
MATLAB'
---1

Optimization Toolbox

Com puta t ion

V isua l iza t ion

P rog ram m ing

User’s Guide
Version 5

How to Contact The MathWorks:

Q

508-647-7000

508-647-7001

The M athW orks , I nc.
24 P r im e Park Way
N at ick , M A 01760-1500

h t t p : / / w w w . mat h w o rk s .c o m
f t p . mathwor ks. com
com p .so f t - s y s . mat la b

support@mat h w o rk s .c o m
sugges t @ a t hwor ks. com

bugs@mat hwor ks. com
d o c @ a t hwor ks. com
s u b s c r i be@mat hwor ks. com
se r v i ce@mat hwor ks. com

i nfo@mat h w o rk s .c o m

Phone

Fax

M ail

Web
Anonym ous FTP server
Newsgroup

Technical support
Product enhancement suggestions
Bug reports
Documentat ion error reports
Subscrib ing user reg istra tion
Order status, license renewals, passcodes
Sales, pric ing, and general in fo rm a t ion

Optim ization Toolbox User’s Guide
© COPYRIGHT 1990 - 1997 by The MathWorks, Inc. All Rights Reserved.
The softw are described in th is document is fu rn ished under a license agreem ent. The softw are may be used
or copied on ly under the te rm s of the license agreem ent. No part of th is m anual may be photocopied or repro­
duced in any fo rm w ith o u t p rio r w r itte n consent from The M athW orks, Inc.

U .S. G O V E R N M E N T : If Licensee is acqu iring the softw are on behalf of any u n it or agency of the U. S.
Governm ent, th e fo llow ing sha ll apply:

(a) for u n its of the Departm ent of Defense:
R ESTR ICTED R IG H TS LE G E N D : Use, dup lica tion , or disclosure by the Governm ent is subject to re s tric ­
tio n s as set fo rth in subparagraph (c)(1)(ii) of the R ights in Technical Data and Com puter Softw are Clause
at DFARS 252.227-7013.
(b) for any other u n it or agency:
N O TIC E - N o tw iths tand in g any other lease or license agreement th a t may pe rta in to, or accompany the
de live ry of, th e com puter softw are and accompanying docum entation, the rig h ts of the Governm ent
regard ing its use, reproduction and disclosure are as set fo rth in Clause 52.227-19(c)(2) of th e FAR.
C ontrac to r/m anu factu re r is The M a thW orks Inc., 24 P rim e Park W ay, N a tick , M A 01760-1500.

M A T L A B , S im u lin k , Hand le G raphics, and Real-Tim e W orkshop are registered tra dem arks and S tate flow
and Target Language Com piler are tra dem arks of The M athW orks, Inc.

O ther product or brand names are tra dem arks or registered tra dem arks of th e ir respective holders.

Prin t ing History: November 1990 First p r in t ing
December 1996 Second p r in t ing (for M ATLAB 5)
May 1997 (online version)

http://www

Contents

Tutor ia l

I n t r o d u c t i o n .. 1-2
Notation .. 1-3

I n s t a l l a t i o n ... 1-5

E x a m p le s .. 1-6
Unconstra ined Exam ple ... 1-6
Constra ined Exam ple .. 1-7
Constra ined Exam ple w i th Bounds .. 1-8
Constra ined Exam ple w i th G rad ien ts ... 1-10
Gradient Check: A n a ly t ic Versus N u m e r i c 1-12
M a x im iz a t io n .. 1-12
Greater than Zero C o n s t r a in t s ... 1-12
E qua l i ty Constrained Exam ple .. 1-12
Add it iona l A rgum ents: Avo id ing Global V a r ia b le s 1-13
M u lt iob jec t ive E x a m p le s ... 1-14

D e fa u l t P a r a m e te r S e t t i n g s1-25
Chang ing th e Defau lt Se tt ings E x a m p le ..1-27
O u tpu t H e a d in g s ...1-28
O p tim iza t ion of S t r in g Expressions Instead of M -F i les 1-29

P r a c t i c a l i t i e s .. 1-31

1--

i

In t roduc t ion to A lgor i thms
2

P a r a m e t r i c O p t im iz a t i o n .. 2-2

U n c o n s t r a in e d O p t im iz a t io n ... 2-3
Quasi-Newton M e t h o d s ... 2-4

L in e Search ... 2-6

Q u a s i -N e w to n Im p le m e n t a t io n .. 2-10
Hessian Update ... 2-10

L ine Search P ro c e d u re s ...2-10

Leas t S q u a re s O p t i m i z a t i o n ... 2-16
Gauss-Newton Method ...2-17
Levenberg-M arquard t Method ...2-18

N o n l in e a r Leas t S q u a re s Im p le m e n t a t io n 2-20
Gauss-Newton Im p lem enta t ion .. 2-20
Levenberg-M arquard t Im p lem enta t ion .. 2-20

C o n s t ra in e d O p t im iz a t io n ..2-22
Sequential Q uad ra t ic P rogram m ing (SQP) 2-23

QP Subproblem ... 2-23

SQP Im p le m e n t a t io n ..2-26
U pdat ing th e Hessian M a tr ix 2-26
Q uad ra t ic P rogram m ing S o lu t i o n ..2-27
L ine Search and M er i t F u n c t i o n .. 2-31

M u l t i o b je c t i v e O p t im iz a t io n 2-32
In troduc t ion to M u lt iob jec t ive O p t im iza t ion 2-32
Goal A t ta in m e n t M ethod .. .2-38
A lg o r i th m Im provem en ts for Goal A t ta in m e n t M ethod 2-39

ii Contents

R e v ie w 2-42

R e fe re n c e s ... 2-43

Reference
3 1---

Nonlinear M in im iza t io n ...3-3
Equation Solv ing3-3
Least-Squares (Curve f i t t in g) 3-4
U t i l i t y 3-4
Dem onstra t ions 3-4

i i i

i v Contents

1

Tutorial

1-2 I n t r o d u c t i o n
1-3 Notation

1-5 I n s t a l l a t i o n

1-6 E x a m p le s
1-6 Unconstra ined Exam ple
1-7 Constra ined Exam ple
1-8 Constra ined Exam ple w i th Bounds

1-10 Constra ined Exam ple w i th G rad ien ts
1-12 Grad ien t Check: A n a ly t ic Versus N um er ic
1-12 M ax im iza t ion
1-12 Greater than Zero C ons tra in ts
1-12 E q ua l i ty Constra ined Exam ple
1-13 Add it iona l A rgum ents : Avo id ing Global Var iab les
1-14 M u lt iob jec t ive Examples

1-25 D e fa u l t P a ra m e te r S e t t in g s
1-27 Chang ing th e Default Se tt ings Exam ple
1-28 O u tpu t Headings
1-29 O p t im iza t ion of S tr ing Expressions Instead of M -F iles

1-31 P r a c t i c a l i t i e s

1 Tutorial

Int roduct ion
O ptim iza t ion concerns th e m in im iza t ion or m ax im iza t ion of funct ions. The
O p t im iza t ion Toolbox consists of func t ions th a t perform m in im iza t ion (or m ax­
im iza t ion) on general non linear funct ions. Functions for non linear equation
so lv ing and least-squares (da ta-f i t t ing) problems are also provided.

The func t ions ava i lab le for m in im iza t ion are

Table 1-1: M in im iza tion

Type N otation Sy ntax

Scalar M in im iza t ion min f (a) such th a t a. < a < a 2
a 1 2

a = f m i n (' f ' , 2)aa

Unconstra ined M in im iz a ­
t ion

min f (x)
X

x

x

= fm inu (' f '

= fm ins (' f ' x
x

О
О

L inear P rogram m ing min c Tx such th a t A x < b
x

x = l p (c , A b)

Q uad ra t ic P rogram m ing ■ 1 T u , T min ~ x H x + c x
x 2

x = qp(H ,c ,A , b)

such th a t Ax < b

Constra ined M in im iz a ­
t ion

min f (x) such th a t G (x) < 0
x

x = c o n s t r (' f G , x0)

Goal A t ta in m e n t min g such th a t
x ,g
F (x) - wg < goal

x = at t g o a l (' F' , x , g o a l , w)

M in im a x min max { F, (x) }
x { F, } '

such th a t G (x) < 0

x = mini max(' 0xG'F

S e m i- in f in i te M in im iz a ­
tion

min f (x) such th a t Gx < 0,
x

K (x , w) < 0 for all w

x = semi n f (' f G K , n , x0)

1-2

Introduction

The func t ions ava i lab le for equation so lv ing are

Table 1-2: Equation Solving

Type Nota t ion S yn ta x

L inear Equations Ax = b , n equations, n va r iab les x = A\ b;

Non linear Equation of One
Var iab le

f(a) = 0

О
afoCDzf=a

Non l inear Equations F(x) = 0 , n equations, n variab les x = f s o l v e (' F ' , x0)

The func t ions ava i lab le for so lv ing least-squares or d a ta - f i t t in g problems are

Table 1-3: Least-Squares (Curve Fitting)

Type N otation S yn ta x

L inear Least Squares
2

min ||Ax - b|L , m equations, n va r iab les
x 2

x = A\b;

Nonnegative L inear Least
Squares

2
min ||Ax - b|L such th a t x > 0

x 2
x = nn l s (A , b)

Constra ined L inear Least
Squares

2
min ||Ax - b|L such th a t Cx < d

x 2
x = c o n l s (A , b , C , d)

Non linear Least Squares nxn "(I F(x)|2 = 2 X F\ (x)2 x = l eas t sq(' F' , x0)

Non linear Curve F i t t in g
1 2

min cc F(x, x d a t a) - y d a t a 2
x 2 2

x = c u r v e f i t . . .
(' F ' , x 0 , x d a t a , y d a t a)

Nota t ion
Upper-case le t te rs such as A are used to denote matrices. Lower-case le tters
such as x are used to denote vectors, except w he re noted th a t i t is a scalar (in
th e tab le above, w e use a to denote a scalar in th e description of fmin) .

1-3

1 Tutorial

For funct ions, th e notation d if fe rs s l igh t ly to fo l low th e usual conventions in
op t im iza t ion . For vector funct ions, we use an upper-case le tter such as F i n
F (x) . A funct ion th a t re tu rns a scalar va lue is denoted w i th a lower-case le tter
such as f in f (x) .

Most of these rou tines requ ire th e de f in it ion of an M -f i le con ta in ing th e func­
t ion to be m in im ized. A l te rna t ive ly , a s t r in g va r iab le conta in ing a M A T L A B
expression, w i th x representing th e independent variab les, can be used. M a x i ­
m iza tion is achieved by supp ly ing th e rou t ines w i th - f , w he re f is th e funct ion
being optim ized.

Optional a rgum en ts to th e rou t ines place bounds on th e va r iab les and change
op tim iza t ion parameters. Defau lt optim iza t ion param eters are used exten­
sively but can be changed th rough an add it iona l a rgum ent, opt i ons.

G rad ien ts are calculated using an adaptive f in i te d ifference method unless
they are supplied in a funct ion. Param eters can be passed d irec t ly to funct ions,
avoid ing th e need for global variables.

The O p t im iza t ion Toolbox rou t ines offer a choice of a lg o r i th m s and l ine search
strategies. The pr inc ipa l a lg o r i th m s for unconstra ined m in im iza t ion are th e
Nelder-Mead simplex search method and th e BFGS quasi-Newton method. For
constrained m in im iza t ion , m in im ax , goal a t ta in m e n t, and s e m i- in f in i te
op t im iza t ion , va r ia t io n s of Sequentia l Q uad ra t ic P rogram m ing are used.
Non linear least squares problems use th e Gauss-Newton and Levenberg-M ar-
quard t methods.

A choice of l ine search s tra tegy is given for unconstra ined m in im iza t ion and
nonlinear least squares problems. The l ine search strateg ies use safeguarded
cubic and q u a d ra t ic in te rpo la t ion and extrapo la t ion methods.

1-4

Installation

Instal lat ion
I ns truc t ions for in s ta l l in g toolboxes are found in th e section en t i t led “ I ns ta l l ing
Toolboxes” in th e computer-specific section of Using M A T L A B . On some sys­
tems, th e O p t im iza t ion Toolbox may be ins ta l led already. It should be located
in th e d irectory named opt i min th e toolbox d irectory.

1-5

1 Tutorial

Examples
The O p t im iza t ion Toolbox is presented th rough a tu to r ia l th a t closely fo l lows
th e f i rs t dem onstra t ion in th e M -f i le optdemo. The func t ions fmi nu and cons t r
are discussed in deta il. The other optim iza t ion rou t ines a t t goa l , mi ni max,
l e a s t s q , f so l ve, and semi nf are used in a nearly identica l m anner, w i th d i f ­
ferences only in th e problem fo rm u la t ion and th e te rm in a t io n cr ite r ia .

Unconstrained Example
Consider th e problem of f in d ing a set of va lues [x., x2] th a t solves

x 2 2
minimize f(x) = e 1 (4x . + 2 x 2 + 4 x ^ 2 + 2 x 2 + ") (1- 1)

To solve th is two-d im ensiona l problem, w r i te an M -f i le th a t re tu rns th e func­
t ion value. Then, invoke th e unconstra ined m in im iza t ion rou t ine fminu.

Step 1: W r i te an M - f i le fu n .m :
f u n c t i o n f = f un(x)
f = e x p (x (1)) * (4 * x (1) A2 + 2 * x (2) /' 2+4*x (1) * x (2) + 2 * x (2) + 1) ;

Step 2: In voke o p t im iz a t io n rou tine :
x0 = [- 1 , 1] ; % S t a r t i n g guess
x = f m n u (' f u n ' , x 0)

A f te r 36 funct ion evaluations, th is produces th e solution:

x =
0.5000 -1 .0 0 0 0

You can evaluate th e funct ion at th e so lution x:

f u n (x)
ans =

1 .3029e -10

When the re exists more than one local m in im u m , th e in i t ia l guess for the
vector [x-|, x 2] affects both th e number of funct ion eva lua tions and th e va lue of
th e solution point. In th e example above, x 0 is in i t ia l ized to [- 1 , 1] .

1-6

Examples

The va r iab le opt i ons can be passed to fmi nu t o change characte r is t ics of th e
optim iza t ion so lution procedure, as in

x = fmi nu(' f u n ' , x 0 , o p t i o n s) ;

opt i ons is a vector th a t conta ins va lues for te rm in a t io n to lerances and algo­
r i th m choices. The f i rs t element of opt i ons contro ls th e amount of outpu t d is­
played d u r in g th e op t im iza t ion cycle for most of th e op t im iza t ion funct ions.
Sett ing th is e lement to 1 causes a ta bu la r d isp lay of th e funct ion va lues and
convergence in fo rm a t ion . The second and th i rd e lements of opt i ons establish
te rm ina t ion c r ite r ia . O ther e lements in options set f in i te d ifference pe r tu rb a ­
t ion levels, select a lgor i thm s, and set th e m ax im um number of funct ion eva lu ­
ations. T h is and other ca ll ing syntaxes are discussed more fu l ly in later
sections of th is tu to r ia l and in th e References chapter.

Constrained Example
I f inequa l i ty constra in ts are added to Eq. 1-1, th e resu lt ing problem may be
solved by th e cons t r funct ion. For example, i f you w an t to f ind x th a t solves

x 2 2
minimize f(x) = e 1 (4x 1 + 2x 2 + 4 x 1 x 2 + 2x 2 + 1)

subject to th e constra in ts: x 1 x 2 - x 1 - x 2 < -1 .5

x 1 x 2 ^ - 1 0 (1-2)

The orig ina l M -f i le is modif ied to re tu rn both th e objective funct ion and th e
constra in ts. The constrained optim izer, c o n s t r , i s then invoked. Because
cons t r expects th e constra in ts to be w r i t te n in th e fo rm G (x) < 0 , you must
re w r i te your constra in ts in th e form

x 1 x 2 - x 1 - x 2 + 1.5 < 0

- x 1 x 2 - 10 < 0
(1-3)

1-7

1 Tutorial

Step 1: W r i te an M - f i le fu n .m fo r the o b jec t ive fu nc t io n and constra in ts :
f u n c t i o n [f , g] = f u n (x)
f = e x p (x (1)) * (4 * x (1) A2 + 2 * x (2) A2+4*x(1) * x (2) + 2 * x (2) + 1) ;
g(1, 1) = 1.5 + x (1) *x(2) - x (1) - x(2); % Const rai nt s
g(2 , 1) = - x (1) *x(2) - 10;

Step 2: In voke co ns tra in ed o p t im iz a t io n rou t ine :
x 0 = [- 1, 1] ; % Make a s t a r t i n g guess at th e s o l u t i o n
x = const r (' f u n ' , x 0)

A f te r 29 funct ion calls, th e so lution produced is

x =
-9 .5 4 7 4 1.0474

We can evaluate th e func t ions and constra in ts at th e solution

[f , g] = f u n (x)
f =

0.0236
g =

1 . 0e-15 *
-0 .8 8 8 2

0

Note th a t both constra in t va lues are less than or equal to zero, th a t is, x sa tis ­
fies G (x) < 0 .

Constrained Example w i t h Bounds
The va riab les in x can be restr ic ted to certa in l im i ts by specify ing s im p le bound
constra in ts to th e constrained optim izer funct ion. For c o n s t r , t he command

x = const r (' f u n ' , x 0 , opt i ons, v l b , v u b) ;

l im i ts x to be w i th in th e range vl b <=x <= vub.

1-8

Examples

To restr ic t x in Eq. 1-2 to be greater than zero (i.e., x 1 > 0 , x 2 > 0) , use th e
commands:

x = c o n s t r (' f u n ' , x 0, o p t i o n s , v l b , v u b)

Note th a t to pass in th e lower bounds as th e fou r th a rgum ent to c o n s t r , you
must specify a va lue for th e t h i r d a rgum ent opt i ons. In th is example, w e spec­
ified [] to use th e default va lues for op t i ons .

A f te r 10 funct ion evaluations, th e so lution produced is

x =
0 1.5000

[f , g] = f u n (x)
f =

8.5000
g =

0
-10

In th e above example, the re were no upper bounds on x. Therefore, vub w as set
to an empty m a tr ix . A l te rna t ive ly , th e upper-bound argum ent could have been
om itted by using th e command

x = c o n s t r (' f u n ' , x 0, o p t i o n s , v l b)

When vl b or vub conta ins fewer e lements than x, only th e f irs t corresponding
elements in x are bounded. A l te rna t ive ly , bounds can be expressed using l inear
inequa l i ty constra in ts. T h is a lte rna t ive may be more app ropr ia te when the re
are only a few bounded variab les, for example,

Upper Bound: x < U B is w r i t te n as: x - U B < 0

Lower Bound: x > L B is w r i t te n as: - x j + L B < 0

Note th a t th e number of funct ion eva lua tions to f ind th e solution is reduced
since we fu r th e r restr ic ted th e search space. Fewer func t ion eva lua tions are
usually taken when a problem has more constra in ts and bound l im i ta t io n s
because th e optim iza t ion makes better decisions regard ing step-size and
regions of feas ib il i ty than in th e unconstra ined case. It is, therefore, good prac­

x 0 = [- 1, 1] ;
op t i o n s = [] ;
vl b = [0, 0] ;
vub = [] ;

% Mfeke a s t a r t i n g guess at th e s o l u t i on
% Use d e f a u l t op t i o ns
% Set l ower bounds
% No upper bounds

1-9

1 Tutorial

t ice to bound and constrain problems, w he re possible, to promote fast conver­
gence to a solution.

Constrained Example w i t h Gradients
O rd in a r i ly th e m in im iza t ion rou t ines use numerica l g rad ien ts calculated by
f in i te d ifference approx im ation . T h is procedure sys tem atica l ly pe rtu rbs each of
th e var iab les in order to ca lcu late funct ion and constra in t part ia l derivatives.
A l te rna t ive ly , you can provide a funct ion to compute par t ia l de r iva t ives ana­
ly t ica l ly . Typ ica lly , th e problem is solved more accurate ly and e ff ic ien tly i f
such a funct ion is provided.

To solve th e Eq. 1-2 using ana ly t ica l ly determ ined gradients, do th e fo l low ing:

Step 1: W r i te an M - f i le f o r o b jec t ive fu n c t io n and constra in ts :
f u n c t i o n [f , g] = f u n (x)
f = e x p (x (1)) * (4 * x (1) A2 + 2 * x (2) A2+4*x(1) * x (2) + 2 * x (2) + 1) ;
g(1) = 1.5 + x (1) * x(2) - x (1) - x(2); %Constrai n ts
g(2) = - x (1) * x(2) - 10;

Step 2: W r i te an M - f i le fo r the g ra d ie n ts o f the o b jec t ive fu nc t io n and
constra in ts :

f u n c t i o n [d f , d g] = grad(x)
% Gr adi ent of t he ob j ec t i v e f unc t i on
t = e x p (x (1)) * (4 * x (1) A2 + 2 * x (2) A2+4*x(1) * x (2) + 2 * x (2) + 1) ;
df = [t + e x p (x (1)) * (8 * x (1) + 4 * x (2)) ,

e x p (x (1)) * (4 * x (1) +4*x(2) +2)] ;
% G rad ien t of th e c o n s t r a i n t s
dg = [x (2) - 1, - x (2);

x (1) - 1, - x (1)] ;

Step 3: In voke co ns tra in ed o p t im iz a t io n rou t ine :
x0 = [- 1 , 1] ; % S t a r t i n g guess
o p t i o n s = [] ; % Use d e f a u l t op t i o ns
v l b = [] ; vub = [] ; % No upper or l ower bounds
x = c o n s t r (' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ')

1-10

Examples

df conta ins th e part ia l de r iva t ives of th e objective funct ion, f re tu rned by
f u n (x) , w i th respect to each of th e elements in x:

df
dx

ex 1 (4 x 1 + 2 x 2 + 4 x 1 x 2 + 2 x 2 + 1) + ex1 (8 x 1 + 4 x 2)

e 1 (4 x 1 + 4 x 2 + 2)
(1-4)

The columns of dg contain th e part ia l de r iva t ives for each respective constra in t
(i.e., th e i th column of dg is th e part ia l d e r iva t ive of th e i th constra in t w ith
respect to x). So in th e above example, dg is

dg 1
dx л

dg!
dx 2

dg2
dx1

dg2
dx2

x 2 - 1

x 1 - 1

-x

-x

(1-5)

The a rgum en ts vl b and vub place lower and upper bounds on th e independent
var iab les in x. In th is example they are only used for syn tac t ic purposes to g ive
th e correct number of r igh t-hand a rgum ents to specify th e g rad ient funct ion
name.

A fte r 11 funct ion and g rad ient evaluations, th e so lution produced is

x =
-9 .5 4 7 4 1.0474

[f , g] = f u n (x)
f =

0. 0236

1. 0e-14 *
0.1110
0.1776

g

1-11

1 Tutorial

Grad ient Check: A na ly t i c Versus Numer ic
When a na ly t ica l ly determ ined g rad ien ts are provided, you can compare the
supplied g rad ien ts w i th a set calculated by f in i te d ifference eva lua tion . T h is is
p a r t icu la r ly useful for detecting m is takes in e ither th e objective funct ion or th e
g rad ient funct ion fo rm u la t ion .

I f such grad ient checks are desired, in i t ia l iz e opt i ons(9) to th e va lue 1. The
f i rs t cycle of th e op t im iza t ion checks th e ana ly t ica l ly determ ined gradients. I f
they do not match w i th in a given to lerance, a w a rn in g message ind icates th e
discrepancy and gives an option to abort th e optim iza t ion or to continue.

Max im izat ion
The optim iza t ion func t ions f mi n , f m n s , fminu, c o n s t r , a t t goa l , mini max, and
l e a s t s q all perform m in im iza t ion of th e objective funct ion, f (x) . M ax im iz a ­
t ion is achieved by supp ly ing th e rou t ines w i th - f (x) . S im i la r ly , to achieve
m ax im iza t ion for qp supply -H and - c , and for l p supp ly -c .

Greater than Zero Constraints
The O p t im iza t ion Toolbox assumes constra in ts are of th e form G j (x) < 0 .
Greater than zero constra in ts are expressed as less than zero constra in ts by
m u l t ip ly in g them by -1 . For example, a constra in t of th e form Gj (x) > 0 is
equ iva lent to th e constra in t - Gj (x) < 0 ; a constra in t of th e form Gj (x) > b is
equ iva lent to th e constra in t - Gj (x) + b < 0 .

Equal i ty Constrained Example
For rou tines th a t perm it equa li ty constra in ts , these equa li ty constra in ts must
be expressed in th e f i rs t e lements of th e vector of constra in t va lues g. Also,
opt i ons(13) must be in i t ia l ized w i th th e number of equa li ty constra in ts. For
example, to add th e constra in t x 1 + x 2 = 1 to Eq. 1-2, re w r i te it as
x 1 + x 2 - 1 = 0 and then,

Step 1: W r i te an M - f i le fu n .m :
f u n c t i o n [f , g] = f u n (x)
f = e x p (x (1)) * (4 * x (1) A2 + 2 * x (2) A2+4*x(1) * x (2) + 2 * x (2) + 1) ;
g(1) = x(1) + x(2) -1 ; % Equali t y cons t r ai nt s f i r st
g(2) = 1.5 + x (1) * x(2) - x (1) - x (2) ; % I nequal i t y
g(3) = - x (1) * x(2) - 10; % const r a i n t s

1-12

Examples

Step 2: In voke co ns tra in ed o p t im iz a t io n rou t ine :
x 0 = [- 1, 1] ; % Mfeke a s t a r t i n g guess at t he s o l u t i on
o p t i o ns (13) = 1; % Spec i f y one e q u a l i t y c o n s t r a i n t
x = c o n s t r (' f u n ' , x 0, o p t i o n s)

A f te r 22 funct ion evaluations, th e so lution produced is

x =
-2 .7 0 1 6 3.7016

[f , g] = f u n (x)
f =

1.6775
g =

-0 .0 0 0 0 -9 .5 0 0 0 0.0000

Note th a t g (1) is equal to 0 w i th in th e defau lt to lerance and tha t g (2) and
g(3) are less than or equal to zero as desired.

Add i t iona l Arguments : Avo id ing Global Var iab les
Param eters th a t wou ld o therw ise have to be declared as global can be passed
d irec t ly to M - f i le func t ions using add it iona l a rgum en ts at th e end of th e ca ll ing
sequence.

For example, ente ring a number of va r iab les at th e end of th e call to f s o l v e

f s o l v e (' f u n ' , x 0, o p t i o n s , ' g r a d ' , p 1, p 2 , . . .)

passes th e a rgum en ts d irec t ly to th e func t ions fu n and grad when they are
called,

f = f u n (x , p 1, p 2 , . . .)
df = gr a d (x , p 1, p 2 . . .)

Consider, for example, f in d ing zeros of th e funct ion el l i pj (u, m). The funct ion
needs parameter mas well as inpu t u. To look for a zero near u = 3, for m = 0. 5

m = 0.5;
x = f so l v e (' e l l i p j ' , 3 , [] , [] , m)

re tu rns

x =
3.0781

1-13

1 Tutorial

Then, solve for th e funct ion e l l i p j .

f = e l l i p j (x , m)
f =

1 . 158e-11;

The empty matr ices in th e call to f so l ve im p ly th a t default options are used
and th a t a na ly t ic g rad ien ts are not provided.

Mul t iob ject ive Examples
The previous examples involved problems w i th a s ing le objective funct ion. Th is
section dem onstrates so lv ing problems w i th m u lt iob jec t ive func t ions using
l ea s t s q , mi ni max and at tgoal . Included is an example of how to opt im ize
param eters in a S IM ULINK model.

S IM U L IN K Exam p le
Say you w an t to op tim ize th e control param eters in th e S IM ULINK model
o p t s i mmd l . (Th is model can be found in th e O p t im iza t ion Toolbox d irectory.
Note th a t S IM ULINK must be ins ta l led on your system to load th is model.) The
model inc ludes a non linear process p lant modeled as a S IM ULINK block d ia ­
gram shown in Fig. 1-1.

Figure 1-1: Plant wi t h Actua tor Saturation

Actuator Model

©—HZ1 HZ
Limit Rate

Plant

1.5

50s3+a2.s2+a1.s+1 — иЭ
u y

The p lant is an under-damped th i rd -o rde r model w i th actuator l im its . The
actuator l im i ts are a sa tu ra t ion l im i t and a slew ra te l im i t . The actuator sa tu ­
ration l im i t cuts off inpu t va lues greater than 2 u n i ts or less than - 2 units . The
slew ra te l im i t of th e actuator is 0.8 units/sec. The open-loop response of th e
system to a step inpu t is shown in Fig. 1-2.

1-14

Examples

Figure 1-2: Open-Loop Response

The problem is to design a feedback control law th a t t racks a un it step inpu t to
th e system. The closed-loop p lant is entered in te rm s of th e blocks w here th e
p lant and actuator have been placed in a h ierarchica l Subsystem block. A
Scope block d isp lays outpu t tra jec to r ies d u r in g th e design process. See Fig. 1-3.

1-15

1 Tutorial

Figure 1-3: Closed-Loop Model

Tunable Variables are PID gains, Kp, Ki, and Kd.

