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1 Tutorial

Introduction

Optimization concerns the minimization or maximization of functions. The
Optimization Toolbox consists of functions that perform minimization (or max-
imization) on general nonlinear functions. Functions for nonlinear equation
solving and least-squares (data-fitting) problems are also provided.

The functions available for minimization are

Table 1-1: Minimization

Type

Scalar Minimization

Unconstrained Minimiza-
tion

Linear Programming

Quadratic Programming

Constrained Minimiza-
tion

Goal Attainment

Minimax

Semi-infinite Minimiza-

tion

1-2

Notation

min f(a) such that a. <a<a2
a 1 2

m)l(n f(x)

min c¢Tx such that Ax <b
X

mil.q -leHx + ch
X
such that Ax <b

min f(x) such that G(x)< 0
X

min g such that
X,g

F(x)- wg < goal

min max {F (x)}
x {FR}

such that G(x)< 0
min f(x) such that Gx <0,
X

K(x,w)<0 for all w

Sy ntax
a=fmin('f',
o S
x = fminu( 'f' 0
x = fmins('f' x O
X = lIp(c,Ab)
X = qp(H,c,A, b)
X = constr('fG ,x0)
x = attgoal(' F ,x,goal,w)
X = mini max('
m @ Xo
x = semi nf('fGK,n, x0)



The functions available for equation solving are

Table 1-2: Equation Solving
Type
Linear Equations
Nonlinear Equation of One
Variable

Nonlinear Equations

The functions available for solving least-squares or

Notation

Ax = b, n equations, n variables

f(a)

1
o

F(x) = 0, n equations, n variables

Table 1-3: Least-Squares (Curve Fitting)

Type

Linear Least Squares

Notation

2
min ||AX - b|I_2 ,m equations, nvariables
X

Nonnegative Linear Least min
Squares X
Constrained Linear Least min
Squares X
Nonlinear Least Squares nxn
Nonlinear Curve Fitting min
X

Notation

2

||AX - b|I_2 such that x>0
2

||AX - b|I_2 such that Cx <d

"MFX)]2 = 2 X RA(X)2

1 2
(21: F(x, xdata)-ydata %

Introduction

Syntax

= A\ b;

O
s N8B o = g

= fsolve( 'F', x0)

data-fitting problems are

Syntax
x = A\b;
x = nnls(A,b)

X

conls(A,b,C,d)

least sq(" F ,x0)

curvefit

('"F',x0,xdata,ydata)

Upper-case letters such as A are used to denote matrices. Lower-case letters
such as x are used to denote vectors, except where noted that it is a scalar (in
the table above, we use a to denote a scalar in the description of fmin).
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For functions, the notation differs slightly to follow the usual conventions in
optimization. For vector functions, we use an upper-case letter such as Fin
F(x). A function that returns ascalar value is denoted with a lower-case letter
such as f in f(x) .

Most of these routines require the definition of an M-file containing the func-
tion to be minimized. Alternatively, a string variable containing a MATLAB
expression, with x representing the independent variables, can be used. Maxi-
mization is achieved by supplying the routines with - f ,where f is the function
being optimized.

Optional arguments to the routines place bounds on the variables and change
optimization parameters. Default optimization parameters are used exten-
sively but can be changed through an additional argument, opti ons.

Gradients are calculated using an adaptive finite difference method unless
they are supplied in afunction. Parameters can be passed directly to functions,
avoiding the need for global variables.

The Optimization Toolbox routines offer a choice of algorithms and line search
strategies. The principal algorithms for unconstrained minimization are the
Nelder-Mead simplex search method and the BFGS quasi-Newton method. For
constrained minimization, minimax, goal attainment, and semi-infinite
optimization, variations of Sequential Quadratic Programming are used.
Nonlinear least squares problems use the Gauss-Newton and Levenberg-Mar-
quardt methods.

A choice of line search strategy is given for unconstrained minimization and
nonlinear least squares problems. The line search strategies use safeguarded
cubic and quadratic interpolation and extrapolation methods.



Installation

Installation

Instructions for installing toolboxes are found in the section entitled “Installing
Toolboxes” in the computer-specific section of Using MATLAB. On some sys-
tems, the Optimization Toolbox may be installed already. It should be located
in the directory named opti min the toolbox directory.
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Examples

1-6

The Optimization Toolbox is presented through atutorial that closely follows
the first demonstration in the M-file optdemo. The functions fminu and constr
are discussed in detail. The other optimization routines attgoal , m ni max,
leastsq, fsol ve, and semi nf are used in a nearly identical manner, with dif-
ferences only in the problem formulation and the termination criteria.

Unconstrained Example

Consider the problem of finding a set of values [x., xZ that solves
L X 2 2
minimize f(x) = e l4x. +2x2+4x"2 +2x2+ ") (1-1)

To solve this two-dimensional problem, write an M-file that returns the func-
tion value. Then, invoke the unconstrained minimization routine fminu.

Step 1: Write an M-file fun.m:

function f = fun(x)
f = exp(x(1l)) *(4*x(1)A2+2*x(2)/2+4*x(1) *x(2)+2*x(2)+1);

Step 2: Invoke optimization routine:
x0 = [-1,1]; % Starting guess
x =fmnu('fun',x0)

After 36 function evaluations, this produces the solution:

X =
0.5000 -1.0000

You can evaluate the function at the solution x:

fun(x)
ans =
1.3029e-10

When there exists more than one local minimum, the initial guess for the
vector [x-|, x2 affects both the number of function evaluations and the value of
the solution point. In the example above, x0 is initialized to [-1,1].
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The variable opt ions can be passed to fminu to change characteristics of the
optimization solution procedure, as in

x = fminu( 'fun',x0, options);

opti ons is a vector that contains values for termination tolerances and algo-
rithm choices. The first element of opti ons controls the amount of output dis-
played during the optimization cycle for most of the optimization functions.
Setting this element to 1 causes atabular display of the function values and
convergence information. The second and third elements of opti ons establish
termination criteria. Other elements in options set finite difference perturba-
tion levels, select algorithms, and set the maximum number of function evalu-
ations. This and other calling syntaxes are discussed more fully in later
sections of this tutorial and in the References chapter.

Constrained Example

If inequality constraints are added to Eq. 1-1,the resulting problem may be
solved by the constr function. For example, if you want to find x that solves

X 2 2
minimize  f(x) = e I(4x1+2x2+4x1x2+ 2x2+ 1)
subject to the constraints: x1x2- x1- x2<-1.5
x1x2"-10 (1-2)

The original M-file is modified to return both the objective function and the
constraints. The constrained optimizer, constr,is then invoked. Because
constr expects the constraints to be written in the form G(x)< 0, you must
rewrite your constraints in the form

X1x2- x1-x2+1.5<0

-x1x2- 10<0
(1-3)
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Step 1: Write an M-file fun.m for the objective function and constraints:
function [f,g] = fun(x)
f = exp(x(1)) *(4*x(1)A2+2*x(2)A2+4*x(1) *x(2)+2*x(2)+1);
g(1, 1) = 1.5 + x(1) *x(2) - x(1) - x(2); % Constrai nts
9(2,1) -x (1) *x(2) - 10;

Step 2: Invoke constrained optimization routine:

x0 = [-1,1]; % Make a starting guess at the solution
x = constr('fun', x0)

After 29 function calls, the solution produced is
X =

-9.5474 1.0474

We can evaluate the functions and constraints at the solution
[f,g] = fun(x)
f =
0.0236
1.0e-15 *

-0.8882
0

Note that both constraint values are less than or equal to zero, that is, x satis-
fies G(x)<O0.

Constrained Example with Bounds

The variables in x can be restricted to certain limits by specifying simple bound
constraints to the constrained optimizer function. For constr,the command

x = constr(‘'fun', x0, opti ons, vib,vub);

limits x to be within the range vl b <=x <= vub.
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To restrict x in Eq. 1-2 to be greater than zero (i.e., x1>0 , x2>0), usethe
commands:

x0 =[-1,1]; % Meke a starting guess at the soluti on
options = [ 1I; % Use default options

vib =[0,0]; % Set | ower bounds

vub = [ T; % No upper bounds

x = constr('fun',x0,options,vib,vub)

Note that to pass in the lower bounds as the fourth argument to constr, you
must specify avalue for the third argument opti ons. In this example, we spec-
ified [] to use the default values for options.

After 10 function evaluations, the solution produced is

0 1.5000
(f.g] = fun(x)

8.5000

In the above example, there were no upper bounds on x. Therefore, vub was set
to an empty matrix. Alternatively, the upper-bound argument could have been
omitted by using the command

x = constr('fun',x0,options,vib)

When vl b or vub contains fewer elements than x, only the first corresponding
elements in x are bounded. Alternatively, bounds can be expressed using linear
inequality constraints. This alternative may be more appropriate when there
are only a few bounded variables, for example,

Upper Bound: x < UB iswritten as: x - UB<O0
Lower Bound: x > LB iswritten as: -xj + LB <0

Note that the number of function evaluations to find the solution is reduced
since we further restricted the search space. Fewer function evaluations are
usually taken when a problem has more constraints and bound limitations
because the optimization makes better decisions regarding step-size and
regions of feasibility than in the unconstrained case. It is, therefore, good prac-
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tice to bound and constrain problems, where possible, to promote fast conver-
gence to a solution.

Constrained Example with Gradients

Ordinarily the minimization routines use numerical gradients calculated by
finite difference approximation. This procedure systematically perturbs each of
the variables in order to calculate function and constraint partial derivatives.
Alternatively, you can provide a function to compute partial derivatives ana-
lytically. Typically, the problem is solved more accurately and efficiently if
such a function is provided.

To solve the Eq. 1-2 using analytically determined gradients, do the following:

Step 1: Write an M-file for objective function and constraints:
function [f,g] = fun(x)
f = exp(x(1)) *(4*x(1)A2+2*x(2)A2+4*x(1) *x(2)+2*x(2)+1);
g(1) =1.5 + x(1) * x(2) - x(1) - x(2); %Constrai nts
9(2) = -x(1) * x(2)-10;

Step 2: Write an M-file for the gradients of the objective function and
constraints:

function [df,dg] = grad(x)

% Gradient of the objective function

t = exp(x(l)) *(4*x(1)A2+2*x(2)A2+4*x(1) *x(2)+2*x(2)+1);

df = [ t + exp(x(1)) * (8*x(1l) + 4*x(2)),

exp(x(1)) *(4*x( 1) +4*x(2) +2)] ;
% Gradient of the constraints
dg = [x(2)-1, -x(2);
x(1)-1, -x(1I;

Step 3: Invoke constrained optimization routine:

x0 = [-1,1]; % Starting guess
options = [ ; % Use default options
vib =[], vub =1 1 % No upper or |ower bounds

x = constr('fun',x0,options,vlb,vub,'grad")

1-10
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df contains the partial derivatives of the objective function, f returned by
fun(x),with respect to each of the elements in x:

exl(4x1+2x2+ 4x1Ix2+ 2x2+ 1) + ext(8x1+ 4x2)
df

dx
e 4x1+4x2+2)
(1-4)
The columns of dg contain the partial derivatives for each respective constraint
(i.e., the i th column of dg is the partial derivative of the ith constraint with
respect to x). So in the above example, dg is

dg1l dg2
dxn dx1 x2- 1 -X
dg! dg2 x1-1 -X
dx o dx2

(1-5)

The arguments vl b and vub place lower and upper bounds on the independent
variables in x. In this example they are only used for syntactic purposes to give
the correct number of right-hand arguments to specify the gradient function
name.

After 11 function and gradient evaluations, the solution produced is

X =
-9.5474 1.0474

[f.g] = fun(x)

f =

0. 0236
1. Oe-14 *

0.1110
0.1776
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Gradient Check: Analytic Versus Numeric

When analytically determined gradients are provided, you can compare the
supplied gradients with a set calculated by finite difference evaluation. This is
particularly useful for detecting mistakes in either the objective function or the
gradient function formulation.

If such gradient checks are desired, initialize opti ons(9) to the value 1. The
first cycle of the optimization checks the analytically determined gradients. If
they do not match within a given tolerance, a warning message indicates the
discrepancy and gives an option to abort the optimization or to continue.

Max imization

The optimization functions fmin, fmns, fminu, constr,attgoal , mini max, and
leastsq all perform minimization of the objective function, f(x). Maximiza-
tion is achieved by supplying the routines with - f(x). Similarly, to achieve
maximization for qp supply -H and -c, and for Ip supply -c.

Greater than Zero Constraints

The Optimization Toolbox assumes constraints are of the form Gj(x)<0.
Greater than zero constraints are expressed as less than zero constraints by
multiplying them by -1. For example, a constraint of the form Gj(x)>0is
equivalent to the constraint - Gj(x) <0 ; a constraint of the form Gj(x)> Db is
equivalent to the constraint - Gj(x)+b<0.

Equality Constrained Example

For routines that permit equality constraints, these equality constraints must
be expressed in the first elements of the vector of constraint values g. Also,
opti ons( 13) must be initialized with the number of equality constraints. For
example, to add the constraint x1+x2 = 1to Eq. 1-2, rewrite it as

x1+x2- 1 = 0 and then,

Step 1: Write an M-file fun.m:
function [f,g] = fun(x)
f = exp(x(l)) * (4*x(1)A2+2*x(2)A2+4*x(1) *x(2)+2*x(2)+1);

g(1) =x(1) +x(2) -1; % Equali ty constrai nts fir st
g(2 = 1.5 + x(1) * x(2 - x(1) - x(2); % Inequal ity
g(3) =-x(1) * x(2) - 10 % constraints
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Step 2: Invoke constrained optimization routine:

x0 = [-1,1]; % Mfeke a starting guess at the soluti on
options(13) = 1 % Specify one equality constraint
x = constr('fun',x0,options)

After 22 function evaluations, the solution produced is

X =
-2.7016 3.7016
[f.g] = fun(x)

1.6775

-0.0000 -9.5000 0.0000

Note that g (1) is equal to 0 within the default tolerance and that g(2) and
g(3) are lessthan or equal to zero as desired.

Additional Arguments: Avoiding Global Variables

Parameters that would otherwise have to be declared as global can be passed
directly to M-file functions using additional arguments at the end of the calling
sequence.

For example, entering a number of variables at the end of the call to fsolve

fsolve('fun',x0,options,'grad’',p1,p2, ... )

passes the arguments directly to the functions fun and grad when they are
called,

f = fun(x,pl,p2, ... )
df = grad(x,pl,p2 ... )

Consider, for example, finding zeros of the function el li pj (u, m). The function
needs parameter mas well as input u. To look for a zero near u =3, for m=0.5

m = 0.5;
x = fsolve('ellipj',3,[ 1.[ 1. m

returns

X =
3.0781

1-13
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Then, solve for the function ellipj
f

f =
1.158e-11;

ellipj(x,m)

The empty matrices in the call to fsol ve imply that default options are used
and that analytic gradients are not provided.

Multiobjective Examples

The previous examples involved problems with a single objective function. This
section demonstrates solving problems with multiobjective functions using
leastsq, m ni max and at tgoal . Included is an example of how to optimize
parameters in a SIMULINK model.

SIMULINK Example

Say you want to optimize the control parameters in the SIMULINK model
optsimmdl| . (This model can be found in the Optimization Toolbox directory.
Note that SIMULINK must beinstalled on your system to load this model.) The
model includes a nonlinear process plant modeled as a SIMULINK block dia-
gram shown in Fig. 1-1.

Figure 1-1: Plant with Actuator Saturation

Actuator Model Plant

Hz 3
50s3+a2.s2+al.s+1 - I/I

u Limit Rate y

The plant is an under-damped third-order model with actuator limits. The
actuator limits are a saturation limit and a slew rate limit. The actuator satu-
ration limit cuts off input values greater than 2 units or lessthan -2 units. The
slew rate limit of the actuator is 0.8 units/sec. The open-loop response of the
system to a step input is shown in Fig. 1-2.
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Figure 1-2: Open-Loop Response

The problem is to design a feedback control law that tracks a unit step input to
the system. The closed-loop plant is entered in terms of the blocks where the
plant and actuator have been placed in a hierarchical Subsystem block. A
Scope block displays output trajectories during the design process. See Fig. 1-3.
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Figure 1-3: Closed-Loop Model

Tunable Variables are PID gains, Kp, Ki, and Kd.

One way to solve this problem isto minimize the error between the output and
the input signal. The variables are the parameters of the PID controller. If you
only need to minimize the error at onetime unit, it would be a single objective
function. But the goal isto minimize the error for all time steps from 0to 100,
thus producing a multiobjective function (one function for each time step).

The routine | eastsq is used to perform a least squares fit on the tracking ofthe
output. This is defined via a MATLAB function in the file trackl sq. mshown
below that defines the error signal. The error signal isyout, the output com-
puted by calling sim, minus the input signal 1.

The function trackl sq must run the simulation. When the simulation begins,
SIMULINK assumes the values it needs are, by default, in the base workspace.
Usethe assigni ncommand to get your input values, the variables you are opti-
mizing, from the calling workspace to the base workspace.

After choosing a solver using the si mset function, the simulation is run using
si m The simulation is performed using a fixed-step fifth-order method to 100
seconds. When the simulation completes, the variables tout,xout, and yout
are now in the calling workspace (that is, the workspace oft rackl sq). The Out-
port block is needed in the block diagram model for yout to be nonempty after
the simulation.

1-16



Step 1: Write an M-file tracklsg.m:

function f = trackl sq(pi d)

Examples

assi gnin(' base' ,'Kp', pid(1)); % Move var iabl es to base workspace

assi gnin(' base' ,'Ki', pid(2));
assi gnin(' base' ,'Kd"', pi d(3));
opt = si mset( 'sol ver' ,'ode5' ); % Choose sol ver

[tout,xout,yout] = sim('optsinl,[0 100] ,opt);

f = yout-1; % Compute error signal

Step 2: Invoke constrained optimization routine:
pid0 = [0. 63 0. 0504 1.9688] % Set initial val ues
opti ons = fopti ons;
opti ons = [1,0. 1,0. 1];
pid = leastsq(' trackl sq' ,pid0, opti ons)

The vector opti ons passed to leastsq defines the criteria and display charac-
teristics. Inthis caseyou ask for output and give termination tolerances for the
step and objective function on the order of 0.1. The optimization gives the solu-
tion for the Proportional, Integral, and Derivative (Kp, K , Kd) gains of the con-

troller after 47 function evaluations

f-COUNT RESI D STEP-SIZE GRAD/SD
4 16.8341 1 -8.94
1 13.5356 1.44 3.83
17 12.7714 0. 861 -0.0311
27 8.63314 147 0.00927
34 7.53869 1.87 -0.115
41 7.29827 1.24 -0.00355
47 7.25813 0.825 0.000338

Opti m zati on Terminat ed Successf ul ly

pid =
2.1220 0.2614 9.4222

The resulting closed-loop step response is shown in Fig. 1-4.

LAMBDA

12.5097
12.8168
6.40838
2. 10188
2.2295
2.24491
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Figure 1-4: Closed-Loop Response

NOTE The call to si mresults in a call to one ofthe SIMULINK ODE solvers. A
choice must be made about the type of solver to use. From the optimization
point of view, a fixed-step solver is the best choice if that is sufficient to solve
the ODE. In the case of a stiff system, avariable-step method may be
required. The numerical solution produced by a variable-step solver, however,
is not a smooth function of parameters because of step-size control mecha-
nisms. This lack of smoothness may prevent the optimization routine from
converging. This error is not introduced when a fixed-step solver is used. (For
a further explanation, see Solving Ordinary Differential Equations | -- Non-
stiff Problems, by E.Hairer, S.P. Norsett, G.Wanner, Springer-Verlag, pages
183-184.) The NCD Toolbox is recommended for solving multiobjective optimi-
zation problems in conjunction with variable-step solvers in SIMULINK; it pro-
vides a special numeric gradient computation that works with SIMULINK and
avoids introducing this error.
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Another solution approach is to use the nm ni max function. In this case, rather
than minimizing the error between the output and the input signal, you mini-
mize the maximum value of the output at any time t between 0 and 100. Then
in the function tr ackmmthe objective function is simply the output returned by
the si mcommand. But minimizing the maximum output at all time steps may
force the output far below unity for some time steps. To keep the output above
0.95 after the first 20 seconds, add a constraint yout >= 0.95 from t=20 to
t=100. Since constraints must be in the form g <=0, the constraint in the func-
tion is g = -yout( 20: 100) + 95.

