
MATLAB
--1

The Language of Technical Computing

Computation
--------- 1

Visualization
-------- 1

Programming
--------- 1

The

MATH

Using MATLAB
Version 5

а

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

Sc
@

The M athW orks , Inc.
24 P r im e Park W ay
N at ick , M A 01760-1500

ht t p: / / www. mat hwor ks. com
f t p . mat hwor ks. com
comp, sof t - sys. mat I ab

suppo rt @rat hwor ks. com
suggest @rat hwor ks. com
bugs@rat hwor ks. com
doc@nat hwor ks. com
subscr i be@nat hwor ks. com
ser vi ce@rat hwor ks. com
i nf o@rat hwor ks. com

Mail

Web
Anonym ous FTP server
Newsgroup

Technical support
Product enhancement suggestions
Bug reports
Documentat ion error reports
Subscrib ing user reg is tra t ion
Order status, license renewals, passcodes
Sales, pric ing, and general in form ation

Using MATLAB
© COPYRIGHT 1984 -1999 by The MathWorks, Inc.
The softw are described in th is document is fu rn ished under a license agreem ent. The software may be used
or copied on ly under the te rm s of the license agreem ent. No part of th is m anual may be photocopied or repro­
duced in any form w ith o u t p rio r w ritte n consent from The M athW orks, Inc.

U .S. GOVERNM ENT: I f Licensee is acqu iring the Program s on behalf of any un it or agency of the U .S.
G overnm ent, the fo llow ing shall apply: (a) For u n its of th e D epartm ent of Defense: the Governm ent shall
have on ly the r ig h ts specified in the license under w hich the com mercial com puter softw are or commercial
so ftw are docum entation was obtained, as set fo rth in subparagraph (a) of the R ights in Comm ercial
C om puter S oftw are or Comm ercial S oftw are D ocum entation C lause at DFARS 227.7202-3, the re fo re the
r ig h ts set fo rth herein sha ll apply; and (b) For any other u n it or agency: N O TIC E : N o tw iths tand in g any
other lease or license agreement th a t may perta in to, or accompany the de live ry of, th e com puter software
and accompanying docum entation, the r ig h ts of the Governm ent regard ing its use, reproduction , and d isclo­
sure are as set fo rth in C lause 52.227-19 (c)(2) of th e FAR.

M A T L A B , S im u lin k , S ta te flow , H and le Graphics, and Real-Tim e W orkshop are registered tradem arks, and
Target Language Com piler is a tra dem ark of The M athW orks, Inc.

© C O P YR IG H T 1995 B ris to l Technology, Inc. A ll r ig h ts reserved.

© C O P YR IG H T 1995 M icrosoft Corpora tion. A ll r ig h ts reserved.
O ther product or brand names are tra dem arks or registered tra dem arks of th e ir respective holders.

Printing History: December 1996 First prin ting for MATLAB 5.0
June 1997 Revised for MATLAB 5.1
January 1998 Revised for MATLAB 5.2
January 1999 Revised for MATLAB 5.3 (Release 11)

Contents
I n t r o d u c t io n

11---
MA TLA B W ork in g E n v i r on m en t21---

U s in g th e E n v i r o n m e n t ... 2-2

T h e C o m m a n d W in d o w ... 2-5

T h e F ig u r e W in d o w .. 2-18

H e lp and O n l in e D o c u m e n ta t io n .. 2-20

D is k F i le M a n ip u la t i o n and S h e l l Escape 2-25

D a ta I m p o r t / E x p o r t .. 2-26

M e m o ry U t i l i z a t io n .. 2-33

M ic r o s o f t W in d o w s H a n d b o o k .. 2-35

U N IX H a n d b o o k ... 2-54

Debugger and Prof i l er

3i---
M A T L A B D e b u g g e r .. 3-2

M -F i le P r o f i l e r .. 3-17

i

Mat r i ces and L inear A lgebra4 I---
M a t r i c e s and L in e a r A l g e b r a ... 4-2

M a t r i c e s in M A T L A B ..4-4

S o lv in g L in e a r E q u a t i o n s .. 4-13

In v e rs e s and D e t e r m in a n ts ... 4-20

L U , QR, and C h o le s k y F a c t o r i z a t io n s .. 4-24

M a t r i x P o w e rs and E x p o n e n t ia ls ..4-31

E ig e n v a lu e s .. 4-34

S in g u la r V a lu e D e c o m p o s i t io n .. 4-38

Polynomia ls and In te rpo la t ion

5 I---
P o ly n o m ia ls ...5-2

In t e r p o la t io n ...5-9

Data Ana lys is and Stat is t ics

6 I---
C o lu m n -O r ie n te d D a ta Se ts ..6-3

B a s ic D a ta A n a ly s is F u n c t io n s ...6-7

D a ta P r e - P r o c e s s in g ..6-12

ii Contents

Case S tu d y : C u r v e F i t t i n g .. 6-20

D i f fe re n c e E q u a t io n s and F i l t e r i n g ...6-29

F o u r ie r A n a ly s is and th e Fast F o u r ie r T r a n s f o r m (F F T) . 6-31

Fun c t i on F u n c t i o n s7 I---
R e p re s e n t in g F u n c t io n s in M A T L A B ... 7-3

P lo t t i n g M a th e m a t ic a l F u n c t io n s .. 7-4

M in im iz in g F u n c t io n s and F in d in g Z e r o s 7-7

N u m e r ic a l I n t e g r a t i o n (Q u a d r a t u r e) ... 7-14

O r d in a r y D i f fe ren t i a l Equa t ions

8 I---
Q u ic k S ta r t ... 8-3

R e p re s e n t in g P ro b le m s ... 8-5

O D E S o l v e r s .. 8-10

C re a t in g O D E F i l e s .. 8-14

Im p r o v in g S o lv e r P e r f o r m a n c e .. 8-17

E x a m p le s : A p p ly in g th e O D E S o lv e rs .. 8-34

R e g re s s io n and C u rv e F i t t in g ...6-15

i i i

Q u e s t io n s and A n s w e rs 8-50

Sparse Mat r i ces

9 I---
I n t r o d u c t i o n ... 9-5

V ie w in g S p a rs e M a t r i c e s .. 9-11

E x a m p le : A d ja c e n c y M a t r i c e s and G r a p h s 9-15

S p a rse M a t r i x O p e r a t i o n s .. 9-23

M-Fi le P rog ra m m ing

1 0 i---

M A T L A B P r o g r a m m in g : A Q u ic k S ta r t 10-2

S c r ip t s .. 10-5

F u n c t io n s ... 10-6

Loca l and G lo b a l V a r i a b l e s ... 10-16

D a ta T y p e s ... 10-19

O p e r a to r s ... 10-21

F lo w C o n t r o l .. 10-30

S u b f u n c t io n s .. 10-38

In d e x in g and S u b s c r i p t i n g ... 10-40

iv Contents

S t r in g E v a lu a t io n .. 10-46

C o m m a n d /F u n c t io n D u a l i t y ... 10-48

E m p ty M a t r i c e s ... 10-49

E r r o r s and W a r n in g s ... 10-51

T im e s and D a tes ... 10-54

O b ta in in g U ser I n p u t ... 10-61

She l l Escape F u n c t i o n s ... 10-62

O p t im iz in g t h e P e r fo r m a n c e o f M A T L A B C o d e 10-63

Charac te r A r ra y s (St r ings)11 I--
C h a ra c te r A r r a y s ... 11-4

Cell A r r a y s o f S t r i n g s .. 11-7

S t r in g C o m p a r is o n s .. 11-9

S e a rc h in g and R e p la c in g .. 11-12

S t r i n g / N u m e r i c C o n v e rs io n ... 11-13

M ul t id im ens io na l A r ra y s12 I---
M u l t i d im e n s io n a l A r r a y s .. 12-3

v

C o m p u ta t io n w i t h M u l t i d im e n s io n a l A r r a y s12-15

O r g a n iz in g D a ta in M u l t i d im e n s io n a l A r r a y s12-17

M u l t i d im e n s io n a l C e ll A r r a y s 12-19

M u l t i d im e n s io n a l S t r u c t u r e A r r a y s ...12-20

S t ruc tu re s and Cell A r r a y s13 I---
S t r u c t u r e s ... 13-3

Cell A r r a y s .. 13-19

M ATLA B Classes and Objects14 l---
C lasses and O b je c ts : An O v e rv ie w ... 14-2

D e s ig n in g U ser C lasses in M A T L A B ... 14-9

O v e r lo a d in g O p e r a to r s and F u n c t io n s 14-20

E x a m p le : A P o ly n o m ia l C l a s s ... 14-23

B u i ld i n g on O th e r C lasses ... 14-34

E x a m p le : A sse ts and Asset S u b c la s s e s 14-37

E x a m p le : T h e P o r t f o l i o C o n ta in e r ... 14-54

S a v in g and L o a d in g O b j e c t s ... 14-61

v i Contents

O b je c t P re c e d e n c e .. 14-66

H o w M A T L A B D e t e r m in e s W h ic h M e th o d to C a l l 14-68

F i le I/O15 I---
O p e n in g and C lo s in g F i le s .. 15-3

T e m p o r a r y F i le s and D i r e c t o r i e s .. 15-6

B in a r y F i le s .. 15-7

C o n t r o l l i n g P o s i t io n in a F i l e ... 15-10

F o r m a t te d F i le s 15-13

v i i

v i i i Contents

1

Introduction

W hat Is M A T L A B ? .. 1-3
The M A T L A B S y s t e m ..1-4
How to Use th e Documentat ion S e t ... 1-6
About S i m u l i n k ...1-8
About Tool b o x e s ... 1-8

1 Introduction

A b o u t t h e Cover

The cover of th is gu ide depicts a so lution to a problem th a t has played a small, but
in te res t ing role in th e h is to ry of numerical methods d u r in g th e last 30 years. The
problem involves f in d ing th e modes of v ib ra t ion of a m em brane supported by an L-shaped
domain consisting of th re e u n it squares. The nonconvex corner in th e domain generates
s ing u la r i t ie s in th e solutions, thereby prov id ing challenges for both th e under ly ing
m athem atica l theory and th e computationa l a lgor i thm s. There are im portan t
applications, inc lud ing w ave guides, s tructures, and semiconductors.

Tw o of th e founders of modern numerical analysis, George Forsythe and J.H . W ilk inson ,
worked on th e problem in th e 1950s. (See G.E. Forsythe and W.R. Wasow,
F in ite-D iffe rence Methods for Pa r t ia l D iffe rentia l Equations, W iley, 1960.) One of th e
au thors of th is gu ide (Moler) used f in i te differences by combina tions of d is t ingu ished
fundam enta l so lu tions to th e under ly ing d if fe ren t ia l equation formed from Bessel and
tr ig o n o m e tr ic functions. The idea is a generalizat ion of th e fact th a t th e real and
im ag inary parts of complex a n a ly t ic func t ions are so lu tions to Lap lace ’s equation. In th e
early 1970s, new m a tr ix a lgor i thm s, p a r t icu la r ly Gene G o lub ’s orthogonaliza tion
techinques for least squares problems, provided fu r th e r a lg o r i th m ic improvements.

Today, M A T L A B a llows us to express th e e n t ire a lgo r i thm in a few dozen lines, to
compute th e solution w i th great accuracy in a few m inu tes on a computer at home, and
to read i ly m an ipu la te color th ree-d im ensiona l d isp lays of th e results. We have included
our M A T L A B program, membrane.m w ith th e M -f i les supplied along w i th M A T L A B .

1-2

W h a t Is MATLAB?
M A T LA B ® is a h igh-perform ance language for technical computing. It
in tegra tes computation, v isua l iza t ion , and p rogram m ing in an easy-to-use
env ironm ent w he re problems and so lu tions are expressed in fa m i l ia r
m athem atica l notation. Typical uses include:

• M ath and computation

• A lg o r i th m development

• Modeling, s im u la t ion , and p ro to typ ing

• Data analysis, explora tion, and v isua l iza t ion

• Sc ien t i f ic and eng ineering graphics

• App lica t ion development, inc lud ing graphical user in terface bu i ld ing

M A T L A B is an in te rac t ive system whose basic data element is an a rray tha t
does not requ ire d imension ing. T h is a llows you to solve many technical
computing problems, especially those w i th m a t r ix and vector fo rm u la t ions , in
a fract ion of th e t im e it would ta ke to w r i te a program in a scalar non in te rac t ive
language such as C or Fortran .

The name M A T L A B stands for m a t r ix laboratory. M A T L A B was o r ig ina l ly
w r i t te n to provide easy access to m a t r ix so ftware developed by th e L IN P A C K
and E IS P A C K projects, which together represent th e s tate-of-the-art in
so ftware for m a t r ix computation.

M A T L A B has evolved over a period of years w i th inpu t from m any users. In
un ive rs i ty env ironments , it is th e s tandard ins truc t iona l tool for in t roduc to ry
and advanced courses in mathematics, engineering, and science. In industry ,
M A T L A B is th e tool of choice for h ig h -p roduc t iv i ty research, development, and
analysis.

M A T L A B features a fa m i ly of app lica tion-specif ic so lu tions called toolboxes.
Very im por tan t to most users of M A T L A B , toolboxes a llow you to learn and
app ly specialized technology. Toolboxes are comprehensive collections of
M A T L A B func t ions (M-fi les) th a t extend th e M A T L A B env ironm ent to solve
p a r t icu la r classes of problems. A reas in which toolboxes are ava i lab le include
signal processing, control systems, neural networks, fuzzy logic, wavelets,
s im u la t ion , and m any others.

1-3

1 Introduction

The MATLAB System
The M A T L A B system consists of f ive main parts:

The MATLAB Language. T h is is a high-level m a tr ix /a rra y language w ith control
f low sta tements, funct ions, data s truc tures , inpu t /ou tpu t , and object-oriented
p rogram m ing features. It a llows both “ p rogram m ing in th e s m a l l ” to rap id ly
create qu ick and d i r t y th row -aw ay programs, and “ p rogram m ing in th e large”
to create complete large and complex applica tion programs. The language
features are organized in to s ix d irector ies in th e M A T L A B Toolbox:

ops O perators and special characters.

lang Program m ing language constructs.

s t r f u n Character s tr ings.

io fu n F i le inpu t /ou tpu t .

t im e fu n T im e and dates.

d a ta typ es Data types and s tructures.

The MATLAB Working Environment. T h is is th e set of tools and fac i l i t ies th a t you
w o rk w i th as th e M A T L A B user or p rogram m er. It includes fac i l i t ies for
managing th e variab les in your workspace and im p or t in g and export ing data.
It also includes tools for developing, managing, debugging, and p ro f i l ing
M-files, M A T L A B ’s applications. The w o rk in g env ironm ent features are
located in a s ing le d irectory.

general General purpose commands.

Handle Graphics®. T h is is th e M A T L A B graph ics system. It includes high-level
commands for two-d im ensiona l and th ree-d imensiona l data v isua l iza t ion ,
image processing, an im ation , and presentation graphics. It also includes
low-level commands th a t a llow you to fu l ly customize th e appearance of
g raph ics as well as to build complete graphical user interfaces (GUIs) for your

1-4

M A T L A B applications. The g raph ics func t ions are organized in to f ive
d irector ies in th e M A T L A B Toolbox.

gr aph2d Two-dimensional graphs.

gr aph3d Three-d imensional graphs.

specgraph Specialized graphs.

gr aph ics H and le Graphics.

ui t o o l s Graphica l user in terface tools.

The MATLAB Mathematical Function Library. T h is is a vast collection of
com putationa l a lg o r i th m s rang ing from e lementary func t ions l ik e sum, sine,
cosine, and complex a r i thm e tic , to more sophisticated func t ions l ike m a tr ix
inverse, m a t r ix eigenvalues, Bessel funct ions, and fast Four ie r trans fo rm s. The
math and a n a ly t ic func t ions are organized in to eight d irector ies in the
M A T L A B Toolbox.

el mat E lem enta ry m atr ices and m a t r ix m an ipu la t ion .

el fun E lem enta ry math functions.

specfun Specialized m ath functions.

matfun M a t r ix func t ions - numerical l inear algebra.

d a ta fu n Data ana lys is and Fourie r trans fo rm s.

p o ly fu n In te rpo la t ion and polynomials.

fu n fu n Function func t ions and ODE solvers.

sp a r fun Sparse matrices.

The MATLAB Application Program Interface (API). T h is is a l ib ra ry th a t a llows you to
w r i te C and Fortran program s tha t in teract w i th M A T L A B . It includes
fac i l i t ies for ca ll ing rou t ines from M A T L A B (dynam ic l ink ing) , ca ll ing
M A T L A B as a com putationa l engine, and for reading and w r i t in g M AT-f iles .

1-5

1 Introduction

How to Use the Do cum e n ta t io n Set
M A T L A B comes w ith an extensive set of documentation consisting of an on line
Help fa c i l i ty and on l ine M A T L A B Function Reference as well as p rin ted
manuals. The fu l l set of p r in ted documentation includes th e fo l low ing t i t les :

• The M A T L A B Ins ta l la t ion G u ide describes how to ins ta ll M A T L A B on your
p la tfo rm .

• Getting Started w i th M A T L A B expla ins how to get s tarted w i th th e
fundam enta ls of M A T L A B .

• Using M A T L A B provides in depth m ater ia l on th e M A T L A B language,
w o rk in g env ironm ent, and m athem atica l topics.

• Using M A T L A B G raph ics describes how to use M A T L A B ’s g raph ics and
v isua l iza t ion tools.

• The M A T L A B A pp lica t ion Program Interface G u ide expla ins how to w r i te C
or F or tran programs th a t in teract w i th M A T L A B .

• M A T L A B New Features provides in fo rm a tion useful in m ak ing the
t ran s it ion from th e latest release of M A T L A B .

W h a t I W ant W h a t I Should Do

I need to ins ta l l M A T L A B . See th e Ins ta l la t ion G u ide for your p la tfo rm .

I ’m new to M A T L A B and Start by reading Getting Started w i th M A T L A B . The most
w an t to learn it quickly. im portan t th in g s to learn are how to enter matrices, how to use

th e : (colon) operator, and how to invoke funct ions. A f te r you
master th e basics, you can access th e rest of th e documentation
as needed, or you can use on l ine help and th e dem onstra t ions to
learn other commands.

I ’m upgrad ing from an Read th e New Features document to f ind out about th e new
earlie r release. features in th e latest release. Pay special a tten t ion to th e section

about upgrad ing for guidance on convert ing your M-fi les. You
should then refer to Using M A T L A B and Using M A T L A B
G raphics for specific de ta i ls about th e new features.

1-6

W hat I W ant W ha t I Should Do

I w an t to know how to use a
specific funct ion.

I w an t to f ind a funct ion for
a specific purpose but I don ’t
know i ts name.

I w an t to learn about a
specific top ic l ike sparse
matrices, o rd ina ry
d if fe ren t ia l equations, or cell
arrays.

I w an t to know w ha t
func t ions are ava i lab le in a
general area.

I have a problem I w an t help
w i th .

I w an t to report a bug or
m ake a suggestion.

I w an t to contact The
M a thW orks Technical
Support.

Use th e on l ine Help fac i l i ty . You can use th e M -f i le help w indow
to get b r ie f on l ine help or access th e M A T L A B Function
Reference v ia th e Web-based Help Desk. These are ava ilab le
using th e commands he lpw in and he lpdesk or from th e Help
menu on th e PC. The Function Reference is also ava i lab le on th e
Help Desk in PDF fo rm at i f you w an t to p r in t out any of the
funct ion descr ip tions in h igh -qua li ty form.

There are th ree choices.

• Use lo o k fo r (e.g. lo o k fo r i nverse) from th e command line.

• Use th e on l ine keyword search from th e Help Desk.

• V is i t The M a th W o rk s Web s ite and see i f th e re is a
user-contr ibuted f i le to solve your problem.

See th e app ropr ia te chapter in Using M A T LA B .

Use th e help w indow (type h e lpw in or select from Help menu) to
see a tab le of contents w i th func t ions grouped by subject area, or
use th e Help Desk (type he lpdesk or select from Help menu) to
see th e Function Reference grouped by subject.

For t ip s and troub leshooting problems, use th e Help Desk (type
he lpdesk or select from Help menu) to v is i t th e Technical
Support section of The M a th W o rk s Web site
(www.mathworks.com) and use th e Solution Search Engine to
search th e Technical Support database of problem solutions.

Use th e Help Desk (type he lpdesk or select from Help menu) or
send e-mail to bugs@mBthworks.com or suggest@mBthworks.com

Use th e Help Desk (type he lpdesk or select from Help menu) to
subm it an e-mail help request form describ ing your question or
problem.

1-7

http://www.mathworks.com
mailto:bugs@mBthworks.com
mailto:suggest@mBthworks.com

1 Introduction

A b o u t S imu l ink
Simulink® , a companion program to M A T L A B , is an in te rac t ive system for
s im u la t in g non linear d yna m ic systems. It is a graphical mouse-driven program
th a t a llows you to model a system by d ra w in g a block d iagram on th e screen
and m a n ip u la t ing it dynam ica lly . It can w o rk w i th l inear, nonlinear,
continuous-t ime, d iscrete-t ime, m u lt iva r iab le , and m u l t i r a te systems.

Blocksets are add-ins to S im u l in k th a t provide add it iona l l ib ra r ies of blocks for
specialized app lica tions l ike communications, signal processing, and power
systems.

Real-t im e Workshop® is a program th a t a llows you to generate C code from
your block d iagram s and to run it on a va r ie ty of rea l- t im e systems.

A b o u t Too lboxe s
M A T L A B features a fa m i ly of app lica tion-specif ic so lu tions called toolboxes.
Very im por tan t to most users of M A T L A B , toolboxes allow you to learn and
app ly specialized technology. Toolboxes are comprehensive collections of
M A T L A B func t ions (M-fi les) th a t extend th e M A T L A B env ironm ent in order to
solve p a r t icu la r classes of problems. M any toolboxes are availab le from The
M athW orks . Some of these are listed on th e fo l low ing page; contact The
M a th W o rks or v is i t wwwmathworks. com for a complete up-to-date list.

1-8

The MATLAB Product Family
How The M a th W o rks products f i t together

M A T L A B is th e foundation for all
The M a th W o rks products.
M A T L A B combines num er ic
computation, 2-D and 3-D graphics,
and language capabil it ies in a
single, easy-to-use env ironm ent.

M A T L A B E x te n s io n s are optional
tools th a t support the
im p lem en ta t ion of systems
developed in M A T L A B .

T oo lboxes are l ib ra r ies of
M A T L A B func t ions th a t customize
M A T L A B for so lv ing par t icu la r
classes of problems. Toolboxes are
open and extensible; you can view
a lg o r i th m s and add your own.

S im u l in k is a system for non linear
s im u la t ion th a t combines a block
d iagram interface and “ l ive ”
s im u la t ion capabil i t ies w i th the
core numeric, graphics, and
language fu nc t io na l i ty of M A T L A B .

S im u l in k E x te n s io n s are optional
tools th a t support the
im p lem en ta t ion of systems
developed in S im u l in k

B lo ckse ts are collections of
S im u l in k blocks designed for
use in specific app lica tion areas.

S im u l i n k E x te n s io n s
• S im u link Accelerator
• Real-Time Workshop

• Real-Time W indows
Target

• Stateflow®

B lo c k s e ts
• DSP

• Fixed-Point
• N onlinear Control Design
• Power Systems

M A T L A B E x te n s io n s

• M ATLAB Compiler
• M A T L A B C/C++

M ath L ib ra r ie s
• M ATLAB Web Server

• M ATLAB Report
Generator

T o o lb o x e s

• Control System
• Communications
• Database
• F inancial
• Frequency Domain

System Identifica tion
• Fuzzy Logic
• H igher-O rder Spectral

Analysis
• Im age Processing
• LM I Control
• Model Predictive C ontro l
• m -Analysis and

Synthesis
• NAG® Foundation
• Neural Netw ork
• O ptim ization
• Partia l D iffe ren tia l

Equation
• QFT Control Design
• Robust Control
• Signal Processing
• Spline
• S ta tistics
• Symbolic Math
• System Iden tifica tion
• Wavelet

Contact The M a th W o rk s or v is i t www.mBthwDrks.com for an up-to-date product l ist.

1-9

http://www.mBthwDrks.com

Introduction1

1-10

2
MATLAB Working
Environment

U s in g th e E n v i r o n m e n t .. 2-2

T h e C o m m a n d W i n d o w .. 2-5

T h e F ig u r e W i n d o w ..2-18

H e lp and O n l in e D o c u m e n t a t i o n ... 2-20

D is k F i le M a n ip u la t io n and S he l l E scape 2-25

D a ta I m p o r t / E x p o r t ..2-26

M e m o r y U t i l i z a t i o n .. 2-33

M ic r o s o f t W in d o w s H a n d b o o k .. 2-35

U N IX H a n d b o o k .. 2-54

2 MATLAB Working Environment

Using the Environment
M A T L A B is both a language and a w o rk in g env ironm ent. T h is chapter focuses
on th e M A T L A B w o rk in g env ironm ent. As a w o rk in g env ironm ent, M A T L A B
includes fac i l i t ies for managing th e variab les in your workspace and for
im p or t in g and exporting data. M A T L A B also includes tools for developing and
m anag ing M-files, M A T L A B ’s applications.

The f irs t part of th is chapter describes general aspects of using th e M A T L A B
w o rk in g env ironm ent. In th is and subsequent chapters, when it is necessary in
th is general m ate r ia l to call out features specific to a pa r t icu la r p la tfo rm , we
use icons in th e tex t m arg in to h igh l igh t th e in fo rm a tion pert inent to your
p la tfo rm . Look for:

for M icrosoft W indow s in fo rm a tion

for U N IX in fo rm ation

Add it iona l sections at th e end of th is chapter discuss fu r th e r p la tfo rm -spec if ic
M A T L A B env ironm ent features:

• “ M icrosoft W indow s Handbook”

• “ U N IX Handbook”

Star t ing MATLAB
щ п On W indow s p la tform s, th e ins ta l le r creates a shortcut to th e program

f i le in th e ins ta l la t ion d irectory. You can move th is shortcut to your
desktop i f you w an t. Double-click on th is shortcut icon to s ta rt M A T L A B .

x / T o s ta r t M A T L A B on a U N IX system, type mat I ab at th e operating
system prompt.

Startup Files
A t s ta r tup , M A T L A B au tom atica lly executes th e master M -f i le mat la b r c . m
and, i f it exists, s t a r t u p . m

The f i le m at lab rc . m which l ives in th e loca l d irectory, is reserved for use by
The M a th W o rks and, on m u lt iuse r systems, by your system manager.

2-2

Using the Environment

The f i le s t a r t u p . m is for you to use. You can set defau lt paths, define H and le
Graphics defaults, or predefine var iab les in your workspace. For example,
creating a s ta r tu p . m with th e l ine

addpath /hom e/m e/m ytoo ls

adds a tools d irectory to your default search path.

On W indow s p la tform s, place th e st a r t up. m fi le in th e fo lder named
loca l in t h e t ool box fo lder.

y y On U N IX w orks ta t ions , p la c e th e s t a r t up. m f i le in th e d i re c to ry named
mat I ab off of your home d irectory, e.g., - / mat I ab.

Startup Options
You can specify s ta r tu p options for M A T L A B .

Add these options to th e ta rget path for your W indow s shortcut for
M A T L A B . I f you run M A T L A B from a DOS w indow , inc lude these
options w i th th e s ta r tu p command.

Startup Option Description

au tom a tion S tart M A T L A B as an automation server, m in im ized,
and w i th o u t th e M A T L A B splash screen. (For more
in fo rm a tion , see Chapter 7 of th e App lica t ion
Program In terface Guide.)

l o g f i l e lo g f i le n a m e A u to m a t ica l ly w r i te outpu t from M A T L A B to the
specified log file.

m in im ize S tart M A T L A B m in im ized and w i th o u t th e M A T L A B
splash screen.

nosp lash S tart M A T L A B w ith o u t d isp lay ing th e M A T L A B
splash screen.

r M_fi l e A u to m a t ica l ly run th e specified M -f i le im m ed ia te ly
after M A T L A B starts .

2-3

2 MATLAB Working Environment

reg se rve r M od ify th e W indows reg is try w i th th e app ropr ia te
Act iveX entr ies for M A T LA B . (For more in fo rm a tion ,
see Chapter 7 of th e App lica t ion Program Interface
Guide.)

unregserver M od ify th e W indows reg is t ry to remove th e Act iveX
entr ies for M A T LA B . Use th is to reset th e registry.
(For more in fo rm a tion , see C hapter 7 of the
A pp lica t ion Program Interface Guide.)

For example, to s ta rt M A T L A B and au tom a tica l ly run th e f i le r e s u l t s . m use
th is ta rget path for your W indow s shortcut:

D : \ b in \ n t \m a t la b .e x e / r r e s u l t s

For th e same example, i f you s ta r t M A T L A B from a DOS w indow ,
au tom a tica l ly run th e f i le r e s u l t s . m upon s ta r tu p by typ ing

m atlab / r r e s u l t s

у For a l ist of M A T L A B s ta r tu p options a v a i la b le fo r U N IX , at th e U N IX
prompt type

m atlab -h

Qui t t i ng MATLAB
To qu it M A T L A B at any t im e, type q u i t at th e M A T L A B prompt.

On W indow s p la tforms, you can a lso qu it by selecting E x i t f r o m th e F i le
menu, or by using th e close box.

q u i t runs th e script f i n i s h . m , i f f i n i s h . m exists anyw here on th e M A T L A B
path. f i n i s h . m is a f i le you create th a t conta ins commands you w an t to run
when M A T L A B te rm ina tes . For example, inc lude a save command in your
f i n i s h . m fi le to save th e workspace when M A T L A B qu its . Or in your f i n i s h . m
fi le, inc lude code th a t w i l l d isp lay a confirm ation dia log box when you qu it
M A T L A B . Tw o sample f i n i s h . m f i les are in / t o o lb o x / l ocal :

• f i n i s h s a v . m - saves th e workspace to a M A T - f i le when M A T L A B q u its

• f i n i s h d l g . m - d isp lays a dia log a llow ing you to cancel q u i t t in g

2-4

The Command W indow

The Command Window
The Command W indow is th e main w indow in which you com m unicate w i th
M A T L A B .

щ п On W indow s p la tforms, M A T L A B provides a special w indow w ith
W indows-on ly features.

\ / On U N IX systems, th e Command W indow is th e te rm in a l w indow from
w hich you s ta r t M A T L A B .

The M A T L A B in te rp re te r d isp lays a prompt (>>) ind ica t ing th a t it is ready to
accept commands from you. For example, to enter a 3-by-3 m a tr ix , you can type

A = [1 2 3; 4 5 6; 7 8 10]

When you press th e E n te r or R e tu rn key, M A T L A B responds w i th

A =

1 2 3
4 5 6
7 8 10

To inve rt th is m a tr ix , enter

B = in v (A)

M A T L A B responds w i th th e result.

C o m m a n d Line Edit ing
A rro w and control keys on your keyboard a llow you to recall, edit, and reuse
commands you have typed earlie r. For example, suppose you m is taken ly enter

rho = (1+ s q t (5)) / 2

You have misspelled s q r t . M A T L A B responds w ith

U ndefined f u n c t io n or v a r i a b le ’ s q t ’ .

Instead of re typ ing th e e n t ire l ine, s im p ly press th e ^ key. The misspelled
command is redisplayed. Use th e <— key to move th e cursor over and insert
th e m issing r . Repeated use of th e ^ key recalls earl ie r lines.

2-5

2 MATLAB Working Environment

The commands you enter d u r in g a M A T L A B session are stored in a buffer. You
can use sm art recall to recall a previous command whose f i rs t few characters
you specify. For example, typ in g th e le t te rs p lo and pressing th e ^ key recalls
th e last command th a t s tarted w i th pl o, as in th e most recent pl ot command.

The complete list of a rrow and control keys provides add it iona l control. M any
of these keys should be fa m i l ia r to users of th e Emacs editor.

A rrow Key Control Key O perat ion

t C tr l -p Recall previous line.

C tr l-n Recall next line.

< E - C tr l-b Move back one character.

- > C t r l - f Move fo rw ard one character.

c t r l — > C tr l - r Move r igh t one word.

c t r l - < — C tr l- l Move left one word.

hom e C tr l-a Move to beg inning of line.

end C tr l-e Move to end of line.

esc C tr l-u Clear line.

del C tr l -d Delete character at cursor.

backspace C tr l-h Delete character before cursor.

C tr l - k Delete (k i l l) to end of line.

Clearing the Command Window
Use cl c to clear th e Command W indow . T h is does not clear th e workspace, but
only clears th e view. A f te r using c lc , you s t i l l can use th e up arrow key to see
th e h is to ry of th e commands, one at a t im e.

2-6

The Command W indow

Paging of Output in the Command Window
To control paging of output in th e Command W indow, use more. By default,
more is o f f . When you set more on, a page (a screen fu l l) of output d isp lays at
one t im e . You then use

R e tu rn To advance to th e next l ine

Space Bar To advance to th e next page

q To stop d isp lay ing th e output

I n te r ru p t in g a Running Prog ram
You can in te r ru p t a run n in g program by pressing C tr l - c at any t im e.

On W indow s p la tform s, you may h a v e to w a it u n t i l an executing bu i l t - in
funct ion or M E X -f i le has f in ished i ts operation.

^ On U N IX systems, program execution w i l l te rm in a te im m edia te ly .

The f o r m a t C o m m an d
The fo r mat command contro ls th e num er ic fo rm at of th e va lues d isplayed on
th e screen. The command affects only how num bers are displayed, not how
M A T L A B computes or saves them.

On W indow s p la tform s, you can change th e default fo rm at by selecting
P re fe ren ce s from th e F i le menu, and selecting th e desired fo rm at from
th e G enera l tab.

2-7

2 MATLAB Working Environment

Here are va r ious fo rm a ts and th e outpu t produced from a two-e lement vector
w i th components of d if fe ren t magnitudes.

x = [4 / 3 1 .2345e-6]

fo rmat short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1. 3333 1. 2345e-006

format long

1.33333333333333 0.00000123450000

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0 .00

2-8

The Command W indow

form at +

++

form at ra t

4/ 3 1/ 810045

form at hex

3ff5555555555555 3eb4b6231abfd271

I f th e largest element of a m a tr ix is larger than 103 or sm alle r than 10-3,
M A T L A B applies a common scale factor for th e short and long formats.

I n add it ion to th e format commands shown above

form at compact

suppresses many of th e b lank l ines th a t appear in th e output. T h is lets you
view more in fo rm a tion on a screen or w indow . To show th e b lank lines, use

form at loose

I f you w an t more control over th e output fo rm at, use th e s p r i n t f and f p r i n t f
functions.

Suppress ing O u tp u t
I f you s im p ly type a sta tement and press R e tu rn or E n t e r , M A T L A B
au tom a tica l ly d isp lays th e resu lts on screen. However, i f you end th e l ine w ith
a semicolon, M A T L A B performs th e computation but does not d isp lay any
output. T h is is p a r t ic u la r ly useful when you generate large matrices. For
example,

A = magic(100);

2-9

2 MATLAB Working Environment

Long C o m m a n d Lines
I f a s ta tement does not f i t on one line, use an e ll ips is (three periods, . . .) ,
fo llowed by R e tu rn or E n te r to ind icate th a t th e sta tem ent continues on th e
next l ine. For example,

s = 1 - 1 /2 + 1 /3 - 1 /4 + 1 /5 - 1 /6 + 1 /7 . . .
- 1 /8 + 1 /9 - 1 /10 + 1/11 - 1/12;

B lank spaces around th e =, +, and - signs are optional, but they improve
readab il i ty . The m ax im um num ber of characters allowed on a s ing le l ine is
4096.

MATLAB W o r k s p a c e
The M A T L A B workspace conta ins a set of va r iab les (named arrays) th a t you
can m an ip u la te from th e M A T L A B command line. You can use th e who and
whos commands to see w ha t is cu rren t ly in th e workspace. The who command
gives a short l is t, w h i le th e whos command also gives size and data type
in fo rm ation .

Here is th e output produced by whos on a workspace conta in ing eight variab les
of d if fe ren t data types.

whos
Name Size Bytes Class

A 4x4 128 double a r ra y
D 3x5 120 double a r ra y
M 10x1 40 c e l l a r ra y
S 1x3 628 s t r u c t a r ra y
h 1x11 22 char a r ra y
n 1x1 8 double a r ra y
s 1x5 10 char a r ra y
v 1x14 28 char a r ra y

Grand t o t a l i s 93 e lements us ing 984 bytes

To delete all ex is t ing variab les from th e workspace, enter

c le a r

2-10

The Command W indow

Loading and Saving the Workspace
M A T L A B ’s save and load commands let you save th e contents of th e M A T L A B
workspace at any t im e d u r in g a session and then reload th e data back in to
M A T L A B d u r in g th a t session or a la ter one. load and save can also im port and
export text data files.

Saving the Workspace
The save command saves th e contents of th e workspace in to a b inary M A T -f i le
th a t you can read back la ter w i th th e load command. For example,

saves th e e n t ire workspace contents in th e f i le june10. mat. I f desired, you can
save only certa in var iab les by specifying th e va r iab le names after th e fi lename.

For example,

save june10 x y z

saves only variab les x, y, and z.

I On W indow s p la tform s, th e save operation is also ava i lab le by selecting
' Save W o rk s p a c e As from th e F i le menu.

N o te The M A T LA B App lica t ion Program Interface G u ide provides de ta i ls on
reading and w r i t in g MAT-f iles from external C or Fortran programs.

2-11

2 MATLAB Working Environment

Specifying File Format
You can control th e fo rm at in which save stores data by appending f lags to the
f i lenam e/var iab le name list:

-mat Use b ina ry M AT-f i le form (default).

- a s c i i Use 8-dig it ASCII form.

- a s c i i - d o u b le Use 16-digit ASCII form.

- a s c i i - d o u b le - ta b s D e l im it a rray elements w i th tabs.

-v 4 Save in fo rm at th a t M A T L A B version 4 can
open.

-append Append data to ex is t ing MAT-file.

I f you use th e v4 flag, you can only save data constructs th a t are compatib le
w i th versions of M A T L A B 4; therefore, you cannot save s tructures, cell arrays,
m u lt id im ens iona l arrays, or objects. In add it ion, you must use fi lenam es th a t
are supported by M A T L A B version 4.

When you save workspace contents in ASCII fo rm at, save only one va r iab le at
a t im e . I f you save more than one variab le, M A T L A B w i l l create th e ASCII file,
but you w i l l be unable to load it back in to M A T L A B later using load.

Loading the Workspace
The load command loads a M A T - f i le th a t you have previously created w i th
save. For example,

load june10

loads june10.m at in to th e workspace. I f th e saved M A T - f i le jun e1 0 conta ins
th e variab les A, B, and C, then loading j une10 places th e variab les A, B, and C
back in to th e workspace. I f th e variab les a lready exist in th e workspace, they
are overw r it ten .

I f your M A T - f i le has a f i lenam e extension other than mat, you must use th e
-mat switch or else M A T L A B expects th e f i le to be ASCII tex t form at.

load f i le n a m e -mat

On W indow s p la tform s, th e I oad operation is also ava i lab le by selecting
Load W o rk s p a c e from th e F i le menu.

2-12

The Command W indow

Loading ASCII Data Files
The l oad command also im ports ASCII data fi les. It reads th e contents of th e
f i le in to a va r iab le w i th th e same name as th e f i le (w ithou t th e extension). For
example,

load t i d e s . d a t

creates a va r iab le named t i d e s in th e workspace. I f th e ASCII data f i le has m
l ines w i th n va lues on each line, th e result is an m-by-n n um er ic array.

Filenames Stored in String Variables
I f th e f i lenam es and va r iab le names you are w o rk in g w i th are stored in s tr ing
variables, you can use command/function d u a l i ty to call l oad and save as
functions. In th is case, th e inpu t a rgum en ts appear in th e same order as they
wou ld at th e command line. For example, th e s ta tem ents

s a v e (’ m y f i l e ’ , ’ VAR1’ , ’ VAR2’)
A = ’ m y f i l e ’ ;
l oad(A)

are th e same as

save m y f i l e VAR1 VAR2
l oad m y f i l e

To load or save m u l t ip le f i les w i th th e same p re f ix and successive integer
suffixes, use a loop. For example, th is code saves th e squares of th e num bers 1
th rough 10 in f i les data1 th rough data10:

f i l e = ’ d a t a ’ ;
f o r i = 1:10

j = i . A2;
s a v e ([f i l e i n t 2 s t r (i)] , ’ j ’);

end

Wildcards
The l oad and save commands let you specify a w i ldcard character (*) to search
for pa tte rns of va r iab le names. For example,

save runda te x*

2-13

2 MATLAB Working Environment

saves all variab les in th e workspace th a t s ta rt w i th x in th e f i le r u n d a ta .m a t .
S im i la r ly ,

l oad t e s t dat a ex1*95

loads from t e s t d a t a . mat all th e variab les whose f irs t th ree characters are
’ ex1’ and last tw o characters are ’ 95’ , regardless of th e characters between
them.

Search Path
M A T L A B uses a search path to f ind M-files. M A T L A B ’s M -f i les are organized
in d irector ies or fo lders on your f i le system. M any of these d irector ies of M -fi les
are provided along w i th M A T L A B , w h i le others are ava i lab le separate ly as
toolboxes.

I f you enter th e name fo o at th e M A T L A B prompt, th e M A T L A B in te rpre ter :

1 Looks for fo o as a variab le.

2 Checks for fo o as a b u i l t - in funct ion.

3 Looks in th e cu rren t d irec to ry for a f i le named f o o . m

4 Searches th e d irector ies on th e search path for f o o . m

A lthough th e actual search ru les are more complicated because of th e
restr ic ted scope of p r iva te funct ions, subfunctions, and object-oriented
funct ions, th is s im p l if ied perspective is accurate for th e o rd ina ry M -f i les th a t
you usua lly w o rk w i th .

I f you have more than one funct ion w i th th e same name, only th e f irs t one in
th e search path order is found; other func t ions w i th th e same name are
considered to be shadowed and cannot be executed.

Changing the Search Path
You can d isp lay and change th e search path for th e dura t ion of your current
session using th e path, addpat h, and rmpat h functions:

• path, by itself, re tu rns th e curren t search path.

• p a t h (s) , w he re s is a s tr ing , sets th e path to s.

2-14

The Command W indow

• addpath /home/l i b and p a t h (p a t h , ’ /home/ l i b ’) both append a new
d irec to ry to th e path.

• rmpath / h ome / l i b removes th e path / h ome / l i b.

The default search path remembered between sessions is defined in th e f i le
p a t h d e f . m i n th e d irec to ry named l ocal on your system. pathdef executes
au tom a tica l ly each t im e you s ta rt M A T L A B .

зал On W indow s p la tfo rm s, you can d irec t ly edit pat h d e f . m w ith your text
editor.

у / On U N IX w o rks ta t ions you may not have f i le system permission to edit
pat h d e f . m In th is case, put pat h and addpat h commands in your
s t a r t u p . m f i le to change your path defaults.

M A T L A B also provides a Path Browser w i th a convenient in terface for v iew ing
and changing th e search path. Use pat h t oo l to s ta rt th e Path Browser.

Files on the Search Path
To d isp lay th e search path, use path. Use what to see all of th e M A T L A B fi les
in a d irectory. W ith no arguments, what d isp lays th e f i les in th e current
d irectory.

W ith a fu l l or part ia l path, what l is ts th e f i les in any d irectory on th e path, for
example,

what m a t l a b / e l f un

To see th e code in a specific M-fi le , use th e t y p e command, for example,

t y pe rank

To edit th e M-fi le , use e d i t , for example,

ed i t rank

N o t e Save any M -f i les you create or any M A T LA B -supp l ied M -f i les tha t you
edit in a d irec to ry tha t is not in th e MATLAB d irec tory tree. I f you keep your
f i les in th e MATLAB d irectory tree, they m ight be overw r i t ten when you ins ta l l a
new version of M A T LA B . A no the r consideration is th a t f i les in th e MATLAB/
t o o l b o x d irectory t ree are loaded and cached in to memory at th e beg inning of

2-15

2 MATLAB Working Environment

each M A T L A B session to im prove performance. T h is cache is not updated
u n t i l M A T L A B is restarted. I f you add any f i les or m ake changes to any fi les
in th e t o o l b o x directory, you w i l l not be able to see th e changes u n t i l you
restart M A T LA B .

Cur rent Di rec tory
M A T L A B m a in ta in s a current d irectory for w o rk in g w i th M -f i les and
MAT-f iles.

On W indow s p la tforms, th e in i t ia l curren t d irec to ry is specified in the
shortcut f i le you use to s ta rt M A T L A B . R igh t-c l ick on th e shortcut fi le,
and select P ro p e r t ie s to change th e default.

^ On U N I X systems, th e in i t ia l curren t d irec to ry is th e d irectory you are
in on your U N I X f i le sys tem when you invoke M A T L A B .

To d isp lay your curren t d irectory , use th e cd command w i th no arguments. For
example, on U N IX :

cd
/ home/ roger

To change your curren t d irectory, use cd w i th a path. For example, for
W indow s

cd \ b i g p r o j \ phase1

changes th e curren t d irectory to th e phase1 d irectory, located in bi gproj .

O pe n ing Files in MATLAB
You can open f i les in M A T L A B based on th e ir extension using th e open
funct ion. open is a user-extensib le funct ion th a t provides an in terface to f i le
open operations. Defau lt behavior is provided for these standard M A T L A B f i le

2-16

The Command W indow

types. You can extend th e in terface to inc lude other f i le types and to overr ide
th e default behavior for th e s tandard fi les.

Name Action

F igu re f i le (* . f i g) Open f igu re in a f igu re w indow

M -f i le (name.m) Open M -f i le name in Ed ito r

Model (name.mdl) Open model name in S im u l in k

P-fi le (name.p) Open th e corresponding M -fi le , name. m, i f it exists,
in th e Ed ito r

Variab le Open a rray name in th e A r ra y Ed ito r (the a rray
must be numeric); open calls openvar

O ther extensions
(name.custon)

Open name.custom by ca ll ing th e helper funct ion
opencustom, w here opencustom is a user-defined
funct ion.

2-17

2 MATLAB Working Environment

The Figure Window
M A T L A B d irects g raph ics outpu t to a w indow th a t is separate from th e
Command W indow. In M A T L A B , th is w indow is referred to as a f igure.
G raph ics func t ions a u tom a tica l ly create new f ig u re w indow s i f none cu rren t ly
exist. I f a f igu re w indow a lready exists, M A T L A B uses th a t w indow . I f m u l t ip le
f igu re w indow s exist, one is designated as th e curren t f igu re and is used by
M A T L A B (th is is genera lly th e last f igu re used or th e last f igu re you clicked th e
mouse in).

The f i g u r e funct ion creates f igu re w indows. For example,

f i g u r e

creates a new w indow and makes it th e curren t f igure.

The plot funct ion creates a plot in a f igu re w indow . For example,

t = 0 : p i / 1 0 0 : 2 * p i ;
y = s i n (t) ;
p l o t (t , y)

d raw s a graph of th e s ine funct ion from zero to 2л in th e curren t f igu re w indow ,
i f one exists, or in a new f igu re w indow i f none exists.

A n n o ta t i n g Plots Using the Plot Edi tor
A fte r creating a plot, you can m ake changes to it and annota te it w i th th e Plot
Ed ito r , which is an easy-to-use graphical interface. The i l lu s tra t io n below
shows th e plot in a f ig u re w indow and labels th e main features of th e f igu re
w indow and th e Plot Ed itor.

2-18

The Figure W indow

lteth8 Tools Click thsELttcn Gfet Ffeip fcr Anctate ZbemardFttctethe
Menu toAaessFtct toStart Ftct Htcr theFtct theFtct Ftct

■0.2

■0.4 - \ -

■0.6 - \ / -

■0.8 - \ / -

-1 ----------------------------'----------------------------1----------------------------1--------------------------- 1— ------------------------1---------------------------
0 1 2 3 4 5 6 7

To save a f igure, select Save from th e Fi l e menu. To save it using a d if feren t
fo rm at, such as T IF F , for use w i th other applications, select Ex p o r t from th e
F i l e menu. You can also save from th e command l ine - use th e saveas
command, inc lud ing any options to save th e f igu re in a d if fe ren t fo rm at.

MATLAB Graph ics
For more in fo rm ation about v isua l iza t ion w i th M A T L A B , see Using M A T L A B
Graphics.

2-19

2 MATLAB Working Environment

Help and Online Documentat ion

C o m m a n d Line Help
There are several d if fe ren t ways to access on l ine in fo rm a tion about M A T L A B
funct ions:

Command Description

he l p D isp lay in th e Command W indow a description of th e specified
command

hel pwi n D isp lay a help w indow tha t describes th e specified command
and a llows v iew ing help for other topics

l o o k f o r D isp lay in th e Command W indow a b r ie f descrip tion for all
commands whose descrip tion includes th e specified keyword

he lpdesk D isp lay th e Help Desk page in a Web browser, p rov id ing direct
access to a comprehensive l ib ra ry of on l ine help, PDF-form atted
documentation, troub leshoot ing in fo rm ation , and The
M a th W o rks Web s ite

doc D isp lay in a Web browser th e reference page for th e specified
command, p rov id ing a descrip tion, add it iona l rem arks, and
examples

The help Command
The hel p command is th e most basic w ay to de te rm ine th e syn tax and behavior
of a pa r t icu la r funct ion. In fo rm at ion is d isplayed d irec t ly in th e Command
W indow. For example,

he l p magi c

d isp lays

MAGIC Magic square.
MAGC(N) i s an N-by-N ma t r i x c o n s t r u c t e d f r o m
t h e i n t e g e r s 1 t h r ough NT2 w i t h equal row,
column, and d iagonal sums.
Produces v a l i d magic squares f o r N = 1 , 3 , 4 , 5

2-20

Help and Online Documentation

N o t e M A T L A B Command W indow he l p en tr ies use uppercase characters for
th e funct ion and va r iab le names to m ake them stand out from th e rest of th e
text. When typ in g funct ion names, however, a lways use th e corresponding
lowercase characters since M A T L A B is case sens it ive and all funct ion names
are ac tua l ly in lowercase.

A ll th e M A T L A B func t ions are organized in to logical groups, and M A T L A B ’s
d irectory s tru c tu re is based on th is grouping. For instance, all th e l inear
algebra func t ions reside in th e mat fun d irectory. To list th e names of all the
func t ions in tha t d irectory, w i th a b r ie f description of each, use

hel p mat fun

Ma t r i x f u n c t i o n s - numerical l i n e a r a l gebra.

Matr i x ana l y s i s .
norm - Ma t r i x or ve c t o r norm
normest - Es t i ma t e t he ma t r i x 2 -n o rm

The command

help

by itself, l is ts all th e d irectories, w i th a description of th e funct ion category
each represents:

matl ab /genera l
matl ab/ops

The helpwin Command
The M A T L A B Help W indow is ava i lab le by typ ing

hel pwi n

The Help W indow gives you access to th e same in fo rm a tion as th e hel p
command, but th e w indow in terface provides convenient l in k s to other topics.

2-21

2 MATLAB Working Environment

To use th e Help W indow on a p a r t icu la r topic, type

he l pwi n t o p i c

On W indow s p la tform s, you can also access th e Help W in d o w by
selecting th e Help W in d o w option under th e H e lp menu, or by c l ick ing
th e question m ark button on th e menu bar.

The lookfor Command
The l o o k f o r command a llows you to search for func t ions based on a keyword.
It searches th rough th e f i rs t l ine of he l p text, which is known as th e H1 line,
for each M A T L A B funct ion, and re tu rns th e H1 l ines conta in ing a specified
keyword. For example, M A T L A B does not have a funct ion named i nve r se . So
th e response from

hel p i n v e r s e
is

i n v e r s e . m not found.

But

l o o k f o r i nverse

f inds over a dozen matches. Depending on which toolboxes you have insta lled,
you w i l l f ind entr ies l ike

INVHILB I nverse H i l b e r t ma t r i x
ACC6H I n v e r s e h y p e r b o l i c cos i ne
ERFINV I n v e r s e of t h e e r r o r f u n c t i o n
INV Ma t r i x i n v e r s e
PINV Pseudo inverse
IFFT I n v e r s e d i s c r e t e Fou r i e r t r a n s f o r m
IFFT2 Two-dimensional i nv e r s e d i s c r e t e Fou r i e r t r a n s f o r m
ICCEPS I n v e r s e complex c e ps t r um
IDCT I n v e r s e d i s c r e t e cos i ne t r a n s f o r m

A dd ing - a l l to th e l o o k f o r command searches th e e n t ire help entry, not jus t
th e H1 line.

The helpdesk Command
The M A T L A B Help Desk provides access to a w ide range of help and reference
in fo rm a tion stored on a d isk or CD in your local system. M any of th e under ly ing

2-22

Help and Online Documentation

documents use HyperText M a rk u p Language (H T M L) and are accessed w ith
an In te rne t Web browser such as Netscape Nav iga to r or M icrosoft In te rne t
Explorer.

To access th e Help Desk, type

hel pdesk

n On W indow s p la tform s, you can also access th e Help Desk by selecting
4 th e Help Desk option under th e Help menu.

A ll of M A T L A B ’s operators and funct ions have on l ine reference pages in H T M L
fo rm at, w h ich you can reach from th e Help Desk. These pages provide more
de ta i ls and examples than th e basic hel p entr ies. H T M L versions of other
documents are also availab le. A search engine can query all th e on line
reference m ater ia l.

PDF-formatted Documentation. Vers ions of all M A T L A B documentation are
ava i lab le in Portab le Document Form at (PDF) th rough th e Help Desk. These
pages are processed by Adobe’s Acrobat Reader. They reproduce th e look and
feel of th e p r in ted page, complete w i th fonts, graphics, fo rm a tt ing , and images.
You can use l in k s from one tab le of contents or index of a manual, as well as
in te rna l l inks, to go d irec t ly to th e page of interest.

Acrobat Reader also a llows you to p r in t selected pages w i th in a document. T h is
is th e best w ay to get p r in ted copies of th e on l ine M A T L A B Function Reference,
which is not o therw ise ava i lab le in hard copy.

MathWorks Web Site. I f your computer is connected to th e In te rne t, th e Help
Desk provides connections to The M athW orks , th e home of M A T L A B . You can
use e lectron ic mail to ask questions, m ake suggestions, and report possible
bugs. You can also use th e Solution Search Eng ine at The M a th W o rk s Web site
to query an up-to-date data base of technical support in fo rm ation .

A l te rna t ive ly , you can point your Web browser d irec t ly at www. i rathworks . com
to access The M a th W o rk s Web site.

The doc Command
The doc command accesses th e H T M L reference documentation for M A T L A B
func t ions and all ins ta lled toolboxes.

2-23

http://www.irathworks.com

2 MATLAB Working Environment

For example, i f you have th e Control System Toolbox and Sym bolic M ath
Toolbox ins ta lled as well as M A T L A B , when you enter at th e M A T L A B
command l ine

doc e ig

you w i l l see th e H T M L reference documentation page reflecting th e M A T L A B
version of e i g . In add it ion , in th e Command W indow you w i l l see

Overloaded f u n c t i o n s :
doc c o n t r o l / e i g
doc s y m b o l i c / e i g

To see t he documentation for e ither of those versions of th e ei g funct ion, issue
th e app ropr ia te doc command w i th th e proper path, as shown above.

The doc command s ta r ts your Web browser i f it is not a lready runn ing .

Help M enus and Help But tons
In th e f igu re w indow use th e Help menu to access help for th e Plot Ed ito r , for
M A T L A B Graphics and to access th e Help W indow and Help Desk. In th e
P r i n t F r a m e E d i to r w indow , use th e Help menu to access help for ed it ing
p r in t fram es.

In th e Page Setup dia log box and in th e Plot Ed ito r d ia log boxes, click th e Help
button to access help for those dia log boxes.

2-24

Disk File Manipulation and Shell Escape

Disk File Manipulat ion and Shell Escape
The commands di r , t ype, del ete, and cd im p lem ent a set of generic operating
system commands for m a n ip u la t ing fi les. T h is ta b le ind icates how these
commands map to other operating systems.

MATLAB Commands Wi n do w s UNIX

d i r d i r l s

t ype t ype cat

d e l e t e del or erase rm

cd chd i r cd

For most of these commands, you can use pathnames, w ildcards, and d r ive
designators in th e usual way.

Running Exte rna l P ro g ra m s
The exclamation point character ! is a shell escape and ind icates th a t th e rest
of th e inpu t l ine is a command to th e operating system. T h is is q u ite useful for
invok ing u t i l i t ie s or ru n n in g other p rogram s w i th o u t q u i t t in g from M A T L A B .
On U N IX , for example,

!v i d a r w i n . m

invokes th e v i ed itor for a f i le named darwin. mi A f te r you qu it th e program, the
operating system re tu rns control to M A T L A B .

See th e commands un i x and dos in on l ine help to run external p rograms th a t
re tu rn resu lts and status.

2-25

2 MATLAB Working Environment

Data Impor t /Expor t
There are m any w ays to move data between M A T L A B and other applications.
I n most cases, you can s im p ly use M A T L A B ’s na t ive data exchange capabil it ies
to read in or w r i te out fi les. For more complicated data sets, you may w an t to
create your own C or Fortran program to read or w r i te a file.

Im p o r t in g Data into MATLAB
You can in troduce data from other p rogram s in to M A T L A B using several
methods. The best method for im p o r t in g data depends on th e amount and
fo rm at of th e data.

M ethod When to Use

E n te r data as an I f you have a small amount of data, it is easy to
explic it l ist of type th e data exp l ic i t ly using brackets ([]) . T h is
elements method is a w kw ard for larger am ounts of data

because you can’t edit your inpu t i f you m ake a
m istake, but must correct it using assignment
s tatements. See Gett ing Started w i th M A T L A B for
more in fo rm a tion on th is technique.

Create data in an Use a text editor to create an M -f i le th a t enters
M -f i le th e data as an explic it l ist of elements. T h is

method is useful when th e data is not a lready in
d ig ita l fo rm and must be entered anyway.
A lthough s im i la r to th e f irs t method, th is method
has th e advantage of a l low ing you to use your text
editor to change th e data and to f ix m istakes. You
can then jus t rerun th e M -f i le to re-enter th e data.

2-26

Data Import/Export

Load data from an
ASCII data f i le

Read data using
f o p e n , f r e a d , a n d
M A T L A B ’s f i le I/O
func t ions

Use a specialized f i le
reader funct ion for
app lica tion-specif ic
fo rm ats

An ASCII data f i le stores th e data in ASCII form,
w i th each row having th e same num ber of values,
and te rm in a t in g w i th new l ines (carriage returns),
w i th spaces separa ting th e numbers. You can edit
ASCII data f i les using a normal tex t editor. You
can read ASCII data f i les d irec t ly in to M A T L A B
using th e l oad funct ion. T h is creates a va r iab le
whose name is th e same as th e fi lename. See
“ Loading and Saving th e Workspace” for de ta i ls on
l oad. You can also use dlmread i f you need to
specify a lte rna te va lue de l im ite rs . d lmread is
discussed in “ Delim ite r-Separated Text F iles” .

T h is method is useful for loading data f i les from
other app lica tions th a t have th e ir own established
f i le formats. These func t ions are discussed in
deta il in Chapter 15.

dlmread Read ASCII data fi le.

t e x t r e a d Read s tr ing and n um er ic data from a
f i le in to M A T L A B variab les using
conversion specifiers.

wk1read Read spreadsheet (WK1) fi le.

imread Read image from graph ics fi le.

auread Read Sun (a u) sound file.

wavread Read Microsoft WAVE (wa v) sound
file.

2-27

2 MATLAB Working Environment

Develop a M E X -f i le
to read th e data

Develop a F ortran or
C trans la t ion
program

T h is is th e best method i f C or Fortran rou tines
are a lready ava i lab le for reading data f i les from
other applications. See th e M A T L A B App lica t ion
Program In terface G u ide for more in fo rm ation .

Develop a program to t ra n s la te your data in to
M AT-f i le format and then read th e M AT-f i le in to
M A T L A B w i th th e load command. See th e
M A T L A B A pp lica t ion Program Interface G u ide for
more in fo rm a tion .

Exp or t in g Data f r om MATLAB
There are several methods for ge tt ing M A T L A B data to other applications:

M ethod When to Use

Use th e d i a r y For small arrays, use th e d i a r y command to create
command a d ia ry f i le and d isp lay th e variables, echoing them

in to th is fi le. The output of d i a r y includes the
M A T L A B commands used d u r in g th e session,
which is useful for inclusion in documents and
reports. You can use your text editor to edit th e
d ia ry fi le, removing unwanted text.

Save th e data in Use th e save command w i th th e - a s c i i option.
ASCII form See “ Loading and Saving th e Workspace” for

de ta i ls on save. You can also use d l m w r i t e i f you
need to specify a lte rna te va lue de l im ite rs .
d l mw r i t e is discussed in “ Delim ite r-Separated
Text F iles” .

W r i te th e data in a Use f w r i t e and t he other low-level I/O functions.
special fo rmat T h is method is useful for w r i t in g data f i les in th e

f i le fo rm a ts required by other applications. These
func t ions are discussed in detail in Chapter 15.

2-28

Data Import/Export

Use a specialized f i le
w r i te funct ion for
app lica tion-specif ic
fo rm ats

dl mwr i t e W r i te ASCII data file.

w k l w r i t e W r i te spreadsheet (WK1) fi le.

i m w r i t e W r i te image to g raph ics fi le.

a u w r i t e W r i te Sun (a u) sound fi le.

wavwr i t e W r i te Microsoft WAVE (. wav) sound
fi le.

Develop a M E X -f i le
to w r i te th e data

T h is is th e best method i f C or F ortran rou tines are
a lready ava i lab le for w r i t in g data f i les in th e form
needed by other applications. See th e M A T L A B
A pp lica t ion Program Interface G u ide for more
in fo rm a tion .

W r i te out th e data as
a M AT-f i le

Use th e save command, and then w r i te a program
in Fortran or C to t ran s la te th e M AT-f i le in to the
desired fo rm at. See th e M A T L A B App lica t ion
Program In terface G u ide for more in fo rm ation .

D e l im i te r -Sep ar a ted Text Files
The func t ions dlmread and d l mw r i t e let you read and w r i te
de l im ite r-separa ted va lues from an ASCII data fi le. A de l im ite r is any
character th a t separates th e f i le ’s values. These func t ions are also useful for
reading or w r i t in g in to a specific M A T L A B va r iab le name.

For example, consider a f i le named ph. dat whose contents are separated by
semicolons.

7.2; 8 . 5 ; 6 . 2 ; 6 . 6
5.4; 9 . 2 ; 8 . 1 ; 7 . 2

To read th e e n t ire contents of th is f i le in to an a rray named A, use

A = d l mr ea d (’ p h . d a t ’ , ’ ; ’);

2-29

2 MATLAB Working Environment

The second argum ent to dlmread specifies th e de l im ite r , which in th e previous
example is a semicolon. In add it ion to th e d e l im i te r you specify, dlmread also
in te rp re ts all whitespace characters as de l im ite rs . So, th e preceding dl mread
command w o rks even i f th e contents of ph. dat are

7.2; 8. 5; 6 . 2 ; 6 . 6
5.4; 9 . 2 ; 8 . 1 ; 7 . 2

N o t e The f irs t a rgum ent to dlmread is a fi lename, not a f i le identif ie r. Do not
open th e f i le w i th fopen before using dlmread or d l mwr i t e .

S im i la r ly , d l m w r i t e w r i te s de l im ite r-separa ted text to an external fi le.

A =

1 2 3
4 5 6

d l m w r i t e (’ m y f i l e ’ , A , ’ ; ’)

m y f i l e now conta ins

1 ; 2 ; 3
4 ; 5 ; 6

Reading Files t ha t Have a Un i fo rm Format
The funct ion t e x t read reads s tr ing and num er ic data from a f i le in to M A T L A B
variab les using th e conversion specifiers you indicate. Conversion specifiers
denote, for example, th e length of th e fie ld and th e data fo rm at. t e x t r e a d is
most useful for f i les w i th a known and un ifo rm fo rm at, such as comma- or
tab -de l im ited fi les, but you can also use it for reading free fo rm at fi les.

For example, th e f i le mydata.dat is

S a l l y Typel 12.34 45 Yes

To read mydata.dat as a free fo rm at fi le, use th e % conversion format.

[n a me s , t y p e s , x , y , a n s w e r] = t e x t r ead (’ my da t a . da t ’ , ’ %s %s 0Д . . .
%d %s’ ,1)

2-30

Data Import/ Export

w he re %s reads a whitespace-separated s tr ing , %f reads a f loa t ing point value,
and reads a signed integer.

M A T L A B re tu rns

names =
’ S a l l y ’

t ypes =
’ T y p e l ’

x =
12.34000000000000

y =
45

answer =
’ Yes’

See all of t he a llowable d e l im i te rs on th e reference page for t e x t r e a d .

Exchang ing Data Files Be tween P la t fo rm s
I t ’s sometimes necessary to w o rk w i th M A T L A B im p lem en ta t ions on d if feren t
computer systems, or to t ra n s m it M A T L A B app lica t ions to users on other
systems. M A T L A B app lica t ions consist of M-files, conta in ing func t ions and
scripts, and MAT-f iles, conta in ing b ina ry data. Both types of f i les can be
transported d irec t ly between d if feren t computers:

• M -f i les consist of o rd ina ry text. They are machine independent. W h i le
d if fe ren t p la t fo rm s te rm in a te l ines w i th var ious combina tions of CR
(carriage re tu rn) and LF (l ine feed) characters, th e M A T L A B in te rp re te r
to lera tes all possible combinations. (However, text ed ito rs and other tools
may not w o rk correctly w i th M -f i les from other p la tforms.)

• M A T -f i le s are b ina ry and machine dependent, but they can be transported
between machines because they contain a m achine s igna tu re in th e f i le
header. M A T L A B checks th e s igna tu re when it loads a f i le and, i f a s igna tu re
ind icates th a t a f i le is foreign, performs th e necessary conversion.

To use M A T L A B across d if fe ren t p la tforms, you need a program for exchanging
both b ina ry and text data between th e machines. When using these programs,
be sure to t ra n s m it M A T -f i le s in b in a ry f i le mode and M -f i les in ASC II f i le
mode. F a i lu re to set these modes correct ly usua lly co rrup ts th e data.

2-31

2 MATLAB Working Environment

The d i a r y C o m m a n d
The d i a r y command creates a ve rba t im copy of your M A T L A B session in a d isk
f i le (excluding graphics). You can view and edit th e resu lt ing text f i le using any
word processor. To create a f i le on your d isk called sept 23 . ou t th a t conta ins
all th e commands you enter, as well as M A T L A B ’s output, enter

d i a r y sep t 23 . ou t

To stop recording th e session, use

d i a r y o f f

2-32

Memory Utilization

Memory Uti l ization
M A T L A B requ ires a contiguous area of memory to store each m a tr ix . In
pa r t icu la r , images and movies can consume large am ounts of memory. In
add it ion to th e storage required for th e m a tr ix , th e p ixm ap used to d raw th e
image requires memory proport iona l to th e area of th e image on th e screen. A
color image of 500-by-500 p ixels uses one megabyte of memory. To l im i t th e
amount of memory required for these operations, l im i t th e size of th e images
you display.

Resolving Memory Errors
I f you do not have a “ch u n k ” of memory large enough to a llocate a m a tr ix , an
out of memory error may occur even though you seem to have enough ava i lab le
memory. To consolidate th e fragm ented memory, you can use th e M A T L A B
pack command, or you can a llocate larger m atr ices ear l ie r in th e M A T L A B
session.

I f you run out of memory often, use these tips:

For Windows, increase v i r tu a l m em ory by using System P r o p e r t i e s for
Pe r f o r man c e , w hich you can access from th e C o n tro l P a n e l .

X For UN I X , ask your system manager to increase your swap space. For
V A X /VM S, ask your system manager to increase your w o rk in g set and/
or pagefile quota.

MATLAB’s Memory Management
M A T L A B uses th e standard C funct ions mal l oc and f r e e to a llocate d ynam ic
memory. These rou t ines m a in ta in a pool of memory th a t is allocated from the
operating system re la t ive ly s lowly. mal l oc and f r ee a llocate memory from th is
pool for M A T L A B much more qu ick ly . I f th e pool runs low, ma l l oc asks th e
operating system for another large chunk of memory to replenish th e pool.

As M A T L A B releases memory, th e pool can grow very large. To m a in ta in
speed, mal l oc and f r e e do not re tu rn th e add it iona l memory to th e operating
system. These rou t ines m ake th e assumption th a t i f you need a large amount
of memory once, you w i l l need it again. A side effect of th is a lgo r i thm is tha t ,
once M A T L A B has used a certa in amount of memory, it is no longer availab le
to other p rograms even i f M A T L A B is no longer using it. The memory in the
pool only re tu rn s to th e operating system when M A T L A B te rm ina tes .

2-33

2 MATLAB Working Environment

-w I f you use an operating system tool such as ps on UNI X , t he d isp lay
^ ind icates th e to ta l sum of th e memory allocated by M A T L A B p l u s t h e

contents of th e pool. T h is num ber can be deceiving because it ind icates
th e highest level of memory use, which may or may not be th e current
usage.

2-34

Microsoft W indows Handbook

Microsoft W in d o w s Handbook
T h is section describes several M A T L A B env ironm ent tools and th e i r use in th e
W indow s env ironm ent.

C o m m a n d W i n d o w
The Command W indow appears when you f i rs t s ta rt M A T L A B . You use it to
run M A T L A B commands, to launch M A T L A B tools such as th e E d ito r /
Debugger, and to s ta r t toolboxes.

IteMfenusasan Aternativeto Typing Commands

Status Ear

UeTodbar —
for EayAiesB
to Popular
Operations

» nagic(4)

16 2 0 13
5 11 10 8
9 7 6 12
4 14 15 1

l i
.Ready

-\----------------
Delays DesTiptim cf

•) MATLAB Command Window

^ Eie Edit View Window Help

- D c ? | ^ ® ^ в t g | f e ?

3

__ I

NUM

□ l̂aysStatuscf C&p NUm and Srdl Inks

2-35

2 MATLAB Working Environment

Toolbar
The toolbar in th e Command W indow provides easy access to popular
operations. Hold th e cursor over a button; a to o l t ip appears describ ing the
button and add it iona l in fo rm a t ion appears in th e s ta tus bar.

Open
File

Pfeste

Wrk^ace
Undo ЕТсмш-

New
Path Simulink
Войт мхй

Tooltip Cesribes
EUtton

Show or Hide the Toolbar. To remove th e too lbar from th e Command Window,
select T o o lb a r from th e V ie w menu; th e menu item becomes unchecked. To
d isp lay th e toolbar, select T oo lba r from th e V ie w menu; th e menu item
becomes checked and th e too lbar appears. T h is does not affect th e se tt ing for
Show T o o lb a r in th e P re fe ren ce s dia log box. The preferences se tt ing perta ins
to th e toolbar s ta tus when you f i rs t s ta rt M A T L A B .

Move the Toolbar. You can move th e too lbar to another position. C lick and hold
on any separator bar (the l ine between groups of buttons) and then drag th e
too lbar to a new location. I f you move th e too lbar to an inside edge of the
Command W indow, it w i l l become docked, meaning it w i l l not overlap th e
contents of th e Command W indow. The new toolbar position is m ain ta ined
when you resta rt M A T LA B .

2-36

Microsoft W indows Handbook

Menus
The Command W indow menus provide access to some operations not ava ilab le
from th e toolbar. Hold th e cursor on a menu item and a description of th e i tem
appears in th e s ta tus bar.

J Edit V iew W indow Help

Preferences
Set preferences to control th e appearance and operation of th e Command
W indow. Select P re fe ren ce s from th e F i l e menu. The P re fe ren ce s dia log box

2-37

2 MATLAB Working Environment

appears, from w hich you set G e n e ra l , C o m m a n d W in d o w Font , and C o p y in g
O p t io n s preferences.

ГТГх1

General Preferences.

• N u m e r i c F o r m a t - Specify th e default n um er ic fo rm at. For more
in fo rm a tion see “The fo rm at C om m and” , or th e reference page for f o r m a t .

• E d i to r P re fe re n c e - Use M A T L A B ’s Ed itor, or specify another. For more
in fo rm ation about M A T L A B ’s Ed ito r , see “ Ed itor /Debugger” .

• He lp D i r e c t o r y - Specify th e d irec tory in which M A T L A B help f i les reside.

• Echo On - T u rn M -f i le echoing on; see th e echo reference page for more
in fo rm ation .

• Show T o o lb a r - Show or h ide th e too lbar in th e Command Window.

• Enab le Gr aph i c a l D eb u g g in g - A t each breakpoin t, au tom a tica l ly show th e
Debugger.

P re fe rences

2-38

Microsoft W indows Handbook

Command Window Font. Specify th e font character is t ics for th e text d isplayed in
th e Command Window.

Copying Options. Specify options used when copying i tems from M A T L A B to th e
W indow s clipboard for pasting in to other applications.

Ed i t o r / D e b u g g e r
The Ed itor/Debugger provides basic tex t ed it ing operations as well as access to
M -f i le debugging tools. The Ed itor/Debugger offers a graphical user interface.
It supports a u to m a t ic inden t ing and syn tax h ig h l igh t in g ; for de ta i ls see the
“General O p tions” section under “V iew M en u ” . You can also use debugging
commands in th e Command W indow . See C hapter 3 for more in fo rm ation
about M A T L A B ’s debugging capabilit ies.

To specify th e default editor for M A T L A B , select P re fe ren ce s from th e Fi l e
menu in th e Command W indow. On th e G enera l page, select M A T L A B ’s
Editor/Debugger or specify another.

Starting the Editor/Debugger
To s ta rt th e Editor/Debugger, select New from th e F i l e menu, or click th e new
f i le (page icon) button on th e toolbar, or type ed i t at t he command line.

To s ta rt th e Editor/Debugger, opening it to a p a r t icu la r fi le, select Open from
th e F i l e menu, or click th e open f i le (folder icon) button on th e toolbar, or type
ed i t f i l e n a m e at t he command line.

Do not use th e Ed itor/Debugger w h i le you are run n in g an M -f i le in th e
Command W indow or you w i l l get an error.

When you run th e Editor/Debugger w i th o u t M A T L A B open, it becomes a pure
text editor; you cannot use it as a debugger. To use th e debugger, launch the
Editor/Debugger from w i th in M A T L A B or w i th M A T L A B open.

2-39

2 MATLAB Working Environment

IVemsftcMcteAceKto Operations

MUtipleFilesCpen ii
the Edftcr

Toolbar: ЗлеМЬти itemsare As) Avsiiafcle frcmthe Todber
/

AutcmaticGacr
Hichlichting toDstingJSi
Dfferert Êemerts

Autcmsticircentirg

Status Ear: HddtheOncr cn a Menu itemcr Tcdbar EUttcni a Current LineNunter
Cteripticn cf it then Appearsin the Status Ear

N6w Save ccpy Rirt Set/Oear Stepin Qntinue
File to Osk

Htcr/Ceaugcer
Tcdbar _

Ereakpcint
FUncticn List cf FUrcticnscn the Call

Stack

Faste Help Clear All Si^e CUit
Er6ekpcirts Step Debugging

Title Bar
The name of the file you are editing appears in the t i t le bar. I f there is an
asterisk (*) appearing after the name in the t i t le bar, it indicates tha t you have
made changes to the file but have not saved those changes.

2-40

Microsoft Windows Handbook

File Menu
Use the F ile menu items to open, save, and p rin t files, and to exit from the
Editor/Debugger. I f you have a color p rin te r and want to p rin t in color, before
p rin ting , select O p tions from the Tools menu and check the P r in t in color
checkbox.

Edit Menu
Use the Edit menu items to find and replace text, and to go to the line you
specify.

View Menu
Use E va lua te Selection to evaluate an expression and display the answer in
the Command W indow. Use A u to Inden t Selection to indent the selected text
according to M ATLAB syntax.

Debug Menu
The Debug menu provides an interface to the graphical M -file Debugger. See
Chapter 3 for in form ation about debugging w ith in M ATLAB.

Tools Menu
The Tools menu provides access to several dialog boxes tha t allow you to
control existing features and to define new features for use w ith the E d ito r/
Debugger.

Run. In it ia lly present on the Tools menu, Run saves all files and runs the
current file. It is an example of the type of command you can create and add to
the Tools menu using the Custom ize menu item.

2-41

2 MATLAB Working Environment

Custom ize. Use Custom ize to create your own custom tool tha t can run any
M ATLAB command.

There are tw o edit fie lds in the Custom ize Tools Menu:

• Menu Text: Supply the name for the menu item tha t you want to add to the
Tools menu. To create a mnemonic for the menu command, precede a
character w ith &. Use th is mnemonic by typ ing A lt followed by t (the t
indicates the Tools menu) followed by the mnemonic character. (Note: The
A lt key need not be held down w h ile pressing the keys tha t follow.) For
instance, in the example above, you can execute the Run command by
choosing Run on the Tools menu or by typ ing A lt, t, and r in sequence.

• M ATLAB E xp ress ion : In th is box, type the expression you want M ATLAB
to evaluate when you select the custom tool from the Tools menu. Any valid
M ATLAB expression is allowed. You can also include any of s ix special
substitu tion variables. The variables may be typed d irectly or inserted via
the submenu, as shown above.

When your custom tool is chosen, in form ation about the current file is
substituted in to the expression, replacing the substitu tion variables, and
the expression is evaluated in M ATLAB. D ifferent in form ation is

2-42

Microsoft Windows Handbook

substituted for the substitu tion variables depending upon whether the
expression is executed by the Editor, Path Browser, or A rray Editor.

The tab le summarizes the variables and the substitu tions made for them
w ith in the various environment tools.

Submenu
Item

Variable
Inserted

Invoked
from Editor

Invoked
from Path
Browser

Invoked
from Array
Editor

Inserts Inserts Inserts
complete complete name of
pathname of pathname variable.
th is file. of file

selected in
right-hand
panel.

Inserts Inserts Inserts
name of th is name of name of
function file variable.
w ithou t its selected in

extension. right-hand
panel
w ithou t
extension.

Inserts the Inserts Inserts
text tha t is complete indexing
highlighted pathname expression
in th is view. of file correspond­

selected in ing to
right-hand selection
panel. (numbers

in bottom
righ t
panel).

Pathname $(Pat hname)

F ile $(Fil e)

Selection $(Sel)

2-43

2 MATLAB Working Environment

Submenu
Item

Variable
Inserted

Invoked
from Editor

Invoked
from Path
Browser

Invoked
from Array
Editor

Quoted $(Quot edSel Adds Adds - -
Selection) additional

single
quotes to
strings to
preserve
quotes (e.g.,
who’ s
becomes
'who’ ’ s’) .

single
quotes to
selected
pathname
and
transm its
to
M ATLAB.

Beginning
of Selection

$(Begi nSel) Inserts
character
offset of firs t
character in
the selection.

End of
Selection

$(EndSel) Inserts
character
offset of last
character in
the selection.

When you invoke your custom tool:

1 A ll open files are saved.

2 Appropria te values are substituted for all substitu tion variables in the too l’s
M ATLAB expression.

3 The expression is evaluated in M ATLAB.

4 The current file is reloaded if it has changed.

2-44

Microsoft Windows Handbook

Here are some examples of expressions you can create using the Custom ize
command and several substitu tion variables. Observe the d iffe ring results
when you invoke the expression in the Editor, Path Browser, or A rray Editor.

Expression Result

(DCS) !copy /Y $(Pathname)
$(Pathname)-
(UNIX) ! /b in /c p $(Pathname)
$(Pathname)-

Backup file.

mex $(Pathname) Runs Mex script on a C
file.

which $ (F ile) D isplay pathname of
function.

doc $ (S e l) Call Help Desk for
selected function.

e d it $ (S e l) Edit selected function.

di s p (’ S e le c tio n :
$(EndSel)’)

$ (Beg inSe l) th rough Indicates in Command
Window beginning and
end of selected Editor
text.

$(F i le) ($ (S e l)) = $ (F i le) ($ (S e l)) * 2 ; When invoked from
A rray Editor, doubles the
values of selected array
elements.

2-45

2 MATLAB Working Environment

Here is a longer example dem onstrating how to create a custom tool using
M ATLAB to script the Editor. F irs t, create an M -file called censor .m

fu n c t io n ce n so r(p a th n a m e ,se ls ta rt,se le n d)
% Read the s p e c if ie d f i l e in to an a rray
fp=fopen(pathname,’ r+ ’);
tx t= f re a d (fp) ;
fs e e k (fp , 0 ,-1) ;
tx t = c h a r (tx t ’);

% In se rt your code here.
% For example, the next l in e rep laces the s e le c t io n w ith X’ s;
t x t (s e ls ta r t : s e le n d) = ’ X’ ;

% W rite th e m od ified a rray back to the f i l e
f w r i t e (f p , t x t ’);
fc lo s e (fp) ;

Now, use Custom ize from the Tools menu to create the M ATLAB expression:

ce n so r(’ $(Pathname)’ , $ (BeginSe l) ,$ (E n d S e l)) ;

Also, create the menu text for th is expression by typ ing &Censor in the
Menu Text box. In the example we have provided, when you run Censor from
the Tools menu, text you have highlighted in the Editor is replaced w ith X’s.

2-46

Microsoft Windows Handbook

General Options. Choose O ptions from the Tools menu and select the General
tab.

Show w orkshee t-s ty le tabs: controls if the E d ito r w indow displays tabs for
navigating among open files.

I test.m - C:\... 1/] acrubond.m... 1/1 t.m - C:WIN..

Ready

2-47

2 MATLAB Working Environment

• Show D ataT ips: When the cursor remains positioned over a variable, the
item is expanded and the results are displayed in the E d ito r window.

I I I ' M A T LA B E d ito r /D e b u g g e r
File Edit V iew Debug Tools W indow Help

□ | g ? | d | IH©I <» | ? |

:iewmatrix

n e m a t r i x
17 24 1 S 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 IB 25 2 9

• A u to m a tica lly re load e x te rn a lly m od ified files : Files changed outside of
the Editor are autom atica lly reloaded. Otherwise, the Editor asks if you
want to reload the file.

• D isable ove rtype mode (In se rt key): Disables the Inse rt key, which
switches overtype mode on and off.

• Append “ m ” to filenam e on Save As: The .m extension is appended to the
filenam e provided in the Save As dialog box if tha t extension is not already
present. I f th is option is not checked, the file is saved w ith the filenam e
exactly as typed.

• P r in t in co lo r: P rin ts the M -file in color when a color p rin te r is used.
• R ecently used f ile lis t: Controls number of files listed on the recently used

file lis t under the F ile menu. The Editor must be restarted for the new
number to take effect.

2-48

Microsoft Windows Handbook

Editor Options. Choose O p tions from the Tools menu and select the E d ito r tab.

• M -file syntax-based fo rm a ttin g :
- Syntax h ig h lig h tin g : As you type in to the Editor, the text is colored

according to the k ind of text entered.
- A u to ind e n t on re tu rn : Pressing the R eturn or E nter key indents the

current and next lines.
- A u to ind e n t size: Type the number of columns to indent for each level of

nested code. The default accelerator for indenting in the M ATLAB Editor
is C t r l- I .

- Em acs-style tab key auto in d e n tin g : The Emacs editor uses the Tab key
to indent the current line. I f you want the Tab key to indent the current
line, check th is option.

• B racke t and quote m atch ing : The Editor can indicate which bracket,
parenthesis, brace, or quote balances another in your file. Four settings
control th is matching:
- B racke t M atch ing : Enables m atching for brackets, braces, and

parentheses.
- Quote M a tch ing : Enables m atching for quotes.

