purview of 
linear programming. By itself, the  backslash operator deals only w ith  the 
unconstrained system. The solution is never unique. M ATLAB finds a basic 
solution, which has at most m nonzero components, but even th is  may not be 
unique. The particu la r solution actua lly computed is determ ined by the  QR 
factorization w ith  column pivoting (see a later section on the  QR factorization).
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Here is a small, random example.

R = f ix (1 0 * ra n d (2 ,4 ) )

R =

6 8 7 3
3 5 4 1

b = f ix (1 0 * ra n d (2 ,1 ) )

b =

1
2

The linear system Rx = b involves tw o equations in four unknowns. Since the 
coefficient m a trix  contains small integers, it is appropria te to  display the  
solution in rational form at. The particu la r solution is obtained w ith

format rat 

p = R\b 

P =

0
5/7

0
-4 1 /7

One of the  nonzero components is p(2) because R (:,2 ) is the  column of R w ith  
largest norm. The other nonzero component is p(4) because R (:,4 )  dominates 
after R (:,2 )  is e lim inated.
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The complete solution to  the overdetermined system can be characterized by 
adding an a rb itra ry  vector from the null space, which can be found using the 
nu ll function w ith  an option requesting a “ ra tiona l” basis.

Z = n u l l ( R , ’ r ’ )

Z =

-4 /2  -7 /6
-1 /2  1/2 

1 0
0 1

It can be confirmed tha t A*Z is zero and tha t any vector of the  form 

x = p + Z*q 

for an a rb itra ry  vector q satisfies R*x = b.
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Inverses and Determinants
I f  A  is square and nonsingular, the  equations AX = I  and XA = I  have the same 
solution, X. This solution is called the  inverse of A, is denoted by A"1, and is 
computed by the  function inv . The determ inant of a m a trix  is useful in 
theoretical considerations and some types of symbolic computation, but its  
scaling and roundoff error properties make it far less satisfactory for num eric 
computation. Nevertheless, the  function det computes the  determ inant of a 
square m atrix.

d = det (A)
X = inv(A )

d =

1

X =

3 -3 1
-3 5 -2

1 -2 1

Again, because A is symm etric, has integer elements, and has determ inant 
equal to  one, so does its  inverse. On the other hand,

d = det (B)
X = inv(B )

d =

-360

X =

0.1472 -0 .1444  0.0639 
-0.0611 0.0222 0.1056 
-0 .0194 0.1889 -0 .1028

Closer examination of the  elements of X, or use of format ra t,  would reveal 
tha t they are integers divided by 360.
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I f  A is square and nonsingular, then w ithou t roundoff error, X = in v (A )*B  
would theore tica lly be the  same as X = A\B and Y = B *inv(A ) would 
theoretica lly be the  same as Y = B/A. But the  computations involving the 
backslash and slash operators are preferable because they require less 
computer tim e, less memory, and have better error detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determ inants. A t least one of the 
equations AX = I and XA = I does not have a solution. A partia l replacement for 
the  inverse is provided by the Moore-Penrose pseudoinverse, which is computed 
by the p inv  function.

X = p inv(C)

X =

0.1159 -6 .0729 0.0171 
-0 .0534 0.1152 0.0418

The m a trix

Q = X*C

Q =

1.0000 0.0000 
0.0000 1.0000

is the 2-by-2 iden tity , but the  m a trix

P = C*X

P =

0.8293 -0 .1958 0.3213
-0 .1958 0.7754 0.3685

0.3213 0.3685 0.3952

is not the  3-by-3 iden tity . However, P acts like  an iden tity  on a portion of the  
space in the  sense tha t P is symmetric, P*C is equal to  C and X*P is equal to  X.
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I f  A is m-by-n w ith  m > n and fu ll rank n, then each of the  three statements

x = A\b
x = p inv( A )*b
x = in v (A ’ *A )*A ’ *b

theore tica lly computes the  same least squares solution x, although the 
backslash operator does it faster.

However, if  A does not have fu ll rank, the  solution to  the  least squares problem 
is not unique. There are many vectors x tha t m in im ize

norn(A*x -b )

The solution computed by x = A\b is a basic solution; it has at most r nonzero 
components, where r is the  rank of A. The solution computed by x = p in v (A )*b  
is the  m in im al norm solution; it also m inim izes no rm (x). An attem pt to 
compute a solution w ith  x = in v (A '* A )* A '* b  fa ils  because A '*A  is singular.

Here is an example to  illus tra tes  the  various solutions.

A = [ 1 2 3
4 5 6
7 8 9 
10 11 12]

does not have fu ll rank. Its  second column is the  average of the  firs t and th ird  
columns. If

b = A ( : ,2 )

is the  second column, then an obvious solution to  A*x = b is x = [0  1 0 ]' . But 
none of the  approaches computes tha t x. The backslash operator gives

x = A\b

Warning: Rank d e f ic ie n t ,  rank = 2. 

x =

0.5000
0

0.5000
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This solution has tw o nonzero components. The pseudoinverse approach gives

y = p in v (A )*b

У =

0.3333
0.3333
0.3333

There is no w arn ing about rank deficiency. But norn(y) = 0.5774 is less than 
norn(x) = 0.7071. F ina lly

z = in v (A ’ *A) *A’ *b 

fa ils  completely.

Warning: M a trix  is  s in g u la r to  w orking p re c is io n .

z =

In f
In f
In f
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LU, QR, and Cholesky Factorizations
M A T LA B ’s linear equation capabilities are based on three basic m a trix  
factorizations.

• Cholesky factorization for symmetric, positive de fin ite  matrices

• Gaussian e lim ination  for general square matrices

• Orthogonalization for rectangular matrices

These three factorizations are available through the chol , lu , and qr functions.

A ll th ree of these factorizations make use of tr ia n g u la r matrices where all the  
elements either above or below the diagonal are zero. Systems of linear 
equations involving tr iangu la r matrices are easily and qu ickly solved using 
e ither forward or back substitution.

Cholesky Factor izat ion
The Cholesky factorization expresses a sym m etric  m a trix  as the product of a 
tr iangu la r m a trix  and its  transpose.

A = R R

where R is an upper tr iangu la r m atrix .

Not all sym m etric matrices can be factored in th is  way; the  matrices tha t have 
such a factorization are said to  be positive definite. Th is im plies tha t all the 
diagonal elements of A are positive and tha t the  offdiagonal elements are “not 
too big.” The Pascal matrices provide an interesting example. Throughout th is  
chapter, our example m a trix  A has been the  3-by-3 Pascal m atrix . Le t’s 
tem porarily  switch to  the  6-by-6.

A = pasca l(6 )

A =

1 1 1 1 1
2 3 4 5 6
3 6 10 15 21
4 10 20 35 56
5 15 35 70 126
6 21 56 126 252
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The elements of A are binomial coefficients. Each element is the  sum of its 
north and west neighbors. The Cholesky factorization is

R = cho l(A )

R =

1
5

10
10
5
1

The elements are again binomial coefficients. The fact tha t R *R  is equal to  A 
demonstrates an iden tity  involving sums of products of binomial coefficients.

The Cholesky factorization also applies to  complex matrices. Any complex 
m a trix  which has a Cholesky factorization satisfies A ’ = A and is said to  be 
H erm itian positive definite.

The Cholesky factorization allows the linear system 

A*x = b 

to  be replaced by

R *R *x  = b

Because the  backslash operator recognizes tr iangu la r systems, th is  can be 
solved qu ickly w ith

x = R \(R \b )

If  A is n-by-n, the  computational complexity of cho l(A ) is O(n3), but the  
complexity of the  subsequent backslash solutions is only O(n2).

LU Factor izat ion
Gaussian e lim ination, or LU factorization, expresses any square m a trix  as the 
product of a perm utation of a lower tr iangu la r m a trix  and an upper tr iangu la r 
m a trix

A = L U
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where L is a perm utation of a lower tr ia n g u la r m a trix  w ith  ones on its  diagonal 
and U  is an upper tr iangu la r m atrix .

The perm utations are necessary for both theoretical and computational 
reasons. The m atrix

0 1
1 0

cannot be expressed as the  product of tr ia n g u la r matrices w ithout 
interchanging its  tw o rows. A lthough the  m a trix

e 1
1 0

can be expressed as the product of tr iangu la r matrices, when e is small the 
elements in the  factors are large and magnify errors, so even though the 
perm utations are not s tr ic tly  necessary, they are desirable. Partia l pivoting 
ensures tha t the  elements of L are bounded by one in m agnitude and tha t the 
elements of U are not much larger than those of A.

For example

[L ,U ] = l u(B)

L =

1.0000 0 0
0.3750 0.5441 1.0000
0.5000 1.0000 0

U =

8.0000 1.0000 6.0000
0 8.5000 -4 .0000
0 0 5.2941
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The LU factorization of A allows the  linear system 

A*x = b 

to  be solved qu ickly w ith

x = U \(L \b )

D eterm inants and inverses are computed from the LU factorization using

det(A ) = d e t(L )*d e t(U ) =± ± p rod (d iag (U )) 

and

inv( A) = inv(U ) * in v (L )

QR Factor izat ion
An orthogonal m atrix , or a m a trix  w ith  orthonormal columns, is a real m a trix  
whose columns all have un it length and are perpendicular to  each other. I f  Q 
is orthogonal, then

Q' Q = I

The simplest orthogonal matrices are two-dimensional coordinate rotations.

cos (0) sin (0)
-  sin (0) cos (0)

For complex matrices, the  corresponding term  is un ita ry. Orthogonal and 
un ita ry  matrices are desirable for numerical computation because they 
preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular m a trix  as the  
product of an orthogonal or un ita ry  m a trix  and an upper tr ia n g u la r m atrix . A 
column perm utation may also be involved.

A = Q R

or

A P = Q R

where Q is orthogonal or un ita ry , R is upper tr iangu la r, and P is a 
perm utation.
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There are four va rian ts  of the  QR fac to riza tion - fu ll or economy size and w ith  
or w ithou t column perm utation.

Overdeterm ined linear systems involve a rectangular m a trix  w ith  more rows 
than columns, tha t is m-by-n w ith  m > n. The fu ll size QR factorization 
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper 
triangu la r R.

[Q R ] = qr(C)

I n many cases, the  last m - n columns of Q are not needed because they are 
m u ltip lied  by the  zeros in the bottom portion of R. So the  economy size QR 
factorization produces a rectangular, m-by-n Q w ith  orthonormal columns and 
a square n-by-n upper tr ia n g u la r R. For our 3-by-2 example, th is  is not much 
of a saving, but for larger, h igh ly rectangular matrices, the  savings in both tim e  
and memory can be qu ite  im portant.

[Q R ] = q r(C ,0 )

Q =

-9 .8182 0.3999 -9.4131 
-9 .1818 -0 .8616 -0 .4739 
-0 .5455 -0 .3126 0.7777

R =

-11.0000 
0 
0

-8. 5455 
-7 .4817 

0

Q =

-0 .8182 0.3999 
-0 .1818 -6 .8616 
-0 .5455 -0. 3126

R =

-11. 0000 -8 .5455
0 -7 .4817
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In contrast to  the  LU factorization, the  QR factorization does not require any 
p ivoting or perm utations. But an optional column perm utation, triggered by 
the presence of a th ird  output argument, is useful for detecting s ingu la rity  or 
rank deficiency. A t each step of the  factorization, the  column of the  rem aining 
unfactored m a trix  w ith  largest norm is used as the basis for tha t step. Th is 
ensures tha t the  diagonal elements of R occur in decreasing order and tha t any 
linear dependence among the  columns w ill almost certa in ly be revealed by 
exam ining these elements. For our small example, the  second column of C has 
a larger norm than the  firs t, so the tw o columns are exchanged.

[Q R ,P ] = qr(C)

Q =

-0 .3522 
-0 .7044 
-0 .6163

R =

-11.3578 
0
0

P =

0
1 0

When the  economy size and column perm utations are combined, the  th ird  
output argument is a perm utation vector, rather than a perm utation m atrix.

0.8398 -0.4131 
-0. 5285 -0. 4739 

0.1241 0.7777

-8.2762 
7.2460 

0

1
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[Q R p ]  = q r(C ,0 )

Q =

-0 .3522 0.8398 
-0 .7044 -0. 5285 
-0 .6163 0.1241

R =

-11.3578 -8 .2762
0 7.2460

P =

2 1

The QR factorization transform s an overdetermined linear system in to  an 
equivalent tr ia n g u la r system. The expression

norm(A*x -  b)

is equal to

norm(C*R*x -  b)

M u ltip lica tion  by orthogonal matrices preserves the  Euclidean norm, so th is  
expression is also equal to

norm(R*x -  y)

where y = C *b . Since the last m -n rows of R are zero, th is  expression breaks 
in to  tw o pieces

n o rT (R (1 :n ,1 :n )*x  -  y (1 :n ) )  

and

noriT(y(n+1:iT))

When A has fu ll rank, it is possible to  solve for x so tha t the  firs t of these 
expressions is zero. Then the  second expression gives the  norm of the  residual. 
When A does not have fu ll rank, the  tr ia n g u la r s tructu re  of R makes it possible 
to  find a basic solution to  the  least squares problem.
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Matr ix  Powers and Exponentials
I f  A is a square m a trix  and p is a positive integer, then AAp m u ltip lies  A by itse lf 
p times.

X = AA2 

X =

3 6 10
6 14 25

10 25 46

If  A is square and nonsingular, then AA(-p )  m u ltip lies  inv(A ) by itse lf p times.

Y = BA(-3)

Y =

0.0053 -0 .0068 0.0018
-0 .0034  0.0001 0.0036
-0 .0016  0.0070 -0.0051

Fractional powers, like  AA(2/ 3), are also perm itted; the  results depend upon 
the d is tribu tion  of the  eigenvalues of the  m atrix.

Element-by-element powers are obtained w ith  a . For example

X = A.A2

A =

1 1 1
1 4 9
1 9 36

The function

sqrt t (A)

computes aa (1 /2 ) by a more accurate a lgorithm . The T in  sqrtm distingu ishes 
th is  function from s q rt(A ) which, like  A.a( 1/ 2 ) , does its  job 
element-by-element.
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A system of linear, constant coefficient, ord inary d iffe rentia l equations can be 
w ritten

d x  /  d t = Ax

where x  = x(t) is a vector of functions of t and A is a m a trix  independent of t. 
The solution can be expressed in term s of the  m a trix  exponential,

tAx ( t ) = e x (0)

The function

expn(A)

computes the m a trix  exponential. An example is provided by the  3-by-3 
coefficient m a trix

A =

0 -6 -1
6 2 -16

-5 20 -10

and the  in itia l condition, x(0)

x0 =

1
1
1

The m a trix  exponential is used to  compute the  solution, x(t), to  the  d iffe rentia l 
equation at 101 points on the  in terva l 0 < t < 1 w ith

X = [ ] ;
fo r  t = 0: 01:1

X = [X  expm (t*A )*x0 ];
end

A three-dimensional phase plane plot obtained w ith

p lo t 3 ( X ( 1 , : ) , X ( 2 , : ) , X ( 3 , : ) , ' - o ' )
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shows the  solution sp ira ling  in towards the  orig in. Th is behavior is related to 
the eigenvalues of the  coefficient m atrix, which are discussed in the  next 
section.
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Eigenvalues
An eigenvalue and eigenvector of a square m a trix  A are a scalar 1 and a vector 
v tha t satisfy

Av  = 1v

W ith the  eigenvalues on the  diagonal of a diagonal m a trix  Л and the 
corresponding eigenvectors form ing the columns of a m a trix  V, we have

AV = VL

I f  V is nonsingular, th is  becomes the eigenvalue decomposition 

A = V Л  V 1

A good example is provided by the coefficient m a trix  of the  ord inary d iffe rentia l 
equation in the  previous section.

A =

0 -6 -1
6 2 -16

-5 20 -10

The statement

lambda = e ig (A )

produces a column vector containing the eigenvalues. For th is  m atrix , the 
eigenvalues are complex.

lambda =

-3 .0710
-2.4645+17.6008i 
-2 .4645- 17.6008i

The real part of each of the  eigenvalues is negative, so e1  approaches zero as 
t increases. The nonzero im aginary part of tw o of the  eigenvalues, ±w , 
contributes the  oscillatory component, s in (ro t) ,  to  the  solution of the  
d iffe rentia l equation.
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W ith tw o output arguments, ei g computes the  eigenvectors and stores the 
eigenvalues in a diagonal m atrix.

[V ,D ] = e ig (A )

V =

-0 .8326 -0.1203+ 0.2123i -0 .1 2 0 3 - 0.2123i
-0 .3553 0.4691+ 0.4901i 0 .4691- 0.4901i
-0 .4248 0 .6249 - 0.2997i 0.6249+ 0. 2997i

D =

-3 .0710 0 0
0 -2.4645+17.6008i 0
0 0 -2 .4645-17. 6008i

The firs t eigenvector is real and the  other tw o vectors are complex conjugates 
of each other. A ll th ree vectors are normalized to  have Euclidean length, 
n o r ir (v ,2 ) , equal to  one.

The m a trix  V *D *in v (V ), which can be w ritten  more succinctly as V*D/V, is 
w ith in  roundoff error of A. And, inv(V )*A *V , or V\A*V, is w ith in  roundoff error 
of D.

Some matrices do not have an eigenvector decomposition. These matrices are 
defective, or not diagonalizable. For example,

A =

6 12 19
-9 -20 -33

4 9 15

For th is  m a trix

[V,D ] = e ig (A )
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produces

V =

0.4741 0.4082 -0.4082
-0.8127 -0.8165 0.8165

0.3386 0.4082 -0.4082

D =

0000 0 0
0 1.0000 0
0 0 1.0000

There is a double eigenvalue at l  = 1. The second and th ird  columns of V are 
negatives of each other; they are merely d ifferent norm alizations of the  single 
eigenvector corresponding to  l  = 1. For th is  m atrix , a fu ll set of linearly 
independent eigenvectors does not exist.

The optional Symbolic Math Toolbox extends M A T LA B ’s capabilities by 
connecting to  Maple, a powerful computer algebra system. One of the  functions 
provided by the  toolbox computes the  Jordan Canonical Form. Th is is 
appropria te for m atrices like  our example, which is 3-by-3 and has exactly 
known, integer elements.

[X ,J ] = jo rd a n (A )

X =

1.7500
3.0000
1.2500

1.5000 
-3 .0000

1.5000

2.7500
-3.0000

1.2500

J =

-1 0 
0 1 
0 0

The Jordan Canonical Form is an im portant theoretical concept, but it is not a 
re liable computational tool for larger matrices, or for matrices whose elements 
are subject to  roundoff errors and other uncertainties.
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M A T LA B ’s advanced m a trix  computations do not require eigenvalue 
decompositions. They are based, instead, on the  Schur decomposition,

A = U S U T

where U is an orthogonal m a trix  and S is a block upper tr ia n g u la r m a trix  w ith  
1-by-1 and 2-by-2 blocks on the  diagonal. The eigenvalues are revealed by the 
diagonal elements and blocks of S, w h ile  the  columns of U provide a basis w ith  
much better numerical properties than a set of eigenvectors. The Schur 
decomposition of our defective example is

[U ,S] = schur(A)

U =

0.4741
-0 .8127

0.3386

S =

-0.6571
-0.0706

0.7505

0.5861
0.5783
0.5675

0000
0
0

21.3737
1.0081

-0.0001

44.4161 
0. 6095 
0. 9919

The double eigenvalue is contained in the  lower 2-by-2 block of S.
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Singular Value Decomposition
A singular value and corresponding s ingu lar vectors of a rectangular m a trix  A 
are a scalar s  and a pair of vectors u and v tha t satisfy

Av = s u 
ATu = s v

W ith  the singular values on the diagonal of a diagonal m a trix  S and the 
corresponding singular vectors form ing the  columns of tw o orthogonal matrices 
U and V, we have

AV = U S 
ATU = V S

Since U and V are orthogonal, th is  becomes the s ingular value decomposition 

A = U S VT

The fu ll singular value decomposition of an m-by-n m a trix  involves an m-by-m 
U , an m-by-n S, and an n-by-n V. In other words, U and V are both square and 
S is the  same size as A. I f  A has many more rows than columns, the  resulting 
U can be qu ite  large, but most of its  columns are m u ltip lied  by zeros in S. In 
th is  s itua tion , the  economy sized decomposition saves both tim e  and storage by 
producing an m-by-n U, an n-by-n S and the  same V.

The eigenvalue decomposition is the  appropria te tool for analyzing a m atrix  
when it represents a mappi ng from a vector space i nto itself, as it does for an 
o rd inary d iffe rentia l equation. On the  other hand, the  singular value 
decomposition is the  appropria te tool for analyzing a mapping from one vector 
space in to  another vector space, possibly w ith  a d ifferent dimension. Most 
systems of simultaneous linear equations fa ll in to  th is  second category.

I f  A is square, symm etric, and positive defin ite, then its  eigenvalue and 
singular value decompositions are the  same. But, as A departs from symmetry 
and positive definiteness, the  difference between the  tw o decompositions 
increases. In particu lar, the  singular value decomposition of a real m a trix  is 
always real, but the  eigenvalue decomposition of a real, nonsym m etric m a trix  
m ight be complex.
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For the  example m a trix

C
D 4

6 8
2 7

the fu ll singular value decomposition is

[U ,S ,V ] = svd(A)

U =

0.6105 
0.6646 
0.4308

S =

14.9359 
0
0

V =

0.6925 
0.7214
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You can verify tha t U*S*V is equal to  A to  w ith in  roundoff error. For th is  small 
problem, the  economy size decomposition is only s ligh tly  smaller.

[U ,S ,V ] = sv d (A 0 )

U =

0.6105 -0 .7174 
0.6646 0.2336 
0.4308 0.6563

S =

14.9359 0
0 5.1883

V =

0.6925 -0 .7214 
0.7214 0.6925

Again, U*S*V' is equal to  A to  w ith in  roundoff error.
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Polynomials
M ATLAB provides functions for standard polynomial operations, such as 
polynomial roots, evaluation, and d iffe rentia tion . In addition, there are 
functions for more advanced applications, such as curve fit t in g  and partia l 
fraction expansion.

The polynomial functions live  in a d irectory called po ly fun  in the M ATLAB 
Tool box.

Function Description

conv M u ltip ly  polynomials.

deconv D ivide polynomials.

po ly Polynomial w ith  specified roots.

polyder Polynomial derivative.

p o ly f i t Polynomial curve fitt in g .

polyval Polynomial evaluation.

po lyva lm M a tr ix  polynomial evaluation.

res idue P artia l-fraction  expansion (residues).

roo ts Find polynomial roots.

The Symbolic Math Toolbox contains additional specialized support for 
polynomial operations.

Represent ing Po lynomia ls
M ATLAB represents polynomials as row vectors containing coefficients 
ordered by descending powers. For example, consider the  equation

p(x) = x3 -  2x -  5

This is the  celebrated example W a llis  used when he firs t represented Newton’s 
method to  the  French Academy. To enter th is  polynomial in to  M ATLAB, use

p = [1 0 -2  -5 ];
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Polynomia l  Roots
The ro o ts  function calculates the  roots of a polynomial.

r = ro o ts (p )

r =
2.0946 

-1 .0473 + 1.1359i
—1.0473 -  1.1359i

By convention, M ATLAB stores roots in column vectors. The function po ly 
re tu rns to  the  polynomial coefficients.

p2 = p o ly ( r )  

p2 =
1 8.8818e-16 -2  -5

po ly and ro o ts  are inverse functions, up to  ordering, scaling, and roundoff 
error.

Character ist ic Po lynomia ls
The pol y function also computes the coefficients of the  characteristic 
polynomial of a m atrix .

A = [1 .2  3 -0 .9 ; 5 1.75 6; 9 0 1]; 
po ly(A )

ans =
1.0000 -3 .9500 -1 .8500  -163.2750

The roots of th is  polynomial, computed w ith  ro o ts , are the  characteristic roots, 
or eigenvalues, of the  m a trix  A. (Use e ig  to  compute the  eigenvalues of a m a trix  
d irectly.)
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Polynomia l  Evaluat ion
The polyval function evaluates a polynomial at a specified value. To evaluate 
p at s = 5, use

p o ly v a l(p ,5 )

ans =
110

It is also possible to  evaluate a polynomial in a m a trix  sense. In th is  case 
p(s) = x3 -  2x -  5 becomes p(X) = X 3 -  2X -  51, where X is a square m a trix  and
I is the  iden tity  m atrix . For example, create a square m a trix  X and evaluate the  
polynomial p at X.

X = [2 4 5; -1 0 3
Y = pol yv p

r
a ,X)

Y =
377 179 439
111 81 136
490 253 639

Convolut ion and Deconvolut ion
Polynomial m u ltip lica tion  and division correspond to  the  operations 
convolution and deconvolution. The functions conv and deconv implement 
these operations.

Consider the polynomials a(s) = s2 + 2s +3 and b(s) = 4s2 + 5s + 6. To 
compute th e ir product,

a = [1 2 3 ]; b = [4  5 6 ]; 
c = conv( a,b)

c =
4 13 28 27 18
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Use deconvolution to  d iv ide a(s) back out of the  product:

[ q , r ]  = deconv( c ,a )

q =
4 5 6

r =
0 0 0 0 0 

Polynomia l  Der ivat ives
The polyder function computes the  deriva tive  of any polynomial. To obtain the 
deriva tive  of the  polynomial p = [1 0 -2  - 5 ] ,

q = po lyde r(p )

q =
3 0 -2

polyder also computes the  deriva tive  of the  product or quotient of tw o 
polynomials. For example, create tw o polynomials a and b:

a = [1 3 5]; 
b = [2  4 6];

Calculate the  deriva tive  of the  product a*b by calling polyder w ith  a single 
output argument:

c = p o lyd e r(a ,b ) 

c =
8 30 56 38
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Calculate the  deriva tive  of the  quotient a /b  by calling polyder w ith  tw o output 
arguments:

[ q , d ]  = po l yder (a ,b )  

q =
-2  -8  -2

d =
4 16 40 48 36 

q/d is the  result of the  operation.

Polynomia l  Curve Fitting
p o l y f i t  finds the coefficients of a polynomial tha t f its  a set of data in a 
least-squares sense.

p = p o l y f i t ( x , y , n )

x and y are vectors containing the x  and y data to  be fitted , and n is the  order 
of the  polynomial to  re turn . For example, consider the  x-y test data:

x = [1 2 3 4 5]; y = [ 5 . 5  43.1 128 290.7 498.4] ;

A th ird  order polynomial tha t approxim ately fits  the  data is

p = p o l y f i t ( x , y , 3 )  

p =
-0 .1917 31.5821 -60.3262 35.3400
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Compute the  values of the  p o l y f i t  estim ate over a finer range, and plot the  
estimate over the real data values for comparison.

x2 =
y2 = po l yva l (p ,  x2);  
plot  ( x , y , ’ o’ , x2, y2)  
g r i d  on

To use these functions in an application example, see Chapter 6 .

Part ial  Fraction Expansion
res idue finds the  partia l fraction expansion of the  ra tio  of tw o polynomials. 
Th is is pa rticu la rly  useful for applications tha t represent systems in transfer 
function form. For polynomials b and a, if  there are no m u ltip le  roots,

^  . _ - _  + _ !1 _  + ... + J n _  + ks
a ( s) s -  p, s -  P2 s -  p „ s

where r is a column vector of residues, p is a column vector of pole locations, 
and k is a row vector of direct terms. Consider the transfer function
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5 Fblynomials and Interpolation

-  4 + 8s

1 + 6 s + 8 s

b = [ - 4  8]; 
a = [1 6 8];
[ r , p , k ]  = res i due(b ,a )

r =
-12

8

p =
-4
-2

k =
[ ]

Given three input arguments ( r , p, and k), r es idue converts back to  polynomial 
form:

[b2,a2]  = r es i du e ( r , p , k )  

b2 =
-4  8

a2 =
1 6 8
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Interpolation
In terpolation is a process for estim ating values tha t lie  between known data 
points. It has im portant applications in areas such as signal and image 
processing. M ATLAB provides a number of in terpolation techniques tha t let 
you balance the  smoothness of the  data f it w ith  speed of execution and memory 
usage.

The interpolation functions live  in a d irectory called po l y fun in the  M ATLAB 
Toolbox.

Function Description

gr i ddata Data gridd ing and surface fitt in g .

i n t e r p l One-dimensional in terpolation (table lookup).

i n t e r p2 Two-dimensional in terpolation (table lookup).

i n t e r p3 Three-dimensional in terpolation (table lookup).

i n t e r p f t One-dimensional in terpolation using FFT method.

i n t e r pn N-D interpolation (table lookup).

sp l i ne Cubic spline data in terpolation.

One-Dimens ional  Interpolat ion
There are tw o kinds of one-dimensional in terpolation in M ATLAB:

• Polynomial in terpolation

• FFT-based interpolation

Polynomial Interpolation
The function i n t e r p l  performs one-dimensional in terpo lation, an im portant 
operation for data analysis and curve fitt in g . This function uses polynomial 
techniques, f it t in g  the  supplied data w ith  polynomial functions between data 
points and evaluating the  appropria te function at the  desired interpolation 
points. Its  most general form is

yi = i n t e r p 1 ( x , y , x i , me t h o d )
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y is a vector containing the values of a function, and x is a vector of the  same 
length containing the  points for which the  values in y are given. xi is a vector 
containing the  points at which to  interpolate. method is an optional s tring  
specifying an interpolation method.

There are four d ifferent in terpolation methods for one-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’ ). Th is method sets the 
value of an interpolated point to  the  value of the  nearest existing data point. 
It uses the same a lgorithm  as the  round function to  determ ine which value 
to  choose: values of xi w ith  decimal portion less than 0.5 receive the 
preceding value; values of xi w ith  decimal portion greater than or equal to
0.5 receive the  succeeding value. Out-of range points receive a value of NaN 
(Not a Number).

• L inear interpolation (method = ’ l i n e a r ’ ). Th is method fits  separate 
functions between each pair of existing data points, and re tu rns the  value of 
the  relevant function at the  points specified by xi . Th is is the  default method 
for the  in t e rp l  function. Out-of-range points receive a value of NaN.

• Cubic spline interpolation (method = ’ s p l i n e ’ ). Th is method uses a series 
of functions to  obtain interpolated data points, determ ining separate 
functions between each pair of existing data points. A t its  endpoint (an 
existing data point), each function has at least the  same firs t and second 
derivatives as the function fo llow ing it.

• Cubic interpolation (method = ’ cub i c ’ ). Th is method fits  a cubic function 
through y, and re tu rns the  value of th is  function at the  points specified by
xi . Out-of-range points receive a value of NaN.

A ll of these methods require tha t x be monotonic, tha t is, e ither always 
increasing or always decreasing from point to  point. Each method works w ith  
non-uniformed spaced data. I f  x is already equally spaced, you can speed 
execution tim e  by prepending an asterisk to  the  method string, for example,
’ * c u b i c ’ .
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Speed, Memory, and Smoothness Considerations
When choosing an interpolation method, keep in mind tha t some require more 
memory or longer computation tim e  than others. However, you may need to  
trade  off these resources to  achieve the  desired smoothness in the  result.

• Nearest neighbor interpolation is the  fastest method. However, it provides 
the  worst results in term s of smoothness.

• L inear interpolation uses more memory than the  nearest neighbor method, 
and requires s ligh tly  more execution tim e. U n like  nearest neighbor 
interpolation its  results are continuous, but the  slope changes at the  vertex 
points.

• Cubic interpolation requires more memory and execution tim e  than either 
the  nearest neighbor or linear methods. However, both the interpolated data 
and its  deriva tive  are continuous.

• Cubic spline interpolation has the  longest re la tive  execution tim e, although 
it requires less memory than cubic interpolation. It produces the  smoothest 
results of all the  interpolation methods. You may obtain unexpected results, 
however, if  your input data is non-uniform  and some points are much closer 
together than others.

The re la tive  performance of each method holds tru e  even for in terpolation of 
two-dimensional or m ultid im ensional data. For a graphical comparison of 
in terpolation methods, see the  section “Comparing Interpolation Methods” on 
page 5-13.

FFT-Based Interpolation
The function i n t e r p f t  performs one-dimensional in terpolation using an 
FFT-based method. Th is method calculates the  Fourier transform  of a vector 
tha t contains the  values of a periodic function. It then calculates the  inverse 
Fourier transform  using more points. Its  form is

y = i n t e r p f t ( x , n )

x is a vector containing the  values of a periodic function, sampled at equally 
spaced points. n is the  number of equally spaced points to  return.
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Two-Dimens iona l  Interpolat ion
The function i n t e r p2  performs two-dimensional in terpolation, an im portant 
operation for image processing and data visualization . Its  most general form is

ZI = i n t e rp2 (X,Y,Z ,X I ,Y I ,me thod)

Z is a rectangular array containing the values of a two-dimensional function, 
and X and Y are arrays of the  same size containing the  points for which the 
values in Z are given. XI and YI are matrices containing the points at which to  
in terpo late the data. method is an optional s tring  specifying an interpolation 
method.

There are three d ifferent in terpolation methods for two-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’ ). Th is method fits  a 
piecewise constant surface through the data values. The value of an 
interpolated point is the  value of the  nearest point.

• B ilinear interpolation (method = ’ l i n e a r ’ ). Th is method fits  a b ilinear 
surface through existing data points. The value of an interpolated point is a 
combination of the  values of the  four closest points. Th is method is piecewise 
bilinear, and is faster and less memory-intensive than bicubic interpolation.

• B icubic interpolation (method = ’ cub i c ’ ). Th is method fits  a bicubic surface 
through existing data points. The value of an interpolated point is a 
combination of the  values of the  sixteen closest points. Th is method is 
piecewise bicubic, and produces a much smoother surface than bilinear 
in terpolation. Th is can be a key advantage for applications like  image 
processing. Use bicubic interpolation when the  interpolated data and its 
deriva tive  must be continuous.

A ll of these methods require tha t X and Y be monotonic, tha t is, e ither always 
increasing or always decreasing from point to  point. You should prepare these 
matrices using the  meshgrid function, or else be sure tha t the  “pa tte rn ” of the  
points emulates the output of meshgrid.  In addition, each method 
autom atica lly maps the  input to  an equally spaced domain before 
in terpolating. I f  X and Y are already equally spaced, you can speed execution 
tim e  by prepending an asterisk to  the  method string, for example, ’ * c u b i c ’ .
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Compar ing  In terpo lat ion Methods
This example compares two-dimensional in terpolation methods on a 7-by-7 
m a trix  of data.

1 Generate the peaks function at low resolution:

[ x , y ]  = meshgri d ( —3:1:3) ;  
z = peaks(x,y) ;  
sur f  ( x , y , z )

3

2 Generate a finer mesh for in terpolation:

[ x i,  y i ]  = meshgr i d( -3 : 0 .25:3) ;

3 In terpolate using nearest neighbor interpolation:

z i1  = i n t e r p 2 ( x , y , z , x i , y i , ' n e a r e s t ' ) ;

4 In terpolate using b ilinear in terpolation:

z i2  = i n t e r p 2 ( x , y , z , x i , y i , ' b i l i n e a r ' ) ;

5  In terpo late using bicubic in terpolation:

z i3  = i n t e r p 2 ( x , y , z , x i , y i , ' b i c u b i c ' ) ;
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5 Polynomials and Interpolation

6 Compare the surface plots for the  d ifferent in terpolation methods

s u r f ( x i , y i , z i 1 )  % nearest s u r f ( x i , y i , z i 2 )  % b i l i  near

7 Compare the contour plots for the  d ifferent in terpolation methods:

% nearest
c o n t ou r ( x i , y i , z i 2 )  
% b i l i  near % bicubic

Notice tha t the  bicubic method, in particu la r, produces smoother contours. 
Th is is not always the  prim ary concern, however. For some applications, such 
as medical image processing, a method like  nearest neighbor may be preferred 
because it doesn’t generate any “ new” data values.
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In terpo la t ion  and Mul t id imens iona l  A r rays
Several in terpolation functions operate specifically on m ultid im ensional data:

Function Description

i n t e r p3 Three-dimensional data interpolation.

i n t e rpn M ultid im ensiona l data interpolation.

ndgr id M ultid im ensiona l data gridd ing (ndfun directory).

Interpolation of Three-Dimensional Data
The function i n t e r p3  performs three-dimensional in terpo lation, find ing  
interpolated values between points of a three-dimensional set of samples V. 
You must specify a set of known data points:

• X, Y, and Z matrices specify the  points for which values of V are given.

• A m a trix  V contains values corresponding to  the  points in X, Y, and Z.

The most general form for i n t e r p3  is

VI = i n terp3(X,  Y ,Z,V,XI ,YI ,Z I ,method)

XI , YI , and ZI are the  points at which i n t e r p3  interpolates values of V. For 
out-of-range values, i n t e r p3  re tu rns NaN.

There are three d ifferent in terpolation methods for three-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’ ). Th is method chooses 
the  value of the  nearest point.

• T rilin e a r interpolation (method = ’ l i n e a r ’ ). Th is method uses piecewise 
linear in terpolation based on the values of the  nearest eight points.

• T ricub ic  interpolation (method = ’ cub i c ’ ). Th is method uses piecewise cubic 
interpolation based on the  values of the  nearest sixty-four points.

A ll of these methods require tha t X, Y, and Z be monotonic, tha t is, e ither always 
increasing or always decreasing in a particu la r direction. In addition, you 
should prepare these matrices using the  meshgrid function, or else be sure tha t 
the  “pa tte rn ” of the  points emulates the  output of meshgrid.
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Each method autom atica lly maps the input to  an equally spaced domain before 
in terpolating. I f  x is already equally spaced, you can speed execution tim e  by 
prepending an asterisk to  the  method string, for example, ’ *cubi  c’ .

Interpolation of Higher-Dimensional Data
The function i n t e r pn  performs m ultid im ensional in terpo lation, find ing 
interpolated values between points of a m ultid im ensional set of samples V. The 
most general form for i n t e r pn  is

VI = i n t e r pn ( X1 , X 2 , X3 . . . , V , Y1 , Y2 , Y3 , . . . , me t  hod)

1, 2, 3, ... are matrices tha t specify the  points for which values of V are given.
V is a m a trix  tha t contains the  values corresponding to  these points. 1, 2, 3, ... 
are the points for which i n t e r pn  re tu rns interpolated values of V. For 
out-of-range values, i n t e r pn  re tu rns NaN.

Y1, Y2, Y3, ... must be e ither arrays of the  same size, or vectors. I f  they are 
vectors of d ifferent sizes, i n t e r pn  passes them to  ndgr i d and then uses the 
resulting arrays.

There are three d ifferent in terpolation methods for m ultid im ensional data:

• Nearest neighbor interpolation (method = ’ neares t ’ ). Th is method chooses 
the value of the  nearest point.

• L inear interpolation (method = ’ l i n e a r ’ ). Th is method uses piecewise 
linear in terpolation based on the  values of the  nearest tw o points in each 
dimension.

• Cubic interpolation (method = ’ cub i c ’ ). Th is method uses piecewise cubic 
interpolation based on the values of the  nearest four points in each 
dimension.

A ll of these methods require tha t X1, X2,X3 be monotonic. In addition, you 
should prepare these matrices using the  ndgr id  function, or else be sure tha t 
the  “pa tte rn ” of the  points emulates the  output of ndgr id.

Each method autom atica lly maps the input to  an equally spaced domain before 
in terpolating. I f  X is already equally spaced, you can speed execution tim e  by 
prepending an asterisk to  the  method string; for example, ’ *cubi  c’ .
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Multidimensional Data Gridding
The ndgr i d function generates arrays of data for m ultid im ensional function 
evaluation and interpo lation. ndgr i d transform s the  domain specified by a 
series of input vectors in to  a series of output arrays. The i ’th dimension of 
these output arrays are copies of the  elements of input vector x i .

The syntax for ndgr id is

[ X1 , X 2 , X 3 , . . . ]  = n d g r i d ( x 1 , x 2 , x 3 , . . . )

For example, assume tha t you want to  evaluate a function of th ree variables 
over a given range. Consider the  function

z = x2 e( - x2-x2-x2)

for -2л  < x i < 0, 2л < x2 < 4л, and 0 < x3 < 2л. To evaluate and plot th is  function:

x1 = - 2 : 0 . 2 : 2 ;  
x2 = - 2 : 0 .25 :2 ;  
x3 = - 2 : 0 .16 :2 ;
[X1,X2,X3] = ndgr i d ( x1 , x2 , x3 ) ;  
z = X2. *e xp (-X 1 .A2 -X 2 .A2 - X 3 . A2); 
s l i ce(X2,X1,X3,  z , [ - 1 . 2 . 8  2 ] , 2 , [ - 2  0 . 2 ] )

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
2

-2  -2

5-17



5 Polynomials and Interpolation

Triangulat ion and Interpo lat ion of Scattered Data
M ATLAB provides routines tha t aid in the  analysis of closest-point problems 
and geometric analysis:

Function Description

convhul l Convex hull.

delaunay Delaunay tr iangu la tion .

dsearch Search Delaunay tr iangu la tion  for nearest point.

i npolygon True for points inside polygonal region.

polyarea Area of polygon.

r ec t i n t Area of intersection for tw o  or more rectangles.

t search Closest tr iang le  search.

voronoi Voronoi diagram.
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Delaunay Triangulation
The del aunay function re tu rns a set of triang les such tha t no data points are 
contained in any tr ia n g le ’s circumcircle. To try  delaunay, load the  seamount 
data set supplied w ith  M ATLAB and view the  data as a sim ple scatter plot.

l oad seamount
p l o t ( x , y , ’ . ’ , ’ markers i ze’ , 12) 
x l a b e l ( ’ Longi tude’ ), y l a b e l ( ’ L a t i t u d e ’ ) 
g r i d  on

Longitude

Note For inform ation on seamount, see Parker, R. L., L. Shure, & J. 
H ildebrand, “The Application of Inverse Theory to  Seamount M agnetism .” 
Reviews of Geophysics. Vol 25, 1987: pp 17-40.
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Apply Delaunay tr iangu la tion  and overplot the  resulting triang les on the 
scatter plot:

t r i  = del aunay(x,y) ;
hold on, t r i m e s h ( t r i , x , y , z ) ,  hold of f
hidden o f f ;  g r i d  on
x l a b e l ( ’ Longi tude’ ); y l a b e l ( ’ Lat i t u d e ’ )

-47.95 

-4 8  

-48.05 

-48.1 

-48.15

e d
titu -48.2 

-48.25 

-48.3 

-48.35 

-48.4 

-48.45
210.8 210.9 211 211.1 211.2 211.3 211.4 211.5 211.6 211.7 211.8 

Longitude
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Here’s a contour plot:

[ x i ,  y i ]  = meshgr id(210.8: .  01 : 211 . 8 , - 48 . 5 : . 01 : - 47 .  9); 
zi = g r i d d a t a ( x , y , z , x i , y i , ' c u b i c ' ) ;
[ c , h ]  = c o n t o u r ( x i , y i , z i , ' c - ' ) ;  c l ab e l ( c , h )

The arguments for meshgrid encompass the largest and smallest x and y 
values in the  orig inal seamount data. To obtain these values, use

mn( mi n ( x ) )  
max( max(x))

and

min(min(y) )  
max( max(y))
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Closest-Point Searches. You can search through the Delaunay triangu la tion  data 
w ith  tw o functions:

• dsearch finds the  point closest to  a point you specify.

• tsearch,  given a point ( x i , y i ) , re tu rns an index in to  the  del aunay output 
tha t specifies the  enclosing tr iang le  for the  point.

Voronoi Diagrams
Vornoi d iagram s are a closest-point p lo tting  technique related to  Delaunay 
triangu la tion . The Voronoi diagram for the  seamount data is

load seamount 
v o r ono i ( x , y )  
g r i d  on
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Convex Hulls
The convhul l  function re tu rns the  indices of the  points in a data set that 
comprise the  convex hull for the  set. For example, to  view the  convex hull for 
the  seamount data:

load seamount
p l o t ( x , y , ’ . ’ , ’ markers i ze’ , 10) 
k = c onv hu l l ( x , y ) ;  
hold on, p l o t ( x ( k ) , y ( k ) ) ,  hold of f  
g r i d  on
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6 Data Analysis and Statistics

This chapter introduces M A T LA B ’s data analysis capabilities. It discusses how 
to  organize arrays for data analysis, how to  use sim ple descriptive sta tistics 
functions, and how to  perform data pre-processing tasks in M ATLAB. It also 
discusses other data analysis topics, includ ing regression, curve fitt in g , data 
filte rin g , and fast Fourier transform s (FFTs).

The data analysis and sta tis tics functions are in the  d irectory datafun in the 
M ATLAB Toolbox. Use online help to  get a complete lis t of functions.

A number of related toolboxes provide advanced func tiona lity  for specialized 
data analysis applications.

Toolbox Data Analysis Application

O ptim ization Nonlinear curve fit t in g  and regression.

Signal Processing Signal processing, filte rin g , and frequency 
analysis.

Spline Curve fit t in g  and regression.

S tatistics Advanced sta tistica l analysis, nonlinear curve 
fitt in g , and regression.

System Identification Param etric / ARM A modeling.

Wavelet Wavelet analysis.

6-2



Column-Oriented Data Sets

Column-Oriented Data Sets
U niva ria te  sta tistica l data is typ ica lly  stored in ind iv idua l vectors. The vectors 
can be either 1-by-n or n-by-1. For m u ltiva ria te  data, a m a trix  is the  natural 
representation but there  are, in principle, tw o possibilities for orientation. By 
M ATLAB convention, however, the  d ifferent variables are put in to  columns, 
a llow ing observations to  vary down through the  rows. Therefore, a data set 
consisting of tw enty  four samples of th ree variables is stored in a m a trix  of size 
24-by-3.

Consider a sample data set comprising vehicle tra ff ic  count observations at 
th ree locations over a tw enty-four hour period.

Time Location 1 Location 2 Location 3

01h00 11 11 9

02h00 7 13 11

03h00 14 17 20

04h00 11 13 9

05h00 43 51 69

06h00 38 46 76

07h00 61 132 186

08h00 75 135 180

09h00 38 88 115

10h00 28 36 55

11 h00 12 12 14

12h00 18 27 30

13h00 18 19 29

14h00 17 15 18

15h00 19 36 48
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Time Location 1 Location 2 Location 3

16h00 32 47 10

17h00 42 65 92

18h00 57 66 151

19h00 44 55 90

20h00 114 145 257

2 1 h00 35 58 68

2 2 h00 11 12 15

23h00 13 9 15

24h00 10 9 7
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The raw data is stored in the  file, c o u n t.d a t.

11 11 9
7 13 11

14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90

114 145 257
35 58 68
11 12 15
13 9 15
10 9 7

Use the  load command to  im port the  data.

load count.da t 

Th is creates a m a trix  count in the  workspace.

For th is  example, there  are 24 observations of three variables. Th is is 
confirmed by

[ n ,p ]  = s i ze(count )  
n =

p =
24

3
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Create a tim e  vector, t ,  of integers from 1 to  n.

t = 1 :n;

Now plot the  counts versus tim e  and annotate the  plot.

s e t ( 0, ' d e f a u l t a x e s l i n e s t y l e o r d e r ’ , ’ - | - - | - . ’ ) 
s e t ( 0, ' d e f a u l t a x e s c o l o r o r d e r ' , [ 0  0 0] )
p l o t ( t , c o u n t ) ,  l egend ( ' Loca t i on  1 ' , ' L o c a t i o n  2 ' , ' L o c a t  i on 3 ' , 0 )  
x l a b e l ( ' T i m e ' ) ,  y l a b e l ( ' V e h i c l e  Count ' ) ,  g r i d  on

The plot shows the  vehicle counts at th ree  locations over a 24-hour period.
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Basic Data Analysis Functions
A collection of functions provides basic column-oriented data analysis 
capabilities.

Function Description

cumprod C um ula tive  product of elements.

cumsum C um ula tive  sum of elements.

cumtrapz C um ula tive  trapezoidal numerical in tegration.

di f f Difference function and approxim ate derivative.

max Largest component.

mean Average or mean value.

median Median value.

mi n Smallest component.

pr od Product of elements.

sort Sort in ascending order.

sor t rows Sort rows in ascending order.

st d Standard deviation.

sum Sum of elements.

t r  apz Trapezoidal numerical in tegration.

For vector input arguments to  these functions, it does not m atter whether the 
vectors are oriented in row or column direction. For array arguments, however, 
the  functions operate column by column on the  data in the  array. Th is means,
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for example, tha t if  you apply max to  an array, the  result is a row vector 
containing the  maximum values over each column.

Note You can add more functions to  th is  lis t using M-files, but when doing so, 
you must exercise care to  handle the  row-vector case. I f  you are w r it in g  your 
own column-oriented M-files, check other M-files; for example, nean.m and 
d i f f . m

C ontinuing w ith  the vehicle tra ff ic  count example, the  statements

mx = max( count)  
mu = msan(count) 
sigma = s td(count )

result in

mx =
114 145 257

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

To locate the index at which the  m in im um  or maximum occurs, a second output 
parameter can be specified. For example,

[ nx . i ndx ]  = min(count ) 

mx =
7 9 7

indx =
2 23 24

shows tha t the  lowest vehicle count is recorded at 02h00 for the  firs t 
observation point (column one) and at 23h00 and 24h00 for the  other 
observation points.
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You can subtract the  mean from each column of the  data using an outer product 
involving a vector of n ones.

[ n , p ]  = s i ze(count )  
e = o n e s (n ,1 ) 
x = count -  e*imui

Rearranging the data may help you evaluate a vector function over an entire  
data set. For example, to  find the smallest value in the  entire  data set, use:

mn( c oun t ( : ) )  

which produces: 

ans =
7

The syntax c o u n t ( : ) )  rearranges the  24-by-3 m a trix  in to  a 72-by-1 column 
vector.

Covar iance and Correlat ion Coeff icients
M A T LA B ’s sta tis tica l capabilities include tw o functions for the  computation of 
correlation coefficients and covariance.

Function Description

cov Variance of vector -  measure of spread or dispersion of
sample variable.

Covariance of m a trix  -  measure of strength of linear
re lationships between variables.

cor rcoef Correlation coefficient -  normalized measure of linear
re lationship strength between variables.

cov re tu rns the variance for a vector of data. The variance of the  data in the  
firs t column of count is

c o v ( c o u n t ( : , 1 )) 

ans =
643.6522
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For an array of data, cov calculates the  covariance m atrix . The variance values 
for the  array columns are arranged along the diagonal of the  covariance m atrix. 
The rem aining entries reflect the  covariance between the columns of the  
orig inal array. For an m-by-n m atrix , the  covariance m a trix  has size n-by-n. 
For example, the  covariance m a trix  for count , c ov ( c oun t ) , is arranged as.

2 2 2
s 11 s 12 s 13

2 2 2
s 21 s 22 s 23

2 2 2
s 21 s 32 s 33

2 2  
s ij _ s ji

cor rcoef  produces a m a trix  of correlation coefficients for an array of data 
where each row is an observation and each column is a variable. The 
correlation coefficient is a normalized measure of the  strength of the  linear 
re lationship between tw o variables. Uncorrelated data results in a correlation 
coefficient of 0; equivalent data sets have a correlation coefficient of 1 .

For an m-by-n m atrix , the  correlation coefficient m a trix  has size n-by-n. The 
arrangement of the  elements in the  correlation coefficient m a trix  corresponds 
to  the location of the  elements in the  covariance m a trix  described above.

For our tra ff ic  count example

cor r coe f ( count )  

results in 

ans =
1.0000 0.9331 0.9599 
0.9331 1.0000 0.9553 
0.9599 0.9553 1.0000

C learly there is a strong linear correlation between the  three tra ff ic  counts 
observed at the  three locations, as the  results are close to  1 .
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Finite Di f ferences
M ATLAB provides th ree functions for f in ite  difference calculations.

Function Description

di f f D ifference between successive elements of a vector.
Numerical partia l derivatives of a vector.

gr adient Numerical partia l derivatives a m atrix.

d e l2 Discrete Laplacian of a m atrix.

The d if  f function computes the difference between successive elements in a
num eric vector . That is, d i f f ( X )  is [ X(2) -X(1)  X (3 )-X (2 ) . . .
X (n )-X (n -1 )] . So, for a vector A,

A = [9  -2  :3 0 1 5 4];
d i f f ( A )

ans =
- 1 1 5 -3 1 4 -1

Besides computing the  firs t difference, d i f f  is useful for determ ining certain 
characteristics of vectors. For example, you can use d i f f  to determ ine if  a 
vector is monotonic (elements are always either increasing or decreasing), or if 
a vector has equally spaced elements. Th is tab le  describes a few d ifferent ways 
to  use d i f f  w ith  a vector x.

di f f ( x ) = = 0  Tests for repeated elements.

a l l ( d i f f ( x ) > 0) Tests for monotonicity.

a l l ( d i f f ( d i f f ( x ) ) = = 0) Tests for equally spaced vector elements.
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Data Pre-Processing

Missing Values
The special value, NaN, stands for Not-a-Number in M ATLAB. IEEE 
floating-point a rith m e tic  convention specifies NaN as the result of undefined 
expressions such as 0/ 0.

The correct handling of m issing data is a d ifficu lt problem and often varies in 
d ifferent situations. For data analysis purposes, it is often convenient to  use 
NaNs to  represent m issing values or data tha t are not available.

M ATLAB trea ts  NaNs in a uniform  and rigorous way; they propagate na tu ra lly  
through to  the  fina l result in any calculation. Any mathematical calculation 
involving NaNs w ill produce NaNs in the  results.

For example, consider a m a trix  containing the 3-by-3 magic square w ith  its  
center element set to  NaN.

a = magic(3);  a(2,2)  = NaN 

a =
8 1 6
3 NaN 7
4 9 2

Compute a sum for each column in the  m atrix .

sum(a)

ans =
15 NaN 15

Any mathem atical calculation involving NaNs propagates NaNs through to  the 
fina l result as appropriate.
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You should remove NaNs from the data before perform ing statistica l 
computations. Here are some ways to  remove NaNs from data.

i = f i nd (  ~i snan(x) ) ; Find indices of elements in vector tha t are
x = x ( i ) not NaNs, then keep only the  non-NaN 

elements.

x = x ( f i n d (  ~ i snan(x) ) ) Remove NaNs from vector.

x = x( ~ i snan(x) ) ; Remove NaNs from vector (faster).

x( i snan(x ) )  = [ ] ; Remove NaNs from vector.

X( any ( i snan( X) ’ ) , : )  = [ ]  ; Remove any rows of m a trix  X containing 
NaNs.

Note You must use the  special function i snan to find  NaNs because, by IEEE 
a rithm e tic  convention, the  logical comparison, NaN == NaN always produces 0. 
You cannot use x(x==NaN) = [ ]  to  remove NaNs from your data.

I f  you frequently need to  remove NaNs, w rite  a short M -file  function.

f un c t i on  X = excise(X)
X(any ( i snan( X) ’ ) , : )  = [ ] ;

Now, typ ing

X = excise(X) ;  

accomplishes the same th ing.

Removing Out l iers
You can remove outlie rs  or misplaced data points from a data set in much the 
same manner as NaNs. For the  vehicle tra ff ic  count data, the  mean and 
standard deviations of each column of the  data are

mu = mean(count); 
sigma = s t d (count ) ;
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The number of rows w ith  outlie rs greater than three standard deviations is 
obtained w ith :

[ n , p ]  = s i ze(count )
o u t l i e r s  = abs(count — mu(ones(n, 1 ) , : ) )  > 3*sigma(ones(n,  1 ) , : ) ;  
nout = sum(out l i e r s )  
nout =

1 0 0

There is one outlie r in the  firs t column. Remove th is  en tire  observation w ith

c o u n t ( a n y ( o u t l i e r s ' ) , : )  = [ ] ;
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Regression and Curve Fitting
It is often useful to  find functions tha t describe the  re lationship between some 
variables you have observed. Identification of the  coefficients of the  function 
often leads to  the  form ulation of an overdetermined system of simultaneous 
linear equations. These coefficients can be e ffic iently found using the M ATLAB 
backslash operator.

Suppose you measure a quan tity  y at several values of tim e  t.

t = [0  .3  .8 1.1 1.6 2 . 3 ] ’ ; 
y = [ 0 . 5  0.82 1.14 1.25 1.35 1 . 40 ] ’ ; 
p l o t ( t , y , ’ o’ ), g r i d  on
1.

1.

1.

1.

0.

0.

0.

0.

0.
0 0.5 1 1.5 2 2.5

Polynomia l  Regression
Based on the  plot, it is possible tha t the  data may be modeled by a polynomial 
function

y = a о + a 11 + a2t 2

The unknown coefficients a0 , a 1, and a2 , can be computed by doing a least 
squares fit, which m inim izes the  sum of the  squares of the  deviations of the  
data from the model. There are s ix equations in th ree unknowns,
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И * x2- - 1 «1 «1
У1 2
y2 1 2 «2

1 «3 «3Уз

У4 1 «4 «4
У5

1 «5 «5
y6

1 «6 «6_

represented by he 6-by-3 m a trix

X = [ o n e s ( s i z e ( t ) )  t t . A2]

a0
aX

a2

X =
.0000 0 0
.0000 0.3000 0.0900
.0000 0.8000 0.6400
.0000 1.1000 1.2100
.0000 1.6000 2.5600
.0000 2.3000 5.2900

The solution is found w ith  the backslash operator.

a = X\y

a =
0.5318 
0.9191

-  0.2387

The second order polynomial model of the  data is therefore 

y = 0.5318 + 0.919""1 i  -  0.2387""«2
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Now evaluate the  model at regularly spaced points and overlay the  original 
data in a plot.

T = ( 0 : 0 . 1 : 2 . 5 ) ’ ;
Y = [ones(s i ze(  T)) T T . A2]*a;  
p l o t ( T , Y , ' - ' , t , y , ' o ' , ) ,  g r i d  on

C learly th is  f it  does not perfectly approxim ate the  data. We could either 
increase the order of the  polynomial f it, or explore some other functional form 
to  get a better approxim ation.

L inear - in- the-Parameters Regression
Instead of a polynomial function, we could try  using a function tha t is 
linear-in-the-param eters. In th is  case, consider the  exponential function

y = a0 + a 1 e-  + a2te-

The unknown coefficients a0 , a 1, and a2 , are computed by perform ing a least 
squares fit. Construct and solve the  set of s im ultaneous equations by form ing
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the regression m atrix , X, and solving for the  coefficients using the  backslash 
operator.

X = [ o n e s ( s i z e ( t ) )  exp ( -  t )  t . * e x p ( -  t ) ] ;  
a = X\y

a =
1.3974

-  0.8988 
0.4097

The fitted  model of the  data is therefore

y = 1 .3974-0 .8988 e-  + 0.4097 te-

Now evaluate the  model at regularly spaced points and overlay the  orig inal 
data in a plot.

T = (0:0.  1 : 2 . 5 ) ' ;
Y = [ ones ( s i ze ( T ) )  exp ( -  T) T . e x p ( -  T) ] *a;  
p l o t ( T , Y , ' - ' , t , y , ' o ' ) ,  g r i d  on

Th is is a much better f it  than the  second order polynomial function.
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Mul t ip le  Regression
I f  y is a function of more than one independent variable, the  m a trix  equations 
tha t express the  re lationships among the variables can be expanded to  
accommodate the additional data.

Suppose we measure a quan tity  y for several values of parameters x 1 and x2 . 
The observations are entered as

x i = [ . 2  .5  .6 .8 1.0 1 . 1 ] ’ ; 
x2 = [ . 1  .3 .4 .9 1.1 1 . 4 ] ’ ; 
y = [ . 17  .26 .28 .23 .27 . 2 4 ] ’ ;

A m u ltiva ria te  model of the  data is

y = a0 + a 1X1 + a2X2

M u ltip le  regression solves for unknown coefficients a0 , a1, and a2 , by 
perform ing a least squares fit. Construct and solve the  set of simultaneous 
equations by form ing the  regression m atrix , X, and solving for the  coefficients 
using the  backslash operator.

X = [ ones ( s i ze ( x1 ) )  x1 x2] ;  
a = X\y

a =
0.1018
0.4844

-0 .2847

The least-squares fit model of the  data is therefore 

y = 0.1018 + 0.4844 x 1 -  0.2847 x 2

To va lida te  the  model, find the  maximum of the  absolute value of the  deviation 
of the  data from the  model.

Y = X*a;
MaxErr = max(abs(Y -  y))

MaxErr =
0.0038

This is su ffic ien tly  small to  be confident the  model reasonably fits  the  data.

6-19



6 Data Analysis and Statistics

Case Study: Curve Fitting
This section provides an overview of some of M A T LA B ’s basic data analysis 
capabilities in the  form  of a case study. The examples tha t follow work w ith  a 
collection of census data, using M ATLAB functions to  experiment w ith  f it t in g  
curves to  the  data.

The file  census.mat contains U.S. population data for the  years 1790 through 
1990. Load it in to  M ATLAB

load census

Your workspace now contains tw o new variables, cdate and pop.

• cdate is a column vector containing the  years from 1790 to  1990 in 
increments of 10 .

• pop is a column vector w ith  the  U.S. population figures tha t correspond to  the 
years in cdate.

Polynomia l  Fit
A firs t try  in f it t in g  the  census data m ight be a sim ple polynomial f it. Two 
M ATLAB functions help w ith  th is  process.

Function Description

p o l y f i t Polynomial curve fit.

polyval Evaluation of polynomial f it.

M A T LA B ’s p o l y f i t  function generates a “best f i t ” polynomial (in the  least 
squares sense) of a specified order for a given set of data. For a polynomial fit 
of the  fourth-order

p = p o l y f i t ( c d a t e , p o p , 4 )
Warning: Mat r i x  i s  c l ose t o  s i ngu l a r  or badly scaled.

Resul ts nay be inaccurate.  RCCND = 5.429790e-20
p =

1.0e+05 *

0.0000 -0.0000 0.0000 -0.0126 6.0020
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The w arn ing arises because the  p o l y f i t  function uses the cdate values as the 
basis for a m a trix  w ith  very large values (it creates a Vandermonde m a trix  in 
its  calculations -  see the  p o l y f i t  M -file  for details). The spread of the  cdate 
values results in scaling problems. One way to  deal w ith  th is  is to  normalize 
the cdate data.

Preprocessing: Normalizing the Data
Norm alization is a process of scaling the  numbers in a data set to  improve the 
accuracy of the  subsequent num eric computations. A way to  normalize cdate 
is to scale it for zero mean and un it standard deviation.

sdat e = ( cdate  -  mean(cdat e ) ) . / s t d ( c d a t e )

Now t r y  the fourth-order polynomial model using the  normalized data.

p = p o l y f i t ( s d a t e , p o p , 4 )

P =
0.7047 0.9210 23.4706 73.8598 62.2285

Evaluate the fitted  polynomial at the  normalized year values, and plot the  fit 
against the  observed data points.

pop4 = po l yva l ( p , sda t e ) ;
plot  ( c d a t e , p o p 4 , ' - ' , c d a t e ,  p o p , ' + ' ) ,  g r i d  on
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Another way to  norm alize data is to  use some knowledge of the  solution and 
units. For example, w ith  th is  data set, choosing 1790 to  be year zero would also 
have produced satisfactory results.

Ana lyz ing  Residuals
A measure of the  “goodness” of f it  is the  residual, the  difference between the 
observed and predicted data. Compare the residuals for the  various fits, using 
normalized cdate values.
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Fit Residuals

pi = p o l y f i t  (sdate,pop,  1 ); 
popi = p o l y v a l ( p 1 , sdate) ;  
p l o t ( c d a t e , p o p 1 , ' - ' , c d a t e , p o p , ' + '

r es l  = pop -  popi; 
f i gu r e ,  p l o t ( c d a t e , r e s i , ' + '
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pop2 = po l yva l (p , sda te) ;
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Fit Residuals

p = p o l y f i t ( s d a t e , p o p , 4 ) ;  
pop4 = po l yva l ( p , sda t e ) ;  
p l o t ( cda t e , pop4 , '  - ' , c d a t e , p o p , ' + '

res4 = pop -  pop4; 
f i gu r e ,  p l o t ( c d a t e , r e s 4 , ' + '

+

+

+ * ' ■ * : -  - A\
+

............
Fesidials
terned.

+

still appear
\
strorcjyp3t-

t

I t ’s evident from studying the  fit plots and residuals tha t it should be possible 
to  do better than a sim ple polynomial f it  w ith  th is  data set.
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Exponent ia l  Fit
By looking at the  population data plots on the  previous pages, the  population 
data curve is somewhat exponential in appearance. To take advantage of th is, 
le t’s try  to  f it  the  logarithm  of the  population values, again w ork ing w ith  
normalized year values.

l ogpl  = p o l y f i t  ( s d a t e , l o g 10( p o p ) , 1 ); 
l ogpred l  = 10. Ap o l y v a l ( l o g p 1 , sdate) ;  
semi logy(cdate,  l ogpr ed 1 , ' - ' , c d a t e , p o p ,  
g r i d  on
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Now t ry t he logarithm  analysis w ith  a second-order model.

l ogp2 = p o l y f i t ( s d a t e , l o g 10(pop) , 2 ); 
l ogpred2 = 10. Ap o l y v a l ( l o g p 2 , sdate) ;  
seml ogy(  cda t e , l ogpr ed2 , ' - ' , c d a t  e , p o p , ' + ' ) ;  g r i d  on

This is a more accurate model. The upper end of the  plot appears to  taper off, 
w h ile  the  polynomial f its  in the  previous section continue, concave up, to 
in fin ity .
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Compare the  residuals for the  second-order logarithm ic  model.

Residuals in Log Population Scale Residuals in Population Scale

l og r es 2 = l o g 10(pop) -  
p o l y v a l ( l o g p 2 , sdate) ;  
p l o t ( c d a t e , l  ogres2 , ' + '

r = pop -  10. A( p o l y v a l ( l o g p 2 , sdate)  
p l o t ( c d a t e , r , ' + ' )

1750 1800 1850 1900 1950 2000
1800 1850 1950 2000

The residuals are more random than for the  sim ple polynomial f it. As m ight be 
expected, the  residuals tend to  get larger in m agnitude as the  population 
increases. But overall, the  logarithm ic  model provides a more accurate f it to  the 
population data.
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Error Bounds
Error bounds are useful for determ ining if  your data is reasonably modeled by 
the  fit. An optional second output parameter can be obtained from po l y f i  t and 
passed as an input parameter to  polyval  in order to  obtain the  error bounds.

For example, the  code below uses p o l y f i t  and polyval  to produce error bounds 
for a second-order polynomial model. Year values are normalized. This code 
uses an interval of +2Д, corresponding to  a 95% confidence in terva l.

[p2,S2]  = p o l y f i t ( s d a t e , p o p , 2 ) ;
[pop2,del  2] = polyval  ( p2, sdate,S2) ;
p l o t ( cda t  e , p o p , ' + ' , c d a t e , p o p 2 , ' g - ' , c d a t e , p o p 2 +2* d e l2 , ' r : ' , . .  

cdate, pop2- 2*d e l2 , ' r : ' ) ,  g r i d  on
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Difference Equations and Filtering
M ATLAB has functions for w ork ing w ith  difference equations and filte rs . 
These functions operate p rim a rily  on vectors.

Vectors are used to  hold sampled-data signals, or sequences, for signal 
processing and data analysis. For m u lti- inpu t systems, each row of a m a trix  
corresponds to  a sample point w ith  each input appearing as columns of the  
m atrix.

The function

y = f i l t e r ( b ,  a, x)

processes the data in vector x w ith  the  filte r  described by vectors a and b, 
creating filte red  data y.

The f i l t e r  command can be thought of as an efficient im plem entation of the  
difference equation. The filte r  s truc tu re  is the  general tapped delay-line f ilte r 
described by the  difference equation below, where n is the  index of the  current 
sample, na is the  order of the  polynomial described by vector a and nb is the 
order of the  polynomial described by vector b. The output y(n), is a linear 
combination of current and previous inputs, x(n) x(n-1 ) ..., and previous 
outputs, y(n-1 ) y(n-2) ...

a( 1 )y ( n ) = b( 1 )x ( n ) + b (2 )x(n -  1 ) + ... + b(nb)x(n  -  nb + 1 )

-  a (2 )y ( n -  1 ) -  ... -  a (n a )y ( n -  na + 1 )

Suppose, for example, we want to  smooth our tra ff ic  count data w ith  a moving 
average filte r  to  see the  average tra ff ic  flow over a 4-hour w indow. This process 
is represented by the  difference equation

y ( n ) = J  x  ( n ) + 4 x  ( n -  1 ) + 1  x  ( n -  2 ) + 4 x  (n -  3)

The corresponding vectors are

a = 1 ;
b = [ 1 / 4  1/4 1/4 1/4] ;
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Executing the  command 

load count .dat  

creates the m a trix  count in the workspace.