Step 1. Write an M-file trackmm.m:

function [f,g] = tr ackmm(pid)
assi gnin(' base' ,' Kp', pi d(1))
assi gnin(' base' ,' K ', pi d(2))
assi gnin(' base' ,' Kd' , pi d( 3))
% Comput e funct ion value

opt = si mset('sol ver' ,'ode5' );

[t out, xout ,yout] = sim(' optsim2',[0 100],opt);
f = yout;

g = -yout(20:100)+.95; % Compute constraints

Step 2: Invoke constrained optimization routine:

pi d0 = [0. 63 0. 0504 1.9688] % Set initial val ues
opti ons = fopti ons;

opti ons = [1,0.1,0.1];

pid = mini max(' tr ackmm', pi dO,opt ions)

1-19
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resulting in

f-COUNT MAX{ g} STEP Procedures

5 0.984114 1

10 1.52067 1 Hessian modified twice;
infeasible

15 1.70044 1

20 1.27149 1 Hessian modified

25 1.12734 1

30 1.03251 1 Hessian modified

31 1.00352 1 Hessian modified

Opti m zation Converged Successf ul ly
Acti ve Constrai nts:

126

127
pid =

1.3415 0.1756 6.9744

The last value shown in the MAX{ g} column of the output shows the maximum
value for all the time steps is 1.00352 (the initial value in this column is
smaller, but the g constraints are not satisfied at the initial point). The closed
loop response with this result is shown in Fig. 1-5.

This solution differs from the | eastsq solution as you are solving different
problems.
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Figure 1-5: Closed-Loop Response

Signal Processing Example

Consider designing a linear-phase FIR (Finite Impulse Response) filter. The
problem is to design a lowpass filter with magnitude one at all frequencies
between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

H(f) = V h(n)e-i2pfn
n=0

A (f)e-i2 pfM

M -1

A (f)

V a(n)cos(2pfn)
n=0 (1-6)
where A(f) isthe magnitude ofthe frequency response. One solution isto apply

a goal attainment method to the magnitude ofthe frequency response. Given a
function that computes the magnitude, the function attgoal will attempt to
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vary the magnitude coefficients a(n) until the magnitude response matches the
desired response within some tolerance. The function that computes the mag-
nitude response is given in filtm n.m This function takes a, the magnitude
function coefficients, and w, the discretization of the frequency domain we are
interested in.

To set up a goal attainment problem, you must specify the goal and weight s
for the problem. For frequencies between 0 and 0.1, the goal is one. For fre-
quencies between 0.15 and 0.5, the goal is zero. Frequencies between 0.1 and
0.15 are not specified so no goals or weights are needed in this range.

This information is stored in the variable goal passed to attgoal . The length
of goal isthe same asthe length returned by the function filtmin. Sothat the
goals are equally satisfied, usually weight would be set to abs(goal ). However,
since some of the goals are zero, the effect of using weight = abs(goal) will

force the objectives with weight 0 to be satisfied as hard constraints, and the
objectives with weight 1 possibly to be underattained (see “The Goal Attain-

ment Method" section of the Introduction to Algorithms chapter). Because all
the goals are close in magnitude, using aweight of unity for all goals will give
them equal priority. (Using abs( goal ) for the weights is more important when
the magnitude of goal differs more significantly.) Also, setting

opti ons( 15) =l engt h( goal) specifies that each objective should be as near as
possible to its goal value (neither greater nor less than).

Step 1: Write an M-file filtmin.m:

function [y,g] = filtmn(a,w)

g = [I; % other constraints
n = lengt h(a);

y = cos(w*(0:n-1)*2*pi) *a;
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Step 2: Invoke constrained optimization routine:
% Plot wth initi al coeffi ci ents
a0 = ones(15, 1);
incr = 50;
w = li nspace(0,0.5,incr);

yo = filtmn (ao0,w);
clf, plot(w,y0.'-:");

dr awnow;

% Set up the goal attainment problem

wl = linspace(0,0. 1,i ncr) ;

w2 = linspace(0.15,0.5,incr);

wo = [wl w2];

goal = [1l.0*ones(1,lengt h(wl)) zeros(1l,length(w2))];
weight = ones(size( goal));

% Call att goal

opti ons = fopti ons;

opti ons( 15) = lengt h(goal);

a = attgoal('filtmn',a0,goal, weight, opti ons, [],[],[], wO0);

% Plot wth the optimized (final) coefficients
y = filtmn(a,w);

hold on, plot(w,y,'r")

axi s([ 0 0.5 -3 3])

Compare the magnitude response computed with the initial coefficients and
the final coefficients (Fig. 1-6). Note that the remez function in the Signal Pro-
cessing Toolbox could have been used to design this filter.
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Figure 1-6: Magnitude Response with Initial and Final Magnitude Coefficients

Magnitude Response (dB)
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Default Parameter Settings

The opti ons vector contains parameters used in the optimization routines. If,
on the first call to an optimization routine, the opti ons vector is empty, a set
of default parameters is generated. If any of the elements of opti ons are zero,
those elements are assigned default values. If opti ons is present and has fewer
than 18 elements, the remaining elements assume their default values.

Some of the default options parameters are calculated using factors based on
problem size, such as options( 14). Other options are used only to return infor-
mation, such asthe value of the function at the last evaluated point in

opti ons( 8). Options that are used only to return information do not have
default values and so N/A is shown asthe default value (Not Applicable). Some
parameters are dependent on the specific optimization routine and are docu-
mented in Chapter 3, Reference. The parameters in the opti ons vector are
shown in this table.

Table 1-4: Option Parameters

No.

1

Function

Display

Termination for x

Termination for f

Termination for g

Main Algorithm

SD Algorithm

Default

0

le-4

le-4

le-7

0

Description

Controls amount of output during the optimization cycle.
0 displays no output; 1displays tabular results; -1 sup-
presses warning messages.

Termination criterion that is a measure of the worst case
precision required of the independent variables, x. The
optimization does not terminate until all termination cri-
teria have been met.

Termination criterion that is a measure of the precision
required of the objective function, f, at the solution.

Termination criterion used by attgoal , const r, mini max,
and semi nf that is a measure of the worst case constraint
violation that is acceptable.

Main optimization algorithm selection.

Search direction algorithm selection.
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Table 1-4: Option Parameters (Continued)

No.

7

10

11

12

13

14

15

16

17

1-26

Function

Search Algorithm

Function

Gradient Check

Function Count

Gradient Count

Constraint Count

Equality Con-

straints

Maximum Func-
tion Evaluations

Objectives Used

Minimum Pertur-
bation

Maximum Pertur-
bation

Default

0

N/A

N/A

N/A

N/A

100n

le-8

0.1

Description

Line search algorithm selection.

Value of the function at the last evaluated point. For

at tgoal and m ni max, it contains an attainment factor.

When set to 1,the analytically supplied gradients are
compared with those obtained from a finite difference cal-
culation during the first few iterations. The gradient
function must exist when this element is set to 1.

Function evaluation counter.

Number of function gradient evaluations or finite differ-
ence gradient calculations.

Total number of constraint gradient calculations or finite
difference gradient calculations.

Number of equality constraints. Equality constraints are
placed in the first elements of the variable g.

Maximum number of function evaluations. This value is
set to 100 times n, where n is the number of independent
variables. In fmns the default is 200 times n. In fm n the
default is 500 times n.

Number of objectives to be as near as possible to the
goals. Used by attgoal

Minimum change in variables for finite difference gra-
dient calculation. The actual perturbation used is adap-
tive to increase accuracy of the gradient calculation. It
varies between the minimum and maximum perturba-
tion.

Maximum change in variables for finite difference gra-
dient calculation.
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Table 1-4: Option Parameters (Continued)

No.

18

Function

Step-size

Default Description

N/A Step-size parameter. Generally on the first iteration this
is set conservatively to a value of 1 or less, depending on
the derivatives.

As an example, commands that change the first two termination criteria in Eq.
1-2 to le-8 are shown below.

Changing the Default Settings Example

x0 = [-1,1]; % Mfeke a starting guess at the soluti on
options(1l) = 1 % Display intermediate results
options(2) = le-8; % Termination criterion on x
options(3) = le-8; % Termination criterion on fun(x)

x = fminu( 'fun',x0, options)

This yields a solution after 63 function evaluations.

X =

0.5000 -1.0000
fun(x)
ans =

3. 5145e-14

Online Help for opti ons is available by typing the command help foptions.
The command foptions, when called without arguments, returns the set of

default parameters. If foptions is given an input vector, it returns the set of
default parameters except where the input vector has nonzero values.
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Returning the Default Settings
options = foptions

opti ons =
Col umns 1 through 7
0 0. 0001 0. 0001 0.0000 0 0 0
Col umns 8 through 14
0 0 0 0 0 0 0
Columns 15 through 18
0 0.0000 0.1000 0

opti ons = foptions([ 0 1le-2])

options =
Col umns 1 through 7
0 0.0100 0.0001 0.0000 0 0 0
Columns 8 through 14
0 0 0 0 0 0 0
Columns 15 through 18
0 0.0000 0.1000 0

Output Headings

When opti ons(1)=1 for attgoal ,constr, curvefit ,fminu, fsol ve, least sq,
m ni max and semi nf, output is produced in column format. For fminu, the
column headings are

f- COUNT FUNCTI CN STEP-SIZE GRAD/ SD
where

o f- COUNT is the number of function evaluations

* FUNCTION is the function value

e STEP-SI ZE is the step size in the search direction

« GRAD/SDis the gradient of the function along the search direction.
For fsolve, leastsqg and curvefit the headings are

f- COUNT RESI D STEP-SIZE GRAD/ SD LAMBDA
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where f-COUNT STEP-SIZE and GRAD/ SD are the same as for fm nu, and

¢ RESIDis the residual (sum-of-squares) of the function

e LAMBDAIis the 1k value defined in the “Least Squares Optimization” section
of the Introduction to Algorithms chapter. This value is printed only when
the Levenberg-Marquardt method is used.

For constr and seminf the headings are

f-COUNT FUNCTION MAX{ g} STEP Procedures
where

e f-COUNT is the number of function evaluations

* FUNCTION is the function value

¢ MAX{g} isthe maximum constraint violation

e STEP is the step size in the search direction

e Procedures are messages about the Hessian update and QP subproblem.

The Procedures messages are discussed in the “Updating the Hessian Matrix"
section of the Introduction to Algorithms chapter.

For attgoal and m ni max, the headings are the same as for const r except
FUNCTI ONis omitted because MAX{g} gives the maximum goal violation for at t-
goal and the maximum function value for m ni max.

Optimization of String Expressions Instead of
M-Files

The routines in the Optimization Toolbox also perform optimization on expres-
sions, avoiding the need to write M-files that define functions. Expressions are
placed directly into strings without providing a function as an argument. If the
function variable to be evaluated (e.g., fun) contains nonalphanumeric charac-
ters (e.g., *,-,+,[ ), it is evaluated as an expression rather than afunction name.

When writing such expressions, the independent variable must always be a
lower-case x. An example of using an expression in place of a function argu-
ment is

Xx =fmnu('sin(x)',1) % Minimize sin(x) starting at 1

Note that this is also equivalent to fmnu('sin', 1).
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A simple squared problem is expressed as
x = fmnu(' x(1)A2+x(2)A2' ,[1;1])
which can also be solved with partial derivatives
x = fmnu('x(1)A2+x(2)A2',[1;1],[ 1, '[2*x(1); 2*x(2)]")
Other examples using this technique follow.
A matrix equation
x = fsolve('x*x*x-[1,2;3,4]',ones(2, 2))
A least squares problem
x = least sq(' x*x-[3 5;9 10]',eye(2, 2))

Function parameters have the variable names P1,P2,P3,.. . ,which can be used
in the expression, for example,

x = attgoal('sort(eig( P1+P2*x*P3))',zeros(2,2),...
[-5, =3 1], [5, 3 1], [ ],-4*ones(2),4*ones(2),[ ],A,B,C);

solves the problem detailed in Chapter 3, Reference for attgoal . Here the func-
tion parameters P1, P2, and P3 are set equal to the variables A, B, and C. You
cannot enter the variable names directly in the expression using the names A,
B, and C because the expression is not evaluated in the base workspace.

When using the routines nm ni max and constr, the objective function and con-
straints must be named f and g, respectively. For example,

= minimax(' f = x*x-[1 2;3 4]; g =] ];',100*0ones(2));
= constr('f = x(1)A2+x(2)A2; g = x+[1;-2]; ',[1;1],[1;1]);

There are no constraints in the examples above for m ni max and constr.There-
fore, the constraint matrix g is set to the empty matrix.

Partial derivatives are supplied to constr and mini max in a similar way by
using the variable gf for the function's partial derivatives and gg for the con-
straint's partial derivatives. An example is in the M-file tutdemo. m
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Practicalities

Optimization problems can take many iterations to converge and can be sensi-
tive to numerical problems such astruncation and round-off error in the calcu-
lation of finite difference gradients. Most optimization problems benefit from
good starting guesses. This improves the execution efficiency and can help
locate the global minimum instead of a local minimum.

Complex problems are best solved by an evolutionary approach whereby a
problem with a smaller number of independent variables is solved first. Solu-
tions from lower order problems can generally be used as starting points for
higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the
early stages of an optimization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local minima.

The Optimization Toolbox functions can be applied to a large variety of prob-
lems. Used with a little “conventional wisdom,” many of the limitations associ-
ated with optimization techniques can be overcome. Additionally, problems
that are not typically in the standard form can be handled by using an appro-
priate transformation. Below is a list of typical problems and recommendations
for dealing with them:

Problem: The solution does not appear to be a global minimum.

Recommendation: There is no guarantee that you have a global minimum
unless your problem is continuous and has only one minimum. Starting the
optimization from a number of different starting points may help to locate the
global minimum or verify that there is only one minimum. Use different
methods, where possible, to verify results.

Problem: The fminu function produces warning messages and seems to
exhibit slow convergence near the solution.

Recommendation: If you are not supplying analytically determined gradi-
ents and the termination criteria are stringent, fminu often exhibits slow con-
vergence near the solution due to truncation error in the gradient calculation.
Relaxing the termination criteria produces faster, although less accurate, solu-
tions. Changing the finite difference perturbation levels, options(16: 17), may
increase the accuracy of gradient calculations.
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Problem: Sometimes an optimization problem has values of x for which it is
impossible to evaluate f and g.

Recommendation: Place bounds onthe independent variables or make a pen-
alty function to give a large positive value to f and g when infeasibility is
encountered. For gradient calculation the penalty function should be smooth
and continuous.

Problem: The function that is being minimized has discontinuities.

Recommendation: The derivation of the underlying method is based upon
functions with continuous first and second derivatives. Some success may be
achieved for some classes of discontinuities when they do not occur near solu-
tion points, or if the finite difference parameters are adjusted in order to jump
over small discontinuities. The variables opti ons(16) and opti ons( 17) con-
trol the perturbation levels for x used in the calculation of finite difference gra-
dients. The perturbation, Ax, is always in the range

options(16) < Dx < options(1l7)

Another option is to smooth the function. For example, the objective function
might include a call to an interpolation function to do the smoothing.

Problem: Warning messages are displayed.

Recommendation: This sometimes occurs when termination criteria are
overly stringent, or when the problem is particularly sensitive to changes in
the independent variables. This usually indicates truncation or round-off
errors in the finite difference gradient calculation, or problems in the polyno-
mial interpolation routines. These warnings can usually be ignored because
the routines continue to make steps toward the solution point; however, they
are often an indication that convergence will take longer than normal. Scaling
can sometimes improve the sensitivity of a problem.

Problem: The independent variables, x, only can take on discrete values, for
example, integers.

Recommendation: Thistype of problem occurs commonly when, for example,
the variables are the coefficients of a filter that are realized using finite
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precision arithmetic or when the independent variables represent materials
that are manufactured only in standard amounts.

Although the Optimization Toolbox functions are not explicitly set up to solve
discrete problems, the problem can often be solved by first solving an equiva-
lent continuous problem. Discrete variables can be progressively eliminated
from the independent variables, which are free to vary.

Eliminate a discrete variable by rounding it up or down to the nearest best dis-
crete value. After eliminating a discrete variable, solve a reduced order
problem for the remaining free variables. Having found the solution to the
reduced order problem, eliminate another discrete variable and repeat the
cycle until all the discrete variables have been eliminated.

dfil demois ademonstration routine that shows how filters with fixed precision
coefficients can be designed using this technique.

Problem: The minimization routine appears to enter an infinite loop or
returns a solution that does not satisfy the problem constraints.

Recommendation: Your objective, constraint or gradient functions may be
returning Inf, NaN, or complex values. The minimization routines expect only
real numbers to be returned. Any other values may cause unexpected results.
Insert some checking code into the user-supplied functions to verify that only
real numbers are returned (use the function isfi nite).

Problem: You do not get the convergence you expect from the least sq
routine.

Recommendation: You may be forming the sum of squares explicitly and

returning a scalar value. least sq expects a vector (or matrix) of function
values that are squared and summed internally.
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2 Introduction to Algorithms

Parametric Optimization

2-2

This chapter provides an introduction to the different optimization problem
formulations used in the Optimization Toolbox and describes the algorithms.

Parametric optimization is used to find a set of design parameters,

x = {x1,X2 ,xn} ,that can in some way be defined as optimal. In a simple
case this may be the minimization or maximization of some system character-
isticthat is dependent on x. In a more advanced formulation the objective func-
tion, f(x), to be minimized or maximized, may be subject to constraints in the
form of equality constraints, Gj(x) =0 (i =1 ,me),inequality constraints,
Gj(x)<0 (i=me+1 ,m), and/or parameter bounds, x|, xu.

A General Problem (GP) description is stated as

minimize f(x)

x e W
subject to: Gjx =0, i=1 ,me
Gj(x) <0, i = me+l1l m
xl< x <xu (2-1)

where x is the vector of design parameters, (x e WWn), f(x) is the objective func-
tion that returns a scalar value ( f(x): Wn® W ), and the vector function G(x)
returns the values of the equality and inequality constraints evaluated at x
(G(x): Wn® Wm).

An efficient and accurate solution to this problem is not only dependent on the
size of the problem in terms of the number of constraints and design variables
but also on characteristics of the objective function and constraints. When both
the objective function and the constraints are linear functions of the design
variable, the problem is known as a Linear Programming problem (LP). Qua-
dratic Programming (QP) concerns the minimization or maximization of a qua-
dratic objective function that is linearly constrained. For both the LP and QP
problems, reliable solution procedures are readily available. More difficult to
solve is the Nonlinear Programming (NP) problem in which the objective func-
tion and constraints may be nonlinear functions of the design variables. A solu-
tion ofthe NP problem generally requires an iterative procedure to establish a
direction of search at each major iteration. This is usually achieved by the solu-
tion of an LP, a QP, or an unconstrained sub-problem.
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Unconstrained Optimization

Although awide spectrum of methods exists for unconstrained optimization,
methods can be broadly categorized in terms ofthe derivative information that
is, or is not, used. Search methods that use only function evaluations (e.g., the
simplex search of Nelder and Mead [33]) are most suitable for problems that
are very nonlinear or have a number of discontinuities. Gradient methods are
generally more efficient when the function to be minimized is continuous in its
first derivative. Higher order methods, such as Newton's method, are only
really suitable when the second order information is readily and easily calcu-
lated since calculation of second order information, using numerical differenti-
ation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a
direction of search where the minimum isthought to lie. The simplest of these
is the method of steepest descent in which a search is performed in a direc-
tion, -V f(x) , (where Vf(x) isthe gradient of the objective function). This
method is very inefficient when the function to be minimized has long narrow
valleys as, for example, is the case for Rosenbrock's function

f(x) = 100(x, - x2)2+ (1 - x.)2

1 2 1 (2-2)
The minimum of this function is at x = [1,1] where f(x) = 0 .A contour map
of this function is shown in Fig. 2-1, along with the solution path to the min-
imum for a steepest descent implementation starting at the point [-1.9,2]. The
optimization was terminated after 1000 iterations, still a considerable distance
from the minimum. The black areas are where the method is continually
zig-zagging from one side ofthe valley to another. Note that towards the center
ofthe plot, a number of larger steps are taken when a point lands exactly at the
center of the valley.
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Figure 2-1: Steepest Descent Method on Rosenbrock's Function (Eq. 2-2)

This type of function (Eq. 2-2), also known asthe banana function, is notorious
in unconstrained examples because of the way the curvature bends around the
origin. Eqg. 2-2 is used throughout this section to illustrate the use of a variety
of optimization techniques. The contours have been plotted in exponential

increments due to the steepness of the slope surrounding the U-shaped valley.

Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the
guasi-Newton methods. These methods build up curvature information at each
iteration to formulate a quadratic model problem of the form

. 17T T
min ~x Hx +c¢c x+b
X 2
X (2-3)
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where the Hessian matrix, H, is a positive definite symmetric matrix, cis a con-
stant vector, and b is a constant. The optimal solution for this problem occurs
when the partial derivatives of x go to zero, i.e.,

Vf(x*) = Hx*+c =0 (2-4)

The optimal solution point, x* , can be written as

x* = -H 1c (2-5)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent using a line search method to
locate the minimum after a number of iterations. Calculating H numerically
involves a large amount of computation. Quasi-Newton methods avoid this by
using the observed behavior of f(x) and Vf(x) to build up curvature informa-
tion to make an approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. Generally,
the formula of Broyden [3], Fletcher [4], Goldfarb [5], and Shanno [6] (BFGS)
is thought to be the most effective for use in a general purpose method.

The formula is given by

BFGS
gkgk. HkskskHk
Hk+1  Hk+
glsk
(2-6)
where sk = xk+1- xk

gk Vf(xk+1) - Vf(xk)

As a starting point, HO can be set to any symmetric positive definite matrix, for
example, the identity matrix |.To avoid the inversion ofthe Hessian H, you can
derive an updating method in which the direct inversion of H is avoided by
using a formula that makes an approximation ofthe inverse Hessian H-1 at
each update. A well known procedure is the DFP formula of Davidon [7],
Fletcher, and Powell [8]. This uses the same formula as the above BFGS
method (Eqg. 2-6) except that gk is substituted for Sk.
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The gradient information is either supplied through analytically calculated
gradients, or derived by partial derivatives using a numerical differentiation
method via finite differences. This involves perturbing each of the design vari-
ables, x, in turn and calculating the rate of change in the objective function.

At each major iteration, k, a line search is performed in the direction
d = -H-1 Vf(xk) (2-7)

The quasi-Newton method is illustrated by the solution path on Rosenbrock's
function (Eqg. 2-2) in Fig. 2-2. The method is able to follow the shape of the
valley and convergestothe minimum after 140 function evaluations using only
finite difference gradients.

Figure 2-2: BFGS Method on Rosenbrock's Function

Line Search

Most unconstrained and constrained methods usethe solution of asub-problem
to yield a search direction in which the solution is estimated to lie. The
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minimum along the line formed from this search direction is generally approx-
imated using a search procedure (e.g., Fibonacci, Golden Section) or by a poly-
nomial method involving interpolation or extrapolation (e.g., quadratic, cubic).
Polynomial methods approximate a number of points with a univariate polyno-
mial whose minimum can be calculated easily. Interpolation refers to the con-
dition that the minimum is bracketed (i.e., the minimum lies in the area
spanned by the available points), whereas extrapolation refers to a minimum
located outside the range spanned by the available points. Extrapolation
methods are generally considered unreliable for estimating minima for non-
linear functions. However, they are useful for estimating step length when
trying to bracket the minimum as shown in the “Line Search Procedures” sec-
tion. Polynomial interpolation methods are generally the most effective in
terms of efficiency when the function to be minimized is continuous. The
problem is to find a new iterate xk +1 of the form

xk+l = xk+a*d (2-8)

where xk denotes the current iterate, d the search direction obtained by an
appropriate method, and a* is a scalar step length parameter that is the dis-
tance to the minimum.

Quadratic Interpolation
Quadratic interpolation involves a data fit to a univariate function of the form

mqg(a) = aa2+ba +c (2-9)

where an extremum occurs at a step length of

This point may be a minimum or a maximum. It is a minimum when interpo-
lation is performed (i.e., using a bracketed minimum) or when a is positive.

Determination of coefficients, a and b, can be found using any combination of
three gradient or function evaluations. It may also be carried out with just two
gradient evaluations. The coefficients are determined through the formulation
and solution of a linear set of simultaneous equations. Various simplifications
in the solution of these equations can be achieved when particular characteris-
tics of the points are used. For example, the first point can generally be taken
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as a = 0. Other simplifications can be achieved when the points are evenly
spaced. A general problem formula is as follows:

Given three unevenly spaced points {x1x2,x3 and their associated function
values {f(x1)f(x2),f(x3)} the minimum resulting from a second-order fit is
given by

Quadratic Interpolation

1 P23f(x 1) + P3Lf(x2) + P12f(x 3)
k+1 2 g23f(x 1)+ g31f(x2) + Y12f(x3
where
Pij = x2- x2
Yij = xi- Xj (2-11)

For interpolation to be performed, as opposed to extrapolation, the minimum
must be bracketed sothat the points can be arranged to give

f(x2)< f(x1) and f(x2)< f(x3)

Cubic Interpolation

Cubic interpolation is useful when gradient information is readily available or
when more than three function evaluations have been calculated. It involves a
data fit to the univariate function

mc(a) = aa3+ ba2+ca+d (2-12)

where the local extrema are roots of the quadratic equation
3aa2+2ba+c =0
To find the minimum extremum, take the root that gives 6aa + 2b as positive.

Coefficients a and b can be determined using any combination of four gradient
or function evaluations, or alternatively, with just three gradient evaluations.









Quasi-Newton Implementation

Cubic Polynomial Method

In the proposed cubic polynomial method, a gradient and afunction evaluation
is made at every iteration, k. At each iteration an update is performed when a
new point is found, xk +1,which satisfies the condition that

f(xk +1)< f(xk) (2-15)
At each iteration a step, ak,is attempted to form a new iterate of the form
xk+1 = xk+ akd (2-16)

If this step does not satisfy the condition (Eq. 2-15) then ak is reduced to form
a new step, ak +1.The usual method for this reduction is to use bisection (i.e.,
to continually halve the step length until a reduction is achieved in f(x). How-
ever, this procedure is slow when compared to an approach that involves using
gradient and function evaluations together with cubic interpolation/extrapola-
tion methods to identify estimates of step length.

When a point is found that satisfies the condition (Eq. 2-15), an update is per-
formed if qjsk is positive. If it is not, then further cubic interpolations are per-
formed until the univariate gradient term Vf(xk +1)Td is sufficiently small so
that qTsk is positive.

It is usual practice to reset akto unity after every iteration. However, note that
the quadratic model (Eg. 2-3) is generally only a good one near to the solution
point. Therefore, ak,is modified at each major iteration to compensate for the
case when the approximation to the Hessian is monotonically increasing or
decreasing. To ensure that, as xkapproaches the solution point, the procedure
reverts to avalue of ak closeto unity, the values of qTsk - Vf(xk)Td and ak+1
are used to estimate the closeness to the solution point and thus to control the
variation in ak.

After each update procedure, a step length ak is attempted, following which a
number of scenarios are possible. Consideration of all the possible cases is quite
complicated and sothey are represented pictorially in Fig. 2-3,where the
left-hand point on the graphs represents the point xk . The slope of the line
bisecting each point represents the slope ofthe univariate gradient, Vf(xk)Td ,
which is always negative for the left-hand point. The right-hand point is the
point xk +1 after a step of ak is taken in the direction d.

2-11
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Figure 2-3: Cubic Polynomial Line Search Procedures

Case 1. f(xk +1) >f(xk), Vf(xk +1)Td >0

f(x) / Reduce step length.

ac/?2 if ak <0.1

a
0 akak+1l a k+l ac otherwise
Case 2: f(xk +1) < f(xk), Vf(xk +1)Td >0
f(x)
\
0 akak+l a tk +1 = min{1,ac} ak +1 = 0.9ac
Case 3: f(xk+1) <f(xk), Vf(xk+1)Td <0
f(x)
\
\
0 akak+1 &
Ik +'
Case 4: f(xk +1)> f(xk),Vf(xk +1)Td <0 where p = 1+ gkksk - Vfxk +1Td +min{0,ak +1}
f(x) \
\ Reduce step length.

ak +1 = min{ac, ak/2}
0 akak+l 2
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dient Vf(xk) obtained at the last update. The right-hand points represent the
points accumulated in the minor iterations of the line search procedure.

The terms aqg and ac refer to the minimum obtained from a respective qua-
dratic and cubic interpolation or extrapolation. For highly nonlinear functions,
ac and aq may be negative, in which casethey are set to avalue of 2ak sothat
they are always maintained to be positive. Cases 1 and 2 use quadratic inter-
polation with two points and one gradient to estimate a third point that
brackets the minimum. If this fails, cases 3 and 4 represent the possibilities for
changing the step length when at least three points are available.

When the minimum is finally bracketed, cubic interpolation is achieved using
one gradient and three function evaluations. If the interpolated point is greater
than any of the three used for the interpolation, then it is replaced with the
point with the smallest function value. Following the line search procedure the
Hessian update procedure is performed as for the cubic polynomial line search
method.
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Figure 2-4: Line Search Procedures with Only Gradient for the First Point.
Case 1: f(xj)> f(xk)

f(x)

Reduce step length.

[

0 aj aj+1 a aj+1 aq

Case 2: f(xj)< f(xk)

f(x)

Increase step length.

1

aj+1 = 1.2aq

*
0 aj aj+1

Case 3: f(xj +1)< f(xk)
f(x) \

a aj +2 = max{1l.2aq,2aj +1}
0 aj aj +1laj +2

Case 4: f(xj +1) > f(xk)

f(x)

aj+2 = ac
Oaj+2aj+1laj
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after only 48 function evaluations using finite difference gradients compared to
140 iterations using an unconstrained BFGS method.

The Gauss-Newton method often encounters problems when the second order
term Q(x) in Eq. 2-20 is significant. A method that overcomes this problem is
the Levenberg-Marquardt method.

Figure 2-5: Gauss-Newton Method on Rosenbrock's Function

Levenberg-Marquardt Method

The Levenberg-Marquardt [18,19] method uses a search direction that is a
solution of the linear set of equations

(3 (XK)TJ (x) + 1kl)dk = -J (xK)F (xK) (2-22

where the scalarlk controls both the magnitude and direction of dk . When | k
is zero, the direction dk is identical to that ofthe Gauss-Newton method. As
| k tends to infinity, dk tends towards a vector of zeros and a steepest descent
direction. This implies that for some sufficiently large Ik ,the term
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F(xk + dk)< F(xk) holds true. The term Ik can therefore be controlled to
ensure descent even when second order terms, which restrict the efficiency of
the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that is a
cross between the Gauss-Newton direction and the steepest descent. This is
illustrated in Fig. 2-6 below. The solution for Rosenbrock's function (Eq. 2-2)
converges after 90 function evaluations compared to 48 for the Gauss-Newton
method. The poorer efficiency is partly because the Gauss-Newton method is
generally more effective when the residual is zero at the solution. However,
such information is not always available beforehand, and occasional poorer
efficiency ofthe Levenberg-Marquardt method is compensated for by its
increased robustness.

Figure 2-6: Levenberg-Marquardt Method on Rosenbrock's Function
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the difference between fp(xk) and fk(x*) is a measure of the effectiveness of
the Gauss-Newton method and the linearity of the problem. This determines
whether to use a direction approaching the steepest descent direction or the
Gauss-Newton direction. The formulas for the reduction and increase in | k,
which have been developed through consideration of a large number of test
problems, are shown in Fig. 2-7 below.

Figure 2-7: Updating | k

Following the update of | w, a solution of Eq. 2-22 is used to obtain a search
direction, dk . A step length of unity is then taken in the direction dk ,which is
followed by a line search procedure similar to that discussed for the uncon-
strained implementation. The line search procedure ensures that

f(xk +1) < f(xk) at each major iteration and the method is therefore a descent
method.

The implementation has been successfully tested on a large number of non-
linear problems. It has proved to be more robust than the Gauss-Newton
method and iteratively more efficient than an unconstrained method. The Lev-
enberg-Marquardt algorithm is the default method used by leastsq. The
Gauss-Newton method can be selected by setting opti ons(5) =1

2-21
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In constrained optimization, the general aim is to transform the problem into
an easier subproblem that can then be solved and used as the basis of an iter-
ative process. A characteristic of a large class of early methods is the transla-
tion of the constrained problem to a basic unconstrained problem by using a
penalty function for constraints, which are near or beyond the constraint
boundary. In this way the constrained problem is solved using a sequence of
parameterized unconstrained optimizations, which in the limit (of the
sequence) converge to the constrained problem. These methods are now consid-
ered relatively inefficient and have been replaced by methods that have focused
on the solution ofthe Kuhn-Tucker (KT) equations. The KT equations are
necessary conditions for optimality for a constrained optimization problem. If
the problem is a so-called convex programming problem, that is, f(x) and
Gj(x),j = 1,..., m, are convex functions, then the KT equations are both
necessary and sufficient for a global solution point.

Referring to GP (Eg. 2-1), the Kuhn-Tucker equations can be stated as

m
f(x*)+ £ 1j* «VGj(x*) =0
ji=1
VGj(x*) = 0 j=1,., me
lj*> 0 j =me+1,.,m (2-24)

The first equation describes a canceling ofthe gradients between the objective
function and the active constraints at the solution point. For the gradients to
be canceled, Lagrange Multipliers (1j, j = 1 ,. m) are necessary to balance
the deviations in magnitude of the objective function and constraint gradients.
Since only active constraints are included in this canceling operation,
constraints that are not active must not be included in this operation and so
are given Lagrange multipliers equal to zero. This is stated implicitly in the
last two equations of Eq. 2-24.

The solution of the KT equations forms the basis to many nonlinear program-
ming algorithms. These algorithms attempt to compute directly the Lagrange
multipliers. Constrained quasi-Newton methods guarantee superlinear
convergence by accumulating second order information regarding the KT equa-
tions using a quasi-Newton updating procedure. These methods are commonly
referred to as Sequential Quadratic Programming (SQP) methods since a QP
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sub-problem is solved at each major iteration (also known as Iterative
Quadratic Programming, Recursive Quadratic Programming, and Constrained
Variable Metric methods).

Sequential Quadratic Programming (SQP)

SQP methods represent state-of-the-art in nonlinear programming methods.
Schittowski [22], for example, has implemented and tested a version that out
performs every other tested method in terms of efficiency, accuracy, and
percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [9], Han [10], and Powell [11,12], the method allows
you to closely mimic Newton's method for constrained optimization just as is
done for unconstrained optimization. At each major iteration an approximation
is made of the Hessian of the Lagrangian function using a quasi-Newton
updating method. This is then used to generate a QP sub-problem whose solu-
tion is used to form a search direction for a line search procedure. An overview
of SQP is found in Fletcher [2], Gill et al. [1], Powell [13], and Schittowski [14].
The general method, however, is stated here.

Given the problem description in GP (Eg. 2.1) the principal idea is the formu-
lation of a QP sub-problem based on a quadratic approximation of the
Lagrangian function.

m

L(x,1) = f(x)+ £ | <g,(x)
i=1 (2-25)

Here Eq. 2.1 is simplified by assuming that bound constraints have been
expressed as inequality constraints. The QP sub-problem is obtained by linear-
izing the nonlinear constraints.

QP Subproblem

1
minimize ~dTHkd + Vf(xk)Td
k k

deln 2
Vg, (xk)Td +g,(xk) =0 i =1,...me
Vg, (xk)Td + g, (xk)< 0 i =me+l,. m

(2-26)
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This sub-problem can be solved using any QP algorithm (see, for instance, the
“Quadratic Programming Solution” section). The solution is used to form a new
iterate

xk+1l = xk+akdk

The step length parameter ak is determined by an appropriate line search
procedure sothat a sufficient decrease in a merit function is obtained (seethe
“Updating the Hessian M atrix” section). The matrix Hk is a positive definite
approximation ofthe Hessian matrix ofthe Lagrangian function (Eq. 2-25). Hk
can be updated by any of the quasi-Newton methods, although the BFGS
method (seethe section “Updating the Hessian M atrix”) appears to be the most
popular.

A nonlinearly constrained problem can often be solved in fewer iterations than
an unconstrained problem using SQP. One of the reasons for this is that,
because of limits on the feasible area, the optimizer can make well-informed
decisions regarding directions of search and step length.

Consider Rosenbrock's function (Eq. 2-2) with an additional nonlinear
inequality constraint, g(x)

X2+x2- 15<0 (2-27)

This was solved by an SQP implementation in 96 iterations compared to 140
for the unconstrained case. Fig. 2-8 shows the path to the solution point
x = [0.9072,0.8228] starting at x = [-1.9,2].
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Figure 2-8: SQP Method on Nonlinear Linearly Constrained Rosenbrock's
Function
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The MATLAB SQP implementation consists of three main stages, which are
discussed briefly in the following sub-sections:

* Updating of the Hessian matrix ofthe Lagrangian function

e Quadratic programming problem solution

¢ Line search and merit function calculation

Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the
Hessian of the Lagrangian function, H ,is calculated using the BFGS method
where 1 (i = 1,...,m) is an estimate of the Lagrange multipliers.

Hessian Update (BFGS)

akqi
H where
k+1 Hk+ qTsk SH ks
sk _ xk+1-xk (2-28)
n ( n A

gk = vf(xk+1) + Z 1li*V9i(xk+1)- Vf(xk)+ Z 1 *V9i(xk)
i=1 A i=1

Powell [11] recommends keeping the Hessian positive definite even though it
may be positive indefinite at the solution point. A positive definite Hessian is
maintained providing qTsk is positive at each update and that H is initialized
with a positive definite matrix. When qTsk is not positive, gk is modified on
an element by element basis sothat qTsk >0 .The general aim of this modifi-
cation is to distort the elements of gk ,which contribute to a positive definite
update, as little as possible. Therefore, in the initial phase ofthe modification,
the most negative element of gk.*"k is repeatedly halved. This procedure is
continued until qTsk is greater than or equal to 1e-5. If after this procedure,
gTsk is still not positive, gk is modified by adding a vector v multiplied by a
constant scalar w, that is,

gk = gk +wv
(2-29)
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where

Vg, (xk +1 )¢ g, (xk +1) - Vg, (xk)e g, (xk), if (gk),*w <0 and (gk), (Sk), <0

(G=1,.m)
0, otherwise

and w is systematically increased until qTsk becomes positive.

The functions constr, mini max, attgoal , and semi nf all use SQP. If

opti ons( 1) is set to 1, then various information is given such as function
values and the maximum constraint violation. When the Hessian has to be
modified using the first phase of the procedure described above to keep it posi-
tive definite, then Hessian modi fied is displayed. If the Hessian has to be
modified again using the second phase of the approach described above, then
Hessian modif ied twi ce is displayed. When the QP sub-problem is infeasible,
then infeasible will be displayed. Such displays are usually not a cause for
concern but indicate that the problem is highly nonlinear and that convergence
may take longer than usual. Sometimes the message no updat e is displayed
indicating that qTsk is nearly zero. This can be an indication that the problem
setup is wrong or you are trying to minimize a noncontinuous function.