2-49

2 MATLAB Working Environment

- Search d istance: Controls the number of lines forward or backward the
Editor searches for a match.

- Show match fo r : Controls duration of the match indicator.
Tab key settings: These settings control what happens when you type a tab
character (w ith Em acs-style tab key auto in d e n tin g off) and when the
Editor encounters a pre-existing tab in your file.

- Tab key inserts : Chooses whether the Tab key inserts a tab characte r or
a number of spaces equivalent to a tab character.

- Tab size: Controls number of space equivalents between tab stops. Note
tha t the A u to ind e n t size parameter is separately tunab le from th is
setting. Autom atic indenting always inserts spaces.

Font. Use the Font submenu to change the font fam ily , style, and size for the
text in the Editor/Debugger and the Path Browser.

Path Browser
The Path Browser lets you view and modify M A T LA B ’s search path and see all
of its files. To open the Path Browser, select Set Path from the F ile menu, or
click the Path Browser toolbar button. You can also access the Path Browser

2-50

Microsoft Windows Handbook

□retteries
cn Search"
Ffeth

using the path too l command or, from the Editor/Debugger, select Path
Browser from the V iew menu.

Qxbedick cn a Fileto
Open It

P a th B row se i

File E d it V ie w P ath Too ls H e lp

J J j
C u rre n t D ire c to ry Files in general

Browse..| \ \ D evt о о 1 s \ ill at- 1аЬ5\n i ght ly \ b in\ nt

Path
\ \Devtools\m atlab5\nightly\toolbox\m atlab\ general

\ \ D e v t о о 1 s \ mat 1 ab 5 \ n i ght ly \ too lb о x \ mat-1 ab \ op s
\ \ D evt о о1 s \mat1 ab 5\ni gh tly \toolb о x \mat1ab\1ang

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ elmat

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ el fun

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ spec fun

\ \ D evt о о 1 s \ mat 1 ab 5 \ n i ght ly \ too lb ox\mat 1 ab \ mat fun

\ \Devtools\m atlab5\nightly\toolbox\m atlab\ data fun

\ \ D evt о о 1 s \ mat 1 ab 5 \ n i ght ly \ too lb ox\mat 1 ab \ p о ly fun

\ \ Devt Dols\matlab5\nightly\toolbox\m atlab\ fun fun

\ \Devt Dols\matlab5\nightly\toolbox\m atlab\ spar fun
1 x.-. 1 - У . T.-. -i 1 т т -I- 1 V..-. -ir-. 1 .-.V.

R e a d y

11

л> г

E l L J |Ё(5цц{[|3|
1 addpath.m

jitl b inpat ch. и

1 Cd.lii

clear.m

computer. щ

С ont ent s . ill

copyfile.iii

1 dbcl . m

1 db n t . m

551 'it- down. m

Э] dbmex

Й] dbquit.m

Й] dbstack.m

G:08 PM

Ю MCve a Cir̂ ery, Drag It to the Hfê red FCstien

Use the menus in the Path Browser to:

• Add a d irectory to the front of the path.
• Remove a selected d irectory from the path.
• Save settings to the pa thde f.m file.
• Restore default settings.

C lick B rowse to find a d irectory to add to the path. The Brow se for Folder
dialog box opens. Note that the current d irectory displayed in th is dialog box is
the d irectory you had selected in the Path Browser w indow. I f you want the
Browse for Folder dialog box to open to the current d irectory, click in the
C u rre n t D ire c to ry fie ld in the Path Browser w indow and then click Browse.

2-51

2 MATLAB Working Environment

Workspace Browser
The Workspace Browser lets you view the contents of the current M ATLAB
workspace. It provides a graphical representation of the whos display.

To open the Workspace Browser, select Show W orkspace from the F ile menu,
click the W orkspace Browser toolbar button, or type workspace at the
command line.

Name Size Bytes Class

SEE a 1x1 8 double array
■■■ LSSSb 1x3 24 double array

Е Е : с 2x3 48 double array
□be e 1x12 24 char array

5x5 84 sparse array

E E : s 4x3x2 192 double array

- i h 1x1 132 struct array

□ □ 1 2x3 600 cell array
@ 1 1x1 830 inline object

|G rend total is 1 0 8 elem ents usin g 19 4 2 bytes

Q p en | Q elete | I c i o s s ^ J

You can resize the columns of in form ation by dragging the column header
borders. The workspace is sorted by variab le name. Sorting by other fie lds is
not supported.

To clear a variable, select the variab le and click Delete. Shift-c lick to select
m u ltip le variables.

To rename a variable, firs t select it, then click its name. A fte r a short delay,
type a new name and press E nter to complete the name change.

Editing Arrays
The M ATLAB Editor/Debugger provides a visual representation of
two-dimensional num eric arrays, which allows for easy editing. To see and edit
a graphical representation of a variable, select a variab le ’s icon in the
Workspace Browser and click O pen, or double-click the icon. The variab le is
displayed in the E d ito r/D ebugger w indow, where you can edit it. You can only
use th is feature w ith num eric arrays.

W o r k s p a c e B ro w s e r -

2-52

Microsoft Windows Handbook

CUrrent Values ChangeAy ValueEy Editing It in the CM

CUrrent Dmenscns АИ cr FentveFtwsard GaumnsEy Editing thesDmanacns GUrrert CM

2-53

2 MATLAB Working Environment

UNIX Handbook
This section describes several M ATLAB environment tools and the ir use w ith
the U N IX operating system.

Ed i to r /Debugger
M ATLAB provides a bu ilt-in combined Editor/Debugger tha t offers basic text
editing operations as well as access to M -file debugging tools. Th is is
essentially the same Editor/Debugger as the one provided for W indows
platforms. See the section, “M icrosoft W indows Handbook,” for a discussion of
file editing w ith th is tool.

The Editor/Debugger offers a graphical user interface. To use the Ed ito r/
Debugger, type edi t at the M ATLAB prompt. You can also use debugging
commands in the Command Window. Refer to Chapter 3 for a discussion of
M A T LA B ’s debugging capabilities.

File Edit View Debug Tools Window Help

D ig ita l * n p | 1^1 е Ы ^ I i b i I q I ■ i *

polynom.m - /Tionie/ron/polynoni.m*

function p = polynom(a)
if nargin ==00

p . с = [];
p = c la s s (p ,' polynom') ;

e 1 s e i f i s a (a , ' polynom')
p = a;

else
p . с = a (:) . ' ;
p = c la s s (p ,'polynom ') ;

end_________________________________

Untitiedl | - /home... polynom....

Ready 11:33 AM J;

N ote You cannot use the Editor on U N IX platform s to cut and paste to and
from X Window Systems applications. The Editor on U N IX platform s does not
accept Japanese characters as input.

2-54

UNIX Handbook

Setting the Default Editor
The editing and debugging features are both set Cn by default when M ATLAB
is installed. I f you want to substitu te a d ifferent editor (such as Emacs) or not
use graphical debugging, you can tu rn these tools C ff by setting the
appropria te variab le in your ~hom e/.Xdefau lts file:

matl a b * b u ilt In E d ito r : Off
m atlab*graphica lD ebugger: Off

Run

xrdb -merge ~hom e/.Xdefau lts

before s ta rting M ATLAB.

If you set the Editor Cf f , the option

matl ab*externa l EditorCoimnand: $EDITCR $FILE &

controls what the e d it command does. M ATLAB substitu tes $EDI TCR w ith the
name of your default editor and $FILE w ith the filename. Th is option can be
modified to any sort of command line you want.

Changing the Editor During a Session
To tu rn off the b u i l t i nE d ito r during a M ATLAB session, use

syst e n _ d e p e n d e n t ('b u i l t in E d ito r ', 'o f f ')

Then ed it uses the editor defined for your U N IX EDITOR environment variable.
To tu rn the M ATLAB Editor/Debugger back on during the session, use

syst e n _ d e p e n d e n t('b u i l t in E d ito r ', 'o n ')

You can include the systen_dependent command in your s ta r tu p .m file . See
the m atlabrc reference page for more inform ation.

Saving Editor Options
The M ATLAB Editor stores your options in a reg istry file located under the
d irectory $HCME/.windu. Communication w ith th is file is handled through a
daemon (called w indu_regi s tryd41 or w indu_reg is tryd 40), which is started
autom atica lly when you start M ATLAB, and is shut down shortly after you
quit M ATLAB.

2-55

2 MATLAB Working Environment

To view the registry, type the command re g e d it . The reged it command starts
the registry editor. Your settings are located under HKEY_CURRENT_USER/
Software/Vat hWOrks.

Th is registry is not portable across d ifferent U N IX platforms. The reg istry can
only be read and w ritten to on the p latform on which it was created. I f you start
the M ATLAB Editor on a d ifferent platform , it w ill s tart a registry daemon
w ith the default options. These options can be saved and retrieved from the
registry daemon, but once the daemon is shut down, the options w ill be lost.

When you start the Editor, if you get messages about missing options, it is
possible tha t your reg istry has somehow been corrupted. To f ix th is problem,
k ill your registry daemon and delete the registry database directory. Then
restart M ATLAB and it w ill create a new registry w ith the default options.

Path Browser
The Path Browser lets you view and modify M A T LA B ’s search path and see all
of its files. To open the Path Browser, type pat htool at the command line. This
is essentially the same Path Browser as the one provided for W indows
platforms. See the section, “ Microsoft W indows Handbook,” for a discussion of
th is tool.

2-56

UNIX Handbook

Workspace Browser
M ATLAB provides a Workspace Browser tha t lets you view the contents of the
current M ATLAB workspace. It provides a graphical representation of the whos
display. To open the Workspace Browser, type workspace at the command line
This is essentially the same Workspace Browser as the one provided for
W indows platform s. See the section, “Microsoft W indows Handbook,” for a
discussion of th is tool.

- W orkspace B ro w s e r ___ Ы - l |

Name | Size | Bytes | Class'
■■■a 1x1 8 double array
ii ib 1x3 24 double array
Hi с 2x3 48 double array
abc e 1x12 24 char array
\ f 5x5 84 sparse array
! ! !g 4x3x2 192 double array
- ih 1x1 138 struct array□□□□ 1x2 288 cell array
@1 1x1 824 inline object

Grand total is 93 elements using 1534 bytes

Editing Arrays
The M ATLAB Editor/Debugger provides a visual representation of
two-dimensional num eric arrays, which allows for easy editing. This is
essentially the same array editing fa c ility as the one provided for W indows

2-57

2 MATLAB Working Environment

platforms. See the section, “M icrosoft W indows Handbook,” for a discussion of
th is tool.

Preferences
An optim ization option in the .X de fau lts file s ta rts the environment tools but
does not display them un til you exp lic itly ask for them. I f you want to tu rn th is
feature off, set the m atlab*pre l oadlDE variab le to Cf f . (The default is on.)

The environment tools w ill not display well on 16-bit X displays. I f you are
using such a display, tu rn the environment tools off in your Xdef a u lts file:

m a tla b *b u ilt In E d ito r : Cff
m atlab*graphica lD ebugger:
m atlab*preloadIDE: C ff

Cff

License M a n agem en t Tools
Although your system adm in is tra to r has probably taken care of the deta ils of
ins ta lling and configuring M A T LA B ’s license manager, some background
inform ation is helpful for you to know. This section contains some of the same

2-58

UNIX Handbook

inform ation provided for the system adm in istra tor. For complete details, see
the section by the same name in the M ATLAB Insta lla tion Guide for U N IX .

On U N IX platforms, M ATLAB uses a license manager called FLEXlm to
manage the per-computer or per-user licensing. FLEXlm manages per-user
licenses w ith a key system. Each tim e a user invokes M ATLAB, the license
manager considers tha t one key in use. When the to ta l number of licensed keys
are in use, no more users can invoke M ATLAB.

FLEXlm consists of a license daemon and a product daemon tha t run on a
server node. On U N IX computers, the server node is usually the file server on
which M ATLAB is installed. Throughout th is section, references to the matlab
d irectory refer to the d irectory where the contents of the M ATLAB CD is
installed.

The license and product daemons run in the background on the server node.
They are responsible for checking in and out licenses as users invoke and quit
M ATLAB.

License Administration
A number of license adm in istra tion tools are available in m a tla b /e tc ,
including

lmdown Shut down all license daemons.

lm hos tid D isplay hostid of the machine on which you are running.

lm sta t Show the current status of all network licensing activities.
The command l mstat -a displays all in form ation. Use the
switch - f instead of -a to display a lis t of who is using what
features. Im stat -h displays usage help.

Im sta rt S tart license daemons. (If license daemons are already
running, you must firs t use lmdown to shut them down.)

Understanding the License File
The License F ile l i cense.dat contains the deta ils of your license, such as the
number of keys you have for M ATLAB, the toolboxes tha t you purchased, and
the hostids of the licensed CPUs. If you upgrade your license or need to move

2-59

2 MATLAB Working Environment

the license server to a d ifferent machine, The M athW orks can give you new
inform ation by e-mail or telephone.

Your system adm in is tra to r should edit the License F ile to reflect your licensing
inform ation. I f you edit the file yourself, follow the instructions in the
I nsta lla tion Guide, or run lmdown followed by lm s ta r t . To run lmdown, you
must be a member of the U N IX group lmadmn, or a member of group 0 if
lmadmn does not exist.

The matlab script in m a tla b /b in sets the environment variab le
LM_LICENSE_FILE to contain the pathname where lic e n s e .d a t is stored. This
pathname is norm ally m a tla b /e tc / lic e n s e .d a t wherever M ATLAB is stored.
I f necessary, you can change th is environment variab le to point to some other
location.

The file /usr/tm p /ln_TM W 8.log , where the license daemon’s output usually is
redirected, contains a log of all license check-outs, check-ins, and denials. A
new entry is recorded in the log each tim e a transaction occurs. To save file
space, you can delete it occasionally.

Creating a Local Options File
You can instruct the license manager to:

• Reserve one or more keys for a particu la r user, group of users, or host
• Specify the users, groups of users, or hosts tha t have permission to access one

or more products

To use these options, you can create a local options file and lis t its pathname
as the fourth fie ld on the DAEMON line in the lic e n s e .d a t file. Depending on the
length of your path, th is line may become fa ir ly long. In the follow ing example,
th is line is shown on tw o lines; however, you should keep it all on one line:

DAEMON MLM /u s r / lo c a l /m a tla b /e tc / ln _ m a tla b
/u s r / lo c a l/m a t la b /e tc / lo c a l.o p t i ons

A local options file is not required. If it does exist, it can have one line or many
lines, reflecting your special needs. The license manager allocates keys
according to these options un til all keys are in use. I f you try to reserve more
than the authorized number of keys in the options file, a w arn ing message
appears in the l ic e n s e .lo g file.

2-60

UNIX Handbook

A local options file m ight look s im ila r to th is one:

RESERVE 1 MATLAB USER p a t r ic ia
RESERVE 3 MATLAB HCST pegasus
RESERVE 1 CONTROL GROUP devels

INCLUDE SIGNAL HOST lab rea
INCLUDE SIGNAL USER tom
EXCLUDE SIMULINK GROUP devels
GROUP devels andrea tom fre d

The lines s ta rting w ith RESERVE contain the number of keys for a particu lar
product set aside for a specific user, group, or host. Th is does not lim it the
number of keys for tha t group or host; it s im ply ensures tha t a key w ill be
available when you want it (unless the specified number of reserved keys has
already been reached).

The lines s ta rting w ith INCLUDE contain the products to be restricted to a
particu lar user, group, or host; only tha t user, group, or host is allowed to use
th is product. You can have m u ltip le INCLUDE lines for the same feature,
including d ifferent users, groups, or hosts.

The lines s ta rting w ith EXCLUDE contain the features to be restricted from a
particu la r user, host, or group; tha t user, group, or host is not allowed to use
tha t product. You may have m u ltip le EXCLUDE lines for the same feature as
well.

Any line s ta rting w ith GROUP defines the members of a group name used in the
previous lines of th is file. (License manager groups are d istinct from U N IX
protection groups and any other groups defined outside of M ATLAB.) I f a group
name is used in a RESERVE, INCLUDE, or EXCLUDE line, the group membership
must be defined in a GROUP line.

2-61

2 MATLAB Working Environment

2-62

3

Debugger and Profiler

M A T L A B D e b u g g e r ... 3-2
Debugging: An O v e r v ie w .. 3-2
M -Files For An Example S e s s io n ...3-3
T ria l R u n ... 3-4
Debugging Using the Graphical User I n t e r f a c e 3-4
Debugging from the Command L i n e .. 3-10

M -F ile P r o f i l e r ..3-17
Profiling: An O v e r v ie w ...3-17
How the Profiler W o r k s ...3-17
The profile C o m m a n d ...3-18
An Example Using the P r o f i le r ... 3-19
View ing Profiler Results ... 3-20
Saving Profile R e p o r t s ...3-25

3 Debugger and Profiler

MATLAB Debugger
The M ATLAB Debugger helps you iden tify programming errors in your
M ATLAB code. Using the Debugger, you can view the contents of the
workspace at any tim e during function execution, view the function call stack,
and execute M -file code line by line.

M A T LA B ’s Debugger has a graphical user interface and provides a command
line interface as well.

These sections step you through an example debugging session. A lthough the
example M -files m ight be sim pler than your own M ATLAB code, the debugging
concepts demonstrated here remain the same.

Debugging : An Overv iew
Debugging is the process by which you isolate and fix problems w ith your code.
Debugging helps to correct tw o kinds of errors:

• Syntax errors, such as m isspelling a function name or om itting a
parenthesis. M ATLAB detects most syntax errors and displays a message
describing the error and showing its line number in the M-file.

• Runtim e errors. These errors are usually a lgo rithm ic in nature; for example,
you m ight modify the wrong variab le or perform a calculation incorrectly.
Runtim e errors are apparent when an M -file produces unexpected results.

You can usually correct syntax errors easily based on M A T LA B ’s error
messages. Runtim e errors are more d ifficu lt to track down because the
function ’s local workspace is lost when the error forces a re turn to the
M ATLAB base workspace. Use any of the fo llow ing techniques to isolate the
cause of run tim e errors:

• Remove selected semicolons from the statements in your M -file. Semicolons
suppress the display of in term ediate calculations in the M -file. By removing
the semicolons, you instruct M ATLAB to display these results on your screen
as the M -file executes.

• Add keyboard statem ents to the M-file. Keyboard statements stop M -file
execution at the point where they appear and allow you to examine and
change the function ’s local workspace. Th is mode is indicated by a special
prompt, “K>>.” Resume function execution by typ ing re tu rn and pressing the
R eturn key.

3-2

MATLAB Debugger

• Comment out the leading function declaration and run the M -file as a script.
Th is makes the interm ediate results accessible in the base workspace.

• Use the M ATLAB Debugger.
The Debugger is useful for correcting run tim e errors precisely because it
enables you to access function workspaces and examine or change the values
they contain. The Debugger allows you to set and clear breakpoints, specific
lines in an M -file at which execution halts. It also lets you change workspace
contexts, view the function call stack, and execute the lines in an M -file one
by one. Th is section describes these tasks in detail.

N o te The M -file breakpoint in form ation is closely associated w ith the copy of
the M -file tha t M ATLAB holds in memory. I f you clear the M -file by editing or
by issuing c le a r M file , all of M f i le ’s breakpoints are also cleared.

M-Files For An Example Session
To try the Debugger, firs t create an M -file called va ria n ce .m th a t accepts an
input vector and re turns an unbiased variance estimate. Th is file calls another
M -file, sqsuim tha t computes the mean-removed squared sum for the input
vector.

fu n c t io n y = v a ria n ce (x)
mu = s u m jx) / le n g th (x) ;
to t = sqsumjx,mu);
y = t o t / (le n g th (x) —1);

Create the sqsumm file exactly as it is shown below, complete w ith a planted
bug.

fu n c t io n to t = sqsum(x,mu)
to t = 0;
fo r i = 1 :le n g t h(mui)

to t = to t + ((x (i) -m u i) . л2);
end

3-3

3 Debugger and Profiler

N o te The example above is coded for illu s tra tive purposes only. Whenever
possible, avoid fo r loops and use vectorization for the most efficient execution.

Trial Run
Try out the M -files to see if they w ork correctly. Use M A T LA B ’s s td function
to compute results.

Create a test vector at the command line.

v = [1 2 3 4 5];

Compute the variance using std .

v a r l = st d (v) .A2

var1 =

2.5000

Now try the va ria n ce function from above.

myvarl = v a ria n ce (v)

myvarl =

1

The answer is wrong. Le t’s use the Debugger to isolate the error in the M-files.
The follow ing section shows a sample session using the Editor/Debugger
graphical user interface, as well as one from the command line.

Debugg ing Using the Graphical User Interface
To start debugging:

• I f you have jus t created the M -files using the E d ito r/D ebugger window, you
can continue from th is point.

• I f you’ve created the M -files using an external text editor, s tart the E d ito r/
Debugger and then click the Open M -file button on the toolbar.

3-4

MATLAB Debugger

The Editor/Debugger toolbar contains a series of debugging icons.

Toolbar
Button

Purpose Description Equivalent
Command

m

Set/Clear Breakpoint

Clear A ll Breakpoints

Step In

Single Step

Continue

Q uit Debugging

Set or clear a
breakpoint at the line
containing the cursor.

Clear all breakpoints
tha t are cu rren tly set.

Execute the current
line of the M -file and,
if the line is a call to
another function,
step in to that
function.

Execute the current
line of the M-file.

Continue execution of
M -file un til
completion or un til
another breakpoint is
encountered.

Exit the debugging
state.

dbstop/
dbclear

dbclear a ll

dbstep in

dbstep

dbcont

dbqui t

A righ t-button mouse click in the E d ito r w indow produces a pop-up menu of
some of the options.

Setting Breakpoints
Most debugging sessions start by setting a breakpoint. B reakpoints stop M -file
execution at specified lines and allow you to view or change values in the

3-5

3 Debugger and Profiler

function ’s workspace before resuming execution. A breakpoint is set or cleared
at the line containing the cursor. A red stop sign (ф) next to a line indicates
tha t a breakpoint is set at tha t line. I f the line selected for a breakpoint is not
a valid executable line, then the breakpoint is set at the next executable line.

N o te The Debugger’s B re a kp o in ts menu also lets you halt M -file execution
if your code generates a warning, error, or NaN or In f value.

A t the beginning of the debugging session, you’re not sure where the error in
the va ria n ce function is, or even if i t ’s in the va ria n ce .m or sqsumm file . A
logical place to insert a breakpoint is after the computation of the mean and the
mean-removed squared sum. Open va ria n ce .m and set a breakpoint at line 4.

y = t o t / (le n g th (x) —1) ;

The line number is indicated at the bottom righ t of the status bar. Set the
breakpoint by positioning the cursor in the line of text and click on the
breakpoint icon in the toolbar. A lte rna tive ly , you can choose Set B reakpo in t
from the Debug menu, or righ t-c lick to bring up the context menu and choose
Set/Clear B re a kp o in t.

3-6

MATLAB Debugger

Examining Variables
To get to the breakpoint and check the values of interest, firs t execute the
function from the Command Window.

vari ance(v)

When execution of an M -file pauses at a breakpoint, the yellow arrow to th e left
of the text (ф) shows the next line to execute. A downward yellow arrow (Q)
appearing to th e left of the text indicates a pause at the end of the script or
function. Th is allows you to examine variables before re tu rn ing to the calling
function.

Check the values of mu and to t from the Debugger. H igh ligh t the text of each
variab le and righ t-c lick to bring up the context menu and choose E va luate
S e le c tio n . Or, a lte rna tive ly, choose E va lua te Selection from the V iew menu.

Both the selection and the result are displayed in the Command Window.

K>> mu

mu =
3

K>> to t

to t =
4

The problem is in the sqsum function.

3-7

3 Debugger and Profiler

Changing Workspace Context
Use the Stack pull-down menu in the upper-right corner of the Debugger
w indow to change workspace contexts. To step out from the var iance function
and see the base workspace contents, select Base W orkspace from the menu.

Check the workspace context using whos or the graphical Workspace Browser.

The variables v and m yvarl, as well as any other variables you may have
created, show up in the lis ting. To return to the va ria n ce workspace context,
select V a riance from the menu.

Stepping Through Code and Continuing Execution
Clear the breakpoint at line 4 in var iance .m by placing the cursor on the line
and selecting C lear B re a kp o in t from the Debug menu. (Or a lte rna tive ly
righ t-c lick to bring up the context menu and choose Clear B reakpo in t).
Continue executing the M -file by selecting C on tinue from the Debug menu.

Open the sqsumm file and set a breakpoint at line 4 to check both the loop
indices and the computations tha t take place inside the loop. Run variance
again, s till using the vector v as input. Execution pauses at line 4 of sqsum If

3-8

MATLAB Debugger

we look at the va riance function in the Editor/Debugger, we see the call to
sqsum indicated by an arrow w ith a vertical line through it.

I" M ATLAB E d ito r/D e b u g g e r - [C : \W IND O W S'iD esktopV. va rian ce .m] Г Г Г
£ 3 f ile Edit View Debug Window Help - H * l

D f S У g ’ | P i # | f € l h a 4Q) 4 U id) Still Stack : |variance d

f u n c t i o n у = v a r i a n c e (x)

mu = s u m (x) / l e n g t h (x) ;
O t o t - s q s u m (x , m u) ;

у = t o t / (l e n g t h [x) - 1) ;

FI eady Э:3 7 АМ Ж

Evaluate the loop index i .

K>> i

i =
1

Then select S ing le Step from the Debug menu to execute the next line.

Evaluate the variab le t o t .

K>> to t

to t =
4

Select S ing le Step again. sqsum only goes through the fo r loop once.

fo r i = 1 :length (m u)

The loop only iterates un til the length of mu, a scalar, rather than the length of
x, the input vector.

Select Q u it Debugging from the Debug menu to end the M -file execution.

3-9

3 Debugger and Profiler

To see if changing to t to its expected value produces the correct answer, clear
the breakpoint from sqsum and set a breakpoint on line 4 of va r ia n ce .m Run
va ria n ce once again.

va riance (v)

Execution pauses after control re tu rns from sqsum, but before va ria n ce uses
the returned value of t o t . From the Command W indow, set to t to its correct
value of 10.

K>> to t = 10

to t =
10

Select C on tinue Execution from the Debug menu, and the result is correct.

End the Debug Session
Select the E x it E d ito r/D ebugger from the F ile menu to end the debugging
session.

Debugging f rom the Command Line
The M ATLAB debugging commands are a set of tools tha t allow you to debug
your M -files from the command line. The most general form for each debugging
command is shown below.

Description Syntax

Set breakpoint. dbstop at line_num in
file_nam e

Remove breakpoint. dbclear at l i ne_num in
file_nam e

Stop on warning, error, or NaN/Inf dstop i f warning
generation. e rro r

naninf
in fnan

Resume execution. dbcont

3-10

MATLAB Debugger

Description Syntax

List function call stack. dbstack

List all breakpoints. dbsta tus file_nam e

Execute one or more lines. dbstep n lin e s

List M -file w ith line numbers. dbtype file_nam e

Change local workspace context
(down).

dbdown

Change local workspace context (up). dbup

Quit debug mode. dbquit

For more inform ation about any of these debugging commands, type he lp or
doc followed by the command name.

Example Command Line Debugging Session
You can perform all debugging tasks from the command line. To follow th is
example, use the M -files from the beginning of th is chapter.

fu n c t io n y = v a r ia n c e (x) fu n c t io n to t = sqsum(x,mu)
mu = s u m (x) / le n g th (x) ; to t = 0;
to t= sqsum (x,m u);fo r i = 1 :length(m u)
y = to t / (le n g th (x) - 1) ; to t = to t + ((x (i) - m u) .A2);

end

Setting Breakpoints
dbstop inserts a breakpoint at a specified line. The M -file ha lts before the line
actually executes. Set breakpoints in va ria n ce after the computation of the
mean (line 2), and after the computation of the mean-removed squared sum
(line 3) using

dbst op va riance 3
dbst op va riance 4

3-11

3 Debugger and Profiler

Stepping Through Code and Using Keyboard Mode
Take the vector v = [1 2 3 4 5] as example input. The expected values for
the mean and the mean-removed squared sum are 3 and10, respectively. See if
you get the expected results at the breakpoints. Execute the function from the
command line.

va riance (v)

M ATLAB displays the next line to be executed, and its line number.

3 to t = sqsum(x,mu);
K>>

When execution stops at a breakpoint, you’re autom atica lly in keyboard mode,
as indicated by the K>> prompt. A t th is prompt, you can type standard
M ATLAB commands. When you’re finished, type dbcont to resume execution.

N o te On some platforms, a debugging window may autom atica lly appear
when a function stops at a breakpoint.

When execution halts at the firs t breakpoint, use whos to see what variables
are now in the workspace.

whos

To check the value of mu

K>> mu

mu =

3

3-12

MATLAB Debugger

Use dbstep to step one line in the function. When execution stops again before
line 4, check the value of to t to see if the mean-removed squared sum
calculation matches the expected value.

K>> dbstep
4 y = to t / (le n g th (x) - 1) ;
K>> to t

to t =

4

It appears the problem may be in the sqsum function.

Changing Workspace Context
Use dbup and dbdown to move between function workspaces and the base
workspace. To step up from the va ria n ce function and see the base workspace
contents, use

dbup
whos

The test variab le v, as well as any other variables you may have created, shows
up in the lis ting . To step back down to the va riance workspace, use

dbdown

Displaying an M-File w ith Line Numbers
W ithout leaving keyboard mode, use dbtype to view sqsum Set breakpoints to
check both the loop indices and the computations tha t take place inside the
loop.

K>> dbtype sqsum

1 fu n c t io n to t = sqsumjx.mu)
2 to t = 0;
3 fo r i = 1 :length (m u)
4 to t = to t + ((x (i) - m u) .A2);
5 end

K>> dbstop sqsum 4
K>> dbstop sqsum 5

3-13

3 Debugger and Profiler

Viewing the Function Call Stack and Continuing Execution
Return from keyboard mode using d b q u it . A t the M ATLAB prompt, type

dbclear va riance

to clear the breakpoints from the va ria n ce function, w h ile re ta in ing the new
sqsum breakpoints.

Run va riance again, s till using the vector v as input:

va riance (v)
4 to t = to t + ((x (i) - m u) .A2);

Use dbstack to view the function call stack, verify ing tha t va ria n ce did call
sqsum

K>> dbstack
In Pat: A p p lic a tio n s :V 5 :s q s u m m at l in e 4
In P a t:A p p lic a tio n s :V 5 :v a r ia n c e .m at l in e 3

Check the value of the loop index i , then the value of t o t . A fte r checking t o t ,
dbstep again to check the next value of i .

K>> i

i =

1

K>> dbstep
5 end
K>> to t

to t =

4

K>> dbstep
End of M - f i le fu n c t io n P a t:A pp li ca tions :V 5 : sqsumm

The function only goes through the loop once, ending after the firs t ite ration.
From the fo r statement

fo r i = 1 :length(m u)

3-14

MATLAB Debugger

you can see tha t there is a m istake in the line. The loop only iterates un til the
length of mu, a scalar, rather than the length of x, the input vector.

To see if changing to t to its expected value produces the correct answer, type

K>> to t = 10

to t =

10

Use the dbup command to move up one workspace context, in to the va riance
function workspace. I t ’s clear tha t the va ria n ce function was tak ing the
returned to t value of 4, d iv id ing by le n g th (x) -1 , also 4 in th is case, and
coming up w ith the incorrect answer of 1. V erify tha t it comes up w ith the
correct answer now tha t to t has the correct value, using dbcont to continue
execution.

K>> dbup
In workspace be long ing to P a t:A p p lica t io n s :V 5 :va r iance .m
K>> dbcont

ans =

2.5000

Ending A Debugging Session
Use dbquit to end the debugging session and return to the base workspace.
Edit sqsummso tha t its fo r statement runs from 1 to le n g th (x) ra ther than 1
to le n g th (m u).

fo r i = 1 :le n g t h(x)

3-15

3 Debugger and Profiler

Repeating the orig inal tr ia l run, we now get the expected results:

va riance (v)

ans =

2.5000

va riance (w)

ans =

468.3876

3-16

M-File Profiler

M-File Profiler
One way to improve the performance of your M -files is to profile them.
M ATLAB provides an M -file profiler tha t lets you see how much computation
tim e each line of an M -file uses.

Prof i l ing: An Overv iew
P ro filing is a way to measure where a program spends its tim e. Measuring is a
much better method than guessing where the most execution tim e is spent. You
probably deal w ith obvious speed issues at design tim e and can then discover
unanticipated effects through measurement. One key to effective coding is to
create an original implem entation tha t is as sim ple as possible and then use a
profiler to identify bottlenecks if speed is an issue. Prem ature optim ization
often increases code complexity unnecessarily w ithou t providing a real gain in
performance.

Use a profiler to identify functions tha t are consuming the most tim e, then
determ ine why you are calling them and look for ways to m in im ize th e ir use. It
is often helpful to decide whether the number of tim es a particu la r function is
called is reasonable. Because programs often have several layers, your code
may not exp lic itly call the most expensive functions. Rather, functions w ith in
your code may be calling other, time-consuming functions tha t can be several
layers down in the code. In th is case i t ’s im portant to determ ine which of your
functions are responsible for such calls.

The profiler often helps to uncover problems tha t you can solve by:

• Avoid ing unnecessary computation, which can arise from oversight.
• Changing your a lgorithm to avoid costly functions.
• Avoiding recomputation by storing results for fu tu re use.

When you reach the point where most of the tim e is spent on calls to a small
number of bu ilt-in functions, you have probably optim ized the code as much as
you can expect.

How the Prof i ler W o rk s
Use the p r o f i l e command to generate and view statistics. S tart the profiler
using p r o f i l e on, and specify any options you want to use. Then execute your
M -file. The profiler counts how many seconds each line in the M -files use. The

3-17

3 Debugger and Profiler

profiler works cum ulatively, tha t is, adding to the count for each M -file you
execute un til you clear the statistics. Use p r o f i l e repo rt to display the
sta tis tics gathered in an H TM L-form atted report in a Web browser.

The prof i le Command
Here is a sum m ary of the main forms of p r o f i l e . For deta ils about these and
other options, type help p r o f i l e or doc p r o f i l e .

Syntax

p r o f i l e on

Options

-detai l l evel

h i s t o r y

p r o f i l e report

basename

p r o f i l e plot

Description

S tarts the profiler, clearing
previously recorded
statistics.

Specifies the level of
function to be profiled.

Specifies tha t the exact
sequence of function calls
is to be recorded.

Suspends the profiler,
generates a profile report
in HTM L form at, and
displays the report in your
Web browser.

Saves the report in the file
basename in the current
directory.

Suspends the profiler and
displays in a figure
w indow a bar graph of the
functions using the most
execution time.

3-18

M-File Profiler

p r o f i l e resume

p r o f i l e clear

p r o f i l e of f

p r o f i l e s t a t us

s t a t s = p r o f i l e (’ i n f o ’)

Restarts the profiler
w ithou t clearing
previously recorded
statistics.

Clears the s ta tistics
recorded by the profiler.

Suspends the profiler.

Displays a s tructu re
containing the current
profiler status.

Suspends the profiler and
displays a s tructu re
containing pro file r results.

An Example Using the Prof i ler
This example demonstrates how to run the profiler.

1 S tart the profiler.

p r o f i l e on - de t a i l b u i l t i n - h i s t o r y

The - deta i l b u i l t i n option instructs the profiler to gather sta tis tics for
bu ilt-in functions, in addition to the default M-functions, M-subfunctions,
and M EX-functions.

The - h i s t o r y option instructs the profiler to track the exact sequence of
entry and exit calls.

2 Execute an M-file. Th is example runs the Lotka-Vo lte rra predator-prey
population model. For more inform ation about th is model, type lotkademo
to run a demonstration.

[t , y] = ode23(’ l o t k a ’ , [0 2] , [2 0 ; 2 0]) ;

3-19

3 Debugger and Profiler

3 Generate the profile report and save the results to the f ile l o t k a p r o f .

p r o f i l e repor t l o t kap r o f

Th is suspends the profiler, displays the profile report in a Web browser
w indow, and saves the results. See “V iew ing Profiler Results” for more
inform ation.

4 Restart the profiler, w ithou t clearing the existing statistics.

p r o f i l e r esuire

The pro file r is now ready to continue gathering sta tis tics for any more
M -files you run. It w ill add these new sta tis tics to those generated in the
previous steps.

5 Stop the profiler when you are finished gathering statistics.

p r o f i l e o f f

V iew ing Prof i ler Results

Profile Reports
To display profiler results, type

p r o f i l e r eport

p r o f i l e repor t suspends the profiler. The results appear in a report in a Web
browser window. The report opens w ith a sum m ary report, and from tha t page,
you can access the detail and h istory reports.

Summary Profile Report. The sum mary report presents sta tis tics about the
overall execution and provides sum mary sta tis tics for each function called.
Values reported include:

• C lock prec is ion - the precision of the p ro file r’s tim e measurement. When
T im e for a function is 0, it is actua lly a positive value, but sm aller than the
profiler can detect given the clock precision.

• T ime columns - the to ta l tim e spent in a function, including all child
functions called. Because the tim e for a function includes tim e spend on child

3-20

M-File Profiler

functions, the tim es do not add up to the Tota l recorded t i me and the
percentages add up to more than 100%.

• Self t i me columns - to ta l tim e spent in a function, not includ ing tim e for any
child functions called. Adding the Self t i me values for all functions listed
equals the Total recorded tim e . The Self t i me percentages for all functions
add up to approxim ately 100%.

Below is the summary report for the Lotka-Volte rra model described in “An
Example Using the P ro file r” .

3-21

3 Debugger and Profiler

lets! Imethct the
ftofiier wesFfexrdrg

VTeŵEtaiis fcr Each
FLncticn

IrdixesEliit-ir
FLrttimsEkaiBe
-det a il b u i l t i n
Option wasLted fcr
p r o f i l e on

View/Slmmery
(̂ ncwr he-e)

ViewDetaiis fcr
Ai FLrcticrs

VfewSequencEaf
FLncticn CSiis

TmeFfer FLncticr,
Irdidrg ImeSpert in
Chiid FLrdicrsCaiieC

TmeFfer FLrcticr
Not Irdidrg line Spert ir
Chiid FLrcticrsCsiieC

3-22

M-File Rofiler

Function Details Frofile Report. The function deta ils report provides sta tis tics for
the parent and child functions of a function, and reports the line numbers on
which the most tim e was spent. Below is the detail report for the l otka
function, which is one of the functions called in “An Example Using the
P ro file r” .

Tmein Sffirds Fercertageaf the LineNLmter
FlncticnisTme
Spert cn that Line

3-23

3 Debugger and FTofiler

Function Call History Frofile Report. The function call h istory displays the exact
sequence of functions called. To view th is report, you must have started the
profiler using the - h i s t o r y option.

p r o f i l e on - h i s t o r y

The profiler records up to 10,000 function entry and exit events. For more than
10,000 events, the profiler continues to record other pro file statistics, but not
the sequence of calls. Below is the h istory report generated from “An Example
Using the P ro file r” .

Ekcct Sequence of Calls

3-24

M-File Rofiler

Profile Plot
To view a bar graph for the functions using the most execution tim e, type

p r o f i l e plot

p r o f i l e plot suspends the profiler. The bar graph appears in a figure window.
This is the bar graph generated from “An Example Using the P ro file r” .

Saving Prof i le Reports
Type

p r o f i l e repor t basename

The profiler saves the report to the file basename in the current directory. Later
you can view the saved results using your Web browser.

3-25

3 Debugger and FTofiler

Another way to save results is w ith the i n f o = p r o f i l e command, which
displays a s tructu re containing the profiler results. Save th is structu re so that
la ter you can generate and view the profile report using p r o f r e p o r t (i n f o) .

Example Using Structure of Profiler Results
The profiler results are stored in a s truc tu re tha t you can view or access. Th is
example illus tra tes how you can view the results.

1 Run the profiler for code tha t computes the Lotka-Vo lte rra predator-prey
population model.

p r o f i l e on - d e t a i l b u i l t i n - h i s t o r y
[t , y] = ode23(’ l o t k a ’ , [0 2] , [20 ; 20]) ;

2 To view the s tructu re containing profiler results, type

s t a t s = p r o f i l e (’ i n f o ’)

M ATLAB re turns

s t a t s =
FunctionTab le: [28x1 s t r uc t]
Funct i onHi s tory : [2x774 double]
ClockPrecis i on: 0.00999999999840

3 You can view and access the contents of the structure. For example, type

s t a t s . Func t i onTab l e

M ATLAB displays the FunctionTab le structure.

ans =
28x1 s t r uc t ar ray w i t h f i e l d s :

Funct ionName
MMleName
Type
NumCalls
Total Time
Total RecursiveTime
Chi l dren
Parents
ExecutedLines

3-26

M-File FTofiler

4 To view the contents of an element in the FunctionTab le structure, type, for
example,

s t a t s . Func t i onTab l e (2)

M ATLAB re tu rns the second element in the structure.

ans =
Funct ionName: ’ ode23’

MfileName: [1x56 char]
Type: ’ M- f unc t i on ’

NumCalls: 1
TotalT im e: 0.65100000000166

Tota lR ecursiveT im e: 0. 65100000000166
Chi ldren: [21x1 s t r uc t]

Parents: [0x1 s t r uc t]
ExecutedLines: [159x3 double]

5 Save the results.

save p r o f s t a t s

6 In a later session, generate the profiler report using the saved results. Type

load p r o f s t a t s
prof r ep o r t (s t a t s)

M ATLAB displays the profile report.

3-27

3 Debugger and FTofiler

3-28

4
Matrices and Linear
Algebra

M a tr ic e s and L i nea r A lg e b ra ...4-2

M a tr ic e s in M A T L A B ...4-4
Addition and S u b t r a c t io n .. 4-6
Vector Products and T ra n sp o se ... 4-7
M a trix M u lt ip lic a t io n ...4-8
The Identity M a t r i x ...4-10
Vector and M a trix N o r m s .. 4-12

S o lv in g L i nea r E q u a t i o n s ..4-13
Square S y s te m s ..4-14
Overdetermined S y s te m s .. 4-15
Undeterm ined S y s te m s ...4-17

In ve rse s and D e te rm in a n ts ... 4-20
P s e u d o in v e rs e s ..4-21

LU , QR, and C ho lesky F a c to r iz a t io n s 4-24
Cholesky F a c to r iz a t io n ...4-24
LU Factorization .. 4-25
QR F a c to r iz a tio n ..4-27

M a t r i x P o we r s and E x p o n e n tia ls ..4-31

E ig e n v a lu e s .. 4-34

S in g u la r V a lue D e c o m p o s it io n ...4-38

4 Matrices and Linear Algebra

Matrices and Linear A lgebra
A m a trix is a two-dimensional array of real or complex numbers. Linear
algebra defines many m a trix operations tha t are d irectly supported by
M ATLAB. M a tr ix a rithm etic , linear equations, eigenvalues, singular values,
and m a trix factorizations are included.

The linear algebra functions are located in the matfun d irectory in the
M ATLAB Toolbox.

Category Function Description

M a trix analysis norm M a tr ix or vector norm.

normest Estim ate the m a trix 2-norm.

rank M a trix rank.

det Determ inant.

t r ace Sum of diagonal elements.

nul l N u ll space.

or th Orthogonalization.

r ref Reduced row echelon form.

subspace Angle between tw o subspaces.

L inear equations \ and / L inear equation solution.

inv M a trix inverse.

cond Condition number for inversion.

condest 1-norm condition number estimate.

chol Cholesky factorization.

chol i nc Incomplete Cholesky factorization.

lu LU factorization.

l u i nc Incomplete LU factorization.

4-2

Matrices and Linear Algebra

Category Function Description

qr O rthogona l-triangu lar decomposition.

nnls Nonnegative least-squares.

pinv Pseudoinverse.

l scov Least squares w ith known covariance.

Eigenvalues and
singular values

ei g Eigenvalues and eigenvectors.

svd S ingular value decomposition.

eigs A few eigenvalues.

svds A few singular values.

poly C haracteristic polynomial.

polyei g Polynomial eigenvalue problem.

condei g Condition number for eigenvalues.

hess Hessenberg form.

qz QZ factorization.

schur Schur decomposition.

M a trix functions expm M a trix exponential.

l ogm M a trix logarithm .

sqrt m M a tr ix square root.

f unm Evaluate general m a trix function.

4-3

4 Matrices and Linear Algebra

Matrices in MATLAB
I n form ally, the term s m a trix and array are often used interchangeably. More
precisely, a m a trix is a two-dimensional rectangular array of real or complex
numbers tha t represents a linear transform ation. The linear algebraic
operations defined on matrices have found applications in a w ide varie ty of
technical fields. (The Symbolic Math Toolboxes extend M A T LA B ’s capabilities
to operations on various types of nonnum eric matrices.)

M ATLAB has dozens of functions tha t create d ifferent kinds of matrices. Two
of them can be used to create a pair of 3-by-3 example matrices for use
throughout th is chapter. The firs t example is symmetric.

A = pascal (3)

A =

1 1 1
1 2 3
1 3 6

The second example is not symmetric.

B = magic(3)

B =

8 1 6
3 5 7
4 9 2

Another example is a 3-by-2 rectangular m a trix of random integers.

C = f i x (1 0 * r a n d (3 , 2))

C =

9 4
2 8
6 7

4-4

Matrices in MATLAB

A column vector is an m-by-1 m atrix , a row vector is a 1-by-n m a trix and a
scalar is a 1-by-1 m atrix . The statements

u = [3 ; 1; 4]

v = [2 0 -4]

s = 7

produce a column vector, a row vector, and a scalar.

u =

3
1
4

v =

2 0 -1

s =

7

4-5

4 Matrices and Linear Algebra

Addi t ion and Subtract ion
Addition and subtraction of matrices is defined jus t as it is for arrays,
element-by-element. Adding A to B and then subtracting A from the result
recovers B.

X = A + B

X =

9 2 7
4 7 10
5 12 8

Y = X -A

Y =

8 1 6
3 5 7
4 9 2

Addition and subtraction require both matrices to have the same dimension, or
one of them be a scalar. I f the dimensions are incompatible, an error results.

X = A + C

Error using ==> +
Mat r i x dimensions must agree.

w = v + s

w =

9 7 6

4-6

Matrices in MATLAB

Vector Products and Transpose
A row vector and a column vector of the same length can be m u ltip lied in either
order. The result is e ither a scalar, the inner product, or a m atrix , the outer
product.

x = v*u

x =

2

X = u*v

X =

6 0 - 3
2 0 - 4
8 0 -4

For real matrices, the transpose operation interchanges ay and aji . M ATLAB
uses the apostrophe (or single quote) to denote transpose. Our example m a trix
A is symmetric, so A' is equal to A. But B is not symmetric.

X = B'

X =

8 3 4
1 5 9
6 7 2

Transposition tu rn s a row vector in to a column vector.

x = v'

x =

2
0

-1

4-7

4 Matrices and Linear Algebra

If x and y are both real column vectors, the product x *y is not defined, but the
tw o products

x ’ *y

and

y ’ *x

are the same scalar. Th is quan tity is used so frequently, it has three d ifferent
names: inner product, scalar product, or dot product.

For a complex vector or m atrix , z, the quan tity z ’ denotes the complex
conjugate transpose. The unconjugated complex transpose is denoted by z . ’ , in
analogy w ith the other array operations. So if

z = [1+2i 3+4i]

then z ’ is

1 —2i
3—4i

w h ile z. ' is

1+2i
3+4i

For complex vectors, the tw o scalar products x ' * y and y ' * x are complex
conjugates of each other and the scalar product x ' * x of a complex vector w ith
itse lf is real.

Matr ix Mul t ip l i cat ion
M ultip lica tion of matrices is defined in a way tha t reflects composition of the
underlying linear transform ations and allows compact representation of
systems of sim ultaneous linear equations. The m a trix product С = AB is
defined when the column dimension of A is equal to the row dimension of B, or
when one of them is a scalar. I f A is m-by-p and B is p-by-n, the ir product С is
m-by-n. The product can actually be defined using M A T LA B ’s for loops, colon
notation, and vector dot products.

4-8

Matrices in MATLAB

fo r i = 1:m
fo r j = 1:n

C (i , j) = A (i , :) * B (: , j) ;
end

end

M ATLAB uses a single asterisk to denote m a trix m u ltip lica tion . The next tw o
examples illu s tra te the fact tha t m a trix m u ltip lica tion is not commutative; AB
is usually not equal to BA.

X = A*B

X =

15 15 15
26 38 26
41 70 39

Y = B*A

Y =

15 28 47
15 34 60
15 28 43

A m a trix can be m u ltip lied on the righ t by a column vector and on the left by a
row vector.

x = A*u

x =

8
17
30

y = v*B

y =

12 —7 10

4-9

4 Matrices and Linear Algebra

Rectangular m a trix m u ltip lica tions must satisfy the dimension com patib ility
conditions.

X = A*C

X =

17 19
31 41
51 70

Y = C*A

Error using ==> *
Inner m a trix dimensions must agree.

A nyth ing can be m u ltip lied by a scalar.

w = s*v

w =

14 0 -7

The Ident i ty Mat r ix
Generally accepted mathematical notation uses the capital le tte r I to denote
identity m atrices, matrices of various sizes w ith ones on the main diagonal and
zeros elsewhere. These matrices have the property tha t AI = A and IA = A
whenever the dimensions are compatible. The orig inal version of M ATLAB
could not use I for th is purpose because it did not d istinguish between upper
and lowercase le tters and i already served double duty as a subscript and as
the complex un it. So an English language pun was introduced. The function

eye(min)

re tu rns an m-by-n rectangular iden tity m a trix and eye(n) re turns an n-by-n
square iden tity m atrix.

4-10

Matrices in MATLAB

The Kronecker Tensor Product

The Kronecker product, k ro n (X ,Y), of tw o matrices is the larger m a trix formed
from all possible products of the elements of X w ith those of Y. I f X is m-by-n
and Y is p-by-q, then kron(X ,Y) is mp-by-nq. The elements are arranged in
the order

[X (1 ,1)*Y X (1 ,2)*Y . . . X (1 ,n)*Y

X (m 1)*Y X (m 2)*Y . . . X (m n)*Y]

The Kronecker product is often used w ith matrices of zeros and ones to build
up repeated copies of small matrices. For example, if X is the 2-by-2 m a trix

X =

1 2
3 4

and I = eye(2 ,2) is the 2-by-2 iden tity m atrix , then the tw o matrices

kr o n (X ,I)

and

kr o n (I,X)

are

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

and

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

4-11

4 Matrices and Linear Algebra

Vector and Mat r ix Norms
The p-norm of a vector x

t \1 7 p
• ix ip - (l l x i | pJ

is computed by n o rm (x ,p). Th is is defined by any value of p > 1, but the most
common values of p are 1, 2, and ¥ . The default value is p = 2, which
corresponds to Euclidean length.

[no rm (v ,1) norm(v) n o rm (v , in f)]

ans =

3.0000 2.2361 2.0000

The p-norm of a m a trix A,

IIAllp - m ^ l |A x | |p /I |x||p

can be computed for p = 1, 2, and ¥ by n o rm (A p). Again, the default value is
p = 2.

[norm (C ,1) norm(C) n o rm (C ,in f)]

ans =

19.0000 14.8015 13.0000

4-12

Solving Linear Equations

Solving Linear Equations
One of the most im portant problems in technical computing is the solution of
sim ultaneous linear equations. In m a trix notation, th is problem can be stated
as follows:

Given tw o matrices A and B, does there exist a unique m a trix X so tha t AX = В
or XA = B?

It is ins truc tive to consider a 1-by-1 example.

Does the equation

7x = 21

have a unique solution ?

The answer, of course, is yes. The equation has the unique solution x = 3. The
solution is easily obtained by divis ion:

x = 21/7 = 3

The solution is not o rd ina rily obtained by computing the inverse of 7, tha t is
7-1 = 0.142857..., and then m u ltip ly ing 7-1 by 21. This would be more work and,
if 7-1 is represented to a fin ite number of d ig its, less accurate. S im ila r
considerations apply to sets of linear equations w ith more than one unknown;
M ATLAB solves such equations w ithou t computing the inverse of the m atrix.

A lthough it is not standard mathematical notation, M ATLAB uses the division
term inology fam ilia r in the scalar case to describe the solution of a general
system of sim ultaneous equations. The tw o division symbols, slash, /, and
backslash, \ , are used for the tw o s itua tions where the unknown m a trix
appears on the left or righ t of the coefficient m atrix.

X = A\B denotes the solution to the m a trix equation AX = B.

X = B/A denotes the solution to the m a trix equation XA = B.

You can th in k of “d iv id ing ” both sides of the equation AX = B or XA = B by A.
The coefficient m a trix A is always in the “denom inator” .

The dimension com patib ility conditions for X = A\B require the tw o matrices A
and B to have the same number of rows. The solution X then has the same
number of columns as B and its row dimension is equal to the column dimension
of A. For X = B/A, the roles of rows and columns are interchanged.

4-13

4 Matrices and Linear Algebra

In practice, linear equations of the form AX = B occur more frequently than
those of the form XA = B. Consequently, backslash is used far more frequently
than slash. The remainder of th is section concentrates on the backslash
operator; the corresponding properties of the slash operator can be inferred
from the iden tity

(B /A) ’ = (A ’ \B ’)

The coefficient m a trix A need not be square. I f A is m-by-n, there are three
cases.

m = n. Square system. Seek an exact solution.

m > n. Overdeterm ined system. Find a least squares solution.

m < n. Underdeterm ined system. Find a basic solution w ith at most m
nonzero components.

The backslash operator employs different a lgorithm s to handle d ifferent kinds
of coefficient matrices. The various cases, which are diagnosed autom atically
by exam ining the coefficient m atrix , include:

• Perm utations of tr iangu la r matrices

• Symmetric, positive defin ite matrices

• Square, nonsingular matrices

• Rectangular, overdetermined systems

• Rectangular, underdeterm ined systems

Square Systems
The most common situation involves a square coefficient m a trix A and a single
right-hand side column vector b. The solution, x = A\b, is then the same size
as b. For example

x = A\u

x =

10
-42

5

4-14

Solving Linear Equations

It can be confirmed tha t A*x is exactly equal to u.

I f A and B are square and the same size, then X = A\B is also tha t size.

: A\B

19 -3 -1
-47 4 13

6 0 -6

It can be confirmed tha t A*X is exactly equal to B.

Both of these examples have exact, integer solutions. Th is is because the
coefficient m a trix was chosen to be p a s c a l(3) , which has a determ inant equal
to one. A later section considers the effects of roundoff error inherent in more
rea lis tic computation.

A square m a trix A is s ingular if it does not have linearly independent columns.
I f A is singular, the solution to AX = B either does not exist, or is not unique.
The backslash operator, A\B, issues a w arn ing if A is nearly singular and raises
an error condition if exact s ingu la rity is detected.

Overdete rm ined Systems
Overdeterm ined systems of sim ultaneous linear equations are often
encountered in various kinds of curve f itt in g to experimental data. Here is a
hypothetical example. A quan tity y is measured at several d ifferent values of
tim e, t, to produce the fo llow ing observations:

t y
0.0 0.82
0.3 0.72
0.8 0.63
1.1 0.60
1.6 0.55
2.3 0.50

This data can be entered in to M ATLAB w ith the statements

t = [0 .3 .8 1.1 1.6 2 .3] ' ;
y = [.8 2 .72 .63 .60 .55 .5 0] ' ;

4-15

4 Matrices and Linear Algebra

It is believed tha t the data can be modeled w ith a decaying exponential
function.

y (t)» c1 + c2 e-

This equation says tha t the vector y should be approximated by a linear
combination of tw o other vectors, one the constant vector containing all ones
and the other the vector w ith components e"(. The unknown coefficients, c1 and
c2, can be computed by doing a least squares fit, which m inim izes the sum of
the squares of the deviations of the data from the model. There are six
equations in tw o unknowns, represented by the 6-by-2 m atrix .

E = [o n e s (s iz e (t)) e x p (- t)]

E =

1 0000 1.0000
1 0000 0.7408
1 0000 0.4493
1 0000 0.3329
1 0000 0.2019
1 0000 0.1003

The least squares solution is found w ith the backslash operator.

c = E\y

c =

0.4760
0.3413

I n other words, the least squares fit to the data is

y (t)» 0.4760 + 0.3413 e-

The follow ing statem ents evaluate the model at regularly spaced increments in
t, and then plot the result, together w ith the orig inal data.

T = (0 :0 .1 :2 .5) ' ;
Y = [o n e s (s iz e (T)) e x p (-T)]*c ;
p l o t (T , Y , ' - ' , t , y , 'o ')

4-16

Solving Linear Equations

You can see tha t E*c is not exactly equal to y, but tha t the difference m ight well
be less than measurement errors in the orig inal data.

A rectangular m a trix A is rank deficient if it does not have linearly independent
columns. I f A is rank deficient, the least squares solution to AX = В is not
unique. The backslash operator, A\B, issues a w arn ing i f A is rank deficient and
produces a basic solution tha t has as few nonzero elements as possible.

Undetermined Systems
Underdeterm ined linear systems involve more unknowns than equations.
When they are accompanied by additional constraints, they are the purview of
linear programming. By itself, the backslash operator deals only w ith the
unconstrained system. The solution is never unique. M ATLAB finds a basic
solution, which has at most m nonzero components, but even th is may not be
unique. The particu la r solution actua lly computed is determ ined by the QR
factorization w ith column pivoting (see a later section on the QR factorization).

4-17

4 Matrices and Linear Algebra

Here is a small, random example.

R = f ix (1 0 * ra n d (2 ,4))

R =

6 8 7 3
3 5 4 1

b = f ix (1 0 * ra n d (2 ,1))

b =

1
2

The linear system Rx = b involves tw o equations in four unknowns. Since the
coefficient m a trix contains small integers, it is appropria te to display the
solution in rational form at. The particu la r solution is obtained w ith

format rat

p = R\b

P =

0
5/7

0
-4 1 /7

One of the nonzero components is p(2) because R (:,2) is the column of R w ith
largest norm. The other nonzero component is p(4) because R (:,4) dominates
after R (:,2) is e lim inated.

4-18

Solving Linear Equations

The complete solution to the overdetermined system can be characterized by
adding an a rb itra ry vector from the null space, which can be found using the
nu ll function w ith an option requesting a “ ra tiona l” basis.

Z = n u l l (R , ’ r ’)

Z =

-4 /2 -7 /6
-1 /2 1/2

1 0
0 1

It can be confirmed tha t A*Z is zero and tha t any vector of the form

x = p + Z*q

for an a rb itra ry vector q satisfies R*x = b.

4-19

4 Matrices and Linear Algebra

Inverses and Determinants
I f A is square and nonsingular, the equations AX = I and XA = I have the same
solution, X. This solution is called the inverse of A, is denoted by A"1, and is
computed by the function inv . The determ inant of a m a trix is useful in
theoretical considerations and some types of symbolic computation, but its
scaling and roundoff error properties make it far less satisfactory for num eric
computation. Nevertheless, the function det computes the determ inant of a
square m atrix.

d = det (A)
X = inv(A)

d =

1

X =

3 -3 1
-3 5 -2

1 -2 1

Again, because A is symm etric, has integer elements, and has determ inant
equal to one, so does its inverse. On the other hand,

d = det (B)
X = inv(B)

d =

-360

X =

0.1472 -0 .1444 0.0639
-0.0611 0.0222 0.1056
-0 .0194 0.1889 -0 .1028

Closer examination of the elements of X, or use of format ra t, would reveal
tha t they are integers divided by 360.

4-20

Inverses and Determinants

I f A is square and nonsingular, then w ithou t roundoff error, X = in v (A)*B
would theore tica lly be the same as X = A\B and Y = B *inv(A) would
theoretica lly be the same as Y = B/A. But the computations involving the
backslash and slash operators are preferable because they require less
computer tim e, less memory, and have better error detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determ inants. A t least one of the
equations AX = I and XA = I does not have a solution. A partia l replacement for
the inverse is provided by the Moore-Penrose pseudoinverse, which is computed
by the p inv function.

X = p inv(C)

X =

0.1159 -6 .0729 0.0171
-0 .0534 0.1152 0.0418

The m a trix

Q = X*C

Q =

1.0000 0.0000
0.0000 1.0000

is the 2-by-2 iden tity , but the m a trix

P = C*X

P =

0.8293 -0 .1958 0.3213
-0 .1958 0.7754 0.3685

0.3213 0.3685 0.3952

is not the 3-by-3 iden tity . However, P acts like an iden tity on a portion of the
space in the sense tha t P is symmetric, P*C is equal to C and X*P is equal to X.

4-21

4 Matrices and Linear Algebra

I f A is m-by-n w ith m > n and fu ll rank n, then each of the three statements

x = A\b
x = p inv(A)*b
x = in v (A ’ *A)*A ’ *b

theore tica lly computes the same least squares solution x, although the
backslash operator does it faster.

However, if A does not have fu ll rank, the solution to the least squares problem
is not unique. There are many vectors x tha t m in im ize

norn(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where r is the rank of A. The solution computed by x = p in v (A)*b
is the m in im al norm solution; it also m inim izes no rm (x). An attem pt to
compute a solution w ith x = in v (A '* A)* A '* b fa ils because A '*A is singular.

Here is an example to illus tra tes the various solutions.

A = [1 2 3
4 5 6
7 8 9
10 11 12]

does not have fu ll rank. Its second column is the average of the firs t and th ird
columns. If

b = A (: ,2)

is the second column, then an obvious solution to A*x = b is x = [0 1 0]' . But
none of the approaches computes tha t x. The backslash operator gives

x = A\b

Warning: Rank d e f ic ie n t , rank = 2.

x =

0.5000
0

0.5000

4-22

Inverses and Determinants

This solution has tw o nonzero components. The pseudoinverse approach gives

y = p in v (A)*b

У =

0.3333
0.3333
0.3333

There is no w arn ing about rank deficiency. But norn(y) = 0.5774 is less than
norn(x) = 0.7071. F ina lly

z = in v (A ’ *A) *A’ *b

fa ils completely.

Warning: M a trix is s in g u la r to w orking p re c is io n .

z =

In f
In f
In f

4-23

4 Matrices and Linear Algebra

LU, QR, and Cholesky Factorizations
M A T LA B ’s linear equation capabilities are based on three basic m a trix
factorizations.

• Cholesky factorization for symmetric, positive de fin ite matrices

• Gaussian e lim ination for general square matrices

• Orthogonalization for rectangular matrices

These three factorizations are available through the chol , lu , and qr functions.

A ll th ree of these factorizations make use of tr ia n g u la r matrices where all the
elements either above or below the diagonal are zero. Systems of linear
equations involving tr iangu la r matrices are easily and qu ickly solved using
e ither forward or back substitution.

Cholesky Factor izat ion
The Cholesky factorization expresses a sym m etric m a trix as the product of a
tr iangu la r m a trix and its transpose.

A = R R

where R is an upper tr iangu la r m atrix .

Not all sym m etric matrices can be factored in th is way; the matrices tha t have
such a factorization are said to be positive definite. Th is im plies tha t all the
diagonal elements of A are positive and tha t the offdiagonal elements are “not
too big.” The Pascal matrices provide an interesting example. Throughout th is
chapter, our example m a trix A has been the 3-by-3 Pascal m atrix . Le t’s
tem porarily switch to the 6-by-6.

A = pasca l(6)

A =

1 1 1 1 1
2 3 4 5 6
3 6 10 15 21
4 10 20 35 56
5 15 35 70 126
6 21 56 126 252

4-24

LU, QR, and Cholesky Factorizations

The elements of A are binomial coefficients. Each element is the sum of its
north and west neighbors. The Cholesky factorization is

R = cho l(A)

R =

1
5

10
10
5
1

The elements are again binomial coefficients. The fact tha t R *R is equal to A
demonstrates an iden tity involving sums of products of binomial coefficients.

The Cholesky factorization also applies to complex matrices. Any complex
m a trix which has a Cholesky factorization satisfies A ’ = A and is said to be
H erm itian positive definite.

The Cholesky factorization allows the linear system

A*x = b

to be replaced by

R *R *x = b

Because the backslash operator recognizes tr iangu la r systems, th is can be
solved qu ickly w ith

x = R \(R \b)

If A is n-by-n, the computational complexity of cho l(A) is O(n3), but the
complexity of the subsequent backslash solutions is only O(n2).

LU Factor izat ion
Gaussian e lim ination, or LU factorization, expresses any square m a trix as the
product of a perm utation of a lower tr iangu la r m a trix and an upper tr iangu la r
m a trix

A = L U

4-25

4 Matrices and Linear Algebra

where L is a perm utation of a lower tr ia n g u la r m a trix w ith ones on its diagonal
and U is an upper tr iangu la r m atrix .

The perm utations are necessary for both theoretical and computational
reasons. The m atrix

0 1
1 0

cannot be expressed as the product of tr ia n g u la r matrices w ithout
interchanging its tw o rows. A lthough the m a trix

e 1
1 0

can be expressed as the product of tr iangu la r matrices, when e is small the
elements in the factors are large and magnify errors, so even though the
perm utations are not s tr ic tly necessary, they are desirable. Partia l pivoting
ensures tha t the elements of L are bounded by one in m agnitude and tha t the
elements of U are not much larger than those of A.

For example

[L ,U] = l u(B)

L =

1.0000 0 0
0.3750 0.5441 1.0000
0.5000 1.0000 0

U =

8.0000 1.0000 6.0000
0 8.5000 -4 .0000
0 0 5.2941

4-26

LU, QR, and Cholesky Factorizations

The LU factorization of A allows the linear system

A*x = b

to be solved qu ickly w ith

x = U \(L \b)

D eterm inants and inverses are computed from the LU factorization using

det(A) = d e t(L)*d e t(U) =± ± p rod (d iag (U))

and

inv(A) = inv(U) * in v (L)

QR Factor izat ion
An orthogonal m atrix , or a m a trix w ith orthonormal columns, is a real m a trix
whose columns all have un it length and are perpendicular to each other. I f Q
is orthogonal, then

Q' Q = I

The simplest orthogonal matrices are two-dimensional coordinate rotations.

cos (0) sin (0)
- sin (0) cos (0)

For complex matrices, the corresponding term is un ita ry. Orthogonal and
un ita ry matrices are desirable for numerical computation because they
preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular m a trix as the
product of an orthogonal or un ita ry m a trix and an upper tr ia n g u la r m atrix . A
column perm utation may also be involved.

A = Q R

or

A P = Q R

where Q is orthogonal or un ita ry , R is upper tr iangu la r, and P is a
perm utation.

4-27

4 Matrices and Linear Algebra

There are four va rian ts of the QR fac to riza tion - fu ll or economy size and w ith
or w ithou t column perm utation.

Overdeterm ined linear systems involve a rectangular m a trix w ith more rows
than columns, tha t is m-by-n w ith m > n. The fu ll size QR factorization
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper
triangu la r R.

[Q R] = qr(C)

I n many cases, the last m - n columns of Q are not needed because they are
m u ltip lied by the zeros in the bottom portion of R. So the economy size QR
factorization produces a rectangular, m-by-n Q w ith orthonormal columns and
a square n-by-n upper tr ia n g u la r R. For our 3-by-2 example, th is is not much
of a saving, but for larger, h igh ly rectangular matrices, the savings in both tim e
and memory can be qu ite im portant.

[Q R] = q r(C ,0)

Q =

-9 .8182 0.3999 -9.4131
-9 .1818 -0 .8616 -0 .4739
-0 .5455 -0 .3126 0.7777

R =

-11.0000
0
0

-8. 5455
-7 .4817

0

Q =

-0 .8182 0.3999
-0 .1818 -6 .8616
-0 .5455 -0. 3126

R =

-11. 0000 -8 .5455
0 -7 .4817

4-28

LU, QR, and Cholesky Factorizations

In contrast to the LU factorization, the QR factorization does not require any
p ivoting or perm utations. But an optional column perm utation, triggered by
the presence of a th ird output argument, is useful for detecting s ingu la rity or
rank deficiency. A t each step of the factorization, the column of the rem aining
unfactored m a trix w ith largest norm is used as the basis for tha t step. Th is
ensures tha t the diagonal elements of R occur in decreasing order and tha t any
linear dependence among the columns w ill almost certa in ly be revealed by
exam ining these elements. For our small example, the second column of C has
a larger norm than the firs t, so the tw o columns are exchanged.

[Q R ,P] = qr(C)

Q =

-0 .3522
-0 .7044
-0 .6163

R =

-11.3578
0
0

P =

0
1 0

When the economy size and column perm utations are combined, the th ird
output argument is a perm utation vector, rather than a perm utation m atrix.

0.8398 -0.4131
-0. 5285 -0. 4739

0.1241 0.7777

-8.2762
7.2460

0

1

4-29

4 Matrices and Linear Algebra

[Q R p] = q r(C ,0)

Q =

-0 .3522 0.8398
-0 .7044 -0. 5285
-0 .6163 0.1241

R =

-11.3578 -8 .2762
0 7.2460

P =

2 1

The QR factorization transform s an overdetermined linear system in to an
equivalent tr ia n g u la r system. The expression

norm(A*x - b)

is equal to

norm(C*R*x - b)

M u ltip lica tion by orthogonal matrices preserves the Euclidean norm, so th is
expression is also equal to

norm(R*x - y)

where y = C *b . Since the last m -n rows of R are zero, th is expression breaks
in to tw o pieces

n o rT (R (1 :n ,1 :n)*x - y (1 :n))

and

noriT(y(n+1:iT))

When A has fu ll rank, it is possible to solve for x so tha t the firs t of these
expressions is zero. Then the second expression gives the norm of the residual.
When A does not have fu ll rank, the tr ia n g u la r s tructu re of R makes it possible
to find a basic solution to the least squares problem.

4-30

Matrix Powers and Exponentials

Matr ix Powers and Exponentials
I f A is a square m a trix and p is a positive integer, then AAp m u ltip lies A by itse lf
p times.

X = AA2

X =

3 6 10
6 14 25

10 25 46

If A is square and nonsingular, then AA(-p) m u ltip lies inv(A) by itse lf p times.

Y = BA(-3)

Y =

0.0053 -0 .0068 0.0018
-0 .0034 0.0001 0.0036
-0 .0016 0.0070 -0.0051

Fractional powers, like AA(2/ 3), are also perm itted; the results depend upon
the d is tribu tion of the eigenvalues of the m atrix.

Element-by-element powers are obtained w ith a . For example

X = A.A2

A =

1 1 1
1 4 9
1 9 36

The function

sqrt t (A)

computes aa (1 /2) by a more accurate a lgorithm . The T in sqrtm distingu ishes
th is function from s q rt(A) which, like A.a(1/ 2) , does its job
element-by-element.

4-31

4 Matrices and Linear Algebra

A system of linear, constant coefficient, ord inary d iffe rentia l equations can be
w ritten

d x / d t = Ax

where x = x(t) is a vector of functions of t and A is a m a trix independent of t.
The solution can be expressed in term s of the m a trix exponential,

tAx (t) = e x (0)

The function

expn(A)

computes the m a trix exponential. An example is provided by the 3-by-3
coefficient m a trix

A =

0 -6 -1
6 2 -16

-5 20 -10

and the in itia l condition, x(0)

x0 =

1
1
1

The m a trix exponential is used to compute the solution, x(t), to the d iffe rentia l
equation at 101 points on the in terva l 0 < t < 1 w ith

X = [] ;
fo r t = 0: 01:1

X = [X expm (t*A)*x0];
end

A three-dimensional phase plane plot obtained w ith

p lo t 3 (X (1 , :) , X (2 , :) , X (3 , :) , ' - o ')

4-32

Matrix Powers and Exponentials

shows the solution sp ira ling in towards the orig in. Th is behavior is related to
the eigenvalues of the coefficient m atrix, which are discussed in the next
section.

4-33

4 Matrices and Linear Algebra

Eigenvalues
An eigenvalue and eigenvector of a square m a trix A are a scalar 1 and a vector
v tha t satisfy

Av = 1v

W ith the eigenvalues on the diagonal of a diagonal m a trix Л and the
corresponding eigenvectors form ing the columns of a m a trix V, we have

AV = VL

I f V is nonsingular, th is becomes the eigenvalue decomposition

A = V Л V 1

A good example is provided by the coefficient m a trix of the ord inary d iffe rentia l
equation in the previous section.

A =

0 -6 -1
6 2 -16

-5 20 -10

The statement

lambda = e ig (A)

produces a column vector containing the eigenvalues. For th is m atrix , the
eigenvalues are complex.

lambda =

-3 .0710
-2.4645+17.6008i
-2 .4645- 17.6008i

The real part of each of the eigenvalues is negative, so e1 approaches zero as
t increases. The nonzero im aginary part of tw o of the eigenvalues, ±w ,
contributes the oscillatory component, s in (ro t) , to the solution of the
d iffe rentia l equation.

4-34

Eigenvalues

W ith tw o output arguments, ei g computes the eigenvectors and stores the
eigenvalues in a diagonal m atrix.

[V ,D] = e ig (A)

V =

-0 .8326 -0.1203+ 0.2123i -0 .1 2 0 3 - 0.2123i
-0 .3553 0.4691+ 0.4901i 0 .4691- 0.4901i
-0 .4248 0 .6249 - 0.2997i 0.6249+ 0. 2997i

D =

-3 .0710 0 0
0 -2.4645+17.6008i 0
0 0 -2 .4645-17. 6008i

The firs t eigenvector is real and the other tw o vectors are complex conjugates
of each other. A ll th ree vectors are normalized to have Euclidean length,
n o r ir (v ,2) , equal to one.

The m a trix V *D *in v (V), which can be w ritten more succinctly as V*D/V, is
w ith in roundoff error of A. And, inv(V)*A *V , or V\A*V, is w ith in roundoff error
of D.

Some matrices do not have an eigenvector decomposition. These matrices are
defective, or not diagonalizable. For example,

A =

6 12 19
-9 -20 -33

4 9 15

For th is m a trix

[V,D] = e ig (A)

4-35

4 Matrices and Linear Algebra

produces

V =

0.4741 0.4082 -0.4082
-0.8127 -0.8165 0.8165

0.3386 0.4082 -0.4082

D =

0000 0 0
0 1.0000 0
0 0 1.0000

There is a double eigenvalue at l = 1. The second and th ird columns of V are
negatives of each other; they are merely d ifferent norm alizations of the single
eigenvector corresponding to l = 1. For th is m atrix , a fu ll set of linearly
independent eigenvectors does not exist.

The optional Symbolic Math Toolbox extends M A T LA B ’s capabilities by
connecting to Maple, a powerful computer algebra system. One of the functions
provided by the toolbox computes the Jordan Canonical Form. Th is is
appropria te for m atrices like our example, which is 3-by-3 and has exactly
known, integer elements.

[X ,J] = jo rd a n (A)

X =

1.7500
3.0000
1.2500

1.5000
-3 .0000

1.5000

2.7500
-3.0000

1.2500

J =

-1 0
0 1
0 0

The Jordan Canonical Form is an im portant theoretical concept, but it is not a
re liable computational tool for larger matrices, or for matrices whose elements
are subject to roundoff errors and other uncertainties.

4-36

Eigenvalues

M A T LA B ’s advanced m a trix computations do not require eigenvalue
decompositions. They are based, instead, on the Schur decomposition,

A = U S U T

where U is an orthogonal m a trix and S is a block upper tr ia n g u la r m a trix w ith
1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed by the
diagonal elements and blocks of S, w h ile the columns of U provide a basis w ith
much better numerical properties than a set of eigenvectors. The Schur
decomposition of our defective example is

[U ,S] = schur(A)

U =

0.4741
-0 .8127

0.3386

S =

-0.6571
-0.0706

0.7505

0.5861
0.5783
0.5675

0000
0
0

21.3737
1.0081

-0.0001

44.4161
0. 6095
0. 9919

The double eigenvalue is contained in the lower 2-by-2 block of S.

4-37

4 Matrices and Linear Algebra

Singular Value Decomposition
A singular value and corresponding s ingu lar vectors of a rectangular m a trix A
are a scalar s and a pair of vectors u and v tha t satisfy

Av = s u
ATu = s v

W ith the singular values on the diagonal of a diagonal m a trix S and the
corresponding singular vectors form ing the columns of tw o orthogonal matrices
U and V, we have

AV = U S
ATU = V S

Since U and V are orthogonal, th is becomes the s ingular value decomposition

A = U S VT

The fu ll singular value decomposition of an m-by-n m a trix involves an m-by-m
U , an m-by-n S, and an n-by-n V. In other words, U and V are both square and
S is the same size as A. I f A has many more rows than columns, the resulting
U can be qu ite large, but most of its columns are m u ltip lied by zeros in S. In
th is s itua tion , the economy sized decomposition saves both tim e and storage by
producing an m-by-n U, an n-by-n S and the same V.

The eigenvalue decomposition is the appropria te tool for analyzing a m atrix
when it represents a mappi ng from a vector space i nto itself, as it does for an
o rd inary d iffe rentia l equation. On the other hand, the singular value
decomposition is the appropria te tool for analyzing a mapping from one vector
space in to another vector space, possibly w ith a d ifferent dimension. Most
systems of simultaneous linear equations fa ll in to th is second category.

I f A is square, symm etric, and positive defin ite, then its eigenvalue and
singular value decompositions are the same. But, as A departs from symmetry
and positive definiteness, the difference between the tw o decompositions
increases. In particu lar, the singular value decomposition of a real m a trix is
always real, but the eigenvalue decomposition of a real, nonsym m etric m a trix
m ight be complex.

4-38

Singular Value Decomposition

For the example m a trix

C
D 4

6 8
2 7

the fu ll singular value decomposition is

[U ,S ,V] = svd(A)

U =

0.6105
0.6646
0.4308

S =

14.9359
0
0

V =

0.6925
0.7214

4-39

-9 .7174
0.2336
0.6563

0.3355
-0 .7098

0.6194

0
5.1883

0

-0.7214
0.6925

4 Matrices and Linear Algebra

You can verify tha t U*S*V is equal to A to w ith in roundoff error. For th is small
problem, the economy size decomposition is only s ligh tly smaller.

[U ,S ,V] = sv d (A 0)

U =

0.6105 -0 .7174
0.6646 0.2336
0.4308 0.6563

S =

14.9359 0
0 5.1883

V =

0.6925 -0 .7214
0.7214 0.6925

Again, U*S*V' is equal to A to w ith in roundoff error.

4-40

5
Polynomials and
Interpolation

P o ly n o m ia ls .. 5-2
Representing P o ly n o m ia ls .. 5-2
Polynomial R oo ts..5-3
C haracteristic Polynomials ..5-3
Polynomial E v a lu a t io n ...5-4
Convolution and D econvo lu tion ... 5-4
Polynomial D e r iv a t iv e s ...5-5
Polynomial Curve F i t t i n g .. 5-6
Partia l Fraction Expansion ..5-7

In te rp o la t io n ..5-9
One-Dimensional In te rp o la t io n ... 5-9
Two-Dimensional In te rp o la t io n ... 5-12
Comparing Interpolation M e th o d s ...5-13
Interpolation and M ultid im ensional A r r a y s 5-15
Triangulation and Interpolation of Scattered D a t a5-18

5 Pblynomials and Interpolation

Polynomials
M ATLAB provides functions for standard polynomial operations, such as
polynomial roots, evaluation, and d iffe rentia tion . In addition, there are
functions for more advanced applications, such as curve fit t in g and partia l
fraction expansion.

The polynomial functions live in a d irectory called po ly fun in the M ATLAB
Tool box.

Function Description

conv M u ltip ly polynomials.

deconv D ivide polynomials.

po ly Polynomial w ith specified roots.

polyder Polynomial derivative.

p o ly f i t Polynomial curve fitt in g .

polyval Polynomial evaluation.

po lyva lm M a tr ix polynomial evaluation.

res idue P artia l-fraction expansion (residues).

roo ts Find polynomial roots.

The Symbolic Math Toolbox contains additional specialized support for
polynomial operations.

Represent ing Po lynomia ls
M ATLAB represents polynomials as row vectors containing coefficients
ordered by descending powers. For example, consider the equation

p(x) = x3 - 2x - 5

This is the celebrated example W a llis used when he firs t represented Newton’s
method to the French Academy. To enter th is polynomial in to M ATLAB, use

p = [1 0 -2 -5];

5-2

Polynomials

Polynomia l Roots
The ro o ts function calculates the roots of a polynomial.

r = ro o ts (p)

r =
2.0946

-1 .0473 + 1.1359i
—1.0473 - 1.1359i

By convention, M ATLAB stores roots in column vectors. The function po ly
re tu rns to the polynomial coefficients.

p2 = p o ly (r)

p2 =
1 8.8818e-16 -2 -5

po ly and ro o ts are inverse functions, up to ordering, scaling, and roundoff
error.

Character ist ic Po lynomia ls
The pol y function also computes the coefficients of the characteristic
polynomial of a m atrix .

A = [1 .2 3 -0 .9 ; 5 1.75 6; 9 0 1];
po ly(A)

ans =
1.0000 -3 .9500 -1 .8500 -163.2750

The roots of th is polynomial, computed w ith ro o ts , are the characteristic roots,
or eigenvalues, of the m a trix A. (Use e ig to compute the eigenvalues of a m a trix
d irectly.)

5-3

5 Fblynomials and Interpolation

Polynomia l Evaluat ion
The polyval function evaluates a polynomial at a specified value. To evaluate
p at s = 5, use

p o ly v a l(p ,5)

ans =
110

It is also possible to evaluate a polynomial in a m a trix sense. In th is case
p(s) = x3 - 2x - 5 becomes p(X) = X 3 - 2X - 51, where X is a square m a trix and
I is the iden tity m atrix . For example, create a square m a trix X and evaluate the
polynomial p at X.

X = [2 4 5; -1 0 3
Y = pol yv p

r
a ,X)

Y =
377 179 439
111 81 136
490 253 639

Convolut ion and Deconvolut ion
Polynomial m u ltip lica tion and division correspond to the operations
convolution and deconvolution. The functions conv and deconv implement
these operations.

Consider the polynomials a(s) = s2 + 2s +3 and b(s) = 4s2 + 5s + 6. To
compute th e ir product,

a = [1 2 3]; b = [4 5 6];
c = conv(a,b)

c =
4 13 28 27 18

5-4

Fblynomials

Use deconvolution to d iv ide a(s) back out of the product:

[q , r] = deconv(c ,a)

q =
4 5 6

r =
0 0 0 0 0

Polynomia l Der ivat ives
The polyder function computes the deriva tive of any polynomial. To obtain the
deriva tive of the polynomial p = [1 0 -2 - 5] ,

q = po lyde r(p)

q =
3 0 -2

polyder also computes the deriva tive of the product or quotient of tw o
polynomials. For example, create tw o polynomials a and b:

a = [1 3 5];
b = [2 4 6];

Calculate the deriva tive of the product a*b by calling polyder w ith a single
output argument:

c = p o lyd e r(a ,b)

c =
8 30 56 38

5-5

5 Fblynomials and Interpolation

Calculate the deriva tive of the quotient a /b by calling polyder w ith tw o output
arguments:

[q , d] = po l yder (a ,b)

q =
-2 -8 -2

d =
4 16 40 48 36

q/d is the result of the operation.

Polynomia l Curve Fitting
p o l y f i t finds the coefficients of a polynomial tha t f its a set of data in a
least-squares sense.

p = p o l y f i t (x , y , n)

x and y are vectors containing the x and y data to be fitted , and n is the order
of the polynomial to re turn . For example, consider the x-y test data:

x = [1 2 3 4 5]; y = [5 . 5 43.1 128 290.7 498.4] ;

A th ird order polynomial tha t approxim ately fits the data is

p = p o l y f i t (x , y , 3)

p =
-0 .1917 31.5821 -60.3262 35.3400

5-6

Fblynomials

Compute the values of the p o l y f i t estim ate over a finer range, and plot the
estimate over the real data values for comparison.

x2 =
y2 = po l yva l (p , x2);
plot (x , y , ’ o’ , x2, y2)
g r i d on

To use these functions in an application example, see Chapter 6 .