One way t o solve th is problem is to m in im ize th e error between th e outpu t and
th e inpu t s ignal. The va r iab les are th e param eters of th e PID contro lle r. I f you
only need to m in im ize th e error at one t im e un it , it wou ld be a s ing le objective
funct ion. But th e goal is to m in im ize th e error for all t im e steps from 0 to 100,
th u s producing a m u lt iob jec t ive funct ion (one funct ion for each t im e step).

The rou t ine l eas t sq is used to perform a least squares f i t on th e t ra ck in g of th e
output. T h is is defined v ia a M A T L A B funct ion in th e f i le t r a c k l sq. mshown
below th a t defines th e e rror s ignal. The error signal is y o u t , th e output com­
puted by ca ll ing sim, m inus th e inpu t signal 1.

The funct ion t r a c k l sq must run th e s im u la t ion . When th e s im u la t ion begins,
S IM ULINK assumes th e va lues i t needs are, by default, in th e base workspace.
Use th e ass igni n command to get your inpu t values, th e va r iab les you are op t i­
m iz ing, from th e ca ll ing workspace to th e base workspace.

A f te r choosing a solver using th e si mset funct ion, th e s im u la t ion is run using
si mi The s im u la t ion is performed using a f ixed-step f i f th -o rde r method to 100
seconds. When th e s im u la t ion completes, th e va r iab les t o u t , x o u t , and yout
a re now in th e ca ll ing workspace (that is, th e workspace of t rackl sq). The Out-
port block is needed in th e block d iagram model for yout to be nonempty after
th e s im u la t ion .

1-16

Examples

Step 1: W r i te an M - f i le t rack lsq .m :

f u n c t i o n f = t r a c k l sq(pi d)
assi gn i n (' base' , ' K p ' , p i d (1)) ; % Move var i abl es t o base workspace
assi g n i n (' base' , ' K i ' , p i d (2)) ;
assi g n i n (' base' , ' K d ' , pi d (3)) ;
opt = si mset(' so l ver ' , ' od e5 '); % Choose sol ver
[t o u t , x o u t , y o u t] = s i m (' o p t s i n 1 , [0 100] , o p t);
f = y o u t-1 ; % Compute e r r o r s i gnal

Step 2: In voke co ns tra in ed o p t im iz a t io n rou t ine :
p i d0 = [0. 63 0. 0504 1.9688] % Set i n i t i a l val ues
opt i ons = f o p t i ons;
opt i ons = [1 , 0 . 1,0. 1];
p i d = l e a s t s q (' t r a c k l sq' , p i d0 , opt i ons)

The vector opt i ons passed to l e a s t s q defines th e c r i te r ia and d isp lay charac­
te ris t ics. I n th is case you ask for outpu t and g ive te rm ina t ion to lerances for the
step and objective funct ion on th e order of 0.1. The optim iza t ion gives th e so lu­
t ion for th e Proportiona l, In tegra l, and D er iva t ive (Kp, K , Kd) gains of th e con­
t ro l le r after 47 funct ion eva lua tions

f-COUNT RESI D STEP-SIZE GRAD/SD LAMBDA
4 16.8341 1 - 8 . 9 4

11 13.5356 1.44 3.83 12.5097
17 12.7714 0. 861 -0 .0311 12.8168
27 8.63314 147 0.00927 6.40838
34 7.53869 1.87 -0 .1 1 5 2. 10188
41 7.29827 1.24 -0 .00355 2.2295
47 7.25813 0.825 0.000338 2.24491

Opti mi za t i on Terminat ed Successf ul l y
p id =

2.1220 0.2614 9.4222

The resu lt ing closed-loop step response is shown in Fig. 1-4.

1-17

1 Tutorial

Figure 1-4: Closed-Loop Response

NOTE The call to si mresults in a call to one of th e S IM ULINK ODE solvers. A
choice must be made about th e type of solver to use. From th e optim iza t ion
point of view, a fixed-step solver is th e best choice i f th a t is suff ic ient to solve
th e ODE. I n th e case of a s t i f f system, a variab le-s tep method may be
required. The numerica l so lution produced by a variab le-step solver, however,
is not a smooth funct ion of param eters because of step-size control mecha­
nisms. T h is lack of smoothness may prevent th e opt im iza t ion rou t ine from
converging. T h is error is not in troduced when a fixed-step solver is used. (For
a fu r th e r explanation, see So lv ing O rd in a ry D iffe rentia l Equa tions I -- Non­
s t i f f Problems, by E .Hairer, S.P. Norsett, G.Wanner, Springer-Verlag, pages
183-184.) The NCD Toolbox is recommended for so lv ing m u lt iob jec t ive o p t im i­
zation problems in conjunction w i th variab le-s tep solvers in S IM ULINK; it pro­
vides a special num er ic grad ient computation th a t w o rks w i th S IM ULINK and
avoids in t roduc ing th is error.

1-18

Examples

Anothe r so lution approach is to use th e mi ni max funct ion. In th is case, ra ther
than m in im iz in g th e error between th e outpu t and th e inpu t s ignal, you m in i ­
mize th e m ax im um va lue of th e output at any t im e t between 0 and 100. Then
in th e funct ion t r ackmm th e objective funct ion is s im p ly th e output re tu rned by
th e si mcommand. But m in im iz in g th e m ax im um output at all t im e steps may
force th e outpu t far below u n i ty for some t im e steps. To keep th e outpu t above
0.95 after th e f irs t 20 seconds, add a constra in t yout >= 0 . 95 from t=20 to
t = 100. Since constra in ts must be in th e form g <=0, th e constra in t in th e func­
tion is g = - y o u t (20: 100) +. 95.

Step 1: W r i te an M - f i le t ra c k m m .m :

f u n c t i o n [f , g] = t r ackmm(pid)
assi g n i n (' base' , ' Kp' , pi d (1))
assi g n i n (' base' , ' Ki ' , pi d(2))
assi g n i n (' base' , ' Kd' , pi d(3))
% Comput e f unc t i on v a l ue
opt = si mset(' so l ver ' , ' od e5 ');
[t out , xout , yout] = s i m(' op t s i m2 ' , [0 100] , o p t);
f = y o u t ;
g = - y o u t (2 0 : 1 0 0) + . 9 5 ; % Compute c o n s t r a i n t s

Step 2: In voke co ns tra in ed o p t im iz a t io n rou t ine :
pi d0 = [0. 63 0. 0504 1.9688] % Set i n i t i a l val ues
opt i ons = f o p t i ons;
opt i ons = [1, 0 . 1, 0 . 1] ;
p i d = mini max(' t r ackmm', pi d0,opt i ons)

1-19

1 Tutorial

resu lt ing in

f-COUNT MAX{ g} STEP Procedures
5 0.984114 1

10 1.52067 1 Hessian mod i f i e d t w i ce ;
i n f e a s i b l e

15 1.70044 1
20 1.27149 1 Hessian mod i f i e d
25 1.12734 1
30 1.03251 1 Hessian mod i f i e d
31 1.00352 1 Hessian mod i f i e d

Opti mi zat io n Converged Successf ul l y
Act i ve Const rai nts:

126
127

p i d =
1.3415 0.1756 6.9744

The last va lue shown in th e MAX{ g} column of th e output shows th e m ax im um
va lue for all th e t im e steps is 1.00352 (the in i t ia l va lue in th is column is
sm aller, but th e g constra in ts are not satisfied at th e in i t ia l point). The closed
loop response w i th th is result is shown in Fig. 1-5.

T h is so lution d if fe rs from th e l eas t sq so lution as you are so lv ing d if fe ren t
problems.

1-20

Examples

Figure 1-5: Closed-Loop Response

S igna l Processing Exam p le
Consider designing a l inear-phase F IR (F in i te Im pu lse Response) f i l te r . The
problem is to design a lowpass f i l te r w i th m agn itude one at all frequencies
between 0 and 0.1 H z and m agn itude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a f i l te r is defined by

H (f) = V h (n) e- i 2 p fn

n = 0

= A (f) e- i2 p fM
м -1

A (f) = V a (n) cos(2 p f n)
n (1-6)n = 0

w here A(f) is th e m agn itude of th e frequency response. One solution is to apply
a goal a t ta inm en t method to th e m agn itude of th e frequency response. Given a
funct ion th a t computes th e magnitude, th e funct ion a t t goa l w i l l a t tem p t to

1-21

1 Tutorial

va ry th e m agn itude coefficients a(n) u n t i l th e m agn itude response matches th e
desired response w i th in some to lerance. The funct ion th a t computes th e mag­
n itude response is given in f i l t m n . m T h is funct ion takes a, th e m agn itude
funct ion coeff icients, and w, th e d iscret iza tion of th e frequency domain w e are
interested in.

To set up a goal a t ta inm en t problem, you must specify th e goal and weight s
for th e problem. For frequencies between 0 and 0.1, th e goal is one. For f re ­
quencies between 0.15 and 0.5, th e goal is zero. Frequencies between 0.1 and
0.15 are not specified so no goals or w e igh ts are needed in th is range.

T h is in fo rm a t ion is stored in th e va r iab le goal passed to a t t goa l . The length
of goal is th e same as th e length re tu rned by th e funct ion f i l t m i n . So th a t th e
goals are equally satisfied, usua lly weight wou ld be set to abs(goal) . However,
since some of th e goals are zero, th e effect of using weight = abs (goa l) w i l l
force th e objectives w i th weight 0 to be satisfied as hard constra in ts, and the
objectives w i th weight 1 possibly to be undera tta ined (see ‘‘T he Goal A t ta in ­
ment Method '' section of th e I n troduction to A lg o r i th m s chapter). Because all
th e goals are close in magnitude, using a weight of u n i ty for all goals w i l l g ive
them equal p r io r i ty . (Using abs(goal) for th e w e igh ts is more im p o r ta n t when
th e m agn itude of goal d if fe rs more s ign if ican t ly .) Also, se tt ing
opt i ons(15) =l engt h(goa l) specifies th a t each objective should be as near as
possible to i ts goal va lue (neither greater nor less than).

Step 1: W r i te an M - f i le f i l tm in .m :
f u n c t i o n [y , g] = f i l t m n (a , w)
g = [] ; % other c o n s t r a i n t s
n = l eng t h(a) ;
y = c o s (w * (0: n - 1) * 2* p i) *a;

1-22

Examples

Step 2: In voke co ns tra in ed o p t im iz a t io n rou t ine :
% Plot w t h i n i t i al coef f i ci ents
a0 = o n e s (15, 1);
i n c r = 50;
w = l i n space(0 , 0 . 5 , i n c r) ;

y 0 = f i l t m n (a 0,w);
c l f , p l o t (w , y 0 . ' - : ') ;
dr awnow;

% Set up th e goal a t t a i nment p r ob l em
w1 = l i n s p a c e (0, 0. 1, i ncr) ;
w2 = l i n s p a c e (0 . 1 5 , 0 . 5 , i n c r) ;
w0 = [w 1 w2] ;
goal = [1. 0* o n e s (1, l e n g t h(w1)) z e r o s (1, l e n g t h (w 2))] ;
weight = ones (s i ze (g o a l));

% Call a t t goal
opt i ons = f o p t i ons;
opt i ons(15) = l engt h(g o a l) ;
a = a t t g o a l (' f i l t m n ' , a 0, goa l , wei ght , opt i ons, [] , [] , [] , w0);

% Plot w t h t h e opt i mized (f i n a l) coe f f i c i e n t s
y = f i l t m n (a , w) ;
ho l d on, p l o t (w , y , ' r ')
axi s ([0 0 . 5 -3 3])

Compare th e m agn itude response computed w i th th e in i t ia l coefficients and
th e f ina l coefficients (Fig. 1-6). Note th a t th e remez funct ion in th e S ignal Pro­
cessing Toolbox could have been used to design th is f i l te r .

1-23

M
ag

ni
tu

de

Re
sp

on
se

(d

B)

1 Tutorial

Figure 1-6: Magni t ude Response wi t h Initial and Final Magni t ude Coefficients

1-24

Default Farameter Settings

Default Parameter Sett ings
The opt i ons vector conta ins param eters used in th e op t im iza t ion routines. If,
on th e f i rs t call to an optim iza t ion routine, th e opt i ons vector is empty, a set
of defau lt param eters is generated. I f any of th e e lements of opt i ons are zero,
those elements are assigned defau lt values. I f opt i ons is present and has fewer
than 18 elements, th e rem a in ing elements assume th e ir defau lt values.

Some of th e default options param eters are calculated using factors based on
problem size, such as opt i ons(14). O ther options are used only to re tu rn in fo r ­
mation, such as th e va lue of the funct ion at th e last evaluated point in
opt i ons(8) . O ptions th a t are used only to re tu rn in fo rm a t ion do not have
default va lues and so N/A is shown as th e default va lue (Not Applicable). Some
param eters are dependent on th e specific op t im iza t ion rou t ine and are docu­
mented in Chapter 3, Reference. The param eters in th e opt i ons vector are
shown in th is table.

Table 1-4: Option Parameters

No. Function Default Description

1 Display 0 Contro ls amount of outpu t d u r in g th e op t im iza t ion cycle.
0 d isp lays no output; 1 d isp lays tabu la r results; -1 sup­
presses w a rn in g messages.

2 T erm ina t ion for x 1e-4 Term ina t ion cr ite r ion th a t is a measure of th e worst case
precision required of th e independent variab les, x. The
op tim iza t ion does not te rm in a te u n t i l all te rm in a t io n c r i ­
te r ia have been met.

3 Term ina t ion for f 1e-4 Term ina t ion cr ite r ion th a t is a measure of th e precision
required of th e objective funct ion, f , at th e so lution.

4 Term ina t ion for g 1e-7 Term inat ion cr ite r ion used by at t goal , const r, mini max,
and semi nf th a t is a measure of th e worst case constra in t
v io la t ion th a t is acceptable.

5 M a in A lg o r i th m 0 M ain op t im iza t ion a lgo r i thm selection.

6 SD A lg o r i th m 0 Search d irect ion a lgo r i thm selection.

1-25

1 Tutorial

Table 1-4: Option Parameters (Continued)

No. Function Default Description

7 Search A lg o r i th m 0 L ine search a lgo r i thm selection.

8 Function N/A Value of th e funct ion at th e last evaluated point. For
at tgoal and mi ni max, it conta ins an a t ta inm en t factor.

9 Grad ien t Check 0 When set to 1, th e ana ly t ica l ly supplied g rad ien ts are
compared w i th those obtained from a f in i te d ifference cal­
cu lation d u r in g th e f i rs t few ite ra tions. The gradient
funct ion must exist when th is element is set to 1.

10 Function Count N/A Function evaluation counter.

11 Grad ien t Count N/A Num ber of func t ion grad ient eva lua tions or f in i te d i f fe r ­
ence grad ient calculations.

12 C onstra in t Count N/A Total number of constra in t g rad ient ca lcu lations or f in i te
d ifference grad ient calculations.

13 E q ua l i ty Con­
s tra in ts

0 Num ber of equa li ty constra ints. E q ua l i ty constra in ts are
placed in th e f i rs t e lements of th e va r iab le g.

14 M a x im u m Func­
t ion Eva lua t ions

100n M ax im u m number of funct ion evaluations. T h is va lue is
set to 100 t im es n, w here n is th e number of independent
variables. In f m n s th e default is 200 t im es n. In f m n th e
default is 500 t im es n.

15 Objectives Used 0 Num ber of objectives to be as near as possible to the
goals. Used by at t goal .

16 M in im u m P e r tu r ­
bation

1e- 8 M in im u m change in va r iab les for f in i te d ifference g ra ­
d ient ca lcu lation. The actual pe rtu rba tion used is adap­
t iv e to increase accuracy of th e grad ient ca lcu lation. It
va r ies between th e m in im u m and m ax im um pe r tu rb a ­
tion.

17 M a x im u m P e r tu r ­
bation

0.1 M ax im u m change in va r iab les for f in i te d ifference g ra ­
d ient calculation.

1-26

Default Parameter Settings

Table 1-4: Option Parameters (Continued)

No. Function Default Description

18 Step-size N/A Step-size parameter. Genera lly on th e f i rs t i te ra t ion th is
is set conservatively to a va lue of 1 or less, depending on
th e derivatives.

As an example, commands th a t change th e f i rs t tw o te rm ina t ion c r i te r ia in Eq.
1-2 to 1e- 8 are shown below.

Changing the Defaul t Sett ings Example
x 0 = [- 1, 1] ; % Mfeke a s t a r t i n g guess at t he s o l u t i on
o p t i o n s (1) = 1; % D i sp l ay i n t e r m e d i a t e r e s u l t s
o p t i o n s (2) = 1e-8; % T e r m i n a t i o n c r i t e r i o n on x
o p t i o n s (3) = 1e-8; % T e r m i n a t i o n c r i t e r i o n on f u n (x)
x = fmi nu(' f u n ' , x 0 , op t i ons)

T h is y ie lds a so lution after 63 funct ion evaluations.

x =
0.5000 -1 .0 0 0 0

f u n (x)
ans =

3. 5145e-14

O n l ine Help for opt i ons is ava i lab le by typ in g th e command he l p f o p t i o n s .
The command f opt i ons , when called w i th o u t arguments, re tu rns th e set of
default parameters. I f f o p t i o n s is given an inpu t vector, it re tu rns th e set of
default param eters except w here th e inpu t vector has nonzero values.

1-27

1 Tutorial

Return ing the D e fau lt Se tt ings
opt i ons = f op t i ons
opt i ons =

Col umns 1 t h r ough 7
0 0 . 0001 0. 0001 0 . 0000 0 0 0

Col umns 8 t h r ough 14
0 0 0 0 0 0 0

Columns 15 t h r ough 18
0 0 .0000 0.1000 0

opt i ons = f opt i ons([0 1e - 2])
o p t i o n s =
Col umns 1 t h r ough 7

0 0 .0100 0.0001 0.0000 0 0 0
Columns 8 t h r ough 14

0 0 0 0 0 0 0
Columns 15 t h r ough 18

0 0 .0000 0.1000 0

Output Headings
When opt i o n s (1)=1 for a t t goa l , c ons t r , c u r v e f i t , fmi nu, f so l ve, l eas t sq,
mi ni max and semi n f , output is produced in column fo rm at. For fmi nu, t he
column headings are

f - COUNT FUNCTI CN STEP-SIZE GRAD/ SD

where

• f - COUNT is th e number of funct ion eva luations

• FUNCTION is th e funct ion va lue

• STEP-SI ZE is th e step size in th e search d irection

• GRAD/SD is th e g rad ient of th e funct ion along th e search direction.

For f s o l v e , l e a s t s q and c u r v e f i t th e headings are

f - COUNT RESI D STEP-SIZE GRAD/ SD LAMBDA

1-28

Default Farameter Settings

w here f-COUNT STEP-SIZE and GRAD/ SD are th e same as for fm nu, and

• RESID is th e residual (sum-of-squares) of th e funct ion
• LAMBDA is th e 1 k va lue defined in th e ‘‘Least Squares O p t im iz a t io n ” section

of th e In troduct ion to A lg o r i th m s chapter. T h is va lue is p r in ted only when
th e Levenberg-M arquard t method is used.

For cons t r and seminf th e headings are

f-COUNT FUNCTION MAX{ g} STEP Procedures
w here

• f-COUNT is th e number of funct ion eva luations

• FUNCTION is th e funct ion va lue

• MAX{g} is th e m ax im um constra in t v io la t ion

• STEP is th e step size in th e search d irection

• Procedures are messages about th e Hessian update and QP subproblem.

The Procedures messages are discussed in th e ‘‘U pda t ing th e Hessian M a tr ix ' '
section of th e I n troduction to A lg o r i th m s chapter.

For a t t goa l and mi ni max, th e headings are th e same as for const r except
FUNCTI ON is om itted because MAX{g} gives th e m ax im um goal v io la t ion for at t -
goal and th e m ax im um funct ion va lue for mi ni max.

Opt imiza t ion of String Expressions Instead of
M-Fi les
The rou tines in th e O p t im iza t ion Toolbox also perform op tim iza t ion on expres­
sions, avoid ing th e need to w r i te M -f i les th a t define funct ions. Expressions are
placed d irec t ly in to s tr ings w i th o u t p rov id ing a funct ion as an a rgum ent. I f th e
funct ion va r iab le to be evaluated (e.g., f un) conta ins nona lphanum eric charac­
te rs (e.g., * ,- ,+ ,[), i t is evaluated as an expression ra ther than a funct ion name.

When w r i t in g such expressions, th e independent va r iab le must a lways be a
lower-case x. An example of using an expression in place of a funct ion a rgu ­
ment is

x = f m n u (' s i n (x) ' , 1) % Min i mi ze s i n (x) s t a r t i n g at 1

Note th a t th is is also equiva lent to f m n u (' s i n ' , 1).

1-29

1 Tutorial

A s im p le squared problem is expressed as

x = f m n u (' x (1) A2+ x (2) A2' , [1; 1])

which can also be solved w i th pa rt ia l der iva t ives

x = f m n u (' x (1) A2+x(2) A2' , [1; 1] , [] , ' [2 * x (1); 2 * x (2)] ')

O ther examples using th is techn ique fo llow.

A m a tr ix equation

x = f s o l v e (' x * x * x - [1 , 2 ; 3 , 4] ' , o n e s (2 , 2))

A least squares problem

x = l eas t sq(' x * x - [3 5 ; 9 1 0] ' , e y e (2 , 2))

Function param eters have th e va r iab le names P1 ,P2,P3,.. . , which can be used
in th e expression, for example,

x = a t t g o a l (' s o r t (e i g (P 1 + P 2 * x * P 3)) ' , z e r o s (2 , 2) , . . .
[- 5 , —3, —1], [5, 3, 1] , [] , - 4 * o n e s (2) , 4 * o n e s (2) , [] , A , B , C) ;

solves th e problem deta iled in Chapter 3, Reference for a t t goa l . Here th e func­
t ion param eters P1, P2, and P3 are set equal to th e va r iab les A, B, and C. You
cannot enter th e va r iab le names d irec t ly in th e expression using th e names A,
B, and C because th e expression is not evaluated in th e base workspace.

When using th e rou t ines mi ni max and c o n s t r , th e objective funct ion and con­
s t ra in ts must be named f and g, respectively. For example,

x = minimax(' f = x * x - [1 2 ; 3 4] ; g = [] ; ' , 1 0 0 * o n e s (2)) ;
x = const r (' f = x (1)A2+ x (2)A2 ; g = x + [1; - 2] ; ' , [1; 1] , [1; 1]) ;

There are no constra in ts in th e examples above for mi ni max and c o n s t r . There­
fore, th e constra in t m a tr ix g is set to th e empty m atr ix .

Part ia l de r iva t ives are supplied to cons t r and mini max in a s im i la r way by
using th e va r iab le gf for th e funct ion 's pa rt ia l de r iva t ives and gg for th e con­
s tra in t 's part ia l der iva tives. An example is in th e M -f i le tutdemo. mi

1-30

Practicalities

Pract ical i t ies
O ptim iza t ion problems can take many i te ra t ions to converge and can be sensi­
t iv e to numerica l problems such as trunca t ion and round-o ff e rror in th e calcu­
lation of f in i te d ifference gradients. Most op tim iza t ion problems benefit from
good s ta r t in g guesses. T h is improves th e execution efficiency and can help
locate th e global m in im u m instead of a local m in im u m .

Complex problems are best solved by an evo lu t ionary approach whereby a
problem w i th a sm aller number of independent va r iab les is solved f i rs t . Solu­
t ions from lower order problems can genera lly be used as s ta r t in g po in ts for
h igher order problems by using an app ropr ia te mapping.

The use of s imp ler cost func t ions and less s tr ingen t te rm ina t ion c r i te r ia in th e
early stages of an optim iza t ion problem can also reduce computation t im e.
Such an approach often produces superior resu lts by avoid ing local m in im a .

The O p t im iza t ion Toolbox func t ions can be applied to a large va r ie ty of prob­
lems. Used w i th a l i t t le “conventional w isdom ,” many of th e l im i ta t io n s associ­
ated w i th op t im iza t ion techn iques can be overcome. A d d it io na l ly , problems
th a t are not typ ica l ly in th e s tandard form can be handled by using an appro­
p r ia te t rans fo rm a t ion . Below is a list of typ ica l problems and recommendations
for dealing w i th them:

Prob lem : The solution does not appear to be a global m in im u m .

R ecom m enda t ion : There is no guarantee th a t you have a global m in im u m
unless your problem is continuous and has only one m in im u m . S ta r t in g th e
optim iza t ion from a num ber of d if feren t s ta r t in g po in ts may help to locate the
global m in im u m or ve r i fy th a t th e re is only one m in im u m . Use d if fe ren t
methods, w here possible, to ve r i fy results.

P rob lem : The f mi nu funct ion produces w a rn in g messages and seems to
exh ib it slow convergence near th e so lution.

R ecom m enda t ion : I f you are not supp ly ing ana ly t ica l ly determ ined g rad i­
ents and th e te rm in a t io n c r i te r ia are s tr ingen t, fmi nu often exh ib its slow con­
vergence near th e so lution due to trun ca t io n error in th e g rad ient calculation.
Relaxing th e te rm in a t io n c r i te r ia produces faster, a lthough less accurate, so lu­
t ions. Chang ing th e f in i te d ifference pertu rba t ion levels, opt i ons (16 : 17), may
increase th e accuracy of g rad ient calculations.

1-31

1 Tutorial

P rob lem : Sometimes an op tim iza t ion problem has va lues of x for w h ich it is
impossib le to evaluate f and g.

R ecom m enda t ion : Place bounds on th e independent va r iab les or m ake a pen­
a lty funct ion to give a large posit ive va lue to f and g when in fea s ib i l i ty is
encountered. For grad ient ca lcu lation th e penalty funct ion should be smooth
and continuous.

P rob lem : The funct ion th a t is being m in im ized has d iscont inu it ies .

R ecom m enda t ion : The deriva t ion of th e under ly ing method is based upon
funct ions w i th continuous f irs t and second deriva tives. Some success may be
achieved for some classes of d iscon t inu i t ie s when they do not occur near so lu­
t ion points, or i f th e f in i te d ifference param eters are adjusted in order to ju m p
over small d iscont inu it ies . The var iab les opt i ons(16) and opt i ons(17) con­
tro l th e pertu rba t ion levels for x used in th e ca lcu lation of f in i te d ifference g ra ­
d ients. The pertu rba t ion , A x, is a lways in th e range

o p t i o ns (16) < Dx < o p t i ons (17)

Anothe r option is to smooth th e funct ion. For example, th e objective funct ion
m igh t inc lude a call to an in te rpo la t ion funct ion to do th e smoothing.

Prob lem : W a rn ing messages are displayed.

R ecom m enda t ion : T h is sometimes occurs when te rm ina t ion c r i te r ia are
overly s tr ingen t, or when th e problem is p a r t icu la r ly sens it ive to changes in
th e independent variables. T h is usua lly ind icates t runca t ion or round-off
e rrors in th e f in i te d ifference grad ient calcu lation, or problems in th e polyno­
mial in te rpo la t ion routines. These w a rn in gs can usually be ignored because
th e rou tines continue to m ake steps tow ard th e so lution point; however, they
are often an ind ication th a t convergence w i l l ta ke longer than normal. Scaling
can sometimes im prove th e sens it iv i ty of a problem.

Prob lem : The independent variab les, x, only can ta k e on discrete values, for
example, integers.

R ecom m enda t ion : T h is type of problem occurs commonly when, for example,
th e va r iab les are th e coeffic ients of a f i l te r th a t are realized using f in i te

1-32

Practicalities

precision a r i th m e t ic or when th e independent var iab les represent m ate r ia ls
th a t are m anufactu red only in s tandard amounts.

A lthough th e O p t im iza t ion Toolbox func t ions are not exp l ic i t ly set up to solve
d iscrete problems, th e problem can often be solved by f i rs t so lv ing an equ iva­
lent continuous problem. D iscrete var iab les can be progressively e lim ina ted
from th e independent variab les, which are free to vary.

E l im in a te a d iscrete va r iab le by round ing it up or down to th e nearest best d is­
crete value. A f te r e l im in a t in g a discrete variab le , solve a reduced order
problem for th e rem a in ing free variab les. H av ing found th e so lution to the
reduced order problem, e l im in a te another d iscrete va r iab le and repeat th e
cycle u n t i l all th e d iscrete va r iab les have been e lim ina ted .

d f i l demo is a dem onstration rou t ine th a t shows how f i l te rs w i th fixed precision
coefficients can be designed using th is technique.

Prob lem : The m in im iza t ion rou t ine appears to enter an in f in i te loop or
re tu rns a so lution tha t does not sa tisfy th e problem constra ints.

R ecom m enda t ion : Your objective, constra in t or g rad ient func t ions may be
re tu rn in g Inf , NaN, or complex values. The m in im iza t ion rou tines expect only
real num bers to be retu rned. A n y other va lues may cause unexpected results.
Insert some checking code in to th e user-supplied func t ions to ve r i fy th a t only
real num bers are re tu rned (use th e funct ion i s f i n i t e) .

P rob lem : You do not get th e convergence you expect from th e l eas t sq
routine.

R ecom m enda t ion : You may be fo rm ing th e sum of squares exp l ic it ly and
re tu rn in g a scalar value. l eas t sq expects a vector (or m a tr ix) of funct ion
va lues tha t are squared and summed in te rna l ly .