Quadratic Programming Solution

At each major iteration ofthe SQP method a QP problem is solved of the form
where A, refers to the ith row of the m-by-n matrix A.

QP
minimize q(d) = 8dTHd +cTd
d e Xn
Ad = b m (2-30)
A,d <b, , = me+ 1, m

The method used in the Optimization Toolbox is an active set strategy (also
known as a projection method) similar to that of Gill et aldescribed in [16] and
[17]. It has been modified for both LP and QP problems.

The solution procedure involves two phases: the first phase involves the calcu-
lation of a feasible point (if one exists), the second phase involves the genera-
tion of an iterative sequence of feasible points that converge to the solution. In

2-27
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this method an active set is maintained, Ak ,which is an estimate ofthe active
constraints (i.e., which are on the constraint boundaries) at the solution point.
Virtually all QP algorithms are active set methods. This point is emphasized
because there exist many different methods that are very similar in structure
but that are described in widely different terms.

Ak is updated at each iteration, k, and this is used to form a basis for a search
direction <k .Equality constraints always remain in the active set, Ak . The
notation for the variable, <, is used here to distinguish it from dk in the
major iterations ofthe SQP method. The search direction, <k, is calculated and
minimizes the objective function while remaining on any active constraint
boundaries. The feasible subspace for <X is formed from _a basis, Zkwhose
columns are orthogonal to the estimate of the active set Ak (i.e., Akzk = 0).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk , is guaranteed to remain on the boundaries
of the active constraints.

The matrix Z~ is formed from the last m-l columns ofthe QR decomposition of
the matrix Ak ,wherel isthe number of active constraints and | < m. That is,
Zk is given by

Zk = Q[ I+ 1:m]

(2-31)

Having found Zk, a new search direction dk is sought that minimizes q(d)
where <k is in the null space of the active constraints, that is, <k is a linear
combination of the columns of Zk: <k = ZkP for some vector p.

Then if we view our quadratic as a function of p, by substituting for <& ,we
have

q(p) = 2PIZTHZKP + cTZkP (2-32)
Differentiating this with respect to pyields
Vq(p) = ZA-HZkp +Z 7 (2-33)

Vqg(p) is referred to asthe projected gradient ofthe quadratic function because
it is the gradient projected in the subspace defined by Zk .Theterm ZTHZk is
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called the projected Hessian. Assuming the Hessian matrix H is positive defi-
nite (which is the case in this implementation of SQP), then the minimum of
the function q(p) in the subspace defined by Zk occurswhen Vqg(p) = 0, which
is the solution of the system of linear equations

ZkHZkp = -ZTc (2-34)
A step is then taken of the form
xk +1 = xk +a<k where @Bk = ZTp (2-35)

At each iteration, because of the quadratic nature of the objective function,
there are only two choices of step length a .A step of unity along <k isthe exact
step to the minimum of the function restricted to the null space of Ak . If such
a step can be taken, without violation of the constraints, then this is the solu-
tion to QP (Eq. 2.31). Otherwise, the step along <k to the nearest constraint is
less than unity and a new constraint is included in the active set at the next
iterate. The distance to the constraint boundaries in any direction <k is given

by

(2-36)

which is defined for constraints not in the active set, and where the direction
<k is towards the constraint boundary, i.e., Ai<k>0, i = 1,..., m.

When n independent constraints are included in the active set, without loca-
tion of the minimum, Lagrange multipliers, 1k are calculated that satisfy the
nonsingular set of linear equations

(2-37)
If all elements of 1k are positive, xk is the optimal solution of QP (Eq. 2.31).
However, if any component of 1k is negative, and it does not correspond to an

equality constraint, then the corresponding element is deleted from the active
set and a new iterate is sought.

2-29
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Initialization

The algorithm requires a feasible point to start. If the current point from the
SQP method is not feasible, then a point can be found by solving the linear
programming problem

minimize g
ye«, x e lWn
A,Xx = Db, , =1 , me
AXx-g<b, , = me+-l,..., m (2-38)

The notation A, indicates the ith row ofthe matrix A. A feasible point (if one
exists) to Eq. 2.38 can be found by setting x to avalue that satisfies the
equality constraints. This can be achieved by solving an under- or over-deter-
mined set of linear equations formed from the set of equality constraints. If
there is a solution to this problem, then the slack variable g is set to the
maximum inequality constraint at this point.

The above QP algorithm is modified for LP problems by setting the search
direction to the steepest descent direction at each iteration where gk is the
gradient of the objective function (equal to the coefficients of the linear objec-
tive function)

dk = -Zkzkgk (2-39)

If a feasible point is found using the above LP method, the main QP phase is
entered. The search direction <X is initialized with a search direction d1 found
from solving the set of linear equations

Hd 1 = -gk (2-40)

where gk isthe gradient ofthe objective function at the current iterate xk (i.e.,
Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search for
the main SQP routine dk is taken as one that minimizes g.
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Line Search and Merit Function
The solution to the QP sub-problem produces avector <k ,which is used to form

a new iterate

xk+l = xk+a<k (2-41)

The step length parameter ak is determined in order to produce a sufficient
decrease in a merit function. The merit function used by Han [15] and
Powell [15] of the form below has been used in this implementation

Merit Function

m

Y(X) =f(x)+ £ rie9ix)+ Z rH emax{0, gi(x)}

i=1 i=me+1l (2-42)
Powell recommends setting the penalty parameter
= (rk +1)i = max$1j, 2((rk)i+1i)k i=1,., m
(2-43)

This allows positive contribution form constraints that are inactive in the QP
solution but were recently active. In this implementation, initially the penalty
parameter r is set to

P _ IVIXx)]

i I vgi(x) I (2-44)

where || ¢ | represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints
with smaller gradients, which would be the case for active constraints at the
solution point.
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The rigidity ofthe mathematical problem posed by the general optimization
formulation given in GP (Eq. 2-1) is often remote from that of a practical design
problem. Rarely does a single objective with several hard constraints
adequately represent the problem being faced. More often there is a vector of
objectives F(x) = {F1(x), F2(x),..., Fm(x)} that must betraded off in some
way. The relative importance of these objectives is not generally known until
the system's best capabilities are determined and trade-offs between the objec-
tives fully understood. As the number of objectives increases, trade-offs are
likely to become complex and less easily quantified. There is much reliance on
the intuition of the designer and his or her ability to express preferences
throughout the optimization cycle. Thus, requirements for a multiobjective
design strategy are to enable a natural problem formulation to be expressed,
yet be able to solve the problem and enter preferences into a numerically trac-
table and realistic design problem.

This section begins with an introduction to multiobjective optimization,
looking at a number of alternative methods. Attention is focused on the Goal
Attainment method, which can be posed as a nonlinear programing problem.
Algorithm improvements to the SQP method are presented for use with the
Goal Attainment method.

Introduction to Multiobjective Optimization

Multiobjective optimization is concerned with the minimization of a vector of
objectives F(x) that may be the subject of a number of constraints or bounds.

MO
minimize F(x)
X e Wn
Gi(x) =0 i =1, me
Gi(x)<0 i = me+1, m
x|l <x <xu (2-45)

Note that, because F(x) is a vector, if any of the components of F(x) are
competing, there is no unique solution to this problem. Instead, the concept of
noninferiority [25] (also called Pareto optimality [24], [26]) must be used to
characterize the objectives. A noninferior solution is one in which an improve-
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ment in one objective requires a degradation of another. To define this concept
more precisely, consider a feasible region, W, in the parameter space x e Xn
that satisfies all the constraints, i.e.,

W = {x e Xn}
subject to gix) =0 i=1,.,me
gix) <0 i = me+ 1, m
x| <X <xu (2-46)

This allows usto define the corresponding feasible region for the objective func-
tion space J1

n = {y e X™} where y = F(x) subject to x e W. (2-47)
The performance vector, F(x), maps parameter space into objective function

space as is represented for atwo-dimensional case in Fig. 2-9 below.

Figure 2-9: Mapping from Parameter Space into Objective Function Space.

A noninferior solution point can now be defined.

Definition: A point x* e W is a noninferior solution if for some neighborhood of
x* there does not exist a Ax such that (x* + Ax) e W and

Fi(x* + AX) < Fi(x*) i=1,...,m

Fj(x* + Ax) < Fj(x*) for some j. (2-48)

2-33



2 Introduction to Algorithms

2-34

In the two-dimensional representation of Fig. 2-10 the set of noninferior solu-
tions lies on the curve between C and D. Points A and B represent specific
noninferior points.

Figure 2-10: Set of Noninferior Solutions.

A and B are clearly noninferior solution points because an improvement in one
objective, F1, requires a degradation in the other objective, F2,i.e.,

FIB<FI1A" F2B>F2A .

Since any point in Wthat is not a noninferior point represents a point in which
improvement can be attained in all the objectives, it is clear that such a point
is of no value. Multiobjective optimization is, therefore, concerned with the
generation and selection of noninferior solution points. The techniques for
multiobjective optimization are wide and varied and all the methods cannot be
covered within the scope of this toolbox. However, some of the techniques are
described below.

Weighted Sum Strategy

The weighted sum strategy converts the multiobjective problem of minimizing
the vector F(x) into ascalar problem by constructing a weighted sum of all the
objectives.

Weighted Sum
1
linimize f(x) = X W *F\(x)2 (2-49)
i=1
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The problem can then be optimized using a standard unconstrained optimiza-
tion algorithm. The problem here is in attaching weighting coefficients to each
of the objectives. The weighting coefficients do not necessarily correspond
directly to the relative importance ofthe objectives or allow trade-offs between
the objectives to be expressed. Further, the noninferior solution boundary may
be nonconcurrent so that certain solutions are not accessible.

This can be illustrated geometrically. Consider the two objective case in Fig.
2-11.In the objective function space a line, L, wTF(x) = ¢ isdrawn. The mini-
mization of Eq. 2-49 can be interpreted as finding the value of ¢ for which L just
touches the boundary of /1 as it proceeds outwards from the origin. Selection of
weights w1 and w2, therefore, defines the slope of L, which in turn leads to
the solution point where L touches the boundary of Jl.

Figure 2-11: Geometrical Representation of the Weighted Sum Method.

nonconvex as shown in Fig. 2-12. In this case the set of noninferior solutions
between A and B is not available.

2-35



2 Introduction to Algorithms

2-36

e-Constraint Method
A procedure that overcomes some of the convexity problems of the weighted
sum technique isthe e-constraint method. This involves minimizing a primary
objective, Fp,and expressing the other objectives in the form of inequality
constraints

minimize F_(x)

xeW p (2-50)

subject to Fi(x) £ ei i=1 , m i* P

Fig. 2-13 shows a two-dimensional representation of the e-constraint method
for atwo objective problem.
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Figure 2-13: Geometrical Representation of e-Constraint Method

minimize F1(x) subject to: F2X < e2

This approach is able to identify a number of noninferior solutions on a
nonconvex boundary that are not obtainable using the weighted sum tech-
nique, for example, at the solution point F1 = F1S and F2 = e2-A problem
with this method is, however, a suitable selection of eto ensure a feasible solu-
tion. A further disadvantage ofthis approach isthat the use of hard constraints
is rarely adequate for expressing true design objectives. Similar methods exist,
such asthat of Waltz [31], which prioritize the objectives. The optimization
proceeds with reference to these priorities and allowable bounds of acceptance.
The difficulty here is in expressing such information at early stages of the opti-
mization cycle.

In order for the designers' true preferences to be put into a mathematical
description, the designers must express a full table of their preferences and
satisfaction levels for a range of objective value combinations. A procedure
must then be realized that is able to find asolution with reference to this. Such
methods have been derived for discrete functions using the branches of statis-
tics known as decision theory and game theory (for a basic introduction, see
[28]). Implementation for continuous functions requires suitable discretization
strategies and complex solution methods. Since it is rare for the designer to
know such detailed information, this method is deemed impractical for most
practical design problems. It is, however, seen as a possible area for further
research.

What is required is a formulation that is simple to express, retains the
designers preferences, and is numerically tractable.
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Goal Attainment Method

The method described here is the Goal Attainment method of Gembicki [27].
This involves expressing a set of design goals, F* = {F* ,F2 ,...F**} ,which is
associated with a set of objectives, F(x) = {Fi(x) *(x) ,...,Fm(x) } . The
problem formulation allows the objectives to be under- or over-achieved
enabling the designer to be relatively imprecise about initial design goals. The
relative degree of under- or over-achievement of the goals is controlled by a
vector of weighting coefficients, w = {w1,w?2, wm}, and is expressed as a
standard optimization problem using the following formulation:

Goal Attainment
minimize g
ye«,xeW
such that Fi(x)-Wig£f F* i=1,., m 51)

The term Wig introduces an element of slackness into the problem, which
otherwise imposes that the goals be rigidly met. The weighting vector, w,
enablesthe designer to express a measure ofthe relative trade-offs between the
objectives. For instance, setting the weighting vector, w, equal to the initial
goals indicates that the same percentage under- or over-attainment of the
goals, F*, is achieved. Hard constraints can be incorporated into the design by
setting a particular weighting factor to zero (i.e.,wi = 0). The Goal Attainment
method provides a convenient intuitive interpretation of the design problem,
which is solvable using standard optimization procedures. Illustrative exam-
ples of the use of Goal Attainment method in control system design can be
found in Fleming [29,30].

The Goal Attainment method is represented geometrically in Fig. 2-14 for the
two-dimensional problem.
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Figure 2-14: Geometrical Representation of Goal Attainment Method.
minimize g subject to: F1(x) - w 1g< F*
gxeWwW 1 11
F2(x)- w2g< F2

Specification of the goals, {F*, F2} , defines the goal point, P. The weighting
vector defines the direction of search from P to the feasible function space,
L(g) mDuring the optimization gis varied, which changesthe size ofthe feasible
region. The constraint boundaries converge to the unique solution point

F1S F2S}

Algorithm Improvements for Goal Attainment
Method

The Goal Attainment method has the advantage that it can be posed as a
nonlinear programming problem. Characteristics of the problem can also be
exploited in a nonlinear programming algorithm. In Sequential Quadratic
Programming (SQP) the choice of merit function for the line search is not easy
because, in many cases, it is difficult to “define” the relative importance
between improving the objective function and reducing constraint violations.
This has resulted in a number of different schemes for constructing the merit
function (see, for example, Schittowski [22]). In Goal Attainment programming

2-39



2 Introduction to Algorithms

2-40

there may be a more appropriate merit function, which can be achieved by
posing Eq. 2-51 asthe minimax problem

minimize max (/1,}
XE I '

Fi(x)- Ff _
where N, = s i=1 . m
1 wi (2-52)

Following the argument of Brayton et al. [32] for minimax optimization using
SQP, using the merit function of Eq. 2-43 for the Goal Attainment problem of
Eqg. 2-52, gives
m
y(x,9) = g+ X r, *max (0, Fi(x)-w,g- F*} (2-53)
i=1
When the merit function of Eq. 2-53 is used as the basis of a line search proce-
dure, then, although y(x, g) may decrease for a step in a given search direc-
tion, the function max J1i may paradoxically increase. This is accepting a
degradation in the worst case objective. Since the worst case objective is
responsible for the value ofthe objective function g, this is accepting a step that
ultimately increases the objective function to be minimized. Conversely,

y(X,g) may increase when max J1, decreases implying a rejection of a step that
improves the worst case objective.

Following the lines of Brayton et al. [32], a solution is therefore to set y (x)
equal to the worst case objective, i.e.,

y(x) = max ﬂll (2-54)

A problem in the Goal Attainment method is that it is common to use a
weighting coefficient equal to zero to incorporate hard constraints. The merit
function of Eq. 2-54 then becomes infinite for arbitrary violations of the
constraints. To overcome this problem while still retaining the features of Eq.
2-54 the merit function is combined with that of Eq. 2-43 giving the following:

M riemax (0, F|(x)-w,g- F*} ifw,=0

= X
y(x) ] max /1,, 1 =1,., m otherwise
i=1 1 (2-55)
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Another feature that can be exploited in SQP is the objective function g. From
the KT equations (Eq. 2-24) it can be shown that the approximation to the
Hessian ofthe Lagrangian, H, should have zeros in the rows and columns asso-
ciated with the variable g By initializing H as the identity matrix, this prop-
erty does not appear. H is therefore initialized and maintained to have zeros in
the rows and columns associated with g.

These changes make the Hessian, H, indefinite, therefore H is set to have zeros
in the rows and columns associated with g, except for the diagonal element,
which is set to a small positive number (e.g., 1e-10). This allows use ofthe fast
converging positive definite QP method described in the “Quadratic Program-
ming Solution” section.

The above modifications have been implemented in attgoal and have been
found to make the method more robust. However, due to the rapid convergence
of the SQP method, the requirement that the merit function strictly decrease
sometimes requires more function evaluations than an implementation of SQP
using the merit function of (Eq. 2-43).
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A number of different optimization strategies have been discussed. The algo-
rithms used (e.g., BFGS, Levenberg-Marquardt and SQP) have been chosen for
their robustness and iterative efficiency. The choice of problem formulation
(e.g., unconstrained, least squares, constrained, minimax, multiobjective, or

goal attainment) depends on the problem being considered and the required
execution efficiency.
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This chapter contains descriptions of the Optimization Toolbox functions,
listed alphabetically. Information is also available through the online Help
facility.



Nonlinear Minim

Function

at tgoal
constr

fmin

fminu, fm ns
Ip

m ni max

ap

semi nf
Equation Solving

Function

\

fsol ve

fzero

ization

Purpose

Multiobjective goal attainment
Constrained nonlinear minimization
Scalar nonlinear minimization
Unconstrained nonlinear minimization
Linear programming

Minimax optimization

Quadratic programming

Semi-infinite minimization

Purpose

Linear equation solving (see MATLAB Language
Reference guide)

Nonlinear equation solving

Scalar nonlinear equation solving
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Least-Squares (Curve fitting)

Function

\

conl s
curvefi t
leastsq

nnls
Utility

Function

foptions
Demonstrations

Function

bandemo

df il demo

goal demo
optdemo

tutdemo

3-4

Purpose

Linear least squares (see MATLAB Language Ref-
erence guide)

Constrained linear least squares
Nonlinear curve fitting
Nonlinear least squares

Nonnegative linear least squares

Purpose

Parameter settings

Purpose
Minimization ofthe banana function

Finite-precision filter design (requires Signal Pro-
cessing Toolbox)

Goal attainment example
Menu of demonstration routines

Tutorial walk-through



Purpose

Synopsis

Description

attgoal

Solve multiobjective goal attainment problem,

minimize g such that F(x) -wg < goal
X,

given F(x), w and goal, where x,w ,and goal are vectors, g is ascalar vari-
able, and F(x) is a function that returns a vector value.

x = attgoal( fun' ,x0, goal w)

x = attgoal( fun' ,x0, goal w, opt ons)

x = attgoal( fun' ,x0, goal w, opt ons, vib,vub)

x = attgoal( fun' ,x0, goal w, opt ons, vib, vub, grad')

x = attgoal( fun' ,x0, goal w, opt ons, vlb, vub, grad' ,pl
[x,options] = attgoal (‘fun’, x0,

attgoal solvesthe goal attainment problem, which is one formulation for mini-
mizing a multiobjective optimization problem.

x = attgoal('fun',x0,goal,w) starts at x0 and solves the goal attainment
problem, given a weight vector wand a goal vector goal , for the function
defined in the M-file fun. m

x = attgoal('fun',x0, goal ,w, opti ons) usesthe parameter values in the
vector opti ons rather than the default option values.

x = attgoal('fun',x,goal, w,options,vlb, vub) defines a set of lower and
upper bounds on x through the matrices vl b and vub. This restricts the solu-
tion to the range vib <= x <= vub.

x = attgoal (' fun' ,x0,goal, w, options,vib,vub, 'grad' ) usesthe gradient
information calculated by the function gr ad, defined in the M-file gr ad.m
rather than the default of approximating the partial derivatives via finite
differencing.

x = attgoal('fun',x0, goal ,w, opti ons, vib,vub,' grad' ,pl,p2,...)
passesthe problem-dependent parameters pl, p2, etc., directly to the functions
fun and gr ad.
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[x,options]

= attgoal('fun',x0,goal,w) returns the parameters used in

the optimization method. For example, opti ons( 10) contains the number of
function evaluations used.

fun

goal

A string containing the name of the function that computes
the objective function to be minimized at the point x. The
function fun returns one argument: a vector value f,

f = fun(x)

attgoal attempts to minimize the values in the vector f to
attain the goal values given by goal .