Part ial Fraction Expansion
res idue finds the partia l fraction expansion of the ra tio of tw o polynomials.
Th is is pa rticu la rly useful for applications tha t represent systems in transfer
function form. For polynomials b and a, if there are no m u ltip le roots,

^ . _ - _ + _ !1 _ + ... + J n _ + ks
a (s) s - p, s - P2 s - p „ s

where r is a column vector of residues, p is a column vector of pole locations,
and k is a row vector of direct terms. Consider the transfer function

5-7

5 Fblynomials and Interpolation

- 4 + 8s

1 + 6 s + 8 s

b = [- 4 8];
a = [1 6 8];
[r , p , k] = res i due(b ,a)

r =
-12

8

p =
-4
-2

k =
[]

Given three input arguments (r , p, and k), r es idue converts back to polynomial
form:

[b2,a2] = r es i du e (r , p , k)

b2 =
-4 8

a2 =
1 6 8

5-8

Interpolation

Interpolation
In terpolation is a process for estim ating values tha t lie between known data
points. It has im portant applications in areas such as signal and image
processing. M ATLAB provides a number of in terpolation techniques tha t let
you balance the smoothness of the data f it w ith speed of execution and memory
usage.

The interpolation functions live in a d irectory called po l y fun in the M ATLAB
Toolbox.

Function Description

gr i ddata Data gridd ing and surface fitt in g .

i n t e r p l One-dimensional in terpolation (table lookup).

i n t e r p2 Two-dimensional in terpolation (table lookup).

i n t e r p3 Three-dimensional in terpolation (table lookup).

i n t e r p f t One-dimensional in terpolation using FFT method.

i n t e r pn N-D interpolation (table lookup).

sp l i ne Cubic spline data in terpolation.

One-Dimens ional Interpolat ion
There are tw o kinds of one-dimensional in terpolation in M ATLAB:

• Polynomial in terpolation

• FFT-based interpolation

Polynomial Interpolation
The function i n t e r p l performs one-dimensional in terpo lation, an im portant
operation for data analysis and curve fitt in g . This function uses polynomial
techniques, f it t in g the supplied data w ith polynomial functions between data
points and evaluating the appropria te function at the desired interpolation
points. Its most general form is

yi = i n t e r p 1 (x , y , x i , me t h o d)

5-9

5 Fblynomials and Interpolation

y is a vector containing the values of a function, and x is a vector of the same
length containing the points for which the values in y are given. xi is a vector
containing the points at which to interpolate. method is an optional s tring
specifying an interpolation method.

There are four d ifferent in terpolation methods for one-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’). Th is method sets the
value of an interpolated point to the value of the nearest existing data point.
It uses the same a lgorithm as the round function to determ ine which value
to choose: values of xi w ith decimal portion less than 0.5 receive the
preceding value; values of xi w ith decimal portion greater than or equal to
0.5 receive the succeeding value. Out-of range points receive a value of NaN
(Not a Number).

• L inear interpolation (method = ’ l i n e a r ’). Th is method fits separate
functions between each pair of existing data points, and re tu rns the value of
the relevant function at the points specified by xi . Th is is the default method
for the in t e rp l function. Out-of-range points receive a value of NaN.

• Cubic spline interpolation (method = ’ s p l i n e ’). Th is method uses a series
of functions to obtain interpolated data points, determ ining separate
functions between each pair of existing data points. A t its endpoint (an
existing data point), each function has at least the same firs t and second
derivatives as the function fo llow ing it.

• Cubic interpolation (method = ’ cub i c ’). Th is method fits a cubic function
through y, and re tu rns the value of th is function at the points specified by
xi . Out-of-range points receive a value of NaN.

A ll of these methods require tha t x be monotonic, tha t is, e ither always
increasing or always decreasing from point to point. Each method works w ith
non-uniformed spaced data. I f x is already equally spaced, you can speed
execution tim e by prepending an asterisk to the method string, for example,
’ * c u b i c ’ .

5-10

Interpolation

Speed, Memory, and Smoothness Considerations
When choosing an interpolation method, keep in mind tha t some require more
memory or longer computation tim e than others. However, you may need to
trade off these resources to achieve the desired smoothness in the result.

• Nearest neighbor interpolation is the fastest method. However, it provides
the worst results in term s of smoothness.

• L inear interpolation uses more memory than the nearest neighbor method,
and requires s ligh tly more execution tim e. U n like nearest neighbor
interpolation its results are continuous, but the slope changes at the vertex
points.

• Cubic interpolation requires more memory and execution tim e than either
the nearest neighbor or linear methods. However, both the interpolated data
and its deriva tive are continuous.

• Cubic spline interpolation has the longest re la tive execution tim e, although
it requires less memory than cubic interpolation. It produces the smoothest
results of all the interpolation methods. You may obtain unexpected results,
however, if your input data is non-uniform and some points are much closer
together than others.

The re la tive performance of each method holds tru e even for in terpolation of
two-dimensional or m ultid im ensional data. For a graphical comparison of
in terpolation methods, see the section “Comparing Interpolation Methods” on
page 5-13.

FFT-Based Interpolation
The function i n t e r p f t performs one-dimensional in terpolation using an
FFT-based method. Th is method calculates the Fourier transform of a vector
tha t contains the values of a periodic function. It then calculates the inverse
Fourier transform using more points. Its form is

y = i n t e r p f t (x , n)

x is a vector containing the values of a periodic function, sampled at equally
spaced points. n is the number of equally spaced points to return.

5-11

5 Polynomials and Interpolation

Two-Dimens iona l Interpolat ion
The function i n t e r p2 performs two-dimensional in terpolation, an im portant
operation for image processing and data visualization . Its most general form is

ZI = i n t e rp2 (X,Y,Z ,X I ,Y I ,me thod)

Z is a rectangular array containing the values of a two-dimensional function,
and X and Y are arrays of the same size containing the points for which the
values in Z are given. XI and YI are matrices containing the points at which to
in terpo late the data. method is an optional s tring specifying an interpolation
method.

There are three d ifferent in terpolation methods for two-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’). Th is method fits a
piecewise constant surface through the data values. The value of an
interpolated point is the value of the nearest point.

• B ilinear interpolation (method = ’ l i n e a r ’). Th is method fits a b ilinear
surface through existing data points. The value of an interpolated point is a
combination of the values of the four closest points. Th is method is piecewise
bilinear, and is faster and less memory-intensive than bicubic interpolation.

• B icubic interpolation (method = ’ cub i c ’). Th is method fits a bicubic surface
through existing data points. The value of an interpolated point is a
combination of the values of the sixteen closest points. Th is method is
piecewise bicubic, and produces a much smoother surface than bilinear
in terpolation. Th is can be a key advantage for applications like image
processing. Use bicubic interpolation when the interpolated data and its
deriva tive must be continuous.

A ll of these methods require tha t X and Y be monotonic, tha t is, e ither always
increasing or always decreasing from point to point. You should prepare these
matrices using the meshgrid function, or else be sure tha t the “pa tte rn ” of the
points emulates the output of meshgrid. In addition, each method
autom atica lly maps the input to an equally spaced domain before
in terpolating. I f X and Y are already equally spaced, you can speed execution
tim e by prepending an asterisk to the method string, for example, ’ * c u b i c ’ .

5-12

Interpolation

Compar ing In terpo lat ion Methods
This example compares two-dimensional in terpolation methods on a 7-by-7
m a trix of data.

1 Generate the peaks function at low resolution:

[x , y] = meshgri d (—3:1:3) ;
z = peaks(x,y) ;
sur f (x , y , z)

3

2 Generate a finer mesh for in terpolation:

[x i, y i] = meshgr i d(-3 : 0 .25:3) ;

3 In terpolate using nearest neighbor interpolation:

z i1 = i n t e r p 2 (x , y , z , x i , y i , ' n e a r e s t ') ;

4 In terpolate using b ilinear in terpolation:

z i2 = i n t e r p 2 (x , y , z , x i , y i , ' b i l i n e a r ') ;

5 In terpo late using bicubic in terpolation:

z i3 = i n t e r p 2 (x , y , z , x i , y i , ' b i c u b i c ') ;

5-13

5 Polynomials and Interpolation

6 Compare the surface plots for the d ifferent in terpolation methods

s u r f (x i , y i , z i 1) % nearest s u r f (x i , y i , z i 2) % b i l i near

7 Compare the contour plots for the d ifferent in terpolation methods:

% nearest
c o n t ou r (x i , y i , z i 2)
% b i l i near % bicubic

Notice tha t the bicubic method, in particu la r, produces smoother contours.
Th is is not always the prim ary concern, however. For some applications, such
as medical image processing, a method like nearest neighbor may be preferred
because it doesn’t generate any “ new” data values.

5-14

Interpolation

In terpo la t ion and Mul t id imens iona l A r rays
Several in terpolation functions operate specifically on m ultid im ensional data:

Function Description

i n t e r p3 Three-dimensional data interpolation.

i n t e rpn M ultid im ensiona l data interpolation.

ndgr id M ultid im ensiona l data gridd ing (ndfun directory).

Interpolation of Three-Dimensional Data
The function i n t e r p3 performs three-dimensional in terpo lation, find ing
interpolated values between points of a three-dimensional set of samples V.
You must specify a set of known data points:

• X, Y, and Z matrices specify the points for which values of V are given.

• A m a trix V contains values corresponding to the points in X, Y, and Z.

The most general form for i n t e r p3 is

VI = i n terp3(X, Y ,Z,V,XI ,YI ,Z I ,method)

XI , YI , and ZI are the points at which i n t e r p3 interpolates values of V. For
out-of-range values, i n t e r p3 re tu rns NaN.

There are three d ifferent in terpolation methods for three-dimensional data:

• Nearest neighbor interpolation (method = ’ neares t ’). Th is method chooses
the value of the nearest point.

• T rilin e a r interpolation (method = ’ l i n e a r ’). Th is method uses piecewise
linear in terpolation based on the values of the nearest eight points.

• T ricub ic interpolation (method = ’ cub i c ’). Th is method uses piecewise cubic
interpolation based on the values of the nearest sixty-four points.

A ll of these methods require tha t X, Y, and Z be monotonic, tha t is, e ither always
increasing or always decreasing in a particu la r direction. In addition, you
should prepare these matrices using the meshgrid function, or else be sure tha t
the “pa tte rn ” of the points emulates the output of meshgrid.

5-15

5 Polynomials and Interpolation

Each method autom atica lly maps the input to an equally spaced domain before
in terpolating. I f x is already equally spaced, you can speed execution tim e by
prepending an asterisk to the method string, for example, ’ *cubi c’ .

Interpolation of Higher-Dimensional Data
The function i n t e r pn performs m ultid im ensional in terpo lation, find ing
interpolated values between points of a m ultid im ensional set of samples V. The
most general form for i n t e r pn is

VI = i n t e r pn (X1 , X 2 , X3 . . . , V , Y1 , Y2 , Y3 , . . . , me t hod)

1, 2, 3, ... are matrices tha t specify the points for which values of V are given.
V is a m a trix tha t contains the values corresponding to these points. 1, 2, 3, ...
are the points for which i n t e r pn re tu rns interpolated values of V. For
out-of-range values, i n t e r pn re tu rns NaN.

Y1, Y2, Y3, ... must be e ither arrays of the same size, or vectors. I f they are
vectors of d ifferent sizes, i n t e r pn passes them to ndgr i d and then uses the
resulting arrays.

There are three d ifferent in terpolation methods for m ultid im ensional data:

• Nearest neighbor interpolation (method = ’ neares t ’). Th is method chooses
the value of the nearest point.

• L inear interpolation (method = ’ l i n e a r ’). Th is method uses piecewise
linear in terpolation based on the values of the nearest tw o points in each
dimension.

• Cubic interpolation (method = ’ cub i c ’). Th is method uses piecewise cubic
interpolation based on the values of the nearest four points in each
dimension.

A ll of these methods require tha t X1, X2,X3 be monotonic. In addition, you
should prepare these matrices using the ndgr id function, or else be sure tha t
the “pa tte rn ” of the points emulates the output of ndgr id.

Each method autom atica lly maps the input to an equally spaced domain before
in terpolating. I f X is already equally spaced, you can speed execution tim e by
prepending an asterisk to the method string; for example, ’ *cubi c’ .

5-16

Interpolation

Multidimensional Data Gridding
The ndgr i d function generates arrays of data for m ultid im ensional function
evaluation and interpo lation. ndgr i d transform s the domain specified by a
series of input vectors in to a series of output arrays. The i ’th dimension of
these output arrays are copies of the elements of input vector x i .

The syntax for ndgr id is

[X1 , X 2 , X 3 , . . .] = n d g r i d (x 1 , x 2 , x 3 , . . .)

For example, assume tha t you want to evaluate a function of th ree variables
over a given range. Consider the function

z = x2 e(- x2-x2-x2)

for -2л < x i < 0, 2л < x2 < 4л, and 0 < x3 < 2л. To evaluate and plot th is function:

x1 = - 2 : 0 . 2 : 2 ;
x2 = - 2 : 0 .25 :2 ;
x3 = - 2 : 0 .16 :2 ;
[X1,X2,X3] = ndgr i d (x1 , x2 , x3) ;
z = X2. *e xp (-X 1 .A2 -X 2 .A2 - X 3 . A2);
s l i ce(X2,X1,X3, z , [- 1 . 2 . 8 2] , 2 , [- 2 0 . 2])

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
2

-2 -2

5-17

5 Polynomials and Interpolation

Triangulat ion and Interpo lat ion of Scattered Data
M ATLAB provides routines tha t aid in the analysis of closest-point problems
and geometric analysis:

Function Description

convhul l Convex hull.

delaunay Delaunay tr iangu la tion .

dsearch Search Delaunay tr iangu la tion for nearest point.

i npolygon True for points inside polygonal region.

polyarea Area of polygon.

r ec t i n t Area of intersection for tw o or more rectangles.

t search Closest tr iang le search.

voronoi Voronoi diagram.

5-18

Interpolation

Delaunay Triangulation
The del aunay function re tu rns a set of triang les such tha t no data points are
contained in any tr ia n g le ’s circumcircle. To try delaunay, load the seamount
data set supplied w ith M ATLAB and view the data as a sim ple scatter plot.

l oad seamount
p l o t (x , y , ’ . ’ , ’ markers i ze’ , 12)
x l a b e l (’ Longi tude’), y l a b e l (’ L a t i t u d e ’)
g r i d on

Longitude

Note For inform ation on seamount, see Parker, R. L., L. Shure, & J.
H ildebrand, “The Application of Inverse Theory to Seamount M agnetism .”
Reviews of Geophysics. Vol 25, 1987: pp 17-40.

5-19

5 FOlynomials and Interpolation

Apply Delaunay tr iangu la tion and overplot the resulting triang les on the
scatter plot:

t r i = del aunay(x,y) ;
hold on, t r i m e s h (t r i , x , y , z) , hold of f
hidden o f f ; g r i d on
x l a b e l (’ Longi tude’); y l a b e l (’ Lat i t u d e ’)

-47.95

-4 8

-48.05

-48.1

-48.15

e d
titu -48.2

-48.25

-48.3

-48.35

-48.4

-48.45
210.8 210.9 211 211.1 211.2 211.3 211.4 211.5 211.6 211.7 211.8

Longitude

5-20

Interpolation

Here’s a contour plot:

[x i , y i] = meshgr id(210.8: . 01 : 211 . 8 , - 48 . 5 : . 01 : - 47 . 9);
zi = g r i d d a t a (x , y , z , x i , y i , ' c u b i c ') ;
[c , h] = c o n t o u r (x i , y i , z i , ' c - ') ; c l ab e l (c , h)

The arguments for meshgrid encompass the largest and smallest x and y
values in the orig inal seamount data. To obtain these values, use

mn(mi n (x))
max(max(x))

and

min(min(y))
max(max(y))

5-21

5 Fblynomials and Interpolation

Closest-Point Searches. You can search through the Delaunay triangu la tion data
w ith tw o functions:

• dsearch finds the point closest to a point you specify.

• tsearch, given a point (x i , y i) , re tu rns an index in to the del aunay output
tha t specifies the enclosing tr iang le for the point.

Voronoi Diagrams
Vornoi d iagram s are a closest-point p lo tting technique related to Delaunay
triangu la tion . The Voronoi diagram for the seamount data is

load seamount
v o r ono i (x , y)
g r i d on

5-22

Interpolation

Convex Hulls
The convhul l function re tu rns the indices of the points in a data set that
comprise the convex hull for the set. For example, to view the convex hull for
the seamount data:

load seamount
p l o t (x , y , ’ . ’ , ’ markers i ze’ , 10)
k = c onv hu l l (x , y) ;
hold on, p l o t (x (k) , y (k)) , hold of f
g r i d on

5-23

5 Polynomials and Interpolation

5-24

6
Data Analysis and
Statistics

C o lu m n -O rie n te d Data S e t s ... 6-3

B asic Data Ana l ys i s F u n c t i o n s ...6-7
Covariance and Correlation C o e ff ic ie n ts 6-9
F in ite D if fe re n c e s ... 6-11

Data P r e - P r o c e s s in g ...6-12
Missing V a lu e s ..6-12
Removing O u t l ie r s ... 6-13

R egression and Cu r v e F i t t i n g ...6-15
Polynomial R e g re s s io n ...6-15
Linear-in-the-Param eters R e g re s s io n ..6-17
M u ltip le Regression ... 6-19

Case Study : Cu r v e F i t t i n g ..6-20
Polynomial F i t .. 6-20
Analyzing R e s id u a ls ...6-22
Exponential F i t ..6-25
Error B o u n d s .. 6-28

D iffe re n c e Equa t i on s and F i l t e r i n g 6-29

Fo u r i e r Ana l y s i s and t h e Fast Fou r i e r T r a n s f o r m (F F T) 6-31
M agnitude and Phase of Transformed D a ta6-37
FFT Length Versus S p e e d .. 6-38

6 Data Analysis and Statistics

This chapter introduces M A T LA B ’s data analysis capabilities. It discusses how
to organize arrays for data analysis, how to use sim ple descriptive sta tistics
functions, and how to perform data pre-processing tasks in M ATLAB. It also
discusses other data analysis topics, includ ing regression, curve fitt in g , data
filte rin g , and fast Fourier transform s (FFTs).

The data analysis and sta tis tics functions are in the d irectory datafun in the
M ATLAB Toolbox. Use online help to get a complete lis t of functions.

A number of related toolboxes provide advanced func tiona lity for specialized
data analysis applications.

Toolbox Data Analysis Application

O ptim ization Nonlinear curve fit t in g and regression.

Signal Processing Signal processing, filte rin g , and frequency
analysis.

Spline Curve fit t in g and regression.

S tatistics Advanced sta tistica l analysis, nonlinear curve
fitt in g , and regression.

System Identification Param etric / ARM A modeling.

Wavelet Wavelet analysis.

6-2

Column-Oriented Data Sets

Column-Oriented Data Sets
U niva ria te sta tistica l data is typ ica lly stored in ind iv idua l vectors. The vectors
can be either 1-by-n or n-by-1. For m u ltiva ria te data, a m a trix is the natural
representation but there are, in principle, tw o possibilities for orientation. By
M ATLAB convention, however, the d ifferent variables are put in to columns,
a llow ing observations to vary down through the rows. Therefore, a data set
consisting of tw enty four samples of th ree variables is stored in a m a trix of size
24-by-3.

Consider a sample data set comprising vehicle tra ff ic count observations at
th ree locations over a tw enty-four hour period.

Time Location 1 Location 2 Location 3

01h00 11 11 9

02h00 7 13 11

03h00 14 17 20

04h00 11 13 9

05h00 43 51 69

06h00 38 46 76

07h00 61 132 186

08h00 75 135 180

09h00 38 88 115

10h00 28 36 55

11 h00 12 12 14

12h00 18 27 30

13h00 18 19 29

14h00 17 15 18

15h00 19 36 48

6-3

6 Data Analysis and Statistics

Time Location 1 Location 2 Location 3

16h00 32 47 10

17h00 42 65 92

18h00 57 66 151

19h00 44 55 90

20h00 114 145 257

2 1 h00 35 58 68

2 2 h00 11 12 15

23h00 13 9 15

24h00 10 9 7

6-4

Column-Oriented Data Sets

The raw data is stored in the file, c o u n t.d a t.

11 11 9
7 13 11

14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90

114 145 257
35 58 68
11 12 15
13 9 15
10 9 7

Use the load command to im port the data.

load count.da t

Th is creates a m a trix count in the workspace.

For th is example, there are 24 observations of three variables. Th is is
confirmed by

[n ,p] = s i ze(count)
n =

p =
24

3

6-5

6 Data Analysis and Statistics

Create a tim e vector, t , of integers from 1 to n.

t = 1 :n;

Now plot the counts versus tim e and annotate the plot.

s e t (0, ' d e f a u l t a x e s l i n e s t y l e o r d e r ’ , ’ - | - - | - . ’)
s e t (0, ' d e f a u l t a x e s c o l o r o r d e r ' , [0 0 0])
p l o t (t , c o u n t) , l egend (' Loca t i on 1 ' , ' L o c a t i o n 2 ' , ' L o c a t i on 3 ' , 0)
x l a b e l (' T i m e ') , y l a b e l (' V e h i c l e Count ') , g r i d on

The plot shows the vehicle counts at th ree locations over a 24-hour period.

6-6

Basic Data Analysis Functions

Basic Data Analysis Functions
A collection of functions provides basic column-oriented data analysis
capabilities.

Function Description

cumprod C um ula tive product of elements.

cumsum C um ula tive sum of elements.

cumtrapz C um ula tive trapezoidal numerical in tegration.

di f f Difference function and approxim ate derivative.

max Largest component.

mean Average or mean value.

median Median value.

mi n Smallest component.

pr od Product of elements.

sort Sort in ascending order.

sor t rows Sort rows in ascending order.

st d Standard deviation.

sum Sum of elements.

t r apz Trapezoidal numerical in tegration.

For vector input arguments to these functions, it does not m atter whether the
vectors are oriented in row or column direction. For array arguments, however,
the functions operate column by column on the data in the array. Th is means,

6-7

6 Data Analysis and Statistics

for example, tha t if you apply max to an array, the result is a row vector
containing the maximum values over each column.

Note You can add more functions to th is lis t using M-files, but when doing so,
you must exercise care to handle the row-vector case. I f you are w r it in g your
own column-oriented M-files, check other M-files; for example, nean.m and
d i f f . m

C ontinuing w ith the vehicle tra ff ic count example, the statements

mx = max(count)
mu = msan(count)
sigma = s td(count)

result in

mx =
114 145 257

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

To locate the index at which the m in im um or maximum occurs, a second output
parameter can be specified. For example,

[nx . i ndx] = min(count)

mx =
7 9 7

indx =
2 23 24

shows tha t the lowest vehicle count is recorded at 02h00 for the firs t
observation point (column one) and at 23h00 and 24h00 for the other
observation points.

6-8

Basic Data Analysis Functions

You can subtract the mean from each column of the data using an outer product
involving a vector of n ones.

[n , p] = s i ze(count)
e = o n e s (n ,1)
x = count - e*imui

Rearranging the data may help you evaluate a vector function over an entire
data set. For example, to find the smallest value in the entire data set, use:

mn(c oun t (:))

which produces:

ans =
7

The syntax c o u n t (:)) rearranges the 24-by-3 m a trix in to a 72-by-1 column
vector.

Covar iance and Correlat ion Coeff icients
M A T LA B ’s sta tis tica l capabilities include tw o functions for the computation of
correlation coefficients and covariance.

Function Description

cov Variance of vector - measure of spread or dispersion of
sample variable.

Covariance of m a trix - measure of strength of linear
re lationships between variables.

cor rcoef Correlation coefficient - normalized measure of linear
re lationship strength between variables.

cov re tu rns the variance for a vector of data. The variance of the data in the
firs t column of count is

c o v (c o u n t (: , 1))

ans =
643.6522

6-9

6 Data Analysis and Statistics

For an array of data, cov calculates the covariance m atrix . The variance values
for the array columns are arranged along the diagonal of the covariance m atrix.
The rem aining entries reflect the covariance between the columns of the
orig inal array. For an m-by-n m atrix , the covariance m a trix has size n-by-n.
For example, the covariance m a trix for count , c ov (c oun t) , is arranged as.

2 2 2
s 11 s 12 s 13

2 2 2
s 21 s 22 s 23

2 2 2
s 21 s 32 s 33

2 2
s ij _ s ji

cor rcoef produces a m a trix of correlation coefficients for an array of data
where each row is an observation and each column is a variable. The
correlation coefficient is a normalized measure of the strength of the linear
re lationship between tw o variables. Uncorrelated data results in a correlation
coefficient of 0; equivalent data sets have a correlation coefficient of 1 .

For an m-by-n m atrix , the correlation coefficient m a trix has size n-by-n. The
arrangement of the elements in the correlation coefficient m a trix corresponds
to the location of the elements in the covariance m a trix described above.

For our tra ff ic count example

cor r coe f (count)

results in

ans =
1.0000 0.9331 0.9599
0.9331 1.0000 0.9553
0.9599 0.9553 1.0000

C learly there is a strong linear correlation between the three tra ff ic counts
observed at the three locations, as the results are close to 1 .

6-10

Basic Data Analysis Functions

Finite Di f ferences
M ATLAB provides th ree functions for f in ite difference calculations.

Function Description

di f f D ifference between successive elements of a vector.
Numerical partia l derivatives of a vector.

gr adient Numerical partia l derivatives a m atrix.

d e l2 Discrete Laplacian of a m atrix.

The d if f function computes the difference between successive elements in a
num eric vector . That is, d i f f (X) is [X(2) -X(1) X (3)-X (2) . . .
X (n)-X (n -1)] . So, for a vector A,

A = [9 -2 :3 0 1 5 4];
d i f f (A)

ans =
- 1 1 5 -3 1 4 -1

Besides computing the firs t difference, d i f f is useful for determ ining certain
characteristics of vectors. For example, you can use d i f f to determ ine if a
vector is monotonic (elements are always either increasing or decreasing), or if
a vector has equally spaced elements. Th is tab le describes a few d ifferent ways
to use d i f f w ith a vector x.

di f f (x) = = 0 Tests for repeated elements.

a l l (d i f f (x) > 0) Tests for monotonicity.

a l l (d i f f (d i f f (x)) = = 0) Tests for equally spaced vector elements.

6-11

6 Data Analysis and Statistics

Data Pre-Processing

Missing Values
The special value, NaN, stands for Not-a-Number in M ATLAB. IEEE
floating-point a rith m e tic convention specifies NaN as the result of undefined
expressions such as 0/ 0.

The correct handling of m issing data is a d ifficu lt problem and often varies in
d ifferent situations. For data analysis purposes, it is often convenient to use
NaNs to represent m issing values or data tha t are not available.

M ATLAB trea ts NaNs in a uniform and rigorous way; they propagate na tu ra lly
through to the fina l result in any calculation. Any mathematical calculation
involving NaNs w ill produce NaNs in the results.

For example, consider a m a trix containing the 3-by-3 magic square w ith its
center element set to NaN.

a = magic(3); a(2,2) = NaN

a =
8 1 6
3 NaN 7
4 9 2

Compute a sum for each column in the m atrix .

sum(a)

ans =
15 NaN 15

Any mathem atical calculation involving NaNs propagates NaNs through to the
fina l result as appropriate.

6-12

Data Re-ftocessing

You should remove NaNs from the data before perform ing statistica l
computations. Here are some ways to remove NaNs from data.

i = f i nd (~i snan(x)) ; Find indices of elements in vector tha t are
x = x (i) not NaNs, then keep only the non-NaN

elements.

x = x (f i n d (~ i snan(x))) Remove NaNs from vector.

x = x(~ i snan(x)) ; Remove NaNs from vector (faster).

x(i snan(x)) = [] ; Remove NaNs from vector.

X(any (i snan(X) ’) , :) = [] ; Remove any rows of m a trix X containing
NaNs.

Note You must use the special function i snan to find NaNs because, by IEEE
a rithm e tic convention, the logical comparison, NaN == NaN always produces 0.
You cannot use x(x==NaN) = [] to remove NaNs from your data.

I f you frequently need to remove NaNs, w rite a short M -file function.

f un c t i on X = excise(X)
X(any (i snan(X) ’) , :) = [] ;

Now, typ ing

X = excise(X) ;

accomplishes the same th ing.

Removing Out l iers
You can remove outlie rs or misplaced data points from a data set in much the
same manner as NaNs. For the vehicle tra ff ic count data, the mean and
standard deviations of each column of the data are

mu = mean(count);
sigma = s t d (count) ;

6-13

6 Data Analysis and Statistics

The number of rows w ith outlie rs greater than three standard deviations is
obtained w ith :

[n , p] = s i ze(count)
o u t l i e r s = abs(count — mu(ones(n, 1) , :)) > 3*sigma(ones(n, 1) , :) ;
nout = sum(out l i e r s)
nout =

1 0 0

There is one outlie r in the firs t column. Remove th is en tire observation w ith

c o u n t (a n y (o u t l i e r s ') , :) = [] ;

6-14

Regression and Curve Fitting

Regression and Curve Fitting
It is often useful to find functions tha t describe the re lationship between some
variables you have observed. Identification of the coefficients of the function
often leads to the form ulation of an overdetermined system of simultaneous
linear equations. These coefficients can be e ffic iently found using the M ATLAB
backslash operator.

Suppose you measure a quan tity y at several values of tim e t.

t = [0 .3 .8 1.1 1.6 2 . 3] ’ ;
y = [0 . 5 0.82 1.14 1.25 1.35 1 . 40] ’ ;
p l o t (t , y , ’ o’), g r i d on
1.

1.

1.

1.

0.

0.

0.

0.

0.
0 0.5 1 1.5 2 2.5

Polynomia l Regression
Based on the plot, it is possible tha t the data may be modeled by a polynomial
function

y = a о + a 11 + a2t 2

The unknown coefficients a0 , a 1, and a2 , can be computed by doing a least
squares fit, which m inim izes the sum of the squares of the deviations of the
data from the model. There are s ix equations in th ree unknowns,

6-15

6 Data Analysis and Statistics

И * x2- - 1 «1 «1
У1 2
y2 1 2 «2

1 «3 «3Уз

У4 1 «4 «4
У5

1 «5 «5
y6

1 «6 «6_

represented by he 6-by-3 m a trix

X = [o n e s (s i z e (t)) t t . A2]

a0
aX

a2

X =
.0000 0 0
.0000 0.3000 0.0900
.0000 0.8000 0.6400
.0000 1.1000 1.2100
.0000 1.6000 2.5600
.0000 2.3000 5.2900

The solution is found w ith the backslash operator.

a = X\y

a =
0.5318
0.9191

- 0.2387

The second order polynomial model of the data is therefore

y = 0.5318 + 0.919""1 i - 0.2387""«2

6-16

Regression and Curve Fitting

Now evaluate the model at regularly spaced points and overlay the original
data in a plot.

T = (0 : 0 . 1 : 2 . 5) ’ ;
Y = [ones(s i ze(T)) T T . A2]*a;
p l o t (T , Y , ' - ' , t , y , ' o ' ,) , g r i d on

C learly th is f it does not perfectly approxim ate the data. We could either
increase the order of the polynomial f it, or explore some other functional form
to get a better approxim ation.

L inear - in- the-Parameters Regression
Instead of a polynomial function, we could try using a function tha t is
linear-in-the-param eters. In th is case, consider the exponential function

y = a0 + a 1 e- + a2te-

The unknown coefficients a0 , a 1, and a2 , are computed by perform ing a least
squares fit. Construct and solve the set of s im ultaneous equations by form ing

6-17

6 Data Analysis and Statistics

the regression m atrix , X, and solving for the coefficients using the backslash
operator.

X = [o n e s (s i z e (t)) exp (- t) t . * e x p (- t)] ;
a = X\y

a =
1.3974

- 0.8988
0.4097

The fitted model of the data is therefore

y = 1 .3974-0 .8988 e- + 0.4097 te-

Now evaluate the model at regularly spaced points and overlay the orig inal
data in a plot.

T = (0:0. 1 : 2 . 5) ' ;
Y = [ones (s i ze (T)) exp (- T) T . e x p (- T)] *a;
p l o t (T , Y , ' - ' , t , y , ' o ') , g r i d on

Th is is a much better f it than the second order polynomial function.

6-18

Fegression and Curve Fitting

Mul t ip le Regression
I f y is a function of more than one independent variable, the m a trix equations
tha t express the re lationships among the variables can be expanded to
accommodate the additional data.

Suppose we measure a quan tity y for several values of parameters x 1 and x2 .
The observations are entered as

x i = [. 2 .5 .6 .8 1.0 1 . 1] ’ ;
x2 = [. 1 .3 .4 .9 1.1 1 . 4] ’ ;
y = [. 17 .26 .28 .23 .27 . 2 4] ’ ;

A m u ltiva ria te model of the data is

y = a0 + a 1X1 + a2X2

M u ltip le regression solves for unknown coefficients a0 , a1, and a2 , by
perform ing a least squares fit. Construct and solve the set of simultaneous
equations by form ing the regression m atrix , X, and solving for the coefficients
using the backslash operator.

X = [ones (s i ze (x1)) x1 x2] ;
a = X\y

a =
0.1018
0.4844

-0 .2847

The least-squares fit model of the data is therefore

y = 0.1018 + 0.4844 x 1 - 0.2847 x 2

To va lida te the model, find the maximum of the absolute value of the deviation
of the data from the model.

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr =
0.0038

This is su ffic ien tly small to be confident the model reasonably fits the data.

6-19

6 Data Analysis and Statistics

Case Study: Curve Fitting
This section provides an overview of some of M A T LA B ’s basic data analysis
capabilities in the form of a case study. The examples tha t follow work w ith a
collection of census data, using M ATLAB functions to experiment w ith f it t in g
curves to the data.

The file census.mat contains U.S. population data for the years 1790 through
1990. Load it in to M ATLAB

load census

Your workspace now contains tw o new variables, cdate and pop.

• cdate is a column vector containing the years from 1790 to 1990 in
increments of 10 .

• pop is a column vector w ith the U.S. population figures tha t correspond to the
years in cdate.

Polynomia l Fit
A firs t try in f it t in g the census data m ight be a sim ple polynomial f it. Two
M ATLAB functions help w ith th is process.

Function Description

p o l y f i t Polynomial curve fit.

polyval Evaluation of polynomial f it.

M A T LA B ’s p o l y f i t function generates a “best f i t ” polynomial (in the least
squares sense) of a specified order for a given set of data. For a polynomial fit
of the fourth-order

p = p o l y f i t (c d a t e , p o p , 4)
Warning: Mat r i x i s c l ose t o s i ngu l a r or badly scaled.

Resul ts nay be inaccurate. RCCND = 5.429790e-20
p =

1.0e+05 *

0.0000 -0.0000 0.0000 -0.0126 6.0020

6-20

Case Study: Curve Fitting

The w arn ing arises because the p o l y f i t function uses the cdate values as the
basis for a m a trix w ith very large values (it creates a Vandermonde m a trix in
its calculations - see the p o l y f i t M -file for details). The spread of the cdate
values results in scaling problems. One way to deal w ith th is is to normalize
the cdate data.

Preprocessing: Normalizing the Data
Norm alization is a process of scaling the numbers in a data set to improve the
accuracy of the subsequent num eric computations. A way to normalize cdate
is to scale it for zero mean and un it standard deviation.

sdat e = (cdate - mean(cdat e)) . / s t d (c d a t e)

Now t r y the fourth-order polynomial model using the normalized data.

p = p o l y f i t (s d a t e , p o p , 4)

P =
0.7047 0.9210 23.4706 73.8598 62.2285

Evaluate the fitted polynomial at the normalized year values, and plot the fit
against the observed data points.

pop4 = po l yva l (p , sda t e) ;
plot (c d a t e , p o p 4 , ' - ' , c d a t e , p o p , ' + ') , g r i d on

6-21

6 Data Analysis and Statistics

Another way to norm alize data is to use some knowledge of the solution and
units. For example, w ith th is data set, choosing 1790 to be year zero would also
have produced satisfactory results.

Ana lyz ing Residuals
A measure of the “goodness” of f it is the residual, the difference between the
observed and predicted data. Compare the residuals for the various fits, using
normalized cdate values.

6-22

Case Study: Curve Fitting

Fit Residuals

pi = p o l y f i t (sdate,pop, 1);
popi = p o l y v a l (p 1 , sdate) ;
p l o t (c d a t e , p o p 1 , ' - ' , c d a t e , p o p , ' + '

r es l = pop - popi;
f i gu r e , p l o t (c d a t e , r e s i , ' + '

Lirear fit appears irsatiSFaiay * 50

40

30

20

- rote negative population
valuasat lows' erdof scale ,

....;../......
.....

/ + 10

... I./ 0

-10

-20

+ Fesidiels of lireer fit show +
strarcjy patterned +

/ i i +
..........

'
+ I .

j +
+ + + f

p = p o l y f i t (sda t e , p op , 2);
pop2 = po l yva l (p , sda te) ;
p l o t (c da t e , p op 2 , ' - ' , c d a t e , p o p , ' + '

res2 = pop - pop2 ;
f i gu r e , p l o t (c d a t e , r e s 2 , ’ +’

+

* +

\\
FeacLals still appear strarcjy
ncttpmprl

+

250

200

150

100

50

1800 1850 1900 1950 2000

1800 1850 1900 1950 2000

6-23

6 Data Analysis and Statistics

Fit Residuals

p = p o l y f i t (s d a t e , p o p , 4) ;
pop4 = po l yva l (p , sda t e) ;
p l o t (cda t e , pop4 , ' - ' , c d a t e , p o p , ' + '

res4 = pop - pop4;
f i gu r e , p l o t (c d a t e , r e s 4 , ' + '

+

+

+ * ' ■ * : - - A\
+

............
Fesidials
terned.

+

still appear
\
strorcjyp3t-

t

I t ’s evident from studying the fit plots and residuals tha t it should be possible
to do better than a sim ple polynomial f it w ith th is data set.

6-24

Case Study: Curve Fitting

Exponent ia l Fit
By looking at the population data plots on the previous pages, the population
data curve is somewhat exponential in appearance. To take advantage of th is,
le t’s try to f it the logarithm of the population values, again w ork ing w ith
normalized year values.

l ogpl = p o l y f i t (s d a t e , l o g 10(p o p) , 1);
l ogpred l = 10. Ap o l y v a l (l o g p 1 , sdate) ;
semi logy(cdate, l ogpr ed 1 , ' - ' , c d a t e , p o p ,
g r i d on

6-25

6 Data Analysis and Statistics

Now t ry t he logarithm analysis w ith a second-order model.

l ogp2 = p o l y f i t (s d a t e , l o g 10(pop) , 2);
l ogpred2 = 10. Ap o l y v a l (l o g p 2 , sdate) ;
seml ogy(cda t e , l ogpr ed2 , ' - ' , c d a t e , p o p , ' + ') ; g r i d on

This is a more accurate model. The upper end of the plot appears to taper off,
w h ile the polynomial f its in the previous section continue, concave up, to
in fin ity .

6-26

Case Study: Curve Fitting

Compare the residuals for the second-order logarithm ic model.

Residuals in Log Population Scale Residuals in Population Scale

l og r es 2 = l o g 10(pop) -
p o l y v a l (l o g p 2 , sdate) ;
p l o t (c d a t e , l ogres2 , ' + '

r = pop - 10. A(p o l y v a l (l o g p 2 , sdate)
p l o t (c d a t e , r , ' + ')

1750 1800 1850 1900 1950 2000
1800 1850 1950 2000

The residuals are more random than for the sim ple polynomial f it. As m ight be
expected, the residuals tend to get larger in m agnitude as the population
increases. But overall, the logarithm ic model provides a more accurate f it to the
population data.

6-27

6 Data Analysis and Statistics

Error Bounds
Error bounds are useful for determ ining if your data is reasonably modeled by
the fit. An optional second output parameter can be obtained from po l y f i t and
passed as an input parameter to polyval in order to obtain the error bounds.

For example, the code below uses p o l y f i t and polyval to produce error bounds
for a second-order polynomial model. Year values are normalized. This code
uses an interval of +2Д, corresponding to a 95% confidence in terva l.

[p2,S2] = p o l y f i t (s d a t e , p o p , 2) ;
[pop2,del 2] = polyval (p2, sdate,S2) ;
p l o t (cda t e , p o p , ' + ' , c d a t e , p o p 2 , ' g - ' , c d a t e , p o p 2 +2* d e l2 , ' r : ' , . .

cdate, pop2- 2*d e l2 , ' r : ') , g r i d on

6-28

Difference Equations and Filtering

Difference Equations and Filtering
M ATLAB has functions for w ork ing w ith difference equations and filte rs .
These functions operate p rim a rily on vectors.

Vectors are used to hold sampled-data signals, or sequences, for signal
processing and data analysis. For m u lti- inpu t systems, each row of a m a trix
corresponds to a sample point w ith each input appearing as columns of the
m atrix.

The function

y = f i l t e r (b , a, x)

processes the data in vector x w ith the filte r described by vectors a and b,
creating filte red data y.

The f i l t e r command can be thought of as an efficient im plem entation of the
difference equation. The filte r s truc tu re is the general tapped delay-line f ilte r
described by the difference equation below, where n is the index of the current
sample, na is the order of the polynomial described by vector a and nb is the
order of the polynomial described by vector b. The output y(n), is a linear
combination of current and previous inputs, x(n) x(n-1) ..., and previous
outputs, y(n-1) y(n-2) ...

a(1)y (n) = b(1)x (n) + b (2)x(n - 1) + ... + b(nb)x(n - nb + 1)

- a (2)y (n - 1) - ... - a (n a)y (n - na + 1)

Suppose, for example, we want to smooth our tra ff ic count data w ith a moving
average filte r to see the average tra ff ic flow over a 4-hour w indow. This process
is represented by the difference equation

y (n) = J x (n) + 4 x (n - 1) + 1 x (n - 2) + 4 x (n - 3)

The corresponding vectors are

a = 1 ;
b = [1 / 4 1/4 1/4 1/4] ;

6-29

6 Data Analysis and Statistics

Executing the command

load count .dat

creates the m a trix count in the workspace.

For th is example, extract the firs t column of tra ff ic counts and assign it to the
vector x,

x = count

The four hour moving-average of the data is e ffic iently calculated w ith

y = f i l t e r (b , a , x) ;

Compare the original data and the smoothed data w ith an overlaid plot of the
tw o curves.

t = 1 : l en g t h (x) ;
p l o t (t , x , ' - . ' , t , y , ' - ') , g r i d on
l egend (' Cr i g i na l Data ' , 'Snoothed Data ' , 2)

The filte red data represented by the solid line is the 4-hour moving average of
the observed tra ff ic count data represented by the dashed line.

For practical f ilte r in g applications, the Signal Processing Toolbox includes
numerous functions for designing and analyzing filte rs .

6-30

Fourier Analysis and the Fast Fourier Transform (FFT)

Fourier Analysis and the Fast Fourier Transform (FFT)
Fourier analysis is extremely useful for data analysis, as it breaks down a
signal in to constituent sinusoids of d ifferent frequencies. For sampled vector
data, Fourier analysis is performed using the discrete Fourier transform
(DFT).

The fast Fourier transform (FFT) is an efficient a lgorithm for computing the
DFT of a sequence; it is not a separate transform . It is pa rticu la rly useful in
areas such as signal and image processing, where its uses range from filte ring ,
convolution, and frequency analysis to power spectrum estimation.

M ATLAB provides a collection of functions for computing and w orking w ith
Fourier transform s.

Function Description

f f t D iscrete Fourier transform .

f f t 2 Two-dimensional discrete Fourier transform .

f f t n N-dimensional discrete Fourier transform .

i f f t Inverse discrete Fourier transform .

i f f t 2 Two-dimensional inverse discrete Fourier transform .

i f f t n N-dimensional inverse discrete Fourier transform .

abs Magnitude.

angle Phase angle.

unwrap Unwrap phase angle in radians.

f f t s h i f t Move zeroth lag to center of spectrum.

cp l xpa i r Sort numbers in to complex conjugate pairs.

nextpow2 Next higher power of two.

6-31

6 Data Analysis and Statistics

For length N input sequence x, the DFT is a length N vector, X. f f t and i f f t
implement the re lationships

N .. . j n -1

X (k)= £ x (n)e
j 2p(k - 1)(—) 1 < k < N

n = 1
N ,, . j n - 11 j2p(k - 1)(-i-:i -) 1 < n < N

x (n) = N £ X (k) eN
k = 1

Note As the firs t element of a M ATLAB vector has an index 1, the
sum m ations in the equations above are from 1 to N. These produce identical
results as trad itiona l Fourier equations w ith sum m ations from 0 to N -1.

I f x(n) is real, we can rew rite the above equation in term s of a summation of
sine and cosine functions w ith real coefficients

N

x (n) = N £ a (k) cos(2 p (k - N (" ~ 1 }) + b(k) sin (2p(k - (-1 " 1 -)
k = 1

where a (k) = real (X (k)), b(k) = - im ag(X (k)), 1 < n < N

The FFT of a column vector x

x = [4 3 7 -9 1 0 0 0] ’ ;

is found w ith

y = f f t (x)

6-32

Fourier Analysis and the Fast Fourier Transform (FFT)

which results in

У =
6.0000
11.4853 -2. 7574i
- 2.0000 - 1 2 . 0000i
-5 .4853 +11.2426i
18.0000
-5 .4853 -11.2426i
- 2.0000 +1 2 . 0000i
11.4853 + 2.7574i

Notice tha t although the sequence x is real, y is complex. The firs t component
of the transform ed data is the constant contribution and the fifth element
corresponds to the Nyquist frequency. The last th ree values of y correspond to
negative frequencies and, for the real sequence x, they are complex conjugates
of th ree components in the firs t ha lf of y.

Suppose, we want to analyze the varia tions in sunspot ac tiv ity over the last 300
years. You are probably aware tha t sunspot ac tiv ity is cyclical, reaching a
maximum about every 11 years. Le t’s confirm tha t.

Astronomers have tabulated a quan tity called the Wolfer number for almost
300 years. Th is quan tity measures both number and size of sunspots.

6-33

6 Data Analysis and Statistics

Load and plot the sunspot data

load sunspot .dat
year = s u n s p o t (: , 1);
wol f er = s u n s p o t (: , 2) ;
p l o t (year , wo l f e r)
t i t l e (’ Sunspot Data’)

Sunspot Data

Now take the FFT of the sunspot data

Y = f f t (w o l f e r) ;

The result of th is transform is the complex vector, Y. The m agnitude of Y
squared is called the power and a plot of power versus frequency is a
“periodogram.” Remove the firs t component of Y, which is sim ply the sum of the
data, and plot the results.

6-34

Fourier Analysis and the Fast Fourier Transform (FFT)

N = l ength(Y) ;
Y(1) = [] ;
power = a b s (Y (1 : N / 2)) . A2;
nyquist = 1 / 2 ;
f r eq = (1 :N/ 2) / (N / 2) * nyqu i st ;
p l o t (f r e q , p o w s r) , g r i d on
x l a b e l (’ cyc les/ year ’)
t i t l e (’ Per iodogrami)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

cycles/year

Periodogramx 10

6-35

6 Data Analysis and Statistics

The scale in cycles/year is somewhat inconvenient. Le t’s plot in years/cycle and
estim ate what one cycle is. For convenience, plot the power versus period
(where per i od = l . / f r e q) from 0 to 40 years/cycle.

per i od = 1 . / f r e q ;
p l o t (pe r i od , power) , a x i s ([0 40 0 2e7]) , g r i d on
y l a b e l (’ Power’)
x l a b e l (’ Per i od(Years /Cyc l e) ’)

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0 5 10 15 20 25 30 35 40

Period(Years/Cycle)

In order to determ ine the cycle more precisely,

[mp index] = max(power);
per i od(i ndex)

x 107

ans =
11. 0769

6-36

Fourier Analysis and the Fast Fourier Transform (FFT)

Magn i tude and Phase of Transformed Data
Im portant in form ation about a transformed sequence includes its magnitude
and phase. The M ATLAB functions abs and angl e calculate th is inform ation.

To try th is , create a tim e vector t , and use th is vector to create a sequence x
consisting of tw o sinusoids at d ifferent frequencies.

t = 0:1/99:1;
x = s i n (2 * p i * 1 5 * t) + s i n (2 * p i * 4 0 * t) ;

Now use the f f t function to compute the DFT of the sequence. The code below
calculates the m agnitude and phase of the transform ed sequence. It uses the
abs function to obtain the m agnitude of the data, the angle function to obtain
the phase inform ation, and unwrap to remove phase jum ps greater than pi to
the ir 2*pi complement.

У = f f t (x) ;
m = abs(y) ;
p = unwrap(angl e (y)) ;

Now create a frequency vector for the x-axis and plot the m agnitude and phase.

f = (0 : l e n g t h (y) —1) , *99 / l eng t h (y) ;
s u b p l o t (2 , 1 , 1), p l o t (f , i r) ,
y l abe l (' Abs . Magni tude') , g r i d on
s u b p l o t (2 , 1 , 2), p l o t (f , p * 1 8 0 / p i)
y l abe l (' Phase [Degr ees] ') , g r i d on
x l abe l (' F requency [H e r t z] ')

6-37

6 Data Analysis and Statistics

0

] -200

) -400

[-600

2 -800

' -1000

-1200
0

\
\

\1
---------- V

\
\\ —

\

40 50 60
Frequency [Hertz]

The m agnitude plot is perfectly symmetrical about the Nyquist frequency of 50
Hertz. The useful in form ation in the signal is found in the range 0 to 50 Hertz.

FFT Length Versus Speed
You can add a second argument to f f t to specify a number of points n for the
transform :

У = f f t (x , n)

W ith th i s syntax, f f t pads x w ith zeros if it is shorter than n, or truncates it if
it is longer than n. I f you do not specify n, f f t defaults to the length of the input
sequence.

The execution tim e for f f t depends on the length of the transform .

• For any n tha t is a power of two, f f t uses the high-speed radix-2 algorithm .
This results in the fastest execution tim e. A dd itiona lly , the a lgorithm for
power of tw o n is h igh ly optim ized for real x, providing a 40% increase in
speed over the complex case.

• For any composite number n tha t is not a power of two, f f t uses a prim e
factor a lgorithm . The speed of th is a lgorithm depends on both the size of n
and the number of prim e factors it has. A lthough 1013 and 1000 are close in

20 30 70 80 90 100

6-38

Fourier Analysis and the Fast Fourier Transform (FFT)

magnitude, f f t transform s a sequence of length 1000 much more quickly
than a sequence of length 1013.

• For a prim e number n, f f t cannot use an FFT algorithm . It instead performs
the slower, com putation-intensive DFT directly.

The inverse FFT function i f f t also accepts a transform length argument.

For practical application of the FFT, the Signal Processing Toolbox includes
numerous functions for spectral analysis.

6-39

6 Data Analysis and Statistics

6-40

7

Function Functions

Repr esen t i ng F u n c t i o n s in M A T L A B 7-3

P l o t t i ng Ma t h e m a t i ca l F u n c t i o n s ..7-4

M i n i m i z i n g F u n c t i o n s a n d F i nd i ng Z eros 7-7
M in im iz ing Functions of One V a r ia b le ..7-7
M in im iz ing Functions of Several V a r ia b le s7-8
Setting M in im ization O p t io n s ... 7-9
Finding Zeros of F u n c tio n s .. 7-10
T i p s .. 7-12
T ro u b le s h o o tin g ..7-13

Numer i ca l I n t eg r a t i on (Q u a d r a t u r e) 7-14
Example: Computing the Length of a C u rv e 7-14
Example: Double In te g ra t io n ..7-15

Function Functions

Th is chapter describes function functions, M ATLAB functions tha t w ork w ith
mathem atical functions instead of num eric arrays. These function functions
include:

• P lotting
• O ptim ization and zero find ing
• Numerical in tegration (quadrature)

The function functions are located in the M ATLAB funfun directory.

This tab le provides a brief description of the functions discussed in th is
chapter. Related functions are grouped by category.

Category Function Description

P lotting f p l o t Plot function.

O ptim ization
and zero find ing

fmnbnd M in im ize function of one variab le w ith
bound constraints.

fmnsea r ch M in im ize function of several variables.

f ze r o Find zero of function of one variable.

Numerical
integration

quad Num erica lly evaluate integral, low
order method.

quad8 N um erica lly evaluate integral, higher
order method.

dblquad Num erica lly evaluate double integral.

Note For deta ils on another set of function functions, ord inary d iffe rentia l
equation solvers, see Chapter 8.

7-2

Representing Functions in MATLAB

Representing Functions in MATLAB
M ATLAB represents mathematical functions by expressing them in M-files.
For example, consider the function:

1 1
f (x) = ------------ 2----------+ --------------2------------- 6

(x - 0.3)2 + 0.01 (x - 0.9)2 + 0.04

This function can be used as input to any of the function functions. You can find
it in the M -file named huirps.m

f un c t i o n y = humps(x)
y = 1 . / ((x - 0. 3) . л2 + 0.01) + 1 . / ((x - 0 . 9) . л2 + 0.04) - 6;

A second way to represent a mathematical function at the command line is by
creating an in lin e object from a s tring expression. For example, you can create
an in line object of the humps function:

f = i n l i n e (‘ 1 . / ((x - 0 . 3) ^ 2 + 0.01) + 1 . / ((х - 0 . 9) . л 2 + 0 . 0 4) - 6 ') ;

You can then evaluate f at 2.0:

f (2 . 0)
ans =

-4 .8552

You can also create functions of more than one argument w ith i n l i n e by
specifying the names of the input argum ents along w ith the s tring expression.
For example, the fo llow ing function has tw o input argum ents x and y:

f = i n l i n e (' y * s i n (x) + x * c o s (y) ' , ' x ' , ' y ')
f (p i , 2* p i)
ans =

3.1416

A ll of the functions described in th is chapter are called function functions
because they accept, as one of th e ir arguments, e ither the name of an M -file
like humps or an in lin e object tha t defines a mathematical function.

7-3

Function Functions

Plotting Mathematical Functions
The f plot function plots a mathematical function between a given set of axes
lim its . You can control the x-axis lim its only, or both the x- and у-axis lim its .
For example, to plot the humps function over the x-axis range [- 5 5], use

f p l o t (' h u m p s ' , [- 5 5])
g r i d on

7-4

Rotting Mathematical Functions

You can zoom in on the function by selecting у-axis lim its of - 1 0 and 25, using

f p l o t (' h u m p s ' , [- 5 5 -10 25])
g r i d on

You can also pass an expression for f p l o t to graph, as in

f p l o t (' 2 * s i n (x + 3) ' , [- 1 1])

You can plot more than one function on the same graph w ith one call to f p l o t .
I f you use th is w ith a M -file function, then the M -file must take a column vector
x and return a m a trix where each column corresponds to each function,
evaluated at each value of x.

I f you pass an expression of several functions to f p l o t , it also must re turn a
m a trix where each column corresponds to each function evaluated at each
value of x, as in

f p l o t (' [2 * s i n (x + 3) , h u mp s (x)] ' , [- 1 1])

7-5

Function Functions

which plots the firs t and second expressions on the same graph.

Note tha t the expression

[2 *s i n (x+3) , humps(x)]

evaluates to a m a trix of tw o columns, one for each function, when x is a column
vector.

7-6

Minimizing Functions and Finding Zeros

Minimizing Functions and Finding Zeros
M ATLAB provides a number of high-level function functions tha t perform
optim ization-re la ted tasks. Th is section describes:

• M in im iz ing a function of one variab le
• M in im iz ing a function of several variables
• Setting m in im ization options
• F inding a zero of a function of one variab le

For more sophisticated optim ization capabilities, see the O ptim ization
Toolbox.

Min imiz ing Funct ions of One Var iab le
Given a mathematical function of a single variab le coded in an M -file , you can
use the fmnbnd function to find a local m in im izer of the function in a given
in terva l. For example, to find a m in im um of the humps function in the range
(0.3, 1), use

x = fminbnd(’ humps’ , 0 . 3 , 1)

which re turns

x =

0.6370

You can ask for a tabu la r display of output by passing a fourth argument
created by the opt i inset command to fminbnd

x = f m n b n d (’ humps’ , 0 . 3 , 1 , op t i ms e t (’ Di sp l ay ’ , ’ i t e r ’))

7-7

Function Functions

which gives the output

Func-count x f (x) Pr ocedure
1 0.567376 12.9098 i n i t i a l
2 0.732624 13.7746 golden
3 0.465248 25.1714 golden
4 0.644416 11.2693 pa r abo l i c
5 0.6413 11.2583 pa r abo l i c
6 0.637618 11.2529 pa r abo l i c
7 0.636985 11.2528 pa r abo l i c
8 0.637019 11.2528 pa r abo l i c
9 0.637052 11.2528 pa r abo l i c

x =
0.6370

This shows the current value of x and the function value at f (x) each tim e a
function evaluation occurs. For f minbnd, one function evaluation corresponds
to one ite ra tion of the a lgorithm . The last column shows what procedure is
being used at each iteration, e ither a golden section search or a parabolic
in terpolation.

Min imiz ing Funct ions of Several Var iab les
The fminsearch function is s im ila r to fminbnd except tha t it handles functions
of many variables, and you specify a s ta rting vector x0 rather than a s ta rting
in terva l. f minsearch attem pts to re turn a vector x tha t is a local m in im izer of
the mathematical function near th is s ta rting vector.

To try fminsearch, create an M -file t h r ee_va r . m tha t defines a function of
th ree variables, x, y, and z:

f u n c t i on b = t h ree_var (v)
x = v (1);
У = v(2) ;
z = v(3) ;
b = x . A2 + 2 . 5 * s i n (y) - zA2*xA2*yA2;

7-8

Minimizing Functions and Finding Zeros

Now find a m in im um for th is function using x = - 0. 6 , y = - 1 . 2 , and
z = 0.135 as the s ta rting values:

v = [- 0 . 6 - 1 . 2 0.135] ;
a = f m n s e a r c h (' t h r e e _ v a r ' , v)

a =
0.0000 -1 .5708 0.1803

Setting Min imiza t ion Opt ions
You can specify a vector of control options tha t sets some m in im ization
parameters by calling fminbnd w ith the syntax

x = f m n b n d (f u n , x 1 , x 2 , op t i ons)

or fminsearch w ith the syntax

x = f m i ns ea r ch (f un , x 0, op t i ons)

opt i ons is a s tructu re used by specialized O ptim ization Toolbox functions. To
set values as needed, use

opt i ons = o p t i i m s e t (' D i s p l a y ' , ' i t e r ') ;

to generate output at each ite ration.

fminbnd and fminsearch use only four of the opt i ons parameters:

• opt i ons.Di sp l ay is a flag tha t determ ines i f in term ediate steps in the
m in im ization appear on the screen. I f set to ’ i t e r ’ , in term ediate steps are
displayed; if set to ’ o f f ’ , no interm ediate solutions are displayed, if set to
f i n a l , displays just the fina l output.

• opt i ons .To l X i s the te rm ina tion tolerance for x. Its default value is 1 .e -4 .
• opt i ons .TolFun is the term ination tolerance for the function value. The

default value is 1 .e -4 . Th is parameter is used by fminsearch but not
fminbnd.

• opt i ons.MaxFunEvals is the m aximum number of function evaluations
allowed. The default value is 500 for f mnbnd and 200* l e n g t h (x 0) for
fminsearch.

7-9

Function Functions

The number of function evaluations, the number of iterations, and the
a lgorithm are returned in the s tructu re output when you provide fminbnd or
fminsearch w ith a fourth output argument, as in

[x , f v a l , e x i t f l a g , o u t p u t] = f m n b n d (’ humps’ , 0 . 3 ,1) ;

or

[x , f v a l , e x i t f l a g , o u t p u t] = f mi nsear ch(’ t h r ee_ v a r ’ , v) ;

Finding Zeros of Funct ions
The f ze r o function attem pts to find a zero of one equation w ith one variable.
Th is function can be called w ith e ither a one-element s ta rting point or a
two-element vector tha t designates a s ta rting in terva l. I f you give f ze r o a
s ta rting point xq, f ze r o firs t searches for an in terva l around th is point where
the function changes sign. I f the in terva l is found, then f ze r o re tu rns a value
near where the function changes sign. I f no such in terva l is found, f zero
re tu rns NaN. A lte rna tive ly , i f you know tw o points where the function value
d iffers in sign, you can specify th is s ta rting interval using a two-element
vector; f zer o is guaranteed to narrow down the in terva l and return a value
near a sign change.

Use f ze r o to find a zero of the humps function near - 0.2

a = f z e r o (' h u m p s ' , - 0. 2)

a =

-0 .1316

For th is s ta rting point, f ze r o searches in the neighborhood of -0 .2 un til it finds
a change of sign between -0.10949 and -0.264. Th is interval is then narrowed
down to -0.1316. You can verify tha t -0.1316 has a function value very close to
zero using

humps(a)

ans =
8.8818e -16

7-10

Minimizing Functions and Finding Zeros

Suppose you know tw o places where the function value of humps d iffe rs in sign
such as x = 1 and x = - 1 . You can use

humps(1)

ans =

16

humps(-1)

ans =

-5 .1378

Then you can give f ze r o th is in terval to s tart w ith and f ze r o then re tu rns a
point near where the function changes sign. You can display inform ation as
f ze r o progresses w ith

opt i ons = o p t i i m s e t (' D i s p l a y ' , ' i t e r ') ;
a = f zero(' humps ' , [- 1 1] , o p t i o n s)

nc-count x f (x) Procedure
1 - 1 -5.13779 n i t i a l
1 1 16 n i t i a l
2 - 0. 513876 -4.02235 nterpolat on
3 0. 243062 71.6382 bisect ion
4 - 0. 473635 -3.83767 nterpolat on
5 - 0. 115287 0.414441 bisect ion
6 - 0. 150214 -0.423446 nterpolat on
7 - 0. 132562 -0.0226907 nterpolat on
8 - 0. 131666 -0.0011492 nterpolat on
9 - 0. 131618 1. 88371e-07 nterpolat on

10 - 0. 131618 -2.7935e-11 nterpolat on
11 - 0. 131618 8. 88178e-16 nterpolat on
12 - 0. 131618 -9. 76996e-15 nterpolat on

a =

-0.1316

7-11

Function Functions

The steps of the a lgorithm include both bisection and interpolation under the
Procedure column. I f the example had started w ith a scalar s ta rting point
instead of an in terva l, the firs t steps after the in itia l function evaluations
would have included some search steps w h ile f ze r o searched for an interval
containing a sign change.

You can specify a re la tive error tolerance using op t i mse t . In the call above,
passing in the empty m a trix causes the default re la tive error tolerance of eps
to be used.

Tips
Optim ization problems may take many ite ra tions to converge. Most
optim ization problems benefit from good s ta rting guesses. Providing good
s ta rting guesses improves the execution efficiency and may help locate the
global m in im um instead of a local m in im um .

Sophisticated problems are best solved by an evolutionary approach whereby a
problem w ith a sm aller number of independent variables is solved firs t.
Solutions from lower order problems can generally be used as s ta rting points
for higher order problems by using an appropria te mapping.

The use of sim pler cost functions and less stringent te rm ina tion c rite ria in the
early stages of an optim ization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local m inim a.

7-12

Minimizing Functions and Finding Zeros

Troubleshoot ing
Below is a lis t of typ ical problems and recommendations for dealing w ith them.

Problem Recommendation

The solution found by fminbnd
or fminsearch does not appear
to be a global m inim um .

Sometimes an optim ization
problem has values of x for
which it is impossible to
evaluate f .

The m in im ization routine
appears to enter an in fin ite loop
or re tu rns a solution tha t is not
a m in im um (or not a zero in the
case of f zero) .

There is no guarantee tha t you have a global m in im um unless
your problem is continuous and has only one m inim um .
S ta rting the optim ization from a number of d ifferent s ta rting
points (or in te rva ls in the case of fm inbnd) may help to locate
the global m in im um or verify tha t there is only one m inim um .
Use d ifferent methods, where possible, to verify results.

M odify your function to include a penalty function to give a
large positive value to f when in feas ib ility is encountered.

Your objective function may be re tu rn ing I n f , NaN, or complex
values. The optim ization routines expect only real numbers to
be returned. Any other values may cause unexpected results.
Insert code in to your objective function M -file to verify tha t
only real numbers are returned (use the functions i s rea l and
i s f i n i t e) .

7-13

Function Functions

Numerical Integration (Quadrature)
The area beneath a section of a function F(x) can be determ ined by num erically
in tegra ting F(x), a process referred to as quadrature. The tw o M ATLAB
functions for one-dimensional quadratu re are:

• quad - Use Adaptive Simpson’s ru le
• quad8 - Use Adaptive Newton Cotes 8 panel ru le

To in tegrate the function defined by humps.m from 0 to 1 , use

q = quad(’ humps’ , 0, 1)

q =
29.8583

Both quad and quad8 operate recursively. If e ither method reaches the
m aximum number of 10 recursive calls, the method re tu rns a value of In f
ind icating possible s ingu la rity .

You can include a fourth argument for quad or quad8 tha t specifies a re la tive
error tolerance for the integration. I f th is fourth argument is a two-element
vector, its firs t element specifies a re la tive tolerance and its second an absolute
tolerance. I f a nonzero fifth argument is passed to quad or quad8, the function
evaluations are traced w ith a point plot of the integrand.

Example: Comput ing the Length of a Curve
You can use quad or quad8 to compute the length of a curve. Consider the curve
parameterized by the equations

x (t) = sin (2 1), y (t) = cos (t), z (t) = t

where t e [0, 3 л] .

A three-dimensional plot of th is curve is

t = 0 : 0 . 1 : 3 * p i ;
p l o t 3 (s i n (2 * t) , c o s (t) , t)

The arc length form ula says the length of the curve is the integral of the norm
of the derivatives of the parameterized equations

7-14

Numerical Integration (Quadrature)

3л

J V4cos(2 1)2 + s in (t)2 + 1 dt

0

The function hcurve computes the integrand

f u n c t i on f = hcurve(t)
f = sqr t (4*cos(2 * t) . A2 + s i n (t) . A2 + 1);

I ntegrate th is function w ith a call to quad

len = quad(’ hcurve’ , 0 ,3*p i)
l en =

1.7222e+01

The length of th is curve is about 17.2.

Example: Double Integrat ion
Consider the numerical solution of

y m a x x m a x

J J f (x, y) dxdy

ymin xmin

For th is example f (x, y) = y sin (x) + xcos(y) . The firs t step is to build the
function to be evaluated. The function must be capable of re tu rn ing a vector
output when given a vector input. You must also consider which variab le is in
the inner in tegral, and which goes in the outer in tegral. In th is example, the
inner variab le is x and the outer variab le is y (the order in the integral is dxdy).
In th is case, the integrand function is

f u n c t i on out = i n t egrnd(x , y)
out = y * s i n (x) + x*cos(y) ;

To perform the integration, tw o functions are available in the funfun directory.
The firs t, dblquad, is called d irectly from the command line. This M -file
evaluates the outer loop using quad. A t each ite ra tion , quad calls the second
helper function tha t evaluates the inner loop.

To evaluate the double integral, use

resu l t = db lquad(’ i n t eg r nd ’ ,xmn,ximax, ymin,yimBx);

7-15

Function Functions

The firs t argument is a s tring w ith the name of the integrand function; the
second to fifth arguments are

xmin lower lim it of inner integral

xmax upper lim it of the inner integral

ymin lower lim it of outer integral

ymax upper lim it of the outer integral

Here is a num eric example tha t illus tra tes the use of dblquad.

xmin = pi ;
xmax = 2* p i;
ymin = 0;
ymax = pi ;
r esu l t = db lquad(’ i n t eg r nd ’ , xmn, xmax , ymn, ymax)

The result is -9.8698.

By default, dblquad calls quad. To in tegrate the previous example using quad8
(w ith the default values for the tolerance and trace arguments), use

resu l t = db lquad(’ i n t eg r nd ’ , xmn, xmax , ymn, y m a x , [] , ’ quad8’);

A lte rna tive ly , any user-defined quadratu re function name can be passed to
dblquad as long as the quadrature function has the same calling and return
argum ents as quad.

7-16

8
Ordinary Differential
Equations

Qu i ck S ta rt .. 8-3

Repr esen t i ng P r o b l e m s .. 8-5

ODE S o lv e r s .. 8-10

Cr ea t i ng ODE F i l e s ... 8-14

I m p r o v i n g S o lver P e r f o r m a n c e .. 8-17

E xam p les : A p p l y i n g th e ODE S o lve rs 8-34

8 Ordinary Differential Equations

This chapter describes how to use M ATLAB to solve in itia l value problems of
ord inary d iffe rentia l equations (ODEs) and d iffe rentia l a lgebraic equations
(DAEs). It discusses how to represent in itia l value problems (IVPs) in
M ATLAB and how to apply M A T LA B ’s ODE solvers to such problems. It
explains how to select a solver, and how to specify solver options for efficient,
customized execution. Th is chapter also includes a troubleshooting guide in the
Questions and Answers section and extensive examples in the Examples:
Apply ing the ODE Solver section.

Category Function Description

O rd inary d iffe rentia l
equation solvers

ode45 N onstiff d iffe rentia l equations, medium order
method.

ode23 N onstiff d iffe rentia l equations, low order method.

ode113 N onstiff d iffe rentia l equations, variab le order
method.

ode15s S tiff d iffe rentia l equations and DAEs, variable
order method.

ode23s S tiff d iffe rentia l equations, low order method.

ode23t Moderately s tiff d iffe rentia l equations and DAEs,
trapezoidal rule.

ode23tb S tiff d iffe rentia l equations, low order method.

ODE option handling odeset Create/alter ODE OPTIONS structure.

odeget Get ODE OPTIONS parameters.

ODE output functions odeplot Tim e series plots.

odephas2 Two-dimensional phase plane plots.

odephas3 Three-dimensional phase plane plots.

odepr int P rin t to command window.

8-2

Quick Start

Quick Start
1 W rite the ord inary d iffe rentia l equation y(n)= f (t, y, y, y(n -1)) as a

system of firs t-order equations by m aking the substitu tions

, (n - 1)
y 1 = y, y2 = y , . ., Уп = y

Then

у 1 = У2

у2 = Уз

уп = f (t, У1 , У2, ..., Уп)

is a system of n first-order ODEs. For example, consider the in itia l value
problem

y '" - 3y " - y ' y = о y (0) = 0 y '(0) = 1 y " (0) = - 1

Solve the d iffe rentia l equation for its highest derivative, w r it in g y ’ ’ ’ in
te rm s of t and its lower derivatives y ’ ’ ’ = 3 y '' + y ’y . I f you let y 1 = y, y2 = y 1,
and y3 = y , then

y 1 = y2

y2 = y3

Уз = 3 Уз + У2У1

is a system of th ree firs t-order ODEs w ith in itia l conditions

8-3

8 Ordinary Differential Equations

У1 (0) = 0

У2(0) = 1

Уз(0) = -1

Note tha t the IVP now has the form Y' = F (t, Y), Y (0) = Y 0 , where
Y = [У1 ; У2 ; Уз] .

2 Code the first-order system in an M -file tha t accepts tw o arguments, t and
y, and re tu rns a column vector:

f un c t i on dy = F (t , y)
dy = [y (2) ; y(3) ; 3 * y (3) + y (2) * y (1)] ;

Th is ODE file must accept the argum ents t and y, although it does not have
to use them. Here, the vector dy must be a column vector.

3 Apply a solver function to the problem. The general calling syntax for the
ODE solvers is

[T,Y] = s o l v e r (’ F’ , t span,y0)

where solver is a solver function like ode45. The input arguments are:

F S tring containing the ODE file name

tspan Vector of tim e values where [to t f i n a l] causes the solver
to in tegrate from to to t f i n a l

y 0 Column vector of in it ia l conditions at the in itia l tim e to

For example, to use the ode45 solver to find a solution of the sample IVP on
the tim e in terva l [0 1] , the calling sequence is

[T,Y] = o d e 4 5 (' F ' , [0 1] , [0 ; 1; - 1])

Each row in solution array Y corresponds to a tim e returned in column vector
T. Also, in the case of the sample IVP, Y (: , 1) is the solution, Y (: , 2) is the
deriva tive of the solution, and Y(: , 3) is the second deriva tive of the
solution.

8-4

Representing Roblems

Representing Problems
This section describes how to represent ord inary d iffe rentia l equations as
systems for the M ATLAB ODE solvers.

The M ATLAB ODE solvers are designed to handle o rd ina ry differentia l
equations. These are d iffe rentia l equations containing one or more derivatives
of a dependent variab le y w ith respect to a single independent variab le t,
usually referred to as time. The deriva tive of y w ith respect to t is denoted as
y ' , the second deriva tive as y ' ’ , and so on. Often y(t) is a vector, having
elements y i , y2, ... yn.

ODEs often involve a number of dependent variables, as well as derivatives of
order higher than one. To use the M ATLAB ODE solvers, you must rew rite
such equations as an equivalent system of firs t-o rder d iffe rentia l equations in
term s of a vector y and its firs t derivative.

y = F (t, y)

Once you represent the equation in th is way, you can code it as an ODE M -file
tha t a M ATLAB ODE solver can use.

Ini t ial Value Problems and Ini t ial Condi t ions
Generally there are many functions y(t) tha t satisfy a given ODE, and
additional in form ation is necessary to specify the solution of interest. In an
in itia l value problem, the solution of interest has a specific in itia l condition,
tha t is, y is equal to y0 at a given in itia l tim e t0. An in itia l value problem for
an ODE is then

y = F (t, y)

У(t0)= У0

I f the function F (t, y) is su ffic ien tly smooth, th is problem has one and only one
solution. Generally there is no ana ly tic expression for the solution, so it is
necessary to approxim ate y (t) by numerical means, such as one of the solvers
of the M ATLAB ODE suite.

Example: The van der Pol Equation
An example of an ODE is the van der Pol equation

8-5

8 Ordinary Differential Equations

У1 " - m(1 - У12) У1 + У1= 0

where m>0 is a scalar parameter.

R ew riting the System
To express th is equation as a system of firs t-order d iffe rentia l equations for
M ATLAB, introduce a variab le y2 such tha t y i = y2. You can then express th is
system as

y 1 = y2

У2 = m(1 - У12) У2 - У1

W ritin g the ODE File
The code below shows how to represent the van der Pol system in a M ATLAB
ODE file, an M -file tha t describes the system to be solved. An ODE file always
accepts at least tw o arguments, t and y. Th is sim ple tw o line file assumes a
value of 1 for m. y1 and y2 become y(1) and y (2) , elements in a two-element
vector.

f un c t i o n dy = vdp1 (t , y)
dy = [y (2); (1 - y (1) A2) * y (2) - y (1)] ;

Note This ODE file does not actua lly use the t argument in its computations.
It is not necessary for it to use the y argument either - in some cases, for
example, it may just re turn a constant. The t and y variables, however, must
always appear in the input argument list.

C a lling the Solver
Once the ODE system is coded in an ODE file, you can use the M ATLAB ODE
solvers to solve the system on a given tim e in terva l w ith a particu la r in itia l
condition vector. For example, to use ode45 to solve the van der Pol equation
on tim e interval [0 20] w ith an in itia l value of 2 for y (1) and an in itia l value
of 0 for y (2) .

[T,Y] = ode45(’ vdp1’ , [0 20] , [2 ; 0]) ;

8-6

Representing Roblems

The resulting output [T,Y] is a column vector of tim e points T and a solution
array Y. Each row in solution array Y corresponds to a tim e returned in column
vector T.

Viewing the Results
Use the pl ot command to view solver output.

p l o t (t , y (: , 1) , ' - ' , t , y (: , 2) , ' - - ')
t i t l e (' S o l u t i o n of van der Pol Equation, mu = 1 ') ;
x l a b e l (' t i m e t ') ;
y l a b e l (' s o l u t i o n y ') ;
l e g e n d (' y 1 ' , ' y 2 ')

Solution o f van der Pol Equation, mu = 1

8-7

8 Ordinary Differential Equations

Example: The van der Pol Equat ion, m = 1000 (Stiff)

Stiff ODE Problems This section presents a s tiff problem. For a s tiff problem,
solutions can change on a tim e scale tha t is very short compared to the
in terva l of in tegration, but the solution of interest changes on a much longer
tim e scale. Methods not designed for s t if f problems are ineffective on in terva ls
where the solution changes slowly because they use tim e steps small enough
to resolve the fastest possible change.

When m is increased to 1000, the solution to the van der Pol equation changes
d ram atica lly and exhib its oscillation on a much longer tim e scale.
Approxim ating the solution of the in itia l value problem becomes a more
d ifficu lt task. Because th is particu la r problem is s tiff, a nonstiff solver such as
ode45 is so inefficient tha t it is im practical. The s tiff solver odel5s is intended
for such problems.

This code shows how to represent the van der Pol system in an ODE file w ith
m= 1000.

f un c t i on dy = vdp1000(t , y)
dy = [y (2); 1000* (1- y (1) A2) * y (2) - y (1)] ;

Now use the ode15s function to solve vdp1000. Retain the in itia l condition
vector of [2 ; 0] , but use a tim e in terva l of [0 3000]. For scaling purposes, plot
just the firs t component of y (t) .

[t , y] = ode15s(' vdp1000 ' , [0 3000] , [2 ; 0]) ;
p l o t (t , y (: , 1) , ' o ') ;
t i t l e (' S o l u t i o n of van der Pol Equation, mu = 1000') ;
x l a b e l (' t i m e t ') ;
y l a b e l (' s o l u t i o n y (: , 1) ') ;

8-8

Representing Roblems

Solution o f van der Pol Equation, mu = 1000

8-9

8 Ordinary Differential Equations

ODE Solvers
The M ATLAB ODE solver functions implement numerical in tegration
methods. Beginning at the in itia l tim e and w ith in itia l conditions, they step
through the tim e in terva l, computing a solution at each tim e step. I f the
solution for a tim e step satisfies the solver’s error tolerance crite ria , it is a
successful step. Otherwise, it is a failed attem pt; the solver shrinks the step
size and tr ie s again.

Th is section describes how to represent problems for use w ith the M ATLAB
solvers and how to optim ize solver performance. You can also use the online
help fa c ility to get in form ation on the syntax for any function, as well as
inform ation on demo files for these solvers.

Nonst i f f Solvers
There are three solvers designed for nonstiff problems:

• ode45 is based on an explicit Runge-Kutta (4,5) form ula, the
Dorm and-Prince pair. It is a one-step solver - in computing y (t n) , it needs
only the solution at the im m ediately preceding tim e point, y (t n-1). In
general, ode45 is the best function to apply as a “ firs t t r y ” for most problems.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances and in the
presence of m ild stiffness. L ike ode45, ode23 is a one-step solver.

• o d e ll3 is a variab le order Adam s-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE
function is pa rticu la rly expensive to evaluate. o d e ll3 is a m ultistep solver -
it norm ally needs the solutions at several preceding tim e points to compute
the current solution.

Stiff Solvers
Not all d ifficu lt problems are s tiff, but all s tiff problems are d ifficu lt for solvers
not specifically designed for them. S tiff solvers can be used exactly like the
other solvers. However, you can often s ign ifican tly improve the efficiency of the
s t if f solvers by providing them w ith additional in form ation about the problem.
See “ Im proving Solver Performance” on page 8-17 for deta ils on how to provide
th is inform ation, and for deta ils on how to change solver parameters such as
error tolerances.

8-10

ODE Solvers

There are four solvers designed for s t if f (or moderately s tiff) problems:

• odel5s is a variable-order solver based on the numerical d iffe rentia tion
form ulas (NDFs). O ptiona lly it uses the backward d iffe rentia tion formulas,
BDFs, (also known as Gear’s method) tha t are usually less efficient. L ike
odel 13, ode15s is a m ultis tep solver. I f you suspect tha t a problem is s tiff or
if ode45 failed or was very ineffic ient, t ry ode15s.

• ode23s is based on a modified Rosenbrock form ula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It
can solve some kinds of s t if f problems for which ode15s is not effective.

• ode23t is an implem entation of the trapezoidal ru le using a “free”
in terpolant. Use th is solver if the problem is only moderately s t if f and you
need a solution w ithou t numerical damping.

• ode23tb is an im plem entation of TR-BDF2, an im p lic it Runge-Kutta form ula
w ith a firs t stage tha t is a trapezoidal ru le step and a second stage tha t is a
backward d iffe ren tia tion form ula of order two. By construction, the same
ite ra tion m a trix is used in evaluating both stages. L ike ode23s, th is solver
may be more efficient than ode15s at crude tolerances.

ODE Solver Basic Syntax
A ll of the ODE solver functions share a syntax tha t makes it easy to try any of
the d ifferent numerical methods if it is not apparent which is the most
appropriate. To apply a d ifferent method to the same problem, sim ply change
the ODE solver function name. The simplest syntax, common to all the solver
functions, is

[T,Y] = sol ver (’ F’ , t span,y0)

where sol ver is one of the ODE solver functions listed previously.

8-11

8 Ordinary Differential Equations

The input arguments are:

’ F’ S tring containing the name of the file tha t describes the system of
ODEs.

tspan Vector specifying the in terva l of in tegration. For a two-element
vector t span = [t 0 t f i n a l] , the solver integrates from t 0 to
t f i n a l . For t span vectors w ith more than tw o elements, the solver
re tu rns solutions at the given tim e points, as described below. Note
tha t t 0 > t f i n a l is allowed.

y 0 Vector of in itia l conditions for the problem.

The output arguments are:

T Column vector of tim e points

Y Solution array. Each row in Y corresponds to the solution at a tim e
returned in the corresponding row of T.

Obta in ing Solut ions at Specif ic Time Points
To obtain solutions at specific tim e points t 0, t 1 , ... t f i n a l , specify tspan as a
vector of the desired times. The tim e values must be in order, e ither increasing
or decreasing.

Specifying these tim e points in the tspan vector does not affect the internal
tim e steps tha t the solver uses to traverse the interval from tspan(1) to
tspan(end) and has li t t le effect on the efficiency of computation. A ll solvers in
the M ATLAB ODE suite obtain output values by means of continuous
extensions of the basic formulas. A lthough a solver does not necessarily step
precisely to a tim e point specified in tspan, the solutions produced at the
specified tim e points are of the same order of accuracy as the solutions
computed at the in ternal tim e points.

8-12

ODE Solvers

Speci fying Solver Opt ions
In addition to the sim ple syntax, all of the ODE solvers accept a fourth input
argument, opt i ons, which can be used to change the default integration
parameters.

[t , y] = sol ver (’ F’ , t span , y0 , op t i ons)

The opt i ons argument is created w ith the odeset function (see “Creating an
Options S tructure: The odeset Function” on page 8-20). Any input parameters
after the opt i ons argument are passed to the ODE file every tim e it is called.
For example,

[T,Y] = sol ver (’ F’ , t s p a n , y 0 , o p t i o n s , p 1 , p 2 , . . .)

calls

F (t , y , f l a g , p 1 , p 2 , . . .)

Obta in ing Statist ics Abou t Solver Per fo rmance
Use an additional output argument S to obtain sta tis tics about the ODE
solver’s computations.

[T,Y,S] = sol ver (’ F’ , t s p a n , y 0 , o p t i o n s , . . .)

S is a six-element column vector:

• Element 1 is the number of successful steps.
• Element 2 is the number of failed attempts.
• Element 3 is the number of tim es the ODE file was called to evaluate F(t,y).
• Element 4 is the number of tim es tha t the partia l derivatives m a trix dF /dy

was formed.
• Element 5 is the number of LU decompositions.
• Element 6 is the number of solutions of linear systems.

The last th ree elements of the lis t apply to the s tiff solvers only.

The solver autom atica lly displays these sta tis tics if the Stats property (see
8-25) is set in the opt i ons argument.

