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1 Tutorial

Int roduct ion
O ptim iza t ion  concerns th e  m in im iza t ion  or m ax im iza t ion  of funct ions. The 
O p t im iza t ion  Toolbox consists of func t ions  th a t  perform  m in im iza t ion  (or m ax­
im iza t ion )  on general non linear funct ions. Functions  for non linear equation 
so lv ing and least-squares (da ta-f i t t ing)  problems are also provided.

The  func t ions  ava i lab le  for m in im iza t ion  are

Table 1-1: M in im iza tion

Type N otation Sy ntax

Scalar M in im iza t ion min f ( a ) such th a t  a. < a < a 2 
a 1 2

a = f m i n ( ' f ' , 2)aa

Unconstra ined M in im iz a ­
t ion

min f  (x ) 
X

x

x

= fm inu (  ' f '  

= fm ins (  ' f ' x
x

О 
О

L inear P rogram m ing min c Tx such th a t  A x  < b 
x

x = l p ( c , A b )

Q uad ra t ic  P rogram m ing ■ 1 T u  , T min ~ x H x  + c x 
x 2

x = qp(H ,c ,A , b)

such th a t  Ax  < b

Constra ined M in im iz a ­
t ion

min f (x ) such th a t  G (x ) <  0 
x

x = c o n s t r ( ' f G  , x0)

Goal A t ta in m e n t min g such th a t
x ,g
F (x ) -  wg < goal

x = at t g o a l ( ' F' , x , g o a l , w )

M in im a x min max { F, (x ) } 
x { F, } '

such th a t  G (x ) <  0

x = mini max(' 0xG'F

S e m i- in f in i te  M in im iz a ­
tion

min f (x ) such th a t  Gx < 0, 
x

K ( x , w ) < 0  for all w

x = semi n f ( ' f G K , n ,  x0)
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Introduction

The func t ions  ava i lab le  for equation so lv ing are

Table 1-2: Equation Solving

Type Nota t ion S yn ta x

L inear Equations Ax  = b , n equations, n va r iab les x = A\ b;

Non linear Equation of One 
Var iab le

f(  a ) = 0

О
afoCDzf=a

Non l inear Equations F(x) = 0 , n equations, n variab les x = f s o l v e (  ' F ' ,  x0)

The func t ions  ava i lab le  for so lv ing least-squares or d a ta - f i t t in g  problems are

Table 1-3: Least-Squares (Curve Fitting)

Type N otation S yn ta x

L inear Least Squares
2

min ||Ax -  b|L , m equations, n va r iab les  
x 2

x = A\b;

Nonnegative L inear Least 
Squares

2
min ||Ax -  b|L such th a t  x > 0 

x 2
x = nn l s ( A , b )

Constra ined L inear Least 
Squares

2
min ||Ax -  b|L such th a t  Cx < d 

x 2
x = c o n l s ( A , b , C , d )

Non linear Least Squares nxn "(I F(x)|2 = 2 X  F\ ( x)2 x = l eas t  sq( '  F' , x0)

Non linear Curve  F i t t in g
1 2 

min cc F(x, x d a t a ) - y d a t a  2 
x 2 2

x = c u r v e f i t  . . .  
( ' F ' , x 0 , x d a t a , y d a t a )

Nota t ion
Upper-case le t te rs  such as A  are used to  denote matrices. Lower-case le tters  
such as x are used to  denote vectors, except w he re  noted th a t  i t  is a scalar (in 
th e  tab le  above, w e  use a to  denote a scalar in th e  description of fmin) .
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1 Tutorial

For funct ions, th e  notation d if fe rs  s l igh t ly  to  fo l low th e  usual conventions in 
op t im iza t ion . For vector funct ions, we use an upper-case le tter such as F i n  
F (x ) .  A  funct ion th a t  re tu rns  a scalar va lue  is denoted w i th  a lower-case le tter 
such as f  in f (x ) .

Most of these rou tines  requ ire  th e  de f in it ion  of an M -f i le  con ta in ing  th e  func­
t ion to  be m in im ized. A l te rna t ive ly ,  a s t r in g  va r iab le  conta in ing  a M A T L A B  
expression, w i th  x representing th e  independent variab les, can be used. M a x i ­
m iza tion  is achieved by supp ly ing  th e  rou t ines  w i th  - f , w he re  f is th e  funct ion 
being optim ized.

Optional a rgum en ts  to  th e  rou t ines  place bounds on th e  va r iab les  and change 
op tim iza t ion  parameters. Defau lt  optim iza t ion  param eters  are used exten­
sively but can be changed th rough  an add it iona l a rgum ent, opt i  ons.

G rad ien ts  are calculated using an adaptive  f in i te  d ifference method unless 
they  are supplied in a funct ion. Param eters  can be passed d irec t ly  to  funct ions, 
avoid ing th e  need for global variables.

The  O p t im iza t ion  Toolbox rou t ines  offer a choice of a lg o r i th m s  and l ine  search 
strategies. The pr inc ipa l a lg o r i th m s  for unconstra ined m in im iza t ion  are th e  
Nelder-Mead simplex search method and th e  BFGS quasi-Newton method. For 
constrained m in im iza t ion , m in im ax , goal a t ta in m e n t,  and s e m i- in f in i te  
op t im iza t ion , va r ia t io n s  of Sequentia l Q uad ra t ic  P rogram m ing  are used. 
Non linear least squares problems use th e  Gauss-Newton and Levenberg-M ar- 
quard t methods.

A choice of l ine  search s tra tegy is given for unconstra ined m in im iza t ion  and 
nonlinear least squares problems. The l ine  search strateg ies use safeguarded 
cubic and q u a d ra t ic  in te rpo la t ion  and extrapo la t ion  methods.
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Installation

Instal lat ion
I ns truc t ions  for in s ta l l in g  toolboxes are found in th e  section en t i t led  “ I ns ta l l ing  
Toolboxes” in th e  computer-specific  section of Using M A T L A B . On some sys­
tems, th e  O p t im iza t ion  Toolbox may be ins ta l led  already. It  should be located 
in th e  d irectory  named opt i  min th e  toolbox d irectory.
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Examples
The O p t im iza t ion  Toolbox is presented th rough  a tu to r ia l  th a t closely fo l lows 
th e  f i rs t  dem onstra t ion  in th e  M -f i le  optdemo. The func t ions  fmi nu  and cons t r  
are discussed in deta il.  The other optim iza t ion  rou t ines  a t t goa l  , mi ni max, 
l e a s t s q ,  f so l  ve, and semi nf are used in a nearly  identica l m anner, w i th  d i f ­
ferences only in th e  problem fo rm u la t ion  and th e  te rm in a t io n  cr ite r ia .

Unconstrained Example
Consider th e  problem of f in d ing  a set of va lues [x., x2] th a t  solves

x 2 2
minimize f(x) = e 1 (4x . + 2 x 2 + 4 x ^ 2  + 2 x 2 + " )  (1- 1 )

To solve th is  two-d im ensiona l problem, w r i te  an M -f i le  th a t re tu rns  th e  func­
t ion value. Then, invoke th e  unconstra ined m in im iza t ion  rou t ine  fminu.

Step 1: W r i te  an  M - f i le  fu n .m :
f u n c t i o n  f = f un(  x)
f = e x p ( x ( 1 ) )  * ( 4 * x ( 1 ) A2 + 2 * x ( 2 ) /' 2+4*x (1)  * x ( 2 ) + 2 * x ( 2 ) + 1 ) ;

Step 2: In voke  o p t im iz a t io n  rou tine :
x0 = [ - 1 , 1 ] ;  % S t a r t i n g  guess 
x = f m n u ( ' f u n ' , x 0)

A f te r  36 funct ion evaluations, th is  produces th e  solution:

x =
0.5000 -1 .0 0 0 0  

You can evaluate  th e  funct ion at th e  so lution x:

f u n ( x )  
ans =

1 .3029e -10

When the re  exists more than  one local m in im u m , th e  in i t ia l  guess for the  
vector [x-|, x 2] affects both th e  number of funct ion eva lua tions and th e  va lue  of 
th e  solution point. In th e  example above, x 0 is in i t ia l ized  to  [ - 1 , 1 ] .
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The va r iab le  opt i ons  can be passed to  fmi nu  t o  change characte r is t ics  of th e  
optim iza t ion  so lution procedure, as in

x = fmi nu(  ' f u n ' , x 0 , o p t i o n s ) ;

opt i  ons is a vector th a t  conta ins va lues for te rm in a t io n  to lerances and algo­
r i th m  choices. The  f i rs t  element of opt i  ons contro ls th e  amount of outpu t d is­
played d u r in g  th e  op t im iza t ion  cycle for most of th e  op t im iza t ion  funct ions. 
Sett ing  th is  e lement to  1 causes a ta bu la r  d isp lay of th e  funct ion  va lues and 
convergence in fo rm a t ion . The  second and th i rd  e lements of opt i  ons establish 
te rm ina t ion  c r ite r ia . O ther e lements in options set f in i te  d ifference pe r tu rb a ­
t ion levels, select a lgor i thm s, and set th e  m ax im um  number of funct ion eva lu ­
ations. T h is  and other ca ll ing syntaxes are discussed more fu l ly  in later 
sections of th is  tu to r ia l  and in th e  References chapter.