1-33

Tutorial1

1-34

2

Introduction to Algorithms

2-2 P a r a m e t r i c O p t i m i z a t i o n

2-3 U n c o n s t r a i n e d O p t i m i z a t i o n
2-4 Quasi-Newton M ethods
2-6 L ine Search

2-10 Q u a s i -N e w to n I m p l e m e n t a t i o n
2-10 Hessian Update
2-10 L ine Search Procedures

2-16 Leas t S q u a r e s O p t i m i z a t i o n
2-17 Gauss-Newton Method
2-18 Levenberg-M arquard t Method

2-20 N o n l i n e a r Leas t S q u a re s I m p l e m e n t a t i o n
2-20 Gauss-Newton Im p lem enta t ion
2-20 Levenberg-M arquard t Im p lem en ta t ion

2-22 C o n s t r a i n e d O p t i m i z a t i o n
2-23 Sequentia l Q uad ra t ic P rogram m ing (SQP)
2-23 QP Subproblem

2-26 SQP I m p l e m e n t a t i o n
2-26 U pda t ing th e Hessian M a t r ix
2-27 Q uad ra t ic P rogram m ing Solution
2-31 L ine Search and M e r i t Function

2-32 M u l t i o b j e c t i v e O p t i m i z a t i o n
2-32 In troduct ion to M u l t iob jec t ive O p t im iza t ion
2-38 Goal A t ta in m e n t Method
2-39 A lg o r i th m Im provem en ts for Goal A t ta in m e n t Method

2-42 R e v ie w
2-43 R e fe re n c e s

2 Introduction to Algorithms

Parametr i c Opt im iza t ion
T h is chapter provides an in troduct ion to th e d if fe ren t optim iza t ion problem
fo rm u la t ion s used in th e O p t im iza t ion Toolbox and describes th e a lgor i thm s.

P a ram etr ic op t im iza t ion is used to f ind a set of design parameters,
x = { x 1 ,X2 ,xn } , th a t can in some way be defined as opt im a l. In a s imp le
case th is may be th e m in im iza t ion or m ax im iza t ion of some system characte r­
is t ic th a t is dependent on x. In a more advanced fo rm u la t ion th e objective func­
t ion, f(x), to be m in im ized or maxim ized, may be subject to constra in ts in th e
form of equa li ty constra in ts, G j (x) = 0 (i = 1 ,m e) , inequa l i ty constra ints,
Gj (x) < 0 (i = m e + 1 , m) , and/or parameter bounds, x | , x u .

A General Problem (GP) description is stated as

minimize f (x)
nx e Ш

subject to: G jx = 0 , i = 1 ,m e

G j (x) < 0, i = m e + 1 ,m

x l < x < x u (2 - 1)

w here x is th e vector of design parameters, (x e Шn), f(x) is th e objective func­
tion th a t re tu rns a scalar va lue (f (x): Шп ® Ш), and th e vector funct ion G(x)
re tu rns th e va lues of th e equa li ty and inequa l i ty constra in ts evaluated at x
(G (x): Шп ® Шm).

An efficient and accurate so lution to th is problem is not only dependent on th e
size of th e problem in te rm s of th e number of constra in ts and design variab les
but also on character is t ics of th e objective funct ion and constra in ts. When both
th e objective funct ion and th e constra in ts are l inear func t ions of th e design
variab le, th e problem is known as a L inear P rogram m ing problem (LP). Qua­
d ra t ic P rogram m ing (QP) concerns th e m in im iza t ion or m ax im iza t ion of a qua­
d ra t ic objective funct ion th a t is l inear ly constrained. For both th e LP and QP
problems, re l iab le so lution procedures are read ily available. M ore d if f icu l t to
solve is th e Non linear P rogram m ing (NP) problem in which th e objective func­
tion and constra in ts may be non linear func t ions of th e design variab les. A solu­
tion of th e NP problem genera lly requires an i te ra t iv e procedure to establish a
d irect ion of search at each major i te ra t ion . T h is is usua lly achieved by th e solu­
tion of an LP, a QP, or an unconstra ined sub-problem.

2-2

Unconstrained Optimization

Unconstrained Opt im iza t ion
Although a w ide spectrum of methods exists for unconstra ined optim iza t ion,
methods can be broadly categorized in te rm s of th e d e r iva t ive in fo rm a tion tha t
is, or is not, used. Search methods th a t use only funct ion eva lua t ions (e.g., the
s implex search of Nelder and Mead [33]) are most su itab le for problems th a t
are very non linear or have a number of d iscont inu it ies . G rad ien t methods are
genera lly more effic ient when th e funct ion to be m in im ized is continuous in i ts
f i rs t der iva t ive . H igher order methods, such as Newton 's method, are only
rea lly su itab le when th e second order in fo rm a t ion is readily and easily calcu­
lated since ca lcu lation of second order in fo rm a tion , using numerica l d i f fe re n t i ­
a tion, is com puta t iona lly expensive.

G rad ien t methods use in fo rm a tion about th e slope of th e funct ion to d ic ta te a
d irect ion of search w here th e m in im u m is though t to lie. The simplest of these
is th e method of steepest descent in which a search is performed in a d irec­
t ion, - V f (x) , (where V f (x) is th e grad ient of th e objective funct ion). T h is
method is very ine ff ic ient when th e func t ion to be m in im ized has long narrow
va lleys as, for example, is th e case for Rosenbrock's funct ion

f (x) = 100(x, - x 2)2 + (1 - x .)2
1 2 1 (2 -2)

The m in im u m of th is funct ion is at x = [1,1] w he re f (x) = 0 . A contour map
of th is funct ion is shown in Fig. 2 -1 , along w i th th e so lution path to th e m in ­
im um for a steepest descent im p lem en ta t ion s ta r t in g at th e point [-1.9,2]. The
optim iza t ion was te rm ina ted after 1000 i te ra t ions, s t i l l a considerable d istance
from th e m in im u m . The black areas are w he re th e method is con tinua lly
zig-zagging from one side of th e va lley to another. Note th a t tow ards th e center
of th e plot, a number of larger steps are taken when a point lands exactly at the
center of th e valley.

2-3

2 Introduction to Algorithms

Figure 2-1: Steepest Descent Method on Rosenbrock 's Function (Eq. 2-2)

x i --------- *

T h is type of funct ion (Eq. 2-2), also known as th e banana funct ion, is notorious
in unconstra ined examples because of th e way th e cu rva tu re bends around th e
orig in . Eq. 2-2 is used th roughou t th is section to i l lu s t ra te th e use of a va r ie ty
of o p t im iza t ion techniques. The contours have been plotted in exponentia l
increm ents due to th e steepness of th e slope su rround ing th e U-shaped valley.

Quas i -Newton Methods
Of th e methods th a t use grad ient in fo rm a t ion , th e most favored are th e
quasi-Newton methods. These methods build up cu rva tu re in fo rm a t ion at each
i te ra t ion to fo rm u la te a qua d ra t ic model problem of th e form

1 T T
min ~x H x + c x + b

x 2
x (2-3)

2-4

Unconstrained Optimization

w here th e Hessian m a tr ix , H, is a posit ive de f in ite sym m e tr ic m a tr ix , c is a con­
s tant vector, and b is a constant. The optim al so lution for th is problem occurs
when th e part ia l de r iva t ives of x go to zero, i.e.,

V f (x *) = H x * + c = 0 (2 -4)

The optimal so lution point, x * , can be w r i t te n as

x* = - H 1 c (2-5)

N ew ton-type methods (as opposed to quasi-Newton methods) ca lcu late H
d irec t ly and proceed in a d irect ion of descent using a l ine search method to
locate th e m in im u m after a number of i te ra t ions . C a lcu la t ing H num erica l ly
involves a large amount of computation. Quasi-Newton methods avoid th is by
using th e observed behavior of f(x) and V f (x) to bu ild up cu rva tu re in fo rm a ­
tion to m ake an approx im ation to H using an app ropr ia te updating technique.

A large number of Hessian upda ting methods have been developed. Generally,
th e fo rm u la of Broyden [3], F letcher [4], Go ld fa rb [5], and Shanno [6] (BFGS)
is though t to be th e most effective for use in a general purpose method.

The fo rm u la is given by

BFGS

H k +1 H k +
q k qk.

q 1 sk

H к sk skH k

(2 -6)
w here sk = x k + 1 - x k

qk = V f (x k +1) - V f (x k)

As a s ta r t in g point, H 0 can be set to any sym m e tr ic posit ive d e f in ite m a tr ix , for
example, th e id e n t i ty m a tr ix I . To avoid th e inversion of th e Hessian H, you can
der ive an updating method in which th e d irect inversion of H is avoided by
using a fo rm u la th a t makes an approx im ation of th e inverse Hessian H -1 at
each update. A well known procedure is th e DFP fo rm u la of Davidon [7],
Fletcher, and Powell [8]. T h is uses th e same fo rm u la as th e above BFGS
method (Eq. 2-6) except th a t qk is subst i tu ted for Sk.

2-5

2 Introduction to Algorithms

The grad ient in fo rm a t ion is e ither supplied th rough ana ly t ica l ly calculated
gradients, or derived by part ia l de r iva t ives using a numerica l d if fe ren t ia t ion
method v ia f in i te differences. T h is involves p e r tu rb ing each of th e design v a r i ­
ables, x, in t u r n and ca lcu la t ing th e ra te of change in th e objective funct ion.

A t each major i te ra t ion , k, a l ine search is performed in th e d irection

d = - H -1 V f (xk) (2-7)

The quasi-Newton method is i l lu s t ra te d by th e so lution path on Rosenbrock's
funct ion (Eq. 2-2) in Fig. 2 -2 . The method is able to fo l low th e shape of th e
va lley and converges to th e m in im u m after 140 funct ion eva lua tions using only
f in i te d ifference gradients.

Figure 2-2: BFGS Method on Rosenbrock 's Function

Line Search
Most unconstra ined and constrained methods use th e so lution of a sub-problem
to y ie ld a search d irect ion in which th e solution is estimated to lie. The

2-6

Unconstrained Optimization

m in im u m along th e l ine formed from th is search d irection is genera lly approx­
imated using a search procedure (e.g., Fibonacci, Golden Section) or by a poly­
nomial method invo lv ing in te rpo la t ion or extrapo la t ion (e.g., quadrat ic , cubic).
Polynomia l methods app rox im a te a number of po in ts w ith a u n iva r ia te polyno­
mial whose m in im u m can be calculated easily. In te rpo la t ion refers to th e con­
d it ion th a t th e m in im u m is bracketed (i.e., th e m in im u m lies in th e area
spanned by th e ava i lab le points), whereas extrapo lat ion refers to a m in im u m
located outside th e range spanned by th e ava i lab le points. Ex trapo la t ion
methods are generally considered un re l iab le for es t im ating m in im a for non­
l inear funct ions. However, they are useful for es t im a t ing step length when
t ry in g to bracket th e m in im u m as shown in th e “ L ine Search Procedures” sec­
tion. Polynomia l in te rpo la t ion methods are genera lly th e most effective in
te rm s of efficiency when th e funct ion to be m in im ized is continuous. The
problem is to f ind a new ite ra te xk + 1 of th e form

x k +1 = x k + a *d (2 -8)

w here xk denotes th e curren t i te ra te, d th e search d irect ion obtained by an
app ropr ia te method, and a * is a scalar step length parameter th a t is th e d is ­
tance to th e m in im u m .

Q u a d ra t ic In te rp o la t io n
Q uad ra t ic in te rpo la t ion involves a data f i t to a u n iva r ia te funct ion of th e form

m q(a) = a a 2 + b a + c (2-9)

w here an ex trem um occurs at a step length of

T h is point may be a m in im u m or a m ax im um . It is a m in im u m when in te rpo ­
lation is performed (i.e., using a bracketed m in im u m) or when a is positive.
D eterm ina tion of coeff icients, a and b, can be found using any combination of
th ree grad ient or funct ion evaluations. It may also be carr ied out w i th jus t tw o
grad ient evaluations. The coeffic ients are determ ined th rough th e fo rm u la t ion
and solution of a l inear set of s im u ltaneous equations. Va r ious s im p l i f ica t ions
in th e solution of these equations can be achieved when par t icu la r characte r is ­
t ics of th e po in ts a re used. For example, th e f irs t point can genera lly be taken

2-7

2 Introduction to Algorithms

as a = 0 . O ther s im p l i f ica t ions can be achieved when th e po in ts are evenly
spaced. A general problem fo rm u la is as follows:

Given th re e unevenly spaced points { x 1, x 2,x3 and th e ir associated funct ion
va lues { f (x 1) f (x 2) , f (x 3)} th e m in im u m resu lt ing from a second-order f i t is
given by

Q u a d ra t ic In te rp o la t io n

1 P23f (x 1) + P 31 f (x 2) + P 12 f (x 3)
k + 1 2 g23f(x 1) + g 3 1 f (x 2) + Y12 f (x 3

w here

Pij = x2 - x2

Yij = x i - x j (2 - 1 1)

For in te rpo la t ion to be performed, as opposed to extrapo la t ion, th e m in im u m
must be bracketed so th a t th e points can be arranged to g ive

f (x 2) < f (x 1) and f (x 2) < f (x 3)

C u b ic In te rp o la t io n
C ub ic in te rpo la t ion is useful when g rad ient in fo rm a t ion is read ily ava i lab le or
when more than th ree funct ion eva lua t ions have been calculated. It involves a
data f i t to th e u n iv a r ia te funct ion

m c (a) = a a 3 + b a 2 + ca + d (2 - 1 2)

w here th e local extrem a are roots of th e q ua d ra t ic equation

3 a a 2 + 2 b a + c = 0

To f ind th e m in im u m extrem um , ta ke th e root th a t gives 6 a a + 2 b as positive.
Coeffic ients a and b can be determ ined using any combination of four grad ient
or funct ion evaluations, or a lte rna t ive ly , w i th jus t th ree g rad ient evaluations.

2-8

Unconstrained Optimization

The coefficients are calculated by th e fo rm u la t ion and solution of a l inear set
of s im u ltaneous equations. A general fo rm u la , given tw o points, { x 1,x ^ , the ir
corresponding g rad ien ts w i th respect to x, { V f (x 1) V f (x 2)}, and associated
funct ion values, { f (x 1) f (x 2)} is

„ 4 V f (x 2) + P2 - P1
xk + 1 = x 2 - (x2 - x 1) V f (x 2) - V f (x 1) + 2 b 2

w here
f (x 1) - f (x 2)

b 1 = V f (x 1) + V f (x 2) - 3 x - x------
A 1 Л П

(2-13)

b2 = (b 2 - V fx 1 V f (x 2)) 1 / 2

2-9

2 Introduction to Algorithms

Q uas i -New ton Imp lementa t ion
A quasi-Newton a lg o r i th m is used in f m n u . The a lgo r i thm consists of tw o
phases.

• D eterm ina tion of a d irect ion of search

• L ine search procedure

Im p lem enta t ion de ta i ls of th e tw o phases are discussed below.

Hessian Update
The d irect ion of search is determ ined by a choice of e ither th e BFGS (Eq. 2-6)
or th e DFP method given in th e “Quasi-Newton M ethods” section (set
opt i o n s (6) = 1 to select th e DFP method.). The Hessian, H , is a lways m a in ­
ta ined to be posit ive de f in ite so th a t th e d irect ion of search, d, is a lways in a
descent d irect ion. T h is means th a t for some a rb i t ra r i ly small step, a , in the
direct ion, d, th e objective funct ion decreases in magnitude. Positive de f in ite ­
ness of H is achieved by ensuring th a t H is in i t ia l ized to be posit ive d e f in ite and
therea fte r q js k (from Eq. 2-6) is a lways positive. The te rm qksk is a product
of th e l ine search step length parameter, ak and a combination of th e search
direct ion, d, w i th past and present grad ient evaluations,

q Tsk = ak (V f (xk + 1) Td - V f (xk) Td) (2-14)

The condit ion th a t qksk is posit ive is a lways achieved by ensuring th a t a suf­
f ic ien t ly accurate l ine search is performed. T h is is because th e search d irection,
d, is a descent d irect ion so th a t ak and - V f (x k) Td are a lways positive. Thus,
th e possible negative te rm V f(xk +1)Td can be made as small in m agn itude
as required by increasing th e accuracy of th e l ine search.

Line Search Procedures
Tw o l ine search strategies are used depending on w he ther g rad ient in fo rm a ­
tion is read ily ava i lab le or w he ther i t must be calculated using a f in i te d if fe r ­
ence method. When grad ient in fo rm a t ion is available, th e default is to use a
cubic polynomia l method. When g rad ient in fo rm a t ion is not available, the
default is to use a m ixed q ua d ra t ic and cubic polynomia l method.

2-10

Quasi-Newton Implementation

C ub ic P o lyno m ia l M e thod
In th e proposed cubic polynomia l method, a g rad ient and a funct ion evaluation
is made at every i te ra t ion , k. A t each i te ra t ion an update is performed when a
new point is found, xk + 1 , which satisfies th e condit ion th a t

f(xk + 1) < f (xk) (2-15)

A t each i te ra t ion a step, a k , is a ttem pted to form a new ite ra te of th e form

x k + 1 = x k + a kd (2-16)

I f th is step does not sa tisfy th e condit ion (Eq. 2-15) then a k is reduced to form
a new step, ak + 1 . The usual method for th is reduction is to use bisection (i.e.,
to con t inua l ly halve th e step length u n t i l a reduction is achieved in f(x). H ow ­
ever, th is procedure is slow when compared to an approach th a t involves using
grad ient and funct ion eva lua tions together w i th cubic in te rpo la t ion /ex trapo la ­
t ion methods to iden t ify estimates of step length.

When a point is found th a t sa tisfies th e condition (Eq. 2-15), an update is per­
formed i f q j s k is positive. I f it is not, then fu r th e r cubic in te rpo la t ions are per­
formed u n t i l th e u n iva r ia te g rad ient te rm V f (xk + 1)Td is su ff ic ien t ly small so
th a t qTsk is positive.

I t is usual practice to reset a k to u n i ty after every i te ra t ion . However, note th a t
th e qua d ra t ic model (Eq. 2-3) is genera lly only a good one near to th e solution
point. Therefore, a k , is modif ied at each major i te ra t ion to compensate for th e
case when th e approx im ation to th e Hessian is m onoton ica lly increasing or
decreasing. To ensure th a t , as x k approaches th e so lution point, th e procedure
reverts to a va lue of a k close to un ity , th e va lues of qTsk - V f (xk)Td and a k + 1
are used to es t im a te th e closeness to th e solution point and th u s to control the
va r ia t ion in a k .

A f te r each update procedure, a step length a k is a ttempted , fo l low ing w hich a
number of scenarios are possible. Consideration of all th e possible cases is qu ite
complicated and so they are represented p ic to r ia l ly in Fig. 2 -3 , w here th e
le ft-hand point on th e graphs represents th e point xk . The slope of th e l ine
b isecting each point represents th e slope of th e u n iv a r ia te g rad ient, V f (x k)Td ,
w hich is a lways negative for th e le ft-hand point. The r igh t-hand point is the
point xk + 1 after a step of a k is taken in th e d irect ion d.

2-11

2 Introduction to Algorithms

Figure 2-3: Cubic Pol ynomial Line Search Procedures

Case 1: f (xk + 1) > f (xk), V f (xk + 1)Td > 0

f (x)
\ /

0 a k a k + 1 a

Case 2: f (xk + 1) < f (xk), V f (xk + 1)Td > 0

\f (x)

0 a k a k + 1 a

Reduce step length.

a k +1
a c/ 2 i f ak < 0.1

a c o therw ise

tk + 1 = m in{ 1 ,a c} ak + 1 = 0.9 a c

Case 3: f (x k + 1) < f (x k), V f (x k + 1)Td < 0

f (x)

\

\

0 a k a k + 1
l k + '

Case 4: f(xk + 1) > f (x k) ,V f (x k + 1)Td < 0 w here p = 1 + qkksk - Vfxk + 1Td + m in { 0 ,a k + 1}

f (x)

\
\

Reduce step length.

0 a ka k +1 a
ak + 1 = m in {ac , a k / 2 }

a

2-12

Quasi-Newton Implementation

Cases 1 and 2 show th e procedures performed when th e va lue
V f (xk + 1) Td is positive. Cases 3 and 4 show th e procedures performed when
th e va lue V f (xk + 1) Td is negative. The notation min {a, b, c} refers to th e
smallest va lue of th e set {a, b, c}.

A t each i te ra t ion a cubicly in terpo la ted step length a c is calculated and then
used to adjust th e step length parameter a k + 1 . Occasionally, for very non­
l inear func t ions a c may be negative, in which case a c is given a va lue of 2 ak .
The methods for changing th e step length have been refined over a period of
t im e by considering a large number of test problems.

C erta in robustness measures have also been included so th a t , even in th e case
when fa lse grad ient in fo rm a t ion is supplied, a reduction in f(x) can be achieved
by ta k in g a negative step. T h is is done by se tt ing ak + 1 = - a k /2 w h e n a k
fa l ls below a certa in th resho ld va lue (e.g., 1e-8). T h is is im p o r ta n t when
extrem ely h igh precision is required i f only f in i te d ifference g rad ien ts are a va i l ­
able.

M ix e d C u b ic /Q u a d ra t ic P o lyno m ia l M e th od
The cubic in te rpo la t ion /ex trapo la t ion method has proved successful for a large
number of optim iza t ion problems. However, when a na ly t ic de r iva t ives are not
available, th e eva lua t ing f in i te d ifference g rad ien ts is com puta t iona lly expen­
sive. Therefore, another in te rpo la t ion /ex trapo la t ion method is imp lem ented so
th a t g rad ien ts are not needed at every i te ra t ion . The approach in these c ircum ­
stances, when g rad ien ts are not readily available, is to use a q ua d ra t ic in te r ­
polation method. The m in im u m is genera lly bracketed using some form of
bisection method. T h is method, however, has th e d isadvantage th a t all the
ava i lab le in fo rm a tion about th e funct ion is not used. For instance, a gradient
ca lcu lation is a lw ays performed at each major i te ra t ion for th e Hessian update.
Therefore, given th ree po in ts th a t bracket th e m in im u m , it is possible to use
cubic in te rpo la t ion , which is l ike ly to be more accurate than using qua d ra t ic
in te rpo la t ion . F u r th e r efficiencies are possible if, instead of using bisection to
bracket th e m in im u m , extrapo lat ion methods s im i la r to those used in th e cubic
polynomia l method are used.

Hence, th e method th a t is used in f m n u , l eas t sq, and f s o l v e is to f ind th ree
points th a t bracket th e m in im u m and to use cubic in te rpo la t ion to est im a te the
m in im u m at each l ine search. The estimation of step length, at each m inor i te r ­
ation, j , is shown in Fig. 2-4 for a number of point combinations. The left-hand
point in each graph represents th e funct ion va lue f (x 1) and u n iva r ia te gra-

2-13

2 Introduction to Algorithms

dient V f (xk) obtained at th e last update. The r igh t-hand po in ts represent th e
points accumulated in th e m inor i te ra t ions of th e l ine search procedure.

The te rm s a q and a c refer to th e m in im u m obta ined from a respective qua­
d ra t ic and cubic in te rpo la t ion or extrapo la t ion. For h igh ly non linear functions,
a c and aq may be negative, in w hich case they are set to a va lue of 2 ak so th a t
they are a lways m a in ta ined to be positive. Cases 1 and 2 use q u a d ra t ic in te r ­
polation w i th tw o points and one grad ient to estimate a t h i r d point th a t
brackets th e m in im u m . I f th is fails, cases 3 and 4 represent th e possib i l i t ies for
changing th e step length when at least th ree po in ts are available.

When th e m in im u m is f in a l ly bracketed, cubic in te rpo la t ion is achieved using
one g rad ient and th ree funct ion evaluations. I f th e in terpo la ted point is greater
than any of the th ree used for th e in te rpo la t ion , then it is replaced w i th th e
point w i th th e smallest funct ion value. Fo llow ing th e l ine search procedure th e
Hessian update procedure is performed as for th e cubic polynomial l ine search
method.

2-14

Quasi-Newton Implementation

Figure 2-4: Line Search Procedures wi t h Only Grad ien t fo r the First Point.
Case 1: f (x j) > f (x k)

f (x)
\

0 a j a j + 1 a

Case 2: f (x j) < f (xk)

Reduce step length.

r
a j + 1 a q

-
f (x) \

• 0 I ncrease step length.

* a 10 a j a j + 1
a j + 1 = 1.2 aq

Case 3: f (xj + 1) < f (xk)

f (x) \

aj + 2 = max{ 1 .2 a q, 2 aj + 1 }
0 aj aj + 1 aj + 2

Case 4: f (xj + 1) > f (x k)

f (x)
\

0 a j + 2 a j + 1a j
a j + 2 = a c

a

a

2-15

2 Introduction to Algorithms

Least Squares Opt im iza t ion
The l ine search procedures used in conjunction w i th a quasi-Newton method
are used in th e funct ion fminu. They are also used as part of a non linear least
squares (LS) op t im iza t ion routine, l ea s t s q . In t he least squares problem a
funct ion, f(x) is m in im ized th a t is a sum of squares.

LS

1 2 1 ж i 2
min n f (x) = 21 F (x) ||2 = 2 У F- (x) (2-17)

x e ЭТn 2 2 2 “ ii

Problems of th is type occur in a large number of practical app lica t ions espe­
c ia l ly when f i t t in g model func t ions to data, i.e., non linear parameter es t im a­
t ion. They are also prevalent in control w he re you w an t th e output, y (x , t) t o
fo l low some continuous model tra jectory , f (t) , for vector x and scalar t. T h is
problem can be expressed as

‘ 1
min n J (y (x, t) - f (t))2d t (2-18)

x e Шn Jt2 v '

w he re y (x, t) and f (t) are scalar functions.

When th e in tegra l is discretized using a su itab le qua d ra tu re fo rm u la , Eq. 2-18
can be fo rm u la ted as a least squares problem

min n f (x) = У (y (x, t i) - f (t i)) 2
x e ЭТn ^ i i

i = 1

(2-19)

w here y and f inc lude th e w e igh ts of th e q ua d ra tu re scheme. Note th a t in th is
problem th e vector F(x) is

F (x) =

y (x, 1 1) - f (t 1)

y (x, 12) - f (t 2)

y (x, tm) - f (tm)

In problems of th is k ind th e residual || F (x) || is l ike ly to be small at th e
op t im um since it is general practice to set rea lis t ica l ly achievable target

2-16

Least Squares Optim ization

trajectories. A lthough the function in LS (Eq. 2-18) can be m inim ized using a
general unconstrained m inim ization technique as described in the “Uncon­
strained O ptim iza tion” section, certain characteristics of the problem can often
be exploited to improve the ite ra tive efficiency of the solution procedure. The
gradient and Hessian m atrix of LS (Eq. 2-18) have a special structure.

Denoting the m x n Jacobian m atrix of F(x) as J(x), the gradient vector of f(x)
as G (x) , the Hessian m atrix of f(x) as H (x) , and the Hessian m atrix of each
F j(x) as H j(x) , we have

G (x) = 2J (x)TF (x)

H (x) = 2 J (x) TJ (x) + 2 Q (x)
where

m

Q (x) = £ Fj (x)• Hj (x)
j = 1 (2-20)

The m atrix Q(x) has the property tha t when the residual || F (x) || tends to zero
as xk approaches the solution, then Q(x) also tends to zero. Thus when
|| F (x) || is small at the solution, a very effective method is to use the
Gauss-Newton direction as a basis for an optim ization procedure.

G a u s s - N e w to n Method
I n the Gauss-Newton method, a search direction, dk , is obtained at each major
ite ra tion , k, tha t is a solution of the linear least-squares problem

Gauss-Newton

min n II J (xk)dk - F (xk) ||2 (2-21)
x e ЭТn 11 k k k 112

The direction derived from th is method is equivalent to the Newton direction
when the term s of Q(x) can be ignored. The search direction dk can be used as
part of a line search strategy to ensure tha t at each ite ra tion the function f(x)
decreases.

To consider the efficiencies tha t are possible w ith the Gauss-Newton method,
Fig. 2-5 shows the path to the m in im um on Rosenbrock's function (Eq. 2-2)
when posed as a least squares problem. The Gauss-Newton method converges

2 -17

2 Introduction to Algorithms

after only 48 function evaluations using f in ite difference gradients compared to
140 ite ra tions using an unconstrained BFGS method.

The Gauss-Newton method often encounters problems when the second order
term Q(x) in Eq. 2-20 is sign ificant. A method tha t overcomes th is problem is
the Levenberg-Marquardt method.