For th is  example, extract the  firs t column of tra ff ic  counts and assign it to  the 
vector x,

x = count

The four hour moving-average of the  data is e ffic iently calculated w ith

y = f i l t e r ( b , a , x ) ;

Compare the  original data and the  smoothed data w ith  an overlaid plot of the  
tw o curves.

t = 1 : l en g t h ( x ) ;
p l o t ( t , x , ' - . ' , t , y , ' - ' ) ,  g r i d  on 
l egend ( ' Cr i g i na l  Data ' , 'Snoothed Data ' , 2)

The filte red data represented by the  solid line  is the  4-hour moving average of 
the  observed tra ff ic  count data represented by the dashed line.

For practical f ilte r in g  applications, the  Signal Processing Toolbox includes 
numerous functions for designing and analyzing filte rs .
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Fourier Analysis and the Fast Fourier Transform (FFT)
Fourier analysis is extremely useful for data analysis, as it breaks down a 
signal in to  constituent sinusoids of d ifferent frequencies. For sampled vector 
data, Fourier analysis is performed using the discrete Fourier transform  
(DFT).

The fast Fourier transform  (FFT) is an efficient a lgorithm  for computing the 
DFT of a sequence; it is not a separate transform . It is pa rticu la rly  useful in 
areas such as signal and image processing, where its  uses range from filte ring , 
convolution, and frequency analysis to  power spectrum estimation.

M ATLAB provides a collection of functions for computing and w orking w ith  
Fourier transform s.

Function Description

f f t D iscrete Fourier transform .

f f t 2 Two-dimensional discrete Fourier transform .

f f t n N-dimensional discrete Fourier transform .

i f f t Inverse discrete Fourier transform .

i f f t 2 Two-dimensional inverse discrete Fourier transform .

i f f t n N-dimensional inverse discrete Fourier transform .

abs Magnitude.

angle Phase angle.

unwrap Unwrap phase angle in radians.

f f t s h i f t Move zeroth lag to  center of spectrum.

cp l xpa i r Sort numbers in to  complex conjugate pairs.

nextpow2 Next higher power of two.
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For length N input sequence x, the  DFT is a length N vector, X. f f t  and i f f t  
implement the  re lationships

N .. . j n  -1

X ( k )= £  x ( n )e
j 2p( k -  1)( — ) 1 < k < N

n = 1
N ,, . j n  - 11 j2p(k -  1)(-i-:i - )  1 < n < N

x  (n ) = N  £  X ( k ) eN
k = 1

Note As the  firs t element of a M ATLAB vector has an index 1, the 
sum m ations in the equations above are from 1 to  N. These produce identical 
results as trad itiona l Fourier equations w ith  sum m ations from 0 to  N -1.

I f  x(n) is real, we can rew rite  the  above equation in term s of a summation of 
sine and cosine functions w ith  real coefficients

N

x ( n ) = N  £  a ( k ) cos(2 p(k  -  N  ( "  ~ 1 })  + b( k ) sin (2p(k  - ( -1 "  1 -) 
k = 1

where a (k ) = real (X ( k )), b( k ) = - im ag(X ( k )), 1 < n < N

The FFT of a column vector x

x = [4  3 7 -9  1 0 0 0 ] ’ ; 

is found w ith  

y = f f t ( x )
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which results in

У =
6.0000
11.4853 -2. 7574i 
- 2.0000 - 1 2 . 0000i 
-5 .4853 +11.2426i 
18.0000
-5 .4853 -11.2426i 
- 2.0000 +1 2 . 0000i
11.4853 + 2.7574i

Notice tha t although the  sequence x is real, y is complex. The firs t component 
of the  transform ed data is the  constant contribution and the  fifth  element 
corresponds to  the  Nyquist frequency. The last th ree values of y correspond to 
negative frequencies and, for the  real sequence x, they are complex conjugates 
of th ree components in the firs t ha lf of y.

Suppose, we want to  analyze the  varia tions in sunspot ac tiv ity  over the  last 300 
years. You are probably aware tha t sunspot ac tiv ity  is cyclical, reaching a 
maximum about every 11 years. Le t’s confirm  tha t.

Astronomers have tabulated a quan tity  called the  Wolfer number for almost 
300 years. Th is quan tity  measures both number and size of sunspots.
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Load and plot the  sunspot data

load sunspot .dat  
year = s u n s p o t ( : , 1 ); 
wol f er  = s u n s p o t ( : , 2 ) ; 
p l o t ( year  , wo l f e r )  
t i t l e ( ’ Sunspot Data’ )

Sunspot Data

Now take the  FFT of the  sunspot data 

Y = f f t ( w o l f e r ) ;

The result of th is  transform  is the  complex vector, Y. The m agnitude of Y 
squared is called the  power and a plot of power versus frequency is a 
“periodogram.” Remove the  firs t component of Y, which is sim ply the  sum of the  
data, and plot the  results.
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N = l ength(Y) ;
Y(1) = [ ] ;
power = a b s ( Y ( 1 : N / 2 ) ) . A2; 
nyquist  = 1 / 2 ;
f r eq  = ( 1 :N/ 2 ) / ( N / 2 ) * nyqu i  st ;  
p l o t ( f r e q , p o w s r ) ,  g r i d  on 
x l a b e l ( ’ cyc les/  year ’ ) 
t i t l e ( ’ Per iodogrami )

2

1.8

1.6

1.4

1.2

1

0.8 

0.6 

0.4 

0.2 

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

cycles/year

Periodogramx 10
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The scale in cycles/year is somewhat inconvenient. Le t’s plot in years/cycle and 
estim ate what one cycle is. For convenience, plot the  power versus period 
(where per i od = l . / f r e q )  from 0 to  40 years/cycle.

per i od = 1 . / f r e q ;
p l o t ( pe r i od , power ) ,  a x i s ( [ 0  40 0 2e7] ) ,  g r i d  on
y l a b e l ( ’ Power’ )
x l a b e l ( ’ Per i od(Years /Cyc l e ) ’ )

2

1.8

1.6

1.4

1.2

0.8 

0.6 

0.4 

0.2 

0
0 5 10 15 20 25 30 35 40

Period(Years/Cycle)

In order to  determ ine the  cycle more precisely,

[mp index]  = max(power); 
per i od( i ndex)

x 107

ans =
11. 0769
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Magn i tude  and Phase of Transformed Data
Im portant in form ation about a transformed sequence includes its  magnitude 
and phase. The M ATLAB functions abs and angl e calculate th is  inform ation.

To try  th is , create a tim e  vector t , and use th is  vector to  create a sequence x 
consisting of tw o  sinusoids at d ifferent frequencies.

t = 0:1/99:1;
x = s i n ( 2 * p i * 1 5 * t )  + s i n ( 2 * p i * 4 0 * t ) ;

Now use the f f t  function to  compute the DFT of the  sequence. The code below 
calculates the m agnitude and phase of the  transform ed sequence. It uses the 
abs function to  obtain the  m agnitude of the  data, the  angle function to  obtain 
the phase inform ation, and unwrap to  remove phase jum ps greater than pi to 
the ir 2*pi complement.

У = f f t ( x ) ;  
m = abs(y) ;  
p = unwrap(angl e ( y ) ) ;

Now create a frequency vector for the  x-axis and plot the  m agnitude and phase.

f = ( 0 : l e n g t h ( y ) —1) , *99 / l eng t h ( y ) ;  
s u b p l o t ( 2 , 1 , 1 ), p l o t ( f , i r ) ,  
y l abe l ( ' Abs .  Magni tude' ) ,  g r i d  on 
s u b p l o t ( 2 , 1 , 2 ), p l o t ( f , p * 1 8 0 / p i )  
y l abe l ( ' Phase  [Degr ees ] ' ) ,  g r i d  on 
x l abe l ( ' F requency  [ H e r t z ] ' )
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The m agnitude plot is perfectly symmetrical about the  Nyquist frequency of 50 
Hertz. The useful in form ation in the  signal is found in the  range 0 to  50 Hertz.

FFT Length Versus Speed
You can add a second argument to  f f t  to  specify a number of points n for the  
transform :

У = f f t ( x , n )

W ith  th i s  syntax, f f t  pads x w ith  zeros if  it is shorter than n, or truncates it if  
it is longer than n. I f  you do not specify n, f f t  defaults to  the  length of the  input 
sequence.

The execution tim e  for f f t  depends on the  length of the  transform .

• For any n tha t is a power of two, f f t  uses the  high-speed radix-2 algorithm . 
This results in the  fastest execution tim e. A dd itiona lly , the  a lgorithm  for 
power of tw o n is h igh ly optim ized for real x, providing a 40% increase in 
speed over the  complex case.

• For any composite number n tha t is not a power of two, f f t  uses a prim e 
factor a lgorithm . The speed of th is  a lgorithm  depends on both the  size of n 
and the  number of prim e factors it has. A lthough 1013 and 1000 are close in

20 30 70 80 90 100
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magnitude, f f t  transform s a sequence of length 1000 much more quickly 
than a sequence of length 1013.

• For a prim e number n, f f t  cannot use an FFT algorithm . It instead performs 
the  slower, com putation-intensive DFT directly.

The inverse FFT function i f f t  also accepts a transform  length argument.

For practical application of the  FFT, the  Signal Processing Toolbox includes 
numerous functions for spectral analysis.
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Function Functions

Th is chapter describes function functions, M ATLAB functions tha t w ork w ith  
mathem atical functions instead of num eric arrays. These function functions 
include:

• P lotting
• O ptim ization and zero find ing
• Numerical in tegration (quadrature)

The function functions are located in the  M ATLAB funfun directory.

This tab le  provides a brief description of the  functions discussed in th is  
chapter. Related functions are grouped by category.

Category Function Description

P lotting f p l o t Plot function.

O ptim ization 
and zero find ing

fmnbnd M in im ize  function of one variab le w ith  
bound constraints.

fmnsea r  ch M in im ize  function of several variables.

f ze r o Find zero of function of one variable.

Numerical
integration

quad Num erica lly evaluate integral, low 
order method.

quad8 N um erica lly evaluate integral, higher 
order method.

dblquad Num erica lly evaluate double integral.

Note For deta ils on another set of function functions, ord inary d iffe rentia l 
equation solvers, see Chapter 8.

7-2



Representing Functions in MATLAB

Representing Functions in MATLAB
M ATLAB represents mathematical functions by expressing them in M-files. 
For example, consider the function:

1 1  
f  (x ) = ------------ 2----------+ --------------2------------- 6

(x  -  0.3)2 + 0.01 (x  -  0.9)2 + 0.04

This function can be used as input to  any of the  function functions. You can find 
it in the  M -file  named huirps.m

f un c t i o n  y = humps(x)
y = 1 . / ( ( x  -  0. 3 ) . л2 + 0.01) + 1 . / ( ( x  -  0 . 9 ) . л2 + 0.04) -  6;

A second way to  represent a mathematical function at the  command line  is by 
creating an in lin e  object from a s tring  expression. For example, you can create 
an in line  object of the  humps function:

f = i n l i n e ( ‘ 1 . / ( ( x - 0 . 3 ) ^ 2  + 0.01) + 1 . / ( ( х - 0 . 9 ) . л 2  + 0 . 0 4 ) - 6 ' ) ;  

You can then evaluate f at 2.0:

f ( 2 . 0) 
ans =

-4 .8552

You can also create functions of more than one argument w ith  i n l i n e  by 
specifying the  names of the  input argum ents along w ith  the  s tring  expression. 
For example, the  fo llow ing function has tw o input argum ents x and y:

f = i n l i n e ( ' y * s i n ( x ) + x * c o s ( y ) ' , ' x ' , ' y ' )  
f ( p i  , 2* p i )  
ans =

3.1416

A ll of the  functions described in th is  chapter are called function functions 
because they accept, as one of th e ir arguments, e ither the  name of an M -file  
like  humps or an in lin e  object tha t defines a mathematical function.
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Plotting Mathematical Functions
The f plot  function plots a mathematical function between a given set of axes 
lim its . You can control the  x-axis lim its  only, or both the  x- and у-axis lim its . 
For example, to  plot the  humps function over the  x-axis range [ - 5  5 ], use

f p l o t ( ' h u m p s ' , [ - 5  5])  
g r i d  on
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You can zoom in on the  function by selecting у-axis lim its  of - 1 0  and 25, using

f p l o t ( ' h u m p s ' , [  - 5  5 -10 25] )  
g r i d  on

You can also pass an expression for f p l o t  to graph, as in 

f p l o t ( ' 2 * s i n ( x + 3 ) ' , [ - 1  1])

You can plot more than one function on the  same graph w ith  one call to  f p l o t . 
I f  you use th is  w ith  a M -file  function, then the M -file  must take a column vector 
x and return a m a trix  where each column corresponds to  each function, 
evaluated at each value of x.

I f  you pass an expression of several functions to  f p l o t , it also must re turn  a 
m a trix  where each column corresponds to  each function evaluated at each 
value of x, as in

f p l o t ( ' [ 2 * s i n ( x + 3 ) ,  h u mp s ( x ) ] ' , [ - 1  1])
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which plots the  firs t and second expressions on the  same graph.

Note tha t the  expression

[2 *s i n ( x+3 ) ,  humps(x)]

evaluates to  a m a trix  of tw o columns, one for each function, when x is a column 
vector.
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Minimizing Functions and Finding Zeros
M ATLAB provides a number of high-level function functions tha t perform 
optim ization-re la ted tasks. Th is section describes:

• M in im iz ing  a function of one variab le
• M in im iz ing  a function of several variables
• Setting m in im ization  options
• F inding a zero of a function of one variab le

For more sophisticated optim ization capabilities, see the  O ptim ization 
Toolbox.

Min imiz ing  Funct ions of One Var iab le
Given a mathematical function of a single variab le coded in an M -file , you can 
use the  fmnbnd  function to  find a local m in im izer of the  function in a given 
in terva l. For example, to  find a m in im um  of the  humps function in the range 
(0.3, 1), use

x = fminbnd( ’ humps’ , 0 . 3 , 1 )  

which re turns 

x =

0.6370

You can ask for a tabu la r display of output by passing a fourth  argument 
created by the  opt i  inset command to  fminbnd

x = f m n b n d ( ’ humps’ , 0 . 3 , 1 ,  op t i ms e t ( ’ Di sp l ay ’ , ’ i t e r ’ ))

7-7



Function Functions

which gives the  output

Func-count x f ( x ) Pr ocedure
1 0.567376 12.9098 i n i t i a l
2 0.732624 13.7746 golden
3 0.465248 25.1714 golden
4 0.644416 11.2693 pa r abo l i c
5 0.6413 11.2583 pa r abo l i c
6 0.637618 11.2529 pa r abo l i c
7 0.636985 11.2528 pa r abo l i c
8 0.637019 11.2528 pa r abo l i c
9 0.637052 11.2528 pa r abo l i c

x =
0.6370

This shows the  current value of x and the  function value at f ( x )  each tim e  a 
function evaluation occurs. For f minbnd, one function evaluation corresponds 
to  one ite ra tion  of the  a lgorithm . The last column shows what procedure is 
being used at each iteration, e ither a golden section search or a parabolic 
in terpolation.

Min imiz ing  Funct ions of Several  Var iab les
The fminsearch function is s im ila r to  fminbnd except tha t it handles functions 
of many variables, and you specify a s ta rting  vector x0 rather than a s ta rting  
in terva l. f minsearch attem pts to  re turn a vector x  tha t is a local m in im izer of 
the  mathematical function near th is  s ta rting  vector.

To try  fminsearch,  create an M -file  t h r ee_va r . m tha t defines a function of 
th ree variables, x, y, and z:

f u n c t i on  b = t h ree_var ( v )  
x = v ( 1 );
У = v(2) ;  
z = v(3) ;
b = x . A2 + 2 . 5 * s i n ( y )  -  zA2*xA2*yA2;
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Now find a m in im um  for th is  function using x = - 0. 6 , y = - 1 . 2 , and 
z = 0.135 as the s ta rting  values:

v = [ - 0 . 6  - 1 . 2  0.135] ;
a = f m n s e a r c h ( ' t h r e e _ v a r ' , v )

a =
0.0000 -1 .5708 0.1803

Setting Min imiza t ion  Opt ions
You can specify a vector of control options tha t sets some m in im ization 
parameters by calling fminbnd w ith  the syntax

x = f m n b n d ( f u n , x 1 , x 2 , op t i ons )  

or fminsearch w ith  the  syntax

x = f m i ns ea r ch ( f un , x 0, op t i ons )

opt i ons is a s tructu re  used by specialized O ptim ization Toolbox functions. To 
set values as needed, use

opt i ons = o p t i i m s e t ( ' D i s p l a y ' , ' i t e r ' ) ;  

to generate output at each ite ration.

fminbnd and fminsearch use only four of the  opt i ons  parameters:

• opt i  ons.Di sp l ay  is a flag tha t determ ines i f  in term ediate steps in the 
m in im ization appear on the  screen. I f  set to  ’ i t e r ’ , in term ediate steps are 
displayed; if  set to  ’ o f f ’ , no interm ediate solutions are displayed, if  set to  
f i n a l ,  displays just the  fina l output.

• opt i  ons .To l X i s  the te rm ina tion  tolerance for x. Its  default value is 1 .e -4 .
• opt i ons .TolFun is the  term ination  tolerance for the  function value. The 

default value is 1 .e -4 . Th is parameter is used by fminsearch but not 
fminbnd.

• opt i  ons.MaxFunEvals is the  m aximum number of function evaluations 
allowed. The default value is 500 for f mnbnd and 200* l e n g t h ( x 0) for 
fminsearch.
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The number of function evaluations, the  number of iterations, and the 
a lgorithm  are returned in the  s tructu re  output when you provide fminbnd or 
fminsearch w ith  a fourth  output argument, as in

[ x , f v a l , e x i t f l a g , o u t p u t ]  = f m n b n d ( ’ humps’ , 0 . 3 ,1) ;

or

[ x , f v a l , e x i t f l a g , o u t p u t ]  = f mi nsear ch( ’ t h r ee_ v a r ’ , v) ;

Finding Zeros of Funct ions
The f ze r o  function attem pts to  find a zero of one equation w ith  one variable. 
Th is function can be called w ith  e ither a one-element s ta rting  point or a 
two-element vector tha t designates a s ta rting  in terva l. I f  you give f ze r o  a 
s ta rting  point xq, f ze r o  firs t searches for an in terva l around th is  point where 
the  function changes sign. I f  the  in terva l is found, then f ze r o  re tu rns a value 
near where the  function changes sign. I f  no such in terva l is found, f zero  
re tu rns NaN. A lte rna tive ly , i f  you know tw o points where the  function value 
d iffers in sign, you can specify th is  s ta rting  interval using a two-element 
vector; f zer  o is guaranteed to  narrow down the  in terva l and return a value 
near a sign change.

Use f ze r o  to find a zero of the  humps function near - 0.2 

a = f z e r o ( ' h u m p s ' , - 0. 2 )

a =

-0 .1316

For th is  s ta rting  point, f ze r o  searches in the  neighborhood of -0 .2  un til it finds 
a change of sign between -0.10949 and -0.264. Th is interval is then narrowed 
down to  -0.1316. You can verify  tha t -0.1316 has a function value very close to 
zero using

humps(a)

ans =
8.8818e -16

7-10



Minimizing Functions and Finding Zeros

Suppose you know tw o places where the  function value of humps d iffe rs in sign 
such as x = 1 and x = - 1 . You can use

humps(1 ) 

ans =

16

humps(-1 ) 

ans =

-5 .1378

Then you can give f ze r o  th is  in terval to  s tart w ith  and f ze r o  then re tu rns a 
point near where the  function changes sign. You can display inform ation as 
f ze r o  progresses w ith

opt i ons = o p t i i m s e t ( ' D i s p l a y ' , ' i t e r ' ) ;  
a = f zero( ' humps ' , [ - 1  1 ] , o p t i o n s )

nc-count x f ( x ) Procedure
1 - 1 -5.13779 n i t i a l
1 1 16 n i t i a l
2 - 0. 513876 -4.02235 nterpolat on
3 0. 243062 71.6382 bisect  ion
4 - 0. 473635 -3.83767 nterpolat on
5 - 0. 115287 0.414441 bisect  ion
6 - 0. 150214 -0.423446 nterpolat on
7 - 0. 132562 -0.0226907 nterpolat on
8 - 0. 131666 -0.0011492 nterpolat on
9 - 0. 131618 1. 88371e-07 nterpolat on

10 - 0. 131618 -2.7935e-11 nterpolat on
11 - 0. 131618 8. 88178e-16 nterpolat on
12 - 0. 131618 -9. 76996e-15 nterpolat on

a =

-0.1316
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The steps of the  a lgorithm  include both bisection and interpolation under the 
Procedure column. I f  the  example had started w ith  a scalar s ta rting  point 
instead of an in terva l, the  firs t steps after the  in itia l function evaluations 
would have included some search steps w h ile  f ze r o  searched for an interval 
containing a sign change.

You can specify a re la tive  error tolerance using op t i mse t . In the call above, 
passing in the  empty m a trix  causes the  default re la tive  error tolerance of eps 
to  be used.

Tips
Optim ization problems may take many ite ra tions to  converge. Most 
optim ization problems benefit from good s ta rting  guesses. Providing good 
s ta rting  guesses improves the  execution efficiency and may help locate the 
global m in im um  instead of a local m in im um .

Sophisticated problems are best solved by an evolutionary approach whereby a 
problem w ith  a sm aller number of independent variables is solved firs t. 
Solutions from lower order problems can generally be used as s ta rting  points 
for higher order problems by using an appropria te mapping.

The use of sim pler cost functions and less stringent te rm ina tion  c rite ria  in the 
early stages of an optim ization problem can also reduce computation time. 
Such an approach often produces superior results by avoiding local m inim a.
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Troubleshoot ing
Below is a lis t of typ ical problems and recommendations for dealing w ith  them.

Problem Recommendation

The solution found by fminbnd 
or fminsearch does not appear 
to  be a global m inim um .

Sometimes an optim ization 
problem has values of x for 
which it is impossible to  
evaluate f .

The m in im ization routine 
appears to  enter an in fin ite  loop 
or re tu rns a solution tha t is not 
a m in im um  (or not a zero in the 
case of f zero) .

There is no guarantee tha t you have a global m in im um  unless 
your problem is continuous and has only one m inim um . 
S ta rting  the optim ization from a number of d ifferent s ta rting  
points (or in te rva ls  in the  case of fm inbnd) may help to  locate 
the  global m in im um  or verify  tha t there is only one m inim um . 
Use d ifferent methods, where possible, to  verify  results.

M odify your function to  include a penalty function to  give a 
large positive value to  f when in feas ib ility  is encountered.

Your objective function may be re tu rn ing  I n f , NaN, or complex 
values. The optim ization routines expect only real numbers to 
be returned. Any other values may cause unexpected results. 
Insert code in to  your objective function M -file  to  verify  tha t 
only real numbers are returned (use the  functions i s rea l  and 
i s f i n i t e ) .
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Numerical Integration (Quadrature)
The area beneath a section of a function F(x) can be determ ined by num erically 
in tegra ting  F(x), a process referred to  as quadrature. The tw o M ATLAB 
functions for one-dimensional quadratu re  are:

• quad -  Use Adaptive Simpson’s ru le
• quad8 -  Use Adaptive Newton Cotes 8 panel ru le

To in tegrate the  function defined by humps.m from 0 to  1 , use

q = quad( ’ humps’ , 0, 1 ) 

q =
29.8583

Both quad and quad8 operate recursively. If e ither method reaches the 
m aximum  number of 10 recursive calls, the  method re tu rns a value of In f 
ind icating possible s ingu la rity .

You can include a fourth  argument for quad or quad8 tha t specifies a re la tive 
error tolerance for the  integration. I f  th is  fourth  argument is a two-element 
vector, its  firs t element specifies a re la tive  tolerance and its  second an absolute 
tolerance. I f  a nonzero fifth  argument is passed to  quad or quad8, the  function 
evaluations are traced w ith  a point plot of the  integrand.

Example:  Comput ing the Length of a Curve
You can use quad or quad8 to  compute the length of a curve. Consider the  curve 
parameterized by the  equations

x  (t ) = sin (2 1), y ( t ) = cos ( t ), z (t ) = t

where t e [ 0, 3 л ] .

A three-dimensional plot of th is  curve is

t = 0 : 0 . 1 : 3 * p i ;  
p l o t 3 ( s i n ( 2 * t ) , c o s ( t ) , t )

The arc length form ula says the  length of the  curve is the  integral of the  norm 
of the  derivatives of the  parameterized equations
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3л

J V4cos(2 1)2 + s in (t )2 + 1 dt

0

The function hcurve computes the  integrand

f u n c t i on  f = hcurve( t )
f = sqr t (4*cos(  2 * t ) . A2 + s i n ( t ) . A2 + 1);

I ntegrate th is  function w ith  a call to  quad

len  = quad( ’ hcurve’ , 0 ,3*p i  ) 
l en =

1.7222e+01

The length of th is  curve is about 17.2.

Example:  Double Integrat ion
Consider the  numerical solution of

y m a x  x m a x

J J f (x, y ) dxdy

ymin xmin

For th is  example f (x, y ) = y sin (x) + xcos(y ) . The firs t step is to  build the  
function to  be evaluated. The function must be capable of re tu rn ing  a vector 
output when given a vector input. You must also consider which variab le is in 
the  inner in tegral, and which goes in the outer in tegral. In th is  example, the  
inner variab le is x  and the outer variab le is y (the order in the integral is dxdy). 
In th is  case, the  integrand function is

f u n c t i on  out = i n t egrnd(x ,  y) 
out = y * s i n ( x )  + x*cos(y) ;

To perform the  integration, tw o functions are available in the  funfun directory. 
The firs t, dblquad, is called d irectly  from the  command line. This M -file  
evaluates the outer loop using quad. A t each ite ra tion , quad calls the  second 
helper function tha t evaluates the  inner loop.

To evaluate the double integral, use

resu l t  = db lquad( ’ i n t eg r nd ’ ,xmn,ximax,  ymin,yimBx);
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The firs t argument is a s tring  w ith  the  name of the  integrand function; the 
second to  fifth  arguments are

xmin lower lim it of inner integral

xmax upper lim it of the  inner integral

ymin lower lim it of outer integral

ymax upper lim it of the  outer integral

Here is a num eric example tha t illus tra tes  the  use of dblquad.

xmin = pi ; 
xmax = 2* p i; 
ymin = 0; 
ymax = pi ;
r esu l t  = db lquad( ’ i n t eg r nd ’ , xmn, xmax , ymn,  ymax)

The result is -9.8698.

By default, dblquad calls quad. To in tegrate the  previous example using quad8 
(w ith the default values for the  tolerance and trace arguments), use

resu l t  = db lquad( ’ i n t eg r nd ’ , xmn, xmax , ymn,  y m a x , [ ] , ’ quad8’ );

A lte rna tive ly , any user-defined quadratu re  function name can be passed to 
dblquad as long as the  quadrature function has the  same calling and return 
argum ents as quad.
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8 Ordinary Differential Equations

This chapter describes how to  use M ATLAB to  solve in itia l value problems of 
ord inary d iffe rentia l equations (ODEs) and d iffe rentia l a lgebraic equations 
(DAEs). It discusses how to  represent in itia l value problems (IVPs) in 
M ATLAB and how to  apply M A T LA B ’s ODE solvers to  such problems. It 
explains how to  select a solver, and how to  specify solver options for efficient, 
customized execution. Th is chapter also includes a troubleshooting guide in the 
Questions and Answers section and extensive examples in the  Examples: 
Apply ing the ODE Solver section.

Category Function Description

O rd inary d iffe rentia l 
equation solvers

ode45 N onstiff d iffe rentia l equations, medium order 
method.

ode23 N onstiff d iffe rentia l equations, low order method.

ode113 N onstiff d iffe rentia l equations, variab le  order 
method.

ode15s S tiff d iffe rentia l equations and DAEs, variable 
order method.

ode23s S tiff d iffe rentia l equations, low order method.

ode23t Moderately s tiff d iffe rentia l equations and DAEs, 
trapezoidal rule.

ode23tb S tiff d iffe rentia l equations, low order method.

ODE option handling odeset Create/alter ODE OPTIONS structure.

odeget Get ODE OPTIONS parameters.

ODE output functions odeplot Tim e series plots.

odephas2 Two-dimensional phase plane plots.

odephas3 Three-dimensional phase plane plots.

odepr int P rin t to  command window.
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Quick Start

Quick Start
1 W rite  the  ord inary d iffe rentia l equation y(n)= f  (t, y, y ...., y(n -1 ) ) as a 

system of firs t-order equations by m aking the substitu tions

, (n - 1 )
y 1 = y, y2 = y , . ., Уп = y

Then

у 1 = У2 

у2 = Уз

уп = f  (t, У1 , У2, ..., Уп )

is a system of n first-order ODEs. For example, consider the in itia l value 
problem

y ' "  -  3y "  -  y 'y = о y (0) = 0 y ' ( 0) = 1 y " ( 0) = - 1

Solve the  d iffe rentia l equation for its  highest derivative, w r it in g  y ’ ’ ’ in 
te rm s of t and its  lower derivatives y ’ ’ ’ = 3 y '' + y ’y . I f  you let y 1 = y, y2 = y 1, 
and y3 = y , then

y 1 = y2 

y2 = y3 

Уз = 3 Уз + У2У1

is a system of th ree firs t-order ODEs w ith  in itia l conditions
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У1 (0) = 0

У2(0) = 1 

Уз(0) = -1

Note tha t the  IVP now has the  form Y' = F (t, Y ), Y (0) = Y 0 , where 
Y  = [ У1 ; У2 ; Уз] .

2 Code the first-order system in an M -file  tha t accepts tw o arguments, t and 
y, and re tu rns a column vector:

f un c t i on  dy = F ( t , y )
dy = [ y ( 2 ) ;  y(3) ;  3 * y ( 3 ) + y ( 2 ) * y ( 1 ) ] ;

Th is ODE file  must accept the  argum ents t and y, although it does not have 
to  use them. Here, the  vector dy must be a column vector.

3 Apply a solver function to  the  problem. The general calling syntax for the  
ODE solvers is

[T,Y]  = s o l v e r ( ’ F’ , t  span,y0)

where solver  is a solver function like  ode45. The input arguments are:

F S tring  containing the  ODE file  name

tspan Vector of tim e  values where [to  t f i n a l ]  causes the  solver
to  in tegrate from to  to  t f i n a l

y 0 Column vector of in it ia l conditions at the  in itia l tim e  to

For example, to  use the  ode45 solver to  find a solution of the  sample IVP on 
the  tim e  in terva l [0 1 ] ,  the  calling sequence is

[T,Y]  = o d e 4 5 ( ' F ' , [ 0  1 ] , [ 0 ;  1; - 1 ] )

Each row in solution array Y corresponds to  a tim e  returned in column vector 
T. Also, in the  case of the  sample IVP, Y ( : , 1 )  is the solution, Y ( : , 2 )  is the 
deriva tive  of the  solution, and Y( : , 3 )  is the second deriva tive  of the  
solution.
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Representing Problems
This section describes how to  represent ord inary d iffe rentia l equations as 
systems for the  M ATLAB ODE solvers.

The M ATLAB ODE solvers are designed to  handle o rd ina ry  differentia l 
equations. These are d iffe rentia l equations containing one or more derivatives 
of a dependent variab le y w ith  respect to  a single independent variab le  t, 
usually referred to  as time. The deriva tive  of y w ith  respect to  t is denoted as 
y ' , the  second deriva tive  as y ' ’ , and so on. Often y(t) is a vector, having 
elements y i , y2, ... yn.

ODEs often involve a number of dependent variables, as well as derivatives of 
order higher than one. To use the  M ATLAB ODE solvers, you must rew rite  
such equations as an equivalent system of firs t-o rder d iffe rentia l equations in 
term s of a vector y and its  firs t derivative.

y  = F (t, y )

Once you represent the  equation in th is  way, you can code it as an ODE M -file  
tha t a M ATLAB ODE solver can use.

Ini t ial  Value Problems and Ini t ial  Condi t ions
Generally there  are many functions y(t) tha t satisfy a given ODE, and 
additional in form ation is necessary to  specify the  solution of interest. In an 
in itia l value problem, the solution of interest has a specific in itia l condition, 
tha t is, y is equal to  y0 at a given in itia l tim e  t0. An in itia l value problem for 
an ODE is then

y  = F (t, y )

У( t0)= У0

I f  the  function F (t, y ) is su ffic ien tly  smooth, th is  problem has one and only one 
solution. Generally there is no ana ly tic  expression for the  solution, so it is 
necessary to  approxim ate y (t ) by numerical means, such as one of the  solvers 
of the  M ATLAB ODE suite.

Example:  The van der Pol Equation
An example of an ODE is the  van der Pol equation
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У1 " -  m( 1 -  У12) У1  + У1= 0 

where m>0  is a scalar parameter.

R ew riting  the System
To express th is  equation as a system of firs t-order d iffe rentia l equations for 
M ATLAB, introduce a variab le  y2 such tha t y i  = y2. You can then express th is  
system as

y 1 = y2

У2 = m( 1 -  У12) У2 -  У1 

W ritin g  the ODE File
The code below shows how to  represent the  van der Pol system in a M ATLAB 
ODE file, an M -file  tha t describes the  system to  be solved. An ODE file  always 
accepts at least tw o  arguments, t and y. Th is sim ple tw o line  file  assumes a 
value of 1 for m. y1 and y2 become y( 1 ) and y ( 2 ) , elements in a two-element 
vector.

f un c t i o n  dy = vdp1 ( t , y )
dy = [ y ( 2 ); ( 1 - y ( 1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;

Note This ODE file  does not actua lly use the  t argument in its  computations. 
It is not necessary for it to  use the  y argument either -  in some cases, for 
example, it may just re turn a constant. The t and y variables, however, must 
always appear in the  input argument list.

C a lling  the Solver
Once the  ODE system is coded in an ODE file, you can use the  M ATLAB ODE 
solvers to  solve the system on a given tim e  in terva l w ith  a particu la r in itia l 
condition vector. For example, to  use ode45 to  solve the  van der Pol equation 
on tim e  interval [0 20] w ith  an in itia l value of 2 for y ( 1 ) and an in itia l value 
of 0 for y ( 2 ) .

[T,Y]  = ode45( ’ vdp1’ , [ 0  20 ] , [ 2 ;  0] ) ;
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The resulting output [T,Y]  is a column vector of tim e  points T and a solution 
array Y. Each row in solution array Y corresponds to  a tim e  returned in column 
vector T.

Viewing the Results
Use the  pl ot command to  view solver output.

p l o t ( t , y ( : , 1 ) , '  - ' , t , y ( : , 2 ) , ' -  - ' )
t i t l  e ( ' S o l u t i o n  of van der Pol Equation, mu = 1 ' ) ;
x l a b e l ( ' t i m e  t ' ) ;
y l a b e l ( ' s o l u t i o n  y ' ) ;
l e g e n d ( ' y 1 ' , ' y 2 ' )

Solution o f van der Pol Equation, mu = 1
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Example:  The van der Pol Equat ion, m = 1000 (Stiff)

Stiff ODE Problems This section presents a s tiff problem. For a s tiff problem, 
solutions can change on a tim e  scale tha t is very short compared to  the 
in terva l of in tegration, but the  solution of interest changes on a much longer 
tim e  scale. Methods not designed for s t if f  problems are ineffective on in terva ls 
where the  solution changes slowly because they use tim e  steps small enough 
to  resolve the  fastest possible change.

When m is increased to  1000, the  solution to  the van der Pol equation changes 
d ram atica lly  and exhib its oscillation on a much longer tim e  scale. 
Approxim ating the solution of the  in itia l value problem becomes a more 
d ifficu lt task. Because th is  particu la r problem is s tiff, a nonstiff solver such as 
ode45 is so inefficient tha t it is im practical. The s tiff solver odel5s is intended 
for such problems.

This code shows how to  represent the  van der Pol system in an ODE file  w ith  
m= 1000.

f un c t i on  dy = vdp1000( t , y )
dy = [ y ( 2 ); 1000* ( 1- y ( 1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;

Now use the  ode15s function to  solve vdp1000. Retain the  in itia l condition 
vector of [ 2 ; 0] ,  but use a tim e  in terva l of [0 3000]. For scaling purposes, plot 
just the  firs t component of y ( t ) .

[ t , y ]  = ode15s( ' vdp1000 ' , [ 0  3000] , [ 2 ;  0] ) ;  
p l o t ( t , y ( : , 1 ) , ' o ' ) ;
t i t l e ( ' S o l u t i o n  of van der Pol Equation, mu = 1000' ) ;  
x l a b e l ( ' t i m e  t ' ) ;  
y l a b e l ( ' s o l u t i o n  y ( : , 1 ) ' ) ;
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Solution o f van der Pol Equation, mu = 1000

8-9



8 Ordinary Differential Equations

ODE Solvers
The M ATLAB ODE solver functions implement numerical in tegration 
methods. Beginning at the  in itia l tim e  and w ith  in itia l conditions, they step 
through the tim e  in terva l, computing a solution at each tim e  step. I f  the 
solution for a tim e  step satisfies the solver’s error tolerance crite ria , it is a 
successful step. Otherwise, it is a failed attem pt; the  solver shrinks the step 
size and tr ie s  again.

Th is section describes how to  represent problems for use w ith  the  M ATLAB 
solvers and how to  optim ize solver performance. You can also use the  online 
help fa c ility  to  get in form ation on the  syntax for any function, as well as 
inform ation on demo files for these solvers.

Nonst i f f  Solvers
There are three solvers designed for nonstiff problems:

• ode45 is based on an explicit Runge-Kutta (4,5) form ula, the  
Dorm and-Prince pair. It is a one-step solver -  in computing y ( t n) , it needs 
only the  solution at the  im m ediately preceding tim e  point, y ( t n-1). In 
general, ode45 is the  best function to  apply as a “ firs t t r y ” for most problems.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and 
Shampine. It may be more efficient than ode45 at crude tolerances and in the 
presence of m ild stiffness. L ike  ode45, ode23 is a one-step solver.

• o d e ll3  is a variab le order Adam s-Bashforth-Moulton PECE solver. It may be 
more efficient than ode45 at stringent tolerances and when the  ODE 
function is pa rticu la rly  expensive to  evaluate. o d e ll3  is a m ultistep solver -  
it norm ally needs the  solutions at several preceding tim e  points to  compute 
the current solution.

Stiff Solvers
Not all d ifficu lt problems are s tiff, but all s tiff problems are d ifficu lt for solvers 
not specifically designed for them. S tiff solvers can be used exactly like  the 
other solvers. However, you can often s ign ifican tly  improve the  efficiency of the  
s t if f  solvers by providing them w ith  additional in form ation about the  problem. 
See “ Im proving Solver Performance” on page 8-17 for deta ils on how to  provide 
th is  inform ation, and for deta ils on how to  change solver parameters such as 
error tolerances.
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There are four solvers designed for s t if f  (or moderately s tiff) problems:

• odel5s is a variable-order solver based on the  numerical d iffe rentia tion  
form ulas (NDFs). O ptiona lly  it uses the  backward d iffe rentia tion  formulas, 
BDFs, (also known as Gear’s method) tha t are usually less efficient. L ike  
odel 13, ode15s is a m ultis tep solver. I f  you suspect tha t a problem is s tiff  or 
if  ode45 failed or was very ineffic ient, t ry  ode15s.

• ode23s is based on a modified Rosenbrock form ula of order 2. Because it is a 
one-step solver, it may be more efficient than ode15s at crude tolerances. It 
can solve some kinds of s t if f  problems for which ode15s is not effective.

• ode23t is an implem entation of the  trapezoidal ru le  using a “free” 
in terpolant. Use th is  solver if  the  problem is only moderately s t if f  and you 
need a solution w ithou t numerical damping.

• ode23tb is an im plem entation of TR-BDF2, an im p lic it Runge-Kutta form ula 
w ith  a firs t stage tha t is a trapezoidal ru le  step and a second stage tha t is a 
backward d iffe ren tia tion  form ula of order two. By construction, the  same 
ite ra tion  m a trix  is used in evaluating both stages. L ike  ode23s, th is  solver 
may be more efficient than ode15s at crude tolerances.

ODE Solver Basic Syntax
A ll of the  ODE solver functions share a syntax tha t makes it easy to  try  any of 
the  d ifferent numerical methods if  it is not apparent which is the  most 
appropriate. To apply a d ifferent method to  the same problem, sim ply change 
the ODE solver function name. The simplest syntax, common to  all the  solver 
functions, is

[T,Y]  = sol ver  ( ’ F’ , t span,y0)  

where sol ver  is one of the  ODE solver functions listed previously.
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The input arguments are:

’ F’ S tring  containing the name of the  file  tha t describes the  system of
ODEs.

tspan Vector specifying the  in terva l of in tegration. For a two-element 
vector t span = [ t 0 t f i n a l ] , the  solver integrates from t 0 to  
t f i n a l  . For t span vectors w ith  more than tw o elements, the  solver 
re tu rns solutions at the  given tim e  points, as described below. Note 
tha t t 0 > t f i n a l  is allowed.

y 0 Vector of in itia l conditions for the  problem.

The output arguments are:

T Column vector of tim e  points

Y Solution array. Each row in Y corresponds to  the  solution at a tim e
returned in the  corresponding row of T.

Obta in ing  Solut ions at Specif ic Time Points
To obtain solutions at specific tim e  points t 0, t 1 , ... t f i n a l  , specify tspan as a 
vector of the  desired times. The tim e  values must be in order, e ither increasing 
or decreasing.

Specifying these tim e  points in the  tspan vector does not affect the  internal 
tim e  steps tha t the  solver uses to  traverse the  interval from tspan( 1 ) to 
tspan(end) and has li t t le  effect on the  efficiency of computation. A ll solvers in 
the  M ATLAB ODE suite  obtain output values by means of continuous 
extensions of the  basic formulas. A lthough a solver does not necessarily step 
precisely to  a tim e  point specified in tspan,  the  solutions produced at the  
specified tim e  points are of the  same order of accuracy as the  solutions 
computed at the  in ternal tim e  points.
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Speci fying Solver Opt ions
In addition to  the sim ple syntax, all of the  ODE solvers accept a fourth  input 
argument, opt i  ons, which can be used to  change the  default integration 
parameters.

[ t , y ]  = sol ver  ( ’ F’ , t span , y0 , op t i ons )

The opt i ons argument is created w ith  the  odeset function (see “Creating an 
Options S tructure: The odeset Function” on page 8-20). Any input parameters 
after the  opt i ons argument are passed to  the ODE file  every tim e  it is called. 
For example,

[T,Y]  = sol ver  ( ’ F’ , t s p a n , y 0 , o p t i o n s , p 1 , p 2 , . . . )  

calls

F ( t , y , f l a g , p 1 , p 2 , . . . )

Obta in ing  Statist ics Abou t  Solver Per fo rmance
Use an additional output argument S to  obtain sta tis tics about the  ODE 
solver’s computations.

[T,Y,S]  = sol ver  ( ’ F’ , t s p a n , y 0 , o p t i o n s , . . . )

S is a six-element column vector:

• Element 1 is the  number of successful steps.
• Element 2 is the  number of failed attempts.
• Element 3 is the  number of tim es the  ODE file  was called to  evaluate F(t,y).
• Element 4 is the  number of tim es tha t the  partia l derivatives m a trix  dF /dy  

was formed.
• Element 5 is the  number of LU decompositions.
• Element 6 is the  number of solutions of linear systems.

The last th ree elements of the  lis t apply to  the  s tiff solvers only.

The solver autom atica lly displays these sta tis tics if  the  Stats  property (see 
8-25) is set in the  opt i ons argument.
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Creating ODE Files
The van der Pol examples in the  previous sections show some sim ple ODE files. 
Th is section provides more detail and describes how to  create more advanced 
ODE files tha t can accept additional input parameters and re turn  additional 
in form ation.

ODE File Overv iew
Look at the  sim ple ODE file  vdp1 .m  from earlier in th is  chapter.

f un c t i on  dy = vdp1 ( t , y )
dy = [ y ( 2 ); ( 1 - y ( 1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;

A lthough th is  is a sim ple example, it demonstrates tw o im portant 
requirem ents for ODE files:

• The firs t tw o arguments must be t and y.
• By default, the  ODE file  must re turn a column vector F ( t , y ) .

Defining the Ini t ial  Values in the ODE File
It is possible to  specify default tspan,  y 0 and opt i ons in the  ODE file, defining 
the  entire  in itia l value problem in the  one file . In th is  case, the  solver can be 
called as

[T,Y]  = s o l v e r ( ’ F’ , [ ] , [ ] ) ;

The solver extracts the default values from the  ODE file. You can also omit 
empty arguments at the  end of the  argument lis t. For example,

[T,Y]  = s o l v e r ( ’ F’ );

When you call a solver w ith  an empty or missing tspan or y 0, the  solver calls 
the  specified ODE file  to  obtain any values not supplied in the  solver argument 
lis t. It uses the  syntax

[ t span , y 0 , o p t i ons ]  = F ( [ ] , [ ] , ’ i n i t ’ )
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The ODE file  is then expected to  re turn th ree outputs:

• O utput 1 is the  tspan vector.
• O utput 2 is the  in itia l value, y 0.
• O utput 3 is e ither an options s truc tu re  created w ith  the  odeset function or 

an empty m a trix  [ ] .

Coding the ODE File to Return Initial Values
I f  you use th is  approach, your ODE file  must check the  value of the  th ird  
argument and return the  appropria te output. For example, you can modify the  
van der Pol ODE file  vdp1 .mto check the  th ird  argument, f l ag ,  and return 
e ither the  default vector F ( t , y )  or [ t span , y0 , o p t i ons ]  depending on the 
value of f l ag .

f un c t i on  [ ou t 1 , ou t 2 , ou t 3 ]  = v d p 1 ( t , y , f l a g )  
i f  s t r c i r p ( f l a g , ’ ’ )

% Return dy/dt  = F ( t , y ) .
ou t l  = [ y ( 2 ); ( 1- y ( 1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;

e l s e i f  s t r c m p ( f l a g , ' i n i t ' )

%o Return [ t sp a n , y 0 , o p t i on s ] .  
o u t 1 = [ 0; 20]; 
ou t 2 = [ 2 ; 0] ;
out3 = o d e s e t ( ' Re l To l ' , 1 e - 4 ) ;

end

Note The th ird  argument, referred to  as the  f l a g  argument, is a special 
argument tha t notifies the ODE file  tha t the  solver is expecting a specific kind 
of in form ation. The ' i n i t '  s tring, for in itia l values, is just one possible value 
for th is  flag. For complete deta ils on the  f l a g  argument, see “Special Purpose 
ODE Files and the  flag A rgum ent” on page 8-17.

%o tspan
%o i n i t i a l  condi t i  ons 
%o opt i  ons
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Passing A dd i t iona l  Parameters  to the ODE File
I n some cases your ODE system may require additional parameters beyond the 
required t and y arguments. For example, you can generalize the van der Pol 
ODE file  by passing it a mu parameter, instead of specifying a value for mu 
exp lic itly  in the  code.

f u n c t i o n  [ ou t 1 , ou t 2 , ou t 3 ]  = vdpode( t , y , f l ag , mu)  
i f  nargin < 4 | isempty(mu) 

mu = 1 ;

end
i f  s t r c m p ( f l a g , ’ ’ )

0%o Return dy/dt  = F ( t , y ) .
o u t1 = [ y ( 2 ); mu*( 1 - y ( 1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;

e l s e i f  st r c m p ( f l a g , ' i  n i t ' )

%o Return [ t s p a n , y 0 , o p t i on s ] .
o u t 1 = [ 0; 20];  %> tspan
out 2 = [ 2 ; 0] ;  %> i n i t i a l  cond i t i ons
out3 = odeset ( 'Rel  T o l ' , 1 e - 4 ) ;  %> opt i ons

end

In th is  example, the  parameter mu is an optional argument specific to  the  van 
der Pol example. M ATLAB and the ODE solvers do not set a lim it on the 
number of parameters you can pass to  an ODE file.

Guidel ines fo r  Creat ing ODE Files
• The ode file  must have at least tw o input arguments, t and y. It is not 

necessary, however, for the  function to  use e ither t or y.
• The derivatives returned by F ( t , y )  must be column vectors.
• Any additional parameters beyond t and y must appear at the  end of the  

argument lis t and must begin at the  fourth  input parameter. The th ird  
position is reserved for an optional flag, as shown above in “Coding the ODE 
F ile  to  Return In itia l Values.” The f l a g  argument is described in more detail 
in “Special Purpose ODE Files and the flag A rgum ent” on 8-17.
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Improving Solver Performance
In some cases, you can improve ODE solver performance by specially coding 
your ODE file. For instance, you m ight accelerate the  solution of a s t if f  problem 
by coding the ODE file  to  compute the  Jacobian m a trix  analytica lly.

Another way to  improve solver performance, often used in conjunction w ith  a 
specially coded ODE file , is to  tune  solver parameters. The default parameters 
in the  ODE solvers are selected to  handle common problems. In some cases, 
however, tun ing  the parameters for a specific problem can improve 
performance s ign ificantly . You do th is  by supplying the solvers w ith  one or 
more property values contained w ith in  an opt i ons  argument.

[T,Y]  = s o l v e r ( ’ F’ , t span , y0 , op t i ons )

The property values w ith in  the  opt i ons argument are created w ith  the  odeset 
function, in which named properties are given specified values.

Category Property Name Page

E rror tolerance RelTol , AbsTol 8-21

Solver output CutputFcn, CutputSel , Ref ine,  Stats 8-22

Jacobian m a trix Jacobian,  JConstant, JPat tern,  Vector i zed 8-25

Step size I n i t i a l S t e p ,  MkxStep 8-28

Mass m a trix Mass, MkssSi ngular 8-29

Event location Events 8-30

ode15s MaxCrder, BDF 8-32

Special  Purpose ODE Files and the f lag A rg u m e n t
The M ATLAB ODE solvers are capable of using additional inform ation 
provided in the  ODE file. In th is  more general use, an ODE file  is expected to 
respond to  the arguments odef i l e ( t , y , f l a g , p 1 , p2 , . . . )  where t and y are the  
integration variables, f l ag  is a s tring  ind icating the  type of in form ation tha t
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the  ODE file  should re turn , and p1 , p2 , . . . are any additional parameters tha t 
the  problem requires. Th is tab le  shows the currently  supported flags.

Flags Return Values

’ ’ (empty) F (t, У)

’ i n i t ’ tspan,  y 0, and opt ions for th is  problem

’ jacobi an’ Jacobian m a trix  J (t, y) = dF /dy

’ j p a t t e r n ’ M a trix  showing the  Jacobian sparsity pattern

’ mass’ Mass m a trix  M for solving M(t, y) y' = F(t, y)

’ events’ Inform ation to  define an event location problem

The tem plate below illus tra tes  how to  code an extended ODE file  tha t uses the 
swi t ch construct and the  ODE file ’s th ird  input argument, f l ag ,  to supply 
additional in form ation. For illus tra tion , the  file  also accepts tw o additional 
input parameters p1 and p2 .
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Note The example below is only a tem plate. In your own coding you should not 
include all of the  cases shown. For example, ’ j a c o b i an ’ in form ation is used 
for evaluating Jacobians analytica lly, and ’ j p a t t e r n ’ in form ation is used for 
generating Jacobians num erically.

f u n c t i on  varargout  = o d e f i l e ( t , y , f l a g , p 1 , p 2 ) 
swi t ch f l a g

case ’ ’ % Return dy/dt  = f ( t , y ) .
v a r a r g o u t { 1 } = f ( t , y , p 1 , p 2 ); 

case ’ i n i t ’ % Return defaul t  [ t sp a n , y0 , o p t i o n s ] .
[ v a r a r g o u t { 1 : 3 } ]  = i n i t ( p 1 , p 2 ) ;  

case ’ j a c o b i an ’ % Return Jacobian mat r i x  df /dy.
v a r a r g o u t { 1 } = j a c o b i a n ( t , y , p 1 , p 2 ); 

case ’ j p a t t e r n ’ % Return s pa r s i t y  pa t t e rn  mat r i x  S.
v a r a r g o u t { 1 } = j p a t t e r n ( t , y , p 1 , p 2 ); 

case ’ mass ’ % Return mass mat r i x.
v a r a r g o u t { 1 } = mass ( t , y , p 1 , p 2 ); 

case ’ even ts ’ % R e t u r n [ v a l u e , i s t e r m i n a l , d i r e c t i o n ] .
[ va r a r gou t { 1 : 3 } ]  = ev en t s ( t , y , p1 , p2 ) ;  

otherwise
e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  

end
% -------------------------------------------------------------------------------------------------
f u n c t i on  dydt = f ( t , y , p 1 , p 2 )
dydt = < Inser t  a f un c t i o n  of t and/or  y, p1, and p2 here. >;
% -------------------------------------------------------------------------------------------------
f u n c t i on  [ t s p a n , y 0, op t i ons ]  = i n i t ( p 1 , p 2 ) 
t span = < Inser t  t span here. >; 
y0 = < Inser t  y0 here. >;
opt i ons  = < Inser t  opt i ons = o d e s e t ( . . . )  or [ ]  here. >;
% -------------------------------------------------------------------------------------------------
f u n c t i on  dfdy = j a c o b i a n ( t , y , p 1 , p 2 ) 
dfdy = < Inser t  Jacobian mat r i x  here. >;
% -------------------------------------------------------------------------------------------------
f u n c t i on  S = j p a t t e r n ( t , y , p 1 , p 2 )
S = < Inser t  Jacobian mat r i x  s p a r s i t y  pa t t e r n  here. >;
% -------------------------------------------------------------------------------------------------
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f u n c t i o n  M = mass( t , y ,p1,p2)
M = < Inser t  mass mat r i x  here. >;
% -------------------------------------------------------------------------------------------------
f un c t i on  [ v a l u e , i s t e r m i n a l , d i r e c t i o n ]  = e v e n t s ( t , y , p 1 , p 2 ) 
value = < Inser t  event f un c t i o n  vector  here. >; 
i s t ermina l  = < Inser t  l og i ca l  ISTERMINAL vector  here. >; 
d i r e c t i o n  = < Inser t  DIRECTION vector  here. >;

Creat ing an Opt ions  Structure: The odeset Function
The odeset function creates an opt ions s truc tu re  tha t you can supply to  any 
of the  ODE solvers. odeset accepts property name/property value pairs using 
the  syntax

opt i ons = odeset ( ’ name1 ’ , v a l u e 1 , ’ name2 ’ ,val  ue2 , . . . )

Th is creates a s tructu re  opt i ons in which the  named properties have the 
specified values. Any unspecified properties contain default values in the 
solvers. For all properties, it is sufficient to  type only the  leading characters 
tha t uniquely identify  the  property name. odeset ignores case for property 
names.

W ith  no input arguments, odeset displays all property names and the ir 
possible values, ind icating defaults w ith  { }.

AbsTol: [ p o s i t i v e  scalar  or vector  {1e -6 } ]
BDF: [ on | { o f f }  ]
Events: [ on | { o f f }  ]
I n i t i a l S t e p :  [ p o s i t i v e  sca lar ]
Jacobian: [ on | { o f f }  ]
JC onstant: [ on | {o f f }  ]
JPat tern:  [ on | { o f f }  ]
Mfess: [ {none} | M | M(t) | M( t , y)  ]
MassSingular:  [ yes | no | {maybe} ]
MlaxCrder: [ 1 | 2 | 3 | 4 | {5 } ]
MaxStep: [ p o s i t i v e  scalar  ]
CutputFcn: [ s t r i n g  ]
CutputSel :  [ vector  of i n t egers  ]
Ref ine:  [ p o s i t i v e  i n teger  ]
RelTol :  [ p o s i t i v e  scalar  {1e -3 } ]
Stats:  [ on | { o f f }  ]
Vector i zed:  [on | { o f f } ]
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Modifying an Existing Options Structure 
To modify an existing opt i ons argument, use

opt i  ons = o d e s e t ( o l dop t s , ’ name1 ’ , v a l u e 1 , . . . )

Th is sets opt i ons equal to  the  existing s tructu re  o ldopts,  overw riting  any 
values in o l dopts tha t are respecified using name/value pairs and adding to 
the  s tructu re  any new pairs. The modified s tructu re  is returned as an output 
argument. In the  same way, the  command

opt i ons = odeset (o ldopts ,newopts)

combines the  structures o l dopts  and newopts. In the  output argument, any 
values in the  second argument (other than the  empty m atrix) overw rite  those 
in the  firs t argument.

Querying Options: The odeget Function
The solvers use the  odeget function to  extract property values from an opt i ons 
s truc tu re  created w ith  odeset .

o = odeget (opt i  ons , ’ name’ )

This re tu rns the  value of the  specified property, or an empty m a trix  [ ]  if  the 
property value is unspecified in the  opt i ons structure.

As w ith  odeset , it is sufficient to  type only the  leading characters tha t uniquely 
identify  the  property name; case is ignored for property names.

Error Tolerance Propert ies
The solvers use standard local error control techniques for m onitoring and 
contro lling the  error of each integration step. A t each step, the  local error e in 
the i ’th component of the  solution is estimated and is required to  be less than 
or equal to  the acceptable error, which is a function of tw o user-defined 
tolerances RelTol and AbsTol .

| e ( i ) |  <= ma x ( Re l T o l * abs ( y ( i ) ) , Abs To l ( i ) )

• RelTol is the  re lative accuracy tolerance, a measure of the  error re la tive  to  
the  size of each solution component. Roughly, it controls the  number of 
correct d ig its  in the  answer. The default, 1e-3, corresponds to  0.1% 
accuracy.
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• AbsTol is a scalar or vector of the  absolute error tolerances for each solution 
component. AbsTol ( i )  is a threshold below which the  values of the  
corresponding solution components are un im portan t. The absolute error 
tolerances determ ine the  accuracy when the  solution approaches zero. The 
default value is 1 e -6.

Set tolerances using odeset , e ither at the  command line or in the  ODE file.

Property Value Description

RelTol Positive scalar 
{1e-3}

A re la tive  error tolerance tha t applies 
to  all components of the  solution vector 
y. Default value is 10л( -3 )  (0.1% 
accuracy).

AbsTol Positive scalar 
or vector {1 e -6}

Absolute error tolerances tha t apply to  
the corresponding components of the 
solution vector. I f  a scalar value is 
specified, it applies to  all components 
of the  solution vector y. Default value 
is 10л ( - б ) .

The ODE solvers are designed to  deliver, for routine  problems, accuracy 
roughly equivalent to  the  accuracy you request. They deliver less accuracy for 
problems integrated over “ long” in te rva ls  and problems tha t are moderately 
unstable. D ifficu lt problems may require tig h te r tolerances than the  default 
values. For re la tive  accuracy, adjust RelTol . For the  absolute error tolerance, 
the  scaling of the  solution components is im portant: if  |y | is somewhat smaller 
than AbsTol , the  solver is not constrained to  obtain any correct d ig its  in y. You 
m ight have to  solve a problem more than once to  discover the scale of solution 
components.

Solver Outpu t  Propert ies
The solver output properties available w ith  odeset let you control the  output 
tha t the  solvers generate. W ith  these properties, you can specify an output 
function, a function tha t executes if  you call the  solver w ith  no output 
arguments. In addition, the  ODE solver output options let you obtain
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additional solutions at equally spaced points w ith in  each tim e  step, or view 
sta tis tics about the  computations.

Property Value Description

Cut put Fcn S tring

cut put Sel Vector of indices

Ref ine

Stats

Positive integer

on | {off}

The name of an output function.

I ndices of solver output components to 
pass to  an output function.

Produces smoother output, increasing 
the  number of output points by a factor 
of Ref ine.  I f  Ref ine is 1, the solver 
re tu rns solutions only at the  end of 
each tim e  step. I f  Refi ne is n >1, the 
solver uses continuous extension to 
subdivide each tim e  step in to  n smaller 
in tervals, and re tu rns solutions at 
each tim e  point. Ref ine is 1 by default 
in all solvers except ode45 where it is 4 
because of the  solver’s large step sizes. 
Refi  ne does not apply when 
l eng t h ( t s pan ) > 2 .

Specifies whether sta tis tics about the 
so lver’s computations should be 
displayed.

OutputFcn
The CutputFcn property lets you define your own output function and pass the 
name of th is  function to  the ODE solvers. I f  no output arguments are specified, 
the  solvers call th is  function after each successful tim e  step. You can use th is  
feature, for example, to  plot results as they are computed.

You must code your output function in a specific way for it to  interact properly 
w ith  the  ODE solvers. When the  name of an executable M -file  function, e.g., 
myfun, is passed to  an ODE solver as the  CutputFcn property

opt i  ons = odeset ( ’ CutputFcn’ , ’ myfun’ )
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the solver calls it w ith  nryf un ( t span , y0, ’ i n i t ’ ) before beginning the 
integration so tha t the  output function can in itia lize . Subsequently, the  solver 
calls s t a t us  = nryfun(t, y) after each step. In addition to  your intended use of 
( t , y ) , code myfun so tha t it re tu rns a s t a t us  output value of 0 or 1 . If 
s t a t us  = 1 , in tegration halts. Th is m ight be used, for instance, to  implement 
a STOP button. When integration is complete, the  solver calls the  output 
function w ith  m y f u n ( [ ] , [ ] , ’ done’ ) .

Some example output functions are included w ith  the  ODE solvers:

• odeplot -  tim e  series p lo tting
• odephas2 -  two-dimensional phase plane p lo tting
• odephas3 -  three-dimensional phase plane p lo tting
• odepr int  -  p rin t solution as it is computed

Use these as models for your own output functions. odeplot is the  default 
output function for all the  solvers. It is autom atically invoked when the solvers 
are called w ith  no output arguments.

OutputSel
The CutputSel property is a vector of indices specifying which components of 
the  solution vector are to  be passed to  the output function. For example, if  you 
want to  use the  odepl ot output function, but you want to  plot only the  firs t and 
th ird  components of the  solution, you can do th is  using

opt i ons = odeset ( ’ CutputFcn’ , ’ odep l o t ’ , ’ CutputSel ’ , [ 1  3] ) ;  

Refine
The Ref ine property, an integer n, produces smoother output by increasing the 
number of output points by a factor of n. Th is feature is especially useful when 
using a medium or high order solver, such as ode45, for which solution 
components can change substantia lly  in the  course of a single step. To obtain 
smoother plots, increase the  Ref ine property.

Note In all the  solvers, the  default value of Ref ine is 1 .W ith in ode45, however, 
Ref ine is 4 to compensate for the  solver’s large step sizes. To override th is  and 
see only the tim e  steps chosen by ode45, set Ref ine to 1.
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The extra values produced for Ref ine  are computed by means of continuous 
extension formulas. These are specialized form ulas used by the  ODE solvers to 
obtain accurate solutions between computed tim e  steps w ithou t significant 
increase in computation time.

Stats
The Stat s property specifies whether sta tis tics about the  computational cost of 
the  integration should be displayed. By default, Stats is o f f . I f  it is on, after 
solving the problem the  in tegrator displays:

• The number of successful steps
• The number of failed attem pts
• The number of tim es the  ODE file  was called to  evaluate F(t,y)
• The number of tim es tha t the  partia l derivatives m a trix  dF /dy was formed
• The number of LU decompositions
• The number of solutions of linear systems

You can obtain the  same values by including a th ird  output argument in the 
call to  the  ODE solver:

[T,Y,S]  = ode45( ’ imyfun’ , . . . ) ;

Th is statement produces a vector S tha t contains these statistics.

Jacobian Mat r ix  Propert ies
The s tiff ODE solvers often execute faster if  you provide additional inform ation 
about the  Jacobian m a trix  dF /d y , a m a trix  of partia l derivatives of the  
function defin ing the  d iffe rentia l equation.

Fd dF 1
dx 1 2dx
 

Ю 
1

dF 2 dF 2
dXi

1 СЧ
------------dx2
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There are tw o aspects to  providing inform ation about the  Jacobian:

• You can set up your ODE file  to  calculate and re turn the value of the  
Jacobian m a trix  for the  problem. In th is  case, you must also use odeset to 
set the  Jacobi an property.

• I f  you do not calculate the Jacobian in the  ODE file, ode15s and ode23s call 
the  helper function numjac to  approxim ate Jacobians num erically by fin ite  
differences. In th i s  case, you may be able to  use the  JConst an t , Vector i zed,  
or JPat tern  properties.

The Jacobian m a trix  properties pertain only to  the s t if f  solvers odel5s and 
ode23s for which the  Jacobian m a trix  dF /dy is critica l to  re lia b ility  and 
efficiency.

Property Value Description

JConstant on | { o f f } Set on if  the  Jacobian m a trix  dF /dy is 
constant (does not depend on t or y).

Jacobian on | { o f f } Set on to inform  the  solver tha t the 
ODE file  is coded such tha t 
F ( t , y , ’ Jacobian’ ) re tu rns dF /dy .

JPat tern on | { o f f } Set on if  dF /dy is a sparse m a trix  and 
the ODE file  is coded so that 
F ( [ ] , [ ] , ’ J Pa t t e r n ’ ) re tu rns a 
sparsity pattern m atrix .

Vect ori zed on | {off} Set on to  inform  the  s tiff solver tha t 
the  ODE file  is coded so tha t 
F ( t , [ y 1  y2 . . . ] )  re turns 
[ F ( t , y1 )  F ( t , y2 )  . . . ] .
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JConstant
Set JConstant on if  the  Jacobian m a trix  dF /dy is constant (does not depend on 
t or y). W hether computing the  Jacobians num erica lly or evaluating them 
ana lytica lly , the  solver takes advantage of th is  in form ation to  reduce solution 
tim e. For the  s tiff van der Pol example, the  Jacobian m a trix  is

j  = [ 0 1
( - 2000*y( 1 ) *y(  2 ) -  1 ) ( 1000* ( 1 - y ( 1 ) A2 )) ]

(not constant) so the JConstant property does not apply.

Jacobian
Set Jacobian on to inform  the solver tha t the  ODE file  is coded such tha t 
F ( t , y , ' J a c o b i a n ' )  re turns dF /dy . By default, Jacobian is o f f , and 
Jacobians are generated numerically.

Coding the ODE file  to  evaluate the  Jacobian ana lytica lly  often increases the 
speed and re lia b ility  of the  solution for the  s tiff problem. The Jacobian shown 
above for the  s tiff  van der Pol problem can be coded in to  the ODE file  as

f u n c t i on  o u t 1 = vdp1000( t , y , f l a g )  
i f  s t r c i r p ( f l a g , ’ ’ ) % r e t u r n  dy

o u t 1 = [ y ( 2 ); 1000*( 1 -y(  1 ) A2 ) * y ( 2 ) - y ( 1 ) ] ;  
e l s e i f  s t r c m p ( f l a g , ' j a c o b i a n ' )  %o r e t u r n  J 

o u t 1 = [ 0 1
( - 2000* y ( 1 ) * y ( 2 ) -  1 ) ( 1000* ( 1 - y ( 1 ) A2 )) ];

end

JPattern
Set JPat tern  on if  dF /dy is a sparse m a trix  and the  ODE file  is coded so that 
F ( [ ] , [ ] , ' J P a t t e r n ' )  re turns a sparsity pattern m atrix . Th is is a sparse 
m a trix  w ith  1 s where there are nonzero entries in the  Jacobian. numjac uses 
the sparsity pattern to  generate a sparse Jacobian m a trix  num erically. I f  the  
Jacobian m a trix  is large (size greater than approxim ately 100-by-100) and 
sparse, th is  can accelerate execution greatly. For an example using the 
JPat tern  property, see the brussode example on 8-37.
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Vectorized
Set Vect o r i zed  on to inform  the  s t if f  solver tha t the  ODE file  is coded so that 
F ( t , [ y 1  y2 . . . ] )  re tu rns [ F ( t , y 1 )  F ( t , y2 )  . . . ] .  When computing 
Jacobians num erically, the  solver passes th is  in form ation to  the numjac 
routine. Th is allows numjac to  reduce the  number of function evaluations 
required to  compute all the  columns of the  Jacobian m atrix , and may reduce 
solution tim e  s ign ificantly.

W ith  M A TLA B ’s array notation, it is typ ica lly  an easy m atter to  vectorize an 
ODE file. For example, the  s tiff van der Pol example shown previously can be 
vectorized by introducing colon notation in to  the  subscripts and by using the 
array power ( л) and array m u ltip lica tion  ( . * )  operators.

f un c t i on  dy = vdp1000( t , y )
dy = [ y ( 2 , : ) ;  1000*( 1 - y ( 1 , : ) . A2 ) . * y ( 2 , : ) - y ( 1 , : ) ] ;

Step-Size Propert ies
The step-size properties let you specify the  firs t step size tried  by the  solver, 
po tentia lly  helping it to  recognize better the  scale of the  problem. In addition, 
you can specify bounds on the  sizes of subsequent tim e  steps.