Constrained Example
I f  inequa l i ty  constra in ts  are added to  Eq. 1-1, th e  resu lt ing  problem may be 
solved by th e  cons t r  funct ion. For example, i f  you w an t to  f ind  x th a t  solves

x 2 2
minimize f(x) = e 1 (4x 1 + 2x 2 + 4 x 1 x 2 + 2x 2 + 1)

subject to  th e  constra in ts: x 1 x 2 -  x 1 - x 2 < -1 .5

x 1 x 2 ^  - 1 0  (1-2 )

The orig ina l M -f i le  is modif ied to  re tu rn  both th e  objective funct ion and th e  
constra in ts. The constrained optim izer, c o n s t r , i s then invoked. Because 
cons t r  expects th e  constra in ts  to  be w r i t te n  in th e  fo rm  G (x ) <  0 ,  you must 
re w r i te  your constra in ts  in th e  form

x 1 x 2 -  x 1 -  x 2 + 1.5 < 0

- x 1 x 2 -  10 < 0
(1-3)
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Step 1: W r i te  an  M - f i le  fu n .m  fo r  the  o b jec t ive  fu nc t io n  and  constra in ts :
f u n c t i o n  [ f , g ]  = f u n ( x )
f = e x p ( x ( 1 ) )  * ( 4 * x ( 1 ) A2 + 2 * x ( 2 ) A2+4*x(1)  * x ( 2 ) + 2 * x ( 2 ) + 1 ) ;  
g(1,  1) = 1.5 + x (1)  *x(2)  -  x (1)  -  x( 2);  % Const rai  nt s
g( 2 , 1) = - x ( 1) *x( 2) -  10;

Step 2: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
x 0 = [ - 1, 1] ;  % Make a s t a r t i n g  guess at th e  s o l u t i o n
x = const r ( ' f u n ' ,  x 0)

A f te r  29 funct ion calls, th e  so lution produced is

x =
-9 .5 4 7 4  1.0474 

We can evaluate  th e  func t ions  and constra in ts  at th e  solution

[ f , g ]  = f u n ( x )  
f =

0.0236
g =

1 . 0e-15 *
-0 .8 8 8 2

0

Note th a t  both constra in t va lues are less than  or equal to  zero, th a t  is, x sa tis ­
fies G (x ) < 0 .

Constrained Example  w i t h  Bounds
The va riab les  in x can be restr ic ted to  certa in l im i ts  by specify ing s im p le  bound 
constra in ts  to  th e  constrained optim izer funct ion. For c o n s t r , t he  command

x = const r ( ' f u n ' ,  x 0 , opt i  ons, v l b , v u b ) ;  

l im i ts  x to  be w i th in  th e  range vl b <=x <= vub.
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To restr ic t x in Eq. 1-2 to  be greater than  zero (i.e., x 1 > 0 , x 2 > 0 ) ,  use th e  
commands:

x = c o n s t r ( ' f u n ' , x 0, o p t i o n s , v l b , v u b )

Note th a t  to  pass in th e  lower bounds as th e  fou r th  a rgum ent to  c o n s t r , you 
must specify a va lue  for th e  t h i r d  a rgum ent opt i  ons. In th is  example, w e  spec­
ified [ ]  to  use th e  default va lues for op t i ons .

A f te r  10 funct ion evaluations, th e  so lution produced is

x =
0 1.5000 

[ f , g ]  = f u n ( x )  
f =

8.5000
g =

0
-10

In th e  above example, the re  were  no upper bounds on x. Therefore, vub w as set 
to  an empty m a tr ix .  A l te rna t ive ly ,  th e  upper-bound argum ent could have been 
om itted  by using th e  command

x = c o n s t r ( ' f u n ' , x 0, o p t i o n s , v l b )

When vl b or vub conta ins fewer e lements than  x, only th e  f irs t corresponding 
elements in x are bounded. A l te rna t ive ly ,  bounds can be expressed using l inear 
inequa l i ty  constra in ts. T h is  a lte rna t ive  may be more app ropr ia te  when the re  
are only a few bounded variab les, for example,

Upper Bound: x  < U B is w r i t te n  as: x  -  U B < 0

Lower Bound: x  > L B is w r i t te n  as: - x j  + L B < 0

Note th a t  th e  number of funct ion eva lua tions to  f ind  th e  solution is reduced 
since we fu r th e r  restr ic ted th e  search space. Fewer func t ion  eva lua tions are 
usually  taken when a problem has more constra in ts  and bound l im i ta t io n s  
because th e  optim iza t ion  makes better decisions regard ing  step-size and 
regions of feas ib il i ty  than in th e  unconstra ined case. It  is, therefore, good prac­

x 0 = [ - 1, 1] ; 
op t i o n s  = [ ] ;  
vl b = [ 0, 0] ;  
vub = [ ] ;

% Mfeke a s t a r t i n g  guess at th e  s o l u t i  on 
% Use d e f a u l t  op t i o ns  
% Set l ower bounds 
% No upper bounds

1-9
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t ice  to  bound and constrain problems, w he re  possible, to  promote fast conver­
gence to  a solution.

Constrained Example  w i t h  Gradients
O rd in a r i ly  th e  m in im iza t ion  rou t ines  use numerica l g rad ien ts  calculated by 
f in i te  d ifference approx im ation . T h is  procedure sys tem atica l ly  pe rtu rbs  each of 
th e  var iab les  in order to  ca lcu late funct ion  and constra in t part ia l derivatives. 
A l te rna t ive ly ,  you can provide a funct ion  to  compute par t ia l  de r iva t ives  ana­
ly t ica l ly .  Typ ica lly ,  th e  problem is solved more accurate ly and e ff ic ien tly  i f  
such a funct ion is provided.

To solve th e  Eq. 1-2 using ana ly t ica l ly  determ ined gradients, do th e  fo l low ing:

Step 1: W r i te  an  M - f i le  f o r  o b jec t ive  fu n c t io n  and  constra in ts :
f u n c t i o n  [ f , g ]  = f u n ( x )
f = e x p ( x ( 1 ) )  * ( 4 * x ( 1 ) A2 + 2 * x ( 2 ) A2+4*x(1)  * x ( 2 ) + 2 * x ( 2 ) + 1 ) ; 
g( 1) = 1.5 + x (1)  * x( 2) -  x (1)  -  x( 2);  %Constrai n ts  
g( 2) = - x ( 1) * x( 2) - 10;

Step 2: W r i te  an  M - f i le  fo r  the  g ra d ie n ts  o f  the  o b jec t ive  fu nc t io n  and  
constra in ts :

f u n c t i o n  [ d f , d g ]  = grad(x)
% Gr adi ent  of t he ob j ec t  i v e  f unc t  i on
t = e x p ( x ( 1 ) )  * ( 4 * x ( 1 ) A2 + 2 * x ( 2 ) A2+4*x(1)  * x ( 2 ) + 2 * x ( 2 ) + 1 ) ; 
df = [ t + e x p ( x ( 1 ) )  * ( 8 * x ( 1 )  + 4 * x ( 2 ) ) ,  

e x p ( x ( 1 ) )  * ( 4 * x (  1) +4*x( 2) +2)]  ;
% G rad ien t of th e  c o n s t r a i n t s  
dg = [ x ( 2) - 1, - x ( 2); 

x ( 1) - 1, - x ( 1) ] ;

Step 3: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
x0 = [ - 1 , 1 ] ;  % S t a r t i n g  guess
o p t i o n s  = [ ] ;  % Use d e f a u l t  op t i o ns
v l b  = [ ] ;  vub = [ ] ;  % No upper or l ower bounds 
x = c o n s t r ( ' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ' )
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df conta ins th e  part ia l de r iva t ives  of th e  objective funct ion, f re tu rned  by 
f u n ( x ) , w i th  respect to  each of th e  elements in x:

df
dx

ex 1 (4 x 1 + 2 x 2 + 4 x 1 x 2 + 2 x 2 + 1) + ex1 (8 x 1 + 4 x 2)

e 1 (4 x 1 + 4 x 2 + 2)
(1-4)

The columns of dg contain th e  part ia l de r iva t ives  for each respective constra in t 
(i.e., th e  i th  column of dg is th e  part ia l d e r iva t ive  of th e  i th  constra in t w ith  
respect to  x). So in th e  above example, dg is

dg 1
dx л

dg!
dx 2

dg2
dx1

dg2
dx2

x 2 -  1

x 1 -  1

-x

-x

(1-5)

The a rgum en ts  vl b and vub place lower and upper bounds on th e  independent 
var iab les  in x. In th is  example they  are only used for syn tac t ic  purposes to  g ive 
th e  correct number of r igh t-hand  a rgum ents  to  specify th e  g rad ient funct ion 
name.