Figure 2-5: Gauss-Newton Method on Rosenbrock's Function

L e v e n b e r g - M a r q u a r d t Method
The Levenberg-Marquardt [18,19] method uses a search direction tha t is a
solution of the linear set of equations

(J (xk)TJ (x) + 1kl)dk = -J (xk) F (xk) (2-22

where the s c a la r lk controls both the m agnitude and direction of dk . When l k
is zero, the direction dk is identical to tha t of the Gauss-Newton method. As
l k tends to in fin ity , dk tends towards a vector of zeros and a steepest descent
direction. Th is im plies tha t for some suffic ien tly large Ik , the term

2-18

Least Squares O ptimization

F (xk + d k)< F (xk) holds true. The term Ik can therefore be controlled to
ensure descent even when second order terms, which restrict the efficiency of
the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction tha t is a
cross between the Gauss-Newton direction and the steepest descent. Th is is
illus tra ted in Fig. 2-6 below. The solution for Rosenbrock's function (Eq. 2-2)
converges after 90 function evaluations compared to 48 for the Gauss-Newton
method. The poorer efficiency is partly because the Gauss-Newton method is
generally more effective when the residual is zero at the solution. However,
such inform ation is not always available beforehand, and occasional poorer
efficiency of the Levenberg-Marquardt method is compensated for by its
increased robustness.

Figure 2-6: Levenberg-M arquardt Method on Rosenbrock's Function

2 -19

2 Introduction to Algorithms

Non l inear Least Squares Imp lementa t ion
For a general survey of nonlinear least squares methods see Dennis [21]. Spe­
c ific deta ils on the Levenberg-M arquardt method can be found in More [20].
Both the Gauss-Newton method and the Levenberg-M arquardt method are
implemented in the O ptim ization Toolbox. Details of the im plem entations are
discussed below.

G a u s s - N e w to n I m p le m e n ta t i o n
The Gauss-Newton method is implemented using s im ila r polynomial line
search strategies discussed for unconstrained optim ization. In solving the
linear least squares problem (Prob. 2.18), exacerbation of the conditioning of
the equations is avoided by using the QR decomposition of J (xk) and applying
the decomposition to F (xk) (using the MATLAB \ operator). Th is is in contrast
to inve rting the explicit m atrix , J (xk)TJ (xk) , which can cause unnecessary
errors to occur.

Robustness measures are included in the method. These measures consist of
changing the a lgorithm to the Levenberg-M arquardt method when either the
step length goes below a threshold value (in th is im plem entation 1e-15) or
when the condition number of J (xk) is below 1e-10. The condition number is
a ra tio of the largest singular value to the smallest.

L e v e n b e r g - M a r q u a r d t Im p le m e n ta t io n
The main d ifficu lty in the im plem entation of the Levenberg-Marquardt
method is an effective strategy for contro lling the size of Ik at each ite ra tion so
tha t it is efficient for a broad spectrum of problems. The method used in th is
im plem entation is to estim ate the re la tive non linearity of f(x) using a linear
predicted sum of squares fp (xk) and a cubicly interpolated estim ate of the m in­
im um fk (x *) . In th is way the size o f lk is determ ined at each ite ra tion .

The linear predicted sum of squares is calculated as

fp (xk) = (J(xk -1)) Tdk -1 + F (x) (2-23)

and the term fk (x *) is obtained by cubicly in te rpo la ting the points f (xk) and
f (x k - 1) . A step length parameter a* is also obtained from th is in terpo lation,

which is the estimated step to the m inim um . I f fp (xk) is greater than fk (x *) ,
then Ik is reduced, otherwise it is increased. The jus tifica tion for th is is that

2-20

N onlinear Least Squares Implementation

the difference between f p(xk) and fk (x *) is a measure of the effectiveness of
the Gauss-Newton method and the linea rity of the problem. This determ ines
whether to use a direction approaching the steepest descent direction or the
Gauss-Newton direction. The form ulas for the reduction and increase in l k ,
which have been developed through consideration of a large number of test
problems, are shown in Fig. 2-7 below.

Figure 2-7: Updating l k

Follow ing the update of l w , a solution of Eq. 2-22 is used to obtain a search
direction, dk . A step length of un ity is then taken in the direction dk , which is
followed by a line search procedure s im ila r to tha t discussed for the uncon­
strained im plem entation. The line search procedure ensures tha t
f (xk + 1) < f (xk) at each major ite ra tion and the method is therefore a descent

method.

The implem entation has been successfully tested on a large number of non­
linear problems. It has proved to be more robust than the Gauss-Newton
method and ite ra tive ly more efficient than an unconstrained method. The Lev-
enberg-Marquardt a lgorithm is the default method used by le a s tsq . The
Gauss-Newton method can be selected by setting opti ons(5) = 1.

2-21

2 Introduction to Algorithms

Constrained Opt im iza t ion
In constrained optim ization, the general aim is to transform the problem in to
an easier subproblem tha t can then be solved and used as the basis of an ite r­
a tive process. A characteristic of a large class of early methods is the trans la ­
tion of the constrained problem to a basic unconstrained problem by using a
penalty function for constraints, which are near or beyond the constraint
boundary. I n th is way the constrained problem is solved using a sequence of
parameterized unconstrained optim izations, which in the lim it (of the
sequence) converge to the constrained problem. These methods are now consid­
ered re la tive ly ineffic ient and have been replaced by methods that have focused
on the solution of the Kuhn-Tucker (KT) equations. The KT equations are
necessary conditions for op tim a lity for a constrained optim ization problem. I f
the problem is a so-called convex programm ing problem, tha t is, f(x) and
Gj (x), j = 1 ,..., m, are convex functions, then the KT equations are both

necessary and sufficient for a global solution point.

Referring to GP (Eq. 2-1), the Kuhn-Tucker equations can be stated as

m

f (x *) + £ 1 j* • VG j (x*) = 0

j = 1
VGj (x *) = 0 j = 1 , . , m e

1 j*> 0 j = m e + 1 , . , m (2-24)

The firs t equation describes a canceling of the gradients between the objective
function and the active constra ints at the solution point. For the gradients to
be canceled, Lagrange M u ltip lie rs (1j, j = 1 , . m) are necessary to balance
the deviations in m agnitude of the objective function and constraint gradients.
Since only active constra ints are included in th is canceling operation,
constra ints tha t are not active must not be included in th is operation and so
are given Lagrange m u ltip lie rs equal to zero. Th is is stated im p lic itly in the
last tw o equations of Eq. 2-24.

The solution of the KT equations forms the basis to many nonlinear program­
ming algorithm s. These algorithm s attem pt to compute d irectly the Lagrange
m u ltip lie rs . Constrained quasi-Newton methods guarantee superlinear
convergence by accumulating second order in form ation regarding the KT equa­
tions using a quasi-Newton updating procedure. These methods are commonly
referred to as Sequential Q uadratic Programming (SQP) methods since a QP

2-22

Constrained O ptim ization

sub-problem is solved at each major ite ra tion (also known as Ite ra tive
Q uadratic Programming, Recursive Q uadratic Programming, and Constrained
Variab le M etric methods).

Sequent ia l Q u a d r a t i c P r o g r a m m i n g (SQP)
SQP methods represent state-of-the-art in nonlinear programming methods.
Schittowski [22], for example, has implemented and tested a version tha t out
performs every other tested method in term s of efficiency, accuracy, and
percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [9], Han [10], and Powell [11,12], the method allows
you to closely m im ic Newton's method for constrained optim ization jus t as is
done for unconstrained optim ization. At each major ite ra tion an approximation
is made of the Hessian of the Lagrangian function using a quasi-Newton
updating method. Th is is then used to generate a QP sub-problem whose solu­
tion is used to form a search direction for a line search procedure. An overview
of SQP is found in Fletcher [2], G ill et al. [1], Powell [13], and Schittowski [14].
The general method, however, is stated here.

Given the problem description in GP (Eq. 2.1) the principal idea is the form u­
lation of a QP sub-problem based on a quadratic approxim ation of the
Lagrangian function.

m

L (x ,1) = f (x) + £ l • g, (x)

i = 1 (2-25)

Here Eq. 2.1 is sim plified by assuming tha t bound constraints have been
expressed as inequa lity constraints. The QP sub-problem is obtained by linear­
izing the nonlinear constraints.

QP Su bp ro b lem
1

minimize ~ d TH kd + V f (x k) Td
d e Шn 2 k k

Vg, (xk) Td + g , (xk) = 0 i = 1 ,... m e

Vg, (xk)Td + g, (xk)< 0 i = m e + 1 , . m
(2-26)

2-23

2 Introduction to Algorithms

This sub-problem can be solved using any QP a lgorithm (see, for instance, the
“Q uadratic Programming Solution” section). The solution is used to form a new
ite ra te

x k +1 = x k + a kd k

The step length parameter ak is determ ined by an appropria te line search
procedure so tha t a sufficient decrease in a merit function is obtained (see the
“Updating the Hessian M a tr ix ” section). The m atrix Hk is a positive defin ite
approximation of the Hessian m atrix of the Lagrangian function (Eq. 2-25). Hk
can be updated by any of the quasi-Newton methods, although the BFGS
method (see the section “ Updating the Hessian M a tr ix ”) appears to be the most
popular.

A nonlinearly constrained problem can often be solved in fewer ite ra tions than
an unconstrained problem using SQP. One of the reasons for th is is tha t,
because of lim its on the feasible area, the optim izer can make well-inform ed
decisions regarding directions of search and step length.

Consider Rosenbrock's function (Eq. 2-2) w ith an additional nonlinear
inequa lity constraint, g(x)

x 2 + x2 - 1.5 < 0 (2-27)

This was solved by an SQP im plem entation in 96 ite ra tions compared to 140
for the unconstrained case. Fig. 2-8 shows the path to the solution point
x = [0.9072,0.8228] s ta rting at x = [-1 .9 ,2].

2-24

Constrained Optim ization

Figure 2-8: SQP Method on Nonlinear Linearly Constrained Rosenbrock's
Function

2-25

SQP Implementa t ion
The MATLAB SQP im plem entation consists of th ree main stages, which are
discussed brie fly in the fo llow ing sub-sections:

• Updating of the Hessian m atrix of the Lagrangian function
• Q uadratic programming problem solution
• L ine search and m erit function calculation

U p da t i ng the Hessian M a t r i x
At each major ite ra tion a positive defin ite quasi-Newton approximation of the
Hessian of the Lagrangian function, H ,is calculated using the BFGS method
where 1 (i = 1,...,m) is an estim ate of the Lagrange m ultip lie rs .

Hessian U pdate (BFGS)

H k +1 H k +
q k q i

qT sk Si H kSk
where

sk _ x k + 1 - x k (2-28)
n (n A

qk = v f (x k +1) + Z 1 i • V9 i(x k + 1)- V f(x k) + Z 1 • V9i (xk)
i = 1 ^ i = 1

Powell [11] recommends keeping the Hessian positive de fin ite even though it
may be positive inde fin ite at the solution point. A positive defin ite Hessian is
m aintained providing qTsk is positive at each update and tha t H is in itia lized
w ith a positive defin ite m atrix . When qTsk is not positive, qk is modified on
an element by element basis so tha t qTsk > 0 . The general aim of th is m odifi­
cation is to d istort the elements of qk , which contribute to a positive defin ite
update, as li t t le as possible. Therefore, in the in itia l phase of the modification,
the most negative element of qk .* ̂ k is repeatedly halved. Th is procedure is
continued un til qTsk is greater than or equal to 1e-5. I f after th is procedure,
qTsk is s till not positive, qk is modified by adding a vector v m u ltip lied by a
constant scalar w, tha t is,

qk = qk + w v
(2-29)

2-26

SQP Implementation

where

Vg, (xk + 1)• g, (xk + 1) - Vg, (xk)• g, (xk), i f (qk), • w < 0 and (qk), • (Sk), < 0

(, = 1 , . m)
0, otherwise

and w is system atically increased un til qTsk becomes positive.

The functions c o n s tr , mini max, at tgoal , and semi nf all use SQP. I f
opti ons(1) is set to 1, then various inform ation is given such as function
values and the maximum constraint v io la tion. When the Hessian has to be
modified using the firs t phase of the procedure described above to keep it posi­
tive defin ite, then Hessian modi f ie d is displayed. I f the Hessian has to be
modified again using the second phase of the approach described above, then
Hessian modif ie d t wi ce is displayed. When the QP sub-problem is infeasible,
then infeasible w ill be displayed. Such displays are usually not a cause for
concern but indicate tha t the problem is highly nonlinear and tha t convergence
may take longer than usual. Sometimes the message no updat e is displayed
ind ica ting tha t qTsk is nearly zero. Th is can be an indication tha t the problem
setup is wrong or you are try in g to m in im ize a noncontinuous function.

Q u a d r a t i c P r o g r a m m i n g Solut ion
At each major ite ra tion of the SQP method a QP problem is solved of the form
where A, refers to the i th row of the m-by-n m atrix A.

QP

minimize
d e Жn

q (d) = =5d THd + cTd

A,d = b,

A,d < b,

m (2-30)

, = m e + 1, m

The method used in the O ptim ization Toolbox is an active set strategy (also
known as a projection method) s im ila r to tha t of G ill et a ld e sc rib e d in [16] and
[17]. It has been modified for both LP and QP problems.

The solution procedure involves tw o phases: the firs t phase involves the calcu­
lation of a feasible point (if one exists), the second phase involves the genera­
tion of an ite ra tive sequence of feasible points tha t converge to the solution. In

2-27

2 Introduction to Algorithms

th is method an active set is maintained, Ak , which is an estim ate of the active
constraints (i.e., which are on the constraint boundaries) at the solution point.
V ir tu a lly all QP algorithm s are active set methods. Th is point is emphasized
because there exist many d ifferent methods tha t are very s im ila r in s tructu re
but tha t are described in w idely d ifferent terms.

Ak is updated at each ite ra tion , k, and th is is used to form a basis fo r a search
direction <3k . Equa lity constraints always remain in the active set, Ak . The
notation for the variable, <3k , is used here to d istinguish it from dk in the
major ite ra tions of the SQP method. The search direction, <3k , is calculated and
m inim izes the objective function w h ile rem aining on any active constraint
boundaries. The feasible subspace for <3k is formed from _a basis, Z k whose
columns are orthogonal to the estim ate of the active set Ak (i.e., AkZk = 0).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk , is guaranteed to remain on the boundaries
of the active constraints.

The m atrix Z^ is formed from the last m-l columns of the QR decomposition of
the m atrix Ak , w h e re l is the number of active constra ints and l < m. That is,
Zk is given by

Having found Z k , a new search direction dk is sought tha t m inim izes q (d)
where <3k is in the null space of the active constraints, tha t is, <3k is a linear
combination of the columns of Z k : <3k = ZkP for some vector p.

Then if we view our quadratic as a function of p, by substitu ting for <3k , we
have

V q(p) is referred to as the projected gradient of the quadratic function because
it is the gradient projected in the subspace defined by Zk . The term Z T H Z k is

Zk = Q [:, l + 1 :m]

(2-31)

q (p) = 2 PJ Z T HZkP + cTZkP (2-32)

D iffe ren tia ting th is w ith respect to p yields

Vq (p) = Z^-H Zkp + Z ^ (2-33)

2-28

SQ P Implementation

called the projected Hessian. Assuming the Hessian m atrix H is positive defi­
n ite (which is the case in th is implem entation of SQP), then the m in im um of
the function q(p) in the subspace defined by Zk occurs when Vq(p) = 0 , which
is the solution of the system of linear equations

At each ite ra tion , because of the quadratic nature of the objective function,
there are only tw o choices of step length a . A step of un ity along <3k is the exact
step to the m in im um of the function restricted to the null space of Ak . I f such
a step can be taken, w ithou t vio lation of the constraints, then th is is the solu­
tion to QP (Eq. 2.31). Otherwise, the step along <3k to the nearest constraint is
less than un ity and a new constraint is included in the active set at the next
iterate. The distance to the constraint boundaries in any direction <3k is given
by

which is defined for constraints not in the active set, and where the direction
< k is towards the constraint boundary, i.e., A i<3k > 0, i = 1 ,..., m .

When n independent constraints are included in the active set, w ithou t loca­
tion of the m inim um , Lagrange m u ltip lie rs , 1 k are calculated tha t satisfy the
nonsingular set of linear equations

I f all elements of 1k are positive, xk is the optimal solution of QP (Eq. 2.31).
However, i f any component of 1 k is negative, and it does not correspond to an
equality constraint, then the corresponding element is deleted from the active
set and a new ite ra te is sought.

Z k H Z kp = - Z Tc (2-34)

A step is then taken of the form

xk +1 = xk + a < k where (3 k = Z T p (2-35)

(2-36)

(2-37)

2-29

2 Introduction to Algorithms

In itia liza tio n
The algorithm requires a feasible point to start. I f the current point from the
SQP method is not feasible, then a point can be found by solving the linear
programm ing problem

minimize g
y e « , x e Шn

A,x = b, , = 1 , m e

A ,x - g < b, , = m e + -I,..., m (2-38)

The notation A, indicates the i th row of the m atrix A. A feasible point (if one
exists) to Eq. 2.38 can be found by setting x to a value tha t satisfies the
equality constraints. Th is can be achieved by solving an under- or over-deter­
mined set of linear equations formed from the set of equality constraints. I f
there is a solution to th is problem, then the slack variab le g is set to the
maximum inequa lity constraint at th is point.

The above QP a lgorithm is modified for LP problems by setting the search
direction to the steepest descent direction at each ite ra tion where gk is the
gradient of the objective function (equal to the coefficients of the linear objec­
tive function)

d k = - Z kZ k g k (2-39)

I f a feasible point is found using the above LP method, the main QP phase is
entered. The search direction <3k is in itia lized w ith a search direction d 1 found
from solving the set of linear equations

H d 1 = -gk (2-40)

where gk is the gradient of the objective function at the current ite ra te xk (i.e.,
Hxk + c).

I f a feasible solution is not found for the QP problem, the direction of search for
the main SQP routine d k is taken as one tha t m inim izes g.

2-30

SQ P Implementation

Line Search and Mer i t Funct ion
The solution to the QP sub-problem produces a vector <k , which is used to form
a new ite ra te

x k +1 = x k + a <k (2-41)

The step length parameter ak is determ ined in order to produce a sufficient
decrease in a m erit function. The merit function used by Han [15] and
Powell [15] of the form below has been used in th is implem entation

M erit F unction

Y (x) = f (x) + £ r i • 9i(x) + Z r-i • m ax{0, g i(x)}

i = 1 i = me + 1

Powell recommends setting the penalty parameter

= (rk + 1) i = max <j 1j, 2 ((r k) i + 1 i) k i = 1 , . , m

(2-42)

(2-43)

This allows positive contribution form constra ints tha t are inactive in the QP
solution but were recently active. I n th is im plem entation, in it ia lly the penalty
parameter r is set to

P _ II V f(x) ||
i II Vgi (x) II (2-44)

where || • || represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints
w ith smaller gradients, which would be the case for active constra ints at the
solution point.

m

2-31

2 Introduction to Algorithms

Mult iob ject ive Opt im iza t ion
The rig id ity of the mathematical problem posed by the general optim ization
form ulation given in GP (Eq. 2-1) is often remote from that of a practical design
problem. Rarely does a single objective w ith several hard constraints
adequately represent the problem being faced. More often there is a vector of
objectives F (x) = { F 1 (x), F2(x) ,..., Fm(x)} tha t must be traded off in some
way. The re la tive im portance of these objectives is not generally known un til
the system's best capabilities are determ ined and trade-offs between the objec­
tives fu lly understood. As the number of objectives increases, trade-offs are
like ly to become complex and less easily quantified. There is much reliance on
the in tu itio n of the designer and his or her ab ility to express preferences
throughout the optim ization cycle. Thus, requirements for a m ultiobjective
design strategy are to enable a natural problem form ulation to be expressed,
yet be able to solve the problem and enter preferences in to a num erically trac­
tab le and rea lis tic design problem.

This section begins w ith an introduction to m ultiob jective optim ization,
looking at a number of a lte rna tive methods. A tten tion is focused on the Goal
A tta inm ent method, which can be posed as a nonlinear program ing problem.
A lgo rithm improvements to the SQP method are presented for use w ith the
Goal A tta inm ent method.

In t roduc t ion to M u l t i ob je c t i v e O p t im i z a t i o n
M ultiob jective optim ization is concerned w ith the m in im ization of a vector of
objectives F(x) tha t may be the subject of a number of constraints or bounds.

MO

minimize F (x)
x e Шn

G i(x) = 0 i = 1, me

G i (x)< 0 i = me + 1, m

x l < x < x u (2-45)

Note tha t, because F(x) is a vector, i f any of the components of F(x) are
competing, there is no unique solution to th is problem. Instead, the concept of
non in fe rio rity [25] (also called Pareto op tim a lity [24], [26]) must be used to
characterize the objectives. A noninferior solution is one in which an improve-

2-32

Multiobjective Optim ization

ment in one objective requires a degradation of another. To define th is concept
more precisely, consider a feasible region, W, in the parameter space x e Жn
tha t satisfies all the constraints, i.e.,

W = { x e Жn}
subject to gi (x) = 0 i = 1 ,..., me

g i(x) < 0 i = m e + 1, m

x l < x < x u (2-46)

This allows us to define the corresponding feasible region for the objective func­
tion space Л

Л = { у e Ж™} where y = F (x) subject to x e W. (2-47)

The performance vector, F(x), maps parameter space in to objective function
space as is represented for a two-dimensional case in Fig. 2-9 below.

Figure 2-9: Mapping from Parameter Space into Objective Function Space.

A noninferior solution point can now be defined.

Defin ition: A point x * e W is a noninferior solution if for some neighborhood of
x * there does not exist a Ax such tha t (x * + Ax) e W and

F i(x* + Ax) < F i(x*)

Fj(x * + Ax) < Fj(x *)

i = 1 ,..., m

for some j . (2-48)

2-33

2 Introduction to Algorithms

In the two-dimensional representation of Fig. 2-10 the set of noninferior solu­
tions lies on the curve between C and D. Points A and B represent specific
noninferior points.

Figure 2-10: Set of N oninferior Solutions.

A and B are clearly noninferior solution points because an improvement in one
objective, F 1 , requires a degradation in the other objective, F2 , i.e.,

F 1 B < F 1 A’ F2B > F2A .
Since any point in W tha t is not a noninferior point represents a point in which
improvement can be attained in all the objectives, it is clear tha t such a point
is of no value. M ultiob jective optim ization is, therefore, concerned w ith the
generation and selection of noninferior solution points. The techniques for
m ultiobjective optim ization are w ide and varied and all the methods cannot be
covered w ith in the scope of th is toolbox. However, some of the techniques are
described below.

W eighted Sum S trategy
The weighted sum strategy converts the m ultiobjective problem of m in im iz ing
the vector F (x) in to a scalar problem by constructing a weighted sum of all the
objectives.

W eighted Sum
I I I

linimize f (x) = X W\ • F \ (x)2 (2-49)
i = 1

2-34

Multiobjective Optim ization

The problem can then be optim ized using a standard unconstrained optim iza­
tion algorithm . The problem here is in attaching w eighting coefficients to each
of the objectives. The w eighting coefficients do not necessarily correspond
d irectly to the re la tive importance of the objectives or allow trade-offs between
the objectives to be expressed. Further, the noninferior solution boundary may
be nonconcurrent so tha t certain solutions are not accessible.

This can be illus tra ted geometrically. Consider the tw o objective case in Fig.
2-11. In the objective function space a line, L, w T F (x) = c is drawn. The m in i­
m ization of Eq. 2-49 can be interpreted as find ing the value of c for which L just
touches the boundary of Л as it proceeds outwards from the orig in. Selection of
weights w 1 and w 2 , therefore, defines the slope of L, which in tu rn leads to
the solution point where L touches the boundary of Л.

Figure 2-11: Geometrical Representation of the Weighted Sum Method.

nonconvex as shown in Fig. 2-12. In th is case the set of noninferior solutions
between A and В is not available.

2-35

2 Introduction to Algorithms

2

e-C onstra in t Method
A procedure tha t overcomes some of the convexity problems of the weighted
sum technique is the e -constraint method. This involves m in im iz ing a prim ary
objective, Fp , and expressing the other objectives in the form of inequa lity
constraints

subject to

minimize F_ (x)
x e W p

F i(x) £ ei i = 1 , m
(2-50)

i * P

Fig. 2-13 shows a two-dimensional representation of the e -constraint method
for a tw o objective problem.

2-36

Multiobjective Optim ization

Figure 2-13: Geometrical Representation of e-Constraint Method

minimize F 1(x) subject to: F2X < e 2

This approach is able to iden tify a number of noninferior solutions on a
nonconvex boundary tha t are not obtainable using the weighted sum tech­
nique, for example, at the solution point F 1 = F 1S and F2 = e 2 - A problem
w ith th is method is, however, a su itab le selection of e to ensure a feasible solu­
tion. A fu rthe r disadvantage of th is approach is tha t the use of hard constraints
is rarely adequate for expressing tru e design objectives. S im ilar methods exist,
such as tha t of W altz [31], which p rio ritize the objectives. The optim ization
proceeds w ith reference to these p rio rities and allowable bounds of acceptance.
The d ifficu lty here is in expressing such inform ation at early stages of the opti­
m ization cycle.

In order for the designers' tru e preferences to be put in to a mathematical
description, the designers must express a fu ll table of the ir preferences and
satisfaction levels for a range of objective value combinations. A procedure
must then be realized tha t is able to find a solution w ith reference to th is . Such
methods have been derived for discrete functions using the branches of s ta tis ­
tics known as decision theory and game theory (for a basic in troduction , see
[28]). Im plem entation for continuous functions requires su itab le discretization
strategies and complex solution methods. Since it is rare for the designer to
know such detailed inform ation, th is method is deemed im practical for most
practical design problems. It is, however, seen as a possible area for fu rthe r
research.

What is required is a form ulation tha t is sim ple to express, reta ins the
designers preferences, and is num erically tractable.

2-37

2 Introduction to Algorithms

Goal A t t a i n m e n t Method
The method described here is the Goal A tta inm ent method of Gembicki [27].
Th is involves expressing a set of design goals, F * = { F* ,F2 ,. . .F * * } , which is
associated w ith a set of objectives, F(x) = { F i(x) ^ (x) , . . . ,Fm(x) } . The
problem form ulation allows the objectives to be under- or over-achieved
enabling the designer to be re la tive ly imprecise about in itia l design goals. The
re la tive degree of under- or over-achievement of the goals is controlled by a
vector of w eighting coefficients, w = { w 1, w 2, w m}, and is expressed as a
standard optim ization problem using the fo llow ing form ulation:

Goal A tta in m e n t

minimize g
y e « , x e W

such tha t Fi(x) - W i g£ F* i = 1 , . , m 51)

The term Wig introduces an element of slackness in to the problem, which
otherw ise imposes that the goals be rig id ly met. The w eighting vector, w,
enables the designer to express a measure of the re la tive trade-offs between the
objectives. For instance, setting the w eighting vector, w, equal to the in itia l
goals indicates tha t the same percentage under- or over-atta inm ent of the
goals, F *, is achieved. Hard constra ints can be incorporated in to the design by
setting a particu lar w eighting factor to zero (i.e., wi = 0). The Goal A tta inm ent
method provides a convenient in tu it iv e in terpre ta tion of the design problem,
which is solvable using standard optim ization procedures. I llu s tra tive exam­
ples of the use of Goal A tta inm ent method in control system design can be
found in Flem ing [29,30].

The Goal A tta inm ent method is represented geometrically in Fig. 2-14 for the
two-dimensional problem.

2-38

Multiobjective Optim ization

Figure 2-14: Geometrical Representation of Goal A tta inm ent Method.

minimize g subject to: F 1 (x) - w 1 g< F*
g, x e W 1 1 1

F2(x) - w 2g < F2

Specification of the goals, { F * , F 2 } , defines the goal point, P. The weighting
vector defines the direction of search from P to the feasible function space,
L(g) ■ D uring the optim ization g is varied, which changes the size of the feasible
region. The constraint boundaries converge to the unique solution point
F 1 S’ F 2S}

A l g o r i t h m I m p r o v e m e n t s f o r Goa l A t t a i n m e n t
Method
The Goal A tta inm ent method has the advantage tha t it can be posed as a
nonlinear programm ing problem. Characteristics of the problem can also be
exploited in a nonlinear programm ing algorithm . In Sequential Q uadratic
Programming (SQP) the choice of merit function for the line search is not easy
because, in many cases, it is d ifficu lt to “define” the re la tive im portance
between im proving the objective function and reducing constraint vio lations.
Th is has resulted in a number of d ifferent schemes for constructing the m erit
function (see, for example, Schittowski [22]). In Goal A tta inm ent programming

2-39

2 Introduction to Algorithms

there may be a more appropria te m erit function, which can be achieved by
posing Eq. 2-51 as the m inim ax problem

minimize max (Л ,}
X £ I '

F i (X) - F f
where Л, = -------------- i = 1 , m

1 w i (2-52)

Follow ing the argument of Brayton et al. [32] for m inim ax optim ization using
SQP, using the merit function of Eq. 2-43 for the Goal A tta inm ent problem of
Eq. 2-52, gives

y (x ,g) = g + X r, • max (0 , F i(x) - w, g - F * } (2-53)

i = 1
When the m erit function of Eq. 2-53 is used as the basis of a line search proce­
dure, then, although y (x, g) may decrease for a step in a given search direc­
tion, the function max Л i may paradoxically increase. Th is is accepting a
degradation in the worst case objective. Since the worst case objective is
responsible for the value of the objective function g, th is is accepting a step tha t
u ltim a te ly increases the objective function to be m inim ized. Conversely,
y (x ,g) may increase when max Л, decreases im p ly ing a rejection of a step that
improves the worst case objective.