Property Value Description

MfexStep Positive scalar Upper bound on solver step size.

I n i t i a l S t e p Positive scalar Suggested in itia l step size.

Generally it is not necessary for you to  adjust MfexStep and I n i t i a l S t e p  
because the  ODE solvers implement state-of-the-art variab le  tim e  step control 
algorithm s. A d justing  these properties w ithou t good reason may result in 
degraded solver performance.

MaxStep
MfexStep has a positive scalar value. Th is property sets an upper bound on the  
m agnitude of the  step size the  solver uses. If the  d iffe rentia l equation has 
periodic coefficients or solution, it may be a good idea to  set MfexStep to some 
fraction (such as 1/4) of the  period. Th is guarantees tha t the  solver does not 
enlarge the tim e  step too much and step over a period of interest.
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• Do not reduce MaxStep to  produce more output points. Th is can slow down 
solution tim e  s ign ificantly . Instead, use Ref ine (8-24) to  compute additional 
outputs by continuous extension at very low cost.

• Do not reduce MaxStep when the solution does not appear to  be accurate 
enough. Instead, reduce the re la tive  error tolerance RelTol , and use the 
solution you just computed to  determ ine appropria te values for the  absolute 
error tolerance vector AbsTol . (See “ E rror Tolerance Properties” on page 8-21 
for a description of the  error tolerance properties.)

• Generally you should not reduce MfexStep to make sure tha t the  solver 
doesn’t step over some behavior tha t occurs only once during the  sim ulation 
in terva l. I f  you know the tim e  at which the  change occurs, break the  
sim ulation in terva l in to  tw o pieces and call the  solvers twice. I f  you do not 
know the  tim e  at which the change occurs, try  reducing the  error tolerances 
RelTol and AbsTol . Use MfexStep as a last resort.

InitialStep
I n i t i a l S t e p  has a positive scalar value. Th is property sets an upper bound on 
the m agnitude of the  firs t step size the solver tries. Generally the  autom atic 
procedure works very well. However, the  in itia l step size is based on the  slope 
of the  solution at the  in itia l tim e  t span(1 ) , and if  the  slope of all solution 
components is zero, the  procedure m ight try  a step size tha t is much too large. 
I f  you know th is  is happening or you want to  be sure tha t the  solver resolves 
im portant behavior at the  s ta rt of the  integration, help the code s ta rt by 
providing a suitable I n i t i a l S t e p .

Mass Mat r ix  Propert ies
The solvers of the  ODE suite  can solve problems of the  form M(t, y) y ’ = F(t, y) 
w ith  a mass m a trix  M tha t is nonsingular and (usually) sparse. Use odeset to 
set Mass to  ’ Ml , ’ M ( t ) ’ , or ’ M ( t , y ) ’ if  the  ODE file  F.m is coded so tha t 
F ( t , y , ’ mass’ ) re tu rns a constant, time-dependent, or tim e-and-state 
dependent mass m atrix , respectively. The default value of Mass is ’ none’ . The 
ode23s solver can only solve problems w ith  a constant mass m a trix  M. For 
examples of mass m a trix  problems, see femriode, fenSode, or batonode.

If  M is singular, then M(t) * y ’ = F(t, y) is a d iffe rentia l algebraic equation 
(DAE). DAEs have solutions only when y0 is consistent, tha t is, if  there is a 
vector yp0 such tha t M(t0) * y0 = f(t0, y0). The ode15s and ode23t solvers can 
solve DAEs of index 1 provided tha t M is not state-dependent and y0 is
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suffic ien tly  close to  being consistent. I f  there is a mass m atrix , you can use 
odeset to  set the  MkssSingular property to  ’ yes’ , ’ no’ , or ’ maybe’ . The 
default value of ’ maybe’ causes the  solver to  test whether the problem is a 
DAE. I f  it is, the  solver trea ts y0 as a guess, attem pts to  compute consistent 
in itia l conditions tha t are close to  y 0, and continues to  solve the  problem. When 
solving DAEs, it is very advantageous to  fo rm ulate the  problem so tha t M is a 
diagonal m a trix  (a sem i-explicit DAE). For examples of DAE problems, see 
hb1 dae or anp1 dae.

Property Value Description

Mass {none} | M Indicate whether the  ODE file  re turns
1 M(t) a mass m atrix.
1 M( t , y)

MassSingul ar yes | no Indicate whether the  mass m a trix  is
| {maybe} singular.

Mass
Change th is  property from ’ none’ if  t he ODE file  is coded so tha t 
F ( t , y , ’ nass’ ) re tu rns a mass m atrix . ’ Ml indicates a constant mass m atrix, 
’ M ( t ) ’ indicates a time-dependent mass m atrix , and ’ M ( t , y ) ’ indicates a 
tim e- and state-dependent mass m atrix .

MassSingular
Set th is  property to  ’ no’ i f  t he mass m a trix  is not singular.

For an example of an ODE file  w ith  a mass m atrix , see “ Example 4: F in ite  
Element D iscretization” on page 8-40.

Event Location Property
I n some ODE problems the tim es of specific events are im portant, such as the 
tim e  at which a ball h its  the  ground, or the  tim e  at which a spaceship re turns 
to  the earth, or the  tim es at which the  ODE solution reaches certain values.
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W hile  solving a problem, the  M ATLAB ODE solvers can locate trans itions  to, 
from, or through zeros of a vector of user-defined functions.

String Value Description

Events on | { o f f } Set th is  on i f  the  ODE file  evaluates 
and re tu rns the  event functions, and 
re tu rns inform ation about the  events.

Events
Set th is  parameter on to  inform  the  solver tha t the  ODE file  is coded so tha t 
F ( t , y , ’ events ’ ) re tu rns appropria te event function inform ation. By default, 
’even ts ’ is o f f .

For example, the  statement

[T,Y,TE,YE, IE]  = s o l v e r ( ’ F’ , t s pan , y 0 , op t i ons )

w ith  the  Events property in opt i ons  set on solves an ODE problem w h ile  also 
locating zero crossings of an events function defined in the  ODE file. In thi s 
case, the  solver re tu rns three additional outputs:

• TE is a column vector of tim es at which events occur.
• Rows of YE are solutions corresponding to  tim es in TE.
• Indices in vector IE  specify which event occurred at the  tim e  in TE.

The ODE file  must be coded to  re turn  three values in response to  the  ’ events ’ 
flag.

[ v a l u e , i s t e r n i n a l , d i r e c t i o n ]  = F ( t , y , ’ events ’ );

The firs t output argument value is the vector of event functions evaluated at 
( t , y ) .  The value vector may be any length. It is evaluated at the  beginning 
and end of each integration step, and if  any elements make trans itions  to, from, 
or through zero (w ith the  d irec tiona lity  specified in constant vector d i r ec t i on ) ,  
the  solver uses the  continuous extension form ulas to  determ ine the tim e  when 
the  trans ition  occurred.

Term inal events halt the  integration . The argument i s termina l  is a logical 
vector of 1 s and 0s tha t specifies whether a zero-crossing of the  corresponding
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value element is te rm ina l. 1 corresponds to  a te rm ina l event, ha lting  the 
integration; 0 corresponds to  a nonterm inal event.

The d i r e c t i o n  vector specifies a desired d irectiona lity : positive (1 ), negative 
( - 1 ), or don’t care (0), for each value element.

The tim e  an event occurs is located to  machine precision w ith in  an in terva l of 
[ t -  t + ] . Nonterm inal events are reported at t+ . For te rm ina l events, both t -  
and t + are reported.

For an example of an ODE file  w ith  an event location, see “Example 5: S imple 
Event Location” on page 8-44.

ode15s  Propert ies
The ode15s solver is a variable-order s tiff  solver based on the  numerical 
d iffe rentia tion  form ulas (NDFs). The NDFs are generally more efficient than 
the  closely related fam ily  of backward d iffe rentia tion  form ulas (BDFs), also 
known as Gear’s methods. The ode15s properties let you choose between these 
formulas, as well as specifying the  maximum order for the  solver.

Property Value Description

MfexCrder 1 1 2 | 3 | 4 | {5} The maximum order form ula used.

BDF on | { o f f } Specifies whether the  backward 
d iffe rentia tion  form ulas are to  be 
used instead of the  default numerical 
d iffe rentia tion  formulas.

MaxOrder
MlaxCrder is an integer 1 through 5 used to  set an upper bound on the  order of 
the  form ula tha t computes the  solution. By default, the  maximum order is 5.

BDF
Set BDF on to  have ode15s use the  BDFs. By default, BDF is o f f , and the solver 
uses the  NDFs.

For both the  NDFs and BDFs, the  form ulas of orders 1 and 2 are A-stable (the 
s ta b ility  region includes the entire  left ha lf complex plane). The higher order 
form ulas are not as stable, and the  higher the order the  worse the s tab ility .
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There is a class of s tiff problems (s tiff osci lla to ry) tha t is sol ved more effic iently 
if  MfexCrder is reduced (for example to  2) so tha t only the  most stable form ulas 
are used.
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Examples: Apply ing the ODE Solvers
This section contains several examples of ODE files. These examples illu s tra te  
the  kinds of problems you can solve in M ATLAB. For more examples, see 
M A T LA B ’s demos directory.

Example  1: Simple Nonst i f f  Problem
r i g i dode  is a nonstiff example tha t can be solved w ith  all five  solvers of the 
ODE suite. It is a standard test problem, proposed by Krogh, for nonstiff 
solvers. The analytical solutions are Jacobian e llip tic  functions accessible in 
M ATLAB. The interval here is about 1.5 periods.

The r i g i dode  system consists of the  Euler equations of a rig id  body w ithout 
external forces as proposed by Krogh. r i g i dode  is a system of th ree  equations

yi = y2 Уз 

y2 = - У1 Уз 

У3 = -0.51 y i У2

r i g i d o d e ( [ ] , [ ] , ’ i n i t ’ ) re turns the  default tspan,  y 0, and opt i ons values 
for th is  problem. These values are retrieved by an ODE solver if  the  solver is 
invoked w ith  empty t span or y0 arguments. Th is example uses the default 
solver options, so the  th ird  output argument is set to  empty, [ ] ,  instead of an 
options s tructu re  created w ith  odeset. By means of the  ’ i n i t ’ flag, the  entire  
in itia l value problem is defined in one file.

Reference Shampine, L. F. and M. K. Gordon, Computer Solution of O rd inary  
D ifferentia l Equations, W.H. Freeman & Co., 1975.
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f u n c t i o n  varargout  = r i g i d o d e ( t , y , f l a g )
%RIGDCDE Euler equat ions of a r i g i d  body wi thout  external  forces.  
swi t ch f l a g
case ’ ’ % Return dy/dt  = f ( t , y ) .

v a r a r g o u t { 1 } = f ( t , y ) ;  
case ’ i n i t ’ % Return defaul t  [ t sp a n , y0 , o p t i o n s ] .

[ v a r a r g o u t { 1 : 3 } ]  = i n i t ;  
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  
end
% -------------------------------------------------------------------------------------------------
f u n c t i on  dydt = f ( t , y )
dydt = [ y ( 2 ) * y (  3); - y ( 1 ) * y ( 3 ) ;  - 0 . 5 1 * y ( 1 ) * y ( 2 ) ] ;
% -------------------------------------------------------------------------------------------------
f un c t i on  [ t s p a n , y 0, op t i ons ]  = i n i t  
t span = [ 0; 12 ];  
y0 = [ 0; 1 ; 1 ]; 
opt i ons = [ ] ;

Example 2: van der Pol Equation
vdpode is a more general version of the  van der Pol example tha t has been used 
in various form s throughout th is  chapter. For illu s tra tive  purposes, it is coded 
for both fast numerical Jacobian computation (Vector i zed property) and for 
analytical Jacobian evaluation (Jacobian property). In practice you would 
supply only one or the  other of these options. It is not necessary to  supply 
either.

The van der Pol equation is w ritten  as a system of tw o equations.

yi = У2

У2 = m(i -  y i ) У2 -  y i

vdpode( t , y )  or vdpode ( t , y , [ ] , mu )  re tu rns the  derivatives vector for the  van 
der Pol equation. By default, mu is 1 and the  problem is not s tiff. O ptionally, 
pass in the  mu parameter as an additional input argument to  an ODE solver. 
The problem becomes more s t if f  as mu is increased and the period of oscillation 
becomes larger.
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When mu is 1000 the  equation is in relaxation oscillation and the problem is 
very s tiff. The lim it cycle has portions where the  solution components change 
slowly and the problem is qu ite  s tiff, a lte rna ting  w ith  regions of very sharp 
change where it is not s tiff (quasi-discontinuities).

Th is example sets Vector i zed on w ith  odeset because vdpode is coded so that 
v d p o d e ( t , [ y 1 y2 . . . ] )  re tu rns [ v d p o d e ( t , y 1 ) vdpode ( t , y 2 ) . . .  ] for scalar 
tim e  t and vectors y 1 ,y2 ,... The s tiff ODE solvers take advantage of th is  
feature only when approxim ating the  columns of the  Jacobian numerically.

v d p o d e ( [ ] , [ ] , ’ i n i t ’ ) re tu rns the  default tspan,  y 0, and opt i ons values for 
th is  problem. The entire  in itia l value problem is defined in th is  one file.

v d p o d e ( t , y , ’ j a c o b i an ’ ) or v d p o d e ( t , y , ’ j a c o b i an ’ ,mu) re tu rns the  
Jacobian m a trix  d F /dy  evaluated ana lytica lly  at ( t , y ) . By default, the  s tiff 
solvers of the  ODE suite  approxim ate Jacobian matrices numerically. 
However, if  Jacobian is set on w ith  odeset , a solver calls the  ODE file  w ith  the 
flag ’ j a c o b i an ’ to obtain dF /d y . Providing the  solvers w ith  an ana ly tic  
Jacobian is not necessary, but it can improve the  re lia b ility  and efficiency of 
in tegration.

8-36



Examples: Applying the ODE Solvers

f u n c t i o n  varargout  = v dpode( t , y , f l ag , mu)
%VDPCDE Paramster i zable van der Pol equat ion ( s t i f f  f or l a rge  mu).

i f  nargin < 4 | isempty(mu) 
mu = 1 ; 

end
swi t ch f l a g
case ’ ’ % Return dy/dt  = f ( t , y ) .

v a r a r g o u t { 1 } = f ( t , y , m u ) ;  
case ’ i n i t ’ % Return defaul t  [ t sp a n , y 0 , o p t i on s ] .

[ v a r a r g o u t { 1 : 3 } ]  = i n i t ( mu ) ;  
case ’ j a c o b i an ’ % Return Jacobian mat r i x  df /dy.

v a r a r g o u t { 1 } = j ac ob i an ( t , y , mu ) ;  
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  
end
% -------------------------------------------------------------------------------------------------------------
f un c t i o n  dydt = f ( t , y , m u )
dydt = [ y ( 2 , : ) ;  (m u*(1 - y ( 1 , : ) . A2 ) . * y ( 2 , : )  - y ( 1 , : ) ) ] ;  % 
Vector i zed
% -------------------------------------------------------------------------------------------------
f u n c t i on  [ t s p a n , y 0, op t i ons ]  = i n i t (mu)  
tspan = [0; max(20,3*mu)] ;  % several per iods 
y0 = [ 2 ; 0];
opt i  ons = odeset ( ’ Vec to r i zed ’ , ’ on’ );
% -------------------------------------------------------------------------------------------------------------
f u n c t i on  dfdy = j acob i an ( t , y , mu )  
dfdy = [ 0 1

( - 2*m u*y(1 ) * y ( 2 ) - 1 ) (m u*(1 - y ( 1 ) A2 ))  ];

Example  3: Large, Stiff Sparse Problem
This is an example of a (potentia lly) large s t if f  sparse problem. Li ke vdpode, the  
file  is coded to  use both the  Vector i zed and Jacobi an properties, but only one 
is used during the course of a s im ulation. Li ke both previous examples, 
brussode responds to  the ’ i n i t ’ flag.

The brussode example is the  classic “Brusselator” system (Hairer and Wanner) 
modeling diffusion in a chemical reaction.
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ui = 1 + u2v i - 4 u  + a ( N + 1 )2( u  _ 1 - 2 u  + u i + 1)

and is solved on the  tim e  interval [ 0, 10 ] w ith  a  = 1/50 and

u i (0) 1 + sin (2 pXi) } wi t h  x  = i / ( N + 1)for i = 1, ..., N
Vi( 0) = 3 i v ;

There are 2N equations in the system, but the  Jacobian is banded w ith  a 
constant w id th  5 if  the  equations are ordered as u1, v1, u2, v2, ...

b russode( t , y )  or b r u s s o d e ( t , y , [ ] , n )  re tu rns the  derivatives vector for the  
Brusselator problem. The parameter n > 2 is used to  specify the  number of grid 
points; the  resu lting system consists of 2 n equations. By default, n is 2 . The 
problem becomes increasingly s tiff and the  Jacobian increasingly sparse as n is 
increased.

b r u s s o d e ( [ ] , [ ] , ’ j p a t t e r n ’ ) or b r u s s o d e ( [ ] , [ ] , ’ j pa t  t e r n ’ ,n)  re tu rns a 
sparse m a trix  of 1s and 0s showing the  locations of nonzeros in the  Jacobian 
dF /d y . By default, the  s tiff ODE solvers generate Jacobians num erically as 
fu ll matrices. However, if  JPat tern is set on w ith  odeset , a solver calls the  
ODE file  w ith  the flag ’ j p a t t e r n ’ . Th is provides the  solver w ith  a sparsity 
pattern tha t it uses to  generate the  Jacobian num erically as a sparse m atrix. 
Providing a sparsity pattern can s ign ifican tly  reduce the number of function 
evaluations required to  generate the  Jacobian and can accelerate integration. 
For the  Brusselator problem, if  the  sparsity pattern is not supplied, 2n 
evaluations of the  function are needed to  compute the  2n-by-2n Jacobian 
m atrix . If the  sparsity pattern is supplied, only four evaluations are needed, 
regardless of the  value of n.

Reference Hairer, E. and G. Wanner, Solving O rd ina ry  D ifferentia l Equations 
11, S tiff and D ifferentia l-A lgebra ic Problems, Springer-Verlag, Berlin , 1991, 
pp. 5-8.
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f u n c t i o n  varargout  = b r u s s o d e ( t , y , f l a g , N )
%BRUSSCDE S t i f f  problem model ing a chemical react i on.

i f  nargin < 4 | isempty(N)
N = 2; 

end
swi t ch f l a g
case ’ ’ % Return dy/dt  = f ( t , y ) .

var argout {1}  = f ( t , y , N ) ;  
case ’ i n i t ’ % Return defaul t  [ t sp a n , y0 , o p t i o n s ] .

[ v a r a r g o u t { 1 : 3 } ]  = i n i t (N) ;  
case ’ j p a t t e r n ’ % Return s p a r s i t y  pa t t e r n  of df /dy.

var argout {1}  = j p a t t e r n ( t , y , N ) ;  
case ’ j a c o b i an ’ % Return Jacobian mat r i x  df /dy.

var argout {1}  = j ac o b i a n ( t , y , N ) ;  
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  
end
% -------------------------------------------------------------------------------------------------
f u n c t i on  dydt = f ( t , y , N )  
c = 0.02 * (N+1 ) л2;
dydt = z e r o s ( 2 * N , s i z e ( y , 2 ) ) ; %  p r ea l l oc a t e  dy/dt  
% Eval uate the 2 components of the  f u n c t i o n  at one edge of the  g r i d  
% ( w i t h  edge cond i t i ons ) .  
i = 1 ;
dydt ( i , : )  = 1 + y ( i + 1 , : ) . * y ( i , : ) ^ 2  - 4 * y ( i , : )  + . . .  
c * ( 1 - 2* y ( i , : ) + y ( i + 2 , : ) ) ;
dydt ( i + 1 , : )  = 3 * y ( i , : )  - y ( i + 1 , : ) . * y ( i , : ) . л 2  + . . .  
c * ( 3 - 2 * y ( i + 1 , : ) + y ( i + 3 , : ) ) ;
% Evaluate t he 2 components of the  f u n c t i on  at al l  i n t e r i o r  g r i d  
% points.  
i = 3:2:2*N-3;

dydt ( i , : )  = 1 + y ( i + 1 , : ) . * y ( i , : ) ^ 2  - 4 * y ( i , : )  + . . .
c * ( y ( i - 2 , : ) - 2* y ( i , : ) + y ( i + 2 , : ) ) ;  

dydt ( i + 1 , : )  = 3 * y ( i , : )  - y ( i + 1 , : ) . * y ( i , : ) . л 2  + . . .
c * ( y ( i - 1 , : ) - 2 * y ( i + 1 , : ) + y ( i + 3 , : ) ) ;

% Evaluate t he 2 components of the  f un c t i on  at t he other  edge of 
% the  g r i d  ( w i t h  edge cond i t i ons ) .  
i = 2*N-1;
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d y d t ( i , : )  = 1 + y ( i + 1 , : ) . * y ( i , : ) . A2 - 4 * y ( i , : )  + . . .  
c * ( y ( i - 2 , : ) - 2* y ( i , : ) + 1 );
d y d t ( i + 1 , : )  = 3 * y ( i , : )  - y ( i + 1 , : ) . * y ( i , : ) . A2 + . . .  
c * ( y ( i - 1 , : ) - 2 * y ( i + 1 , : ) + 3 ) ;
% -------------------------------------------------------------------------------------------------------------
f un c t i on  [ t span , y 0 , o p t i ons ]  = i n i t ( N )  
tspan = [ 0; 10 ];
y0 = [ 1 + s i n ( ( 2 * p i / ( N + 1 ) ) * ( 1 : N ) ) ;  3+zeros(1,N) ] ;  
y 0 = y0( : );
opt i ons = odeset ( ’ Vec to r i zed ’ , ’ on’ );
% -------------------------------------------------------------------------------------------------------------
f un c t i on  dfdy = j a c ob i an ( t , y , N )  
c = 0.02 * (N+1)A2;
B = zeros(2*N,5) ;
B( 1 :2* (N- 1) , 1 )  = B( 1 :2* ( N- 1) , 1 )  + c; 
i = 1:2:2*N-1;
B ( i , 2 )  = 3 - 2 * y ( i ) . * y ( i + 1 ) ;
B ( i , 3 )  = 2 * y ( i ) . * y ( i + 1 )  - 4 - 2 * c;
B( i+1,3)  = - y ( i ) . A 2  - 2*c;
B( i+1,4)  = y ( i ) . A2 ;
B(3:2*N,5)  = B(3:2*N, 5) + c;
dfdy = spd i ags(B, -2 :2 ,2*N,2*N) ;  % Note t h i s  i s  a SPARSE Jacobian.
% -------------------------------------------------------------------------------------------------------------
f un c t i on  S = j p a t t e r n ( t , y , N )
B = ones( 2*N,5) ;
B(2:2:2*N,2)  = zeros(  N,1);
B(1:2:2*N-1,4)  = zeros(N,1) ;
S = s pd i ags (B, -2 : 2 , 2*  N,2*N); 
i f  nargin < 4 | isempty(N)

N = 2; 
end

Example 4: Finite Element Discret izat ion
fem1 ode( t , y )  or f em1 o d e ( t , y , [ ] , n )  re tu rns the  derivatives vector for a f in ite  
element discretization of a partia l d iffe ren tia l equation. The parameter n 
controls the  d iscretization, and the  resu lting system consists of n equations. By 
default, n is 9.
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This example involves a mass m atrix . The system of ODE’s comes from a 
method of lines solution of the  partia l d iffe rentia l equation

- t  du  _  C u

e  c t _ C k 2

w ith  in itia l condition u(0, x) = sin(x) and boundary conditions 
u(t, 0) = u(t, p) = 0. An integer N is chosen, h is defined as 1/(N+1), and the 
solution of the  partia l d iffe rentia l equation is approximated at xk = kph for 
k = 0, 1, , ..., N+1 by

u ( t ^ ) » £  ck(t ) f k(x ) 

k _  1

Here fk(x) is a piecewise linear function tha t is 1 at xk and 0 at all the  other Xj. 
A G alerkin discretization leads to  the  system of ODEs

A (t) c' _  Rc where c (t) _ 

and the trid iagona l matrices A(t) and R are given by

c1 (t ) 

lCn (t )

A ij =
{ exp (- t )2 h / 3 

exp(- t ) h / 6 
0

i f  i = j 
if  i = j ± 1 
otherwise

and Rij =
- 2  /  h 
1 /  h 
0

i f  i = j  
if  i = j ± 1 
otherwise

N

The in itia l values c(0) are taken from the in itia l condition for the  partia l 
d iffe rentia l equation. The problem is solved on the tim e  interval [0, p].

f e n i o d e ( t , [ ] , ’ mass’ ) or f e m r t o d e ( t , [ ] , ’ mass’ ,n)  re tu rns the  
time-dependent mass m a trix  M evaluated at tim e  t . By default, ode15s solves 
systems of the  form y ' _ F (t, y ). However, if  the  Mass property is changed 
from ’ none’ to ’ Ml , ’ M ( t ) ’ , or ’ M ( t , y ) ’ w ith  odeset , t he solver calls the  ODE 
file  w ith  the flag ’ mass’ . The ODE file  re turns a mass m atrix , which the solver 
uses to  solve M(t, y) y ’ = F(t, y). If the  mass m a trix  is a constant M , the  problem 
can be also be solved w ith  ode23s.
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For example, to  solve a system of 20 equations, use

[T,Y]  = ode15s( ’ femriode’ , [ ] , [ ] , o d e s e t ( ’ Mass’ , ’ M [ t ) ’ ) , 20) ;
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femflode also responds to  the  flag ’ i n i t ’ (see the r i g i dode  example for 
details).

f u n c t i on  varargout  = f em1ode( t , y , f l ag , N)
%FEM1CDE S t i f f  problem wi t h  a time-dependent mass mat r i x.  
i f  nargin == 0 

f l a g  = ’ demo’ ; 
end
i f  nargin < 4 | isempty(N)

N = 9; 
end
swi t ch f l a g  
case ’ ’

varargout {1}  = f ( t , y , N ) ;  
case ’ i n i t ’
[ t s p a n , y 0, op t i ons ] .

[ v a r a r g o u t { 1 : 3 } ]  = i n i t ( N) ;  
case ’ mass’

varargout {1}  = mass( t ,y,N) ;  
case ’ demo’ 

demo; 
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  
end
%------------------------------------------------------
f un c t i o n  dydt = f ( t , y , N )  
e = ( ( N+1 ) / p i )  + zeros(N,1) ;  % h=pi/ (N+1); e=(1/h)+zeros(N,1) ;  
R = spd i ags( [ e  -2*e e], -1:1,  N, N); 
dydt = R*y;
%------------------------------------------------------------------------------------------------------------------
f un c t i on  [ t span , y0 , o p t i ons ]  = i n i t ( N )
tspan = [ 0; p i ] ;
y0 = s i n ( ( p i / ( N + 1 ) ) * ( 1 : N ) ’ );
opt i  ons = odeset ( ’ Mass’ , ’ M ( t ) ’ , ’ Vector i zed ’ , ’ on’ ) ;

%-

% Return dy/dt  = f ( t , y ) .  

% Return defau l t .

% Return mass mat r i x  M(t ) .  

% Run a demo.

’ ’ ’ . ’ ] ) ;
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f u n c t i o n  M = mass( t , y,N)
e = (exp( - t ) * p i / ( 6 * ( N + 1 ) ) )  + zer os(N,1) ;  % h=pi / (N+1) ;
e = e x p ( - t ) * h / 6+zeros
M = spd i ags ( [ e  4*e e] ,  -1:1,  N, N);
%--------------------------------------------------------------------------------------------------
f un c t i on  demo
[ t , y ]  = ode15s( ’ feim1ode’ );
s u r f ( 1 : 9 , t , y ) ;
s e t ( g c a , ’ Z L i m , [ 0  1] ) ;
view(142. 5,30) ;
t i t l e ( [ ’ F i n i t e  element problem wi t h  time-dependent mass 

’ mat r i x,  solved by CDE15S’ ] ) ;  
x l a b e l ( ’ space’ ); 
y l a b e l ( ’ t i me ’ ); 
z l a b e l ( ’ s o l u t i o n ’ );

Example  5: Simple Event Location
b a l l o d e ( t , y )  re tu rns the  derivatives vector for the  equations of motion of a 
bouncing ball. Th is ODE file  illus tra tes  the event location capabilities of the 
ODE solvers.

The equations for the  bouncing ball are:

у 1 = y2
у 2 = -9 .8

b a l l o d e ( t , y , ’ events ’ ) re tu rns a zero-crossing vector value evaluated at 
( t , y ) , as well as tw o constant vectors i s termi na l  and d i r e c t i o n .  By default, 
the  ODE solvers do not locate zero-crossings. However, i f  the  Events property 
is set on w ith  odeset , a solver calls the  ODE file  w ith  the  flag ’ events ’ . This 
provides the  solver w ith  inform ation tha t it uses to  locate zero-crossings of the  
elements in the  value vector. The value vector may be any length. It is 
evaluated at the  beginning and end of a step, and if  any elements change sign 
(w ith the d irec tiona lity  specified in d i r ec t i on ) ,  t he zero-crossing point is 
located. The i s termina l  vector consists of logical 1s and 0s, enabling you to  
specify whether or not a zero-crossing of the  corresponding value element halts 
the  integration. The d i r e c t i o n  vector enables you to  specify a desired
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d irectiona lity , positive (1 ), negative ( - 1 ), or don’t care (0) for each value 
element.

ba l l ode also responds to  the  flag ’ i n i t ’ (see the r i g i dode  example for 
details).

f u n c t i on  varargout  = b a l l o d e ( t , y , f l a g )
%BALLCDE Equati ons of moti on fo r  a bouncing ba l l .  
swi t ch f l a g
case ’ ’ % Return dy/dt  = f ( t , y ) .

v a r a r g o u t { 1 } = f ( t , y ) ;  
case ’ i n i t ’ % Return defaul t  [ t s p a n , y 0 , o p t i on s ] .

[ v a r a r g o u t { 1 : 3 } ]  = i n i t ;  
case ’ event s ’ % Return [ v a l u e , i s t e r m n a l , d i r e c t i o n ] .

[ v a r a r g o u t { 1 : 3 } ]  = ev en t s ( t , y ) ;  
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  
end
% ------------------------------------------------------------------------------------------------------------
f u n c t i on  dydt = f ( t , y )  
dydt = [ y ( 2 ) ;  - 9 . 8 ] ;
% -------------------------------------------------------------------------------------------------
f u n c t i on  [ t s p a n , y 0, op t i ons ]  = i n i t  
t span = [ 0; 10 ];  
y0 = [ 0; 20];
opt i  ons = odeset ( ’ Events’ , ’ on’ );
% ------------------------------------------------------------------------------------------------------------
f u n c t i on  [ v a l u e , i s t e r m n a l , d i r e c t i o n ]  = even t s ( t , y )
% Locat e the  t i  me when height passes through zero i n a decreasing 
% d i r e c t i o n  and stop i n t e g r a t i on .  Also l oca t e  both decreasing and 
% i nc reas i ng zero- c ross i ngs  of v e l oc i t y , a n d  don’ t stop 
% i n t eg r a t i on .
value = y; % [ he i gh t ;  v e l o c i t y ]
i s t ermina l  = [ 1 ; 0];  
d i r e c t i o n  = [ - 1 ; 0];
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Example  6: Advanced Event Location
or b i t ode  is a standard test problem for nonstiff solvers presented in Shampine 
and Gordon, (see reference tha t follows).

The orb i t ode  problem is a system of four equations.

У1 _ У3 

У2 _ У4

m*( y 1 + m) m( y1 -  m*) 
y 3 = 2 У4 +У1 --------- 3-------------------3—

r 1 Г2

m* y2 my2
y4 = -  2 y3 + y2 - - 3 - - - T  

r 1 r 2

where

m _ 1 / 82.45

m* = 1 -  m

Г1 = J (  У1 + m)2 + у2

Г2 = J (  У1 -m *)2 + у2

The firs t tw o solution components are coordinates of the  body of in fin ites im al 
mass, so p lo tting  one against the  other gives the  orbit of the  body around the 
other tw o bodies. The in itia l conditions have been chosen so as to  make the 
orbit periodic. Th is corresponds to  a spaceship trave ling  around the  moon and 
re tu rn ing  to  the  earth. Moderately stringent tolerances are necessary to 
reproduce the qua lita tive  behavior of the  orbit. Suitable values are le -5  for 
RelTol and 1e-4 for AbsTol .

The event functions implemented in th is  example locate the  point of maximum 
distance from the earth and the tim e  the  spaceship re tu rns to  earth.
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R eference Shampine, L. F. and M. K. Gordon, Computer Solution of O rd inary  
D ifferentia l Equations, W.H. Freeman & Co., 1975, p. 246.
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f u n c t i o n  varargout  = o r b i t o d e ( t , y , f l a g )
%CRBITCDE Res t r i c t ed  th ree  body problem 
y0 = [1.2;  0; 0; - 1.04935750983031990726]; 
swi t ch f l a g
case ’ ’ % Return dy/ dt = f ( t , y ) .

v a r a r g o u t { 1 } = f ( t , y ) ;  
case ’ i n i t ’ % Return defaul t  [ t s p a n , y 0 , op t i on s ] .

[ va r a r g o u t { 1 : 3 } ]  = i n i t ( y 0 ) ;  
case ’ events ’ % Return [ v a l u e , i s t e r m i n a l  , d i r e c t i o n ]  .

[ va r a r g o u t { 1 : 3 } ]  = ev e n t s ( t , y , y 0 ) ;  
otherwise

e r r o r ( [ ’ Unknown f l a g  ’ ’ ’ f l a g  ’ ’ ’ . ’ ] ) ;  
end
% -------------------------------------------------------------------------------------------------------------
f un c t i o n  dydt = f ( t , y )  
mu = 1 / 82.45; 
mustar = 1 - mu;
r13 = ( ( y ( 1 )  + mu)A2 + y(2)A2) a 1 . 5 ; 
r23 = ( ( y ( 1 )  - mustar)A2 + y(2)A2)  a 1 . 5 ; 
dydt = [ y(3) 

y(4)
(2*y(4)  + y(1)  - mustar * ( ( y (1)+mu) / r13)  - 

mu* ( ( y ( 1 ) - mus t a r ) / r 23 ) )
( - 2 * y ( 3 )  + y(2)  - mus t a r * ( y ( 2 ) / r 13 )  - mu* ( y (2 ) / r 23) )  ];

% -------------------------------------------------------------------------------------------------------------
f un c t i on  [ t s p a n , y 0, op t i ons ]  = i n i t ( y )  
t span = [0; 6.19216933131963970674]; 
y 0 = y;
opt i ons = odeset ( ’ RelTol ’ , 1 e - 5 , ’ AbsTol ’ , 1e-4) ;
% -------------------------------------------------------------------------------------------------------------
f un c t i on  [ v a l u e , i s t e r m n a l , d i r e c t i o n ]  = e v e n t s ( t , y , y 0)
% Locate t he t ime when the  object  re t u rns  closest  t o  t he i n i t i a l  
% point  y0 and s t a r t s  t o  move away, and stop i n t e g r a t i on .  Also 
% l oca t e  t he t ime when the  object  i s  f a r t hes t  f r om t he i n i t i a l  
% point  y 0 and s t a r t s  t o  move closer .
%
% The cur rent  d i s tance of t he body is
%
% DSQ = ( y ( 1 ) - y 0 ( 1 ) ) A2  + ( y ( 2 ) - y 0 ( 2 ) ) A2  = < y ( 1 : 2 ) - y0 , y ( 1 : 2 ) - y 0 >  
%
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% A local  minimum of DSQ occurs when d/dt  DSQ crosses zero heading 
% in t he p o s i t i v e  d i r e c t i o n .  We can compute d/dt  DSQ as
%
% d/dt  DSQ = 2 * ( y ( 1 : 2 ) - y 0 ) ’ * d y ( 1 : 2 ) / d t  = 2 * ( y ( 1 : 2 ) - y 0 ) ’ * y (3 :4 )  
%
dDSQdt = 2 * ( ( y ( 1 : 2 ) - y 0 ( 1 : 2 ) ) ’ * y ( 3 : 4 ) ) ;  
value = [dDSQdt; dDSQdt];
i s t ermi na l  = [ 1 ; 0] ; %  stop at local  mi nimum 
d i r e c t i o n  = [ 1 ; - 1 ] ; %  [ l oca l  minimum, local  maximum]
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Questions and Answers
This section contains a number of tables tha t answer questions about the  use 
and operation of the  M ATLAB ODE solvers. Th is section also contains a 
troubleshooting table. The question and answer tables cover the  fo llow ing 
categories:

• General ODE Solver Questions
• Problem Size, Memory Use, and Computation Speed
• T im e Steps for Integration
• E rror Tolerance and Other Options
• Solving D ifferent K inds of Systems

General ODE Solver Questions

Question Answ er

How do the ODE solvers quad and quad8 solve problems of the  form y ’ _ F (t ) . The ODE
differ from quad or quad8? suite  solves more general problems of the  form  y ' _ F (t, y ) .

Can I solve ODE systems in No.
which there  are more
equations than unknowns,
or vice-versa?

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I The p rim ary constraints are memory and tim e. A t each tim e  step,
solve w ith  the  ODE suite? the nonstiff solvers allocate vectors of length n, where n is the

number of equations in the  system. The s tiff solvers allocate
vectors of length n, but also an n-by-n Jacobian m atrix . For these
solvers it may be advantageous to  use the  sparse option.

I f  the  problem is nonstiff, or i f  you are using the sparse option, it
may be possible to  solve a problem w ith  thousands of unknowns.
In th is  case, however, storage of the  result can be problematic.
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Problem Size, Memory Use, and Computation Speed

Question Answ er

I ’m solving a very large 
system, but only care about 
a couple of the  components 
of y. Is there any way to 
avoid storing all of the  
elements?

How many tim e  steps is too 
many?

What is the  s ta rtup  cost of 
the  integration and how 
can I reduce it?

Yes. The user-insta llab le output function capability  is designed 
specifically for th is  purpose. When an output function is installed 
and the  solver call does not include output arguments, the  solver 
does not allocate storage to  hold the  entire  solution history.
I nstead, the  solver calls CutputFcn( t , y )  at each tim e  step. To 
keep the history of specific elements, w rite  an output function that 
stores or plots only the  elements you care about.

I f  your in tegration uses more than 200 tim e  steps, i t ’s like ly  that 
your tspan is too long, or your problem is s tiff. D ivide tspan in to  
pieces or try  ode15s.

The biggest s ta rtup  cost occurs as the  solver a ttem pts to  find a 
step size appropria te to  the  scale of the  problem. I f  you happen to 
know an appropria te step size, use the  I n i t i a l S t e p  property. For 
example, if  you repeatedly call the  integrator in an event location 
loop, the  last step tha t was taken before the event is probably on 
scale for the  next in tegration. See bal l ode for an example.

Time Steps for Integration

Question Answer

The firs t step size tha t the You can specify the  firs t step size w ith  the  I n i t i a l S t e p  property.
in tegrator takes is too The in tegrator tr ie s  th is  value, then reduces it if  necessary.
large, and it misses
im portant behavior.

Can I in tegrate w ith  fixed No.
step sizes?
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Error Tolerance and Other Options

Question Answer

How do I choose RelTol and 
AbsTol ?

I want answers tha t are 
correct to  the  precision of 
the  computer. Why can’t I 
s im ply set RelTol to  eps?

RelTol , the  re la tive  accuracy tolerance, controls the  number of 
correct d ig its  in the  answer. AbsTol , the  absolute error tolerance, 
controls the  difference between the answer and the solution. A 
re la tive  error tolerance gets in to  troub le  when a solution 
component vanishes. An absolute error tolerance gets in to  troub le  
when a solution component is unexpectedly large. The solvers 
require nonzero tolerances and use a mixed test to  avoid these 
problems. A t each step the  error e in the i ’th  component of the 
solution is required to  satisfy th is  condition

| e ( i ) |  <= max ( Re l To l * abs ( y ( i ) ) , Abs T o l ( i ) )

The use of RelTol is clear -  to  obtain p correct d ig its  let 
RelTol = 10л( - p ) , or s ligh tly  smaller. The use of AbsTol depends 
on the  problem scale. AbsTol is a threshold -  the  solver does not 
guarantee correct d ig its  for solution components sm aller than 
A b s T o l ( i ) . I f  t he problem has a natural threshold, use it as 
AbsTol .

A small value of AbsTol does not adversely affect the  computation, 
but be aware tha t the  problem ’s scaling m ight mean tha t an 
im portant component is sm aller than the  specified AbsTol . You 
m ight th in k  tha t you computed the component w ith  the  re la tive 
accuracy of RelTol , when in fact it is below the  AbsTol threshold, 
and you have few if  any correct d ig its. Even if  you are not 
interested in correct d ig its  in th is  component, fa iling  to  compute it 
accurately may harm the  accuracy of components you do care 
about. Generally the  solvers handle th is  situation autom atically, 
but not always.

You can get close to  machine precision, but not tha t close. The 
solvers do not allow RelTol near eps because they try  to 
approxim ate a continuous function. A t tolerances comparable to 
eps, the  machine a rithm e tic  causes all functions to  look 
discontinuous.
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Error Tolerance and Other Options

Question Answer

How do I te ll the  solver that 
I don’t care about gett ing an 
accurate answer for one of 
the  solution components?

You can increase the  absolute error tolerance corresponding to 
th is  solution component. I f  the  tolerance is bigger than the 
component, th is  specifies no correct d ig its  for the  component. The 
solver may have to  get some correct d ig its  in th is  component to 
compute other components accurately, but it generally handles 
th is  autom atically.

Solving Different Kinds of Systems

Question Answer

Can the solvers handle 
PDEs that have been 
discretized by the  Method 
of Lines?

Can I solve d iffe rentia l 
algebraic equation (DAE) 
systems?

Yes. W hat you obtain is a system of ODEs. Depending on the 
d iscretization, you m ight have a form involving mass m atrices -  
ode15s, ode23s, ode23t, and ode23tb provide for th is . Often the  
system is s tiff. Th is is to  be expected when the PDE is parabolic 
and when there are phenomena tha t happen on very d ifferent 
tim e  scales such as a chemical reaction in a flu id  flow. In such 
cases, use one of the  four solvers mentioned above. If, as usual, 
there are many equations, set the  JPat tern property. Th is is easy 
and m ight make the  difference between success and fa ilu re  due 
to  the  computation being too expensive. When the  system is not 
s tiff, or not very s tiff, ode23 or ode45 w ill be more efficient than 
ode15s, ode23s, ode23t, or ode23tb.

Yes. The solvers ode15s and ode23t can solve some DAEs of the  
form  M (t)y ’ = f(t,y) where M(t) is singular (the DAEs must be 
index 1). For examples, see amp1 dae and hb1 dae.
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Solving Different Kinds of Systems

Question Answer

Can I in tegrate a set of Not directly. You have to  represent the  data as a function by
sampled data? interpolation or some other scheme for f it t in g  data. The 

smoothness of th is  function is critica l. A piecewise polynomial fit 
like  a spline can look smooth to  the  eye, but rough to  a solver; the  
solver w ill take small steps where the  derivatives of the  f it  have 
jumps. E ither use a smooth function to  represent the  data or use 
one of the  lower order solvers (ode23, ode23s, ode23t, ode23tb) 
tha t is less sensitive to  th is.

Can I solve Not directly. In some cases it is possible to  use the  in itia l value
del ay-differentia l problem solvers to  solve delay-differentia l equations by breaking
equations? the sim ulation in terva l in to  sm aller in te rva ls  the length of a 

single delay. For more inform ation about th is  approach, see 
Shampine, L. F., Numerical Solution of O rd ina ry  D ifferentia l 
Equations, Chapman & Hall Mathematics, 1994.

W hat do I do when I have ode45 and the  other solvers tha t are available in th is  version of
the final and not the  in itia l the  M ATLAB ODE suite  allow you to  solve backwards or
value? forwards in tim e. The syntax for the  solvers is

[T,Y] = ode45(’ ydot ’ , [ t 0  t f i n a l ]  ,y0);  
and the syntax accepts t 0 > t f i n a l  .

Troubleshoot ing
The follow ing tab le  provides troubleshooting questions and answers.
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Troubleshooting

Question Answer

The solution doesn’t look 
like  what I expected.

My plots aren’t smooth 
enough.

I ’m p lo tting  the  solution as 
it is computed and it looks 
fine, but the  code gets stuck 
at some point.

I f  you’re righ t about its  appearance, you need to  reduce the  error 
tolerances from the ir default values. A sm aller re la tive  error 
tolerance is needed to  compute accurately the  solution of problems 
integrated over “ long” intervals, as well as solutions of problems 
tha t are moderately unstable. You should check whether there are 
solution components tha t stay sm aller than the ir absolute error 
tolerance for some tim e. I f  so, you are not asking for any correct 
d ig its  in these components. Th is may be acceptable for these 
components, but fa iling  to  compute them accurately may degrade 
the  accuracy of other components tha t depend on them.

Increase the value of Ref ine from its  default of 4 in ode45 and 1 in 
the  other solvers. The bigger the value of Ref ine, t he more output 
points. Execution speed is not affected much by the  value of 
Refi ne.

F irst verify tha t the  ODE function is smooth near the  point where 
the  code gets stuck. I f  it isn ’t, the  solver must take small steps to 
deal w ith  th is . It may help to  break tspan in to  pieces on which the  
ODE function is smooth.

I f  the  function is smooth and the  code is tak ing  extremely small 
steps, you are probably try in g  to  solve a s tiff  problem w ith  a solver 
not intended for th is  purpose. Switch to  ode15s, ode23s, or 
ode23tb.
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Troubleshooting

Question Answ er

My integration proceeds 
very slowly, using too many 
tim e  steps.

I know tha t the  solution 
undergoes a radical change 
at tim e  t where

t 0 < t < t f i n a l

but the  integrator steps 
past w ithou t “seeing” it.

F irst, check tha t your t span is not too long. Remember tha t the  
solver w ill use as many tim e  points as necessary to  produce a 
smooth solution. I f  the  ODE function changes on a tim e  scale tha t 
is very short compared to  the  tspan,  then the  solver w ill use a lot 
of tim e  steps. Long-tim e integration is a hard problem. Break 
tspan in to  sm aller pieces.

I f  the  ODE function does not change noticeably on the  tspan 
in terva l, it could be tha t your problem is s tiff. T ry  using ode15s or 
ode23s.

F ina lly , make sure tha t the  ODE function is w ritte n  in an efficient 
way. The solvers evaluate the derivatives in the  ODE function 
many times. The cost of numerical in tegration depends critica lly  
on the  expense of evaluating the  ODE function. Rather than 
recompute complicated constant parameters every evaluation, 
store them in globals or calculate them  once outside the  function 
and pass them in as additional parameters.

I f  you know there is a sharp change at tim e  t , it m ight help to 
break the  tspan interval in to  tw o pieces, [ t 0 t ]  and [ t  t f i n a l ]  , 
and call the  integrator twice.

I f  the  d iffe rentia l equation has periodic coefficients or solution, 
you m ight restrict the  m axim um step size to  the length of the  
period so the  integrator won’t step over periods.
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9 Sparse Matrices

M ATLAB supports sparse matrices, matrices tha t contain a small proportion of 
nonzero elements. This characteristic provides advantages in both m a trix  
storage space and computation time.

This chapter explains how to  create sparse matrices in M ATLAB, and how to  
use them in both specialized and general mathematical operations.

The sparse m a trix  functions are located in the spar fun d irectory in the 
M ATLAB too l box  directory.

Category Function Description

Elem entary sparse 
matrices

speye Sparse iden tity  m atrix.

Full to  sparse 
conversi on

W orking w ith  
sparse matrices

sprand Sparse un ifo rm ly  d is tribu ted random m atrix.

sprandn Sparse norm ally d is tribu ted random m atrix . 

sprandsym Sparse random sym m etric m atrix. 

spdiags Sparse m a trix  formed from diagonals.

Create sparse m atrix .sparse

f u l l

f i n d

spconvert

nnz

nonzeros

nzmax

spones

spa l l oc

i ssparse

Convert sparse m a trix  to  fu ll m atrix.

Find indices of nonzero elements.

Im port from sparse m a trix  external form at.

Number of nonzero m a trix  elements.

Nonzero m a trix  elements.

Amount of storage allocated for nonzero m a trix  elements. 

Replace nonzero sparse m a trix  elements w ith  ones. 

A llocate space for sparse m atrix.

True for sparse m atrix.
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Category Function Description

spfun Apply function to  nonzero m a trix  elements.

spy V isualize sparsity pattern.

gplot Plot graph, as in “graph theory.”

Reordering
algorithm s

colmmd Column m in im um  degree perm utation.

symmmd Sym m etric m in im um  degree perm utation.

symrcm Sym m etric reverse C uth ill-M cKee perm utation.

co l perm Column perm utation.

r andperm Random perm utation.

dmperm Dulmage-Mendelsohn perm utation.

L inear algebra eigs A few eigenvalues.

svds A few singular values.

l uinc Incomplete LU factorization.

cho l i nc Incomplete Cholesky factorization.

normest Estim ate the  m a trix  2-norm.

condest 1 -norm condition number estimate.

sprank S tructu ra l rank.

L inear equations 
(ite ra tive  methods)

pcg Preconditioned Conjugate G radients Method.

bicg BiConjugate Gradients Method.

b i cgstab BiConjugate Gradients Stabilized Method.

cgs Conjugate G radients Squared Method.

gmres Generalized M in im um  Residual Method.
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9 Sparse Matrices

Category Function Description

qmr Q uasi-M in im al Residual Method.

Miscellaneous symbfact Symbolic factorization analysis.

spparms Set parameters for sparse m a trix  routines.

spaugment Form least squares augmented system.
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Introduction
Sparse matrices are a special class of matrices tha t contain a significant 
number of zero-valued elements. Th is property allows M ATLAB to:

• Store only the nonzero elements of the  m atrix , together w ith  th e ir indices.
• Reduce computation tim e  by e lim ina ting  operations on zero elements.

Sparse Mat r ix  Storage
For fu ll matrices, M ATLAB stores in te rna lly  every m a trix  element. 
Zero-valued elements require the  same amount of storage space as any other 
m a trix  element. For sparse matrices, however, M ATLAB stores only the 
nonzero elements and the ir indices. For large matrices w ith  a high percentage 
of zero-valued elements, th is  scheme s ign ifican tly  reduces the  amount of 
memory required for data storage.

M ATLAB uses three arrays in te rna lly  to  store sparse matrices w ith  real 
elements. Consider an m-by-n sparse m a trix  w ith  nnz nonzero entries:

• The firs t array contains all the  nonzero elements of the  array in 
floating-po int form at. The length of th is  array is equal to  nnz.

• The second array contains the  corresponding integer row indices for the  
nonzero elements. This array also has length equal to  nnz.

• The th ird  array contains integer pointers to  the  start of each column. This 
a rray has length equal to  n.

This m a trix  requires storage for nnz floating-point numbers and nnz+n 
integers. A t 8 bytes per floating-point number and 4 bytes per integer, the  total 
number of bytes required to  store a sparse m a trix  is

8*nnz + 4*(nnz+n)

Sparse matrices w ith  complex elements are also possible. In th is  case, 
M ATLAB uses a fourth array w ith  nnz elements to  store the  im aginary parts 
of the  nonzero elements. An element is considered nonzero if  e ither its  real or 
im aginary part is nonzero.
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Creating Sparse Matr ices
M ATLAB never creates sparse matrices autom atically. Instead, you must 
determ ine if  a m a trix  contains a large enough percentage of zeros to  benefit 
from sparse techniques.

The density of a m a trix  is the  number of non-zero elements divided by the total 
number of m a tr ix  elements. M atrices w ith  very low density are often good 
candidates for use of the  sparse form at.

Converting Full to Sparse
You can convert a fu ll m a trix  to  sparse storage using the  sparse function w ith  
a single argument.

S = sparse(A)

For example

A = [ 0 0 0 5
0 2 0 0
1 3 0 0
0 0 4 0];

S = sparse(A) 

produces 

S =

(3.1)  1
( 2 . 2 ) 2
(3 .2)  3
(4.3)  4
(1.4)  5

The printed output lis ts  the  nonzero elements of S, together w ith  the ir row and 
column indices. The elements are sorted by columns, reflecting the  interna l 
data structure.

You can convert a sparse m a trix  to  fu ll storage using the  f u l l  function, 
provided the  m a trix  order is not too large. For example A = f u l l ( S )  reverses 
the  example conversion.
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Converting a fu ll m a trix  to  sparse storage is not the  most frequent way of 
generating sparse matrices. I f  the  order of a m a trix  is small enough tha t fu ll 
storage is possible, then conversion to  sparse storage rare ly offers significant 
savings.

Creating Sparse Matrices Directly
You can create a sparse m a trix  from a list of nonzero elements using the sparse 
function w ith  five  arguments.

S = s p a r s e ( i , j , s , m n )

i and j are vectors of row and column indices, respectively, for the  nonzero 
elements of the  m atrix . s is a vector of nonzero values whose indices are 
specified by the  corresponding ( i , j )  pairs. m is the  row dimension for the  
resulting m atrix , and n is the  column dimension.

The m a trix  S of the  previous example can be generated d irectly  w ith

S = sparse( [ 3  2 3 4 1 ] , [ 1  2 2 3 4 ] , [ 1  2 3 4 5 ] , 4 , 4 )

S =

(3 .1)  1
( 2 . 2 ) 2
( 3 .2)  3
(4 .3)  4
(1 .4)  5

The sparse command has a number of a lte rnate  forms. The example above 
uses a form tha t sets the m aximum number of nonzero elements in the  m a trix  
to  l e n g t h ( s ) . I f  desired, you can append a sixth argument tha t specifies a 
larger m aximum, a llow ing you to  add nonzero elements later w ithou t changing 
storage requirements.

Example: The Second Difference Operator
The m a trix  representation of the  second difference operator is a good example 
of a sparse m atrix . It is a trid iagona l m a trix  w ith  -2 s  on the  diagonal and 1s
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on the  super- and subdiagonal. There are many ways to  generate it -  here’s one 
possibility.

D = s p a r s e ( 1 : n , 1 : n , - 2 * ones ( 1 , n ) , n , n ) ;
E = sparse(2 :n ,1 :n -1 ,  ones (1 , n - 1 ) , n , n ) ;
S = E+D+E'

For n = 5, M ATLAB responds w ith

S =

( 1 , 1 ) -2
( 2 , 1 ) 1
( 1 , 2 ) 1
( 2 , 2 ) -2
(3 .2)  1
(2.3)  1
(3.3)  -2
(4.3)  1
(3.4)  1
(4.4)  -2
(5.4)  1
(4.5)  1
(5.5)  -2

Now F = f u l l ( S )  displays the  corresponding fu ll m atrix.

F = f u l l ( S )

F =

-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

Creating Sparse Matrices from Their Diagonal Elements 
Creating sparse matrices based on the ir diagonal elements is a common 
operation, so the  function spdiags handles th is  task. Its  syntax is

S = spdiags(B,d, imn)
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To create an output m a trix  S of size m-by-n w ith  elements on p diagonals:

• B is a m a trix  of size min( m, n) -by-p. The columns of B are the values to 
populate the  diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals of S 
to  populate.

That is, the  elements in column j of B fil l the  diagonal specified by element j of 
d. As an example, consider the  m a trix  B and the  vector d.

B =

41 11 0
52 22 0
63 33 13
74 44 24

d =

-3
0
2

Use these matrices to  create a 7-by-4 sparse m a trix  A.

A = spd i ags(B,d ,7 ,4)

( 1 , 1 ) 11
(4 1 ) 41
(2 2 ) 22
(5, 2 ) 52
(1 3) 13
(3 3) 33
( 6, 3) 63
(2 4) 24
(4 4) 44
(7 4) 74
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In its  fu ll form, A looks like  th is.

fu l l ( A )

ans =

11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74

spdiags can also extract diagonal elements from a sparse m atrix , or replace 
m a trix  diagonal elements w ith  new values. Type help spdiags for details.

Import ing Sparse Matr ices f rom Outside MATLAB
You can im port sparse matrices from computations outside M ATLAB. Use the 
spconvert function in conjunction w ith  the  load command to  im port text files 
containing lis ts  of indices and nonzero elements. For example, consider a 
three-column text file  T.dat whose firs t column is a list of row indices, second 
column is a list of column indices, and th ird  column is a list of nonzero values. 
These statements load T.dat in to  M ATLAB and convert it in to  a sparse 
m a trix  S:

load T.dat 
S = spconvert(T )

The save and load commands can also process sparse m atrices stored as binary 
data in MAT-files. F ina lly , a Fortran u t il i ty  routine  hbo2 mat is available to 
convert a file  containing a sparse m a trix  in the  Harwell-Boeing format in to  a 
M A T-file  tha t load can process. The Harwell-Boeing data is available through 
anonymous ftp  or the  W orld W ide Web from ftp .n B th w o rks .co m  in the  
d irectory pub /m в thw o rks /too lbox /m в tlab /spa rfu n .
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Viewing Sparse Matrices
M ATLAB provides a number of functions tha t let you get quan tita tive  or 
graphical in form ation about sparse matrices.

General  Storage In fo rmat ion
The whos command provides high-level in form ation about m a trix  storage, 
including size and storage class. For example, th is  whos lis ting  shows 
inform ation about sparse and fu ll versions of the  same m atrix.

whos
Name S ize Bytes Class

M_full 1100x1100 9680000 double a rray
M_sparse 1100x1100 4404 sparse a rray

Grand to ta l is  1210000 elements using 9684404 bytes

Notice tha t the  number of bytes used is much less in the sparse case, because 
zero-valued elements are not stored. In th is  case, the  density of the  sparse 
m a trix  is 4404/9680000, or approxim ately .00045%.

In fo rmat ion  About  Nonzero Elements
There are several commands that provide high-level in form ation about the 
nonzero elements of a sparse m atrix:

• nnz re turns the  number of nonzero elements in a sparse m atrix.

• nonzeros re tu rns a column vector containing all the  nonzero elements of a 
sparse m atrix.

• nzmax re tu rns the  amount of storage space allocated for the  nonzero entries 
of a sparse m atrix.
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To try  some of these, load the  supplied sparse m a trix  west 0479, one of the  
Harwell-Boeing collection.

load west 0479 
whos

Name S ize Bytes Class

west0479 479x479 24576 sparse a rray

Th is m a trix  models an eight-stage chemical d is tilla tion  column.

T ry these commands.

nnz(west 0479)

ans =

1887

format short e
west0479

west0479 =

(25, 1) 1. 0000e+00
(31, 1) -3. 7648e-02

78 1) -3. 4424e-01
(26, 2 ) 1. 0000e+00
(31, 2 ) - 2 . 4523e-02

8 00 2 ) -3. 7371e-01
(27, 3) 1. 0000e+00
(31, 3) -3 6613e-02
(89, 3) -8 3694e-01
(28, 4) 1. 3000e+02

nonzeros( west 0479);
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ans =

1 0000e+00
-3 7648e-02
-3 4424e-01

1 0000e+00
-2 4523e-02
-3 7371e-01

1 0000e+00
-3 6613e-02
- 8 . 3694e-01

1 3000e+02

Note Use C trl-C  to  stop the  nonzeros lis ting  at any time.

Note tha t in it ia lly  nnz has the same value as nzmax by default. That is, the  
number of nonzero elements is equivalent to  the  number of storage locations 
allocated for nonzeros. However, M ATLAB does not dynam ically release 
memory i f  you zero out additional a rray elements. Changing the  value of some 
m a trix  elements to  zero changes the  value of nnz, but not tha t of nzmax.

You can add as many nonzero elements to  the m a trix  as desired, however; you 
are not constrained by the  orig inal value of nzmax.

V iew ing  Sparse Matr ices Graphica l ly
It is often useful to  use a graphical format to  view the d is tribu tion  of the 
nonzero elements w ith in  a sparse m atrix . M A T LA B ’s spy function produces a 
tem plate view of the  sparsity structure, where each point on the graph 
represents the  location of a nonzero array element.
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For example,

spy(west 0479)

nz = 1887

The f ind Function and Sparse Matr ices
For any m atrix , fu ll or sparse, the  f i n d  function re tu rns the  indices and values 
of nonzero elements. Its  syntax is:

[ i , j , s ]  = f i nd (S)

f i n d  re turns the  row indices of nonzero values in vector i , the  column indices 
in vector j , and the nonzero values themselves in the  vector s. The example 
below uses f i n d  to  locate the  indices and values of the  nonzeros in a sparse 
m atrix . The sparse function uses the  f i n d  output, together w ith  the size of the 
m atrix , to  recreate the  m atrix.

[ i , j , s ]  = f i nd (S)
[ m n ]  = s i ze(S)
S = s p a r s e ( i , j , s , m n )
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Example: Adjacency Matrices and Graphs
The formal mathematical defin ition  of a graph is a set of points, or nodes, w ith  
specified connections between them. An economic model, for example, is a 
graph w ith  d ifferent industries as the  nodes and direct economic ties as the  
connections. The computer software industry  is connected to  the  computer 
hardware industry, which, in tu rn , is connected to  the  semiconductor industry, 
and so on.

This defin ition of a graph lends itse lf to  m a trix  representation. The adjacency 
m a trix  of an undirected graph is a m a trix  whose ( i , j ) - t h  and ( j , i ) - t h  entries 
are 1 if  node i is connected to  node j , and 0 otherwise. For example, the  
adjacency m a trix  for a diamond-shaped graph looks like

1

Since most graphs have re la tive ly  few connections per node, most adjacency 
matrices are sparse. The actual locations of the  nonzero elements depend on 
how the  nodes are numbered. A change in the numbering leads to  perm utation 
of the  rows and columns of the  adjacency m atrix , which can have a significant 
effect on both the  tim e  and storage requirem ents for sparse m a trix  
computations.

Graph ing  Using Adjacency Matr ices
M A T LA B ’s gp lo t function creates a graph based on an adjacency m a trix  and a 
related array of coordinates. To try  g p l o t , create the adjacency m a trix  shown 
above by entering

A = [0  1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0];
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The columns of gpl o t ’s coordinate array contain the Cartesian coordinates for 
the  corresponding node. For the diamond example, create the  array by entering

xy = [1 3; 2 1; 3 3; 2 5];

Th is places the firs t node at location ( 1 , 3 ) ,  the  second at location ( 2 , 1), the  
th ird  at location ( 3 , 3 ) ,  and the  fourth at location ( 2 , 5 ) .  To view the resu lting 
graph, enter

g p l o t ( A x y )

The Bucky Ball
One interesting construction for graph analysis is the  Bucky ball. Th is is 
composed of 60 points d is tribu ted on the  surface of a sphere in such a way tha t 
the  distance from any point to  its  nearest neighbors is the  same for all the 
points. Each point has exactly th ree neighbors. The Bucky ball models four 
d ifferent physical objects:

• The geodesic dome popularized by Buckm inster Fu ller

• The C60 molecule, a form of pure carbon w ith  60 atoms in a nearly spherical 
configuration

• In geometry, the  truncated icosahedron

• In sports, the  seams in a soccer ball

The Bucky ball adjacency m a trix  is a 60-by-60 sym m etric m a trix  B. B has three 
nonzero elements in each row and column, for a tota l of 180 nonzero values. 
Th is m a trix  has im portant applications related to  the  physical objects listed 
earlier. For example, the  eigenvalues of B are involved in studying the  chemical 
properties of C60.

To obtain the Bucky ball adjacency m atrix , enter

B = bucky;

A t order 60, and w ith  a density of 5%, th is  m a trix  does not require sparse 
techniques, but it does provide an interesting example.

You can also obtain the  coordinates of the  Bucky ball graph using

[B,v ]  = bucky;
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This statement generates v, a lis t of xyz-coordinates of the  60 points in 3-space 
equid istribu ted on the  un it sphere. The function gplot  uses these points to  plot 
the  Bucky ball graph.

gp l o t ( B , v )  
ax i s equal

It is not obvious how to  number the  nodes in the  Bucky ball so tha t the  
resulting adjacency m a trix  reflects the  spherical and combinatorial 
symmetries of the  graph. The numbering used by bucky.m is based on the 
pentagons inherent in the  ba ll’s structure.

The vertices of one pentagon are numbered 1 through 5, the  vertices of an 
adjacent pentagon are numbered 6 through 10, and so on. The p icture on the  
follow ing page shows the  numbering of ha lf of the  nodes (one hemisphere); the  
numbering of the  other hemisphere is obtained by a reflection about the
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equator. Use gplot  to produce a graph showing ha lf the  nodes. You can add the 
node numbers using a fo r  loop.

k = 1:30; 
g p l o t ( B ( k , k ) , v ) ;  
ax i s  square
fo r  j = 1:30, t e x t ( v ( j , 1 ) , v ( j , 2 ) ,  i n t 2 s t r ( j  ) ) ;  end
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To view a tem plate of the  nonzero locations in the Bucky ba ll’s adjacency 
m atrix , use the  spy function:

spy( B)

0

10

20

30

40

50

60

0 10 20 30 40 50 60
nz = 180

The node numbering tha t th is  model uses generates a spy plot w ith  twelve 
groups of five elements, corresponding to  the  twelve pentagons in the 
structure. Each node is connected to  tw o other nodes w ith in  its  pentagon and 
one node in some other pentagon. Since the  nodes w ith in  each pentagon have 
consecutive numbers, most of the  elements in the  firs t super- and 
sub-diagonals of B are nonzero. In addition, the  sym m etry of the  num bering 
about the  equator is apparent in the  sym m etry of the  spy plot about the 
antidiagonal.
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Graphs and Characteristics of Sparse Matrices
Spy plots of the  m a trix  powers of B illu s tra te  tw o im portant concepts related to 
sparse m a trix  operations, fill- in  and distance. spy plots help illu s tra te  these 
concepts.

spy(BA2)
spy(BA3)
spy(BM )
spy(BA8 )

nz = 420 nz = 780

F ill- in  is generated by operations like  m a trix  m u ltip lica tion . The product of 
tw o  or more matrices usually has more nonzero entries than the ind iv idua l 
terms, and so requires more storage. As p increases, BAp f il ls  in and spy(BAp) 
gets more dense.
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The distance between tw o nodes in a graph is the  number of steps on the graph 
necessary to  get from one node to  the  other. The spy plot of the  p-th power of B 
shows the  nodes tha t are a distance p apart. As p increases, it is possible to  get 
to  more and more nodes in p steps. For the  Bucky ball, Вл8 is almost completely 
fu ll. Only the  antidiagonal is zero, ind icating tha t it is possible to  get from any 
node to  any other node, except the  one d irectly  opposite it on the sphere, in 
eight steps.

An A i r f l ow  Model
A calculation performed at NASA’s Research In s titu te  for Applications of 
Computer Science involves modeling the flow over an a irp lane w ing w ith  tw o 
tra ilin g  flaps.

In a two-dimensional model, a tr iangu la r grid surrounds a cross section of the  
w ing and flaps. The partia l d iffe rentia l equations are nonlinear and involve 
several unknowns, including hydrodynam ic pressure and tw o components of 
velocity. Each step of the  nonlinear iteration requires the solution of a sparse 
linear system of equations. Since both the connectivity and the  geometric 
location of the  grid points are known, the gplot  function can produce the  graph 
shown above.

9-21



9 Sparse Matrices

In th is  example, there  are 4253 grid points, each of which is connected to 
between 3 and 9 others, for a tota l of 28831 nonzeros in the  m atrix, and a 
density equal to  0.0016. Th is spy plot shows tha t the  node numbering yields a 
de fin ite  band structure.

The Laplacian of the mesh.

nz = 28831
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Sparse Matr ix  Operat ions
Most of M A T LA B ’s standard mathematical functions work on sparse matrices 
jus t as they do on fu ll matrices. In addition, M ATLAB provides a number of 
functions tha t perform operations specific to  sparse matrices. This section 
discusses:

• Computational Considerations

• Standard Mathem atical Operations

• Perm utation and Reordering

• Factorization

• Simultaneous Linear Equations

• Eigenvalues and S ingular Values

Computa t iona l  Considerat ions
The computational complexity of sparse operations is proportional to  nnz, the  
number of nonzero elements in the m atrix . Computational complexity also 
depends linea rly  on the  row size m and column size n of the  m atrix, but is 
independent of the  product nfn, the  to ta l number of zero and nonzero elements.