Alternatively, a string expression can be used with x
representing the independent variables. For example,

x = attgoal('sin(x.*x)" ,x0, goal ,w)

To make an objective function as near as possible to a goal
value, (i.e., neither greater than nor less than) set
options(15) tothe number of objectives required to be in the
neighborhood of the goal values. Such objectives must be
partitioned into the first elements of the vector f returned by
fun.m

Vector of values that the objectives attempt to attain. Prior
to the optimization, it is generally unknown whether the
objectives will be minimized less than the goals (over
attainment), or will only approach the goals (under
attainment).



opti ons

attgoal

A weighting vector to control the relative under-attainment
or over-attainment of the objectives. When the values of goal
are all nonzero, to ensure the same percentage of under- or
over-attainment of the active objectives, set the weighting
function w=abs(goal). (The active objectives are the set of
objectives that are barriers to further improvement of the
goals at the solution.) When the weighting function w is
positive, attgoal attempts to make the objectives less than
the goal values. To make the objective functions greater than
the goal values, set w to be negative rather than positive.To
make an objective function as near as possible to a goal value
is described below under fun.

A vector of control parameters. Ofthe 18 elements of
options, the input options used by attgoal are: 1, 2, 3, 4,
7,9, 14, 15, 16, 17. When options is an output parameter,
the options used by attgoal to return values are: 8, 10, 11,
18.

e options(1l) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.
e options(3) controls the accuracy of f at the solution.

e options(4) setsthe maximum constraint violation that is
acceptable.

The termination criteria involving opti ons(2), opti ons( 3),
and opti ons(4) must all hold true for the algorithm to
terminate.

The use of options(15) by attgoal is discussed under the
description of fun above. The use of options(7) and
options(8) by attgoal is discussed in the “Algorithm”
section below. For more information on the opti ons vector,
including default settings, see the fopt ions reference page
and the “Default Parameters Settings” section in the
Tutorial.
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grad A string containing the name of the function that computes
the gradient of the function at the point x. This function has
the form

df = grad(x)
The variable df is a matrix where the columns of df contain
the partial derivatives for each of the objectives respectively,
(i.e., the ith column of df corresponds to the partial

derivative of the ith objective with respect to each of the
elements in x).

X0, See constr.

Consider a linear system of differential equations.

An output feedback controller, K is designed producing a closed loop system

(A +BKC)x + Bu
= Cx

The eigenvalues of the closed loop system are determined from the matrices A
B, C, and Kusing the command ei g( A+B*K*C). Closed loop eigenvalues must lie
on the real axis in the complex plane to the left ofthe points [-5,-3,-1]. In order
not to saturate the inputs, no element in Kcan be greater than 4 or be less than
-4,

The system is atwo-input, two-output, open loop, unstable system, with
state-space matrices.

-0.5 0 0 1 0
1.0 0
A= o0 -2 10 B= 2 2 C =
0 0 1
0 1 -2 0 1
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The set of goal values for the closed loop eigenvalues are initialized as
goal = [-5,-3, -1];

To ensure the same percentage of under- or over-attainment in the active objec-
tives at the solution, the weighting matrix, w, is set to abs(goal).

Starting with a controller, K = [0,0; 0,0], first write an M-file.

Step 1: Write an M-file fun.m:
function F = fun(K,AB,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives

Step 2: Enter system matrices and invoke an optimization routine:
A=[-05 00 0-2 10, 0 1 -2];
B=[10 22 0 1]
C=1[1 00 00 1]

K = zeros(2,2) % Initialize controller matrix
goal =[-5 -3 -1]; % Set goal values for the
% eigenvalues
w = abs( goal) % Set w for same percentage
% attainment
vib = -4*ones(size(K)); % Set lower bounds on the

% controller

vub = 4*ones(size(K)); % Set upper bounds on the
% controller

options = 1 % Set display parameter

[K,options] = ...

attgoal('fun',K,goal w options,vlb,vub,[ ],A, B O

3-9
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This example can be run by using the demonstration script goal demo. After 118
function evaluations, a solution is

Acti ve constrai nts:

-4.0000 0. 2564
4. 0000 -4.0000
fun( K A B,C)
ans =
-6.9313
-4.1588
-1.4099

The attainment factor is opti ons( 8)

opti ons( 8)
ans =
-0.3863

Discussion The attainment factor indicates that each of the objectives has been
over-achieved by at least 38.63% over the original design goals. The active
constraints, in this case constraints 1 and 2, are the objectives that are barriers
to further improvement and for which the percentage of over-attainment is met
exactly.

In the above design, the optimizer tries to make the objectives less than the
goals. For aworst case problem where the objectives must be as near to the
goals as possible, set options(15) to the number of objectives for which this is
required.

Consider the above problem when you want eigenvaluesto be equal to the goal
values. A solution to this problem is found by invoking attgoal with
opti ons( 15) set to 3.

opti ons( 15) = 3;
[K,options] = ...
attgoal('fun',K,goal,w,options,vlb,vub, [ ]A,B,C)
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After 37 function evaluations the solution is

K =

-2.4294 -0.4891

3. 9999 -2.0706

fun(K A B Q
ans =

-5.0000

-3.0000

-1.0000

The attainment factor is

opti ons( 8)
ans =
1 0859e-20

In this case the optimizer has tried to match the objectives to the goals. The
attainment factor of 1.0859e-20 indicates that the goals have been matched
almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex; this
explains why the convergence is slow. Although the underlying methods are
based on functions that are continuous, the method is able to make steps
toward the solution since the discontinuities do not occur at the solution point.
When the objectives and goals are complex, attgoal tries to achieve the goals
in a least-squares sense.

Algorithm Multiobjective optimization concerns the minimization of a set of objectives
simultaneously. One formulation for this problem, and implemented in
attgoal, isthe goal attainment problem of Gembicki[1]. This entails the
construction of a set of goal values for the objective functions. Multiobjective
optimization is discussed fully in the Introduction to Algorithms chapter.

In this implementation, the slack variable g is used as a dummy argument to
minimize the vector of objectives F(x) simultaneously; goal is aset ofvalues
that the objectives attain. Generally, prior to the optimization, it is unknown
whether the objectives will reach the goals (under attainment) or be minimized
less than the goals (over attainment). A weighting vector, w , controls the rela-
tive under-attainment or over-attainment of the objectives.

3-11



attgoal

Limitations
See Also

References
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attgoal uses a Sequential Quadratic Programming (SQP) method, which is
described fully in the Introduction to Algorithms chapter. Modifications are
made to the line search and Hessian. In the line search an exact merit function
(see [5] and [6]) is used together with the merit function proposed by [2, 3]. The
line search is terminated when either merit function shows improvement. A
modified Hessian, which takes advantage of special structure of this problem,
is also used (see [5] and [6]). A full description ofthe modifications used is found
in the “Goal Attainment Method” section ofthe Introduction to Algorithms.
Setting options(7) = 1 usesthe merit function and Hessian used in constr.

opti ons(8) contains the value of g at the solution. A negative value of gindi-
cates over attainment in the goals.

See also SQP implementation section in the Introduction to Algorithms chapter
for more details on the algorithm used and the display of procedures for
opti ons( 1) = 1setting.

The objectives must be continuous. attgoal may give only local solutions.
constr,fopti ons
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Solve the constrained linear least-squares problem,

1 2
min _ IAx - b|L such that Cx <d
X 2 2

where A and C are matrices and b, d, and x are vectors.

x = conl s(A, b,C,d)

x = conl s(A, b,C,d,vlb)

x = conl s(A, b,C,d,vlb,vub)

x = conl s(A, b,C,d,vlb,vub, x0)

x = conl s(A, b,C,d,vlb,vub, x0,neqcstr)

x = conl s(A, b,C,d,vlb,vub, x0,neqcstr,display)
[x,] ambda, how] = conl s(A,b,C,d, ... )

conl s solves the constrained linear least-squares problem.

x = conls(A,b,C,d) returns avector x that finds the least-squares solution to
Ax=b subject to C*x <= d.

x = conls(A b, C d, vlb,vub) sets lower and upper bounds on x. This restricts
the solution to the range vib <= x <= vub.

X conl s(A b,C,d,vlb,vub, x0) setsthe initial starting point to x0.

x = conl s(A, b,C,d,vlb,vub, x0,neqcstr) specifies that the first neqcstr
constraints are equality constraints.

x = conl s(A, b,C,d,vlb,vub, x0,neqcstr,display) controls the display of
warning messages.

[x,Jambda] = conls(A,b,C,d) returns values for the Lagrange multipliers at
the solution in the variable lambda.

[, | ambda,how] = conls(A,b,C,d) also returns a string howthat indicates
error conditions at the final iteration.

A,b The matrix A and vector b form the set of coefficients of the
over- or under-determined linear system to be solved.



Gd

vib, wvub

x0

neqcst r

display

| ambda

how

conls

The matrix C and vector d are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned into the first rows of C and the first
elements of d.

Upper and lower bound vectors. The variables, vl b and vub,
are normally the same size as x. However, if vib has n
elements and less elements than x then only the first n
elements in x are bounded below; upper bounds in vub are
defined in the same manner.

Starting vector. conl s generally starts its search at the point
zeros(si ze (x)). Setting the initial starting point can result
in faster convergence. If the problem is badly conditioned,
this can also result in an improved solution.

Number of equality constraints.

Flag to control the display of warning messages. The default
value for the parameter di splay is 0, which displays warning
messages. A value of -1 suppresses warning messages.

A vector that returns the set of Lagrange multipliers at the
solution. The length of lambda is

Il ength(b)+lengt h(vl b) H ength(vub) and the Lagrange
multipliers are given in the corresponding order: first the
multipliers for A, then vl b, then vub.

A string that indicates error conditions at the solution. The
string how="i nfeasible' indicates that the problem is
infeasible (i.e., the constraints are overly restrictive);

how = ' unbounded' indicates that the problem has an
unbounded solution; how = 'dependent’ indicates that
dependent equality constraints were detected and removed;
how ="' ok' indicates that the problem was solved without
difficulty.

As with all Optimization Toolbox functions, empty matrices in the calling
sequence result in the use of default options. For example, the command

conl s(A, b,C,d,[ 1,[ 1.[ 1. I ength(b))
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indicates that the problem is an equality constrained problem, having no upper
or lower bounds on the variables, and using a default starting point.

Examples Find the least-squares solution to the over-determined system Ax = b subject
to Cx<d and vib<x<vub .

Step 1: Enter the coefficient matrices:

A =
0 9501 0.7620 0. 6153 0. 4057
0 2311 0.4564 0. 7919 0. 9354
0 6068 0.0185 0. 9218 0. 9169
0 4859 0.8214 0. 7382 0. 4102
0 8912 0.4447 0. 1762 0. 8936
b
0 0578
0 3528
0 8131
0 0098
0 1388
C
0 2027 0. 2721 0. 7467 0. 4659
0 1987 0.1988 0. 4450 0. 4186
0 6037 0.0152 0. 9318 0. 8462
d
0 5251
0 2026
0 6721
vib = 0. 1*ones( 4, 1);

vub = 2*ones(4,1);
Step 2: Invoke the constrained linear least-squares routine:

[x,I ambda] = conl s(A, b,C,d,vlb,vub)
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This generates the solution

X =
-0.1000
-0.1000

0. 2152
0. 3502
lambda =

0
0. 2392

0
0. 0409
0. 2784

O OO o oo

The first three elements of the Lagrange multipliers (i.e., lambda) are associ-
ated with the inequality constraints. Nonzero elements of lambda indicate
active constraints at the solution. In this case, the second linear inequality
constraint and the first two lower bound constraints are active constraints (i.e.,
the solution is on their constraint boundaries).

The last two elements of the Lagrange multipliers are associated with the
lower bounds on x. In this case, the bounds are inactive.

conls is based on gp, which uses an active set method similar to that described
in [1]. It finds an initial feasible solution by first solving a linear programming
problem. Seethe quadratic programming method discussed in the Introduction
to Algorithms chapter.

conls gives awarning when the solution is infeasible:

Warning: The constraints are overly stringent;
there is no feasibl e soluti on.

In this case, conls produces a result that minimizes the worst case constraint
violation.
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When the equality constraints are inconsistent, conls gives

Warning: The equality constraints are overly stringent;
t here is no feasibl e soluti on.

Unbounded solutions, which can occur when the Hessian H is negative
semidefinite, may result in

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, conls returns avalue of x that satisfies the constraints.
For problems with no constraints, \ should be used: x= A\b.

gp, \ , nnls.

[1] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic

Press, London, UK, 1981.
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constr

Find the minimum of a constrained nonlinear multivariable function,

min f(x) such that G(x)< 0
X

where x is a vector, G(x) is a function that returns a vector, and f(x) is a func-
tion that returns a scalar. Both f(x) and G(x) can be nonlinear functions. G(x)
can define both equality and inequality constraints.

x = constr('fun', x0)

x = constr('fun',x0,options)

x = constr('fun',x0,options,vib,vub,'grad"’)

x = constr('fun',x0,options,vib,vub,'grad',p1,p2, ...)
[x,options] = constr('fun',x0, ... )

[x,options,| ambda] = constr('fun', x0, ... )
[x,options,| ambda,hess] = constr('fun',x0, ... )

constr finds the constrained minimum of a scalar function of several variables
starting at an initial estimate. This is generally referred to as constrained
nonlinear optimization.

x = constr('fun',x0) starts at the point x0 and finds a minimum ofthe func-
tion and constraints defined in the M-file named fun. m

x = constr('fun',x0,options) usesthe parameter values in the vector
opti ons rather than the default option values.

x = constr('fun',x, opti ons,vlb,vub) defines a set of lower and upper
bounds on x through the matrices vl b and vub. This restricts the solution to
the range vl b <= x <= vub.

x = constr('fun', x0,opt ions, vl b, vub, 'grad') usesthe gradient informa-
tion calculated by the function grad, defined in the M-file grad.m rather than
the default of approximating the partial derivatives via finite differencing.

x = constr('fun' ,x0, opti ons,vlb,vub,'grad' ,pl1,p2,...) passesthe
problem-dependent parameters pl, p2, etc., directly to the functions fun and
grad.
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[x,options] = constr('fun',x0) returnsthe parameters used in the optimi-
zation method. For example, options(10) contains the number of function
evaluations used.

[x,options,lambda] = constr('fun',x0) returns the vector lambda of the
Lagrange multipliers at the solution x.

[x,options,lambda,hess] = constr('fun’',x0) also returnsthe approxima-
tion to the Hessian at the final iteration.

Arguments x0 Starting vector.

fun A string containing the name of the function that computes
the objective function to be minimized and the constraint
function at the point x. The function fun returns two
arguments: a scalar valued function f to be minimized and a
vector of constraint values g,

[f,g] = fun(x)

When inequality constraints are present, the objective func-
tion f is minimized such that g <= zeros(size(g)).

Equality constraints, when present, are placed in the first
elements of g. When using equality constraints, opti ons(13)
must be set to the number of equality constraints (see the
“Equality Constrained Example” section in the Tutorial).

Alternatively, a string expression can be used with x
representing the independent variables and with f and g
representing the function and constraints. For example,

x = constr('f = fun(x); g = cstr(x);"',x0)

vlib, vub Upper and lower bound vectors. The variables, vib and vub,
are normally the same size as x. However, if vl b has n
elements and fewer elements than x, then only the first n
elements in x are lower bounded; upper bounds in vub are
defined in the same manner.
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A vector of control parameters. Of the 18 elements of

opti ons, the input options used by constr are: 1, 2, 3, 4, 9,
13, 14, 16, 17. When options is an output parameter, the
options used by constr to return values are: 8, 10, 11, 18.

« options(1l) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.
e options(3) controls the accuracy of f at the solution.

« options(4) setsthe maximum constraint violation that is
acceptable.

The termination criteria involving opti ons(2), opti ons( 3),
and opti ons(4) must all hold true for the algorithm to
terminate.

For more information on the opti ons vector, including default
settings, see the foptions reference page and the “Default
Parameters Settings” section in the Tutorial.

A string containing the name of the function that computes
the gradient of the function and the gradient of the
constraints at the point x. This function has the form

[df, dg] = grad(x)

The variable df is a vector that contains the partial
derivatives of f with respect to x. The variable dg is a matrix
where the columns of dg contain the partial derivatives for
each of the constraints respectively, (i.e., the i th column of dg
corresponds to the partial derivative of the ith constraint
with respect to each ofthe elements in x).
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pl, p2,... Additional arguments to be passed to fun, that is, when
const r calls fun, and grad when it exists, the calls are
[f,g] = fun(x, pl,p2, ...)

[df,dg] = grad(x,pl,p2,

Using this feature, the same M-file can solve a number of
similar problems with different parameters while avoiding
the need to use global variables. Note that since all the
arguments preceding pl, p2, etc., in the call to constr .m must
be defined, empty matrices may be passed in for opti ons,
vlib, vub, and 'grad' to indicate that default arguments are
to be used, as in

x =constr('fun',x0,[],[1.[1.[].p2,p2, ...)

lambda A vector that returns the set of Lagrange multipliers at the
solution. The length of lambda is
length(g)+l ength(vlb)+length(vub) and the Lagrange
multipliers are given in the corresponding order: first the
multipliers for g, then vl b, then vub.

hess The Quasi-Newton approximation to the Hessian matrix at
the final iteration.

Find values of x that minimize f(x) = -x1x2x3 , starting at the point
x = [10 10 10] and subject to the constraints

- X1- 2x2- 2x3<0
X1+ 2x2+ 2x3<72.

Step 1: Write an M-file:
function [f,g] = fun(Xx)
fo=-x(1) * x(2) * x(3);
g(l) =-x(1) - 2 * x(2) - 2 * x(3); % Eval uate Constraints
02 = x(1) +2 *x(2 +2*x(3) - 72

Step 2: Invoke an optimization routine:
x0 = [10,10,10]; % Starting guess at t he soluti on
x = constr(‘fun’, x0) % | nvoke optimizer
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Limitations
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After 49 function evaluations, the solution is

X =
24.0000 12.0000 12.0000

[f.g] = fun(x)

f =

-3.4560e+03

constr uses a Sequential Quadratic Programming (SQP) method. In this
method, a Quadratic Programming (QP) subproblem is solved at each iteration.
An estimate ofthe Hessian ofthe Lagrangian is updated at each iteration
using the BFGS formula (see fminu, references [3, 6]).

A line search is performed using a merit function similar to that proposed by
[1] and [2, 3]. The QP subproblem is solved using an active set strategy similar
to that described in [4]. A full description of this algorithm is found in the

“Constrained Optimization” section of the Introduction to Algorithms chapter.

See also SQP implementation section in the Introduction to Algorithms chapter
for more details on the algorithm used and the display of procedures for
opti ons( 1) = 1setting.

The function to be minimized and the constraints must both be continuous.
constr may only give local solutions.

When the problem is infeasible, constr attempts to minimize the maximum
constraint value.

The objective function and constraint function must be real-valued, that is they
cannot return complex values.

If equality constraints are present and dependent equalities are detected and
removed in the quadratic subproblem, 'dependent’ will be printed under the
Procedures heading (when output is asked for using opti ons(1)=1). The
dependent equalities are only removed when the equalities are consistent. If
the system of equalities is not consistent, the subproblem is infeasible and
"inf easi bl e will be printed under the Procedures heading.

fminu, fopti ons
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curvefit

Solve nonlinear curve-fitting (data-fitting) problems in the least-squares sense.
That is, given input data xdata, the observed output ydata, we want to find
coefficients x that “best-fit” the equation F(x, xdata)

1 2 1 2
min 2]1F(xxdata)-ydata2 = 2 Z (F(x, xdatai)- ydatai)

where xdata and ydata are vectors and F(x, xdata) is a vector valued function.