Follow ing the lines of Brayton et al. [32], a solution is therefore to set y (x)
equal to the worst case objective, i.e.,

y (x) = max Л i . (2-54)
I i

A problem in the Goal A tta inm ent method is tha t it is common to use a
w eighting coefficient equal to zero to incorporate hard constraints. The m erit
function of Eq. 2-54 then becomes in fin ite for a rb itra ry v io la tions of the
constraints. To overcome th is problem w h ile s till re ta in ing the features of Eq.
2-54 the m erit function is combined w ith tha t of Eq. 2-43 g iving the following:

y (x) = X
i = 1

r i • max (0 , F | (x) - w ,g - F * } i f w , = 0

max Л,, I = 1 , . , m otherwise
1 (2-55)

m

m

2-40

Multiobjective Optim ization

Another feature tha t can be exploited in SQP is the objective function g. From
the KT equations (Eq. 2-24) it can be shown tha t the approxim ation to the
Hessian of the Lagrangian, H, should have zeros in the rows and columns asso­
ciated w ith the variab le g. By in itia liz in g H as the iden tity m atrix , th is prop­
erty does not appear. H is therefore in itia lized and m aintained to have zeros in
the rows and columns associated w ith g.

These changes make the Hessian, H, indefin ite , therefore H is set to have zeros
in the rows and columns associated w ith g, except for the diagonal element,
which is set to a small positive number (e.g., 1e-10). Th is allows use of the fast
converging positive de fin ite QP method described in the “Q uadratic Program­
ming Solution” section.

The above modifications have been implemented in a ttgoa l and have been
found to make the method more robust. However, due to the rapid convergence
of the SQP method, the requirement tha t the m erit function s tr ic tly decrease
sometimes requires more function evaluations than an im plem entation of SQP
using the m erit function of (Eq. 2-43).

2-41

2 Introduction to Algorithms

Review
A number of d ifferent optim ization strategies have been discussed. The algo­
rithm s used (e.g., BFGS, Levenberg-Marquardt and SQP) have been chosen for
the ir robustness and ite ra tive efficiency. The choice of problem form ulation
(e.g., unconstrained, least squares, constrained, m inim ax, m ultiobjective, or
goal a tta inm ent) depends on the problem being considered and the required
execution efficiency.

2-42

References

References
[1] P.E. G ill, W. M urray, and M.H .W right, Practical O ptim ization, Academic

Press, London, 1981.
[2] R. Fletcher, “ Practical Methods of O ptim iza tion ,” Vol. 1, Unconstrained

O ptim ization, and Vol. 2, Constrained O ptim ization, John W iley and
Sons., 1980.

[3] C.G. Broyden, “The Convergence of a Class of Double-rank M in im ization
A lgorithm s,” J .Inst. Maths. Applies., Vol. 6, pp. 76-90, 1970.

[4] R. Fletcher, “A New Approach to Variab le M e tric A lgorithm s,” Computer
Journa l, Vol. 13, pp. 317-322, 1970.

[5] D. Goldfarb, “A Fam ily of Variab le M e tric Updates Derived by V a ria tion ­
al Means,” M athematics of Computing, Vol. 24, pp. 23-26, 1970.

[6] D.F. Shanno, “Conditioning of Quasi-Newton Methods for Function M in ­
im iza tion ,” M athematics of Computing, Vol. 24, pp. 647-656, 1970.

[7] W.C. Davidon, “V ariab le M e tric Method for M in im iza tion ,” A.E.C. Re­
search and Development Report, ANL-5990, 1959.

[8] R. Fletcher and M.J.D. Powell, “A Rapidly Convergent Descent Method
for M in im iza tion ,” Computer J., Vol. 6, pp. 163-168, 1963.

[9] M .C. Biggs, “Constrained M in im ization Using Recursive Q uadratic Pro­
gram m ing,” Towards Global Optim ization (L.C.W.Dixon and G.P.Szergo,
eds.), N orth-H olland, pp.341-349, 1975.

[10] S.P. Han, “A G lobally Convergent Method for Nonlinear Program m ing,”
J. O ptim ization Theory and Applications, Vol. 22, p. 297, 1977.

[11] M.J.D. Powell, “A Fast A lgorithm for N onlinearly Constrained O ptim iza­
tion Calculations,” Numerical Analysis, G.A.Watson ed., Lecture Notes in
Mathematics, Springer Verlag, Vol. 630, 1978.

[12] M.J.D. Powell, “The Convergence of Variab le M e tric Methods for N on lin ­
early Constrained O ptim ization Calculations,” Nonlinear Programming
3, (O.L. Mangasarian, R.R. Meyer and S.M . Robinson, eds.), Academic
Press, 1978.

[13] M.J.D. Powell, “V ariab le M e tric Methods for Constrained O ptim iza tion ,”
Mathem atical Programm ing: The State of the A rt, (A.Bachem,
M.Grotschel and B.Korte, eds.) Springer Verlag, pp. 288-311, 1983.

[14] W. Hock, and K. Schittowski, “A Comparative Performance Evaluation of
27 Nonlinear Programming Codes,” Computing, Vol. 30, pp. 335, 1983.

[15] G. Dantzig, L inear Program ming and Extensions, Princeton U n ivers ity
Press, Princeton, 1963.

2-43

2 Introduction to Algorithms

[16] P.E. G ill, W. M urray, and M .H. W right, Numerical Linear Algebra and
O ptim ization, Vol.1, Addison Wesley, 1991.

[17] P.E. G ill, W. M urray, M.A. Saunders, and M .H. W righ t, “Procedures for
O ptim ization Problems w ith a M ix tu re of Bounds and General Linear
C onstra ints,” ACM Trans. M ath. Software, Vol.10, pp.282-298, 1984.

[18] K. Levenberg, “A Method for the Solution of Certain Problems in Last
Squares,” Quart. Apl. M ath. Vol.2, pp.164-168, 1944.

[19] D. M arquardt, “An A lgo rithm for Least-Squares Estim ation of Nonlinear
Parameters,” SIAM J. Appl. M ath. Vol.11, pp. 431-441, 1963.

[20] J.J. More, “The Levenberg-Marquardt A lgorithm : Im plem entation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in M athe­
matics 630, Springer Verlag, pp.105-116, 1977.

[21] J.E. Dennis, Jr. “ Nonlinear Least Squares,” State of the A rt in Numerical
Analysis ed. D. Jacobs, Academic Press., pp. 269-312, 1977.

[22] K. Schittowski, “NLQPL: A FORTRAN-Subroutine Solving Constrained
Nonlinear Programm ing Problems,” Anna ls of Operations Research, Vol.
5, pp. 485-500, 1985.

[23] NAG Fortran L ib ra r y M anual, M ark 12, Vol.4, E04UAF, p.16.
[24] Y. Censor, “ Pareto O p tim a lity in M ultiob jective Problems, ” Appl. M ath.

Optim iz., Vol. 4, pp. 41-59, 1977.
[25] L.A. Zadeh, “O p tim a lity and Nonscalar-valued Performance C rite ria ,”

IEEE Trans. Automat. Contr., Vol. AC-8, p. 1, 1963.
[26] N.O. Da Cunha and E. Polak, “Constrained M in im iza tion Under Vec­

tor-valued C rite ria in F in ite Dimensional Spaces,” J.M ath . Anal. Appl.,
Vol. 19, pp. 103-124, 1967.

[27] F.W. Gembicki, “Vector O ptim ization for Control w ith Performance and
Parameter S ensitiv ity Indices,” Ph.D. D issertation, Case Western Re­
serve Univ., Cleveland, Ohio, 1974.

[28] S .H . Hollingdale, Methods of Operational Analysis in Newer Uses of
M athematics (James L ig h th ill, ed.), Penguin Books, 1978.

[29] P.J. Fleming, “Application of M ultiob jective O ptim ization to Compensa­
tor Design for SISO Control Systems,” Electronics Letters, Vol.22, No.5,
pp.258-259, 1986.

[30] P.J. Fleming, “Computer-Aided Control System Design of Regulators us­
ing a M ultiob jective O ptim ization Approach,” Proc. IFAC Control A p p li­
cations of Nonlinear Porg. and Optim ., Capri, Ita ly , pp. 47-52, 1985.

[31] F .M . W altz, “An Engineering Approach: H ierarchical O ptim ization C rite ­
ria ,” IE E E Trans., Vol. AC-12, pp. 179-180, A p ril, 1967.

2-44

References

[32] R.K. Brayton, S.W. Director, G.D. Hachtel, and L.V id igal, “A New Algo­
rithm for S tatistica l C ircu it Design Based on Quasi-Newton Methods and
Function S p littin g ,” IEEE Transactions on C ircu its and Systems, Vol.
CAS-26, pp. 784-794, Sept. 1979.

[33] J.A. Nelder, and R. Mead, “A Simplex Method for Function M in im iza ­
tio n ,” Computer J Vol.7, pp. 308-313.

[34] A.C.W. Grace, “C om puter-A ided Control System Design Using O ptim iza­
tion Techniques” , Ph.D. Thesis, U n ivers ity of Wales, Bangor, Gwynedd,
UK, 1989.

[35] K. Madsen and H. Schjaer-Jacobsen, “A lgo rithm s for Worst Case Toler­
ance O ptim iza tion ,” IEEE Transactions of C ircu its and Systems, Vol.
CAS-26, Sept. 1979.

[36] G.F. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for
Mathem atical Computations, Prentice H all, 1976.

[37] G.B. Dantzig, A. Orden, and P. Wolfe, “Generalized Simplex Method for
M in im iz ing a Linear from Under Linear I nequality C onstra in ts,” Pacific
J. M ath. Vol. 5, pp. 183-195.

2-45

2 Introduction to Algorithms

2-46

3

Reference

3 Reference

This chapter contains descriptions of the Optim ization Toolbox functions,
listed alphabetically. I nformation is also available through the online Help
fac ility .

3-2

N o n l i n e a r M in im iz a t i o n

Function Purpose

at tgoal M ultiob jective goal a tta inm ent

constr Constrained nonlinear m inim ization

fm in Scalar nonlinear m inim ization

fm inu, fm ns Unconstrained nonlinear m inim ization

lp Linear programming

mi ni max M in im ax optim ization

qp Q uadratic programming

semi nf S em i-in fin ite m inim ization

Equat ion Solv ing

Function Purpose

\ Linear equation solving (see M ATLAB Language
Reference guide)

fso l ve Nonlinear equation solving

fz e r o Scalar nonlinear equation solving

3-3

3 Reference

Leas t -Squares (Curve f i t t i ng)

Function Purpose

\ L inear least squares (see M ATLAB Language Ref­
erence guide)

conl s Constrained linear least squares

cu rve fi t Nonlinear curve f itt in g

le a s ts q Nonlinear least squares

nnls Nonnegative linear least squares

Ut i l i ty

Function Purpose

fo p t ions Parameter settings

D e m o n s t ra t i o n s

Function Purpose

bandemo M in im iza tion of the banana function

df i l demo Finite-precision filte r design (requires Signal Pro­
cessing Toolbox)

goal demo Goal a tta inm ent example

optdemo Menu of demonstration routines

tutdemo Tutoria l walk-through

3-4

attgoa l

P u rp o s e

S y n o p s is

D e s c r ip t io n

Solve m ultiobjective goal a tta inm ent problem,

minimize g such tha t F (x) - w g < goal
x ,g

given F(x), w and goal, where x , w , and goal are vectors, g is a scalar v a r i­
able, and F (x) is a function tha t re tu rns a vector value.

x = a ttg o a l(f un' ,x0, goal w)
x = a ttg o a l(f un' ,x0, goal w, opt ons)
x = a ttg o a l(f un' ,x0, goal w, opt ons, v lb ,vu b)
x = a ttg o a l(f un' ,x0, goal w, opt ons, v lb , vub, grad')
x = a ttg o a l(f un' ,x0, goal w, opt ons, v lb , vub, grad' ,p1
[x ,o p t ions] = a tt goal (' f u n ' , x0,

a ttgoa l solves the goal a tta inm ent problem, which is one form ulation for m in i­
m izing a m ultiobjective optim ization problem.

x = a t tg o a l(' fu n ',x 0 ,g o a l,w) s ta rts at x0 and solves the goal a tta inm ent
problem, given a weight vector wand a goal vector goal , for the function
defined in the M -file fun. mi

x = a t tg o a l(' f u n ', x 0 , goal ,w, opti ons) uses the parameter values in the
vector opti ons rather than the default option values.

x = a t tg o a l(' f u n ', x ,g o a l , w,opt io n s ,v lb , vub) defines a set of lower and
upper bounds on x through the matrices vl b and vub. Th is restricts the solu­
tion to the range v lb <= x <= vub.

x = at tgoal (' fun ' ,x 0 ,g o a l, w, opt io n s ,v lb ,v u b , 'g ra d ') uses the gradient
in form ation calculated by the function gr ad, defined in the M -file gr ad.m
rather than the default of approxim ating the partia l derivatives via f in ite
differencing.

x = a t tg o a l(' f u n ', x 0 , goal ,w, opti ons, v lb ,v u b , ' grad' ,p 1 ,p 2 , . . .)
passes the problem-dependent parameters p1, p2, etc., d irectly to the functions
fun and gr ad.

3-5

attgoa l

A r g u m e n ts

[x ,o p t io n s] = a t tg o a l('fu n ',x 0 ,g o a l,w) re tu rns the parameters used in
the optim ization method. For example, opti ons(10) contains the number of
function evaluations used.

fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized at the point x. The
function fun re tu rns one argument: a vector value f,

f = fu n (x)

a ttgoa l a ttem pts to m in im ize the values in the vector f to
atta in the goal values given by goal .

A lte rnative ly , a s tring expression can be used w ith x
representing the independent variables. For example,

x = a tt g o a l('s in (x . * x) ' ,x0, goal ,w)

To make an objective function as near as possible to a goal
value, (i.e., neither greater than nor less than) set
opt ions(15) to the number of objectives required to be in the
neighborhood of the goal values. Such objectives must be
partitioned in to the firs t elements of the vector f returned by
fu n .m

goal Vector of values tha t the objectives attem pt to a tta in . Prior
to the optim ization, it is generally unknown whether the
objectives w ill be m inim ized less than the goals (over
a tta inm ent), or w ill only approach the goals (under
atta inm ent).

3-6

attgoa l

w

opti ons

A w eighting vector to control the re la tive under-atta inm ent
or over-attainm ent of the objectives. When the values of goal
are all nonzero, to ensure the same percentage of under- or
over-attainm ent of the active objectives, set the weighting
function w = a b s (g o a l) . (The active objectives are the set of
objectives tha t are barriers to fu rthe r improvement of the
goals at the solution.) When the w eighting function w is
positive, a ttgoa l a ttem pts to make the objectives less than
the goal values. To make the objective functions greater than
the goal values, set w to be negative rather than positive.To
make an objective function as near as possible to a goal value
is described below under fun .

A vector of control parameters. Of the 18 elements of
op tions , the input options used by a ttgoa l are: 1, 2, 3, 4,
7, 9, 14, 15, 16, 17. When op tions is an output parameter,
the options used by a ttgoa l to re turn values are: 8, 10, 11,
18.

• o p tio n s (1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p tio n s (2) controls the accuracy of x at the solution.
• o p tio n s (3) controls the accuracy of f at the solution.
• o p tio n s (4) sets the m aximum constraint v io lation tha t is

acceptable.

The term ination crite ria invo lv ing opti o n s (2), opti ons(3),
and opti ons(4) must all hold tru e for the a lgorithm to
term inate.

The use of op tions(15) by a ttgoa l is discussed under the
description of fun above. The use of o p tio n s (7) and
o p tio n s (8) by a ttgoa l is discussed in the “A lg o rith m ”
section below. For more inform ation on the opti ons vector,
includ ing default settings, see the fop t ions reference page
and the “Default Parameters Settings” section in the
T u to ria l.

3-7

attgoa l

E x a m p le s

grad A s tring containing the name of the function tha t computes
the gradient of the function at the point x. Th is function has
the form

df = grad(x)

The variab le df is a m atrix where the columns of df contain
the partia l derivatives for each of the objectives respectively,
(i.e., the i th column of df corresponds to the partia l
deriva tive of the i th objective w ith respect to each of the
elements in x).

x0, See constr.

p1,p2-------

v lb ,v u b

Consider a linear system of d iffe rentia l equations.

An output feedback controller, K, is designed producing a closed loop system

= (A + B K C) x + Bu

= Cx

The eigenvalues of the closed loop system are determ ined from the matrices A,
B, C, and K using the command ei g(A+B*K*C). Closed loop eigenvalues must lie
on the real axis in the complex plane to the left of the points [-5 ,-3 ,-1]. In order
not to sa turate the inputs, no element in K can be greater than 4 or be less than
-4 .

The system is a tw o-input, two-output, open loop, unstable system, w ith
state-space matrices.

A =

-0.5 0 0 1 0

0 -2 10 B = 2 2

0 1 - 2 0 1_

C =
1 0 0

0 0 1

3-8

attgoa l

The set of goal values for the closed loop eigenvalues are in itia lized as

goal = [- 5 , - 3 , -1] ;

To ensure the same percentage of under- or over-attainm ent in the active objec­
tives at the solution, the w eighting m atrix , w, is set to abs(g o a l) .

S ta rting w ith a controller, K = [0 ,0 ; 0 ,0], firs t w r ite an M -file.

Step 1: W rite an M -file fun.m :
fu n c t io n F = f un(K ,A B ,C)
F = so rt(e ig (A + B *K *C)); % Evaluate o b je c tiv e s

Step 2: Enter system m atrices and invoke an o p tim iza tio n routine:
A = [- 0 .5 0 0; 0 -2 10; 0 1 -2] ;
B = [1 0; 2 2; 0 1];
C = [1 0 0; 0 0 1];
K = zeros(2,2)
goal = [- 5 -3 -1] ;

w = abs(goal)

v lb = -4 *o n e s (s iz e (K)) ;

vub = 4 *o n e s (s ize (K));

op tions = 1;
[K ,op t ions] = . . .

at tg o a l('fu n ',K ,g o a l

% I n i t i a l i z e cont r o l le r matr ix
% Set goal va lues fo r the
% e igenva lues
% Set w fo r same percentage
% atta inm ent
% Set lower bounds on the
% cont r o l le r
% Set upper bounds on the
% cont r o l le r
% Set d is p la y parameter

w, opt io n s ,v lb ,v u b , [] ,A , B, C)

3-9

attgoa l

D is c u s s io n

This example can be run by using the demonstration script goal demo. A fter 118
function evaluations, a solution is

Acti ve constra i nts:
1
2

K =
-4 .0000 0. 2564

4. 0000 -4 .0000
fun(K, A, B,C)
ans =

-6 .9313
-4 .1588
-1 .4099

The atta inm ent factor is opti ons(8)

opti ons(8)
ans =

-0 .3863

The atta inm ent factor indicates tha t each of the objectives has been
over-achieved by at least 38.63% over the original design goals. The active
constraints, in th is case constra ints 1 and 2, are the objectives tha t are barriers
to fu rthe r improvement and for which the percentage of over-attainm ent is met
exactly.

In the above design, the optim izer tr ie s to make the objectives less than the
goals. For a worst case problem where the objectives must be as near to the
goals as possible, set o p tions (15) to the number of objectives for which th is is
required.

Consider the above problem when you want eigenvalues to be equal to the goal
values. A solution to th is problem is found by invoking a ttgoa l w ith
opti ons(15) set to 3.

opti ons(15) = 3;
[K ,op t ions] = . . .
a t tg o a l('fu n ',K ,g o a l,w ,o p t io n s ,v lb ,v u b , [],A ,B ,C)

3 -1 0

attgoa l

N o te s

A lg o r i th m

After 37 function evaluations the solution is

K =
-2 .4294 -0.4891

3. 9999 -2 .0706

fun(K, A, B, C)
ans =

-5 .0000
-3.0000
-1.0000

The atta inm ent factor is

opti ons(8)
ans =

1. 0859e-20

I n th is case the optim izer has tried to match the objectives to the goals. The
atta inm ent factor of 1.0859e-20 indicates tha t the goals have been matched
almost exactly.

Th is problem has d iscontinu ities when the eigenvalues become complex; th is
explains why the convergence is slow. A lthough the underlying methods are
based on functions tha t are continuous, the method is able to make steps
toward the solution since the d iscontinu ities do not occur at the solution point.
When the objectives and goals are complex, a ttgoa l tr ies to achieve the goals
in a least-squares sense.

M ultiob jective optim ization concerns the m in im ization of a set of objectives
sim ultaneously. One form ulation for th is problem, and implemented in
a ttg o a l, is the goal a tta inm ent problem of Gembicki[1]. Th is enta ils the
construction of a set of goal values for the objective functions. M ultiob jective
optim ization is discussed fu lly in the Introduction to A lgorithm s chapter.

In th is im plem entation, the slack variab le g is used as a dummy argument to
m in im ize the vector of objectives F (x) sim ultaneously; goal is a set of values
tha t the objectives a tta in . Generally, prior to the optim ization, it is unknown
whether the objectives w ill reach the goals (under a tta inm ent) or be m inim ized
less than the goals (over atta inm ent). A w eighting vector, w , controls the re la­
tive under-atta inm ent or over-attainm ent of the objectives.

3-11

attgoa l

L im ita t io n s

See A ls o

R e fe re n c e s

at tgoal uses a Sequential Q uadratic Programming (SQP) method, which is
described fu lly in the I ntroduction to A lgorithm s chapter. M odifications are
made to the line search and Hessian. In the line search an exact merit function
(see [5] and [6]) is used together w ith the m erit function proposed by [2, 3]. The
line search is te rm inated when either m erit function shows improvement. A
modified Hessian, which takes advantage of special s tructu re of th is problem,
is also used (see [5] and [6]). A fu ll description of the modifications used is found
in the “Goal A tta inm ent M ethod” section of the I ntroduction to A lgorithm s.
Setting o p tio n s (7) = 1 uses the m erit function and Hessian used in c o n s tr .

opti ons(8) contains the value of g at the solution. A negative value of g in d i­
cates over a tta inm ent in the goals.

See also SQP im plem entation section in the Introduction to A lgorithm s chapter
for more deta ils on the a lgorithm used and the display of procedures for
opti ons(1) = 1 setting.

The objectives must be continuous. at tgoal may give only local solutions.

c o n s tr , fo p t i ons

[1] F.W. Gembicki, “Vector O ptim ization for Control w ith Performance and
Parameter S ensitiv ity Indices,” Ph.D. D issertation, Case Western Reserve
Univ., Cleveland, Ohio, 1974.

[2] S.P. Han, “A G lobally Convergent Method For Nonlinear Program m ing,”
Journal of Optim ization Theory and Applications, Vol. 22, p. 297, 1977.

[3] M.J.D. Powell, “A Fast A lgo rithm for Nonlineary Constrained O ptim ization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Varleg, Vol. 630, 1978.

[4] P.J. Flem ing and A.P. Pashkevich, Computer Aided Control System Design
Using a M ulti-O bjective O ptim isation Approach, Control 1985 Conference,
Cambridge, UK, p. 174-179.

[5] R.K. Brayton, S.W. D irector, G.D. Hachtel, and L.V id igal, “A New Algo­
rithm for S tatistical C ircu it Design Based on Quasi-Newton Methods and
Function S p littin g ,” IEEE T ransactions on C ircu its and Systems, Vol. CAS-26,
pp. 784-794, Sept. 1979.

3 -1 2

attgoa l

[6] A.C.W. Grace, “Com puter-A ided Control System Design Using O ptim iza­
tion Techniques” , Ph.D. Thesis, U n ivers ity of Wales, Bangor, Gwynedd, UK,
1989.

3 -1 3

conls

P u rp o s e

S y n o p s is

D e s c r ip t io n

A r g u m e n ts

Solve the constrained linear least-squares problem,

1 2
min I Ax - b|L such tha t Cx < d

x 2 2

where A and C are matrices and b, d, and x are vectors.

x = conl s(A, b,C ,d)
x = conl s(A, b ,C ,d ,v lb)
x = conl s(A, b ,C ,d ,v lb ,v u b)
x = conl s(A, b ,C ,d ,v lb ,v u b , x0)
x = conl s(A, b ,C ,d ,v lb ,v u b , x0 ,n e q cs tr)
x = conl s(A, b ,C ,d ,v lb ,v u b , x 0 ,n e q c s tr ,d is p la y)
[x , l ambda, how] = conl s (A ,b ,C ,d , . . .)

conl s solves the constrained linear least-squares problem.

x = co n ls (A ,b ,C ,d) re tu rns a vector x tha t finds the least-squares solution to
Ax=b subject to C*x <= d.

x = con ls(A, b, C, d, v lb ,v u b) sets lower and upper bounds on x. Th is restricts
the solution to the range v lb <= x <= vub.

x = conl s(A, b ,C ,d ,v lb ,v u b , x0) sets the in itia l s ta rting point to x0.

x = conl s(A, b ,C ,d ,v lb ,v u b , x0 ,n e q cs tr) specifies tha t the firs t neqcst r
constra ints are equality constraints.

x = conl s(A, b ,C ,d ,v lb ,v u b , x 0 ,n e q c s tr ,d is p la y) controls the display of
w arn ing messages.

[x,lambda] = co n ls (A ,b ,C ,d) re tu rns values for the Lagrange m u ltip lie rs at
the solution in the variab le lambda.

[x, l ambda,how] = co n ls (A ,b ,C ,d) also re tu rns a s tring howthat indicates
error conditions at the final iteration.

A ,b The m atrix A and vector b form the set of coefficients of the
over- or under-determined linear system to be solved.

3 -1 4

conls

C, d

v lb , vub

x0

neqcst r

display

l ambda

how

The m atrix C and vector d are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned in to the firs t rows of C and the firs t
elements of d.

Upper and lower bound vectors. The variables, vl b and vub,
are norm ally the same size as x. However, i f v lb has n
elements and less elements than x then only the firs t n
elements in x are bounded below; upper bounds in vub are
defined in the same manner.

S tarting vector. conl s generally s ta rts its search at the point
ze ros(s i z e (x)) . Setting the in itia l s ta rting point can result
in faster convergence. I f the problem is badly conditioned,
th is can also result in an improved solution.

Number of equality constraints.

Flag to control the display of w arn ing messages. The default
value for the parameter di sp lay is 0, which displays warn ing
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the set of Lagrange m u ltip lie rs at the
solution. The length of lambda is
l eng th (b)+ leng t h(vl b) +l ength(vub) and the Lagrange
m u ltip lie rs are given in the corresponding order: firs t the
m u ltip lie rs for A, then vl b, then vub.

A s tring tha t indicates error conditions at the solution. The
s tring how = ' i n fe a s ib le ' indicates tha t the problem is
infeasible (i.e., the constraints are overly restrictive);
how = ' unbounded' indicates that the problem has an
unbounded solution; how = 'dependent' indicates tha t
dependent equality constraints were detected and removed;
how = ' ok' indicates tha t the problem was solved w ithou t
d ifficu lty.

As w ith all O ptim ization Toolbox functions, empty matrices in the calling
sequence result in the use of default options. For example, the command

conl s(A, b, C ,d ,[] , [] , [] , l eng th (b))

3 -1 5

conls

E x a m p le s

indicates tha t the problem is an equality constrained problem, having no upper
or lower bounds on the variables, and using a default s ta rting point.

Find the least-squares solution to the over-determined system Ax = b subject
to Cx < d and v lb < x < vub .

Step 1: Enter the coe ffic ien t matrices:
A =

C

0 9501 0.7620 0. 6153 0. 4057
0 2311 0.4564 0. 7919 0. 9354
0 6068 0.0185 0. 9218 0. 9169
0 4859 0.8214 0. 7382 0. 4102
0 8912 0.4447 0. 1762 0. 8936

0 0578
0 3528
0 8131
0 0098
0 1388

0 2027 0. 2721 0. 7467 0. 4659
0 1987 0.1988 0. 4450 0. 4186
0 6037 0.0152 0. 9318 0. 8462

0 5251
0 2026
0 6721
= 0. 1*ones(4, 1);
= 2*ones(4 ,1);

v lb
vub

Step 2: Invoke the constra ined linea r least-squares routine:

[x , l ambda] = conl s(A, b ,C ,d ,v lb ,v u b)

b

d

3 -1 6

conls

A lg o r i th m

D ia g n o s t ic s

This generates the solution

x =
-0 .1000
-0 .1000

0. 2152
0. 3502

lambda =
0

0. 2392
0

0. 0409
0. 2784

0
0
0
0
0
0

The firs t th ree elements of the Lagrange m u ltip lie rs (i.e., lambda) are associ­
ated w ith the inequa lity constraints. Nonzero elements of lambda indicate
active constraints at the solution. In th is case, the second linear inequa lity
constraint and the firs t tw o lower bound constra ints are active constra ints (i.e.,
the solution is on the ir constraint boundaries).

The last tw o elements of the Lagrange m u ltip lie rs are associated w ith the
lower bounds on x. In th is case, the bounds are inactive.

con ls is based on qp, which uses an active set method s im ila r to tha t described
in [1]. It finds an in it ia l feasible solution by firs t solving a linear programming
problem. See the quadra tic programming method discussed in the Introduction
to A lgorithm s chapter.

con ls gives a w arn ing when the solution is infeasible:

Warning: The c o n s tra in ts are o ve rly s tr in g e n t;
t her e is no fe a s ib l e s o lu t i on.