A fte r  11 funct ion and g rad ient evaluations, th e  so lution produced is

x =
-9 .5 4 7 4  1.0474 

[ f , g ]  = f u n ( x )  
f =

0. 0236

1. 0e-14 * 
0.1110 
0.1776

g
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Grad ient  Check: A na ly t i c  Versus Numer ic
When a na ly t ica l ly  determ ined g rad ien ts  are provided, you can compare the  
supplied g rad ien ts  w i th  a set calculated by f in i te  d ifference eva lua tion . T h is  is 
p a r t icu la r ly  useful for detecting m is takes in e ither th e  objective funct ion or th e  
g rad ient funct ion  fo rm u la t ion .

I f  such grad ient checks are desired, in i t ia l iz e  opt i  ons(9)  to  th e  va lue  1. The 
f i rs t  cycle of th e  op t im iza t ion  checks th e  ana ly t ica l ly  determ ined gradients. I f  
they  do not match w i th in  a given to lerance, a w a rn in g  message ind icates th e  
discrepancy and gives an option to  abort th e  optim iza t ion  or to  continue.

Max im izat ion
The optim iza t ion  func t ions  f mi n ,  f m n s ,  fminu,  c o n s t r , a t t goa l  , mini max, and 
l e a s t s q  all perform  m in im iza t ion  of th e  objective funct ion, f (x ) .  M ax im iz a ­
t ion is achieved by supp ly ing  th e  rou t ines  w i th  - f (x ) .  S im i la r ly ,  to  achieve 
m ax im iza t ion  for qp supply -H  and - c ,  and for l p  supp ly -c .

Greater  than Zero Constraints
The O p t im iza t ion  Toolbox assumes constra in ts  are of th e  form  G j (x ) < 0 . 
Greater than  zero constra in ts  are expressed as less than zero constra in ts  by 
m u l t ip ly in g  them  by -1 .  For example, a constra in t of th e  form  Gj (x ) > 0 is 
equ iva lent to  th e  constra in t -  Gj (x ) < 0 ; a constra in t of th e  form  Gj (x ) > b is 
equ iva lent to  th e  constra in t -  Gj (x ) + b < 0 .

Equal i ty Constrained Example
For rou tines  th a t perm it equa li ty  constra in ts , these equa li ty  constra in ts  must 
be expressed in th e  f i rs t  e lements of th e  vector of constra in t va lues g. Also, 
opt i  ons( 13) must be in i t ia l ized  w i th  th e  number of equa li ty  constra in ts. For 
example, to  add th e  constra in t x 1 + x 2 = 1 to  Eq. 1-2, re w r i te  it as 
x 1 + x 2 -  1 = 0 and then,

Step 1: W r i te  an  M - f i le  fu n .m :
f u n c t i o n  [ f , g ]  = f u n ( x )
f = e x p ( x ( 1 ) )  * ( 4 * x ( 1 ) A2 + 2 * x ( 2 ) A2+4*x(1)  * x ( 2 ) + 2 * x ( 2 ) + 1 ) ;  
g( 1) = x( 1) + x( 2) -1 ; % Equali t y  cons t r  ai nt s f i r  st
g( 2) = 1.5 + x (1)  * x( 2) -  x (1)  -  x ( 2 ) ;  % I nequal i t y  
g( 3) = - x ( 1 )  * x(2)  -  10; % const r a i n t s
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Step 2: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
x 0 = [ - 1, 1] ;  % Mfeke a s t a r t i n g  guess at t he s o l u t i  on
o p t i o ns ( 13 )  = 1; % Spec i f y  one e q u a l i t y  c o n s t r a i n t
x = c o n s t r ( ' f u n ' , x 0, o p t i o n s )

A f te r  22 funct ion evaluations, th e  so lution produced is

x =
-2 .7 0 1 6  3.7016 

[ f , g ]  = f u n ( x )  
f =

1.6775
g =

-0 .0 0 0 0  -9 .5 0 0 0  0.0000

Note th a t  g ( 1) is equal to  0 w i th in  th e  defau lt to lerance and tha t g ( 2) and 
g(3)  are less than  or equal to  zero as desired.

Add i t iona l  Arguments :  Avo id ing  Global  Var iab les
Param eters  th a t wou ld  o therw ise  have to  be declared as global can be passed 
d irec t ly  to  M - f i le  func t ions  using add it iona l a rgum en ts  at th e  end of th e  ca ll ing  
sequence.

For example, ente ring  a number of va r iab les  at th e  end of th e  call to  f s o l v e  

f s o l v e ( ' f u n ' , x 0, o p t i o n s , ' g r a d ' , p 1, p 2 , . . .  )

passes th e  a rgum en ts  d irec t ly  to  th e  func t ions  fu n  and grad when they are 
called,

f = f u n ( x , p 1, p 2 , . . .  ) 
df = gr a d ( x , p 1, p 2 . . .  )

Consider, for example, f in d ing  zeros of th e  funct ion  el l i  pj (u, m). The funct ion 
needs parameter mas well as inpu t u. To look for a zero near u = 3, for m = 0. 5

m = 0.5;
x = f so l  v e ( ' e l l i p j ' , 3 , [  ] , [  ] ,  m) 

re tu rns  

x =
3.0781
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Then, solve for th e  funct ion e l l i p j  .

f = e l l i p j ( x , m )  
f =

1 . 158e-11;

The  empty matr ices in th e  call to  f so l  ve im p ly  th a t  default options are used 
and th a t  a na ly t ic  g rad ien ts  are not provided.

Mul t iob ject ive  Examples
The previous examples involved problems w i th  a s ing le  objective funct ion. Th is  
section dem onstrates so lv ing problems w i th  m u lt iob jec t ive  func t ions  using 
l ea s t s q ,  mi ni max and at tgoal  . Included is an example of how to  opt im ize  
param eters  in a S IM ULINK model.

S IM U L IN K  Exam p le
Say you w an t to  op tim ize  th e  control param eters  in th e  S IM ULINK model 
o p t s i mmd l  . (Th is model can be found in th e  O p t im iza t ion  Toolbox d irectory. 
Note th a t S IM ULINK must be ins ta l led  on your system to  load th is  model.) The 
model inc ludes a non linear process p lant modeled as a S IM ULINK block d ia ­
gram shown in Fig. 1-1.

Figure 1-1: Plant wi t h  Actua tor Saturation

Actuator Model

©—HZ1 HZ
Limit Rate

Plant

1.5

50s3+a2.s2+a1.s+1 — иЭ
u y

The  p lant is an under-damped th i rd -o rde r  model w i th  actuator l im its .  The 
actuator l im i ts  are a sa tu ra t ion  l im i t  and a slew ra te  l im i t .  The  actuator sa tu ­
ration l im i t  cuts off inpu t va lues greater than  2 u n i ts  or less than  - 2  units . The 
slew ra te  l im i t  of th e  actuator is 0.8 units/sec. The open-loop response of th e  
system to  a step inpu t is shown in Fig. 1-2.
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Figure 1-2: Open-Loop Response

The problem is to  design a feedback control law th a t  t racks  a un it  step inpu t to  
th e  system. The closed-loop p lant is entered in te rm s  of th e  blocks w here  th e  
p lant and actuator have been placed in a h ierarchica l Subsystem block. A 
Scope block d isp lays outpu t tra jec to r ies  d u r in g  th e  design process. See Fig. 1-3.
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Figure 1-3: Closed-Loop Model

Tunable Variables are PID gains, Kp, Ki, and Kd.

One way t o  solve th is  problem is to  m in im ize  th e  error between th e  outpu t and 
th e  inpu t s ignal. The va r iab les  are th e  param eters  of th e  PID contro lle r. I f  you 
only need to  m in im ize  th e  error at one t im e  un it ,  it wou ld  be a s ing le  objective 
funct ion. But th e  goal is to  m in im ize  th e  error for all t im e  steps from  0 to  100, 
th u s  producing a m u lt iob jec t ive  funct ion (one funct ion for each t im e  step).

The  rou t ine  l eas t sq  is used to  perform  a least squares f i t  on th e  t ra ck in g  of th e  
output.  T h is  is defined v ia  a M A T L A B  funct ion in th e  f i le  t r a c k l  sq. mshown 
below th a t defines th e  e rror s ignal. The error signal is y o u t , th e  output com­
puted by ca ll ing  sim, m inus  th e  inpu t signal 1.

The  funct ion  t r a c k l  sq must run th e  s im u la t ion . When th e  s im u la t ion  begins, 
S IM ULINK assumes th e  va lues i t  needs are, by default,  in th e  base workspace. 
Use th e  ass igni  n command to  get your inpu t values, th e  va r iab les  you are op t i­
m iz ing, from  th e  ca ll ing  workspace to  th e  base workspace.