The function curvefit usesthe same algorithm asleastsq. Its purposeisto
provide an interface designed specifically for data-fitting problems.

x = curvefit('fun',x0,xdata, ydat a)

x = curvefit('fun',x0,xdata, ydat a, options)

x = curvefit('fun',x0,xdata, ydat a, options,' grad')

x = curvefit('fun',x0,xdata, ydata,options,'grad',pl,p2, ... )
[x,options] = curvefit('fun' ,x0, xdat a,ydata ... )
[x,options,funval] = curvefit('fun',x0, xdat a ydata ... )
[x,options,f unval ,j acob] = curvefit('fun',x0, xdata,ydata ... )

curvef it solves nonlinear data-fitting problems.

curvef it requires an user-defined function to compute the vector-valued func-
tion F(x, xdata). The size of the vector returned by the user-defined function
must be the same as the size of ydata.

x = curvefit (" fun' ,x0,xdata,ydat a) starts at x0 and finds the least squares
minimum of the functions described in the M-file fun.

x = curvefit (* fun', x0,xdata,ydat a opti ons) usesthe parameter values in
the vector options rather than the default option values.

x = curvefit('fun',x0,xdata, ydat a, options,' grad') calls the function
grad to obtain the partial derivatives of the functions

x = curvefit('fun', x0,xdata, ydat a, options,' grad',pl,p2,...) passes
parameters (i.e., pl, p2, etc.), directly to the function fun.

3-25



curvefit

Arguments

3-26

[x,options] = curvefit('fun',x0,xdata,ydata) returns the parameters
used in the optimization. For example, options(10) contains the number of
function evaluations used.

[x,options,funval] = curvefit('fun',x0, xdat a, ydata) returns the func-
tion value fun(x) at the solution x.

[x,options,funval,jacob] = curvefit('fun',x0,xdata,ydat a) also
returns the approximation to the Jacobian of the function at the solution x.

fun A string containing the name of the function that computes
the equation to be fitted evaluated at the point x. The
function fun returns one argument: a vector-valued function
f to be minimized,

f = fun( x, xdat a)

NOTE The sum of squares should not be formed explicitly.
I nstead your function should return a vector of function
values. Seethe examples below.

grad A string containing the name of the function that computes
the gradient of the objective functions at the point x. This
function has the form

df = grad(x, xdat a)

The variable df is a matrix that contains the partial
derivatives of F with respect to x. The ith column of df
corresponds to the partial derivative of the ith function in f
with respect to x. (This is the transpose of the Jacobian
matrix of F(x).)
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options e A vector of control parameters. Of the 18 elements of
opti ons, the input options used by curvefit are: 1, 2, 3,
5 7,9 14, 16, 17. When options is an output parameter,
the options used by curvefi t to return values are: 8, 10, 11,
18.

« opti ons( 1) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.
e options(2) controls the accuracy of x at the solution.

e options(3) controls the accuracy of f at the solution.

The termination criteria involving opti ons(2) and
opti ons( 3) must both hold true for the algorithm to
terminate.

The use of options(5) and options(7) by curvefit is
discussed in the “Algorithm” section below.

For more information on the opti ons vector, including default
settings, see the foptions reference page and the “Default
Parameters Settings” section in the Tutorial.

X0, See fminu.

pl,p2,

f unval The value of the function at the solution x.

j acob The Jacobian of the function at the solution x.

Say you have avectors of data xdata and ydata of length n, and you want to
find coefficients x to find the best fit to the equation
ydata(i) = x(1) +x(2) *e(xdata(i) +x(3)) ;that is, you want to minimize 0

1 2
min 2 X ( F(x,xdatai)- ydatai)

i=1
where F(x, xdata) = x(1) +x(2) *e(xdata(i) +x(3)) ,starting at the point
x= [0.3, 0.4, 0. 1]
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Step 1: Write an M-file:
function f = fun(x,xdata)
f = x(1) + x(2)*exp(xdata + x(3)); %Note: f is a vector

Step 2: Invoke an optimization routine:
% Assume: xdata and ydata exist and are the same size
x0 = [0.3 0.4 0.1] % Starting guess
x = curvefit('fun',x0,xdat a ydata) % Invoke opti m zer

Note that at the time that curvefi t is called, we assume that xdat a and ydat a
both exist and that they are the vectors of the same size. This is necessary as
the value f returned by fun must be the same size as ydata.

After 41 function evaluations, this example gives the solution:

X =

0. 25783 0. 25783
sum (fun(x,xdata) .* fun(x,xdata))% residual or sum of squares
ans =

124.3622

The choice of algorithm is made by setting options(5). The default is the
Levenberg-Marquardt method [1-3]. Setting options(5) = limplements a
Gauss-Newton method [4], which is generally faster when the residual
[F(x,xdata)-ydata 2 is small.

The default line search algorithm, opti ons(7) = 0, is a safeguarded mixed
quadratic and cubic polynomial interpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting

opti ons(7) = 1. This method generally requires fewer function evaluations
but more gradient evaluations. Thus, if gradients are being supplied and can
be calculated inexpensively, the cubic polynomial line search method is prefer-
able. The algorithms used are described fully in the Introduction to Algorithms
chapter.

The function to be minimized must be continuous. curvefit may only give local
solutions.

curvefit only handles real variables (the user-defined function must only
return real values). When x has complex variables, the variables must be split
into real and imaginary parts.
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See Also foptions, leastsq, \,Ils, nnls.
References [1] K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. Math. 2, pp. 164-168, 1944.

[2] D. Marquardt, “An Algorithm for Least-squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares”, State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
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Find the minimum of a function of one variable on a fixed interval,

min f(a) such that al<ac<a?

where a, al,and a2 are scalars and f(a) is a function that returns a scalar.

a =fmn('fun',al,a?2)

a =fmn(‘fun',al,a2, options)

a = fmn('‘function',al,a2,options,pl,p2, ...)
[a,options] = fmn('f unction',al,a2, ...)

fmin finds the minimum of a function of one variable within a fixed interval.

a=fmn(" fun', al,a2) returns avalue ofx that is a local minimizer of fun( a)
on the interval al < a < a2.

a =fmn('fun',al,a2, options) usesthe parameter values in the vector
opti ons rather than the default option values.

a =fmn('fun',al,a2, options,pl,p2, ...) passesthe problem-dependent
parameters pl, p2, etc., directly to the function fun.

[a,options] = fmn('fun',al, a2) returns the parameters used in the opti-
mization method. For example, opti ons(10) contains the number of function
evaluations used.
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Arguments fun A string containing the name of the function that computes
the objective function to be minimized at the point x. The
function fun returns one argument: a scalar valued function f
to be minimized,

[f] = fun(x)

Alternatively, an expression can be substituted for the
function name, with x representing the independent variable.
For example, a = fmn('sin(x*x)',al,a2) (we have been
using a'sto emphasize that this function is for
one-dimensional problems only; here x must be used as the
independent variable in the string expression).

al, a2 Interval over which fun is minimized.

options A vector of control parameters. Ofthe 18 elements of
opti ons, the input options used by fmin are: 1, 2, 14.
When opti ons is an output parameter, the options used by
fmin to return values are: 8, 10.

« opti ons( 1) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.

e options(14) setsthe maximum number of function evalua-
tions.

For more information on the options vector, including default
settings, see the f options reference page and the “Default
Parameters Settings” section in the Tutorial.

pl, p2, Additional arguments to be passed to fun, that is, when fmin
calls fun, the call is
[f,g] = fun(x,pl, p2, J)

Using this feature, the same M-file can solve a number of
similar problems with different parameters while avoiding
the need to use global variables.
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A minimum of sin (a) occurs at

a =fmn('sin',0, 2*pi )
a =
4.7118

The value of the function at the minimum is

y sin( a)

y

-1.0000

To find the minimum of the function
f(a) = (a- 3)2- 1

on the interval (0,5), write an M-file, and then invoke fmin.

Step 1: Write an M -file:
function f = fun( @)
f = (a-3).n2 - 1

Step 2: Invoke an optimization routine:
a=fmn('fun',0,5)
This generates the solution

a =
3

The value at the minimum is

y =f(9

y

-1

fmin is an M-file in the MATLAB Toolbox. The algorithm is based on golden
section search and parabolic interpolation. A Fortran program implementing
the same algorithm is given in [1].

The function to be minimized must be continuous. fmin may only give local
solutions.
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f min often exhibits slow convergence when the solution is on a boundary
interval. In such a case, constr often gives faster and more accurate solutions.

f min only handles real variables.
See Also fmins, fminu, fopt ions

References [1] G.F. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for Math-
ematical Computations, Prentice Hall, 1976.
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Find the minimum of an unconstrained multivariable function,

min f(x)
X

where x is a vector, and f(x) is a function that returns a scalar.

x = fmnu( 'fun',x0)
x = fmnu( 'fun',x0, opti ons)
x = fmnu(‘fun',x0,options,'grad")
x = fmnu('fun',x0,options,'grad’',pl,p2, )
[x,options] = fm nu(‘'fun’, x0, ... )
] =fmns('fun',x0, ... )

fminu and fmins find the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fmnu(‘fun',x0) starts at the point x0 and finds a minimum of the func-
tion fun described in the M-file fun. m

x = fmnu('fun',x0, opti ons) usesthe parameter values in the vector
opti ons rather than the default option values.

x = fmnu('fun',x0, opti ons,' grad') usesthe gradient information calcu-
lated by the function grad, defined in the M-file grad.m rather than the default
of approximating the partial derivatives via finite differencing.

x =fmnu('fun', x0,options, 'grad' ,p1,p2,...) passesthe problem-depen-
dent parameters pl, p2, etc., directly to the functions fun and grad.

[x,options] = fminu(‘'fun’', x0) returns the parameters used in the optimi-
zation method. For example, options(10) contains the number of function
evaluations used.

x0 Starting vector.
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A string containing the name of the function that computes
the objective function to be minimized at the point x. The
function fun returns one argument: a scalar valued function f
to be minimized,

[f] = fun(x)

Alternatively, an expression can be substituted for the
function name, with x representing the independent
variables. For example,

X = fmnu('sin(x.*x)"',x0)

A vector of control parameters. Ofthe 18 elements of

opti ons, the input options used by fminu are: 1, 2, 3, 6, 7, 9,
14, 16, 17. When options is an output parameter, the
options used by fminu to return values are: 8, 10, 11, 18. Of
the 18 elements of opti ons, the input options used by fmins
are: 1, 2, 3, 14. When options is an output parameter, the
options used by fmins to return values are: 8, 10.

* opti ons( 1) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.

e options(3) controls the accuracy of f at the solution.

The termination criteria involving opti ons(2) and
opti ons( 3) must both hold true for the algorithm to
terminate.

The use of options(6) and options(7) by fminu is discussed
in the “Algorithms” section below.

For more information on the opti ons vector, including default
settings, see the foptions reference page and the “Default
Parameters Settings” section in the Tutorial.
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grad A string containing the name of the function that computes
the gradient of the function at the point x. This function has
the form

df = grad(x)
The variable df is avector that contains the partial

derivatives of f with respect to x. Note that this parameter
is ignored by fmins as it does not use gradient information.

pl, p2, ... Additional arguments to be passed to fun, that is, when
fminu (fmins) calls fun, and gr ad when it exists, the calls
are
[f,g] = fun(x, pl,p2, ...)

[df, dg] = grad(x,pl, p2, ...)

Using this feature, the same M-file can solve a number of
similar problems with different parameters avoiding the need
to use global variables. Note that since all the arguments
preceding pl, p2, etc., in the call to fminu. m(f mins. n) must
be defined, empty matrices may be passed in for opti ons and
‘grad’ to indicate that default arguments are to be used, as
in

x =fmnu('fun',x0,[],[],pl,p2, ...)
Examples Find values that minimize
f(x) = 100(x2- x1)2+ (1 - x1)2
starting at the point

x = [[1.2 1]

Step 1: Write an M-file:
function f = fun( x)
f = 100*(x(2)-x( 1)N2)n2+( 1-x( 1) )n2z; % Cost function
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Step 2: Invoke an optimization routine:
X [-1,1] % Make a starting guess at t he soluti on
X fmnu( 'fun',x)

After 132 function evaluations, this example generates the solution

X =

1 0000 1. 0000
fun(x) =

8. 8348e-11

fminu: The default algorithm for fminu is a quasi-Newton method. This
guasi-Newton method usesthe BFGS [2-5] formula for updating the approxi-
mation ofthe Hessian matrix. The DFP [7, 8] formula, which approximatesthe
inverse Hessian matrix, is selected by setting options(6) = 1. A steepest
descent method is selected by setting options(6) = 2, although this is not
recommended.

For fminu, the default line search algorithm, i.e., when opti ons(7) = 0, is a
safeguarded mixed quadratic and cubic polynomial interpolation and extrapo-
lation method. A safeguarded cubic polynomial method can be selected by
setting opti ons(7) = 1. This second method generally requires fewer function
evaluations but more gradient evaluations. Thus, if gradients are being
supplied and can be calculated inexpensively, the cubic polynomial line search
method is preferable. A full description of the algorithms is given in the Intro-
duction to Algorithms chapter.

fmins: fmins usesthe simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients like fminu.

If nisthe length ofx, asimplex in n-dimensional space is characterized by the
n+l distinct vectorsthat are its vertices. In two-space, asimplex is atriangle;
in three-space, it is a pyramid. At each step of the search, a new point in or
near the current simplex is generated. The function value at the new point is
compared with the function's values at the vertices ofthe simplex and, usually,
one ofthe vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified toler-
ance.
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fmins is generally less efficient than f mnu for problems of order greater than
two. However, when the problem is highly discontinuous, fmins may be more
robust.

fmins hasthe identical calling syntax as fminu. Note that since fmins does not
use gradient information, gr ad is always ignored.

For fminu, the function to be minimized must be continuous. fmins can often
handle discontinuity, particularly if it does not occur near the solution. fminu
and fmins may only give local solutions.

fminu and f mins only minimize over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x has
complex variables, they must be split into real and imaginary parts.

NOTE fmins and fminu should not be used to solve prgblems that are
sums-of-squares, that is, of the form: min f(x) = f1(x) +f2(x) +f3(x) +L
Instead use the least sqg function, which has been optimized for problems of
this form, for better performance.

fopt ions
[1] J.A. Nelder and R. Mead, “A Simplex Method for Function Minimization,”
Computer J., Vol. 7, pp. 308-313.

[2] C.G. Broyden, “The Convergence of a Class of Double-rank Minimization
Algorithms,” J. Inst. Math. Applic., Vol. 6, pp. 76-90, 1970.

[3] R. Fletcher, “A New Approach to Variable Metric Algorithms,” Computer J.,
Vol. 13, pp. 317-322, 1970.

[4] D. Goldfarb, “A Family of Variable Metric Updates Derived by Variational
Means,” Mathematics of Computing, Vol. 24, pp. 23-26, 1970.

[5] D.F. Shanno,” Conditioning of Quasi-Newton Methods for Function Mini-
mization,” Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

[6] W.C. Davidon, “Variable Metric Method for Minimization,” A.E.C. Research
and Development Report, ANL-5990, 1959.
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Minimization,” Computer J., Vol. 6, pp. 163-168, 1963.
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Purpose
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Description

See Also
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Set optimization parameters and display parameter values.

hel p fopt ions
opti ons = fopti ons

The Optimization Toolbox functions fmn, fmins, fminu, constr, attgoal ,
m ni max, | east sq, semi nf,and fsol ve use optimization parametersthat can be
changed by setting new values in the options vector.

For consistency, the optimization parameters have the same meaning, where
possible, throughout the Optimization Toolbox functions.

The function foptions returns a set of default options that are used when the
opti ons vector is not supplied to the appropriate routines. Default values are
also used for elements in opti ons that are set to 0 and for undefined parame-
ters caused when opti ons has fewer than 18 elements. These values may also
be returned by specifying a second left-hand argument to the particular optimi-
zation routine. For example,

[x,options] = fmi nu( 'fun', x0);
opti ons( 10)
opti ons( 11)

enables the number of function and gradient evaluations to be obtained and
displayed.

Seethe Table 1-4, “Option Parameters,” on page25 in the Tutorial chapter for
more information.

attgoal , constr, fmin, fmins, fminu, fsolve, leastsq, m ni max, seminf



Purpose

Synopsis

Description

fsolve

Solve a system of nonlinear equations,
F(x) =0

for x, where x is avector and F(x) is a function that returns a vector value.

x = fsol ve('fun', x0)

x = fsol ve(‘fun', x0,opt ions)

x = fsol ve('fun', x0,opt ions, 'grad' )

x = fsolve('fun',x0,options,'grad',pl,p2, ... )
[x,opt ions] = fsolve( 'fun',x0, ... )

fsol ve finds a root (zero) of a system of nonlinear equations.

x = fsol ve('fun’', x0) starts at xO and returns x, solving the equations
defined in the M-file fun. m

x = fsolve('fun',x0,options) usesthe parameter values in the vector
options rather than the default option values.

x = fsolve('fun',x0,options, 'grad' ) usesthe gradient information calcu-
lated by the function grad, defined in the M-file grad. m rather than the
default of approximating the partial derivatives via finite differencing.

x = fsol ve('fun', x0,o0pt ions, 'grad' ,pl,p2,...) passesthe
problem-dependent parameters pl, p2, etc., directly to the functions fun and
grad.

[x,options] = fsolve('fun',x0) returns the parameters used in the optimi-
zation method. For example, options(10) contains the number of function
evaluations used.
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fun

opt ions

A string containing the name of the function that computes
the objective function to be minimized at the point x. The
function fun returns one argument: a vector-valued function
f to be minimized,

[f] = fun(x)

Alternatively, an expression can be substituted for the
function name, with x representing the independent variable.
For example,

x = fsolve('sin(x*x)',x0)

A vector of control parameters. Ofthe 18 elements of
options, the input options used by leastsq are: 1, 2, 3, 5,
7,9, 14, 16, 17. The use of options(5) and options(7) by
fsolve is discussed in the “Algorithm” section below. When
options is an output parameter, the options used by fsol ve
to return values are: 8, 10, 11, 18.

e options(1) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.

« options(3) controls the accuracy of f at the solution.

The termination criteria involving opti ons(2) and
options(3) must both hold true for the algorithm to
terminate.

For more information on the options vector, including default
settings, see the fopti ons reference page and the “Default
Parameters Settings” section in the Tutorial.
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fsolve

grad A string containing the name of the function that computes
the gradient of the objective functions at the point x. This
function has the form

df = grad(x)
The variable df is a matrix that contains the partial
derivatives of F with respect to x. The ith column of df
corresponds to the partial derivative of the ith function in f

with respect to x. (This is the transpose of the Jacobian
matrix of F(x).)

X0, See fminu.

pl, p2,...

Example 1: Find a zero of the system of two equations and two unknowns
2x1 - x2 = exX'

- X1+2x2 = e-*2
Thus we want to solve the following system for x
2x1-x2-ex1 =0
-x1+2x2-ex2 =0
starting at x0 = [-5 -5].
Step 1: Write an M-file:
function F = fun( x)
F=12"x(1) - x(2) - exp(-x(1));
x( 1) + 27x(2) - exp(-x(2))];

Step 2: Invoke an optimization routine:

x0 = -5*ones(2, 1); %Meke a starti ng guess at the soluti on
options=foptions; %Set default options

options(1)=1; %Set option to display output

x = fsol ve('fun', x0,opti ons) % | nvoke opti m zer

f = fun(x)
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After 25 function evaluations, a zero is found:

CCUNT RESI D STEP-SIZE GRAD/SD
3 47071.2 1 -9.41e+04
8 966.828 1 -1.81e+03
15 1.99465 3.85 5.6
20 0 000632051 0.895 -0.0867
25 1 39647e-15 0.998 -1.89e-09
Cpti mi zation Termnat ed Successfull y
X =
0.5671
0.5671
f =
1 0e-07 *
0. 2642
0. 2642

EXample 2: Find a matrix X that satisfies the equation

X*X*X =
3 4

starting at the point X= [1,1; 1,1].