In th is case, con ls produces a result tha t m inim izes the worst case constraint
vio lation.

3 -1 7

conls

N o te s

See A ls o

R e fe re n c e s

When the equality constra ints are inconsistent, con ls gives

Warning: The eq u a l i t y c ons t r a i n t s are over l y s t r i ngen t ;
t here i s no f eas i b l e so l u t i on.

Unbounded solutions, which can occur when the Hessian H is negative
sem idefinite, may result in

Warning: The s o l u t i o n i s unbounded and at i n f i n i t y ;
t he c ons t r a i n t s are not r e s t r i c t i v e enough.

I n th is case, conls re tu rns a value of x tha t satisfies the constraints.

For problems w ith no constraints, \ should be used: x= A\b.

qp, \ , nnls.

[1] P.E. G ill, W. M urray, and M .H. W righ t, Practical O ptim ization, Academic
Press, London, UK, 1981.

3 -1 8

constr

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Find the m in im um of a constrained nonlinear m u ltiva riab le function,

min f (x) such tha t G (x)< 0
x

where x is a vector, G(x) is a function tha t re tu rns a vector, and f(x) is a func­
tion tha t re tu rns a scalar. Both f(x) and G(x) can be nonlinear functions. G(x)
can define both equality and inequa lity constraints.

x = c o n s t r (' f u n ' , x0)
x = c o n s t r (' f u n ' , x 0 , o p t i o n s)
x = c o n s t r (' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ')
x = c o n s t r (' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ' , p 1 , p 2 , . . .)
[x,opt ions] = const r (' f u n ' , x 0 , . . .)
[x,opt i ons , l ambda] = c o n s t r (' f u n ' , x0, . . .)
[x , o p t i o n s , l ambda,hess] = c o n s t r (' f u n ' , x 0 , . . .)

const r finds the constrained m in im um of a scalar function of several variables
s ta rting at an in itia l estimate. Th is is generally referred to as constrained
nonlinear optim ization.

x = c o n s t r (' f u n ' , x 0) s ta rts at the point x0 and finds a m in im um of the func­
tion and constra ints defined in the M -file named fun. mi

x = c o n s t r (' f u n ' , x 0 , o p t i o n s) uses the parameter values in the vector
opt i ons rather than the default option values.

x = c o n s t r (' f u n ' , x , opt i ons ,v l b , vub) defines a set of lower and upper
bounds on x through the matrices vl b and vub. Th is restricts the solution to
the range vl b <= x <= vub.

x = c o n s t r (' f u n ' , x0,opt ions, vl b, vub, ' g r a d ') uses the gradient in form a­
tion calculated by the function grad, defined in the M -file grad.m rather than
the default of approxim ating the partia l derivatives via f in ite differencing.

x = const r (' f u n ' ,x0, opt i o n s , v l b , v ub , ' g r ad ' , p 1 , p 2 , . . .) passes the
problem-dependent parameters p1, p2, etc., d irectly to the functions fun and
grad.

3 -1 9

constr

A r g u m e n t s

[x , op t ions] = const r (' f u n ' , x 0) re tu rns the parameters used in the op tim i­
zation method. For example, opt i ons(10) contains the number of function
evaluations used.

[x , op t i ons , l ambda] = c o n s t r (' f u n ' , x 0) re tu rns the vector lambda of the
Lagrange m u ltip lie rs at the solution x.

[x ,opt i ons, l ambda,hess] = c o n s t r (' f u n ' , x 0) also re tu rns the approxim a­
tion to the Hessian at the fina l iteration.

x0 S ta rting vector.

fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized and the constraint
function at the point x. The function fun re tu rns tw o
arguments: a scalar valued function f to be m inim ized and a
vector of constraint values g,

[f , g] = f un(x)

When inequa lity constra ints are present, the objective func­
tion f is m inim ized such tha t g <= z e r o s (s i z e (g)) .

Equa lity constraints, when present, are placed in the firs t
elements of g. When using equality constraints, opt i ons(13)
must be set to the number of equality constra ints (see the
“ Equa lity Constrained Exam ple” section in the T u to ria l).

A lte rna tive ly , a s tring expression can be used w ith x
representing the independent variables and w ith f and g
representing the function and constraints. For example,

x = c o n s t r (' f = f un (x) ; g = c s t r (x) ; ' , x 0)

v lb, vub Upper and lower bound vectors. The variables, v lb and vub,
are norm ally the same size as x. However, i f vl b has n
elements and fewer elements than x, then only the firs t n
elements in x are lower bounded; upper bounds in vub are
defined in the same manner.

3 -2 0

constr

opt i ons

grad

A vector of control parameters. Of the 18 elements of
opt i ons, the input options used by const r are: 1, 2, 3, 4, 9,
13, 14, 16, 17. When opt i ons is an output parameter, the
options used by const r to return values are: 8, 10, 11, 18.

• opt i ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.
• opt i ons(4) sets the m aximum constraint v io lation tha t is

acceptable.

The term ination crite ria invo lv ing opt i o ns (2) , opti ons(3),
and opt i ons(4) must all hold t rue for the a lgorithm to
term inate.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f o p t i o n s reference page and the “ Default
Parameters Settings” section in the Tu to ria l.

A s tring containing the name of the function tha t computes
the gradient of the function and the gradient of the
constra ints at the point x. Th is function has the form

[d f , dg] = grad(x)

The variab le df is a vector tha t contains the partia l
derivatives of f w ith respect to x. The variab le dg is a m atrix
where the columns of dg contain the partia l derivatives for
each of the constraints respectively, (i.e., the i th column of dg
corresponds to the partia l deriva tive of the i th constraint
w ith respect to each of the elements in x).

3-21

constr

Additiona l arguments to be passed to fun, tha t is, when
const r calls fun, and grad when it exists, the calls are

[f , g] = f un(x, p1,p2, .. .)
[d f , dg] = gr ad(x,p1,p2, . . .

Using th is feature, the same M -file can solve a number of
s im ila r problems w ith d ifferent parameters w h ile avoiding
the need to use global variables. Note tha t since all the
argum ents preceding p1, p2, etc., in the call to const r .m must
be defined, empty matrices may be passed in for opt i ons,
v l b , vub, and ' grad ' to indicate tha t default arguments are
to be used, as in

x = c o n s t r (' f u n ' , x 0 , [] , [] , [] , [] , p 1 , p 2 , . . .)

A vector tha t re tu rns the set of Lagrange m u ltip lie rs at the
solution. The length of lambda is
l ength(g)+ l eng th(v l b)+ l eng th(vub) and the Lagrange
m u ltip lie rs are given in the corresponding order: firs t the
m u ltip lie rs for g, then vl b, then vub.

The Quasi-Newton approxim ation to the Hessian m atrix at
the final ite ration.

E x a m p l e s Find values of x tha t m in im ize f (x) = - x 1 x 2x3 , s ta rting at the point
x = [10 10 10] and subject to the constraints

- x 1 - 2x2 - 2x3 < 0

x 1 + 2 x2 + 2 x3 < 72.

Step 1: W rite an M -file :
f u n c t i on [f , g] = fun(x)
f = - x (1) * x(2) * x (3) ;
g(1) = -x (1) - 2 * x(2) - 2 * x(3) ; % Eval uate Const r a i n t s
g(2) = x(1) + 2 * x(2) + 2 * x(3) - 72;

Step 2: Invoke an op tim iza tio n routine:
x0 = [10 ,10 ,10] ; % S t a r t i n g guess at t he so l u t i on
x = c o n s t r (' f u n ' , x0) % I nvoke opt imizer

3 -2 2

p1, p2 , . . .

lambda

hess

constr

A l g o r i t h m

L i m i t a t i o n s

N o t e s

See A l s o

A fter 49 function evaluations, the solution is

x =
24.0000 12.0000 12.0000

[f , g] = fun(x)
f =

-3.4560e+03
g =

-72 0

const r uses a Sequential Q uadratic Programming (SQP) method. In th is
method, a Q uadratic Program ming (QP) subproblem is solved at each iteration.
An estim ate of the Hessian of the Lagrangian is updated at each iteration
using the BFGS form ula (see fminu, references [3, 6]).

A line search is performed using a m erit function s im ila r to tha t proposed by
[1] and [2, 3]. The QP subproblem is solved using an active set strategy s im ila r
to tha t described in [4]. A fu ll description of th is a lgorithm is found in the
“Constrained O ptim iza tion” section of the Introduction to A lgorithm s chapter.

See also SQP im plem entation section in the Introduction to A lgorithm s chapter
for more deta ils on the a lgorithm used and the display of procedures for
opt i ons(1) = 1 setting.

The function to be m inim ized and the constra ints must both be continuous.
const r may only give local solutions.

When the problem is infeasible, const r a ttem pts to m in im ize the maximum
constraint value.

The objective function and constraint function must be real-valued, tha t is they
cannot return complex values.

I f equality constraints are present and dependent equalities are detected and
removed in the quadra tic subproblem, 'dependent ’ w ill be printed under the
Procedures heading (when output is asked for using opt i ons (1)=1) . The
dependent equalities are only removed when the equalities are consistent. I f
the system of equalities is not consistent, the subproblem is infeasible and
' in f easi bl e’ w ill be printed under the Pr ocedures heading.

fminu, f op t i ons

3 -2 3

constr

R e fe re n c e s [1] S.P. Han, “A G lobally Convergent Method for Nonlinear Program m ing,”
Journal of Optim ization Theory and Applications, Vol. 22, 1977, p. 297.

[2] M.J.D. Powell, “The Convergence of Variab le M e tric Methods For N on lin ­
early Constrained O ptim ization Calculations,” Nonlinear Programm ing 3,
(O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.) Academic Press,
1978.

[3] M.J.D. Powell, “A Fast A lgo rithm for Nonlineary Constrained O ptim ization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Verlag, Vol. 630, 1978.

[4] P.E. G ill, W. M urray, and M.H. W righ t, Practical O ptim ization, Academic
Press, London, 1981.

3 -2 4

curvef i t

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve nonlinear cu rve-fitting (da ta -fitting) problems in the least-squares sense.
That is, given input data xdata, the observed output ydata, we want to find
coefficients x tha t “best-fit” the equation F(x, xdata)

1 2 1 2
min 2 1| F(x,x d a ta) - y d a ta 2 = 2 Z (F (x, x d a t a i) - ydata i)

where xdata and ydata are vectors and F(x, xdata) is a vector valued function.

The function c u r v e f i t uses the same algorithm as l eastsq. I ts purpose is to
provide an interface designed specifically for da ta -fitting problems.

x = c u r v e f i t (' f u n ' , x 0 , x d a t a , ydat a)
x = c u r v e f i t (' f u n ' , x 0 , x d a t a , ydat a, opt ions)
x = c u r v e f i t (' f u n ' , x 0 , x d a t a , ydat a, op t i ons , ' grad ')
x = c u r v e f i t (' f u n ' , x 0 , x d a t a , ydat a , op t i o n s , ' g r a d ' , p 1 , p 2 , . . .)
[x,opt ions] = c u r v e f i t (' f u n ' ,x0, xdat a , ydata . . .)
[x , o p t i o n s , f u n v a l] = c u r v e f i t (' f u n ' , x 0 , xdat a, ydata . . .)
[x,opt i o n s , f unval , j acob] = curvef i t (' f u n ' , x 0 , xda ta , yda ta . . .)

curvef i t solves nonlinear da ta -fitting problems.

curvef i t requires an user-defined function to compute the vector-valued func­
tion F(x, xdata). The size of the vector returned by the user-defined function
must be the same as the size of ydata.

x = curvef i t (' fun' , x0 , xda ta , yda t a) s ta rts at x0 and finds the least squares
m in im um of the functions described in the M -file fun.

x = curvef i t (' f u n ' , x0 , xdata, ydat a, opt i ons) uses the parameter values in
the vector options rather than the default option values.

x = c u r v e f i t (' f u n ' , x 0 , x d a t a , ydat a, op t i ons , ' grad ') calls the function
grad to obtain the partia l derivatives of the functions

x = curvef i t (' f u n ' , x0,xdata, ydat a, op t i ons , ' gr a d ' , p 1 , p 2 , . . .) passes
parameters (i.e., p1, p2, etc.), d irectly to the function fun.

3 -2 5

curvef i t

A r g u m e n t s

[x , o p t i on s] = c u r v e f i t (' f u n ' , x 0 , x d a t a , y d a t a) re tu rns the parameters
used in the optim ization. For example, opt i ons(10) contains the number of
function evaluations used.

[x , op t i ons , f unv a l] = c u r v e f i t (' f u n ' , x 0 , xdat a, ydata) re tu rns the func­
tion value fun(x) at the solution x.

[x , op t i on s , f u n v a l , j ac o b] = c u r v e f i t (' f u n ' , x 0 , x d a t a , y d a t a) also
re tu rns the approximation to the Jacobian of the function at the solution x.

fun A s tring containing the name of the function tha t computes
the equation to be fitted evaluated at the point x. The
function fun re tu rns one argument: a vector-valued function
f to be m inim ized,

f = fun(x, xdat a)

NOTE The sum of squares should not be formed exp lic itly .
I nstead your function should return a vector of function
values. See the examples below.

grad A s tring containing the name of the function tha t computes
the gradient of the objective functions at the point x. This
function has the form

df = gr ad(x, xdat a)

The variab le df is a m atrix tha t contains the partia l
derivatives of F w ith respect to x. The i th column of df
corresponds to the partia l deriva tive of the i th function in f
w ith respect to x. (This is the transpose of the Jacobian
m atrix of F(x).)

3 -2 6

curvef i t

E x a m p le s

op tions

x0,

p1,p2,
f unval

j acob

• A vector of control parameters. O f the 18 elements of
opti ons, the input options used by curvef i t are: 1, 2, 3,
5, 7, 9, 14, 16, 17. When op tions is an output parameter,
the options used by cu rve fi t to re turn values are: 8, 10, 11,
18.

• opti ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p tio n s (2) controls the accuracy of x at the solution.
• o p tio n s (3) controls the accuracy of f at the solution.

The term ination c rite ria invo lv ing opti ons(2) and
opti ons(3) must both hold tru e for the a lgorithm to
term inate.

The use of o p tio n s (5) and o p tio n s (7) by c u rv e f it is
discussed in the “A lg o rith m ” section below.

For more inform ation on the opti ons vector, includ ing default
settings, see the fo p t io n s reference page and the “ Default
Parameters Settings” section in the Tu to ria l.

See fm inu.

The value of the function at the solution x.

The Jacobian of the function at the solution x.

Say you have a vectors of data xdata and ydata of length n, and you want to
find coefficients x to find the best f it to the equation
y d a ta (i) = x (1) + x (2) • e(xdata(i) + x(3)) ; tha t is, you want to m in im ize 0

i i

1 2
min 2 X (F (x, x d a ta i) - y d a ta i)

i = 1

where F (x, x d a ta) = x (1) + x (2) • e(xdata(i) + x(3)) , s ta rting at the point
x= [0 .3 , 0. 4, 0. 1].

3-27

curvef i t

A lg o r i th m

L im ita t io n s

Step 1: W rite an M -file :
fu n c t io n f = fu n (x ,x d a ta)
f = x (1) + x (2)*e x p (x d a ta + x (3)) ; %Note: f is a vector

Step 2: Invoke an op tim iza tio n routine:
% Assume: xdata and ydata e x is t and are the same s ize
x0 = [0 .3 0 .4 0.1] % S ta r t in g guess
x = c u r v e f i t (' f u n ', x 0 ,x d a t a, ydat a) % Invoke opti mi zer

Note tha t at the tim e tha t cu rve fi t is called, we assume tha t xdat a and ydat a
both exist and tha t they are the vectors of the same size. Th is is necessary as
the value f returned by fun must be the same size as ydata.

A fter 41 function evaluations, th is example gives the solution:

x =
0. 25783 0. 25783

sum (fun (x ,xda ta) . * fu n (x ,x d a ta))% res idua l or sum of squares
ans =

124.3622

The choice of a lgorithm is made by setting opt io n s (5) . The default is the
Levenberg-Marquardt method [1-3]. Setting o p tio n s (5) = 1 im plem ents a
Gauss-Newton method [4], which is generally faster when the residual
|| F (x, x d a ta) - y d a ta 2 is small.

The default line search a lgorithm , opti ons(7) = 0, is a safeguarded mixed
quadratic and cubic polynomial in terpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting
opti ons(7) = 1. Th is method generally requires fewer function evaluations
but more gradient evaluations. Thus, if gradients are being supplied and can
be calculated inexpensively, the cubic polynomial line search method is prefer­
able. The a lgorithm s used are described fu lly in the Introduction to A lgorithm s
chapter.

The function to be m inim ized must be continuous. c u rv e f it may only give local
solutions.

curvef i t only handles real variables (the user-defined function must only
return real values). When x has complex variables, the variables must be split
in to real and im aginary parts.

3-28

curvef i t

See A ls o

R e fe re n c e s

fo p t io n s , le a s t sq, \ , l l s , nn ls.

[1] K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm for Least-squares Estim ation of Nonlinear
Parameters,” SIAM J. Appl. M ath. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares” , State of the A rt in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

3-29

fmin

P u rp o s e

S y n o p s is

D e s c r ip t io n

Find the m in im um of a function of one variab le on a fixed in terva l,

min f (a) such tha t a1 < a < a 2

where a, a1 , and a2 are scalars and f(a) is a function tha t re tu rns a scalar.

a = f m n (' f u n ' , a 1 , a 2)
a = f m n (' f u n ' , a 1 , a 2 , op tions)
a = f m n (' f u n c t i o n ' , a 1 , a 2 , o p t i o n s , p 1 , p 2 , . . .)
[a ,opt ions] = f m n (' f unc t i on ' , a1 , a2 , .. .)

fmin finds the m in im um of a function of one variab le w ith in a fixed in terva l.

a = f m n (' f u n ' , a1,a2) re tu rns a value of x tha t is a local m in im izer of fun(a)
on the in terva l a1 < a < a2.

a = f m n (' f u n ' , a 1 , a 2 , opt i ons) uses the parameter values in the vector
opti ons rather than the default option values.

a = f m n (' f u n ' , a 1 , a 2 , opt i ons ,p1,p2, . . .) passes the problem-dependent
parameters p1, p2, etc., d irectly to the function fun.

[a ,opt ions] = f m n (' f u n ' , a 1 , a2) re tu rns the parameters used in the opti­
m ization method. For example, opti ons(10) contains the number of function
evaluations used.

3-30

fmin

A r g u m e n t s fun

a1, a2

opt i ons

p1, p2,

A s tring containing the name of the function tha t computes
the objective function to be m inim ized at the point x. The
function fun re turns one argument: a scalar valued function f
to be m inim ized,

[f] = fun(x)

A lternative ly , an expression can be substituted for the
function name, w ith x representing the independent variable.
For example, a = f m n (' s i n (x * x) ' , a 1 , a 2) (we have been
using a's to emphasize tha t th is function is for
one-dimensional problems only; here x must be used as the
independent variab le in the s tring expression).

In terva l over which fun is m inim ized.

A vector of control parameters. Of the 18 elements of
opti ons, the input options used by fmin are: 1, 2, 14.
When opti ons is an output parameter, the options used by
fmin to re turn values are: 8, 10.

• opti ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(14) sets the maximum number of function evalua­

tions.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f opt i ons reference page and the “ Default
Parameters Settings” section in the T u to ria l.

A dditiona l arguments to be passed to fun, tha t is, when fmin
calls fun, the call is

[f , g] = f un(x ,p1, p2, .)

Using th is feature, the same M -file can solve a number of
s im ila r problems w ith d ifferent parameters w h ile avoiding
the need to use global variables.

3-31

fmin

E x a m p l e s

A l g o r i t h m

L i m i t a t i o n s

3-32

A m in im um of sin (a) occurs at

a = f m n (' s i n ' , 0 , 2 *pi)
a =

4.7118

The value of the function at the m in im um is

y = s i n(a)
y =

-1 .0000

To find the m in im um of the function

f (a) = (a - 3)2 - 1

on the in terva l (0,5), w rite an M -file , and then invoke fmin.

Step 1: W rite an M -file :
f u n c t i on f = fun(a)
f = (a -3). л2 - 1;

Step 2: Invoke an op tim iza tio n routine:
a = f m n (' f u n ' , 0 , 5)

This generates the solution

a =
3

The value at the m in im um is

y = f (a)
y =

-1

fmin is an M -file in the MATLAB Toolbox. The a lgorithm is based on golden
section search and parabolic in terpolation. A Fortran program im plem enting
the same a lgorithm is given in [1].

The function to be m inim ized must be continuous. fmin may only give local
solutions.

fmin

See A ls o

R e fe re n c e s

f min often exh ib its slow convergence when the solution is on a boundary
in te rva l. In such a case, const r often gives faster and more accurate solutions.

f min only handles real variables.

fmins, fminu, fopt ions

[1] G.F. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for M ath­
ematical Computations, Prentice H all, 1976.

3-33

fm inu, fm ins

P u rp o s e

S y n o p s is

D e s c r ip t io n

A r g u m e n t s

Find the m in im um of an unconstrained m u ltiva riab le function,

min f (x)
x

where x is a vector, and f(x) is a function tha t re tu rns a scalar.

x = f m n u (' f u n ' , x 0)
x = f mn u (' f u n ' , x 0 , opt i ons)
x = f m n u (' f u n ' , x 0 , o p t i o n s , ' g r a d ')
x = f m n u (' f u n ' , x 0 , o p t i o n s , ' g r a d ' , p 1 , p 2 , . . .)
[x , op t ions] = fm nu(' f u n ' , x0, . . .)
[. . .] = f m n s (' f u n ' , x 0 , . . .)

fminu and fmins find the m in im um of a scalar function of several variables,
s ta rting at an in itia l estimate. Th is is generally referred to as unconstrained
nonlinear optim ization.

x = f m n u (' f u n ' , x 0) s ta rts at the point x0 and finds a m in im um of the func­
tion fun described in the M -file fun. mi

x = f m n u (' f u n ' , x 0 , opti ons) uses the parameter values in the vector
opti ons rather than the default option values.

x = f m n u (' f u n ' , x 0 , opti ons, ' grad ') uses the gradient in form ation calcu­
lated by the function grad, defined in the M -file grad.m rather than the default
of approxim ating the partia l derivatives via f in ite differencing.

x = f mi nu(' f u n ' , x0 ,opt ions, ' grad ' , p 1 , p 2 , . . .) passes the problem-depen­
dent parameters p1, p2, etc., d irectly to the functions fun and grad.

[x , op t ions] = f m i n u (' f u n ' , x0) re tu rns the parameters used in the op tim i­
zation method. For example, opt i ons(10) contains the number of function
evaluations used.

x0 S ta rting vector.

3-34

fm inu, fm ins

fun

opt i ons

A s tring containing the name of the function tha t computes
the objective function to be m inim ized at the point x. The
function fun re turns one argument: a scalar valued function f
to be m inim ized,

[f] = fun(x)

A lte rna tive ly , an expression can be substituted for the
function name, w ith x representing the independent
variables. For example,

x = f m n u (' s i n (x . * x) ' , x 0)

A vector of control parameters. Of the 18 elements of
opti ons, the input options used by fminu are: 1, 2, 3, 6, 7, 9,
14, 16, 17. When opt i ons is an output parameter, the
options used by fminu to re turn values are: 8, 10, 11, 18. Of
the 18 elements of opti ons, the input options used by fmins
are: 1, 2, 3, 14. When opt i ons is an output parameter, the
options used by fmins to re turn values are: 8, 10.

• opti ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.

The term ination c rite ria invo lv ing opt i ons(2) and
opt i ons(3) must both hold tru e for the a lgorithm to
term inate.

The use of opt i ons(6) and opt i ons(7) by fminu is discussed
in the “A lgo rithm s” section below.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f o p t i o n s reference page and the “ Default
Parameters Settings” section in the Tu to ria l.

3-35

fm inu, fm ins

E x a m p l e s

grad A s tring containing the name of the function tha t computes
the gradient of the function at the point x. Th is function has
the form

df = grad(x)

The variab le df is a vector tha t contains the partia l
derivatives of f w ith respect to x. Note tha t th is parameter
is ignored by fmins as it does not use gradient inform ation.

p1, p2, . . . Additiona l arguments to be passed to fun, tha t is, when
fminu (fmins) calls fun, and gr ad when it exists, the calls
are

[f , g] = f un(x, p1,p2, .. .)
[d f , dg] = grad(x,p1, p2, .. .)

Using th is feature, the same M -file can solve a number of
s im ila r problems w ith d ifferent parameters avoiding the need
to use global variables. Note tha t since all the argum ents
preceding p1, p2, etc., in the call to fminu. m (f mins. m) must
be defined, empty matrices may be passed in for opti ons and
' grad ' to indicate tha t default arguments are to be used, as
in

x = f m n u (' f u n ' , x 0 , [] , [] , p 1 , p 2 , . . .)

Find values tha t m in im ize

f(x) = 100 (x2 - x1)2 + (1 - x 1)2

s ta rting at the point

x = [-1 .2 1]

Step 1: W rite an M -file :
f u n c t i on f = fun(x)
f = 100* (x (2) - x (1)Л2)Л2+(1-x(1))л2; % Cost f u n c t i on

3-36

fm inu, fm ins

A l g o r i t h m s

Step 2: Invoke an op tim iza tio n routine:
x = [- 1 , 1] % Make a s t a r t i n g guess at t he so l u t i on
x = f m n u (' f u n ' , x)

A fter 132 function evaluations, th is example generates the solution

x =
1. 0000 1. 0000

fun(x) =
8. 8348e-11

fminu: The default a lgorithm for fminu is a quasi-Newton method. This
quasi-Newton method uses the BFGS [2-5] form ula for updating the approxi­
mation of the Hessian m atrix . The DFP [7, 8] form ula, which approximates the
inverse Hessian m atrix , is selected by setting opt i ons(6) = 1. A steepest
descent method is selected by setting opt i ons(6) = 2, although th is is not
recommended.

For fminu, the default line search a lgorithm , i.e., when opti ons(7) = 0, is a
safeguarded mixed quadratic and cubic polynomial in terpolation and extrapo­
lation method. A safeguarded cubic polynomial method can be selected by
setting opt i ons(7) = 1. Th is second method generally requires fewer function
evaluations but more gradient evaluations. Thus, i f gradients are being
supplied and can be calculated inexpensively, the cubic polynomial line search
method is preferable. A fu ll description of the a lgorithm s is given in the In tro ­
duction to A lgorithm s chapter.

fm ins: fmins uses the simplex search method of [1]. Th is is a direct search
method tha t does not use numerical or ana ly tic gradients like fminu.

I f n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 d istinct vectors tha t are its vertices. In two-space, a simplex is a triang le ;
in three-space, it is a pyram id. A t each step of the search, a new point in or
near the current simplex is generated. The function value at the new point is
compared w ith the function 's values at the vertices of the simplex and, usually,
one of the vertices is replaced by the new point, g iv ing a new simplex. This step
is repeated un til the diameter of the simplex is less than the specified to le r­
ance.

3-37

fm inu, fm ins

L i m i t a t i o n s

See A ls o

R e fe re n c e s

fmins is generally less efficient than f mnu for problems of order greater than
two. However, when the problem is highly discontinuous, fmins may be more
robust.

fmins has the identical calling syntax as fminu. Note tha t since fmins does not
use gradient in form ation, gr ad is always ignored.

For fminu, the function to be m inim ized must be continuous. fmins can often
handle d iscontinu ity, pa rticu la rly i f it does not occur near the solution. fminu
and fmins may only give local solutions.

fminu and f mins only m in im ize over the real numbers, tha t is, x must only
consist of real numbers and f(x) must only return real numbers. When x has
complex variables, they must be sp lit in to real and im aginary parts.

NOTE fmins and fminu should not be used to solve problems tha t are
2 2 2sums-of-squares, tha t is, of the form: min f (x) = f 1 (x) + f 2(x) + f 3(x) + L

Instead use the least sq function, which has been optim ized for problems of
th is form, for better performance.

fopt ions

[1] J.A. Nelder and R. Mead, “A Simplex Method for Function M in im iza tion ,”
Computer J., Vol. 7, pp. 308-313.

[2] C.G. Broyden, “The Convergence of a Class of Double-rank M in im iza tion
A lgorithm s,” J. Inst. M ath. Applic., Vol. 6, pp. 76-90, 1970.

[3] R. Fletcher, “A New Approach to Variab le M e tric A lgorithm s,” Computer J.,
Vol. 13, pp. 317-322, 1970.

[4] D. Goldfarb, “A Fam ily of Variab le M etric Updates Derived by Varia tiona l
Means,” Mathem atics of Computing, Vol. 24, pp. 23-26, 1970.

[5] D.F. Shanno,” Condition ing of Quasi-Newton Methods for Function M in i­
m ization,” Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

[6] W.C. Davidon, “Variab le M etric Method for M in im iza tion ,” A.E.C. Research
and Development Report, ANL-5990, 1959.