A f te r  choosing a solver using th e  si mset funct ion, th e  s im u la t ion  is run using 
si mi The s im u la t ion  is performed using a f ixed-step f i f th -o rde r  method to  100 
seconds. When th e  s im u la t ion  completes, th e  va r iab les  t o u t , x o u t , and yout 
a re now in th e  ca ll ing  workspace (that is, th e  workspace of t rackl  sq). The Out-  
port block is needed in th e  block d iagram  model for yout to  be nonempty after 
th e  s im u la t ion .
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Step 1: W r i te  an  M - f i le  t rack lsq .m :

f u n c t i o n  f = t r a c k l  sq(pi  d)
assi gn i n ( '  base' , ' K p ' ,  p i d ( 1 ) ) ;  % Move var i abl  es t o base workspace
assi g n i n ( '  base' , ' K i ' ,  p i d ( 2 ) ) ;
assi g n i n ( '  base' , ' K d ' ,  pi d ( 3 ) ) ;
opt = si mset( ' so l  ver '  , ' od e5 '  );  % Choose sol ver
[ t o u t , x o u t , y o u t ]  = s i m ( ' o p t s i n 1 , [ 0  100] , o p t );
f = y o u t-1 ;  % Compute e r r o r  s i gnal

Step 2: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
p i d0  = [ 0. 63 0. 0504 1.9688] % Set i n i t i a l  val  ues
opt i  ons = f o p t i  ons;
opt i  ons = [ 1 , 0 .  1,0.  1];
p i d  = l e a s t s q ( '  t r a c k l  sq'  , p i d0 ,  opt i  ons)

The vector opt i  ons passed to  l e a s t s q  defines th e  c r i te r ia  and d isp lay charac­
te ris t ics. I n th is  case you ask for outpu t and g ive te rm ina t ion  to lerances for the  
step and objective funct ion on th e  order of 0.1. The  optim iza t ion  gives th e  so lu­
t ion for th e  Proportiona l, In tegra l,  and D er iva t ive  (Kp, K , Kd) gains of th e  con­
t ro l le r  after 47 funct ion eva lua tions

f-COUNT RESI D STEP-SIZE GRAD/SD LAMBDA
4 16.8341 1 - 8 . 9 4

11 13.5356 1.44 3.83 12.5097
17 12.7714 0. 861 -0 .0311 12.8168
27 8.63314 147 0.00927 6.40838
34 7.53869 1.87 -0 .1 1 5 2. 10188
41 7.29827 1.24 -0 .00355 2.2295
47 7.25813 0.825 0.000338 2.24491

Opti mi za t i  on Terminat ed Successf ul l y
p id  =

2.1220 0.2614 9.4222 

The resu lt ing  closed-loop step response is shown in Fig. 1-4.
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Figure 1-4: Closed-Loop Response

NOTE The  call to  si mresults  in a call to  one of th e  S IM ULINK ODE solvers. A 
choice must be made about th e  type  of solver to  use. From th e  optim iza t ion  
point of view, a fixed-step solver is th e  best choice i f  th a t  is suff ic ient to  solve 
th e  ODE. I n th e  case of a s t i f f  system, a variab le-s tep  method may be 
required. The  numerica l so lution produced by a variab le-step solver, however, 
is not a smooth funct ion of param eters  because of step-size control mecha­
nisms. T h is  lack of smoothness may prevent th e  opt im iza t ion  rou t ine  from  
converging. T h is  error is not in troduced when a fixed-step solver is used. (For 
a fu r th e r  explanation, see So lv ing  O rd in a ry  D iffe rentia l Equa tions  I -- Non­
s t i f f  Problems, by E .Hairer, S.P. Norsett, G.Wanner, Springer-Verlag, pages 
183-184.) The  NCD Toolbox is recommended for so lv ing m u lt iob jec t ive  o p t im i­
zation problems in conjunction w i th  variab le-s tep  solvers in S IM ULINK; it pro­
vides a special num er ic  grad ient computation th a t w o rks  w i th  S IM ULINK and 
avoids in t roduc ing  th is  error.
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Anothe r so lution approach is to  use th e  mi ni max funct ion. In th is  case, ra ther 
than  m in im iz in g  th e  error between th e  outpu t and th e  inpu t s ignal, you m in i ­
mize th e  m ax im um  va lue  of th e  output at any t im e  t between 0 and 100. Then 
in th e  funct ion  t r  ackmm th e  objective funct ion  is s im p ly  th e  output re tu rned by 
th e  si mcommand. But m in im iz in g  th e  m ax im um  output at all t im e  steps may 
force th e  outpu t far below u n i ty  for some t im e  steps. To keep th e  outpu t above 
0.95 after th e  f irs t  20 seconds, add a constra in t yout >= 0 . 95 from  t=20 to  
t = 100. Since constra in ts  must be in th e  form  g <=0, th e  constra in t in th e  func­
tion is g = - y o u t (  20: 100) +. 95.

Step 1: W r i te  an  M - f i le  t ra c k m m .m :

f u n c t i o n  [ f , g ]  = t r  ackmm(pid)
assi g n i n ( ' base' , ' Kp' , pi d (1 ) )
assi g n i n ( ' base' , ' Ki ' , pi d( 2))
assi g n i n ( ' base' , ' Kd' , pi d( 3))
% Comput e f unc t  i on  v a l ue  
opt = si mset( ' so l  ver '  , ' od e5 '  );
[ t  out ,  xout , yout  ] = s i m( '  op t s i m2 ' , [ 0  100] , o p t ); 
f = y o u t ;
g = - y o u t ( 2 0 : 1 0 0 ) + . 9 5 ;  % Compute c o n s t r a i n t s

Step 2: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
pi d0 = [ 0. 63 0. 0504 1.9688] % Set i n i t i a l  val  ues
opt i  ons = f o p t i  ons;
opt i  ons = [ 1, 0 . 1, 0 . 1] ;
p i d  = mini max(' t r  ackmm', pi d0,opt  i ons)
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resu lt ing  in

f-COUNT MAX{ g} STEP Procedures
5 0.984114 1

10 1.52067 1 Hessian mod i f i e d  t w i ce ;
i n f e a s i b l e

15 1.70044 1
20 1.27149 1 Hessian mod i f i e d
25 1.12734 1
30 1.03251 1 Hessian mod i f i e d
31 1.00352 1 Hessian mod i f i e d

Opti mi zat io n  Converged Successf ul l y  
Act i  ve Const rai  nts:

126 
127 

p i d  =
1.3415 0.1756 6.9744

The  last va lue  shown in th e  MAX{ g} column of th e  output shows th e  m ax im um  
va lue  for all th e  t im e  steps is 1.00352 (the in i t ia l  va lue  in th is  column is 
sm aller, but th e  g constra in ts  are not satisfied at th e  in i t ia l  point). The  closed 
loop response w i th  th is  result is shown in Fig. 1-5.

T h is  so lution d if fe rs  from  th e  l eas t sq  so lution as you are so lv ing d if fe ren t 
problems.
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Figure 1-5: Closed-Loop Response

S igna l Processing Exam p le
Consider designing a l inear-phase F IR  (F in i te  Im pu lse  Response) f i l te r .  The 
problem is to  design a lowpass f i l te r  w i th  m agn itude  one at all frequencies 
between 0 and 0.1 H z  and m agn itude  zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a f i l te r  is defined by

H ( f ) = V  h ( n ) e- i 2 p fn

n = 0

= A (f ) e- i2 p fM 
м -1

A ( f)  = V  a ( n ) cos(2 p f n )
n (1-6 )n = 0

w here  A(f) is th e  m agn itude  of th e  frequency response. One solution is to  apply 
a goal a t ta inm en t method to  th e  m agn itude  of th e  frequency response. Given a 
funct ion th a t  computes th e  magnitude, th e  funct ion  a t t goa l  w i l l  a t tem p t to
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va ry  th e  m agn itude  coefficients a(n) u n t i l  th e  m agn itude  response matches th e  
desired response w i th in  some to lerance. The  funct ion  th a t  computes th e  mag­
n itude  response is given in f i l t m n . m  T h is  funct ion  takes a, th e  m agn itude  
funct ion  coeff icients, and w, th e  d iscret iza tion of th e  frequency domain w e  are 
interested in.

To set up a goal a t ta inm en t problem, you must specify th e  goal and weight s 
for th e  problem. For frequencies between 0 and 0.1, th e  goal is one. For f re ­
quencies between 0.15 and 0.5, th e  goal is zero. Frequencies between 0.1 and 
0.15 are not specified so no goals or w e igh ts  are needed in th is  range.

T h is  in fo rm a t ion  is stored in th e  va r iab le  goal passed to  a t t goa l  . The length 
of goal is  th e  same as th e  length re tu rned  by th e  funct ion f i l t m i n .  So th a t  th e  
goals are equally satisfied, usua lly  weight wou ld  be set to  abs(goal ) .  However, 
since some of th e  goals are zero, th e  effect of using weight = abs ( goa l )  w i l l  
force th e  objectives w i th  weight 0 to  be satisfied as hard constra in ts, and the  
objectives w i th  weight 1 possibly to  be undera tta ined  (see ‘‘T he  Goal A t ta in ­
ment Method '' section of th e  I n troduction to  A lg o r i th m s  chapter). Because all 
th e  goals are close in magnitude, using a weight of u n i ty  for all goals w i l l  g ive 
them  equal p r io r i ty .  (Using abs( goal ) for th e  w e igh ts  is more im p o r ta n t when 
th e  m agn itude  of goal d if fe rs  more s ign if ican t ly .)  Also, se tt ing  
opt i  ons( 15) =l engt h( goa l )  specifies th a t  each objective should be as near as 
possible to  i ts  goal va lue  (neither greater nor less than).