Step 1: Write an M-file:
function F = fun(x)
F = x*x*x-[ 1,2;3,4] ;

Step 2: Invoke an optimization routine:
x0 = ones(2,2); %Meke a starting guess at the solution
x = fsol ve('fun', x0) %l nvoke optimizer
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After 44 function evaluations, the solution is

X =
-0.1291 0. 8602
1.2903 1.1612
F=x*x*x-[1,2;3, 4]
F =
1 Oe-05 *
0.0350 0.1268
0.0721 -0.1293
sum( sum( F.*F))
ans =
3. 9218e-12

Notes If the system of equations is linear, then \ (the backslash operator: see
hel p sl ash) should be used for better speed and accuracy. For example, say
we want to find the solution to the following linear system of equations:
3x1+11x2- 2x3 =7

X1+x2- 2x3 = 4

X1- x2+x3 = 19

Then the problem is formulated and solved as

A=[31-2; 11-2; 1-1 1];
b=1[7 4 19];

x = A\b
X =
13.2188
-2.3438
3.4375
Algorithm The method is based on the nonlinear least-squares algorithm also used in

| eastsq. The advantage of using a least-squares method is that if the system
of equations is never zero due to small inaccuracies, or because it just does not
have a zero, the algorithm still returns a point where the residual is small.
However, if the Jacobian ofthe system is singular, the algorithm may converge
to a point that is not a solution of the system of equations (see “Limitations”
and “Diagnostics” below).
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Limitations

Diagnostics

See Also

References
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The choice of algorithm is made by setting options(5). The default algorithm
is the Gauss-Newton method [4]. Setting options(5) = 1limplements the
Levenberg-Marquardt method [1-3].

The default line search algorithm, opti ons(7) = 0, is a safeguarded mixed
guadratic and cubic polynomial interpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting opti ons( 7)
= 1. This method generally requires fewer function evaluations but more
gradient evaluations. Thus, if gradients are being supplied and can be calcu-
lated inexpensively, the cubic polynomial line search method is preferable.

The function to be solved must be continuous. When successful, fsol ve only
gives one root. fsol ve may converge to a nonzero point, in which case, try other
starting values.

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

\ ,fopt ions, leastsq
[1] K. Levenberg, “A Method for the Solution of Certain Problems in Least

Squares,” Quart. Appl. Math. 2, pp. 164-168, 1944.

[2] D. Marquardt, “An Algorithm for Least-squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math., Vol. 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares,” State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312,



Purpose

Syntax

Description

Arguments

fzero

Zero of a function of one variable

fzer o(' fun',x0)

fzero(' fun',x0, tol)
fzero('fun',x0,tol,trace)
fzer o(' fun',x0, tol,tr ace, P1,P2,...)

N N N N

fzero('fun',x) finds a zero of fun. fun is a string containing the name of a
real-valued function of asingle real variable. The value returned is near a point
where fun changes sign, or NaN if the search fails.

fzero('fun',x) where x is avector of length 2, assumes x is an interval where
the sign of f(x (1)) differs from the sign of f(x(2)).An error occurs if this is
not true. Calling fzero with an interval guarantees fzer owill return avalue
near a point where fun changes sign.

fzero('fun',x) where x is a scalar value, uses x as a starting point. fzero
looks for an interval containing a sign change for fun and containing x. If no
such interval is found, NaNis returned. In this case, the search terminates
when the search interval is expanded until an Inf, NaN, or complex value is
found.

fzero('fun’',x,tol) returns an answer accurate to within a relative error of
tol .

z = fzero('fun',x,tol,trace) displays information at each iteration.

z =fzero('fun' ,x tad ,trace, P1, P2, ...) provides for additional arguments
passed to the function fun(x,P1,P2, ...) . Pass an empty matrix for tol or
t race to use the default value, for example: fzero('fun',x,[],[],P1)

For the purposes of this command, zeros are considered to be points where the
function actually crosses, not just touches, the x-axis.

fun A string containing the name of a file in which an arbitrary
function of one variable is defined.

x0 Your initial estimate of the x-coordinate of a zero of the function
or an interval in which you think a zero is found.

tol The relative error tolerance. By default, tol is eps.

3-47



fzero

trace A nonzero value that causes the fzero command to display
information at each iteration of its calculations.

PL.P2, ... Additional arguments passed to the function
Examples Calculate p by finding the zero ofthe sine function near 3.
x = fzero('sin', 3)

X =
3. 1416

To find the zero of cosine between 1 and 2:

X
X =

fzero(' cos' ,[1 2])

1 5708
Note that cos(1) and cos(2) differ in sign.

To find a zero of the function:
f(x) = x3-2x-5

write an M-file called f .m

function y = f( x)
y = X. A3-2*x-5;

To find the zero near 2

fzero('f',2)

2.0946
Since this function is a polynomial, the statement roots([1 0 -2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

2.0946
-1. 0473 + 1 1359i
-1. 0473 - 1 1359i

Algorithm The fzer o command is an M-file. The algorithm, which was originated by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic inter-
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fzero

polation methods. An Algol 60 version, with some improvements, is given in [1].
A Fortran version, upon which the fzero M-file is based, is in [2].

The fzero command defines a zero as a point where the function crossesthe

x-axis. Points where the function touches, but does not cross, the x-axis are not
valid zeros. For example, y = x. n2 is a parabola that touches the x-axis at (0,0).
Since the function never crosses the x-axis, however, no zero is found. For func-

tions with no valid zeros, fzero executes until Inf, NaN, or a complex value is
detected.

eps, fmn, fsol ve, \

[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.
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Purpose Solve nonlinear least-squares (nonlinear data-fitting) problems,
min f(X) = f (X)2+ f2(X)2+f3(X)2+ ... +fm(X)2+ L

where L is a constant.

Synopsis x = leastsq( 'fun',x0)

x = leastsq( 'fun',x0, options

x = leastsq('fun',x0,options,'grad")

x = leastsq( 'fun',x0, options,' grad',pl,p2, ... )

[x,options] = leastsq('fun',x0, ... )

[x,options,funval] = leastsq('fun',x0, ... )

[x,options,f unval ,j acob] = leastsq('fun', x0, ... )
Description leastsqg solves nonlinear least-squares problems, including nonlinear

data-fitting problems.

Rather than compute the value f(X), leastsqg requires the user-defined function
to compute the vector-valued function

f1(X)
F(X) = f2(x)
£3(X)

In vector terms this optimization problem may be restated as

min 11F(X)|2 = 2 Z fi (X2
i

where x is a vector and F(x) is a function that returns a vector value.

x = leastsqg('fun',x0) starts at x0 and finds the least-squares minimum of
the functions described in the M-file fun.

x = leastsq('fun',x0,options) usesthe parameter values in the vector
options rather than the default option values.
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x = leastsq('fun',x0,options,'grad') callsthe function grad to obtain the
partial derivatives of the functions.

x = leastsq('fun’, x0,opti ons, 'grad’',pl,p2,...) passes parameters (i.e.,
pl, p2, etc.), directly to the function fun.

[x,options] = leastsq('fun',x0) returns the parameters used in the opti-
mization. opti ons( 10) contains the number of function evaluations used.

[x,options,funval] = leastsq('fun',x0) returns the function value
f un(x) at the solution x.

[x, options,funval,jacob] = leastsq('fun',x0) also returnsthe approxi-
mation to the Jacobian of the function at the solution x.

fun A string containing the name of the function that computes
the objective function to be minimized at the point x. The
function fun returns one argument: a vector-valued function
f to be minimized,

[f] = fun(x)

NOTE The sum of squares should not be formed explicitly.
Instead your function should return a vector of function
values. Seethe example below.

Alternatively, an expression can be substituted for the
function name, with x representing the independent
variables. For example,

x = leastsq('sin(x)", x0)
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options

grad

X0,

pl,p2,...

funval

jacob

e A vector of control parameters. Of the 18 elements of
opti ons, the input options used by leastsqg are: 1, 2, 3, 5,
7,9, 14, 16, 17. When opti ons is an output parameter, the
options used by leastsq to return values are: 8, 10, 11, 18.

e options(1l) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.
e options(2) controls the accuracy of x at the solution.

e options(3) controls the accuracy of f at the solution.

The termination criteria involving opti ons(2) and
options(3) must both hold true for the algorithm to
terminate.

The use of options(5) and opti ons(7) by leastsq is
discussed in the “Algorithm” section below.

For more information on the options vector, including default
settings, see the fopti ons reference page and the “Default
Parameters Settings” section in the Tutorial.

A string containing the name of the function that computes
the gradient of the objective functions at the point x. This
function has the form

df = grad(x)

The variable df is a matrix that contains the partial
derivatives of F with respect to x. The ith column of df
corresponds to the partial derivative of the ith function in f
with respect to x. (This is the transpose of the Jacobian
matrix of F(x).)

See f mnu.

The value of the function at the solution x.

The Jacobian ofthe function at the solution x.
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Examples Find x that minimizes
10
kx, kx 2
(2+2k-e 1-e 2
K=1

starting at the point x= [0.3, 0.4].

Because | eastsqg assumesthat the sum-of-squares is not explicitly formed, the
function passed to least sq should compute the vector valued function

kx k
Fk(x) = 2+2k- e e

for k = 1to 10.

Step 1: Write an M-file:
function f = fun( x)
k = [1:10];
f =2 + 2*k-exp(k*x(1))-exp(k*x(2));

Step 2: Invoke an optimization routine:
x0 = [0.3 0.4] % Starting guess
x = leastsq('fun’',x0) % Invoke opti m zer

After 41 function evaluations, this example gives the solution:

X =
0. 25783 0. 25783
sum(fun(x) .* fun(x))%residual or sum of squares
ans =
124. 3622
Notes For the best accuracy and performance, the sum-of-squares should not be

formed explicitly. Instead your function should return avector of function
values. Seethe example above.

Algorithm The choice of algorithm is made by setting options(5). The default is the
Levenberg-Marquardt method [1-3]. Setting options(5) = limplements a_
Gauss-Newton method [4], which is generally faster when the residual ||F(x)|9
is small.
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The default line search algorithm, opti ons(7) = 0, is a safeguarded mixed
guadratic and cubic polynomial interpolation and extrapolation method. A
safeguarded cubic polynomial method can be selected by setting

opti ons(7) = 1. This method generally requires fewer function evaluations
but more gradient evaluations. Thus, if gradients are being supplied and can
be calculated inexpensively, the cubic polynomial line search method is prefer-
able. The algorithms used are described fully in the Introduction to Algorithms
chapter.

The function to be minimized must be continuous. leastsq may only give local
solutions.

leastsq only handles real variables. When x has complex variables, the vari-
ables must be split into real and imaginary parts.

fopt ions

[1] K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. Math. 2, pp. 164-168, 1944.

[2] D. Marquardt, “An Algorithm for Least-squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares,” State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.



Purpose

Synopsis

Description

Arguments

Solve a linear programming problem,

min ¢ Tx such that Ax <Db
X

where c and b are vectors and A is a matrix. Both equality and inequality
constraints can be defined using A and b.

=lp(c,A,b)

=lp(c,A,b,vlb)

=lp(c,A,b,vib, vub)

=lp(c,A,b,vlb, vub, x0)

=lp(c,A,b,vlb, vub, x0,neqcst r)
=lp(c,A,b,vib, vub, x0,neqcst r, di splay)
[x,] ambda, how] = Ip(c,A,b, ... )

X X X X X X

Ip solves linear programming problems.

x = Ip(c,A,b) returns avector x that minimizes the equation c'*x subject to
A*x <= bh.
x = Ip(c,A,b,vib, vub) sets lower and upper bounds on x. This restricts the

solution to the range vib <= x <= vub.
x = lIp(c,A,b,vib, vub, x0) sets the initial starting point to x0.

x = lIp(c,A,b,vib, vub, x0,neqcst r) specifies that the first neqcstr
constraints are equality constraints.

x =Ip(c,Ab,vl b, vub, x0,neqcst r, di spl ay) controls the display ofwarning
messages.

[x,] ambda] = Ip(c,A,b) returns the vector lambda ofthe Lagrange multi-
pliers at the solution x.

[x,J]ambda,how] = Ip(c,A,b) also returns astring howthat indicates error
conditions at the final iteration.

c The vector c is the set of coefficients of the linear objective
function.
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A,b

vib, wvub
x0
neqcstr
display
lambda
how

The matrix A and vector b are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned into the first rows of A and the first
elements of b, followed by the coefficients for the inequality
constraints.

Upper and lower bound vectors. The variables, vl b and vub,
are normally the same size as x. However, if vl b has n
elements and less elements than x then only the first n
elements in x are lower bounded; upper bounds in vub are
defined in the same manner.

Starting vector. Ip generally starts its search at the point
zeros(size(x)). Setting the initial starting point may result
in faster convergence. If the problem is badly conditioned,
this may also result in an improved solution.

Number of equality constraints.

Flag to control the display of warning messages. The default
value for the parameter di spl ay is 0, which displays warning
messages. A value of -1 suppresses warning messages.

A vector that returns the set of Lagrange multipliers at the
solution. The length of lambda is

lengt h( b) H ength(vlb)+lengt h(vub) and the Lagrange
multipliers are given in the corresponding order: first the
multipliers for A, then vl b, then vub.

A string that indicates error conditions at the solution. The
string how="i nfeasi bl € indicates that the problem is
infeasible (i.e., the constraints are overly restrictive);

how = 'unbounded' indicates that the problem has an
unbounded solution; how = 'dependent' indicates that
dependent equality constraints were detected and removed,;
how = "'ok' indicates that the problem was solved without
diffi culty.

As with all Optimization Toolbox functions, empty matrices in the calling
sequence result in the use of default variables. For example, the command

Ip(f,Ab,[
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indicates that the problem is equality constrained, has no upper or lower
bounds on the variables, and uses the default starting point.

Find x that minimizes f(x) = -5x1- 4x2- 6x3

subject to
x1l-x2+x3<20

3X1+2X2+4x3<42
3x1+2x2<30
0<x1,0<x2,0<x3

Step 1: Enter the coefficients:
c = [-5,-4, -6]
a= [1-1 1
3 2 4
3 2 0];
b = [20; 42; 30];

Step 2: Invoke a linear programming routine:
[x,] ambda] = Ip(c,a,b,zeros(3,1))

This gives the solution

0 15.0000 3. 000

The first three elements of the Lagrange multipliers, lambda, are associated

with the inequality constraints. Nonzero elements of lambda indicate active

constraints at the solution. In this case, constraints two and three are active
constraints (i.e., the solution is on their constraint boundaries).

3-57



The last three elements of the Lagrange multipliers are associated with the
lower bounds on x. Thus, the lower bound on x1 is also active.

Algorithm Ip uses a projection method as used in the gp algorithm. Ip is an active set
method and is thus avariation of the well-known simplex method for linear
programming [1]. It finds an initial feasible solution by first solving another
linear programming problem. Ip calls gp with special flags in order to use effi-
ciencies for the Ip case.

Diagnostics Ip gives awarning when the solution is infeasible,

Warning: The constraints are overly stringent;
there is no feasible solution.

Inthis case, Ip produces a result that minimizes the worst case constraint
violation.

When the equality constraints are inconsistent, Ip gives

Warning: The equality constraints are overly
stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough

In this case, Ip returns avalue of x that satisfies the constraints.
See Also ap
References [1] G.B. Dantzig, A. Orden, and P. Wolfe, “Generalized Simplex Method for

Minimizing a Linear from Under Linear Inequality Constraints,” Pacific J.
Math. Vol. 5, pp. 183-195.
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minimax

Solve the minimax problem,

min max {Fi(x)} such that G(x)< 0
x {F} i

where x is a vector and F(x) and G(x) are functions that return vector values.
FH (x) isthe value ofthe ith element ofthe vector returned by F(x). G(x) can be
used to define equality or inequality constraints.

X = mini max( 'fun',x0)

X = mini max( 'fun',x0, opti ons)

X = mini max( 'fun',x0, opti ons,vlb,vub,'grad" )

X = mini max( 'fun',x0, opti ons,vlb,vub,'grad’ ,pl1,p2, ...)
[x,options] = minimax('fun', x0, ... )

mini max minimizes the worst-case value of a set of multivariable functions,
starting at an initial estimate. The values may be subject to constraints. This
is generally referred to asthe minimax problem.

X = mini max( 'fun',x0) starts at x0 and finds the minimax solution to the
functions described in the M-file fun. m

X mini max('fun’,x0, opti ons) defines a vector of optional parameters.

X = mini max( 'fun',x,opt ions, vl b, vub) defines a set of lower and upper
bounds on x through the vectors vl b and vub. This restricts the solution to the
range vl b <= x <= vub.

x = minimax('fun',x0,options,vl b,vub, 'grad') calls the function grad to
obtain the partial derivatives of the function and the constraints,

x = mini max('fun',x0, options,vlib,vub, 'grad' ,p1l,p2,...) passes param-
eters (i.e., pl, p2, etc.), directly to the function fun.

[x,options] = minimax('fun',x0) returns the parameters used in the opti-
mization. For example, opti ons( 10) contains the number of function evalua-
tions used.
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fun

grad

A string containing the name of the function that computes
the objective function to be minimized and the constraint func-
tion at the point x. The function fun returns two arguments:
a scalar valued function f to be minimized and a vector of
constraint values g,

[f.g] = fun(x)

When inequality constraints are present, the objective func-
tion fis minimized such that g <= zeros(si ze(g)).

Equality constraints, when present, are placed in the first
elements of g. When using equality constraints, opti ons(13)
must be set to the number of equality constraints (see the
“Equality Constrained Example” section in the Tutorial).

To minimize the worst case absolute values of any of the
elements of the vector F(x) (i.e., m ni max abs{F(x)}), partition
those objectives into the first elements of F(x) and set
options(15) to bethe number of such objectives.

Alternatively, a string expression can be used with x repre-
senting the independent variables and with f and g repre-
senting the function and constraints. For example,

x = mini max('f = fun(x); g = cstr(x);',x0)

When there are no constraints, set gto the empty matrix (i.e.,
g=1[0D.
A string containing the name of the function that computes

the gradient of the function and the gradient of the
constraints at the point x. This function has the form

[df, dg] = grad(x)

The variable df is avector that contains the partial
derivatives of f with respect to x. The variable dg is a matrix
where the columns of dg contain the partial derivatives for
each ofthe constraints respectively, (i.e., the ith column of dg
corresponds to the partial derivative of the ith constraint
with respect to each of the elements in x).
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opti ons A vector of control parameters. Ofthe 18 elements of opti ons,
the input options used by mini max are: 1, 2, 3, 4, 7, 9, 13, 14,
15, 16, 17. When opti ons is an output parameter, the options
used by mini max to return values are: 8, 10, 11, 18.

e options(1) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.
e options(3) controls the accuracy of f at the solution.

e options(4) setsthe maximum constraint violation that is
acceptable.

The termination criteria involving options(2), options(3), and
options(4) must all hold true for the algorithm to terminate.

The use of opti ons( 15) by ni ni max is discussed under the
description of fun above. The use of options(7) and

opti ons( 8) by ni nimax is discussed in the “Algorithm” section
below. For more information on the opti ons vector, including
default settings, see the fopt ions reference page and the
“Default Parameters Settings” section in the Tutorial.

X0, See constr.
pllpz _______
vib, vub
Examples Find values of x that minimize the maximum value of

[ LX), f2(X), f3(X), f4(X), f5(X) ]
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where
f1(x) = 2x2+x2- 48x1- 40x2+ 304

f2(x) = - x2- 3x2
f3(x) = x1+ 3x2- 18

f4(x) = - x1- X2
f5(X) = X1+ X2- 8.