3-38

fm inu, fm ins

[7] R. Fletcher and M.J.D. Powell, “A Rapidly Convergent Descent Method for
M in im iza tion ,” Computer J., Vol. 6, pp. 163-168, 1963.

[8] R. Fletcher, “Practical Methods of O ptim iza tion ,” Vol. 1, Unconstrained
O ptim ization, John W iley and Sons, 1980.

3-39

f o p t i o n s

P u r p o s e

S y n o p s i s

D e s c r ip t io n

See A ls o

Set optim ization parameters and display parameter values.

hel p fopt ions
opt i ons = f op t i ons

The O ptim ization Toolbox functions f m n , fmins, fminu, c o n s t r , at tgoal ,
mi ni max, l east sq, semi n f , and fsol ve use optim ization parameters tha t can be
changed by setting new values in the opt i ons vector.

For consistency, the optim ization parameters have the same meaning, where
possible, throughout the O ptim ization Toolbox functions.

The function f o p t i o n s re tu rns a set of default options tha t are used when the
opt i ons vector is not supplied to the appropria te routines. Default values are
also used for elements in opt i ons tha t are set to 0 and for undefined parame­
ters caused when opti ons has fewer than 18 elements. These values may also
be returned by specifying a second left-hand argument to the particu la r op tim i­
zation routine. For example,

[x , op t i ons] = fmi nu(' f u n ' , x0);
opt i ons(10)
opt i ons(11)

enables the number of function and gradient evaluations to be obtained and
displayed.

See the Table 1-4, “Option Parameters,” on page25 in the Tuto ria l chapter for
more inform ation.

at tgoal , const r , fmin, fmins, fminu, f so l ve , l eas tsq, mi ni max, seminf

3-40

fsolve

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve a system of nonlinear equations,

F (x) = 0

for x, where x is a vector and F (x) is a function tha t re tu rns a vector value.

x = fsol v e (' f u n ' , x0)
x = fsol v e (' f u n ' , x0,opt ions)
x = fsol v e (' f u n ' , x0,opt ions, ' grad ')
x = f s o l v e (' f u n ' , x 0 , o p t i o n s , ' g r a d ' , p 1 , p 2 , . . .)
[x,opt ions] = f so l ve (' f u n ' , x 0 , . . .)

fsol ve finds a root (zero) of a system of nonlinear equations.

x = fsol v e (' f u n ' , x0) s ta rts at x0 and re tu rns x, solving the equations
defined in the M -file fun. m

x = f s o l v e (' f u n ' , x 0 , o p t i o n s) uses the parameter values in the vector
options rather than the default option values.

x = f s o l v e (' f u n ' , x 0 , o p t i o n s , ' grad ') uses the gradient in form ation calcu­
lated by the function grad, defined in the M -file grad. m rather than the
default of approxim ating the partia l derivatives via f in ite differencing.

x = fsol v e (' f u n ' , x0,opt ions, ' grad ' , p 1 , p 2 , . . .) passes the
problem-dependent parameters p1, p2, etc., d irectly to the functions fun and
grad.

[x , o p t i on s] = f s o l v e (' f u n ' , x 0) re turns the parameters used in the op tim i­
zation method. For example, opt i ons(10) contains the number of function
evaluations used.

3-41

fsolve

A r g u m e n t s fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized at the point x. The
function fun re tu rns one argument: a vector-valued function
f to be m inim ized,

[f] = f un(x)

A lte rna tive ly , an expression can be substituted for the
function name, w ith x representing the independent variable.
For example,

x = f s o l v e (' s i n (x * x) ' , x 0)

opt i ons A vector of control parameters. Of the 18 elements of
opt ions, the input options used by l eas t sq are: 1, 2, 3, 5,
7, 9, 14, 16, 17. The use of opt i ons(5) and opt i ons(7) by
f s o l v e is discussed in the “A lgo rithm ” section below. When
opt i ons is an output parameter, the options used by fsol ve
to re turn values are: 8, 10, 11, 18.

• opt i ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu la r display of in term edia te results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.

The term ination crite ria invo lv ing opt i ons(2) and
opt i ons(3) must both hold t rue for the a lgorithm to
term inate.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f op t i ons reference page and the “Default
Parameters Settings” section in the T u to ria l.

3-42

fsolve

E x a m p l e s

grad

x0,

p1, p2 , . . .

Exam ple 1: Find a zero of the system of tw o equations and tw o unknowns
2 x1 - x2 = e~x'

- x 1 + 2x2 = e- *2

Thus we want to solve the follow ing system for x
2 x1 - x2 - e-x1 = 0

- x 1 + 2x2 - e_x2 = 0

s ta rting at x0 = [- 5 - 5] .

Step 1: W rite an M -file :
f u n c t i on F = fun(x)
F = [2*x (1) - x(2) - exp (-x (1)) ;

-x (1) + 2*x(2) - e x p (- x (2))] ;

Step 2: Invoke an op tim iza tio n routine:
x0 = -5*ones(2 , 1); % Mfeke a s t a r t i ng guess at the so l u t i on
opt i ons=fop t i ons ; %Set defau l t opt i ons
opt i ons(1)=1; %Set opt i on t o d i sp l ay output
x = fsol v e (' f u n ' , x0,opt i ons) % I nvoke opt i mi zer
f = fun(x)

A s tring containing the name of the function tha t computes
the gradient of the objective functions at the point x. Th is
function has the form

df = grad(x)

The variab le df is a m atrix tha t contains the partia l
derivatives of F w ith respect to x. The i th column of df
corresponds to the partia l deriva tive of the i th function in f
w ith respect to x. (This is the transpose of the Jacobian
m atrix of F(x).)

See f mi nu .

3-43

fsolve

After 25 function evaluations, a zero is found:

CCUNT RESI D STEP-SIZE GRAD/SD
3 47071.2 1 -9.41e+04
8 966.828 1 -1.81e+03

15 1.99465 3.85 5.6
20 0 000632051 0.895 -0.0867
25 1 39647e-15 0.998 -1 .89e -09

Cpti mi z a t i on Termnat ed Successf u ll y
x =

0.5671
0.5671

f =
1. 0e-07 *
0. 2642
0. 2642

EXample 2: Find a m atrix X tha t satisfies the equation

X * X * X =
1 2

3 4_

s ta rting at the point X= [1,1; 1,1] .

Step 1: W rite an M -file :
f u n c t i o n F = fun(x)
F = x * x * x - [1 , 2 ;3 ,4] ;

Step 2: Invoke an op tim iza tio n routine:
x0 = ones(2,2) ; % Mfeke a s t a r t i n g guess at the s o l u t i o n
x = fsol ve(' f u n ' , x0) %I nvoke opt imizer

3-44

fsolve

N o t e s

A l g o r i t h m

After 44 function evaluations, the solution is

x =
-0.1291 0. 8602

1.2903 1.1612
F = x * x * x - [1 , 2 ; 3 , 4]
F =

1. 0e-05 *
0.0350 0.1268
0.0721 -0 .1293

sum(sum(F. *F))
ans =

3. 9218e-12

I f the system of equations is linear, then \ (the backslash operator: see
hel p sl ash) should be used for better speed and accuracy. For example, say
we want to find the solution to the fo llow ing linear system of equations:

3x 1 + 1 1 x2 - 2x3 = 7

x 1 + x 2 - 2x 3 = 4

x 1 - x 2 + x 3 = 19

Then the problem is form ulated and solved as

A = [3 11 -2; 1 1 -2; 1 -1 1];
b = [7; 4; 19] ;
x = A\b
x =

13.2188
-2.3438

3.4375

The method is based on the nonlinear least-squares a lgorithm also used in
l eastsq. The advantage of using a least-squares method is tha t i f the system
of equations is never zero due to small inaccuracies, or because it just does not
have a zero, the a lgorithm s till re tu rns a point where the residual is small.
However, i f the Jacobian of the system is singular, the a lgorithm may converge
to a point tha t is not a solution of the system of equations (see “L im ita tions ”
and “Diagnostics” below).

3-45

fsolve

L i m i t a t i o n s

D ia g n o s t ic s

See A ls o

R e fe re n c e s

The choice of a lgorithm is made by setting opt i o n s (5) . The default a lgorithm
is the Gauss-Newton method [4]. Setting opt i ons(5) = 1 im plem ents the
Levenberg-Marquardt method [1-3].

The default line search a lgorithm , opt i ons(7) = 0, is a safeguarded mixed
quadra tic and cubic polynomial in terpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting opt i ons(7)
= 1. Th is method generally requires fewer function evaluations but more
gradient evaluations. Thus, i f gradients are being supplied and can be calcu­
lated inexpensively, the cubic polynomial line search method is preferable.

The function to be solved must be continuous. When successful, fsol ve only
gives one root. fsol ve may converge to a nonzero point, in which case, try other
s ta rting values.

Opt imizer i s s tuck at a minimum that i s not a root
Try again wi t h a new s t a r t i n g guess

\ , fopt ions, l eas t sq

[1] K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm for Least-squares Estim ation of Nonlinear
Parameters,” SIAM J. Appl. Math., Vol. 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics
630, Springer Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “ Nonlinear Least Squares,” State of the A rt in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312,

3-46

fzero

P u r p o s e

S y n t a x

D e s c r ip t io n

A r g u m e n t s

Zero of a function of one variab le

z = f zer o (' f u n ' , x 0)
z = f zer o (' f un ' , x 0 , t o l)
z = f z e r o (' f u n ' , x 0 , t o l , t r a c e)
z = f zer o (' f un ' , x 0 , t o l , t r ace, P1, P2 , . . .)

f z e r o (' f u n ' , x) finds a zero of fun. f un is a s tring containing the name of a
real-valued function of a single real variable. The value returned is near a point
where fun changes sign, or NaN if the search fails.

f z e r o (' f u n ' , x) where x is a vector of length 2, assumes x is an in terva l where
the sign of f (x (1)) d iffe rs from the sign of f (x (2)) . An error occurs i f th is is
not true. Calling f z e r o w ith an in terva l guarantees f zer o w ill return a value
near a point where fun changes sign.

f z e r o (' f u n ' , x) where x is a scalar value, uses x as a s ta rting point. f ze r o
looks for an in terva l containing a sign change for fun and containing x. I f no
such in terva l is found, NaN is returned. I n th is case, the search term inates
when the search in terva l is expanded un til an I n f , NaN, or complex value is
found.

fzero(' f u n ' , x , t o l) re turns an answer accurate to w ith in a re la tive error of
to l .

z = f z e r o (' f u n ' , x , t o l , t r a c e) displays inform ation at each iteration.

z = f z e r o (' f un' , x, t ol , t race, P1, P2, . . .) provides for additional arguments
passed to the function fun(x,P1,P2, . . .) . Pass an empty m atrix for to l or
t race to use the default value, for example: f z e r o (' f u n ' , x , [] , [] , P 1)

For the purposes of th is command, zeros are considered to be points where the
function actually crosses, not jus t touches, the x-axis.

fun A s tring containing the name of a file in which an a rb itra ry
function of one variab le is defined.

x0 Your in it ia l estimate of the x-coordinate of a zero of the function
or an in terva l in which you th in k a zero is found.

to l The re la tive error tolerance. By default, tol is eps.

3-47

fzero

E x a m p l e s

A l g o r i t h m

t r ace A nonzero value tha t causes the f ze r o command to display
inform ation at each iteration of its calculations.

P1 ,P2, .. . Additiona l arguments passed to the function

Calculate p by find ing the zero of the s i ne function near 3.

x = f zer o (' s i n ' , 3)
x =

3. 1416

To find the zero of cosine between 1 and 2:

x = f z e r o (' cos' , [1 2])
x =

1. 5708

Note tha t cos(1) and cos(2) differ in sign.

To find a zero of the function:

f (x) = x 3 - 2 x - 5

w rite an M -file called f .m

f u n c t i o n y = f (x)
y = x. A3-2*x-5;

To find the zero near 2

z = f zer o (' f ' , 2)
z =

2.0946

Since th is function is a polynomial, the statement r oo t s ([1 0 - 2 - 5]) finds
the same real zero, and a complex conjugate pair of zeros.

2.0946
-1. 0473 + 1. 1359i
-1. 0473 - 1. 1359i

The f zer o command is an M -file . The algorithm , which was originated by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic in te r­

3-48

fzero

L i m i t a t i o n s

See A ls o

R e fe re n c e s

polation methods. An Algol 60 version, w ith some improvements, is given in [1].
A Fortran version, upon which the f ze r o M -file is based, is in [2].

The f ze r o command defines a zero as a point where the function crosses the
x-axis. Points where the function touches, but does not cross, the x-axis are not
va lid zeros. For example, y = x. л2 is a parabola that touches the x-axis at (0,0).
Since the function never crosses the x-axis, however, no zero is found. For func­
tions w ith no va lid zeros, f ze r o executes un til I n f , NaN, or a complex value is
detected.

eps, f m n , fsol ve, \

[1] Brent, R., A lgorithm s for M in im iza tion W ithout Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathem atical Computations, Prentice-Hall, 1976.

3-49

leastsq

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve nonlinear least-squares (nonlinear da ta -fitting) problems,

min f (X) = f (X)2 + f2(X)2 + f 3(X)2 + ... + fm (X)2 + L

where L is a constant.

x = l eas t sq(' f u n ' , x 0)
x = l eas t sq(' f u n ' , x 0 , opt i ons
x = l e a s t s q (' f u n ' , x 0 , o p t i o n s , ' g r a d ')
x = l eas t sq(' f u n ' , x 0 , op t i ons , ' gr ad ' ,p1,p2, . . .)
[x , o p t i on s] = l e a s t s q (' f u n ' , x 0 , . . .)
[x , op t i on s , f unval] = l east s q (' f u n ' , x 0 , . . .)
[x , op t i on s , f unval , j acob] = l east s q (' f u n ' , x0, . . .)

l eas t sq solves nonlinear least-squares problems, includ ing nonlinear
da ta -fitting problems.

Rather than compute the value f(X), l eas t sq requires the user-defined function
to compute the vector-valued function

F (X) =

f 1 (X)

f 2 (X)

f 3 (X)

In vector term s th is optim ization problem may be restated as

min 1 1| F(X)|2 = 2 Z f i (X)2
i

where x is a vector and F(x) is a function tha t re tu rns a vector value.

x = l e a s t s q (' f u n ' , x 0) s ta rts at x0 and finds the least-squares m in im um of
the functions described in the M -file fun.

x = l e a s t s q (' f u n ' , x 0 , o p t i o n s) uses the parameter values in the vector
options rather than the default option values.

3-50

leastsq

A r g u m e n t s

x = l e a s t s q (' f u n ' , x 0 , o p t i o n s , ' g r a d ') calls the function grad to obtain the
partia l derivatives of the functions.

x = l east sq(' f u n ' , x0,opt i ons, ' g r a d ' , p 1 , p 2 , . . .) passes parameters (i .e.,
p1, p2, etc.), d irectly to the function fun.

[x , o p t i on s] = l e a s t s q (' f u n ' , x 0) re tu rns the parameters used in the opti­
m ization. opt i ons(10) contains the number of function evaluations used.

[x , o p t i o n s , f u n v a l] = l e a s t s q (' f u n ' , x 0) re tu rns the function value
f un(x) at the solution x.

[x, opt i o n s , f u n v a l , j ac o b] = l e a s t s q (' f u n ' , x 0) also re tu rns the approxi­
mation to the Jacobian of the function at the solution x.

fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized at the point x. The
function fun re turns one argument: a vector-valued function
f to be m inim ized,

[f] = fun(x)

NOTE The sum of squares should not be formed exp lic itly .
Instead your function should return a vector of function
values. See the example below.

A lte rna tive ly , an expression can be substituted for the
function name, w ith x representing the independent
variables. For example,

x = l e a s t s q (' s i n (x) ' , x0)

3-51

leastsq

opt i ons

grad

x0,

p1 , p2 , . . .

funval

j acob

• A vector of control parameters. Of the 18 elements of
opt i ons, the input options used by l eas t sq are: 1, 2, 3, 5,
7, 9, 14, 16, 17. When opt i ons is an output parameter, the
options used by l eas t sq to return values are: 8, 10, 11, 18.

• opt i ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu la r display of in term edia te results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.

The term ination crite ria invo lv ing opt i ons(2) and
opt i ons(3) must both hold t rue for the a lgorithm to
term inate.

The use of opt i ons(5) and opt i ons(7) by l eas t sq is
discussed in the “A lg o rith m ” section below.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f op t i ons reference page and the “Default
Parameters Settings” section in the T u to ria l.

A s tring containing the name of the function tha t computes
the gradient of the objective functions at the point x. This
function has the form

df = grad(x)

The variab le df is a m atrix tha t contains the partia l
derivatives of F w ith respect to x. The i th column of df
corresponds to the partia l deriva tive of the i th function in f
w ith respect to x. (This is the transpose of the Jacobian
m atrix of F(x).)

See f mnu.

The value of the function at the solution x.

The Jacobian of the function at the solution x.

3-52

leastsq

E x a m p l e s

N o t e s

A l g o r i t h m

Find x tha t m inim izes
10

kx, k x 2
(2 + 2 к - e 1 - e 2)

к = 1

sta rting at the point x= [0.3 , 0.4].

Because l eastsq assumes tha t the sum-of-squares is not exp lic itly formed, the
function passed to least sq should compute the vector valued function

_ _ kx, kx,
Fk(x) = 2 + 2 k - e - e

for k = 1 to 10.

Step 1: W rite an M -file :
f u n c t i on f = fun(x)
k = [1 : 10] ;
f = 2 + 2 * k - exp (k * x (1)) - exp (k * x (2)) ;

Step 2: Invoke an op tim iza tio n routine:
x0 = [0 . 3 0.4] % S t a r t i n g guess
x = l e a s t s q (' f u n ' , x 0) % Invoke opt i mi zer

A fter 41 function evaluations, th is example gives the solution:

x =
0. 25783 0. 25783

sum(fun(x) . * f un(x))%res i dual or sum of squares
ans =

124. 3622

For the best accuracy and performance, the sum-of-squares should not be
formed exp lic itly . Instead your function should re turn a vector of function
values. See the example above.

The choice of a lgorithm is made by setting opt i o n s (5) . The default is the
Levenberg-Marquardt method [1 -3]. Setting opt ions(5) = 1 im plem ents a
Gauss-Newton method [4], which is generally faster when the residual ||F(x)|
is small.

3-53

CN
CN

leastsq

L i m i t a t i o n s

See A l s o

R e fe re n c e s

The default line search a lgorithm , opt i ons(7) = 0, is a safeguarded mixed
quadra tic and cubic polynomial in terpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting
opt i ons(7) = 1. Th is method generally requires fewer function evaluations
but more gradient evaluations. Thus, if gradients are being supplied and can
be calculated inexpensively, the cubic polynomial line search method is prefer­
able. The a lgorithm s used are described fu lly in the Introduction to A lgorithm s
chapter.

The function to be m inim ized must be continuous. l eas t sq may only give local
solutions.

l eas t sq only handles real variables. When x has complex variables, the v a ri­
ables must be sp lit in to real and im aginary parts.

fopt ions

[1] K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm for Least-squares Estim ation of Nonlinear
Parameters,” SIAM J. Appl. M ath. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares,” State of the A rt in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

3-54

lp

P u r p o s e

S y n o p s i s

D e s c r ip t io n

A r g u m e n t s

Solve a linear programming problem,

min c Tx such tha t Ax < b
x

where c and b are vectors and A is a m atrix . Both equality and inequa lity
constra ints can be defined using A and b.

x = l p (c , A , b)
x = l p (c , A , b , v l b)
x = l p (c , A , b , v l b , vub)
x = l p (c , A , b , v l b , vub, x0)
x = l p (c , A , b , v l b , vub, x0,neqcst r)
x = l p (c , A , b , v l b , vub, x0,neqcst r , di splay)
[x , l ambda, how] = l p (c , A , b , . . .)

l p solves linear programming problems.

x = l p (c , A , b) re tu rns a vector x tha t m inim izes the equation c ' * x subject to
A*x <= b.

x = l p (c , A , b , v l b , vub) sets lower and upper bounds on x. Th is restricts the
solution to the range v lb <= x <= vub.

x = l p (c , A , b , v l b , vub, x0) sets the in itia l s ta rting point to x0.

x = l p (c , A , b , v l b , vub, x0,neqcst r) specifies tha t the firs t neqcst r
constra ints are equality constraints.

x = l p (c , A b , v l b, vub, x0,neqcst r, di spl ay) controls the display of w arn ing
messages.

[x , l ambda] = l p (c , A , b) re tu rns the vector lambda of the Lagrange m u lti­
p liers at the solution x.

[x,lambda,how] = l p (c , A , b) also re tu rns a s tring how tha t indicates error
conditions at the fina l ite ra tion .

c The vector c is the set of coefficients of the linear objective
function.

3-55

lp

A,b

vlb, vub

x0

neqcst r

d i sp l ay

lambda

how

The m atrix A and vector b are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned in to the firs t rows of A and the firs t
elements of b, followed by the coefficients for the inequa lity
constraints.

Upper and lower bound vectors. The variables, vl b and vub,
are norm ally the same size as x. However, i f vl b has n
elements and less elements than x then only the firs t n
elements in x are lower bounded; upper bounds in vub are
defined in the same manner.

S tarting vector. lp generally s ta rts its search at the point
z e r o s (s i z e (x)) . Setting the in itia l s ta rting point may result
in faster convergence. I f the problem is badly conditioned,
th is may also result in an improved solution.

Number of equality constraints.

Flag to control the display of w arn ing messages. The default
value for the parameter di spl ay is 0, which displays w arn ing
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the set of Lagrange m u ltip lie rs at the
solution. The length of lambda is
lengt h(b) +l eng th(v l b) + l eng t h(vub) and the Lagrange
m u ltip lie rs are given in the corresponding order: firs t the
m u ltip lie rs for A, then vl b, then vub.

A s tring tha t indicates error conditions at the solution. The
s tring how = ' i nfeasi bl e' indicates tha t the problem is
infeasible (i.e., the constra ints are overly restrictive);
how = 'unbounded' indicates tha t the problem has an
unbounded solution; how = 'dependent' indicates tha t
dependent equality constra ints were detected and removed;
how = 'ok ' indicates that the problem was solved w ithout
d iffi culty.

As w ith all O ptim ization Toolbox functions, empty matrices in the calling
sequence result in the use of default variables. For example, the command

l p (f , A b , [] , [] , [] , l engt h(b))

3-56

lp

E x a m p l e s

indicates tha t the problem is equality constrained, has no upper or lower
bounds on the variables, and uses the default s ta rting point.

Find x tha t m inim izes f(x) = -5 x 1 - 4x 2 - 6x 3

subject to
x 1 - x 2 + x 3 < 20

3x 1 + 2x2 + 4x 3 < 42

3x1 + 2x2 < 30

0 < x 1,0 < x2,0 < x3

Step 1: Enter the coefficients:
c = [- 5 , - 4 , - 6]
a = [1 -1 1

3 2 4
3 2 0] ;

b = [20; 42; 30];

Step 2: Invoke a linea r p rog ram m ing routine:
[x , l ambda] = l p (c , a , b , z e r o s (3 , 1))

This gives the solution

x =
0 15.0000 3. 000

lambda =
0
1. 5000
0.5000
1.0000
0
0

The firs t th ree elements of the Lagrange m u ltip lie rs , lambda, are associated
w ith the inequa lity constraints. Nonzero elements of lambda indicate active
constra ints at the solution. In th is case, constra ints tw o and three are active
constra ints (i.e., the solution is on the ir constraint boundaries).

3-57

lp

A l g o r i t h m

D ia g n o s t ic s

See A l s o

R e fe re n c e s

The last th ree elements of the Lagrange m u ltip lie rs are associated w ith the
lower bounds on x. Thus, the lower bound on x 1 is also active.

lp uses a projection method as used in the qp a lgorithm . lp is an active set
method and is thus a varia tion of the well-known simplex method for linear
programming [1]. It finds an in itia l feasible solution by firs t solving another
linear programming problem. lp calls qp w ith special flags in order to use effi­
ciencies for the lp case.

lp gives a w arn ing when the solution is infeasible,

Warning: The c o n s t r a i n t s are over l y s t r i ngen t ;
t he r e i s no f e a s i b l e so l u t i on .

I n th is case, lp produces a result tha t m inim izes the worst case constraint
vio lation.

When the equality constra ints are inconsistent, lp gives

Warning: The e q u a l i t y c ons t r a i n t s are over l y
s t r i ngen t ; t he r e i s no f e a s i b l e so l u t i on .

Unbounded solutions result in the w arn ing

Warning: The s o l u t i o n i s unbounded and at i n f i n i t y ;
t he c o n s t r a i n t s are not r e s t r i c t i v e enough

In th is case, lp re tu rns a value of x tha t satisfies the constraints.

qp

[1] G.B. Dantzig, A. Orden, and P. Wolfe, “Generalized Simplex Method for
M in im iz ing a L inear from Under Linear Inequa lity C onstra in ts,” Pacific J.
M ath. Vol. 5, pp. 183-195.

3-58

m in im a x

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve the m inim ax problem,

min max { Fi (x)} such tha t G (x)< 0
x { Fi } i

where x is a vector and F(x) and G(x) are functions tha t re turn vector values.
Fi (x) is the value of the i th element of the vector returned by F(x). G(x) can be
used to define equality or inequa lity constraints.

x = mini max(' f u n ' , x 0)
x = mini max(' f u n ' , x 0 , opt i ons)
x = mini max(' f u n ' , x 0 , opt i o n s , v l b , v ub , ' g r ad ')
x = mini max(' f u n ' , x 0 , opt i o n s , v l b , v ub , ' g r ad ' ,p1,p2, .. .)
[x,opt ions] = mi n i max(' f un ' , x0, . . .)

mini max m inim izes the worst-case value of a set of m u ltiva riab le functions,
s ta rting at an in itia l estimate. The values may be subject to constraints. Th is
is generally referred to as the m in im ax problem.

x = mini max(' f u n ' , x 0) s ta rts at x0 and finds the m inim ax solution to the
functions described in the M -file fun. m

x = mini max(' f u n ' , x 0 , opt i ons) defines a vector of optional parameters.

x = mini max(' f u n ' , x , o p t ions, vl b, vub) defines a set of lower and upper
bounds on x through the vectors vl b and vub. Th is restricts the solution to the
range vl b <= x <= vub.

x = m i n i ma x (' f u n ' , x 0 , o p t i o n s , v l b,vub, ' g r a d ') calls the function grad to
obtain the partia l derivatives of the function and the constraints,

x = mini max(' f un ' , x0 , opt i ons , v l b , vub , ' grad ' , p 1 , p 2 , . . .) passes param ­
eters (i.e., p1, p2, etc.), d irectly to the function fun.

[x , o p t i on s] = mi n i max (' f un ' , x0) re tu rns the parameters used in the opti­
m ization. For example, opt i ons(10) contains the number of function evalua­
tions used.

3-59

m in im ax

A r g u m e n t s fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized and the constraint func­
tion at the point x. The function fun re tu rns tw o arguments:
a scalar valued function f to be m inim ized and a vector of
constraint values g,

[f , g] = f un(x)

When inequa lity constra ints are present, the objective func­
tion f is m inim ized such tha t g <= zeros(s i ze(g)) .

E qua lity constraints, when present, are placed in the firs t
elements of g. When using equality constraints, opt i ons(13)
must be set to the number of equality constra ints (see the
“ Equa lity Constrained Exam ple” section in the T u to ria l).

To m in im ize the worst case absolute values of any of the
elements of the vector F(x) (i.e., mi ni max abs{F(x)}), partition
those objectives in to the firs t elements of F(x) and set
opt ions(15) to be the number of such objectives.

A lte rna tive ly , a s tring expression can be used w ith x repre­
senting the independent variables and w ith f and g repre­
senting the function and constraints. For example,

x = mini max(' f = f un (x) ; g = c s t r (x) ; ' , x 0)

When there are no constraints, set g to the empty m atrix (i.e.,
g = []) .

grad A s tring containing the name of the function tha t computes
the gradient of the function and the gradient of the
constra ints at the point x. Th is function has the form

[d f , dg] = grad(x)

The variab le df is a vector tha t contains the partia l
derivatives of f w ith respect to x. The variab le dg is a m atrix
where the columns of dg contain the partia l derivatives for
each of the constra ints respectively, (i.e., the i th column of dg
corresponds to the partia l deriva tive of the i th constraint
w ith respect to each of the elements in x).

3-60

m in im ax

E x a m p l e s

opt i ons A vector of control parameters. O f the 18 elements of opt i ons,
the input options used by mini max are: 1, 2, 3, 4, 7, 9, 13, 14,
15, 16, 17. When opt i ons is an output parameter, the options
used by mini max to return values are: 8 , 10 , 11 , 18.

• o p t i o n s (1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p t i on s (2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.
• opt i ons(4) sets the m aximum constraint v io lation tha t is

acceptable.

The term ination c rite ria invo lv ing options(2), options(3), and
options(4) must all hold t rue for the a lgorithm to term inate.