The complexity of fa ir ly  complicated operations, such as the solution of sparse 
linear equations, involves factors like  ordering and f ill- in , which are discussed 
in the  previous section. In general, however, the  computer tim e  required for a 
sparse m a trix  operation is proportional to  the  number of a rith m e tic  operations 
on nonzero quantities. Th is is the  “tim e  is proportional to  flops” rule.

Standard Mathemat ica l  Opera t ions
Sparse matrices propagate through computations according to  these rules:

• Functions tha t accept a m a trix  and return a scalar or vector always produce 
output in fu ll storage form at. For example, the  s i ze  function always re turns 
a fu ll vector, whether its  input is fu ll or sparse.

• Functions tha t accept scalars or vectors and re turn matrices, such as zeros,  
ones, rand, and eye, always return fu ll results. Th is is necessary to  avoid 
introducing sparsity unexpectedly. The sparse analog of z e r os ( mn)  is 
sim ply s p a r s e ( m n ) . The sparse analogs of rand and eye are sprand and 
speye, respectively. There is no sparse analog for the  function ones.
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• Unary functions tha t accept a m a trix  and return a m a trix  or vector preserve 
the storage class of the  operand. I f  S is a sparse m atrix , then chol (S)  is also 
a sparse m atrix , and diag(  S) is a sparse vector. Columnwise functions such 
as max and sum also return sparse vectors, even though these vectors may be 
entire ly  nonzero. Im portant exceptions to  th is  ru le  are the  sparse and f u l l  
functions.

• B inary operators yield sparse results if  both operands are sparse, and fu ll 
results if  both are fu ll. For mixed operands, the  result is fu ll unless the 
operation preserves sparsity. I f  S is sparse and F is fu ll, then S+F, S* F, and 
F\S are fu ll, w h ile  S.* F and S&F are sparse. In some cases, the  result m ight 
be sparse even though the  m a trix  has few zero elements.

• M a trix  concatenation using either the  cat function or square brackets 
produces sparse results for mixed operands.

• Subm atrix indexing on the  righ t side of an assignment preserves the  storage 
format of the  operand. T = S ( i , j )  produces a sparse result if  S is sparse 
whether i and j are scalars or vectors. Subm atrix indexing on the left, as in 
T ( i , j )  = S, does not change the  storage format of the  m a trix  on the  left.

Permutat ion  and Reorder ing
A perm utation of the  rows and columns of a sparse m a trix  S can be represented
in tw o ways:

• A perm utation m a trix  P acts on the  rows of S as P*S or on the columns as 
s* p  .

• A perm utation vector p, which is a fu ll vector containing a perm utation of 
1:n, acts on the  rows of S as S ( p , : ) , or on the  columns as S ( : , p ) .

For example, the  statements

p = [1 3 4 2 5]
I = eye(5,5) ;
P = I ( p , : ) ;
e = ones( 4,1) ;
S = d iag( 11:11:55) + d i ag(e ,1)  + d i a g ( e , —1)
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produce

P =

P =

1 3 4 2 5

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

S =

11 1 0 0 0
1 22 1 0 0
0 1 33 1 0
0 0 1 44 1
0 0 0 1 55

You can now try  some perm utations using the  perm utation vector p and the 
perm utation m a trix  P. For example, the  statem ents S( p , : )  and P*S produce

ans =

ans =

11 1 0 0 0
0 1 33 1 0
0 0 1 44 1
1 22 1 0 0
0 0 0 1 55

S(ly, ,p ) P’

GOdna produce

11 0 0 1 0
1 1 0 22 0
0 33 1 1 0
0 1 44 0 1
0 0 1 0 55
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I f  P is a sparse m atrix , then both representations use storage proportional to  n 
and you can apply either to  S in tim e  proportional to  nnz(S) . The vector 
representation is s ligh tly  more compact and efficient, so the various sparse 
m a trix  perm utation routines all return fu ll row vectors w ith  the  exception of 
the  p ivoting perm utation in LU (triangu la r) factorization, which re turns a 
m a trix  compatible w ith  earlier versions of M ATLAB.

To convert between the tw o representations, let I = speye(n) be an iden tity  
m a trix  of the  appropria te size. Then,

P = I ( p :  )
P = I ( : , p ) .  
p = ( 1 : n ) * P  
p = ( P * ( 1 : n ) ’ ) ’

The inverse of P is sim ply R = P’ . You can compute the inverse of p w ith  
r (p)  = 1:n.

r (p)  = 1: 5 

r =

1 4 2 3 5 

Reordering for Sparsity
Reordering the  columns of a m a trix  can often make its  Cholesky, LU, or QR 
factors sparser. The simplest such reordering is to  sort the  columns by nonzero 
count. Th is is sometimes a good reordering for m atrices w ith  very irregu la r 
structures, especially if  there  is great varia tion  in the  nonzero counts of rows 
or columns.

The function p = colperim(S) computes th is  column-count perm utation. The 
co l perm M -file  has only a single line.

[ i gno r e , p ]  = s o r t ( f u l l ( s u m( s p o n e s ( S ) ) ) ) ;

Th is line  performs these steps:

1 The inner call to  spones creates a sparse m a trix  w ith  ones at the  location of 
every nonzero element in S.

2 The sum function sums down the columns of the  m atrix , producing a vector 
tha t contains the  count of nonzeros in each column.
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3 f u l l  converts th is  vector to  fu ll storage form at.

4 sor t  sorts the values in ascending order. The second output argument from 
sor t  is the  perm utation tha t sorts th is  vector.

Reordering to Reduce Bandwidth
The reverse C uth ill-M cKee ordering is intended to  reduce the  pro file  or 
bandwidth of the  m atrix . It is not guaranteed to  find the  smallest possible 
bandwidth, but it usually does. The function symrcm(A) actua lly operates on 
the nonzero s tructu re  of the  sym m etric m a trix  A + A’ , but the  result is also 
useful for asym m etric matrices. Th is ordering is useful for matrices tha t come 
from one-dimensional problems or problems tha t are in some sense “ long and 
th in .”

Minimum Degree Ordering
The degree of a node in a graph is the  number of connections to  tha t node, 
which is the  same as the  number of nonzero elements in the corresponding row 
of the  adjacency m atrix . The m in im um  degree a lgorithm  generates an ordering 
based on how these degrees are altered during  Gaussian e lim ination. It is a 
complicated and powerful a lgorithm  tha t usually leads to  sparser factors than 
most other orderings, including column count and reverse Cuthill-M cKee. 
M ATLAB has tw o versions, synmd for sym m etric m atrices and colimmd for 
nonsym m etric matrices. You can change various parameters associated w ith  
deta ils of the  a lgorithm  using the spparms function.

For more deta ils on the  a lgorithm  and M A T LA B ’s version of it, see G ilbert, 
John R., Cleve Moler, and Robert Schreiber, “Sparse M atrices in M ATLAB: 
Design and Im plem entation,” SIAM J. M a trix  Anal. Appl., Vol. 13, No. 1. 
January 1992: pp. 333-356.

Factor izat ion
This section discusses four im portant factorization techniques for sparse 
matrices:

• LU, or tr iangu la r, factorization

• Cholesky factorization

• QR, or orthogonal factorization

• Incomplete factorizations
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LU Factorization
I f  S is a sparse m atrix , the  statement below re turns th ree sparse matrices L, U, 
and P such tha t P*S = L*U.

[L,U,P]  = lu(S)

l u  obtains the  factors by Gaussian e lim ination w ith  partia l pivoting. The 
perm utation m a trix  P has only n nonzero elements. As w ith  dense matrices, the  
statement [L,U]  = lu(S)  re tu rns a permuted un it lower tr ia n g u la r m a trix  and 
an upper tr ia n g u la r m a trix  whose product is S. By itself, lu(S)  re tu rns L and 
U in a single m a trix  w ithou t the  pivot in form ation.

The sparse LU factorization does not pivot for sparsity, but it does pivot for 
numerical s tab ility . In fact, both the  sparse factorization (line 1) and the fu ll 
factorization (line 2) below produce the same L and U, even though the  tim e  and 
storage requirem ents m ight d iffe r greatly:

[L,U]  = lu(S)  % sparse f a c t o r i z a t i o n

[L,U]  = s p a r s e ( l u ( f u l l ( S ) ) )  %o f u l l  f a c t o r i z a t i o n

M ATLAB autom atica lly allocates the  memory necessary to  hold the  sparse L 
and U factors during  the  factorization. M ATLAB does not use any sym bolic LU 
prefactorization to  determ ine the memory requirem ents and set up the  data 
structures in advance.

Reordering and factorization. I f  you obtain a good column perm utation p tha t 
reduces fill- in , perhaps from synrcm  or colnmd, then computing l u ( S ( : , p ) )  
w ill take less tim e  and storage than computing l u ( S ) . Two perm utations are 
the  sym m etric reverse C uth ill-M cKee ordering and the  sym m etric m in im um  
degree ordering.

r = synrcn(B ); 
m = symnmd(B);

The three spy plots produced by the  lines below show the three adjacency 
matrices of the  Bucky Ball graph w ith  these three d ifferent numberings. The 
local, pentagon-based s tructu re  of the  orig inal numbering is not evident in the  
other three.

spy(B)
s p y ( B ( r , r ) )
spy (B( mn) )
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Reverse Cuthill-McKee
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The reverse Cuthill-M cG ee ordering, r , reduces the  bandwidth and 
concentrates all the  nonzero elements near the diagonal. The m in im um  degree 
ordering, m produces a frac ta l-like  s tructu re  w ith  large blocks of zeros.

To see the  fill- in  generated in the  LU factorization of the  Bucky ball, use 
speye( n , n ) , the  sparse iden tity  m atrix , to  insert -3s on the  diagonal of B.

B = B -  3*speye(n,n)

10 10 10

20 20 20

30 30 30

40 40 40

50 50 50

60 60 60
10 20

Since each row sum is now zero, th is  new B is actua lly singular, but it is s till 
ins tructive  to  compute its  LU factorization. When called w ith  only one output 
argument, lu  re turns the  tw o tr ia n g u la r factors, L and U, in a single sparse 
m atrix . The number of nonzeros in tha t m a trix  is a measure of the  tim e  and 
storage required to  solve linear systems involving B. Here are the  nonzero 
counts for the  th ree perm utations being considered.

O rig inal lu(B)  1022

Reverse C uth ill-M cKee l u ( B ( r , r ) )  968

M in im um  degree lu(B(nrinr)) 660

Even though th is  is a small example, the  results are typical. The orig inal 
numbering scheme leads to  the  most fill- in . The f ill- in  for the  reverse 
C uth ill-M cKee ordering is concentrated w ith in  the band, but it is almost as 
extensive as the firs t tw o  orderings. For the  m in im um  degree ordering, the  
re la tive ly large blocks of zeros are preserved during  the  e lim ination and the
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amount of fill- in  is s ign ifican tly  less than tha t generated by the  other 
orderings. The spy plots below reflect the  characteristics of each reordering.

Reverse Cuthill-McKee

it it Я tit

:tttttt:tttt.t tt ttt :t 
•Л:НН. H! :h 

•M.ttt :tttttt:tttt:ttttgtttt ж

M « 3 tttt^
20 30

nz = 1022

Original Minimum Degree

10

20

30

40

50

60
10 40 50 60

nz = 968 nz = 660

Cholesky Factorization
I f  S is a sym m etric (or H erm itian), positive defin ite, sparse m atrix , the 
statement below re tu rns a sparse, upper tr iangu la r m a trix  R so tha t R *R  = S.

R = chol (  S)

chol does not autom atica lly pivot for sparsity, but you can compute m inim um  
degree and profile  lim itin g  perm utations for use w ith  c h o l ( S ( p , p ) ) .

Since the Cholesky a lgorithm  does not use pivoting for sparsity and does not 
require pivoting for numerical s tab ility , it is possible to  do a quick calculation 
of the  amount of memory required and allocate all the  memory at the  s tart of 
the  factorization.

QR Factorization
M ATLAB w ill compute the  complete QR factorization of a sparse m a trix  S w ith

[ QR]  = qr(S)

but th is  is usually im practical. The orthogonal m a trix  Q often fa ils  to  have a 
high proportion of zero elements. A more practical a lternative, sometimes 
known as “the Q-less QR factorization,” is available.
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W ith one sparse input argument and one output argument

R = qr(S)

re turns just the  upper tr iangu la r portion of the  QR factorization. The m a trix  R 
provides a Cholesky factorization for the  m a trix  associated w ith  the normal 
equations,

R *R  = S' *S

However, the  loss of numerical in form ation inherent in the  computation of 
S' *S is avoided.

W ith  tw o input arguments having the  same number of rows, and tw o output 
arguments, the  statement

[C,R] = qr (S,B)

applies the orthogonal transform ations to  B, producing C = Q *B  w ithout 
computing Q.

The Q-less QR factorization allows the solution of sparse least squares 
problems

minimize|| A x  -  b||

w ith  tw o steps

[c,R]  = q r ( A b )  
x = R\c

If  A is sparse, but not square, M ATLAB uses these steps for the  linear equation 
solving backslash operator

x = A\b

Or, you can do the  factorization yourself and examine R for rank deficiency.

It is also possible to  solve a sequence of least squares linear systems w ith  
d ifferent right-hand sides, b, tha t are not necessarily known when R = qr(A) 
is computed. The approach solves the “semi-normal equations”

R* R* x  = A * b  

w ith

x = R\ (R \ ( A * b ) )
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and then employs one step of ite ra tive  refinement to  reduce roundoff error

r = b -  A*x 
e = R \ ( R \ ( A ' * r ) )  
x = x + e

Incomplete Factorizations
The l u i n c  and c ho l i nc  functions provide approximate, incomplete 
factorizations, which are useful as preconditioners for sparse ite ra tive  
methods.

The l u i n c  function produces tw o d ifferent kinds of incomplete LU 
factorizations, one involving a drop tolerance and one involving f ill- in  level. If 
A is a sparse m atrix , and to l is a small tolerance, then

[L,U]  = l u i n c ( A , t o l )

computes an approxim ate LU factorization where all elements less than to l 
tim es the  norm of the  relevant column are set to  zero. A lte rna tive ly ,

[L,U]  = l u i n c ( A ' 0 ' )

computes an approxim ate LU factorization where the sparsity pattern of L+U is 
a perm utation of the  sparsity pattern of A.

For example,

load west 0479
A = west 0479;
nnz(A)
nnz( l u (A) )
nnz ( l u i nc ( A , 1e - 6 ) )
n n z ( l u i n c ( A ' 0 ' ) )

shows tha t A has 1887 nonzeros, its  complete LU factorization has 16777 
nonzeros, its  incomplete LU factorization w ith  a drop tolerance of 1e-6 has 
10311 nonzeros, and its  l u ( ' 0 ' )  factorization has 1886 nonzeros.

The l u i n c  function has a few other options. See the  online help for details.

The cho l i nc  function provides drop tolerance and level 0 f ill- in  Cholesky 
factorizations of sym metric, positive de fin ite  sparse matrices. See the  online 
help for more inform ation.
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Simul taneous Linear Equat ions
Systems of sim ultaneous linear equations can be solved by tw o different classes 
of methods:

• Direct methods. These are usually va rian ts  of Gaussian e lim ination and are 
often expressed as m a trix  factorizations such as LU or Cholesky 
factorization. The algorithm s involve access to  the  ind iv idua l m a trix  
elements.

• Ite ra tive  methods. Only an approxim ate solution is produced after a f in ite  
number of steps. The coefficient m a trix  is involved only ind irectly , through a 
m atrix-vector product or as the  result of an abstract linear operator.

Direct Methods
Direct methods are usually faster and more generally applicable, if  there is 
enough storage available to  carry them  out. Ite ra tive  methods are usually 
applicable to  restricted cases of equations and depend upon properties like  
diagonal dominance or the  existence of an underlying d iffe rentia l operator. 
Direct methods are implemented in the  core of M ATLAB and are made as 
efficient as possible for general classes of matrices. Ite ra tive  methods are 
usually implemented in M ATLAB M -files and may make use of the  direct 
solution of subproblems or preconditioners.

The usual way to  access direct methods in M ATLAB is not through the  lu  or 
chol functions, but rather w ith  the  m a trix  division operators / and \ . I f  A is 
square, the  result of X = A\B is the  solution to  the  linear system A*X = B. I f  A 
is not square, then a least squares solution is computed.

If  A is a square, fu ll, or sparse m atrix , then A\B has the  same storage class as 
B. Its  computation involves a choice among several algorithm s:

• I f  A is tr iangu la r, perform a tr iangu la r solve for each column of B.

• I f  A is a perm utation of a tr iangu la r m atrix , perm ute it and perform a sparse 
tr ia n g u la r solve for each column of B.

• I f  A is sym m etric or H erm itian  and has positive real diagonal elements, find 
a sym m etric m in im um  degree order p and attem pt to  compute the  Cholesky 
factorization of A( p , p ) . If successful, fin ish w ith  tw o sparse tr iangu la r solves 
for each column of B.

• O therw ise (if A is not tr iangu la r, or is not H erm itian  w ith  positive diagonal, 
or if  Cholesky factorization fails), find a column m in im um  degree order p.
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Compute the  LU factorization w ith  partia l p ivoting of A ( : , p ) , and perform 
tw o tr ia n g u la r solves for each column of B.

For a square m atrix , M ATLAB trie s  these possibilities in order of increasing 
cost. The tests for tr ia n g u la r ity  and sym m etry are re la tive ly  fast and, if 
successful, allow for faster computation and more efficient memory usage than 
the  general purpose method.

For example, consider the  sequence below.

[L,U]  = l u(A); 
y = L\b; 
x = U\y;

I n th is  case, M ATLAB uses tr iangu la r solves for both m a trix  divisions, since L 
is a perm utation of a tr ia n g u la r m a trix  and U is triangu la r.

Use the function spparms to  tu rn  off the  m in im um  degree preordering if  a 
better preorder is known for a particu la r m atrix.

Iterative Methods
Six functions are available tha t implement ite ra tive  methods for sparse 
systems of simultaneous linear systems.

Function Description

bicg Biconjugate gradient.

b i cgstab Biconjugate gradient stabilized.

cgs Conjugate gradient squared.

gmres Generalized m in im um  residual.

pcg Preconditioned conjugate gradient.

qmr Q uasim inim al residual.

A ll s ix methods are designed to  solve A x  = b. The preconditioned conjugate 
gradient method, pcg, is restricted to  symmetric, positive defin ite  m a trix  A. 
The other five can handle nonsymmetric, square matrices.

9-34



Sparse Matrix Operations

A ll six methods can make use of left and righ t preconditioners. The linear 
system

A x  = b

is replaced by the equivalent system

-1 -1 -1 
М / A M 2 ' M 2x = M 1'b

The preconditioners M-| and M 2 are chosen to  accelerate convergence of the  
ite ra tive  method. In many cases, the  preconditioners occur na tu ra lly  in the  
mathematical model. A partia l d iffe rentia l equation w ith  variab le  coefficients 
may be approximated by one w ith  constant coefficients, for example.
I ncomplete m a trix  factorizations may be used in the  absence of natural 
preconditioners.

The five-point f in ite  difference approxim ation to  Laplace’s equation on a 
square, two-dimensional domain provides an example. The follow ing 
statem ents use the  preconditioned conjugate gradient method w ith  an 
incomplete Cholesky factorization as a preconditioner.

A = delsq(numgr i d ( ' S ' , 5 0 ) ) ; 
b = ones (s i ze ( A, 1 ) , 1 ) ;  
tol  = 1 .e-3; 
maxi t = 10;
R = c h o l i n c ( A , t o l ) ;
[ x , f l a g , e r r , i t e r , r e s ]  = p c g ( A , b , t o l , m a x i t , R , R ) ;

Only four ite ra tions are required to  achieve the  prescribed accuracy.

Background inform ation on these ite ra tive  methods and incomplete 
factorizations is available in:

Saad, Yousef. Ite ra tive  Methods for Sparse Linear Equations. PWS Publishing 
Company: 1996.

Barre tt, Richard et al. Templates for the  Solution of Linear Systems: B u ild ing  
Blocks for Ite ra tive  Methods. Society for I ndustria l and Applied Mathematics: 
1994.

9-35



9 Sparse Matrices

Eigenvalues and Singular  Values
Two functions are available which compute a few specified eigenvalues or 
singular values.

Function Description

eigs Few eigenvalues.

svds Few singular values.

These functions are most frequently used w ith  sparse matrices, but they can be 
used w ith  fu ll matrices or even w ith  linear operators defined by M-files.

The statement

[V, lambda]  = e i gs ( Ak , s i gma )

finds the  k eigenvalues and corresponding eigenvectors of the  m a trix  A which 
are nearest the  “s h ift” sigma. I f  sigma is om itted, the  eigenvalues largest in 
magnitude are found. I f  sigma is zero, the  eigenvalues smallest in magnitude 
are found. A second m atrix , B, may be included for the  generalized eigenvalue 
problem

A v  = I B v  

The statement

[U,S,V]  = svds(A,k)  

finds the  k largest singular values of A and

[U,S,V]  = svds(A,k ,0)

finds the  k smallest singular values.

For example, the  statements

L = numgr i d ( ' L ' , 6 5 ) ;
A = del sq(L) ;
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set up the five-point Laplacian difference operator on a 65-by-65 grid in an 
L-shaped, two-dimensional domain. The statements

size(A)  
nnz( A)

show tha t A is a m a trix  of order 2945 w ith  14,473 nonzero elements.

The statement

[ v , d ]  = e i gs ( A  1,0);

computes the  smallest eigenvalue and eigenvector. F ina lly,

L(L>0) = f u l l ( v ( L ( L > 0 ) ) ) ;  
x = -1 : 1 / 32 : 1 ;  
cont o u r ( x , x , L , 1 5) 
ax i s square

d is tribu tes the  components of the  eigenvector over the appropria te grid points 
and produces a contour plot of the  result.

The numerical techniques used in eigs and svds are described in a paper by D. 
C. Sorensen, Im p lic it ly  Restarted A rn o ld i/ Lanczos Methods for Large Scale
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Eigenvalue Calculations. A copy of the  paper is available through the  M ATLAB 
Help Desk.
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10 M-File FTogramming

MATLAB Programming:  A Quick Start
Files tha t contain M ATLAB language code are called M-files. M -files can be 
functions tha t accept arguments and produce output, or they can be scripts tha t 
execute a series of M ATLAB statements. For M ATLAB to  recognize a file  as an 
M-file, its  name must end in .m

You create M -files using a text editor, then use them as you would any other 
M ATLAB function or command. The process looks like  th is:

1 Create an M -file  using a text 
editor.

f unc t i on  c = myf i l e(a,b)  
c = s q r t ( ( a . A2)+( b . A2) )

2 Call the  M -file  from the 
command line, or from w ith in  
another M-file.
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Kinds of M-Fi les
There are tw o kinds of M-files.

Script M-Files Function M-Files

• Do not accept input arguments or • Can accept input arguments and
re turn output arguments return output arguments

• Operate on data in the workspace • In ternal variables are local to  the 
function by default

• Useful for autom ating a series of • Useful for extending the
steps you need to  perform many M ATLAB language for your
tim es application

W h a t ’s in an M-Fi le?
This section shows you the  basic parts of a function M-file, so you can 
fam ilia rize  yourself w ith  M ATLAB programming and get started w ith  some 
examples.

- ►f un c t i on  f = f a c t ( n )
-► % FACT Fac t o r i a l .

%o FACT(N) r e t u rns  the f a c t o r i a l  of N, usua l l y  denoted by N!.
T  %o Put simply,  FACT(N) is  PRCD(1:N).

FLncticn body-------------- ► f = p r od ( 1:n) ;

Th is function has some elements tha t are common to  all M ATLAB functions:

• A function defin ition line. Th is line  defines the  function name, and the 
number and order of input and output arguments.

• A H 1 line. H1 stands for “help 1” line. M ATLAB displays the H1 line for a 
function when you use lookf  or or request help on an entire  directory.

• Help text. M ATLAB displays the help text entry together w ith  the  H1 line 
when you request help on a specific function.

• The function body. Th is part of the  function contains code tha t performs the 
actual computations and assigns values to  any output arguments.

Function definition lire 
Hfl (helpl) line —

Hfelptext-------------
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The “Functions” section coming up provides more detail on each of these parts 
of a M ATLAB function.

Creating M-Files: Accessing Text Editors
M -files are ord inary text files tha t you create using a text editor. M ATLAB 
provides a bu ilt in editor, although you can use any text editor you like.

Note To open the  editor on the PC, from the  Fi le menu 
choose New and then M -F ile.

Another way to  edit an M -file  is from the M ATLAB command line  using the 
edi t  command. For example,

edi t  poof

opens the  editor on the  file  poof. mi O m itting  a filenam e opens the  editor on an 
un titled  file.

You can create the fact  function shown on the  previous page by opening your 
text editor, entering the  lines shown, and saving the  text in a file  called f a c t . m  
in your current directory.

Once you’ve created th is  file, here are some th ings you can do:

• L ist the  names of the  files in your current d irectory
what

• L ist the  contents of M -file  f a c t . m  
t ype fact

• Call the  fact  function 
f a c t ( 5 )
ans =

120
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Scripts
Scripts are the  simplest kind of M -file  -  they have no input or output 
arguments. They’re useful for autom ating series of M ATLAB commands, such 
as computations tha t you have to  perform repeatedly from the  command line. 
Scripts operate on existing data in the workspace, or they can create new data 
on which to  operate. Any variables tha t scripts create remain in the  workspace 
after the  script fin ishes so you can use them for fu rth e r computations.

GCnmrt line

Computations

Gapical outfit 
ccnrnnds

Simple Script Example
These statem ents calculate rho for several trigonom etric  functions of theta,  
then create a series of polar plots.

rho( 1, 
rho( 2 , 
rho( 3, 
rho( 4, 
f o r  i

% An M - f i l e  s c r i p t  t o  produce " f l ower  pe ta l "  p l o t s  
thet  a = - p i : 0 . 01 : p i ;

= 2*si  n ( 5* t he ta ) .  л2;
= cos( 1 0 * t h e t a ) ^ 3 ;
= s i n ( t h e t a ) ^ 2 ;
= 5 * c o s ( 3 . 5 * t h e t a ) ^ 3 ;

1:4
p o l a r ( t h e t a , r h o ( i , : ) )  
pause 

L end

Try entering these commands in an M -file  called petal  s . m This file  is now a 
M ATLAB script. Typing peta l s  at the MATLAB command line  executes the 
statem ents in the  script.

A fte r the  script displays a plot, press Return to move to  the  next plot. There 
are no input or output arguments; peta l s  creates the variables it needs in the 
M ATLAB workspace. When execution completes, the  variables (i , t he ta ,  and 
rho) remain in the  workspace. To see a lis ting  of them, enter whos at the  
command prompt.
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Functions
Functions are M -files tha t accept input arguments and return output 
arguments. They operate on variables w ith in  th e ir own workspace. This is 
separate from the  workspace you access at the  M ATLAB command prompt.

Simple Function Example
The average function is a sim ple M -file  tha t calculates the average of the  
elements in a vector.

f un c t i on  y = average(x)
% AVERAGE Mean of vector  elements.
% AVERAGE(X), where X is  a vector ,  i s  t he  mean of vector  elements.  
% Non-vector input  r e s u l t s  i n an er ror .
[ m n ]  = s i ze ( x ) ;
i f  ( ~ ( ( m  == 1) | (n == 1) )  | (m == 1 & n == 1)) 

e r r o r ( ’ Input must be a v e c t o r ’ )
end
y = sum( x ) / l eng t h ( x ) ;  % Actual computat ion

If  you would like, try  entering these commands in an M -file  called average.m 
The average function accepts a single input argument and re tu rns a single 
output argument. To call the  average function, enter:

z = 1:99;

average(z)

ans =
50

Basic Parts of a Function M-File
A function M -file  consists of:

• A function defin ition line

• A H1 line

• Help text

• The function body

• Comments
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Function Definition Line
The function defin ition line  in form s M ATLAB tha t the  M -file  contains a 
function, and specifies the argument calling sequence of the  function. The 
function defin ition  line for the  average function is:

func t i on y = average(x)

t -  input argument
----------  Unction nane

---------------------- outpit argument
-------------------------------- keyword

A ll M ATLAB functions have a function defin ition line tha t follows th is  pattern.

I f  the  function has m u ltip le  output values, enclose the  output argument lis t in 
square brackets. Input arguments, if  present, are enclosed in parentheses. Use 
commas to  separate m u ltip le  input or output arguments. Here’s a more 
complicated example.

f un c t i on  [ x , y , z ]  = sphe r e ( t he t a , ph i , r ho )

I f  there  is no output, leave the  output blank

f un c t i on  p r i n t r e s u l t s ( x )  

or use empty square brackets

f un c t i on  [ ]  = p r i n t r e s u l t s ( x )

The variables tha t you pass to  the function do not need to  have the same name 
as those in the  function defin ition  line.

H1 Line
The H 1 line, so named because it is the  firs t help text line, is a comment line 
im m ediately fo llow ing the  function defin ition  line. Because it consists of 
comment text, the  H1 line  begins w ith  a percent sign, “%” For the  average 
function, the  H1 line is:

% AVERAGE Mfean of vector  elements.

This is the  firs t line  of text tha t appears when a user types help funct ion_name 
at the  M ATLAB prompt. Further, the  l ook fo r  command searches on and 
displays only the H1 line. Because th is  line provides im portant summary
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in form ation about the  M -file , it is im portant to  make it as descriptive as 
possible.

Help Text
You can create online help for your M -files by entering text on one or more 
comment lines, beginning w ith  the  line  im m ediately fo llow ing the  H1 line. The 
help text for the  aver age function is:

% AVERAGE(X), where X is  a vector ,  i s  t he  mean of vector  elements.  
% Nonvector input  r es u l t s  i n  an er ror .

When you type help funct ion_name,  M ATLAB displays the comment lines 
tha t appear between the  function defin ition  line and the  firs t non-comment 
(executable or blank) line. The help system ignores any comment lines that 
appear after th is  help block.

For example, typ ing  help s i n  results in

SIN Sine.
SIN(X) is  the  s i ne of t he  elements of X.

Function Body
The function body contains all the  M ATLAB code tha t performs computations 
and assigns values to  output arguments. The statements in the function body 
can consist of function calls, programming constructs like  flow control and 
in teractive  input/ou tput, calculations, assignments, comments, and blank 
lines.

For example, the  body of the  average function contains a number of simple 
programm ing statements.

[ m n ]  = s i ze ( x ) ;
Flow control -------------------► i f  ( ~ ( ( m  == 1) | (n == 1) )  | (m == 1 & n == 1))
Brar ffEsrage c i^ ay-----------------► e r r o r ( ’ Input  must be a v e c t o r ’ )

end
Orrpiaim anc ̂ jg rn e t ► y = sum(x ) / l eng th ( x ) ;
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Comments
As mentioned earlier, comment lines begin w ith  a percent sign (%) Comment 
lines can appear anywhere in an M-file, and you can append comments to  the 
end of a line of code. For example,

% Add up a ll the  vector  elements. 
y = sum(x) % Use the  sum func t i on .

The firs t comment line  im m ediate ly fo llow ing the  function defin ition line  is 
considered the  H1 line  for the  function. The H1 line  and any comment lines 
im m ediately fo llow ing it constitute the online help entry for the  file.

In addition to  comment lines, you can insert blank lines anywhere in an M-file. 
B lank lines are ignored. However, a blank line can indicate the  end of the  help 
text entry for an M-file.

Help fo r  Director ies
You can make help entries for an entire  d irectory by creating a file  w ith  the 
special name Contents .m tha t resides in the  directory. Th is file  must contain 
only comment lines; tha t is, every line  must begin w ith  a percent sign. 
M ATLAB displays the  lines in a Contents.m file  whenever you type 

help di rectory_name

If  a d irectory does not contain a Cont en t s . m file, typ ing  help di rectory_name 
displays the  firs t help line  (the H1 line) for each M -file  in the  directory.

Function Names
M ATLAB function names have the  same constra ints as variab le  names. 
M ATLAB uses the firs t 31 characters of names. Function names must begin 
w ith  a letter; the  rem aining characters can be any combination of letters, 
numbers, and underscores. Some operating systems may restrict function 
names to  shorter lengths.

The name of the  text file  tha t contains a M ATLAB function consists of the 
function name w ith  the  extension .m  appended. For example,

aver age.m

If  the filenam e and the  function defin ition line  name are d ifferent, the  interna l 
name is ignored.
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Thus, w h ile  the  function name specified on the  function defin ition line  does not 
have to  be the  same as the filename, we strongly recommend tha t you use the 
same name for both.

How Funct ions Work
You can call function M -files from either the  M ATLAB command line  or from 
w ith in  other M-files. Be sure to  include all necessary arguments, enclosing 
input arguments in parentheses and output arguments in square brackets.

Function Name Resolution
When M ATLAB comes upon a new name, it resolves it in to  a specific function 
by fo llow ing these steps:

1 Checks to  see if  the  name is a variable.

2 Checks to  see if  the  name is a subfunction, a M ATLAB function tha t resides 
in the  same M -file  as the calling function. Subfunctions are discussed on 
page 10-38.

3 Checks to  see if  the  name is a priva te  function, a M ATLAB function that 
resides in a priva te  directory, a d irectory accessible only to  M -files in the 
d irectory im m ediately above it. P rivate directories are discussed on page 
10-39.

4 Checks to  see if  the  name is a function on the  M ATLAB search path. 
M ATLAB uses the  firs t file  it encounters w ith  the  specified name.

If  you duplicate function names, M ATLAB executes the  one found firs t using 
the  above rules. It is also possible to  overload function names. This uses 
additional dispatching rules and is discussed in Chapter 14, “Classes and 
Objects.”

What Happens When You Call a Function
When you call a function M -file  from either the  command line  or from w ith in  
another M -file, M ATLAB parses the  function in to  pseudocode and stores it in 
memory. Th is prevents M ATLAB from having to  reparse a function each tim e  
you call it during  a session. The pseudocode remains in memory un til you clear
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it using the  clear  command, or un til you qu it M ATLAB. V arian ts  of the  clear  
command tha t you can use to  clear functions from memory include:

clear  funct ion_name Remove specified function from workspace. 

c l ear  f unc t i ons  Remove all compiled M-functions. 

cl ear  al l  Remove all variables and functions

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for 
later M ATLAB sessions using the  pcode command. For example,

pcode average

parses average.m and saves the  resu lting pseudocode to  the file  named 
average.p.  Th is saves M ATLAB from reparsing average.m the firs t tim e  you 
call it in each session.

M ATLAB is very fast at parsing so the pcode command rare ly makes much of 
a speed difference.

One s ituation where pcode does provide a speed benefit is for large GUI 
applications. In th is  case, many M -files must be parsed before the  application 
becomes visible.

Another s ituation for pcode is when, for proprie tary reasons, you want to  hide 
a lgorithm s you’ve created in your M-file.

How MATLAB Passes Function Arguments
From the  program m er’s perspective, M ATLAB appears to  pass all function 
argum ents by value. Actua lly , however, M ATLAB passes by value only those 
arguments tha t a function modifies. I f  a function does not a lter an argument 
but sim ply uses it in a computation, M ATLAB passes the  argument by 
reference to  optim ize memory use.

Function Workspaces
Each M -file  function has an area of memory, separate from M A T LA B ’s base 
workspace, in which it operates. Th is area is called the function workspace, 
w ith  each function having its  own workspace context.
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W hile  using M ATLAB, the  only variables you can access are those in the calling 
context, be it the  base workspace or tha t of another function. The variables tha t 
you pass to  a function must be in the  calling context, and the  function re turns 
its  output arguments to  the  calling workspace context. You can however, define 
variables as global variables exp lic itly , a llow ing more than one workspace 
context to  access them.

Checking the N um ber  of Function A rgum en ts
The nargin and nargout functions let you determ ine how many input and 
output arguments a function is called w ith . You can then use conditional 
statements to  perform d ifferent tasks depending on the  number of arguments. 
For example,

f un c t i o n  c = t e s t a r g 1(a,b)  
i f  ( na rg i n  == 1) 

c = a . A2 ; 
e l s e i f  ( na r g i n  == 2 ) 

c = a + b;
end

Given a single input argument, th i s  function squares the  input value. Given 
tw o inputs, it adds them together.

Here’s a more advanced example tha t finds the  firs t token in a character string. 
A token is a set of characters delim ited by whitespace or some other character. 
Given one input, the  function assumes a default de lim ite r of whitespace; given 
two, it lets you specify another de lim ite r if  desired. It also allows for two 
possible output argument lists.

10-12



Functions

Function requires at least 
one input.

If one input, use white 
space celimtar.

Determine where non- - 
celiniter characters 
begin.

Find where token ends-

For two output argunent̂  
count characters after first 
celiniter (renancer).

f u n c t i on  [ t oken , r ena i nder ]  = s t r t o k ( s t r i n g , d e l i m i t e r s )  
i f  nargin < 1, e r r o r ( ’ Not enough input  arguments. ’ ); end 
token = [ ] ;  remainder = [ ] ;  
l en = l e n g t h ( s t r i n g ) ;  
i f  l en == 0 

re t u r n
end
i f  ( nargin == 1)

d e l i m i t e r s  = [ 9 : 13  32] ; % Whi te space charact  ers
end 
i = 1;

- w h i l e  ( a n y ( s t r i n g ( i )  == d e l i m i t e r s ) )  
i = i + 1;
i f  (i  > l en) ,  return,  end

end
star t  = i ;
whi le (~any (s t r i ng ( i )  == de l i mi t e r s ) )  

i = i + 1;
i f  (i > l e n ) , break, end

end
f i n i s h  = i -  1; 

token = s t r i n g ( s t a r t : f i n i s h ) ;  
i f  ( nargout == 2 )

remainder = s t r i n g ( f i n i s h  + 1:end);
end

Note s t r t o k  is a M ATLAB M -file  in the  s t r f u n  directory.

Note tha t the  order in which output argum ents appear in the  function 
declaration line  is im portant. The argument tha t the  function re tu rns in most 
cases appears firs t in the  list. A dditiona l, optional arguments are appended to 
the list.
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Cell array indexing

Passing Var iab le  N umbers  of A rgum en ts
The va r a r g i n  and varargout  functions let you pass any number of inputs or 
return any number of outputs to  a function. M ATLAB packs all of the  specified 
input or output in to  a cell array, a special kind of M ATLAB array tha t consists 
of cells instead of a rray elements. Each cell can hold any size or kind of data -  
one m ight hold a vector of num eric data, another in the  same array m ight hold 
an array of s tring  data, and so on.

Here’s an example function that accepts any number of two-element vectors 
and draws a line to  connect them.

f u n c t i on  t e s t v a r ( v a r a r g i n )  
f or  i = 1: l e n g t h ( va r a r g i n )

---------► x ( i )  = v a r a r g i n { i } ( 1);
y ( i )  = v a r a r g i n { i } ( 2 );

end
xmin = nrin(0 , m n ( x ) ) ;  
ymin = nrin(0 , m n ( y ) ) ;
ax i s ( [ xmi n  f i x ( max ( x ) ) +3  ymin f i x ( max ( y ) ) +3 ] )  
p l o t ( x , y )

Coded th is  way, the test  var function works w ith  various input lists; for 
example,

t e s t v a r ( [  2 3 ] , [ 1  5 ] , [ 4  8 ] , [ 6  5 ] , [ 4  2 ] , [ 2  3] )  
t e s t v a r ( [  -1 0 ] , [ 3  - 5 ] , [ 4  2 ] , [ 1  1])

Unpacking varargin Contents
Because va r arg i n  contains all the input arguments in a cell array, i t ’s 
necessary to  use cell array indexing to  extract the  data. For example,

y ( i )  = v a r a r g i n { i } ( 2 );

Cell array indexing has tw o subscript components:

• The cell indexing expression, in curly braces

• The contents indexing expression(s), in parentheses

In the  code above, the  indexing expression { i }  accesses the i ’th cell of 
vararg in .  The expression ( 2 ) represents the  second element of the  cell 
contents.
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Cell array augment

Packing varargout Contents
When allow ing any number of output arguments, you must pack all of the  
output in to  the varargout  cell array. Use nargout to  determ ine how many 
output arguments the  function is called w ith . For example, th is  code accepts a 
two-column input array, where the firs t column represents a set of x 
coordinates and the  second represents y coordinates. It breaks the  array into 
separate [x i y i ]  vectors tha t you can pass in to  the  t es t va r  function on the 
previous page.

f u n c t i on  [ var argout ]  = t e s t v a r 2 ( a r r ay i n )  
fo r  i = 1:nargout

-------- ► v a r a r go u t { i }  = a r r a y i n ( i , : )
end

The assignment statement inside the fo r  loop uses cell array assignment 
syntax. The left side of the  statem ent, the  cell array, is indexed using curly 
braces to  indicate tha t the  data goes inside a cell. For complete in form ation on 
cell array assignment, see “S tructures and Cell A rrays” in Chapter 13.

Here’s how to  call t e s t v a r 2 .

a = {1 2;3 4;5 6;7 8;9 0};
[p1, p2,p3,p4,p5]  = t es t va r 2 ( a ) ;

varargin and varargout in Argument Lists
va r a r g i n  or varargout  must appear last in the  argument lis t, fo llow ing any 
required input or output variables. That is, the  function call must specify the  
required arguments firs t. For example, these function declaration lines show 
the correct placement of va r a r g i n  and v a r a r gou t .

f un c t i on  [ o u t 1, o u t 2 ] = example1( a , b , v a r a r g i n )  
f un c t i on  [ i , j , v a r a r g o u t ]  = example2 ( x 1, y 1, x 2 , y 2 , f l a g )
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Local and Global Var iables
The same guidelines tha t apply to  M ATLAB variables at the  command line  also 
apply to  variables in M-files:

• You do not need to  type or declare variables. Before assigning one variab le  to  
another, however, you must be sure tha t the  variab le  on the  right-hand side 
of the  assignment has a value.

• Any operation tha t assigns a value to  a variab le  creates the variab le  if 
needed, or overwrites its  current value if  it already exists.

• M ATLAB variab le  names consist of a le tter followed by any number of 
letters, d ig its, and underscores. M ATLAB distinguishes between uppercase 
and lowercase characters, so A and a are not the  same variable.

• M ATLAB uses only the  firs t 31 characters of variab le  names.

O rd ina rily , each M ATLAB function, defined by an M-file, has its  own local 
variables, which are separate from those of other functions, and from those of 
the  base workspace. However, if  several functions, and possibly the  base 
workspace, all declare a particu la r name as global, then they all share a single 
copy of tha t variable. Any assignment to  tha t variable, in any function, is 
available to  all the  other functions declaring it global.

Suppose you want to  study the  effect of the  interaction coefficients, a  and p, in 
the  Lotka-Vo lte rra  predator-prey model

y 1 = y i - a y i  y2 

y2 = - y 2 + pyi y2

Create an M-file, l o t k a . m  

f un c t i on  yp = l o t k a ( t , y )
%LCTKA Lo t k a - Vo l t e r r a  p redator -p rey  model. 
global  ALPHA BETA
yp = [ y ( 1 )  -  ALPHA*y( 1) *y(2) ;  - y ( 2 )  + BETA*y(1)*y(2) ] ;
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Then in teractive ly  enter the  statements

global  ALPHA BETA 
ALPHA = 0.01 
BETA = 0.02
[ t , y ]  = ode23(’ l o t k a ’ , 0 , 10 , [ 1 ;  1] ) ;  
p l o t ( t , y )

The tw o global statements make the  values assigned to  ALPHA and BETA at the  
command prompt available inside the  function defined by l o t k a . m  They can 
be modified in teractive ly and new solutions obtained w ithou t editing any files.

For your M ATLAB application to  work w ith  global variables:

• Declare the  variab le  as global  in every function that requires access to  it. To 
enable the workspace to  access the  global variable, also declare it as global  
from the  command line.

• In each function, issue the global  command before the firs t occurrence of the  
variab le  name. The top of the  M -file  is recommended.

M ATLAB global variab le  names are typ ica lly  longer and more descriptive than 
local variab le names, and sometimes consist of all uppercase characters. These 
are not requirements, but guidelines to  increase the readab ility  of M ATLAB 
code and reduce the  chance of accidentally redefining a global variable.

Persistent Var iab les
A variab le  may be defined as pers i s t en t  so tha t it does not change value from 
one call to  another. Persistent variables may be used w ith in  a function only. 
Persistent variables remain in memory un til the  M -file  is cleared or changed.

pers i s t en t  is exactly like  global  , except tha t the  variab le  name is not in the 
global workspace, and the  value is reset if  the  M -file  is changed or cleared.

Three M ATLAB functions support the  use of persistent variables.

ml ock Prevents an M -file  from being cleared.

munlock Unlocks an M -file  tha t had previously been locked by mock.

mi slocked Indicates whether an M -file  can be cleared or not.
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Special Values
Several functions return im portant special values tha t you can use in your 
M-files.

ans Most recent answer (variable). If you do not assign an output
variab le  to  an expression, M ATLAB autom atically stores the 
result in ans.

eps Floating-point re la tive  accuracy. Th is is the  tolerance M ATLAB
uses in its  calculations.

realmax Largest floating-point number your computer can represent.

r ea l n i n  Smallest floating-point number your computer can represent.

pi 3.1415926535897...

i , j Im aginary un it.

in f  I n fin ity . Calculations like  n /0 , where n is any nonzero real value,
result in in f  .

NaN Not-a-Number, an inva lid  num eric value. Expressions like  0/0
and i n f / i n f  result in a NaN, as do a rith m e tic  operations 
involving a NaN. n/0, where n is complex, also re tu rns NaN.

computer Computer type.

f l o p s  Count of floating-point operations.

vers i on  M ATLAB version string.

A ll of these special functions and constants reside in M A T LA B ’s elmat 
directory, and provide online help. Here are several examples tha t use them in 
M ATLAB expressions.

x = 2*pi ;
A = [3+2i  7 - 8 i ] ;
tol  = 3*eps;
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Data Types
There are six fundam ental data types (classes) in M ATLAB, each one a 
m ultid im ensional array. The six classes are doubl e, char , sparse, storage,  
cel l  , and s t r u c t . The two-dimensional versions of these arrays are called 
matrices and are where M ATLAB gets its  name.

ar ray

char numeric cel l  s t r uc t

user object

storage

( i n t 8 , u i n t 8 , i n t 1 6 ,  
u i nt16,  i n t32,  ui nt32)

You w ill probably spend most of your tim e  w ork ing w ith  only tw o of these data 
types: the  double precision m a trix  (double) and the  character array (char) or 
s tring . Th is is because all computations are done in double-precision and most 
of the  functions in M ATLAB work w ith  arrays of double-precision numbers or 
strings.

The other data types are for specialized situa tions like  image processing 
( u n it8), sparse matrices (sparse), and large scale programming (cel l and 
s t r u c t ).

You can’t create variables w ith  the  types numeric,  ar ray,  or storage.  These 
v irtua l types serve only to  group together types tha t share some common 
a ttributes.

The storage data types are for memory efficient storage only. You can apply 
basic operations such as subscripting and reshaping to  these types of arrays 
but you can’t perform any math w ith  them. You must convert such arrays to 
double via the double function before doing any math operations.

You can define user classes and objects in M ATLAB tha t are based on the 
s t ruc t  data type. For more inform ation about creating classes and objects, see 
“Classes and Objects: An Overview” in Chapter 14.

double

sparse
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This tab le  describes the  data types in more detail.

Class Example Description

ar ray v irtu a l data type

cel l {17 ' hel l o' eye( 2)} Cell array. Elements of cell arrays contain other 
arrays. Cell arrays collect related data and 
inform ation of a d iss im ila r size together.

char 'Hel l o ' Character array (each character is 16 b its long). 
Also referred to  as a string.

double [1 2; 3 4] 
5+6i

Double precision num eric array (th is  is the  most 
common M ATLAB variab le  type).

numeri c v irtu a l data type

sparse speye(5) Sparse double precision m a trix  (2-D only). The 
sparse m a trix  stores matrices w ith  only a few 
nonzero elements in a fraction of the  space required 
for an equivalent fu ll m atrix . Sparse matrices 
invoke special methods especially ta ilored to  solve 
sparse problems.

storage v irtu a l data type

s t ruc t a. day = 12; 
a. col or = 'Red' ;  
a. mat = magic(3) ;

S tructu re  array. S tructu re  arrays have fie ld names. 
The fie lds contain other arrays. L ike  cell arrays, 
s tructures collect related data and inform ation 
together.

u i n t 8 ui n t8(magi c(3)) Unsigned 8 bit integer array. The u n i t 8 array 
stores integers in the  range from 0 to  255 in 1/8 the 
memory required for a double precision array. No 
mathematical operations are defined for u i n t 8 
arrays.

user object i n l i n e ( '  s i n ( x ) ' ) User-defined data type.
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Operators
M A T LA B ’s operators fa ll in to  th ree categories:

• A rith m e tic  operators tha t perform num eric computations, for example, 
adding tw o numbers or ra is ing the  elements of an array to  a given power.

• Relational operators that compare operands quan tita tive ly , using operators 
like  “ less th a n ” and “not equal to .”

• Logical operators tha t use the logical operators AND, OR, and NOT.

Ar i thmet i c  Opera to rs
M ATLAB provides these a rith m e tic  operators:

+ Addition

- Subtraction

* M u ltip lica tion

. / Right division

. \ Left division

+ Unary plus

- Unary m inus

Colon operator

Л Power
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. ’ Transpose

Complex conjugate transpose

* M a tr ix  m ultip lica tion

/ M a trix  righ t division

\ M a trix  left division

л M a trix  power

Arithmetic Operators and Arrays
Except for some m a trix  operators, M A T LA B ’s a rithm e tic  operators work on 
corresponding elements of arrays w ith  equal dimensions. For vectors and 
rectangular arrays, both operands must be the  same size unless one is a scalar. 
I f  one operand is a scalar and the  other is not, M ATLAB applies the scalar to 
every element of the  other operand -  th is  property is known as scalar 
expansi on.

This example uses scalar expansion to  compute the  product of a scalar operand 
and a m atrix.

A = magic(3)

A =

8 1 6
3 5 7
4 9 2

3 * A

ans =

24 3 18
9 15 21

12 27 6
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Relat ional  Opera tors
M ATLAB provides these re lational operators:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Relational Operators and Arrays
M A T LA B ’s re lational operators compare corresponding elements of arrays 
w ith  equal dimensions. Relational operators always operate 
element-by-element. In th is  example, the  resu lting m a trix  shows where an 
element of A is equal to  the corresponding element of B.

A = [2  7 6 ;9  0 5 ;3  0 .5  6 ];
B = [ 8  7 0 ;3  2 5 ;4  -1 7];
A == B

ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the  same size 
unless one is a scalar. For the  case where one operand is a scalar and the  other 
is not, M ATLAB tests the  scalar against every element of the  other operand. 
Locations where the  specified relation is t rue receive the  value 1. Locations 
where the  relation is false receive the  value 0 .
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Relational Operators and Empty Arrays
The relational operators work w ith  arrays for which any dimension has size 
zero, as long as both arrays are the  same size or one is a scalar. However, 
expressions such as

A == [ ]

return an error if  A is not 0-by-0 or 1-by-1.

To test for empty arrays, use the function

isempty(A)

Logical Opera tors
M ATLAB provides these logical operators:

& AND

NOT

Note In addition to  these logical operators, the  ops d irectory contains a 
number of functions tha t perform b itw ise logical operations. See online help 
for more inform ation.

Each logical operator has a specific set of rules tha t determ ines the  result of a 
logical expression:

• An expression using the  AND operator, &, is t rue if  both operands are logically 
true. In num eric terms, the  expression is t rue if  both operands are nonzero.
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This example shows the logical AND of the  elements in the vector u w ith  the 
corresponding elements in the vector v
u = [1 0 2 3 0 5];
v = [5  6 1 0 0 7];
u & v

ans =

1 0 1 0 0 1

• An expression using the  OR operator, | , is t rue if  one operand is logically true, 
or if  both operands are logically true. An CR expression is false only if  both 
operands are false. In num eric terms, the  expression is false only if  both 
operands are zero. Th is example shows the  logical CR of the  elements in the 
vector u and w ith  the  corresponding elements in the vector v.
u | v

ans =

1 1 1 1 0 1

• An expression using the NOT operator, ~, negates the  operand. This produces 
a false result if  the  operand is true, and true  i f  it is false. In num eric terms, 
any nonzero operand becomes zero, and any zero operand becomes one. This 
example shows the  negation of the  elements in the  vector u.
~u

ans =

0 1 0 0 1 0 

Logical Operators and Arrays
M A T LA B ’s logical operators compare corresponding elements of arrays w ith  
equal dimensions. For vectors and rectangular arrays, both operands must be 
the same size unless one is a scalar. For the  case where one operand is a scalar 
and the other is not, M ATLAB tests the scalar against every element of the  
other operand. Locations where the  specified relation is true  receive the value 
1. Locations where the  relation is false receive the  value 0 .
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Logical Functions
I n addition to  the logical operators, M ATLAB provides a number of logical 
functions.

Function Description Examples

xor Performs an exclusive CR on its
operands. xor re tu rns t rue i f  one 
operand is t rue and the other false. 
In num eric terms, the  function 
re tu rns 1 i f  one operand is nonzero 
and the  other operand is zero.

a ll Returns 1 if  all of the  elements in a
vector are t r u e  or nonzero. a ll 
operates columnwise on matrices.

a = 
b = 
xor(

ans

b)

0

u = [ 0  1 2 0] 
a l l ( u )

ans =

0

A = [0 1 2;3 5 0]; 
a l l ( A )

ans

0 1 0

any Returns 1 i f  any of the  elements of
its  argument are t rue or nonzero; 
otherwise, it re tu rns 0 . L i ke al l , 
the any function operates 
columnwise on matrices.

v = [5  0 8] 
any(v)

ans =

1

A number of other M ATLAB functions perform logical operations. For example, 
the  i snan function re tu rns 1 for NaNs; the i s i n f  function re turns 1 for In f s. See 
the  ops d irectory for a complete lis ting  of logical functions.
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Logical Expressions and Subscripting w ith the find Function 
The f i n d  function determ ines the indices of array elements tha t meet a given 
logical condition. I t ’s useful for creating masks and index matrices. In its  most 
general form, f i n d  re tu rns a single vector of indices. Th is vector can be used to  
index in to  arrays of any size or shape. For example,

magi c(4)

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = f i n d ( A  > 8); 
A( i )  = 100

A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

You can also use f i n d  to obtain both the row and column indices for a 
rectangular m atrix , as well as the array values tha t meet the  logical condition. 
Use the  help fa c ility  for more inform ation on f i nd .

Opera to r  Precedence
You can build expressions tha t use any combination of a rithm etic , re lational, 
and logical operators. Precedence levels determ ine the order in which 
M ATLAB evaluates an expression. W ith in  each precedence level, operators 
have equal precedence and are evaluated from left to  righ t. The precedence
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rules for M ATLAB operators are shown in th is  table, ordered from highest 
precedence level to  lowest precedence level

Operator Precedence Level

() Highest precedence

~ (negation)

л ’ л + (unary plus) -  (unary minus)

.*  . /  . \  * / \

+ (addition) -  (subtraction)

< < II > > II м II II
& | Lowest precedence

Precedence of &  and |
M A T LA B ’s left to  righ t execution precedence causes a|b&c to  be equivalent to 
(a|b)&c.  However, in most programming languages, a|b&c is equivalent to 
a | ( b & c ) , tha t is, & takes precedence over | .  To ensure com patib ility  w ith  
fu tu re  versions of M ATLAB, you should use parentheses to  explic ity specify the  
intended precedence of statements containing combinations of & and | .
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Overriding Default Presedence
The default precedence can be overridden using parentheses, as shown in th is  
example.

A = [3  9 5];
B = [2  1 5];
C = А. /В.Л2

C =

0.7500 9.0000 0. 2000 

C = ( А / В ) . л 2 

C =

2.2500 81.0000 1.0000 

Expressions can also include values tha t you access through subscripts.

b = sq r t ( A ( 2 ) )  + 2*B(1)

b =

7
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Flow Control
There are six flow control statements in M ATLAB:

• i f ,  together w ith  e l se and e l s e i f , executes a group of statements based on 
some logical condition.

• swi tch,  together w ith  case and otherwise,  executes d ifferent groups of 
statem ents depending on the  value of some logical condition.

• wh i l e  executes a group of statem ents an inde fin ite  number of times, based 
on some logical condition.

• fo r  executes a group of statements a fixed number of times.

• break term inates execution of a fo r  or wh i l e  loop.

• t r y . c a t c h  changes flow control if  an error is detected during  execution.

• r e t u rn  causes execution to  re turn  to  the  invoking function.

A ll flow constructs use end to  indicate the  end of the  flow control block.

Note You can often speed up the  execution of M ATLAB code by replacing fo r 
and wh i l e  loops w ith  vectorized code. See “O ptim iz ing  the  Performance of 
M ATLAB Code” on page 10-63.

if, else, and elseif
i f  evaluates a logical expression and executes a group of statements based on 
the  value of the  expression. In its  simplest form, its  syntax is:

i f  l og i ca l _expr ess i on  
statements

end

If  the logical expression is t rue (1), M ATLAB executes all the  statements 
between the  i f  and end lines. It resumes execution at the  line  fo llow ing the  end 
statement. If the  condition is false (0), M ATLAB skips all the  statements 
between the i f  and end lines, and resumes execution at the  line fo llow ing the 
end statement.
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For example,

i f  r em (a,2 ) == 0
d is p ( ’ a is  even’ ) 
b = a /2 ;

end

You can nest any number of i f  statements.

I f  the  logical expression evaluates to  a nonscalar value, all the  elements of the 
argument must be nonzero. For example, assume X is a m atrix . Then the 
statement

i f  X
st atements

end

is equivalent to

i f  a l l ( X ( : ) )  
st at ement s

end

The e lse  and e ls e if  statem ents fu rthe r conditionalize the  i f  statement:

• The e lse  statement has no logical condition. The statem ents associated w ith  
it execute if  the  preceding i f  (and possibly e ls e if  condition) is false (0).

• The e ls e if  statement has a logical condition tha t it evaluates if  the  
preceding i f  (and possibly e ls e if  condition) is false (0). The statements 
associated w ith  it execute if  its  logical condition is true  (1). You can have 
m u ltip le  e ls e i fs  w ith in  an i f  block.

i f  n < 0
d is p ( ’ Input 

e ls e i f  rem (n ,2 )
A = n/2;

e lse
A = (n+ 1 )/2 ;

end
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if Statements and Empty Arrays
An i f  condition tha t reduces to  an empty array represents a false condition. 
That is,

i f  A 
S1 

e lse  
S0

end

w ill execute statement S0 when A is an empty array.

sw itch
sw itch  executes certain statem ents based on the value of a variab le  or 
expression. Its  basic form is:

sw itch  expression (s c a la r or s t r in g )  
case v a lu e l

statem ents Ernies if expeseanis v a le l—
case va l ue2

statem ents Executes if epeseanis value2

o therw ise
statem ents Executes if express'andaes rat ---------►

end match any case

This block consists of:

• The word sw itch  followed by an expression to  evaluate.

• Any number of case groups. These groups consist of the  word case followed 
by a possible value for the  expression, all on a single line. Subsequent lines 
contain the  statements to  execute for the  given value of the  expression. 
These can be any valid M ATLAB statement including another swi tch  block. 
Execution of a case group ends when M ATLAB encounters the  next case 
statement or the  o the rw ise  statement. Only the  firs t matching case is 
executed.

• An optional o the rw ise  group. Th is consists of the  word o therw ise , followed 
by the statem ents to  execute if  the  expression’s value is not handled by any
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of the  preceding case groups. Execution of the  o the rw ise  group ends at the  
end statement.

• An end statement.

sw itch  works by comparing the  input expression to  each case value. For 
num eric expressions, a case statement is tru e  if  (val ue==expressi o n ). For 
s tring  expressions, a case statement is tru e  if  s tr  c n p (v a lu e ,e x p re s s io n ).

The code below shows a sim ple example of the  sw itch  statement. It checks the 
variab le  input_num for certain values. I f  i nput_numis - 1 , 0 , or 1 , the  case 
statem ents display the  value on screen as text. I f  input_num  is none of these 
values, execution drops to  the  o the rw ise  statement and the  code displays the 
text 'o th e r  va lue ' .

sw itch  input_num  
case -1

d is p ( 'n e g a t iv e  o n e '); 
case 0

d is p ( 'z e r o ') ;  
case 1

d is p ( 'p o s i t iv e  o n e '); 
o the rw ise

d is p ( ' other v a lu e ') ;
end

Note for C Programmers U n like  the  C language sw itch  construct, M A TLA B ’s 
sw itch  does not “fa ll th rough.” That is, if  the  firs t case statement is true, 
other case statem ents do not execute. Therefore, break statem ents are not 
used.
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sw itch  can handle m u ltip le  conditions in a single case statement by enclosing 
the  case expression in a cell array.

sw itch  var 
case 1

d is p ( ’ 1’ ) 
case {2 ,3 ,4 }

d is p ( ’ 2 or 3 or 4’ ) 
case 5

d is p ( ’ 5’ )
o the rw ise

d is p ( ’ somethi ng e ls e ’ )
end

w h i l e
The w h ile  loop executes a statement or group of statements repeatedly as long 
as the  contro lling expression is tru e  (1). Its  syntax is:

w h ile  expression 
statem ents

end

If  the  expression evaluates to  a m atrix , all its  elements must be 1 for execution 
to  continue. To reduce a m a trix  to  a scalar value, use the  a ll and any functions.

For example, th is  whil e loop finds the  firs t integer n for which n! (n factoria l) 
is a 100-d ig it number.

n = 1;
w h ile  p ro d (1:n ) < 1e100 

n = n + 1;
end

Exit a w h ile  loop at any tim e  using the  break statement. 

while Statements and Empty Arrays
A w h ile  condition tha t reduces to  an empty array represents a false condition. 
That is,

w h ile  A, S1, end 

never executes statement S1 when A is an empty array.
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for
The fo r  loop executes a statement or group of statem ents a predetermined 
number of times. Its  syntax is:

fo r  index = s ta rt: in c re m e n t:e n d  
st atements

end

The default increment is 1 . You can specify any increment, including a negative 
one. For positive indices, execution term inates when the  value of the  index 
exceeds the  end value; for negative increments, it te rm inates when the  index is 
less than the end value.

For example, th is  loop executes five times.

fo r  i = 2 :6
x ( i )  = 2*x( i - 1);

end

You can nest m u ltip le  fo r  loops.

fo r  i = 1:m
fo r  j = 1:n

A ( i , j )  = 1 /( i + j -  1);
end

end

Note You can often speed up the  execution of MATLAB code by replacing fo r  
and whil e loops w ith  vectorized code. See page 10-63 for details.

Using Arrays as Indices
The index of a fo r  loop can be an array. For example, consider an m-by-n array 
A. The statement

fo r  i = A
st atements

end

sets i equal to  the vector A ( : , k ) . For the  firs t loop ite ra tion , k is equal to  1; for 
the  second k is equal to  2 , and so on un til k equals n. That is, the  loop iterates
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for a number of tim es equal to  the  number of columns in A. For each iteration,
i is a vector containing one of the  columns of A.

break
The break statement te rm inates the  execution of a fo r  loop or w h ile  loop. 
When a break statement is encountered, execution continues w ith  the  next 
statement outside of the  loop. In nested loops, break exits from the  innermost 
loop only.

The example below shows a whi le  loop tha t reads the contents of the  file  f f t . m  
in to  a M ATLAB character array. A break statement is used to  exit the  w h ile  
loop when the  firs t empty line  is encountered. The resulting character array 
contains the  M -file  help for the  f f t  program.

f i d  = f open ( ’ f f t . m , ’ r ’ );
s = ’ ’ ;
w h ile  ~ fe o f ( f id )

l i n e  = f g e t l ( f i d ) ;  
i f  is e m p ty ( lin e ) ,  break, end 
s = st r v c a t ( s , l in e ) ;

end
d isp (s )

t ry ... catch
The general form  of a t r y /c a t  ch statement sequence is:

t r y  statem ent, . . . ,  s ta tem ent, catch statem ent, . . . ,  statement end

I n th is  sequence the statements between t r y  and catch are executed un til an 
error occurs. The statem ents between catch and end are then executed. Use 
la s te r r  to  see the  cause of the  error. I f  an error occurs between catch and end, 
M ATLAB term inates execution unless another t r y  ... catch sequence has been 
established.

return
re tu rn  term inates the  current sequence of commands and re tu rns control to  
the  invoking function or to  the  keyboard. re tu rn  is also used to  te rm ina te  
keyboard mode. A called function norm ally transfers control to  the function 
tha t invoked it when it reaches the  end of the  function. re tu rn  may be inserted
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w ith in  the  called function to  force an early te rm ina tion  and to  transfer control 
to  the  invoking function.
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Subfunctions

FUmary function

Function M -files can contain code for more than one function. The firs t function 
in the  file  is the  p rim ary  function, the  function invoked w ith  the  M -file  name. 
A dditiona l functions w ith in  the file  are subfunctions tha t are only v is ib le  to  the 
prim ary function or other subfunctions in the  same file.

Each subfunction begins w ith  its  own function defin ition  line. The functions 
im m ediately follow each other. The various subfunctions can occur in any 
order, as long as the  prim ary function appears firs t.

- fu n c t io n  [avg,med] = new stats(u)
% NEWSTATS Find mean and median w ith  in te rn a l 
n = lengt h(u); 
avg = mean(u,n); 
med = m edian(u,n);

fu n c tio n s .

Slbfundion - fu n c t io n  a = mean(v,n) 
% C a lcu la te  average. 
a = sum (v)/n;

SUbfunction —► fu n c tio n  m = m edian(v,n)
% C a lcu la te  median. 
w = s o r t ( v ) ;  
i f  reimjn, 2 ) == 1 

m = w ((n + 1) / 2 );
e lse

m = (w (n /2 )+ w (n /2+1) ) / 2 ;
end

The subfunctions mean and median calculate the  average and median of the 
input lis t. The prim ary function newstats determ ines the length of the  lis t and 
calls the  subfunctions, passing to  them the  lis t length n. Functions w ith in  the  
same M -file  cannot access the  same variables unless you declare them as global 
w ith in  the  pertinent functions, or pass them as arguments. I n addition, the 
help fa c ility  can only access the  prim ary function in an M-file.

When you call a function from w ith in  an M-file, M ATLAB firs t checks the  file  
to  see if  the  function is a subfunction. It then checks for a priva te  function 
(described in the follow ing section) w ith  tha t name, and then for a standard 
M -file  on your search path. Because it checks for a subfunction firs t, you can

10-38



Subfunctions

supersede existing M -files using subfunctions w ith  the  same name, for 
example, mean in the  above code. Function names must be unique w ith in  an 
M-file, however.

Private Functions
Private functions are functions tha t reside in subdirectories w ith  the special 
name p r iv a t e. They are v is ib le  only to  functions in the  parent directory. For 
example, assume the d irectory newmath is on the  M ATLAB search path. A 
subdirectory of newmath called p r iv a t e can contain functions tha t only the 
functions in newmath can call. Because priva te  functions are inv is ib le  outside of 
the  parent directory, they can use the  same names as functions in other 
directories. Th is is useful if  you want to  create your own version of a particu lar 
function w h ile  re ta in ing the  orig inal in another directory. Because M ATLAB 
looks for priva te  functions before standard M -file  functions, it w ill find a 
priva te  function named t e s t . m  before a nonprivate M -file  named t e s t . m

You can create your own priva te  directories s im ply by creating subdirectories 
called p r iv a te  using the  standard procedures for creating directories or folders 
on your computer. Do not place these priva te  directories on your path.
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Indexing and Subscripting 

Subscripts
The element in row i and column j of A is denoted by A ( i , j ) .  For example, 
suppose A = m ag ic (4 ), Then A (4 ,2 ) is the  number in the fourth  row and 
second column. For our magic square, A (4 ,2 ) is 15. So it is possible to  compute 
the  sum of the  elements in the  fourth  column of A by typ ing

A(1, 4) + A(2, 4) + A(3, 4) + A(4, 4)

It is also possible to  refer to  the  elements of a m a trix  w ith  a single subscript, 
A (k ) . Th is is the  usual way of referencing row and columns vectors. But it can 
also apply to  a fu lly  two-dimensional m atrix , in which case the  array is 
regarded as one long column vector formed from the columns of the  original 
m atrix . So, for our magic square, A (8 ) is another way of re ferring to  the  value 
14 stored in A (4 ,2 ) .