Step 1: Write an M-file:
function [f,g] = fun(Xx)
f(1) =2*x(1) A2+x(2)A2-48*x( 1)-40*x(2) +304; %Chj ect i ves
f(2)= x(1)n2 - 3*x( 2);
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5 =x(1) +x(2 - 8§
g=1[1 % No constraints

Step 2: Invoke an optimization routine:
x0 = [0.1,0.1]; % Meke a starting guess at sol ution
X = mini max('fun’,x0)

After 29 function evaluations, the solution is

X =
4.0000 4.0000

fun(x)

ans =

0. 0000 -16. 0000 -2. 0000 -8. 0000 0. 000

The number of objectives for which the worst case absolute values off are mini-
mized is set in opti ons( 15). Such objectives should be partitioned into the first
elements of f .

For example, consider the above problem, which requires finding values of x
that minimize the maximum absolute value of

[ fAX) , f2(X), £3(X), f4(X), f5(X) ]
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Limitations

See Also

References

minimax

This is solved by invoking m ni max with the commands

x0 = [0.1,0. 1]; % Make a starting guess at the solution
opti ons( 15) = 5 % Minimize absolut e values
x = mini max('fun',x0, options)

After 39 function evaluations, the solution is

X =
8.7769 0.6613
fun(x)
ans =
10.7609 -10.7609 -7.2391 -9.4382 1.4382

If equality constraints are present and dependent equalities are detected and
removed in the quadratic subproblem, 'dependent’ will be printed under the
Procedures heading (when output is asked for using opti ons(1)=1). The
dependent equalities are only removed when the equalities are consistent. If
the system of equalities is not consistent, the subproblem is infeasible and
"inf easi bl e will be printed under the Procedures heading.

mini max uses a Sequential Quadratic Programming (SQP) method [3]. M odifi-
cations are made to the line search and Hessian. In the line search an exact
merit function (see [4] and [5]) is used together with the merit function
proposed by [2]. The line search is terminated when either merit function
shows improvement. A modified Hessian that takes advantage of special struc-
ture of this problem is also used. Setting options(7) = 1 usesthe merit func-
tion and Hessian used in constr.

See also SQP implementation section in the Introduction to Algorithms chapter
for more details on the algorithm used and the display of procedures for
opti ons( 1) = 1setting.

The function to be minimized must be continuous. m ni max may only give local
solutions.

foptions

[1] S.P. Han, “A Globally Convergent Method For Nonlinear Programming,” J.
of Optimization Theory and Applications, Vol. 22, 1977, p. 297.
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[2] M.J.D. Powell, “A Fast Algorithm for Nonlineary Constrained Optimization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathe-
matics, Springer Varleg, Vol. 630, 1978.

[3] R.K. Brayton, S.W. Director, G.D. Hachtel, and L.Vidigal, “A New Algo-
rithm for Statistical Circuit Design Based on Quasi-Newton Methods and
Function Splitting,” IEEE Trans. Circuits and Systems, Vol. CAS-26, pp.
784-794, Sept. 1979.

[4] A.C.W. Grace, “Computer-Aided Control System Design Using Optimiza-
tion Techniques”, Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK,
1989.

[5] K. Madsen and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance
Optimization,” IEEE Transactions of Circuits and Systems, Vol. CAS-26, Sept.
1979.
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nnls

Solves the nonnegative least squares problem,

1 2
min _ 1Ax - b|L such that x>0
X 2 2

where the matrix A and the vector b are the coefficients of the objective func-
tion. The vector, x, of independent variables is restricted to be nonnegative.

nnis(Ab)
nnis(Ab,tol)

[x,w] = nnls(Ab)
[x,w] = nnls(Ab,tol)

X nnls(Ab) solvesthe non-negative least-squares problem.

X = nnls(Ab,tol) overrides the default tolerance that determines when
elements in the vector x are less than zero. The default tolerance is

tol = max(size(A)) * norm(A,1) * eps

[x,w = nnlIs(Ab) returns the dual vector wof Lagrange multipliers. The
elements of x and w are related by

Wi) <=0 (i | x(i) =0
wi) =0 (i | x(i) >0
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Compare the unconstrained least squares solution to the nnls solution for a
4-by-2 problem.

a =
0. 0372 0. 2869
0.6861 0.7071
0. 6233 0. 6245
0.6344 0.6170
b =
0.8587
0.1781
0.0747
0.8405

[a\b, nnils(a,b)] = -2.5625 0
3.1106 0.6929
[norm(a*(a\b)-b), norm(a*nnls(a,b)-b)] = 0.6677 0.9119

The solution from nnls does not fit as well as the least squares solution.
However, the nonnegative least-squares solution has no negative components.

nnls uses the algorithm described in [1]. The algorithm starts with a set of
possible basis vectors and computes the associated dual vector w. It then selects
the basis vector corresponding to the maximum value in win order to swap out
of the basis in exchange for another possible candidate. This continues until
w <= 0.

The nonnegative least squares problem is a subset of the constrained linear

least-squares problem.

Thus, when A has more rows than columns (i.e., the system is over-determined)
[x,w] = nnl s(A, b)

is equivalent to

[mn]
[x,1]

w = -] ;

size( A);
conls(A,b,-eye(n,n), zeros(n,1));

For problems greater than order twenty, conl s may be faster than nnls, other-
wise nnls is generally more efficient.
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See Also \, conls

References [1] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems, Pren-
tice-H all, 1974, Chapter 23, p. 161.
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Solve the quadratic programming problem,

min Ex THx + cTx such that Ax <b
X

where H and A are matrices, and c, b, and x are vectors.

X = gqp(H,c,A,b)

x = qp(H,c,Ab, vl b)

x = qp(H,c,A,b, vl b, vub)

X = gqp(H,c,A,b, vl b, vub, x0)

X = gqp(H,c,A,b, vl b, vub, X0, neqcst r)

X = gqp(H,c,A,b, vl b, vub, x0, neqcst r, displ ay)
[x,] ambda, how] = gp(H,c,A,b, ... )

gp solves the quadratic programming problem.

X = gp(H,c,A,b) returns avector x that minimizes 1/2*x'*H*x +c' *x subject
to A*x <= h.

x =gp(H c,A,b,vib,vub) sets lower and upper bounds on x. This restricts the
solution to the range vib <= x <= vub.

X gp(H,c,A,b, vl b, vub, x0) sets the initial starting point to x0.

X = gp(H,c,A,b, vl b, vub, X0, neqcst r) specifies that the first neqcstr
constraints are equality constraints.

x = qp(H,c,A,b, vl b, vub, x0, neqcst r, displ ay) controls the display of
warning messages.

[x, ambda] = gp(H c,A,b) returnsvalues for the Lagrange multipliers at the
solution in the variable | ambda.

[x,lambda,how] = gp(H,c,A,b) alsoreturns astring howthat indicates error

conditions at the final iteration.

H,c The Hessian matrix Hand vector ¢ are the set of coefficients
of the quadratic objective function. H must be symmetric.
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ADb The matrix A and vector b are the coefficients of the linear
constraints. The coefficients for the equality constraints
must be partitioned into the first rows of A and the first
elements of b.

vib, vub Upper and lower bound vectors. The variables, vl b and vub,
are normally the same size as x. However, if vib has n
elements and fewer elements than x, then only the first n
elements in x are bounded below; upper bounds in vub are
defined in the same manner.

x0 Starting vector. gp generally starts its search at the point
zeros(si ze(x)). Setting the initial starting point can result
in faster convergence. If the problem is badly conditioned,
this can also result in an improved solution.

neqcstr Number of equality constraints.

display Flag to control the display of warning messages. The default
value for the parameter di splay is 0, which displays warning
messages. A value of -1 suppresses warning messages.

lambda A vector that returns the set of Lagrange multipliers at the
solution. The length of lambda is
I ength(b)+lengt h(vl b) H ength(vub) and the Lagrange
multipliers are given in the corresponding order: first the
multipliers for A, then vl b, then vub.

how A string that indicates error conditions at the solution. The
string how="i nfeasible' indicates that the problem is
infeasible (i.e. the constraints are overly restrictive);
how = ' unbounded' indicates that the problem has an
unbounded solution; how = 'dependent’' indicates that
dependent equality constraints were detected and removed;
how ="' ok' indicates that the problem was solved without
difficulty.

As with all Optimization Toolbox functions, empty matrices in the calling
sequence result in the use of default options. For example, the command

ap(H,c,Ab,[ ].[ 1.[ 1.1 ength(b))
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indicates that the problem is an equality constrained problem, having no upper
or lower bounds on the variables and uses a default starting point.

Examples Find values of x that minimize

12 2
f(X) = 2 X1+ x2- X1X2- 2x1 - 6x2
subject to

X1 +x2<2
- X1 +2x2<2
2x1 +x2<3
0<x10<x2
First we note that this function may be written in matrix notation as

17T T
f(x) = 2x Hx +c x where

Step 1: Enter the coefficient matrices:
H=1[1 -1; -1 2]

c = [-2; -6]
A=[11 -1 2 2171
b =12, 2 3

vlb = zeros(2,1)
Step 2: Invoke a quadratic programming routine:

[x,] ambda] = gqp(H,c,A,b, vl b)
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This generates the solution

X =
0. 6667
1 3333

lambda =
3.1111
0. 4444
0

0

0
The first three elements of the Lagrange multipliers (i.e., lambda) are associ-
ated with the inequality constraints. Nonzero elements of lambda indicate

active constraints at the solution. In this case, constraints one and two are
active constraints (i.e., the solution is on their constraint boundaries).

The last two elements of the Lagrange multipliers are associated with the

lower bounds on x. In this case, the bounds are inactive.

gp uses an active set method, which is also a projection method, similar to that
described in [1]. It finds an initial feasible solution by first solving a linear
programming problem. This method is discussed in the Introduction to Algo-
rithms chapter.

gp gives awarning when the solution is infeasible:

Warning: The constraints are overly stringent;
there is no feasibl e soluti on.

In this case, qp produces a result that minimizes the worst case constraint
violation.

When the equality constraints are inconsistent, gp gives

Warning: The equality constraints are overly stringent;
there is no feasibl e soluti on.
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Unbounded solutions,which can occur when the Hessian H is negative semidef-
inite, may result in

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, gp returns a value of x that satisfies the constraints.
Limitations The solution to indefinite or negative definite problems is often unbounded, and
when a finite solution does exist, gp may only give local minima since the

problem may be nonconvex.

References [1] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, London, UK, 1981.
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seminf

Find minimum of a semi-infinitely constrained multivariable nonlinear func-
tion,

min f(x) subject to G(x)< 0,
X

KAx, wT) <0,

K2(x, w2) < 0,

Kn (X, Wn) <0

where x and G(x) are vectors and f(x) is a scalar function. G(x) can be used to
define both equality and inequality constraints. The vectors (or matrices)
Kn(x, wn) <0 are continuous functions of both x and an additional set of vari-
ableswlw2,...,wn.The variables w1l w2,..., wn are vectors of, at most,
length two.

X semi nf (‘fun’, n, x0)

X semi nf (‘fun’, n, x0,opt ions)

x = seminf('fun',n,x0,options,vib,vub)
X

[

semnf('fun',n,x0,options,vlb,vub,p1,p2, ... )
x,opt ions] = semnf('fun',n,x0, ... )

semi nf finds the minimum of a semi-infinitely constrained scalar function of
several variables, starting at an initial estimate. The aim isto minimize f(x) so
the constraints hold for all possible values of wi e W1 (or wi e W2). Since it is
impossible to calculate all possible values of Ki(x, wi), a region must be chosen
for wi over which to calculate an appropriately sampled set of values.

x = semnf('fun',n, x0) starts at the point x0 and finds a minimum of the
function and constraints, including n semi-infinite constraints, defined in the
M -file named fun.m

x =seminf('fun’',n,x0,opt ions) uses the parameter values in the vector
opti ons rather than the default option values.
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x = semi nf (' fun' , n, X, opti ons, vl b, vub) defines a set of lower and upper
bounds on x through the matrices vl b and vub. This restricts the solution to
the range vl b <= x <= vub.

x =semi nf (‘fun’, x0,opti ons, vl b, vub,pl1,p2,...) passesthe
problem-dependent parameters pl, p2, etc., directly to the function fun.

[x,options] = semi nf('fun', n, x0) returnsthe parameters used in the opti-
mization method. For example, opti ons(10) contains the number of function
evaluations used.

fun A string containing the name of the function that computes
the objective function to be minimized and the constraint func-
tion at the point x. The function fun

[f,0,K1,K2, ..., Kn,s] = fun(x s)

returns a scalar value, f , ofthe function to be minimized, and
a vector of constraints, g. The vectors, or matrices, K1, K2, ...,
Kn contain the semi-infinite constraints evaluated for a
sampled set ofvalues for the independent variables, wl, W2, ...
W3, respectively. The two column matrix, s, contains a recom-
mended sampling interval for values ofwl, W2, .. wn which are
used to evaluate K1, K2, .. Kn. The i th row of s contains the
recommended sampling interval for evaluating Ki. When Ki is
avector, use only s(i,1).When K is a matrix, s(i,2) is used
for the sampling of the rows in Ki,s(i ,1) is used for the
sampling interval of the columns of Ki (see “Two-Dimensional
Example” in the “Examples” section.). On the first iteration s
is set to NaN, sothat some initial sampling interval must be
determined.

Equality constraints, when present, are placed in the first
elements of g. When using equality constraints, opti ons(13)
must be set to the number of equality constraints (see the
“Equality Constrained Example” section in the Tutorial).

n The number of semi-infinite constraints.
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opti ons
Pl p2,
X0,

vlb, vub

seminf

A vector of control parameters. Of the 18 elements of

opti ons, the input options used by semi nf are: 1, 2, 3, 4, 9,
13, 14, 16, 17. When options is an output parameter, the
options used by semi nf to return values are: 8, 10, 11, 18.

« options(1l) controls display. Setting this to avalue of 1 pro-
duces atabular display of intermediate results.

e options(2) controls the accuracy of x at the solution.
e options(3) controls the accuracy of f at the solution.

e options(4) setsthe maximum constraint violation that is
acceptable.

For more information on the opti ons vector, including default
settings, see the foptions reference page and the “Default
Parameters Settings” section in the Tutorial.

Additional arguments to be passed to fun, that is, when
semi nf calls fun, the calls are

[f,0,K1,K2, ...,Kn,s] = fun(x,s,pl,p2, ...)

Using this feature, the same M-file can solve a number of
similar problems with different parameters avoiding the need
to use global variables. Note that since all the arguments
preceding pl, p2, etc., in the call to semi nf must be defined,
empty matrices may be passed in for opti ons, vl b, and vub to
indicate that default arguments are to be used, as in

x =seminf('fun',n,x0,[],[].[]l.p1,p2, ... )

See constr.

The recommended sampling interval, s, set in fun may be varied by the opti-
mization routine during the computation. Other values may be more appro-
priate for efficiency or robustness. Also, the finite region , over which

Kj (x, Wj) is calculated, is allowed to vary during the optimization provided
that it does not result in significant changes in the number of local minima in

K (X, Wi).
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Examples One-Dimensional Example
Find values of x that minimize

f(x) = (x1- 0.5)2+ (x2- 0.5)2+ (x3- 0.5)2

where
1

K1(x,w1l) = sin (w1x1)cos(w1x2) - (w!-50)2- sin (w1x3)- x3<1
1

K2(x,w2) = sin (w2x2)cos(w2x1)- KO00(w2- 50)2- sin (w2x3)- x3<1

for all values of w1 and w2 over the ranges

1<w1l1l<100
1<w2<100

Note that the semi-infinite constraints are one-dimensional, that is, vectors.

Step 1: Write an M-file:
function [f,GjK1,K2,s] = fun(X s)
% Initial sampling interval
if isnan(s( 1 1)),s =[0.2 0, 0.2 0]; end
% Sample set

wl = 1:s(1, 1):100;
w2 = 1:s(2, 1):100;
% Semi -infinite constrai nts
KL = si n(wl*X( 1)). *cos(w1*X(2)) - 1/1000*(w1l-50).A2 -...
si n(wl* X(3))-X(3)-1;
K2 = si n(w2*X( 2)). *cos(w2*X( 1)) - 1/1000*(w2-50).A2 -...
si n(w2*X( 3))-X( 3) -1;
% No constrai nts
G=1[5
% Objecti ve function
f = sum( (X-0. 5).A2);

% M ot a graph of semi-infinite constraints
pl ot(wl, K1, w2,K2) ,title('Sem-infinite constraints"')
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Step 2: Invoke an optimization routine:
x0 = [0.5,0. 2,0 3] ; % Starti ng guess at t he soluti on
x = semi nf ('fun’', 2, x0)

After 37 function evaluations, the solution is

X =
0. 6956 0. 3052 0. 4261
[f,QK1,K2] = fun(x, NaN);
f =
0. 0817
max(K1)
ans =
-1.0617e-04
max( K2)
ans =
-0.0023

A plot ofthe semi-infinite constraints is produced.

Semi-infinite constraints

This plot shows how peaks in both functions are on the constraint boundary.
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Two-Dimensional Example
Find values of Xthat minimize

f(X) = (X1- 0.5)2+ (X2- 0.5)2+ (X3- 0.5)2

where

1
K1(X,w) = sin(w 1X1)cos(10w2X2)- 1000(w 1- 50)2- sin (10w 1X3) - X3+

1
sin (w2X2) cos(w 1X1) - 100D (w2- 50)2- sin (w2X3) +-X3< 15

for all values of w1 and w2 over the ranges:

1<wl1l<100

1<w2<100

starting at the point X = [0.2, 0.2, 0.2].

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

Step 1: Write an M-file:
function [f ,GjK1,s] = fun( X s)
% Initial sampl ing intervals
if isnan(s(1,1)),s =1[2 2]; end
% Sampling sets
wl = 1:s(1, 1):100;
W2 = 1:s5(1,2):100;
[w<,w/] = meshdom(w1l,W2);
% Semi -infinite constr aint
KL = si n(wx*X( 1)). *cos(wy*X(2))-1/ 1000*(wx-50). n2-.. .
sin( wx*X( 3))-X( 3) +sin(wy*X( 2)). *cos(wx*X( 1))-.. .
1/ 1000*(wy-50). n 2~ n(wy*X( 3))-X( 3)-1.5;
% No constrai nts
G=1[5
% Object ive funct ion
sum( (X-0. 2).n2);
% Mesh p ot
mesh(K1),titl e('Semi-infinite constraint')

—h
1
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Step 2: Invoke an optimization routine:
x0 =[0.2,0.2,0.2]; % Starting guess at the solution
x = semi nf ("fun’, 1, x0)

After 65 function evaluations, the solution is

X =
0.2033 0.2034 0.1930
[f,GK1] = fun(x, NaN);
max( max(K1))
ans =

-0.0273

Note, due to sampling there appears to be no active constraint (i.e., no point on
the constraint boundary). Taking a smaller sampling interval shows that the
constraint is active.

The following mesh plot is produced.

Semi-infinite constraint

Algorithm semi nf uses cubic and quadratic interpolation techniques to estimate peak
values in the semi-infinite constraints. The peak values are used to form a set
of constraints that are supplied to the function constr. When the number of
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Limitations

See Also

3-80

constraints changes, Lagrange multipliers are reallocated to the new set of
constraints.

The recommended sampling interval calculation uses the difference between
the interpolated peak values and peak values appearing in the data set to esti-
mate whether more or fewer points need to be taken. The effectiveness of the
interpolation is also taken into consideration by extrapolating the curve and
comparing it to other points in the curve. The recommended sampling interval
is decreased when the peak values are close to constraint boundaries, i.e., zero.

See also SQP implementation section in the Introduction to Algorithms chapter
for more details on the algorithm used and the display of procedures for
opti ons( 1) = 1setting.

The function to be minimized, the constraints, and semi-infinite constraints,
must be continuous functions of x and w. semi nf may only give local solutions.
When the problem is not feasible, semi nf attempts to minimize the maximum
constraint value.

constr,fopti ons
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