8-13

8 Ordinary Differential Equations

Creating ODE Files
The van der Pol examples in the previous sections show some sim ple ODE files.
Th is section provides more detail and describes how to create more advanced
ODE files tha t can accept additional input parameters and re turn additional
in form ation.

ODE File Overv iew
Look at the sim ple ODE file vdp1 .m from earlier in th is chapter.

f un c t i on dy = vdp1 (t , y)
dy = [y (2); (1 - y (1) A2) * y (2) - y (1)] ;

A lthough th is is a sim ple example, it demonstrates tw o im portant
requirem ents for ODE files:

• The firs t tw o arguments must be t and y.
• By default, the ODE file must re turn a column vector F (t , y) .

Defining the Ini t ial Values in the ODE File
It is possible to specify default tspan, y 0 and opt i ons in the ODE file, defining
the entire in itia l value problem in the one file . In th is case, the solver can be
called as

[T,Y] = s o l v e r (’ F’ , [] , []) ;

The solver extracts the default values from the ODE file. You can also omit
empty arguments at the end of the argument lis t. For example,

[T,Y] = s o l v e r (’ F’);

When you call a solver w ith an empty or missing tspan or y 0, the solver calls
the specified ODE file to obtain any values not supplied in the solver argument
lis t. It uses the syntax

[t span , y 0 , o p t i ons] = F ([] , [] , ’ i n i t ’)

8-14

Creating ODE Files

The ODE file is then expected to re turn th ree outputs:

• O utput 1 is the tspan vector.
• O utput 2 is the in itia l value, y 0.
• O utput 3 is e ither an options s truc tu re created w ith the odeset function or

an empty m a trix [] .

Coding the ODE File to Return Initial Values
I f you use th is approach, your ODE file must check the value of the th ird
argument and return the appropria te output. For example, you can modify the
van der Pol ODE file vdp1 .mto check the th ird argument, f l ag , and return
e ither the default vector F (t , y) or [t span , y0 , o p t i ons] depending on the
value of f l ag .

f un c t i on [ou t 1 , ou t 2 , ou t 3] = v d p 1 (t , y , f l a g)
i f s t r c i r p (f l a g , ’ ’)

% Return dy/dt = F (t , y) .
ou t l = [y (2); (1- y (1) A2) * y (2) - y (1)] ;

e l s e i f s t r c m p (f l a g , ' i n i t ')

%o Return [t sp a n , y 0 , o p t i on s] .
o u t 1 = [0; 20];
ou t 2 = [2 ; 0] ;
out3 = o d e s e t (' Re l To l ' , 1 e - 4) ;

end

Note The th ird argument, referred to as the f l a g argument, is a special
argument tha t notifies the ODE file tha t the solver is expecting a specific kind
of in form ation. The ' i n i t ' s tring, for in itia l values, is just one possible value
for th is flag. For complete deta ils on the f l a g argument, see “Special Purpose
ODE Files and the flag A rgum ent” on page 8-17.

%o tspan
%o i n i t i a l condi t i ons
%o opt i ons

8-15

8 Ordinary Differential Equations

Passing A dd i t iona l Parameters to the ODE File
I n some cases your ODE system may require additional parameters beyond the
required t and y arguments. For example, you can generalize the van der Pol
ODE file by passing it a mu parameter, instead of specifying a value for mu
exp lic itly in the code.

f u n c t i o n [ou t 1 , ou t 2 , ou t 3] = vdpode(t , y , f l ag , mu)
i f nargin < 4 | isempty(mu)

mu = 1 ;

end
i f s t r c m p (f l a g , ’ ’)

0%o Return dy/dt = F (t , y) .
o u t1 = [y (2); mu*(1 - y (1) A2) * y (2) - y (1)] ;

e l s e i f st r c m p (f l a g , ' i n i t ')

%o Return [t s p a n , y 0 , o p t i on s] .
o u t 1 = [0; 20]; %> tspan
out 2 = [2 ; 0] ; %> i n i t i a l cond i t i ons
out3 = odeset ('Rel T o l ' , 1 e - 4) ; %> opt i ons

end

In th is example, the parameter mu is an optional argument specific to the van
der Pol example. M ATLAB and the ODE solvers do not set a lim it on the
number of parameters you can pass to an ODE file.

Guidel ines fo r Creat ing ODE Files
• The ode file must have at least tw o input arguments, t and y. It is not

necessary, however, for the function to use e ither t or y.
• The derivatives returned by F (t , y) must be column vectors.
• Any additional parameters beyond t and y must appear at the end of the

argument lis t and must begin at the fourth input parameter. The th ird
position is reserved for an optional flag, as shown above in “Coding the ODE
F ile to Return In itia l Values.” The f l a g argument is described in more detail
in “Special Purpose ODE Files and the flag A rgum ent” on 8-17.

8-16

Improving Solver Performance

Improving Solver Performance
In some cases, you can improve ODE solver performance by specially coding
your ODE file. For instance, you m ight accelerate the solution of a s t if f problem
by coding the ODE file to compute the Jacobian m a trix analytica lly.

Another way to improve solver performance, often used in conjunction w ith a
specially coded ODE file , is to tune solver parameters. The default parameters
in the ODE solvers are selected to handle common problems. In some cases,
however, tun ing the parameters for a specific problem can improve
performance s ign ificantly . You do th is by supplying the solvers w ith one or
more property values contained w ith in an opt i ons argument.

[T,Y] = s o l v e r (’ F’ , t span , y0 , op t i ons)

The property values w ith in the opt i ons argument are created w ith the odeset
function, in which named properties are given specified values.

Category Property Name Page

E rror tolerance RelTol , AbsTol 8-21

Solver output CutputFcn, CutputSel , Ref ine, Stats 8-22

Jacobian m a trix Jacobian, JConstant, JPat tern, Vector i zed 8-25

Step size I n i t i a l S t e p , MkxStep 8-28

Mass m a trix Mass, MkssSi ngular 8-29

Event location Events 8-30

ode15s MaxCrder, BDF 8-32

Special Purpose ODE Files and the f lag A rg u m e n t
The M ATLAB ODE solvers are capable of using additional inform ation
provided in the ODE file. In th is more general use, an ODE file is expected to
respond to the arguments odef i l e (t , y , f l a g , p 1 , p2 , . . .) where t and y are the
integration variables, f l ag is a s tring ind icating the type of in form ation tha t

8-17

8 Ordinary Differential Equations

the ODE file should re turn , and p1 , p2 , . . . are any additional parameters tha t
the problem requires. Th is tab le shows the currently supported flags.

Flags Return Values

’ ’ (empty) F (t, У)

’ i n i t ’ tspan, y 0, and opt ions for th is problem

’ jacobi an’ Jacobian m a trix J (t, y) = dF /dy

’ j p a t t e r n ’ M a trix showing the Jacobian sparsity pattern

’ mass’ Mass m a trix M for solving M(t, y) y' = F(t, y)

’ events’ Inform ation to define an event location problem

The tem plate below illus tra tes how to code an extended ODE file tha t uses the
swi t ch construct and the ODE file ’s th ird input argument, f l ag , to supply
additional in form ation. For illus tra tion , the file also accepts tw o additional
input parameters p1 and p2 .

8-18

Improving Solver Performance

Note The example below is only a tem plate. In your own coding you should not
include all of the cases shown. For example, ’ j a c o b i an ’ in form ation is used
for evaluating Jacobians analytica lly, and ’ j p a t t e r n ’ in form ation is used for
generating Jacobians num erically.

f u n c t i on varargout = o d e f i l e (t , y , f l a g , p 1 , p 2)
swi t ch f l a g

case ’ ’ % Return dy/dt = f (t , y) .
v a r a r g o u t { 1 } = f (t , y , p 1 , p 2);

case ’ i n i t ’ % Return defaul t [t sp a n , y0 , o p t i o n s] .
[v a r a r g o u t { 1 : 3 }] = i n i t (p 1 , p 2) ;

case ’ j a c o b i an ’ % Return Jacobian mat r i x df /dy.
v a r a r g o u t { 1 } = j a c o b i a n (t , y , p 1 , p 2);

case ’ j p a t t e r n ’ % Return s pa r s i t y pa t t e rn mat r i x S.
v a r a r g o u t { 1 } = j p a t t e r n (t , y , p 1 , p 2);

case ’ mass ’ % Return mass mat r i x.
v a r a r g o u t { 1 } = mass (t , y , p 1 , p 2);

case ’ even ts ’ % R e t u r n [v a l u e , i s t e r m i n a l , d i r e c t i o n] .
[va r a r gou t { 1 : 3 }] = ev en t s (t , y , p1 , p2) ;

otherwise
e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;

end
% ---
f u n c t i on dydt = f (t , y , p 1 , p 2)
dydt = < Inser t a f un c t i o n of t and/or y, p1, and p2 here. >;
% ---
f u n c t i on [t s p a n , y 0, op t i ons] = i n i t (p 1 , p 2)
t span = < Inser t t span here. >;
y0 = < Inser t y0 here. >;
opt i ons = < Inser t opt i ons = o d e s e t (. . .) or [] here. >;
% ---
f u n c t i on dfdy = j a c o b i a n (t , y , p 1 , p 2)
dfdy = < Inser t Jacobian mat r i x here. >;
% ---
f u n c t i on S = j p a t t e r n (t , y , p 1 , p 2)
S = < Inser t Jacobian mat r i x s p a r s i t y pa t t e r n here. >;
% ---

8-19

8 Ordinary Differential Equations

f u n c t i o n M = mass(t , y ,p1,p2)
M = < Inser t mass mat r i x here. >;
% ---
f un c t i on [v a l u e , i s t e r m i n a l , d i r e c t i o n] = e v e n t s (t , y , p 1 , p 2)
value = < Inser t event f un c t i o n vector here. >;
i s t ermina l = < Inser t l og i ca l ISTERMINAL vector here. >;
d i r e c t i o n = < Inser t DIRECTION vector here. >;

Creat ing an Opt ions Structure: The odeset Function
The odeset function creates an opt ions s truc tu re tha t you can supply to any
of the ODE solvers. odeset accepts property name/property value pairs using
the syntax

opt i ons = odeset (’ name1 ’ , v a l u e 1 , ’ name2 ’ ,val ue2 , . . .)

Th is creates a s tructu re opt i ons in which the named properties have the
specified values. Any unspecified properties contain default values in the
solvers. For all properties, it is sufficient to type only the leading characters
tha t uniquely identify the property name. odeset ignores case for property
names.

W ith no input arguments, odeset displays all property names and the ir
possible values, ind icating defaults w ith { }.

AbsTol: [p o s i t i v e scalar or vector {1e -6 }]
BDF: [on | { o f f }]
Events: [on | { o f f }]
I n i t i a l S t e p : [p o s i t i v e sca lar]
Jacobian: [on | { o f f }]
JC onstant: [on | {o f f }]
JPat tern: [on | { o f f }]
Mfess: [{none} | M | M(t) | M(t , y)]
MassSingular: [yes | no | {maybe}]
MlaxCrder: [1 | 2 | 3 | 4 | {5 }]
MaxStep: [p o s i t i v e scalar]
CutputFcn: [s t r i n g]
CutputSel : [vector of i n t egers]
Ref ine: [p o s i t i v e i n teger]
RelTol : [p o s i t i v e scalar {1e -3 }]
Stats: [on | { o f f }]
Vector i zed: [on | { o f f }]

8-20

Improving Solver Performance

Modifying an Existing Options Structure
To modify an existing opt i ons argument, use

opt i ons = o d e s e t (o l dop t s , ’ name1 ’ , v a l u e 1 , . . .)

Th is sets opt i ons equal to the existing s tructu re o ldopts, overw riting any
values in o l dopts tha t are respecified using name/value pairs and adding to
the s tructu re any new pairs. The modified s tructu re is returned as an output
argument. In the same way, the command

opt i ons = odeset (o ldopts ,newopts)

combines the structures o l dopts and newopts. In the output argument, any
values in the second argument (other than the empty m atrix) overw rite those
in the firs t argument.

Querying Options: The odeget Function
The solvers use the odeget function to extract property values from an opt i ons
s truc tu re created w ith odeset .

o = odeget (opt i ons , ’ name’)

This re tu rns the value of the specified property, or an empty m a trix [] if the
property value is unspecified in the opt i ons structure.

As w ith odeset , it is sufficient to type only the leading characters tha t uniquely
identify the property name; case is ignored for property names.

Error Tolerance Propert ies
The solvers use standard local error control techniques for m onitoring and
contro lling the error of each integration step. A t each step, the local error e in
the i ’th component of the solution is estimated and is required to be less than
or equal to the acceptable error, which is a function of tw o user-defined
tolerances RelTol and AbsTol .

| e (i) | <= ma x (Re l T o l * abs (y (i)) , Abs To l (i))

• RelTol is the re lative accuracy tolerance, a measure of the error re la tive to
the size of each solution component. Roughly, it controls the number of
correct d ig its in the answer. The default, 1e-3, corresponds to 0.1%
accuracy.

8-21

8 Ordinary Differential Equations

• AbsTol is a scalar or vector of the absolute error tolerances for each solution
component. AbsTol (i) is a threshold below which the values of the
corresponding solution components are un im portan t. The absolute error
tolerances determ ine the accuracy when the solution approaches zero. The
default value is 1 e -6.

Set tolerances using odeset , e ither at the command line or in the ODE file.

Property Value Description

RelTol Positive scalar
{1e-3}

A re la tive error tolerance tha t applies
to all components of the solution vector
y. Default value is 10л(-3) (0.1%
accuracy).

AbsTol Positive scalar
or vector {1 e -6}

Absolute error tolerances tha t apply to
the corresponding components of the
solution vector. I f a scalar value is
specified, it applies to all components
of the solution vector y. Default value
is 10л (- б) .

The ODE solvers are designed to deliver, for routine problems, accuracy
roughly equivalent to the accuracy you request. They deliver less accuracy for
problems integrated over “ long” in te rva ls and problems tha t are moderately
unstable. D ifficu lt problems may require tig h te r tolerances than the default
values. For re la tive accuracy, adjust RelTol . For the absolute error tolerance,
the scaling of the solution components is im portant: if |y | is somewhat smaller
than AbsTol , the solver is not constrained to obtain any correct d ig its in y. You
m ight have to solve a problem more than once to discover the scale of solution
components.

Solver Outpu t Propert ies
The solver output properties available w ith odeset let you control the output
tha t the solvers generate. W ith these properties, you can specify an output
function, a function tha t executes if you call the solver w ith no output
arguments. In addition, the ODE solver output options let you obtain

8-22

Improving Solver Performance

additional solutions at equally spaced points w ith in each tim e step, or view
sta tis tics about the computations.

Property Value Description

Cut put Fcn S tring

cut put Sel Vector of indices

Ref ine

Stats

Positive integer

on | {off}

The name of an output function.

I ndices of solver output components to
pass to an output function.

Produces smoother output, increasing
the number of output points by a factor
of Ref ine. I f Ref ine is 1, the solver
re tu rns solutions only at the end of
each tim e step. I f Refi ne is n >1, the
solver uses continuous extension to
subdivide each tim e step in to n smaller
in tervals, and re tu rns solutions at
each tim e point. Ref ine is 1 by default
in all solvers except ode45 where it is 4
because of the solver’s large step sizes.
Refi ne does not apply when
l eng t h (t s pan) > 2 .

Specifies whether sta tis tics about the
so lver’s computations should be
displayed.

OutputFcn
The CutputFcn property lets you define your own output function and pass the
name of th is function to the ODE solvers. I f no output arguments are specified,
the solvers call th is function after each successful tim e step. You can use th is
feature, for example, to plot results as they are computed.

You must code your output function in a specific way for it to interact properly
w ith the ODE solvers. When the name of an executable M -file function, e.g.,
myfun, is passed to an ODE solver as the CutputFcn property

opt i ons = odeset (’ CutputFcn’ , ’ myfun’)

8-23

8 Ordinary Differential Equations

the solver calls it w ith nryf un (t span , y0, ’ i n i t ’) before beginning the
integration so tha t the output function can in itia lize . Subsequently, the solver
calls s t a t us = nryfun(t, y) after each step. In addition to your intended use of
(t , y) , code myfun so tha t it re tu rns a s t a t us output value of 0 or 1 . If
s t a t us = 1 , in tegration halts. Th is m ight be used, for instance, to implement
a STOP button. When integration is complete, the solver calls the output
function w ith m y f u n ([] , [] , ’ done’) .

Some example output functions are included w ith the ODE solvers:

• odeplot - tim e series p lo tting
• odephas2 - two-dimensional phase plane p lo tting
• odephas3 - three-dimensional phase plane p lo tting
• odepr int - p rin t solution as it is computed

Use these as models for your own output functions. odeplot is the default
output function for all the solvers. It is autom atically invoked when the solvers
are called w ith no output arguments.

OutputSel
The CutputSel property is a vector of indices specifying which components of
the solution vector are to be passed to the output function. For example, if you
want to use the odepl ot output function, but you want to plot only the firs t and
th ird components of the solution, you can do th is using

opt i ons = odeset (’ CutputFcn’ , ’ odep l o t ’ , ’ CutputSel ’ , [1 3]) ;

Refine
The Ref ine property, an integer n, produces smoother output by increasing the
number of output points by a factor of n. Th is feature is especially useful when
using a medium or high order solver, such as ode45, for which solution
components can change substantia lly in the course of a single step. To obtain
smoother plots, increase the Ref ine property.

Note In all the solvers, the default value of Ref ine is 1 .W ith in ode45, however,
Ref ine is 4 to compensate for the solver’s large step sizes. To override th is and
see only the tim e steps chosen by ode45, set Ref ine to 1.

8-24

Improving Solver Performance

The extra values produced for Ref ine are computed by means of continuous
extension formulas. These are specialized form ulas used by the ODE solvers to
obtain accurate solutions between computed tim e steps w ithou t significant
increase in computation time.

Stats
The Stat s property specifies whether sta tis tics about the computational cost of
the integration should be displayed. By default, Stats is o f f . I f it is on, after
solving the problem the in tegrator displays:

• The number of successful steps
• The number of failed attem pts
• The number of tim es the ODE file was called to evaluate F(t,y)
• The number of tim es tha t the partia l derivatives m a trix dF /dy was formed
• The number of LU decompositions
• The number of solutions of linear systems

You can obtain the same values by including a th ird output argument in the
call to the ODE solver:

[T,Y,S] = ode45(’ imyfun’ , . . .) ;

Th is statement produces a vector S tha t contains these statistics.

Jacobian Mat r ix Propert ies
The s tiff ODE solvers often execute faster if you provide additional inform ation
about the Jacobian m a trix dF /d y , a m a trix of partia l derivatives of the
function defin ing the d iffe rentia l equation.

Fd dF 1
dx 1 2dx

Ю
1

dF 2 dF 2
dXi

1 СЧ
------------dx2

8-25

8 Ordinary Differential Equations

There are tw o aspects to providing inform ation about the Jacobian:

• You can set up your ODE file to calculate and re turn the value of the
Jacobian m a trix for the problem. In th is case, you must also use odeset to
set the Jacobi an property.

• I f you do not calculate the Jacobian in the ODE file, ode15s and ode23s call
the helper function numjac to approxim ate Jacobians num erically by fin ite
differences. In th i s case, you may be able to use the JConst an t , Vector i zed,
or JPat tern properties.

The Jacobian m a trix properties pertain only to the s t if f solvers odel5s and
ode23s for which the Jacobian m a trix dF /dy is critica l to re lia b ility and
efficiency.

Property Value Description

JConstant on | { o f f } Set on if the Jacobian m a trix dF /dy is
constant (does not depend on t or y).

Jacobian on | { o f f } Set on to inform the solver tha t the
ODE file is coded such tha t
F (t , y , ’ Jacobian’) re tu rns dF /dy .

JPat tern on | { o f f } Set on if dF /dy is a sparse m a trix and
the ODE file is coded so that
F ([] , [] , ’ J Pa t t e r n ’) re tu rns a
sparsity pattern m atrix .

Vect ori zed on | {off} Set on to inform the s tiff solver tha t
the ODE file is coded so tha t
F (t , [y 1 y2 . . .]) re turns
[F (t , y1) F (t , y2) . . .] .

8-26

Improving Solver Performance

JConstant
Set JConstant on if the Jacobian m a trix dF /dy is constant (does not depend on
t or y). W hether computing the Jacobians num erica lly or evaluating them
ana lytica lly , the solver takes advantage of th is in form ation to reduce solution
tim e. For the s tiff van der Pol example, the Jacobian m a trix is

j = [0 1
(- 2000*y(1) *y(2) - 1) (1000* (1 - y (1) A2))]

(not constant) so the JConstant property does not apply.

Jacobian
Set Jacobian on to inform the solver tha t the ODE file is coded such tha t
F (t , y , ' J a c o b i a n ') re turns dF /dy . By default, Jacobian is o f f , and
Jacobians are generated numerically.

Coding the ODE file to evaluate the Jacobian ana lytica lly often increases the
speed and re lia b ility of the solution for the s tiff problem. The Jacobian shown
above for the s tiff van der Pol problem can be coded in to the ODE file as

f u n c t i on o u t 1 = vdp1000(t , y , f l a g)
i f s t r c i r p (f l a g , ’ ’) % r e t u r n dy

o u t 1 = [y (2); 1000*(1 -y(1) A2) * y (2) - y (1)] ;
e l s e i f s t r c m p (f l a g , ' j a c o b i a n ') %o r e t u r n J

o u t 1 = [0 1
(- 2000* y (1) * y (2) - 1) (1000* (1 - y (1) A2))];

end

JPattern
Set JPat tern on if dF /dy is a sparse m a trix and the ODE file is coded so that
F ([] , [] , ' J P a t t e r n ') re turns a sparsity pattern m atrix . Th is is a sparse
m a trix w ith 1 s where there are nonzero entries in the Jacobian. numjac uses
the sparsity pattern to generate a sparse Jacobian m a trix num erically. I f the
Jacobian m a trix is large (size greater than approxim ately 100-by-100) and
sparse, th is can accelerate execution greatly. For an example using the
JPat tern property, see the brussode example on 8-37.

8-27

8 Ordinary Differential Equations

Vectorized
Set Vect o r i zed on to inform the s t if f solver tha t the ODE file is coded so that
F (t , [y 1 y2 . . .]) re tu rns [F (t , y 1) F (t , y2) . . .] . When computing
Jacobians num erically, the solver passes th is in form ation to the numjac
routine. Th is allows numjac to reduce the number of function evaluations
required to compute all the columns of the Jacobian m atrix , and may reduce
solution tim e s ign ificantly.

W ith M A TLA B ’s array notation, it is typ ica lly an easy m atter to vectorize an
ODE file. For example, the s tiff van der Pol example shown previously can be
vectorized by introducing colon notation in to the subscripts and by using the
array power (л) and array m u ltip lica tion (. *) operators.

f un c t i on dy = vdp1000(t , y)
dy = [y (2 , :) ; 1000*(1 - y (1 , :) . A2) . * y (2 , :) - y (1 , :)] ;

Step-Size Propert ies
The step-size properties let you specify the firs t step size tried by the solver,
po tentia lly helping it to recognize better the scale of the problem. In addition,
you can specify bounds on the sizes of subsequent tim e steps.

Property Value Description

MfexStep Positive scalar Upper bound on solver step size.

I n i t i a l S t e p Positive scalar Suggested in itia l step size.

Generally it is not necessary for you to adjust MfexStep and I n i t i a l S t e p
because the ODE solvers implement state-of-the-art variab le tim e step control
algorithm s. A d justing these properties w ithou t good reason may result in
degraded solver performance.

MaxStep
MfexStep has a positive scalar value. Th is property sets an upper bound on the
m agnitude of the step size the solver uses. If the d iffe rentia l equation has
periodic coefficients or solution, it may be a good idea to set MfexStep to some
fraction (such as 1/4) of the period. Th is guarantees tha t the solver does not
enlarge the tim e step too much and step over a period of interest.

8-28

Improving Solver Performance

• Do not reduce MaxStep to produce more output points. Th is can slow down
solution tim e s ign ificantly . Instead, use Ref ine (8-24) to compute additional
outputs by continuous extension at very low cost.

• Do not reduce MaxStep when the solution does not appear to be accurate
enough. Instead, reduce the re la tive error tolerance RelTol , and use the
solution you just computed to determ ine appropria te values for the absolute
error tolerance vector AbsTol . (See “ E rror Tolerance Properties” on page 8-21
for a description of the error tolerance properties.)

• Generally you should not reduce MfexStep to make sure tha t the solver
doesn’t step over some behavior tha t occurs only once during the sim ulation
in terva l. I f you know the tim e at which the change occurs, break the
sim ulation in terva l in to tw o pieces and call the solvers twice. I f you do not
know the tim e at which the change occurs, try reducing the error tolerances
RelTol and AbsTol . Use MfexStep as a last resort.

InitialStep
I n i t i a l S t e p has a positive scalar value. Th is property sets an upper bound on
the m agnitude of the firs t step size the solver tries. Generally the autom atic
procedure works very well. However, the in itia l step size is based on the slope
of the solution at the in itia l tim e t span(1) , and if the slope of all solution
components is zero, the procedure m ight try a step size tha t is much too large.
I f you know th is is happening or you want to be sure tha t the solver resolves
im portant behavior at the s ta rt of the integration, help the code s ta rt by
providing a suitable I n i t i a l S t e p .

Mass Mat r ix Propert ies
The solvers of the ODE suite can solve problems of the form M(t, y) y ’ = F(t, y)
w ith a mass m a trix M tha t is nonsingular and (usually) sparse. Use odeset to
set Mass to ’ Ml , ’ M (t) ’ , or ’ M (t , y) ’ if the ODE file F.m is coded so tha t
F (t , y , ’ mass’) re tu rns a constant, time-dependent, or tim e-and-state
dependent mass m atrix , respectively. The default value of Mass is ’ none’ . The
ode23s solver can only solve problems w ith a constant mass m a trix M. For
examples of mass m a trix problems, see femriode, fenSode, or batonode.

If M is singular, then M(t) * y ’ = F(t, y) is a d iffe rentia l algebraic equation
(DAE). DAEs have solutions only when y0 is consistent, tha t is, if there is a
vector yp0 such tha t M(t0) * y0 = f(t0, y0). The ode15s and ode23t solvers can
solve DAEs of index 1 provided tha t M is not state-dependent and y0 is

8-29

8 Ordinary Differential Equations

suffic ien tly close to being consistent. I f there is a mass m atrix , you can use
odeset to set the MkssSingular property to ’ yes’ , ’ no’ , or ’ maybe’ . The
default value of ’ maybe’ causes the solver to test whether the problem is a
DAE. I f it is, the solver trea ts y0 as a guess, attem pts to compute consistent
in itia l conditions tha t are close to y 0, and continues to solve the problem. When
solving DAEs, it is very advantageous to fo rm ulate the problem so tha t M is a
diagonal m a trix (a sem i-explicit DAE). For examples of DAE problems, see
hb1 dae or anp1 dae.

Property Value Description

Mass {none} | M Indicate whether the ODE file re turns
1 M(t) a mass m atrix.
1 M(t , y)

MassSingul ar yes | no Indicate whether the mass m a trix is
| {maybe} singular.

Mass
Change th is property from ’ none’ if t he ODE file is coded so tha t
F (t , y , ’ nass’) re tu rns a mass m atrix . ’ Ml indicates a constant mass m atrix,
’ M (t) ’ indicates a time-dependent mass m atrix , and ’ M (t , y) ’ indicates a
tim e- and state-dependent mass m atrix .

MassSingular
Set th is property to ’ no’ i f t he mass m a trix is not singular.

For an example of an ODE file w ith a mass m atrix , see “ Example 4: F in ite
Element D iscretization” on page 8-40.

Event Location Property
I n some ODE problems the tim es of specific events are im portant, such as the
tim e at which a ball h its the ground, or the tim e at which a spaceship re turns
to the earth, or the tim es at which the ODE solution reaches certain values.

8-30

Improving Solver Performance

W hile solving a problem, the M ATLAB ODE solvers can locate trans itions to,
from, or through zeros of a vector of user-defined functions.

String Value Description

Events on | { o f f } Set th is on i f the ODE file evaluates
and re tu rns the event functions, and
re tu rns inform ation about the events.

Events
Set th is parameter on to inform the solver tha t the ODE file is coded so tha t
F (t , y , ’ events ’) re tu rns appropria te event function inform ation. By default,
’even ts ’ is o f f .

For example, the statement

[T,Y,TE,YE, IE] = s o l v e r (’ F’ , t s pan , y 0 , op t i ons)

w ith the Events property in opt i ons set on solves an ODE problem w h ile also
locating zero crossings of an events function defined in the ODE file. In thi s
case, the solver re tu rns three additional outputs:

• TE is a column vector of tim es at which events occur.
• Rows of YE are solutions corresponding to tim es in TE.
• Indices in vector IE specify which event occurred at the tim e in TE.

The ODE file must be coded to re turn three values in response to the ’ events ’
flag.

[v a l u e , i s t e r n i n a l , d i r e c t i o n] = F (t , y , ’ events ’);

The firs t output argument value is the vector of event functions evaluated at
(t , y) . The value vector may be any length. It is evaluated at the beginning
and end of each integration step, and if any elements make trans itions to, from,
or through zero (w ith the d irec tiona lity specified in constant vector d i r ec t i on) ,
the solver uses the continuous extension form ulas to determ ine the tim e when
the trans ition occurred.

Term inal events halt the integration . The argument i s termina l is a logical
vector of 1 s and 0s tha t specifies whether a zero-crossing of the corresponding

8-31

8 Ordinary Differential Equations

value element is te rm ina l. 1 corresponds to a te rm ina l event, ha lting the
integration; 0 corresponds to a nonterm inal event.

The d i r e c t i o n vector specifies a desired d irectiona lity : positive (1), negative
(- 1), or don’t care (0), for each value element.

The tim e an event occurs is located to machine precision w ith in an in terva l of
[t - t +] . Nonterm inal events are reported at t+ . For te rm ina l events, both t -
and t + are reported.

For an example of an ODE file w ith an event location, see “Example 5: S imple
Event Location” on page 8-44.

ode15s Propert ies
The ode15s solver is a variable-order s tiff solver based on the numerical
d iffe rentia tion form ulas (NDFs). The NDFs are generally more efficient than
the closely related fam ily of backward d iffe rentia tion form ulas (BDFs), also
known as Gear’s methods. The ode15s properties let you choose between these
formulas, as well as specifying the maximum order for the solver.

Property Value Description

MfexCrder 1 1 2 | 3 | 4 | {5} The maximum order form ula used.

BDF on | { o f f } Specifies whether the backward
d iffe rentia tion form ulas are to be
used instead of the default numerical
d iffe rentia tion formulas.

MaxOrder
MlaxCrder is an integer 1 through 5 used to set an upper bound on the order of
the form ula tha t computes the solution. By default, the maximum order is 5.

BDF
Set BDF on to have ode15s use the BDFs. By default, BDF is o f f , and the solver
uses the NDFs.

For both the NDFs and BDFs, the form ulas of orders 1 and 2 are A-stable (the
s ta b ility region includes the entire left ha lf complex plane). The higher order
form ulas are not as stable, and the higher the order the worse the s tab ility .

8-32

Improving Solver Performance

There is a class of s tiff problems (s tiff osci lla to ry) tha t is sol ved more effic iently
if MfexCrder is reduced (for example to 2) so tha t only the most stable form ulas
are used.

8-33

8 Ordinary Differential Equations

Examples: Apply ing the ODE Solvers
This section contains several examples of ODE files. These examples illu s tra te
the kinds of problems you can solve in M ATLAB. For more examples, see
M A T LA B ’s demos directory.

Example 1: Simple Nonst i f f Problem
r i g i dode is a nonstiff example tha t can be solved w ith all five solvers of the
ODE suite. It is a standard test problem, proposed by Krogh, for nonstiff
solvers. The analytical solutions are Jacobian e llip tic functions accessible in
M ATLAB. The interval here is about 1.5 periods.

The r i g i dode system consists of the Euler equations of a rig id body w ithout
external forces as proposed by Krogh. r i g i dode is a system of th ree equations

yi = y2 Уз

y2 = - У1 Уз

У3 = -0.51 y i У2

r i g i d o d e ([] , [] , ’ i n i t ’) re turns the default tspan, y 0, and opt i ons values
for th is problem. These values are retrieved by an ODE solver if the solver is
invoked w ith empty t span or y0 arguments. Th is example uses the default
solver options, so the th ird output argument is set to empty, [] , instead of an
options s tructu re created w ith odeset. By means of the ’ i n i t ’ flag, the entire
in itia l value problem is defined in one file.

Reference Shampine, L. F. and M. K. Gordon, Computer Solution of O rd inary
D ifferentia l Equations, W.H. Freeman & Co., 1975.

8-34

Examples: Applying the ODE Solvers

f u n c t i o n varargout = r i g i d o d e (t , y , f l a g)
%RIGDCDE Euler equat ions of a r i g i d body wi thout external forces.
swi t ch f l a g
case ’ ’ % Return dy/dt = f (t , y) .

v a r a r g o u t { 1 } = f (t , y) ;
case ’ i n i t ’ % Return defaul t [t sp a n , y0 , o p t i o n s] .

[v a r a r g o u t { 1 : 3 }] = i n i t ;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;
end
% ---
f u n c t i on dydt = f (t , y)
dydt = [y (2) * y (3); - y (1) * y (3) ; - 0 . 5 1 * y (1) * y (2)] ;
% ---
f un c t i on [t s p a n , y 0, op t i ons] = i n i t
t span = [0; 12];
y0 = [0; 1 ; 1];
opt i ons = [] ;

Example 2: van der Pol Equation
vdpode is a more general version of the van der Pol example tha t has been used
in various form s throughout th is chapter. For illu s tra tive purposes, it is coded
for both fast numerical Jacobian computation (Vector i zed property) and for
analytical Jacobian evaluation (Jacobian property). In practice you would
supply only one or the other of these options. It is not necessary to supply
either.

The van der Pol equation is w ritten as a system of tw o equations.

yi = У2

У2 = m(i - y i) У2 - y i

vdpode(t , y) or vdpode (t , y , [] , mu) re tu rns the derivatives vector for the van
der Pol equation. By default, mu is 1 and the problem is not s tiff. O ptionally,
pass in the mu parameter as an additional input argument to an ODE solver.
The problem becomes more s t if f as mu is increased and the period of oscillation
becomes larger.

8-35

8 Ordinary Differential Equations

When mu is 1000 the equation is in relaxation oscillation and the problem is
very s tiff. The lim it cycle has portions where the solution components change
slowly and the problem is qu ite s tiff, a lte rna ting w ith regions of very sharp
change where it is not s tiff (quasi-discontinuities).

Th is example sets Vector i zed on w ith odeset because vdpode is coded so that
v d p o d e (t , [y 1 y2 . . .]) re tu rns [v d p o d e (t , y 1) vdpode (t , y 2) . . .] for scalar
tim e t and vectors y 1 ,y2 ,... The s tiff ODE solvers take advantage of th is
feature only when approxim ating the columns of the Jacobian numerically.

v d p o d e ([] , [] , ’ i n i t ’) re tu rns the default tspan, y 0, and opt i ons values for
th is problem. The entire in itia l value problem is defined in th is one file.

v d p o d e (t , y , ’ j a c o b i an ’) or v d p o d e (t , y , ’ j a c o b i an ’ ,mu) re tu rns the
Jacobian m a trix d F /dy evaluated ana lytica lly at (t , y) . By default, the s tiff
solvers of the ODE suite approxim ate Jacobian matrices numerically.
However, if Jacobian is set on w ith odeset , a solver calls the ODE file w ith the
flag ’ j a c o b i an ’ to obtain dF /d y . Providing the solvers w ith an ana ly tic
Jacobian is not necessary, but it can improve the re lia b ility and efficiency of
in tegration.

8-36

Examples: Applying the ODE Solvers

f u n c t i o n varargout = v dpode(t , y , f l ag , mu)
%VDPCDE Paramster i zable van der Pol equat ion (s t i f f f or l a rge mu).

i f nargin < 4 | isempty(mu)
mu = 1 ;

end
swi t ch f l a g
case ’ ’ % Return dy/dt = f (t , y) .

v a r a r g o u t { 1 } = f (t , y , m u) ;
case ’ i n i t ’ % Return defaul t [t sp a n , y 0 , o p t i on s] .

[v a r a r g o u t { 1 : 3 }] = i n i t (mu) ;
case ’ j a c o b i an ’ % Return Jacobian mat r i x df /dy.

v a r a r g o u t { 1 } = j ac ob i an (t , y , mu) ;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;
end
% ---
f un c t i o n dydt = f (t , y , m u)
dydt = [y (2 , :) ; (m u*(1 - y (1 , :) . A2) . * y (2 , :) - y (1 , :))] ; %
Vector i zed
% ---
f u n c t i on [t s p a n , y 0, op t i ons] = i n i t (mu)
tspan = [0; max(20,3*mu)] ; % several per iods
y0 = [2 ; 0];
opt i ons = odeset (’ Vec to r i zed ’ , ’ on’);
% ---
f u n c t i on dfdy = j acob i an (t , y , mu)
dfdy = [0 1

(- 2*m u*y(1) * y (2) - 1) (m u*(1 - y (1) A2))];

Example 3: Large, Stiff Sparse Problem
This is an example of a (potentia lly) large s t if f sparse problem. Li ke vdpode, the
file is coded to use both the Vector i zed and Jacobi an properties, but only one
is used during the course of a s im ulation. Li ke both previous examples,
brussode responds to the ’ i n i t ’ flag.

The brussode example is the classic “Brusselator” system (Hairer and Wanner)
modeling diffusion in a chemical reaction.

8-37

8 Ordinary Differential Equations

ui = 1 + u2v i - 4 u + a (N + 1)2(u _ 1 - 2 u + u i + 1)

and is solved on the tim e interval [0, 10] w ith a = 1/50 and

u i (0) 1 + sin (2 pXi) } wi t h x = i / (N + 1)for i = 1, ..., N
Vi(0) = 3 i v ;

There are 2N equations in the system, but the Jacobian is banded w ith a
constant w id th 5 if the equations are ordered as u1, v1, u2, v2, ...

b russode(t , y) or b r u s s o d e (t , y , [] , n) re tu rns the derivatives vector for the
Brusselator problem. The parameter n > 2 is used to specify the number of grid
points; the resu lting system consists of 2 n equations. By default, n is 2 . The
problem becomes increasingly s tiff and the Jacobian increasingly sparse as n is
increased.

b r u s s o d e ([] , [] , ’ j p a t t e r n ’) or b r u s s o d e ([] , [] , ’ j pa t t e r n ’ ,n) re tu rns a
sparse m a trix of 1s and 0s showing the locations of nonzeros in the Jacobian
dF /d y . By default, the s tiff ODE solvers generate Jacobians num erically as
fu ll matrices. However, if JPat tern is set on w ith odeset , a solver calls the
ODE file w ith the flag ’ j p a t t e r n ’ . Th is provides the solver w ith a sparsity
pattern tha t it uses to generate the Jacobian num erically as a sparse m atrix.
Providing a sparsity pattern can s ign ifican tly reduce the number of function
evaluations required to generate the Jacobian and can accelerate integration.
For the Brusselator problem, if the sparsity pattern is not supplied, 2n
evaluations of the function are needed to compute the 2n-by-2n Jacobian
m atrix . If the sparsity pattern is supplied, only four evaluations are needed,
regardless of the value of n.

Reference Hairer, E. and G. Wanner, Solving O rd ina ry D ifferentia l Equations
11, S tiff and D ifferentia l-A lgebra ic Problems, Springer-Verlag, Berlin , 1991,
pp. 5-8.

8-38

Examples: Applying the ODE Solvers

f u n c t i o n varargout = b r u s s o d e (t , y , f l a g , N)
%BRUSSCDE S t i f f problem model ing a chemical react i on.

i f nargin < 4 | isempty(N)
N = 2;

end
swi t ch f l a g
case ’ ’ % Return dy/dt = f (t , y) .

var argout {1} = f (t , y , N) ;
case ’ i n i t ’ % Return defaul t [t sp a n , y0 , o p t i o n s] .

[v a r a r g o u t { 1 : 3 }] = i n i t (N) ;
case ’ j p a t t e r n ’ % Return s p a r s i t y pa t t e r n of df /dy.

var argout {1} = j p a t t e r n (t , y , N) ;
case ’ j a c o b i an ’ % Return Jacobian mat r i x df /dy.

var argout {1} = j ac o b i a n (t , y , N) ;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;
end
% ---
f u n c t i on dydt = f (t , y , N)
c = 0.02 * (N+1) л2;
dydt = z e r o s (2 * N , s i z e (y , 2)) ; % p r ea l l oc a t e dy/dt
% Eval uate the 2 components of the f u n c t i o n at one edge of the g r i d
% (w i t h edge cond i t i ons) .
i = 1 ;
dydt (i , :) = 1 + y (i + 1 , :) . * y (i , :) ^ 2 - 4 * y (i , :) + . . .
c * (1 - 2* y (i , :) + y (i + 2 , :)) ;
dydt (i + 1 , :) = 3 * y (i , :) - y (i + 1 , :) . * y (i , :) . л 2 + . . .
c * (3 - 2 * y (i + 1 , :) + y (i + 3 , :)) ;
% Evaluate t he 2 components of the f u n c t i on at al l i n t e r i o r g r i d
% points.
i = 3:2:2*N-3;

dydt (i , :) = 1 + y (i + 1 , :) . * y (i , :) ^ 2 - 4 * y (i , :) + . . .
c * (y (i - 2 , :) - 2* y (i , :) + y (i + 2 , :)) ;

dydt (i + 1 , :) = 3 * y (i , :) - y (i + 1 , :) . * y (i , :) . л 2 + . . .
c * (y (i - 1 , :) - 2 * y (i + 1 , :) + y (i + 3 , :)) ;

% Evaluate t he 2 components of the f un c t i on at t he other edge of
% the g r i d (w i t h edge cond i t i ons) .
i = 2*N-1;

8-39

8 Ordinary Differential Equations

d y d t (i , :) = 1 + y (i + 1 , :) . * y (i , :) . A2 - 4 * y (i , :) + . . .
c * (y (i - 2 , :) - 2* y (i , :) + 1);
d y d t (i + 1 , :) = 3 * y (i , :) - y (i + 1 , :) . * y (i , :) . A2 + . . .
c * (y (i - 1 , :) - 2 * y (i + 1 , :) + 3) ;
% ---
f un c t i on [t span , y 0 , o p t i ons] = i n i t (N)
tspan = [0; 10];
y0 = [1 + s i n ((2 * p i / (N + 1)) * (1 : N)) ; 3+zeros(1,N)] ;
y 0 = y0(:);
opt i ons = odeset (’ Vec to r i zed ’ , ’ on’);
% ---
f un c t i on dfdy = j a c ob i an (t , y , N)
c = 0.02 * (N+1)A2;
B = zeros(2*N,5) ;
B(1 :2* (N- 1) , 1) = B(1 :2* (N- 1) , 1) + c;
i = 1:2:2*N-1;
B (i , 2) = 3 - 2 * y (i) . * y (i + 1) ;
B (i , 3) = 2 * y (i) . * y (i + 1) - 4 - 2 * c;
B(i+1,3) = - y (i) . A 2 - 2*c;
B(i+1,4) = y (i) . A2 ;
B(3:2*N,5) = B(3:2*N, 5) + c;
dfdy = spd i ags(B, -2 :2 ,2*N,2*N) ; % Note t h i s i s a SPARSE Jacobian.
% ---
f un c t i on S = j p a t t e r n (t , y , N)
B = ones(2*N,5) ;
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1) ;
S = s pd i ags (B, -2 : 2 , 2* N,2*N);
i f nargin < 4 | isempty(N)

N = 2;
end

Example 4: Finite Element Discret izat ion
fem1 ode(t , y) or f em1 o d e (t , y , [] , n) re tu rns the derivatives vector for a f in ite
element discretization of a partia l d iffe ren tia l equation. The parameter n
controls the d iscretization, and the resu lting system consists of n equations. By
default, n is 9.

8-40

Examples: Applying the ODE Solvers

This example involves a mass m atrix . The system of ODE’s comes from a
method of lines solution of the partia l d iffe rentia l equation

- t du _ C u

e c t _ C k 2

w ith in itia l condition u(0, x) = sin(x) and boundary conditions
u(t, 0) = u(t, p) = 0. An integer N is chosen, h is defined as 1/(N+1), and the
solution of the partia l d iffe rentia l equation is approximated at xk = kph for
k = 0, 1, , ..., N+1 by

u (t ^) » £ ck(t) f k(x)

k _ 1

Here fk(x) is a piecewise linear function tha t is 1 at xk and 0 at all the other Xj.
A G alerkin discretization leads to the system of ODEs

A (t) c' _ Rc where c (t) _

and the trid iagona l matrices A(t) and R are given by

c1 (t)

lCn (t)

A ij =
{ exp (- t)2 h / 3

exp(- t) h / 6
0

i f i = j
if i = j ± 1
otherwise

and Rij =
- 2 / h
1 / h
0

i f i = j
if i = j ± 1
otherwise

N

The in itia l values c(0) are taken from the in itia l condition for the partia l
d iffe rentia l equation. The problem is solved on the tim e interval [0, p].

f e n i o d e (t , [] , ’ mass’) or f e m r t o d e (t , [] , ’ mass’ ,n) re tu rns the
time-dependent mass m a trix M evaluated at tim e t . By default, ode15s solves
systems of the form y ' _ F (t, y). However, if the Mass property is changed
from ’ none’ to ’ Ml , ’ M (t) ’ , or ’ M (t , y) ’ w ith odeset , t he solver calls the ODE
file w ith the flag ’ mass’ . The ODE file re turns a mass m atrix , which the solver
uses to solve M(t, y) y ’ = F(t, y). If the mass m a trix is a constant M , the problem
can be also be solved w ith ode23s.

8-41

8 Ordinary Differential Equations

For example, to solve a system of 20 equations, use

[T,Y] = ode15s(’ femriode’ , [] , [] , o d e s e t (’ Mass’ , ’ M [t) ’) , 20) ;

8-42

Examples: Applying the ODE Solvers

femflode also responds to the flag ’ i n i t ’ (see the r i g i dode example for
details).

f u n c t i on varargout = f em1ode(t , y , f l ag , N)
%FEM1CDE S t i f f problem wi t h a time-dependent mass mat r i x.
i f nargin == 0

f l a g = ’ demo’ ;
end
i f nargin < 4 | isempty(N)

N = 9;
end
swi t ch f l a g
case ’ ’

varargout {1} = f (t , y , N) ;
case ’ i n i t ’
[t s p a n , y 0, op t i ons] .

[v a r a r g o u t { 1 : 3 }] = i n i t (N) ;
case ’ mass’

varargout {1} = mass(t ,y,N) ;
case ’ demo’

demo;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g
end
%--
f un c t i o n dydt = f (t , y , N)
e = ((N+1) / p i) + zeros(N,1) ; % h=pi/ (N+1); e=(1/h)+zeros(N,1) ;
R = spd i ags([e -2*e e], -1:1, N, N);
dydt = R*y;
%--
f un c t i on [t span , y0 , o p t i ons] = i n i t (N)
tspan = [0; p i] ;
y0 = s i n ((p i / (N + 1)) * (1 : N) ’);
opt i ons = odeset (’ Mass’ , ’ M (t) ’ , ’ Vector i zed ’ , ’ on’) ;

%-

% Return dy/dt = f (t , y) .

% Return defau l t .

% Return mass mat r i x M(t) .

% Run a demo.

’ ’ ’ . ’]) ;

8-43

8 Ordinary Differential Equations

f u n c t i o n M = mass(t , y,N)
e = (exp(- t) * p i / (6 * (N + 1))) + zer os(N,1) ; % h=pi / (N+1) ;
e = e x p (- t) * h / 6+zeros
M = spd i ags ([e 4*e e] , -1:1, N, N);
%--
f un c t i on demo
[t , y] = ode15s(’ feim1ode’);
s u r f (1 : 9 , t , y) ;
s e t (g c a , ’ Z L i m , [0 1]) ;
view(142. 5,30) ;
t i t l e ([’ F i n i t e element problem wi t h time-dependent mass

’ mat r i x, solved by CDE15S’]) ;
x l a b e l (’ space’);
y l a b e l (’ t i me ’);
z l a b e l (’ s o l u t i o n ’);

Example 5: Simple Event Location
b a l l o d e (t , y) re tu rns the derivatives vector for the equations of motion of a
bouncing ball. Th is ODE file illus tra tes the event location capabilities of the
ODE solvers.

The equations for the bouncing ball are:

у 1 = y2
у 2 = -9 .8

b a l l o d e (t , y , ’ events ’) re tu rns a zero-crossing vector value evaluated at
(t , y) , as well as tw o constant vectors i s termi na l and d i r e c t i o n . By default,
the ODE solvers do not locate zero-crossings. However, i f the Events property
is set on w ith odeset , a solver calls the ODE file w ith the flag ’ events ’ . This
provides the solver w ith inform ation tha t it uses to locate zero-crossings of the
elements in the value vector. The value vector may be any length. It is
evaluated at the beginning and end of a step, and if any elements change sign
(w ith the d irec tiona lity specified in d i r ec t i on) , t he zero-crossing point is
located. The i s termina l vector consists of logical 1s and 0s, enabling you to
specify whether or not a zero-crossing of the corresponding value element halts
the integration. The d i r e c t i o n vector enables you to specify a desired

8-44

Examples: Applying the ODE Solvers

d irectiona lity , positive (1), negative (- 1), or don’t care (0) for each value
element.

ba l l ode also responds to the flag ’ i n i t ’ (see the r i g i dode example for
details).

f u n c t i on varargout = b a l l o d e (t , y , f l a g)
%BALLCDE Equati ons of moti on fo r a bouncing ba l l .
swi t ch f l a g
case ’ ’ % Return dy/dt = f (t , y) .

v a r a r g o u t { 1 } = f (t , y) ;
case ’ i n i t ’ % Return defaul t [t s p a n , y 0 , o p t i on s] .

[v a r a r g o u t { 1 : 3 }] = i n i t ;
case ’ event s ’ % Return [v a l u e , i s t e r m n a l , d i r e c t i o n] .

[v a r a r g o u t { 1 : 3 }] = ev en t s (t , y) ;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;
end
% --
f u n c t i on dydt = f (t , y)
dydt = [y (2) ; - 9 . 8] ;
% ---
f u n c t i on [t s p a n , y 0, op t i ons] = i n i t
t span = [0; 10];
y0 = [0; 20];
opt i ons = odeset (’ Events’ , ’ on’);
% --
f u n c t i on [v a l u e , i s t e r m n a l , d i r e c t i o n] = even t s (t , y)
% Locat e the t i me when height passes through zero i n a decreasing
% d i r e c t i o n and stop i n t e g r a t i on . Also l oca t e both decreasing and
% i nc reas i ng zero- c ross i ngs of v e l oc i t y , a n d don’ t stop
% i n t eg r a t i on .
value = y; % [he i gh t ; v e l o c i t y]
i s t ermina l = [1 ; 0];
d i r e c t i o n = [- 1 ; 0];

8-45

8 Ordinary Differential Equations

Example 6: Advanced Event Location
or b i t ode is a standard test problem for nonstiff solvers presented in Shampine
and Gordon, (see reference tha t follows).

The orb i t ode problem is a system of four equations.

У1 _ У3

У2 _ У4

m*(y 1 + m) m(y1 - m*)
y 3 = 2 У4 +У1 --------- 3-------------------3—

r 1 Г2

m* y2 my2
y4 = - 2 y3 + y2 - - 3 - - - T

r 1 r 2

where

m _ 1 / 82.45

m* = 1 - m

Г1 = J (У1 + m)2 + у2

Г2 = J (У1 -m *)2 + у2

The firs t tw o solution components are coordinates of the body of in fin ites im al
mass, so p lo tting one against the other gives the orbit of the body around the
other tw o bodies. The in itia l conditions have been chosen so as to make the
orbit periodic. Th is corresponds to a spaceship trave ling around the moon and
re tu rn ing to the earth. Moderately stringent tolerances are necessary to
reproduce the qua lita tive behavior of the orbit. Suitable values are le -5 for
RelTol and 1e-4 for AbsTol .

The event functions implemented in th is example locate the point of maximum
distance from the earth and the tim e the spaceship re tu rns to earth.

8-46

Examples: Applying the ODE Solvers

R eference Shampine, L. F. and M. K. Gordon, Computer Solution of O rd inary
D ifferentia l Equations, W.H. Freeman & Co., 1975, p. 246.

8-47

8 Ordinary Differential Equations

f u n c t i o n varargout = o r b i t o d e (t , y , f l a g)
%CRBITCDE Res t r i c t ed th ree body problem
y0 = [1.2; 0; 0; - 1.04935750983031990726];
swi t ch f l a g
case ’ ’ % Return dy/ dt = f (t , y) .

v a r a r g o u t { 1 } = f (t , y) ;
case ’ i n i t ’ % Return defaul t [t s p a n , y 0 , op t i on s] .

[va r a r g o u t { 1 : 3 }] = i n i t (y 0) ;
case ’ events ’ % Return [v a l u e , i s t e r m i n a l , d i r e c t i o n] .

[va r a r g o u t { 1 : 3 }] = ev e n t s (t , y , y 0) ;
otherwise

e r r o r ([’ Unknown f l a g ’ ’ ’ f l a g ’ ’ ’ . ’]) ;
end
% ---
f un c t i o n dydt = f (t , y)
mu = 1 / 82.45;
mustar = 1 - mu;
r13 = ((y (1) + mu)A2 + y(2)A2) a 1 . 5 ;
r23 = ((y (1) - mustar)A2 + y(2)A2) a 1 . 5 ;
dydt = [y(3)

y(4)
(2*y(4) + y(1) - mustar * ((y (1)+mu) / r13) -

mu* ((y (1) - mus t a r) / r 23))
(- 2 * y (3) + y(2) - mus t a r * (y (2) / r 13) - mu* (y (2) / r 23))];

% ---
f un c t i on [t s p a n , y 0, op t i ons] = i n i t (y)
t span = [0; 6.19216933131963970674];
y 0 = y;
opt i ons = odeset (’ RelTol ’ , 1 e - 5 , ’ AbsTol ’ , 1e-4) ;
% ---
f un c t i on [v a l u e , i s t e r m n a l , d i r e c t i o n] = e v e n t s (t , y , y 0)
% Locate t he t ime when the object re t u rns closest t o t he i n i t i a l
% point y0 and s t a r t s t o move away, and stop i n t e g r a t i on . Also
% l oca t e t he t ime when the object i s f a r t hes t f r om t he i n i t i a l
% point y 0 and s t a r t s t o move closer .
%
% The cur rent d i s tance of t he body is
%
% DSQ = (y (1) - y 0 (1)) A2 + (y (2) - y 0 (2)) A2 = < y (1 : 2) - y0 , y (1 : 2) - y 0 >
%

8-48

Examples: Applying the ODE Solvers

% A local minimum of DSQ occurs when d/dt DSQ crosses zero heading
% in t he p o s i t i v e d i r e c t i o n . We can compute d/dt DSQ as
%
% d/dt DSQ = 2 * (y (1 : 2) - y 0) ’ * d y (1 : 2) / d t = 2 * (y (1 : 2) - y 0) ’ * y (3 :4)
%
dDSQdt = 2 * ((y (1 : 2) - y 0 (1 : 2)) ’ * y (3 : 4)) ;
value = [dDSQdt; dDSQdt];
i s t ermi na l = [1 ; 0] ; % stop at local mi nimum
d i r e c t i o n = [1 ; - 1] ; % [l oca l minimum, local maximum]

8-49

8 Ordinary Differential Equations

Questions and Answers
This section contains a number of tables tha t answer questions about the use
and operation of the M ATLAB ODE solvers. Th is section also contains a
troubleshooting table. The question and answer tables cover the fo llow ing
categories:

• General ODE Solver Questions
• Problem Size, Memory Use, and Computation Speed
• T im e Steps for Integration
• E rror Tolerance and Other Options
• Solving D ifferent K inds of Systems

General ODE Solver Questions

Question Answ er

How do the ODE solvers quad and quad8 solve problems of the form y ’ _ F (t) . The ODE
differ from quad or quad8? suite solves more general problems of the form y ' _ F (t, y) .

Can I solve ODE systems in No.
which there are more
equations than unknowns,
or vice-versa?

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I The p rim ary constraints are memory and tim e. A t each tim e step,
solve w ith the ODE suite? the nonstiff solvers allocate vectors of length n, where n is the

number of equations in the system. The s tiff solvers allocate
vectors of length n, but also an n-by-n Jacobian m atrix . For these
solvers it may be advantageous to use the sparse option.

I f the problem is nonstiff, or i f you are using the sparse option, it
may be possible to solve a problem w ith thousands of unknowns.
In th is case, however, storage of the result can be problematic.

8-50

Questions and Answers

Problem Size, Memory Use, and Computation Speed

Question Answ er

I ’m solving a very large
system, but only care about
a couple of the components
of y. Is there any way to
avoid storing all of the
elements?

How many tim e steps is too
many?

What is the s ta rtup cost of
the integration and how
can I reduce it?

Yes. The user-insta llab le output function capability is designed
specifically for th is purpose. When an output function is installed
and the solver call does not include output arguments, the solver
does not allocate storage to hold the entire solution history.
I nstead, the solver calls CutputFcn(t , y) at each tim e step. To
keep the history of specific elements, w rite an output function that
stores or plots only the elements you care about.

I f your in tegration uses more than 200 tim e steps, i t ’s like ly that
your tspan is too long, or your problem is s tiff. D ivide tspan in to
pieces or try ode15s.

The biggest s ta rtup cost occurs as the solver a ttem pts to find a
step size appropria te to the scale of the problem. I f you happen to
know an appropria te step size, use the I n i t i a l S t e p property. For
example, if you repeatedly call the integrator in an event location
loop, the last step tha t was taken before the event is probably on
scale for the next in tegration. See bal l ode for an example.

Time Steps for Integration

Question Answer

The firs t step size tha t the You can specify the firs t step size w ith the I n i t i a l S t e p property.
in tegrator takes is too The in tegrator tr ie s th is value, then reduces it if necessary.
large, and it misses
im portant behavior.

Can I in tegrate w ith fixed No.
step sizes?

8-51

8 Ordinary Differential Equations

Error Tolerance and Other Options

Question Answer

How do I choose RelTol and
AbsTol ?

I want answers tha t are
correct to the precision of
the computer. Why can’t I
s im ply set RelTol to eps?

RelTol , the re la tive accuracy tolerance, controls the number of
correct d ig its in the answer. AbsTol , the absolute error tolerance,
controls the difference between the answer and the solution. A
re la tive error tolerance gets in to troub le when a solution
component vanishes. An absolute error tolerance gets in to troub le
when a solution component is unexpectedly large. The solvers
require nonzero tolerances and use a mixed test to avoid these
problems. A t each step the error e in the i ’th component of the
solution is required to satisfy th is condition

| e (i) | <= max (Re l To l * abs (y (i)) , Abs T o l (i))

The use of RelTol is clear - to obtain p correct d ig its let
RelTol = 10л(- p) , or s ligh tly smaller. The use of AbsTol depends
on the problem scale. AbsTol is a threshold - the solver does not
guarantee correct d ig its for solution components sm aller than
A b s T o l (i) . I f t he problem has a natural threshold, use it as
AbsTol .

A small value of AbsTol does not adversely affect the computation,
but be aware tha t the problem ’s scaling m ight mean tha t an
im portant component is sm aller than the specified AbsTol . You
m ight th in k tha t you computed the component w ith the re la tive
accuracy of RelTol , when in fact it is below the AbsTol threshold,
and you have few if any correct d ig its. Even if you are not
interested in correct d ig its in th is component, fa iling to compute it
accurately may harm the accuracy of components you do care
about. Generally the solvers handle th is situation autom atically,
but not always.

You can get close to machine precision, but not tha t close. The
solvers do not allow RelTol near eps because they try to
approxim ate a continuous function. A t tolerances comparable to
eps, the machine a rithm e tic causes all functions to look
discontinuous.

8-52

Questions and Answers

Error Tolerance and Other Options

Question Answer

How do I te ll the solver that
I don’t care about gett ing an
accurate answer for one of
the solution components?

You can increase the absolute error tolerance corresponding to
th is solution component. I f the tolerance is bigger than the
component, th is specifies no correct d ig its for the component. The
solver may have to get some correct d ig its in th is component to
compute other components accurately, but it generally handles
th is autom atically.

Solving Different Kinds of Systems

Question Answer

Can the solvers handle
PDEs that have been
discretized by the Method
of Lines?

Can I solve d iffe rentia l
algebraic equation (DAE)
systems?

Yes. W hat you obtain is a system of ODEs. Depending on the
d iscretization, you m ight have a form involving mass m atrices -
ode15s, ode23s, ode23t, and ode23tb provide for th is . Often the
system is s tiff. Th is is to be expected when the PDE is parabolic
and when there are phenomena tha t happen on very d ifferent
tim e scales such as a chemical reaction in a flu id flow. In such
cases, use one of the four solvers mentioned above. If, as usual,
there are many equations, set the JPat tern property. Th is is easy
and m ight make the difference between success and fa ilu re due
to the computation being too expensive. When the system is not
s tiff, or not very s tiff, ode23 or ode45 w ill be more efficient than
ode15s, ode23s, ode23t, or ode23tb.

Yes. The solvers ode15s and ode23t can solve some DAEs of the
form M (t)y ’ = f(t,y) where M(t) is singular (the DAEs must be
index 1). For examples, see amp1 dae and hb1 dae.

8-53

8 Ordinary Differential Equations

Solving Different Kinds of Systems

Question Answer

Can I in tegrate a set of Not directly. You have to represent the data as a function by
sampled data? interpolation or some other scheme for f it t in g data. The

smoothness of th is function is critica l. A piecewise polynomial fit
like a spline can look smooth to the eye, but rough to a solver; the
solver w ill take small steps where the derivatives of the f it have
jumps. E ither use a smooth function to represent the data or use
one of the lower order solvers (ode23, ode23s, ode23t, ode23tb)
tha t is less sensitive to th is.

Can I solve Not directly. In some cases it is possible to use the in itia l value
del ay-differentia l problem solvers to solve delay-differentia l equations by breaking
equations? the sim ulation in terva l in to sm aller in te rva ls the length of a

single delay. For more inform ation about th is approach, see
Shampine, L. F., Numerical Solution of O rd ina ry D ifferentia l
Equations, Chapman & Hall Mathematics, 1994.

W hat do I do when I have ode45 and the other solvers tha t are available in th is version of
the final and not the in itia l the M ATLAB ODE suite allow you to solve backwards or
value? forwards in tim e. The syntax for the solvers is

[T,Y] = ode45(’ ydot ’ , [t 0 t f i n a l] ,y0);
and the syntax accepts t 0 > t f i n a l .

Troubleshoot ing
The follow ing tab le provides troubleshooting questions and answers.

8-54

Questions and Answers

Troubleshooting

Question Answer

The solution doesn’t look
like what I expected.

My plots aren’t smooth
enough.

I ’m p lo tting the solution as
it is computed and it looks
fine, but the code gets stuck
at some point.

I f you’re righ t about its appearance, you need to reduce the error
tolerances from the ir default values. A sm aller re la tive error
tolerance is needed to compute accurately the solution of problems
integrated over “ long” intervals, as well as solutions of problems
tha t are moderately unstable. You should check whether there are
solution components tha t stay sm aller than the ir absolute error
tolerance for some tim e. I f so, you are not asking for any correct
d ig its in these components. Th is may be acceptable for these
components, but fa iling to compute them accurately may degrade
the accuracy of other components tha t depend on them.

Increase the value of Ref ine from its default of 4 in ode45 and 1 in
the other solvers. The bigger the value of Ref ine, t he more output
points. Execution speed is not affected much by the value of
Refi ne.

F irst verify tha t the ODE function is smooth near the point where
the code gets stuck. I f it isn ’t, the solver must take small steps to
deal w ith th is . It may help to break tspan in to pieces on which the
ODE function is smooth.

I f the function is smooth and the code is tak ing extremely small
steps, you are probably try in g to solve a s tiff problem w ith a solver
not intended for th is purpose. Switch to ode15s, ode23s, or
ode23tb.

8-55

8 Ordinary Differential Equations

Troubleshooting

Question Answ er

My integration proceeds
very slowly, using too many
tim e steps.

I know tha t the solution
undergoes a radical change
at tim e t where

t 0 < t < t f i n a l

but the integrator steps
past w ithou t “seeing” it.

F irst, check tha t your t span is not too long. Remember tha t the
solver w ill use as many tim e points as necessary to produce a
smooth solution. I f the ODE function changes on a tim e scale tha t
is very short compared to the tspan, then the solver w ill use a lot
of tim e steps. Long-tim e integration is a hard problem. Break
tspan in to sm aller pieces.

I f the ODE function does not change noticeably on the tspan
in terva l, it could be tha t your problem is s tiff. T ry using ode15s or
ode23s.

F ina lly , make sure tha t the ODE function is w ritte n in an efficient
way. The solvers evaluate the derivatives in the ODE function
many times. The cost of numerical in tegration depends critica lly
on the expense of evaluating the ODE function. Rather than
recompute complicated constant parameters every evaluation,
store them in globals or calculate them once outside the function
and pass them in as additional parameters.

I f you know there is a sharp change at tim e t , it m ight help to
break the tspan interval in to tw o pieces, [t 0 t] and [t t f i n a l] ,
and call the integrator twice.

I f the d iffe rentia l equation has periodic coefficients or solution,
you m ight restrict the m axim um step size to the length of the
period so the integrator won’t step over periods.

8-56

9

Sparse Matrices

I n t r o d u c t i o n .. 9-5
Sparse M a trix S t o r a g e ...9-5
Creating Sparse M a t r ic e s .. 9-6
Im porting Sparse Matrices from Outside M A T L A B9-10

V i ew i ng Sparse M a t r i c e s ..9-11
General Storage In fo rm a tio n ..9-11
Inform ation About Nonzero E le m e n ts ..9-11
View ing Sparse M atrices G r a p h ic a l ly ..9-13
The find Function and Sparse Matrices 9-14

E xam p le : A d ja ce n cy M a t r i ce s and G r a p h s 9-15
Graphing Using Adjacency M a tr ic e s .. 9-15
The Bucky Ball ..9-16
An A irflow Model ... 9-21

S parse M a t r i x O p e r a t i o n s ..9-23
Computational C o n s id e ra tio n s ... 9-23
Standard Mathematical Operations .. 9-23
Perm utation and Reordering .. 9-24
F a c to r iz a t io n .. 9-27
Simultaneous Linear Equations ...9-33
Eigenvalues and S ingular V a lu e s ...9-36

9 Sparse Matrices

M ATLAB supports sparse matrices, matrices tha t contain a small proportion of
nonzero elements. This characteristic provides advantages in both m a trix
storage space and computation time.

This chapter explains how to create sparse matrices in M ATLAB, and how to
use them in both specialized and general mathematical operations.

The sparse m a trix functions are located in the spar fun d irectory in the
M ATLAB too l box directory.

Category Function Description

Elem entary sparse
matrices

speye Sparse iden tity m atrix.

Full to sparse
conversi on

W orking w ith
sparse matrices

sprand Sparse un ifo rm ly d is tribu ted random m atrix.

sprandn Sparse norm ally d is tribu ted random m atrix .

sprandsym Sparse random sym m etric m atrix.

spdiags Sparse m a trix formed from diagonals.

Create sparse m atrix .sparse

f u l l

f i n d

spconvert

nnz

nonzeros

nzmax

spones

spa l l oc

i ssparse

Convert sparse m a trix to fu ll m atrix.

Find indices of nonzero elements.

Im port from sparse m a trix external form at.

Number of nonzero m a trix elements.

Nonzero m a trix elements.

Amount of storage allocated for nonzero m a trix elements.

Replace nonzero sparse m a trix elements w ith ones.

A llocate space for sparse m atrix.

True for sparse m atrix.

9-2

Category Function Description

spfun Apply function to nonzero m a trix elements.

spy V isualize sparsity pattern.

gplot Plot graph, as in “graph theory.”

Reordering
algorithm s

colmmd Column m in im um degree perm utation.

symmmd Sym m etric m in im um degree perm utation.

symrcm Sym m etric reverse C uth ill-M cKee perm utation.

co l perm Column perm utation.

r andperm Random perm utation.

dmperm Dulmage-Mendelsohn perm utation.

L inear algebra eigs A few eigenvalues.

svds A few singular values.

l uinc Incomplete LU factorization.

cho l i nc Incomplete Cholesky factorization.

normest Estim ate the m a trix 2-norm.

condest 1 -norm condition number estimate.

sprank S tructu ra l rank.

L inear equations
(ite ra tive methods)

pcg Preconditioned Conjugate G radients Method.

bicg BiConjugate Gradients Method.

b i cgstab BiConjugate Gradients Stabilized Method.

cgs Conjugate G radients Squared Method.

gmres Generalized M in im um Residual Method.

9-3

9 Sparse Matrices

Category Function Description

qmr Q uasi-M in im al Residual Method.

Miscellaneous symbfact Symbolic factorization analysis.

spparms Set parameters for sparse m a trix routines.

spaugment Form least squares augmented system.

9-4

Introduction

Introduction
Sparse matrices are a special class of matrices tha t contain a significant
number of zero-valued elements. Th is property allows M ATLAB to:

• Store only the nonzero elements of the m atrix , together w ith th e ir indices.
• Reduce computation tim e by e lim ina ting operations on zero elements.

Sparse Mat r ix Storage
For fu ll matrices, M ATLAB stores in te rna lly every m a trix element.
Zero-valued elements require the same amount of storage space as any other
m a trix element. For sparse matrices, however, M ATLAB stores only the
nonzero elements and the ir indices. For large matrices w ith a high percentage
of zero-valued elements, th is scheme s ign ifican tly reduces the amount of
memory required for data storage.

M ATLAB uses three arrays in te rna lly to store sparse matrices w ith real
elements. Consider an m-by-n sparse m a trix w ith nnz nonzero entries:

• The firs t array contains all the nonzero elements of the array in
floating-po int form at. The length of th is array is equal to nnz.

• The second array contains the corresponding integer row indices for the
nonzero elements. This array also has length equal to nnz.

• The th ird array contains integer pointers to the start of each column. This
a rray has length equal to n.

This m a trix requires storage for nnz floating-point numbers and nnz+n
integers. A t 8 bytes per floating-point number and 4 bytes per integer, the total
number of bytes required to store a sparse m a trix is

8*nnz + 4*(nnz+n)

Sparse matrices w ith complex elements are also possible. In th is case,
M ATLAB uses a fourth array w ith nnz elements to store the im aginary parts
of the nonzero elements. An element is considered nonzero if e ither its real or
im aginary part is nonzero.

9-5

9 Sparse Matrices

Creating Sparse Matr ices
M ATLAB never creates sparse matrices autom atically. Instead, you must
determ ine if a m a trix contains a large enough percentage of zeros to benefit
from sparse techniques.

The density of a m a trix is the number of non-zero elements divided by the total
number of m a tr ix elements. M atrices w ith very low density are often good
candidates for use of the sparse form at.

Converting Full to Sparse
You can convert a fu ll m a trix to sparse storage using the sparse function w ith
a single argument.

S = sparse(A)

For example

A = [0 0 0 5
0 2 0 0
1 3 0 0
0 0 4 0];

S = sparse(A)

produces

S =

(3.1) 1
(2 . 2) 2
(3 .2) 3
(4.3) 4
(1.4) 5

The printed output lis ts the nonzero elements of S, together w ith the ir row and
column indices. The elements are sorted by columns, reflecting the interna l
data structure.

You can convert a sparse m a trix to fu ll storage using the f u l l function,
provided the m a trix order is not too large. For example A = f u l l (S) reverses
the example conversion.

9-6

Introduction

Converting a fu ll m a trix to sparse storage is not the most frequent way of
generating sparse matrices. I f the order of a m a trix is small enough tha t fu ll
storage is possible, then conversion to sparse storage rare ly offers significant
savings.

Creating Sparse Matrices Directly
You can create a sparse m a trix from a list of nonzero elements using the sparse
function w ith five arguments.

S = s p a r s e (i , j , s , m n)

i and j are vectors of row and column indices, respectively, for the nonzero
elements of the m atrix . s is a vector of nonzero values whose indices are
specified by the corresponding (i , j) pairs. m is the row dimension for the
resulting m atrix , and n is the column dimension.

The m a trix S of the previous example can be generated d irectly w ith

S = sparse([3 2 3 4 1] , [1 2 2 3 4] , [1 2 3 4 5] , 4 , 4)

S =

(3 .1) 1
(2 . 2) 2
(3 .2) 3
(4 .3) 4
(1 .4) 5

The sparse command has a number of a lte rnate forms. The example above
uses a form tha t sets the m aximum number of nonzero elements in the m a trix
to l e n g t h (s) . I f desired, you can append a sixth argument tha t specifies a
larger m aximum, a llow ing you to add nonzero elements later w ithou t changing
storage requirements.

Example: The Second Difference Operator
The m a trix representation of the second difference operator is a good example
of a sparse m atrix . It is a trid iagona l m a trix w ith -2 s on the diagonal and 1s

9-7

9 Sparse Matrices

on the super- and subdiagonal. There are many ways to generate it - here’s one
possibility.

D = s p a r s e (1 : n , 1 : n , - 2 * ones (1 , n) , n , n) ;
E = sparse(2 :n ,1 :n -1 , ones (1 , n - 1) , n , n) ;
S = E+D+E'

For n = 5, M ATLAB responds w ith

S =

(1 , 1) -2
(2 , 1) 1
(1 , 2) 1
(2 , 2) -2
(3 .2) 1
(2.3) 1
(3.3) -2
(4.3) 1
(3.4) 1
(4.4) -2
(5.4) 1
(4.5) 1
(5.5) -2

Now F = f u l l (S) displays the corresponding fu ll m atrix.

F = f u l l (S)

F =

-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

Creating Sparse Matrices from Their Diagonal Elements
Creating sparse matrices based on the ir diagonal elements is a common
operation, so the function spdiags handles th is task. Its syntax is

S = spdiags(B,d, imn)

9-8

Introduction

To create an output m a trix S of size m-by-n w ith elements on p diagonals:

• B is a m a trix of size min(m, n) -by-p. The columns of B are the values to
populate the diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals of S
to populate.

That is, the elements in column j of B fil l the diagonal specified by element j of
d. As an example, consider the m a trix B and the vector d.

B =

41 11 0
52 22 0
63 33 13
74 44 24

d =

-3
0
2

Use these matrices to create a 7-by-4 sparse m a trix A.

A = spd i ags(B,d ,7 ,4)

(1 , 1) 11
(4 1) 41
(2 2) 22
(5, 2) 52
(1 3) 13
(3 3) 33
(6, 3) 63
(2 4) 24
(4 4) 44
(7 4) 74

9-9

9 Sparse Matrices

In its fu ll form, A looks like th is.

fu l l (A)

ans =

11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74

spdiags can also extract diagonal elements from a sparse m atrix , or replace
m a trix diagonal elements w ith new values. Type help spdiags for details.

Import ing Sparse Matr ices f rom Outside MATLAB
You can im port sparse matrices from computations outside M ATLAB. Use the
spconvert function in conjunction w ith the load command to im port text files
containing lis ts of indices and nonzero elements. For example, consider a
three-column text file T.dat whose firs t column is a list of row indices, second
column is a list of column indices, and th ird column is a list of nonzero values.
These statements load T.dat in to M ATLAB and convert it in to a sparse
m a trix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse m atrices stored as binary
data in MAT-files. F ina lly , a Fortran u t il i ty routine hbo2 mat is available to
convert a file containing a sparse m a trix in the Harwell-Boeing format in to a
M A T-file tha t load can process. The Harwell-Boeing data is available through
anonymous ftp or the W orld W ide Web from ftp .n B th w o rks .co m in the
d irectory pub /m в thw o rks /too lbox /m в tlab /spa rfu n .

9-10

ftp://ftp.nBthworks.com

Viewing Sparse Matrices

Viewing Sparse Matrices
M ATLAB provides a number of functions tha t let you get quan tita tive or
graphical in form ation about sparse matrices.

General Storage In fo rmat ion
The whos command provides high-level in form ation about m a trix storage,
including size and storage class. For example, th is whos lis ting shows
inform ation about sparse and fu ll versions of the same m atrix.

whos
Name S ize Bytes Class

M_full 1100x1100 9680000 double a rray
M_sparse 1100x1100 4404 sparse a rray

Grand to ta l is 1210000 elements using 9684404 bytes

Notice tha t the number of bytes used is much less in the sparse case, because
zero-valued elements are not stored. In th is case, the density of the sparse
m a trix is 4404/9680000, or approxim ately .00045%.

In fo rmat ion About Nonzero Elements
There are several commands that provide high-level in form ation about the
nonzero elements of a sparse m atrix:

• nnz re turns the number of nonzero elements in a sparse m atrix.

• nonzeros re tu rns a column vector containing all the nonzero elements of a
sparse m atrix.

• nzmax re tu rns the amount of storage space allocated for the nonzero entries
of a sparse m atrix.

9-11

9 Sparse Matrices

To try some of these, load the supplied sparse m a trix west 0479, one of the
Harwell-Boeing collection.

load west 0479
whos

Name S ize Bytes Class

west0479 479x479 24576 sparse a rray

Th is m a trix models an eight-stage chemical d is tilla tion column.

T ry these commands.

nnz(west 0479)

ans =

1887

format short e
west0479

west0479 =

(25, 1) 1. 0000e+00
(31, 1) -3. 7648e-02

78 1) -3. 4424e-01
(26, 2) 1. 0000e+00
(31, 2) - 2 . 4523e-02

8 00 2) -3. 7371e-01
(27, 3) 1. 0000e+00
(31, 3) -3 6613e-02
(89, 3) -8 3694e-01
(28, 4) 1. 3000e+02

nonzeros(west 0479);

9-12

Viewing Sparse Matrices

ans =

1 0000e+00
-3 7648e-02
-3 4424e-01

1 0000e+00
-2 4523e-02
-3 7371e-01

1 0000e+00
-3 6613e-02
- 8 . 3694e-01

1 3000e+02

Note Use C trl-C to stop the nonzeros lis ting at any time.

Note tha t in it ia lly nnz has the same value as nzmax by default. That is, the
number of nonzero elements is equivalent to the number of storage locations
allocated for nonzeros. However, M ATLAB does not dynam ically release
memory i f you zero out additional a rray elements. Changing the value of some
m a trix elements to zero changes the value of nnz, but not tha t of nzmax.

You can add as many nonzero elements to the m a trix as desired, however; you
are not constrained by the orig inal value of nzmax.

V iew ing Sparse Matr ices Graphica l ly
It is often useful to use a graphical format to view the d is tribu tion of the
nonzero elements w ith in a sparse m atrix . M A T LA B ’s spy function produces a
tem plate view of the sparsity structure, where each point on the graph
represents the location of a nonzero array element.

9-13

9 Sparse Matrices

For example,

spy(west 0479)

nz = 1887

The f ind Function and Sparse Matr ices
For any m atrix , fu ll or sparse, the f i n d function re tu rns the indices and values
of nonzero elements. Its syntax is:

[i , j , s] = f i nd (S)

f i n d re turns the row indices of nonzero values in vector i , the column indices
in vector j , and the nonzero values themselves in the vector s. The example
below uses f i n d to locate the indices and values of the nonzeros in a sparse
m atrix . The sparse function uses the f i n d output, together w ith the size of the
m atrix , to recreate the m atrix.

[i , j , s] = f i nd (S)
[m n] = s i ze(S)
S = s p a r s e (i , j , s , m n)

9-14

Example: Adjacency Matrices and Graphs

Example: Adjacency Matrices and Graphs
The formal mathematical defin ition of a graph is a set of points, or nodes, w ith
specified connections between them. An economic model, for example, is a
graph w ith d ifferent industries as the nodes and direct economic ties as the
connections. The computer software industry is connected to the computer
hardware industry, which, in tu rn , is connected to the semiconductor industry,
and so on.

This defin ition of a graph lends itse lf to m a trix representation. The adjacency
m a trix of an undirected graph is a m a trix whose (i , j) - t h and (j , i) - t h entries
are 1 if node i is connected to node j , and 0 otherwise. For example, the
adjacency m a trix for a diamond-shaped graph looks like

1

Since most graphs have re la tive ly few connections per node, most adjacency
matrices are sparse. The actual locations of the nonzero elements depend on
how the nodes are numbered. A change in the numbering leads to perm utation
of the rows and columns of the adjacency m atrix , which can have a significant
effect on both the tim e and storage requirem ents for sparse m a trix
computations.

Graph ing Using Adjacency Matr ices
M A T LA B ’s gp lo t function creates a graph based on an adjacency m a trix and a
related array of coordinates. To try g p l o t , create the adjacency m a trix shown
above by entering

A = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0];

9-15

9 Sparse Matrices

The columns of gpl o t ’s coordinate array contain the Cartesian coordinates for
the corresponding node. For the diamond example, create the array by entering

xy = [1 3; 2 1; 3 3; 2 5];

Th is places the firs t node at location (1 , 3) , the second at location (2 , 1), the
th ird at location (3 , 3) , and the fourth at location (2 , 5) . To view the resu lting
graph, enter

g p l o t (A x y)

The Bucky Ball
One interesting construction for graph analysis is the Bucky ball. Th is is
composed of 60 points d is tribu ted on the surface of a sphere in such a way tha t
the distance from any point to its nearest neighbors is the same for all the
points. Each point has exactly th ree neighbors. The Bucky ball models four
d ifferent physical objects:

• The geodesic dome popularized by Buckm inster Fu ller

• The C60 molecule, a form of pure carbon w ith 60 atoms in a nearly spherical
configuration

• In geometry, the truncated icosahedron

• In sports, the seams in a soccer ball

The Bucky ball adjacency m a trix is a 60-by-60 sym m etric m a trix B. B has three
nonzero elements in each row and column, for a tota l of 180 nonzero values.
Th is m a trix has im portant applications related to the physical objects listed
earlier. For example, the eigenvalues of B are involved in studying the chemical
properties of C60.

To obtain the Bucky ball adjacency m atrix , enter

B = bucky;

A t order 60, and w ith a density of 5%, th is m a trix does not require sparse
techniques, but it does provide an interesting example.

You can also obtain the coordinates of the Bucky ball graph using

[B,v] = bucky;

9-16

Example: Adjacency Matrices and Graphs

This statement generates v, a lis t of xyz-coordinates of the 60 points in 3-space
equid istribu ted on the un it sphere. The function gplot uses these points to plot
the Bucky ball graph.

gp l o t (B , v)
ax i s equal

It is not obvious how to number the nodes in the Bucky ball so tha t the
resulting adjacency m a trix reflects the spherical and combinatorial
symmetries of the graph. The numbering used by bucky.m is based on the
pentagons inherent in the ba ll’s structure.

The vertices of one pentagon are numbered 1 through 5, the vertices of an
adjacent pentagon are numbered 6 through 10, and so on. The p icture on the
follow ing page shows the numbering of ha lf of the nodes (one hemisphere); the
numbering of the other hemisphere is obtained by a reflection about the

9-17

9 Sparse Matrices

equator. Use gplot to produce a graph showing ha lf the nodes. You can add the
node numbers using a fo r loop.

k = 1:30;
g p l o t (B (k , k) , v) ;
ax i s square
fo r j = 1:30, t e x t (v (j , 1) , v (j , 2) , i n t 2 s t r (j)) ; end

9-18

Example: Adjacency Matrices and Graphs

To view a tem plate of the nonzero locations in the Bucky ba ll’s adjacency
m atrix , use the spy function:

spy(B)

0

10

20

30

40

50

60

0 10 20 30 40 50 60
nz = 180

The node numbering tha t th is model uses generates a spy plot w ith twelve
groups of five elements, corresponding to the twelve pentagons in the
structure. Each node is connected to tw o other nodes w ith in its pentagon and
one node in some other pentagon. Since the nodes w ith in each pentagon have
consecutive numbers, most of the elements in the firs t super- and
sub-diagonals of B are nonzero. In addition, the sym m etry of the num bering
about the equator is apparent in the sym m etry of the spy plot about the
antidiagonal.