The use of opt i ons(15) by mi ni max is discussed under the
description of fun above. The use of opt i ons(7) and
opt i ons(8) by mi nimax is discussed in the “A lgo rithm ” section
below. For more inform ation on the opt i ons vector, including
default settings, see the fopt ions reference page and the
“Default Parameters Settings” section in the Tu to ria l.

x0 , See const r .

p1, p 2 -------

vlb, vub

Find values of x tha t m in im ize the maximum value of

[f 1 (X) , f2 (X) , f3 (X) , f4 (X) , f 5 (X)]

3-61

m in im ax

N o t e s

where
f 1 (x) = 2x2 + x2 - 48x1 - 40x 2 + 304

f2(x) = - x 2 - 3 x2

f3(x) = x 1 + 3 x2 - 18

f4(x) = - x 1 - X2

f5(X) = X1 + X2 - 8.

Step 1: W rite an M -file :
f u n c t i o n [f , g] = fun(x)
f (1) =2*x(1) A2 + x(2)A2-48*x(1) -4 0 *x (2) +304; %Cbj ect i ves
f (2) = x(1) л2 - 3*x(2);
f (3) = x(1) + 3*x(2) -18;
f (4) = - x (1) - x(2);
f (5) = x(1) + x(2) - 8;
g = [] ; % No c ons t r a i n t s

Step 2: Invoke an op tim iza tio n routine:
x0 = [0. 1 , 0 . 1] ; % Mfeke a s t a r t i n g guess at sol ut ion
x = mini max (' f un ' , x0)

A fter 29 function evaluations, the solution is

x =
4.0000 4.0000

fun(x)
ans =

0. 0000 -16. 0000 -2. 0000 -8 . 0000 0. 000

The number of objectives for which the worst case absolute values of f are m in i­
mized is set in opti ons(15). Such objectives should be partitioned in to the firs t
elements of f .

For example, consider the above problem, which requires find ing values of x
tha t m in im ize the maximum absolute value of

[f^(X) , f 2(X) , f3(X) , f4(X) , f 5(X)]

3-62

m in im a x

A l g o r i t h m

L i m i t a t i o n s

See A l s o

R e fe re n c e s

This is solved by invoking mi ni max w ith the commands

x0 = [0 . 1 , 0 . 1] ; % Make a s t a r t i n g guess at th e s o l u t i on
opt i ons(15) = 5; % Minimize absolut e values
x = mini max(' f un ' , x0 , opt ions)

A fter 39 function evaluations, the solution is

x =
8.7769 0.6613

fun(x)
ans =

10.7609 -10.7609 -7.2391 -9 .4382 1.4382

If equality constraints are present and dependent equalities are detected and
removed in the quadra tic subproblem, 'dependent' w ill be printed under the
Procedures heading (when output is asked for using opt i ons (1)=1) . The
dependent equalities are only removed when the equalities are consistent. I f
the system of equalities is not consistent, the subproblem is infeasible and
' in f easi bl e' w ill be printed under the Pr ocedures heading.

mini max uses a Sequential Q uadratic Programming (SQP) method [3]. M od ifi­
cations are made to the line search and Hessian. In the line search an exact
merit function (see [4] and [5]) is used together w ith the m erit function
proposed by [2]. The line search is te rm inated when either m erit function
shows improvement. A modified Hessian tha t takes advantage of special s truc­
ture of th is problem is also used. Setting opt i ons(7) = 1 uses the merit func­
tion and Hessian used in c o n s t r .

See also SQP im plem entation section in the Introduction to A lgorithm s chapter
for more deta ils on the a lgorithm used and the display of procedures for
opt i ons(1) = 1 setting.

The function to be m inim ized must be continuous. mi ni max may only give local
solutions.

f opt i ons

[1] S.P. Han, “A G lobally Convergent Method For Nonlinear Program m ing,” J.
of O ptim ization Theory and Applications, Vol. 22, 1977, p. 297.

3-63

m in im ax

[2] M.J.D. Powell, “A Fast A lgo rithm for Nonlineary Constrained O ptim ization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Varleg, Vol. 630, 1978.

[3] R.K. Brayton, S.W. D irector, G.D. Hachtel, and L.V id igal, “A New Algo­
rithm for S tatistical C ircu it Design Based on Quasi-Newton Methods and
Function S p littin g ,” IEEE Trans. C ircu its and Systems, Vol. CAS-26, pp.
784-794, Sept. 1979.

[4] A.C.W. Grace, “Com puter-A ided Control System Design Using O ptim iza­
tion Techniques” , Ph.D. Thesis, U n ivers ity of Wales, Bangor, Gwynedd, UK,
1989.

[5] K. Madsen and H. Schjaer-Jacobsen, “A lgo rithm s for Worst Case Tolerance
O ptim iza tion ,” IEEE Transactions of C ircu its and Systems, Vol. CAS-26, Sept.
1979.

3-64

nnls

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solves the nonnegative least squares problem,

1 2
min I Ax - b|L such tha t x > 0

x 2 2

where the m atrix A and the vector b are the coefficients of the objective func­
tion. The vector, x, of independent variables is restricted to be nonnegative.

n n l s (A b)
n n l s (A b , t o l)
[x,w] = n n l s (A b)
[x,w] = n n l s (A b , t o l)

x = n n l s (A b) solves the non-negative least-squares problem.

x = n n l s (A b , t o l) overrides the default tolerance tha t determ ines when
elements in the vector x are less than zero. The default tolerance is

to l = max(size(A)) * norm(A,1) * eps

[x , w = n n l s (A b) re tu rns the dual vector w of Lagrange m u ltip lie rs . The
elements of x and w are related by

w(i) <= 0, (i | x(i) = 0)
w(i) = 0, (i | x(i) > 0)

3-65

nnls

E x a m p l e s

A l g o r i t h m

N o t e s

Compare the unconstrained least squares solution to the nnls solution for a
4-by-2 problem.

a =
0. 0372 0. 2869
0.6861 0.7071
0. 6233 0. 6245
0.6344 0.6170

b =
0.8587
0.1781
0.0747
0.8405

[a\b, nn l s (a , b)] = -2 .5625 0
3.1106 0.6929

[no r m(a* (a \ b) - b) , norm(a*nn l s (a ,b) -b)] = 0.6677 0.9119

The solution from nnls does not f it as well as the least squares solution.
However, the nonnegative least-squares solution has no negative components.

nnls uses the a lgorithm described in [1]. The a lgorithm sta rts w ith a set of
possible basis vectors and computes the associated dual vector w. It then selects
the basis vector corresponding to the maximum value in w in order to swap out
of the basis in exchange for another possible candidate. This continues un til
w <= 0.

The nonnegative least squares problem is a subset of the constrained linear
least-squares problem.

Thus, when A has more rows than columns (i.e., the system is over-determined)

[x,w] = nnl s(A, b)

is equivalent to

[m n] = s i ze(A) ;
[x , l] = con l s (A , b , - ey e (n , n) , z e r o s (n , 1)) ;
w = - l ;

For problems greater than order tw enty, conl s may be faster than nnls, other­
w ise nnls is generally more efficient.

3-66

nnls

See A l s o

R e fe re n c e s

\ , conls

[1] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems, Pren-
tice-H all, 1974, Chapter 23, p. 161.

3-67

qp

P u r p o s e

S y n o p s i s

D e s c r ip t io n

A r g u m e n t s

Solve the quadratic programming problem,

min I x THx + cTx such tha t Ax < b x 2

where H and A are matrices, and c, b, and x are vectors.

x = qp(H,c,A,b)
x = qp(H,c,A,b, vl b)
x = qp(H,c,A,b, vl b, vub)
x = qp(H,c,A,b, vl b, vub, x0)
x = qp(H,c,A,b, vl b, vub, x0, neqcst r)
x = qp(H,c,A,b, vl b, vub, x0, neqcst r, displ ay)
[x , l ambda, how] = qp(H,c,A,b, . . .)

qp solves the quadratic programming problem.

x = qp(H,c,A,b) re tu rns a vector x tha t m in im izes 1 /2*x ' *H*x + c' *x subject
to A*x <= b.

x = qp(H, c , A , b , v l b , v ub) sets lower and upper bounds on x. Th is restricts the
solution to the range v lb <= x <= vub.

x = qp(H,c,A,b, vl b, vub, x0) sets the in itia l s ta rting point to x0.

x = qp(H,c,A,b, vl b, vub, x0, neqcst r) specifies tha t the firs t neqcst r
constra ints are equality constraints.

x = qp(H,c,A,b, vl b, vub, x0, neqcst r, displ ay) controls the display of
w arn ing messages.

[x, l ambda] = qp(H, c,A,b) re tu rns values for the Lagrange m u ltip lie rs at the
solution in the variab le l ambda.

[x,lambda,how] = qp(H,c,A,b) also re tu rns a s tring how tha t indicates error
conditions at the fina l ite ra tion .

H,c The Hessian m atrix H and vector c are the set of coefficients
of the quadra tic objective function. H must be symmetric.

3-68

qp

A b

vlb, vub

x0

neqcst r

d i sp l ay

lambda

how

The m atrix A and vector b are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned in to the firs t rows of A and the firs t
elements of b.

Upper and lower bound vectors. The variables, vl b and vub,
are norm ally the same size as x. However, i f v lb has n
elements and fewer elements than x, then only the firs t n
elements in x are bounded below; upper bounds in vub are
defined in the same manner.

S tarting vector. qp generally s ta rts its search at the point
zeros(s i z e (x)) . Setting the in itia l s ta rting point can result
in faster convergence. I f the problem is badly conditioned,
th is can also result in an improved solution.

Number of equality constraints.

Flag to control the display of w arn ing messages. The default
value for the parameter di splay is 0, which displays warn ing
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the set of Lagrange m u ltip lie rs at the
solution. The length of lambda is
l ength(b)+ lengt h(vl b) +l ength(vub) and the Lagrange
m u ltip lie rs are given in the corresponding order: firs t the
m u ltip lie rs for A, then vl b, then vub.

A s tring tha t indicates error conditions at the solution. The
s tring how = ' i n f eas i b l e ' indicates tha t the problem is
infeasible (i.e. the constra ints are overly restrictive);
how = ' unbounded' indicates that the problem has an
unbounded solution; how = 'dependent' indicates tha t
dependent equality constraints were detected and removed;
how = ' ok' indicates tha t the problem was solved w ithou t
d ifficu lty.

As w ith all O ptim ization Toolbox functions, empty matrices in the calling
sequence result in the use of default options. For example, the command

q p (H , c , A b , [] , [] , [] , l engt h(b))

3-69

qp

E x a m p l e s

indicates tha t the problem is an equality constrained problem, having no upper
or lower bounds on the variables and uses a default s ta rting point.

Find values of x tha t m in im ize

1 2 2f(X) = 2 X1 + x 2 - X1 X2 - 2x 1 - 6x 2

subject to

x 1 + x 2 < 2

- x 1 + 2 x 2 < 2

2 x 1 + x 2 < 3

0 < x 1,0 < x 2

F irst we note tha t th is function may be w ritte n in m atrix notation as
1 T T

f (x) = 2 x Hx + c x where

1 -1 -2 x 1
H =

-1 2
, c =

-6
, x =

x 2

Step 1: Enter the coe ffic ien t matrices:
H = [1 -1; -1 2]
c = [-2 ; -6]
A = [1 1; -1 2; 2 1]
b = [2; 2; 3]
v l b = zeros(2,1)

Step 2: Invoke a q u a d ra tic p rog ram m ing routine:

[x , l ambda] = qp(H,c,A,b, vl b)

3-70

A l g o r i t h m

D i a g n o s t i c s

qp

This generates the solution

x =
0. 6667
1. 3333

lambda =
3.1111
0. 4444
0
0
0

The firs t th ree elements of the Lagrange m u ltip lie rs (i.e., lambda) are associ­
ated w ith the inequa lity constraints. Nonzero elements of lambda indicate
active constraints at the solution. In th is case, constra ints one and tw o are
active constraints (i.e., the solution is on the ir constraint boundaries).

The last tw o elements of the Lagrange m u ltip lie rs are associated w ith the
lower bounds on x. In th is case, the bounds are inactive.

qp uses an active set method, which is also a projection method, s im ila r to tha t
described in [1]. It finds an in itia l feasible solution by firs t solving a linear
programm ing problem. This method is discussed in the Introduction to Algo­
rithm s chapter.

qp gives a w arn ing when the solution is infeasible:

Warning: The c o n s t r a i n t s are over l y s t r i ngen t ;
t her e i s no f eas i b l e so l u t i on.

I n th is case, qp produces a result tha t m inim izes the worst case constraint
vio lation.

When the equality constra ints are inconsistent, qp gives

Warning: The e q u a l i t y c ons t r a i n t s are over l y s t r i ngen t ;
t her e i s no f eas i b l e so l u t i on.

3-71

qp

L i m i t a t i o n s

R e fe re n c e s

Unbounded solutions,which can occur when the Hessian H is negative semidef-
in ite , may result in

Warning: The s o l u t i o n i s unbounded and at i n f i n i t y ;
t he c ons t r a i n t s are not r e s t r i c t i v e enough.

In th is case, qp re tu rns a value of x tha t satisfies the constraints.

The solution to inde fin ite or negative de fin ite problems is often unbounded, and
when a f in ite solution does exist, qp may only give local m in im a since the
problem may be nonconvex.

[1] P.E. G ill, W. M urray, and M .H. W righ t, Practical O ptim ization, Academic
Press, London, UK, 1981.

3-72

seminf

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Find m in im um of a sem i-in fin ite ly constrained m u ltiva riab le nonlinear func­
tion,

min f (x) subject to G (x)< 0,
x

K ^x , w т) < 0,

K2(x, w 2) < 0,

Kn (x, Wn) < 0

where x and G(x) are vectors and f(x) is a scalar function. G(x) can be used to
define both equality and inequa lity constraints. The vectors (or matrices)
Kn(x, w n) < 0 are continuous functions of both x and an additional set of v a r i­
ables w 1; w 2, . . . , w n . The variables w 1; w 2, . . . , w n are vectors of, at most,
length two.

x = semi nf (' f u n ' , n, x0)
x = semi nf (' f u n ' , n, x0,opt ions)
x = s e m i n f (' f u n ' , n , x 0 , o p t i o n s , v l b , v u b)
x = s e m n f (' f u n ' , n , x 0 , o p t i o n s , v l b , v u b , p 1 , p 2 , . . .)
[x,opt ions] = s e m n f (' f u n ' , n , x 0 , . . .)

semi nf finds the m in im um of a sem i-in fin ite ly constrained scalar function of
several variables, s ta rting at an in itia l estimate. The aim is to m in im ize f(x) so
the constraints hold for all possible values of wi e Ш1 (or wi e Ш2). Since it is
impossible to calculate all possible values of K i(x, w i) , a region must be chosen
for wi over which to calculate an appropria te ly sampled set of values.

x = s e m n f (' f u n ' , n , x0) s ta rts at the point x0 and finds a m in im um of the
function and constraints, includ ing n sem i-in fin ite constraints, defined in the
M -file named f u n . m

x = s e m i n f (' f u n ' , n , x 0 , o p t ions) uses the parameter values in the vector
opt i ons rather than the default option values.

3-73

seminf

A r g u m e n t s

x = semi nf (' fun' , n, x, opt i ons, vl b, vub) defines a set of lower and upper
bounds on x through the matrices vl b and vub. Th is restricts the solution to
the range vl b <= x <= vub.

x = semi nf (' f u n ' , x0,opt i ons, vl b, v u b , p 1 , p 2 , . . .) passes the
problem-dependent parameters p1, p2, etc., d irectly to the function fun.

[x , op t ions] = semi n f (' f u n ' , n, x0) re tu rns the parameters used in the opti­
m ization method. For example, opt i ons(10) contains the number of function
evaluations used.

fun A s tring containing the name of the function tha t computes
the objective function to be m inim ized and the constraint func­
tion at the point x. The function fun

[f , g ,K1 ,K2 , . . . , Kn, s] = fun(x, s)

re tu rns a scalar value, f , of the function to be m inim ized, and
a vector of constraints, g. The vectors, or matrices, K1, K2, ...,
Kn contain the sem i-in fin ite constra ints evaluated for a
sampled set of values for the independent variables, w1, W2, ...
W3, respectively. The tw o column m atrix , s, contains a recom­
mended sampling in terva l for values of w1, W2, .. wn which are
used to evaluate K1, K2, .. Kn. The i th row of s contains the
recommended sam pling in terva l for evaluating Ki. When Ki is
a vector, use only s (i , 1) . When Ki is a m atrix , s (i , 2) is used
for the sampling of the rows in Ki ,s(i ,1) is used for the
sam pling in terva l of the columns of Ki (see “Two-Dimensional
Exam ple” in the “ Examples” section.). On the firs t ite ra tion s
is set to NaN, so tha t some in it ia l sampling in terva l must be
determ ined.

Equa lity constraints, when present, are placed in the firs t
elements of g. When using equality constraints, opt i ons(13)
must be set to the number of equality constra ints (see the
“ Equa lity Constrained Exam ple” section in the T u to ria l).

n The number of sem i-in fin ite constraints.

3-74

seminf

N o t e s

opt i ons A vector of control parameters. Of the 18 elements of
opt i ons, the input options used by semi nf are: 1, 2, 3, 4, 9,
13, 14, 16, 17. When opt i ons is an output parameter, the
options used by semi nf to return values are: 8, 10, 11, 18.

• opt i ons(1) controls display. Setting th is to a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2) controls the accuracy of x at the solution.
• opt i ons(3) controls the accuracy of f at the solution.
• opt i ons(4) sets the m aximum constraint v io lation tha t is

acceptable.

For more inform ation on the opt i ons vector, includ ing default
settings, see the f o p t i o n s reference page and the “ Default
Parameters Settings” section in the Tu to ria l.

p1, p2, . . . Additiona l arguments to be passed to fun, tha t is, when
semi nf calls fun, the calls are

[f , g ,K1 ,K2 , . . . , K n , s] = f un (x , s , p1 , p2 , . . .)

Using th is feature, the same M -file can solve a number of
s im ila r problems w ith d ifferent parameters avoiding the need
to use global variables. Note tha t since all the arguments
preceding p1, p2, etc., in the call to semi nf must be defined,
empty matrices may be passed in for opt i ons, vl b, and vub to
indicate tha t default arguments are to be used, as in

x = s e m i n f (' f u n ' , n , x 0 , [] , [] , [] , p 1 , p 2 , . . .)

x0, See const r .

vlb, vub

The recommended sampling in terva l, s, set in fun may be varied by the opti­
m ization routine during the computation. Other values may be more appro­
pria te for efficiency or robustness. Also, the fin ite region , over which
Kj (x, Wj) is calculated, is allowed to vary during the optim ization provided
tha t it does not result in s ignificant changes in the number of local m in im a in
K (x, Wi) .

3-75

seminf

E x a m p l e s O ne-D im ensional Exam ple
Find values of x tha t m in im ize

f (x) = (x 1 - 0.5)2 + (x 2 - 0.5)2 + (x 3 - 0.5)2

where
1

K 1(x, w 1) = sin (w 1 x 1) cos(w1 x2) - (w ! - 50)2 - sin (w 1 x3) - x 3 < 1

1
K 2 (x, w 2) = sin (w 2 x2) cos (w 2 x 1) - Ю 00 (w 2 - 50) 2 - sin (w 2 x3) - x 3 < 1

for all values of w 1 and w 2 over the ranges

1 < w 1 <100

1 < w 2 < 100

Note tha t the sem i-in fin ite constraints are one-dimensional, tha t is, vectors.

Step 1: W rite an M -file :
f u n c t i o n [f ,G j K1 , K2 , s] = f un(X, s)

% I n i t i a l sampl ing i n t e rva l
i f i snan(s(1, 1)) , s = [0 . 2 0; 0.2 0]; end

% Sample set
w1 = 1:s(1, 1) : 1 00;
w2 = 1:s(2, 1):100;

% Semi - i n f i n i t e const rai nt s
K1 = si n(w1*X(1)) . *cos(w1*X(2)) - 1/ 1000*(w 1-50).A2 - . . .

si n(w1* X(3)) -X (3) - 1 ;
K2 = si n(w2*X(2)) . *cos(w2*X(1)) - 1/ 1000*(w 2-50).A2 - . . .

si n(w2*X(3))-X (3) -1;
% No const rai nt s

G = [] ;
% Object i ve f unct ion

f = sum((X-0. 5) . A2);
% Pl ot a gr aph of semi - i n f i n i t e const r a i n t s

pl ot(w1, K1, w2,K2) , t i t l e (' S e m - i n f i n i t e c o n s t r a i n t s ')

3-76

seminf

Step 2: Invoke an op tim iza tio n routine:
x0 = [0 . 5 , 0 . 2, 0. 3] ; % Star t i ng guess at t he so l u t i on
x = semi nf (' f u n ' , 2, x0)

A fter 37 function evaluations, the solution is

x =
0. 6956 0. 3052 0. 4261

[f , Q K 1 , K 2] = fun(x , NaN);
f =

0. 0817
max(K1)
ans =

-1.0617e-04
max(K2)
ans =

-0 .0023

A plot of the sem i-in fin ite constra ints is produced.

S e m i- in f in ite c o n s tra in ts

This plot shows how peaks in both functions are on the constraint boundary.

3-77

seminf

Two-D im ensional Exam ple
Find values of X tha t m inim ize

f (X) = (X1 - 0.5)2 + (X2 - 0.5)2 + (X3 - 0.5)2

where
1

K 1(X, w) = s in (w 1X1) cos(10 w 2X 2) - 1000 (w 1 - 50)2 - sin (10w 1 X3) - X3 +

1
sin (w 2X2) cos(w 1 X1) - 100J0 (w 2 - 50)2 - sin (w 2X3) + -X 3 < 1.5

for all values of w 1 and w 2 over the ranges:

1 < w 1 <100

1 < w 2 < 100

s ta rting at the point X = [0.2, 0.2, 0 .2].

Note tha t the sem i-in fin ite constraint is two-dimensional, tha t is, a m atrix.

Step 1: W rite an M -file :
f u n c t i o n [f ,GjK1,s] = fun(X, s)

% I n i t i a l sampl in g i n t e r v a l s
i f i s n a n (s (1 , 1)) , s = [2 2] ; end

% Sampling sets
w1 = 1:s(1, 1) : 1 00;
W2 = 1: s (1 ,2) : 100 ;
[w<,w/] = meshdom(w1,W2);

% Semi - i n f i n i t e const r aint
K1 = si n(wx*X(1)) . *cos(wy*X(2)) - 1 / 1000*(wx-50). л2- . . .

s i n(wx*X(3))-X (3) +sin(wy*X(2)) . *cos(wx*X(1)) - . . .
1/ 1000*(wy-50). л 2 ^ n(wy*X(3))-X (3) -1 .5 ;

% No const rai nt s
G = [] ;

% Object iv e funct i on
f = sum((X-0. 2) .л2) ;

% Mfesh pl ot
mesh(K1) , t i t l e (' S e m i - i n f i n i t e const r a i n t ')

3-78

seminf

A l g o r i t h m

Step 2: Invoke an op tim iza tio n routine:
x0 = [0 . 2 , 0 . 2 , 0 . 2] ; % S t a r t i ng guess at the s o l u t i on
x = semi nf (' f u n ' , 1, x0)

A fter 65 function evaluations, the solution is

x =
0.2033 0.2034 0.1930

[f , G K 1] = f un(x, NaN);
max(max(K1))
ans =

-0 .0273

Note, due to sampling there appears to be no active constraint (i.e., no point on
the constraint boundary). Taking a smaller sam pling in terva l shows tha t the
constraint is active.

The follow ing mesh plot is produced.

S e m i-in fin ite co n stra in t

semi nf uses cubic and quadratic in terpolation techniques to estim ate peak
values in the sem i-in fin ite constraints. The peak values are used to form a set
of constra ints tha t are supplied to the function c o n s t r . When the number of

3-79

seminf

L i m i t a t i o n s

See A l s o

constra ints changes, Lagrange m u ltip lie rs are reallocated to the new set of
constraints.

The recommended sampling in terva l calculation uses the difference between
the interpolated peak values and peak values appearing in the data set to esti­
mate whether more or fewer points need to be taken. The effectiveness of the
interpolation is also taken in to consideration by extrapolating the curve and
comparing it to other points in the curve. The recommended sam pling in terva l
is decreased when the peak values are close to constraint boundaries, i.e., zero.

See also SQP im plem entation section in the Introduction to A lgorithm s chapter
for more deta ils on the a lgorithm used and the display of procedures for
opt i ons(1) = 1 setting.

The function to be m inim ized, the constraints, and sem i-in fin ite constraints,
must be continuous functions of x and w. semi nf may only give local solutions.

When the problem is not feasible, semi nf attem pts to m in im ize the maximum
constraint value.

c o n s t r , f op t i ons

3-80

Index

A
active constraints 3-57
active set method 2-27, 3-17, 3-23, 3-58, 3-71
arguments, extra 1-13
attainment factor 3-10
a tt goal

examples 1-22, 3-8
axis crossing See zero of a function

B
banana function 2-4
BFGS formula 2-5, 3-23, 3-37
bisection search 3-48

C
complex values 1-33
complex variables 3-28, 3-54
conls

examples 3-16
const r

examples 1-7, 3-22
constrained minimization 3-19
constraints

positive 1-12
continuous 2-3
convex problem 2-22
cubic interpol at i on 2-8
curvef i t

examples 3-27
curve-fitting 3-25

D
data-fitting 3-25

categories 1-3

dependent 3-23, 3-63
DFP formula 3-37
discontinuities 1-32, 2-3
discontinuous problems 3-38
discrete variables 1-32
display output 1-25
dual vector 3-65

E
e-constraint method 2-36
equality constraints 1-26, 3-15, 3-20, 3-56, 3-60,

3-69, 3-74
examples 1-12

equation solving
categories 1-3

F
feasible point

finding 2-30
finding

zero of a function 3-47
fin ite differencing 1-26
fmin

examples 3-32
fminu

examples 1-6, 3-36
warning messages 1-31

f s o l ve
examples 1-13, 3-43

function
discontinuities 1-32

function evaluations
maximum 1-26

f ze r o

I-1

Index

examples 3-48 J
Jacobian 3-51

G
Gauss-Newton method 2-17, 2-18, 2-21, 3-28,

3-46, 3-53
global minimum 1-31
global variables 1-13
goal attainment 2-38, 3-5

examples 1-22
over attainment 3-7
under attainment 3-7

goal parameter 3-6
goal demo 3-10
golden section search 3-32
gradient

checking analytic 1-12, 1-26
examples 1-10

gradient methods 2-3

H
Hessian modf ie d t w c e 2-27
Hessian modi f i ed 2-27
hessian update 2-10

implementation 2-26

I
inconsistent constraints 3-58
indefinite problems 3-72
inequality constraints 3-57
infeasible 3-15, 3-69
infeasible problems 3-23
in fin ite loop 1-33
installation 1-5
integer variables 1-32

K
Kuhn-Tucker equations 2-22

L
Lagrange m ultip liers 3-15, 3-17, 3-20, 3-22, 3-56,

3-57, 3-65, 3-69
least squares 2-17

categories 1-3
l eastsq

convergence 1-33
examples 1-16, 3-53

Levenberg-Marquardt method 2-18, 2-19, 2-21,
3-28, 3-46, 3-53

line search 3-37, 3-46, 3-54
line search strategy 1-4
linear equations solve 3-45
linear least squares

constrained 3-14
nonnegative 3-65
unconstrained 3-18

linear programming 2-2, 3-55
implementation 2-30

lower bounds 1-8
lp

examples 3-57

M
maximization 1-12
merit function 2-31
minimax

examples 1-19, 3-61

I-2

Index

minimax problem 3-59
minimization

categories 1-2
multiobjective optimization 2-32, 3-5

examples 1-14

N
negative definite problems 3-72
Nelder and Mead 2-3
Newton's method 2-3
no derivative method 3-37
no update 2-27
nonconvex problems 3-72
noninferior solution 2-33
nonlinear data-fitting 3-50
nonlinear equations solving 3-41
nonlinear least squares 3-25, 3-50

implementation 2-20
nonlinear programming 2-2
notation 1-3

O
objective function

undefined values 1-32
options

changing default 1-27
options/parameters 1-7, 1-25, 3-40
output display 1-25, 1-28

P
projection method 2-27, 3-58, 3-71

Q
quadratic interpolation 2-8
quadratic programming 2-2, 3-23, 3-68
quasi-Newton method 2-4, 2-10, 3-37

implementation 2-9

R
residual 2-16
Rosenbrock's function 2-3

S
sampling interval 3-75
sem i-infinite constraints 3-73
seminf

examples 3-76
signal processing 1-21
simple bounds 1-8
simplex search 2-3, 3-37
SIMULINK 1-14
SQP method 2-23, 2-27, 3-23
steepest descent 3-37
step-size 1-27
string expressions 1-29
system of equations solving 3-41

T
term ination criteria 1-25

U
unbounded 3-15, 3-58, 3-69
unconstrained minimization 3-34

multi-dimensional 3-34
one dimensional 3-30

I-3

Index

unconstrained optimization 2-3
upper bounds 1-9

W
warnings 1-32

conl s 3-17
fsol ve 3-46
lp 3-58
qp 3-71

weight parameter, defining 3-7
weighted sum strategy 2-34, 2-35, 2-36

Z
zero finding 3-41
zero of a function, finding 3-47

I-4