Step 1: W r i te  an  M - f i le  f i l tm in .m :
f u n c t i o n  [ y , g ]  = f i l t m n ( a , w )  
g = [ ] ;  % other  c o n s t r a i n t s
n = l eng t  h( a ) ; 
y = c o s ( w * ( 0: n - 1) * 2* p i )  *a;
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Step 2: In voke  co ns tra in ed  o p t im iz a t io n  rou t ine :
% Plot  w t h  i n i t i  al coef f i  ci ents  
a0 = o n e s (15, 1); 
i n c r  = 50;
w = l i  n space(0 , 0 . 5 , i n c r ) ;

y 0 = f i l t m n ( a 0,w);  
c l f ,  p l o t (  w , y 0 . ' - : ' ) ;  
dr awnow;

% Set up th e  goal a t t a i nment  p r ob l em 
w1 = l i n s p a c e ( 0, 0. 1, i  ncr )  ; 
w2 = l i n s p a c e ( 0 . 1 5 , 0 . 5 , i n c r ) ;  
w0 = [ w 1 w2 ] ;
goal = [ 1. 0* o n e s ( 1, l e n g t  h(w1) )  z e r o s ( 1, l e n g t h ( w 2) ) ] ;  
weight = ones ( s i ze (  g o a l ) );

% Call a t t  goal
opt i  ons = f o p t i  ons;
opt i  ons( 15) = l engt h( g o a l ) ;
a = a t t g o a l ( ' f i l t m n ' , a 0, goa l ,  wei ght ,  opt i  ons, [ ] , [ ] , [ ] ,  w0);

% Plot  w t h  t h e  opt i mized ( f i n a l )  coe f f  i c i e n t  s 
y = f i l t m n ( a , w ) ;  
ho l d  on, p l o t ( w , y , ' r ' )  
axi s ( [  0 0 . 5  -3  3] )

Compare th e  m agn itude  response computed w i th  th e  in i t ia l  coefficients and 
th e  f ina l coefficients (Fig. 1-6). Note th a t  th e  remez funct ion in th e  S ignal Pro­
cessing Toolbox could have been used to  design th is  f i l te r .
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Figure 1-6: Magni t ude Response wi t h  Initial and Final Magni t ude Coefficients
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Default  Parameter  Sett ings
The opt i  ons vector conta ins param eters  used in th e  op t im iza t ion  routines. If, 
on th e  f i rs t  call to  an optim iza t ion  routine, th e  opt i  ons vector is empty, a set 
of defau lt param eters  is generated. I f  any of th e  e lements of opt i  ons are zero, 
those elements are assigned defau lt values. I f  opt i  ons is present and has fewer 
than  18 elements, th e  rem a in ing  elements assume th e ir  defau lt values.

Some of th e  default options param eters  are calculated using factors based on 
problem size, such as opt i ons(  14).  O ther options are used only to  re tu rn  in fo r ­
mation, such as th e  va lue  of the  funct ion at th e  last evaluated point in 
opt i  ons( 8) .  O ptions th a t  are used only to  re tu rn  in fo rm a t ion  do not have 
default va lues and so N/A is shown as th e  default va lue  (Not Applicable). Some 
param eters  are dependent on th e  specific op t im iza t ion  rou t ine  and are docu­
mented in Chapter 3, Reference. The  param eters  in th e  opt i  ons vector are 
shown in th is  table.

Table 1-4: Option Parameters

No. Function Default Description

1 Display 0 Contro ls  amount of outpu t d u r in g  th e  op t im iza t ion  cycle. 
0 d isp lays no output;  1 d isp lays tabu la r  results; -1 sup­
presses w a rn in g  messages.

2 T erm ina t ion  for x 1e-4 Term ina t ion  cr ite r ion  th a t  is a measure of th e  worst case 
precision required of th e  independent variab les, x. The 
op tim iza t ion  does not te rm in a te  u n t i l  all te rm in a t io n  c r i ­
te r ia  have been met.

3 Term ina t ion  for f 1e-4 Term ina t ion  cr ite r ion  th a t is a measure of th e  precision 
required of th e  objective funct ion, f , at th e  so lution.

4 Term ina t ion  for g 1e-7 Term inat ion  cr ite r ion  used by at t goal  , const r, mini max, 
and semi nf th a t  is a measure of th e  worst case constra in t 
v io la t ion  th a t  is acceptable.

5 M a in  A lg o r i th m 0 M ain  op t im iza t ion  a lgo r i thm  selection.

6 SD A lg o r i th m 0 Search d irect ion a lgo r i thm  selection.
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Table 1-4: Option Parameters (Continued)

No. Function Default Description

7 Search A lg o r i th m 0 L ine  search a lgo r i thm  selection.

8 Function N/A Value of th e  funct ion at th e  last evaluated point. For 
at tgoal  and mi ni max, it conta ins an a t ta inm en t factor.

9 Grad ien t Check 0 When set to  1, th e  ana ly t ica l ly  supplied g rad ien ts  are 
compared w i th  those obtained from  a f in i te  d ifference cal­
cu lation d u r in g  th e  f i rs t  few ite ra tions. The  gradient 
funct ion must exist when th is  element is set to  1.

10 Function Count N/A Function evaluation counter.

11 Grad ien t Count N/A Num ber of func t ion  grad ient eva lua tions or f in i te  d i f fe r ­
ence grad ient calculations.

12 C onstra in t Count N/A Total number of constra in t g rad ient ca lcu lations or f in i te  
d ifference grad ient calculations.

13 E q ua l i ty  Con­
s tra in ts

0 Num ber of equa li ty  constra ints. E q ua l i ty  constra in ts  are 
placed in th e  f i rs t  e lements of th e  va r iab le  g.

14 M a x im u m  Func­
t ion Eva lua t ions

100n M ax im u m  number of funct ion evaluations. T h is  va lue  is 
set to  100 t im es  n, w here  n is th e  number of independent 
variables. In f m n s  th e  default is 200 t im es  n. In f m n  th e  
default is 500 t im es  n.

15 Objectives Used 0 Num ber of objectives to  be as near as possible to  the  
goals. Used by at t goal  .

16 M in im u m  P e r tu r ­
bation

1e- 8 M in im u m  change in va r iab les  for f in i te  d ifference g ra ­
d ient ca lcu lation. The  actual pe rtu rba tion  used is adap­
t iv e  to  increase accuracy of th e  grad ient ca lcu lation. It 
va r ies  between th e  m in im u m  and m ax im um  pe r tu rb a ­
tion.

17 M a x im u m  P e r tu r ­
bation

0.1 M ax im u m  change in va r iab les  for f in i te  d ifference g ra ­
d ient calculation.
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Table 1-4: Option Parameters (Continued)

No. Function Default Description

18 Step-size N/A Step-size parameter. Genera lly  on th e  f i rs t  i te ra t ion  th is
is set conservatively to  a va lue  of 1 or less, depending on 
th e  derivatives.

As an example, commands th a t change th e  f i rs t  tw o  te rm ina t ion  c r i te r ia  in Eq.
1-2 to  1e- 8  are shown below.

Changing the Defaul t  Sett ings Example
x 0 = [ - 1, 1] ;  % Mfeke a s t a r t i n g  guess at t he s o l u t i  on
o p t i o n s ( 1 )  = 1; % D i sp l ay  i n t e r m e d i a t e  r e s u l t s
o p t i o n s ( 2 )  = 1e-8; % T e r m i n a t i o n  c r i t e r i o n  on x
o p t i o n s ( 3 )  = 1e-8; % T e r m i n a t i o n  c r i t e r i o n  on f u n ( x )
x = fmi nu(  ' f u n ' , x 0 , op t i ons )

T h is  y ie lds a so lution after 63 funct ion evaluations.

x =
0.5000 -1 .0 0 0 0  

f u n ( x )  
ans =

3. 5145e-14

O n l ine  Help  for opt i  ons is ava i lab le  by typ in g  th e  command he l p  f o p t i o n s .  
The command f opt i ons ,  when called w i th o u t  arguments, re tu rns  th e  set of 
default parameters. I f  f o p t i o n s  is given an inpu t vector, it re tu rns  th e  set of 
default param eters  except w here  th e  inpu t vector has nonzero values.
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Return ing  the  D e fau lt  Se tt ings
opt i ons = f op t  i ons  
opt i  ons =

Col umns 1 t h r ough  7 
0 0 . 0001 0. 0001 0 . 0000 0 0 0 

Col umns 8 t h r ough  14
0 0 0 0 0 0 0 

Columns 15 t h r ough  18
0 0 .0000 0.1000 0

opt i  ons = f opt i ons( [  0 1e - 2] )  
o p t i o n s  =
Col umns 1 t h r ough  7

0 0 .0100 0.0001 0.0000 0 0 0 
Columns 8 t h r ough  14

0 0 0 0 0 0 0 
Columns 15 t h r ough  18

0 0 .0000 0.1000 0

Output  Headings
When opt i  o n s ( 1)=1 for a t t goa l  , c ons t r ,  c u r v e f i t  , fmi nu,  f so l  ve, l eas t  sq, 
mi ni max and semi n f , output is produced in column fo rm at. For fmi nu,  t he  
column headings are

f -  COUNT FUNCTI CN STEP-SIZE GRAD/ SD

where

• f -  COUNT is th e  number of funct ion  eva luations

• FUNCTION is th e  funct ion va lue

• STEP-SI ZE is th e  step size in th e  search d irection

• GRAD/SD is th e  g rad ient of th e  funct ion along th e  search direction.