9-19

9 Sparse Matrices

Graphs and Characteristics of Sparse Matrices
Spy plots of the m a trix powers of B illu s tra te tw o im portant concepts related to
sparse m a trix operations, fill- in and distance. spy plots help illu s tra te these
concepts.

spy(BA2)
spy(BA3)
spy(BM)
spy(BA8)

nz = 420 nz = 780

F ill- in is generated by operations like m a trix m u ltip lica tion . The product of
tw o or more matrices usually has more nonzero entries than the ind iv idua l
terms, and so requires more storage. As p increases, BAp f il ls in and spy(BAp)
gets more dense.

9-20

Example: Adjacency Matrices and Graphs

The distance between tw o nodes in a graph is the number of steps on the graph
necessary to get from one node to the other. The spy plot of the p-th power of B
shows the nodes tha t are a distance p apart. As p increases, it is possible to get
to more and more nodes in p steps. For the Bucky ball, Вл8 is almost completely
fu ll. Only the antidiagonal is zero, ind icating tha t it is possible to get from any
node to any other node, except the one d irectly opposite it on the sphere, in
eight steps.

An A i r f l ow Model
A calculation performed at NASA’s Research In s titu te for Applications of
Computer Science involves modeling the flow over an a irp lane w ing w ith tw o
tra ilin g flaps.

In a two-dimensional model, a tr iangu la r grid surrounds a cross section of the
w ing and flaps. The partia l d iffe rentia l equations are nonlinear and involve
several unknowns, including hydrodynam ic pressure and tw o components of
velocity. Each step of the nonlinear iteration requires the solution of a sparse
linear system of equations. Since both the connectivity and the geometric
location of the grid points are known, the gplot function can produce the graph
shown above.

9-21

9 Sparse Matrices

In th is example, there are 4253 grid points, each of which is connected to
between 3 and 9 others, for a tota l of 28831 nonzeros in the m atrix, and a
density equal to 0.0016. Th is spy plot shows tha t the node numbering yields a
de fin ite band structure.

The Laplacian of the mesh.

nz = 28831

9-22

Sparse Matrix Operations

Sparse Matr ix Operat ions
Most of M A T LA B ’s standard mathematical functions work on sparse matrices
jus t as they do on fu ll matrices. In addition, M ATLAB provides a number of
functions tha t perform operations specific to sparse matrices. This section
discusses:

• Computational Considerations

• Standard Mathem atical Operations

• Perm utation and Reordering

• Factorization

• Simultaneous Linear Equations

• Eigenvalues and S ingular Values

Computa t iona l Considerat ions
The computational complexity of sparse operations is proportional to nnz, the
number of nonzero elements in the m atrix . Computational complexity also
depends linea rly on the row size m and column size n of the m atrix, but is
independent of the product nfn, the to ta l number of zero and nonzero elements.

The complexity of fa ir ly complicated operations, such as the solution of sparse
linear equations, involves factors like ordering and f ill- in , which are discussed
in the previous section. In general, however, the computer tim e required for a
sparse m a trix operation is proportional to the number of a rith m e tic operations
on nonzero quantities. Th is is the “tim e is proportional to flops” rule.

Standard Mathemat ica l Opera t ions
Sparse matrices propagate through computations according to these rules:

• Functions tha t accept a m a trix and return a scalar or vector always produce
output in fu ll storage form at. For example, the s i ze function always re turns
a fu ll vector, whether its input is fu ll or sparse.

• Functions tha t accept scalars or vectors and re turn matrices, such as zeros,
ones, rand, and eye, always return fu ll results. Th is is necessary to avoid
introducing sparsity unexpectedly. The sparse analog of z e r os (mn) is
sim ply s p a r s e (m n) . The sparse analogs of rand and eye are sprand and
speye, respectively. There is no sparse analog for the function ones.

9-23

9 Sparse Matrices

• Unary functions tha t accept a m a trix and return a m a trix or vector preserve
the storage class of the operand. I f S is a sparse m atrix , then chol (S) is also
a sparse m atrix , and diag(S) is a sparse vector. Columnwise functions such
as max and sum also return sparse vectors, even though these vectors may be
entire ly nonzero. Im portant exceptions to th is ru le are the sparse and f u l l
functions.

• B inary operators yield sparse results if both operands are sparse, and fu ll
results if both are fu ll. For mixed operands, the result is fu ll unless the
operation preserves sparsity. I f S is sparse and F is fu ll, then S+F, S* F, and
F\S are fu ll, w h ile S.* F and S&F are sparse. In some cases, the result m ight
be sparse even though the m a trix has few zero elements.

• M a trix concatenation using either the cat function or square brackets
produces sparse results for mixed operands.

• Subm atrix indexing on the righ t side of an assignment preserves the storage
format of the operand. T = S (i , j) produces a sparse result if S is sparse
whether i and j are scalars or vectors. Subm atrix indexing on the left, as in
T (i , j) = S, does not change the storage format of the m a trix on the left.

Permutat ion and Reorder ing
A perm utation of the rows and columns of a sparse m a trix S can be represented
in tw o ways:

• A perm utation m a trix P acts on the rows of S as P*S or on the columns as
s* p .

• A perm utation vector p, which is a fu ll vector containing a perm utation of
1:n, acts on the rows of S as S (p , :) , or on the columns as S (: , p) .

For example, the statements

p = [1 3 4 2 5]
I = eye(5,5) ;
P = I (p , :) ;
e = ones(4,1) ;
S = d iag(11:11:55) + d i ag(e ,1) + d i a g (e , —1)

9-24

Sparse Matrix Operations

produce

P =

P =

1 3 4 2 5

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

S =

11 1 0 0 0
1 22 1 0 0
0 1 33 1 0
0 0 1 44 1
0 0 0 1 55

You can now try some perm utations using the perm utation vector p and the
perm utation m a trix P. For example, the statem ents S(p , :) and P*S produce

ans =

ans =

11 1 0 0 0
0 1 33 1 0
0 0 1 44 1
1 22 1 0 0
0 0 0 1 55

S(ly, ,p) P’

GOdna produce

11 0 0 1 0
1 1 0 22 0
0 33 1 1 0
0 1 44 0 1
0 0 1 0 55

9-25

9 Sparse Matrices

I f P is a sparse m atrix , then both representations use storage proportional to n
and you can apply either to S in tim e proportional to nnz(S) . The vector
representation is s ligh tly more compact and efficient, so the various sparse
m a trix perm utation routines all return fu ll row vectors w ith the exception of
the p ivoting perm utation in LU (triangu la r) factorization, which re turns a
m a trix compatible w ith earlier versions of M ATLAB.

To convert between the tw o representations, let I = speye(n) be an iden tity
m a trix of the appropria te size. Then,

P = I (p :)
P = I (: , p) .
p = (1 : n) * P
p = (P * (1 : n) ’) ’

The inverse of P is sim ply R = P’ . You can compute the inverse of p w ith
r (p) = 1:n.

r (p) = 1: 5

r =

1 4 2 3 5

Reordering for Sparsity
Reordering the columns of a m a trix can often make its Cholesky, LU, or QR
factors sparser. The simplest such reordering is to sort the columns by nonzero
count. Th is is sometimes a good reordering for m atrices w ith very irregu la r
structures, especially if there is great varia tion in the nonzero counts of rows
or columns.

The function p = colperim(S) computes th is column-count perm utation. The
co l perm M -file has only a single line.

[i gno r e , p] = s o r t (f u l l (s u m(s p o n e s (S)))) ;

Th is line performs these steps:

1 The inner call to spones creates a sparse m a trix w ith ones at the location of
every nonzero element in S.

2 The sum function sums down the columns of the m atrix , producing a vector
tha t contains the count of nonzeros in each column.

9-26

Sparse Matrix Operations

3 f u l l converts th is vector to fu ll storage form at.

4 sor t sorts the values in ascending order. The second output argument from
sor t is the perm utation tha t sorts th is vector.

Reordering to Reduce Bandwidth
The reverse C uth ill-M cKee ordering is intended to reduce the pro file or
bandwidth of the m atrix . It is not guaranteed to find the smallest possible
bandwidth, but it usually does. The function symrcm(A) actua lly operates on
the nonzero s tructu re of the sym m etric m a trix A + A’ , but the result is also
useful for asym m etric matrices. Th is ordering is useful for matrices tha t come
from one-dimensional problems or problems tha t are in some sense “ long and
th in .”

Minimum Degree Ordering
The degree of a node in a graph is the number of connections to tha t node,
which is the same as the number of nonzero elements in the corresponding row
of the adjacency m atrix . The m in im um degree a lgorithm generates an ordering
based on how these degrees are altered during Gaussian e lim ination. It is a
complicated and powerful a lgorithm tha t usually leads to sparser factors than
most other orderings, including column count and reverse Cuthill-M cKee.
M ATLAB has tw o versions, synmd for sym m etric m atrices and colimmd for
nonsym m etric matrices. You can change various parameters associated w ith
deta ils of the a lgorithm using the spparms function.

For more deta ils on the a lgorithm and M A T LA B ’s version of it, see G ilbert,
John R., Cleve Moler, and Robert Schreiber, “Sparse M atrices in M ATLAB:
Design and Im plem entation,” SIAM J. M a trix Anal. Appl., Vol. 13, No. 1.
January 1992: pp. 333-356.

Factor izat ion
This section discusses four im portant factorization techniques for sparse
matrices:

• LU, or tr iangu la r, factorization

• Cholesky factorization

• QR, or orthogonal factorization

• Incomplete factorizations

9-27

9 Sparse Matrices

LU Factorization
I f S is a sparse m atrix , the statement below re turns th ree sparse matrices L, U,
and P such tha t P*S = L*U.

[L,U,P] = lu(S)

l u obtains the factors by Gaussian e lim ination w ith partia l pivoting. The
perm utation m a trix P has only n nonzero elements. As w ith dense matrices, the
statement [L,U] = lu(S) re tu rns a permuted un it lower tr ia n g u la r m a trix and
an upper tr ia n g u la r m a trix whose product is S. By itself, lu(S) re tu rns L and
U in a single m a trix w ithou t the pivot in form ation.

The sparse LU factorization does not pivot for sparsity, but it does pivot for
numerical s tab ility . In fact, both the sparse factorization (line 1) and the fu ll
factorization (line 2) below produce the same L and U, even though the tim e and
storage requirem ents m ight d iffe r greatly:

[L,U] = lu(S) % sparse f a c t o r i z a t i o n

[L,U] = s p a r s e (l u (f u l l (S))) %o f u l l f a c t o r i z a t i o n

M ATLAB autom atica lly allocates the memory necessary to hold the sparse L
and U factors during the factorization. M ATLAB does not use any sym bolic LU
prefactorization to determ ine the memory requirem ents and set up the data
structures in advance.

Reordering and factorization. I f you obtain a good column perm utation p tha t
reduces fill- in , perhaps from synrcm or colnmd, then computing l u (S (: , p))
w ill take less tim e and storage than computing l u (S) . Two perm utations are
the sym m etric reverse C uth ill-M cKee ordering and the sym m etric m in im um
degree ordering.

r = synrcn(B);
m = symnmd(B);

The three spy plots produced by the lines below show the three adjacency
matrices of the Bucky Ball graph w ith these three d ifferent numberings. The
local, pentagon-based s tructu re of the orig inal numbering is not evident in the
other three.

spy(B)
s p y (B (r , r))
spy (B(mn))

9-28

Sparse Matrix Operations

Reverse Cuthill-McKee

* v I '%
•* * •*«t •

ч * : " 4 • • • . ••
" • 4 •• t • t. \ e

" \

"*•« " • 4
v. •

\ • • :
4 iei \

H \
" v

30 40 50 60 0
nz = 180

10 20 30 40 50 60
nz = 180

10 20 30 40 50 60
nz = 180

The reverse Cuthill-M cG ee ordering, r , reduces the bandwidth and
concentrates all the nonzero elements near the diagonal. The m in im um degree
ordering, m produces a frac ta l-like s tructu re w ith large blocks of zeros.

To see the fill- in generated in the LU factorization of the Bucky ball, use
speye(n , n) , the sparse iden tity m atrix , to insert -3s on the diagonal of B.

B = B - 3*speye(n,n)

10 10 10

20 20 20

30 30 30

40 40 40

50 50 50

60 60 60
10 20

Since each row sum is now zero, th is new B is actua lly singular, but it is s till
ins tructive to compute its LU factorization. When called w ith only one output
argument, lu re turns the tw o tr ia n g u la r factors, L and U, in a single sparse
m atrix . The number of nonzeros in tha t m a trix is a measure of the tim e and
storage required to solve linear systems involving B. Here are the nonzero
counts for the th ree perm utations being considered.

O rig inal lu(B) 1022

Reverse C uth ill-M cKee l u (B (r , r)) 968

M in im um degree lu(B(nrinr)) 660

Even though th is is a small example, the results are typical. The orig inal
numbering scheme leads to the most fill- in . The f ill- in for the reverse
C uth ill-M cKee ordering is concentrated w ith in the band, but it is almost as
extensive as the firs t tw o orderings. For the m in im um degree ordering, the
re la tive ly large blocks of zeros are preserved during the e lim ination and the

9-29

9 Sparse Matrices

amount of fill- in is s ign ifican tly less than tha t generated by the other
orderings. The spy plots below reflect the characteristics of each reordering.

Reverse Cuthill-McKee

it it Я tit

:tttttt:tttt.t tt ttt :t
•Л:НН. H! :h

•M.ttt :tttttt:tttt:ttttgtttt ж

M « 3 tttt^
20 30

nz = 1022

Original Minimum Degree

10

20

30

40

50

60
10 40 50 60

nz = 968 nz = 660

Cholesky Factorization
I f S is a sym m etric (or H erm itian), positive defin ite, sparse m atrix , the
statement below re tu rns a sparse, upper tr iangu la r m a trix R so tha t R *R = S.

R = chol (S)

chol does not autom atica lly pivot for sparsity, but you can compute m inim um
degree and profile lim itin g perm utations for use w ith c h o l (S (p , p)) .

Since the Cholesky a lgorithm does not use pivoting for sparsity and does not
require pivoting for numerical s tab ility , it is possible to do a quick calculation
of the amount of memory required and allocate all the memory at the s tart of
the factorization.

QR Factorization
M ATLAB w ill compute the complete QR factorization of a sparse m a trix S w ith

[QR] = qr(S)

but th is is usually im practical. The orthogonal m a trix Q often fa ils to have a
high proportion of zero elements. A more practical a lternative, sometimes
known as “the Q-less QR factorization,” is available.

9-30

Sparse Matrix Operations

W ith one sparse input argument and one output argument

R = qr(S)

re turns just the upper tr iangu la r portion of the QR factorization. The m a trix R
provides a Cholesky factorization for the m a trix associated w ith the normal
equations,

R *R = S' *S

However, the loss of numerical in form ation inherent in the computation of
S' *S is avoided.

W ith tw o input arguments having the same number of rows, and tw o output
arguments, the statement

[C,R] = qr (S,B)

applies the orthogonal transform ations to B, producing C = Q *B w ithout
computing Q.

The Q-less QR factorization allows the solution of sparse least squares
problems

minimize|| A x - b||

w ith tw o steps

[c,R] = q r (A b)
x = R\c

If A is sparse, but not square, M ATLAB uses these steps for the linear equation
solving backslash operator

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems w ith
d ifferent right-hand sides, b, tha t are not necessarily known when R = qr(A)
is computed. The approach solves the “semi-normal equations”

R* R* x = A * b

w ith

x = R\ (R \ (A * b))

9-31

9 Sparse Matrices

and then employs one step of ite ra tive refinement to reduce roundoff error

r = b - A*x
e = R \ (R \ (A ' * r))
x = x + e

Incomplete Factorizations
The l u i n c and c ho l i nc functions provide approximate, incomplete
factorizations, which are useful as preconditioners for sparse ite ra tive
methods.

The l u i n c function produces tw o d ifferent kinds of incomplete LU
factorizations, one involving a drop tolerance and one involving f ill- in level. If
A is a sparse m atrix , and to l is a small tolerance, then

[L,U] = l u i n c (A , t o l)

computes an approxim ate LU factorization where all elements less than to l
tim es the norm of the relevant column are set to zero. A lte rna tive ly ,

[L,U] = l u i n c (A ' 0 ')

computes an approxim ate LU factorization where the sparsity pattern of L+U is
a perm utation of the sparsity pattern of A.

For example,

load west 0479
A = west 0479;
nnz(A)
nnz(l u (A))
nnz (l u i nc (A , 1e - 6))
n n z (l u i n c (A ' 0 '))

shows tha t A has 1887 nonzeros, its complete LU factorization has 16777
nonzeros, its incomplete LU factorization w ith a drop tolerance of 1e-6 has
10311 nonzeros, and its l u (' 0 ') factorization has 1886 nonzeros.

The l u i n c function has a few other options. See the online help for details.

The cho l i nc function provides drop tolerance and level 0 f ill- in Cholesky
factorizations of sym metric, positive de fin ite sparse matrices. See the online
help for more inform ation.

9-32

Sparse Matrix Operations

Simul taneous Linear Equat ions
Systems of sim ultaneous linear equations can be solved by tw o different classes
of methods:

• Direct methods. These are usually va rian ts of Gaussian e lim ination and are
often expressed as m a trix factorizations such as LU or Cholesky
factorization. The algorithm s involve access to the ind iv idua l m a trix
elements.

• Ite ra tive methods. Only an approxim ate solution is produced after a f in ite
number of steps. The coefficient m a trix is involved only ind irectly , through a
m atrix-vector product or as the result of an abstract linear operator.

Direct Methods
Direct methods are usually faster and more generally applicable, if there is
enough storage available to carry them out. Ite ra tive methods are usually
applicable to restricted cases of equations and depend upon properties like
diagonal dominance or the existence of an underlying d iffe rentia l operator.
Direct methods are implemented in the core of M ATLAB and are made as
efficient as possible for general classes of matrices. Ite ra tive methods are
usually implemented in M ATLAB M -files and may make use of the direct
solution of subproblems or preconditioners.

The usual way to access direct methods in M ATLAB is not through the lu or
chol functions, but rather w ith the m a trix division operators / and \ . I f A is
square, the result of X = A\B is the solution to the linear system A*X = B. I f A
is not square, then a least squares solution is computed.

If A is a square, fu ll, or sparse m atrix , then A\B has the same storage class as
B. Its computation involves a choice among several algorithm s:

• I f A is tr iangu la r, perform a tr iangu la r solve for each column of B.

• I f A is a perm utation of a tr iangu la r m atrix , perm ute it and perform a sparse
tr ia n g u la r solve for each column of B.

• I f A is sym m etric or H erm itian and has positive real diagonal elements, find
a sym m etric m in im um degree order p and attem pt to compute the Cholesky
factorization of A(p , p) . If successful, fin ish w ith tw o sparse tr iangu la r solves
for each column of B.

• O therw ise (if A is not tr iangu la r, or is not H erm itian w ith positive diagonal,
or if Cholesky factorization fails), find a column m in im um degree order p.

9-33

9 Sparse Matrices

Compute the LU factorization w ith partia l p ivoting of A (: , p) , and perform
tw o tr ia n g u la r solves for each column of B.

For a square m atrix , M ATLAB trie s these possibilities in order of increasing
cost. The tests for tr ia n g u la r ity and sym m etry are re la tive ly fast and, if
successful, allow for faster computation and more efficient memory usage than
the general purpose method.

For example, consider the sequence below.

[L,U] = l u(A);
y = L\b;
x = U\y;

I n th is case, M ATLAB uses tr iangu la r solves for both m a trix divisions, since L
is a perm utation of a tr ia n g u la r m a trix and U is triangu la r.

Use the function spparms to tu rn off the m in im um degree preordering if a
better preorder is known for a particu la r m atrix.

Iterative Methods
Six functions are available tha t implement ite ra tive methods for sparse
systems of simultaneous linear systems.

Function Description

bicg Biconjugate gradient.

b i cgstab Biconjugate gradient stabilized.

cgs Conjugate gradient squared.

gmres Generalized m in im um residual.

pcg Preconditioned conjugate gradient.

qmr Q uasim inim al residual.

A ll s ix methods are designed to solve A x = b. The preconditioned conjugate
gradient method, pcg, is restricted to symmetric, positive defin ite m a trix A.
The other five can handle nonsymmetric, square matrices.

9-34

Sparse Matrix Operations

A ll six methods can make use of left and righ t preconditioners. The linear
system

A x = b

is replaced by the equivalent system

-1 -1 -1
М / A M 2 ' M 2x = M 1'b

The preconditioners M-| and M 2 are chosen to accelerate convergence of the
ite ra tive method. In many cases, the preconditioners occur na tu ra lly in the
mathematical model. A partia l d iffe rentia l equation w ith variab le coefficients
may be approximated by one w ith constant coefficients, for example.
I ncomplete m a trix factorizations may be used in the absence of natural
preconditioners.

The five-point f in ite difference approxim ation to Laplace’s equation on a
square, two-dimensional domain provides an example. The follow ing
statem ents use the preconditioned conjugate gradient method w ith an
incomplete Cholesky factorization as a preconditioner.

A = delsq(numgr i d (' S ' , 5 0)) ;
b = ones (s i ze (A, 1) , 1) ;
tol = 1 .e-3;
maxi t = 10;
R = c h o l i n c (A , t o l) ;
[x , f l a g , e r r , i t e r , r e s] = p c g (A , b , t o l , m a x i t , R , R) ;

Only four ite ra tions are required to achieve the prescribed accuracy.

Background inform ation on these ite ra tive methods and incomplete
factorizations is available in:

Saad, Yousef. Ite ra tive Methods for Sparse Linear Equations. PWS Publishing
Company: 1996.

Barre tt, Richard et al. Templates for the Solution of Linear Systems: B u ild ing
Blocks for Ite ra tive Methods. Society for I ndustria l and Applied Mathematics:
1994.

9-35

9 Sparse Matrices

Eigenvalues and Singular Values
Two functions are available which compute a few specified eigenvalues or
singular values.

Function Description

eigs Few eigenvalues.

svds Few singular values.

These functions are most frequently used w ith sparse matrices, but they can be
used w ith fu ll matrices or even w ith linear operators defined by M-files.

The statement

[V, lambda] = e i gs (Ak , s i gma)

finds the k eigenvalues and corresponding eigenvectors of the m a trix A which
are nearest the “s h ift” sigma. I f sigma is om itted, the eigenvalues largest in
magnitude are found. I f sigma is zero, the eigenvalues smallest in magnitude
are found. A second m atrix , B, may be included for the generalized eigenvalue
problem

A v = I B v

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k ,0)

finds the k smallest singular values.

For example, the statements

L = numgr i d (' L ' , 6 5) ;
A = del sq(L) ;

9-36

Sparse Matrix Operations

set up the five-point Laplacian difference operator on a 65-by-65 grid in an
L-shaped, two-dimensional domain. The statements

size(A)
nnz(A)

show tha t A is a m a trix of order 2945 w ith 14,473 nonzero elements.

The statement

[v , d] = e i gs (A 1,0);

computes the smallest eigenvalue and eigenvector. F ina lly,

L(L>0) = f u l l (v (L (L > 0))) ;
x = -1 : 1 / 32 : 1 ;
cont o u r (x , x , L , 1 5)
ax i s square

d is tribu tes the components of the eigenvector over the appropria te grid points
and produces a contour plot of the result.

The numerical techniques used in eigs and svds are described in a paper by D.
C. Sorensen, Im p lic it ly Restarted A rn o ld i/ Lanczos Methods for Large Scale

9-37

9 Sparse Matrices

Eigenvalue Calculations. A copy of the paper is available through the M ATLAB
Help Desk.

9-38

10

M-File Programming

M A T L A B P r o g r a m m i n g : A Q u ick S t a r t10-2

S c r i p t s ... 10-5

F u n c t i o n s ...10-6

Loca l and G loba l V a r i a b l e s ...10-16

Data T y p e s .. 10-19

O p e r a t o r s .. 10-21

Flow C o n t r o l ..10-30

S u b f u n c t i o n s ..10-38

I ndex i ng and S u b s c r i p t i n g ...10-40

St r i ng Eva l ua t i on ...10-46

C o m m a n d / F u n c t i on D u a l i t y ...10-48

Em p t y M a t r i c e s ... 10-49

E r r o r s and W a r n i n g s .. 10-51

T i mes and D a t e s ... 10-54

O b t a i n i n g User I n p u t .. 10-61

Shell Escape F u n c t i o n s ..10-62

O p t i m i z i n g t he P e r f o r ma n c e of M A T L A B Code . . . 10-63

10 M-File FTogramming

MATLAB Programming: A Quick Start
Files tha t contain M ATLAB language code are called M-files. M -files can be
functions tha t accept arguments and produce output, or they can be scripts tha t
execute a series of M ATLAB statements. For M ATLAB to recognize a file as an
M-file, its name must end in .m

You create M -files using a text editor, then use them as you would any other
M ATLAB function or command. The process looks like th is:

1 Create an M -file using a text
editor.

f unc t i on c = myf i l e(a,b)
c = s q r t ((a . A2)+(b . A2))

2 Call the M -file from the
command line, or from w ith in
another M-file.

10-2

MATLAB FTogramming: A Quick Start

Kinds of M-Fi les
There are tw o kinds of M-files.

Script M-Files Function M-Files

• Do not accept input arguments or • Can accept input arguments and
re turn output arguments return output arguments

• Operate on data in the workspace • In ternal variables are local to the
function by default

• Useful for autom ating a series of • Useful for extending the
steps you need to perform many M ATLAB language for your
tim es application

W h a t ’s in an M-Fi le?
This section shows you the basic parts of a function M-file, so you can
fam ilia rize yourself w ith M ATLAB programming and get started w ith some
examples.

- ►f un c t i on f = f a c t (n)
-► % FACT Fac t o r i a l .

%o FACT(N) r e t u rns the f a c t o r i a l of N, usua l l y denoted by N!.
T %o Put simply, FACT(N) is PRCD(1:N).

FLncticn body-------------- ► f = p r od (1:n) ;

Th is function has some elements tha t are common to all M ATLAB functions:

• A function defin ition line. Th is line defines the function name, and the
number and order of input and output arguments.

• A H 1 line. H1 stands for “help 1” line. M ATLAB displays the H1 line for a
function when you use lookf or or request help on an entire directory.

• Help text. M ATLAB displays the help text entry together w ith the H1 line
when you request help on a specific function.

• The function body. Th is part of the function contains code tha t performs the
actual computations and assigns values to any output arguments.

Function definition lire
Hfl (helpl) line —

Hfelptext-------------

10-3

10 M-File FTogramming

The “Functions” section coming up provides more detail on each of these parts
of a M ATLAB function.

Creating M-Files: Accessing Text Editors
M -files are ord inary text files tha t you create using a text editor. M ATLAB
provides a bu ilt in editor, although you can use any text editor you like.

Note To open the editor on the PC, from the Fi le menu
choose New and then M -F ile.

Another way to edit an M -file is from the M ATLAB command line using the
edi t command. For example,

edi t poof

opens the editor on the file poof. mi O m itting a filenam e opens the editor on an
un titled file.

You can create the fact function shown on the previous page by opening your
text editor, entering the lines shown, and saving the text in a file called f a c t . m
in your current directory.

Once you’ve created th is file, here are some th ings you can do:

• L ist the names of the files in your current d irectory
what

• L ist the contents of M -file f a c t . m
t ype fact

• Call the fact function
f a c t (5)
ans =

120

10-4

Scripts

Scripts
Scripts are the simplest kind of M -file - they have no input or output
arguments. They’re useful for autom ating series of M ATLAB commands, such
as computations tha t you have to perform repeatedly from the command line.
Scripts operate on existing data in the workspace, or they can create new data
on which to operate. Any variables tha t scripts create remain in the workspace
after the script fin ishes so you can use them for fu rth e r computations.

GCnmrt line

Computations

Gapical outfit
ccnrnnds

Simple Script Example
These statem ents calculate rho for several trigonom etric functions of theta,
then create a series of polar plots.

rho(1,
rho(2 ,
rho(3,
rho(4,
f o r i

% An M - f i l e s c r i p t t o produce " f l ower pe ta l " p l o t s
thet a = - p i : 0 . 01 : p i ;

= 2*si n (5* t he ta) . л2;
= cos(1 0 * t h e t a) ^ 3 ;
= s i n (t h e t a) ^ 2 ;
= 5 * c o s (3 . 5 * t h e t a) ^ 3 ;

1:4
p o l a r (t h e t a , r h o (i , :))
pause

L end

Try entering these commands in an M -file called petal s . m This file is now a
M ATLAB script. Typing peta l s at the MATLAB command line executes the
statem ents in the script.

A fte r the script displays a plot, press Return to move to the next plot. There
are no input or output arguments; peta l s creates the variables it needs in the
M ATLAB workspace. When execution completes, the variables (i , t he ta , and
rho) remain in the workspace. To see a lis ting of them, enter whos at the
command prompt.

10-5

10 M-File FTogramming

Functions
Functions are M -files tha t accept input arguments and return output
arguments. They operate on variables w ith in th e ir own workspace. This is
separate from the workspace you access at the M ATLAB command prompt.

Simple Function Example
The average function is a sim ple M -file tha t calculates the average of the
elements in a vector.

f un c t i on y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector , i s t he mean of vector elements.
% Non-vector input r e s u l t s i n an er ror .
[m n] = s i ze (x) ;
i f (~ ((m == 1) | (n == 1)) | (m == 1 & n == 1))

e r r o r (’ Input must be a v e c t o r ’)
end
y = sum(x) / l eng t h (x) ; % Actual computat ion

If you would like, try entering these commands in an M -file called average.m
The average function accepts a single input argument and re tu rns a single
output argument. To call the average function, enter:

z = 1:99;

average(z)

ans =
50

Basic Parts of a Function M-File
A function M -file consists of:

• A function defin ition line

• A H1 line

• Help text

• The function body

• Comments

10-6

Functions

Function Definition Line
The function defin ition line in form s M ATLAB tha t the M -file contains a
function, and specifies the argument calling sequence of the function. The
function defin ition line for the average function is:

func t i on y = average(x)

t - input argument
---------- Unction nane

---------------------- outpit argument
-------------------------------- keyword

A ll M ATLAB functions have a function defin ition line tha t follows th is pattern.

I f the function has m u ltip le output values, enclose the output argument lis t in
square brackets. Input arguments, if present, are enclosed in parentheses. Use
commas to separate m u ltip le input or output arguments. Here’s a more
complicated example.

f un c t i on [x , y , z] = sphe r e (t he t a , ph i , r ho)

I f there is no output, leave the output blank

f un c t i on p r i n t r e s u l t s (x)

or use empty square brackets

f un c t i on [] = p r i n t r e s u l t s (x)

The variables tha t you pass to the function do not need to have the same name
as those in the function defin ition line.

H1 Line
The H 1 line, so named because it is the firs t help text line, is a comment line
im m ediately fo llow ing the function defin ition line. Because it consists of
comment text, the H1 line begins w ith a percent sign, “%” For the average
function, the H1 line is:

% AVERAGE Mfean of vector elements.

This is the firs t line of text tha t appears when a user types help funct ion_name
at the M ATLAB prompt. Further, the l ook fo r command searches on and
displays only the H1 line. Because th is line provides im portant summary

10-7

10 M-File FTogramming

in form ation about the M -file , it is im portant to make it as descriptive as
possible.

Help Text
You can create online help for your M -files by entering text on one or more
comment lines, beginning w ith the line im m ediately fo llow ing the H1 line. The
help text for the aver age function is:

% AVERAGE(X), where X is a vector , i s t he mean of vector elements.
% Nonvector input r es u l t s i n an er ror .

When you type help funct ion_name, M ATLAB displays the comment lines
tha t appear between the function defin ition line and the firs t non-comment
(executable or blank) line. The help system ignores any comment lines that
appear after th is help block.

For example, typ ing help s i n results in

SIN Sine.
SIN(X) is the s i ne of t he elements of X.

Function Body
The function body contains all the M ATLAB code tha t performs computations
and assigns values to output arguments. The statements in the function body
can consist of function calls, programming constructs like flow control and
in teractive input/ou tput, calculations, assignments, comments, and blank
lines.

For example, the body of the average function contains a number of simple
programm ing statements.

[m n] = s i ze (x) ;
Flow control -------------------► i f (~ ((m == 1) | (n == 1)) | (m == 1 & n == 1))
Brar ffEsrage c i^ ay-----------------► e r r o r (’ Input must be a v e c t o r ’)

end
Orrpiaim anc ̂ jg rn e t ► y = sum(x) / l eng th (x) ;

10-8

Functions

Comments
As mentioned earlier, comment lines begin w ith a percent sign (%) Comment
lines can appear anywhere in an M-file, and you can append comments to the
end of a line of code. For example,

% Add up a ll the vector elements.
y = sum(x) % Use the sum func t i on .

The firs t comment line im m ediate ly fo llow ing the function defin ition line is
considered the H1 line for the function. The H1 line and any comment lines
im m ediately fo llow ing it constitute the online help entry for the file.

In addition to comment lines, you can insert blank lines anywhere in an M-file.
B lank lines are ignored. However, a blank line can indicate the end of the help
text entry for an M-file.

Help fo r Director ies
You can make help entries for an entire d irectory by creating a file w ith the
special name Contents .m tha t resides in the directory. Th is file must contain
only comment lines; tha t is, every line must begin w ith a percent sign.
M ATLAB displays the lines in a Contents.m file whenever you type

help di rectory_name

If a d irectory does not contain a Cont en t s . m file, typ ing help di rectory_name
displays the firs t help line (the H1 line) for each M -file in the directory.

Function Names
M ATLAB function names have the same constra ints as variab le names.
M ATLAB uses the firs t 31 characters of names. Function names must begin
w ith a letter; the rem aining characters can be any combination of letters,
numbers, and underscores. Some operating systems may restrict function
names to shorter lengths.

The name of the text file tha t contains a M ATLAB function consists of the
function name w ith the extension .m appended. For example,

aver age.m

If the filenam e and the function defin ition line name are d ifferent, the interna l
name is ignored.

10-9

10 M-File Rogramming

Thus, w h ile the function name specified on the function defin ition line does not
have to be the same as the filename, we strongly recommend tha t you use the
same name for both.

How Funct ions Work
You can call function M -files from either the M ATLAB command line or from
w ith in other M-files. Be sure to include all necessary arguments, enclosing
input arguments in parentheses and output arguments in square brackets.

Function Name Resolution
When M ATLAB comes upon a new name, it resolves it in to a specific function
by fo llow ing these steps:

1 Checks to see if the name is a variable.

2 Checks to see if the name is a subfunction, a M ATLAB function tha t resides
in the same M -file as the calling function. Subfunctions are discussed on
page 10-38.

3 Checks to see if the name is a priva te function, a M ATLAB function that
resides in a priva te directory, a d irectory accessible only to M -files in the
d irectory im m ediately above it. P rivate directories are discussed on page
10-39.

4 Checks to see if the name is a function on the M ATLAB search path.
M ATLAB uses the firs t file it encounters w ith the specified name.

If you duplicate function names, M ATLAB executes the one found firs t using
the above rules. It is also possible to overload function names. This uses
additional dispatching rules and is discussed in Chapter 14, “Classes and
Objects.”

What Happens When You Call a Function
When you call a function M -file from either the command line or from w ith in
another M -file, M ATLAB parses the function in to pseudocode and stores it in
memory. Th is prevents M ATLAB from having to reparse a function each tim e
you call it during a session. The pseudocode remains in memory un til you clear

10-10

Functions

it using the clear command, or un til you qu it M ATLAB. V arian ts of the clear
command tha t you can use to clear functions from memory include:

clear funct ion_name Remove specified function from workspace.

c l ear f unc t i ons Remove all compiled M-functions.

cl ear al l Remove all variables and functions

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for
later M ATLAB sessions using the pcode command. For example,

pcode average

parses average.m and saves the resu lting pseudocode to the file named
average.p. Th is saves M ATLAB from reparsing average.m the firs t tim e you
call it in each session.

M ATLAB is very fast at parsing so the pcode command rare ly makes much of
a speed difference.

One s ituation where pcode does provide a speed benefit is for large GUI
applications. In th is case, many M -files must be parsed before the application
becomes visible.

Another s ituation for pcode is when, for proprie tary reasons, you want to hide
a lgorithm s you’ve created in your M-file.

How MATLAB Passes Function Arguments
From the program m er’s perspective, M ATLAB appears to pass all function
argum ents by value. Actua lly , however, M ATLAB passes by value only those
arguments tha t a function modifies. I f a function does not a lter an argument
but sim ply uses it in a computation, M ATLAB passes the argument by
reference to optim ize memory use.

Function Workspaces
Each M -file function has an area of memory, separate from M A T LA B ’s base
workspace, in which it operates. Th is area is called the function workspace,
w ith each function having its own workspace context.

10-11

10 M-File Rogramming

W hile using M ATLAB, the only variables you can access are those in the calling
context, be it the base workspace or tha t of another function. The variables tha t
you pass to a function must be in the calling context, and the function re turns
its output arguments to the calling workspace context. You can however, define
variables as global variables exp lic itly , a llow ing more than one workspace
context to access them.

Checking the N um ber of Function A rgum en ts
The nargin and nargout functions let you determ ine how many input and
output arguments a function is called w ith . You can then use conditional
statements to perform d ifferent tasks depending on the number of arguments.
For example,

f un c t i o n c = t e s t a r g 1(a,b)
i f (na rg i n == 1)

c = a . A2 ;
e l s e i f (na r g i n == 2)

c = a + b;
end

Given a single input argument, th i s function squares the input value. Given
tw o inputs, it adds them together.

Here’s a more advanced example tha t finds the firs t token in a character string.
A token is a set of characters delim ited by whitespace or some other character.
Given one input, the function assumes a default de lim ite r of whitespace; given
two, it lets you specify another de lim ite r if desired. It also allows for two
possible output argument lists.

10-12

Functions

Function requires at least
one input.

If one input, use white
space celimtar.

Determine where non- -
celiniter characters
begin.

Find where token ends-

For two output argunent̂
count characters after first
celiniter (renancer).

f u n c t i on [t oken , r ena i nder] = s t r t o k (s t r i n g , d e l i m i t e r s)
i f nargin < 1, e r r o r (’ Not enough input arguments. ’); end
token = [] ; remainder = [] ;
l en = l e n g t h (s t r i n g) ;
i f l en == 0

re t u r n
end
i f (nargin == 1)

d e l i m i t e r s = [9 : 13 32] ; % Whi te space charact ers
end
i = 1;

- w h i l e (a n y (s t r i n g (i) == d e l i m i t e r s))
i = i + 1;
i f (i > l en) , return, end

end
star t = i ;
whi le (~any (s t r i ng (i) == de l i mi t e r s))

i = i + 1;
i f (i > l e n) , break, end

end
f i n i s h = i - 1;

token = s t r i n g (s t a r t : f i n i s h) ;
i f (nargout == 2)

remainder = s t r i n g (f i n i s h + 1:end);
end

Note s t r t o k is a M ATLAB M -file in the s t r f u n directory.

Note tha t the order in which output argum ents appear in the function
declaration line is im portant. The argument tha t the function re tu rns in most
cases appears firs t in the list. A dditiona l, optional arguments are appended to
the list.

10-13

10 M-File Rogramming

Cell array indexing

Passing Var iab le N umbers of A rgum en ts
The va r a r g i n and varargout functions let you pass any number of inputs or
return any number of outputs to a function. M ATLAB packs all of the specified
input or output in to a cell array, a special kind of M ATLAB array tha t consists
of cells instead of a rray elements. Each cell can hold any size or kind of data -
one m ight hold a vector of num eric data, another in the same array m ight hold
an array of s tring data, and so on.

Here’s an example function that accepts any number of two-element vectors
and draws a line to connect them.

f u n c t i on t e s t v a r (v a r a r g i n)
f or i = 1: l e n g t h (va r a r g i n)

---------► x (i) = v a r a r g i n { i } (1);
y (i) = v a r a r g i n { i } (2);

end
xmin = nrin(0 , m n (x)) ;
ymin = nrin(0 , m n (y)) ;
ax i s ([xmi n f i x (max (x)) +3 ymin f i x (max (y)) +3])
p l o t (x , y)

Coded th is way, the test var function works w ith various input lists; for
example,

t e s t v a r ([2 3] , [1 5] , [4 8] , [6 5] , [4 2] , [2 3])
t e s t v a r ([-1 0] , [3 - 5] , [4 2] , [1 1])

Unpacking varargin Contents
Because va r arg i n contains all the input arguments in a cell array, i t ’s
necessary to use cell array indexing to extract the data. For example,

y (i) = v a r a r g i n { i } (2);

Cell array indexing has tw o subscript components:

• The cell indexing expression, in curly braces

• The contents indexing expression(s), in parentheses

In the code above, the indexing expression { i } accesses the i ’th cell of
vararg in . The expression (2) represents the second element of the cell
contents.

10-14

Functions

Cell array augment

Packing varargout Contents
When allow ing any number of output arguments, you must pack all of the
output in to the varargout cell array. Use nargout to determ ine how many
output arguments the function is called w ith . For example, th is code accepts a
two-column input array, where the firs t column represents a set of x
coordinates and the second represents y coordinates. It breaks the array into
separate [x i y i] vectors tha t you can pass in to the t es t va r function on the
previous page.

f u n c t i on [var argout] = t e s t v a r 2 (a r r ay i n)
fo r i = 1:nargout

-------- ► v a r a r go u t { i } = a r r a y i n (i , :)
end

The assignment statement inside the fo r loop uses cell array assignment
syntax. The left side of the statem ent, the cell array, is indexed using curly
braces to indicate tha t the data goes inside a cell. For complete in form ation on
cell array assignment, see “S tructures and Cell A rrays” in Chapter 13.

Here’s how to call t e s t v a r 2 .

a = {1 2;3 4;5 6;7 8;9 0};
[p1, p2,p3,p4,p5] = t es t va r 2 (a) ;

varargin and varargout in Argument Lists
va r a r g i n or varargout must appear last in the argument lis t, fo llow ing any
required input or output variables. That is, the function call must specify the
required arguments firs t. For example, these function declaration lines show
the correct placement of va r a r g i n and v a r a r gou t .

f un c t i on [o u t 1, o u t 2] = example1(a , b , v a r a r g i n)
f un c t i on [i , j , v a r a r g o u t] = example2 (x 1, y 1, x 2 , y 2 , f l a g)

10-15

10 M-File FTogramming

Local and Global Var iables
The same guidelines tha t apply to M ATLAB variables at the command line also
apply to variables in M-files:

• You do not need to type or declare variables. Before assigning one variab le to
another, however, you must be sure tha t the variab le on the right-hand side
of the assignment has a value.

• Any operation tha t assigns a value to a variab le creates the variab le if
needed, or overwrites its current value if it already exists.

• M ATLAB variab le names consist of a le tter followed by any number of
letters, d ig its, and underscores. M ATLAB distinguishes between uppercase
and lowercase characters, so A and a are not the same variable.

• M ATLAB uses only the firs t 31 characters of variab le names.

O rd ina rily , each M ATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace. However, if several functions, and possibly the base
workspace, all declare a particu la r name as global, then they all share a single
copy of tha t variable. Any assignment to tha t variable, in any function, is
available to all the other functions declaring it global.

Suppose you want to study the effect of the interaction coefficients, a and p, in
the Lotka-Vo lte rra predator-prey model

y 1 = y i - a y i y2

y2 = - y 2 + pyi y2

Create an M-file, l o t k a . m

f un c t i on yp = l o t k a (t , y)
%LCTKA Lo t k a - Vo l t e r r a p redator -p rey model.
global ALPHA BETA
yp = [y (1) - ALPHA*y(1) *y(2) ; - y (2) + BETA*y(1)*y(2)] ;

10-16

Local and Global Variables

Then in teractive ly enter the statements

global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t , y] = ode23(’ l o t k a ’ , 0 , 10 , [1 ; 1]) ;
p l o t (t , y)

The tw o global statements make the values assigned to ALPHA and BETA at the
command prompt available inside the function defined by l o t k a . m They can
be modified in teractive ly and new solutions obtained w ithou t editing any files.

For your M ATLAB application to work w ith global variables:

• Declare the variab le as global in every function that requires access to it. To
enable the workspace to access the global variable, also declare it as global
from the command line.

• In each function, issue the global command before the firs t occurrence of the
variab le name. The top of the M -file is recommended.

M ATLAB global variab le names are typ ica lly longer and more descriptive than
local variab le names, and sometimes consist of all uppercase characters. These
are not requirements, but guidelines to increase the readab ility of M ATLAB
code and reduce the chance of accidentally redefining a global variable.

Persistent Var iab les
A variab le may be defined as pers i s t en t so tha t it does not change value from
one call to another. Persistent variables may be used w ith in a function only.
Persistent variables remain in memory un til the M -file is cleared or changed.

pers i s t en t is exactly like global , except tha t the variab le name is not in the
global workspace, and the value is reset if the M -file is changed or cleared.

Three M ATLAB functions support the use of persistent variables.

ml ock Prevents an M -file from being cleared.

munlock Unlocks an M -file tha t had previously been locked by mock.

mi slocked Indicates whether an M -file can be cleared or not.

10-17

10 M-File FTogramming

Special Values
Several functions return im portant special values tha t you can use in your
M-files.

ans Most recent answer (variable). If you do not assign an output
variab le to an expression, M ATLAB autom atically stores the
result in ans.

eps Floating-point re la tive accuracy. Th is is the tolerance M ATLAB
uses in its calculations.

realmax Largest floating-point number your computer can represent.

r ea l n i n Smallest floating-point number your computer can represent.

pi 3.1415926535897...

i , j Im aginary un it.

in f I n fin ity . Calculations like n /0 , where n is any nonzero real value,
result in in f .

NaN Not-a-Number, an inva lid num eric value. Expressions like 0/0
and i n f / i n f result in a NaN, as do a rith m e tic operations
involving a NaN. n/0, where n is complex, also re tu rns NaN.

computer Computer type.

f l o p s Count of floating-point operations.

vers i on M ATLAB version string.

A ll of these special functions and constants reside in M A T LA B ’s elmat
directory, and provide online help. Here are several examples tha t use them in
M ATLAB expressions.

x = 2*pi ;
A = [3+2i 7 - 8 i] ;
tol = 3*eps;

10-18

Data Types

Data Types
There are six fundam ental data types (classes) in M ATLAB, each one a
m ultid im ensional array. The six classes are doubl e, char , sparse, storage,
cel l , and s t r u c t . The two-dimensional versions of these arrays are called
matrices and are where M ATLAB gets its name.

ar ray

char numeric cel l s t r uc t

user object

storage

(i n t 8 , u i n t 8 , i n t 1 6 ,
u i nt16, i n t32, ui nt32)

You w ill probably spend most of your tim e w ork ing w ith only tw o of these data
types: the double precision m a trix (double) and the character array (char) or
s tring . Th is is because all computations are done in double-precision and most
of the functions in M ATLAB work w ith arrays of double-precision numbers or
strings.

The other data types are for specialized situa tions like image processing
(u n it8), sparse matrices (sparse), and large scale programming (cel l and
s t r u c t).

You can’t create variables w ith the types numeric, ar ray, or storage. These
v irtua l types serve only to group together types tha t share some common
a ttributes.

The storage data types are for memory efficient storage only. You can apply
basic operations such as subscripting and reshaping to these types of arrays
but you can’t perform any math w ith them. You must convert such arrays to
double via the double function before doing any math operations.

You can define user classes and objects in M ATLAB tha t are based on the
s t ruc t data type. For more inform ation about creating classes and objects, see
“Classes and Objects: An Overview” in Chapter 14.

double

sparse

10-19

10 M-File FTogramming

This tab le describes the data types in more detail.

Class Example Description

ar ray v irtu a l data type

cel l {17 ' hel l o' eye(2)} Cell array. Elements of cell arrays contain other
arrays. Cell arrays collect related data and
inform ation of a d iss im ila r size together.

char 'Hel l o ' Character array (each character is 16 b its long).
Also referred to as a string.

double [1 2; 3 4]
5+6i

Double precision num eric array (th is is the most
common M ATLAB variab le type).

numeri c v irtu a l data type

sparse speye(5) Sparse double precision m a trix (2-D only). The
sparse m a trix stores matrices w ith only a few
nonzero elements in a fraction of the space required
for an equivalent fu ll m atrix . Sparse matrices
invoke special methods especially ta ilored to solve
sparse problems.

storage v irtu a l data type

s t ruc t a. day = 12;
a. col or = 'Red' ;
a. mat = magic(3) ;

S tructu re array. S tructu re arrays have fie ld names.
The fie lds contain other arrays. L ike cell arrays,
s tructures collect related data and inform ation
together.

u i n t 8 ui n t8(magi c(3)) Unsigned 8 bit integer array. The u n i t 8 array
stores integers in the range from 0 to 255 in 1/8 the
memory required for a double precision array. No
mathematical operations are defined for u i n t 8
arrays.

user object i n l i n e (' s i n (x) ') User-defined data type.

10-20

Operators

Operators
M A T LA B ’s operators fa ll in to th ree categories:

• A rith m e tic operators tha t perform num eric computations, for example,
adding tw o numbers or ra is ing the elements of an array to a given power.

• Relational operators that compare operands quan tita tive ly , using operators
like “ less th a n ” and “not equal to .”

• Logical operators tha t use the logical operators AND, OR, and NOT.

Ar i thmet i c Opera to rs
M ATLAB provides these a rith m e tic operators:

+ Addition

- Subtraction

* M u ltip lica tion

. / Right division

. \ Left division

+ Unary plus

- Unary m inus

Colon operator

Л Power

10-21

10 M-File FTogramming

. ’ Transpose

Complex conjugate transpose

* M a tr ix m ultip lica tion

/ M a trix righ t division

\ M a trix left division

л M a trix power

Arithmetic Operators and Arrays
Except for some m a trix operators, M A T LA B ’s a rithm e tic operators work on
corresponding elements of arrays w ith equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a scalar.
I f one operand is a scalar and the other is not, M ATLAB applies the scalar to
every element of the other operand - th is property is known as scalar
expansi on.

This example uses scalar expansion to compute the product of a scalar operand
and a m atrix.

A = magic(3)

A =

8 1 6
3 5 7
4 9 2

3 * A

ans =

24 3 18
9 15 21

12 27 6

10-22

Operators

Relat ional Opera tors
M ATLAB provides these re lational operators:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Relational Operators and Arrays
M A T LA B ’s re lational operators compare corresponding elements of arrays
w ith equal dimensions. Relational operators always operate
element-by-element. In th is example, the resu lting m a trix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6 ;9 0 5 ;3 0 .5 6];
B = [8 7 0 ;3 2 5 ;4 -1 7];
A == B

ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the other
is not, M ATLAB tests the scalar against every element of the other operand.
Locations where the specified relation is t rue receive the value 1. Locations
where the relation is false receive the value 0 .

10-23

10 M-File FTogramming

Relational Operators and Empty Arrays
The relational operators work w ith arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1.

To test for empty arrays, use the function

isempty(A)

Logical Opera tors
M ATLAB provides these logical operators:

& AND

NOT

Note In addition to these logical operators, the ops d irectory contains a
number of functions tha t perform b itw ise logical operations. See online help
for more inform ation.

Each logical operator has a specific set of rules tha t determ ines the result of a
logical expression:

• An expression using the AND operator, &, is t rue if both operands are logically
true. In num eric terms, the expression is t rue if both operands are nonzero.

10-24

Operators

This example shows the logical AND of the elements in the vector u w ith the
corresponding elements in the vector v
u = [1 0 2 3 0 5];
v = [5 6 1 0 0 7];
u & v

ans =

1 0 1 0 0 1

• An expression using the OR operator, | , is t rue if one operand is logically true,
or if both operands are logically true. An CR expression is false only if both
operands are false. In num eric terms, the expression is false only if both
operands are zero. Th is example shows the logical CR of the elements in the
vector u and w ith the corresponding elements in the vector v.
u | v

ans =

1 1 1 1 0 1

• An expression using the NOT operator, ~, negates the operand. This produces
a false result if the operand is true, and true i f it is false. In num eric terms,
any nonzero operand becomes zero, and any zero operand becomes one. This
example shows the negation of the elements in the vector u.
~u

ans =

0 1 0 0 1 0

Logical Operators and Arrays
M A T LA B ’s logical operators compare corresponding elements of arrays w ith
equal dimensions. For vectors and rectangular arrays, both operands must be
the same size unless one is a scalar. For the case where one operand is a scalar
and the other is not, M ATLAB tests the scalar against every element of the
other operand. Locations where the specified relation is true receive the value
1. Locations where the relation is false receive the value 0 .

10-25

10 M-File FTogramming

Logical Functions
I n addition to the logical operators, M ATLAB provides a number of logical
functions.

Function Description Examples

xor Performs an exclusive CR on its
operands. xor re tu rns t rue i f one
operand is t rue and the other false.
In num eric terms, the function
re tu rns 1 i f one operand is nonzero
and the other operand is zero.

a ll Returns 1 if all of the elements in a
vector are t r u e or nonzero. a ll
operates columnwise on matrices.

a =
b =
xor(

ans

b)

0

u = [0 1 2 0]
a l l (u)

ans =

0

A = [0 1 2;3 5 0];
a l l (A)

ans

0 1 0

any Returns 1 i f any of the elements of
its argument are t rue or nonzero;
otherwise, it re tu rns 0 . L i ke al l ,
the any function operates
columnwise on matrices.

v = [5 0 8]
any(v)

ans =

1

A number of other M ATLAB functions perform logical operations. For example,
the i snan function re tu rns 1 for NaNs; the i s i n f function re turns 1 for In f s. See
the ops d irectory for a complete lis ting of logical functions.

10-26

Operators

Logical Expressions and Subscripting w ith the find Function
The f i n d function determ ines the indices of array elements tha t meet a given
logical condition. I t ’s useful for creating masks and index matrices. In its most
general form, f i n d re tu rns a single vector of indices. Th is vector can be used to
index in to arrays of any size or shape. For example,

magi c(4)

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = f i n d (A > 8);
A(i) = 100

A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

You can also use f i n d to obtain both the row and column indices for a
rectangular m atrix , as well as the array values tha t meet the logical condition.
Use the help fa c ility for more inform ation on f i nd .

Opera to r Precedence
You can build expressions tha t use any combination of a rithm etic , re lational,
and logical operators. Precedence levels determ ine the order in which
M ATLAB evaluates an expression. W ith in each precedence level, operators
have equal precedence and are evaluated from left to righ t. The precedence

10-27

10 M-File FTogramming

rules for M ATLAB operators are shown in th is table, ordered from highest
precedence level to lowest precedence level

Operator Precedence Level

() Highest precedence

~ (negation)

л ’ л + (unary plus) - (unary minus)

.* . / . \ * / \

+ (addition) - (subtraction)

< < II > > II м II II
& | Lowest precedence

Precedence of & and |
M A T LA B ’s left to righ t execution precedence causes a|b&c to be equivalent to
(a|b)&c. However, in most programming languages, a|b&c is equivalent to
a | (b & c) , tha t is, & takes precedence over | . To ensure com patib ility w ith
fu tu re versions of M ATLAB, you should use parentheses to explic ity specify the
intended precedence of statements containing combinations of & and | .

10-28

Operators

Overriding Default Presedence
The default precedence can be overridden using parentheses, as shown in th is
example.

A = [3 9 5];
B = [2 1 5];
C = А. /В.Л2

C =

0.7500 9.0000 0. 2000

C = (А / В) . л 2

C =

2.2500 81.0000 1.0000

Expressions can also include values tha t you access through subscripts.

b = sq r t (A (2)) + 2*B(1)

b =

7

10-29

10 M-File FTogramming

Flow Control
There are six flow control statements in M ATLAB:

• i f , together w ith e l se and e l s e i f , executes a group of statements based on
some logical condition.

• swi tch, together w ith case and otherwise, executes d ifferent groups of
statem ents depending on the value of some logical condition.

• wh i l e executes a group of statem ents an inde fin ite number of times, based
on some logical condition.

• fo r executes a group of statements a fixed number of times.

• break term inates execution of a fo r or wh i l e loop.

• t r y . c a t c h changes flow control if an error is detected during execution.

• r e t u rn causes execution to re turn to the invoking function.

A ll flow constructs use end to indicate the end of the flow control block.

Note You can often speed up the execution of M ATLAB code by replacing fo r
and wh i l e loops w ith vectorized code. See “O ptim iz ing the Performance of
M ATLAB Code” on page 10-63.

if, else, and elseif
i f evaluates a logical expression and executes a group of statements based on
the value of the expression. In its simplest form, its syntax is:

i f l og i ca l _expr ess i on
statements

end

If the logical expression is t rue (1), M ATLAB executes all the statements
between the i f and end lines. It resumes execution at the line fo llow ing the end
statement. If the condition is false (0), M ATLAB skips all the statements
between the i f and end lines, and resumes execution at the line fo llow ing the
end statement.

10-30

Flow Control

For example,

i f r em (a,2) == 0
d is p (’ a is even’)
b = a /2 ;

end

You can nest any number of i f statements.

I f the logical expression evaluates to a nonscalar value, all the elements of the
argument must be nonzero. For example, assume X is a m atrix . Then the
statement

i f X
st atements

end

is equivalent to

i f a l l (X (:))
st at ement s

end

The e lse and e ls e if statem ents fu rthe r conditionalize the i f statement:

• The e lse statement has no logical condition. The statem ents associated w ith
it execute if the preceding i f (and possibly e ls e if condition) is false (0).

• The e ls e if statement has a logical condition tha t it evaluates if the
preceding i f (and possibly e ls e if condition) is false (0). The statements
associated w ith it execute if its logical condition is true (1). You can have
m u ltip le e ls e i fs w ith in an i f block.

i f n < 0
d is p (’ Input

e ls e i f rem (n ,2)
A = n/2;

e lse
A = (n+ 1)/2 ;

end

10-31

% I f n negative , d is p la y e rro r message.
must be p o s it iv e ’);
== 0 % I f n p o s it iv e and even, d iv id e by 2.

%o I f n p o s it iv e and odd, increment and d iv id e .

10 M-File FTogramming

if Statements and Empty Arrays
An i f condition tha t reduces to an empty array represents a false condition.
That is,

i f A
S1

e lse
S0

end

w ill execute statement S0 when A is an empty array.

sw itch
sw itch executes certain statem ents based on the value of a variab le or
expression. Its basic form is:

sw itch expression (s c a la r or s t r in g)
case v a lu e l

statem ents Ernies if expeseanis v a le l—
case va l ue2

statem ents Executes if epeseanis value2

o therw ise
statem ents Executes if express'andaes rat ---------►

end match any case

This block consists of:

• The word sw itch followed by an expression to evaluate.

• Any number of case groups. These groups consist of the word case followed
by a possible value for the expression, all on a single line. Subsequent lines
contain the statements to execute for the given value of the expression.
These can be any valid M ATLAB statement including another swi tch block.
Execution of a case group ends when M ATLAB encounters the next case
statement or the o the rw ise statement. Only the firs t matching case is
executed.

• An optional o the rw ise group. Th is consists of the word o therw ise , followed
by the statem ents to execute if the expression’s value is not handled by any

10-32

Flow Control

of the preceding case groups. Execution of the o the rw ise group ends at the
end statement.

• An end statement.

sw itch works by comparing the input expression to each case value. For
num eric expressions, a case statement is tru e if (val ue==expressi o n). For
s tring expressions, a case statement is tru e if s tr c n p (v a lu e ,e x p re s s io n).

The code below shows a sim ple example of the sw itch statement. It checks the
variab le input_num for certain values. I f i nput_numis - 1 , 0 , or 1 , the case
statem ents display the value on screen as text. I f input_num is none of these
values, execution drops to the o the rw ise statement and the code displays the
text 'o th e r va lue ' .

sw itch input_num
case -1

d is p ('n e g a t iv e o n e ');
case 0

d is p ('z e r o ') ;
case 1

d is p ('p o s i t iv e o n e ');
o the rw ise

d is p (' other v a lu e ') ;
end

Note for C Programmers U n like the C language sw itch construct, M A TLA B ’s
sw itch does not “fa ll th rough.” That is, if the firs t case statement is true,
other case statem ents do not execute. Therefore, break statem ents are not
used.

10-33

10 M-File FTogramming

sw itch can handle m u ltip le conditions in a single case statement by enclosing
the case expression in a cell array.

sw itch var
case 1

d is p (’ 1’)
case {2 ,3 ,4 }

d is p (’ 2 or 3 or 4’)
case 5

d is p (’ 5’)
o the rw ise

d is p (’ somethi ng e ls e ’)
end

w h i l e
The w h ile loop executes a statement or group of statements repeatedly as long
as the contro lling expression is tru e (1). Its syntax is:

w h ile expression
statem ents

end

If the expression evaluates to a m atrix , all its elements must be 1 for execution
to continue. To reduce a m a trix to a scalar value, use the a ll and any functions.

For example, th is whil e loop finds the firs t integer n for which n! (n factoria l)
is a 100-d ig it number.

n = 1;
w h ile p ro d (1:n) < 1e100

n = n + 1;
end

Exit a w h ile loop at any tim e using the break statement.

while Statements and Empty Arrays
A w h ile condition tha t reduces to an empty array represents a false condition.
That is,

w h ile A, S1, end

never executes statement S1 when A is an empty array.

10-34

Flow Control

for
The fo r loop executes a statement or group of statem ents a predetermined
number of times. Its syntax is:

fo r index = s ta rt: in c re m e n t:e n d
st atements

end

The default increment is 1 . You can specify any increment, including a negative
one. For positive indices, execution term inates when the value of the index
exceeds the end value; for negative increments, it te rm inates when the index is
less than the end value.

For example, th is loop executes five times.

fo r i = 2 :6
x (i) = 2*x(i - 1);

end

You can nest m u ltip le fo r loops.

fo r i = 1:m
fo r j = 1:n

A (i , j) = 1 /(i + j - 1);
end

end

Note You can often speed up the execution of MATLAB code by replacing fo r
and whil e loops w ith vectorized code. See page 10-63 for details.

Using Arrays as Indices
The index of a fo r loop can be an array. For example, consider an m-by-n array
A. The statement

fo r i = A
st atements

end

sets i equal to the vector A (: , k) . For the firs t loop ite ra tion , k is equal to 1; for
the second k is equal to 2 , and so on un til k equals n. That is, the loop iterates

10-35

10 M-File FTogramming

for a number of tim es equal to the number of columns in A. For each iteration,
i is a vector containing one of the columns of A.

break
The break statement te rm inates the execution of a fo r loop or w h ile loop.
When a break statement is encountered, execution continues w ith the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

The example below shows a whi le loop tha t reads the contents of the file f f t . m
in to a M ATLAB character array. A break statement is used to exit the w h ile
loop when the firs t empty line is encountered. The resulting character array
contains the M -file help for the f f t program.

f i d = f open (’ f f t . m , ’ r ’);
s = ’ ’ ;
w h ile ~ fe o f (f id)

l i n e = f g e t l (f i d) ;
i f is e m p ty (lin e) , break, end
s = st r v c a t (s , l in e) ;

end
d isp (s)

t ry ... catch
The general form of a t r y /c a t ch statement sequence is:

t r y statem ent, . . . , s ta tem ent, catch statem ent, . . . , statement end

I n th is sequence the statements between t r y and catch are executed un til an
error occurs. The statem ents between catch and end are then executed. Use
la s te r r to see the cause of the error. I f an error occurs between catch and end,
M ATLAB term inates execution unless another t r y ... catch sequence has been
established.

return
re tu rn term inates the current sequence of commands and re tu rns control to
the invoking function or to the keyboard. re tu rn is also used to te rm ina te
keyboard mode. A called function norm ally transfers control to the function
tha t invoked it when it reaches the end of the function. re tu rn may be inserted

10-36

Flow Control

w ith in the called function to force an early te rm ina tion and to transfer control
to the invoking function.

10-37

10 M-File Frogramming

Subfunctions

FUmary function

Function M -files can contain code for more than one function. The firs t function
in the file is the p rim ary function, the function invoked w ith the M -file name.
A dditiona l functions w ith in the file are subfunctions tha t are only v is ib le to the
prim ary function or other subfunctions in the same file.

Each subfunction begins w ith its own function defin ition line. The functions
im m ediately follow each other. The various subfunctions can occur in any
order, as long as the prim ary function appears firs t.

- fu n c t io n [avg,med] = new stats(u)
% NEWSTATS Find mean and median w ith in te rn a l
n = lengt h(u);
avg = mean(u,n);
med = m edian(u,n);

fu n c tio n s .

Slbfundion - fu n c t io n a = mean(v,n)
% C a lcu la te average.
a = sum (v)/n;

SUbfunction —► fu n c tio n m = m edian(v,n)
% C a lcu la te median.
w = s o r t (v) ;
i f reimjn, 2) == 1

m = w ((n + 1) / 2);
e lse

m = (w (n /2)+ w (n /2+1)) / 2 ;
end

The subfunctions mean and median calculate the average and median of the
input lis t. The prim ary function newstats determ ines the length of the lis t and
calls the subfunctions, passing to them the lis t length n. Functions w ith in the
same M -file cannot access the same variables unless you declare them as global
w ith in the pertinent functions, or pass them as arguments. I n addition, the
help fa c ility can only access the prim ary function in an M-file.

When you call a function from w ith in an M-file, M ATLAB firs t checks the file
to see if the function is a subfunction. It then checks for a priva te function
(described in the follow ing section) w ith tha t name, and then for a standard
M -file on your search path. Because it checks for a subfunction firs t, you can

10-38

Subfunctions

supersede existing M -files using subfunctions w ith the same name, for
example, mean in the above code. Function names must be unique w ith in an
M-file, however.

Private Functions
Private functions are functions tha t reside in subdirectories w ith the special
name p r iv a t e. They are v is ib le only to functions in the parent directory. For
example, assume the d irectory newmath is on the M ATLAB search path. A
subdirectory of newmath called p r iv a t e can contain functions tha t only the
functions in newmath can call. Because priva te functions are inv is ib le outside of
the parent directory, they can use the same names as functions in other
directories. Th is is useful if you want to create your own version of a particu lar
function w h ile re ta in ing the orig inal in another directory. Because M ATLAB
looks for priva te functions before standard M -file functions, it w ill find a
priva te function named t e s t . m before a nonprivate M -file named t e s t . m

You can create your own priva te directories s im ply by creating subdirectories
called p r iv a te using the standard procedures for creating directories or folders
on your computer. Do not place these priva te directories on your path.

10-39

10 M-File Frogramming

Indexing and Subscripting

Subscripts
The element in row i and column j of A is denoted by A (i , j) . For example,
suppose A = m ag ic (4), Then A (4 ,2) is the number in the fourth row and
second column. For our magic square, A (4 ,2) is 15. So it is possible to compute
the sum of the elements in the fourth column of A by typ ing

A(1, 4) + A(2, 4) + A(3, 4) + A(4, 4)

It is also possible to refer to the elements of a m a trix w ith a single subscript,
A (k) . Th is is the usual way of referencing row and columns vectors. But it can
also apply to a fu lly two-dimensional m atrix , in which case the array is
regarded as one long column vector formed from the columns of the original
m atrix . So, for our magic square, A (8) is another way of re ferring to the value
14 stored in A (4 ,2) .

I f you try to use the value of an element outside of the m atrix , it is an error

t = A (4 ,5)
Index exceeds m a trix dimensions

However, if you store a value in an element outside of the m atrix , the size of
the m a trix increases to accommodate the new element.

x = A;
x (4 ,5) = 17

x =

16 2 3 13 0
5 11 10 8 0
9 7 6 12 0
4 14 15 1 17

Subscript expressions involving colons refer to portions of a m atrix .

A (1 :k , j)

is the firs t k elements of the j -th column of A. So

sum (A (1 :4 ,4))

10-40

Indexing and Subscripting

computes the sum of the fourth column. But there is a better way. The colon by
itse lf refers to all the elements in a row or column of a m a trix and the keyword
end refers to the last row or column. So

sum| A (:,e n d))

computes the sum of the elements in the last column of A.

ans =
34

Concatenation
Concatenation is the process of jo in ing small matrices together to make bigger
ones. In fact, you made your firs t m a trix by concatenating its ind iv idua l
elements. The pair of square brackets, [] , is the concatenation operator. For an
example, s tart w ith the 4-by-4 magic square, A, and form

B = [A A+32;A+48 A+16]

The result is an 8-by-8 m atrix, obtained by jo in ing the four submatrices.

B =

16 2 3 13 48 34 35 45
5 11 10 8 37 43 42 40
9 7 6 12 41 39 38 44
4 14 15 1 36 46 47 33

64 50 51 61 32 18 19 29
53 59 58 56 21 27 26 24
57 55 54 60 25 23 22 28
52 62 63 49 20 30 31 17

This m a trix is ha lf way to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value for
an 8-by-8 magic square.

sumjB)

ans =

260 260 260 260 260 260 260 260

10-41

10 M-File Programming

But its row sums, suim(B’) ’ , are not all the same. Further m anipulation is
necessary to make th is a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a m a trix using just a pair of square
brackets. S tart w ith

X = A;

Then, to delete the second column of X, use

X (: ,2) = []

Th is changes X to

X =
162 13
511 8
9 712
414 1

If you delete a single element from a m atrix , the result isn ’t a m a trix anymore.
So expressions like

X (1 ,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the rem aining elements in to a row
vector. So

X (2 :2 :10) = []

results in

X =
169 27 13121

Advanced Indexing
M ATLAB stores each array as a column of values regardless of the actual
dimensions. Th is column consists of the array columns, appended end to end.
For example, M ATLAB stores

A = [2 6 9; 4 2 8 ; 3 0 1]

10-42

Indexing and Subscripting

as

2
4
3
6
2
0
9
8
1

Accessing A w ith a single subscript indexes d irectly in to the storage column.
A(3) accesses the th ird value in the column, the number 3. A(7) accesses the
seventh value, 9, and so on.

If you supply more subscripts, M ATLAB calculates an index in to the storage
column based on the dimensions you assigned to the array. For example,
assume a two-dimensional array like A has size [d1 d 2], where d1 is the
number of rows in the array and d2 is the number of columns. I f you supply tw o
subscripts (i , j) representing row-column indices, the offset is

(j - 1) * d 1+i

Given the expression A (3 ,2) , M ATLAB calculates the offset in to A’s storage
column as (2 -1)*3+ 3 , or 6 . Counting down six elements in the column accesses
the value 0 .

Th is storage and indexing scheme also extends to m ultid im ensional arrays. In
th is case, M ATLAB operates on a page-by-page basis to create the storage
column, again appending elements columnwise.

For example, consider a 5-by-4-by-3-by-2 array C.

10-43

10 M-File Programming

Matlab d isp la ys C as

p a g e (1 , 1) =

p a g e (2 , 1) =

Matlab s to res C as

10-44

Indexing and Subscripting

Again, a single subscript indexes d irectly in to th is column. For example, C(4)
produces the result

ans =

0

I f you specify tw o subscripts (i , j) ind icating row-column indices, M ATLAB
calculates the offset as described above. Two subscripts always access the firs t
page of a m ultid im ensional array, provided they are w ith in the range of the
orig inal array dimensions.

If more than one subscript is present, all subscripts must conform to the
orig inal array dimensions. For example, C(6 ,2) is inva lid , because all pages of
C have only five rows.

If you specify more than tw o subscripts, M ATLAB extends its indexing scheme
accordingly. For example, consider four subscripts (i , j , k , l) in to a
four-dimensional array w ith size [d 1 d2 d3 d 4]. M ATLAB calculates the offset
in to the storage column by

(l- 1) (d 3) (d 2) (d 1)+ (k -1) (d 2) (d 1)+ (j-1) (d 1)+ i

For example, if you index the array C using subscripts (3,4,2,1), M ATLAB
re tu rns the value 5 (index 38 in the storage column).

In general, the offset form ula for an array w ith dimensions [d 1 d2 d3 . . . dn]
using any subscripts (s i S2 S3 . . . sn) is:

(Sn-1)(dn-i)(dn-2)...(di)+(Sn-1- 1)(dn-2)...(d1)+...+(S2- 1)(di)+Si

Because of th is scheme, you can index an array using any number of subscripts.
You can append any number of is to the subscript list because these term s
become zero. For example,

C (3 , 2 , 1 , 1 , 1 , 1 , 1 , 1)

is equivalent to

C(3, 2)

10-45

10 M-File Programming

String Evaluation
String evaluation adds power and fle x ib ility to the M ATLAB language, le tting
you perform operations like executing user-supplied strings and constructing
executable strings through concatenation of strings stored in variables.

eval
The eval function evaluates a s tring tha t contains a M ATLAB expression,
statement, or function call. In its simplest form, the eval syntax is:

e v a l (’ s t r i n g ’)

For example, th is code uses eval on an expression to generate a H ilbert m a trix
of order n.

t = ' 1/ (i + j - 1) ' ;
fo r i = 1 :n

fo r j = 1:n
a (i , j) = eval (t) ;

end
end

Here’s an example tha t uses eval on a statement.

e v a l (’ t = c l ock ’)

feval
feva l d iffers from eval in tha t it executes a function whose name is in a string,
rather than an entire M ATLAB expression. You can use feva l and the input
function to choose one of several tasks defined by M-files. In th is example, the
functions have names like sin, cos, and so on.

fun = [’ s i n ’ ; ’ cos’ ; ’ l og ’];
k = in p u t (’ Choose f u n c t i o n number: ’);
x = input (’ Enter va lue: ’);
f e v a l (f u n (k , :) , x)

10-46

String Evaluation

Note Use feva l rather than eval whenever possible. M -files tha t use feva l
execute faster and can be compiled w ith the M ATLAB compiler.

Construct ing Str ings fo r Evaluat ion
You can concatenate strings to create a complete expression for input to eval .
Th is code shows how eval can create 10 variables named P1, P2, ...P10, and set
each of them to a d ifferent value.

fo r i =1:10
e v a l ([’ P’ , i n t 2 s t r (i) , ’ = i . A2’])

end

10-47

10 M-File Programming

Command/Function Duality
M ATLAB commands are statem ents like

load
help

Many commands accept m odifiers tha t specify operands.

load August17.dat
help magi c
t ype rank

An a lte rna te method of supplying the command m odifiers makes them s tring
argum ents of functions.

l o a d (’ August17.dat ’)
h e l p (’ magic’)
t y p e (’ r ank ’)

Th is is M A T LA B ’s “command/function d u a lity .” Any command of the form

command argument

can also be w ritte n in the functional form

command(’ argument’)

The advantage of the functional approach comes when the s tring argument is
constructed from other pieces. The follow ing example processes m u ltip le data
files, A ugust1 .da t, August2 .da t, and so on. It uses the function i n t 2 s t r ,
which converts an integer to a character s tring, to help build the filename.

fo r d = 1:31
s = [’ August’ i n t 2 s t r (d) ’ . d a t ’]
l oad(s)

% Process the con ten ts of the d - t h f i l e
end

10-48

Empty Matrices

Empty Matrices
E arlie r versions of M ATLAB allowed for only one empty m atrix , the 0-by-0
array denoted by []. M ATLAB 5 provides for matrices and arrays where one,
but not all, of the dimensions is zero. For example, 1-by-0 , 10-by-0-by-20 , and
[3 4 0 5 2] are all possible array sizes.

The two-character sequence[] continues to denote the 0-by-0 m atrix . Empty
arrays of other sizes can be created w ith the functions zeros, ones, rand, or
eye. To create a 0-by-5 m atrix , for example, use,

E = zeros(0,5)

The basic model for empty matrices is tha t any operation that is defined for
n-by-n matrices, and tha t produces a result whose dimension is some function
of m and n, should s till be allowed when m or n is zero. The size of the result
should be tha t same function, evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires tha t A and B have the same number of rows. So i f A is m-by-n and B is
m-by-p, then C is m-by-(n+p). Th is is s till tru e if m or n or p is zero.

Many operations in M ATLAB produce row vectors or column vectors. It is
possible for the result to be the empty row vector.

r = z e ro s (1, 0)

or the empty column vector

C = zeros(0,1)

M ATLAB 5 reta ins M ATLAB 4 behavior for i f and wh i l e statements. For
example,

i f A, S1, else, S0, end

executes statement S0 when A is an empty array.

10-49

10 M-File Programming

Some M ATLAB functions, like sum and max, are reductions. For m a trix
arguments, these functions produce vector results; for vector arguments they
produce scalar results. Em pty inputs produce the fo llow ing results w ith these
functions:

• sum([]) is 0

• prod([]) is 1

• max([]) is []

• m n([]) is []

10-50

Errors and Warnings

Errors and W arn ings
In many cases, i t ’s desirable to take specific actions when d ifferent kinds of
errors occur. For example, you may want to prompt the user for more input,
display extended error or w arn ing inform ation, or repeat a calculation using
default values. M A T LA B ’s error handling capabilities let your application
check for particu la r error conditions and execute appropria te code depending
on the situation.

Error Handl ing w i t h eval and lasterr
The basic tools for error-handling in M ATLAB are:

• The eval function, which lets you execute a function and specify a second
function to execute if an error occurs in the firs t.

• The l a s t e r r function, which re tu rns a s tring containing the last error
generated by M ATLAB.

The eval function provides error-handling capabilities using the two-
argument form

eval (’ t r y s t r i n g ’ , ’ c a t c h s t r i n g ’)

I f the operation specified by t r y s t r i ng executes properly, eval sim ply returns.
I f t r y s t r i n g generates an error, the function evaluates ca tch s tr i ng. Use
catchst r i ng to specify a function tha t determ ines the error generated by
t r y s t r i n g and takes appropria te action.

The t r y s t r i n g / c a t c h s t r i n g form of eval is especially useful in conjunction
w ith the l a s t e r r function. l a s t e r r re tu rns a s tring containing the last error
message generated by M ATLAB. Use l a s t e r r inside the c a t c h s t r i ng function
to “catch” the error generated by t r y s t r i n g .

For example, th is function uses l a s t e r r to check for a specific error message
tha t can occur during m a trix m u ltip lica tion . The error message indicates tha t
m a trix m u ltip lica tion is impossible because the operands have different inner
dimensions. I f the message occurs, the code truncates one of the m atrices to
perform the m u ltip lica tion .

10-51

10 M-File Programming

f u n c t i o n C = catchfcn(A,B)
l = l a s t e r r ;
j = f i n d s t r (l , ’ Inner mat r i x dimensions’)
i f (~ i semp t y (j))

[m,n] = si ze(A)
[p , q] = si ze(B)
i f (n>p)

A(: , p+1 :n) = []
elsei f (n<p)

B(n+1:p , :) = []
end
C = A*B;

else
C = 0;

end

This example uses the two-argument form of eval w ith the cat chfcn function
shown above.

clear
A = [1 2 3; 6 7 2; 0 1 5];
B = [9 5 6 ; 0 4 9];
e v a l (’ A*B’ , ’ ca t ch (A, B) ’)

A = 1:7;
B = randn(9,9) ;
e v a l (’ A*B’ , ’ catchfcn(A B) ’)

Displaying Error and Warn ing Messages
Use the er ror and f p r i n t f functions to display error in form ation on the
screen. The er ror function has the syntax

e r r o r (’ e r r or s t r i n g ’)

I f you call the er ror function from inside an M -file, er ror displays the text in
the quoted s tring and causes the M -file to stop executing. For example, suppose
the fo llow ing appears inside the M -file m y f i l e . m

i f n < 1
e r r o r (’ n must be 1 or g r e a t e r . ’)

end

10-52

Errors and Warnings

For n equal to 0 , the fo llow ing text appears on the screen and the M -file stops.

??? Error using ==> r r y f i l e
n must be 1 or greater .

In M ATLAB, w arn ings are s im ila r to error messages, except program
execution does not stop. Use the warning function to display w arn ing
messages.

warn i ng(’ warning s t r i n g ’)

The function l as twarn displays the last w arn ing message issued by M ATLAB.

10-53

10 M-File Programming

Times and Dates
M ATLAB provides functions for tim e and date handling. These functions are
in a d irectory called t imefun in the M ATLAB Toolbox.

Category Function Description

Current tim e and date now Current date and tim e as serial date number.

date Current date as date string.

c l ock C urrent date and tim e as date vector.

Conversion datenum Convert to serial date number.

dates t r Convert to s tring representation of date.

datevec Date components.

U tility calendar Calendar.

weekday Day of the week.

eomday End of month.

datet ic k Date form atted tick labels.

T im ing cput i me CPU tim e in seconds.

t i c , t oc Stopwatch tim er.

et ime Elapsed tim e.

Date Formats
M ATLAB works w ith th ree d ifferent date formats: date strings, serial date
numbers, and date vectors.

When dealing w ith dates you typ ica lly w ork w ith date strings (16-Sep-1996).
M ATLAB w orks in te rna lly w ith serial date numbers (729284). A serial date
represents a calendar date as the number of days tha t has passed since a fixed
base date. In MATLAB, serial date number 1 is January 1, 0000. MATLAB also
uses serial tim e to represent fractions of days beginning at m idn ight; for

10-54

Times and Dates

example, 6 p.m. equals 0.75 serial days. So the s tring ’ 16-Sep- 1996, 6:00 pm
in MATLAB is date number 729284.75.

A ll functions tha t require dates accept e ither date strings or serial date
numbers. I f you are dealing w ith a few dates at the MATLAB command-line
level, date strings are more convenient. I f you are using functions tha t handle
large numbers of dates or doing extensive calculations w ith dates, you w ill get
better performance if you use date numbers.

Date vectors are an internal form at for some M ATLAB functions; you do not
typ ica lly use them in calculations. A date vector contains the elements [year
month day hour mi nute second] .

M ATLAB provides functions tha t convert date s trings to serial date numbers,
and vice versa. Dates can also be converted to date vectors.

Here are examples of the three date form ats used by M ATLAB.

Date s tring 02-Cfct-1996

Serial date number 729300

Date vector 1996 10 2 0 0 0

Conversions Between Date Formats
Functions tha t convert between date form ats are:

datenum

dates t r

datevec

10-55

Convert date s tring to serial date number

Convert serial date number to date s tring

Split date number or date s tring in to indiv idua l
date elements

10 M-File Programming

Here are some examples of conversions from one date format to another.

d i = datenun(‘ 02-Cct- 1996')

d i =
729300

d2 = d a t e s t r (d 1+10)

d2 =
12-Cct-1996
dv1 = dat evec(d1)

dv1 =
199610 2 0 0 0

dv2 = dat evec(d2)

dv2 =
199610 12 0 0 0

Date String Formats
The datenum function is im portant for doing date calculations effic iently.
datenum takes an input s tring in any of several formats, w ith 'dd-nmm-yyyy' ,
' mn/dd/yyyy' , or 'dd-nm m yyyy, hh:mmss.ss ' most common. You can form
up to six fie lds from le tters and d ig its separated by any other characters.

• The day fie ld is an integer from 1 to 31.

• The month fie ld is e ither an integer from 1 to 12 or an a lphabetic s tring w ith
at least th ree characters.

• The year fie ld is a non-negative integer: if only tw o d ig its are specified, then
a year 19yy is assumed; if the year is om itted, then the current year is used
as a default.

• The hours, m inutes, and seconds fie lds are optional. They are integers
separated by colons or followed by ’ A M ’ or ’ PM ’ .