I f  you try  to  use the  value of an element outside of the  m atrix , it is an error

t = A (4 ,5)
Index exceeds m a trix  dimensions

However, if  you store a value in an element outside of the  m atrix , the  size of 
the  m a trix  increases to  accommodate the new element.

x = A;
x (4 ,5 ) = 17 

x =

16 2 3 13 0
5 11 10 8 0
9 7 6 12 0
4 14 15 1 17

Subscript expressions involving colons refer to  portions of a m atrix .

A (1 :k , j )

is the  firs t k elements of the  j -th column of A. So

sum (A (1 :4 ,4 ))
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computes the  sum of the  fourth  column. But there is a better way. The colon by 
itse lf refers to  all the  elements in a row or column of a m a trix  and the  keyword 
end refers to  the  last row or column. So

sum| A (:,e n d ))  

computes the  sum of the  elements in the  last column of A.

ans =
34

Concatenation
Concatenation is the  process of jo in ing  small matrices together to  make bigger 
ones. In fact, you made your firs t m a trix  by concatenating its  ind iv idua l 
elements. The pair of square brackets, [ ] ,  is the  concatenation operator. For an 
example, s tart w ith  the 4-by-4 magic square, A, and form

B = [A  A+32;A+48 A+16]

The result is an 8-by-8 m atrix, obtained by jo in ing  the four submatrices.

B =

16 2 3 13 48 34 35 45
5 11 10 8 37 43 42 40
9 7 6 12 41 39 38 44
4 14 15 1 36 46 47 33

64 50 51 61 32 18 19 29
53 59 58 56 21 27 26 24
57 55 54 60 25 23 22 28
52 62 63 49 20 30 31 17

This m a trix  is ha lf way to  being another magic square. Its  elements are a 
rearrangement of the  integers 1:64. Its  column sums are the correct value for 
an 8-by-8 magic square.

sumjB) 

ans =

260 260 260 260 260 260 260 260

10-41



10 M-File Programming

But its  row sums, suim(B’ ) ’ , are not all the  same. Further m anipulation is 
necessary to  make th is  a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a m a trix  using just a pair of square 
brackets. S tart w ith

X = A;

Then, to  delete the second column of X, use

X ( : ,2 )  = [ ]

Th is changes X to

X =
162 13 
511 8 
9 712 
414 1

If  you delete a single element from a m atrix , the  result isn ’t a m a trix  anymore. 
So expressions like

X (1 ,2 ) = [ ]

result in an error. However, using a single subscript deletes a single element, 
or sequence of elements, and reshapes the  rem aining elements in to  a row 
vector. So

X (2 :2 :10 ) = [ ]  

results in 

X =
169 27 13121

Advanced Indexing
M ATLAB stores each array as a column of values regardless of the  actual 
dimensions. Th is column consists of the  array columns, appended end to  end. 
For example, M ATLAB stores

A = [2  6 9; 4 2 8 ; 3 0 1]
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as

2
4
3
6
2
0
9
8
1

Accessing A w ith  a single subscript indexes d irectly  in to  the  storage column. 
A(3) accesses the  th ird  value in the  column, the number 3. A(7) accesses the 
seventh value, 9, and so on.

If  you supply more subscripts, M ATLAB calculates an index in to  the storage 
column based on the  dimensions you assigned to  the  array. For example, 
assume a two-dimensional array like  A has size [d1 d 2 ], where d1 is the  
number of rows in the  array and d2 is the  number of columns. I f  you supply tw o 
subscripts ( i , j )  representing row-column indices, the  offset is

( j - 1) * d 1+i

Given the  expression A (3 ,2 ) , M ATLAB calculates the  offset in to  A’s storage 
column as (2 -1 )*3+ 3 , or 6 . Counting down six elements in the  column accesses 
the value 0 .

Th is storage and indexing scheme also extends to  m ultid im ensional arrays. In 
th is  case, M ATLAB operates on a page-by-page basis to  create the  storage 
column, again appending elements columnwise.

For example, consider a 5-by-4-by-3-by-2 array C.
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Matlab  d isp la ys  C as

p a g e ( 1 , 1 )  =

p a g e ( 2 , 1 )  =

Matlab  s to res  C as
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Again, a single subscript indexes d irectly  in to  th is  column. For example, C(4) 
produces the  result

ans =

0

I f  you specify tw o subscripts ( i , j )  ind icating row-column indices, M ATLAB 
calculates the  offset as described above. Two subscripts always access the firs t 
page of a m ultid im ensional array, provided they are w ith in  the  range of the  
orig inal array dimensions.

If  more than one subscript is present, all subscripts must conform to  the 
orig inal array dimensions. For example, C( 6 ,2) is inva lid , because all pages of 
C have only five rows.

If  you specify more than tw o subscripts, M ATLAB extends its  indexing scheme 
accordingly. For example, consider four subscripts ( i , j , k , l )  in to  a 
four-dimensional array w ith  size [ d 1 d2 d3 d 4 ]. M ATLAB calculates the  offset 
in to  the  storage column by

( l- 1 ) (d 3 ) (d 2 ) (d 1 )+ (k -1 ) (d 2 ) (d 1 )+ ( j-1 ) (d 1 )+ i

For example, if  you index the  array C using subscripts (3,4,2,1), M ATLAB 
re tu rns the value 5 (index 38 in the  storage column).

In general, the  offset form ula for an array w ith  dimensions [d 1 d2 d3 . . .  dn] 
using any subscripts ( s i S2 S3 . . .  sn) is:

(Sn-1)(dn-i)(dn-2)...(di)+(Sn-1- 1)(dn-2)...(d1)+...+(S2- 1)(di)+Si

Because of th is  scheme, you can index an array using any number of subscripts. 
You can append any number of is  to  the  subscript list because these term s 
become zero. For example,

C ( 3 , 2 , 1 , 1 , 1 , 1 , 1 , 1 )  

is equivalent to

C(3, 2)
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String Evaluation
String evaluation adds power and fle x ib ility  to  the  M ATLAB language, le tting  
you perform operations like  executing user-supplied strings and constructing 
executable strings through concatenation of strings stored in variables.

eval
The eval function evaluates a s tring  tha t contains a M ATLAB expression, 
statement, or function call. In its  simplest form, the  eval syntax is:

e v a l ( ’ s t r i n g ’ )

For example, th is  code uses eval on an expression to  generate a H ilbert m a trix  
of order n.

t = ' 1/ ( i  + j - 1) ' ;  
fo r  i = 1 :n

fo r  j = 1:n
a ( i , j )  = eval ( t ) ;

end
end

Here’s an example tha t uses eval on a statement.

e v a l ( ’ t = c l ock ’ )

feval
feva l d iffers from eval in tha t it executes a function whose name is in a string, 
rather than an entire  M ATLAB expression. You can use feva l and the  input 
function to  choose one of several tasks defined by M-files. In th is  example, the  
functions have names like  sin,  cos, and so on.

fun = [ ’ s i n ’ ; ’ cos’ ; ’ l og ’ ]; 
k = in p u t ( ’ Choose f u n c t i o n  number: ’ ); 
x = input ( ’ Enter va lue: ’ ); 
f e v a l ( f u n ( k , : ) , x )
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Note Use feva l rather than eval whenever possible. M -files tha t use feva l 
execute faster and can be compiled w ith  the  M ATLAB compiler.

Construct ing Str ings fo r  Evaluat ion
You can concatenate strings to  create a complete expression for input to  eval . 
Th is code shows how eval can create 10 variables named P1, P2, ...P10, and set 
each of them to  a d ifferent value.

fo r  i =1:10
e v a l ( [ ’ P’ , i n t 2 s t r ( i ) , ’ = i . A2’ ] )

end
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Command/Function Duality
M ATLAB commands are statem ents like

load
help

Many commands accept m odifiers tha t specify operands.

load August17.dat 
help magi c 
t ype rank

An a lte rna te  method of supplying the  command m odifiers makes them s tring  
argum ents of functions.

l o a d ( ’ August17.dat ’ )
h e l p ( ’ magic’ )
t y p e ( ’ r ank ’ )

Th is is M A T LA B ’s “command/function d u a lity .” Any command of the  form 

command argument 

can also be w ritte n  in the  functional form

command(’ argument’ )

The advantage of the  functional approach comes when the s tring  argument is 
constructed from other pieces. The follow ing example processes m u ltip le  data 
files, A ugust1 .da t, August2 .da t, and so on. It uses the  function i n t 2 s t r , 
which converts an integer to  a character s tring, to  help build the  filename.

fo r  d = 1:31
s = [ ’ August’ i n t 2 s t r ( d )  ’ . d a t ’ ] 
l oad(s)

% Process the  con ten ts  of the  d - t h  f i l e  
end
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Empty Matrices
E arlie r versions of M ATLAB allowed for only one empty m atrix , the  0-by-0 
array denoted by [ ]. M ATLAB 5 provides for matrices and arrays where one, 
but not all, of the  dimensions is zero. For example, 1-by-0 , 10-by-0-by-20 , and 
[3  4 0 5 2] are all possible array sizes.

The two-character sequence[ ] continues to  denote the  0-by-0 m atrix . Empty 
arrays of other sizes can be created w ith  the  functions zeros, ones, rand, or 
eye. To create a 0-by-5 m atrix , for example, use,

E = zeros(0,5)

The basic model for empty matrices is tha t any operation that is defined for 
n-by-n matrices, and tha t produces a result whose dimension is some function 
of m and n, should s till be allowed when m or n is zero. The size of the  result 
should be tha t same function, evaluated at zero.

For example, horizontal concatenation

C = [A  B]

requires tha t A and B have the  same number of rows. So i f  A is m-by-n and B is 
m-by-p, then C is m-by-(n+p). Th is is s till tru e  if  m or n or p is zero.

Many operations in M ATLAB produce row vectors or column vectors. It is 
possible for the  result to  be the empty row vector.

r = z e ro s (1, 0 ) 

or the  empty column vector

C = zeros(0,1)

M ATLAB 5 reta ins M ATLAB 4 behavior for i f  and wh i l e  statements. For 
example,

i f  A, S1, else,  S0, end 

executes statement S0 when A is an empty array.
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Some M ATLAB functions, like  sum and max, are reductions. For m a trix  
arguments, these functions produce vector results; for vector arguments they 
produce scalar results. Em pty inputs produce the  fo llow ing results w ith  these 
functions:

• sum([ ]) is 0

• prod([ ]) is 1

• max([ ]) is [ ]

• m n( []) is [ ]
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Errors and W arn ings
In many cases, i t ’s desirable to  take specific actions when d ifferent kinds of 
errors occur. For example, you may want to  prompt the  user for more input, 
display extended error or w arn ing inform ation, or repeat a calculation using 
default values. M A T LA B ’s error handling capabilities let your application 
check for particu la r error conditions and execute appropria te code depending 
on the  situation.

Error Handl ing  w i t h  eval  and lasterr
The basic tools for error-handling in M ATLAB are:

• The eval function, which lets you execute a function and specify a second 
function to  execute if  an error occurs in the firs t.

• The l a s t e r r  function, which re tu rns a s tring  containing the  last error 
generated by M ATLAB.

The eval function provides error-handling capabilities using the two- 
argument form

eval ( ’ t r y s t r i n g ’ , ’ c a t c h s t r i n g ’ )

I f  the  operation specified by t r y s t r i  ng executes properly, eval sim ply returns. 
I f  t r y s t r i n g  generates an error, the  function evaluates ca tch s tr i ng. Use 
catchst r i ng to specify a function tha t determ ines the error generated by 
t r y s t r i n g  and takes appropria te action.

The t r y s t r i n g / c a t c h s t r i n g  form  of eval is especially useful in conjunction 
w ith  the  l a s t e r r  function. l a s t e r r  re tu rns a s tring  containing the  last error 
message generated by M ATLAB. Use l a s t e r r  inside the  c a t c h s t r i ng  function 
to  “catch” the  error generated by t r y s t r i n g .

For example, th is  function uses l a s t e r r  to check for a specific error message 
tha t can occur during m a trix  m u ltip lica tion . The error message indicates tha t 
m a trix  m u ltip lica tion  is impossible because the  operands have different inner 
dimensions. I f  the  message occurs, the  code truncates one of the  m atrices to 
perform the m u ltip lica tion .
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f u n c t i o n  C = catchfcn(A,B)  
l = l a s t e r r ;
j = f i n d s t r ( l , ’ Inner mat r i x  dimensions’ ) 
i f  ( ~ i semp t y ( j ) )

[m,n]  = si ze(A)
[ p , q ]  = si ze(B)  
i f  (n>p)

A( : , p+1 :n )  = [ ]  
elsei  f (n<p)

B(n+1:p , : )  = [ ]
end
C = A*B;

else
C = 0;

end

This example uses the  two-argument form of eval w ith  the  cat chfcn function 
shown above.

clear
A = [1 2 3; 6 7 2; 0 1 5];
B = [ 9  5 6 ; 0 4 9]; 
e v a l ( ’ A*B’ , ’ ca t ch ( A, B) ’ )

A = 1:7;
B = randn(9,9) ;  
e v a l ( ’ A*B’ , ’ catchfcn(  A B ) ’ )

Displaying Error and Warn ing  Messages
Use the er ror  and f p r i n t f  functions to  display error in form ation on the 
screen. The er ror  function has the  syntax

e r r o r ( ’ e r r or  s t r i n g ’ )

I f  you call the  er ror  function from inside an M -file, er ror  displays the  text in 
the  quoted s tring  and causes the M -file  to  stop executing. For example, suppose 
the  fo llow ing appears inside the  M -file  m y f i l e . m

i f  n < 1
e r r o r ( ’ n must be 1 or g r e a t e r . ’ ) 

end
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For n equal to  0 , the  fo llow ing text appears on the  screen and the M -file  stops.

??? Error  using ==> r r y f i l e  
n must be 1 or greater .

In M ATLAB, w arn ings are s im ila r to  error messages, except program 
execution does not stop. Use the warning function to  display w arn ing 
messages.

warn i ng( ’ warning s t r i n g ’ )

The function l as twarn displays the  last w arn ing message issued by M ATLAB.
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Times and Dates
M ATLAB provides functions for tim e  and date handling. These functions are 
in a d irectory called t imefun in the  M ATLAB Toolbox.

Category Function Description

Current tim e  and date now Current date and tim e  as serial date number.

date Current date as date string.

c l ock C urrent date and tim e  as date vector.

Conversion datenum Convert to  serial date number.

dates t r Convert to  s tring  representation of date.

datevec Date components.

U tility calendar Calendar.

weekday Day of the  week.

eomday End of month.

datet ic k Date form atted tick  labels.

T im ing cput i  me CPU tim e  in seconds.

t i c ,  t oc Stopwatch tim er.

et ime Elapsed tim e.

Date Formats
M ATLAB works w ith  th ree d ifferent date formats: date strings, serial date 
numbers, and date vectors.

When dealing w ith  dates you typ ica lly  w ork w ith  date strings (16-Sep-1996). 
M ATLAB w orks in te rna lly  w ith  serial date numbers (729284). A serial date 
represents a calendar date as the  number of days tha t has passed since a fixed 
base date. In MATLAB, serial date number 1 is January 1, 0000. MATLAB also 
uses serial tim e  to  represent fractions of days beginning at m idn ight; for
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example, 6 p.m. equals 0.75 serial days. So the  s tring  ’ 16-Sep- 1996, 6:00 pm 
in MATLAB is date number 729284.75.

A ll functions tha t require dates accept e ither date strings or serial date 
numbers. I f  you are dealing w ith  a few dates at the  MATLAB command-line 
level, date strings are more convenient. I f  you are using functions tha t handle 
large numbers of dates or doing extensive calculations w ith  dates, you w ill get 
better performance if  you use date numbers.

Date vectors are an internal form at for some M ATLAB functions; you do not 
typ ica lly  use them in calculations. A date vector contains the elements [ year 
month day hour mi nute second] .

M ATLAB provides functions tha t convert date s trings to  serial date numbers, 
and vice versa. Dates can also be converted to  date vectors.

Here are examples of the  three date form ats used by M ATLAB.

Date s tring  02-Cfct-1996

Serial date number 729300

Date vector 1996 10 2 0 0 0

Conversions Between Date Formats 
Functions tha t convert between date form ats are:

datenum 

dates t r  

datevec
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Here are some examples of conversions from one date format to  another.

d i = datenun(‘ 02-Cct- 1996')

d i =
729300

d2 = d a t e s t r ( d 1+10)

d2 =
12-Cct-1996 
dv1 = dat evec(d1)

dv1 =
199610 2 0 0 0 

dv2 = dat evec(d2 ) 

dv2 =
199610 12 0 0 0 

Date String Formats
The datenum function is im portant for doing date calculations effic iently. 
datenum takes an input s tring  in any of several formats, w ith  'dd-nmm-yyyy' , 
' mn/dd/yyyy'  , or 'dd-nm m yyyy, hh:mmss.ss '  most common. You can form 
up to  six fie lds from le tters and d ig its  separated by any other characters.

• The day fie ld is an integer from 1 to  31.

• The month fie ld is e ither an integer from 1 to  12 or an a lphabetic s tring  w ith  
at least th ree characters.

• The year fie ld is a non-negative integer: if  only tw o d ig its  are specified, then 
a year 19yy is assumed; if  the  year is om itted, then the  current year is used 
as a default.

• The hours, m inutes, and seconds fie lds are optional. They are integers 
separated by colons or followed by ’ A M ’ or ’ PM ’ .
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For example, if  the  current year is 1996, then these are all equivalent

’ 17- May- 1996’
’ 17- May-96’
’ 17- Mfey’
’ Mfey 17, 1996’
’ 5 /17 /96 ’
’ 5 /17 ’

and both of these represent the  same tim e

’ 17- May- 1996, 18:30’
’ 5/ 17/96/6:30 pm

Note tha t the  default format for numbers-only input follows the  American 
convention. Thus 3/ 6 is March 6, not June 3.

I f  you create a vector of input date strings, use a column vector and be sure all 
strings are the  same length. F ill in w ith  spaces or zeros.

Output Formats
The function da t es t r ( D , da t e f o r  m) converts a serial date D to  one of 19 
d ifferent date s tring  output form ats showing date, tim e, or both. The default 
output for dates is a day-month-year string: 01-Mar- 1996. You select an 
a lte rna tive  output format by using the  optional integer argument da te fo r m
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dateform Format Description

0 01-Mar- 1996 15:45:17 day-month-year hour:minute:second

1 01-Mar-1996 day-month-year

2 03/01/96 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 wed day of week, th ree letters

9 W day of week, single letter

10 1996 year, four d ig its

11 96 year, tw o d ig its

12 Mar96 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:m inute

16 03:45 PM hour:m inute  AM or PM

17 69

5

calendar quarter-year

18 Q1 calendar quarter
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Here are some examples of converting the  date March 1, 1996 to  various 
form s using the  dates t r  function. 
d = ’ 01-Mar- 1996’

d =

01-Mar-1996 

da t es t r ( d )  

ans =
01-Mar-1996 

da tes t r ( d ,  2 ) 

ans =
03/01/96 

da tes t r ( d ,  17) 

ans =
Q1-96
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Current  Date and Time
The function date re tu rns a s tring  for today’s date. 

date

ans =
02-Cct-1996

The function now re tu rns the serial date number for the  current date and time.

now

ans =
729300.71 

datest r (now)  

ans =
02-Cct- 1996 16:56:16 

d a t e s t r ( f l oo r ( n o w ) )  

ans =
02-Cct-1996
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Obtain ing User Input
To obtain input from a user during M -file  execution, you can:

• Display a prompt and obtain keyboard input.

• Pause un til the  user presses a key.

• Build  a complete graphical user interface.

This section covers the  firs t tw o topics. The th ird  top ic is discussed in Using 
M ATLAB Graphics and B u ild ing  G UIs w ith  M ATLAB.

Prompt ing fo r  Keyboard  Input
The i nput function displays a prompt and w a its  for a user response. Its  syntax 
is:

n = i n p u t ( ’ p r o n p t _s t r i ng ’ )

The function displays the  p ronp t_s t r i ng ,  w a its  for keyboard input, and then 
re tu rns the  value from the  keyboard. I f  the  user inputs an expression, the 
function evaluates it and re turns its  value. Th is function is useful for 
im plem enting menu-driven applications.

input  can also return user input as a string, rather than a num eric value. To 
obtain s tring  input, append ’ s ’ to  the  function ’s argument list.

name = i n p u t ( ’ Enter address: ’ , ’ s ’ );

Pausing During Execution
Some M -files benefit from pauses between execution steps. For example, the  
p e t a l s . m  script shown on page 10-5 pauses between the plots it creates, 
a llow ing the  user to  display a plot for as long as desired and then press a key 
to  move to  the next plot.

The pause command, w ith  no arguments, stops execution un til the  user presses 
a key. To pause for n seconds, use:

pause(n)
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Shell Escape Functions
It is sometimes useful to  access your own C or Fortran programs using shell 
escape functions. Shell escape functions use the  shell escape command ! to 
make external stand-alone programs act like  new M ATLAB functions. A shell 
escape M -function is an M -file  tha t:

1 Saves the appropria te variables on disk.

2 Runs an external program (which reads the data file, processes the data, and 
w rites  the  results back out to  disk).

3 Loads the processed file  back in to  the  workspace.

For example, look at the  code for g a r f i e l d . i r i  below. This function uses an 
external function, gareqn, to  find the  solution to  G arfie ld ’s equation.

f un c t i on  y = g a r f i e l d ( a , b , q , r )  
save gardata a b q r 
!gareqn 
load gardata

This M-file:

1 Saves the input arguments a, b, q, and r to  a M A T-file  in the workspace 
using the save command.

2 Uses the  shell escape operator to  access a C, or Fortran program called 
gareqn tha t uses the  workspace variables to  perform its  computation. 
gareqn w rites  its  results to  the  gardata M AT-file.

3 Loads the gar data M A T-file  to  obtain the  results.

Reading and Writing MAT Files The M AT-file subroutine library, described in the  
MATLAB Application Program Interface Guide, provides routines for reading 
and w rit in g  MAT-files. Also see th is  document for inform ation on MEX-files, 
and C or Fortran functions tha t you can call d irectly  from MATLAB.
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Optimizing the Performance of MATLAB Code
This section describes techniques tha t often improve the  execution speed and 
memory management of M ATLAB code:

• Vectorization of loops

• Vector preallocation

M ATLAB is a m a trix  language, which means it is designed for vector and 
m a trix  operations. For best performance, you should take advantage of th is  
where possible.

Vector izat ion of Loops
You can speed up your M -file  code by vectorizing algorithm s. Vectorization 
means converting fo r  and wh i l e  loops to  equivalent vector or m a trix  
operations.

A Simple Example
Here is one way to  compute the sine of 1001 values ranging from 0 to  10.

i = 0 ;
fo r  t = 0 : . 01:10

i = i+ 1; 
y ( i )  = s i n ( t ) ;

end

A vectorized version of the  same code is:

t = 0 : . 01 : 10; 
y = s i n ( t ) ;

The second example executes much faster than the firs t and is the  way 
M ATLAB is meant to  be used. Test th is  on your system by creating M -file  
scripts tha t contain the code shown, then using the  t i c  and to c  commands to  
tim e  the  M-files.

An Advanced Example
repmat is an example of a function tha t takes advantage of vectorization. It 
accepts three input arguments: an array A, a row dimension Ml and a column 
dimension N.
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rep ra t creates an output array tha t contains the elements of a rray A, 
replicated and “tile d ” in an M-by-N arrangement.

A = [1 2 3; 4 5 6 ];
B = r ep r a t ( A , 2 , 3 ) ;

B =

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6

I.GEt rcwend d im  sizes

2 GEnectevelcrsof indces 
froml to row/ crirnn 3ze

3. Ge6teinde< mEtricesfrom 
vectors ebove

1

rep ra t uses vectorization to  create the  indices tha t place elements in the  
output array.

f u n c t i on  B = r ep r a t ( A , MN)  
i f  nargin < 2

e r r o r ( ’ Requi res at least  2 i n p u t s . ’ ) 
e l s e i f  nargin == 2 

N = M|
end

—► [ r n ]  = s i ze(A) ;  
r in d  = ( 1: r ) ’ ;
nind = ( 1:n)  ’ 
r in d  = r i nd( 
nind = ni nd(

ones(1 ,M) ) ; 
ones(1, N) ) ;

B = A ( r i nd , n i n d ) ;

above obtains the  row and column sizes of the  input array.

2 above creates tw o column vectors. r in d  contains the  integers from 1 through 
the  row size of A. The nind variab le  contains the  integers from 1 through the 
column size of A.

3 above uses a M ATLAB vectorization tr ic k  to  replicate a single column of 
data through any number of columns. The code is:

B = A ( : , ones ( 1 , n_co l s ) )

where n_cols is the  desired number of columns in the  resulting m atrix.
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The fina l line of repmat uses array indexing to  create the output array. Each 
element of the  row index array, mind, is paired w ith  each element of the  column 
index array, nind:

1 The firs t element of mind, the  row index, is paired w ith  each element of nind. 
M ATLAB moves through the  ni nd m a trix  in a columnwise fashion, so 
m ind(1, 1) goes w ith  n i n d ( 1, 1) , then n i nd ( 2 , 1), and so on. The result f ills  
the  firs t row of the  output array.

2 Moving columnwise through mind, each element is paired w ith  the  elements 
of nind as above. Each complete pass through the  nind m a trix  f il ls  one row 
of the  output array.

A rray  Preal locat ion
You can often improve code execution tim e  by preallocating the arrays tha t 
store output results. Preallocation prevents M ATLAB from having to  resize an 
array each tim e  you enlarge it. Use the appropria te preallocation function for 
the  kind of array you are w ork ing w ith .

Array Type Function Examples

Num eric zeros y = z e r o s ( 1, 100);
array

Cell array cel l B = c e l l ( 2 , 3 ) ;
B{1,3}  = 1:3;
B{ 2,2}  = ’ s t r i n g ’ ;

S tructure s t r uc t , data = repmat ( s t r u c t ( ’ x ’ , [ 1  3 ] , . . .
array repmat ’ y ’ , [ 5  6 ] ) ,  1, 3);

Preallocation also helps reduce memory fragm entation if  you work w ith  large 
matrices. In the  course of a M ATLAB session, memory can become fragmented 
due to  dynam ic memory allocation and deallocation. Th is can result in plenty 
of free memory, but not enough contiguous space to  hold a large variable. 
Preallocation helps prevent th is  by a llow ing M ATLAB to  “grab” sufficient 
space for large data constructs at the  beginning of a computation.
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Notes on Mem ory  Use
This section discusses ways to  conserve memory and improve memory use. 

Memory Management Functions
M ATLAB has five functions to  improve how memory is handled:

• cl ear  removes variables from memory.

• pack saves existing variables to  disk, then reloads them contiguously. 
Because of tim e  considerations, you should not use pack w ith in  loops or 
M -file  functions.

• qui t  exits M ATLAB and re tu rns all allocated memory to  the system.

• save selectively stores variables to  disk.

• load reloads a data file  saved w ith  the  save command.

Note save and load are faster than M ATLAB low-level file  I/O routines. save 
and load have been optim ized to  run faster and reduce memory 
fragm entation. See Chapter 2, “M ATLAB W orking Environm ent” for details 
on these functions.

On some systems, the  whos command displays the amount of free memory 
rem aining. However, be aware tha t:

• I f  you delete a variab le  from the  workspace, the  amount of free memory 
indicated by whos usually does not get larger unless the deleted variable 
occupied the  highest memory addresses. The number actua lly indicates the 
amount of contiguous, unused memory. C learing the  highest variab le  makes 
the number larger, but clearing a variab le  beneath the highest variab le  has 
no effect. Th is means tha t you m ight have more free memory than is 
indicated by whos.

• Computers w ith  v irtu a l memory do not display the  amount of free memory 
rem aining because neither M ATLAB nor the  hardware imposes lim ita tions.

Removing a Function From Memory
M ATLAB creates a lis t of M- and MEX-filenames at s ta rtup  for all files that 
reside below the r a t l a b / t o o l  box directories. Th is lis t is stored in memory and
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is freed only when a new list is created during a call to  the  path function. 
Function M -file  code and M E X -file  relocatable code are loaded in to  memory 
when the  corresponding function is called. The M -file  code or relocatable code 
is removed from memory when:

• The function is called again and a new version now exists.

• The function is exp lic itly  cleared w ith  the  cl ear  command.

• A ll functions are exp lic itly  cleared w ith  the c l ear  f unc t i ons  command.

• M ATLAB runs out of memory.

Nested Function Calls
The amount of memory used by nested functions is the  same as the amount 
used by calling them  on consecutive lines. These tw o examples require the 
same amount of memory.

r esu l t  = f u n c t i o n 2 ( f u n c t i o n 1 ( i n p u t 9 9 ) ) ;

resu l t  = f unc t i on1 ( i npu t 99 ) ;  
r esu l t  = f u n c t i o n 2 ( r e s u l t ) ;

Variables and Memory
Memory is allocated for variables whenever the  left-hand side variab le in an 
assignment does not exist. The statement

x = 10

allocates memory, but the  statement

x ( 10) = 1

does not allocate memory if  the  10th  element of x exists.
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To conserve memory:

• Avoid creating large tem porary variables, and clear tem porary variables 
when they are no longer needed.

• Avoid using the  same variables as inputs and outputs to  a function. They 
w ill be copied by reference. For example,
y = f un ( x , y )

is not preferred because y is both an input and an output variable.

• Set variables equal to  the  empty m a trix  [ ]  to  free memory, or clear them 
using
clear  var iable_name

• Reuse variables as much as possible.

Global Variables. Declaring variables as gl obal merely puts a flag in a symbol
table. It does not use any more memory than defin ing nonglobal variables.
Consider the fo llow ing example.

global  a
a = 5;

Now there  is one copy of a stored in the  M ATLAB workspace. Typing

clear  a

removes a from the  M ATLAB workspace, but it s till exists in the  global
workspace.

clear  global  a

removes a from the global workspace.

PC-Specific Topics

• There are no functions implemented to  m anipu late the  way M ATLAB 
handles Microsoft W indows system resources. W indows uses system 
resources to  track fonts, windows, and screen objects. Resources can be 
depleted by using m u ltip le  figu re  windows, m u ltip le  fonts, or several 
U icontrols. The best way to  free up system resources is to  close all inactive 
windows. I conified w indows s till use resources.

10-68



Optimizing the Performance of MATLAB Code

• The performance of a permanent swap file  is typ ica lly  better than a 
tem porary swap file.

• Typica lly a swap file  tw ice the size of the  installed RAM is sufficient. 

UNIX-Specific Topics

• Memory tha t M ATLAB requests from the  operating system is not returned 
to  the  operating system un til the  M ATLAB process in finished.

• M ATLAB requests memory from the  operating system when there  is not 
enough memory available in the M ATLAB heap to  store the  current 
variables. It reuses memory in the  heap as long as the  size of the  memory 
segment required is available in the M ATLAB heap.

For example, on one machine these statem ents use approxim ately 15.4 MB 
of RAM.

a = ra n d (1e6 , 1); 
b = ra n d (1e6 , 1);

These statements use approxim ately 16.4 MB of RAM.
c = ra n d (2 . 1e6 , 1);

These statements use approxim ately 32.4 MB of RAM.
a = ra n d (1e6 , 1); 
b = ra n d (1e6 , 1); 
c lear
c = ra n d (2 . 1e6 , 1);

Th is is because M ATLAB is not able to  f it  a 2.1 MB array in the space 
previously occupied by tw o 1 MB arrays. The simplest way to  prevent 
overallocation of memory, is to  preallocate the  largest vector. Th is series of 
statem ents uses approxim ately 32.4 MB of RAM

a = ra n d (1e6 , 1); 
b = ra n d (1e6 , 1); 
c lear
c = ra n d (2 . 1e6 , 1);
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w h ile  these statements use only about 16.4 MB of RAM

c = ra n d (2 . 1e6 , 1); 
c lear
a = ra n d (1e6 , 1); 
b = ra n d (1e6 , 1);

A llocating the  largest vectors firs t allows for optimal use of the  available 
memory.

What Does " Out of Memory” Mean?
Typica lly the  Cut of Memory message appears because M ATLAB asked the 
operating system for a segment of memory larger than what is currently  
available. Use any of the  techniques discussed in th is  section to  help optim ize 
the  available memory. I f  the  Cut of Memory message s till appears:

• Increase the  size of the  swap file.

• Make sure tha t there  are no external constraints on the  memory accessible 
to  M ATLAB (on U N IX  systems use the lim it command to  check).

• Add more memory to  the system.

• Reduce the size of your data.
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11 Character Arrays (Strings)

This chapter explains M A T LA B ’s support for s tring  data. It describes how to  
create character arrays and cell arrays of strings, the  tw o ways to  represent 
strings. It also discusses how to  perform common s tring  operations, such as 
searching and replacing, and how to  convert between s tring  and num eric 
formats.

The s tring  functions are located in the d irectory named s t r f u n  in the  M ATLAB 
Tool box.

Category Function Description

General char

double 

c e l l s t  r 

blanks 

deblank 

eval

S tring Tests i schar

i sce l l  s t r

i s l e t t e r

i sspace

S tring  Operations s t r ca t  

s t r vcat  

st rcmp 

strncmp 

f i nds t  r 

s t r j u s t  

strmat ch

Create character array (string).

Convert s tring  to  num eric codes.

Create cell array of s trings from character array. 

S tring of blanks.

Remove tra ilin g  blanks.

Execute s tring  w ith  M ATLAB expression.

True for character array.

True for cell array of strings.

True for le tters of alphabet.

True for whitespace characters.

Concatenate strings.

Concatenate strings vertically.

Compare strings.

Compare firs t N characters of strings.

Find one s tring  w ith in  another.

Justify  string.

Find matches for string.

11-2



Category Function Description

s t r r e p Replace s tring  w ith  another.

s t r t o k Find token in string.

upper Convert s tring  to  uppercase.

lower Convert s tring  to  lowercase.

S tring  to  Number nu r2s tr Convert number to  string.
Conversion

i n t 2s tr Convert integer to  string.

r a t 2s tr Convert m a trix  to  eval ’able string.

s t r 2 nurn Convert s tring  to  number.

s p r i n t f W rite  form atted data to  string.

sscanf Read s tring  under form at control.

Base Number hex2nurn Convert IEEE hexadecimal to  double precision
Conversion number.

hex2dec Convert hexadecimal s tring  to  decimal integer.

dec2hex Convert decimal integer to  hexadecimal string.

b in 2dec Convert b inary s tring  to  decimal integer.

dec2 bin Convert decimal integer to  b inary string.

base2dec Convert base B s tring  to  decimal integer.

dec2 base Convert decimal integer to  base B string.
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Character A rrays
In M ATLAB, the  term  string  refers to  an array of characters. M ATLAB 
represents each character in te rna lly  as its  corresponding num eric value. 
Unless you want to  access these values, however, you can sim ply work w ith  the  
characters as they display on screen.

Specify character data by placing characters inside a pair of single quotes. For 
example, th is  line  creates a 1-by-13 character array called name.

name = ’ Thomas R Lee’ ;

I n the  workspace, the  output of whos shows 

Name Size Bytes Class

name 1x13 26 char ar ray

You can see tha t a character uses tw o bytes of storage in te rna lly .

The class and i schar  functions show name’s iden tity  as a character array.

class(name)

ans = 
char

ischar(name) 

ans =
1
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Convert ing Between Characters and Numer ic  
Values
Character arrays store each character as a 16-bit num eric value. Use the 
double function to  convert s trings to  th e ir num eric values, and char to  revert 
to  character representation.

name = double(name)

name =
Columns 1 through 12

84 104 111 109 97 115 32 82 46 32 76 101

Column 13

101

name = char(name) 
name =

Thomas R Lee

Creating Two-Dimensional  Character  A r ra y s
When creating a two-dimensional character array, be sure tha t each row has 
the same length. For example, th is  line  is legal because both input rows have 
exactly 13 characters.

name = [ ’ Thomas R Lee’ ; ’ Sr. Developer ’ ] 

name =

Thomas R. Lee 
Sr. Developer

When creating character arrays from strings of d ifferent lengths, you can pad 
the  shorter strings w ith  blanks to  force rows of equal length.

name = [ ’ Thomas R Lee ’ ; ’ Senior Developer ’ ]
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A sim pler way to  create s tring  arrays is to  use the char function. char 
autom atica lly pads all strings to  the length of the  longest input s tring . In th is  
example, char pads the 13-character input s tring  ’ Thoras R Lee’ w ith  three 
tra ilin g  blanks so tha t it w ill be as long as the  second string.

nare = c h a r ( ’ Thoras R Lee’ , ’ Senior Developer ’ ) 

nare =

Thoras R Lee 
Senior Developer

When extracting strings from an array, use the  deblank function to  remove any 
tra ilin g  blanks.

t r i r n a r e  = deblank(nanre(1, : ) )  

t r i r n a r e  =

Thoras R Lee 

s i z e ( t r i r n a r e )  

ans =

1 13
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Cell A rrays  of Strings
I t ’s often convenient to  store groups of strings in cell arrays instead of standard 
character arrays. Th is prevents you from having to  pad strings w ith  blanks to 
create character arrays w ith  rows of equal length. A set of functions enables 
you to  work w ith  cell arrays of strings:

• You can convert between standard character arrays and cell arrays of 
strings.

• You can apply s tring  comparison operations to  cell arrays of strings.

For deta ils on cell arrays see the Structures and Cell A rrays chapter.

Convert ing Between Character  A r ra y s  and Cell 
A r ra y s  of Str ings
The cel l s t r  function converts a character array in to  a cell a rray of strings. 
Consider the  character array

data = [ ’ A l l i s o n  Jones’ ; ’ Development ’ ; ’ Phoenix ’ ]

Each row of the  m a trix  is padded so tha t all have equal length (in th is  case, 13 
characters).

Now use c e l l s t r  to create a column vector of cells, each cell containing one of 
the  strings from the dat a array.

cel l  data = c e l l s t r ( d a t a )

cel l  data =
’ A l l i s o n  Jones’
’ Development’
’ Phoenix’

Note tha t the  c e l l s t r  function s trips  off the  blanks tha t pad the  rows of the  
input s tring  m atrix:

l e n g t h ( c e l l d a t a { 3 } )  

ans =

7

11-7



11 Character Arrays (Strings)

Use char to  convert back to  a standard padded character array.

s t r i ng s  = cha r ( ce l l da t a )

s t r i ng s  =

A l l i s o n  Jones
Development
Phoenix
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String Comparisons
There are several ways to  compare strings and substrings:

• You can compare tw o strings, or parts of tw o strings, for equality.

• You can compare ind iv idua l characters in tw o s trings for equality.

• You can categorize every element w ith in  a string, determ in ing whether each 
element is a character or whitespace.

These functions work for both character arrays and cell arrays of strings.

Compar ing  Str ings For Equal i ty
There are tw o functions tha t determ ine if  tw o input s trings are identical:

• s t r c r p  determ ines if  tw o strings are identical.

• s t r n c r p  determ ines if  the  firs t n characters of tw o strings are identical. 

Consider the tw o strings

s t r 1 = ’ h e l l o ’ ; 
s t r 2 = ’ he l p ’ ;

S trings s t r 1 and s t r 2 are not identical, so invoking s t r c r p  re tu rns 0 (false). 
For example,

C = s t r c r p ( s t r 1 , s t r 2 )

C =

0

Note for C programmers This is an im portant difference between M A TLA B ’s 
s t r c r p  and C’s s t r c r p ( ) , which re turns 0 if  the  tw o strings are the  same.
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The firs t th ree characters of s t r 1 and s t r 2 are identical, so invoking st rncmp 
w ith  any value up to  3 re turns 1.

C = s t r n c mp ( s t r 1 , s t r 2 , 2 )

C =
1

These functions work cell-by-cell on a cell array of strings. Consider the  tw o cell 
a rrays of s trings

A = { ’ p i zza ’ ; ’ ch i ps ’ ; ’ candy’ };
B = { ’ p i zza ’ ; ’ choco l a te ’ ; ’ p r e t z e l s ’ };

Now apply the s tring  comparison functions.

strcmp(A, B)

ans =
1
0
0

st rncmp(A,B,1)

ans =
1
1
0
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Compar ing  Characters fo r  Equal i ty w i t h  Opera to rs
You can use M ATLAB re lational operators on character arrays, as long as the  
arrays you are comparing have equal dimensions, or one is a scalar. For 
example, you can use the equality operator (==) to  determ ine which characters 
in tw o strings match.

A = ’ f a t e ’ ;
B = ’ cake’ ;
A == B

ans =
0 1 0 1

A ll of the  relational operators (>, >=, <, <=, ==, !=) compare the  values of 
corresponding characters.

Categor iz ing Characters Wi th in  a String
There are tw o functions for categorizing characters inside a string:

• i s l e t t e r  determ ines if  a character is a letter

• i sspace determ ines if  a character is whitespace (blank, tab, or new line) 

For example, create a s tring  named r y s t r i n g .

iryst r i ng  = ’ Rooir 401’ ;

i s l e t t e r  examines each character in the  string, producing an output vector of 
the  same length as r y s t r i n g .

A = i s l e t t e r ( r y s t r i n g )

A =
1 1 1 1 0 0 0 0

The firs t four elements in A are 1 (true) because the firs t four characters of 
r y s t r i  ng are letters.

11-11



11 Character Arrays (Strings)

Searching and Replacing
M ATLAB provides several functions for searching and replacing characters in 
a string. Consider a s tring  named l abel .

label  = ’ Sample 1, 10/28/ 95’ ;

The s t r r ep  function performs the standard search-and-replace operation. Use 
s t r r e p  to change the date from ’ 10/28’ to ’ 10/30’ .

newlabel = s t r r e p ( l a b e l , ’ 28’ , ’ 30’ )

newlabel =
Sample 1, 10/30/95

f i n d s t r  re turns the  s ta rting  position of a substring w ith in  a longer string. To 
find all occurrences of the  s tring  ’ amp’ inside label

p o s i t i on  = f i n d s t r ( ’ amp’ , l a b e l )

p o s i t i on  =
2

The position w ith in  label  where the  only occurrence of ’ amp’ begins is the  
second character.

The s t r t o k  function re tu rns the characters before the  firs t occurrence of a 
de lim iting  character in an input s tring. The default de lim iting  characters are 
the  set of whitespace characters. You can use the s t r t o k  function to  parse a 
sentence in to  words; for example,

f un c t i on  al l _words = words ( i npu t _s t r i ng )  
remainder = i npu t _s t r i ng ;  
al l _words = ’ ’ ;

wh i l e  (any( remainder ) )
[ chopped, remainder ]  = s t r t ok ( r ema i nder ) ;  
a l l _words = s t r vca t ( a l l _words , chopped) ;  

end
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Str ing /N um eric  Conversion
M A T LA B ’s s tring /num eric  conversion functions change num eric values in to  
character strings. You can store num eric values as d ig it-by-d ig it s tring  
representations, or convert a value in to  a hexadecimal or b inary string. 
Consider a the scalar

x = 5317;

By default, M ATLAB stores the number x as a 1 -by-1 double array containing 
the value 5317. The i n t2s tr  (integer to  s tring) function breaks th is  scalar in to  
a 1-by-4 vector containing the s tring  ’ 5317’ .

y = i n t 2s t r ( x ) ;  
s i ze(y )

ans =
1 4

A related function, n u r2s t r ,  provides more control over the  format of the  
output s tring. An optional second argument sets the number of d ig its  in the 
output s tring, or specifies an actual form at.

p = n u r 2 s t r ( p i , 9 )  

p =
3.14159265

Both i n t 2s tr  and n u r2s tr  are handy for labeling plots. For example, the 
fo llow ing lines use n u r2s tr  to  prepare automated labels for the  x-axis of a plot.

f un c t i on  p l o t l a b e l ( x , y )  
plot  ( x , y )
s t r 1 = nur2s t r ( r i n ( x ) ) ;  
s t r 2 = nur2s t r ( r a x ( x ) ) ;
out = [ ’ Value of f f r o i r  ’ s t r1  ’ t o  ’ s t r 2 ] ;  
x l ab e l ( o u t ) ;

Another class of num eric/string conversion functions changes num eric values 
in to  strings representing a decimal value in another base, such as b inary or 
hexadecimal representation. For example, the  dec2hex function converts a 
decimal value in to  the  corresponding hexadecimal string.
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dec_num = 4035
hex_num = dec2hex(dec_num)

hex_num =

FC3

See the  s t r f u n  d irectory for a complete lis ting  of s tring  conversion functions.

A r ra y /S t r i n g  Conversion
The M ATLAB function mat2s tr  changes an array to  a s tring  tha t M ATLAB can 
evaluate. Th is s tring  is useful input for a function such as eval , which 
evaluates input s trings jus t as if  they were typed at the  M ATLAB command 
line.

Create a 2-by-3 array A.

A = [1 2 3; 4 5 6 ]

A =

1 2 3
4 5 6

mat2str  re tu rns a s tring  tha t contains the  text you would enter to  create A at 
the  command line

B = mat2st r (A)

B =

[1 2 3; 4 5 6 ]
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12 Multidimensional Arrays

This chapter discusses m ultid im ensional arrays, M ATLAB arrays w ith  more 
than tw o dimensions. M ultid im ensiona l arrays can be numeric, character, cell, 
or s tructu re  arrays.

M ultid im ensiona l arrays are broadly useful—for example, in the 
representation of m u ltiva ria te  data, or m u ltip le  pages of two-dimensional data. 
M ATLAB provides a number of functions tha t d irectly  support 
m ultid im ensional arrays. You can extend th is  support by creating M -files tha t 
work w ith  your data architecture.

Function Description

cat Concatenate arrays.

ndgr id Generate arrays for N-D functions and interpolation.

nd irs Number of a rray dimensions.

i per rut e Inverse perm ute array dimensions.

perrute Permute array dimensions.

sh i f t d i r n Shift dimensions.

squeeze Remove singleton dimensions.
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Mult id imensional A rrays
M ultid im ensiona l arrays in M ATLAB are an extension of the  normal 
two-dimensional m atrix . M atrices have tw o dimensions: the  row dimension 
and the column dimension.

a d rn n

( 1, 1) ( 1, 2) (1,3) (1,4)

( 2 , 1) ( 2 , 2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

, (4,1) (4,2) (4,3) (4,4)

You can access a two-dimensional m a trix  element w ith  tw o subscripts: the  firs t 
representing the  row index, and the  second representing the  column index.

M ultid im ensiona l arrays use additional subscripts for indexing. A 
three-dimensional array, for example, uses three subscripts:

• The firs t references array dimension 1, the  row.

• The second references dimension 2, the  column.

• The th ird  references dimension 3. Th is guide uses the  concept of a page to  
represent dimensions 3 and higher.
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12 Multidimensional Arrays

To access the element in the  second row, th ird  column of page 2, for example, 
you use the  subscripts ( 2 , 3 , 2 ) .

A ( : , : , 1 )  =
/(2,3,2)

1 0 3
4 -1 2 
8 2 1

A ( : , : , 2 )  =

6 8 3
4 3 6
5 9 2

As you add dimensions to  an array, you also add subscripts. A four-dimensional 
array, for example, has four subscripts. The firs t tw o  reference a row-column 
pair; the  second tw o access the  th ird  and fourth  dimensions of data.

Note The general m ultid im ensional array functions reside in the  datatypes 
directory.

Creating Mul t i d imens iona l  A r ra y s
You can use the  same techniques to  create m ultid im ensional arrays tha t you 
use for two-dimensional matrices. In addition, M ATLAB provides a special 
concatenation function tha t is useful for bu ild ing m ultid im ensional arrays.

Th is section discusses:

• Generating arrays using indexing

• Generating arrays using M ATLAB functions

• Using the  cat function to  build m ultid im ensional arrays

6 8 , 3
'  4 3 ' '  ' ©  
____  5 , ' ' 9 2

1 0 3
4 -1 2
8 2 1
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Generating Arrays Using Indexing
One way to  create a m ultid im ensional a rray is to  create a two-dimensional 
array and extend it. For example, begin w ith  a sim ple two-dimensional array A.

A = [5  7 8 ; 0 1 9; 4 3 6 ];

A is a 3-by-3 array, tha t is, its  row dimension is 3 and its  column dimension is 
3. To add a th ird  dimension to  A,

A ( : , : , 2 )  = [1 0 4; 3 5 6 ; 9 8 7]

M ATLAB responds w ith

A ( : , : , 1 )  =

5 7 8
0 1 9
4 3 6

A ( : , : , 2 )  =

1 0 4
3 5 6
9 8 7

You can continue to  add rows, columns, or pages to  the  array using s im ila r 
assignment statements.

Extending Multidimensional Arrays. To extend A in any dimension:

• Increment or add the  appropria te subscript and assign the  desired values.

• Assign the same number of elements to  corresponding array dimensions. For 
num eric arrays, all rows must have the  same number of elements, all pages 
must have the  same number of rows and columns, and so on.
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You can take advantage of M A T LA B ’s scalar expansion capabilities, together 
w ith  the colon operator, to  f il l an en tire  dimension w ith  a single value.

A ( : , : , 3 )  = 5 
A ( : , : , 3 )

ans =

5 5 5 
5 5 5 
5 5 5

To tu rn  A in to  a 3-by-3-by-3-by-2, four-dimensional array, enter

: , : , 1 2 ) = [1 2 3; 4 5 6 ; 7 8 9];
: , : , 2 2 ) = [9 8 7; 6 5 4; 3 2 1];
: , : , 3 2 ) = [1 0 1; 1 1 0 ; 0 1 1];

Note tha t after the  firs t tw o assignments M ATLAB pads A w ith  zeros, as 
needed, to  m ainta in  the  corresponding sizes of dimensions.

Generating Arrays Using MATLAB Functions
You can use M ATLAB functions such as randn, ones, and zeros to  generate 
m ultid im ensional arrays in the  same way you use them for two-dimensional 
arrays. Each argument you supply represents the  size of the  corresponding 
dimension in the resu lting array. For example, to  create a 4-by-3-by-2 array of 
norm ally d is tribu ted random numbers.

B = randn (4 ,3 ,2 )

To generate an array filled  w ith  a single constant value, use the repmat 
function. repmat replicates an array (in th is  case, a 1 -by-1 array) through a 
vector of a rray dimensions.

B = r epmat (5 , [ 3  4 2] )

B ( : , : , 1 )  =

5 5 5 5 
5 5 5 5 
5 5 5 5
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B ( : , : , 2 )  =

5 5 5 5
5 5 5 5
5 5 5 5

Note Any dimension of an array can have size zero, making it a form of empty 
array. For example, 10-by-0-by-20 is a valid size for a m ultid im ensional array.

Using the cat Function to Build Multidimensional Arrays
The cat function is a sim ple way to  build m ultid im ensional arrays; it
concatenates a lis t of arrays along a specified dimension.

B = c a t ( d i r | A 1 , A 2 . . . )

where A1, A2, and so on are the  arrays to  concatenate, and d i i r  is the  dimension 
along which to  concatenate the arrays. For example, to  create a new array w ith  
cat

B = c a t ( 3 , [ 2  8 ; 0 5 ] , [ 1  3; 7 9] )

B ( : , : , 1 )  =

2 8
0 5

B ( : , : , 2 )  =

1 3
7 9
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12 Multidimensional Arrays

The cat function accepts any combination of existing and new data. In 
addition, you can nest calls to  c a t . The lines below, for example, create a 
four-dimensional array.

A = c a t ( 3 , [ 9  2; 6 5 ] , [ 7  1; 8 4] )
B = c a t ( 3 , [ 3  5; 0 1 ] , [ 5  6 ; 2 1])
D = c a t ( 4 , A B , c a t ( 3 , [ 1  2; 3 4 ] , [ 4  3;2 1] ) )

cat autom atica lly adds subscripts of 1 between dimensions, if  necessary. For 
example, to  create a 2 -by-2 -by-1-by-2 array, enter

C = c a t ( 4 , [ 1  2; 4 5 ] , [ 7  8 ; 3 2] )

In the  previous case, cat inserts as many singleton dimensions as needed to 
create a four-dimensional array whose last dimension is not a singleton 
dimension. I f  the  d iira rgum en t had been 5, the  previous statement would have 
produced a 2-by-2-by-1-by-1-by-2 array. Th is adds additional 1s to  indexing 
expressions for the  array. To access the  value 8 in the  four-dimensional case, 
use

C(1,2, 1,2)

1
Sncjetcn dmmacn 
index
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Gett ing In fo rmat ion  Abou t  Mu l t id imens iona l  A r ra y s
You can use M ATLAB functions and commands to  get in form ation about 
m ultid im ensional arrays you have created.

Inform ation Function Example 

A rray  size s i ze  size(C)

ans =

2 2 1 2 

rows cdrnrs dm3 dm4

A rray  ndims ndims(C)
dimensions

ans =

4

A rray  whos whos
storage and 
format

Name Si ze Bytes Class

A 2x2x2 64 doubl e array
B 2x2x2 64 doubl e array
C 4-D 64 double array
D 4-D 192 double array

Grand total  i s  48 elements using 384 bytes

W ork ing  w i th  Mu l t i d imens iona l  A r rays
Many of the  concepts tha t apply to  two-dimensional matrices extend to 
m ultid im ensional arrays as well. Th is section describes how to  apply basic 
indexing and reshaping techniques to  m ultid im ensional arrays.

Consider a 10-by-5-by-3 array nddata of random integers:

nddata = f i x ( 8 * r an d n ( 1 0 , 5 , 3 ) ) ;
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Index ing
To access a single element of a m ultid im ensional array, use integer subscripts. 
Each subscript indexes a d im ension-the firs t indexes the  row dimension, the 
second indexes the column dimension, the  th ird  indexes the  firs t page 
dimension, and so on. To access element (3 , 2)  on page 2 of nddata, for 
example, use nd d a t a ( 3 , 2 , 2 ) .

You can use vectors as array subscripts. In th is  case, each vector element must 
be a valid subscript, tha t is, w ith in  the  bounds defined by the  dimensions of the  
array. To access elements ( 2 , 1), ( 2 , 3 ) ,  and (2,4)  on page 3 of nddata, use

nddata(2 , [ 1  3 4 ] , 3 )

The Colon and Multidimensional Array Indexing
M A T LA B ’s colon indexing extends to  m ultid im ensional arrays. For example, to 
access the  entire  th ird  column on page 2 of nddata, use n d d a t a ( : , 3 , 2 ) .

The colon operator is also useful for accessing other subsets of data. For 
example, nddata( 2 : 3 , 2 : 3 , 1 )  results in a 2-by-2 array, a subset of the  data on 
page 1 of nddata. Th is m a trix  consists of the  data in rows 2 and 3, columns 2 
and 3, on the firs t page of the  array.

The colon operator can appear as an array subscript on both sides of an 
assignment statement. For example, to  create a 4-by-4 array of zeros

C = zeros(4,4)

Now assign a 2-by-2 subset of array nddata to  the four elements in the  center 
of C.

C(2:3 ,2 :3)  = ndda t a (2 :3 ,1 :2 ,2 )

Avoiding Ambiguity in Multidimensional Indexing 
Some assignment statements, such as

A ( : , : , 2 )  = 1:10

are ambiguous because they do not provide enough inform ation about the 
shape of the  dimension to  receive the  data. In the case above, the  statement 
tr ie s  to  assign a one-dimensional vector to  a two-dimensional destination. 
M ATLAB produces an error for such cases. To resolve the  am biguity, be sure
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you provide enough inform ation about the  destination for the  assigned data, 
and tha t both data and destination have the same shape. For example,

A ( 1 , : , 2 )  = 1:10;

Reshaping
Unless you change its  shape or size, a M ATLAB array reta ins the  dimensions 
specified at its  creation. You change array size by adding or deleting elements. 
You change array shape by respecifying the  a rray ’s row, column, or page 
dimensions w h ile  re ta in ing the same elements. The reshape function performs 
the la tte r operation. For m ultid im ensional arrays, its  form  is

B = reshape(A, [s1 s2 s3 . . . ] )

s i , s2 , and so on represent the  desired size for each dimension of the  reshaped 
m atrix . Note tha t a reshaped array must have the same number of elements as 
the orig inal array (that is, the  product of the  dimension sizes is constant).

M reshape(M, [6 5])

, ** ' 9 7 8 5 - - '  2
- ' ' 3 5 8 , - '  5 1

_ - ' ' 6 9 • - '  4 3 3

1 2 3 4 5 , -
9 0 6 3 7  ̂**
8 1 5 0 2

1 3 5 7 5
9 6 7 5 5
8 5 2 9 3
2 4 9 8 2
0 3 3 8 1
1 0 6 4 3
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The reshape function operates in a columnwise manner. It creates the 
reshaped m a trix  by tak ing  consecutive elements down each column of the 
orig inal data construct.

C reshape(C, [6 2])

, ' 9 Ю
11 ' 12

5 6
7 - ' 8 - '

1 2 *

3 4 ,

1 6
3 8
2 9
4 11
5 10
7 12

Here are several new arrays from reshaping nddata.

B = reshape(nddata , [ 6  25] )
C = reshape(nddata, [ 5  3 10])
D = reshape(nddata, [5  3 2 5] )

Removing Singleton Dimensions
M ATLAB creates singleton dimensions if  you exp lic itly  specify them when you 
create or reshape an array, or if  you perform a calculation tha t results in an 
array dimension of one.

B = r epmat (5 , [ 2  3 1 4] ) ;  
s i ze(B)

ans =

2 3 1 4 

The squeeze function removes singleton dimensions from an array.

C = squeeze(B); 
si ze(C)

ans =

2 3 4
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The squeeze function does not affect two-dimensional arrays; row vectors 
remain rows.

Permut ing A r ray  Dimensions
The per mute function reorders the  dimensions of an array.

B = pernute(A,d i ns ) ;

d ins is a vector specifying the  new order for the  dimensions of A, where 1 
corresponds to  the  firs t dimension (rows), 2 corresponds to  the  second 
dimension (columns), 3 corresponds to  pages, and so on.

A B= permute(A,[2 1 3]) C = permute(A,[3 2 1])

A(: ,, : , 1) = B(: ,, : , 1) = C(: ,, : , 1) =

1 2 3 1 4 7 Rw/crd cdum 1 2 3 FCw and page
4 5 6 2 5 8 subscripts ae 0 5 4 subscripts ae
7 8 9 3 6 9 reversed reversed

A(: ,, :, 2 ) = B(: ,, :, 2 ) = (pagetypage
trarspcsiticri).

C(: ,, :, 2 ) 

4 5 6
0 5 4 0 2 9 2 7 6
2 7 6 5 7 3
9 3 1 4 6 1 C(: ,, :, 3)

7
9

8
3

9
1

For a more detailed look at the  permute function, consider a four-dimensional 
array A of size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the  column 
dimension firs t, followed by the second page dimension, the  firs t page 
dimension, then the  row dimension. The result is a 4 by 2 by 3 by 5 array.
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B = permute(A, [2  4 3 1]

Mtve dmeracn 2 cf A to 
first subscript pcsiticn cf B, 
dmensicn 4 to seccnd sub
script position, £nd so cn

Input 
array A

GUtput 
array B

The crcer cf dmereicns in 
permute’s arcjunent list deter
mines the size and ̂ ape of the 
citput arrays. In this example, the 
second dneracn noes to the 
first pcaticn Ê caiEe the seard 
dne^cncfthecricjral arrayhad 
aze far", the atpit array/s first 
dnEracn alsc has aze far".

You can th in k  of permute’s operation as an extension of the  t ranspose 
function, which switches the row and column dimensions of a m atrix . For 
permute, the  order of the  input dimension lis t determ ines the  reordering of the  
subscripts. In the  example above, element ( 4 , 2 , 1 , 2 )  of A becomes element 
( 2 , 2 , 1 , 4 )  of B, element (5,4,  3,2) of A becomes element ( 4 , 2 , 3 , 5 )  of B, and 
so on.

Inverse Permutation
The ipermute function is the  inverse of permute. Given an input array A and a 
vector of dimensions v, ipermut e produces an array B such tha t permute(B,v)  
re tu rns A.

For example, these statements create an array E tha t is equal to  the input 
array C.

D = i permute(C, [1 4 2 3] ) ;
E = permute(D, [1 4 2 3] )

You can obtain the  orig inal array after perm uting it by calling ipermute w ith  
the  same vector of dimensions.
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Computat ion w i th  Mul t id imensional  Ar rays
Many of M A T LA B ’s computational and mathematical functions accept 
m ultid im ensional arrays as arguments. These functions operate on specific 
dimensions of m ultid im ensional arrays; tha t is, they operate on ind iv idua l 
elements, on vectors, or on matrices.

Functions tha t  Opera te on Vectors
Functions tha t operate on vectors, like  sun, mean, and so on, by default typ ica lly  
work on the  firs t nonsingleton dimension of a m ultid im ensional array. Most of 
these functions optionally let you specify a particu la r dimension on which to 
operate. There are exceptions, however. For example, the  cr oss function, 
which finds the  cross product of tw o  vectors, works on the firs t nonsingleton 
dimension having length three.

Note In many cases, these functions have other restrictions on the  input 
arguments -  for example, some functions tha t accept m u ltip le  arrays require 
tha t the  arrays be the  same size. Refer to  the online help for deta ils on 
function arguments.

Functions tha t  Opera te  Element-by-Element
M ATLAB functions tha t operate element-by-element on two-dimensional 
arrays, like  the trigonom etric  and exponential functions in the  e l f un  directory, 
work in exactly the  same way for m ultid im ensional cases. For example, the  s in  
function re tu rns an array the  same size as the function ’s input argument. Each 
element of the  output array is the  sine of the  corresponding element of the  
input array.

S im ila rly , the  a rithm etic , logical, and relational operators all work w ith  
corresponding elements of m ultid im ensional arrays tha t are the  same size in 
every dimension. I f  one operand is a scalar and one an array, the  operator 
applies the  scalar to  each element of the  array.
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Functions tha t  Operate  on Planes and Matr ices
Functions tha t operate on planes or matrices, such as the  linear algebra and 
m a trix  functions in the matfun directory, do not accept m ultid im ensional 
arrays as arguments. That is, you cannot use the  functions in the  matfun 
directory, or the  array operators *, л , \ , or / , w ith  m ultid im ensional arguments. 
Supplying m ultid im ensional arguments or operands in these cases results in 
an error.

You can use indexing to  apply a m a trix  function or operator to  matrices w ith in  
a m ultid im ensional array. For example, create a three-dimensional array A:

A = cat ( 3 , [ 1  2 3;9 8 7;4 6 5 ] , [ 0  3 2;8 8 4;5 3 5 ] , [ 6  4 7;6 8 5 ; . . .  
5 4 3])

A pply ing the  ei g function to  the  en tire  m ultid im ensional array results in an 
error.

eig(A)
??? Error  using ==> eig 
Input  arguments must be 2-D.

You can, however, apply e ig  to  planes w ith in  the  array. For example, use colon 
notation to  index just one page (in th is  case, the  second) of the  array.

e i g ( A ( : , : , 2 ) )

ans =

-2 .6260
12.9129
2.7131

Note In the firs t subscripts are not colons, you must use squeeze to  avoid an 
error. For example, e i g ( A ( 2 , : , : ) )  results in an error because the  size of the  
input is [1 3 3] . The expression e i g ( s q u e e z e ( A ( 2 , : , : ) ) ) , however, passes a 
valid  two-dimensional m a trix  to  eig.
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Organiz ing Data in Mul t id imensional  Ar rays
You can use m ultid im ensional arrays to  represent data in tw o ways.

• As planes or pages of two-dimensional data. You can then treat these pages 
as matrices.

• As m u ltiva ria te  or m ultid im ensional data. For example, you m ight have a 
four-dimensional array where each element corresponds to  e ither a 
tem perature or a ir pressure measurement taken at one of a set of equally 
spaced points in a room.

For example, consider an RGB image. For a single image, a m ultid im ensional
array is probably the  easiest way to  store and access data.

Array RE

Fage 3 -
blue
irten^y

Fage2-
'geen
irteraty
values

Fagel-
red
irteraty

0. 689 0. 
0. 535 0. 
0.314 0 
0.553 0 
0.441 0

0.342 0
0.111 0
0.523 0
0.214 0
0.100  0

0 112 0 986 0 234 00..248382
0 765 0 128 0 863 00..250281
1 000 0 985 0 761 00.. 698
0 455 0 783 0 224 00..432965
0 021 0 500 0 311 0 . 12 3
1 000 1 000 0 867 0 . 05 1
1 000 0 945 0 998 0 . 89 3
0 990 0 941 1 000 0 . 876
0 902 0 867 0 834 0 . 798

647 0. 515 0. 816
300 0. 205 0. 526
428 0.712 0.-929 
604 0. 918 '0. 344
121 0..-И3 0 . 12 6

0. 204 0 . 175
0.760 0 . 53 1
0.997 0.910
0.995 0.726

706 0.118 0.884 
532 0. 653 0.925. 
265 0. 159 0.101 
633 0. 528 i 0.493 
465 0.512 0.512 

0. 421 0.398 
0. 912 0.713 
0.219 0.328 
0.128 0.133

To access an entire  plane of the  image, use 

red_plane = RGB( : , : , 1)
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To access a subimage, use

subimage = RGB(20:40, 50 : 85 , : ) ;

The RGB image is a good example of data that needs to  be accessed in planes 
for operations like  display or filte ring . In other instances, however, the  data 
itse lf m ight be m ultid im ensional. For example, consider a set of tem perature 
measurements taken at equally spaced points in a room. Here the  location of 
each value is an integral part of the  data set -  the  physical placement in 
three-space of each element is an aspect of the  inform ation. Such data also 
lends itse lf to  representation as a m ultid im ensional array.

An=y TEMP
, ' i 67.9° 68 . 0° 6 7 .9 ° ';

; 67.8° 67. 8° 67.9° ;

- ' ; 67.9° 68 . 0° 68 . 0°' 67.7° |
■ 67.7° 67. 8° 6,7.7° ;

; 68 . 0° 68 . 0° 67.8° 67.5° • / '
; 67.9° 67. 8° 67.6° ‘ y

/

| 67.8° 67. 6° 67.6° : y '

Now to  find  the  average of all the  measurements, use 

mean(mean(mean(TEMP)))

To obtain a vector of the  “ m iddle” values (element (2,2)) in the  room on each 
page, use

B = TEMP( 2 , 2 , : ) ;
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Mult id imensional  Cell A r rays
L ike  num eric arrays, the  fram ework for m ultid im ensional cell arrays in 
M ATLAB is an extension of the  two-dimensional cell a rray model. You can use 
the cat function to  build m ultid im ensional cell arrays, just as you use it for 
num eric arrays.

For example, create a sim ple three-dimensional cell array C.