For f s o l v e ,  l e a s t s q  and c u r v e f i t  th e  headings are

f -  COUNT RESI D STEP-SIZE GRAD/ SD LAMBDA
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w here  f-COUNT STEP-SIZE and GRAD/ SD are th e  same as for fm  nu, and

• RESID is th e  residual (sum-of-squares) of th e  funct ion
• LAMBDA is th e  1 k va lue  defined in th e  ‘‘Least Squares O p t im iz a t io n ” section 

of th e  In troduct ion  to  A lg o r i th m s  chapter. T h is  va lue  is p r in ted  only when 
th e  Levenberg-M arquard t method is used.

For cons t r  and seminf th e  headings are

f-COUNT FUNCTION MAX{ g} STEP Procedures
w here

• f-COUNT is th e  number of funct ion  eva luations

• FUNCTION is th e  funct ion  va lue

• MAX{g} is th e  m ax im um  constra in t v io la t ion

• STEP is th e  step size in th e  search d irection

• Procedures are messages about th e  Hessian update  and QP subproblem.

The Procedures messages are discussed in th e  ‘‘U pda t ing  th e  Hessian M a tr ix ' '  
section of th e  I n troduction to  A lg o r i th m s  chapter.

For a t t goa l  and mi ni max, th e  headings are th e  same as for const r except 
FUNCTI ON is om itted  because MAX{g} gives th e  m ax im um  goal v io la t ion  for at t -  
goal and th e  m ax im um  funct ion  va lue  for mi ni max.

Opt imiza t ion  of String Expressions Instead of 
M-Fi les
The rou tines  in th e  O p t im iza t ion  Toolbox also perform op tim iza t ion  on expres­
sions, avoid ing th e  need to  w r i te  M -f i les  th a t  define funct ions. Expressions are 
placed d irec t ly  in to  s tr ings  w i th o u t  p rov id ing  a funct ion  as an a rgum ent. I f  th e  
funct ion va r iab le  to  be evaluated (e.g., f un)  conta ins nona lphanum eric  charac­
te rs  (e.g., * ,- ,+ ,[  ), i t  is evaluated as an expression ra ther than  a funct ion  name.

When w r i t in g  such expressions, th e  independent va r iab le  must a lways be a 
lower-case x. An example of using an expression in place of a funct ion  a rgu ­
ment is

x = f m n u ( ' s i n ( x ) ' , 1 )  % Min i mi ze  s i n ( x )  s t a r t i n g  at 1 

Note th a t  th is  is  also equiva lent to  f m n u ( ' s i n ' ,  1).
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A  s im p le  squared problem is expressed as

x = f m n u ( '  x ( 1) A2+ x (2) A2' , [ 1; 1] )

which  can also be solved w i th  pa rt ia l der iva t ives

x = f m n u ( ' x ( 1) A2+x( 2 ) A2' , [ 1; 1] , [  ] ,  ' [ 2 * x ( 1); 2 * x ( 2) ] ' )

O ther examples using th is  techn ique  fo llow.

A m a tr ix  equation

x = f s o l v e ( ' x * x * x - [ 1 , 2 ; 3 , 4 ] ' , o n e s ( 2 ,  2) )

A  least squares problem

x = l eas t  sq( '  x * x - [ 3  5 ; 9  1 0 ] ' , e y e ( 2 ,  2) )

Function param eters  have th e  va r iab le  names P1 ,P2,P3,.. . , which can be used 
in th e  expression, for example,

x = a t t g o a l ( ' s o r t ( e i g (  P 1 + P 2 * x * P 3 ) ) ' , z e r o s ( 2 , 2 ) , . . .
[ - 5 ,  —3, —1],  [5,  3, 1] ,  [ ] , - 4 * o n e s ( 2 ) , 4 * o n e s ( 2 ) , [  ] , A , B , C ) ;

solves th e  problem deta iled in Chapter 3, Reference for a t t goa l  . Here th e  func­
t ion param eters  P1, P2, and P3 are set equal to  th e  va r iab les  A, B, and C. You 
cannot enter th e  va r iab le  names d irec t ly  in th e  expression using th e  names A, 
B, and C because th e  expression is not evaluated in th e  base workspace.

When using th e  rou t ines mi ni max and c o n s t r , th e  objective funct ion  and con­
s t ra in ts  must be named f and g, respectively. For example,

x = minimax( '  f = x * x - [ 1  2 ; 3  4] ;  g = [ ] ; ' , 1 0 0 * o n e s ( 2 ) ) ;  
x = const r ( ' f = x ( 1)A2+ x (2)A2 ; g = x + [ 1; - 2] ;  ' , [ 1; 1] , [ 1; 1] ) ;

There  are no constra in ts  in th e  examples above for mi ni max and c o n s t r . There­
fore, th e  constra in t m a tr ix  g is set to  th e  empty m atr ix .

Part ia l de r iva t ives  are supplied to  cons t r  and mini max in a s im i la r  way by 
using th e  va r iab le  gf for th e  funct ion 's  pa rt ia l de r iva t ives  and gg for th e  con­
s tra in t 's  part ia l der iva tives. An example is in th e  M -f i le  tutdemo. mi
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Pract ical i t ies
O ptim iza t ion  problems can take  many i te ra t ions  to  converge and can be sensi­
t iv e  to  numerica l problems such as trunca t ion  and round-o ff e rror in th e  calcu­
lation of f in i te  d ifference gradients. Most op tim iza t ion  problems benefit from 
good s ta r t in g  guesses. T h is  improves th e  execution efficiency and can help 
locate th e  global m in im u m  instead of a local m in im u m .

Complex problems are best solved by an evo lu t ionary  approach whereby a 
problem w i th  a sm aller number of independent va r iab les  is solved f i rs t .  Solu­
t ions  from  lower order problems can genera lly  be used as s ta r t in g  po in ts  for 
h igher order problems by using an app ropr ia te  mapping.

The use of s imp ler cost func t ions  and less s tr ingen t te rm ina t ion  c r i te r ia  in th e  
early stages of an optim iza t ion  problem can also reduce computation t im e. 
Such an approach often produces superior resu lts  by avoid ing local m in im a .

The O p t im iza t ion  Toolbox func t ions  can be applied to  a large va r ie ty  of prob­
lems. Used w i th  a l i t t le  “conventional w isdom ,” many of th e  l im i ta t io n s  associ­
ated w i th  op t im iza t ion  techn iques can be overcome. A d d it io na l ly ,  problems 
th a t  are not typ ica l ly  in th e  s tandard  form  can be handled by using an appro­
p r ia te  t rans fo rm a t ion . Below is a list of typ ica l problems and recommendations 
for dealing w i th  them:

Prob lem : The solution does not appear to  be a global m in im u m .

R ecom m enda t ion : There  is no guarantee  th a t  you have a global m in im u m  
unless your problem is continuous and has only one m in im u m . S ta r t in g  th e  
optim iza t ion  from a num ber of d if feren t s ta r t in g  po in ts  may help to  locate the  
global m in im u m  or ve r i fy  th a t  th e re  is only one m in im u m . Use d if fe ren t 
methods, w here  possible, to  ve r i fy  results.

P rob lem : The  f mi nu  funct ion  produces w a rn in g  messages and seems to  
exh ib it slow convergence near th e  so lution.

R ecom m enda t ion : I f  you are not supp ly ing  ana ly t ica l ly  determ ined g rad i­
ents and th e  te rm in a t io n  c r i te r ia  are s tr ingen t,  fmi nu  often exh ib its  slow con­
vergence near th e  so lution due to  trun ca t io n  error in th e  g rad ient calculation. 
Relaxing th e  te rm in a t io n  c r i te r ia  produces faster, a lthough less accurate, so lu­
t ions. Chang ing  th e  f in i te  d ifference pertu rba t ion  levels, opt i ons (16 :  17),  may 
increase th e  accuracy of g rad ient calculations.

1-31



1 Tutorial

P rob lem : Sometimes an op tim iza t ion  problem has va lues of x for w h ich  it is 
impossib le to  evaluate  f and g.

R ecom m enda t ion : Place bounds on th e  independent va r iab les  or m ake a pen­
a lty  funct ion to  give a large posit ive va lue  to  f and g when in fea s ib i l i ty  is 
encountered. For grad ient ca lcu lation th e  penalty  funct ion should be smooth 
and continuous.

P rob lem : The  funct ion th a t  is being m in im ized  has d iscont inu it ies .

R ecom m enda t ion : The deriva t ion  of th e  under ly ing  method is based upon 
funct ions  w i th  continuous f irs t  and second deriva tives. Some success may be 
achieved for some classes of d iscon t inu i t ie s  when they  do not occur near so lu­
t ion points, or i f  th e  f in i te  d ifference param eters  are adjusted in order to  ju m p  
over small d iscont inu it ies . The  var iab les  opt i  ons(16) and opt i  ons( 17) con­
tro l th e  pertu rba t ion  levels for x used in th e  ca lcu lation of f in i te  d ifference g ra ­
d ients. The pertu rba t ion , A x, is a lways in th e  range

o p t i o ns ( 16 )  < Dx < o p t i ons ( 17 )

Anothe r option is to  smooth th e  funct ion. For example, th e  objective funct ion 
m igh t inc lude a call to  an in te rpo la t ion  funct ion to  do th e  smoothing.