10-56

Times and Dates

For example, if the current year is 1996, then these are all equivalent

’ 17- May- 1996’
’ 17- May-96’
’ 17- Mfey’
’ Mfey 17, 1996’
’ 5 /17 /96 ’
’ 5 /17 ’

and both of these represent the same tim e

’ 17- May- 1996, 18:30’
’ 5/ 17/96/6:30 pm

Note tha t the default format for numbers-only input follows the American
convention. Thus 3/ 6 is March 6, not June 3.

I f you create a vector of input date strings, use a column vector and be sure all
strings are the same length. F ill in w ith spaces or zeros.

Output Formats
The function da t es t r (D , da t e f o r m) converts a serial date D to one of 19
d ifferent date s tring output form ats showing date, tim e, or both. The default
output for dates is a day-month-year string: 01-Mar- 1996. You select an
a lte rna tive output format by using the optional integer argument da te fo r m

10-57

10 M-File Programming

dateform Format Description

0 01-Mar- 1996 15:45:17 day-month-year hour:minute:second

1 01-Mar-1996 day-month-year

2 03/01/96 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 wed day of week, th ree letters

9 W day of week, single letter

10 1996 year, four d ig its

11 96 year, tw o d ig its

12 Mar96 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:m inute

16 03:45 PM hour:m inute AM or PM

17 69

5

calendar quarter-year

18 Q1 calendar quarter

10-58

Times and Dates

Here are some examples of converting the date March 1, 1996 to various
form s using the dates t r function.
d = ’ 01-Mar- 1996’

d =

01-Mar-1996

da t es t r (d)

ans =
01-Mar-1996

da tes t r (d , 2)

ans =
03/01/96

da tes t r (d , 17)

ans =
Q1-96

10-59

10 M-File Programming

Current Date and Time
The function date re tu rns a s tring for today’s date.

date

ans =
02-Cct-1996

The function now re tu rns the serial date number for the current date and time.

now

ans =
729300.71

datest r (now)

ans =
02-Cct- 1996 16:56:16

d a t e s t r (f l oo r (n o w))

ans =
02-Cct-1996

10-60

Obtaining User Input

Obtain ing User Input
To obtain input from a user during M -file execution, you can:

• Display a prompt and obtain keyboard input.

• Pause un til the user presses a key.

• Build a complete graphical user interface.

This section covers the firs t tw o topics. The th ird top ic is discussed in Using
M ATLAB Graphics and B u ild ing G UIs w ith M ATLAB.

Prompt ing fo r Keyboard Input
The i nput function displays a prompt and w a its for a user response. Its syntax
is:

n = i n p u t (’ p r o n p t _s t r i ng ’)

The function displays the p ronp t_s t r i ng , w a its for keyboard input, and then
re tu rns the value from the keyboard. I f the user inputs an expression, the
function evaluates it and re turns its value. Th is function is useful for
im plem enting menu-driven applications.

input can also return user input as a string, rather than a num eric value. To
obtain s tring input, append ’ s ’ to the function ’s argument list.

name = i n p u t (’ Enter address: ’ , ’ s ’);

Pausing During Execution
Some M -files benefit from pauses between execution steps. For example, the
p e t a l s . m script shown on page 10-5 pauses between the plots it creates,
a llow ing the user to display a plot for as long as desired and then press a key
to move to the next plot.

The pause command, w ith no arguments, stops execution un til the user presses
a key. To pause for n seconds, use:

pause(n)

10-61

10 M-File Programming

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new M ATLAB functions. A shell
escape M -function is an M -file tha t:

1 Saves the appropria te variables on disk.

2 Runs an external program (which reads the data file, processes the data, and
w rites the results back out to disk).

3 Loads the processed file back in to the workspace.

For example, look at the code for g a r f i e l d . i r i below. This function uses an
external function, gareqn, to find the solution to G arfie ld ’s equation.

f un c t i on y = g a r f i e l d (a , b , q , r)
save gardata a b q r
!gareqn
load gardata

This M-file:

1 Saves the input arguments a, b, q, and r to a M A T-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C, or Fortran program called
gareqn tha t uses the workspace variables to perform its computation.
gareqn w rites its results to the gardata M AT-file.

3 Loads the gar data M A T-file to obtain the results.

Reading and Writing MAT Files The M AT-file subroutine library, described in the
MATLAB Application Program Interface Guide, provides routines for reading
and w rit in g MAT-files. Also see th is document for inform ation on MEX-files,
and C or Fortran functions tha t you can call d irectly from MATLAB.

10-62

Optimizing the Performance of MATLAB Code

Optimizing the Performance of MATLAB Code
This section describes techniques tha t often improve the execution speed and
memory management of M ATLAB code:

• Vectorization of loops

• Vector preallocation

M ATLAB is a m a trix language, which means it is designed for vector and
m a trix operations. For best performance, you should take advantage of th is
where possible.

Vector izat ion of Loops
You can speed up your M -file code by vectorizing algorithm s. Vectorization
means converting fo r and wh i l e loops to equivalent vector or m a trix
operations.

A Simple Example
Here is one way to compute the sine of 1001 values ranging from 0 to 10.

i = 0 ;
fo r t = 0 : . 01:10

i = i+ 1;
y (i) = s i n (t) ;

end

A vectorized version of the same code is:

t = 0 : . 01 : 10;
y = s i n (t) ;

The second example executes much faster than the firs t and is the way
M ATLAB is meant to be used. Test th is on your system by creating M -file
scripts tha t contain the code shown, then using the t i c and to c commands to
tim e the M-files.

An Advanced Example
repmat is an example of a function tha t takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension Ml and a column
dimension N.

10-63

10 M-File Programming

rep ra t creates an output array tha t contains the elements of a rray A,
replicated and “tile d ” in an M-by-N arrangement.

A = [1 2 3; 4 5 6];
B = r ep r a t (A , 2 , 3) ;

B =

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6

I.GEt rcwend d im sizes

2 GEnectevelcrsof indces
froml to row/ crirnn 3ze

3. Ge6teinde< mEtricesfrom
vectors ebove

1

rep ra t uses vectorization to create the indices tha t place elements in the
output array.

f u n c t i on B = r ep r a t (A , MN)
i f nargin < 2

e r r o r (’ Requi res at least 2 i n p u t s . ’)
e l s e i f nargin == 2

N = M|
end

—► [r n] = s i ze(A) ;
r in d = (1: r) ’ ;
nind = (1:n) ’
r in d = r i nd(
nind = ni nd(

ones(1 ,M)) ;
ones(1, N)) ;

B = A (r i nd , n i n d) ;

above obtains the row and column sizes of the input array.

2 above creates tw o column vectors. r in d contains the integers from 1 through
the row size of A. The nind variab le contains the integers from 1 through the
column size of A.

3 above uses a M ATLAB vectorization tr ic k to replicate a single column of
data through any number of columns. The code is:

B = A (: , ones (1 , n_co l s))

where n_cols is the desired number of columns in the resulting m atrix.

10-64

Optimizing the Performance of MATLAB Code

The fina l line of repmat uses array indexing to create the output array. Each
element of the row index array, mind, is paired w ith each element of the column
index array, nind:

1 The firs t element of mind, the row index, is paired w ith each element of nind.
M ATLAB moves through the ni nd m a trix in a columnwise fashion, so
m ind(1, 1) goes w ith n i n d (1, 1) , then n i nd (2 , 1), and so on. The result f ills
the firs t row of the output array.

2 Moving columnwise through mind, each element is paired w ith the elements
of nind as above. Each complete pass through the nind m a trix f il ls one row
of the output array.

A rray Preal locat ion
You can often improve code execution tim e by preallocating the arrays tha t
store output results. Preallocation prevents M ATLAB from having to resize an
array each tim e you enlarge it. Use the appropria te preallocation function for
the kind of array you are w ork ing w ith .

Array Type Function Examples

Num eric zeros y = z e r o s (1, 100);
array

Cell array cel l B = c e l l (2 , 3) ;
B{1,3} = 1:3;
B{ 2,2} = ’ s t r i n g ’ ;

S tructure s t r uc t , data = repmat (s t r u c t (’ x ’ , [1 3] , . . .
array repmat ’ y ’ , [5 6]) , 1, 3);

Preallocation also helps reduce memory fragm entation if you work w ith large
matrices. In the course of a M ATLAB session, memory can become fragmented
due to dynam ic memory allocation and deallocation. Th is can result in plenty
of free memory, but not enough contiguous space to hold a large variable.
Preallocation helps prevent th is by a llow ing M ATLAB to “grab” sufficient
space for large data constructs at the beginning of a computation.

10-65

10 M-File Programming

Notes on Mem ory Use
This section discusses ways to conserve memory and improve memory use.

Memory Management Functions
M ATLAB has five functions to improve how memory is handled:

• cl ear removes variables from memory.

• pack saves existing variables to disk, then reloads them contiguously.
Because of tim e considerations, you should not use pack w ith in loops or
M -file functions.

• qui t exits M ATLAB and re tu rns all allocated memory to the system.

• save selectively stores variables to disk.

• load reloads a data file saved w ith the save command.

Note save and load are faster than M ATLAB low-level file I/O routines. save
and load have been optim ized to run faster and reduce memory
fragm entation. See Chapter 2, “M ATLAB W orking Environm ent” for details
on these functions.

On some systems, the whos command displays the amount of free memory
rem aining. However, be aware tha t:

• I f you delete a variab le from the workspace, the amount of free memory
indicated by whos usually does not get larger unless the deleted variable
occupied the highest memory addresses. The number actua lly indicates the
amount of contiguous, unused memory. C learing the highest variab le makes
the number larger, but clearing a variab le beneath the highest variab le has
no effect. Th is means tha t you m ight have more free memory than is
indicated by whos.

• Computers w ith v irtu a l memory do not display the amount of free memory
rem aining because neither M ATLAB nor the hardware imposes lim ita tions.

Removing a Function From Memory
M ATLAB creates a lis t of M- and MEX-filenames at s ta rtup for all files that
reside below the r a t l a b / t o o l box directories. Th is lis t is stored in memory and

10-66

Optimizing the Performance of MATLAB Code

is freed only when a new list is created during a call to the path function.
Function M -file code and M E X -file relocatable code are loaded in to memory
when the corresponding function is called. The M -file code or relocatable code
is removed from memory when:

• The function is called again and a new version now exists.

• The function is exp lic itly cleared w ith the cl ear command.

• A ll functions are exp lic itly cleared w ith the c l ear f unc t i ons command.

• M ATLAB runs out of memory.

Nested Function Calls
The amount of memory used by nested functions is the same as the amount
used by calling them on consecutive lines. These tw o examples require the
same amount of memory.

r esu l t = f u n c t i o n 2 (f u n c t i o n 1 (i n p u t 9 9)) ;

resu l t = f unc t i on1 (i npu t 99) ;
r esu l t = f u n c t i o n 2 (r e s u l t) ;

Variables and Memory
Memory is allocated for variables whenever the left-hand side variab le in an
assignment does not exist. The statement

x = 10

allocates memory, but the statement

x (10) = 1

does not allocate memory if the 10th element of x exists.

10-67

10 M-File Programming

To conserve memory:

• Avoid creating large tem porary variables, and clear tem porary variables
when they are no longer needed.

• Avoid using the same variables as inputs and outputs to a function. They
w ill be copied by reference. For example,
y = f un (x , y)

is not preferred because y is both an input and an output variable.

• Set variables equal to the empty m a trix [] to free memory, or clear them
using
clear var iable_name

• Reuse variables as much as possible.

Global Variables. Declaring variables as gl obal merely puts a flag in a symbol
table. It does not use any more memory than defin ing nonglobal variables.
Consider the fo llow ing example.

global a
a = 5;

Now there is one copy of a stored in the M ATLAB workspace. Typing

clear a

removes a from the M ATLAB workspace, but it s till exists in the global
workspace.

clear global a

removes a from the global workspace.

PC-Specific Topics

• There are no functions implemented to m anipu late the way M ATLAB
handles Microsoft W indows system resources. W indows uses system
resources to track fonts, windows, and screen objects. Resources can be
depleted by using m u ltip le figu re windows, m u ltip le fonts, or several
U icontrols. The best way to free up system resources is to close all inactive
windows. I conified w indows s till use resources.

10-68

Optimizing the Performance of MATLAB Code

• The performance of a permanent swap file is typ ica lly better than a
tem porary swap file.

• Typica lly a swap file tw ice the size of the installed RAM is sufficient.

UNIX-Specific Topics

• Memory tha t M ATLAB requests from the operating system is not returned
to the operating system un til the M ATLAB process in finished.

• M ATLAB requests memory from the operating system when there is not
enough memory available in the M ATLAB heap to store the current
variables. It reuses memory in the heap as long as the size of the memory
segment required is available in the M ATLAB heap.

For example, on one machine these statem ents use approxim ately 15.4 MB
of RAM.

a = ra n d (1e6 , 1);
b = ra n d (1e6 , 1);

These statements use approxim ately 16.4 MB of RAM.
c = ra n d (2 . 1e6 , 1);

These statements use approxim ately 32.4 MB of RAM.
a = ra n d (1e6 , 1);
b = ra n d (1e6 , 1);
c lear
c = ra n d (2 . 1e6 , 1);

Th is is because M ATLAB is not able to f it a 2.1 MB array in the space
previously occupied by tw o 1 MB arrays. The simplest way to prevent
overallocation of memory, is to preallocate the largest vector. Th is series of
statem ents uses approxim ately 32.4 MB of RAM

a = ra n d (1e6 , 1);
b = ra n d (1e6 , 1);
c lear
c = ra n d (2 . 1e6 , 1);

10-69

10 M-File Programming

w h ile these statements use only about 16.4 MB of RAM

c = ra n d (2 . 1e6 , 1);
c lear
a = ra n d (1e6 , 1);
b = ra n d (1e6 , 1);

A llocating the largest vectors firs t allows for optimal use of the available
memory.

What Does " Out of Memory” Mean?
Typica lly the Cut of Memory message appears because M ATLAB asked the
operating system for a segment of memory larger than what is currently
available. Use any of the techniques discussed in th is section to help optim ize
the available memory. I f the Cut of Memory message s till appears:

• Increase the size of the swap file.

• Make sure tha t there are no external constraints on the memory accessible
to M ATLAB (on U N IX systems use the lim it command to check).

• Add more memory to the system.

• Reduce the size of your data.

10-70

11

Character Arrays (Strings)

C h a ra c te r A r r a y s ... 11-4
Converting Between Characters and N um eric V a lu e s 11-5
Creating Two-Dimensional Character A r r a y s11-5

Cell A r r a y s of S t r i n g s ...11-7
Converting Between Character Arrays

and Cell A rrays of S tr in g s ... 11-7

S t r i ng C o m p a r is o n s ...11-9
Comparing S trings For E q u a l i t y ...11-9
Comparing Characters for E quality w ith Operators . . . 11-11
Categorizing Characters W ith in a S t r in g 11-11

S e a rch in g and R e p la c in g ... 11-12

S t r i n g / N u m e r i c C o n v e r s io n ...11-13
A rray/S tring C onvers ion.. 11-14

11 Character Arrays (Strings)

This chapter explains M A T LA B ’s support for s tring data. It describes how to
create character arrays and cell arrays of strings, the tw o ways to represent
strings. It also discusses how to perform common s tring operations, such as
searching and replacing, and how to convert between s tring and num eric
formats.

The s tring functions are located in the d irectory named s t r f u n in the M ATLAB
Tool box.

Category Function Description

General char

double

c e l l s t r

blanks

deblank

eval

S tring Tests i schar

i sce l l s t r

i s l e t t e r

i sspace

S tring Operations s t r ca t

s t r vcat

st rcmp

strncmp

f i nds t r

s t r j u s t

strmat ch

Create character array (string).

Convert s tring to num eric codes.

Create cell array of s trings from character array.

S tring of blanks.

Remove tra ilin g blanks.

Execute s tring w ith M ATLAB expression.

True for character array.

True for cell array of strings.

True for le tters of alphabet.

True for whitespace characters.

Concatenate strings.

Concatenate strings vertically.

Compare strings.

Compare firs t N characters of strings.

Find one s tring w ith in another.

Justify string.

Find matches for string.

11-2

Category Function Description

s t r r e p Replace s tring w ith another.

s t r t o k Find token in string.

upper Convert s tring to uppercase.

lower Convert s tring to lowercase.

S tring to Number nu r2s tr Convert number to string.
Conversion

i n t 2s tr Convert integer to string.

r a t 2s tr Convert m a trix to eval ’able string.

s t r 2 nurn Convert s tring to number.

s p r i n t f W rite form atted data to string.

sscanf Read s tring under form at control.

Base Number hex2nurn Convert IEEE hexadecimal to double precision
Conversion number.

hex2dec Convert hexadecimal s tring to decimal integer.

dec2hex Convert decimal integer to hexadecimal string.

b in 2dec Convert b inary s tring to decimal integer.

dec2 bin Convert decimal integer to b inary string.

base2dec Convert base B s tring to decimal integer.

dec2 base Convert decimal integer to base B string.

11-3

11 Character Arrays (Strings)

Character A rrays
In M ATLAB, the term string refers to an array of characters. M ATLAB
represents each character in te rna lly as its corresponding num eric value.
Unless you want to access these values, however, you can sim ply work w ith the
characters as they display on screen.

Specify character data by placing characters inside a pair of single quotes. For
example, th is line creates a 1-by-13 character array called name.

name = ’ Thomas R Lee’ ;

I n the workspace, the output of whos shows

Name Size Bytes Class

name 1x13 26 char ar ray

You can see tha t a character uses tw o bytes of storage in te rna lly .

The class and i schar functions show name’s iden tity as a character array.

class(name)

ans =
char

ischar(name)

ans =
1

11-4

Character Arrays

Convert ing Between Characters and Numer ic
Values
Character arrays store each character as a 16-bit num eric value. Use the
double function to convert s trings to th e ir num eric values, and char to revert
to character representation.

name = double(name)

name =
Columns 1 through 12

84 104 111 109 97 115 32 82 46 32 76 101

Column 13

101

name = char(name)
name =

Thomas R Lee

Creating Two-Dimensional Character A r ra y s
When creating a two-dimensional character array, be sure tha t each row has
the same length. For example, th is line is legal because both input rows have
exactly 13 characters.

name = [’ Thomas R Lee’ ; ’ Sr. Developer ’]

name =

Thomas R. Lee
Sr. Developer

When creating character arrays from strings of d ifferent lengths, you can pad
the shorter strings w ith blanks to force rows of equal length.

name = [’ Thomas R Lee ’ ; ’ Senior Developer ’]

11-5

11 Character Arrays (Strings)

A sim pler way to create s tring arrays is to use the char function. char
autom atica lly pads all strings to the length of the longest input s tring . In th is
example, char pads the 13-character input s tring ’ Thoras R Lee’ w ith three
tra ilin g blanks so tha t it w ill be as long as the second string.

nare = c h a r (’ Thoras R Lee’ , ’ Senior Developer ’)

nare =

Thoras R Lee
Senior Developer

When extracting strings from an array, use the deblank function to remove any
tra ilin g blanks.

t r i r n a r e = deblank(nanre(1, :))

t r i r n a r e =

Thoras R Lee

s i z e (t r i r n a r e)

ans =

1 13

11-6

Cell Arrays of Strings

Cell A rrays of Strings
I t ’s often convenient to store groups of strings in cell arrays instead of standard
character arrays. Th is prevents you from having to pad strings w ith blanks to
create character arrays w ith rows of equal length. A set of functions enables
you to work w ith cell arrays of strings:

• You can convert between standard character arrays and cell arrays of
strings.

• You can apply s tring comparison operations to cell arrays of strings.

For deta ils on cell arrays see the Structures and Cell A rrays chapter.

Convert ing Between Character A r ra y s and Cell
A r ra y s of Str ings
The cel l s t r function converts a character array in to a cell a rray of strings.
Consider the character array

data = [’ A l l i s o n Jones’ ; ’ Development ’ ; ’ Phoenix ’]

Each row of the m a trix is padded so tha t all have equal length (in th is case, 13
characters).

Now use c e l l s t r to create a column vector of cells, each cell containing one of
the strings from the dat a array.

cel l data = c e l l s t r (d a t a)

cel l data =
’ A l l i s o n Jones’
’ Development’
’ Phoenix’

Note tha t the c e l l s t r function s trips off the blanks tha t pad the rows of the
input s tring m atrix:

l e n g t h (c e l l d a t a { 3 })

ans =

7

11-7

11 Character Arrays (Strings)

Use char to convert back to a standard padded character array.

s t r i ng s = cha r (ce l l da t a)

s t r i ng s =

A l l i s o n Jones
Development
Phoenix

11-8

String Comparisons

String Comparisons
There are several ways to compare strings and substrings:

• You can compare tw o strings, or parts of tw o strings, for equality.

• You can compare ind iv idua l characters in tw o s trings for equality.

• You can categorize every element w ith in a string, determ in ing whether each
element is a character or whitespace.

These functions work for both character arrays and cell arrays of strings.

Compar ing Str ings For Equal i ty
There are tw o functions tha t determ ine if tw o input s trings are identical:

• s t r c r p determ ines if tw o strings are identical.

• s t r n c r p determ ines if the firs t n characters of tw o strings are identical.

Consider the tw o strings

s t r 1 = ’ h e l l o ’ ;
s t r 2 = ’ he l p ’ ;

S trings s t r 1 and s t r 2 are not identical, so invoking s t r c r p re tu rns 0 (false).
For example,

C = s t r c r p (s t r 1 , s t r 2)

C =

0

Note for C programmers This is an im portant difference between M A TLA B ’s
s t r c r p and C’s s t r c r p () , which re turns 0 if the tw o strings are the same.

11-9

11 Character Arrays (Strings)

The firs t th ree characters of s t r 1 and s t r 2 are identical, so invoking st rncmp
w ith any value up to 3 re turns 1.

C = s t r n c mp (s t r 1 , s t r 2 , 2)

C =
1

These functions work cell-by-cell on a cell array of strings. Consider the tw o cell
a rrays of s trings

A = { ’ p i zza ’ ; ’ ch i ps ’ ; ’ candy’ };
B = { ’ p i zza ’ ; ’ choco l a te ’ ; ’ p r e t z e l s ’ };

Now apply the s tring comparison functions.

strcmp(A, B)

ans =
1
0
0

st rncmp(A,B,1)

ans =
1
1
0

11-10

String Comparisons

Compar ing Characters fo r Equal i ty w i t h Opera to rs
You can use M ATLAB re lational operators on character arrays, as long as the
arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determ ine which characters
in tw o strings match.

A = ’ f a t e ’ ;
B = ’ cake’ ;
A == B

ans =
0 1 0 1

A ll of the relational operators (>, >=, <, <=, ==, !=) compare the values of
corresponding characters.

Categor iz ing Characters Wi th in a String
There are tw o functions for categorizing characters inside a string:

• i s l e t t e r determ ines if a character is a letter

• i sspace determ ines if a character is whitespace (blank, tab, or new line)

For example, create a s tring named r y s t r i n g .

iryst r i ng = ’ Rooir 401’ ;

i s l e t t e r examines each character in the string, producing an output vector of
the same length as r y s t r i n g .

A = i s l e t t e r (r y s t r i n g)

A =
1 1 1 1 0 0 0 0

The firs t four elements in A are 1 (true) because the firs t four characters of
r y s t r i ng are letters.

11-11

11 Character Arrays (Strings)

Searching and Replacing
M ATLAB provides several functions for searching and replacing characters in
a string. Consider a s tring named l abel .

label = ’ Sample 1, 10/28/ 95’ ;

The s t r r ep function performs the standard search-and-replace operation. Use
s t r r e p to change the date from ’ 10/28’ to ’ 10/30’ .

newlabel = s t r r e p (l a b e l , ’ 28’ , ’ 30’)

newlabel =
Sample 1, 10/30/95

f i n d s t r re turns the s ta rting position of a substring w ith in a longer string. To
find all occurrences of the s tring ’ amp’ inside label

p o s i t i on = f i n d s t r (’ amp’ , l a b e l)

p o s i t i on =
2

The position w ith in label where the only occurrence of ’ amp’ begins is the
second character.

The s t r t o k function re tu rns the characters before the firs t occurrence of a
de lim iting character in an input s tring. The default de lim iting characters are
the set of whitespace characters. You can use the s t r t o k function to parse a
sentence in to words; for example,

f un c t i on al l _words = words (i npu t _s t r i ng)
remainder = i npu t _s t r i ng ;
al l _words = ’ ’ ;

wh i l e (any(remainder))
[chopped, remainder] = s t r t ok (r ema i nder) ;
a l l _words = s t r vca t (a l l _words , chopped) ;

end

11-12

String/Numeric Conversion

Str ing /N um eric Conversion
M A T LA B ’s s tring /num eric conversion functions change num eric values in to
character strings. You can store num eric values as d ig it-by-d ig it s tring
representations, or convert a value in to a hexadecimal or b inary string.
Consider a the scalar

x = 5317;

By default, M ATLAB stores the number x as a 1 -by-1 double array containing
the value 5317. The i n t2s tr (integer to s tring) function breaks th is scalar in to
a 1-by-4 vector containing the s tring ’ 5317’ .

y = i n t 2s t r (x) ;
s i ze(y)

ans =
1 4

A related function, n u r2s t r , provides more control over the format of the
output s tring. An optional second argument sets the number of d ig its in the
output s tring, or specifies an actual form at.

p = n u r 2 s t r (p i , 9)

p =
3.14159265

Both i n t 2s tr and n u r2s tr are handy for labeling plots. For example, the
fo llow ing lines use n u r2s tr to prepare automated labels for the x-axis of a plot.

f un c t i on p l o t l a b e l (x , y)
plot (x , y)
s t r 1 = nur2s t r (r i n (x)) ;
s t r 2 = nur2s t r (r a x (x)) ;
out = [’ Value of f f r o i r ’ s t r1 ’ t o ’ s t r 2] ;
x l ab e l (o u t) ;

Another class of num eric/string conversion functions changes num eric values
in to strings representing a decimal value in another base, such as b inary or
hexadecimal representation. For example, the dec2hex function converts a
decimal value in to the corresponding hexadecimal string.

11-13

11 Character Arrays (Strings)

dec_num = 4035
hex_num = dec2hex(dec_num)

hex_num =

FC3

See the s t r f u n d irectory for a complete lis ting of s tring conversion functions.

A r ra y /S t r i n g Conversion
The M ATLAB function mat2s tr changes an array to a s tring tha t M ATLAB can
evaluate. Th is s tring is useful input for a function such as eval , which
evaluates input s trings jus t as if they were typed at the M ATLAB command
line.

Create a 2-by-3 array A.

A = [1 2 3; 4 5 6]

A =

1 2 3
4 5 6

mat2str re tu rns a s tring tha t contains the text you would enter to create A at
the command line

B = mat2st r (A)

B =

[1 2 3; 4 5 6]

11-14

12

Multidimensional Arrays

M u l t i d i m e n s i o n a l A r r a y s ..12-3
Creating M ultid im ensiona l A r r a y s .. 12-4
G etting Inform ation About M ultid im ensiona l A rrays 12-9
W orking w ith M ultid im ensiona l A r r a y s 12-9
In d e x in g ...12-10
R e s h a p in g .. 12-11
Perm uting A rray Dimensions ...12-13

C o m p u t a t i o n w i t h M u l t i d i m e n s i o n a l A r r a y s 12-15
Functions tha t Operate on V e c t o r s ..12-15
Functions that Operate E le m e n t-b y -E le m e n t...................... 12-15
Functions tha t Operate on Planes and M a t r ic e s12-16

O r g a n i z i ng Data in M u l t i d i m e n s i o n a l A r r a y s 12-17

M u l t i d i m e n s i o n a l Cell A r r a y s .. 12-19

M u l t i d i m e n s i o n a l S t r u c t u r e A r r a y s12-20
Applying Functions to M ultid im ensiona l S tructu re A rrays . 12-21

12 Multidimensional Arrays

This chapter discusses m ultid im ensional arrays, M ATLAB arrays w ith more
than tw o dimensions. M ultid im ensiona l arrays can be numeric, character, cell,
or s tructu re arrays.

M ultid im ensiona l arrays are broadly useful—for example, in the
representation of m u ltiva ria te data, or m u ltip le pages of two-dimensional data.
M ATLAB provides a number of functions tha t d irectly support
m ultid im ensional arrays. You can extend th is support by creating M -files tha t
work w ith your data architecture.

Function Description

cat Concatenate arrays.

ndgr id Generate arrays for N-D functions and interpolation.

nd irs Number of a rray dimensions.

i per rut e Inverse perm ute array dimensions.

perrute Permute array dimensions.

sh i f t d i r n Shift dimensions.

squeeze Remove singleton dimensions.

12-2

Multidimensional Arrays

Mult id imensional A rrays
M ultid im ensiona l arrays in M ATLAB are an extension of the normal
two-dimensional m atrix . M atrices have tw o dimensions: the row dimension
and the column dimension.

a d rn n

(1, 1) (1, 2) (1,3) (1,4)

(2 , 1) (2 , 2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

, (4,1) (4,2) (4,3) (4,4)

You can access a two-dimensional m a trix element w ith tw o subscripts: the firs t
representing the row index, and the second representing the column index.

M ultid im ensiona l arrays use additional subscripts for indexing. A
three-dimensional array, for example, uses three subscripts:

• The firs t references array dimension 1, the row.

• The second references dimension 2, the column.

• The th ird references dimension 3. Th is guide uses the concept of a page to
represent dimensions 3 and higher.

12-3

12 Multidimensional Arrays

To access the element in the second row, th ird column of page 2, for example,
you use the subscripts (2 , 3 , 2) .

A (: , : , 1) =
/(2,3,2)

1 0 3
4 -1 2
8 2 1

A (: , : , 2) =

6 8 3
4 3 6
5 9 2

As you add dimensions to an array, you also add subscripts. A four-dimensional
array, for example, has four subscripts. The firs t tw o reference a row-column
pair; the second tw o access the th ird and fourth dimensions of data.

Note The general m ultid im ensional array functions reside in the datatypes
directory.

Creating Mul t i d imens iona l A r ra y s
You can use the same techniques to create m ultid im ensional arrays tha t you
use for two-dimensional matrices. In addition, M ATLAB provides a special
concatenation function tha t is useful for bu ild ing m ultid im ensional arrays.

Th is section discusses:

• Generating arrays using indexing

• Generating arrays using M ATLAB functions

• Using the cat function to build m ultid im ensional arrays

6 8 , 3
' 4 3 ' ' ' ©
____ 5 , ' ' 9 2

1 0 3
4 -1 2
8 2 1

12-4

Multidimensional Arrays

Generating Arrays Using Indexing
One way to create a m ultid im ensional a rray is to create a two-dimensional
array and extend it. For example, begin w ith a sim ple two-dimensional array A.

A = [5 7 8 ; 0 1 9; 4 3 6];

A is a 3-by-3 array, tha t is, its row dimension is 3 and its column dimension is
3. To add a th ird dimension to A,

A (: , : , 2) = [1 0 4; 3 5 6 ; 9 8 7]

M ATLAB responds w ith

A (: , : , 1) =

5 7 8
0 1 9
4 3 6

A (: , : , 2) =

1 0 4
3 5 6
9 8 7

You can continue to add rows, columns, or pages to the array using s im ila r
assignment statements.

Extending Multidimensional Arrays. To extend A in any dimension:

• Increment or add the appropria te subscript and assign the desired values.

• Assign the same number of elements to corresponding array dimensions. For
num eric arrays, all rows must have the same number of elements, all pages
must have the same number of rows and columns, and so on.

12-5

12 Multidimensional Arrays

You can take advantage of M A T LA B ’s scalar expansion capabilities, together
w ith the colon operator, to f il l an en tire dimension w ith a single value.

A (: , : , 3) = 5
A (: , : , 3)

ans =

5 5 5
5 5 5
5 5 5

To tu rn A in to a 3-by-3-by-3-by-2, four-dimensional array, enter

: , : , 1 2) = [1 2 3; 4 5 6 ; 7 8 9];
: , : , 2 2) = [9 8 7; 6 5 4; 3 2 1];
: , : , 3 2) = [1 0 1; 1 1 0 ; 0 1 1];

Note tha t after the firs t tw o assignments M ATLAB pads A w ith zeros, as
needed, to m ainta in the corresponding sizes of dimensions.

Generating Arrays Using MATLAB Functions
You can use M ATLAB functions such as randn, ones, and zeros to generate
m ultid im ensional arrays in the same way you use them for two-dimensional
arrays. Each argument you supply represents the size of the corresponding
dimension in the resu lting array. For example, to create a 4-by-3-by-2 array of
norm ally d is tribu ted random numbers.

B = randn (4 ,3 ,2)

To generate an array filled w ith a single constant value, use the repmat
function. repmat replicates an array (in th is case, a 1 -by-1 array) through a
vector of a rray dimensions.

B = r epmat (5 , [3 4 2])

B (: , : , 1) =

5 5 5 5
5 5 5 5
5 5 5 5

12-6

Multidimensional Arrays

B (: , : , 2) =

5 5 5 5
5 5 5 5
5 5 5 5

Note Any dimension of an array can have size zero, making it a form of empty
array. For example, 10-by-0-by-20 is a valid size for a m ultid im ensional array.

Using the cat Function to Build Multidimensional Arrays
The cat function is a sim ple way to build m ultid im ensional arrays; it
concatenates a lis t of arrays along a specified dimension.

B = c a t (d i r | A 1 , A 2 . . .)

where A1, A2, and so on are the arrays to concatenate, and d i i r is the dimension
along which to concatenate the arrays. For example, to create a new array w ith
cat

B = c a t (3 , [2 8 ; 0 5] , [1 3; 7 9])

B (: , : , 1) =

2 8
0 5

B (: , : , 2) =

1 3
7 9

12-7

12 Multidimensional Arrays

The cat function accepts any combination of existing and new data. In
addition, you can nest calls to c a t . The lines below, for example, create a
four-dimensional array.

A = c a t (3 , [9 2; 6 5] , [7 1; 8 4])
B = c a t (3 , [3 5; 0 1] , [5 6 ; 2 1])
D = c a t (4 , A B , c a t (3 , [1 2; 3 4] , [4 3;2 1]))

cat autom atica lly adds subscripts of 1 between dimensions, if necessary. For
example, to create a 2 -by-2 -by-1-by-2 array, enter

C = c a t (4 , [1 2; 4 5] , [7 8 ; 3 2])

In the previous case, cat inserts as many singleton dimensions as needed to
create a four-dimensional array whose last dimension is not a singleton
dimension. I f the d iira rgum en t had been 5, the previous statement would have
produced a 2-by-2-by-1-by-1-by-2 array. Th is adds additional 1s to indexing
expressions for the array. To access the value 8 in the four-dimensional case,
use

C(1,2, 1,2)

1
Sncjetcn dmmacn
index

12-8

Multidimensional Arrays

Gett ing In fo rmat ion Abou t Mu l t id imens iona l A r ra y s
You can use M ATLAB functions and commands to get in form ation about
m ultid im ensional arrays you have created.

Inform ation Function Example

A rray size s i ze size(C)

ans =

2 2 1 2

rows cdrnrs dm3 dm4

A rray ndims ndims(C)
dimensions

ans =

4

A rray whos whos
storage and
format

Name Si ze Bytes Class

A 2x2x2 64 doubl e array
B 2x2x2 64 doubl e array
C 4-D 64 double array
D 4-D 192 double array

Grand total i s 48 elements using 384 bytes

W ork ing w i th Mu l t i d imens iona l A r rays
Many of the concepts tha t apply to two-dimensional matrices extend to
m ultid im ensional arrays as well. Th is section describes how to apply basic
indexing and reshaping techniques to m ultid im ensional arrays.

Consider a 10-by-5-by-3 array nddata of random integers:

nddata = f i x (8 * r an d n (1 0 , 5 , 3)) ;

12-9

12 Multidimensional Arrays

Index ing
To access a single element of a m ultid im ensional array, use integer subscripts.
Each subscript indexes a d im ension-the firs t indexes the row dimension, the
second indexes the column dimension, the th ird indexes the firs t page
dimension, and so on. To access element (3 , 2) on page 2 of nddata, for
example, use nd d a t a (3 , 2 , 2) .

You can use vectors as array subscripts. In th is case, each vector element must
be a valid subscript, tha t is, w ith in the bounds defined by the dimensions of the
array. To access elements (2 , 1), (2 , 3) , and (2,4) on page 3 of nddata, use

nddata(2 , [1 3 4] , 3)

The Colon and Multidimensional Array Indexing
M A T LA B ’s colon indexing extends to m ultid im ensional arrays. For example, to
access the entire th ird column on page 2 of nddata, use n d d a t a (: , 3 , 2) .

The colon operator is also useful for accessing other subsets of data. For
example, nddata(2 : 3 , 2 : 3 , 1) results in a 2-by-2 array, a subset of the data on
page 1 of nddata. Th is m a trix consists of the data in rows 2 and 3, columns 2
and 3, on the firs t page of the array.

The colon operator can appear as an array subscript on both sides of an
assignment statement. For example, to create a 4-by-4 array of zeros

C = zeros(4,4)

Now assign a 2-by-2 subset of array nddata to the four elements in the center
of C.

C(2:3 ,2 :3) = ndda t a (2 :3 ,1 :2 ,2)

Avoiding Ambiguity in Multidimensional Indexing
Some assignment statements, such as

A (: , : , 2) = 1:10

are ambiguous because they do not provide enough inform ation about the
shape of the dimension to receive the data. In the case above, the statement
tr ie s to assign a one-dimensional vector to a two-dimensional destination.
M ATLAB produces an error for such cases. To resolve the am biguity, be sure

12-10

Multidimensional Arrays

you provide enough inform ation about the destination for the assigned data,
and tha t both data and destination have the same shape. For example,

A (1 , : , 2) = 1:10;

Reshaping
Unless you change its shape or size, a M ATLAB array reta ins the dimensions
specified at its creation. You change array size by adding or deleting elements.
You change array shape by respecifying the a rray ’s row, column, or page
dimensions w h ile re ta in ing the same elements. The reshape function performs
the la tte r operation. For m ultid im ensional arrays, its form is

B = reshape(A, [s1 s2 s3 . . .])

s i , s2 , and so on represent the desired size for each dimension of the reshaped
m atrix . Note tha t a reshaped array must have the same number of elements as
the orig inal array (that is, the product of the dimension sizes is constant).

M reshape(M, [6 5])

, ** ' 9 7 8 5 - - ' 2
- ' ' 3 5 8 , - ' 5 1

_ - ' ' 6 9 • - ' 4 3 3

1 2 3 4 5 , -
9 0 6 3 7 ̂**
8 1 5 0 2

1 3 5 7 5
9 6 7 5 5
8 5 2 9 3
2 4 9 8 2
0 3 3 8 1
1 0 6 4 3

12-11

12 Multidimensional Arrays

The reshape function operates in a columnwise manner. It creates the
reshaped m a trix by tak ing consecutive elements down each column of the
orig inal data construct.

C reshape(C, [6 2])

, ' 9 Ю
11 ' 12

5 6
7 - ' 8 - '

1 2 *

3 4 ,

1 6
3 8
2 9
4 11
5 10
7 12

Here are several new arrays from reshaping nddata.

B = reshape(nddata , [6 25])
C = reshape(nddata, [5 3 10])
D = reshape(nddata, [5 3 2 5])

Removing Singleton Dimensions
M ATLAB creates singleton dimensions if you exp lic itly specify them when you
create or reshape an array, or if you perform a calculation tha t results in an
array dimension of one.

B = r epmat (5 , [2 3 1 4]) ;
s i ze(B)

ans =

2 3 1 4

The squeeze function removes singleton dimensions from an array.

C = squeeze(B);
si ze(C)

ans =

2 3 4

12-12

Multidimensional Arrays

The squeeze function does not affect two-dimensional arrays; row vectors
remain rows.

Permut ing A r ray Dimensions
The per mute function reorders the dimensions of an array.

B = pernute(A,d i ns) ;

d ins is a vector specifying the new order for the dimensions of A, where 1
corresponds to the firs t dimension (rows), 2 corresponds to the second
dimension (columns), 3 corresponds to pages, and so on.

A B= permute(A,[2 1 3]) C = permute(A,[3 2 1])

A(: ,, : , 1) = B(: ,, : , 1) = C(: ,, : , 1) =

1 2 3 1 4 7 Rw/crd cdum 1 2 3 FCw and page
4 5 6 2 5 8 subscripts ae 0 5 4 subscripts ae
7 8 9 3 6 9 reversed reversed

A(: ,, :, 2) = B(: ,, :, 2) = (pagetypage
trarspcsiticri).

C(: ,, :, 2)

4 5 6
0 5 4 0 2 9 2 7 6
2 7 6 5 7 3
9 3 1 4 6 1 C(: ,, :, 3)

7
9

8
3

9
1

For a more detailed look at the permute function, consider a four-dimensional
array A of size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the column
dimension firs t, followed by the second page dimension, the firs t page
dimension, then the row dimension. The result is a 4 by 2 by 3 by 5 array.

12-13

12 Multidimensional Arrays

B = permute(A, [2 4 3 1]

Mtve dmeracn 2 cf A to
first subscript pcsiticn cf B,
dmensicn 4 to seccnd sub­
script position, £nd so cn

Input
array A

GUtput
array B

The crcer cf dmereicns in
permute’s arcjunent list deter­
mines the size and ̂ ape of the
citput arrays. In this example, the
second dneracn noes to the
first pcaticn Ê caiEe the seard
dne^cncfthecricjral arrayhad
aze far", the atpit array/s first
dnEracn alsc has aze far".

You can th in k of permute’s operation as an extension of the t ranspose
function, which switches the row and column dimensions of a m atrix . For
permute, the order of the input dimension lis t determ ines the reordering of the
subscripts. In the example above, element (4 , 2 , 1 , 2) of A becomes element
(2 , 2 , 1 , 4) of B, element (5,4, 3,2) of A becomes element (4 , 2 , 3 , 5) of B, and
so on.

Inverse Permutation
The ipermute function is the inverse of permute. Given an input array A and a
vector of dimensions v, ipermut e produces an array B such tha t permute(B,v)
re tu rns A.

For example, these statements create an array E tha t is equal to the input
array C.

D = i permute(C, [1 4 2 3]) ;
E = permute(D, [1 4 2 3])

You can obtain the orig inal array after perm uting it by calling ipermute w ith
the same vector of dimensions.

12-14

Computation with Multidimensional Arrays

Computat ion w i th Mul t id imensional Ar rays
Many of M A T LA B ’s computational and mathematical functions accept
m ultid im ensional arrays as arguments. These functions operate on specific
dimensions of m ultid im ensional arrays; tha t is, they operate on ind iv idua l
elements, on vectors, or on matrices.

Functions tha t Opera te on Vectors
Functions tha t operate on vectors, like sun, mean, and so on, by default typ ica lly
work on the firs t nonsingleton dimension of a m ultid im ensional array. Most of
these functions optionally let you specify a particu la r dimension on which to
operate. There are exceptions, however. For example, the cr oss function,
which finds the cross product of tw o vectors, works on the firs t nonsingleton
dimension having length three.

Note In many cases, these functions have other restrictions on the input
arguments - for example, some functions tha t accept m u ltip le arrays require
tha t the arrays be the same size. Refer to the online help for deta ils on
function arguments.

Functions tha t Opera te Element-by-Element
M ATLAB functions tha t operate element-by-element on two-dimensional
arrays, like the trigonom etric and exponential functions in the e l f un directory,
work in exactly the same way for m ultid im ensional cases. For example, the s in
function re tu rns an array the same size as the function ’s input argument. Each
element of the output array is the sine of the corresponding element of the
input array.

S im ila rly , the a rithm etic , logical, and relational operators all work w ith
corresponding elements of m ultid im ensional arrays tha t are the same size in
every dimension. I f one operand is a scalar and one an array, the operator
applies the scalar to each element of the array.

12-15

12 Multidimensional Arrays

Functions tha t Operate on Planes and Matr ices
Functions tha t operate on planes or matrices, such as the linear algebra and
m a trix functions in the matfun directory, do not accept m ultid im ensional
arrays as arguments. That is, you cannot use the functions in the matfun
directory, or the array operators *, л , \ , or / , w ith m ultid im ensional arguments.
Supplying m ultid im ensional arguments or operands in these cases results in
an error.

You can use indexing to apply a m a trix function or operator to matrices w ith in
a m ultid im ensional array. For example, create a three-dimensional array A:

A = cat (3 , [1 2 3;9 8 7;4 6 5] , [0 3 2;8 8 4;5 3 5] , [6 4 7;6 8 5 ; . . .
5 4 3])

A pply ing the ei g function to the en tire m ultid im ensional array results in an
error.

eig(A)
??? Error using ==> eig
Input arguments must be 2-D.

You can, however, apply e ig to planes w ith in the array. For example, use colon
notation to index just one page (in th is case, the second) of the array.

e i g (A (: , : , 2))

ans =

-2 .6260
12.9129
2.7131

Note In the firs t subscripts are not colons, you must use squeeze to avoid an
error. For example, e i g (A (2 , : , :)) results in an error because the size of the
input is [1 3 3] . The expression e i g (s q u e e z e (A (2 , : , :))) , however, passes a
valid two-dimensional m a trix to eig.

12-16

Organizing Data in Multidimensional Arrays

Organiz ing Data in Mul t id imensional Ar rays
You can use m ultid im ensional arrays to represent data in tw o ways.

• As planes or pages of two-dimensional data. You can then treat these pages
as matrices.

• As m u ltiva ria te or m ultid im ensional data. For example, you m ight have a
four-dimensional array where each element corresponds to e ither a
tem perature or a ir pressure measurement taken at one of a set of equally
spaced points in a room.

For example, consider an RGB image. For a single image, a m ultid im ensional
array is probably the easiest way to store and access data.

Array RE

Fage 3 -
blue
irten^y

Fage2-
'geen
irteraty
values

Fagel-
red
irteraty

0. 689 0.
0. 535 0.
0.314 0
0.553 0
0.441 0

0.342 0
0.111 0
0.523 0
0.214 0
0.100 0

0 112 0 986 0 234 00..248382
0 765 0 128 0 863 00..250281
1 000 0 985 0 761 00.. 698
0 455 0 783 0 224 00..432965
0 021 0 500 0 311 0 . 12 3
1 000 1 000 0 867 0 . 05 1
1 000 0 945 0 998 0 . 89 3
0 990 0 941 1 000 0 . 876
0 902 0 867 0 834 0 . 798

647 0. 515 0. 816
300 0. 205 0. 526
428 0.712 0.-929
604 0. 918 '0. 344
121 0..-И3 0 . 12 6

0. 204 0 . 175
0.760 0 . 53 1
0.997 0.910
0.995 0.726

706 0.118 0.884
532 0. 653 0.925.
265 0. 159 0.101
633 0. 528 i 0.493
465 0.512 0.512

0. 421 0.398
0. 912 0.713
0.219 0.328
0.128 0.133

To access an entire plane of the image, use

red_plane = RGB(: , : , 1)

12-17

12 Multidimensional Arrays

To access a subimage, use

subimage = RGB(20:40, 50 : 85 , :) ;

The RGB image is a good example of data that needs to be accessed in planes
for operations like display or filte ring . In other instances, however, the data
itse lf m ight be m ultid im ensional. For example, consider a set of tem perature
measurements taken at equally spaced points in a room. Here the location of
each value is an integral part of the data set - the physical placement in
three-space of each element is an aspect of the inform ation. Such data also
lends itse lf to representation as a m ultid im ensional array.

An=y TEMP
, ' i 67.9° 68 . 0° 6 7 .9 ° ';

; 67.8° 67. 8° 67.9° ;

- ' ; 67.9° 68 . 0° 68 . 0°' 67.7° |
■ 67.7° 67. 8° 6,7.7° ;

; 68 . 0° 68 . 0° 67.8° 67.5° • / '
; 67.9° 67. 8° 67.6° ‘ y

/

| 67.8° 67. 6° 67.6° : y '

Now to find the average of all the measurements, use

mean(mean(mean(TEMP)))

To obtain a vector of the “ m iddle” values (element (2,2)) in the room on each
page, use

B = TEMP(2 , 2 , :) ;

12-18

Multidimensional Cell Arrays

Mult id imensional Cell A r rays
L ike num eric arrays, the fram ework for m ultid im ensional cell arrays in
M ATLAB is an extension of the two-dimensional cell a rray model. You can use
the cat function to build m ultid im ensional cell arrays, just as you use it for
num eric arrays.

For example, create a sim ple three-dimensional cell array C.

A{1, 1}
A{1,2}
A{2, 1}
A{2, 2}
B{1, 1}
B{1,2}
B{2, 1}
B{2, 2}

[1 2 ;4 5];
’ Name’ ;
2-4 i ;
7;
'Name2' ;
3;
0:1:3;
[4 5] ' ;

C = cat (3 ,A,B) ;

The subscripts for the cells of C look like

1 2
4 5

cell 2,1,1

2—4i

cell 1,2,1

’ Name’

cell 1,1,2

’ Name2

cell 1,2,2 , '

.3^

cell 2,1,2 '
1 2 3]

cell 2,2,2

4"
5

cell 2,2,1

7

cell 1,1,1

12-19

12 Multidimensional Arrays

Mult id imensional Structure Ar rays
M ultid im ensiona l s tructu re arrays are extensions of rectangular s tructu re
arrays. Li ke other types of m ultid im ensional arrays, you can build them using
direct assignment or the cat function.

pat ent (1 ,1 1) .name = ’ John Doe’ pat i ent (1, 1, 1) . b i l l i n g = 127
pat ent (1 ,1 1) . t e s t = [79 75 73; 180 178 177 5; 220 210 205]
pat ent (1 , 2 1) .name = ’ Ann Lane’ 2tnetap 1) . b i l l i n g = 28
pat ent (1 , 2 1) . t e s t = [6 8 70 6 8 ; 118 118 119 172 170 169];
pat ent (1 ,1 2) .name = ’ Al Sm th ’ pat i ent (1, 1, 2) . b i l l i n g = 504
pat ent (1 ,1 2) . t e s t = [80 80 80; 153 153 154 181 190 182];
pat ent (1 , 2 2) .name = ’ Dora Jones’ ; p a t i e n t (1 2 , 2) . b i l l i n g =
1173.90;
p a t i e n t (1 , 2 , 2) . t e s t = [73 73 75; 103 103 102; 201 198 200];

patient(1,1,2) patient(1,2,2)

patient(1,1,1))

- .bi l l i ng — 127. 00

’ Al Smith’

.test

’ John Doe’

test ------- 79 75 73
180 178 177.5
220 210 205

ng — 504.70

80 80 80
153 153 154
181 190 182

patient(1,2,1)

. name - _ ’ Ann Lane

. bi l l ing — 28.50
.test —

’ Dora Jones’|—.name —
-.bi l l i ng — 1173.9P'
— .test —

68 70 68
118 118 119
172 170 169

, 73 75 75

30 103 102
201 198 200

12-20

Multidimensional Structure Arrays

App ly ing Funct ions to Mu l t i d imens iona l Structure
A r ra y s
To apply functions to m ultid im ensional s tructu re arrays, operate on fie lds and
fie ld elements using indexing. For example, find the sum of the columns of the
test array in pat i e n t (1 , 1 , 2) .

s u n ((p a t i e n t (1, 1 , 2) . t e s t))

S im ila rly , add all the b i l l i n g fie lds in the pat i ent array.

t o t a l = s u m ([p a t i e n t . b i l l i ng]) ;

12-21

12 Multidimensional Arrays

12-22

13

Structures and Cell Arrays

S t r u c t u r e s ...13-3
Build ing S tructure A r r a y s .. 13-3
Accessing Data in S tructure A r r a y s .. 13-6
Using the size Function w ith S tructure A r r a y s 13-9
Adding Fields to S t r u c tu r e s ..13-9
Deleting Fields from S tru c tu re s ... 13-9
Applying Functions and O p e r a to r s .. 13-9
W riting Functions to Operate on S tru c tu re s13-10
Organizing Data in S tructure A r r a y s 13-11
Nesting S tru c tu re s ... 13-16

Cell A r r a y s .. 13-19
Creating Cell A r r a y s ...13-19
Obtaining Data from Cell A r r a y s .. 13-23
Deleting C e l ls ..13-25
Reshaping Cell A r r a y s .. 13-25
Replacing L ists of Variables w ith Cell A r r a y s 13-25
Applying Functions and O p e r a to r s ..13-27
Organizing Data in Cell A r r a y s ...13-28
Nesting Cell A rrays ...13-29
Converting Between Cell and N um eric A r ra y s 13-32
Cell A rrays of S t r u c tu r e s ..13-33

13 Structures and Cell Arrays

Structures are collections of d ifferent kinds of data organized by named fields.
Cell arrays are a special class of M ATLAB array whose elements consist of cells
tha t themselves contain M ATLAB arrays. Both structures and cell arrays
provide a hierarchical storage mechanism for d iss im ila r kinds of data. They
d iffe r from each other p rim a rily in the way they organize data. You access data
in s tructures using named fields, w h ile in cell arrays, data is accessed through
m a trix indexing operations.

This tab le describes the M ATLAB functions for w ork ing w ith structures and
cell arrays.

Category Function Description

S tructu re functions f ieldnames Get s tructu re fie ld names.

get f i e l d Get s tructu re fie ld contents.

isfield True if fie ld is in s truc tu re array.

isstruct True for structures.

r mf i e l d Remove s truc tu re field.

set f i e l d Set s tructu re fie ld contents.

s t ruc t Create or convert to s tructu re array.

s tr u c t2 cel l Convert s tructu re array in to cell array.

Cell a rray functions cel l Create cell array.

cel l 2 s t ruc t Convert cell array in to s truc tu re array.

cel l d i s p Display cell a rray contents.

cel l f un Apply a cell function to a cell array.

cel l p l o t Display graphical depiction of cell array.

deal Deal inpu ts to outputs.

i s ce l l T rue for cell array.

num2 cel l Convert num eric array in to cell array.

13-2

Structures

Structures
Structures are M ATLAB arrays w ith named “data containers” called fields. The
fie lds of a s truc tu re can contain any kind of data. For example, one fie ld m ight
contain a text s tring representing a name, another m ight contain a scalar
representing a b illing amount, a t hi rd m ight hold a m a trix of medical test
results, and so on.

pat ient

- . name---------------------’ John Doe’

. b i l l i n g ---------------127.00

79 75 73
180 178 177. 5
220 210 205

Like standard arrays, s tructures are inherently array oriented. A single
s truc tu re is a 1-by-1 s truc tu re array, jus t as the value 5 is a 1-by-1 num eric
array. You can build s truc tu re arrays w ith any valid size or shape, including
m ultid im ensional s tructu re arrays.

Note The examples in thi s section focus on two-dimensional s tructu re arrays.
For examples of higher-dimension s tructu re arrays, see Chapter 12.

Bui lding Structure A r ra y s
You can build s tructures in tw o ways:

• Using assignment statements

• Using the s t r uc t function

Building Structure Arrays Using Assignment Statements
You can build a sim ple 1-by-1 s truc tu re array by assigning data to individua l
fields. M ATLAB autom atica lly builds the s tructu re as you go along. For

13-3

13 Structures and Cell Arrays

example, create the 1-by-1 pat i ent s tructu re array shown at the beginning of
thi s section.

pat i ent .name = ’ John Doe’ ;
p a t i e n t . b i l l i n g = 127.00;
p a t i e n t . t e s t = [79 75 73; 180 178 177.5; 220 210 205];

Now entering

pat i ent

at the command line results in

name: ’ John Doe’
b i l l i n g : 127
t es t : [3x3 double]

pat i ent is an array containing a s tructu re w ith th ree fields. To expand the
s tructu re array, add subscripts after the s truc tu re name.

pa t i en t (2) . name = ’ Ann Lane’ ;
p a t i e n t (2) . b i l l i n g = 28.50;
p a t i e n t (2) . t e s t = [6 8 70 6 8 ; 118 118 119; 172 170 169];

The pat i ent s truc tu re array now has size [1 2] . Note tha t once a s tructu re
array contains more than a single element, M ATLAB does not display
ind iv idua l fie ld contents when you type the array name. Instead, it shows a
sum mary of the kind of in form ation the s tructu re contains.

pat i ent

pat i ent =

1x2 s t r uc t ar ray w i t h f i e l d s :
name
b i l l i n g
test

You can also use the f i e ldnames function to obtain th is in form ation.
f i e ldnames re tu rns a cell array of s trings containing fie ld names.

13-4

Structures

As you expand the structure, M ATLAB f ills in unspecified fie lds w ith empty
matrices so tha t:

• A ll structures in the array have the same number of fields.

• A ll fie lds have the same fie ld names.

For example, entering pat i ent (3) .namB = ’ Alan Johnson’ expands the
pat i ent array to size [1 3] . Now both p a t i e n t (3) . b i l l i n g and
p a t i e n t (3) . t e s t contain empty matrices.

Note Field sizes do not have to conform for every element in an array. In the
pat i ent example, the name fie lds can have d ifferent lengths, the tes t fie lds
can be arrays of d ifferent sizes, and so on.

Building Structure Arrays Using the struct Function
You can preallocate an array of structures w ith the st ruct function. Its basic
form is

s t r _a r r ay = s t r u c t (’ f i e l d 1’ , v a l 1 , ’ f i e l d 2 ’ , v a l 2 , . . .)

where the arguments are fie ld names and th e ir corresponding values. A field
value can be a single value, represented by any M ATLAB data construct, or a
cell a rray of values. A ll fie ld values in the argument lis t must be of the same
scale (single value or cell array).

You can use d ifferent methods for preallocating s tructu re arrays. These
methods d iffer in the way in which the s tructu re fie lds are in itia lized . As an
example, consider the allocation of a 1-by-3 s tructu re array, weather , w ith the
s truc tu re fie lds temp and r a i n f a l l . Three d ifferent methods for allocating such
an array are shown in th is table.

13-5

13 Structures and Cell Arrays

M ethod Syntax In itia lization

s t ruc t weather(3) =
s t r u c t (’ temp’ , 7 2 , ’ r a i n f a l l ’ , 0 . 0) ;

weather(3) is in itia lized w ith the
fie ld values shown. The fie lds for
the other s tructures in the array,
weather (1) and weather (2), are
in itia lized to the empty m atrix .

s t ruc t
w ith r epmat

weather =
r e p m a t (s t r u c t (’ tei7p’
’ r a i n f a l l ’ , 0 . 0) , 1 , 3)

,72,
A ll s tructures in the weather array
are in itia lized using one set of field
values.

s t ruc t
w ith cell
array
syntax

weather = s t r u c t (’ temp
’ r a i n f a l l ’ , { 0 . 2 , 0 . 4 ,

’ , { 68 ,80 ,72} ,
0 . 0}) ;

The structures in the weather array
are in itia lized w ith d is tinct field
values specified w ith cell arrays.

Accessing Data in Structure A r ra y s
Using s tructu re array indexing, you can access the value of any fie ld or field
element in a s tructu re array. Likewise, you can assign a value to any fie ld or
fie ld element. For the examples in th is section, consider th is s tructu re array.

patient
array

patient(1) patient(2) patient(3)

13-6

Structures

You can access subarrays by appending standard subscripts to a s tructu re
array name. For example, the line below results in a 1-by-2 s tructu re array.

mypat ients = p a t i e n t (1 : 2)

1x 2 s t r uc t ar ray w i t h f i e l d s :
name
b i l l i n g
test

The firs t s tructu re in the mypat ients array is the same as the firs t s tructu re
in the pat i ent array.

mypa t i en t s (1)

ans =

name: ’ John Doe’
b i l l i n g : 127

tes t : [3x3 double]

To access a fie ld of a particu la r structure, include a period (.) after the s tructu re
name followed by the fie ld name.

s tr = p a t i e n t (2).name

s t r =

Ann Lane

To access elements w ith in fields, append the appropria te indexing mechanism
to the fie ld name. That is, if the fie ld contains an array, use array subscripting;
if the fie ld contains a cell array, use cell array subscripting, and so on.

test 2b = p a t i e n t (3) . t e s t (2 , 2)

tes t 2 b =

153

Use the same notations to assign values to s truc tu re fields, for example,

pat i e n t (3) . t e s t (2 ,2) = 7;

13-7

13 Structures and Cell Arrays

You can extract fie ld values for m u ltip le structures at a tim e. For example, the
line below creates a 1-by-3 vector containing all of the b i l l i n g fields.

b i l l s = [p a t i e n t . b i l l i n g]

b i l l s =

127.0000 28.5000 504.7000

S im ila rly , you can create a cell array containing the test data for the firs t tw o
structures.

t e s t s = { p a t i e n t (1 : 2) . t e s t }

t e s t s =

[3x3 double] [3x3 double]

Accessing Field Values Using setfield and getfield
Direct indexing is usually the most efficient way to assign or retrieve field
values. If, however, you only know the fie ld name as a s tring - for example, if
you have used the f i e ldnames function to obtain the fie ld name w ith in an
M -file - you can use the s e t f i e l d and g e t f i e l d functions to do the same th ing.

g e t f i e l d obtains a value or values from a fie ld or fie ld element

f = g e t f i e l d (a r r a y , { a r r a y _ i n d e x } , ’ f i e l d ’ , { f i e l d _ i n d e x })

where the f i e l d _ i n d e x is optional, and ar ray_index is optional for a 1-by-1
structu re array. The function syntax corresponds to

f = a r r a y (a r r a y _ i n d e x) . f i e l d (f i e l d _ i n d e x) ;

For example, to access the name field in the second s truc tu re of the pat i ent
array, use:

s tr = g e t f i e l d (p a t i e n t , { 2 } , ’ name’)

S im ila rly , set f i e l d lets you assign values to fie lds using the syntax

f = s e t f i e l d (a r r a y , { a r r a y _ i n d e x } , ’ f i e l d ’ , { f i e l d _ i n d e x } , va lue)

13-8

Structures

Using the size Function w i t h Structure A r ra y s
Use the s i ze function to obtain the size of a s tructu re array, or of any s tructu re
fie ld. Given a s tructu re array name as an argument, s i ze re tu rns a vector of
a rray dimensions. Given an argument in the form a r r a y (n) . f i e l d , the s i ze
function re tu rns a vector containing the size of the fie ld contents.

For example, for the 1-by-3 s tructu re array pat i e n t , s i z e (p a t i e n t) re turns
the vector [1 3] . The statement s i z e (p a t i e n t (1 , 2).name) re tu rns the length
of the name s tring for element (1 , 2) of p a t i e n t .

Adding Fields to Structures
You can add a fie ld to every s tructu re in an array by adding the fie ld to a single
structure. For example, to add a social security number fie ld to the pat i ent
array, use an assignment like

pat i e n t (2) . ssn = ' 000- 00- 0000 ' ;

Now p a t i e n t (2) . ssn has the assigned value. Every other s truc tu re in the
array also has the ssn field, but these fie lds contain the empty m a trix un til you
exp lic itly assign a value to them.

Delet ing Fields f rom Structures
You can remove a given fie ld from every s tructu re w ith in a s truc tu re array
using the r m f i e l d function. Its most basic form is

s t r u c 2 = rmf iel d (a r r a y , ' f i e l d ')

where ar ray is a s truc tu re array and ' f i e l d ' is the name of a fie ld to remove
from it. To remove the name fie ld from the pat i ent array, for example, enter:

pat i ent = r m f i e l d (p a t i e n t , ' name') ;

App ly ing Funct ions and Opera to rs
Operate on fie lds and fie ld elements the same way you operate on any other
M ATLAB array. Use indexing to access the data on which to operate. For
example, th is statement finds the mean across the rows of the test array in
p a t i e n t (2) .

mean((pa t i en t (2) . t e s t) ')

13-9

13 Structures and Cell Arrays

There are sometimes m u ltip le ways to apply functions or operators across
fie lds in a s tructu re array. One way to add all the b i l l i n g fie lds in the pat i ent
a rray is:

t o t a l = 0 ;
f or j = 1 : l e n g t h (p a t i ent)

t o t a l = t o t a l + p a t i e n t (j) . b i l l i n g ;
end

To s im p lify operations like th is , M ATLAB enables you to operate on all
like-named fie lds in a s truc tu re array. S im ply enclose the a r r a y . f i e l d
expression in square brackets w ith in the function call. For example, you can
sum all the b i l l i n g fie lds in the pat i ent array using

to t a l = sum ([p a t i e n t . b i l l i n g]) ;

Th is is equivalent to using the comma-separated list.

t o t a l = sum ([p a t i e n t (1) . b i l l i n g , p a t i e n t (2) . b i l l i n g . . .]) ;

Th is syntax is most useful in cases where the operand fie ld is a scalar field.

Wri t ing Funct ions to Operate on Structures
You can w rite functions tha t work on structures w ith specific field
architectures. Such functions can access s tructu re fie lds and elements for
processing.

Note When w rit in g M -file functions to operate on structures, you must
perform your own error checking. That is, you must ensure tha t the code
checks for the expected fields.

As an example, consider a collection of data tha t describes measurements, at
d ifferent times, of the levels of various tox ins in a water source. The data
consists of fifteen separate observations, where each observation contains
three separate measurements.

You can organize th is data in to an array of 15 structures, where each s tructu re
has three fields, one for each of the three measurements taken.

13-10

Structures

The function concen, shown below, operates on an array of structures w ith
specific characteristics. Its arguments must contain the fie lds lead, mercury,
and chromium

f u n c t i on [r 1, r 2] = concen(t ox tes t) ;
% Cr eate two vectors. r1 contains t he r a t i o of mercury t o lead
% at each observat ion. r 2 contains t he r a t i o of l ead t o chromium
r 1 = [t o x t e s t . m e r c u r y] . / [t o x t e s t . l e a d] ;
r 2 = [t o x t e s t . l e a d] . / [t o x t e s t . c h r o m i u m] ;
% Plot t he concent ra t i ons of lead, mercury, and chromium
% on the same p l o t , using d i f f e r e n t co l o rs f o r each.
lead = [t ox t e s t . l ead] ;
mercury = [t o x t e s t . me r c u r y] ;
chromium = [t o x t es t . c h r omu m] ;
p l o t (l e a d , ’ r ’); hold on
plot (mercur y , ’ b’)
p l o t (c h r o m i u m ’ y ’); hold o f f

T ry th is function w ith a sample s tructu re array like t e s t .

tes t (1) . l e a d = .007; t e s t (2) . l e a d = .031; t e s t (3) . l e a d = .019;
t e s t (1) . me r c u r y = .0021; t e s t (2) . me r c u r y = .0009;
t e s t (3) . me r c u r y = .0013;
t e s t (1) . c h r o m i um = .025; t es t (2) . c h r o m i um = .017;
t e s t (3) . c h r o m i um = .10;

Organ iz ing Data in Structure A r ra y s
The key to organizing s tructu re arrays is to decide how you want to access
subsets of the inform ation. This, in tu rn , determ ines how you build the array
tha t holds the structures, and how you break up the s tructu re fields.

13-11

13 Structures and Cell Arrays

For example, consider a 128-by-128 RGB image stored in th ree separate
arrays; RED, GREEN, and BLUE:

Bueintensity
values

0. 689
0. 535
0. 314
0.553
0.441
0.398

706
532
265
633
465
401

Geeninteraty
values

0.342
0.111
0.523
0.214
0.100
0.288

0.647
0.300
0.428
0.604
0.121
0.187

Fed intensity
values

0.112 0 986 0 234 0. 432
0.765 0 128 0 863 0. 521
1.000 0 985 0 761 0. 698
0.455 0 783 0 224 0. 3 9 5
0.021 0 500 0 311 0. 1 2 3
1.000 1 000 0 867 0. 0 5 1
1.000 0 945 0 998 0.893
0.990 0 941 1 000 0.876
0.902 0 867 0 834 0. 798

515 0
205 0
712 0
918 0
113 0
204 0
760 0
997 0
995 0

08.1362
05.2161
09.2192
3 4 4
1 2 6
1 7 5
531
910
726

0.118 0.884
0.653 0.925
0.159 0.101
0.528 0.493
0.512 0.512
0.421 0.398

912 0. 713
219 0. 328
128 0. 133

13-12

Structures

There are at least tw o ways you can organize such data in to a s tructu re array:

Flare organization BemErt-tyelemErt organization
B

-.b

1-ty-1 structure arraywhere each field isa128-ty-128 array

B (1 , 1) B (1 , 2) B (1 , 3)

- . r - | a 1 1 2 | _ r _| G.986 |
- r H

- . g - | G 342| _ . g ----| G 647|
- g H

_ b __10.689 | - b - | G 7G6| - b 4

3 (2 , 1) 3 (2 , 2) B (2 , 3)

_ r _| G.765 | _ r _| G.128 |
- r H

- . g _ | o . i " | _ g __ | 0.300 |
- . g H

_ b _| G.535 | L.b - | g 532| L . b H

128-ty-128 structure array where each field is a sircjle data element

Plane Organization
In case 1 above, each fie ld of the s tructu re is an en tire plane of the image. You
can create th is s tructu re using

A r = RED;
A g = GREEN;
A b = BLUE;

This approach allows you to easily extract en tire image planes for display,
filte ring , or other tasks tha t w ork on the en tire image at once. To access the
entire red plane, for example, use:

red_plane = A. r ed;

Plane organization has the additional advantage of being extensible to
m u ltip le images in th is case. I f you have a number of images, you can store
them as A (2) , A (3) , and so on, each containing an entire image.

A

13-13

13 Structures and Cell Arrays

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each fie ld separately.

red_sub = A r (2 : 1 2 , 1 3 : 3 0) ;
grn_sub = A g (2 : 1 2 , 1 3 : 30) ;
blue_sub = A.b(2 :12,13:30) ;

Element-by-Element Organization
Case 2 has the advantage of a llow ing easy access to subsets of data. To set up
the data in th is organization, use:

fo r i = 1:size(RED,1)
f o r j = 1:size(RED,2)

B (i , j) . r = RED(i , j) ;
B (i , j) . g = GREEN(i , j) ;
B (i , j) . b = BLUE(i , j) ;

end
end

W ith element-by-element organization, you can access a subset of data w ith a
single statement.

Bsub = B(1:10,1:10) ;

To access an en tire plane of the image using the element-by-element method,
however, requires a loop.

red_plane = zeros(128,128) ;
f or i = 1 : (128*128)

r ed_p l ane(i) = B(i) . r ;
end

Element-by-element organization is not the best s tructu re array choice for
most image processing applications; however, it can be the best for other
applications wherein you w ill rou tine ly need to access corresponding subsets of
s tructu re fields. The example in the fo llow ing section demonstrates th is type of
application.

13-14

Structures

Example: A Simple Database
Consider organizing a sim ple database:

Flare organization B 2

B(1)

BemErt-ty-demErt organization

B(2)

Aname = st rvcat (’ Ann Jones’ , ’ Dan Smith’ , . . .) ;
A. address = st rvcat(’ 80 Park St . ’ , ’ 5 Lake Ave.’
A. amount = [12. 5;81.29;30; . . .];

B(1).address = ’ 80 Park St.
B(1).anount = 12.5;

B(2) . name = ’ Dan Smt h’ ;
B(2) .address = ’ 5 Lake Ave.

' B(2) .amount = 81.29;

B(3)

.name---- 1 Ann Jones’ | .name---- 1 ’ Dan Ŝ th’ |

-. address-] 80 Park St ’ | -.address-| 5 Lake Ave ’ |

— .amount _| 12.50 1 _amount_I 81.29 I L

B(1).name = ’ Ann Jones’ ;

-.address._! ’ 116

— .amount —i 30.00-c

A

Each of the possible organizations has advantages depending on how you want
to access the data:

• Plane organization makes it easier to operate on all fie ld values at once. For
example, to find the average of all the values in the amount field,

Using plane organization
avg = mean(A.amount);

Using element-by-element organization
avg = mean([B.amount]) ;

13-15

13 Structures and Cell Arrays

• Element-by-element organization makes it easier to access all the
inform ation related to a single client. Consider an M -file , c l i e n t . m which
displays the name and address of a given client on screen.

Using plane organization, pass ind iv idua l fie lds

f un c t i on c l i ent (name,address)
disp(name)
di sp(addr ess)

Using element-by-element organization, pass an entire structure
f u n c t i on c l i en t (B)
disp(B)

To call the c l i e n t function,

Using plane organization
c l i e n t (A name(2, :) ,A. add r ess (2 , :))

Using element-by-element organization
c l i e n t (B (2))

• Element-by-element organization makes it easier to expand the s tring array
fields. I f you do not know the maximum s tring length ahead of tim e for plane
organization, you may need to frequently recreate the name or address field
to accommodate longer strings.

Typically, your data does not d icta te the organization scheme you choose.
Rather, you must consider how you want to access and operate on the data.

Nest ing Structures
A structu re fie ld can contain another structure, or even an array of structures.
Once you have created a structure, you can use the s t ruc t function or direct
assignment statem ents to nest s tructures w ith in existing s tructu re fields.

Building Nested Structures w ith the struct Function
To build nested structures, you can nest calls to the st ruct function. For
example, create a 1-by-1 s tructu re array.

A = s t r u c t (’ data ’ , [3 4 7; 8 0 1] , ’ nes t ’ , . . .
s t r u c t (’ t es t num, ’ Test 1’ , ’ xdata ’ , [4 2 8] , . . .
’ ydat a’ , [7 1 6]))

13-16

Structures

You can build nested s truc tu re arrays using direct assignment statements.
These statem ents add a second element to the array.

A(2) . da ta = [9 3 2; 7 6 5];
A(2) . n e s t . t e s t n u m = 'Test 2’ ;
A(2) . nes t . x da t a = [3 4 2];
A(2) . nes t . y da t a = [5 0 9];

A

A(1)

i—.data -

-.nest

3 4 7
8 0 1

-.testnum----- ’ Test V

— .xdata---------[4 2 8]
1--- .ydata--------- [7 1 6]

A(2)

. data -

. nest

9 3 2
7 6 5

.testnum ’ Test 2’

.xdata---------[3 4 2]

.ydata-------- [5 0 9]

Indexing Nested Structures
To index nested structures, append nested fie ld names using dot notation. The
firs t text s tring in the indexing expression identifies the s truc tu re array, and
subsequent expressions access fie ld names tha t contain other structures.

13-17

13 Structures and Cell Arrays

For example, the array A created earlier has three levels of nesting:

• To access the nested s tructu re inside A (1) , use A (1) . n e s t .

• To access the xdata fie ld in the nested s tructu re in A (2) , use
A(2) .nest . xdata.

• To access element 2 of the ydata fie ld in A (1) , use A(1) .nest . y d a t a (2) .

13-18

Cell Arrays

Cell A r rays
A cell arr ay is a M ATLAB array for which the elements are cells, containers
tha t can hold other M ATLAB arrays. For example, one cell of a cell a rray m ight
contain a real m atrix , another an array of text strings, and another a vector of
complex values.

cell 1,1

3 4 2
9 7 6
8 5 1

cell 1,2 cell 1,3

.25+3i 6
7

8

34+5i 7+. 92i

cell 2,1

[1.43 2.98
5.67]

cell 2,2

7 2 14
8 3 45

52 16 3

cell 2,3

You can build cell arrays of any valid size or shape, including m ultid im ensional
s truc tu re arrays.

Note The examples in th is section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see Chapter 12.

Creating Cell A r ra ys
You can create cell arrays by:

• Using assignment statements

• Preallocating the array using the c e l l s function, then assigning data to cells

13-19

13 Structures and Cell Arrays

Using Assignment Statements
You can build a cell array by assigning data to ind iv idua l cells, one cell at a
tim e. M ATLAB autom atica lly builds the array as you go along. There are tw o
ways to assign data to cells:

• Cell indexing

Enclose the cell subscripts in parentheses using standard array notation.
Enclose the cell contents on the righ t side of the assignment statement in
curly braces, “{}.” For example, create a 2-by-2 cell array A.
A(1,1) = { [1 4 3; 0 5 8 ; 7 2 9] } ;
A(1,2) = { ’ Anne Smi th’ };
A(2,1) = {3+7i } ;
A(2,2) = { - p i : p i / 1 0 : p i }

Note The notation “{}” denotes the empty cell array, jus t as “[] ” denotes the
empty m a trix for num eric arrays. You can use the empty cell array in any cell
array assignments.

• Content indexing

Enclose the cell subscripts in curly braces using standard array notation.
Specify the cell contents on the righ t side of the assignment statement.

A{1, 1} = [1 4 3; 0 5 8 ; 7 2 9]
A{1, 2 } = 'Anne Smit h’ ;
A{2, 1} = 3+7i ;
A{2, 2 } = - p i : p i / 10 : pi

13-20

Cell Arrays

The various examples in th is guide do not use one syntax throughout, but
attem pt to show representative usage of cell and content addressing. You can
use the tw o forms interchangeably.

Note I f you already have a num eric array of a given name, don’t t ry to create a
cell a rray of the same name by assignment w ithou t firs t clearing the num eric
array. I f you do not clear the num eric array, M ATLAB assumes tha t you are
try in g to “m ix” cell and num eric syntaxes, and generates an error. S im ilarly,
M ATLAB does not clear a cell array when you make a single assignment to it.
I f any of the examples in th is section give unexpected results, clear the cell
array from the workspace and try again.

M ATLAB displays the cell a rray A in a condensed form.

A =

[3x3 double] ’ Anne Sm ith’
[3.0000+ 7. 0000i] [1x21 double]

To display the fu ll cell contents, use the c e l l d i s p function. For a high-level
graphical display of cell architecture, use cel l p l o t .

I f you assign data to a cell tha t is outside the dimensions of the current array,
M ATLAB autom atica lly expands the array to include the subscripts you

13-21

13 Structures and Cell Arrays

specify. It f i l ls any intervening cells w ith empty matrices. For example, the
assignment below tu rn s the 2-by-2 cell array A in to a 3-by-3 cell array.

A(3,3) = {5} ;

cell 1,1
1 4 3
0 5 8
7 2 9

cell 1,2

’ Anne Smith’

cell 1,3

[]

cell 2,1

3+7i

cell 2,2

[-3.14... 3.14]

cell 2,3

[]

cell 3,1

[]

cell 3,2

[]

cell 3,3

5

Cell Array Syntax: Using Braces
The curly braces, “{}” , are cell array constructors, jus t as square brackets are
num eric array constructors. C urly braces behave s im ila rly to square brackets,
except tha t you can nest curly braces to denote nesting of cells (see page 13-29
for details).

C urly braces use commas or spaces to indicate column breaks and semicolons
to indicate row breaks between cells. For example,

C = { [1 2], [3 4]; [5 6], [7 8] }

results in

cell 1,1

[1 2]
cell 1,2

[3 4]

cell 2,1
[5 6]

cell 2,2
[7 8]

Use square brackets to concatenate cell arrays, jus t as you do for num eric
arrays.

13-22

Cell Arrays

Preallocating Cell Arrays w ith the cell Function
The cel l function allows you to preallocate empty cell arrays of the specified
size. For example, th is statement creates an empty 2-by-3 cell array.

B = c e l l (2 , 3)

Use assignment statem ents to f il l the cells of B.

B(1,3) = {1 : 3 } ;

Obta in ing Data f rom Cell A r ra y s
You can obtain data from cell arrays and store the result as e ither a standard
array or a new cell array. Th is section discusses:

• Accessing cell contents using content indexing

• Accessing a subset of cells using cell indexing

Accessing Cell Contents Using Content Indexing
You can use content indexing on the righ t side of an assignment to access some
or all of the data in a single cell. Specify the variab le to receive the cell contents
on the left side of the assignment. Enclose the cell index expression on the right
side of the assignment in curly braces. Th is indicates tha t you are assigning
cell contents, not the cells themselves.

Consider the 2-by-2 cell array N.

N{1,1} = [1 2; 4 5];
N{1,2} = ’ Name’ ;
N{2,1} = 2—4 i;
N{2,2} = 7;

13-23

13 Structures and Cell Arrays

You can obtain the s tring in N{1 , 2 } using

c = N{1 , 2 }

c =

Name

Note In assignments, you can use content indexing to access only a single cell,
not a subset of cells. For example, the statements A { 1 , : } = value and
B = A { 1 , : } are both inva lid . However, you can use a subset of cells any place
you would norm ally use a comma-separated list of variables (for example, as
function inpu ts or when build ing an array). See ““Replacing L ists of Variables
w ith Cell A rrays”” on page 13-25 for details.

To obtain subsets of a cell’s contents, concatenate indexing expressions. For
example, to obtain element (2 , 2) of the array in cell N{1 , 1} , use:

d = N{1 , 1} (2 , 2)

d =

5

Accessing a Subset of Cells Using Cell Indexing
Use cell indexing to assign any set of cells to another variable, creating a new
cell array. Use the colon operator to access subsets of cells w ith in a cell array.

cell 1,1
3

cell 1,2
5

cell 1,3
9

cell 2,1
5

cell 2,2
6

cell 2,3
0

cell 3,1
4

cell 3,2
7

cell 3,3
2

B = A(2:3,2:3)

cell 1,1
6

cell 1,2
0

cell 2,1
7

cell 2,2
2

13-24

Cell Arrays

Delet ing Cells
You can delete an entire dimension of cells using a single statement. Li ke
standard array deletion, use vector subscripting when deleting a row or column
of cells and assign the empty m a trix to the dimension.

A(c e l l _s u b s c r i p t s) = []

When deleting cells, curly braces do not appear in the assignment statement at
all.

Reshaping Cell A r ra y s
Like other arrays, you can reshape cell arrays using the reshape function. The
number of cells must remain the same after reshaping; you cannot use reshape
to add or remove cells.

A = c e l l (3 , 4) ;
s i ze(A)

ans =

3 4

B = reshape(A,6,2) ;
s i ze(B)

ans =

6 2

Replacing Lists of Var iab les w i t h Cell A r ra y s
Cell arrays can replace comma-separated lis ts of M ATLAB variables in:

• Function input lis ts

• Function output lis ts

• Display operations

• A rray constructions (square brackets and curly braces)

13-25

13 Structures and Cell Arrays

I f you use the colon to index m u ltip le cells in conjunction w ith the curly brace
notation, M ATLAB trea ts the contents of each cell as a separate variable. For
example, assume you have a cell a rray T where each cell contains a separate
vector. The expression T{1:5} is equivalent to a comma-separated list of the
vectors in the firs t five cells of T.

Consider the cell array C.

C(1) = { [1 2 3] } ;
C(2) = { [1 0 1] } ;
C(3) = {1:10} ;
C(4) = { [9 8 7] } ;
C(5) = {3} ;

To convolve the vectors in C(1) and C(2) using conv,

d = conv(C{1:2})

d =

1 2 4 2 3

Display vectors two, three, and four w ith

C{2:4}

ans =

1 0 1

ans =

1 2 3 4 5 6 7 8 9 10

ans =

9 8 7

13-26

Cell Arrays

S im ila rly , you can create a new num eric array using the statement

B = [C{1} ; C{2} ; C{4}]

B =
1 2 3
1 0 1
9 8 7

You can also use content indexing on the left side of an assignment to create a
new cell a rray where each cell represents a separate output argument.

[D{1 : 2 }] = eig(B)

D =

[3x3 double] [3x3 double]

You can display the actual eigenvalues and eigenvectors using D{1} and D{2} .

Note The va r a r g i n and varargout arguments allow you to specify variable
numbers of input and output arguments for M ATLAB functions tha t you
create. Both va r a r g i n and varargout are cell arrays, a llow ing them to hold
various sizes and kinds of M ATLAB data. See Chapter 10 for details.

App ly ing Funct ions and Opera to rs
Use indexing to apply functions and operators to the contents of cells. For
example, use content indexing to call a function w ith the contents of a single
cell as an argument.

A{1, 1} = [1 2; 3 4];
A{1,2} = randn(3,3) ;
A{1, 3} = 1:5;
B = sum(A{1,1})

B =

4 6

13-27

13 Structures and Cell Arrays

To apply a function to several cells of a non-nested cell array, use a loop.

fo r i = 1 : l ength(A)
M{i } = sum(A{1, i }) ;

end

Organ iz ing Data in Cell A r ra y s
Cell arrays are useful for organizing data tha t consists of d ifferent sizes or
kinds of data. Cell arrays are better than structures for applications where:

• You need to access m u ltip le fie lds of data w ith one statement.