A{1, 1} 
A{1,2}  
A{2, 1} 
A{2, 2} 
B{1, 1} 
B{1,2}  
B{2, 1} 
B{2, 2}

[1 2 ;4  5]; 
’ Name’ ; 
2-4 i ;
7;
'Name2' ;
3;
0:1:3;
[4 5] '  ;

C = cat (3 ,A,B) ;

The subscripts for the  cells of C look like

1 2 
4 5

cell 2,1,1 

2—4i

cell 1,2,1 

’ Name’

cell 1,1,2

’ Name2

cell 1,2,2 , '

.3^

cell 2,1,2 '
1 2 3]

cell 2,2,2

4"
5

cell 2,2,1 

7

cell 1,1,1
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Mult id imensional  Structure Ar rays
M ultid im ensiona l s tructu re  arrays are extensions of rectangular s tructu re  
arrays. Li ke other types of m ultid im ensional arrays, you can build them using 
direct assignment or the  cat function.

pat ent (1 ,1 1) .name = ’ John Doe’ pat i ent  ( 1, 1, 1 ) . b i l l i n g  = 127
pat ent (1 ,1 1) . t e s t  = [79 75 73; 180 178 177 5; 220 210 205]
pat ent (1 , 2 1) .name = ’ Ann Lane’ 2tnetap 1) . b i l l i n g  = 28
pat ent (1 , 2 1) . t e s t  = [ 6 8  70 6 8 ; 118 118 119 172 170 169];
pat ent (1 ,1 2 ) .name = ’ Al Sm th ’ pat i ent  ( 1, 1, 2 ) . b i l l i n g  = 504
pat ent (1 ,1 2 ) . t e s t  = [80 80 80; 153 153 154 181 190 182];
pat ent (1 , 2 2 ) .name = ’ Dora Jones’ ; p a t i e n t (  1 2 , 2 ) . b i l l i n g  =
1173.90;
p a t i e n t ( 1 , 2 , 2 ) . t e s t  = [73 73 75; 103 103 102; 201 198 200];

patient(1,1,2) patient(1,2,2)

patient(1,1,1))

- .bi l l i ng — 127. 00

’ Al Smith’

.test

’ John Doe’

test ------- 79 75 73
180 178 177.5
220 210 205

ng — 504.70

80 80 80
153 153 154
181 190 182

patient(1,2,1)

. name - _ ’ Ann Lane 

. bi l l ing — 28.50 
.test —

’ Dora Jones’|—.name —
-.bi l l i ng — 1173.9P' 
— .test —

68 70 68
118 118 119
172 170 169

, 73 75 75

30 103 102
201 198 200
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App ly ing  Funct ions to Mu l t i d imens iona l  Structure 
A r ra y s
To apply functions to  m ultid im ensional s tructu re  arrays, operate on fie lds and 
fie ld elements using indexing. For example, find the  sum of the  columns of the 
test  array in pat i e n t ( 1 , 1 , 2 ) .

s u n ( ( p a t i e n t ( 1, 1 , 2 ) . t e s t ) )

S im ila rly , add all the  b i l l i n g  fie lds in the  pat i ent  array. 

t o t a l  = s u m ( [ p a t i e n t . b i l l i  ng] ) ;

12-21



12 Multidimensional Arrays

12-22



13

Structures and Cell Arrays

S t r u c t u r e s .........................................................................................13-3
Build ing  S tructure  A r r a y s .............................................................. 13-3
Accessing Data in S tructure  A r r a y s ............................................ 13-6
Using the size Function w ith  S tructure  A r r a y s ...................... 13-9
Adding Fields to  S t r u c tu r e s ..........................................................13-9
Deleting Fields from S tru c tu re s ..................................................... 13-9
Applying Functions and O p e r a to r s ............................................ 13-9
W riting  Functions to  Operate on S tru c tu re s ...........................13-10
Organizing Data in S tructure  A r r a y s ................................... 13-11
Nesting S tru c tu re s ....................................................................... 13-16

Cell A r r a y s .................................................................................... 13-19
Creating Cell A r r a y s ...................................................................13-19
Obtaining Data from Cell A r r a y s ............................................ 13-23
Deleting C e l ls ................................................................................13-25
Reshaping Cell A r r a y s .............................................................. 13-25
Replacing L ists of Variables w ith  Cell A r r a y s ...................... 13-25
Applying Functions and O p e r a to r s ........................................13-27
Organizing Data in Cell A r r a y s .................................................13-28
Nesting Cell A rrays ...................................................................13-29
Converting Between Cell and N um eric A r ra y s ...................... 13-32
Cell A rrays of S t r u c tu r e s ..........................................................13-33



13 Structures and Cell Arrays

Structures are collections of d ifferent kinds of data organized by named fields. 
Cell arrays are a special class of M ATLAB array whose elements consist of cells 
tha t themselves contain M ATLAB arrays. Both structures and cell arrays 
provide a hierarchical storage mechanism for d iss im ila r kinds of data. They 
d iffe r from each other p rim a rily  in the  way they organize data. You access data 
in s tructures using named fields, w h ile  in cell arrays, data is accessed through 
m a trix  indexing operations.

This tab le  describes the  M ATLAB functions for w ork ing w ith  structures and 
cell arrays.

Category Function Description

S tructu re  functions f ieldnames Get s tructu re  fie ld names.

get f i e l d Get s tructu re  fie ld contents.

isfield True if  fie ld is in s truc tu re  array.

isstruct True for structures.

r mf i e l d Remove s truc tu re  field.

set f i e l d Set s tructu re  fie ld contents.

s t ruc t Create or convert to  s tructu re  array.

s tr  u c t2 cel l Convert s tructu re  array in to  cell array.

Cell a rray functions cel l Create cell array.

cel l 2 s t ruc t Convert cell array in to  s truc tu re  array.

cel l d i s p Display cell a rray contents.

cel l f un Apply a cell function to  a cell array.

cel l p l o t Display graphical depiction of cell array.

deal Deal inpu ts  to  outputs.

i s ce l l T rue for cell array.

num2 cel l Convert num eric array in to  cell array.
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Structures
Structures are M ATLAB arrays w ith  named “data containers” called fields. The 
fie lds of a s truc tu re  can contain any kind of data. For example, one fie ld m ight 
contain a text s tring  representing a name, another m ight contain a scalar 
representing a b illing  amount, a t hi rd m ight hold a m a trix  of medical test 
results, and so on.

pat ient

- . name---------------------’ John Doe’

. b i l l i n g ---------------127.00

79 75 73
180 178 177. 5
220 210 205

Like standard arrays, s tructures are inherently  array oriented. A single 
s truc tu re  is a 1-by-1 s truc tu re  array, jus t as the value 5 is a 1-by-1 num eric 
array. You can build s truc tu re  arrays w ith  any valid size or shape, including 
m ultid im ensional s tructu re  arrays.

Note The examples in thi s section focus on two-dimensional s tructu re  arrays. 
For examples of higher-dimension s tructu re  arrays, see Chapter 12.

Bui lding Structure A r ra y s
You can build s tructures in tw o ways:

• Using assignment statements

• Using the  s t r uc t  function

Building Structure Arrays Using Assignment Statements
You can build a sim ple 1-by-1 s truc tu re  array by assigning data to  individua l
fields. M ATLAB autom atica lly builds the s tructu re  as you go along. For
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example, create the  1-by-1 pat i ent  s tructu re  array shown at the  beginning of 
thi s section.

pat i ent .name = ’ John Doe’ ; 
p a t i e n t . b i l l i n g  = 127.00;
p a t i e n t . t e s t  = [79 75 73; 180 178 177.5; 220 210 205];

Now entering 

pat i ent

at the command line  results in

name: ’ John Doe’ 
b i l l i n g :  127 
t es t :  [3x3 double]

pat i ent  is an array containing a s tructu re  w ith  th ree fields. To expand the 
s tructu re  array, add subscripts after the  s truc tu re  name.

pa t i en t (2) . name = ’ Ann Lane’ ; 
p a t i e n t ( 2 ) . b i l l i n g  = 28.50;
p a t i e n t ( 2 ) . t e s t  = [ 6 8  70 6 8 ; 118 118 119; 172 170 169];

The pat i ent  s truc tu re  array now has size [1  2 ] .  Note tha t once a s tructu re  
array contains more than a single element, M ATLAB does not display 
ind iv idua l fie ld contents when you type the  array name. Instead, it shows a 
sum mary of the  kind of in form ation the  s tructu re  contains.

pat i ent  

pat i ent  =

1x2 s t r uc t  ar ray w i t h  f i e l d s :  
name 
b i l l i n g  
test

You can also use the  f i e ldnames function to  obtain th is  in form ation. 
f i e ldnames re tu rns a cell array of s trings containing fie ld names.

13-4



Structures

As you expand the  structure, M ATLAB f ills  in unspecified fie lds w ith  empty 
matrices so tha t:

• A ll structures in the  array have the  same number of fields.

• A ll fie lds have the  same fie ld names.

For example, entering pat i ent (3) .namB = ’ Alan Johnson’ expands the 
pat i ent  array to  size [1  3] . Now both p a t i e n t ( 3 ) . b i l l i n g  and 
p a t i e n t ( 3 ) . t e s t  contain empty matrices.

Note Field sizes do not have to  conform for every element in an array. In the 
pat i ent  example, the  name fie lds can have d ifferent lengths, the  tes t  fie lds 
can be arrays of d ifferent sizes, and so on.

Building Structure Arrays Using the struct Function
You can preallocate an array of structures w ith  the  st ruct  function. Its  basic 
form is

s t r _a r r ay  = s t r u c t ( ’ f i e l d 1’ , v a l 1 , ’ f i e l d 2 ’ , v a l 2 , . . . )

where the  arguments are fie ld names and th e ir corresponding values. A field 
value can be a single value, represented by any M ATLAB data construct, or a 
cell a rray of values. A ll fie ld values in the  argument lis t must be of the  same 
scale (single value or cell array).

You can use d ifferent methods for preallocating s tructu re  arrays. These 
methods d iffer in the  way in which the  s tructu re  fie lds are in itia lized . As an 
example, consider the  allocation of a 1-by-3 s tructu re  array, weather , w ith  the 
s truc tu re  fie lds temp and r a i n f a l l  . Three d ifferent methods for allocating such 
an array are shown in th is  table.
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M ethod Syntax In itia lization

s t ruc t weather(3)  =
s t r u c t ( ’ temp’ , 7 2 , ’ r a i n f a l l ’ , 0 . 0 ) ;

weather(3)  is in itia lized  w ith  the 
fie ld values shown. The fie lds for 
the  other s tructures in the  array, 
weather ( 1) and weather (2 ), are 
in itia lized  to  the  empty m atrix .

s t ruc t  
w ith  r epmat

weather =
r e p m a t ( s t r u c t ( ’ tei7p’
’ r a i n f a l l ’ , 0 . 0 ) , 1 , 3 )

,72,
A ll s tructures in the  weather array 
are in itia lized  using one set of field 
values.

s t ruc t  
w ith  cell 
array 
syntax

weather = s t r u c t ( ’ temp 
’ r a i n f a l  l ’ , { 0 . 2 , 0 . 4 ,

’ , { 68 ,80 ,72} ,  
0 . 0} ) ;

The structures in the weather array 
are in itia lized  w ith  d is tinct field 
values specified w ith  cell arrays.

Accessing Data in Structure A r ra y s
Using s tructu re  array indexing, you can access the  value of any fie ld or field 
element in a s tructu re  array. Likewise, you can assign a value to  any fie ld or 
fie ld element. For the  examples in th is  section, consider th is  s tructu re  array.

patient
array

patient(1) patient(2) patient(3)
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You can access subarrays by appending standard subscripts to  a s tructu re  
array name. For example, the  line below results in a 1-by-2 s tructu re  array.

mypat ients = p a t i e n t ( 1 : 2 )

1x 2 s t r uc t  ar ray w i t h  f i e l d s :  
name 
b i l l i n g  
test

The firs t s tructu re  in the  mypat ients array is the  same as the firs t s tructu re  
in the  pat i ent  array.

mypa t i en t s ( 1) 

ans =

name: ’ John Doe’ 
b i l l i n g :  127

tes t :  [3x3 double]

To access a fie ld of a particu la r structure, include a period (.) after the  s tructu re  
name followed by the  fie ld name.

s tr  = p a t i e n t ( 2 ).name 

s t r  =

Ann Lane

To access elements w ith in  fields, append the appropria te indexing mechanism 
to  the  fie ld name. That is, if  the  fie ld contains an array, use array subscripting; 
if  the  fie ld contains a cell array, use cell array subscripting, and so on.

test  2b = p a t i e n t ( 3 ) . t e s t ( 2 , 2 )  

tes t  2 b =

153

Use the same notations to  assign values to  s truc tu re  fields, for example,

pat i  e n t ( 3 ) . t e s t  (2 ,2)  = 7;
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You can extract fie ld values for m u ltip le  structures at a tim e. For example, the  
line  below creates a 1-by-3 vector containing all of the  b i l l i n g  fields.

b i l l s  = [ p a t i e n t . b i l l i n g ]  

b i l l s  =

127.0000 28.5000 504.7000

S im ila rly , you can create a cell array containing the  test  data for the  firs t tw o 
structures.

t e s t s  = { p a t i e n t ( 1 : 2 ) . t e s t }  

t e s t s  =

[3x3 double]  [ 3x3 double]

Accessing Field Values Using setfield and getfield 
Direct indexing is usually the  most efficient way to  assign or retrieve field 
values. If, however, you only know the fie ld name as a s tring  -  for example, if 
you have used the  f i e ldnames function to  obtain the  fie ld name w ith in  an 
M -file  -  you can use the  s e t f i e l d  and g e t f i e l d  functions to  do the same th ing.

g e t f i e l d  obtains a value or values from a fie ld or fie ld element

f = g e t f i e l d ( a r r a y , { a r r a y _ i n d e x }  , ’ f i e l d ’ , { f i e l d _ i n d e x } )

where the f i e l d _ i n d e x  is optional, and ar ray_index is optional for a 1-by-1 
structu re  array. The function syntax corresponds to

f = a r r a y ( a r r a y _ i n d e x ) . f i e l d ( f i e l d _ i n d e x ) ;

For example, to  access the  name field in the  second s truc tu re  of the  pat i ent  
array, use:

s tr  = g e t f i e l d ( p a t i e n t , { 2 } , ’ name’ )

S im ila rly , set f i e l d  lets you assign values to  fie lds using the syntax

f = s e t f i e l d ( a r r a y , { a r r a y _ i n d e x }  , ’ f i e l d ’ , { f i e l d _ i n d e x }  , va lue)
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Using the size Function w i t h  Structure A r ra y s
Use the s i ze  function to  obtain the  size of a s tructu re  array, or of any s tructu re  
fie ld. Given a s tructu re  array name as an argument, s i ze  re tu rns a vector of 
a rray dimensions. Given an argument in the  form a r r a y ( n ) . f i e l d ,  the s i ze 
function re tu rns a vector containing the  size of the  fie ld contents.

For example, for the  1-by-3 s tructu re  array pat i e n t , s i z e ( p a t i e n t )  re turns 
the vector [1  3] . The statement s i z e ( p a t i e n t ( 1 , 2 ).name) re tu rns the  length 
of the  name s tring  for element ( 1 , 2 ) of p a t i e n t .

Adding  Fields to Structures
You can add a fie ld to  every s tructu re  in an array by adding the  fie ld to  a single 
structure. For example, to  add a social security number fie ld to  the  pat i ent  
array, use an assignment like

pat i  e n t ( 2 ) . ssn  = ' 000- 00- 0000 ' ;

Now p a t i e n t ( 2 ) . ssn  has the assigned value. Every other s truc tu re  in the 
array also has the  ssn field, but these fie lds contain the  empty m a trix  un til you 
exp lic itly  assign a value to  them.

Delet ing Fields f rom Structures
You can remove a given fie ld from every s tructu re  w ith in  a s truc tu re  array 
using the r m f i e l d  function. Its  most basic form is

s t r u c 2 = rmf iel  d ( a r r a y , ' f i  e l d ' )

where ar ray is a s truc tu re  array and ' f i e l d '  is the name of a fie ld to  remove 
from it. To remove the  name fie ld from the  pat i ent  array, for example, enter:

pat i  ent = r m f i e l d ( p a t i e n t ,  ' name' ) ;

App ly ing  Funct ions and Opera to rs
Operate on fie lds and fie ld elements the  same way you operate on any other 
M ATLAB array. Use indexing to  access the  data on which to  operate. For 
example, th is  statement finds the mean across the rows of the  test  array in 
p a t i e n t ( 2 ) .

mean( ( pa t i en t ( 2 ) . t e s t ) ' )
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There are sometimes m u ltip le  ways to  apply functions or operators across 
fie lds in a s tructu re  array. One way to  add all the  b i l l i n g  fie lds in the  pat i ent  
a rray is:

t o t a l  = 0 ;
f or  j = 1 : l e n g t h ( p a t i  ent)

t o t a l  = t o t a l  + p a t i e n t ( j )  . b i l l i n g ;
end

To s im p lify  operations like  th is , M ATLAB enables you to  operate on all 
like-named fie lds in a s truc tu re  array. S im ply enclose the  a r r a y . f i e l d  
expression in square brackets w ith in  the function call. For example, you can 
sum all the  b i l l i n g  fie lds in the  pat i ent  array using

to t a l  = sum ( [ p a t i e n t  . b i l l i n g ] ) ;

Th is is equivalent to  using the comma-separated list.

t o t a l  = sum ( [ p a t i e n t  ( 1) . b i l l i n g ,  p a t i e n t ( 2 ) . b i l l i n g . . . ] ) ;

Th is syntax is most useful in cases where the operand fie ld is a scalar field.

Wri t ing  Funct ions to Operate  on Structures
You can w rite  functions tha t work on structures w ith  specific field 
architectures. Such functions can access s tructu re  fie lds and elements for 
processing.

Note When w rit in g  M -file  functions to  operate on structures, you must 
perform your own error checking. That is, you must ensure tha t the  code 
checks for the  expected fields.

As an example, consider a collection of data tha t describes measurements, at 
d ifferent times, of the  levels of various tox ins in a water source. The data 
consists of fifteen separate observations, where each observation contains 
three separate measurements.

You can organize th is  data in to  an array of 15 structures, where each s tructu re  
has three fields, one for each of the  three measurements taken.
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The function concen, shown below, operates on an array of structures w ith  
specific characteristics. Its  arguments must contain the  fie lds lead, mercury, 
and chromium

f u n c t i on  [ r 1, r 2 ] = concen( t ox tes t ) ;
% Cr eate two vectors.  r1 contains t he r a t i o  of mercury t o  lead 
% at each observat ion.  r 2 contains t he r a t i o  of l ead t o  chromium 
r 1 = [ t o x t e s t . m e r c u r y ] . / [ t o x t e s t . l e a d ]  ; 
r 2 = [ t o x t e s t . l e a d ] . / [ t o x t e s t . c h r o m i u m ] ;
% Plot  t he concent ra t i ons  of lead, mercury, and chromium
% on the same p l o t ,  using d i f f e r e n t  co l o rs  f o r  each.
lead = [ t ox t e s t  . l ead ] ;
mercury = [ t o x t e s t . me r c u r y ] ;
chromium = [ t o x t es t . c h r omu m ] ;
p l o t ( l e a d , ’ r ’ ); hold on
plot  ( mercur y , ’ b’ )
p l o t ( c h r o m i u m ’ y ’ ); hold o f f

T ry  th is  function w ith  a sample s tructu re  array like  t e s t .

tes t  ( 1 ) . l e a d  = .007; t e s t ( 2 ) . l e a d  = .031; t e s t ( 3 ) . l e a d  = .019; 
t e s t ( 1 ) . me r c u r y  = .0021; t e s t ( 2 ) . me r c u r y  = .0009; 
t e s t ( 3 ) . me r c u r y  = .0013;
t e s t ( 1 ) . c h r o m i um = .025; t es t ( 2 ) . c h r o m i um  = .017; 
t e s t ( 3 ) . c h r o m i um = .10;

Organ iz ing  Data in Structure A r ra y s
The key to organizing s tructu re  arrays is to  decide how you want to  access 
subsets of the  inform ation. This, in tu rn , determ ines how you build the array 
tha t holds the  structures, and how you break up the  s tructu re  fields.
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For example, consider a 128-by-128 RGB image stored in th ree separate 
arrays; RED, GREEN, and BLUE:

Bueintensity
values

0. 689 
0. 535 
0. 314 
0.553 
0.441 
0.398

706
532
265
633
465
401

Geeninteraty
values

0.342
0.111
0.523
0.214
0.100
0.288

0.647
0.300
0.428
0.604
0.121
0.187

Fed intensity 
values

0.112 0 986 0 234 0. 432
0.765 0 128 0 863 0. 521
1.000 0 985 0 761 0. 698
0.455 0 783 0 224 0. 3 9 5
0.021 0 500 0 311 0. 1 2 3
1.000 1 000 0 867 0. 0 5 1
1.000 0 945 0 998 0.893
0.990 0 941 1 000 0.876
0.902 0 867 0 834 0. 798

515 0
205 0
712 0
918 0
113 0
204 0
760 0
997 0
995 0

08.1362 
05.2161 
09.2192 
3 4 4 
1 2 6 
1 7 5 
531 
910 
726

0.118 0.884 
0.653 0.925 
0.159 0.101 
0.528 0.493
0.512 0.512
0.421 0.398

912 0. 713 
219 0. 328 
128 0. 133
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There are at least tw o ways you can organize such data in to  a s tructu re  array: 

Flare organization BemErt-tyelemErt organization
B

-.b

1-ty-1 structure arraywhere each field isa128-ty-128 array

B ( 1 , 1 ) B ( 1 , 2 ) B ( 1 , 3 )

- . r  - | a 1 1 2 | _  r _| G.986 |
- r  H

- . g  - | G 342| _ . g  ----| G 647|
- g H

_  b __10.689 | - b  - | G 7G6| - b 4

3 ( 2 , 1 ) 3 ( 2 , 2 ) B ( 2 , 3 )

_  r _| G.765 | _  r _| G.128 |
- r  H

- . g  _ | o . i " | _ g __ | 0.300 |
- . g H

_ b _| G.535 | L.b - | g 532| L . b H

128-ty-128 structure array where each field is a sircjle data element

Plane Organization
In case 1 above, each fie ld of the  s tructu re  is an en tire  plane of the  image. You 
can create th is  s tructu re  using

A r  = RED;
A g  = GREEN;
A b  = BLUE;

This approach allows you to  easily extract en tire  image planes for display, 
filte ring , or other tasks tha t w ork on the en tire  image at once. To access the 
entire  red plane, for example, use:

red_plane = A. r  ed;

Plane organization has the  additional advantage of being extensible to 
m u ltip le  images in th is  case. I f  you have a number of images, you can store 
them as A ( 2 ) , A ( 3 ) , and so on, each containing an entire  image.

A
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The disadvantage of plane organization is evident when you need to  access 
subsets of the  planes. To access a subimage, for example, you need to  access 
each fie ld separately.

red_sub = A r ( 2 : 1 2 , 1 3 : 3 0 ) ;  
grn_sub = A g ( 2 : 1 2 , 1 3 : 30 ) ;  
blue_sub = A.b(2 :12,13:30) ;

Element-by-Element Organization
Case 2 has the  advantage of a llow ing easy access to  subsets of data. To set up 
the  data in th is  organization, use:

fo r  i = 1:size(RED,1)  
f o r  j = 1:size(RED,2)

B ( i , j ) . r  = RED( i , j ) ;
B ( i , j ) . g  = GREEN(i , j ) ;
B ( i , j ) . b  = BLUE( i , j ) ;

end
end

W ith element-by-element organization, you can access a subset of data w ith  a 
single statement.

Bsub = B(1:10,1:10) ;

To access an en tire  plane of the  image using the element-by-element method, 
however, requires a loop.

red_plane = zeros(128,128) ;  
f or  i = 1 : (  128*128)

r ed_p l ane( i )  = B( i ) . r ;
end

Element-by-element organization is not the  best s tructu re  array choice for 
most image processing applications; however, it can be the  best for other 
applications wherein you w ill rou tine ly need to  access corresponding subsets of 
s tructu re  fields. The example in the  fo llow ing section demonstrates th is  type of 
application.
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Example: A Simple Database 
Consider organizing a sim ple database:

Flare organization B 2

B(1)

BemErt-ty-demErt organization

B(2)

Aname = st rvcat ( ’ Ann Jones’ , ’ Dan Smith’ , . . . ) ;  
A. address = st rvcat( ’ 80 Park St . ’ , ’ 5 Lake Ave.’ 
A. amount = [12. 5;81.29;30; . . .  ];

B(1).address = ’ 80 Park St. 
B(1).anount = 12.5;

B( 2) . name = ’ Dan Smt h’ ;
B( 2) .address = ’ 5 Lake Ave. 

' B( 2) .amount = 81.29;

B(3)

.name---- 1 Ann Jones’ | .name---- 1 ’ Dan Ŝ th’ |

-. address-] 80 Park St ’ | -.address-| 5 Lake Ave ’ |

— .amount _| 12.50 1 _amount_I 81.29 I L

B(1).name = ’ Ann Jones’ ;

-.address._! ’ 116

— .amount —i 30.00-c

A

Each of the  possible organizations has advantages depending on how you want 
to  access the  data:

• Plane organization makes it easier to  operate on all fie ld values at once. For 
example, to  find  the  average of all the  values in the  amount field,

Using plane organization
avg = mean(A.amount);

Using element-by-element organization
avg = mean([B.amount ] ) ;
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• Element-by-element organization makes it easier to  access all the 
inform ation related to  a single client. Consider an M -file , c l i e n t . m  which 
displays the  name and address of a given client on screen.

Using plane organization, pass ind iv idua l fie lds

f un c t i on  c l i ent (name,address)
disp(name)
di sp(addr  ess)

Using element-by-element organization, pass an entire structure
f u n c t i on  c l i en t ( B )  
disp(B)

To call the  c l i e n t  function,

Using plane organization
c l i e n t ( A  name(2, : ) ,A.  add r ess ( 2 , : ) )

Using element-by-element organization
c l i e n t ( B ( 2 ) )

• Element-by-element organization makes it easier to  expand the  s tring  array 
fields. I f  you do not know the  maximum s tring  length ahead of tim e  for plane 
organization, you may need to  frequently recreate the name or address field 
to  accommodate longer strings.

Typically, your data does not d icta te the  organization scheme you choose. 
Rather, you must consider how you want to  access and operate on the data.

Nest ing Structures
A structu re  fie ld can contain another structure, or even an array of structures. 
Once you have created a structure, you can use the  s t ruc t  function or direct 
assignment statem ents to  nest s tructures w ith in  existing s tructu re  fields.

Building Nested Structures w ith the struct Function
To build nested structures, you can nest calls to  the  st ruct  function. For
example, create a 1-by-1 s tructu re  array.

A = s t r u c t ( ’ data ’ , [ 3  4 7; 8 0 1 ] , ’ nes t ’ , . . .
s t r u c t ( ’ t es t num,  ’ Test 1’ , ’ xdata ’ , [ 4  2 8 ] , . . .
’ ydat a’ , [ 7  1 6 ] ) )
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You can build nested s truc tu re  arrays using direct assignment statements. 
These statem ents add a second element to  the  array.

A(2) . da ta  = [ 9  3 2; 7 6 5];
A(2) . n e s t . t e s t n u m  = 'Test  2’ ;
A(2) . nes t . x da t a  = [3 4 2];
A(2) . nes t . y da t a  = [5 0 9];

A

A(1)

i—.data -

-.nest

3 4 7 
8 0 1

-.testnum----- ’ Test V

— .xdata---------[4 2 8]
1--- .ydata--------- [7 1 6]

A(2)

. data -

. nest

9 3 2
7 6 5

.testnum ’ Test 2’

.xdata---------[3 4 2]

.ydata-------- [5 0 9]

Indexing Nested Structures
To index nested structures, append nested fie ld names using dot notation. The 
firs t text s tring  in the  indexing expression identifies the  s truc tu re  array, and 
subsequent expressions access fie ld names tha t contain other structures.
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For example, the  array A created earlier has three levels of nesting:

• To access the  nested s tructu re  inside A ( 1 ) , use A ( 1 ) . n e s t .

• To access the  xdata fie ld in the nested s tructu re  in A ( 2 ) , use 
A(2) .nest  . xdata.

• To access element 2 of the  ydata fie ld in A ( 1 ) , use A(1) .nest .  y d a t a ( 2 ) .
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Cell A r rays
A  cell arr ay  is a M ATLAB array for which the  elements are cells, containers 
tha t can hold other M ATLAB arrays. For example, one cell of a cell a rray m ight 
contain a real m atrix , another an array of text strings, and another a vector of 
complex values.

cell 1,1

3 4 2
9 7 6
8 5 1

cell 1,2 cell 1,3

.25+3i 6
7

8

34+5i 7+. 92i

cell 2,1

[1.43 2.98 
5.67]

cell 2,2

7 2 14
8 3 45

52 16 3

cell 2,3

You can build cell arrays of any valid size or shape, including m ultid im ensional 
s truc tu re  arrays.

Note The examples in th is  section focus on two-dimensional cell arrays. For 
examples of higher-dimension cell arrays, see Chapter 12.

Creating Cell A r ra ys
You can create cell arrays by:

• Using assignment statements

• Preallocating the  array using the  c e l l s  function, then assigning data to  cells
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Using Assignment Statements
You can build a cell array by assigning data to  ind iv idua l cells, one cell at a 
tim e. M ATLAB autom atica lly builds the  array as you go along. There are tw o 
ways to  assign data to  cells:

• Cell indexing

Enclose the  cell subscripts in parentheses using standard array notation. 
Enclose the  cell contents on the  righ t side of the  assignment statement in 
curly braces, “{}.” For example, create a 2-by-2 cell array A.
A(1,1)  = { [ 1  4 3; 0 5 8 ; 7 2 9] } ;
A(1,2)  = { ’ Anne Smi th’ };
A(2,1)  = {3+7i } ;
A(2,2)  = { - p i : p i / 1 0 : p i }

Note The notation “{}” denotes the  empty cell array, jus t as “[ ]  ” denotes the 
empty m a trix  for num eric arrays. You can use the  empty cell array in any cell 
array assignments.

• Content indexing

Enclose the  cell subscripts in curly braces using standard array notation. 
Specify the  cell contents on the  righ t side of the  assignment statement.

A{1, 1} = [1 4 3; 0 5 8 ; 7 2 9]
A{1, 2 } = 'Anne Smit h’ ;
A{2, 1} = 3+7i ;
A{2, 2 } = - p i : p i / 10 : pi
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The various examples in th is  guide do not use one syntax throughout, but 
attem pt to  show representative usage of cell and content addressing. You can 
use the  tw o forms interchangeably.

Note I f  you already have a num eric array of a given name, don’t t ry  to  create a 
cell a rray of the  same name by assignment w ithou t firs t clearing the  num eric 
array. I f  you do not clear the  num eric array, M ATLAB assumes tha t you are 
try in g  to  “m ix” cell and num eric syntaxes, and generates an error. S im ilarly, 
M ATLAB does not clear a cell array when you make a single assignment to  it. 
I f  any of the  examples in th is  section give unexpected results, clear the  cell 
array from the workspace and try  again.

M ATLAB displays the  cell a rray A in a condensed form.

A =

[3x3 double]  ’ Anne Sm ith’
[3.0000+ 7. 0000i ]  [1x21 double]

To display the  fu ll cell contents, use the c e l l d i s p  function. For a high-level 
graphical display of cell architecture, use cel l  p l o t .

I f  you assign data to  a cell tha t is outside the  dimensions of the  current array, 
M ATLAB autom atica lly expands the  array to  include the subscripts you
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specify. It f i l ls  any intervening cells w ith  empty matrices. For example, the  
assignment below tu rn s  the  2-by-2 cell array A in to  a 3-by-3 cell array.

A(3,3)  = {5} ;

cell 1,1
1 4 3
0 5 8
7 2 9

cell 1,2

’ Anne Smith’

cell 1,3

[ ]

cell 2,1

3+7i

cell 2,2

[-3.14... 3.14]

cell 2,3

[ ]

cell 3,1

[ ]

cell 3,2

[ ]

cell 3,3

5

Cell Array Syntax: Using Braces
The curly braces, “{}” , are cell array constructors, jus t as square brackets are 
num eric array constructors. C urly  braces behave s im ila rly  to  square brackets, 
except tha t you can nest curly braces to  denote nesting of cells (see page 13-29 
for details).

C urly  braces use commas or spaces to  indicate column breaks and semicolons 
to  indicate row breaks between cells. For example,

C = { [1  2 ], [3  4 ]; [5  6 ], [7  8 ] }  

results in

cell 1,1

[1 2]
cell 1,2

[3 4]

cell 2,1
[5 6]

cell 2,2
[7 8]

Use square brackets to  concatenate cell arrays, jus t as you do for num eric 
arrays.
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Preallocating Cell Arrays w ith the cell Function
The cel l function allows you to  preallocate empty cell arrays of the  specified 
size. For example, th is  statement creates an empty 2-by-3 cell array.

B = c e l l ( 2 , 3 )

Use assignment statem ents to  f il l the  cells of B.

B(1,3)  = {1 : 3 } ;

Obta in ing  Data f rom Cell A r ra y s
You can obtain data from cell arrays and store the  result as e ither a standard 
array or a new cell array. Th is section discusses:

• Accessing cell contents using content indexing

• Accessing a subset of cells using cell indexing

Accessing Cell Contents Using Content Indexing
You can use content indexing on the  righ t side of an assignment to  access some 
or all of the  data in a single cell. Specify the  variab le to  receive the cell contents 
on the left side of the  assignment. Enclose the  cell index expression on the  right 
side of the  assignment in curly braces. Th is indicates tha t you are assigning 
cell contents, not the  cells themselves.

Consider the  2-by-2 cell array N.

N{1,1} = [1 2; 4 5];
N{1,2}  = ’ Name’ ;
N{2,1}  = 2—4 i;
N{2,2} = 7;
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You can obtain the s tring  in N{1 , 2 } using 

c = N{1 , 2 }

c =

Name

Note In assignments, you can use content indexing to  access only a single cell, 
not a subset of cells. For example, the  statements A { 1 , : }  = value and 
B = A { 1 , : }  are both inva lid . However, you can use a subset of cells any place 
you would norm ally use a comma-separated list of variables (for example, as 
function inpu ts  or when build ing an array). See ““Replacing L ists of Variables 
w ith  Cell A rrays”” on page 13-25 for details.

To obtain subsets of a cell’s contents, concatenate indexing expressions. For 
example, to  obtain element ( 2 , 2 ) of the  array in cell N{1 , 1} ,  use:

d = N{1 , 1} ( 2 , 2 ) 

d =

5

Accessing a Subset of Cells Using Cell Indexing
Use cell indexing to  assign any set of cells to  another variable, creating a new 
cell array. Use the  colon operator to  access subsets of cells w ith in  a cell array.

cell 1,1
3

cell 1,2
5

cell 1,3
9

cell 2,1
5

cell 2,2
6

cell 2,3
0

cell 3,1
4

cell 3,2
7

cell 3,3
2

B = A(2:3,2:3)

cell 1,1
6

cell 1,2
0

cell 2,1
7

cell 2,2
2

13-24



Cell Arrays

Delet ing Cells
You can delete an entire  dimension of cells using a single statement. Li ke 
standard array deletion, use vector subscripting when deleting a row or column 
of cells and assign the empty m a trix  to  the  dimension.

A( c e l l _s u b s c r i p t s )  = [ ]

When deleting cells, curly braces do not appear in the  assignment statement at 
all.

Reshaping Cell A r ra y s
Like other arrays, you can reshape cell arrays using the  reshape function. The 
number of cells must remain the  same after reshaping; you cannot use reshape 
to add or remove cells.

A = c e l l ( 3 , 4 ) ;  
s i ze(A)

ans =

3 4

B = reshape(A,6,2) ;  
s i ze(B)

ans =

6 2

Replacing Lists of Var iab les  w i t h  Cell A r ra y s
Cell arrays can replace comma-separated lis ts  of M ATLAB variables in:

• Function input lis ts

• Function output lis ts

• Display operations

• A rray  constructions (square brackets and curly braces)
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I f  you use the colon to  index m u ltip le  cells in conjunction w ith  the  curly brace 
notation, M ATLAB trea ts  the  contents of each cell as a separate variable. For 
example, assume you have a cell a rray T where each cell contains a separate 
vector. The expression T{1:5}  is equivalent to  a comma-separated list of the 
vectors in the firs t five  cells of T.

Consider the cell array C.

C(1) = { [1  2 3] } ;
C(2) = { [1  0 1] } ;
C(3) = {1:10} ;
C(4) = { [9  8 7] } ;
C(5) = {3} ;

To convolve the  vectors in C(1) and C(2) using conv, 

d = conv(C{1:2} )

d =

1 2 4 2 3 

Display vectors two, three, and four w ith

C{2:4}

ans =

1 0 1

ans =

1 2 3 4 5 6 7 8 9 10

ans =

9 8 7
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S im ila rly , you can create a new num eric array using the  statement

B = [C{1} ;  C{2} ; C{4}]

B =
1 2 3 
1 0 1 
9 8 7

You can also use content indexing on the  left side of an assignment to  create a 
new cell a rray where each cell represents a separate output argument.

[ D{1 : 2 } ]  = eig(B)

D =

[3x3 double]  [3x3 double]

You can display the  actual eigenvalues and eigenvectors using D{1} and D{2} .

Note The va r a r g i n  and varargout  arguments allow you to  specify variable 
numbers of input and output arguments for M ATLAB functions tha t you 
create. Both va r a r g i n  and varargout  are cell arrays, a llow ing them to  hold 
various sizes and kinds of M ATLAB data. See Chapter 10 for details.

App ly ing  Funct ions and Opera to rs
Use indexing to  apply functions and operators to  the contents of cells. For 
example, use content indexing to  call a function w ith  the  contents of a single 
cell as an argument.

A{1, 1} = [1 2; 3 4 ];
A{1,2}  = randn( 3,3) ;
A{1, 3} = 1:5;
B = sum(A{1,1})

B =

4 6
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To apply a function to  several cells of a non-nested cell array, use a loop.

fo r  i = 1 : l ength(A)
M{i }  = sum(A{1, i } ) ;

end

Organ iz ing  Data in Cell A r ra y s
Cell arrays are useful for organizing data tha t consists of d ifferent sizes or 
kinds of data. Cell arrays are better than structures for applications where:

• You need to  access m u ltip le  fie lds of data w ith  one statement.

• You want to  access subsets of the  data as comma-separated variab le  lists.

• You don’t have a fixed set of fie ld names.

• You routine ly remove fie lds from the  structure.

As an example of accessing m u ltip le  fie lds w ith  one statement, assume tha t 
your data consists of:

• A 3-by-4 array consisting of measurements taken for an experiment

• A 15-character s tring  containing a technic ian ’s name

• A 3-by-4-by-5 array containing a record of measurements taken for the  past 
five experiments

For many applications, the  best data construct for th is  data is a structure. 
However, if  you routine ly access only the  firs t tw o  fie lds of in form ation, then a 
cell array m ight be more convenient for indexing purposes.

This example shows how to  access the firs t and second elements of the  cell 
array test .

[newdata,  name] = deal (TEST{1:2})

This example shows how to  access the firs t and second elements of the  
s tructu re  TEST.

newdata = TEST.measure 
name = TEST.name
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The var a rg i n  and var argout arguments are examples of the  u t il i ty  of cell 
a rrays as substitu tes for comma-separated lists. Create a 3-by-3 num eric 
array A.

A = [0  1 2 ;4  0 7 ;3  1 2];

Now apply the normest (2-norm estimate) function to  A, and assign the  function 
output to  ind iv idua l cells of B.

[ B { 1 : 2 } ]  = normest(A)

B =

[8.8826]  [4]

A ll of the  output values from the  function are stored in separate cells of B. B(1) 
contains the  norm estimate; B(2) contains the iteration count.

Nest ing Cell A r ra y s
A cell can contain another cell array, or even an array of cell arrays. (Cells tha t 
contain noncell data are called leaf cells.) You can use nested curly braces, the 
cel l  function, or direct assignment statements to  create nested cell arrays. 
You can then access and m anipulate ind iv idua l cells, subarrays of cells, or cell 
elements.

Building Nested Arrays w ith Nested Curly Braces
You can nest pairs of curly braces to  create a nested cell array. For example,

c l ear  A
A(1,1)  = {magic(5) } ;
A(1,2)  = { { [ 5  2 8 ; 7 3 0; 6 7 3] 'Test  1' ;  [2 -4 i 5+7i ]  {17 [ ] } } }  

A =
[5x5 double]  {2x2 c e l l }

Note tha t the  righ t side of the  assignment is enclosed in tw o sets of curly 
braces. The firs t set represents cell ( 1 ,2)  of cell a rray A. The second “packages” 
the 2 -by-2 cell array inside the outer cell.
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Building Nested Arrays w ith the cell Function
To nest cell arrays w ith  the  cel l  function, assign the  output of cel l  to an 
existing cell:

1 Create an empty 1-by-2 cell array.

A = c e l l ( 1 , 2 )

2 Create a 2-by-2 cell a rray inside A( 1,2) .

A(1,2)  = { c e l l ( 2 , 2 ) }

3 F ill A, including the  nested array, using assignments.

A(1 1) = {magic(5) } ;
A{1 2 }( 1 1) = { [ 5  2 8 ; 7 3 0; 6 7 3] }
A{1 2 }( 1 2 ) = { ’ Test 1’ };
A{1 2 }( 2 , 1) = { [ 2—4i СЛ + }

A{1 2 }( 2 , 2 ) = { c e l l (1 , 2 )}
A{1 2 }{ 2 , 2 } 1) = {17}

Note the  use of curly braces un til the  fina l level of nested subscripts. Th is is 
required because you need to  access cell contents to  access cells w ith in  cells.

You can also build nested cell arrays w ith  direct assignments using the 
statements shown in step 3 above.

Indexing Nested Cell Arrays
To index nested cells, concatenate indexing expressions. The firs t set of 
subscripts accesses the  top layer of cells, and subsequent sets of parentheses 
access successively deeper layers.

For example, array A has three levels of nesting:

cell 1,1

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

cell 1,2
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• To access the 5-by-5 array in cell ( 1 , 1 ) ,  use A { 1 , 1 } .

• To access the 3-by-3 array in position (1 , 1)  of cell ( 1 , 2 ) ,  use A { 1 , 2 } { 1 , 1 } .

• To access the 2-by-2 cell array in cell ( 1 , 2 ) ,  use A { 1 , 2 } .

• To access the  empty cell in position ( 2 , 2 ) of cell ( 1 , 2 ) , use 
A{1, 2 } { 2 , 2 } { 1 , 2 } .
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Convert ing Between Cell and Numer ic  A r ra y s
Use f or  loops to  convert between cell and num eric formats. For example, create 
a cell array F,

F{1,1}  = [1 2; 3 4];
F{1,2}  = [ -1  0; 0 1];
F{2,1}  = [ 7  8 ; 4 1];
F{2,2}  = [4i  3+2i ; 1-8i 5];

Now use three fo r  loops to  copy the contents of F in to  a num eric array NUM

fo r k = 1:4 
fo r  i = 1 :2  

fo r  j = 1 :2
NUM( i , j , k )  = F { k } ( i , j ) ;

end
end

end

S im ila rly , you must use fo r  loops to  assign each value of a num eric array to  a 
single cell of a cell array.

G = c e l l (  1,16);  
f or  m = 1:16

G(n} = NUM(m);
end
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Cell A r ra y s  of Structures
Use cell arrays to  store groups of s tructures w ith  d ifferent fie ld architectures.

c_st r = c e l l ( 1, 2 )
c _ s t r { 1 } . l a b e l  = ' 12 / 2 / 9 4  -  12/5/94 ' ;  
c_ s t r { 1 } . o b s  = [47 52 55 48; 17 22 35 11]; 
c_st r { 2 } . x d a t a  = [ - 0 . 0 3  0.41 1.98 2.12 17.11] ;  
c_st r { 2 } . y d a t a  = [ - 3  5 18 0 9]; 
c_st r { 2 } . z d a t a  = [ 0 . 6  0.8 1 2.2 3.4] ;

cell 1
c_str(1)

label ___ '12/2/94 -  12/ 5/ 94'

test ------- 47 52 55 48
17 22 35 11

cell 2
c_str(2)

[-0.03 0.41 1.98 2.12 17.11] 
[-3 5 18 0 9]
[0.6 0.8 1 2.2 3.4]

- .bi l l i ng — 
— .test -------

Cell 1 of the  c_st r  a rray contains a s tructu re  w ith  tw o fields, one a s tring  and 
the  other a vector. Cell 2 contains a s tructu re  w ith  th ree vector fields.

When bu ild ing cell arrays of structures, you must use content indexing. 
S im ila rly , you must use content indexing to  obtain the  contents of structures 
w ith in  cells. The syntax for content indexing is:

cel l  _ a r r a y { i n d e x } . f i e l d

For example, to  access the  label  fie ld of the  s tructu re  in cell 1, use
c _ s t r { 1} . l a b e l  .
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Classes and Objects: An Overv iew

This chapter describes how to  define classes in M ATLAB . Classes and objects 
enable you to  add new data types and new operations to  M A TLA B . The class of 
a variab le  describes the s tructu re  of the  variab le and indicates the  kinds of 
operations and functions tha t can apply to  the  variable. An object is an instance 
of a particu lar class. The phrase “object-oriented program m ing” describes an 
approach to  w r it in g  programs tha t emphasizes the  use of classes and objects.

You can view classes as new data types having specific behaviors defined for 
the  class. For example, a polynomial class m ight redefine the  addition operator 
(+) so tha t it correctly performs the  operation of addition on polynomials. 
Operations defined to  work w ith  objects of a particu la r class are know as 
methods of tha t class.

You can also view classes as new item s tha t you can trea t as single entities. An 
example is an arrow object tha t M ATLAB can display on graphs (perhaps 
composed of M ATLAB line and patch objects) and tha t has properties like  a 
Handle Graphics object. You can create an arrow sim ply by ins tan tia ting  the 
arrow class.

You can add classes to  your M ATLAB environment by specifying a M ATLAB 
structu re  tha t provides data storage for the  object and creating a class 
d irectory containing M -files tha t operate on the  object. These M -files contain 
the  methods for the  class. The class d irectory can also include functions tha t 
define the way various M ATLAB operators, including a rithm e tic  operations, 
subscript referencing, and concatenation, apply to  the objects. Redefining how 
a bu ilt-in  operator works for your class is known as overloading the  operator.

Features of Object -Or iented Programming
When using well-designed classes, object-oriented programming can 
s ign ifican tly  increase code reuse and make your programs easier to  m ainta in 
and extend. Program ming w ith  classes and objects d iffe rs from ordinary 
structured program ming in these im portant ways:

• Fun c t i on  and ope r a t o r  ove r l oad i ng .  You can create methods that 
override existing M ATLAB functions. When you call a function w ith  a 
user-defined object as an argument, M ATLAB firs t checks to  see if  there is a
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method defined for the  object’s class. I f  there is, M ATLAB calls it, rather 
than the  normal M ATLAB function.

• Encapsu l a t i on  of  da ta  and m ethods. Object properties are not visib le 
from the command line; you can access them only w ith  class methods. Th is 
protects the object properties from operations tha t are not intended for the 
object’s class.

• I nhe r i t anc e .  You can create class hierarchies of parent and child classes in 
which the child class inhe rits  data fie lds and methods from the parent. A 
child class can inherit from one parent (single inheritance) or many parents 
(m u ltip le  inheritance). Inheritance can span one or more generations. 
Inheritance enables sharing common parent functions and enforcing 
common behavior amongst all child classes.

• A g g r e g a t i o n . You can create classes using aggregation, in which an object 
contains other objects. Th is is appropria te when an object type is part of 
another object type. For example, a savings account object m ight be a part of 
a financial portfo lio  object.

MATLAB Data Class Hierarchy
You can add new data types to  M ATLAB by extending the  M ATLAB data class
hierarchy. The M ATLAB data class hierarchy is shown in th is  diagram.

ar r ay

char numeric cel l

| user class
i n t 8 , uint  8 , 
i n t16,  u i n t 1 6 , 
i n t32,  u i nt32,  
s i ng l e

The arr ay  class, shown at the  root of the  diagram, is the  fundamental data class 
in M ATLAB upon which all other data classes are based. The arr ay  class is a 
v irtua l class tha t you cannot d irectly  instantia te . This means tha t you cannot 
create a variab le  w ith  the type ar r ay.  The numeric class is also a v irtu a l class. 
The rem aining cl asses, char,  double,  sparse, cel l  , s t r uc t  , and the

double

sparse

s t ruc t
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ind iv idua l storage types, such as u i n t 8 , are the classes tha t you use to  work 
w ith  data in M ATLAB.

The diagram shows a user class tha t inherits  from the  s t ruc t  class. A ll classes 
tha t you create are s tructu re  based since th is  is the  point in the  class hierarchy 
where you can insert you own classes.

Creating Objects
You create an object by calling the  class constructor and passing it the 
appropria te input arguments. In M ATLAB, constructors have the same name 
as the  class name. For example, the  statement,

p = polynon( [1 0 -2 - 5 ] ) ;

creates an object named p belonging to  the  class polynom Once you have 
created a polynom object, you can operate on the  object using methods tha t are 
defined for the  polynom class. See “Example: A Polynomial Class” on page 
14-23 for a description of the  polynom class.

Invoking  Methods  on Objects
Class methods are M -file  functions tha t take an object as one of the  input 
arguments. The methods for a specific class must be placed in the class 
d irectory for tha t class (the @lass_name directory). Th is is the  firs t place that 
M ATLAB looks to  find a class method.

The syntax for invoking a method on an object is s im ila r to  a function call. 
Generally, it looks like:

[ o u t 1 , o u t 2 , . . . ]  = method_name(object ,arg1 , a r g 2 , . . . ) ;

For example, suppose a user-defined class called polynom has a char method 
defined for the  class. Th is method converts a polynom object to  a character 
s tring  and re turns the  string. Th is statement calls the  char method on the 
polynom object p.

s = char (p) ;
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Using the  cl ass function, you can confirm tha t the  returned value s is a 
character string:

c l ass(s )  
ans = 

char
s
s =

xA3-2*x-5

You can use the  methods command to  produce a lis t of all of the  methods tha t 
are defined for a class.

Private Methods
Private methods can be called only by other methods of th e ir class. You define 
priva te  methods by placing the  associated M -files in a p r i va t e  subdirectory of 
the  @lass_name directory. In the  example,

@lass_name/pr i va te /update_ob j .m

the method update_obj has scope only w ith in  the  class_name class. This 
means tha t update_obj can be called by any method tha t is defined in the 
@lass_name directory, but it cannot be called from the  M ATLAB command 
line or by methods outside of the  class directory, including parent methods.

P rivate methods and priva te  functions d iffe r in tha t p riva te  methods (in fact 
all methods) have an object as one of th e ir input arguments and private 
functions do not. You can use priva te  functions as helper functions, such as 
described in the  next section.

Helper Funct ions
In designing a class, you may discover the  need for functions tha t perform 
support tasks for the  class, but do not d irectly  operate on an object. These 
functions are called helper functions. A helper function can be a subfunction in 
a class method file  or a priva te  function. When determ ining which version of a 
particu la r function to  call, M ATLAB looks for these functions in the  order 
listed above. For more inform ation about the  order in which M ATLAB calls 
functions and methods, see “How M ATLAB Determ ines Which Method to  C a ll” 
on page 14-68.

14-5



14 MATLAB Classes and Objects

Debugging Class Methods
You can use the  M ATLAB debugging commands w ith  object methods in the 
same way tha t you use them w ith  other M-files. The only difference is tha t you 
need to  include the  class d irectory name before the  method name in the 
command call, as shown in th is  example using dbstop.

dbstop @>olynom(char

W hile  debugging a class method, you have access to  all methods defined for the  
class, includ ing inherited methods, priva te  methods, and priva te  functions.

For more inform ation about debugging M ATLAB functions, see Chapter 3, 
“Debugger and P ro file r.”

Changing Class Definition
I f  you change the  class defin ition , such as the  number or names of fie lds in a 
class, you must issue a

clear  c lasses

command to  propagate the  changes to  your M ATLAB session. Th is command 
also clears all objects from the  workspace. See the  c l ear  command help entry 
for more inform ation.

Setting Up Class Director ies
The M -files defin ing the  methods for a class are collected together in a directory 
referred to  as the  class directory. The d irectory name is formed w ith  the  class 
name preceded by the  character @ For example, one of the  examples used in 
th is  chapter is a class involving polynomials in a single variable. The name of 
the  class, and the name of the  class constructor, is polynom The M -files 
defin ing a polynomial class would be located in d irectory w ith  the name 
@polynom

The class directories are subdirectories of d irectories on the  M ATLAB search 
path, but are not themselves on the  path. For instance, t he new @polynom 
directory could be a subdirectory of M A T LA B ’s w ork ing d irectory or your own 
personal d irectory tha t has been added to  the search path.
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Adding the Class Directory to the MATLAB Path
A fte r creating the  class directory, you need to  update the  M ATLAB path so that 
M ATLAB can locate the  class source files. The class d irectory should not be 
d irectly  on the M ATLAB path. Instead, you should add the  parent d irectory to  
the M ATLAB path. For example, if  the  @polynom class d irectory is located at

c: \my_classes\@polynom 

you add the class d irectory to  the  M ATLAB path w ith  the  addpath command 

addpath c : \ ny_c lasses;

I f  you create a class d irectory w ith  the  same name as another class, M ATLAB 
trea ts  the  tw o class directories as a single d irectory when locating class 
methods. For more inform ation, see “ How M ATLAB Determ ines Which 
Method to  C a ll” on page 14-68.

Data Structure
One of the  firs t steps in the design of a new class is the  choice of the  data 
s truc tu re  to  be used by the  class. Objects are stored in M ATLAB structures. 
The fie lds of the  structure, and the  deta ils of operations on the  fields, are 
v is ib le  only w ith in  the  methods for the  class. The design of the  appropriate 
data s tructu re  can affect the  performance of the  code.

Tips fo r  C++ and Java Prog rammers
I f  you are accustomed to  programming in other object-oriented languages, such 
as C++ or Java, you w ill find  tha t the  M ATLAB programm ing language differs 
from these languages in some im portant ways:

• In M ATLAB, method dispatching is not syntax based, as it is in C++ and 
Java. When the  argument lis t contains objects of equal precedence, 
M ATLAB uses the  left-most object to  select the  method to  call.

• In M ATLAB, there is no equivalent to  a destructor method. To remove an 
object from the workspace, use the  clear  function.

• Construction of M ATLAB data types occurs at run tim e  ra ther than compile 
tim e. You register an object as belonging to  a class by calling the class 
function.

• When using inheritance in M ATLAB, the  inheritance re lationship is 
established in the  child class by creating the parent object, and then calling
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the  c l ass function. For more inform ation on w rit in g  constructors for 
inheritance relationships, see “B u ild ing  on Other Classes” on page 14-34.

• When using inheritance in M ATLAB, the  child object contains a parent 
object in a property w ith  the  name of the  parent class.

• In M ATLAB, there  is no passing of variables by reference. When w ritin g  
methods that update an object, you must pass back the  updated object and 
use an assignment statement. For instance, th is  call to  the  set method 
updates the  name fie ld of the  object A and re tu rns the updated object.
A = s e t ( A , ’ name’ , ’ John Smi th’ );

• In M ATLAB, there is no equivalent to  an abstract class.

• In M ATLAB, there  is no equivalent to  a Java interface.

• In M ATLAB, there  is no equivalent to  the C++ scoping operator.

• In M ATLAB, there  is no v irtu a l inheritance or v irtu a l base classes.

• In M ATLAB, there is no equivalent to  C++ templates.

References fo r  Object -Or iented Design
For more detailed inform ation about object-oriented design, we recommend
these references:

• Object Oriented Software Construction - Bertrand Meyer

• Object Oriented Analysis and Design w ith  Applications - Grady Booch
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Designing User Classes in MATLAB
This section discusses how to  approach the  design of a class and describes the 
basic set of methods tha t should be included in a class.

The MATLAB Canonical  Class
When you design a M ATLAB class, you should include a standard set of 
methods tha t enable the  class to  behave in a consistent and logical way w ith in  
the M ATLAB environment. Depending on the nature of the  class you are 
defining, you may not need to  include all of these methods and you may include 
a number of other methods to  realize the  class’s design goals.

This tab le  lis ts  the  basic methods included in M ATLAB classes.

Class Method Description

class constructor Creates an object of the  class

d is p la y Called whenever M ATLAB displays the contents 
of an object (e.g., when an expression is entered 
w ithou t te rm ina ting  w ith  a semicolon)

set and get Accesses class properties

subsref and subsasgn Enables indexed reference and assignment for 
user objects

end Supports end syntax in indexing expressions 
using an object; e.g., A(1:end)

subsindex Supports using an object in indexing expressions

converters like  double Methods tha t convert an object to  a MATLAB
and char data type

The fo llow ing sections discuss the  implem entation of each type of method, as 
well as providing references to  examples used in th is  chapter.
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The Class Constructor Method
The @ directory for a particu la r class must contain an M -file  known as the 
constructor for tha t class. The name of the  constructor is the  same as the  name 
of the  d irectory (excluding the @ prefix and mextension) tha t defines the name 
of the  class. The constructor creates the  object by in itia liz in g  the data s tructu re  
and ins tan tia ting  an object of the  class.

Guidelines for Writing a Constructor
Class constructors must perform certain functions so tha t objects behave 
correctly in the  M ATLAB environment. In general, a class constructor must 
handle three possible combinations of input arguments:

• No input argum ents

• An object of the  same class as an input argument

• The input arguments used to  create an object of the  class (typ ica lly data of 
some kind)

No Input Arguments. I f  there  are no input arguments, the  constructor should 
create a default object. Since there are no inputs, you have no data from which 
to  create the  object, so you sim ply in itia lize  the object’s data structures w ith  
empty or default values, call the  c l ass function to  ins tan tia te  the object, and 
return the  object as the  output argument. Support for th is  syntax is required 
for tw o  reasons:

• When loading objects in to  the  workspace, the  load function calls the  class 
constructor w ith  no arguments.

• When creating arrays of objects, M ATLAB calls the  class constructor to  add 
objects to  the  array.

Object Input Argument. I f  the  firs t input argument in the argument lis t is an 
object of the  same class, the  constructor should sim ply re turn the  object. Use 
the  is a  function to  determ ine if  an argument is a member of a class. See 
“Overloading the  + Operator” on page 14-29 for an example of a method tha t 
uses th is  constructor syntax.

Data Input Arguments. I f  the  input arguments exist and are not objects of the 
same class, then the constructor creates the  object using the  input data. Of 
course, as in any function, you should perform proper argument checking in 
your constructor function. A typical approach is to  use a va r a r g i n  input
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argument and a swi t ch statement to  control program flow. This provides an 
easy way to  accommodate the  three cases: no inputs, object input, or the  data 
inputs used to  create an object.

It is in th is  part of the  constructor tha t you assign values to  the  object’s data 
structure, call the  c l ass function to  ins tan tia te  the  object, and return the 
object as the  output argument. I f  necessary, place the object in an object 
h ierarchy using the  s upe r i o r t o  and i n f e r i o r t o  functions.

Using the class Function in Constructors
W ith in  a constructor method, you use the  c l ass function to  associate an object 
s tructu re  w ith  a particu la r class. Th is is done using an internal class tag that 
is only accessible using the c l ass and i sa  functions. For example, th is  call to  
the  c l ass function identifies the  object p to  be of type polynom

p = c l a s s ( p , ’ po l ynom) ;

Examples of Constructor Methods
See the follow ing sections for examples of constructor methods:

• “The Polynom Constructor Method” on page 14-24

• “The Asset Constructor Method” on page 14-38

• “The Portfo lio  Constructor Method” on page 14-55

Identifying Objects Outside the Class Directory
The c lass and i sa functions used in constructor methods can also be used 
outside of the  class directory. The expression

isa(  a , ’ class_name’ )

checks whether a is an object of the  specified class. For example, if  p is a 
polynom object, each of the  fo llow ing expressions is true.

i sa(  p i , ’ double’ ) 
i sa(  ’ h e l l o ’ , ’ char ’ ) 
i sa(  p , ’ polynom )
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Outside of the  class directory, the  cl ass function takes only one argument (it 
is only w ith in  the constructor tha t c l ass can have more than one argument). 
The expression

c lass(a)

re tu rns a s tring  containing the  class name of a. For example

c l a s s ( p i ) ,
c l a s s ( ’ h e l l o ’ ),
c l ass(p)

return

’ double’ ,
’ char ’ ,
’ polynom

Use the whos command to  see what objects are in the M ATLAB workspace.

whos

Name Size Bytes Class
p 1x1 156 pol ynom object

The d isp lay Method
M ATLAB calls a method named displ  ay whenever an object is the  result of a 
statement tha t is not te rm inated by a semicolon. For example, creating the 
variab le  a, which is a double, calls M A T LA B ’s di splay method for doubles:

>>a = 5 

a =

5

You should define a d i sp l ay  method so M ATLAB can display values on the 
command line  when referencing objects from your class. In many classes, 
d i sp l ay  can sim ply p rin t the  variab le  name, and then use the  char converter 
method to  p rin t the  contents or value of the  variable, since M ATLAB displays 
output as strings. You must define the  char method to  convert the  object’s data 
to  a character string.
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Examples of display Methods
See the  fo llow ing sections for examples of d i sp l ay  methods:

• “The Polynom display Method” on page 14-27

• “The Asset display Method” on page 14-44

• “The Stock display Method” on page 14-52

• “The Portfo lio  display M ethod” on page 14-57

Accessing Object Data
You need to  w rite  methods for your class tha t provide access to  an object’s data. 
Accessor methods can use a varie ty of approaches, but all methods tha t change 
object data always accept an object as an input argument and return a new 
object w ith  the  data changed. Th is is necessary because M ATLAB does not 
support passing arguments by reference (i.e., pointers). Functions can change 
only the ir private, tem porary copy of an object. Therefore, to  change an existing 
object, you must create a new one, and then replace the old one.

The fo llow ing sections provide more detail about implem entation techniques 
for the  s e t , get , subsasgn, and subsref  methods.

The set and get Methods
The set and get methods provide a convenient way to  access object data in 
certain cases. For example, suppose you have created a class tha t defines an 
arrow object tha t M ATLAB can display on graphs (perhaps composed of 
existing M ATLAB line and patch objects).

To produce a consistent interface, you could define set and get methods tha t 
operate on arrow objects the  way the  M ATLAB set and get functions operate 
on bu ilt-in  graphics objects. The set and get verbs convey what operations 
they perform, but insu la te the  user from the in te rna ls  of the  object.

Examples of set and get Methods. See the fo llow ing sections for examples of set 
and get methods:

• “The Asset get Method” on page 14-40 and the  “The Asset set M ethod” on 
page 14-41

• “The Stock get Method” on page 14-47 and the  “The Stock set Method” on 
page 14-50
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Property Name Methods
As an a lte rna tive  to  a general set method, you can w rite  a method to  handle 
the  assignment of an ind iv idua l property. The method should have the same 
name as the  property name.

For example, if  you defined a class tha t creates objects representing employee 
data, you m ight have a fie ld in an employee object called sal ary .  You could 
then define a method called s a l a r y . m  tha t takes an employee object and a 
value as input argum ents and re turns the  object w ith  the  specified value set.

Indexed Reference Using subsref  and subsasgn
User classes implement new data types in M ATLAB. It is useful to  be able to 
access object data via an indexed reference, as is possible w ith  M A T LA B ’s 
bu ilt-in  data types. For example, if  A is an array of class double,  A ( i )  re turns 
the  i th element of A.

As the  class designer, you can decide what an index reference to  an object 
means. For example, suppose you define a class tha t creates polynomial objects 
and these objects contain the  coefficients of the  polynomial.

An indexed reference to  a polynomial object,

p(3)

could re turn the  value of the  coefficient of x3, the  value of the  polynomial at 
x  = 3, or something d ifferent depending on the  intended design.

You define the  behavior of indexing for a particu la r class by creating tw o class 
methods -  subsref  and subsasgn. M ATLAB calls these methods whenever an 
subscripted reference or assignment is made on an object from the  class. I f  you 
do not define these methods for a class, indexing is undefined for objects of th is  
class.

I n general, the  rules for indexing objects are the  same as the  rules for indexing 
s tructu re  arrays. For details, see Chapter 13, “S tructures and Cell A rrays.”

Handling Subscripted Reference
The use of a subscript or fie ld designator w ith  an object on the  right-hand side 
of an assignment statement is known as a subscripted reference. M ATLAB calls 
a method named subsref  in these situations. Object subscripted references can
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be of th ree form s -  an array index, a cell a rray index, and a s truc tu re  field 
name:

A( I )
A{ I }
A f i e l d

Each of these results in a call by M ATLAB to  the  subsref  method in the  class 
directory. M ATLAB passes tw o arguments to  subs r e f :

B = subsref (A,S)

The firs t argument is the  object being referenced. The second argument, S, is a 
s truc tu re  array wi th tw o fields:

• S. t ype is a s tring  containing ’ ( ) ’ , ’{ } ’ , or ’ . ’ specifying the  subscript type. 
The parentheses represent a num eric array; the  curly braces, a cell array; 
and the  dot, a s truc tu re  array.

• S.subs is a cell array or s tring  containing the  actual subscripts. A colon used 
as a subscript is passed as the  s tring  ’ : ’ .

For instance, the  expression

A ( 1 : 2 , : )

causes M ATLAB to  call s u b s r e f ( A S ) , where S is a 1 -by-1 s truc tu re  w ith

S. t ype = ’ ( ) ’
S.subs = { 1 : 2 , ’ : ’ }

S im ila rly , the  expression

A{1:2}

uses

S. type =’ { } ’
S.subs = {1 :2}

The expression 

A f i e l d
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calls subsref (A,S)  where

S. type = ’ . ’
S.subs = ’ f i e l d ’

These sim ple calls are combined for more complicated subscripting 
expressions. In such cases, l ength(S)  is the number of subscripting levels. For 
example,

A(1,2) .name(3:4)  

calls subsref (A,S) ,  where S is a 3-by-1 s tructu re  array w ith  the values:

S(1) t ype = ’ ( ) ’ S (2 ) . t ype  = ’ . ’ S ( 3 ) . t ype  = ’ ( ) ’
S(1) .subs = ’ { 1 , 2 } ’ S(2) .subs = ’ name’ S(3) . subs = ’ { 3 : 4 } ’

How to W rite subsref
The subsref  method must in terpre t the  subscripting expressions passed in by 
M ATLAB. A typical approach is to  use the swi t ch statement to  determ ine the 
type of indexing used and to  obtain the  actual indices. The follow ing three code 
fragm ents illu s tra te  how to  in terpre t the  input arguments. In each case, the 
function must return the  value B.

For an array index:

swi t ch S. type 
case ’ ( ) ’

B = A(S. subs { : } ) ;
end

For a cell array:

swi t ch S. type 
case ’ { } ’

B = A( S . subs { : } ) ;  % B i s  a cel l  ar ray
end
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For a s truc tu re  array:

swi t ch S. type 
case ’ . ’

swi t ch S.subs 
case ’ f i e l d l ’

B = A. f i e l d l ;  
case ’ f i e l d 2 ’

B = A. f i e l d 2 ;
end

end

Examples of the subsref Method
See the fo llow ing sections for examples of the  subsref  method:

• “The Polynom subsref Method” on page 14-28

• “The Asset subsref Method” on page 14-40

• “The Stock subsref Method” on page 14-48

• “The Portfo lio  subsref Method” on page 14-64

Subscripted Assignment
The use of a subscript or fie ld designator w ith  an object on the  left-hand side of 
an assignment statement is known as a subscripted assignment. M ATLAB 
calls a method named subsasgn in these situations. Object subscripted 
assignment can be of th ree form s -  an array index, a cell array index, and a 
s truc tu re  fie ld name:

A( I )  = B 
A{ I }  = B 
A f i e l d  = B

Each of these results in a call to  subsasgn of the  form:

A = subsasgn(A S,B)

The firs t argument, A, is the  object being referenced. The second argument, S, 
has the  same fie lds as those used w ith  subs r e f . The th i rd argument, B, is the 
new value.
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Examples of the subsasgn Method
See the  follow ing sections for examples of the  subsasgn method:

• “The Asset subsasgn Method” on page 14-42

• “The Stock subsasgn Method” on page 14-51

Defining end Index ing fo r  an Object
When you use end in an object indexing expression, M ATLAB calls the  object’s 
end class method. If you want to  be able to  use end in indexing expressions 
involving objects of your class, you must define an end method for your class.

The end method has the calling sequence

end(a,k ,n)

where a is the  user object, k is the  index in the expression where the end syntax 
is used, and n is the  tota l number of indices in the  expression.

For example, consider the  expression

A(end-1,: )

M ATLAB calls the  end method defined for the  object A using the  arguments

end(A,1,2)

That is, the  end statement occurs in the firs t index element and there  are two 
index elements. The class method for end must then return the  index value for 
the  last element of the  firs t dimension. When you implement the  end method 
for your class, you must ensure it re tu rns a value appropria te for the  object.

Index ing  an Object w i t h  Ano ther  Object
When M ATLAB encounters an object as an index, it calls the  subsindex 
method defined for the  object. For example, suppose you have an object a and 
you want to  use th is  object to  index in to  another object b.

c = b(a);
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A subsindex method m ight do something as sim ple as convert the  object to 
double format to  be used as an index, as shown in th is  sample code.

f un c t i on  d = subsindex(a)
"/SUBSINDEX
% convert  t he object  a t o  double format t o  be used 
% as an index i n  an indexi  ng expression 
d = double(a) ;

subsindex values are 0-based, not 1-based.

Converter  Methods
A converter method is a class method tha t has the  same name as another class, 
such as char or double.  Converter methods accept an object of one class as 
input and return an object of another class. Converters enable you to:

• Use methods defined for another class

• Ensure tha t expressions involving objects of mixed class types execute 
properly

A converter function call is of the  form

b = cl ass_name(a)

where a is an object of a class other than class_name. In thi s case, M ATLAB 
looks for a method called cl ass_name in the  class d irectory for object a. I f  the  
input object is already of type class_name, then M ATLAB calls the  constructor, 
which just re tu rns the  input argument.