Prob lem : W a rn ing  messages are displayed.

R ecom m enda t ion : T h is  sometimes occurs when te rm ina t ion  c r i te r ia  are 
overly s tr ingen t, or when th e  problem is p a r t icu la r ly  sens it ive  to  changes in 
th e  independent variables. T h is  usua lly  ind icates t runca t ion  or round-off 
e rrors  in th e  f in i te  d ifference grad ient calcu lation, or problems in th e  polyno­
mial in te rpo la t ion  routines. These w a rn in gs  can usually  be ignored because 
th e  rou tines  continue  to  m ake steps tow ard  th e  so lution point; however, they 
are often an ind ication  th a t convergence w i l l  ta ke  longer than  normal. Scaling 
can sometimes im prove  th e  sens it iv i ty  of a problem.

Prob lem : The  independent variab les, x, only can ta k e  on discrete values, for 
example, integers.

R ecom m enda t ion : T h is  type  of problem occurs commonly when, for example, 
th e  va r iab les  are th e  coeffic ients of a f i l te r  th a t are realized using f in i te
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precision a r i th m e t ic  or when th e  independent var iab les  represent m ate r ia ls  
th a t  are m anufactu red  only in s tandard  amounts.

A lthough  th e  O p t im iza t ion  Toolbox func t ions  are not exp l ic i t ly  set up to  solve 
d iscrete problems, th e  problem can often be solved by f i rs t  so lv ing an equ iva­
lent continuous problem. D iscrete var iab les  can be progressively e lim ina ted  
from  th e  independent variab les, which are free to  vary.

E l im in a te  a d iscrete va r iab le  by round ing  it up or down to  th e  nearest best d is­
crete value. A f te r  e l im in a t in g  a discrete variab le , solve a reduced order 
problem for th e  rem a in ing  free variab les. H av ing  found th e  so lution to  the  
reduced order problem, e l im in a te  another d iscrete va r iab le  and repeat th e  
cycle u n t i l  all th e  d iscrete va r iab les  have been e lim ina ted .

d f i l  demo is a dem onstration rou t ine  th a t  shows how f i l te rs  w i th  fixed precision 
coefficients can be designed using th is  technique.

Prob lem : The m in im iza t ion  rou t ine  appears to  enter an in f in i te  loop or 
re tu rns  a so lution tha t does not sa tisfy th e  problem constra ints.

R ecom m enda t ion : Your objective, constra in t or g rad ient func t ions  may be 
re tu rn in g  Inf ,  NaN, or complex values. The  m in im iza t ion  rou tines  expect only 
real num bers to  be retu rned. A n y  other va lues may cause unexpected results. 
Insert some checking code in to  th e  user-supplied func t ions  to  ve r i fy  th a t  only 
real num bers are re tu rned  (use th e  funct ion i s f i  n i t e ) .

P rob lem : You do not get th e  convergence you expect from  th e  l eas t  sq 
routine.

R ecom m enda t ion : You may be fo rm ing  th e  sum of squares exp l ic it ly  and 
re tu rn in g  a scalar value. l eas t  sq expects a vector (or m a tr ix )  of funct ion 
va lues tha t are squared and summed in te rna l ly .
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2 Introduction to Algorithms

Parametr i c  Opt im iza t ion
T h is  chapter provides an in troduct ion  to  th e  d if fe ren t optim iza t ion  problem 
fo rm u la t ion s  used in th e  O p t im iza t ion  Toolbox and describes th e  a lgor i thm s.

P a ram etr ic  op t im iza t ion  is used to  f ind  a set of design parameters, 
x = { x 1 ,X2 ,xn } , th a t  can in some way be defined as opt im a l. In a s imp le  
case th is  may be th e  m in im iza t ion  or m ax im iza t ion  of some system characte r­
is t ic  th a t  is dependent on x. In a more advanced fo rm u la t ion  th e  objective func­
t ion, f(x), to  be m in im ized  or maxim ized, may be subject to  constra in ts  in th e  
form  of equa li ty  constra in ts, G j (x ) = 0 ( i = 1 ,m e) , inequa l i ty  constra ints, 
Gj (x ) < 0 ( i = m e + 1 , m ) ,  and/or parameter bounds, x | , x u .

A  General Problem (GP) description is stated as

minimize f  (x ) 
nx e Ш

subject to: G jx = 0 , i = 1 ,m e

G j (x ) < 0, i = m e + 1 ,m

x l <  x < x u (2 - 1 )

w here  x is th e  vector of design parameters, (x e Шn ), f(x) is th e  objective func­
tion th a t  re tu rns  a scalar va lue  ( f (x ): Шп ®  Ш ), and th e  vector funct ion G(x) 
re tu rns  th e  va lues of th e  equa li ty  and inequa l i ty  constra in ts  evaluated at x
( G (x ): Шп ®  Шm ).

An efficient and accurate so lution to  th is  problem is not only dependent on th e  
size of th e  problem in te rm s  of th e  number of constra in ts  and design variab les 
but also on character is t ics  of th e  objective funct ion and constra in ts. When both 
th e  objective funct ion and th e  constra in ts  are l inear func t ions  of th e  design 
variab le, th e  problem is known as a L inear P rogram m ing  problem (LP). Qua­
d ra t ic  P rogram m ing  (QP) concerns th e  m in im iza t ion  or m ax im iza t ion  of a qua­
d ra t ic  objective funct ion th a t  is l inear ly  constrained. For both th e  LP and QP 
problems, re l iab le  so lution procedures are read ily  available. M ore  d if f icu l t  to  
solve is th e  Non linear P rogram m ing  (NP) problem in which th e  objective func­
tion and constra in ts  may be non linear func t ions  of th e  design variab les. A  solu­
tion  of th e  NP problem genera lly  requires an i te ra t iv e  procedure to  establish a 
d irect ion of search at each major i te ra t ion . T h is  is usua lly  achieved by th e  solu­
tion  of an LP, a QP, or an unconstra ined sub-problem.
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Unconstrained Opt im iza t ion
Although  a w ide  spectrum of methods exists for unconstra ined optim iza t ion, 
methods can be broadly categorized in te rm s  of th e  d e r iva t ive  in fo rm a tion  tha t 
is, or is not, used. Search methods th a t  use only funct ion  eva lua t ions (e.g., the  
s implex search of Nelder and Mead [33]) are most su itab le  for problems th a t 
are very  non linear or have a number of d iscont inu it ies . G rad ien t methods are 
genera lly  more effic ient when th e  funct ion to  be m in im ized  is continuous in i ts  
f i rs t  der iva t ive . H igher order methods, such as Newton 's  method, are only 
rea lly  su itab le  when th e  second order in fo rm a t ion  is readily  and easily calcu­
lated since ca lcu lation of second order in fo rm a tion , using numerica l d i f fe re n t i ­
a tion, is com puta t iona lly  expensive.

G rad ien t methods use in fo rm a tion  about th e  slope of th e  funct ion to  d ic ta te  a 
d irect ion of search w here  th e  m in im u m  is though t to  lie. The simplest of these 
is th e  method of steepest descent in which a search is performed in a d irec­
t ion, - V f (x ) , (where V f ( x ) is  th e  grad ient of th e  objective funct ion). T h is  
method is very  ine ff ic ient when th e  func t ion  to  be m in im ized  has long narrow 
va lleys as, for example, is th e  case for Rosenbrock's funct ion

f ( x ) = 100(x, - x 2)2 + (1 - x . )2
1 2 1 (2 -2 )

The m in im u m  of th is  funct ion  is at x = [1,1] w he re  f ( x ) = 0 . A  contour map 
of th is  funct ion is shown in Fig. 2 -1 , along w i th  th e  so lution path to  th e  m in ­
im um  for a steepest descent im p lem en ta t ion  s ta r t in g  at th e  point [-1.9,2 ]. The 
optim iza t ion  was te rm ina ted  after 1000 i te ra t ions, s t i l l  a considerable d istance 
from  th e  m in im u m . The black areas are w he re  th e  method is con tinua lly  
zig-zagging from  one side of th e  va lley  to  another. Note th a t  tow ards  th e  center 
of th e  plot, a number of larger steps are taken when a point lands exactly at the  
center of th e  valley.
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Figure 2-1: Steepest Descent Method on Rosenbrock 's  Function (Eq. 2-2)

x i --------- *

T h is  type  of funct ion (Eq. 2-2), also known as th e  banana funct ion, is notorious 
in unconstra ined examples because of th e  way th e  cu rva tu re  bends around th e  
orig in . Eq. 2-2 is used th roughou t th is  section to  i l lu s t ra te  th e  use of a va r ie ty  
of o p t im iza t ion  techniques. The contours have been plotted in exponentia l 
increm ents  due to  th e  steepness of th e  slope su rround ing  th e  U-shaped valley.