• You want to access subsets of the data as comma-separated variab le lists.

• You don’t have a fixed set of fie ld names.

• You routine ly remove fie lds from the structure.

As an example of accessing m u ltip le fie lds w ith one statement, assume tha t
your data consists of:

• A 3-by-4 array consisting of measurements taken for an experiment

• A 15-character s tring containing a technic ian ’s name

• A 3-by-4-by-5 array containing a record of measurements taken for the past
five experiments

For many applications, the best data construct for th is data is a structure.
However, if you routine ly access only the firs t tw o fie lds of in form ation, then a
cell array m ight be more convenient for indexing purposes.

This example shows how to access the firs t and second elements of the cell
array test .

[newdata, name] = deal (TEST{1:2})

This example shows how to access the firs t and second elements of the
s tructu re TEST.

newdata = TEST.measure
name = TEST.name

13-28

Cell Arrays

The var a rg i n and var argout arguments are examples of the u t il i ty of cell
a rrays as substitu tes for comma-separated lists. Create a 3-by-3 num eric
array A.

A = [0 1 2 ;4 0 7 ;3 1 2];

Now apply the normest (2-norm estimate) function to A, and assign the function
output to ind iv idua l cells of B.

[B { 1 : 2 }] = normest(A)

B =

[8.8826] [4]

A ll of the output values from the function are stored in separate cells of B. B(1)
contains the norm estimate; B(2) contains the iteration count.

Nest ing Cell A r ra y s
A cell can contain another cell array, or even an array of cell arrays. (Cells tha t
contain noncell data are called leaf cells.) You can use nested curly braces, the
cel l function, or direct assignment statements to create nested cell arrays.
You can then access and m anipulate ind iv idua l cells, subarrays of cells, or cell
elements.

Building Nested Arrays w ith Nested Curly Braces
You can nest pairs of curly braces to create a nested cell array. For example,

c l ear A
A(1,1) = {magic(5) } ;
A(1,2) = { { [5 2 8 ; 7 3 0; 6 7 3] 'Test 1' ; [2 -4 i 5+7i] {17 [] } } }

A =
[5x5 double] {2x2 c e l l }

Note tha t the righ t side of the assignment is enclosed in tw o sets of curly
braces. The firs t set represents cell (1 ,2) of cell a rray A. The second “packages”
the 2 -by-2 cell array inside the outer cell.

13-29

13 Structures and Cell Arrays

Building Nested Arrays w ith the cell Function
To nest cell arrays w ith the cel l function, assign the output of cel l to an
existing cell:

1 Create an empty 1-by-2 cell array.

A = c e l l (1 , 2)

2 Create a 2-by-2 cell a rray inside A(1,2) .

A(1,2) = { c e l l (2 , 2) }

3 F ill A, including the nested array, using assignments.

A(1 1) = {magic(5) } ;
A{1 2 }(1 1) = { [5 2 8 ; 7 3 0; 6 7 3] }
A{1 2 }(1 2) = { ’ Test 1’ };
A{1 2 }(2 , 1) = { [2—4i СЛ + }

A{1 2 }(2 , 2) = { c e l l (1 , 2)}
A{1 2 }{ 2 , 2 } 1) = {17}

Note the use of curly braces un til the fina l level of nested subscripts. Th is is
required because you need to access cell contents to access cells w ith in cells.

You can also build nested cell arrays w ith direct assignments using the
statements shown in step 3 above.

Indexing Nested Cell Arrays
To index nested cells, concatenate indexing expressions. The firs t set of
subscripts accesses the top layer of cells, and subsequent sets of parentheses
access successively deeper layers.

For example, array A has three levels of nesting:

cell 1,1

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

cell 1,2

13-30

Cell Arrays

• To access the 5-by-5 array in cell (1 , 1) , use A { 1 , 1 } .

• To access the 3-by-3 array in position (1 , 1) of cell (1 , 2) , use A { 1 , 2 } { 1 , 1 } .

• To access the 2-by-2 cell array in cell (1 , 2) , use A { 1 , 2 } .

• To access the empty cell in position (2 , 2) of cell (1 , 2) , use
A{1, 2 } { 2 , 2 } { 1 , 2 } .

13-31

13 Structures and Cell Arrays

Convert ing Between Cell and Numer ic A r ra y s
Use f or loops to convert between cell and num eric formats. For example, create
a cell array F,

F{1,1} = [1 2; 3 4];
F{1,2} = [-1 0; 0 1];
F{2,1} = [7 8 ; 4 1];
F{2,2} = [4i 3+2i ; 1-8i 5];

Now use three fo r loops to copy the contents of F in to a num eric array NUM

fo r k = 1:4
fo r i = 1 :2

fo r j = 1 :2
NUM(i , j , k) = F { k } (i , j) ;

end
end

end

S im ila rly , you must use fo r loops to assign each value of a num eric array to a
single cell of a cell array.

G = c e l l (1,16);
f or m = 1:16

G(n} = NUM(m);
end

13-32

Cell Arrays

Cell A r ra y s of Structures
Use cell arrays to store groups of s tructures w ith d ifferent fie ld architectures.

c_st r = c e l l (1, 2)
c _ s t r { 1 } . l a b e l = ' 12 / 2 / 9 4 - 12/5/94 ' ;
c_ s t r { 1 } . o b s = [47 52 55 48; 17 22 35 11];
c_st r { 2 } . x d a t a = [- 0 . 0 3 0.41 1.98 2.12 17.11] ;
c_st r { 2 } . y d a t a = [- 3 5 18 0 9];
c_st r { 2 } . z d a t a = [0 . 6 0.8 1 2.2 3.4] ;

cell 1
c_str(1)

label ___ '12/2/94 - 12/ 5/ 94'

test ------- 47 52 55 48
17 22 35 11

cell 2
c_str(2)

[-0.03 0.41 1.98 2.12 17.11]
[-3 5 18 0 9]
[0.6 0.8 1 2.2 3.4]

- .bi l l i ng —
— .test -------

Cell 1 of the c_st r a rray contains a s tructu re w ith tw o fields, one a s tring and
the other a vector. Cell 2 contains a s tructu re w ith th ree vector fields.

When bu ild ing cell arrays of structures, you must use content indexing.
S im ila rly , you must use content indexing to obtain the contents of structures
w ith in cells. The syntax for content indexing is:

cel l _ a r r a y { i n d e x } . f i e l d

For example, to access the label fie ld of the s tructu re in cell 1, use
c _ s t r { 1} . l a b e l .

13-33

13 Structures and Cell Arrays

13-34

14
MATLAB Classes and
Objects

Classes and O b jec ts : An O v e r v ie w ..14-2

Des i gn i ng User C lasses in M A T L A B 14-9

Ove r l oa d i ng O p e r a t o r s and F u n c t i o n s14-20

E xam p le : A Po l ynomi a l C l a s s .. 14-23

B u i l d i n g on Ot he r C la s s e s ... 14-34

Exampl e : Assets and Asset S u b c la s s e s14-37

E xam p le : The Por t f o l i o C o n t a i n e r14-54

S aving and L oad i ng O b je c ts ...14-61

O bject P r e c e d e n c e ...14-66

How M A T L A B De t e r mi nes W hich Met hod to Cal l . . 14-68

14 MATLAB Classes and Objects

Classes and Objects: An Overv iew

This chapter describes how to define classes in M ATLAB . Classes and objects
enable you to add new data types and new operations to M A TLA B . The class of
a variab le describes the s tructu re of the variab le and indicates the kinds of
operations and functions tha t can apply to the variable. An object is an instance
of a particu lar class. The phrase “object-oriented program m ing” describes an
approach to w r it in g programs tha t emphasizes the use of classes and objects.

You can view classes as new data types having specific behaviors defined for
the class. For example, a polynomial class m ight redefine the addition operator
(+) so tha t it correctly performs the operation of addition on polynomials.
Operations defined to work w ith objects of a particu la r class are know as
methods of tha t class.

You can also view classes as new item s tha t you can trea t as single entities. An
example is an arrow object tha t M ATLAB can display on graphs (perhaps
composed of M ATLAB line and patch objects) and tha t has properties like a
Handle Graphics object. You can create an arrow sim ply by ins tan tia ting the
arrow class.

You can add classes to your M ATLAB environment by specifying a M ATLAB
structu re tha t provides data storage for the object and creating a class
d irectory containing M -files tha t operate on the object. These M -files contain
the methods for the class. The class d irectory can also include functions tha t
define the way various M ATLAB operators, including a rithm e tic operations,
subscript referencing, and concatenation, apply to the objects. Redefining how
a bu ilt-in operator works for your class is known as overloading the operator.

Features of Object -Or iented Programming
When using well-designed classes, object-oriented programming can
s ign ifican tly increase code reuse and make your programs easier to m ainta in
and extend. Program ming w ith classes and objects d iffe rs from ordinary
structured program ming in these im portant ways:

• Fun c t i on and ope r a t o r ove r l oad i ng . You can create methods that
override existing M ATLAB functions. When you call a function w ith a
user-defined object as an argument, M ATLAB firs t checks to see if there is a

14-2

Classes and Objects: An Overview

method defined for the object’s class. I f there is, M ATLAB calls it, rather
than the normal M ATLAB function.

• Encapsu l a t i on of da ta and m ethods. Object properties are not visib le
from the command line; you can access them only w ith class methods. Th is
protects the object properties from operations tha t are not intended for the
object’s class.

• I nhe r i t anc e . You can create class hierarchies of parent and child classes in
which the child class inhe rits data fie lds and methods from the parent. A
child class can inherit from one parent (single inheritance) or many parents
(m u ltip le inheritance). Inheritance can span one or more generations.
Inheritance enables sharing common parent functions and enforcing
common behavior amongst all child classes.

• A g g r e g a t i o n . You can create classes using aggregation, in which an object
contains other objects. Th is is appropria te when an object type is part of
another object type. For example, a savings account object m ight be a part of
a financial portfo lio object.

MATLAB Data Class Hierarchy
You can add new data types to M ATLAB by extending the M ATLAB data class
hierarchy. The M ATLAB data class hierarchy is shown in th is diagram.

ar r ay

char numeric cel l

| user class
i n t 8 , uint 8 ,
i n t16, u i n t 1 6 ,
i n t32, u i nt32,
s i ng l e

The arr ay class, shown at the root of the diagram, is the fundamental data class
in M ATLAB upon which all other data classes are based. The arr ay class is a
v irtua l class tha t you cannot d irectly instantia te . This means tha t you cannot
create a variab le w ith the type ar r ay. The numeric class is also a v irtu a l class.
The rem aining cl asses, char, double, sparse, cel l , s t r uc t , and the

double

sparse

s t ruc t

14-3

14 MATLAB Classes and Objects

ind iv idua l storage types, such as u i n t 8 , are the classes tha t you use to work
w ith data in M ATLAB.

The diagram shows a user class tha t inherits from the s t ruc t class. A ll classes
tha t you create are s tructu re based since th is is the point in the class hierarchy
where you can insert you own classes.

Creating Objects
You create an object by calling the class constructor and passing it the
appropria te input arguments. In M ATLAB, constructors have the same name
as the class name. For example, the statement,

p = polynon([1 0 -2 - 5]) ;

creates an object named p belonging to the class polynom Once you have
created a polynom object, you can operate on the object using methods tha t are
defined for the polynom class. See “Example: A Polynomial Class” on page
14-23 for a description of the polynom class.

Invoking Methods on Objects
Class methods are M -file functions tha t take an object as one of the input
arguments. The methods for a specific class must be placed in the class
d irectory for tha t class (the @lass_name directory). Th is is the firs t place that
M ATLAB looks to find a class method.

The syntax for invoking a method on an object is s im ila r to a function call.
Generally, it looks like:

[o u t 1 , o u t 2 , . . .] = method_name(object ,arg1 , a r g 2 , . . .) ;

For example, suppose a user-defined class called polynom has a char method
defined for the class. Th is method converts a polynom object to a character
s tring and re turns the string. Th is statement calls the char method on the
polynom object p.

s = char (p) ;

14-4

Classes and Objects: An Overview

Using the cl ass function, you can confirm tha t the returned value s is a
character string:

c l ass(s)
ans =

char
s
s =

xA3-2*x-5

You can use the methods command to produce a lis t of all of the methods tha t
are defined for a class.

Private Methods
Private methods can be called only by other methods of th e ir class. You define
priva te methods by placing the associated M -files in a p r i va t e subdirectory of
the @lass_name directory. In the example,

@lass_name/pr i va te /update_ob j .m

the method update_obj has scope only w ith in the class_name class. This
means tha t update_obj can be called by any method tha t is defined in the
@lass_name directory, but it cannot be called from the M ATLAB command
line or by methods outside of the class directory, including parent methods.

P rivate methods and priva te functions d iffe r in tha t p riva te methods (in fact
all methods) have an object as one of th e ir input arguments and private
functions do not. You can use priva te functions as helper functions, such as
described in the next section.

Helper Funct ions
In designing a class, you may discover the need for functions tha t perform
support tasks for the class, but do not d irectly operate on an object. These
functions are called helper functions. A helper function can be a subfunction in
a class method file or a priva te function. When determ ining which version of a
particu la r function to call, M ATLAB looks for these functions in the order
listed above. For more inform ation about the order in which M ATLAB calls
functions and methods, see “How M ATLAB Determ ines Which Method to C a ll”
on page 14-68.

14-5

14 MATLAB Classes and Objects

Debugging Class Methods
You can use the M ATLAB debugging commands w ith object methods in the
same way tha t you use them w ith other M-files. The only difference is tha t you
need to include the class d irectory name before the method name in the
command call, as shown in th is example using dbstop.

dbstop @>olynom(char

W hile debugging a class method, you have access to all methods defined for the
class, includ ing inherited methods, priva te methods, and priva te functions.

For more inform ation about debugging M ATLAB functions, see Chapter 3,
“Debugger and P ro file r.”

Changing Class Definition
I f you change the class defin ition , such as the number or names of fie lds in a
class, you must issue a

clear c lasses

command to propagate the changes to your M ATLAB session. Th is command
also clears all objects from the workspace. See the c l ear command help entry
for more inform ation.

Setting Up Class Director ies
The M -files defin ing the methods for a class are collected together in a directory
referred to as the class directory. The d irectory name is formed w ith the class
name preceded by the character @ For example, one of the examples used in
th is chapter is a class involving polynomials in a single variable. The name of
the class, and the name of the class constructor, is polynom The M -files
defin ing a polynomial class would be located in d irectory w ith the name
@polynom

The class directories are subdirectories of d irectories on the M ATLAB search
path, but are not themselves on the path. For instance, t he new @polynom
directory could be a subdirectory of M A T LA B ’s w ork ing d irectory or your own
personal d irectory tha t has been added to the search path.

14-6

Classes and Objects: An Overview

Adding the Class Directory to the MATLAB Path
A fte r creating the class directory, you need to update the M ATLAB path so that
M ATLAB can locate the class source files. The class d irectory should not be
d irectly on the M ATLAB path. Instead, you should add the parent d irectory to
the M ATLAB path. For example, if the @polynom class d irectory is located at

c: \my_classes\@polynom

you add the class d irectory to the M ATLAB path w ith the addpath command

addpath c : \ ny_c lasses;

I f you create a class d irectory w ith the same name as another class, M ATLAB
trea ts the tw o class directories as a single d irectory when locating class
methods. For more inform ation, see “ How M ATLAB Determ ines Which
Method to C a ll” on page 14-68.

Data Structure
One of the firs t steps in the design of a new class is the choice of the data
s truc tu re to be used by the class. Objects are stored in M ATLAB structures.
The fie lds of the structure, and the deta ils of operations on the fields, are
v is ib le only w ith in the methods for the class. The design of the appropriate
data s tructu re can affect the performance of the code.

Tips fo r C++ and Java Prog rammers
I f you are accustomed to programming in other object-oriented languages, such
as C++ or Java, you w ill find tha t the M ATLAB programm ing language differs
from these languages in some im portant ways:

• In M ATLAB, method dispatching is not syntax based, as it is in C++ and
Java. When the argument lis t contains objects of equal precedence,
M ATLAB uses the left-most object to select the method to call.

• In M ATLAB, there is no equivalent to a destructor method. To remove an
object from the workspace, use the clear function.

• Construction of M ATLAB data types occurs at run tim e ra ther than compile
tim e. You register an object as belonging to a class by calling the class
function.

• When using inheritance in M ATLAB, the inheritance re lationship is
established in the child class by creating the parent object, and then calling

14-7

14 MATLAB Classes and Objects

the c l ass function. For more inform ation on w rit in g constructors for
inheritance relationships, see “B u ild ing on Other Classes” on page 14-34.

• When using inheritance in M ATLAB, the child object contains a parent
object in a property w ith the name of the parent class.

• In M ATLAB, there is no passing of variables by reference. When w ritin g
methods that update an object, you must pass back the updated object and
use an assignment statement. For instance, th is call to the set method
updates the name fie ld of the object A and re tu rns the updated object.
A = s e t (A , ’ name’ , ’ John Smi th’);

• In M ATLAB, there is no equivalent to an abstract class.

• In M ATLAB, there is no equivalent to a Java interface.

• In M ATLAB, there is no equivalent to the C++ scoping operator.

• In M ATLAB, there is no v irtu a l inheritance or v irtu a l base classes.

• In M ATLAB, there is no equivalent to C++ templates.

References fo r Object -Or iented Design
For more detailed inform ation about object-oriented design, we recommend
these references:

• Object Oriented Software Construction - Bertrand Meyer

• Object Oriented Analysis and Design w ith Applications - Grady Booch

14-8

Designing User Classes in MATLAB

Designing User Classes in MATLAB
This section discusses how to approach the design of a class and describes the
basic set of methods tha t should be included in a class.

The MATLAB Canonical Class
When you design a M ATLAB class, you should include a standard set of
methods tha t enable the class to behave in a consistent and logical way w ith in
the M ATLAB environment. Depending on the nature of the class you are
defining, you may not need to include all of these methods and you may include
a number of other methods to realize the class’s design goals.

This tab le lis ts the basic methods included in M ATLAB classes.

Class Method Description

class constructor Creates an object of the class

d is p la y Called whenever M ATLAB displays the contents
of an object (e.g., when an expression is entered
w ithou t te rm ina ting w ith a semicolon)

set and get Accesses class properties

subsref and subsasgn Enables indexed reference and assignment for
user objects

end Supports end syntax in indexing expressions
using an object; e.g., A(1:end)

subsindex Supports using an object in indexing expressions

converters like double Methods tha t convert an object to a MATLAB
and char data type

The fo llow ing sections discuss the implem entation of each type of method, as
well as providing references to examples used in th is chapter.

14-9

14 MATLAB Classes and Objects

The Class Constructor Method
The @ directory for a particu la r class must contain an M -file known as the
constructor for tha t class. The name of the constructor is the same as the name
of the d irectory (excluding the @ prefix and mextension) tha t defines the name
of the class. The constructor creates the object by in itia liz in g the data s tructu re
and ins tan tia ting an object of the class.

Guidelines for Writing a Constructor
Class constructors must perform certain functions so tha t objects behave
correctly in the M ATLAB environment. In general, a class constructor must
handle three possible combinations of input arguments:

• No input argum ents

• An object of the same class as an input argument

• The input arguments used to create an object of the class (typ ica lly data of
some kind)

No Input Arguments. I f there are no input arguments, the constructor should
create a default object. Since there are no inputs, you have no data from which
to create the object, so you sim ply in itia lize the object’s data structures w ith
empty or default values, call the c l ass function to ins tan tia te the object, and
return the object as the output argument. Support for th is syntax is required
for tw o reasons:

• When loading objects in to the workspace, the load function calls the class
constructor w ith no arguments.

• When creating arrays of objects, M ATLAB calls the class constructor to add
objects to the array.

Object Input Argument. I f the firs t input argument in the argument lis t is an
object of the same class, the constructor should sim ply re turn the object. Use
the is a function to determ ine if an argument is a member of a class. See
“Overloading the + Operator” on page 14-29 for an example of a method tha t
uses th is constructor syntax.

Data Input Arguments. I f the input arguments exist and are not objects of the
same class, then the constructor creates the object using the input data. Of
course, as in any function, you should perform proper argument checking in
your constructor function. A typical approach is to use a va r a r g i n input

14-10

Designing User Classes in MATLAB

argument and a swi t ch statement to control program flow. This provides an
easy way to accommodate the three cases: no inputs, object input, or the data
inputs used to create an object.

It is in th is part of the constructor tha t you assign values to the object’s data
structure, call the c l ass function to ins tan tia te the object, and return the
object as the output argument. I f necessary, place the object in an object
h ierarchy using the s upe r i o r t o and i n f e r i o r t o functions.

Using the class Function in Constructors
W ith in a constructor method, you use the c l ass function to associate an object
s tructu re w ith a particu la r class. Th is is done using an internal class tag that
is only accessible using the c l ass and i sa functions. For example, th is call to
the c l ass function identifies the object p to be of type polynom

p = c l a s s (p , ’ po l ynom) ;

Examples of Constructor Methods
See the follow ing sections for examples of constructor methods:

• “The Polynom Constructor Method” on page 14-24

• “The Asset Constructor Method” on page 14-38

• “The Portfo lio Constructor Method” on page 14-55

Identifying Objects Outside the Class Directory
The c lass and i sa functions used in constructor methods can also be used
outside of the class directory. The expression

isa(a , ’ class_name’)

checks whether a is an object of the specified class. For example, if p is a
polynom object, each of the fo llow ing expressions is true.

i sa(p i , ’ double’)
i sa(’ h e l l o ’ , ’ char ’)
i sa(p , ’ polynom)

14-11

14 MATLAB Classes and Objects

Outside of the class directory, the cl ass function takes only one argument (it
is only w ith in the constructor tha t c l ass can have more than one argument).
The expression

c lass(a)

re tu rns a s tring containing the class name of a. For example

c l a s s (p i) ,
c l a s s (’ h e l l o ’),
c l ass(p)

return

’ double’ ,
’ char ’ ,
’ polynom

Use the whos command to see what objects are in the M ATLAB workspace.

whos

Name Size Bytes Class
p 1x1 156 pol ynom object

The d isp lay Method
M ATLAB calls a method named displ ay whenever an object is the result of a
statement tha t is not te rm inated by a semicolon. For example, creating the
variab le a, which is a double, calls M A T LA B ’s di splay method for doubles:

>>a = 5

a =

5

You should define a d i sp l ay method so M ATLAB can display values on the
command line when referencing objects from your class. In many classes,
d i sp l ay can sim ply p rin t the variab le name, and then use the char converter
method to p rin t the contents or value of the variable, since M ATLAB displays
output as strings. You must define the char method to convert the object’s data
to a character string.

14-12

Designing User Classes in MATLAB

Examples of display Methods
See the fo llow ing sections for examples of d i sp l ay methods:

• “The Polynom display Method” on page 14-27

• “The Asset display Method” on page 14-44

• “The Stock display Method” on page 14-52

• “The Portfo lio display M ethod” on page 14-57

Accessing Object Data
You need to w rite methods for your class tha t provide access to an object’s data.
Accessor methods can use a varie ty of approaches, but all methods tha t change
object data always accept an object as an input argument and return a new
object w ith the data changed. Th is is necessary because M ATLAB does not
support passing arguments by reference (i.e., pointers). Functions can change
only the ir private, tem porary copy of an object. Therefore, to change an existing
object, you must create a new one, and then replace the old one.

The fo llow ing sections provide more detail about implem entation techniques
for the s e t , get , subsasgn, and subsref methods.

The set and get Methods
The set and get methods provide a convenient way to access object data in
certain cases. For example, suppose you have created a class tha t defines an
arrow object tha t M ATLAB can display on graphs (perhaps composed of
existing M ATLAB line and patch objects).

To produce a consistent interface, you could define set and get methods tha t
operate on arrow objects the way the M ATLAB set and get functions operate
on bu ilt-in graphics objects. The set and get verbs convey what operations
they perform, but insu la te the user from the in te rna ls of the object.

Examples of set and get Methods. See the fo llow ing sections for examples of set
and get methods:

• “The Asset get Method” on page 14-40 and the “The Asset set M ethod” on
page 14-41

• “The Stock get Method” on page 14-47 and the “The Stock set Method” on
page 14-50

14-13

14 MATLAB Classes and Objects

Property Name Methods
As an a lte rna tive to a general set method, you can w rite a method to handle
the assignment of an ind iv idua l property. The method should have the same
name as the property name.

For example, if you defined a class tha t creates objects representing employee
data, you m ight have a fie ld in an employee object called sal ary . You could
then define a method called s a l a r y . m tha t takes an employee object and a
value as input argum ents and re turns the object w ith the specified value set.

Indexed Reference Using subsref and subsasgn
User classes implement new data types in M ATLAB. It is useful to be able to
access object data via an indexed reference, as is possible w ith M A T LA B ’s
bu ilt-in data types. For example, if A is an array of class double, A (i) re turns
the i th element of A.

As the class designer, you can decide what an index reference to an object
means. For example, suppose you define a class tha t creates polynomial objects
and these objects contain the coefficients of the polynomial.

An indexed reference to a polynomial object,

p(3)

could re turn the value of the coefficient of x3, the value of the polynomial at
x = 3, or something d ifferent depending on the intended design.

You define the behavior of indexing for a particu la r class by creating tw o class
methods - subsref and subsasgn. M ATLAB calls these methods whenever an
subscripted reference or assignment is made on an object from the class. I f you
do not define these methods for a class, indexing is undefined for objects of th is
class.

I n general, the rules for indexing objects are the same as the rules for indexing
s tructu re arrays. For details, see Chapter 13, “S tructures and Cell A rrays.”

Handling Subscripted Reference
The use of a subscript or fie ld designator w ith an object on the right-hand side
of an assignment statement is known as a subscripted reference. M ATLAB calls
a method named subsref in these situations. Object subscripted references can

14-14

Designing User Classes in MATLAB

be of th ree form s - an array index, a cell a rray index, and a s truc tu re field
name:

A(I)
A{ I }
A f i e l d

Each of these results in a call by M ATLAB to the subsref method in the class
directory. M ATLAB passes tw o arguments to subs r e f :

B = subsref (A,S)

The firs t argument is the object being referenced. The second argument, S, is a
s truc tu re array wi th tw o fields:

• S. t ype is a s tring containing ’ () ’ , ’{ } ’ , or ’ . ’ specifying the subscript type.
The parentheses represent a num eric array; the curly braces, a cell array;
and the dot, a s truc tu re array.

• S.subs is a cell array or s tring containing the actual subscripts. A colon used
as a subscript is passed as the s tring ’ : ’ .

For instance, the expression

A (1 : 2 , :)

causes M ATLAB to call s u b s r e f (A S) , where S is a 1 -by-1 s truc tu re w ith

S. t ype = ’ () ’
S.subs = { 1 : 2 , ’ : ’ }

S im ila rly , the expression

A{1:2}

uses

S. type =’ { } ’
S.subs = {1 :2}

The expression

A f i e l d

14-15

14 MATLAB Classes and Objects

calls subsref (A,S) where

S. type = ’ . ’
S.subs = ’ f i e l d ’

These sim ple calls are combined for more complicated subscripting
expressions. In such cases, l ength(S) is the number of subscripting levels. For
example,

A(1,2) .name(3:4)

calls subsref (A,S) , where S is a 3-by-1 s tructu re array w ith the values:

S(1) t ype = ’ () ’ S (2) . t ype = ’ . ’ S (3) . t ype = ’ () ’
S(1) .subs = ’ { 1 , 2 } ’ S(2) .subs = ’ name’ S(3) . subs = ’ { 3 : 4 } ’

How to W rite subsref
The subsref method must in terpre t the subscripting expressions passed in by
M ATLAB. A typical approach is to use the swi t ch statement to determ ine the
type of indexing used and to obtain the actual indices. The follow ing three code
fragm ents illu s tra te how to in terpre t the input arguments. In each case, the
function must return the value B.

For an array index:

swi t ch S. type
case ’ () ’

B = A(S. subs { : }) ;
end

For a cell array:

swi t ch S. type
case ’ { } ’

B = A(S . subs { : }) ; % B i s a cel l ar ray
end

14-16

Designing User Classes in MATLAB

For a s truc tu re array:

swi t ch S. type
case ’ . ’

swi t ch S.subs
case ’ f i e l d l ’

B = A. f i e l d l ;
case ’ f i e l d 2 ’

B = A. f i e l d 2 ;
end

end

Examples of the subsref Method
See the fo llow ing sections for examples of the subsref method:

• “The Polynom subsref Method” on page 14-28

• “The Asset subsref Method” on page 14-40

• “The Stock subsref Method” on page 14-48

• “The Portfo lio subsref Method” on page 14-64

Subscripted Assignment
The use of a subscript or fie ld designator w ith an object on the left-hand side of
an assignment statement is known as a subscripted assignment. M ATLAB
calls a method named subsasgn in these situations. Object subscripted
assignment can be of th ree form s - an array index, a cell array index, and a
s truc tu re fie ld name:

A(I) = B
A{ I } = B
A f i e l d = B

Each of these results in a call to subsasgn of the form:

A = subsasgn(A S,B)

The firs t argument, A, is the object being referenced. The second argument, S,
has the same fie lds as those used w ith subs r e f . The th i rd argument, B, is the
new value.

14-17

14 MATLAB Classes and Objects

Examples of the subsasgn Method
See the follow ing sections for examples of the subsasgn method:

• “The Asset subsasgn Method” on page 14-42

• “The Stock subsasgn Method” on page 14-51

Defining end Index ing fo r an Object
When you use end in an object indexing expression, M ATLAB calls the object’s
end class method. If you want to be able to use end in indexing expressions
involving objects of your class, you must define an end method for your class.

The end method has the calling sequence

end(a,k ,n)

where a is the user object, k is the index in the expression where the end syntax
is used, and n is the tota l number of indices in the expression.

For example, consider the expression

A(end-1,:)

M ATLAB calls the end method defined for the object A using the arguments

end(A,1,2)

That is, the end statement occurs in the firs t index element and there are two
index elements. The class method for end must then return the index value for
the last element of the firs t dimension. When you implement the end method
for your class, you must ensure it re tu rns a value appropria te for the object.

Index ing an Object w i t h Ano ther Object
When M ATLAB encounters an object as an index, it calls the subsindex
method defined for the object. For example, suppose you have an object a and
you want to use th is object to index in to another object b.

c = b(a);

14-18

Designing User Classes in MATLAB

A subsindex method m ight do something as sim ple as convert the object to
double format to be used as an index, as shown in th is sample code.

f un c t i on d = subsindex(a)
"/SUBSINDEX
% convert t he object a t o double format t o be used
% as an index i n an indexi ng expression
d = double(a) ;

subsindex values are 0-based, not 1-based.

Converter Methods
A converter method is a class method tha t has the same name as another class,
such as char or double. Converter methods accept an object of one class as
input and return an object of another class. Converters enable you to:

• Use methods defined for another class

• Ensure tha t expressions involving objects of mixed class types execute
properly

A converter function call is of the form

b = cl ass_name(a)

where a is an object of a class other than class_name. In thi s case, M ATLAB
looks for a method called cl ass_name in the class d irectory for object a. I f the
input object is already of type class_name, then M ATLAB calls the constructor,
which just re tu rns the input argument.

Examples of Converter Methods
See the fo llow ing sections for examples of converter methods:

• “The Polynom to Double Converter” on page 14-25

• “The Polynom to Char Converter” on page 14-25

14-19

14 MATLAB Classes and Objects

Overloading Operators and Functions
In many cases, you may want to change the behavior of M A T LA B ’s operators
and functions for cases when the arguments are objects. You can accomplish
thi s by overloading the relevant functions. Overloading enables a function to
handle d ifferent types and numbers of input arguments and perform whatever
operation is appropria te for the highest-precedence object. See “Object
Precedence” on page 14-66 for more inform ation on object precedence.

Over load ing Opera to rs
Each bu ilt-in M ATLAB operator has an associated function name (e.g., the +
operator has an associated p l us . m function). You can overload any operator by
creating an M -file w ith the appropria te name in the class directory. For
example, if e ither p or q is an object of type class_name, the expression

p + q

generates a call to a function @lass_name/p l us .m if it exists. I f p and q are
both objects of d ifferent classes, then M ATLAB applies the rules of precedence
to determ ine which method to use.

Examples of Overloaded Operators
See the follow ing sections for examples of overloaded operators:

• “Overloading the + O perator” on page 14-29

• “Overloading the - O perator” on page 14-30

• “Overloading the * Operator” on page 14-30

14-20

Overloading Operators and Functions

The fo llow ing tab le lis ts the function names for most of M A T LA B ’s operators.

Operat ion M-File Description

a + b p l us(a ,b) B inary addition

a - b minus(a,b) B inary subtraction

-a uminus(a) Unary m inus

+a uplus(a) Unary plus

a.*b t i mes(a,b) Element-w ise m ultip lica tion

a*b mt imes(a,b) M a trix m ultip lica tion

a. /b rdivi de(a, b) Right element-wise division

a. \b Idi v i de(a, b) Left element-wise division

a/ b mrdivide(a,b) M a trix righ t division

a\ b ml d i v i de(a,b) M a trix left division

a. Ab power (a,b) Element-w ise power

aAb mpower(a,b) M a trix power

a < b l t (a , b) Less than

a > b gt(a, b) Greater than

a <= b I e(a, b) Less than or equal to

a >= b ge(a, b) Greater than or equal to

a ~= b ne(a, b) Not equal to

a == b eq(a, b) Equality

a & b and(a,b) Logical AND

a | b or (a, b) Logical OR

~a not(a) Logical NOT

14-21

14 MATLAB Classes and Objects

Operat ion M -File Description

bda col on(a,d,b) Colon operator
a:b col on(a,b)

a’ c t r anspose(a) Complex conjugate transpose

a . ’ t ranspose(a) M a trix transpose

command w ndow
out put

di splay(a) Display method

[a b] h o r z c a t (a , b , . .) Horizontal concatenation

[a; b] v e r t c a t (a , b , . .) Vertical concatenation

a (s1,s 2 , .. sn) subsref (a,s) Subscripted reference

a (s1, . . . , sn) = b subsasgn(a,s,b) Subscripted assignment

b(a) subsindex(a) Subscript index

Over load ing Funct ions
You can overload any function by creating a function of the same name in the
class directory. When a function is invoked on an object, M ATLAB always looks
in the class d irectory before any other location on the search path. To overload
the plot function for a class of objects, for example, sim ply place your version
of p l o t . m in the appropria te class directory.

Examples of Overloaded Functions
See the follow ing sections for examples of overloaded functions:

• “Overloading Functions for the Polynom Class” on page 14-31

• “The Portfo lio pie3 Method” on page 14-57

14-22

Example: A Polynomial Class

Example: A Polynomial Class
This example im plem ents a M ATLAB data type for polynomials by defin ing a
new class called polynom. The class defin ition specifies a s tructu re for data
storage and defines a d irectory (@polynon) of methods tha t operate on polynom
objects.

Polynom Data Structure
The polynom class represents a polynomial wi th a row vector containing the
coefficients of powers of the variable, in decreasing order. Therefore, a polynom
object p is a s tructu re wi th a single fie ld, p.c, containing the coefficients. Th is
fie ld is accessible only w ith in the methods in the @polynom directory.

Polynom Methods
To create a class tha t is well behaved w ith in the M ATLAB environment and
provides useful functiona lity for a polynomial data type, the polynom class
im plem ents the fo llow ing methods:

• A constructor method po l ynomm

• A polynom to double converter

• A polynom to char converter

• A d i sp l ay method

• A subsref method

• Overloaded +, - , and * operators

• Overloaded roots, polyval , p l o t , and d i f f functions

The fo llow ing sections describe the im plem entation of these methods.

14-23

14 MATLAB Classes and Objects

The Polynom Constructor Method
Here is the polynom class constructor, @>olynom'polynorn mi

f un c t i on p = polynom(a)
%PCLYNCM Polynomial c l ass cons t ruc tor .
% p = PCLYNCM(v) creates a polynomial object f r o m the vector v,
% con ta i n i ng the c o e f f i c i e n t s of descending powers of x.
i f nargin == 0

P. c = [];
p = cl a s s (p , ’ po l ynom) ;

e l s e i f i s a (a , ’ pol ynom)
p = a;

e l se
p.c = a (:) . ’ ;
p = cl a s s (p , ’ po l ynom) ;

end

Constructor Calling Syntax
You can call the polynom constructor method wi th one of th ree d ifferent
arguments:

• No Input Argum ent - I f you call the constructor function wi th no arguments,
it re turns a polynom object wi th empty fields.

• Input Argum ent is an Object - I f you call the constructor function w ith an
input argument tha t is already a polynom object, M ATLAB re tu rns the input
argument. The is a function (pronounced “ is a”) checks for thi s s ituation.

• Input Argum ent is a coefficient vector - I f the input argument is a variab le
that is not a polynom object, reshape it to be a row vector and assign it to the

c fie ld of the object’s structure. The c lass function creates the polynom
object, which is then returned by the constructor.

An example use of the polynom constructor is the statement

p = poiynon([1 0 - 2 - 5])

This creates a polynomial wi th the specified coefficients.

14-24

Example: A Polynomial Class

Converter Methods fo r the Polynom Class
A converter method converts an object of one class to an object of another class.
Two of the most im portant converter methods contained in M ATLAB classes
are doubl e and char . Conversion to double produces M A T LA B ’s trad itiona l
m atrix , although thi s may not be appropria te for some classes. Conversion to
char is useful for producing prin ted output.

The Polynom to Double Converter
The double converter method for the polynom class is a very sim ple M-file,
@>olynomfdouble.iT| which merely retrieves the coefficient vector.

f un c t i on c = double(p)
% PCLYNCM/DCUBLE Convert polynom object t o c o e f f i c i e n t vector .
% c = DCUBLE(p) conver ts a polynomial object t o t he vector c
% con ta i n i ng t he c o e f f i c i e n t s of descending powers of x.
c = p c ;

On the object p,

p = polynom([1 0 -2 - 5])

the statement

double(p)

re tu rns

ans =
1 0 -2 -5

The Polynom to Char Converter
The converter to char is a key method because it produces a character s tring
involving the powers of an independent variable, x. Therefore, once you have
specified x, the s tring returned is a syntactica lly correct M ATLAB expression,
which you can then evaluate.

14-25

14 MATLAB Classes and Objects

Here is @polynom'char. m

f un c t i on s = char(p)
% PCLYNOWCHAR
% CHAR(p) is the s t r i n g repr esen t a t i on of p.c
i f a l l (p . c == 0)

s = ’ 0 ’ ;
e l se

d = i eng t h (p . c) - 1;
s = [] ;
f o r a = p.c;

i f a ~= 0 ;
i f ~ i senpty(s)

i f a > 0
s = [s ' + '] ;

e i se
s = [s ' - '] ;
a = -a;

end
end
i f a ~= 1 | d == 0

s = [s nun2 s t r (a)] ;
i f d > 0

s = [s ' * '] ;
end

end
i f d >= 2

s = [s ' ж л' i n t 2s t r (d)] ;
e i s e i f d == 1

s = [s ' x '] ;
end

end
d = d - 1;

end
end

Evaluating the Output
I f you create the polynom object p

p = pol ynon([1 0 - 2 - 5]) ;

14-26

Example: A Polynomial Class

and then call the char method on p

char (p)

M ATLAB produces the result

ans =
xA3 - 2*x - 5

The value returned by char is a s tring tha t you can pass to eval once you have
defined a scalar value for x. For example,

x = 3;
eval (char (p))
ans =

16

See “The Polynom subsref Method” on page 14-28 for a better method to
evaluate the polynomial.

The Polynom disp lay Method
Here is @polynoirf d i s p l a y . m This method relies on the char method to
produce a s tring representation of the polynomial, which is then displayed on
the screen. Th is method produces output tha t is the same as standard
M ATLAB output. That is, the variab le name is displayed followed by an equal
sign, then a blank line, then a new line wi th the value.

f un c t i on d i sp l ay (p)
% PCLYNCM/DISPLAY Command window displ ay of a pol ynom
d i s p (’ ’);
d i s p ([i np u t n a i r e (1) , ’ = ’])
d i s p (’ ’);
d i s p ([’ ’ c ha r (p)])
d i s p (’ ’);

The statement

p = polynom([1 0 -2 - 5])

14-27

14 MATLAB Classes and Objects

creates a polynom object. Since the statement is not term inated w ith a
semicolon, the resu lting output is:

p =
ХЛ3 - 2*x - 5

The Polynom subsref Method
Suppose the design of the polynom class specifies tha t a subscripted reference
to a polynom object causes the polynomial to be evaluated w ith the value of the
independent variab le equal to the subscript. That is, for a polynom object p,

p = polynon([1 0 -2 - 5]) ;

t he fo llow ing subscripted expression re tu rns the value of the polynomial at
x = 3 and x = 4:

p ([3 4])
ans =

16 51

subsref Implementation Details
This im plem entation takes advantage of the char method already defined in
the polynom class to produce an expression tha t can then be evaluated.

f u n c t i o n b = subs r e f (a , s)
% SUBSREF
swi t ch s . t ype
case ' () '

i nd = s . subs { : } ;
f o r i = 1: l e n g t h (i n d)

b (i) = e v a l (s t r r e p (c h a r (a) , ' x ' , n u n 2 s t r (i n d (i)))) ;
end

otherwise
e r r o r (' S p e c i f y value f or x as p (x) ')

end

Once the polynomial expression has been generated by the char method, the
s t r r e p function is used to swap the passed in value for the character x. The
eval function then evaluates the expression and re tu rns the value in the
output argument.

14-28

Example: A Polynomial Class

Over load ing A r i thmet ic Ope ra tors
Several a rith m e tic operations are meaningful on polynomials and should be
implemented for the polynom class. When overloading a rith m e tic operators,
keep in mind what data types you want to operate on. In th is section, the plus,
minus, and mtimes methods are defined for the polynom class to handle
addition, subtraction, and m u ltip lica tion on polynom/polynom and polynom/
double combinations of operands.

Overloading the + Operator
I f e ither p or q is a polynom, the expression

p + q

generates a call to a function ^po l ynom' p l us .m if it exists (unless p or q is an
object of a higher precedence, as described in “Object Precedence” on page
14-66).

The fo llow ing M -file redefines the + operator for the polynom class:

f un c t i on r = pl us(p,q)
% PCLYNCM/PLUS Implement p + q fo r polynoirs.
p = polynom(p);
q = polynom(q);
k = l eng t h (q . c) - l eng t h (p . c) ;
r = po l ynom([zeros(1, k) p.c] + [z e r o s (1, - k) q . c]) ;

The function firs t makes sure tha t both input argum ents are polynomials. Th is
ensures tha t expressions such as

p + 1

tha t involve both a polynom and a double, work correctly. The function then
accesses the tw o coefficient vectors and, if necessary, pads one of them w ith
zeros to make them the same length. The actual addition is sim ply the vector
sum of the tw o coefficient vectors. F ina lly , the function calls the polynom
constructor a th i rd tim e to create the properly typed result.

14-29

14 MATLAB Classes and Objects

Overloading the - Operator
You can implement the overloaded m inus operator (-) using the same approach
as the plus (+) operator. M ATLAB calls @polynon/mnus.m to compute p-q.

f un c t i on r = ninus(p, q)
% PCLYNQWMNUS Implement p - q fo r polynoms.
p = polynon(p) ;
q = polynon(q) ;
k = l eng t h (q . c) - l eng t h (p . c) ;
r = po l y non ([z e r os (1,k) p.c] - [z e r o s (1, - k) q . c]) ;

Overloading the * Operator
M ATLAB calls the method @polynon/nt imes.m to compute the product p*q.
The le tter m at the beginning of the function name comes from the fact tha t it
is overloading M A T LA B ’s m a trix m u ltip lica tion . M u ltip lica tion of tw o
polynomials is sim ply the convolution of the ir coefficient vectors.

f un c t i o n r = mt i nes(p,q)
% PCLYNCM/MTIMES Implement p * q fo r polynoms.
p = polynom(p);
q = polynom(q);
r = po l ynom(conv(p . c , q . c)) ;

Using the Overloaded Operators
Given the polynom object

p = polynom([1 0 - 2 - 5])

M ATLAB calls these tw o functions @polynomfplus.mand @pol ynomfmt imes.m
when you issue the statements

q = p+1
r = p*q

to produce

q =
xЛ3 - 2*x - 4

r =
xЛ6 - 4*xЛ4 - ^ Л 3 + 4*xЛ2 + 18*x + 20

14-30

Example: A Polynomial Class

Over load ing Funct ions fo r the Polynom Class
M ATLAB already has several functions for w ork ing wi th polynomials
represented by coefficient vectors. They should be overloaded to also work w ith
the new polynom object. In many cases, the overloading methods can sim ply
apply the original function to the coefficient field.

Overloading roots for the Polynom Class
The method @polynom' roots.m finds the roots of polynom objects.

f un c t i o n r = roots(p)
% PCLYNCM/RCCTS. RCCTS(p) is a vector con ta i n i ng t he roots of p.
r = r oo t s (p . c) ;

The statement

root s(p)

results in

ans =
2.0946
-1.0473+ 1 .1359i
-1 .0 4 7 3 - 1 .1 359i

Overloading polyval for the Polynom Class

The function polyval evaluates a polynomial at a given set of points.
@>olynomfpolyval . muses nested m u ltip lica tion , or H orner’s method to reduce
the number of m u ltip lica tion operations used to compute the various powers of
x.

f u n c t i on y = p o l yv a l (p , x)
% PCLYNCM/PCLYVAL PCLYVAL(p,x) evaluates p at t he po i nt s x.
y = 0 ;
f o r a = p.c

y = y . * x + a;
end

Overloading plot for the Polynom Class

The overloaded plot function uses both root and polyval . The function selects
the domain of the independent variab le to be s ligh tly larger than an interval

14-31

14 MATLAB Classes and Objects

containing all real roots. Then polyval is used to evaluate the polynomial at a
few hundred points in the domain.

f un c t i o n p l o t (p)
% PCLYNCM/PLCT PLCT(p) p l o t s t he polynom p.
r = max(abs(roots (p))) ;
x = (- 1. 1: 0 . 01 : 1. 1) * r ;
y = p o l yv a l (p , x) ;
p l o t (x , y) ;
t i t l e (c h a r (p))
g r i d on

Overloading d iff for the Polynom Class

The method @polynomfdi f f .mdi f ferent iates a polynomial by reducing the
degree by 1 and m u ltip ly ing each coefficient by its original degree.

f u n c t i on q = d i f f (p)
% PCLYNCIM'DIFF DIFF(p) is the d e r i v a t i v e of t he polynom p.
c = p c ;
d = l eng th(c) - 1; % degree
q = po l ynom(p. c (1: d) . * (d : - 1: 1)) ;

Listing Class Methods
The function call

methods(' class_name')

or i ts command form

methods class_name

shows all the methods available for a particu la r class. For the polynom
example, the output is:

methods polynom

Methods fo r c l ass polynom

char d i sp l ay minus plot polynom roots

d i f f double mtimes plus polyval subsref

14-32

Example: A Polynomial Class

Plotting the tw o polynom objects x and p calls most of these methods.

x = polynom([1 0]) ;
p = polynom([1 0 -2 - 5]) ;
p l o t (d i f f (p * p + 10*p + 20*x) - 20)

6*x5 - 16*x3 + 8*x

14-33

14 MATLAB Classes and Objects

Building on Other Classes
A M ATLAB object can inherit properties and behavior from another M ATLAB
object. When one object (the child) inhe rits from another (the parent), the child
object includes all the fie lds of the parent object and can call the parent’s
methods. The parent methods can access those fie lds tha t a child object
inherited from the parent class, but not fie lds new to the child class.

Inheritance is a key feature of object-oriented programming. It makes it easy
to reuse code by allow ing child objects to take advantage of code tha t exists for
parent objects. Inheritance enables a child object to behave exactly l ike a
parent object, which fac ilita tes the development of related classes that behave
s im ila rly , but are implemented d ifferently.

There are tw o kinds of inheritance:

• S imple inheritance, in which a child object inherits characteristics from one
parent class.

• M u ltip le inheritance, in which a child object inherits characteristics from
more than one parent class.

This section also discusses a related topic, aggregation. Aggregation allows one
object to contain another object as one of its fields.

Simple Inher i tance
A class tha t inhe rits a ttribu tes from a single parent class, and adds new
a ttr ibu tes of its own, uses sim ple inheritance. Inheritance im plies tha t objects
belonging to the child class have the same fie lds as the parent class, as well as
additional fields. Therefore, methods associated w ith the parent class can
operate on objects belonging to the child class. The methods associated w ith the
child class, however, cannot operate on objects belonging to the parent class.
You cannot access the parent’s fie lds d irectly from the child class; you must use
access methods defined for the parent.

The constructor function for a class tha t inhe rits the behavior of another has
tw o special characteristics:

14-34

Building on Other Classes

• It calls the constructor function for the parent class to create the inherited
fields.

• The calling syntax for the c l ass function is s ligh tly d ifferent, reflecting both
the child class and the parent class.

The general syntax for establishing a sim ple inheritance re lationship using the
c l ass function is

chi l d_obj = c l a s s (c h i l d _ o b j , ’ c h i l d _ c l a s s ’ , paren t_ob j) ;

S imple inheritance can span more than one generation. I f a parent class is
itse lf an inherited class, the child object wi l l autom atically inherit from the
grandparent class.

Visibility of Class Properties and Methods
The parent class does not have knowledge of the child properties or methods.
The child class cannot access the parent properties d irectly, but must use
parent access methods (e.g., get or subsref method) to access the parent
properties. From the child class methods, thi s access is accomplished via the
parent fie ld in the child structure. For example, when a constructor creates a
child object c,

c = c l a s s (c , ’ chi l d_class_name’ , parent_obj ec t) ;

M ATLAB autom atica lly creates a field, c. parent_class_name, in the object’s
s truc tu re tha t contains the parent object. You could then have a statement in
the ch ild ’s display method tha t calls the parent’s display method:

d i sp l ay (c . parent_class_name)

See “Designing the Stock Class” on page 14-45 for examples tha t use simple
inheritance.

Mul t ip le Inher i tance
In the m u ltip le inheritance case, a class of objects inherits a ttribu tes from more
than one parent class. The child object gets fie lds from all the parent classes,
as well as fie lds of its own.

M u ltip le inheritance can encompass more than one generation. For example,
each of the parent objects could have inherited fie lds from m u ltip le

14-35

14 MATLAB Classes and Objects

grandparent objects, and so on. M u ltip le inheritance is implemented in the
constructors by calling c l ass w ith more than three arguments.

obj = c l a s s (s t r u c t u r e , ’ class_nai re’ , p a r e n t 1, p a ren t2 , . . .)

You can append as many parent arguments as desired to the class input list.

M u ltip le parent classes can have associated methods of the same name. In this
case, M ATLAB calls the method associated w ith the parent tha t appears firs t
in the cl ass function call in the constructor function. There is no way to access
subsequent parent function of thi s name.

Aggrega t ion
In addition to standard inheritance, M ATLAB objects support containment or
aggregation. That is, one object can contain (embed) another object as one of its
fields. For example, a rational object m ight use tw o polynom objects, one for the
num erator and one for the denominator.

You can call a method for the contained object only from w ith in a method for
the outer object. When determ ining which version of a function to call,
M ATLAB considers only the outermost containing class of the objects passed
as arguments; the classes of any contained objects are ignored.

See “Example: The Portfo lio Container” on page 14-54 for an example of
aggregation.

14-36

Example: Assets and Asset Subclasses

Example: Assets and Asset Subclasses
As an example of sim ple inheritance, consider a general asset class tha t can be
used to represent any item that has monetary value. Some examples of an asset
are: stocks, bonds, savings accounts, and any other piece of property. In
designing thi s collection of classes, the asset class holds the data tha t is
common to all of the specialized asset subclasses. The ind iv idua l asset
subclasses, such as the stock class, inherit the asset properties and contribute
additional properties. The subclasses are “kinds of” assets.

Simple Inher i tance
An example of a sim ple inheritance re la tionship using an asset parent class is
shown in thi s diagram.

As shown in the diagram, the stock, bond, and savings classes inherit
s truc tu re fie lds from the asset class. In thi s example, the asset class is used
to provide storage for data common to all subclasses and to share asset
methods w ith these subclasses. Th is example shows how to implement the

14-37

14 MATLAB Classes and Objects

asset and stock classes. The bond and savings classes can be implemented in
a way tha t is very s im ila r to the st ock class, as would other types of asset
subclasses.

Designing the Asset Class
The asset class provides storage and access for in form ation common to all asset
children. It is not intended to be instantia ted directly, so it does not require an
extensive set of methods. To serve its purpose, the class needs to contain the
fo llow ing methods:

• Constructor

• get and set

• subsref and subsasgn
• d i sp l ay

The Asset Constructor Method
The asset class is based on a s tructu re array w ith four fields:

• desc r i p t o r - Iden tifie r of the particu la r asset (e.g., stock name, savings
account number, etc.)

• date - The date the object was created (calculated by the date command)

• cur rent_va lue - The current value of the asset (calculated from subclass
data)

This inform ation is common to asset child objects (stock, bond, and savings), so
it is handled from the parent object to avoid having to define the same fie lds in
each child class. Th is is pa rticu la rly helpful as the number of child classes
increases.

14-38

Example: Assets and Asset Subclasses

f u n c t i o n a = asset (vararg i n)
% ASSET Const ructor f u n c t i on fo r asset object
% a = ass e t (desc i r p t o r , cur rent_value)
swi t ch nargin
case 0
% i f no input arguments, c reate a defau l t object

a . desc r i p t o r = ’ none’ ;
a .date = date;
a . cur r ent_value = 0 ;
a = cl a s s (a , ’ asse t ’);

case 1
% i f s i ng l e argument of c l ass asset , r e t u r n i t

i f (i s a (v a r a r g i n { 1} , ’ asset ’))
a = v a r a r g i n { 1};

e l se
e r r o r (’ Wong argument t ype ’)

end
case 2
% create object using s pec i f i ed values

a . desc r i p t o r = v a r a r g i n { 1};
a .date = date;
a . cu r ren t _va l ue = v a r a r g i n { 2};
a = cl a s s (a , ’ asse t ’);

otherwise
e r r o r (’ Wong number of input arguments’)

end

The function uses a swi t ch statement to accommodate three possible
scenarios:

• Called w ith no arguments, the constructor re tu rns a default asset object.

• Called w ith one argument tha t is an asset object, the object is sim ply
returned.

• Called w ith tw o argum ents (subclass descriptor, and current value), the
constructor re tu rns a new asset object.

The asset constructor method is not intended to be called directly; it is called
from the child constructors since its purpose is to provide storage for common
data.

14-39

14 MATLAB Classes and Objects

The Asset get Method
The asset class needs methods to access the data contained in asset objects. The
fo llow ing function im plem ents a get method for the class. It uses capitalized
property names rather than lite ra l fie ld names to provide an interface s im ila r
to other M ATLAB objects.

f u n c t i o n val = get (a,prop_name)
% GET Get asset p r ope r t i es f r o m the s pec i f i ed object
% and r e t u r n t he value
swi t ch pr op_name
case ’ Des c r i p t o r ’

val = a . desc r i p t o r ;
case ’ Dat e’

val = a.date;
case ’ Cur rentVa lue ’

val = a. cur rent_va lue;
otherwise

er ro r ([p rop_name, ’ Is not a v a l i d asset p r ope r t y ’])
end

This function accepts an object and a property name and uses a swi tch
statement to determ ine which fie ld to access. Th is method is called by the
subclass get methods when accessing the data in the inherited properties.

The Asset subsref Method
The subsref method provides access to the data contained in an asset object
using one-based num eric indexing and s tructu re fie ld name indexing. The
outer swi t ch statement determ ines i f the index is a num eric or fie ld name
syntax. The inner swi tch statem ents map the index to the appropriate value.

M ATLAB calls subsref whenever you make a subscripted reference to an
object (e.g., A (i) , A { i } , or A. f ieldname). See the subsref help entry for more
inform ation on object subscripted reference.

14-40

Example: Assets and Asset Subclasses

f u n c t i o n b = subs re f (a , i ndex)
%SUBSREF Def ine f i e l d name indexing f o r asset obj ects
swi t ch i ndex . t ype
case ’ () ’

swi t ch i ndex . subs { : }
case 1

b = a. desc r i p t o r ;
case 2

b = a. date;
case 3

b = a. cur rent_val ue;
otherwise

e r r o r (’ Index out of range’)
end

case ’ . ’
swi t ch index.subs
case ’ d e s c r i p t o r ’

b = a. desc r i p t o r ;
case ’ date ’

b = a. date;
case ’ cur rent_val ue’

b = a. cur rent_val ue;
otherwise

e r r o r (’ I n v a l i d f i e l d name’)
end

case ’ { } ’
e r r o r (’ Cel l ar ray i ndex ing not suppor ted by asset o b j e c t s ’)

end

The Asset set Method
The asset class set method is called by subclass set methods. Th is method
accepts an asset object and variab le length argument list of property name/
property value pairs and re tu rns the modified object. Subclass set methods call
the asset set method and require the capability to return the modified object

14-41

14 MATLAB Classes and Objects

since M ATLAB does not support passing arguments by reference. See “The
Stock set Method” on page 14-50 for an example.

f un c t i on a = s e t (a , v a r a r g i n)
% SET Set asset p r ope r t i es and r e t u r n t he updated object
p roper t y_arg i n = vararg i n ;
wh i l e l eng t h (p r ope r t y_a r g i n) >= 2 ,

prop = p r o p e r t y _ a r g i n { 1};
val = p r ope r t y _a r g i n { 2} ;
p roper t y_arg i n = proper t y_arg i n (3 :end) ;
swi t ch prop
case ’ Descri p t o r ’

a . desc r i p t o r = val ;
case ’ Date’

a.date = val ;
case ’ Cur rentValue’

a . cu r r en t _va l ue = val ;
otherwise

e r r o r (’ Asset proper t i es : Descr i p tor , Date, Cur rentValue’)
end

end

The Asset subsasgn Method
The subsasgn method is the assignment equivalent of the subsref method.
Th is version enables you to change the data contained in an object using
one-based num eric indexing and s truc tu re fie ld name indexing. The outer
swi t ch statement determ ines if the index is a num eric or fie ld name syntax.
The inner swi t ch statements map the index value to the appropria te value in
the stock structure.

M ATLAB calls subsasgn whenever you execute an assignment statement (e.g.,
A (i) = val , A { i } = val , or A. f i e l dname = v a l). See the subsasgn help entry
for more inform ation on assignment statements in M ATLAB.

14-42

Example: Assets and Asset Subclasses

f u n c t i o n a = subsasgn(a , i ndex,va l)
% SUBSASGN Def ine index assignment fo r asset ob j ec t s
swi t ch i ndex . t ype
case ’ () ’

swi t ch i ndex . subs { : }
case 1

a . desc r i p t o r = val ;
case 2

a.date = val ;
case 3

a . cu r ren t _va l ue = val ;
otherwise

e r r o r (’ Index out of range’)
end

case ’ . ’
swi t ch index.subs
case ’ d e s c r i p t o r ’

a . desc r i p t o r = val ;
case ’ date ’

a .date = val ;
case ’ cur rent_val ue’

a . cu r ren t _va l ue = val ;
otherwise

e r r o r (’ I n v a l i d f i e l d name’)
end

end

The subsasgn method enables you to assign values to the asset object data
s truc tu re using tw o techniques. For example, suppose you have a child stock
object s.

s = s t o c k (’ XYZ’ ,100,25) ;

W ith in stock class methods, you could change the desc r i p t o r fie ld w ith either
of the fo llow ing statements

s .asse t (1) = ’ ABC’ ;

or

s . as s e t . d e s c r i p t o r = ’ ABC’ ;

14-43

14 MATLAB Classes and Objects

See the “The Stock subsasgn Method” on page 14-51 for an example of how the
child subsasgn method calls the parent subsasgn method.

The Asset display Method
The asset di splay method is designed to be called from child-class displ ay
methods. Its purpose is to display the data it stores for the child object. The
method sim ply form ats the data for display in a way tha t is consistent w ith the
fo rm atting of the ch ild ’s display method.

f u n c t i on d i sp l ay (a)
% DISPLAY(a) Display an asset object
stg = s p r i n t f (’ Descr i ptor : %s\nDate: %s\nCurrent Value:%9.2f ’ , . . .

a . d e s c r i p t o r , a . da t e , a . c u r r e n t _ v a l u e) ;
d i sp (s t g)

The stock class display method can now call th is method to d isplay the data
stored in the parent class. Th is approach isolates the stock d i sp l ay method
from changes to the asset class.

The Asset fieldcount Method
The asset f i e l dcoun t method re tu rns the number of fie lds in the asset object
data structure. f i e l dcoun t enables asset child methods to determ ine the
number of fie lds in the asset object during execution, ra ther than requiring the
child methods to have knowledge of the asset class. Th is allows you to make
changes to the number of fie lds in the asset class data s tructu re w ithou t having
to change child-class methods.

f u n c t i on num_f ields = f i e l dcoun t (asset_obj)
% Determines the number of f i e l d s i n an asset object
% Used by asset c h i l d c l ass methods
num_f ields = l eng t h (f i e l d names (s t r uc t (asse t _ o b j))) ;

The s t ruc t function converts an object to its equivalent data structure,
enabling access to the s truc tu re ’s contents.

Other Asset Methods
The asset class provides inherited data storage for its child classes, but is not
instanced d irectly. The s e t , g e t , and d i sp l ay methods provide access to the
stored data. It is not necessary to implement the fu ll complement of methods

14-44

Example: Assets and Asset Subclasses

for asset objects (such as converters, end, and subsindex) since only the child
classes access the data.

Designing the Stock Class
A stock object is designed to represent one particu la r asset in a person’s
investment portfolio. Th is object contains tw o properties of its own and inherits
th ree properties from its parent asset object.

Stock properties:

• NumberShares - The number of shares for the particu la r stock object.

• Shar ePr i ce - The value of each share.

Asset properties:

• Descr i ptor - The iden tifie r of the particu la r asset (e.g., stock name, savings
account number, etc.).

• Date - The date the object was created (calculated by the date command).

• Curr entValue - The current value of the asset.

Note tha t the property names are not actually the same as the fie ld names of
the s tructu re array used in te rna lly by stock and asset objects. The property
name interface is controlled by the stock and asset set and get methods and is
designed to resemble the interface of other M ATLAB object properties.

The asset fie ld in the stock object s truc tu re contains the parent asset object
and is used to access the inherited fie lds in the parent structure.

Stock Class Methods
The stock class im plem ents the follow ing methods:

• Constructor

• get and set

• subsref and subsasgn
• d i sp l ay

The Stock Class Constructor
The stock constructor creates a stock object from three input arguments:

14-45

14 MATLAB Classes and Objects

• The stock name

• The number of shares

• The share price

The constructor must create an asset object from w ith in the stock constructor
to be able to specify it as a parent to the stock object. The stock constructor
must, therefore, call the asset constructor. The c lass function, which is called
to create the stock object, defines the asset object as the parent.

Keep in mind tha t the asset object is created in the tem porary workspace of the
stock constructor function and is stored as a fie ld (a s s e t) in t he stock
structure. The stock object inherits the asset fields, but the asset object is not
returned to the base workspace.

f un c t i on s = s t ock (va r a r g i n)
% STOCK Stock c l ass cons t ruc tor .
% s = s t ock (desc r i p t o r , num_shares, share_pr i ce)
swi t ch nargin
case 0
% i f no input arguments, c reate a defau l t object

s.num_shares = 0 ;
s . share_pr i ce = 0 ;
a = a s s e t (’ none’ , 0);
s = c l ass(s , ’ s t ock ’ , a) ;

case 1
% i f s i ng l e argument of c l ass stock, r e t u r n i t

i f (i s a (v a r a r g i n { 1} , ’ s t ock ’))
s = v a r a r g i n { 1};

e l se
e r r o r (’ Input argument is not a s tock o b j e c t ’)

end
case 3
% create object using s pec i f i ed values

s.num_shares = v a r a r g i n { 2};
s . share_pr i ce = varargi n{3};
a = a s s e t (v a r a r g i n { 1 } , va r a r g i n { 2 } * v a r a r g i n { 3 }) ;
s = c l ass(s , ’ s t ock ’ ,a) ;

otherwise
e r r o r (’ Wong number of input arguments’)

end

14-46

Example: Assets and Asset Subclasses

Constructor Calling Syntax
The stock constructor method can be called in one of th ree ways:

• No Input Argum ent - I f called w ith no arguments, the constructor re tu rns a
default object w ith empty fields.

• Input A rgum ent is a Stock Object - If called w ith a single input argument
tha t is a stock object, the constructor re tu rns the input argument. A single
argument tha t is not a stock object generates an error.

• Three Input A rgum ents - I f there are three input arguments, the constructor
uses them to define the stock object.

• O therw ise - I f none of the above three conditions are met, re turn an error.

For example, thi s statement creates a stock object to record the ownership of
100 shares of XYZ corporation stocks w ith a price per share of 25 dollars.

XYZ_stock = s t o c k (’ XYZ’ ,100,25) ;

The Stock get Method
The get method provides a way to access the data in the stock object using a
“property name” sty le interface, s im ila r to Handle Graphics. W hile in this
example the property names are s im ila r to the s tructu re fie ld name, they can
be qu ite different. You could also choose to exclude certain fie lds from access
via the get method or return the data from the same fie ld for a varie ty of
property names, if such behavior su its your design.

14-47

14 MATLAB Classes and Objects

f u n c t i o n val = get (s,prop_name)
% GET Get s tock proper t y f r o m t he s pec i f i ed object
% and r e t u r n t he value. Proper ty names are: NumberShares
% SharePr ice, Descr i ptor , Date, Type, Cur rentValue
swi t ch pr op_name
case ’ NumberShares’

val = s.num_shares;
case ’ SharePr i ce’

val = s.shar e_pr ice;
case ’ Des c r i p t o r ’

val = g e t (s . a s s e t , ’ D es c r i p t o r ’); % cal l asset get method
case ’ Dat e’

val = get (s. a s s e t , ’ Date’);
case ’ Type’

val = get (s. a s s e t , ’ Type’);
case ’ Cur rentVa lue ’

val = get (s. a s s e t , ’ Curr entValue’);
otherwise

er ror ([prop_name , ’ Is not a v a l i d s tock p r ope r t y ’])
end

Note tha t the asset object is accessed via the stock object’s asset fie ld (s .asset).
M ATLAB autom atica lly creates thi s fie ld when the c l ass function is called
w ith the parent argument.

The Stock subsref Method
The subsref method defines subscripted indexing for the stock class. In this
example, subsref is implemented to enable num eric and s truc tu re fie ld name
indexing of stock objects.

14-48

Example: Assets and Asset Subclasses

f u n c t i o n b = subs r e f (s , i ndex)
% SUBSREF Def ine f i e l d name i ndex ing for s tock ob j ec t s
f c = f i e l d c o u n t (s . a s s e t) ;
swi t ch i ndex . t ype
case ’ () ’

i f (i nd e x . s u b s { : } <= f c)
b = subs r e f (s . ass e t , i n dex) ;

e l se
swi t ch i ndex . subs { : } - f c
case 1

b = s. num_shares;
case 2

b = s. share_pr i ce;
otherwise
e r r o r ([’ Index must be i n the range 1 t o ’ , num2s t r (f c + 2)])
end

end
case ’ . ’

swi t ch index.subs
case ' nun_shares’

b = s. nun_shares;
case ' share_pr i ce ’

b = s. share_pr i ce;
otherwise

b = subs r e f (s . ass e t , i n dex) ;
end

end

The outer swi t ch statement determ ines if the index is a num eric or fie ld name
syntax.

The f i e l dcoun t asset method determ ines how many fie lds there are in the
asset structure, and the i f statement calls the asset subsref method for
indices 1 to f i e l d c o u n t . See “The Asset fieldcount M ethod” on page 14-44 and
the “The Asset subsref Method” on page 14-40 for a description of these
methods.

N um eric indices greater than the number returned by f i e l dcount are handled
by the inner swi t ch statement, which maps the index value to the appropriate
fie ld in the stock structure.

14-49

14 MATLAB Classes and Objects

Field-name indexing assumes fie ld names other than num_shares and
share_pr i ce are asset fields, which elim inates the need for knowledge of asset
fie lds by child methods. The asset subsref method performs field-nam e error
checking.

See the subsref help entry for general in form ation on im plem enting th is
method.

The Stock set Method
The set method provides a “property name” interface l i ke the get method. It is
designed to update the number of shares, the share value, and the descriptor.
The current value and the date are autom atica lly updated.

f u n c t i on s = s e t (s , v a r a r g i n)
% SET Set s tock p r ope r t i es t o t he s pec i f i ed values
% and r e t u r n t he updated object
p roper t y_arg i n = vararg i n ;
wh i l e l eng t h (p r ope r t y_a r g i n) >= 2 ,

prop = p r o p e r t y _ a r g i n { 1};
val = p r ope r t y _a r g i n { 2} ;
p roper t y_arg i n = proper t y_arg i n (3 :end) ;
swi t ch prop
case ’ NumberShares’

s.num_shares = val ;
case ’ SharePr i ce’

s . shar e_pr i ce = val ;
case ’ Descri p t o r ’

s.asset = s e t (s . a s s e t , ’ D esc r i p t o r ’ , v a l) ;
otherwise

e r r o r (’ I n v a l i d p r ope r t y ’)
end

end
s.asset = s e t (s . a s s e t , ’ Cur rentValue’ , . . .

s.num_shares * s . s h a r e_ p r i c e , ’ Date’ ,date) ;

Note tha t thi s function creates and re tu rns a new stock object w ith the new
values, which you then copy over the old value. For example, given the stock
object,

s = s t o c k (’ XYZ’ ,100,25) ;

14-50

Example: Assets and Asset Subclasses

the fo llow ing set command updates the share price:

s = s e t (s , ’ Shar ePr i ce ’ , 3 6) ;

It is necessary to copy over the original stock object (i.e., assign the output to
s) because M ATLAB does not support passing arguments by reference. Hence
the set method actually operates on a copy of the object.

The Stock subsasgn Method
The subsasgn method enables you to change the data contained in a stock
object using num eric indexing and s tructu re fie ld name indexing. M ATLAB
calls subsasgn whenever you execute an assignment statement (e.g., A (i) =
val , A { i } = val , or A f i e l d n a n e = v a l).

f un c t i on s = subsasgn(s , i ndex , va l)
% SUBSASGN Def ine index assignment fo r s tock ob j ec t s
f c = f i e l d c o u n t (s . a s s e t) ;
swi t ch i ndex . t ype
case ’ () ’

i f (i nd e x . s u b s { : } <= f c)
s.asset = subsasgn(s.asset , i ndex,val) ;

e l se
swi t ch i n d e x . s u b s { : } - f c
case 1

s.num_shares = val ;
case 2

s.shar e_pr i ce = val ;
otherwise
e r r o r ([’ Index must be i n the range 1 t o ’ , num2s t r (f c + 2)])
end

end
case ’ . ’

swi t ch index.subs
case ’ num_shares’

s.num_shares = val ;
case ’ share_pr i ce ’

s.shar e_pr i ce = val ;
otherwise

s.asset = subsasgn(s.asset , i ndex,val) ;
end

end

14-51

14 MATLAB Classes and Objects

The outer swi t ch statement determ ines i f the index is a num eric or fie ld name
syntax.

The f i e l dcoun t asset method determ ines how many fie lds there are in the
asset s truc tu re and the i f statement calls the asset subsasgn method for
indices 1 to f i e l d c o u n t . See “The Asset fieldcount Method” on page 14-44 and
the “The Asset subsasgn Method” on page 14-42 for a description of these
methods.

N um eric indices greater than the number returned by f i e l dcoun t are handled
by the inner swi t ch statement, which maps the index value to the appropriate
fie ld in the stock structure.

Field-name indexing assumes fie ld names other than num_shares and
share_pr i ce are asset fields, which elim inates the need for knowledge of asset
fie lds by child methods. The asset subsasgn method performs field-nam e error
checking.

The subsasgn method enables you to assign values to stock object data
s truc tu re using tw o techniques. For example, suppose you have a stock object

s = s t o c k (’ XYZ’ ,100,25)

You could change the desc r i p t o r fie ld w ith either of the fo llow ing statements

s(1) = ’ ABC’ ;

or

s . d e s c r i p t o r = ’ ABC’ ;

See the subsasgn help entry for general in form ation on assignment statements
in M ATLAB.

The Stock display Method
When you issue the statement (w ithout te rm ina ting w ith a semicolon)

XYZStock = s t o c k (’ XYZ’ ,100,25)

14-52

Example: Assets and Asset Subclasses

M ATLAB looks for a method in the @t ock d irectory called d i sp l ay . The
d i sp l ay method for the stock class produces th is output.

Descr i ptor : XYZ
Date: 17-Nov-1998
Type: s tock
Current Value: 2500.00
Number of shares: 100
Share pr i ce: 25.00

Here is the stock d i sp l ay method.

f u n c t i on d i sp l ay (s)
% DI SPLAY(s) Display a s tock object
d i s p l a y (s . a s s e t)
stg = s p r i n t f (’ Number of shares: %g\nShare pr i ce: %3.2f \ n ’ , . . .

s . num_shares,s .share_pr i ce) ;
d i sp (s t g)

F irs t, the parent asset object is passed to the asset d i sp l ay method to display
its fie lds (M ATLAB calls the asset d i sp l ay method because the input
argument is an asset object). The stock object’s fie lds are displayed in a s im ila r
way using a form atted text string.

Note tha t if you did not implement a stock class displ ay method, M ATLAB
would call the asset di splay method. This would work, but would display only
the descriptor, date, type, and current value.

14-53

14 MATLAB Classes and Objects

Example: The Portfolio Container
Aggregation is the containment of one class by another class. The basic
re lationship is: each contained class “ is a part of” the container class.

For example, consider a financial portfo lio class as a container for a set of
assets (stocks, bonds, savings, etc.). Once the ind iv idua l assets are grouped,
they can be analyzed, and useful in form ation can be returned. The contained
objects are not accessible d irectly, but only via the portfo lio class methods.

See “Example: Assets and Asset Subclasses” on page 14-37 for in form ation
about the assets collected by thi s portfo lio class.

Designing the Port fo l io Class
The portfo lio class is designed to contain the various assets owned by a given
ind iv idua l and provide inform ation about the status of his or her investment
portfolio. Th is example implements a somewhat over-sim plified portfo lio class
tha t:

• Contains an ind iv idua l’s assets

• D isplays inform ation about the portfo lio contents

• D isplays a 3-D pie chart showing the re la tive m ix of asset types in the
portfo lio

Required Portfolio Methods
The portfo lio class im plem ents only th ree methods:

• p o r t f o l i o - The portfo lio constructor.

• d i sp l ay - D isplays inform ation about the portfo lio contents.

• pie3 - Overloaded version of pie3 function designed to take a single portfo lio
object as an argument.

Since a portfo lio object contains other objects, the portfo lio class methods can
use the methods of the contained objects. For example, the portfo lio d i sp l ay
method calls the stock class d i sp l ay method, and so on.

14-54

Example: The Portfolio Container

The Port fol io Constructor Method
The portfo lio constructor method takes as input arguments a c lien t’s name and
a variab le length lis t of asset subclass objects (stock, bond, and savings objects
in thi s example). The portfo lio object uses a s truc tu re array w ith the follow ing
fields:

• name - The c lien t’s name.

• i nd_assets - The array of asset subclass objects (stock, bond, savings).

• t o t a l _ v a l u e - The to ta l value of all assets. The constructor calculates this
value from the objects passed in as arguments.

• account_number - The account number. Th is fie ld is assigned a value only
when you save a portfo lio object (see “Saving and Loading Objects” on page
14-61).

14-55

14 MATLAB Classes and Objects

f u n c t i o n p = p o r t f o l i o (na n e , v a r a r g i n)
% PORTFOLIO Create a p o r t f o l i o object con ta i n i ng the
% c l i e n t ’ s name and a l i s t of assets
swi t ch nargin
case 0

% i f no input arguments, c reate a defau l t object
p.nane = ’ none’ ;
p . t o t a l _v a l ue = 0 ;
p . i nd_assets = { } ;
p.account_number = ’ ’ ;
p = c lass(p, ’ p o r t f o l i o ’);

case 1
% i f s i ng l e argument of c l ass p o r t f o l i o , r e t u r n i t
i f isa(name, ’ p o r t f o l i o ’)

p = name;
else

d i s p ([i npu t name(1) ’ i s not a p o r t f o l i o o b j e c t ’])
r e t u rn

end
otherwise

% create object using s p e c i f i ed arguments
p.nane = name;
p . t o t a l _v a l ue = 0 ;
f o r i = 1: l e n g t h (v a r a r g i n)

p . i nd_a sse t s (i) = { v a r a r g i n { i } } ;
asset_value = g e t (p . i nd _ a s s e t s { i } , ’ CurrentVal ue’);
p . t o t a l _v a l ue = p . t o t a l _ v a l u e + asset_value;

end
p.account_number = ’ ’ ;
p = c lass(p, ’ p o r t f o l i o ’);

end

14-56

Example: The Fbrtfolio Container

Constructor Calling Syntax
The portfo lio constructor method can be called in one of th ree d ifferent ways:

• No input arguments - I f called w ith no arguments, it re tu rns an object w ith
empty fields.

• Input argument is an object - I f the input argument is already a portfo lio
object, M ATLAB re tu rns the input argument. The is a function checks for
thi s case.

• More than tw o input argum ents - I f there are more than tw o input
arguments, the constructor assumes the firs t is the c lien t’s name and the
rest are asset subclass objects. A more thorough im plem entation would
perform more careful input argument checking, for example, using the isa
function to determ ine if the arguments are the correct class of objects.

The Port fo l io d isp lay Method
The portfo lio d i sp l ay method lis ts the contents of each contained object by
calling the object’s d i sp l ay method. It then lis ts the client name and to ta l asset
value.

f un c t i o n d i sp l ay (p)
% DI SPLAY Displ ay a p o r t f o l i o object
f o r i = 1: l eng th (p. i nd_asset s)

d i s p l a y (p . i n d _ a s s e t s { i })
end
stg = s p r i n t f (’ \ nAssets f or Cl i en t : %s\nTotal Value: %9.2f \n ’ , . . .
p .name,p . t o t a l _va l ue) ;
d i sp (s t g)

The Port fol io pie3 Method
The portfo lio class overloads the M ATLAB pie3 function to accept a portfo lio
object and display a 3-D pie chart illu s tra tin g the re la tive asset m ix of the
c lien t’s portfolio. M ATLAB calls the @p o r t f o l i o / p i e3 . m version of pie3
whenever the input argument is a single portfo lio object.

14-57

14 MATLAB Classes and Objects

f u n c t i o n pie3(p)
% PIE3 Cr eate a 3-D pie chart of a p o r t f o l i o
stock_amt = 0 ; bond_amt = 0 ; savings_amt = 0 ;
fo r i= 1: l eng t h (p . i nd_ass e t s)

i f i s a (p . i n d _ a s s e t s { i } , ’ s t ock ’)
stock_amt = stock_amt + . . .

g e t (p . i n d _ a s s e t s { i } , ’ Cur rentValue’);
e l s e i f i s a (p . i n d _ a s s e t s { i } , ’ bond’)

bond_amt = bond_amt + . . .
g e t (p . i n d _ a s s e t s { i } , ’ Cur rentValue’);

e l s e i f i s a (p . i n d _ a s s e t s { i } , ’ sav i ngs ’)
savings_amt = savings_amt + . . .

g e t (p . i n d _ a s s e t s { i } , ’ Cur rentValue’);
end

end
i = 1;
i f stock_amt ~= 0

l a b e l (i) = { ’ Stocks’ };
p i e_ v e c t o r (i) = stock_amt;
i = i +1;

end
i f bond_amt ~= 0

l a b e l (i) = { ’ Bonds’ };
p i e_ v e c t o r (i) = bond_amt;
i = i +1;

end
i f savings_amt ~= 0

l a b e l (i) = { ’ Savings’ };
p i e_ v e c t o r (i) = savings_amt;

end
p i e3 (p i e_vec t o r , l abe l)
s e t (g c f , ’ Renderer ’ , ’ z b u f f e r ’)
s e t (f i n d o b j (g c a , ’ Type’ , ’ Text ’) , ’ FontSize’ ,14)
cm = gray(64) ;
co l ormBp(cn(48:end, :))
s tg(1) = { [’ P o r t f o l i o Composi t ion fo r ’ ,p.name]} ;
s tg(2) = { [’ Total Val ue of Asset s: $’ , n u m 2 s t r (p . t o t a l _ v a l ue)] } ;
t i t l e (s t g , ’ FontSize’ , 12)

14-58

Example: The Fbrtfblio Container

There are three parts in the overloaded pie3 method.

• The firs t uses the asset subclass get methods to access the Cur rentValue
property of each contained object. The to ta l value of each class is summed.

• The second part creates the pie chart labels and builds a vector of graph data,
depending on which objects are present.

• The thi rd part calls the M ATLAB pie3 function, makes some font and
colormap adjustments, and adds a title .

Creating a Port fol io
Suppose you have implemented a collection of asset subclasses in a manner
s im ila r to the stock class. You can then use a portfo lio object to present the
ind iv idua l’s financia l portfolio. For example, given the follow ing assets:

XYZStock = s t o c k (’ XYZ’ ,200,12) ;
SaveAccount = sav i ngs (’ Acc # 1234’ ,2000,3 .2) ;
Bonds = bond(’ U.S. Treasury ’ ,1600,12) ;

Now create a portfo lio object.

p = p o r t f o l i o (’ G l b e r t Bates’ ,XYZStock,SaveAccount ,Bonds)

The portfo lio d i sp l ay method summarizes the portfo lio contents (because thi s
statement is not term inated by a semicolon):

14-59

14 MATLAB Classes and Objects

Descr i p tor : XYZ
Date: 24-Nov-1998
Type: s tock
Current Value: 2400.00
Number of shares: 200
Share pri ce: 12.00

Descr i p tor : Acc # 1234
Date: 24-Nov-1998
Type: savings
Current V a lu e : 2000.00
I n t e r es t Rate: 3.2%

D e s c r ip to r : U .S . Treasury
Date: 24-Nov-1998
Type: bond
Current V a lu e : 1600.00
I n t e r es t Rate: 12%

Assets f or C l i en t : G i l ber t Bates
Total Value: 6000.00

The portfo lio pie3 method displays the re la tive m ix of assets using a pie chart:

pie3(p)

Portfo lio C o m po s ition fo r G ilb e rt Bates
T o ta l V a lue o f A sse ts : $6000

Savings

14-60

Saving and Loading Objects

Saving and Loading Objects
You can use the M ATLAB save and load commands to save and retrieve
user-defined objects to and from .mat files, jus t l ike any other variables.

When you load objects, M ATLAB calls the object’s class constructor to register
the object in the workspace. The constructor function for the object class you
are loading must be able to be called w ith no input arguments and return a
default object. See “Guidelines for W ritin g a Constructor” on page 14-10 for
more inform ation.

Mod i f y ing Objects During Save or Load
When you issue a save or load command on objects, M ATLAB looks for class
methods called saveobj and loadobj in the class directory. You can overload
these methods to modify the object before the save or load operation. For
example, you could define a saveobj method tha t saves related data along w ith
the object or you could w rite a l oadobj method tha t updates objects to a newer
version when thi s type of object is loaded in to the M ATLAB workspace.

Example - Def ining saveobj and loadobj
In the section “Example: The Portfo lio Container” on page 14-54, portfo lio
objects are used to collect in form ation about a c lien t’s investment portfolio.
Now suppose you decide to add an account number to each portfo lio object that
is saved. You can define a portfo lio saveobj method to carry out th is task
autom atica lly during the save operation.