Examples of Converter Methods
See the  fo llow ing sections for examples of converter methods:

• “The Polynom to  Double Converter” on page 14-25

• “The Polynom to  Char Converter” on page 14-25
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Overloading Operators and Functions
In many cases, you may want to  change the behavior of M A T LA B ’s operators 
and functions for cases when the arguments are objects. You can accomplish 
thi s  by overloading the  relevant functions. Overloading enables a function to  
handle d ifferent types and numbers of input arguments and perform whatever 
operation is appropria te for the  highest-precedence object. See “Object 
Precedence” on page 14-66 for more inform ation on object precedence.

Over load ing  Opera to rs
Each bu ilt-in  M ATLAB operator has an associated function name (e.g., the  + 
operator has an associated p l us . m function). You can overload any operator by 
creating an M -file  w ith  the  appropria te name in the class directory. For 
example, if  e ither p or q is an object of type class_name, the  expression

p + q

generates a call to  a function @lass_name/p l us .m if it exists. I f  p and q are 
both objects of d ifferent classes, then M ATLAB applies the  rules of precedence 
to  determ ine which method to  use.

Examples of Overloaded Operators
See the  follow ing sections for examples of overloaded operators:

• “Overloading the  + O perator” on page 14-29

• “Overloading the  - O perator” on page 14-30

• “Overloading the  * Operator” on page 14-30
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The fo llow ing tab le  lis ts  the  function names for most of M A T LA B ’s operators.

Operat ion M-File Description

a + b p l us(a ,b) B inary addition

a -  b minus( a,b) B inary subtraction

-a uminus( a) Unary m inus

+a uplus(a) Unary plus

a.*b t i  mes(a,b) Element-w ise m ultip lica tion

a*b mt imes( a,b) M a trix  m ultip lica tion

a. /b rdivi  de(a, b) Right element-wise division

a. \b Idi v i  de(a, b) Left element-wise division

a/ b mrdivide(a,b) M a trix  righ t division

a\ b ml d i v i de(a,b) M a trix  left division

a. Ab power (a,b) Element-w ise power

aAb mpower( a,b) M a trix  power

a < b l t ( a , b ) Less than

a > b gt(a,  b) Greater than

a <= b I e(a, b) Less than or equal to

a >= b ge(a, b) Greater than or equal to

a ~= b ne(a, b) Not equal to

a == b eq(a, b) Equality

a & b and(a,b) Logical AND

a | b or (a, b) Logical OR

~a not(a) Logical NOT
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Operat ion M -File Description

bda col on( a,d,b) Colon operator
a:b col on( a,b)

a’ c t r  anspose( a) Complex conjugate transpose

a . ’ t ranspose(a) M a trix  transpose

command w ndow 
out put

di splay(a) Display method

[a b] h o r z c a t ( a , b , . . ) Horizontal concatenation

[a; b] v e r t c a t ( a , b , . . ) Vertical concatenation

a (s1,s 2 ,  .. sn) subsref (a,s) Subscripted reference

a (s1, . . . ,  sn) = b subsasgn( a,s,b) Subscripted assignment

b(a) subsindex(a) Subscript index

Over load ing  Funct ions
You can overload any function by creating a function of the  same name in the 
class directory. When a function is invoked on an object, M ATLAB always looks 
in the  class d irectory before any other location on the  search path. To overload 
the  plot  function for a class of objects, for example, sim ply place your version 
of p l o t . m  in the  appropria te class directory.

Examples of Overloaded Functions
See the  follow ing sections for examples of overloaded functions:

• “Overloading Functions for the  Polynom Class” on page 14-31

• “The Portfo lio  pie3 Method” on page 14-57
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Example: A Polynomial Class
This example im plem ents a M ATLAB data type for polynomials by defin ing a 
new class called polynom. The class defin ition specifies a s tructu re  for data 
storage and defines a d irectory (@polynon) of methods tha t operate on polynom 
objects.

Polynom Data Structure
The polynom class represents a polynomial wi th a row vector containing the 
coefficients of powers of the  variable, in decreasing order. Therefore, a polynom 
object p is a s tructu re  wi th a single fie ld, p.c,  containing the  coefficients. Th is 
fie ld is accessible only w ith in  the methods in the @polynom directory.

Polynom Methods
To create a class tha t is well behaved w ith in  the M ATLAB environment and 
provides useful functiona lity  for a polynomial data type, the  polynom class 
im plem ents the fo llow ing methods:

• A constructor method po l ynomm

• A polynom to  double converter

• A polynom to  char converter

• A d i sp l ay  method

• A subsref  method

• Overloaded +, - ,  and * operators

• Overloaded roots,  polyval  , p l o t , and d i f f  functions

The fo llow ing sections describe the  im plem entation of these methods.
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The Polynom Constructor Method
Here is the  polynom class constructor, @>olynom'polynorn mi

f un c t i on  p = polynom( a)
%PCLYNCM Polynomial  c l ass cons t ruc tor .
% p = PCLYNCM(v) creates a polynomial  object  f r o m  the vector  v, 
% con ta i n i ng  the c o e f f i c i e n t s  of descending powers of x. 
i f  nargin == 0 

P. c = [ ];
p = cl a s s ( p , ’ po l ynom) ;  

e l s e i f  i s a ( a , ’ pol ynom)  
p = a; 

e l se
p.c = a ( : ) . ’ ; 
p = cl a s s ( p , ’ po l ynom) ;

end

Constructor Calling Syntax
You can call the  polynom constructor method wi th one of th ree d ifferent 
arguments:

• No Input Argum ent -  I f  you call the  constructor function wi th no arguments, 
it re turns a polynom object wi th empty fields.

• Input Argum ent is an Object -  I f  you call the  constructor function w ith  an 
input argument tha t is already a polynom object, M ATLAB re tu rns the input 
argument. The is a  function (pronounced “ is a”) checks for thi s s ituation.

• Input Argum ent is a coefficient vector -  I f  the  input argument is a variab le  
that is not a polynom object, reshape it to  be a row vector and assign it to  the

c fie ld of the  object’s structure. The c lass function creates the  polynom 
object, which is then returned by the  constructor.

An example use of the  polynom constructor is the  statement 

p = poiynon( [1 0 - 2  - 5 ] )

This creates a polynomial wi th the specified coefficients.
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Converter  Methods  fo r  the Polynom Class
A converter method converts an object of one class to  an object of another class. 
Two of the  most im portant converter methods contained in M ATLAB classes 
are doubl e and char . Conversion to  double produces M A T LA B ’s trad itiona l 
m atrix , although thi s may not be appropria te for some classes. Conversion to  
char is useful for producing prin ted output.

The Polynom to Double Converter
The double converter method for the  polynom class is a very sim ple M-file, 
@>olynomfdouble.iT| which merely retrieves the  coefficient vector.

f un c t i on  c = double(p)
% PCLYNCM/DCUBLE Convert polynom object  t o  c o e f f i c i e n t  vector .  
% c = DCUBLE(p) conver ts a polynomial  object  t o  t he vector  c 
% con ta i n i ng  t he c o e f f i c i e n t s  of descending powers of x. 
c = p c ;

On the  object p,

p = polynom([1 0 -2  - 5 ] )  

the statement 

double(p)  

re tu rns 

ans =
1 0 -2  -5  

The Polynom to Char Converter
The converter to  char is a key method because it produces a character s tring  
involving the  powers of an independent variable, x. Therefore, once you have 
specified x, the  s tring  returned is a syntactica lly correct M ATLAB expression, 
which you can then evaluate.
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Here is @polynom'char. m

f un c t i on  s = char(p)
% PCLYNOWCHAR
% CHAR(p) is  the  s t r i n g  repr esen t a t i on  of p.c 
i f  a l l ( p . c  == 0) 

s = ’ 0 ’ ; 
e l se

d = i eng t h ( p . c )  -  1;
s = [ ] ;
f o r  a = p.c; 

i f  a ~= 0 ;
i f  ~ i senpty(s)  

i f  a > 0
s = [ s  ' + ' ] ;

e i se
s = [ s  ' -  ' ] ;  
a = -a;

end
end
i f  a ~= 1 | d == 0

s = [ s  nun2 s t r ( a ) ] ;  
i f  d > 0

s = [ s  ' * ' ] ;
end

end 
i f  d >= 2

s = [ s  ' ж л' i n t 2s t r ( d ) ] ;  
e i s e i f  d == 1 

s = [ s  ' x ' ] ;
end

end 
d = d -  1;

end
end

Evaluating the Output
I f  you create the  polynom object p

p = pol ynon( [ 1  0 - 2  - 5 ] ) ;
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and then call the  char method on p 

char (p)

M ATLAB produces the  result

ans =
xA3 -  2*x -  5

The value returned by char is a s tring  tha t you can pass to  eval once you have 
defined a scalar value for x. For example,

x = 3;
eval ( char (p ) )  
ans =

16

See “The Polynom subsref Method” on page 14-28 for a better method to 
evaluate the  polynomial.

The Polynom disp lay Method
Here is @polynoirf d i s p l a y . m  This method relies on the  char method to 
produce a s tring  representation of the  polynomial, which is then displayed on 
the screen. Th is method produces output tha t is the  same as standard 
M ATLAB output. That is, the  variab le name is displayed followed by an equal 
sign, then a blank line, then a new line  wi th the value.

f un c t i on  d i sp l ay (p )
% PCLYNCM/DISPLAY Command window displ  ay of a pol ynom 
d i s p ( ’ ’ );
d i s p ( [ i np u t n a i r e ( 1) , ’ = ’ ] )  
d i s p ( ’ ’ );
d i s p ( [ ’ ’ c ha r ( p ) ] )  
d i s p ( ’ ’ );

The statement

p = polynom([1 0 -2  - 5 ] )
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creates a polynom object. Since the statement is not term inated w ith  a 
semicolon, the  resu lting output is:

p =
ХЛ3 -  2*x -  5

The Polynom subsref  Method
Suppose the  design of the  polynom class specifies tha t a subscripted reference 
to  a polynom object causes the polynomial to  be evaluated w ith  the  value of the  
independent variab le  equal to  the  subscript. That is, for a polynom object p,

p = polynon( [1 0 -2 - 5 ] ) ;

t he fo llow ing subscripted expression re tu rns the  value of the  polynomial at 
x = 3 and x = 4:

p ( [ 3  4] )  
ans =

16 51

subsref Implementation Details
This im plem entation takes advantage of the  char method already defined in 
the  polynom class to  produce an expression tha t can then be evaluated.

f u n c t i o n  b = subs r e f ( a , s )
% SUBSREF 
swi t ch s . t ype  
case ' ( ) '

i nd = s . subs { : } ;  
f o r  i = 1: l e n g t h ( i n d )

b ( i )  = e v a l ( s t r r e p ( c h a r ( a ) , ' x ' , n u n 2 s t r ( i n d ( i ) ) ) ) ;
end

otherwise
e r r o r ( ' S p e c i f y  value f or  x as p ( x ) ' )

end

Once the polynomial expression has been generated by the  char method, the  
s t r r e p  function is used to  swap the passed in value for the  character x. The 
eval function then evaluates the expression and re tu rns the  value in the 
output argument.
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Over load ing  A r i thmet ic  Ope ra tors
Several a rith m e tic  operations are meaningful on polynomials and should be 
implemented for the  polynom class. When overloading a rith m e tic  operators, 
keep in mind what data types you want to  operate on. In th is  section, the  plus,  
minus, and mtimes methods are defined for the  polynom class to  handle 
addition, subtraction, and m u ltip lica tion  on polynom/polynom and polynom/ 
double combinations of operands.

Overloading the + Operator 
I f  e ither p or q is a polynom, the  expression 

p + q

generates a call to  a function ^po l ynom' p l us .m if  it exists (unless p or q is an 
object of a higher precedence, as described in “Object Precedence” on page 
14-66).

The fo llow ing M -file  redefines the  + operator for the  polynom class: 

f un c t i on  r = pl us(p,q)
% PCLYNCM/PLUS Implement p + q fo r  polynoirs. 
p = polynom(p);  
q = polynom(q);
k = l eng t h ( q . c )  -  l eng t h ( p . c ) ;
r = po l ynom( [ zeros(1, k)  p.c]  + [ z e r o s ( 1, - k )  q . c ] ) ;

The function firs t makes sure tha t both input argum ents are polynomials. Th is 
ensures tha t expressions such as

p + 1

tha t involve both a polynom and a double, work correctly. The function then 
accesses the  tw o coefficient vectors and, if  necessary, pads one of them  w ith  
zeros to  make them the same length. The actual addition is sim ply the vector 
sum of the  tw o coefficient vectors. F ina lly , the  function calls the  polynom 
constructor a th i rd  tim e  to  create the  properly typed result.
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Overloading the -  Operator
You can implement the  overloaded m inus operator (-) using the  same approach 
as the  plus (+) operator. M ATLAB calls @polynon/mnus.m to compute p-q.

f un c t i on  r = ninus(p,  q)
% PCLYNQWMNUS Implement p -  q fo r  polynoms. 
p = polynon(p) ;  
q = polynon(q) ;
k = l eng t h ( q . c )  -  l eng t h ( p . c ) ;
r = po l y non ( [ z e r os ( 1,k)  p.c]  -  [ z e r o s ( 1, - k )  q . c ] ) ;

Overloading the * Operator
M ATLAB calls the  method @polynon/nt imes.m to compute the  product p*q. 
The le tter m at the  beginning of the  function name comes from the  fact tha t it 
is overloading M A T LA B ’s m a trix  m u ltip lica tion . M u ltip lica tion  of tw o 
polynomials is sim ply the  convolution of the ir coefficient vectors.

f un c t i o n  r = mt i nes(p,q)
% PCLYNCM/MTIMES Implement p * q fo r  polynoms. 
p = polynom(p);  
q = polynom(q);  
r = po l ynom(conv(p . c , q . c ) ) ;

Using the Overloaded Operators 
Given the polynom object

p = polynom([1 0 - 2  - 5 ] )

M ATLAB calls these tw o functions @polynomfplus.mand @pol ynomfmt imes.m 
when you issue the  statements

q = p+1 
r = p*q

to produce 

q =
xЛ3 -  2*x -  4

r =
xЛ6 -  4*xЛ4 -  ^ Л 3  + 4*xЛ2 + 18*x + 20
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Over load ing  Funct ions fo r  the Polynom Class
M ATLAB already has several functions for w ork ing wi th  polynomials 
represented by coefficient vectors. They should be overloaded to  also work w ith  
the new polynom object. In many cases, the  overloading methods can sim ply 
apply the  original function to  the  coefficient field.

Overloading roots for the Polynom Class
The method @polynom' roots.m finds the roots of polynom objects.

f un c t i o n  r = roots(p)
% PCLYNCM/RCCTS. RCCTS(p) is  a vector  con ta i n i ng  t he roots  of p. 
r = r oo t s ( p . c ) ;

The statement 

root s(p) 

results in

ans =
2.0946
-1.0473+ 1 .1359i 
-1 .0 4 7 3 - 1 .1 359i

Overloading polyval for the Polynom Class

The function polyval  evaluates a polynomial at a given set of points. 
@>olynomfpolyval .  muses nested m u ltip lica tion , or H orner’s method to  reduce 
the number of m u ltip lica tion  operations used to  compute the  various powers of 
x.

f u n c t i on  y = p o l yv a l ( p , x )
% PCLYNCM/PCLYVAL PCLYVAL(p,x) evaluates p at t he  po i nt s  x. 
y = 0 ;
f o r  a = p.c

y = y . * x  + a;
end

Overloading plot for the Polynom Class

The overloaded plot  function uses both root  and polyval  . The function selects 
the domain of the  independent variab le  to  be s ligh tly  larger than an interval
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containing all real roots. Then polyval  is used to  evaluate the polynomial at a 
few hundred points in the  domain.

f un c t i o n  p l o t ( p )
% PCLYNCM/PLCT PLCT(p) p l o t s  t he  polynom p.
r = max(abs( roots (p) ) ) ;
x = ( - 1. 1: 0 . 01 : 1. 1) * r ;
y = p o l yv a l ( p , x ) ;
p l o t ( x , y ) ;
t i t l e ( c h a r ( p ) )
g r i d  on

Overloading d iff for the Polynom Class

The method @polynomfdi f f .mdi f ferent iates a polynomial by reducing the 
degree by 1 and m u ltip ly ing  each coefficient by its  original degree.

f u n c t i on  q = d i f f ( p )
% PCLYNCIM'DIFF DIFF( p) is  the  d e r i v a t i v e  of t he polynom p. 
c = p c ;
d = l eng th( c )  -  1; % degree 
q = po l ynom(p. c (1: d ) . * ( d : - 1: 1) ) ;

Listing Class Methods
The function call

methods('  class_name' )

or i ts command form 

methods class_name

shows all the  methods available for a particu la r class. For the  polynom 
example, the  output is:

methods polynom 

Methods fo r  c l ass polynom

char d i sp l ay  minus plot  polynom roots

d i f f  double mtimes plus polyval  subsref
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Plotting the  tw o polynom objects x and p calls most of these methods.

x = polynom( [ 1  0 ] ) ;  
p = polynom([1 0 -2  - 5 ] ) ;  
p l o t ( d i f f ( p * p  + 10*p + 20*x)  -  20)

6*x5 -  16*x3 + 8*x
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Building on Other Classes
A M ATLAB object can inherit properties and behavior from another M ATLAB 
object. When one object (the child) inhe rits  from another (the parent), the  child 
object includes all the  fie lds of the  parent object and can call the  parent’s 
methods. The parent methods can access those fie lds tha t a child object 
inherited from the parent class, but not fie lds new to  the child class.

Inheritance is a key feature of object-oriented programming. It makes it easy 
to  reuse code by allow ing child objects to  take  advantage of code tha t exists for 
parent objects. Inheritance enables a child object to  behave exactly l ike a 
parent object, which fac ilita tes the  development of related classes that behave 
s im ila rly , but are implemented d ifferently.

There are tw o kinds of inheritance:

• S imple inheritance, in which a child object inherits  characteristics from one 
parent class.

• M u ltip le  inheritance, in which a child object inherits  characteristics from 
more than one parent class.

This section also discusses a related topic, aggregation. Aggregation allows one 
object to  contain another object as one of its  fields.

Simple Inher i tance
A class tha t inhe rits  a ttribu tes  from a single parent class, and adds new 
a ttr ibu tes  of its  own, uses sim ple inheritance. Inheritance im plies tha t objects 
belonging to  the  child class have the  same fie lds as the  parent class, as well as 
additional fields. Therefore, methods associated w ith  the  parent class can 
operate on objects belonging to  the child class. The methods associated w ith  the 
child class, however, cannot operate on objects belonging to  the  parent class. 
You cannot access the  parent’s fie lds d irectly  from the  child class; you must use 
access methods defined for the  parent.

The constructor function for a class tha t inhe rits  the  behavior of another has 
tw o special characteristics:
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• It calls the  constructor function for the  parent class to  create the inherited 
fields.

• The calling syntax for the  c l ass function is s ligh tly  d ifferent, reflecting both 
the  child class and the  parent class.

The general syntax for establishing a sim ple inheritance re lationship using the 
c l ass function is

chi l  d_obj = c l a s s ( c h i l d _ o b j , ’ c h i l d _ c l a s s ’ , paren t_ob j ) ;

S imple inheritance can span more than one generation. I f  a parent class is 
itse lf an inherited class, the  child object wi l l  autom atically inherit from the 
grandparent class.

Visibility of Class Properties and Methods
The parent class does not have knowledge of the  child properties or methods. 
The child class cannot access the  parent properties d irectly, but must use 
parent access methods (e.g., get or subsref  method) to  access the  parent 
properties. From the  child class methods, thi s access is accomplished via the 
parent fie ld in the  child structure. For example, when a constructor creates a 
child object c,

c = c l a s s ( c , ’ chi l d_class_name’ , parent_obj ec t ) ;

M ATLAB autom atica lly creates a field, c. parent_class_name, in the object’s 
s truc tu re  tha t contains the parent object. You could then have a statement in 
the ch ild ’s display method tha t calls the  parent’s display method:

d i sp l ay ( c .  parent_class_name)

See “Designing the  Stock Class” on page 14-45 for examples tha t use simple 
inheritance.

Mul t ip le Inher i tance
In the  m u ltip le  inheritance case, a class of objects inherits  a ttribu tes  from more 
than one parent class. The child object gets fie lds from all the  parent classes, 
as well as fie lds of its  own.

M u ltip le  inheritance can encompass more than one generation. For example, 
each of the  parent objects could have inherited fie lds from m u ltip le
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grandparent objects, and so on. M u ltip le  inheritance is implemented in the  
constructors by calling c l ass w ith  more than three arguments.

obj = c l a s s ( s t r u c t u r e , ’ class_nai re’ , p a r e n t 1, p a ren t2 , . . .  )

You can append as many parent arguments as desired to  the class input list.

M u ltip le  parent classes can have associated methods of the  same name. In this 
case, M ATLAB calls the  method associated w ith  the parent tha t appears firs t 
in the  cl ass function call in the  constructor function. There is no way to  access 
subsequent parent function of thi s  name.

Aggrega t ion
In addition to  standard inheritance, M ATLAB objects support containment or 
aggregation. That is, one object can contain (embed) another object as one of its  
fields. For example, a rational object m ight use tw o polynom objects, one for the  
num erator and one for the  denominator.

You can call a method for the  contained object only from w ith in  a method for 
the  outer object. When determ ining which version of a function to  call, 
M ATLAB considers only the  outermost containing class of the  objects passed 
as arguments; the  classes of any contained objects are ignored.

See “Example: The Portfo lio Container” on page 14-54 for an example of 
aggregation.
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Example: Assets and Asset Subclasses
As an example of sim ple inheritance, consider a general asset class tha t can be 
used to  represent any item that has monetary value. Some examples of an asset 
are: stocks, bonds, savings accounts, and any other piece of property. In 
designing thi s  collection of classes, the  asset class holds the  data tha t is 
common to  all of the  specialized asset subclasses. The ind iv idua l asset 
subclasses, such as the  stock class, inherit the  asset properties and contribute 
additional properties. The subclasses are “kinds of” assets.

Simple Inher i tance
An example of a sim ple inheritance re la tionship using an asset parent class is 
shown in thi s diagram.

As shown in the diagram, the  stock,  bond, and savings classes inherit 
s truc tu re  fie lds from the asset class. In thi s example, the  asset class is used 
to  provide storage for data common to  all subclasses and to  share asset 
methods w ith  these subclasses. Th is example shows how to  implement the
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asset and stock classes. The bond and savings classes can be implemented in 
a way tha t is very s im ila r to  the  st ock class, as would other types of asset 
subclasses.

Designing the Asset Class
The asset class provides storage and access for in form ation common to  all asset 
children. It is not intended to  be instantia ted directly, so it does not require an 
extensive set of methods. To serve its  purpose, the  class needs to  contain the 
fo llow ing methods:

• Constructor

• get and set

• subsref  and subsasgn
• d i sp l ay

The Asset Constructor Method
The asset class is based on a s tructu re  array w ith  four fields:

• desc r i p t o r  -  Iden tifie r of the  particu la r asset (e.g., stock name, savings 
account number, etc.)

• date -  The date the  object was created (calculated by the  date command)

• cur rent_va lue -  The current value of the  asset (calculated from subclass 
data)

This inform ation is common to  asset child objects (stock, bond, and savings), so 
it is handled from the parent object to  avoid having to  define the same fie lds in 
each child class. Th is is pa rticu la rly  helpful as the  number of child classes 
increases.
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f u n c t i o n  a = asset (vararg i  n)
% ASSET Const ructor  f u n c t i on  fo r  asset object  
% a = ass e t ( desc i r p t o r ,  cur rent_value)  
swi t  ch nargin 
case 0
% i f  no input  arguments, c reate a defau l t  object  

a . desc r i p t o r  = ’ none’ ; 
a .date = date; 
a . cur r  ent_value = 0 ; 
a = cl a s s ( a , ’ asse t ’ ); 

case 1
% i f  s i ng l e  argument of c l ass asset ,  r e t u r n  i t  

i f  ( i s a ( v a r a r g i n { 1} , ’ asset ’ )) 
a = v a r a r g i n { 1};

e l se
e r r o r ( ’ Wong argument t ype ’ )

end 
case 2
% create object  using s pec i f i ed  values 

a . desc r i p t o r  = v a r a r g i n { 1}; 
a .date = date;
a . cu r ren t _va l ue  = v a r a r g i n { 2}; 
a = cl a s s ( a , ’ asse t ’ ); 

otherwise
e r r o r ( ’ Wong number of input  arguments’ )

end

The function uses a swi t ch statement to  accommodate three possible 
scenarios:

• Called w ith  no arguments, the  constructor re tu rns a default asset object.

• Called w ith  one argument tha t is an asset object, the  object is sim ply 
returned.

• Called w ith  tw o argum ents (subclass descriptor, and current value), the  
constructor re tu rns a new asset object.

The asset constructor method is not intended to  be called directly; it is called 
from the  child constructors since its  purpose is to  provide storage for common 
data.
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The Asset get Method
The asset class needs methods to  access the data contained in asset objects. The 
fo llow ing function im plem ents a get method for the  class. It uses capitalized 
property names rather than lite ra l fie ld names to  provide an interface s im ila r 
to  other M ATLAB objects.

f u n c t i o n  val = get (a,prop_name)
% GET Get asset p r ope r t i es  f r o m  the s pec i f i ed  object  
% and r e t u r n  t he value 
swi t ch pr op_name 
case ’ Des c r i p t o r ’

val = a . desc r i p t o r ;  
case ’ Dat e’

val = a.date;  
case ’ Cur rentVa lue ’

val = a. cur rent_va lue;  
otherwise

er ro r ( [ p rop_name, ’ Is not a v a l i d  asset p r ope r t y ’ ] )
end

This function accepts an object and a property name and uses a swi tch 
statement to  determ ine which fie ld to  access. Th is method is called by the 
subclass get methods when accessing the  data in the  inherited properties.

The Asset subsref Method
The subsref  method provides access to  the data contained in an asset object 
using one-based num eric indexing and s tructu re  fie ld name indexing. The 
outer swi t  ch statement determ ines i f  the  index is a num eric or fie ld name 
syntax. The inner swi tch  statem ents map the index to  the appropriate value.

M ATLAB calls subsref  whenever you make a subscripted reference to  an 
object (e.g., A ( i ) , A { i } , or A. f ieldname).  See the subsref  help entry for more 
inform ation on object subscripted reference.
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f u n c t i o n  b = subs re f ( a , i ndex )
%SUBSREF Def ine f i e l d  name indexing f o r  asset obj ects 
swi t ch i ndex . t ype  
case ’ ( ) ’

swi t ch i ndex . subs { : }  
case 1

b = a. desc r i p t o r ;  
case 2

b = a. date; 
case 3

b = a. cur rent_val  ue; 
otherwise

e r r o r ( ’ Index out of range’ )
end 

case ’ . ’
swi t ch index.subs 
case ’ d e s c r i p t o r ’

b = a. desc r i p t o r ;  
case ’ date ’

b = a. date; 
case ’ cur rent_val  ue’

b = a. cur rent_val  ue; 
otherwise

e r r o r ( ’ I n v a l i d  f i e l d  name’ )
end 

case ’ { } ’
e r r o r ( ’ Cel l  ar ray i ndex ing not suppor ted by asset o b j e c t s ’ )

end

The Asset set Method
The asset class set method is called by subclass set methods. Th is method 
accepts an asset object and variab le  length argument list of property name/ 
property value pairs and re tu rns the  modified object. Subclass set methods call 
the  asset set method and require the capability to  return the  modified object
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since M ATLAB does not support passing arguments by reference. See “The 
Stock set Method” on page 14-50 for an example.

f un c t i on  a = s e t ( a , v a r a r g i n )
% SET Set asset p r ope r t i es  and r e t u r n  t he updated object  
p roper t y_arg i n  = vararg i n ;  
wh i l e  l eng t h ( p r ope r t y_a r g i n )  >= 2 , 

prop = p r o p e r t y _ a r g i n { 1}; 
val = p r ope r t y _a r g i n { 2} ; 
p roper t y_arg i n  = proper t y_arg i n (3 :end) ;  
swi t ch prop 
case ’ Descri  p t o r ’

a . desc r i p t o r  = val ;  
case ’ Date’

a.date = val ; 
case ’ Cur rentValue’

a . cu r r en t _va l ue  = val ;  
otherwise

e r r o r ( ’ Asset proper t i es :  Descr i p tor ,  Date, Cur rentValue’ )
end

end

The Asset subsasgn Method
The subsasgn method is the  assignment equivalent of the  subsref  method. 
Th is version enables you to  change the  data contained in an object using 
one-based num eric indexing and s truc tu re  fie ld name indexing. The outer 
swi t ch statement determ ines if  the  index is a num eric or fie ld name syntax. 
The inner swi t ch statements map the  index value to  the  appropria te value in 
the  stock structure.

M ATLAB calls subsasgn whenever you execute an assignment statement (e.g., 
A ( i )  = val , A { i }  = val , or A. f i e l dname = v a l ). See the subsasgn help entry 
for more inform ation on assignment statements in M ATLAB.
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f u n c t i o n  a = subsasgn(a , i ndex,va l )
% SUBSASGN Def ine index assignment fo r  asset ob j ec t s  
swi t ch i ndex . t ype  
case ’ ( ) ’

swi t ch i ndex . subs { : }  
case 1

a . desc r i p t o r  = val ;  
case 2

a.date = val ;  
case 3

a . cu r ren t _va l ue  = val ;  
otherwise

e r r o r ( ’ Index out of range’ )
end 

case ’ . ’
swi t ch index.subs 
case ’ d e s c r i p t o r ’

a . desc r i p t o r  = val ;  
case ’ date ’

a .date = val ;  
case ’ cur rent_val  ue’

a . cu r ren t _va l ue  = val ;  
otherwise

e r r o r ( ’ I n v a l i d  f i e l d  name’ )
end

end

The subsasgn method enables you to  assign values to  the  asset object data 
s truc tu re  using tw o techniques. For example, suppose you have a child stock 
object s.

s = s t o c k ( ’ XYZ’ ,100,25) ;

W ith in  stock class methods, you could change the desc r i p t o r  fie ld w ith  either 
of the  fo llow ing statements

s .asse t (1 )  = ’ ABC’ ;

or

s . as s e t . d e s c r i p t o r  = ’ ABC’ ;
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See the  “The Stock subsasgn Method” on page 14-51 for an example of how the 
child subsasgn method calls the  parent subsasgn method.

The Asset display Method
The asset di splay method is designed to  be called from child-class displ  ay 
methods. Its  purpose is to  display the  data it stores for the  child object. The 
method sim ply form ats the data for display in a way tha t is consistent w ith  the 
fo rm atting  of the  ch ild ’s display method.

f u n c t i on  d i sp l ay ( a )
% DISPLAY(a) Display an asset object
stg = s p r i n t f ( ’ Descr i ptor :  %s\nDate: %s\nCurrent Value:%9.2f ’ , . .  .

a . d e s c r i p t o r , a . da t e , a . c u r r e n t _ v a l u e ) ;
d i sp ( s t g )

The stock class display method can now call th is  method to  d isplay the  data 
stored in the  parent class. Th is approach isolates the  stock d i sp l ay  method 
from changes to  the  asset class.

The Asset fieldcount Method
The asset f i e l dcoun t  method re tu rns the  number of fie lds in the  asset object 
data structure. f i e l dcoun t  enables asset child methods to  determ ine the 
number of fie lds in the asset object during  execution, ra ther than requiring the 
child methods to  have knowledge of the  asset class. Th is allows you to  make 
changes to  the number of fie lds in the  asset class data s tructu re  w ithou t having 
to  change child-class methods.

f u n c t i on  num_f ields = f i e l dcoun t  (asset_obj )
% Determines the number of f i e l d s  i n an asset object
% Used by asset c h i l d  c l ass methods
num_f ields = l eng t h ( f i e l d names ( s t r uc t ( asse t  _ o b j ) ) ) ;

The s t ruc t  function converts an object to  its  equivalent data structure, 
enabling access to  the  s truc tu re ’s contents.

Other Asset Methods
The asset class provides inherited data storage for its  child classes, but is not 
instanced d irectly. The s e t , g e t , and d i sp l ay  methods provide access to  the 
stored data. It is not necessary to  implement the fu ll complement of methods
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for asset objects (such as converters, end, and subsindex)  since only the  child 
classes access the  data.

Designing the Stock Class
A stock object is designed to  represent one particu la r asset in a person’s 
investment portfolio. Th is object contains tw o properties of its  own and inherits  
th ree properties from its  parent asset object.

Stock properties:

• NumberShares -  The number of shares for the  particu la r stock object.

• Shar ePr i ce -  The value of each share.

Asset properties:

• Descr i ptor  -  The iden tifie r of the  particu la r asset (e.g., stock name, savings 
account number, etc.).

• Date -  The date the  object was created (calculated by the  date command).

• Curr entValue -  The current value of the  asset.

Note tha t the  property names are not actually the  same as the  fie ld names of 
the  s tructu re  array used in te rna lly  by stock and asset objects. The property 
name interface is controlled by the  stock and asset set and get methods and is 
designed to  resemble the interface of other M ATLAB object properties.

The asset fie ld in the  stock object s truc tu re  contains the parent asset object 
and is used to  access the  inherited fie lds in the  parent structure.

Stock Class Methods
The stock class im plem ents the  follow ing methods:

• Constructor

• get and set

• subsref  and subsasgn
• d i sp l ay

The Stock Class Constructor
The stock constructor creates a stock object from three input arguments:
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• The stock name

• The number of shares

• The share price

The constructor must create an asset object from w ith in  the stock constructor 
to  be able to  specify it as a parent to  the  stock object. The stock constructor 
must, therefore, call the  asset constructor. The c lass function, which is called 
to  create the  stock object, defines the  asset object as the  parent.

Keep in mind tha t the  asset object is created in the  tem porary workspace of the  
stock constructor function and is stored as a fie ld ( a s s e t ) in t he stock 
structure. The stock object inherits  the  asset fields, but the  asset object is not 
returned to  the base workspace.

f un c t i on  s = s t ock ( va r a r g i n )
% STOCK Stock c l ass cons t ruc tor .
% s = s t ock ( desc r i p t o r ,  num_shares, share_pr i ce)  
swi t ch nargin 
case 0
% i f  no input  arguments, c reate a defau l t  object  

s.num_shares = 0 ; 
s . share_pr i ce  = 0 ; 
a = a s s e t ( ’ none’ , 0); 
s = c l ass(s ,  ’ s t ock ’ , a ) ; 

case 1
% i f  s i ng l e  argument of c l ass stock,  r e t u r n  i t  

i f  ( i s a ( v a r a r g i n { 1} , ’ s t ock ’ )) 
s = v a r a r g i n { 1};

e l se
e r r o r ( ’ Input argument is  not a s tock o b j e c t ’ )

end 
case 3
% create object  using s pec i f i ed  values 

s.num_shares = v a r a r g i n { 2}; 
s . share_pr i ce  = varargi  n{3};
a = a s s e t ( v a r a r g i n { 1 } , va r a r g i n { 2 }  * v a r a r g i n { 3 } ) ;  
s = c l ass(s ,  ’ s t ock ’ ,a) ;  

otherwise
e r r o r ( ’ Wong number of input  arguments’ )

end
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Constructor Calling Syntax
The stock constructor method can be called in one of th ree ways:

• No Input Argum ent -  I f  called w ith  no arguments, the  constructor re tu rns a 
default object w ith  empty fields.

• Input A rgum ent is a Stock Object -  If called w ith  a single input argument 
tha t is a stock object, the  constructor re tu rns the  input argument. A single 
argument tha t is not a stock object generates an error.

• Three Input A rgum ents -  I f  there are three input arguments, the  constructor 
uses them to  define the  stock object.

• O therw ise -  I f  none of the  above three conditions are met, re turn  an error.

For example, thi s statement creates a stock object to  record the  ownership of 
100 shares of XYZ corporation stocks w ith  a price per share of 25 dollars.

XYZ_stock = s t o c k ( ’ XYZ’ ,100,25) ;

The Stock get Method
The get method provides a way to  access the  data in the  stock object using a 
“property name” sty le interface, s im ila r to  Handle Graphics. W hile  in this 
example the property names are s im ila r to  the  s tructu re  fie ld name, they can 
be qu ite  different. You could also choose to  exclude certain fie lds from access 
via the  get method or return the  data from the  same fie ld for a varie ty  of 
property names, if  such behavior su its  your design.
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f u n c t i o n  val = get (s,prop_name)
% GET Get s tock proper t y  f r o m  t he s pec i f i ed  object  
% and r e t u r n  t he value.  Proper ty names are: NumberShares 
% SharePr ice,  Descr i ptor ,  Date, Type, Cur rentValue 
swi t ch pr op_name 
case ’ NumberShares’ 

val = s.num_shares; 
case ’ SharePr i ce’

val = s.shar  e_pr ice;  
case ’ Des c r i p t o r ’

val = g e t ( s . a s s e t , ’ D es c r i p t o r ’ ); % cal l  asset get method 
case ’ Dat e’

val = get (s.  a s s e t , ’ Date’ ); 
case ’ Type’

val = get (s.  a s s e t , ’ Type’ ); 
case ’ Cur rentVa lue ’

val = get (s.  a s s e t , ’ Curr entValue’ ); 
otherwise

er ror ( [prop_name , ’ Is not a v a l i d  s tock p r ope r t y ’ ] )
end

Note tha t the  asset object is accessed via the  stock object’s asset fie ld ( s .asset ). 
M ATLAB autom atica lly creates thi s fie ld when the c l ass function is called 
w ith  the parent argument.

The Stock subsref Method
The subsref  method defines subscripted indexing for the  stock class. In this 
example, subsref  is implemented to  enable num eric and s truc tu re  fie ld name 
indexing of stock objects.
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f u n c t i o n  b = subs r e f ( s , i ndex )
% SUBSREF Def ine f i e l d  name i ndex ing for  s tock ob j ec t s  
f c  = f i e l d c o u n t ( s . a s s e t ) ;  
swi t ch i ndex . t ype  
case ’ ( ) ’

i f  ( i nd e x . s u b s { : }  <= f c)
b = subs r e f ( s . ass e t , i n dex ) ;

e l se
swi t ch i ndex . subs { : }  -  f c  
case 1

b = s. num_shares; 
case 2

b = s. share_pr i ce;  
otherwise
e r r o r ( [ ’ Index must be i n the  range 1 t o  ’ , num2s t r ( f c  + 2 ) ] )  
end

end 
case ’ . ’

swi t ch index.subs 
case ' nun_shares’

b = s. nun_shares; 
case ' share_pr i ce ’

b = s. share_pr i ce;  
otherwise

b = subs r e f ( s . ass e t , i n dex ) ;
end

end

The outer swi t ch statement determ ines if  the  index is a num eric or fie ld name 
syntax.

The f i e l dcoun t  asset method determ ines how many fie lds there  are in the 
asset structure, and the  i f  statement calls the  asset subsref  method for 
indices 1 to  f i e l d c o u n t . See “The Asset fieldcount M ethod” on page 14-44 and 
the “The Asset subsref Method” on page 14-40 for a description of these 
methods.

N um eric indices greater than the  number returned by f i e l  dcount are handled 
by the  inner swi t ch statement, which maps the index value to  the  appropriate 
fie ld in the  stock structure.
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Field-name indexing assumes fie ld names other than num_shares and 
share_pr i ce are asset fields, which elim inates the  need for knowledge of asset 
fie lds by child methods. The asset subsref  method performs field-nam e error 
checking.

See the  subsref  help entry for general in form ation on im plem enting th is  
method.

The Stock set Method
The set method provides a “property name” interface l i ke the get method. It is 
designed to  update the  number of shares, the  share value, and the  descriptor. 
The current value and the date are autom atica lly updated.

f u n c t i on  s = s e t ( s , v a r a r g i n )
% SET Set s tock p r ope r t i es  t o  t he s pec i f i ed  values 
% and r e t u r n  t he updated object  
p roper t y_arg i n  = vararg i n ;  
wh i l e  l eng t h ( p r ope r t y_a r g i n )  >= 2 , 

prop = p r o p e r t y _ a r g i n { 1}; 
val = p r ope r t y _a r g i n { 2} ; 
p roper t y_arg i n  = proper t y_arg i n (3 :end) ;  
swi t ch prop 
case ’ NumberShares’

s.num_shares = val ;  
case ’ SharePr i ce’

s . shar e_pr i ce  = val ;  
case ’ Descri  p t o r ’

s.asset  = s e t ( s . a s s e t , ’ D esc r i p t o r ’ , v a l ) ;  
otherwise

e r r o r ( ’ I n v a l i d  p r ope r t y ’ )
end

end
s.asset  = s e t ( s . a s s e t , ’ Cur rentValue’ , . . .

s.num_shares * s . s h a r e_ p r i c e , ’ Date’ ,date) ;

Note tha t thi s function creates and re tu rns a new stock object w ith  the  new 
values, which you then copy over the  old value. For example, given the  stock 
object,

s = s t o c k ( ’ XYZ’ ,100,25) ;
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the fo llow ing set command updates the  share price:

s = s e t ( s , ’ Shar ePr i ce ’ , 3 6 ) ;

It is necessary to  copy over the original stock object (i.e., assign the output to 
s) because M ATLAB does not support passing arguments by reference. Hence 
the set method actually operates on a copy of the  object.

The Stock subsasgn Method
The subsasgn method enables you to  change the  data contained in a stock 
object using num eric indexing and s tructu re  fie ld name indexing. M ATLAB 
calls subsasgn whenever you execute an assignment statement (e.g., A ( i )  = 
val , A { i }  = val , or A f i e l d n a n e  = v a l ).

f un c t i on  s = subsasgn(s , i ndex , va l )
% SUBSASGN Def ine index assignment fo r  s tock ob j ec t s  
f c  = f i e l d c o u n t ( s . a s s e t ) ;  
swi t ch i ndex . t ype  
case ’ ( ) ’

i f  ( i nd e x . s u b s { : }  <= f c)
s.asset  = subsasgn(s.asset , i  ndex,val ) ;

e l se
swi t ch i n d e x . s u b s { : } - f c  
case 1

s.num_shares = val ;  
case 2

s.shar  e_pr i ce = val ;  
otherwise
e r r o r ( [ ’ Index must be i n the  range 1 t o  ’ , num2s t r ( f c  + 2 ) ] )  
end

end 
case ’ . ’

swi t ch index.subs 
case ’ num_shares’

s.num_shares = val ;  
case ’ share_pr i ce ’

s.shar  e_pr i ce = val ;  
otherwise

s.asset  = subsasgn(s.asset , i  ndex,val ) ;
end

end
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The outer swi t ch statement determ ines i f  the  index is a num eric or fie ld name 
syntax.

The f i e l dcoun t  asset method determ ines how many fie lds there are in the 
asset s truc tu re  and the  i f  statement calls the  asset subsasgn method for 
indices 1 to  f i e l d c o u n t . See “The Asset fieldcount Method” on page 14-44 and 
the  “The Asset subsasgn Method” on page 14-42 for a description of these 
methods.

N um eric indices greater than the  number returned by f i e l dcoun t  are handled 
by the inner swi t ch statement, which maps the  index value to  the  appropriate 
fie ld in the  stock structure.

Field-name indexing assumes fie ld names other than num_shares and 
share_pr i ce are asset fields, which elim inates the need for knowledge of asset 
fie lds by child methods. The asset subsasgn method performs field-nam e error 
checking.

The subsasgn method enables you to  assign values to  stock object data 
s truc tu re  using tw o techniques. For example, suppose you have a stock object

s = s t o c k ( ’ XYZ’ ,100,25)

You could change the desc r i p t o r  fie ld w ith  either of the  fo llow ing statements

s(1) = ’ ABC’ ;

or

s . d e s c r i p t o r  = ’ ABC’ ;

See the subsasgn help entry for general in form ation on assignment statements 
in M ATLAB.

The Stock display Method
When you issue the  statement (w ithout te rm ina ting  w ith  a semicolon)

XYZStock = s t o c k ( ’ XYZ’ ,100,25)
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M ATLAB looks for a method in the @t ock  d irectory called d i sp l ay .  The 
d i sp l ay  method for the  stock class produces th is  output.

Descr i ptor :  XYZ 
Date: 17-Nov-1998 
Type: s tock
Current Value: 2500.00 
Number of shares:  100 
Share pr i ce:  25.00

Here is the  stock d i sp l ay  method.

f u n c t i on  d i sp l ay ( s )
% DI SPLAY(s) Display a s tock object  
d i s p l a y ( s . a s s e t )
stg = s p r i n t f ( ’ Number of shares:  %g\nShare pr i ce:  %3.2f \ n ’ , . . .

s . num_shares,s .share_pr i ce) ;
d i sp ( s t g )

F irs t, the  parent asset object is passed to  the asset d i sp l ay  method to  display 
its  fie lds (M ATLAB calls the  asset d i sp l ay  method because the  input 
argument is an asset object). The stock object’s fie lds are displayed in a s im ila r 
way using a form atted text string.

Note tha t if  you did not implement a stock class displ  ay method, M ATLAB 
would call the  asset di splay method. This would work, but would display only 
the descriptor, date, type, and current value.
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Example: The Portfolio Container
Aggregation is the  containment of one class by another class. The basic 
re lationship is: each contained class “ is a part of” the  container class.

For example, consider a financial portfo lio  class as a container for a set of 
assets (stocks, bonds, savings, etc.). Once the  ind iv idua l assets are grouped, 
they can be analyzed, and useful in form ation can be returned. The contained 
objects are not accessible d irectly, but only via the portfo lio  class methods.

See “Example: Assets and Asset Subclasses” on page 14-37 for in form ation 
about the  assets collected by thi s portfo lio  class.

Designing the Port fo l io Class
The portfo lio  class is designed to  contain the various assets owned by a given 
ind iv idua l and provide inform ation about the  status of his or her investment 
portfolio. Th is example implements a somewhat over-sim plified portfo lio  class 
tha t:

• Contains an ind iv idua l’s assets

• D isplays inform ation about the  portfo lio  contents

• D isplays a 3-D pie chart showing the  re la tive  m ix of asset types in the  
portfo lio

Required Portfolio Methods
The portfo lio  class im plem ents only th ree methods:

• p o r t f o l i o  -  The portfo lio  constructor.

• d i sp l ay  -  D isplays inform ation about the  portfo lio  contents.

• pie3 -  Overloaded version of pie3 function designed to  take a single portfo lio  
object as an argument.

Since a portfo lio  object contains other objects, the  portfo lio  class methods can 
use the  methods of the  contained objects. For example, the  portfo lio  d i sp l ay  
method calls the  stock class d i sp l ay  method, and so on.
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The Port fol io Constructor Method
The portfo lio  constructor method takes as input arguments a c lien t’s name and 
a variab le length lis t of asset subclass objects (stock, bond, and savings objects 
in thi s example). The portfo lio  object uses a s truc tu re  array w ith  the follow ing 
fields:

• name -  The c lien t’s name.

• i nd_assets -  The array of asset subclass objects (stock, bond, savings).

• t o t a l _ v a l u e  -  The to ta l value of all assets. The constructor calculates this 
value from the objects passed in as arguments.

• account_number -  The account number. Th is fie ld is assigned a value only 
when you save a portfo lio  object (see “Saving and Loading Objects” on page 
14-61).
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f u n c t i o n  p = p o r t f o l i o ( na n e , v a r a r g i n )
% PORTFOLIO Create a p o r t f o l i o  object  con ta i n i ng  the 
% c l i e n t ’ s name and a l i s t  of assets 
swi t ch nargin 
case 0

% i f  no input  arguments, c reate a defau l t  object  
p.nane = ’ none’ ; 
p . t o t a l _v a l ue  = 0 ; 
p . i nd_assets  = { } ;  
p.account_number = ’ ’ ; 
p = c lass(p,  ’ p o r t f o l i o ’ ); 

case 1
% i f  s i ng l e  argument of c l ass p o r t f o l i o ,  r e t u r n  i t  
i f  isa(name, ’ p o r t f o l i o ’ ) 

p = name;
else

d i s p ( [ i npu t name( 1) ’ i s  not a p o r t f o l i o  o b j e c t ’ ] )  
r e t u rn

end
otherwise

% create object  using s p e c i f i ed  arguments
p.nane = name;
p . t o t a l _v a l ue  = 0 ;
f o r  i = 1: l e n g t h ( v a r a r g i n )

p . i nd_a sse t s ( i )  = { v a r a r g i n { i } } ;
asset_value = g e t ( p . i nd _ a s s e t s { i } ,  ’ CurrentVal  ue’ ); 
p . t o t a l _v a l ue  = p . t o t a l _ v a l u e  + asset_value;

end
p.account_number = ’ ’ ; 
p = c lass(p,  ’ p o r t f o l i o ’ );

end
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Constructor Calling Syntax
The portfo lio  constructor method can be called in one of th ree d ifferent ways:

• No input arguments -  I f  called w ith  no arguments, it re tu rns an object w ith  
empty fields.

• Input argument is an object -  I f  the  input argument is already a portfo lio 
object, M ATLAB re tu rns the input argument. The is a  function checks for 
thi s case.

• More than tw o input argum ents -  I f  there are more than tw o input 
arguments, the  constructor assumes the  firs t is the  c lien t’s name and the 
rest are asset subclass objects. A more thorough im plem entation would 
perform more careful input argument checking, for example, using the isa  
function to  determ ine if  the  arguments are the  correct class of objects.

The Port fo l io d isp lay Method
The portfo lio  d i sp l ay  method lis ts  the  contents of each contained object by 
calling the  object’s d i sp l ay  method. It then lis ts  the  client name and to ta l asset 
value.

f un c t i o n  d i sp l ay (p )
% DI SPLAY Displ ay a p o r t f o l i o  object  
f o r  i = 1: l eng th (  p. i nd_asset  s) 

d i s p l a y ( p . i n d _ a s s e t s { i } )
end
stg = s p r i n t f ( ’ \ nAssets f or  Cl i en t :  %s\nTotal  Value: %9.2f \n ’ , . . .
p .name,p . t o t a l _va l ue) ;
d i sp ( s t g )

The Port fol io pie3 Method
The portfo lio  class overloads the  M ATLAB pie3 function to  accept a portfo lio 
object and display a 3-D pie chart illu s tra tin g  the re la tive  asset m ix of the 
c lien t’s portfolio. M ATLAB calls the  @p o r t f o l i o / p i e3 . m version of pie3 
whenever the  input argument is a single portfo lio  object.
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f u n c t i o n  pie3(p)
% PIE3 Cr eate a 3-D pie chart  of a p o r t f o l i o  
stock_amt = 0 ; bond_amt = 0 ; savings_amt = 0 ; 
fo r  i= 1: l eng t h ( p . i nd_ass e t s )

i f  i s a ( p . i n d _ a s s e t s { i } , ’ s t ock ’ ) 
stock_amt = stock_amt + . . .

g e t ( p . i n d _ a s s e t s { i } , ’ Cur rentValue’ ); 
e l s e i f  i s a ( p . i n d _ a s s e t s { i } , ’ bond’ ) 

bond_amt = bond_amt + . . .
g e t ( p . i n d _ a s s e t s { i } , ’ Cur rentValue’ ); 

e l s e i f  i s a ( p . i n d _ a s s e t s { i } , ’ sav i ngs ’ ) 
savings_amt = savings_amt + . . .

g e t ( p . i n d _ a s s e t s { i } , ’ Cur rentValue’ );
end

end 
i = 1;
i f  stock_amt ~= 0

l a b e l ( i )  = { ’ Stocks’ }; 
p i e_ v e c t o r ( i )  = stock_amt;  
i = i +1;

end
i f  bond_amt ~= 0

l a b e l ( i )  = { ’ Bonds’ }; 
p i e_ v e c t o r ( i )  = bond_amt; 
i = i +1;

end
i f  savings_amt ~= 0

l a b e l ( i )  = { ’ Savings’ }; 
p i e_ v e c t o r ( i )  = savings_amt;

end
p i e3 ( p i e_vec t o r , l abe l  ) 
s e t ( g c f , ’ Renderer ’ , ’ z b u f f e r ’ ) 
s e t ( f i n d o b j ( g c a , ’ Type’ , ’ Text ’ ) , ’ FontSize’ ,14) 
cm = gray(64) ;  
co l ormBp(cn(48:end, : ) )
s tg(1)  = { [ ’ P o r t f o l i o  Composi t ion fo r  ’ ,p.name]} ;
s tg(2)  = { [ ’ Total  Val ue of Asset s: $’ , n u m 2 s t r ( p . t o t a l _ v a l ue ) ] } ;
t i t l e ( s t g , ’ FontSize’ , 12)
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There are three parts in the  overloaded pie3 method.

• The firs t uses the  asset subclass get methods to  access the Cur rentValue 
property of each contained object. The to ta l value of each class is summed.

• The second part creates the pie chart labels and builds a vector of graph data, 
depending on which objects are present.

• The thi rd part calls the  M ATLAB pie3 function, makes some font and 
colormap adjustments, and adds a title .

Creating a Port fol io
Suppose you have implemented a collection of asset subclasses in a manner 
s im ila r to  the  stock class. You can then use a portfo lio  object to  present the 
ind iv idua l’s financia l portfolio. For example, given the  follow ing assets:

XYZStock = s t o c k ( ’ XYZ’ ,200,12) ;
SaveAccount = sav i ngs ( ’ Acc # 1234’ ,2000,3 .2) ;
Bonds = bond( ’ U.S. Treasury ’ ,1600,12) ;

Now create a portfo lio  object.

p = p o r t f o l i o ( ’ G l b e r t  Bates’ ,XYZStock,SaveAccount ,Bonds)

The portfo lio  d i sp l ay  method summarizes the  portfo lio  contents (because thi s 
statement is not term inated by a semicolon):
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Descr i p tor :  XYZ 
Date: 24-Nov-1998 
Type: s tock
Current Value: 2400.00 
Number of shares: 200 
Share pri ce: 12.00

Descr i p tor :  Acc # 1234 
Date: 24-Nov-1998 
Type: savings 
Current V a lu e : 2000.00 
I n t e r es t  Rate: 3.2%

D e s c r ip to r :  U .S . Treasury 
Date: 24-Nov-1998 
Type: bond
Current V a lu e : 1600.00 
I n t e r es t  Rate:  12%

Assets f or  C l i en t :  G i l ber t  Bates 
Total  Value: 6000.00

The portfo lio  pie3 method displays the re la tive  m ix of assets using a pie chart: 

pie3(p)

Portfo lio  C o m po s ition  fo r G ilb e rt Bates 
T o ta l V a lue  o f A sse ts : $6000

Savings
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Saving and Loading Objects
You can use the  M ATLAB save and load commands to  save and retrieve 
user-defined objects to  and from .mat files, jus t l ike any other variables.

When you load objects, M ATLAB calls the  object’s class constructor to  register 
the  object in the  workspace. The constructor function for the  object class you 
are loading must be able to  be called w ith  no input arguments and return a 
default object. See “Guidelines for W ritin g  a Constructor” on page 14-10 for 
more inform ation.

Mod i f y ing  Objects During Save or Load
When you issue a save or load command on objects, M ATLAB looks for class 
methods called saveobj and loadobj  in the class directory. You can overload 
these methods to  modify the  object before the  save or load operation. For 
example, you could define a saveobj method tha t saves related data along w ith  
the object or you could w rite  a l oadobj method tha t updates objects to  a newer 
version when thi s  type of object is loaded in to  the  M ATLAB workspace.

Example  -  Def ining saveobj  and loadobj
In the  section “Example: The Portfo lio  Container” on page 14-54, portfo lio 
objects are used to  collect in form ation about a c lien t’s investment portfolio. 
Now suppose you decide to  add an account number to  each portfo lio  object that 
is saved. You can define a portfo lio  saveobj method to  carry out th is  task 
autom atica lly during  the save operation.

Suppose fu rthe r tha t you have already saved a number of portfo lio  objects 
w ithou t the  account number. You want to  update these objects during  the load 
operation so tha t they are s till va lid  portfo lio  objects. You can do th is  by 
defin ing a loadobj  method for the  portfo lio  class.
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Summary of Code Changes
To implement the  account number scenario, you need to  add or change the 
fo llow ing functions:

• p o r t f o l i o  -  The portfo lio  constructor method needs to  be modified to  create 
a new field, account_number, which is in itia lized  to  the empty s tring  when 
an object is created.

• saveobj -  A new portfo lio  method designed to  add an account number to  a 
portfo lio  object during  the save operation, only if  the  object does not already 
have one.

• loadobj  -  A new portfo lio  method designed to  update older versions of 
portfo lio  objects tha t were saved before the  account number s tructu re  field 
was added.

• subsref  -  A new portfo lio  method tha t enables subscripted reference to  
portfo lio  objects outside of a portfo lio  method.

• getAccountNumber -  a M ATLAB function tha t re turns an account number 
that consists of the  firs t th ree le tters of the  c lien t’s name.

The saveobj Method
M ATLAB looks for the  portfo lio  saveobj method whenever the  save command 
is passed a portfo lio  object. I f  @por t fo l i o / saveobj  exists, M ATLAB passes the  
portfo lio  object to  saveobj , which must then return the  modified object as an 
output argument. The follow ing im plem entation of saveobj determ ines if  the 
object has already been assigned an account number from a previous save 
operation. I f  not, saveobj calls getAccount Number to  obtain the  number and 
assigns it to  the  account_number field.

f u n c t i o n  b = saveobj (  a) 
i f  i sempty(a.account_number)

a.account_number = getAccountNumber(a);
end 
b = a;

The loadobj Method
M ATLAB looks for the  portfo lio  loadobj  method whenever the  load command 
detects portfo lio  objects in the  mat file  being loaded. If loadobj  exists, 
M ATLAB passes the  portfo lio  object to  loadobj  , which must then re turn the
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modified object as an output argument. The output argument is then loaded 
in to  the  workspace.

If  the  input object does not match the current defin ition as specified by the 
constructor function, then M ATLAB converts it to  a s tructu re  containing the 
same fie lds and the  object’s s tructu re  w ith  all the  values intact (that is, you 
now have a structure, not an object).

The fo llow ing im plem entation of loadobj  firs t uses is a  to  determ ine whether 
the input argument is a portfo lio  object or a structure. If the  input is an object, 
it is sim ply returned since no m odifications are necessary. I f  the  input 
argument has been converted to  a s tructu re  by M ATLAB, then the new 
account_number fie ld is added to  the  s truc tu re  and is used to  create an updated 
portfo lio  object.

f un c t i on  b = loadob j (a)
% loadobj  f o r  p o r t f o l i o  c lass 
i f  i s a ( a , ’ p o r t f o l i o ’ ) 

b = a;
el se % a i s  an old vers i on

a.account_number = getAccountNumber(a); 
b = cl a s s ( a , ’ port  f o l i o ’ );

end

Changing the Portfolio Constructor
The portfo lio  s tructu re  array needs an additional fie ld to  accommodate the  
account number. To create thi s field, add the  line

p.account_number = ’ ’ ;

to  @ p o r t f o l i o / p o r t f o l i o . m  in both the  zero argument and variab le  argument 
sections.

The getAccountNumber Function
In th is  example, getAccountNumber is a M ATLAB function tha t re tu rns an 
account number composed of the  firs t three letters of the  client name 
prepended to  a series of d ig its. To illu s tra te  im plem entation techniques, 
getAccountNumber is not a portfo lio  method so it cannot access the  portfo lio 
object data d irectly. Therefore, it is necessary to  define a portfo lio  subsref  
method tha t enables access to  the  name fie ld in a portfo lio  object’s structure.
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For thi s example, getAccountNumber sim ply generates a random number, 
which is form atted and concatenated w ith  elements 1 to  3 from the  portfo lio  
name field.

f un c t i o n  n = getAccountNumber(p)
% provides a account number fo r  object  p
n = [upper (p.name(1:3) )  s t r c a t ( n u m 2 s t r ( r o u n d ( r a n d ( 1 , 7 ) * 1 0 ) ) ’ ) ’ ];

Note tha t the  portfo lio  object is indexed by fie ld name, and then by numerical 
subscript to  extract the  firs t th ree letters. The subsref  method must be w ritten  
to  support thi s form of subscripted reference.

The Portfolio subsref Method
When M ATLAB encounters a subscripted reference, such as tha t made in the  
getAccountNumber function,

p.name(1: 3)

M ATLAB calls the  portfo lio  subsref  method to  in terpre t the  reference. I f  you 
do not define a subsref  method, the  above statement is undefined for portfo lio  
objects (recall tha t here p is an object, not jus t a structure).

The portfo lio  subsref  method must support fie ld-nam e and num eric indexing 
for the  getAccountNumber function to  access the  portfo lio  name field.

f un c t i on  b = subs re f ( p , i ndex )
% SUBSREF Def ine f i e l d  name i ndex ing f or  p o r t f o l i o  ob j ec t s  
swi t ch i n d e x ( 1) . t yp e  
case ’ . ’

swi t ch i n d e x ( 1) . subs 
case ’ name’

i f  l eng th ( i ndex ) == 1 
b = p.name;

else
swi t ch i ndex ( 2 ) . t y p e  
case ’ ( ) ’

b = p.name( i ndex ( 2 ) . s u b s { : } ) ;
end

end
end

end
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Note tha t the  portfo lio  implem entation of subsref  is designed to  provide access 
to  specific elements of the  name field; it is not a general im plem entation tha t 
provides access to  all s tructu re  data, such as the  stock class im plem entation of 
s u b r e f .

See the subsref  help entry for more inform ation about indexing and objects. 

New Portfolio Class Behavior
W ith the  additions and changes made in thi s example, the  portfo lio class now:

• Includes a fie ld for an account number

• Adds the  account number when a portfo lio  object is saved for the  firs t tim e

• Autom atica lly  updates the older version of portfo lio  objects when you load 
them in to  the M ATLAB workspace
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Object Precedence
Object precedence is a means to  resolve the question of which of possibly many 
versions of an operator or function to  call in a given s itua tion . Object 
precedence enables you to  control the  behavior of expressions containing 
d ifferent classes of objects. For example, consider the  expression:

ob j ec tA + ob j ec tB

O rd ina rily , M ATLAB assumes tha t the  objects have equal precedence and calls 
the  method associated w ith  the  leftmost object. However, there  are two 
exceptions:

• User-defined classes have precedence over M ATLAB bu ilt-in  classes.

• User-defined classes can specify the ir re la tive  precedence w ith  respect to  
other user-defined classes using the i n f e r i o r t o  and s upe r i o r t o  functions.

For example, in the  section “Example: A Polynomial Class” on page 14-23 the 
polynom class defines a plus method tha t enables addition of polynom objects. 
Given the polynom object p:

p = polynom([1 0 -2 -5 ] )  
p =

xA3-2*x-5

The expression,

1 + p 
ans =

xA3-2*x-4

calls the  polynom plus method (which converts the  double, 1 , to  a polynom 
object, and then adds it to  p). The user-defined polynom class has precedence 
over the  M ATLAB double class.

Speci fying Precedence of User-Def ined Classes
You can specify the  re la tive  precedence of user-defined classes by calling the 
i n f e r i o r t o  or s upe r i o r t o  function in the  class constructor.

The i n f e r i o r t o  function places a class below other classes in the  precedence 
hierarchy. The calling syntax for the  i n f e r i o r t o  function is

i n f e r i o r t o ( ’ c l a s s 1’ , ’ c l ass2 ’ , . . .  )
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You can specify m u ltip le  classes in the  argument lis t, placing the class below 
many other classes in the hierarchy.

S im ila rly , the  s upe r i o r t o  function places a class above other classes in the 
precedence hierarchy. The calling syntax for the  supe r i o r t o  function is

s u p e r i o r t o ( ’ c l a s s 1’ , ’ c l ass2 ’ , . . . )

Location in Hierarchy
I f  ob j ec tA is above ob jec tB in the precedence hierarchy, then the  expression, 

ob j ec tA + ob j ec tB

calls assA/p l us .m Conversely, if  ob j ec tB is above ob j ec tA in the 
precedence hierarchy, then M ATLAB calls @! ass B / p l us . m

See “How M ATLAB Determ ines Which Method to  C a ll” on page 14-68 for 
related inform ation.
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How MATLAB Determines Which Method to Call
I n M ATLAB, functions exist in directories in the computer’s file  system. A 
d irectory may contain many functions (M-files). Function names are unique 
only w ith in  a single d irectory (e.g., more than one d irectory many contain a 
function called pie3). When you type a function name on the command line, 
M ATLAB must search all the  d irectories it is aware of to  determ ine which 
function to  call. Th is list of d irectories is called the  M ATLAB path.

When looking for a function, M ATLAB searches the  directories in the  order 
they are listed in the path, and calls the  firs t function whose name matches the  
name of the  specified function.

I f  you w rite  an M -file  called p ie3 .m  and put it in a d irectory tha t is searched 
before the  specgraph directory tha t contains M A T LA B ’s p ie3 function, then 
M ATLAB uses your p ie3 function instead (note tha t th is  is not true  for bu ilt-in  
functions like  p lo t , which are always found firs t).

Object oriented-program m ing allows you to  have many methods (M ATLAB 
functions located in class directories) w ith  the  same name and enables 
M ATLAB to  determ ine which method to  use based on the type or class of the 
variables passed to  the  function. For example, if  p is a portfo lio  object, then,

p ie3 (p )

calls @portf o l io /p ie 3 .m  because the argument is a portfo lio  object.

The Process of Selecting a Method
When you call a method for which there  are m u ltip le  versions w ith  the  same 
name, M ATLAB determ ines the method to  call by:

• Looking at the  classes of the  objects in the  argument lis t to  determ ine which 
argument has the  highest object precedence; the  class of th is  object controls 
the method selection and is called the  dispatch type.

• Apply ing the  function precedence order to  determ ine which of possibly 
several im plem entations of a method to  call. Th is order is determ ined by the 
location and type of function.

14-68



How MATLAB Determines Which Method to Call

Determining the Dispatch Type
M ATLAB firs t determ ines which argument controls the  method selection. The 
class type of th is  argument then determ ines the  class in which M ATLAB 
searches for the  method. The contro lling argument is either:

• The argument w ith  the  highest precedence, or

• The leftmost of argum ents having equal precedence

User-defined objects take precedence over M A T LA B ’s bu ilt-in  classes such as 
double or ch a r. You can set the  re la tive  precedence of user-defined objects w ith  
the in f e r io r t o  and s u p e r io r to  functions, as described in “Object Precedence” 
on page 14-66.

M ATLAB searches for functions by name. When you call a function, M ATLAB 
knows the  name, number of arguments, and the  type of each argument. 
M ATLAB uses the  dispatch type to  choose among m u ltip le  functions of the 
same name, but does not consider the  number of arguments.

Function Precedence Order
The function precedence order determ ines the  precedence of one function over 
another based on the  type of function and its  location on the  M ATLAB path. 
From the  perspective of method selection, M ATLAB contains tw o types of 
functions: those bu ilt in to  M ATLAB, and those w ritte n  as M-files. M ATLAB 
trea ts  these types d iffe ren tly  when determ in ing the  function precedence order.

M ATLAB selects the  correct function for a given context by applying the 
follow ing function precedence rules, in the  order given:

1 O verloaded B u ilt- in  F u n c tio n . I f  there  is a method in the  class d irectory of 
the  d ispatching argument tha t has the same name as a M ATLAB function, 
then th is  method is called instead of the  M ATLAB function.

2 N onoverloaded M ATLAB F unctions . I f  there  is no overloaded method, 
then the M ATLAB function is called. Note tha t M ATLAB bu ilt-in  functions 
take precedence over both subfunctions and priva te  functions, but M ATLAB 
M -file  functions do not.

3 S ub functions. Subfunctions take precedence over other functions on the  
path w ith  the  same name. Note tha t subfunctions w ith  the  same name as 
M ATLAB bu ilt-in  functions (or overloaded bu ilt-in  functions) can never be
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called, because of rules 1 and 2. However, subfunctions always take 
precedence over M -file  and overloaded M -file  functions.

4 P riva te  Functions . A function in a priva te  d irectory (i.e., a d irectory named 
p r iv a te )  tha t is below the d irectory containing the calling function takes 
precedence over other functions on the  path having the  same name. Note 
tha t priva te  functions w ith  the  same name as M ATLAB bu ilt-in  functions 
(or overloaded bu ilt-in  functions) can never be called, because of rules 1 and 
2. However, p riva te  functions always take precedence over M -file  and 
overloaded M -file  functions.

5 Class C ons truc to r F unctions . Constructor functions (functions having 
names tha t are the  same as the  @ directory, for example @polynomf 
polynomm) take precedence over other M ATLAB functions. Therefore, if  you 
create an M -file  called polynom m  and put it on your path before the 
constructor @ polynom/polynomm version, M ATLAB w ill always call the  
constructor version.

6 O verloaded M ethods. M ATLAB calls an overloaded method if  it is not 
masked by a subfunction or priva te  function.

7 C u rre n t D ire c to ry . A function in the  current w ork ing d irectory is selected 
before one elsewhere on the  path.