Suppose fu rthe r tha t you have already saved a number of portfo lio objects
w ithou t the account number. You want to update these objects during the load
operation so tha t they are s till va lid portfo lio objects. You can do th is by
defin ing a loadobj method for the portfo lio class.

14-61

14 MATLAB Classes and Objects

Summary of Code Changes
To implement the account number scenario, you need to add or change the
fo llow ing functions:

• p o r t f o l i o - The portfo lio constructor method needs to be modified to create
a new field, account_number, which is in itia lized to the empty s tring when
an object is created.

• saveobj - A new portfo lio method designed to add an account number to a
portfo lio object during the save operation, only if the object does not already
have one.

• loadobj - A new portfo lio method designed to update older versions of
portfo lio objects tha t were saved before the account number s tructu re field
was added.

• subsref - A new portfo lio method tha t enables subscripted reference to
portfo lio objects outside of a portfo lio method.

• getAccountNumber - a M ATLAB function tha t re turns an account number
that consists of the firs t th ree le tters of the c lien t’s name.

The saveobj Method
M ATLAB looks for the portfo lio saveobj method whenever the save command
is passed a portfo lio object. I f @por t fo l i o / saveobj exists, M ATLAB passes the
portfo lio object to saveobj , which must then return the modified object as an
output argument. The follow ing im plem entation of saveobj determ ines if the
object has already been assigned an account number from a previous save
operation. I f not, saveobj calls getAccount Number to obtain the number and
assigns it to the account_number field.

f u n c t i o n b = saveobj (a)
i f i sempty(a.account_number)

a.account_number = getAccountNumber(a);
end
b = a;

The loadobj Method
M ATLAB looks for the portfo lio loadobj method whenever the load command
detects portfo lio objects in the mat file being loaded. If loadobj exists,
M ATLAB passes the portfo lio object to loadobj , which must then re turn the

14-62

Saving and Loading Objects

modified object as an output argument. The output argument is then loaded
in to the workspace.

If the input object does not match the current defin ition as specified by the
constructor function, then M ATLAB converts it to a s tructu re containing the
same fie lds and the object’s s tructu re w ith all the values intact (that is, you
now have a structure, not an object).

The fo llow ing im plem entation of loadobj firs t uses is a to determ ine whether
the input argument is a portfo lio object or a structure. If the input is an object,
it is sim ply returned since no m odifications are necessary. I f the input
argument has been converted to a s tructu re by M ATLAB, then the new
account_number fie ld is added to the s truc tu re and is used to create an updated
portfo lio object.

f un c t i on b = loadob j (a)
% loadobj f o r p o r t f o l i o c lass
i f i s a (a , ’ p o r t f o l i o ’)

b = a;
el se % a i s an old vers i on

a.account_number = getAccountNumber(a);
b = cl a s s (a , ’ port f o l i o ’);

end

Changing the Portfolio Constructor
The portfo lio s tructu re array needs an additional fie ld to accommodate the
account number. To create thi s field, add the line

p.account_number = ’ ’ ;

to @ p o r t f o l i o / p o r t f o l i o . m in both the zero argument and variab le argument
sections.

The getAccountNumber Function
In th is example, getAccountNumber is a M ATLAB function tha t re tu rns an
account number composed of the firs t three letters of the client name
prepended to a series of d ig its. To illu s tra te im plem entation techniques,
getAccountNumber is not a portfo lio method so it cannot access the portfo lio
object data d irectly. Therefore, it is necessary to define a portfo lio subsref
method tha t enables access to the name fie ld in a portfo lio object’s structure.

14-63

14 MATLAB Classes and Objects

For thi s example, getAccountNumber sim ply generates a random number,
which is form atted and concatenated w ith elements 1 to 3 from the portfo lio
name field.

f un c t i o n n = getAccountNumber(p)
% provides a account number fo r object p
n = [upper (p.name(1:3)) s t r c a t (n u m 2 s t r (r o u n d (r a n d (1 , 7) * 1 0)) ’) ’];

Note tha t the portfo lio object is indexed by fie ld name, and then by numerical
subscript to extract the firs t th ree letters. The subsref method must be w ritten
to support thi s form of subscripted reference.

The Portfolio subsref Method
When M ATLAB encounters a subscripted reference, such as tha t made in the
getAccountNumber function,

p.name(1: 3)

M ATLAB calls the portfo lio subsref method to in terpre t the reference. I f you
do not define a subsref method, the above statement is undefined for portfo lio
objects (recall tha t here p is an object, not jus t a structure).

The portfo lio subsref method must support fie ld-nam e and num eric indexing
for the getAccountNumber function to access the portfo lio name field.

f un c t i on b = subs re f (p , i ndex)
% SUBSREF Def ine f i e l d name i ndex ing f or p o r t f o l i o ob j ec t s
swi t ch i n d e x (1) . t yp e
case ’ . ’

swi t ch i n d e x (1) . subs
case ’ name’

i f l eng th (i ndex) == 1
b = p.name;

else
swi t ch i ndex (2) . t y p e
case ’ () ’

b = p.name(i ndex (2) . s u b s { : }) ;
end

end
end

end

14-64

Saving and Loading Objects

Note tha t the portfo lio implem entation of subsref is designed to provide access
to specific elements of the name field; it is not a general im plem entation tha t
provides access to all s tructu re data, such as the stock class im plem entation of
s u b r e f .

See the subsref help entry for more inform ation about indexing and objects.

New Portfolio Class Behavior
W ith the additions and changes made in thi s example, the portfo lio class now:

• Includes a fie ld for an account number

• Adds the account number when a portfo lio object is saved for the firs t tim e

• Autom atica lly updates the older version of portfo lio objects when you load
them in to the M ATLAB workspace

14-65

14 MATLAB Classes and Objects

Object Precedence
Object precedence is a means to resolve the question of which of possibly many
versions of an operator or function to call in a given s itua tion . Object
precedence enables you to control the behavior of expressions containing
d ifferent classes of objects. For example, consider the expression:

ob j ec tA + ob j ec tB

O rd ina rily , M ATLAB assumes tha t the objects have equal precedence and calls
the method associated w ith the leftmost object. However, there are two
exceptions:

• User-defined classes have precedence over M ATLAB bu ilt-in classes.

• User-defined classes can specify the ir re la tive precedence w ith respect to
other user-defined classes using the i n f e r i o r t o and s upe r i o r t o functions.

For example, in the section “Example: A Polynomial Class” on page 14-23 the
polynom class defines a plus method tha t enables addition of polynom objects.
Given the polynom object p:

p = polynom([1 0 -2 -5])
p =

xA3-2*x-5

The expression,

1 + p
ans =

xA3-2*x-4

calls the polynom plus method (which converts the double, 1 , to a polynom
object, and then adds it to p). The user-defined polynom class has precedence
over the M ATLAB double class.

Speci fying Precedence of User-Def ined Classes
You can specify the re la tive precedence of user-defined classes by calling the
i n f e r i o r t o or s upe r i o r t o function in the class constructor.

The i n f e r i o r t o function places a class below other classes in the precedence
hierarchy. The calling syntax for the i n f e r i o r t o function is

i n f e r i o r t o (’ c l a s s 1’ , ’ c l ass2 ’ , . . .)

14-66

Object Precedence

You can specify m u ltip le classes in the argument lis t, placing the class below
many other classes in the hierarchy.

S im ila rly , the s upe r i o r t o function places a class above other classes in the
precedence hierarchy. The calling syntax for the supe r i o r t o function is

s u p e r i o r t o (’ c l a s s 1’ , ’ c l ass2 ’ , . . .)

Location in Hierarchy
I f ob j ec tA is above ob jec tB in the precedence hierarchy, then the expression,

ob j ec tA + ob j ec tB

calls assA/p l us .m Conversely, if ob j ec tB is above ob j ec tA in the
precedence hierarchy, then M ATLAB calls @! ass B / p l us . m

See “How M ATLAB Determ ines Which Method to C a ll” on page 14-68 for
related inform ation.

14-67

14 MATLAB Classes and Objects

How MATLAB Determines Which Method to Call
I n M ATLAB, functions exist in directories in the computer’s file system. A
d irectory may contain many functions (M-files). Function names are unique
only w ith in a single d irectory (e.g., more than one d irectory many contain a
function called pie3). When you type a function name on the command line,
M ATLAB must search all the d irectories it is aware of to determ ine which
function to call. Th is list of d irectories is called the M ATLAB path.

When looking for a function, M ATLAB searches the directories in the order
they are listed in the path, and calls the firs t function whose name matches the
name of the specified function.

I f you w rite an M -file called p ie3 .m and put it in a d irectory tha t is searched
before the specgraph directory tha t contains M A T LA B ’s p ie3 function, then
M ATLAB uses your p ie3 function instead (note tha t th is is not true for bu ilt-in
functions like p lo t , which are always found firs t).

Object oriented-program m ing allows you to have many methods (M ATLAB
functions located in class directories) w ith the same name and enables
M ATLAB to determ ine which method to use based on the type or class of the
variables passed to the function. For example, if p is a portfo lio object, then,

p ie3 (p)

calls @portf o l io /p ie 3 .m because the argument is a portfo lio object.

The Process of Selecting a Method
When you call a method for which there are m u ltip le versions w ith the same
name, M ATLAB determ ines the method to call by:

• Looking at the classes of the objects in the argument lis t to determ ine which
argument has the highest object precedence; the class of th is object controls
the method selection and is called the dispatch type.

• Apply ing the function precedence order to determ ine which of possibly
several im plem entations of a method to call. Th is order is determ ined by the
location and type of function.

14-68

How MATLAB Determines Which Method to Call

Determining the Dispatch Type
M ATLAB firs t determ ines which argument controls the method selection. The
class type of th is argument then determ ines the class in which M ATLAB
searches for the method. The contro lling argument is either:

• The argument w ith the highest precedence, or

• The leftmost of argum ents having equal precedence

User-defined objects take precedence over M A T LA B ’s bu ilt-in classes such as
double or ch a r. You can set the re la tive precedence of user-defined objects w ith
the in f e r io r t o and s u p e r io r to functions, as described in “Object Precedence”
on page 14-66.

M ATLAB searches for functions by name. When you call a function, M ATLAB
knows the name, number of arguments, and the type of each argument.
M ATLAB uses the dispatch type to choose among m u ltip le functions of the
same name, but does not consider the number of arguments.

Function Precedence Order
The function precedence order determ ines the precedence of one function over
another based on the type of function and its location on the M ATLAB path.
From the perspective of method selection, M ATLAB contains tw o types of
functions: those bu ilt in to M ATLAB, and those w ritte n as M-files. M ATLAB
trea ts these types d iffe ren tly when determ in ing the function precedence order.

M ATLAB selects the correct function for a given context by applying the
follow ing function precedence rules, in the order given:

1 O verloaded B u ilt- in F u n c tio n . I f there is a method in the class d irectory of
the d ispatching argument tha t has the same name as a M ATLAB function,
then th is method is called instead of the M ATLAB function.

2 N onoverloaded M ATLAB F unctions . I f there is no overloaded method,
then the M ATLAB function is called. Note tha t M ATLAB bu ilt-in functions
take precedence over both subfunctions and priva te functions, but M ATLAB
M -file functions do not.

3 S ub functions. Subfunctions take precedence over other functions on the
path w ith the same name. Note tha t subfunctions w ith the same name as
M ATLAB bu ilt-in functions (or overloaded bu ilt-in functions) can never be

14-69

14 MATLAB Classes and Objects

called, because of rules 1 and 2. However, subfunctions always take
precedence over M -file and overloaded M -file functions.

4 P riva te Functions . A function in a priva te d irectory (i.e., a d irectory named
p r iv a te) tha t is below the d irectory containing the calling function takes
precedence over other functions on the path having the same name. Note
tha t priva te functions w ith the same name as M ATLAB bu ilt-in functions
(or overloaded bu ilt-in functions) can never be called, because of rules 1 and
2. However, p riva te functions always take precedence over M -file and
overloaded M -file functions.

5 Class C ons truc to r F unctions . Constructor functions (functions having
names tha t are the same as the @ directory, for example @polynomf
polynomm) take precedence over other M ATLAB functions. Therefore, if you
create an M -file called polynom m and put it on your path before the
constructor @ polynom/polynomm version, M ATLAB w ill always call the
constructor version.

6 O verloaded M ethods. M ATLAB calls an overloaded method if it is not
masked by a subfunction or priva te function.

7 C u rre n t D ire c to ry . A function in the current w ork ing d irectory is selected
before one elsewhere on the path.

8 E lsew here On P a th . F ina lly , a function anywhere else on the path is
selected.

Selection from Multiple Directories
There may be a number of d irectories on the path tha t contain methods w ith
the same name. M ATLAB stops searching when it finds the firs t
implem entation of the method on the path, regardless of the im plem entation
type (M EX-file, P-code, M-file).

Selection from Multiple Implementation Types
There are four file precedence types. M ATLAB uses file precedence to select
between identica lly named functions in the same directory. The order of
precedence for file types is:

1 M EX-files

2 M D L-file (S im ulink model)

14-70

How MATLAB Determines Which Method to Call

3 P-code

4 M -file

For example, if M ATLAB finds a P-code and an M -file version of a method in a
class directory, then the P-code version is used. It is, therefore, im portant to
regenerate the P-code version whenever you edit the M -file.

Query ing Which Method MATLAB Wil l Call
You can determ ine which method M ATLAB w ill call using the which command.
For example,

which pie3
yo u r_ m B tla b _ p a th /to o lb o x /ira tla b /sp e cg ra p h /p ie 3 .m

However, if p is a portfo lio object,

which p ie3 (p)
d ir_ o n _ y o u r_ p a th /@ p o rtfo lio /p ie 3 .m % p o r t f o l io met hod

The which command determ ines which version of p ie3 M ATLAB w ill call if you
passed a portfo lio object as the input argument. To see a list of all versions of a
particu la r function tha t are on your M ATLAB path, use the - a l l option. See
the which reference page for more inform ation on th is command.

14-71

14 MATLAB Classes and Objects

14-72

15

File I/O

O pe n in g and C los ing F ile s ... 15-3
Using the F ile Identifie r (f id) ..15-4
Closing a F i l e .. 15-5

T e m p o ra ry F ile s and D ir e c to r ie s .. 15-6

B in a ry F i l e s .. 15-7
Reading B inary F i l e s ...15-7
W riting B inary F i l e s ...15-8

C o n tro llin g P o s itio n in a F i l e .. 15-10
Understanding F ile P o s it io n ... 15-11

F o rm a tte d F i l e s ... 15-13
Reading Strings L ine-By-Line from Text F i le s 15-13
Reading Formatted T e x t .. 15-14
W riting Text F i l e s ...15-15

15 File I /O

M A T LA B ’s file input and output (I/O) functions read and w rite a rb itra ry
b inary and form atted text files. They allow you to read data collected in other
form ats and to w rite out data for other programs or devices.

The low-level file I/O functions live in a d irectory called i o f un in the M ATLAB
Tool box.

Category Function Description

F ile Opening and
Closing

fopen Open file.

f c l os e Close file.

B inary I/O f read Read binary data from file.

f w r i t e W rite binary data to file.

Formatted I/O fscanf Read form atted data from file.

f p r i n t f W rite form atted data to file.

f get l Read line from file, discard newline
character.

f ge t s Read line from file, keep newline
character.

S tring Conversion s p r i n t f W rite form atted data to string.

sscanf Read s tring under form at control.

F ile Positioning f e r r o r Inqu ire file I/O error status.

feof Test for end-of-file.

f seek Set file position indicator.

f t e l l Get file position indicator.

f rewi nd Rewind file.

Temporary Files tempdi r Get tem porary d irectory name.

tempname Get tem porary filename.

15-2

Opening and Closing Files

Opening and Closing Files
Files are opened w ith the fopen command and closed w ith the f c l os e
command.

Function Purpose

fopen Open file.

f c l os e Close file.

Before reading or w r it in g a text or b inary file you must open it w ith the fopen
command.

f i d = f open(’ f i l e n a т в ’ , ’ p e r т i s s i on ’)

The per mission s tring specifies the kind of access you require. Possible
permission strings include:

• r for reading only

• w for w r it in g only

• a for appending only

• r+ for both reading and w ritin g

Note Systems such as Microsoft W indows tha t d istinguish between text and
binary files may require additional characters in the permission string, such
as ’ r b ’ to open a binary file for reading.

fopen re tu rns a file identifie r (f i d) , the value you use to access the open file.

Th is fopen statement opens the data file named penny.dat for reading:

f i d = f open(’ penny.dat ’ , ’ r ’)

MATLAB File I/O Functions and ANSI Standard C
Many of the M ATLAB file I/O functions are based on the I/O functions of the
ANSI Standard C L ib ra ry . I f you know C, therefore, you are probably fam ilia r
w ith these routines. However, not all M ATLAB file I/O commands work the

15-3

15 File I /O

same way as th e ir C language counterparts. Check M ATLAB command syntax
and func tiona lity using the online help fa c ility or the online M ATLAB Function
Reference.

Using the File Ident i f ie r (f id)
The file iden tifie r tha t fopen re tu rns (if successful) is a nonnegative integer.
Th is integer acts as a handle to the file and is an argument to M ATLAB file
I/O functions.

There are tim es when fopen m ight fa il. For example, fopen fa ils if you try to
open a file tha t does not exist. I f fopen fails, it does the following:

• It assigns -1 to the file identifie r.

• It assigns an error message to an optional second output argument. Note
that the error messages are system dependent and are not provided for all
errors on all systems. The function f e r r o r may also provide inform ation
about errors.

I t ’s good practice to test the f ile iden tifie r each tim e you open a file. For
example, th is code loops un til the user enters the name of a readable file:

f i d = 0 ;
wh i l e f i d < 1

f i l enamB= i npu t (’ Cpen f i l e : ’ , ’ s ’);
[f i d , i ressage] = fopen(f i l ename, ’ r ’);
i f f i d == -1

disp(message)
end

end

Now assume tha t no f i l e .mat does not exist but tha t goodf i l e .mat does exist.
On one system, the results are:

Open f i l e : no f i l e .mat
Cannot open f i l e . Existence? Permissions? Memory? . . .

Open f i l e : goodf i l e .mat

15-4

Opening and Closing Files

Closing a File
When you fin ish reading or w ritin g , use f c l os e to close the file. For example,
th is line closes the file associated w ith file iden tifie r f i d :

stat us = f c l o s e (f i d) ;

Th is line closes all open files:

stat us = f c l o s e (’ a l l ’);

Both forms return 0 if the file or files were successfully closed or -1 if the
attem pt was unsuccessful.

M ATLAB autom atica lly closes all open files when you exit from M ATLAB. It is
s till good practice, however, to close a file exp lic itly w ith f c l o s e when you are
finished using it. Not doing so can unnecessarily drain system resources.

Note Closing a file does not clear the file iden tifie r variab le f i d . However,
subsequent attem pts to access a file through th is file iden tifie r variab le w ill
not work.

15-5

15 File I /O

Temporary Files and Directories
The tempdi r
your system.

and tempname commands assist in locating tem porary data on

Function Purpose

tempdi r Get tem porary d irectory name.

tempname Get tem porary filename.

You can create tem porary files. Some systems delete tem porary files every tim e
you reboot the system. On other systems, designating a file as tem porary may
mean only tha t the file is not backed up.

A function named tempdi r re tu rns the name of the directory or folder tha t has
been designated to hold tem porary files on your system. For example, issuing
tempdi r on a UNI X system re tu rns the / tmp directory.

M ATLAB also provides a tempname function tha t re turns a filenam e in the
tem porary directory. The returned filenam e is a su itab le destination for
tem porary data. For example, if you need to store some data in a tem porary file,
then you m ight issue the follow ing command firs t:

f i d = fopen(tempname, ’ w) ;

Note The filenam e tha t tempname generates is not guaranteed to be unique;
however, it is like ly to be so.

15-6

Binary Files

Binary Files
This section explains how to read from or w rite to b inary files.

Function Purpose

f r ead Read binary data from file.

f w r i t e W rite binary data to file.

Reading Binary Files
The f read function reads all or part of a binary file (as specified by a file
iden tifie r) and stores it in a m atrix . In its simplest form, it reads an entire file
and in te rp re ts each byte of input as the next element of the m atrix . For
example, the fo llow ing code reads the data from a file named ni ckel .dat in to
m a trix A.

f i d = f open(’ n i c k e l . d a t ’ , ’ r ’);
A = f r e a d (f i d) ;

To echo the data to the screen after reading it, use char to display the contents
of A as characters, transposing the data so it displays horizontally:

d i sp (cha r (A ’))

The char function causes M ATLAB to in te rp re t the contents of A as characters
instead of as numbers. Transposing A displays it in its more natura l horizontal
format.

Controlling the Number of Values Read
f r ead accepts an optional second argument tha t controls the number of values
read (if unspecified, the default is the entire file). For example, th is statement
reads the firs t 100 data values of the file specified by f i d in to the column
vector A:

A = f r e a d (f i d , 1 00);

Replacing the number 100 w ith the m a trix dimensions [1 0 10] reads the same
100 elements in to a 10-by-10 array.

15-7

15 File I /O

Controlling the Data Type of Each Value
An optional th ird argument to f r ead controls the data type of the input. The
data type argument controls both the number of b its read for each value and
the in terpre ta tion of those b its as character, integer, or floating-point values.
M ATLAB supports a w ide range of precisions, which you can specify w ith
M ATLAB-specific s trings or th e ir C or Fortran equivalents.

Some common precisions include:

• ’char ’ and ’uchar ’ for signed and unsigned characters (usually 8 bits)

• ’ s h o r t ’ and ’ l ong ’ for short and long integers (usually 16 and 32 bits,
respectively)

• ’ f l o a t ’ and ’ double’ for single and double precision floating-point values
(usually 32 and 64 bits, respectively)

Note The meaning of a given precision can vary across d ifferent hardware
platforms. For example, a ’ uchar ’ is not always 8 bits. f r ead also provides a
number of more specific precisions, such as ’ i n t 8 ’ and ’ f l o a t 3 2 ’ . I f in doubt,
use these precisions, which are not p latform dependent. Look up f read in
online help for a complete lis t of precisions.

For example, if f i d refers to an open file containing single-precision
floating-point values, then the fo llow ing command reads the next 10
floating-point values in to a column vector A:

A = f r e a d (f i d , 1 0 , ’ f l o a t ’);

W rit ing Binary Files
The f w r i t e function w rites the elements of a m a trix to a file in a specified
num eric precision, re tu rn ing the number of values w ritte n . For instance, these
lines create a 100-byte b inary file containing the 25 elements of the 5-by-5
magic square, each stored as 4-byte integers:

f w r i t e i d = f o p e n ^ i r Bg i cS . b i n ’ / w) ;
count = f w r i t e (f w r i t e i d , r в g i c (5) , ’ i n t 3 2 ’);
s t a t us = f c l o s e (f w r i t e i d) ;

15-8

Binary Files

In th is case, f w r i t e sets the count variab le to 25 unless an error occurs, in
which case the value is less.

15-9

15 File I /O

Controlling Position in a File
Once you open a file w ith f open, M ATLAB m ainta ins a file position indicator
tha t specifies a particu la r location w ith in a file. M ATLAB uses the file position
indicator to determ ine where in the file the next read or w rite operation w ill
begin. The tab le below summarizes M ATLAB functions for contro lling the file
position indicator:

Function Purpose

feof Determ ine if f ile position indicator is at end-of-file.

f seek Set file position indicator.

f t e l l Get file position indicator.

f rewind Reset file position indicator to beginning of file.

The f seek and f t e l l functions let you set and query the position in the file at
which the next input or output operation takes place:

• The f seek function repositions the file position indicator, le tting you skip
over data or back up to an earlier part of the file.

• The f t e l l function gives the offset in bytes of the file position indicator for a
specified file.

The syntax for f seek is

s t a tus = f s e e k (f i d , o f f s e t , o r i g i n)

f i d is the file iden tifie r for the file. o f f se t is a positive or negative offset value,
specified in bytes. o r i g i n is an origin from which to calculate the move,
specified as a string.

’ c o f ’ Current position in file

’ bo f ’ Beginning of file

’ eo f ’ End of file

15-10

Controlling Fbsition in a File

Unders tand ing File Position
To see how fseek and f t e l l work, consider th is short M-file:

A = 1:5;
f i d = f open(’ f i v e . b i n ’ , ’ w) ;
f w r i t e (f i d , A , ’ s h o r t ’);
stat us = f c l o s e (f i d) ;

Th is code w rites out the numbers 1 through 5 to a b inary file named f i v e . b i n .
The call to f w r i t e specifies tha t each numerical element be stored as a s h o r t .
Consequently, each number uses tw o storage bytes.

Now reopen f i v e . b i n for reading:

f i d = f open(’ f i v e . b i n ’ , ’ r ’);

Th is call to f seek moves the f ile position indicator forward six bytes from the
beginning of the file:

stat us = fseek(f i d , 6 , ’ bo f ’);

F ile Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile Contents 0 1 0 2 0 3 0 4 0 5
F ile Position Indicator 4 -

This call to f r ead reads whatever is at file positions 7 and 8 and stores it in
variab le f o u r :

four = f r e a d (f i d , 1, ’ s h o r t ’);

The act of reading advances the file position indicator. To determ ine the
current file position indicator, call f t e l l :

posi t i o n = f t e l l (f i d)

po s i t i on =

8

File Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile Contents 0 1 0 2 0 3 0 4 0 5
F ile Position Indicator

15-11

15 File I /O

This call to f seek moves the file position indicator back four bytes:

s t a t us = f s e e k (f i d , - 4 , ' c o f ') ;

F ile Position bof 1 2 3 4 5 6 7 8 9 10 eof
F ile Contents 0 1 0 2 0 3 0 4 0 5
F ile Position Indicator i

Calling f read again reads in the next value (3).

t h r ee = f r e a d (f i d , 1, ' s h o r t ') ;

15-12

Formatted Files

Formatted Files
This section explains how to read from and w rite to form atted text files.

Function Purpose

fget l Read line from file, discard newline character.

f ge t s Read line from file, keep newline character.

f scanf Read form atted data from file.

f p r i n t f W rite form atted data to file.

Reading Str ings Line-By-Line from Text Files
M ATLAB provides tw o functions, f ge t l and f ge t s , tha t read lines from
form atted text files and store them in s tring vectors. The tw o functions are
almost identical; the only difference is tha t fget s copies the newline character
to the s tring vector but f ge t l does not.

The fo llow ing M -file function demonstrates a possible use of f ge t l . Th is
function uses f ge t l to read an entire file one line at a tim e. For each line, the
function determ ines whether an input lite ra l s tring (l i t e r a l) appears in the
line.

15-13

15 File I /O

I f it does, the function p rin ts the entire line preceded by the number of tim es
the lite ra l s tring appears on the line.

f un c t i on y = l i t c o u n t (f i l e n a m e , l i t e r a l)
% Search fo r number of s t r i n g matches per l i ne .

f i d = fopen(f i l ename, ’ r t ’);
У = 0;
wh i l e f e o f (f i d) == 0

l i n e = f g e t l (f i d) ;
matches = f i n d s t r (l i n e , l i t e r a l) ;
num = length(matches) ;
i f num > 0

y = y + num
f p r i n t f (1, ’ %d:0%s\n’ , n u m l i ne);

end
end
f c l o s e (f i d) ;

Given the follow ing input da ta file called badpoem

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonf l ys or f l eas.

Calling the l i t c o u n t function w ith the s tring ’ an’ produces the output:

l i t c o u n t (’ badpoem, ’ an’)
2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,

Reading Formatted Text
The f scanf function is like the f scanf function in standard C. Both functions
operate in a s im ila r manner, reading a line of data from a file and assigning it
to one or more variables. Both functions use the same set of conversion
specifiers to control the in terpre ta tion of the input data.

The conversion specifiers for f scanf begin w ith a %> character; common
conversion specifiers include:

15-14

Formatted Files

• %s to match a string

• °/d to match an integer in base 10 format

• /g to match a double-precision floating-po int value

Despite all the s im ila ritie s between the M ATLAB and C versions of f s c a n f ,
there are some significant differences. For example, consider a file named
moon.dat for which the contents are as follows:

3.654234533
2.71343142314
5.34134135678

The fo llow ing code reads all th ree elements of th is file in to a m a trix named
MyData:

f i d = f open(’ moon.dat ’ , ’ r ’);
MyData = f scanf (f i d , ’ / g ’);
stat us = f c l o s e (f i d) ;

Notice tha t th is code does not use any loops. I nstead, the fscanf function
continues to read in text as long as the input format is compatible w ith the
format specifier.

An optional size argument controls the number of m a trix elements read. For
example, if f i d refers to an open file containing strings of integers, then th is
line reads 100 integer values in to the column vector A:

A = f s c a n f (f i d , ’ /Sd’ ,100);

This line reads 100 integer values in to the 10-by-10 m a trix A.

A = f s c a n f (f i d , ’ /Sd’ , [10 10]) ;

A related function, sscan f , takes its input from a s tring instead of a file. For
example, th is line re tu rns a column vector containing 2 and its square root.

r o o t 2 = num2 s t r ([2 , s q r t (2)]) ;
rootva l ues = s sc a n f (r o o t 2 , ’ / f ’);

W rit ing Text Files
The f p r i n t f function converts data to character s trings and outputs them to
the screen or a file. A format control s tring containing conversion specifiers and

15-15

15 File I /O

any optional text specify the output form at. The conversion specifiers control
the output of a rray elements; f p r i nt f copies text d irectly.

Common conversion specifiers include:

• %e for exponential notation

• % for fixed point notation

• %g to autom atica lly select the shorter of %e and %f

Optional fie lds in the format specifier control the m in im um field w id th and
precision. For example, th is code creates a text file containing a short table of
the exponential function:

x = 0 : 0 . 1: 1;
y = [x ; exp(x)] ;

The code below w rites x and y in to a newly created file named ex p t a b l e . t x t :

f i d = f open (’ e x p t a b l e . t x t ’ , ’ w’);
f p r i n t f (f i d , ’ Exponent ial Func t i on \ n \ n ’);
f p r i n t f (f i d , ’ %6 . 2f %12. 8f \ n ’ , y) ;
s t a t us = f c l o s e (f i d) ;

The firs t call to f p r i n t f outputs a tit le , followed by tw o carriage returns. The
second call to f p r i n t f outputs the table of numbers. The form at control s tring
specifies the form at for each line of the table:

• A fixed-point value of six characters w ith tw o decimal places

• Two spaces

• A fixed-point value of twelve characters w ith eight decimal places

f p r i n t f converts the elements of array y in column order. The function uses
the format s tring repeatedly un til it converts all the array elements.

Now use fscanf to read the exponential data file:

f i d = f open (’ e x p t a b l e . t x t ’ , ’ r ’);
t i t l e = f g e t l (f i d) ;
[t a b l e , c o u n t] = f s c a n f (f i d , ’ %f %f ’ , [2 11]) ;
t a b l e = t ab l e ' ;
s t a t us = f c l o s e (f i d) ;

15-16

Formatted Files

The second line reads the file tit le . The th ird line reads the tab le of values, tw o
floating-point values on each line un til it reaches end of file. count re tu rns the
number of values matched.

A function related to f p r i n t f , s p r i n t f , outputs its results to a s tring instead
of a file or the screen. For example:

root2 = s p r i n t f (’ The square root of / i s %10.8e. \n’ , 2 , s q r t (2)) ;

15-17

15 File I /O

15-18

Index

Symbols
! 2-25
% 10-7, 10-9
& 10-24
| 10-24
~ 10-24, 10-25
~= 10-23

A
abs 6-37
absolute accuracy (ODE) 8-22
accuracy of calculations 10-18
Acrobat Reader 2-23
ActiveX entries for MATLAB 2-4
adding

cells to cell arrays 13-21
fields to structure arrays 13-9

addition
of matrices 4-6

addpath 2-14
adjacency matrix 9-15

and graphing 9-15
Bucky ball 9-16
defined 9-15
distance between nodes 9-21
node 9-15
numbering nodes 9-17

administration of license 2-59
Adobe Acrobat Reader 2-23
advanced indexing 10-42
aggregation 14-36
airflow modeling 9-21
algorithms

ODE solvers
Adams-Bashworth-Moulton PECE 8-10
Bogacki-Shampine (2,3) 8-10

Dormand-Prince (4,5) 8-10
modified Rosenbrock formula 8-11
numerical differentiation formulas 8-11

alphanumeric characters. See character
AND operator, rules for evaluating 10-24
angle 6-37
annotating plots 2-18
ans 10-18
answer, assigned to ans 10-18
any 10-26
Application Program Interface (API) 1-5
arguments

checking number of 10-12
defined for function 10-7
for ODE file 8-6
order 10-13, 10-15
passed by reference 10-11
passed by value 10-11
passing variable number 10-14

arithm etic expressions 10-21
arithm etic operators 10-21
arithm etic operators, overloading 14-29
arrays

cell array of strings 11-7
character 10-19, 11-4
dimensions

inverse permutation 12-14
editing 2-52
elements 4-4
indexing

advanced 10-42
multidimensional 12-3
numeric

converting to cell array 13-32
of strings 11-5
storage 10-42

I-1

Index

arrow icon in Debugger 3-7
arrow keys for editing commands 2-6
ASCII files 15-13

loading data from 2-27
loading into workspace 2-13
reading formatted text 15-14
saving 2-12
w riting 15-15

assignment statements 4-4, 10-15, 10-16
using to build structure arrays 13-3

A-stable differentiation formulas 8-32
auread 2-27
automatic highlighting in Editor/Debugger 2-39
automatic indenting in Editor/Debugger 2-39
automatic scalar expansion 10-22
automation server 2-3
automat ion startup option 2-3
auwr i t e 2-29

B
bal l ode 8-44
bandwidth of sparse matrix, reducing 9-27
base (numeric), converting 11-13
base date 10-54
base number conversion 11-3
bicubic interpolation 5-12, 5-13
bilinear interpolation 5-12, 5-13
binary files 2-31, 15-7

controlling data type of values read 15-8
controlling number of values read 15-7
reading 15-7
w riting to 15-8

binary from decimal conversion 11-13
bits for precision 15-8
blanks

finding in string arrays 11-11

removing from strings 11-6
boundary condition, ODE 8-41
breakpoints 3-3

clearing 3-8, 3-14
setting 3-5, 3-11

Brusselator system (ODE example) 8-37
brussode 8-37
Buckminster Fuller dome 9-16
Bucky ball 9-16
buttons in command window 2-36

C
C functions used for memory management 2-33
C programs

for reading files 2-28
for w riting files 2-29

C++ and MATLAB OOP 14-7
cache, path 2-15
calling context 10-11
calling MATLAB functions

compilation for later use 10-10
how MATLAB searches for functions 10-10
ODE solvers 8-6
storing as pseudocode 10-11

can onical class 14-9
case 10-32
case conversion 11-3
cat 9-24, 12-2, 12-7, 12-8, 12-19
catch 10-36

for error handling 10-51
cd 2-16, 2-25
cell

indexing 13-20, 13-24
cell arrays

accessing a subset of cells 13-24
accessing data 13-23

I-2

Index

applying functions to 13-27
cell indexing 13-20
concatenating 13-22
content indexing 13-20
converting to numeric array 13-32
creating 13-19

using assignments 13-20
w ith c e l l s function 13-23
w ith curly braces 13-22

defined 13-2
deleting cells 13-25
deleting dimensions 13-25
displaying 13-21
expanding 13-21
flat 13-29
indexing 13-20
multidimensional 12-19
nested 13-29

building w ith the c e l l s function 13-30
indexing 13-30

of strings 11-7
comparing strings 11-10

of structures 13-33
organizing data 13-28
overview 13-19
preallocation 10-65, 13-23
reshaping 13-25
to replace comma-separated list 13-25
visualizing 13-21

cel l data type 10-20
cel l d i sp 13-21
cel l plot 13-21
cel l s 13-19, 13-23, 13-29
char data type 10-20, 15-8
character arrays 10-19, 11-4

two-dimensional 11-5
characteristic polynomial 5-3

characteristic roots of matrix 5-3
characters

corresponding ASCII values 11-5
finding in string 11-11

chol 9-24, 9-30
Cholesky factorization 4-24

for sparse matrices 9-30
class directories 14-6
c l ass function 14-11
classes 10-19

clearing definition 14-6
constructor method 14-10
designing 14-9
methods (object-oriented) 14-2
methods debugging 14-6
methods required by MATLAB 14-9
overview 14-2

c lc 2-6
clear 2-10, 10-11, 10-66
clear class definition 14-6
clearing M-files 3-3
clearing the Command Window 2-6
closest point searches 5-22
closing files 15-2, 15-3, 15-5
closing MATLAB 2-4
colnm l 9-27, 9-28
colon operator 4-8, 10-21, 12-10

for multidimensional array subscripting 12-10
in subscripts 8-28
to access subsets of cells 13-24
used to index a page 12-16
used w ith scalar expansion 12-6

color prin ting from Editor 2-41, 2-48
c o l p e r m 9-26
column vector 4-5

for polynomial roots representation 5-3
indexing as 10-43

I-3

Index

of event locations (ODE) 8-31
columns 4-27

deleting 10-42
comma to separate function arguments 10-7
command line editing 2-5
command to operating system 2-25
Command Window 2-5, 2-35
commands on m ultip le lines 2-10
comma-separated list

using cell arrays 13-25
comments in code 10-9
comparing

interpolation methods 5-13
sparse and full matrix storage 9-11
strings 11-9

complex conjugate transpose 4-8
complex conjugate transpose operator 10-22
complex values in sparse matrix 9-5
computational functions

applying to cell arrays 13-27
applying to multidimensional arrays 12-15
applying to sparse matrices 9-23
applying to structure fields 13-9
in M-file 10-3

computer 10-18
computer type 10-18
concatenating

cell arrays 13-22
strings 10-46

concatenation 10-41
condest 9-3
condition, dimension compatibility 4-13
conditional statements 10-12
conditions

for ODEs
boundary 8-41
in itia l 8-3, 8-5

confidence intervals 6-28
constructor methods 14-10

guidelines 14-10
using c l ass in 14-11

containment 14-36
content indexing 13-20

to access cell contents 13-23
contents of sparse matrix 9-11
Contents .m file 10-9
continuous extension (ODE solvers) 8-12
contour 5-21
contour plots, to compare interpolation methods

5-14
control keys, for editing commands 2-6
conv 5-4, 13-26
conversion specifiers 2-27
converter methods 14-19, 14-25
converting

and handling dates 10-54
base numbers 11-3
cases of strings 11-3
numbers 11-13
strings 11-3, 11-13, 15-2

convex hull 5-23
convhul l 5-23
convolution 5-4
copying options 2-39
cor rcoef 6-10
correlation coefficients 6-9
cos 10-5
cov 6-9
covariance 6-9
creating

cell array 13-19
multidimensional array 12-4
ODE files 8-14
sparse matrix 9-7

I-4

Index

string 11-4
string array 11-6
structure array 13-3

cross 12-15
cubic interpolation

multidimensional 5-16
one-dimensional 5-10

cubic spline interpolation 5-10
curly braces

for cell array indexing 13-20, 13-22
to build cell arrays 13-22
to nest cell arrays 13-29

current directory 2-16
curve fittin g 5-6

confidence intervals 6-28
customizing menus in Editor 2-41
Cuthill-McKee, reverse ordering 9-27

D
data

binary 15-2
exchanging between platforms 2-31
exporting 2-26
filte r 6-29
Harwell-Boeing format 9-10
importing 2-26
monotonic 5-12
m ultivariate 6-3
pre-processing 6-12
sorting 6-7
temporary 15-6
type for input 15-8

data analysis
fin ite differences 6-11
triangulation 5-18

data class hierarchy 14-3

data fittin g 6-20
confidence intervals 6-28
error bounds 6-28
exponential fit 6-25
exponential fits 6-25
polynomial fits 6-20

data gridding
multidimensional 5-17

data normalization 6-21
data organization

cell arrays 13-28
multidimensional arrays 12-17
structure arrays 13-11

data types 10-19
cell 10-20
char 10-20
classes 14-3
double 10-20
for image processing 10-19
for toolbox creation 10-19
numeric 10-20
precision 15-8

char 15-8
double 15-8
float 15-8
long 15-8
short 15-8
uchar 15-8

sparse 10-20
sparse matrices 10-19
storage 10-20
s t r uc t 10-20
uint 10-20
user defined 14-3
UserCbj ect 10-20

datatips 2-48
date 10-60

I-5

Index

datenum 10-55, 10-56
dates

base 10-54
conversions 10-55
formats 10-54
handling and converting 10-54
number 10-54
string, vector of input 10-57

dates t r 10-55, 10-57
datevec 10-55
dbclear 3-10
dbcont 3-10
dbdown 3-10
dbqui t 3-10
dbstack 3-10
dbstatus 3-10
dbstep 3-10
dbstop 3-10
dbtype 3-10
dbup 3-10
deblank 11-6
Debugger 3-2

buttons 3-5
changing workspace context 3-8
continue 3-5
example 3-3
highlighting 3-7
pause 3-7
red stop sign 3-6
stack 3-2, 3-8
step 3-5
stepping through code 3-12
techniques 3-2
values, viewing 3-2
yellow arrow 3-7

debugging 2-38, 2-39
debugging class methods 14-6

debugging commands 2-54, 3-10
decimal representation

to binary 11-13
to hexadecimal 11-13

decomposition
eigenvalue 4-34
Schur 4-37
singular value 4-38

deconv 5-4
deconvolution 5-4
defaults, setting 2-3
Delaunay triangulation 5-19

closest point searches 5-22
de l e te 2-25
deleting

cells from cell array 13-25
fields from structure arrays 13-9

deletion operator 10-42
delim iter in string 11-12
demos

MATLAB 1-6
density of sparse matrix 9-6
derivative of polynomial 5-5
descriptive statistics 6-7
det 4-20
determinant 4-20
diag 9-24
diagonal

creating sparse matrix from 9-8
of a matrix 4-10

d i a r y 2-28, 2-32
d i f f 6-11
difference between successive vector elements

6-11
difference equations 6-29
differential equations, See ODE solvers
d im argument for cat 12-7

I-6

Index

dimension compatibility 4-13
dimensions

deleting 13-25
permuting 12-13
removing singleton 12-12

d ir 2-25
direct methods for systems of equations 9-33
directories

adding to path 14-7
class 14-6
Cont e n t s . mfi le 10-9
help for 10-9
MATLAB 1-5
private 10-39, 14-5
temporary 15-6

directory, current 2-16
discrete Fourier transform 6-31
d i sp 13-16
dispatch type 14-69
dispatching p rio rity 10-10
d i sp l ay method 14-12

examples 14-13
displayed output 14-27
displaying

cell arrays 13-21
error and warning messages 10-52
field names for structure array 13-4
sparse matrices 9-13

distance between nodes 9-21
divisi on

matrix 4-13
of polynomials 5-4

dlmr ead 2-27
d lmwr i t e 2-28
doc 2-23
documentation, how to use 1-6
documentation, online 2-23

dos 2-25
DOS window, starting MATLAB from 2-4
dot product 4-8
double data type 10-20
double precision 15-8
double-precision matrix 10-19
dsearch 5-22

E
echoing 2-38
edi t 2-15, 2-39
editing

arrays 2-52
commands 2-5
M-files 2-39

editor 2-55
accessing 10-4
command line 2-5
default 2-55
for creating M-files 10-2, 10-4
preference 2-38
See also Editor (MATLAB's)

Editor (MATLAB's)
customizing menus 2-41
font used in 2-50
indenting 2-39
matching quotes automatically 2-49
options 2-55
prin ting in color 2-41
saving files 2-40
syntax form atting 2-49
See also editor

Editor/Debugger 2-39, 3-2, 3-4
caution 2-39
h ighlighting 2-39
indenting 2-39

I-7

Index

See also editor
e ig 4-34, 5-3, 12-16
eigenvalue

decomposition 4-34
eigenvalues 4-34

of sparse matrix 9-36
eigenvector 4-34
element-by-element organization for structures

13-14
el se 10-30, 10-31
e l s e i f 10-30, 10-31
empty arrays

and i f statement 10-32
and relational operators 10-24
and wh i l e loops 10-34

empty matrices 10-49
end method 14-18
end of file 15-10
ending MATLAB 2-4
environment 2-2
eps 10-18
epsilon 10-18
equal to operator 10-23
error

bound, for data fit 6-28
handling 10-51
tolerance (ODE) 8-17, 8-21

er ror 10-6
errors 10-51

displaying 10-52
finding 3-2
input/output 15-2
opening files 15-4

eval
for error handling 10-51

evaluating
polynomials in matrix sense 5-4

string containing function name 10-46
string containing MATLAB code 11-14
string containing MATLAB expression 10-46
values in Debugger 3-7

event location (ODE) 8-17, 8-30
examples

adjacency matrix (sparse) 9-15
airflow modeling 9-21
brussode 8-37
Bucky ball 9-16
checking number of function arguments 10-12
container class 14-54
Delaunay triangulation 5-19
feimflode 8-40
fo r 10-35
function 10-6
i f 10-31
inheritance 14-37
interpolation 5-13
M -file for structure array 13-11
ODE solvers 8-34
or b i t ode 8-46
polynomial class 14-23
r i g i dode 8-34
script 10-5
second difference operator 9-7
sparse matrix 9-7, 9-15
swi t ch 10-33
theoretical graph (sparse) 9-15
van der Pol 8-5

extra parameters 8-16
s tiff 8-8

vdpode 8-35
vectorization 10-63
wh i l e 10-34

exclusive CR operator 10-26
execution

I-8

Index

pausing 10-61
script 10-5

exiting MATLAB 2-4
expanding

cell arrays 13-21
structure arrays 13-4

exponential fit to data 6-25
exponentials, matrix 4-31
exporting

data 2-26
expressi ons

and scalar expansion 10-22
arithm etic 10-21
involving empty arrays 10-24
logical 10-24
most recent answer 10-18
overloading 14-20
relational 10-23

external program, running from MATLAB 10-62
eye 4-10, 9-23

F
factorization 9-27

Cholesky 4-24
for sparse matrices 9-27

Cholesky 9-30
LU 9-28
triangular 9-28

incomplete 9-32
LU 4-25
positive definite 4-24
QR 4-28

fast Fourier transform. See Fourier transform,
fast

f c l os e 15-2, 15-3, 15-5
feimri ode 8-40

femriode example 8-40
feof 15-2, 15-10
f e r r o r 15-2
f f t 6-37, 6-38
FFT. See Fourier transform, fast
f ge t l 15-2, 15-13
f ge t s 15-2, 15-13
f i d 15-3
f i e ldnames 13-4
fields 13-3

accessing data w ith in 13-6
accessing w ith g e t f i e l d 13-8
adding to structure array 13-9
applying functions to 13-9

all like-named fields 13-10
assigning data to 13-3
assigning w ith s e t f i e l d 13-8
defined 13-3
deleting from structures 13-9
indexing w ith in 13-7
names 13-4
size 13-9
w riting M-files for 13-10

f i e l d s 13-4
f i g u r e 2-18
figure window 2-18
file identifier 15-3, 15-4, 15-5
filenames

contained in variables 2-13
wildcards for loading 2-13

files
ASCII 15-13

loading 2-13, 2-27
reading formatted text 15-14
reading line-by-line 15-13
saving 2-28
w riting 15-15

I-9

Index

beginning of 15-10
binary 15-7

controlling data type values read 15-8
controlling number of values read 15-7
reading 15-7
w riting to 15-8

closing 15-2, 15-3, 15-5
Conten t s .m 10-9
current position 15-10
editing M-files 2-39
end of 15-2, 15-10
exchanging between platforms 2-31
fa iling to open 15-4
formatted 15-13
identifiers 15-4
input/output 15-2
l i cense .da t 2-59
local options 2-60
log 2-3
manipulating 2-25
MAT-files 2-11, 2-31
m a t l ab r c . m 2-2
M-files 2-31

debugging 3-2
opening 2-16, 15-2, 15-3

permissions 15-3
position 15-2, 15-10
reading w ith C or Fortran programs 2-28
registry 2-55
saving ASCI I 2-12
search path default 2-15
sound, reading 2-27
sound, w riting 2-29
spreadsheet 2-27
startup 2-2
s t a r t u p . m 2-2
temporary 15-2, 15-6

text 15-13
w riting w ith C or Fortran programs 2-29

fill- in of sparse matrix 9-20
filte ring 6-29
f i n d function

and sparse matrices 9-14
and subscripting 10-27

finding
nonzero elements 6-13
substring w ith in a string 11-12

f i n i s h . m 2-4
f i n i s h d l g . m 2-4
f i n i s h s a v . m 2-4
fin ite differences 6-11
fin ite element discretization (ODE example) 8-40
first-order differential equations, representation

for ODE solvers 8-5
f l a g argument (ODE) 8-18
FLEXlm license manager 2-59
float 15-8
floating-point number

largest 10-18
smallest 10-18

floating-point operations, count 10-18
floating-point precision 15-8
floating-point relative accuracy 10-18
f l op s 10-18
flow control 10-30

catch 10-36
el se 10-30
elsei f 10-30
fo r 10-35
i f 10-30
r e t u r n 10-36
swi t ch 10-32
t r y 10-36
wh i l e 10-34

I-1 0

Index

fminbnd 7-7, 7-9
fminsearch 7-8
font

in Command Window 2-39
in Editor 2-50

fopen 2-27, 15-2, 15-3
fa iling 15-4

fo r 10-35, 13-32
example 10-35
loop

indexing 10-35
matrices as indices 10-35
nested 10-35
syntax 10-35
vectorization 10-30

format
date 10-54
numeric 2-38
See also spr i n t f

format 2-7
formatted files 15-13
form atting of syntax in Editor 2-49
Fortran programs

for reading files 2-28
for w riting files 2-29

Fourier analysis 6-31
Fourier transform

fast
FFT-based interpolation 5-11

specifying length 6-38
f p l o t 7-4
f p r i n t f 15-2, 15-13
fragmentation, reducing 10-65
f read 2-27, 15-2, 15-7
f r e e 2-33
f rewi nd 15-2, 15-10
f scanf 15-2, 15-13

fseek 15-2, 15-10
f t e l l 15-2, 15-10
f u l l 9-24, 9-27
function 10-6

applying
to multidimensional structure arrays 12-21
to structure contents 13-9

body 10-3, 10-8
calling context 10-11
characteristics 10-3
clearing from memory 10-11
contents 10-6
defined 10-3
dispatching prio rity 10-10
example 10-6
executing function name string 10-46
logical 10-26
minim izing 7-7
m ultip le output values 10-7
name 10-9
name resolution 10-10
optimization 10-63
order of arguments 10-13, 10-15
passing variable number of arguments 10-14
primary 10-38
private 10-39
storing as pseudocode 10-11
to create arrays 12-6
what happens when called 10-10
workspace 10-11

function call history 3-24
function definition line 10-7

defined 10-3
for subfunction 10-38

function details report 3-23
function functions 7-1
function reference pages 2-23

I-11

Index

functions
applying to cell arrays 13-27
class 14-11
computational, applying to structure fields

13-9
converters 14-25
i n f e r i o r t o 14-66
is a 14-11
nested 10-67
optimization 7-7
overloading 14-20, 14-22, 14-31
subassign 14-17
subsref 14-14
s upe r i o r t o 14-66
which 14-71

f w r i t e 2-28, 15-2, 15-8
f ze r o 7-10

G
Gaussian elimination 4-24, 4-25
general preferences 2-38
geodesic dome 9-16
get method 14-13
g e t f i e l d 13-8
global variables 10-16

rules for use 10-17
gplot 9-15
graph

characteristics 9-20
defined 9-15
theoretical 9-15

graphical debugging 2-38
graphics 2-18, 2-19

annotations 2-18
greater than operator 10-23
greater than or equal to operator 10-23

g r i dda t a 5-21

H
H1 line 2-22, 10-7

and help command 10-3
and look fo r command 10-3
defined 10-3

Handle Graphics 1-4
handling and converting dates 10-54
Harwell-Boeing data format 9-10
hccurve 7-15
help

at command line 2-20
commands by subject 2-21
directory 2-38
for MATLAB 2-20

help 2-20 , 10-8
and H1 line 10-3

Help Desk 2-23
help text, defined 10-3
Help Window 2-21
helpdesk 2-23
helpwin 2-21
hexadecimal, converting from decimal 11-13
hierarchy of data classes 14-3
highlighting in Editor/Debugger 2-39
humps 7-3

I
I/O. See input/output
icons in command window 2-36
identity m atrix 4-10
i f 10-30

and empty arrays 10-32
example 10-31

I-1 2

Index

nested 10-31
image files

reading 2-27
w riting 2-29

image processing
data type 10-19

imaginary unit 10-18
importing

data 2-26
sparse matrix 9-10

improving solver performance 8-17
imread 2-27
imwr i t e 2-29
incomplete factorization 9-32
indenting in Editor/Debugger 2-39
indexed reference 14-14
indexing 10-40

advanced 10-42
cell array 13-20
content 13-20
fo r loops 10-35
multidimensional arrays 12-10
nested cell arrays 13-30
nested structure arrays 13-17
structures w ith in cell arrays 13-33
w ith in structure fields 13-7

indices, how MATLAB calculates 10-45
In f 10-18
i n f e r i o r t o function 14-66
in fin ity (represented in MATLAB) 10-18
inheritance

example class 14-37
m ultip le 14-35
simple 14-34

in itia l condition 8-14
defined 8-5
example 8-6

in itia l condition vector 8-6
ODE 8-3

in itia l value problem 8-2
defined 8-5

in itia l values
defining in ODE file 8-14
returned by 8-15

inner product 4-7
input

from keyboard 10-61
obtaining from M-file 10-61

input arguments
defined by function 10-7

input/output
binary 15-2
error status 15-2
formatted 15-2
functions 15-2

inserting in Editor 2-48
integer data type 15-15
integers, changing to strings 11-13
integration

double 7-15
numerical 7-14
See also ordinary differential equation solvers

interactive user input 10-61
i n t e r p l 5-9
i n t e r p2 5-12
i n t e r p3 5-15
i n t e r p f t 5-11
i n t e r pn 5-16
interpol ation

comparing methods 5-13
cubic 5-10
cubic spline 5-10
defined 5-9
FFT-based 5-11

I-1 3

Index

memory 5-11
multidimensional 5-15, 5-16

cubic 5-16
linear 5-16
nearest neighbor 5-16

one-dimensional 5-9
cubic 5-10
cubic spline 5-10
linear 5-10
nearest neighbor 5-10

polynomial 5-9
smoothness 5-11
speed 5-11
three-dimensional

nearest neighbor 5-15
tricubic 5-15
trilinear 5-15

two-dimensional 5-12
bicubic 5-12, 5-13
bilinear 5-12, 5-13
nearest neighbor 5-12, 5-13

interpreter, MATLAB 2-5
in terrupting a running program 2-7
in v 4-20
inverse 4-20
inverse permutation of array dimensions 12-14
ipermuite 12-2, 12-14
is a 14-11
isempty 10-24
i s i n f 10-26
isnan 6-13, 10-26
iterative methods

for sparse matrices 9-34
for systems of equations 9-33

J
Jacobian matrix (ODE) 8-17, 8-25

constant Jacobian 8-27
evaluated analytically 8-27
sparsity pattern 8-27
vectorized computation 8-28

Java and MATLAB OOP 14-7
jo in ing matrices 10-41
Jordan Canonical Form 4-36

K
keyboard statements 3-2
keys 2-59

arrow 2-6
control 2-6

keyword search 2-22
kinds of M-files 10-3
kron 4-11
Kronecker tensor product 4-11

L
l a s t e r r 10-51

and error handling 10-51
least squares 9-31
less than operator 10-23
less than or equal to operator 10-23
library, mathematical function 1-5
license manager 2-35, 2-59
l i cense .da t 2-59
line breaks 2-31
line number 2-39
linear algebra and matrices 4-2
linear interpolation 5-10

multidimensional 5-16
linear systems of equations

I-1 4

Index

direct methods 9-33
iterative methods 9-33
sparse 9-33

linear transformation 4-4
linear-in-the-parameters regression 6-17
LM_LICENSE_FILE 2-60
load 2-11, 2-27, 9-10, 10-66
loading

ASCII files 2-13, 2-27
data 2-26
MAT-files 2-12
objects 14-61
using wildcards 2-13

loadobj example 14-62
local variables 10-16
log file 2-3
l og10 6-25
logarithm analysis w ith a second-order model

6-26
logf i l e startup option 2-3
logical expressions 10-24

and subscripting 10-27
logical functions 10-26
logical operators 10-24

rules for evaluation 10-24
long 15-8
long integer 15-8
l ook fo r 2-22, 10-3, 10-7

and H1 line 10-3
loops

fo r 10-35
whi l e 10-34

lu 9-28, 9-29
LU factorization 4-25

for sparse matrices and reordering 9-28

M
magnitude 6-37
mal loc 2-33
manuals, online 2-23
Maple 4-36
mass matrix (ODE) 8-17, 8-29

constant mass matrix 8-30
returned by ODE file 8-30

matching quotes automatically 2-49
MAT-files 2-11, 2-31

loading 2-12
saving 2-11

mathematical functions
finding zeros 7-7
library 1-5
m inim izing 7-7, 7-9
numerical integration 7-14
of one variable 7-7

finding zeros 7-10
of several variables 7-8
plotting 7-4
quadrature 7-14
representing in MATLAB 7-3

mathematical operations on sparse matrices
9-23

M athWorks Web site 2-23
MathWorks, The, home page 1-8
MATLAB

Application Program Interface 1-5
Command Window 2-5
data type classes 14-3
demos 1-6
Handle Graphics 1-4
help for 2-20
history 1-3
interpreter 2-5
language 1-4

I-1 5

Index

mathematical function library 1-5
overview 1-3
path 2-14
product fam ily 1-9
programming

functions 10-6
M-files 10-2
quick start 10-2
scripts 10-5

quitting 2-4
representing functions 7-3
starting 2-2
structures 14-7
version 10-18
working environment 1-4, 2-2

mat lab 2-2
m at l ab r c . m 2-2
matrices

addition 4-6
and linear algebra 4-2
concatenation 10-41
deleting rows and columns 10-42
diagonal of 4-10
dimension compatibility 4-13
division 4-13
empty 10-49
full to sparse conversion 9-2, 9-6
identity 4-10
jo ining 10-41
multiplication 4-8
orthagonal 4-27
sparse 10-19
subtraction 4-6
symmetric 4-7
triangular 4-24

matrix
as index for fo r loops 10-35

characteristic roots 5-3
double-precision 10-19
elements 4-4
exponentials 4-31
iterative methods 9-34
multiplication 4-8
power operator 10-22
powers 4-31
See also matrices

max 9-24
mean 12-15
measuring performance of M-files 3-17
memory

and function workspace 10-11
cache 2-15
management 10-66
Cut of Memory message 10-70
reducing fragmentation 10-65
use of variables 10-67
utilization 2-33

menus 2-37
meshgrid 5-12, 5-15, 5-21
methods 14-2

converters 14-19
determining which is called 14-71
displ ay 14-12
end 14-18
get 14-13
invoking on objects 14-4
listing 14-32
precedence 14-68
required by MATLAB 14-9
set 14-13
subsasgn 14-14
subsref 14-14

M-files 2-31
comments 10-9

I-1 6

Index

contents 10-3
corresponding to functions 14-21
creating

quick start 10-2
creating w ith text editor 10-4
debugging 3-2
dispatching p rio rity 10-10
editing 2-39
for entering data 2-26
for ODE solvers (ODE file) 8-6
impact of clearing on breakpoints 3-3
kinds 10-3
naming 10-2
obtaining input interactively 10-61
obtaining keyboard input 10-61
optimization 10-63
overview 10-3
pausing during execution 10-61
performance of 3-17
primary function 10-38
profiling 3-17
running at startup 2-3
search path 2-14
subfunction 10-38
superseding existing names 10-39
to operate on structures 13-10
to represent mathematical functions 7-3

Microsoft Windows
and MATLAB use of system resources 10-68
environment for MATLAB 2-35

min 6-9
minimal norm 4-22
minimize startup option 2-3
m inim izing functions

of one variable 7-7
of several variables 7-8
setting minimization options 7-9

minimum degree ordering 9-27
ms l ocked 10-17
missing values 6-12
mock 10-17
monotonic data

for interpolation 5-12
Moore-Penrose pseudoinverse 4-21
more 2-7
multidimensional arrays

applying functions 12-15
element-by-element functions 12-15
matrix functions 12-16
vector functions 12-15

cell arrays 12-19
computations on 12-15
creating 12-4

at the command line 12-5
w ith functions 12-6
w ith the cat function 12-7

defined 12-2
extending 12-5
format 12-9
indexing 12-10

avoiding ambiguity 12-10
w ith the colon operator 12-10

interpolation 5-15, 5-16
number of dimensions 12-9
organizing data 12-17
permuting dimensions 12-13
removing singleton dimensions 12-12
reshaping 12-11
size of 12-9
storage 12-9
structure arrays 12-20

applying functions 12-21
subscripts 12-3

multidimensional data gridding 5-17

I-1 7

Index

multidimensional interpolation 5-15, 5-16
cubic 5-16
linear 5-16
nearest neighbor 5-16

m ultip le conditions for sw it ch 10-34
m ultip le inheritance 14-35
m ultip le lines for a single statement 2-10
m ultip le output values 10-7
m ultip le regression 6-19
multiplication

matrix 4-8
of polynomials 5-4

multistep solver (ODE) 8-10
m ultivaria te data 6-3
muinlock 10-17

N
names

for functions 10-9
for variables 10-16
structure fields 13-4
superseding 10-39

NaN 6-12, 10-18
nargin 10-12
nargout 10-12
ndgr i d 5-16, 5-17, 12-2
ndims 12-2, 12-9
nearest neighbor interpolation 5-10, 5-12, 5-13,

5-15
multidimensional 5-16

nesting
cell arrays 13-29
fo r loops 10-35
functions 10-67
i f statements 10-31
structures 13-16

newlines in string arrays 11-11
nnz 9-11, 9-13
nodes 9-15

distance between 9-21
numbering 9-17

nonzero elements
number of 9-11

nonzero elements of sparse matrix 9-11
maximum number in sparse matrix 9-7
storage 9-5, 9-11
values 9-11
visualizing w ith spy plot 9-19

nonzeros 9-11
norm 4-12
norm, minimal 4-22
normalizing data 6-21
nospl ash startup option 2-3
not equal to operator 10-23
NCT operator

rules for evaluating 10-25
Not-a-Number 10-18
now 10-60
nul l 4-19
number of arguments 10-12
numbers

changing to strings 11-13
date 10-54
tim e 10-54

numeric data type 10-20
numeric format 2-7, 2-38
numerical integration 7-14
nzmax 9-11, 9-13

O
object-oriented programming 14-2

converter functions 14-25

I-1 8

Index

features of 14-2
inheritance:multiple 14-35
inheritance:simple 14-34
overloading 14-20, 14-22

subscripting 14-14
overview 14-2
See also classes and objects

objects
accessing data in 14-13
as indices into objects 14-18
creating 14-4
invoking methods on 14-4
loading 14-61
overview 14-2
precedence 14-66
saving 14-61

ODE solver properties
error tolerance 8-17, 8-21

absolute accuracy 8-22
AbsTol 8-22
relative accuracy 8-21
RelTol 8-22

event location 8-17, 8-30
Events 8-31

Jacobian matrix 8-17, 8-25
Jacobian 8-26
JConstant 8-26, 8-27
JPat t e r n 8-26
Vect or i zed 8-26, 8-28

mass matrix 8-17, 8-29
Mass 8-30
MassSingular 8-30

modifying property structure 8-21
ode15s 8-17

BDF 8-32
MaxCrder 8-32

odeset function 8-20

querying property structure 8-21
smoothing output 8-24
solution components for output function 8-24
solver output 8-17, 8-23

CutputFcn 8-23
CutputSel 8-23, 8-24
Ref ine 8-23, 8-24
Stats 8-23, 8-25

specifying (overview) 8-13
step size 8-17, 8-28

I n i t i a l S t e p 8-28, 8-29
MaxStep 8-28

See also ODE solvers
ODE solvers

basic example
nonstiff problem 8-6
s tiff problem 8-8

boundary conditions 8-41
calling 8-6
different kinds of systems 7-13
examples 8-34
f l a g argument 8-18
multistep solver 8-10
nonstiff solvers 8-10
obtaining performance statistics 8-13
obtaining solutions at specific times 8-12
one-step solver 8-10
overview 8-10
quick start 8-3
representing problems 8-5
rewriting problem as first-order system 8-6
solution array 8-12
stab ility 8-32
s tiff problems 8-8
s tiff solvers 8-10
syntax, basic 8-11
tim e interval 8-6

I-1 9

Index

tim e span vector 8-12
van der Pol example

extra parameters 8-16
nonstiff 8-5
stiff 8-8

See also ODE solver properties
ODE. See Ordinary Differential Equations
ode113 8-10

description 8-10
ode15s 8-8 , 8-11, 8-32, 8-41, 8-51, 8-53

description 8-11
properties 8-17

ode23 8-10, 8-53
description 8-10

ode23s 8-11, 8-41, 8-53, 8-55, 8-56
description 8-11

ode45 8-6 , 8-8 , 8-10, 8-23, 8-24, 8-53, 8-55
description 8-10

odeget 8-21
odephas2 8-24
odephas3 8-24
odeplot 8-24
odepr int 8-24
odeset 8-20
offsets for indexing 10-45
one-dimensional interpolation 5-9, 5-10

cubic spline 5-10
linear 5-10
nearest neighbor 5-10

ones 9-23, 12-6
one-step solver (ODE) 8-10
online help 2-22, 2-23, 10-8
open 2-16
opening files 2-16, 15-2, 15-3

fa iling 15-4
operating system command 2-25
operator 10-21

applying to cell arrays 13-27
applying to structure fields 13-9
arithm etic 10-21
colon 8-28, 10-21, 12-6, 12-10, 12-16, 13-24
complex conjugate 10-22
deletion 10-42
equal to 10-23
greater than 10-23
greater than or equal to 10-23
less than 10-23
less than or equal to 10-23
matrix power 10-22
not equal to 10-23
power 10-21
precedence 10-29
relational 10-23
second difference 9-7
subtraction 10-21
unary minus 10-21

operators
& 10-24
| 10-24
~ 10-24
colon 4-8
logical 10-24
overloading 14-2, 14-20
semicolon 2-9
table of 14-21

optimization 10-63
practicalities 7-12
preallocation, array 10-65
troubleshooting 7-13
vectorization 10-63

optimizing performance of M-files 3-17
options

for Editor 2-55
for startup 2-3

I-2 0

Index

local file 2-60
minimization 7-9

CR operator, rules for evaluating 10-25
orbi tode 8-46
order of function arguments 10-13, 10-15
Ordinary Differential Equation solvers. See ODE

solvers
Ordinary Differential Equations

coding as M-file 8-6
coding to return in itia l values 8-15
creating 8-14
defined 8-5
defining in itia l values 8-14
guidelines for creating 8-16
output 8-15
overview 8-14
passing additional parameters 8-16

template 8-18
rew riting for ODE solvers 8-5

organizing data
cell arrays 13-28
multidimensional arrays 12-17
structure arrays 13-11

orthogonal matrix 4-27
orthogonalization 4-24
orthonormal columns 4-27
Cut of Mfemory message 10-70
outer product 4-7
outliers 6-13
output

controlling display format 2-7
displayed 14-27
suppressing 2-9

output arguments
defined by function 10-7

output properties, ODE solvers 8-22

overdetermined systems of simultaneous linear
equations 4-15

overloading 14-14
arithm etic operators 14-29
functions 14-20, 14-22, 14-31
loadobj 14-61
operators 14-2
pie3 14-57
saveobj 14-61

overriding operator precedence 10-29
overtype mode 2-48

P
pack 2-33, 10-66
page subscripts 12-3
paging in the Command Window 2-7
parentheses

for input arguments 10-7
to override operator precedence 10-29

partial fraction expansion 5-7
partial pivoting 4-26
parts of a function 10-6
passing arguments

by reference 10-11
by value 10-11

path
adding directories to 14-7
cache 2-15
changing 2-14
MATLAB 2-14
search 2-14, 2-50

path 2-14
Path Browser 2-50
pathdef . m2-15, 2-50
pathtool 2-50
pausing during M-file execution 10-61

I-21

Index

pausing in Debugger 3-7
pcode 10-11
PCs and MATLAB use of system resources

10-68
PDF files 2-23
percent sign (comments) 10-9
performance

improving for M-files 3-17
improving for solvers 8-17
obtaining statistics for ODE solvers 8-13

permission string 15-3
permutations 9-24
permute 12-2 , 12-13
permuting array dimensions 12-13

inverse 12-14
persistent variables 10-17
phase 6-37
pi 10-18
pie3 function overloaded 14-57
pinv 4-21
pivoting, partial 4-26
plane organization for structures 13-13
platforms, exchanging files between 2-31
plot 2-18
Plot Editor 2-18
plots

annotations in 2-18
plotting

mathematical functions 7-4
polar 10-5
poly 5-3
polyder 5-5
p o l y f i t 5-6, 6-20, 6-23, 6-25, 6-28
polynomial

fits to data 6-20
interpolation 5-9
regression 6-15

polynomials 5-1
and curve fittin g 5-6
basic operations 5-2
characteristics 5-3
derivative of 5-5
dividing 5-4
evaluating in matrix sense 5-4
example class 14-23
m ultip lying 5-4
representing 5-2
roots 5-3

polyval 5-4, 6-23, 6-25, 6-28
positive definite factorization 4-24
power operator 10-21
powers

matrix 4-31
preallocation 10-65

cell array 10-65, 13-23
structure array 10-65

precedence
object 14-66
w ith in expression 10-29

precision
char 15-8
double 15-8
float 15-8
for data types 15-8
long 15-8
short 15-8
single 15-8
uchar 15-8

preconditioner for sparse matrix 9-32
preferences 2-37, 2-58
pre-processing data 6-12, 6-21
primary function 10-38
prin ting

documentation 2-23

I-2 2

Index

in color from Editor 2-41, 2-48
private directory 10-39

in dispatching prio rity 10-10
private function 10-39
private functions

precedence of 14-70
private methods 14-5
product

dot 4-8
inner 4-7
outer 4-7

p r o f i l e 3-17
example 3-19, 3-21
syntax 3-18

profiling 3-17
details report 3-23
function call history 3-24
reports 3-20

programming
debugging 3-2

programming, object-oriented 14-2
programs

running external 10-62
running from MATLAB 2-25
stopping while running 2-7

property structure (ODE)
creating 8-20
modifying 8-21
querying 8-21

ps 2-34
pseudocode 10-11
pseudoinverses 4-21

Q
qr 4-28
QR factorization 4-28, 9-30

quad 7-14, 8-50
quad8 7-14, 8-50
quadrature 7-14
question mark button 2-22
questions and answers, ODE solvers

different kinds of systems 7-13
quick start

MATLAB programming 10-2
ODE solvers 8-3

qui t 10-66
quitting MATLAB 2-4

See also f i n i s h . m
quotes, for creating strings 11-4

R
r M_f i l e startup option 2-3
rand 9-23
randn 12-6
rank 9-3

deficiency 4-29, 9-31
rational format 4-18
reading

data 2-26
sound files 2-27
spreadsheet files 2-27
values from files 15-7

realmax 10-18
r e a l m n 10-18
red stop sign in Debugger 3-6
reducing memory fragmentation 10-65
reference

passing arguments by 10-11
reference documentation 2-23
reference pages 2-23
reference, subscripted 14-14
references for OO design 14-8

I-2 3

Index

registry
file 2-55
for Windows 2-4
resetting 2-4

regression 6-15
linear-in-the-parameters 6-17
m ultip le 6-19
polynomial 6-15

regserver startup option 2-4
relational operators

and empty arrays 10-24
and strings 11-11

relative accuracy (ODE) 8-21
remainder 10-13
removing

cells from cell array 13-25
fields from structure arrays 13-9
singleton dimensions 12-12

reorderings 9-24
and LU factorization 9-28
for sparser factorizations 9-26
minimum degree ordering 9-27
to reduce bandwidth 9-27

replacing substring w ith in string 11-12
repimap 12-6
reports

function call history 3-24
function details 3-23

representing
polynomial roots 5-3
polynomials 5-2
problems for ODE solvers 8-5

reshape 12-11, 13-25
reshaping

cell arrays 13-25
multidimensional arrays 12-11

residuals 6-22

for exponential data fit 6-27
res idue 5-7
re t u r n 10-36
rigid body ODE example 8-34
r i g i dode 8-34
r mf i e l d 13-9
rmpat h 2-14
roots 5-3
roots of polynomial 5-3
round 5-10
row vector 4-5

for polynomial representation 5-2
rows

deleting 10-42
running

external program 10-62
script 10-5

running in Editor 2-41
runtim e errors, finding 3-2

S
save 2-11, 2-28, 2-29, 9-10, 10-66
saveobj example 14-62
saving

ASCII files 2-12, 2-28
Editor options 2-55
files in Editor 2-40
objects 14-61
variables 2-11
workspace 2-11

scalar 4-5
and relational operators 11-11
expansion 10-22
string 11-11

schur 4-37
Schur decomposition 4-37

I-2 4

Index

script 10-5
and creation of new data 10-5
and data in workspace 10-5
characteristics 10-3
defined 10-3
example 10-5
executing 10-5

script files 10-2
search path 2-50, 10-10

and subfunctions 10-38
changing 2-14
for MATLAB files 2-14

searching
for functions 2-22
in string 11-12
online help 2-22, 2-23

second difference operator, example 9-7
semicolon to suppress output 2-9
set method 14-13
s e t f i e l d 13-8
shell escape 2-25
shell escape functions 10-62
s h i f t d i m 12-2
short 15-8
short integer 15-8
simple inheritance 14-34
Sim ulink 1-8
s in 10-5, 12-15
single precision 15-8
singular value decomposition 4-38
size

of structure arrays 13-9
of structure fields 13-9

s i ze 9-23, 12-9, 13-9
smallest value system can represent 10-18
smoothing ODE solver output 8-24
solvers. See ODE solvers

solving linear systems of equations
sparse 9-33

sor t 9-27
sorting data 6-7
sound files

reading 2-27
w riting 2-29

sparse 9-6, 9-23
sparse data type 10-20
sparse matrix 10-19

advantages 9-5
and complex values 9-5
Cholesky factorization 9-30
computational considerations 9-23
contents 9-11
conversion from full 9-2, 9-6
creating 9-6

directly 9-7
from diagonal elements 9-8

defined 9-2
density 9-6
distance between nodes 9-21
eigenvalues 9-36
elementary 9-2
example 9-7
fill- in 9-20
importing 9-10
linear algebra 9-3
linear equations 9-3
linear systems of equations 9-33
LU factorization 9-28

and reordering 9-28
mathematical operations 9-23
nonzero el ements 9-11

maximum number 9-7
specifying when creating matrix 9-7
storage 9-5, 9-11

I-2 5

Index

values 9-11
nonzero elements of sparse matrix

number of 9-11
operations 9-23
permutation 9-24
preconditioner 9-32
propagation through computations 9-23
QR factorization 9-30
reordering 9-3, 9-24
storage 9-5

for various permutations 9-26
viewing 9-11

theoretical graph 9-15
triangular factorization 9-28
viewing contents graphically 9-13
viewing storage 9-11
visualizing 9-19
working w ith 9-2

sparse ODE
example 8-37

spconvert 9-10
spdiags 9-8
special values 10-18
speye 9-23, 9-26, 9-29
splash screen at startup 2-3
spones 9-26
spparms 9-27, 9-34
sprand 9-23
spreadsheet files, w riting 2-29
s p r i n t f 15-2, 15-17
spy 9-13
spy plot 9-19
s q r t m 4-31
square brackets

for output arguments 10-7
squeeze 12-2 , 12-12, 12-16
sscanf 15-2, 15-15

stability (ODE solvers) 8-32
stack

Debugger 3-2, 3-8
starting MATLAB 2-2

from DOS window 2-4
startup files 2-2
startup options 2-3

for UNIX 2-4
s t a r t up . m 2-2
statements

conditional 10-12
on m ultip le lines 2-10

statistics
analyzing residuals 6-22
correlation coefficients 6-9
covariance 6-9
descriptive 6-7
pre-processing data 6-21

status bar in command window 2-36
step

in Debugger 3-5
through code using commands 3-12

step size (ODE) 8-17, 8-28
first step 8-29
upper bound 8-28

s tiff ODE
example 8-37

stiffness (ODE), defined 8-8
stopping a running program 2-7
stopping in Debugger 3-6
storage

array 10-42
data type 10-20
for various permutations of sparse matrix 9-26
of sparse matrix 9-5
sparse and fu ll, comparison 9-11
viewing for sparse matrix 9-11

I-2 6

Index

st rcmp 11-9
string 10-19

and relational operators 11-11
array 11-5

comparing values on cell arrays 11-10
converting to cell arrays 11-7
padding for equal row length 11-5

arrays
cell array 11-7

categorizing characters 11-11
comparing 11-9
concatenation 10-46
conversion 11-3, 11-13, 15-2
creating 11-4
delim iting character 11-12
evaluating 11-14
evaluation 10-46
finding starting position of substring 11-12
functions that test 11-2
operations 11-2
removing tra iling blanks 11-6
representation 11-4
scalar 11-11
searching and replacing 11-12
token 11-12

s t r uc t data type 10-20
s t r u c t s 13-3, 13-5, 13-16
structure arrays

accessing data 13-6
using g e t f i e l d 13-8

adding fields 13-9
applying functions to 13-9
building 13-3

using s t r u c t s 13-5
data organization 13-11
defined 13-2
deleting fields 13-9

element-by-element organization 13-14
expanding 13-4, 13-5
fields

assigning data to 13-3
assigning using set f i e l d 13-8
defined 13-3

indexing
nested structures 13-17
w ith in fields 13-7

multidimensional 12-20
applying functions 12-21

nesting 13-16
obtaining field names 13-4
organizing data 13-11

example 13-15
overview 13-3
plane organization 13-13
preallocation 10-65
size 13-9
subscripting 13-4
w ith in cell arrays 13-33
w riting M-files for 13-10

example 13-11
structures

See also structure arrays
structures used w ith classes 14-7
subarrays

accessing 13-7
subassi gn 14-17
subfunctions 10-38

accessing 10-38
creating 10-38
debugging 10-39
function

definition line 10-38
in dispatching prio rity 10-10
on search path 10-38

I-2 7

Index

subref 14-14
subsasgn 14-14
subscripted assignment 14-17
subscripting

how MATLAB calculates indices 10-45
multidimensional arrays 12-3
overloading 14-14
structure arrays 13-4
w ith logical expression 10-27
w ith the f i nd function 10-27

subscripts 10-40
page 12-3

subsref method 14-14
substring w ith in a string 11-12
su btraction

of matrices 4-6
subtraction operator 10-21
sum 9-24, 9-26, 12-15
s upe r i o r t o function 14-66
superseding existing M-files names 10-39
suppressing output 2-9
surface plots

to compare interpolation methods 5-14
svd 4-39
swi t ch 10-32

case groupings 10-32
example 10-33
m ultip le conditions 10-34

Symbolic Math Toolbox 4-36
syrnmrl 9-27
symmetric matrix 4-7
symnnd 9-28
symrcm 9-27, 9-28
syntax errors, finding 3-2
syntax form atting in Editor 2-49
syntax h ighlighting in Editor/Debugger 2-39
systeiT_dependent 2-55

systems of equations. See linear systems of
equations

systems of ODEs 7-13

T
tabs in string arrays 11-11
tempdi r 15-2, 15-6
tempname 15-2, 15-6
temporary

data 15-6
files 15-2, 15-6

terminal events (ODE) 8-31
text

files, reading 15-14
in Command Window 2-39
in Editor 2-50

text editor. See Editor
t e x t r ead 2-27
The MathWorks, home page 1-8
theoretical graph 9-15

example 9-16
node 9-15

three-dimensional interpolation
nearest neighbor 5-15
tricubic 5-15
trilinear 5-15

tim e
interval (ODE) 8-6
measured for M-files 3-17
numbers 10-54

titlebar in Editor/Debugger 2-40
token in string 11-12
tolerance 10-18
toolbar

preferences 2-38
toolbar in command window 2-36

I-2 8

Index

toolboxes 1-8
creation

data type 10-19
tooltip 2-36
transformed data

magnitude 6-37
phase 6-37

transforms 6-31
discrete Fourier 6-31
fast Fourier 6-31
f f t 6-31

transpose 4-7
complex conjugate 4-8
unconjugated complex 4-8

t ranspose 12-14
triangular factorization

for sparse matrices 9-28
triangular matrices 4-24
triangulation 5-18

closest point searches 5-22
Delaunay 5-19
Voronoi diagrams 5-22

tricubic interpolation 5-15
trigonometric functions 10-5, 12-15
trilinear interpolation 5-15
t r y 10-36
tsearch 5-22
two-dimensional interpolation 5-12

bicubic 5-12
bilinear 5-12
nearest neighbor 5-12

t ype 2-15, 2-25

U
uchar data type 15-8
uint data type 10-20

unary minus operator 10-21
unconjugated complex transpose 4-8
UNIX

environment 2-54
startup options 2-4

unix 2-25
unregserver startup option 2-4
unwrap 6-37
url for The MathWorks 2-23
user classes, designing 14-9
user input

obtaining interactively 10-61
UserCbject data type 10-20
utilities, running from MATLAB 2-25

V
value

largest system can represent 10-18
passing arguments by 10-11

values
data type 15-8

van der Pol example 8-35
extra parameters 8-16
simple, nonstiff 8-5
simple, s tiff 8-8

varargi n 10-14, 13-27
in argument list 10-15
unpacking contents 10-14

varargout 10-15
in argument list 10-15
packing contents 10-15

variables
containing filenames 2-13
currently in the workspace 2-10
deleting

and memory use 10-66

I-2 9

Index

global 10-16
rules for use 10-17

in dispatching prio rity 10-10
local 10-16
memory usage 10-67
naming 10-16
persistent 10-17
replacing list w ith a cell array 13-25
storage in memory 10-66
viewing values during execution 3-2

vdpode 8-35
vector

column 4-5
in itia l condition (ODE) 8-6
of dates 10-57
preallocation 10-65
row 4-5
tim e span vector (ODE) 8-12

vector products 4-7
vectorization 10-63

example 10-63
for Jacobian matrix computation (ODE) 8-28
replacing fo r loops 10-30

vers i on 10-18
version, obtaining 10-18
visualization 2-19
visualizing

cell array 13-21
ODE solver results 8-7
sparse matrix

spy plot 9-19
voronoi 5-22
Voronoi diagrams 5-22

W
warnings 10-51

displaying 10-52
wavread 2-27, 2-29
Web site

The MathWorks 1-8, 2-23
what 2-15
which used w ith methods 14-71
wh i l e 10-34

and empty arrays 10-34
example 10-34
syntax 10-34

white space
finding in string 11-11

who 2-10
whos 2-10, 2-52, 9-11, 12-9

interpreting memory use 10-66
wildcards

for load 2-13
Windows

and MATLAB use of system resources 10-68
environment for MATLAB 2-35
registry 2-4

w klread 2-27
w k l wr i t e 2-29
working environment

MATLAB 1-4, 2-2
workspace 2-10

changing context in Debugger 3-8
context 10-11
loading 2-11, 2-12
of individual functions 10-11
saving 2-11
viewing contents 2-52
viewing during execution 3-2

workspace 2-52
Workspace Browser 2-52
w riting

data 2-26

I-3 0

Index

sound files 2-29
www.nathworks.com2-23

X
Xdef a u l t s file 2-58
xor 10-26

Y
yellow arrow in Debugger 3-7

Z
zeros 9-23, 12-6

I-31

http://www.nathworks.com2-23