8 E lsew here On P a th . F ina lly , a function anywhere else on the  path is 
selected.

Selection from Multiple Directories
There may be a number of d irectories on the path tha t contain methods w ith  
the  same name. M ATLAB stops searching when it finds the firs t 
implem entation of the  method on the path, regardless of the  im plem entation 
type (M EX-file, P-code, M-file).

Selection from Multiple Implementation Types
There are four file  precedence types. M ATLAB uses file  precedence to  select 
between identica lly  named functions in the  same directory. The order of 
precedence for file  types is:

1 M EX-files

2 M D L-file  (S im ulink model)
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3 P-code

4 M -file

For example, if  M ATLAB finds a P-code and an M -file  version of a method in a 
class directory, then the  P-code version is used. It is, therefore, im portant to 
regenerate the P-code version whenever you edit the  M -file.

Query ing  Which Method MATLAB Wil l  Call
You can determ ine which method M ATLAB w ill call using the which command. 
For example,

which pie3
yo u r_ m B tla b _ p a th /to o lb o x /ira tla b /sp e cg ra p h /p ie 3 .m  

However, if  p is a portfo lio  object, 

which p ie3 (p )
d ir_ o n _ y o u r_ p a th /@ p o rtfo lio /p ie 3 .m  % p o r t f o l io  met hod

The which command determ ines which version of p ie3 M ATLAB w ill call if  you 
passed a portfo lio  object as the  input argument. To see a list of all versions of a 
particu la r function tha t are on your M ATLAB path, use the  - a l l  option. See 
the which reference page for more inform ation on th is  command.
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M A T LA B ’s file  input and output (I/O) functions read and w rite  a rb itra ry  
b inary and form atted text files. They allow you to  read data collected in other 
form ats and to  w rite  out data for other programs or devices.

The low-level file  I/O functions live  in a d irectory called i o f un  in the  M ATLAB 
Tool box.

Category Function Description

F ile  Opening and 
Closing

fopen Open file.

f c l os e Close file.

B inary I/O f read Read binary data from file.

f w r i t e W rite  binary data to  file.

Formatted I/O fscanf Read form atted data from file.

f p r i n t f W rite  form atted data to  file.

f get l Read line  from file, discard newline 
character.

f ge t s Read line  from file, keep newline 
character.

S tring  Conversion s p r i n t f W rite  form atted data to  string.

sscanf Read s tring  under form at control.

F ile  Positioning f e r r o r Inqu ire  file  I/O error status.

feof Test for end-of-file.

f seek Set file  position indicator.

f t e l l Get file  position indicator.

f rewi nd Rewind file.

Temporary Files tempdi r Get tem porary d irectory name.

tempname Get tem porary filename.
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Opening and Closing Files
Files are opened w ith  the fopen command and closed w ith  the  f c l os e  
command.

Function Purpose

fopen Open file.

f c l os e Close file.

Before reading or w r it in g  a text or b inary file  you must open it w ith  the  fopen 
command.

f i d  = f open( ’ f i l e n a т в ’ , ’ p e r т i s s i on ’ )

The per mission s tring  specifies the kind of access you require. Possible 
permission strings include:

• r for reading only

• w for w r it in g  only

• a for appending only

• r+ for both reading and w ritin g

Note Systems such as Microsoft W indows tha t d istinguish between text and 
binary files may require additional characters in the permission string, such 
as ’ r b ’ to open a binary file  for reading.

fopen re tu rns a file  identifie r ( f i d) ,  the  value you use to  access the  open file. 

Th is fopen statement opens the  data file  named penny.dat for reading:

f i d  = f open( ’ penny.dat ’ , ’ r ’ )

MATLAB File I/O  Functions and ANSI Standard C
Many of the  M ATLAB file  I/O functions are based on the  I/O functions of the 
ANSI Standard C L ib ra ry . I f  you know C, therefore, you are probably fam ilia r 
w ith  these routines. However, not all M ATLAB file  I/O commands work the
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same way as th e ir C language counterparts. Check M ATLAB command syntax 
and func tiona lity  using the online help fa c ility  or the  online M ATLAB Function 
Reference.

Using the File Ident i f ie r  (f id)
The file  iden tifie r tha t fopen re tu rns (if successful) is a nonnegative integer. 
Th is integer acts as a handle to  the file  and is an argument to  M ATLAB file  
I/O functions.

There are tim es when fopen m ight fa il. For example, fopen fa ils  if  you try  to 
open a file  tha t does not exist. I f  fopen fails, it does the  following:

• It assigns -1 to  the  file  identifie r.

• It assigns an error message to  an optional second output argument. Note 
that the  error messages are system dependent and are not provided for all 
errors on all systems. The function f e r r o r  may also provide inform ation 
about errors.

I t ’s good practice to  test the  f ile  iden tifie r each tim e  you open a file. For 
example, th is  code loops un til the  user enters the  name of a readable file:

f i d = 0 ;
wh i l e  f i d  < 1

f i l enamB= i npu t ( ’ Cpen f i l e :  ’ , ’ s ’ );
[ f i d , i ressage]  = fopen( f i l ename,  ’ r ’ ); 
i f  f i d  == -1 

disp(message) 
end

end

Now assume tha t no f i l e .mat  does not exist but tha t goodf i l e .mat  does exist. 
On one system, the  results are:

Open f i l e :  no f i l e .mat
Cannot open f i l e .  Existence? Permissions? Memory? . . .

Open f i l e :  goodf i l e .mat
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Closing a File
When you fin ish reading or w ritin g , use f c l os e  to close the file. For example, 
th is  line  closes the file  associated w ith  file  iden tifie r f i d :

stat  us = f c l o s e ( f i d ) ;

Th is line  closes all open files:

stat  us = f c l o s e ( ’ a l l ’ );

Both forms return 0 if  the  file  or files were successfully closed or -1 if  the  
attem pt was unsuccessful.

M ATLAB autom atica lly closes all open files when you exit from M ATLAB. It is 
s till good practice, however, to  close a file  exp lic itly  w ith  f c l o s e  when you are 
finished using it. Not doing so can unnecessarily drain system resources.

Note Closing a file  does not clear the  file  iden tifie r variab le  f i d .  However, 
subsequent attem pts to  access a file  through th is  file  iden tifie r variab le w ill 
not work.
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Temporary Files and Directories
The tempdi r  
your system.

and tempname commands assist in locating tem porary data on

Function Purpose

tempdi r Get tem porary d irectory name.

tempname Get tem porary filename.

You can create tem porary files. Some systems delete tem porary files every tim e  
you reboot the  system. On other systems, designating a file  as tem porary may 
mean only tha t the  file  is not backed up.

A function named tempdi r  re tu rns the  name of the  directory or folder tha t has 
been designated to  hold tem porary files on your system. For example, issuing 
tempdi r  on a UNI X  system re tu rns the / tmp directory.

M ATLAB also provides a tempname function tha t re turns a filenam e in the 
tem porary directory. The returned filenam e is a su itab le destination for 
tem porary data. For example, if  you need to  store some data in a tem porary file, 
then you m ight issue the  follow ing command firs t:

f i d  = fopen(tempname, ’ w ) ;

Note The filenam e tha t tempname generates is not guaranteed to  be unique; 
however, it is like ly  to  be so.
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Binary Files
This section explains how to  read from or w rite  to  b inary files.

Function Purpose

f r  ead Read binary data from file.

f w r i t e W rite  binary data to  file.

Reading Binary Files
The f read  function reads all or part of a binary file  (as specified by a file  
iden tifie r) and stores it in a m atrix . In its  simplest form, it reads an entire  file  
and in te rp re ts each byte of input as the next element of the  m atrix . For 
example, the  fo llow ing code reads the  data from a file  named ni ckel .dat  in to  
m a trix  A.

f i d  = f open( ’ n i c k e l . d a t ’ , ’ r ’ );
A = f r e a d ( f i d ) ;

To echo the data to  the screen after reading it, use char to  display the  contents 
of A as characters, transposing the  data so it displays horizontally:

d i sp ( cha r ( A ’ ))

The char function causes M ATLAB to  in te rp re t the  contents of A as characters 
instead of as numbers. Transposing A displays it in its  more natura l horizontal 
format.

Controlling the Number of Values Read
f r ead accepts an optional second argument tha t controls the  number of values 
read (if unspecified, the  default is the  entire  file). For example, th is  statement 
reads the  firs t 100 data values of the  file  specified by f i d  in to  the column 
vector A:

A = f r e a d ( f i d , 1 00);

Replacing the  number 100 w ith  the  m a trix  dimensions [1 0  10] reads the same 
100 elements in to  a 10-by-10 array.
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Controlling the Data Type of Each Value
An optional th ird  argument to  f r ead controls the data type of the  input. The 
data type argument controls both the  number of b its read for each value and 
the  in terpre ta tion  of those b its as character, integer, or floating-point values. 
M ATLAB supports a w ide range of precisions, which you can specify w ith  
M ATLAB-specific s trings or th e ir C or Fortran equivalents.

Some common precisions include:

• ’char ’ and ’uchar ’ for signed and unsigned characters (usually 8 bits)

• ’ s h o r t ’ and ’ l ong ’ for short and long integers (usually 16 and 32 bits, 
respectively)

• ’ f l o a t ’ and ’ double’ for single and double precision floating-point values 
(usually 32 and 64 bits, respectively)

Note The meaning of a given precision can vary across d ifferent hardware 
platforms. For example, a ’ uchar ’ is not always 8 bits. f r ead also provides a 
number of more specific precisions, such as ’ i n t 8 ’ and ’ f l o a t 3 2 ’ . I f  in doubt, 
use these precisions, which are not p latform  dependent. Look up f read in 
online help for a complete lis t of precisions.

For example, if  f i d  refers to  an open file  containing single-precision 
floating-point values, then the  fo llow ing command reads the  next 10 
floating-point values in to  a column vector A:

A = f r e a d ( f i d , 1 0 , ’ f l o a t ’ );

W rit ing  Binary Files
The f w r i t e  function w rites  the elements of a m a trix  to  a file  in a specified 
num eric precision, re tu rn ing  the number of values w ritte n . For instance, these 
lines create a 100-byte b inary file  containing the  25 elements of the  5-by-5 
magic square, each stored as 4-byte integers:

f w r i t e i d  = f o p e n ^ i r Bg i cS . b i n ’ / w ) ;  
count = f w r i t e ( f w r i t e i d , r в g i c ( 5 ) , ’ i n t 3 2 ’ ); 
s t a t us  = f c l o s e ( f w r i t e i d ) ;
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In th is  case, f w r i t e  sets the  count variab le to  25 unless an error occurs, in 
which case the  value is less.
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Controlling Position in a File
Once you open a file  w ith  f open, M ATLAB m ainta ins a file  position indicator 
tha t specifies a particu la r location w ith in  a file. M ATLAB uses the file  position 
indicator to  determ ine where in the  file  the  next read or w rite  operation w ill 
begin. The tab le  below summarizes M ATLAB functions for contro lling the  file  
position indicator:

Function Purpose

feof Determ ine if  f ile  position indicator is at end-of-file.

f seek Set file  position indicator.

f t e l l Get file  position indicator.

f rewind Reset file  position indicator to  beginning of file.

The f seek and f t e l l  functions let you set and query the  position in the  file  at 
which the  next input or output operation takes place:

• The f seek function repositions the  file  position indicator, le tting  you skip 
over data or back up to  an earlier part of the  file.

• The f t e l l  function gives the offset in bytes of the  file  position indicator for a 
specified file.

The syntax for f seek is

s t a tus  = f s e e k ( f i d , o f f s e t , o r i g i n )

f i d  is the  file  iden tifie r for the  file. o f f se t  is a positive or negative offset value, 
specified in bytes. o r i g i n  is an origin from which to  calculate the  move, 
specified as a string.

’ c o f ’ Current position in file  

’ bo f ’ Beginning of file  

’ eo f ’ End of file
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Unders tand ing  File Position
To see how fseek and f t e l l  work, consider th is  short M-file:

A = 1:5;
f i d  = f open( ’ f i  v e . b i n ’ , ’ w ) ;  
f w r i t e ( f i d ,  A , ’ s h o r t ’ ); 
stat  us = f c l o s e ( f i d ) ;

Th is code w rites  out the  numbers 1 through 5 to  a b inary file  named f i v e . b i n .  
The call to  f w r i t e  specifies tha t each numerical element be stored as a s h o r t . 
Consequently, each number uses tw o storage bytes.

Now reopen f i v e . b i n  for reading:

f i d  = f open( ’ f i  v e . b i n ’ , ’ r ’ );

Th is call to  f seek moves the  f ile  position indicator forward six bytes from the 
beginning of the  file:

stat  us = fseek(  f i d , 6 , ’ bo f ’ );

F ile  Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile  Contents 0 1 0 2 0 3 0 4 0 5
F ile  Position Indicator 4 -

This call to  f r ead reads whatever is at file  positions 7 and 8 and stores it in 
variab le  f o u r :

four  = f r e a d ( f i d , 1, ’ s h o r t ’ );

The act of reading advances the  file  position indicator. To determ ine the 
current file  position indicator, call f t e l l  :

posi t i o n  = f t e l l ( f i d )  

po s i t i on  =

8

File  Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile  Contents 0 1 0 2 0 3 0 4 0 5
F ile  Position Indicator
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This call to  f seek moves the  file  position indicator back four bytes:

s t a t us  = f s e e k ( f i d , - 4 , ' c o f ' ) ;

F ile  Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile  Contents 0 1 0 2 0 3 0 4 0 5
F ile  Position Indicator i

Calling f read again reads in the  next value (3).

t h r ee  = f r e a d ( f i d , 1, ' s h o r t ' ) ;
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Formatted Files
This section explains how to  read from and w rite  to  form atted text files.

Function Purpose

fget l Read line  from file, discard newline character.

f ge t s Read line  from file, keep newline character.

f scanf Read form atted data from file.

f p r i n t f W rite  form atted data to  file.

Reading Str ings Line-By-Line from Text Files
M ATLAB provides tw o functions, f ge t l  and f ge t s ,  tha t read lines from 
form atted text files and store them  in s tring  vectors. The tw o functions are 
almost identical; the  only difference is tha t fget  s copies the newline character 
to  the  s tring  vector but f ge t l  does not.

The fo llow ing M -file  function demonstrates a possible use of f ge t l  . Th is 
function uses f ge t l  to read an entire  file  one line  at a tim e. For each line, the  
function determ ines whether an input lite ra l s tring  ( l i t e r a l ) appears in the 
line.
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I f  it does, the  function p rin ts  the  entire  line  preceded by the number of tim es 
the  lite ra l s tring  appears on the  line.

f un c t i on  y = l i t c o u n t ( f i l e n a m e ,  l i t e r a l )
% Search fo r  number of s t r i n g  matches per l i ne .

f i d  = fopen( f i l ename,  ’ r t ’ );
У = 0;
wh i l e  f e o f ( f i d )  == 0 

l i n e  = f g e t l ( f i d ) ;  
matches = f i n d s t r ( l i n e ,  l i t e r a l ) ;  
num = length(matches) ;  
i f  num > 0 

y = y + num
f p r i n t f ( 1, ’ %d:0%s\n’ , n u m l i  ne);

end
end
f c l o s e ( f i d ) ;

Given the follow ing input da ta file  called badpoem

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonf l ys or f l eas.

Calling the  l i t c o u n t  function w ith  the  s tring  ’ an’ produces the  output:

l i t c o u n t (  ’ badpoem, ’ an’ )
2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,

Reading Formatted Text
The f scanf  function is like  the f scanf  function in standard C. Both functions 
operate in a s im ila r manner, reading a line of data from a file  and assigning it 
to  one or more variables. Both functions use the  same set of conversion 
specifiers to  control the  in terpre ta tion  of the  input data.

The conversion specifiers for f scanf  begin w ith  a %> character; common 
conversion specifiers include:
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• %s to  match a string

• °/d to  match an integer in base 10 format

• /g  to  match a double-precision floating-po int value

Despite all the  s im ila ritie s  between the M ATLAB and C versions of f s c a n f , 
there are some significant differences. For example, consider a file  named 
moon.dat for which the  contents are as follows:

3.654234533
2.71343142314
5.34134135678

The fo llow ing code reads all th ree elements of th is  file  in to  a m a trix  named
MyData:

f i d  = f open( ’ moon.dat ’ , ’ r ’ );
MyData = f scanf  ( f i d , ’ / g ’ ); 
stat  us = f c l o s e ( f i d ) ;

Notice tha t th is  code does not use any loops. I nstead, the  fscanf  function 
continues to  read in text as long as the input format is compatible w ith  the 
format specifier.

An optional size argument controls the  number of m a trix  elements read. For 
example, if  f i d  refers to  an open file  containing strings of integers, then th is  
line  reads 100 integer values in to  the  column vector A:

A = f s c a n f ( f i d ,  ’ /Sd’ ,100);

This line  reads 100 integer values in to  the 10-by-10 m a trix  A.

A = f s c a n f ( f i d ,  ’ /Sd’ , [ 10  10] ) ;

A related function, sscan f , takes its  input from a s tring  instead of a file. For 
example, th is  line re tu rns a column vector containing 2 and its  square root.

r o o t 2 = num2 s t r ( [ 2 , s q r t ( 2 ) ] ) ;  
rootva l ues = s sc a n f ( r o o t 2 , ’ / f ’ );

W rit ing  Text Files
The f p r i n t f  function converts data to  character s trings and outputs them to 
the  screen or a file. A format control s tring  containing conversion specifiers and
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any optional text specify the  output form at. The conversion specifiers control 
the  output of a rray elements; f p r i  nt f  copies text d irectly.

Common conversion specifiers include:

• %e for exponential notation

• % for fixed point notation

• %g to  autom atica lly select the  shorter of %e and %f

Optional fie lds in the format specifier control the  m in im um  field w id th  and 
precision. For example, th is  code creates a text file  containing a short table of 
the  exponential function:

x = 0 : 0 . 1: 1; 
y = [x ; exp(x) ] ;

The code below w rites  x and y in to  a newly created file  named ex p t a b l e . t x t :

f i d  = f open ( ’ e x p t a b l e . t x t ’ , ’ w’ ); 
f p r i n t f ( f i d , ’ Exponent ial  Func t i on \ n \ n ’ ); 
f p r i n t f ( f i d , ’ %6 . 2f %12. 8f \ n ’ , y ) ;  
s t a t us  = f c l o s e ( f i d ) ;

The firs t call to  f p r i n t f  outputs a tit le , followed by tw o carriage returns. The 
second call to  f p r i n t f  outputs the  table of numbers. The form at control s tring  
specifies the  form at for each line of the  table:

• A fixed-point value of six characters w ith  tw o decimal places

• Two spaces

• A fixed-point value of twelve characters w ith  eight decimal places

f p r i n t f  converts the  elements of array y in column order. The function uses 
the  format s tring  repeatedly un til it converts all the  array elements.

Now use fscanf  to read the  exponential data file:

f i d  = f open ( ’ e x p t a b l e . t x t ’ , ’ r ’ ); 
t i t l e  = f g e t l ( f i d ) ;
[ t a b l e , c o u n t ]  = f s c a n f ( f i d , ’ %f %f ’ , [ 2  11] ) ;  
t a b l e  = t ab l e ' ;  
s t a t us  = f c l o s e ( f i d ) ;
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The second line  reads the  file  tit le . The th ird  line reads the tab le  of values, tw o 
floating-point values on each line un til it reaches end of file. count re tu rns the 
number of values matched.

A function related to  f p r i n t f , s p r i n t f , outputs its  results to  a s tring  instead 
of a file  or the  screen. For example:

root2 = s p r i n t f ( ’ The square root of /  i s  %10.8e. \n’ , 2 , s q r t ( 2 ) ) ;
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cd 2-16, 2-25 
cell

indexing 13-20, 13-24 
cell arrays

accessing a subset of cells 13-24 
accessing data 13-23
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applying functions to 13-27 
cell indexing 13-20 
concatenating 13-22 
content indexing 13-20 
converting to numeric array 13-32 
creating 13-19

using assignments 13-20 
w ith c e l l s  function 13-23 
w ith curly braces 13-22 

defined 13-2 
deleting cells 13-25 
deleting dimensions 13-25 
displaying 13-21 
expanding 13-21 
flat 13-29 
indexing 13-20 
multidimensional 12-19 
nested 13-29

building w ith the c e l l s  function 13-30 
indexing 13-30 

of strings 11-7
comparing strings 11-10 

of structures 13-33 
organizing data 13-28 
overview 13-19 
preallocation 10-65, 13-23 
reshaping 13-25
to replace comma-separated list 13-25 
visualizing 13-21 

cel l  data type 10-20 
cel l  d i sp 13-21 
cel l  plot  13-21 
cel l  s 13-19, 13-23, 13-29 
char data type 10-20, 15-8 
character arrays 10-19, 11-4 

two-dimensional 11-5 
characteristic polynomial 5-3

characteristic roots of matrix 5-3 
characters

corresponding ASCII values 11-5 
finding in string 11-11 

chol 9-24, 9-30 
Cholesky factorization 4-24 

for sparse matrices 9-30 
class directories 14-6 
c l ass function 14-11 
classes 10-19

clearing definition 14-6 
constructor method 14-10 
designing 14-9
methods (object-oriented) 14-2 
methods debugging 14-6 
methods required by MATLAB 14-9 
overview 14-2 

c lc  2-6
clear  2-10, 10-11, 10-66
clear class definition 14-6
clearing M-files 3-3
clearing the Command Window 2-6
closest point searches 5-22
closing files 15-2, 15-3, 15-5
closing MATLAB 2-4
colnm l 9-27, 9-28
colon operator 4-8, 10-21, 12-10

for multidimensional array subscripting 12-10 
in subscripts 8-28 
to access subsets of cells 13-24 
used to index a page 12-16 
used w ith scalar expansion 12-6 

color prin ting from Editor 2-41, 2-48 
c o l p e r m 9-26 
column vector 4-5

for polynomial roots representation 5-3 
indexing as 10-43
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of event locations (ODE) 8-31 
columns 4-27 

deleting 10-42 
comma to separate function arguments 10-7 
command line editing 2-5 
command to operating system 2-25 
Command Window 2-5, 2-35 
commands on m ultip le lines 2-10 
comma-separated list 

using cell arrays 13-25 
comments in code 10-9 
comparing

interpolation methods 5-13 
sparse and full matrix storage 9-11 
strings 11-9 

complex conjugate transpose 4-8 
complex conjugate transpose operator 10-22 
complex values in sparse matrix 9-5 
computational functions

applying to cell arrays 13-27 
applying to multidimensional arrays 12-15 
applying to sparse matrices 9-23 
applying to structure fields 13-9 
in M-file 10-3 

computer 10-18 
computer type 10-18 
concatenating 

cell arrays 13-22 
strings 10-46 

concatenation 10-41 
condest 9-3
condition, dimension compatibility 4-13 
conditional statements 10-12 
conditions 

for ODEs
boundary 8-41 
in itia l 8-3, 8-5

confidence intervals 6-28 
constructor methods 14-10 

guidelines 14-10 
using c l ass in 14-11 

containment 14-36 
content indexing 13-20

to access cell contents 13-23 
contents of sparse matrix 9-11 
Contents .m file  10-9 
continuous extension (ODE solvers) 8-12 
contour 5-21
contour plots, to compare interpolation methods

5-14
control keys, for editing commands 2-6 
conv 5-4, 13-26 
conversion specifiers 2-27 
converter methods 14-19, 14-25 
converting

and handling dates 10-54 
base numbers 11-3 
cases of strings 11-3 
numbers 11-13 
strings 11-3, 11-13, 15-2 

convex hull 5-23 
convhul l  5-23 
convolution 5-4 
copying options 2-39 
cor rcoef  6-10 
correlation coefficients 6-9 
cos 10-5 
cov 6-9 
covariance 6-9 
creating

cell array 13-19 
multidimensional array 12-4 
ODE files 8-14 
sparse matrix 9-7
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string 11-4 
string array 11-6 
structure array 13-3 

cross 12-15 
cubic interpolation

multidimensional 5-16 
one-dimensional 5-10 

cubic spline interpolation 5-10 
curly braces

for cell array indexing 13-20, 13-22 
to build cell arrays 13-22 
to nest cell arrays 13-29 

current directory 2-16 
curve fittin g  5-6

confidence intervals 6-28 
customizing menus in Editor 2-41 
Cuthill-McKee, reverse ordering 9-27

D
data

binary 15-2
exchanging between platforms 2-31 
exporting 2-26 
filte r 6-29
Harwell-Boeing format 9-10 
importing 2-26 
monotonic 5-12 
m ultivariate 6-3 
pre-processing 6-12 
sorting 6-7 
temporary 15-6 
type for input 15-8 

data analysis
fin ite  differences 6-11 
triangulation 5-18 

data class hierarchy 14-3

data fittin g  6-20
confidence intervals 6-28 
error bounds 6-28 
exponential fit 6-25 
exponential fits  6-25 
polynomial fits  6-20 

data gridding
multidimensional 5-17 

data normalization 6-21 
data organization 

cell arrays 13-28 
multidimensional arrays 12-17 
structure arrays 13-11 

data types 10-19 
cell 10-20 
char 10-20 
classes 14-3 
double 10-20
for image processing 10-19 
for toolbox creation 10-19 
numeric 10-20 
precision 15-8 

char 15-8 
double 15-8 
float 15-8 
long 15-8 
short 15-8 
uchar 15-8 

sparse 10-20 
sparse matrices 10-19 
storage 10-20 
s t r uc t  10-20 
uint  10-20 
user defined 14-3 
UserCbj ect 10-20 

datatips 2-48 
date 10-60
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datenum 10-55, 10-56 
dates

base 10-54 
conversions 10-55 
formats 10-54
handling and converting 10-54 
number 10-54 
string, vector of input 10-57 

dates t r  10-55, 10-57 
datevec 10-55 
dbclear  3-10 
dbcont 3-10 
dbdown 3-10 
dbqui t  3-10 
dbstack 3-10 
dbstatus 3-10 
dbstep 3-10 
dbstop 3-10 
dbtype 3-10 
dbup 3-10 
deblank 11-6 
Debugger 3-2 

buttons 3-5
changing workspace context 3-8
continue 3-5
example 3-3
highlighting 3-7
pause 3-7
red stop sign 3-6
stack 3-2, 3-8
step 3-5
stepping through code 3-12 
techniques 3-2 
values, viewing 3-2 
yellow arrow 3-7 

debugging 2-38, 2-39 
debugging class methods 14-6

debugging commands 2-54, 3-10 
decimal representation 

to binary 11-13 
to hexadecimal 11-13 

decomposition 
eigenvalue 4-34 
Schur 4-37 
singular value 4-38 

deconv 5-4 
deconvolution 5-4 
defaults, setting 2-3 
Delaunay triangulation 5-19 

closest point searches 5-22 
de l e te  2-25 
deleting

cells from cell array 13-25 
fields from structure arrays 13-9 

deletion operator 10-42 
delim iter in string 11-12 
demos

MATLAB 1-6 
density of sparse matrix 9-6 
derivative of polynomial 5-5 
descriptive statistics 6-7 
det 4-20
determinant 4-20 
diag 9-24 
diagonal

creating sparse matrix from 9-8 
of a matrix 4-10 

d i a r y  2-28, 2-32 
d i f f  6-11
difference between successive vector elements 

6-11
difference equations 6-29 
differential equations, See ODE solvers 
d im  argument for cat 12-7
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dimension compatibility 4-13 
dimensions 

deleting 13-25 
permuting 12-13 
removing singleton 12-12 

d ir  2-25
direct methods for systems of equations 9-33 
directories

adding to path 14-7 
class 14-6
Cont e n t s . mfi le 10-9 
help for 10-9 
MATLAB 1-5 
private 10-39, 14-5 
temporary 15-6 

directory, current 2-16 
discrete Fourier transform 6-31 
d i sp 13-16 
dispatch type 14-69 
dispatching p rio rity  10-10 
d i sp l ay  method 14-12 

examples 14-13 
displayed output 14-27 
displaying

cell arrays 13-21
error and warning messages 10-52 
field names for structure array 13-4 
sparse matrices 9-13 

distance between nodes 9-21 
divisi on

matrix 4-13 
of polynomials 5-4 

dlmr ead 2-27 
d lmwr i t e  2-28 
doc 2-23
documentation, how to use 1-6 
documentation, online 2-23

dos 2-25
DOS window, starting MATLAB from 2-4 
dot product 4-8 
double data type 10-20 
double precision 15-8 
double-precision matrix 10-19 
dsearch 5-22

E
echoing 2-38 
edi t  2-15, 2-39 
editing

arrays 2-52 
commands 2-5 
M-files 2-39 

editor 2-55 
accessing 10-4 
command line 2-5 
default 2-55
for creating M-files 10-2, 10-4
preference 2-38
See also Editor (MATLAB's)

Editor (MATLAB's)
customizing menus 2-41 
font used in 2-50 
indenting 2-39
matching quotes automatically 2-49 
options 2-55 
prin ting  in color 2-41 
saving files 2-40 
syntax form atting 2-49 
See also editor 

Editor/Debugger 2-39, 3-2, 3-4 
caution 2-39 
h ighlighting 2-39 
indenting 2-39
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See also editor 
e ig  4-34, 5-3, 12-16 
eigenvalue

decomposition 4-34 
eigenvalues 4-34

of sparse matrix 9-36 
eigenvector 4-34
element-by-element organization for structures 

13-14 
el se 10-30, 10-31 
e l s e i f  10-30, 10-31 
empty arrays

and i f  statement 10-32 
and relational operators 10-24 
and wh i l e  loops 10-34 

empty matrices 10-49 
end method 14-18 
end of file  15-10 
ending MATLAB 2-4 
environment 2-2 
eps 10-18 
epsilon 10-18 
equal to operator 10-23 
error

bound, for data fit 6-28 
handling 10-51 
tolerance (ODE) 8-17, 8-21 

er ror  10-6 
errors 10-51

displaying 10-52 
finding 3-2 
input/output 15-2 
opening files 15-4 

eval
for error handling 10-51 

evaluating
polynomials in matrix sense 5-4

string containing function name 10-46 
string containing MATLAB code 11-14 
string containing MATLAB expression 10-46 
values in Debugger 3-7 

event location (ODE) 8-17, 8-30 
examples

adjacency matrix (sparse) 9-15 
airflow modeling 9-21 
brussode 8-37 
Bucky ball 9-16
checking number of function arguments 10-12
container class 14-54
Delaunay triangulation 5-19
feimflode 8-40
fo r  10-35
function 10-6
i f  10-31
inheritance 14-37
interpolation 5-13
M -file for structure array 13-11
ODE solvers 8-34
or b i t  ode 8-46
polynomial class 14-23
r i g i dode  8-34
script 10-5
second difference operator 9-7 
sparse matrix 9-7, 9-15 
swi t ch 10-33
theoretical graph (sparse) 9-15 
van der Pol 8-5

extra parameters 8-16 
s tiff 8-8 

vdpode 8-35 
vectorization 10-63 
wh i l e  10-34 

exclusive CR operator 10-26 
execution
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pausing 10-61 
script 10-5 

exiting MATLAB 2-4 
expanding

cell arrays 13-21 
structure arrays 13-4 

exponential fit to  data 6-25 
exponentials, matrix 4-31 
exporting 

data 2-26 
expressi ons

and scalar expansion 10-22 
arithm etic 10-21 
involving empty arrays 10-24 
logical 10-24
most recent answer 10-18 
overloading 14-20 
relational 10-23 

external program, running from MATLAB 10-62 
eye 4-10, 9-23

F
factorization 9-27 

Cholesky 4-24 
for sparse matrices 9-27 

Cholesky 9-30 
LU 9-28 
triangular 9-28 

incomplete 9-32 
LU 4-25
positive definite 4-24 
QR 4-28

fast Fourier transform. See Fourier transform, 
fast

f c l os e  15-2, 15-3, 15-5 
feimri ode 8-40

femriode example 8-40 
feof  15-2, 15-10 
f e r r o r  15-2 
f f t  6-37, 6-38
FFT. See Fourier transform, fast 
f ge t l  15-2, 15-13 
f ge t s  15-2, 15-13 
f i d  15-3
f i e ldnames 13-4 
fields 13-3

accessing data w ith in  13-6 
accessing w ith g e t f i e l d  13-8 
adding to structure array 13-9 
applying functions to 13-9 

all like-named fields 13-10 
assigning data to 13-3 
assigning w ith s e t f i e l d  13-8 
defined 13-3
deleting from structures 13-9 
indexing w ith in  13-7 
names 13-4 
size 13-9
w riting  M-files for 13-10 

f i e l d s  13-4 
f i g u r e  2-18 
figure window 2-18 
file  identifier 15-3, 15-4, 15-5 
filenames

contained in variables 2-13 
wildcards for loading 2-13 

files
ASCII 15-13

loading 2-13, 2-27 
reading formatted text 15-14 
reading line-by-line 15-13 
saving 2-28 
w riting  15-15
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beginning of 15-10 
binary 15-7

controlling data type values read 15-8 
controlling number of values read 15-7 
reading 15-7 
w riting  to 15-8 

closing 15-2, 15-3, 15-5 
Conten t s .m 10-9 
current position 15-10 
editing M-files 2-39 
end of 15-2, 15-10 
exchanging between platforms 2-31 
fa iling to open 15-4 
formatted 15-13 
identifiers 15-4 
input/output 15-2 
l i cense .da t  2-59 
local options 2-60 
log 2-3
manipulating 2-25 
MAT-files 2-11, 2-31 
m a t l ab r c . m 2-2 
M-files 2-31 

debugging 3-2 
opening 2-16, 15-2, 15-3 

permissions 15-3 
position 15-2, 15-10
reading w ith C or Fortran programs 2-28
registry 2-55
saving ASCI I 2-12
search path default 2-15
sound, reading 2-27
sound, w riting  2-29
spreadsheet 2-27
startup 2-2
s t a r t u p . m 2-2
temporary 15-2, 15-6

text 15-13
w riting  w ith C or Fortran programs 2-29 

fill- in  of sparse matrix 9-20 
filte ring  6-29 
f i n d  function

and sparse matrices 9-14 
and subscripting 10-27 

finding
nonzero elements 6-13 
substring w ith in  a string 11-12 

f i n i s h . m 2-4 
f i n i s h d l g . m 2-4 
f i n i s h s a v . m 2-4 
fin ite  differences 6-11
fin ite  element discretization (ODE example) 8-40 
first-order differential equations, representation 

for ODE solvers 8-5 
f l a g  argument (ODE) 8-18 
FLEXlm license manager 2-59 
float 15-8
floating-point number 

largest 10-18 
smallest 10-18 

floating-point operations, count 10-18 
floating-point precision 15-8 
floating-point relative accuracy 10-18 
f l op s  10-18 
flow control 10-30 

catch 10-36 
el se 10-30 
elsei  f 10-30 
fo r  10-35 
i f  10-30 
r e t u r n  10-36 
swi t ch 10-32 
t r y  10-36 
wh i l e  10-34
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fminbnd 7-7, 7-9 
fminsearch 7-8 
font

in Command Window 2-39 
in Editor 2-50 

fopen 2-27, 15-2, 15-3 
fa iling 15-4 

fo r  10-35, 13-32 
example 10-35 
loop

indexing 10-35 
matrices as indices 10-35 
nested 10-35 
syntax 10-35 
vectorization 10-30 

format
date 10-54 
numeric 2-38 
See also spr i n t  f 

format 2-7 
formatted files 15-13 
form atting of syntax in Editor 2-49 
Fortran programs 

for reading files 2-28 
for w riting  files 2-29 

Fourier analysis 6-31 
Fourier transform 

fast
FFT-based interpolation 5-11 

specifying length 6-38 
f p l o t  7-4
f p r i n t f  15-2, 15-13 
fragmentation, reducing 10-65 
f read  2-27, 15-2, 15-7 
f r e e  2-33
f rewi nd  15-2, 15-10 
f scanf  15-2, 15-13

fseek 15-2, 15-10 
f t e l l  15-2, 15-10 
f u l l  9-24, 9-27 
function 10-6 

applying
to multidimensional structure arrays 12-21 
to structure contents 13-9 

body 10-3, 10-8 
calling context 10-11 
characteristics 10-3 
clearing from memory 10-11 
contents 10-6 
defined 10-3
dispatching prio rity  10-10 
example 10-6
executing function name string 10-46
logical 10-26
minim izing 7-7
m ultip le output values 10-7
name 10-9
name resolution 10-10
optimization 10-63
order of arguments 10-13, 10-15
passing variable number of arguments 10-14
primary 10-38
private 10-39
storing as pseudocode 10-11 
to create arrays 12-6 
what happens when called 10-10 
workspace 10-11 

function call history 3-24 
function definition line 10-7 

defined 10-3 
for subfunction 10-38 

function details report 3-23 
function functions 7-1 
function reference pages 2-23
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functions
applying to cell arrays 13-27 
class 14-11
computational, applying to structure fields 

13-9
converters 14-25 
i n f e r i o r t o  14-66 
is a  14-11 
nested 10-67 
optimization 7-7 
overloading 14-20, 14-22, 14-31 
subassign 14-17 
subsref  14-14 
s upe r i o r t o  14-66 
which 14-71 

f w r i t e  2-28, 15-2, 15-8 
f ze r o  7-10

G
Gaussian elimination 4-24, 4-25 
general preferences 2-38 
geodesic dome 9-16 
get method 14-13 
g e t f i e l d  13-8 
global variables 10-16 

rules for use 10-17 
gplot  9-15 
graph

characteristics 9-20 
defined 9-15 
theoretical 9-15 

graphical debugging 2-38 
graphics 2-18, 2-19 

annotations 2-18 
greater than operator 10-23 
greater than or equal to operator 10-23

g r i dda t a  5-21

H
H1 line 2-22, 10-7

and help command 10-3 
and look fo r  command 10-3 
defined 10-3 

Handle Graphics 1-4 
handling and converting dates 10-54 
Harwell-Boeing data format 9-10 
hccurve 7-15 
help

at command line 2-20 
commands by subject 2-21 
directory 2-38 
for MATLAB 2-20 

help 2-20 , 10-8 
and H1 line 10-3 

Help Desk 2-23 
help text, defined 10-3 
Help Window 2-21 
helpdesk 2-23 
helpwin 2-21
hexadecimal, converting from decimal 11-13 
hierarchy of data classes 14-3 
highlighting in Editor/Debugger 2-39 
humps 7-3

I
I/O. See input/output 
icons in command window 2-36 
identity m atrix 4-10 
i f  10-30

and empty arrays 10-32 
example 10-31
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nested 10-31 
image files 

reading 2-27 
w riting  2-29 

image processing 
data type 10-19 

imaginary unit 10-18 
importing 

data 2-26
sparse matrix 9-10 

improving solver performance 8-17 
imread 2-27 
imwr i t e  2-29
incomplete factorization 9-32 
indenting in Editor/Debugger 2-39 
indexed reference 14-14 
indexing 10-40 

advanced 10-42 
cell array 13-20 
content 13-20 
fo r  loops 10-35 
multidimensional arrays 12-10 
nested cell arrays 13-30 
nested structure arrays 13-17 
structures w ith in  cell arrays 13-33 
w ith in  structure fields 13-7 

indices, how MATLAB calculates 10-45 
In f 10-18
i n f e r i o r t o  function 14-66
in fin ity  (represented in MATLAB) 10-18
inheritance

example class 14-37 
m ultip le 14-35 
simple 14-34 

in itia l condition 8-14 
defined 8-5 
example 8-6

in itia l condition vector 8-6 
ODE 8-3 

in itia l value problem 8-2 
defined 8-5 

in itia l values
defining in ODE file  8-14 
returned by 8-15 

inner product 4-7 
input

from keyboard 10-61 
obtaining from M-file 10-61 

input arguments
defined by function 10-7 

input/output 
binary 15-2 
error status 15-2 
formatted 15-2 
functions 15-2 

inserting in Editor 2-48 
integer data type 15-15 
integers, changing to strings 11-13 
integration 

double 7-15 
numerical 7-14
See also ordinary differential equation solvers 

interactive user input 10-61 
i n t e r p l  5-9 
i n t e r p2  5-12 
i n t e r p3  5-15 
i n t e r p f t  5-11 
i n t e r pn  5-16 
interpol ation

comparing methods 5-13 
cubic 5-10 
cubic spline 5-10 
defined 5-9 
FFT-based 5-11
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memory 5-11
multidimensional 5-15, 5-16 

cubic 5-16 
linear 5-16
nearest neighbor 5-16 

one-dimensional 5-9 
cubic 5-10 
cubic spline 5-10 
linear 5-10
nearest neighbor 5-10 

polynomial 5-9 
smoothness 5-11 
speed 5-11 
three-dimensional

nearest neighbor 5-15 
tricubic 5-15 
trilinear 5-15 

two-dimensional 5-12 
bicubic 5-12, 5-13 
bilinear 5-12, 5-13 
nearest neighbor 5-12, 5-13 

interpreter, MATLAB 2-5 
in terrupting a running program 2-7 
in v  4-20 
inverse 4-20
inverse permutation of array dimensions 12-14
ipermuite 12-2, 12-14
is a  14-11
isempty 10-24
i s i n f  10-26
isnan 6-13, 10-26
iterative methods

for sparse matrices 9-34 
for systems of equations 9-33

J
Jacobian matrix (ODE) 8-17, 8-25 

constant Jacobian 8-27 
evaluated analytically 8-27 
sparsity pattern 8-27 
vectorized computation 8-28 

Java and MATLAB OOP 14-7 
jo in ing matrices 10-41 
Jordan Canonical Form 4-36

K
keyboard statements 3-2 
keys 2-59 

arrow 2-6 
control 2-6 

keyword search 2-22 
kinds of M-files 10-3 
kron 4-11
Kronecker tensor product 4-11

L
l a s t e r r  10-51

and error handling 10-51 
least squares 9-31 
less than operator 10-23 
less than or equal to operator 10-23 
library, mathematical function 1-5 
license manager 2-35, 2-59 
l i cense .da t  2-59 
line breaks 2-31 
line number 2-39 
linear algebra and matrices 4-2 
linear interpolation 5-10 

multidimensional 5-16 
linear systems of equations
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direct methods 9-33 
iterative methods 9-33 
sparse 9-33 

linear transformation 4-4 
linear-in-the-parameters regression 6-17 
LM_LICENSE_FILE 2-60 
load 2-11, 2-27, 9-10, 10-66 
loading

ASCII files 2-13, 2-27 
data 2-26 
MAT-files 2-12 
objects 14-61 
using wildcards 2-13 

loadobj  example 14-62 
local variables 10-16 
log file  2-3 
l og10 6-25
logarithm analysis w ith a second-order model

6-26
logf  i l e  startup option 2-3 
logical expressions 10-24 

and subscripting 10-27 
logical functions 10-26 
logical operators 10-24 

rules for evaluation 10-24 
long 15-8 
long integer 15-8 
l ook fo r  2-22, 10-3, 10-7 

and H1 line 10-3 
loops

fo r  10-35 
whi l  e 10-34 

lu  9-28, 9-29 
LU factorization 4-25

for sparse matrices and reordering 9-28

M
magnitude 6-37 
mal loc 2-33 
manuals, online 2-23 
Maple 4-36
mass matrix (ODE) 8-17, 8-29 

constant mass matrix 8-30 
returned by ODE file  8-30 

matching quotes automatically 2-49 
MAT-files 2-11, 2-31 

loading 2-12 
saving 2-11 

mathematical functions 
finding zeros 7-7 
library 1-5 
m inim izing 7-7, 7-9 
numerical integration 7-14 
of one variable 7-7 

finding zeros 7-10 
of several variables 7-8 
plotting 7-4 
quadrature 7-14 
representing in MATLAB 7-3 

mathematical operations on sparse matrices
9-23

M athWorks Web site 2-23 
MathWorks, The, home page 1-8 
MATLAB

Application Program Interface 1-5 
Command Window 2-5 
data type classes 14-3 
demos 1-6
Handle Graphics 1-4 
help for 2-20 
history 1-3 
interpreter 2-5 
language 1-4
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mathematical function library 1-5 
overview 1-3 
path 2-14 
product fam ily 1-9 
programming 

functions 10-6 
M-files 10-2 
quick start 10-2 
scripts 10-5 

quitting 2-4
representing functions 7-3 
starting 2-2 
structures 14-7 
version 10-18
working environment 1-4, 2-2 

mat lab 2-2 
m at l ab r c . m 2-2 
matrices 

addition 4-6 
and linear algebra 4-2 
concatenation 10-41 
deleting rows and columns 10-42 
diagonal of 4-10 
dimension compatibility 4-13 
division 4-13 
empty 10-49
full to sparse conversion 9-2, 9-6 
identity 4-10 
jo ining 10-41 
multiplication 4-8 
orthagonal 4-27 
sparse 10-19 
subtraction 4-6 
symmetric 4-7 
triangular 4-24 

matrix
as index for fo r  loops 10-35

characteristic roots 5-3 
double-precision 10-19 
elements 4-4 
exponentials 4-31 
iterative methods 9-34 
multiplication 4-8 
power operator 10-22 
powers 4-31 
See also matrices 

max 9-24 
mean 12-15
measuring performance of M-files 3-17 
memory

and function workspace 10-11 
cache 2-15 
management 10-66 
Cut of Memory message 10-70 
reducing fragmentation 10-65 
use of variables 10-67 
utilization 2-33 

menus 2-37
meshgrid 5-12, 5-15, 5-21 
methods 14-2 

converters 14-19
determining which is called 14-71 
displ  ay 14-12 
end 14-18 
get 14-13
invoking on objects 14-4 
listing 14-32 
precedence 14-68 
required by MATLAB 14-9 
set 14-13 
subsasgn 14-14 
subsref  14-14 

M-files 2-31 
comments 10-9
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contents 10-3
corresponding to functions 14-21 
creating

quick start 10-2 
creating w ith text editor 10-4 
debugging 3-2 
dispatching p rio rity  10-10 
editing 2-39 
for entering data 2-26 
for ODE solvers (ODE file) 8-6 
impact of clearing on breakpoints 3-3 
kinds 10-3 
naming 10-2
obtaining input interactively 10-61 
obtaining keyboard input 10-61 
optimization 10-63 
overview 10-3
pausing during execution 10-61 
performance of 3-17 
primary function 10-38 
profiling 3-17 
running at startup 2-3 
search path 2-14 
subfunction 10-38 
superseding existing names 10-39 
to operate on structures 13-10 
to represent mathematical functions 7-3 

Microsoft Windows
and MATLAB use of system resources 10-68 
environment for MATLAB 2-35 

min 6-9
minimal norm 4-22 
minimize startup option 2-3 
m inim izing functions 

of one variable 7-7 
of several variables 7-8 
setting minimization options 7-9

minimum degree ordering 9-27 
ms l ocked  10-17 
missing values 6-12 
mock 10-17 
monotonic data

for interpolation 5-12 
Moore-Penrose pseudoinverse 4-21 
more 2-7
multidimensional arrays 

applying functions 12-15
element-by-element functions 12-15 
matrix functions 12-16 
vector functions 12-15 

cell arrays 12-19 
computations on 12-15 
creating 12-4

at the command line 12-5 
w ith functions 12-6 
w ith the cat function 12-7 

defined 12-2 
extending 12-5 
format 12-9 
indexing 12-10

avoiding ambiguity 12-10 
w ith the colon operator 12-10 

interpolation 5-15, 5-16 
number of dimensions 12-9 
organizing data 12-17 
permuting dimensions 12-13 
removing singleton dimensions 12-12 
reshaping 12-11 
size of 12-9 
storage 12-9 
structure arrays 12-20 

applying functions 12-21 
subscripts 12-3 

multidimensional data gridding 5-17
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multidimensional interpolation 5-15, 5-16 
cubic 5-16 
linear 5-16
nearest neighbor 5-16 

m ultip le conditions for sw it ch 10-34 
m ultip le inheritance 14-35 
m ultip le lines for a single statement 2-10 
m ultip le output values 10-7 
m ultip le regression 6-19 
multiplication 

matrix 4-8 
of polynomials 5-4 

multistep solver (ODE) 8-10 
m ultivaria te  data 6-3 
muinlock 10-17

N
names

for functions 10-9 
for variables 10-16 
structure fields 13-4 
superseding 10-39 

NaN 6-12, 10-18 
nargin 10-12 
nargout 10-12 
ndgr i d 5-16, 5-17, 12-2 
ndims 12-2, 12-9
nearest neighbor interpolation 5-10, 5-12, 5-13, 

5-15
multidimensional 5-16 

nesting
cell arrays 13-29 
fo r  loops 10-35 
functions 10-67 
i f  statements 10-31 
structures 13-16

newlines in string arrays 11-11 
nnz 9-11, 9-13 
nodes 9-15

distance between 9-21 
numbering 9-17 

nonzero elements 
number of 9-11 

nonzero elements of sparse matrix 9-11 
maximum number in sparse matrix 9-7 
storage 9-5, 9-11 
values 9-11
visualizing w ith spy plot 9-19 

nonzeros 9-11 
norm 4-12
norm, minimal 4-22 
normalizing data 6-21 
nospl ash startup option 2-3 
not equal to operator 10-23 
NCT operator

rules for evaluating 10-25 
Not-a-Number 10-18 
now 10-60 
nul l  4-19
number of arguments 10-12 
numbers

changing to strings 11-13 
date 10-54 
tim e 10-54 

numeric data type 10-20 
numeric format 2-7, 2-38 
numerical integration 7-14 
nzmax 9-11, 9-13

O
object-oriented programming 14-2 

converter functions 14-25
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features of 14-2 
inheritance:multiple 14-35 
inheritance:simple 14-34 
overloading 14-20, 14-22 

subscripting 14-14 
overview 14-2
See also classes and objects 

objects
accessing data in 14-13 
as indices into objects 14-18 
creating 14-4 
invoking methods on 14-4 
loading 14-61 
overview 14-2 
precedence 14-66 
saving 14-61 

ODE solver properties 
error tolerance 8-17, 8-21 

absolute accuracy 8-22 
AbsTol 8-22 
relative accuracy 8-21 
RelTol 8-22 

event location 8-17, 8-30 
Events 8-31 

Jacobian matrix 8-17, 8-25 
Jacobian 8-26 
JConstant 8-26, 8-27 
JPat t e r n  8-26 
Vect or i zed 8-26, 8-28 

mass matrix 8-17, 8-29 
Mass 8-30
MassSingular 8-30 

modifying property structure 8-21 
ode15s 8-17 

BDF 8-32 
MaxCrder 8-32 

odeset function 8-20

querying property structure 8-21 
smoothing output 8-24 
solution components for output function 8-24 
solver output 8-17, 8-23 

CutputFcn 8-23 
CutputSel 8-23, 8-24 
Ref ine 8-23, 8-24 
Stats 8-23, 8-25 

specifying (overview) 8-13 
step size 8-17, 8-28

I n i t i a l S t e p  8-28, 8-29 
MaxStep 8-28 

See also ODE solvers 
ODE solvers 

basic example
nonstiff problem 8-6 
s tiff problem 8-8 

boundary conditions 8-41 
calling 8-6
different kinds of systems 7-13
examples 8-34
f l a g  argument 8-18
multistep solver 8-10
nonstiff solvers 8-10
obtaining performance statistics 8-13
obtaining solutions at specific times 8-12
one-step solver 8-10
overview 8-10
quick start 8-3
representing problems 8-5
rewriting problem as first-order system 8-6
solution array 8-12
stab ility  8-32
s tiff problems 8-8
s tiff solvers 8-10
syntax, basic 8-11
tim e interval 8-6
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tim e span vector 8-12 
van der Pol example 

extra parameters 8-16 
nonstiff 8-5 
stiff 8-8

See also ODE solver properties 
ODE. See Ordinary Differential Equations 
ode113 8-10 

description 8-10 
ode15s 8-8 , 8-11, 8-32, 8-41, 8-51, 8-53 

description 8-11 
properties 8-17 

ode23 8-10, 8-53 
description 8-10 

ode23s 8-11, 8-41, 8-53, 8-55, 8-56 
description 8-11 

ode45 8-6 , 8-8 , 8-10, 8-23, 8-24, 8-53, 8-55 
description 8-10 

odeget 8-21 
odephas2 8-24 
odephas3 8-24 
odeplot  8-24 
odepr int  8-24 
odeset 8-20
offsets for indexing 10-45 
one-dimensional interpolation 5-9, 5-10 

cubic spline 5-10 
linear 5-10
nearest neighbor 5-10 

ones 9-23, 12-6 
one-step solver (ODE) 8-10 
online help 2-22, 2-23, 10-8 
open 2-16
opening files 2-16, 15-2, 15-3 

fa iling 15-4 
operating system command 2-25 
operator 10-21

applying to cell arrays 13-27 
applying to structure fields 13-9 
arithm etic 10-21
colon 8-28, 10-21, 12-6, 12-10, 12-16, 13-24 
complex conjugate 10-22 
deletion 10-42 
equal to 10-23 
greater than 10-23 
greater than or equal to 10-23 
less than 10-23 
less than or equal to 10-23 
matrix power 10-22 
not equal to 10-23 
power 10-21 
precedence 10-29 
relational 10-23 
second difference 9-7 
subtraction 10-21 
unary minus 10-21 

operators
& 10-24 
| 10-24 
~ 10-24 
colon 4-8 
logical 10-24 
overloading 14-2, 14-20 
semicolon 2-9 
table of 14-21 

optimization 10-63 
practicalities 7-12 
preallocation, array 10-65 
troubleshooting 7-13 
vectorization 10-63 

optimizing performance of M-files 3-17 
options

for Editor 2-55 
for startup 2-3
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local file  2-60 
minimization 7-9 

CR operator, rules for evaluating 10-25 
orbi  tode 8-46
order of function arguments 10-13, 10-15 
Ordinary Differential Equation solvers. See ODE 

solvers
Ordinary Differential Equations 

coding as M-file 8-6 
coding to return in itia l values 8-15 
creating 8-14 
defined 8-5
defining in itia l values 8-14 
guidelines for creating 8-16 
output 8-15 
overview 8-14
passing additional parameters 8-16 

template 8-18 
rew riting for ODE solvers 8-5 

organizing data 
cell arrays 13-28 
multidimensional arrays 12-17 
structure arrays 13-11 

orthogonal matrix 4-27 
orthogonalization 4-24 
orthonormal columns 4-27 
Cut of Mfemory message 10-70 
outer product 4-7 
outliers 6-13 
output

controlling display format 2-7 
displayed 14-27 
suppressing 2-9 

output arguments
defined by function 10-7 

output properties, ODE solvers 8-22

overdetermined systems of simultaneous linear 
equations 4-15 

overloading 14-14
arithm etic operators 14-29 
functions 14-20, 14-22, 14-31 
loadobj 14-61 
operators 14-2 
pie3 14-57 
saveobj 14-61 

overriding operator precedence 10-29 
overtype mode 2-48

P
pack 2-33, 10-66
page subscripts 12-3
paging in the Command Window 2-7
parentheses

for input arguments 10-7 
to override operator precedence 10-29 

partial fraction expansion 5-7 
partial pivoting 4-26 
parts of a function 10-6 
passing arguments 

by reference 10-11 
by value 10-11 

path
adding directories to 14-7 
cache 2-15 
changing 2-14 
MATLAB 2-14 
search 2-14, 2-50 

path 2-14 
Path Browser 2-50 
pathdef . m2-15, 2-50 
pathtool  2-50
pausing during M-file execution 10-61
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pausing in Debugger 3-7 
pcode 10-11
PCs and MATLAB use of system resources

10-68 
PDF files 2-23
percent sign (comments) 10-9 
performance

improving for M-files 3-17 
improving for solvers 8-17 
obtaining statistics for ODE solvers 8-13 

permission string 15-3 
permutations 9-24 
permute 12-2 , 12-13 
permuting array dimensions 12-13 

inverse 12-14 
persistent variables 10-17 
phase 6-37 
pi 10-18
pie3 function overloaded 14-57 
pinv 4-21
pivoting, partial 4-26
plane organization for structures 13-13
platforms, exchanging files between 2-31
plot  2-18
Plot Editor 2-18
plots

annotations in 2-18 
plotting

mathematical functions 7-4 
polar  10-5 
poly 5-3 
polyder 5-5
p o l y f i t  5-6, 6-20, 6-23, 6-25, 6-28 
polynomial

fits  to data 6-20 
interpolation 5-9 
regression 6-15

polynomials 5-1
and curve fittin g  5-6 
basic operations 5-2 
characteristics 5-3 
derivative of 5-5 
dividing 5-4
evaluating in matrix sense 5-4 
example class 14-23 
m ultip lying 5-4 
representing 5-2 
roots 5-3 

polyval  5-4, 6-23, 6-25, 6-28 
positive definite factorization 4-24 
power operator 10-21 
powers

matrix 4-31 
preallocation 10-65 

cell array 10-65, 13-23 
structure array 10-65 

precedence 
object 14-66
w ith in  expression 10-29 

precision 
char 15-8 
double 15-8 
float 15-8 
for data types 15-8 
long 15-8 
short 15-8 
single 15-8 
uchar 15-8 

preconditioner for sparse matrix 9-32 
preferences 2-37, 2-58 
pre-processing data 6-12, 6-21 
primary function 10-38 
prin ting

documentation 2-23
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in color from Editor 2-41, 2-48 
private directory 10-39

in dispatching prio rity  10-10 
private function 10-39 
private functions 

precedence of 14-70 
private methods 14-5 
product 

dot 4-8 
inner 4-7 
outer 4-7 

p r o f i l e  3-17
example 3-19, 3-21 
syntax 3-18 

profiling 3-17
details report 3-23 
function call history 3-24 
reports 3-20 

programming 
debugging 3-2 

programming, object-oriented 14-2 
programs

running external 10-62 
running from MATLAB 2-25 
stopping while running 2-7 

property structure (ODE) 
creating 8-20 
modifying 8-21 
querying 8-21 

ps 2-34
pseudocode 10-11 
pseudoinverses 4-21

Q
qr 4-28
QR factorization 4-28, 9-30

quad 7-14, 8-50 
quad8 7-14, 8-50 
quadrature 7-14 
question mark button 2-22 
questions and answers, ODE solvers 

different kinds of systems 7-13 
quick start

MATLAB programming 10-2 
ODE solvers 8-3 

qui t  10-66 
quitting MATLAB 2-4 

See also f i n i s h . m  
quotes, for creating strings 11-4

R
r M_f i l  e startup option 2-3 
rand 9-23 
randn 12-6 
rank 9-3

deficiency 4-29, 9-31 
rational format 4-18 
reading 

data 2-26 
sound files 2-27 
spreadsheet files 2-27 
values from files 15-7 

realmax 10-18 
r e a l m n  10-18
red stop sign in Debugger 3-6 
reducing memory fragmentation 10-65 
reference

passing arguments by 10-11 
reference documentation 2-23 
reference pages 2-23 
reference, subscripted 14-14 
references for OO design 14-8
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registry 
file  2-55
for Windows 2-4 
resetting 2-4 

regression 6-15
linear-in-the-parameters 6-17 
m ultip le 6-19 
polynomial 6-15 

regserver  startup option 2-4 
relational operators

and empty arrays 10-24 
and strings 11-11 

relative accuracy (ODE) 8-21 
remainder 10-13 
removing

cells from cell array 13-25 
fields from structure arrays 13-9 
singleton dimensions 12-12 

reorderings 9-24
and LU factorization 9-28 
for sparser factorizations 9-26 
minimum degree ordering 9-27 
to reduce bandwidth 9-27 

replacing substring w ith in string 11-12 
repimap 12-6 
reports

function call history 3-24 
function details 3-23 

representing
polynomial roots 5-3 
polynomials 5-2 
problems for ODE solvers 8-5 

reshape 12-11, 13-25 
reshaping

cell arrays 13-25 
multidimensional arrays 12-11 

residuals 6-22

for exponential data fit 6-27 
res idue 5-7 
re t u r n  10-36
rigid body ODE example 8-34
r i g i dode  8-34
r mf i e l d  13-9
rmpat h 2-14
roots  5-3
roots of polynomial 5-3 
round 5-10 
row vector 4-5

for polynomial representation 5-2 
rows

deleting 10-42 
running

external program 10-62 
script 10-5 

running in Editor 2-41 
runtim e errors, finding 3-2

S
save 2-11, 2-28, 2-29, 9-10, 10-66 
saveobj example 14-62 
saving

ASCII files 2-12, 2-28 
Editor options 2-55 
files in Editor 2-40 
objects 14-61 
variables 2-11 
workspace 2-11 

scalar 4-5
and relational operators 11-11 
expansion 10-22 
string 11-11 

schur 4-37
Schur decomposition 4-37
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script 10-5
and creation of new data 10-5 
and data in workspace 10-5 
characteristics 10-3 
defined 10-3 
example 10-5 
executing 10-5 

script files 10-2 
search path 2-50, 10-10 

and subfunctions 10-38 
changing 2-14 
for MATLAB files 2-14 

searching
for functions 2-22 
in string 11-12 
online help 2-22, 2-23 

second difference operator, example 9-7 
semicolon to suppress output 2-9 
set method 14-13 
s e t f i e l d  13-8 
shell escape 2-25 
shell escape functions 10-62 
s h i f t d i m 12-2 
short  15-8 
short integer 15-8 
simple inheritance 14-34 
Sim ulink 1-8 
s in  10-5, 12-15 
single precision 15-8 
singular value decomposition 4-38 
size

of structure arrays 13-9 
of structure fields 13-9 

s i ze  9-23, 12-9, 13-9
smallest value system can represent 10-18 
smoothing ODE solver output 8-24 
solvers. See ODE solvers

solving linear systems of equations 
sparse 9-33 

sor t  9-27 
sorting data 6-7 
sound files 

reading 2-27 
w riting  2-29 

sparse 9-6, 9-23 
sparse data type 10-20 
sparse matrix 10-19 

advantages 9-5 
and complex values 9-5 
Cholesky factorization 9-30 
computational considerations 9-23 
contents 9-11
conversion from full 9-2, 9-6 
creating 9-6 

directly 9-7
from diagonal elements 9-8 

defined 9-2 
density 9-6
distance between nodes 9-21 
eigenvalues 9-36 
elementary 9-2 
example 9-7 
fill- in  9-20 
importing 9-10 
linear algebra 9-3 
linear equations 9-3 
linear systems of equations 9-33 
LU factorization 9-28 

and reordering 9-28 
mathematical operations 9-23 
nonzero el ements 9-11 

maximum number 9-7 
specifying when creating matrix 9-7 
storage 9-5, 9-11
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values 9-11 
nonzero elements of sparse matrix 

number of 9-11 
operations 9-23 
permutation 9-24 
preconditioner 9-32
propagation through computations 9-23 
QR factorization 9-30 
reordering 9-3, 9-24 
storage 9-5

for various permutations 9-26 
viewing 9-11 

theoretical graph 9-15 
triangular factorization 9-28 
viewing contents graphically 9-13 
viewing storage 9-11 
visualizing 9-19 
working w ith 9-2 

sparse ODE 
example 8-37 

spconvert 9-10 
spdiags 9-8 
special values 10-18 
speye 9-23, 9-26, 9-29 
splash screen at startup 2-3 
spones 9-26 
spparms 9-27, 9-34 
sprand 9-23
spreadsheet files, w riting  2-29
s p r i n t f  15-2, 15-17
spy 9-13
spy plot 9-19
s q r t m 4-31
square brackets

for output arguments 10-7 
squeeze 12-2 , 12-12, 12-16 
sscanf 15-2, 15-15

stability (ODE solvers) 8-32 
stack

Debugger 3-2, 3-8 
starting MATLAB 2-2 

from DOS window 2-4 
startup files 2-2 
startup options 2-3 

for UNIX 2-4 
s t a r t  up . m 2-2 
statements

conditional 10-12 
on m ultip le lines 2-10 

statistics
analyzing residuals 6-22 
correlation coefficients 6-9 
covariance 6-9 
descriptive 6-7 
pre-processing data 6-21 

status bar in command window 2-36 
step

in Debugger 3-5
through code using commands 3-12 

step size (ODE) 8-17, 8-28 
first step 8-29 
upper bound 8-28 

s tiff ODE 
example 8-37 

stiffness (ODE), defined 8-8 
stopping a running program 2-7 
stopping in Debugger 3-6 
storage

array 10-42 
data type 10-20
for various permutations of sparse matrix 9-26 
of sparse matrix 9-5 
sparse and fu ll, comparison 9-11 
viewing for sparse matrix 9-11
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st rcmp 11-9 
string 10-19

and relational operators 11-11 
array 11-5

comparing values on cell arrays 11-10 
converting to cell arrays 11-7 
padding for equal row length 11-5 

arrays
cell array 11-7 

categorizing characters 11-11 
comparing 11-9 
concatenation 10-46 
conversion 11-3, 11-13, 15-2 
creating 11-4
delim iting character 11-12 
evaluating 11-14 
evaluation 10-46
finding starting position of substring 11-12
functions that test 11-2
operations 11-2
removing tra iling  blanks 11-6
representation 11-4
scalar 11-11
searching and replacing 11-12 
token 11-12 

s t r uc t  data type 10-20 
s t r u c t s  13-3, 13-5, 13-16 
structure arrays 

accessing data 13-6 
using g e t f i e l d  13-8 

adding fields 13-9 
applying functions to 13-9 
building 13-3

using s t r u c t s  13-5 
data organization 13-11 
defined 13-2 
deleting fields 13-9

element-by-element organization 13-14
expanding 13-4, 13-5
fields

assigning data to 13-3 
assigning using set f i e l d  13-8 
defined 13-3 

indexing
nested structures 13-17 
w ith in  fields 13-7 

multidimensional 12-20 
applying functions 12-21 

nesting 13-16 
obtaining field names 13-4 
organizing data 13-11 

example 13-15 
overview 13-3 
plane organization 13-13 
preallocation 10-65 
size 13-9 
subscripting 13-4 
w ith in  cell arrays 13-33 
w riting  M-files for 13-10 

example 13-11 
structures

See also structure arrays 
structures used w ith classes 14-7 
subarrays

accessing 13-7 
subassi gn 14-17 
subfunctions 10-38 

accessing 10-38 
creating 10-38 
debugging 10-39 
function

definition line 10-38 
in dispatching prio rity  10-10 
on search path 10-38
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subref  14-14 
subsasgn 14-14 
subscripted assignment 14-17 
subscripting

how MATLAB calculates indices 10-45 
multidimensional arrays 12-3 
overloading 14-14 
structure arrays 13-4 
w ith logical expression 10-27 
w ith the f i nd  function 10-27 

subscripts 10-40 
page 12-3 

subsref  method 14-14 
substring w ith in  a string 11-12 
su btraction 

of matrices 4-6 
subtraction operator 10-21 
sum 9-24, 9-26, 12-15 
s upe r i o r t o  function 14-66 
superseding existing M-files names 10-39 
suppressing output 2-9 
surface plots

to compare interpolation methods 5-14 
svd 4-39 
swi t ch 10-32

case groupings 10-32 
example 10-33 
m ultip le conditions 10-34 

Symbolic Math Toolbox 4-36 
syrnmrl 9-27 
symmetric matrix 4-7 
symnnd 9-28 
symrcm 9-27, 9-28 
syntax errors, finding 3-2 
syntax form atting in Editor 2-49 
syntax h ighlighting in Editor/Debugger 2-39 
systeiT_dependent 2-55

systems of equations. See linear systems of 
equations 

systems of ODEs 7-13

T
tabs in string arrays 11-11 
tempdi r  15-2, 15-6 
tempname 15-2, 15-6 
temporary 

data 15-6 
files 15-2, 15-6 

terminal events (ODE) 8-31 
text

files, reading 15-14 
in Command Window 2-39 
in Editor 2-50 

text editor. See Editor 
t e x t r  ead 2-27
The MathWorks, home page 1-8 
theoretical graph 9-15 

example 9-16 
node 9-15 

three-dimensional interpolation 
nearest neighbor 5-15 
tricubic 5-15 
trilinear 5-15 

tim e
interval (ODE) 8-6 
measured for M-files 3-17 
numbers 10-54 

titlebar in Editor/Debugger 2-40 
token in string 11-12 
tolerance 10-18 
toolbar

preferences 2-38 
toolbar in command window 2-36
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toolboxes 1-8 
creation

data type 10-19 
tooltip 2-36 
transformed data 

magnitude 6-37 
phase 6-37 

transforms 6-31
discrete Fourier 6-31 
fast Fourier 6-31 
f f t  6-31 

transpose 4-7
complex conjugate 4-8 
unconjugated complex 4-8 

t ranspose 12-14 
triangular factorization 

for sparse matrices 9-28 
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