Quas i -Newton  Methods
Of th e  methods th a t  use grad ient in fo rm a t ion , th e  most favored are th e  
quasi-Newton methods. These methods build  up cu rva tu re  in fo rm a t ion  at each 
i te ra t ion  to  fo rm u la te  a qua d ra t ic  model problem of th e  form

1 T T 
min ~x H x  + c x + b 

x 2
x (2-3)
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w here  th e  Hessian m a tr ix ,  H, is a posit ive de f in ite  sym m e tr ic  m a tr ix ,  c is a con­
s tant vector, and b is a constant. The optim al so lution for th is  problem occurs 
when th e  part ia l de r iva t ives  of x go to  zero, i.e.,

V f  (x * )  = H x *  + c = 0 (2 -4 )

The optimal so lution point, x *  , can be w r i t te n  as

x*  = - H  1 c (2-5)

N ew ton-type  methods (as opposed to  quasi-Newton methods) ca lcu late H 
d irec t ly  and proceed in a d irect ion of descent using a l ine  search method to  
locate th e  m in im u m  after a number of i te ra t ions . C a lcu la t ing  H num erica l ly  
involves a large amount of computation. Quasi-Newton methods avoid th is  by 
using th e  observed behavior of f(x) and V f (x ) to  bu ild  up cu rva tu re  in fo rm a ­
tion to  m ake an approx im ation  to  H using an app ropr ia te  updating  technique.

A  large number of Hessian upda ting  methods have been developed. Generally, 
th e  fo rm u la  of Broyden [3], F letcher [4], Go ld fa rb  [5], and Shanno [6] (BFGS) 
is though t to  be th e  most effective for use in a general purpose method.

The fo rm u la  is given by

BFGS

H k +1 H k +
q k qk. 

q 1 sk

H к sk skH k

(2 -6 )
w here  sk = x k + 1 -  x k

qk = V f (x k +1) -  V f ( x k)

As a s ta r t in g  point, H 0 can be set to  any sym m e tr ic  posit ive d e f in ite  m a tr ix ,  for 
example, th e  id e n t i ty  m a tr ix  I . To avoid th e  inversion of th e  Hessian H, you can 
der ive  an updating  method in which th e  d irect inversion of H is avoided by 
using a fo rm u la  th a t makes an approx im ation  of th e  inverse Hessian H -1 at 
each update. A  well known procedure is th e  DFP fo rm u la  of Davidon [7], 
Fletcher, and Powell [8]. T h is  uses th e  same fo rm u la  as th e  above BFGS 
method (Eq. 2-6) except th a t  qk is subst i tu ted  for Sk.
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The grad ient in fo rm a t ion  is e ither supplied th rough  ana ly t ica l ly  calculated 
gradients, or derived by part ia l de r iva t ives  using a numerica l d if fe ren t ia t ion  
method v ia  f in i te  differences. T h is  involves p e r tu rb ing  each of th e  design v a r i ­
ables, x, in t u r n  and ca lcu la t ing  th e  ra te  of change in th e  objective funct ion.

A t each major i te ra t ion , k, a l ine  search is performed in th e  d irection

d = - H -1 V f  (xk ) (2-7)

The quasi-Newton method is i l lu s t ra te d  by th e  so lution path on Rosenbrock's 
funct ion (Eq. 2-2) in Fig. 2 -2 . The method is able to  fo l low th e  shape of th e  
va lley  and converges to  th e  m in im u m  after 140 funct ion eva lua tions using only 
f in i te  d ifference gradients.

Figure 2-2: BFGS Method on Rosenbrock 's  Function

Line Search
Most unconstra ined and constrained methods use th e  so lution of a sub-problem 
to  y ie ld  a search d irect ion in which th e  solution is estimated to  lie. The
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m in im u m  along th e  l ine  formed from th is  search d irection is genera lly  approx­
imated using a search procedure (e.g., Fibonacci, Golden Section) or by a poly­
nomial method invo lv ing  in te rpo la t ion  or extrapo la t ion  (e.g., quadrat ic , cubic). 
Polynomia l methods app rox im a te  a number of po in ts  w ith  a u n iva r ia te  polyno­
mial whose m in im u m  can be calculated easily. In te rpo la t ion  refers to  th e  con­
d it ion  th a t  th e  m in im u m  is bracketed (i.e., th e  m in im u m  lies in th e  area 
spanned by th e  ava i lab le  points), whereas extrapo lat ion  refers to  a m in im u m  
located outside th e  range spanned by th e  ava i lab le  points. Ex trapo la t ion  
methods are generally  considered un re l iab le  for es t im ating  m in im a  for non­
l inear funct ions. However, they  are useful for es t im a t ing  step length when 
t ry in g  to  bracket th e  m in im u m  as shown in th e  “ L ine  Search Procedures” sec­
tion. Polynomia l in te rpo la t ion  methods are genera lly  th e  most effective in 
te rm s  of efficiency when th e  funct ion  to  be m in im ized  is continuous. The 
problem is to  f ind  a new ite ra te  xk + 1 of th e  form

x k +1 = x k + a *d  (2 -8 )

w here  xk denotes th e  curren t i te ra te, d th e  search d irect ion obtained by an 
app ropr ia te  method, and a *  is a scalar step length parameter th a t  is  th e  d is ­
tance to  th e  m in im u m .

Q u a d ra t ic  In te rp o la t io n
Q uad ra t ic  in te rpo la t ion  involves a data  f i t  to  a u n iva r ia te  funct ion  of th e  form 

m q(a )  = a a 2 + b a  + c (2-9)

w here  an ex trem um  occurs at a step length of

T h is  point may be a m in im u m  or a m ax im um . It  is a m in im u m  when in te rpo ­
lation is performed (i.e., using a bracketed m in im u m )  or when a is positive. 
D eterm ina tion  of coeff icients, a and b, can be found using any combination of 
th ree  grad ient or funct ion evaluations. It  may also be carr ied out w i th  jus t  tw o  
grad ient evaluations. The  coeffic ients are determ ined th rough  th e  fo rm u la t ion  
and solution of a l inear set of s im u ltaneous equations. Va r ious  s im p l i f ica t ions  
in th e  solution of these equations can be achieved when par t icu la r  characte r is ­
t ics  of th e  po in ts  a re used. For example, th e  f irs t  point can genera lly  be taken
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as a  = 0 .  O ther s im p l i f ica t ions  can be achieved when th e  po in ts  are evenly 
spaced. A  general problem fo rm u la  is as follows:

Given th re e  unevenly spaced points { x 1, x 2,x3  and th e ir  associated funct ion 
va lues { f (x 1) f (x 2) , f (x 3)} th e  m in im u m  resu lt ing  from  a second-order f i t  is 
given by

Q u a d ra t ic  In te rp o la t io n

1 P23f  ( x 1 ) + P 31 f  ( x 2 ) + P 12 f  (x 3 ) 
k + 1 2 g23f(x  1 ) + g 3 1 f ( x 2) + Y12 f  ( x 3

w here

Pij = x2 -  x2

Yij = x i -  x j (2 - 1 1 )

For in te rpo la t ion  to  be performed, as opposed to  extrapo la t ion, th e  m in im u m  
must be bracketed so th a t  th e  points can be arranged to  g ive

f (x 2) <  f (x 1) and f  (x 2) <  f (x 3)

C u b ic  In te rp o la t io n
C ub ic  in te rpo la t ion  is useful when g rad ient in fo rm a t ion  is read ily  ava i lab le  or 
when more than th ree  funct ion eva lua t ions have been calculated. It  involves a 
data  f i t  to  th e  u n iv a r ia te  funct ion

m c (a )  = a a 3 + b a 2 + ca + d (2 - 1 2 )

w here  th e  local extrem a are roots of th e  q ua d ra t ic  equation 

3 a a  2 + 2 b a  + c = 0

To f ind  th e  m in im u m  extrem um , ta ke  th e  root th a t  gives 6 a a  + 2 b as positive. 
Coeffic ients a and b can be determ ined using any combination of four grad ient 
or funct ion evaluations, or a lte rna t ive ly ,  w i th  jus t  th ree  g rad ient evaluations.
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The coefficients are calculated by th e  fo rm u la t ion  and solution of a l inear set 
of s im u ltaneous equations. A  general fo rm u la , given tw o  points, { x 1,x ^  , the ir  
corresponding g rad ien ts  w i th  respect to  x, { V f ( x 1) V f (x 2)}, and associated 
funct ion values, { f ( x 1) f ( x 2)} is

„ 4  V f  (x 2) + P2 -  P1
xk + 1 = x 2 -  (x2 -  x 1 ) V f (x 2) -  V f ( x 1 ) + 2 b 2

w here
f (x 1) - f (x 2)

b 1 = V f (x 1) + V f (x 2) -  3 x -  x------
A 1 Л П

(2-13)

b2 = (b 2 -  V fx 1 V f (x 2)) 1 / 2
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Q uas i -New ton  Imp lementa t ion
A quasi-Newton a lg o r i th m  is used in f m n u .  The a lgo r i thm  consists of tw o  
phases.

• D eterm ina tion  of a d irect ion of search

• L ine  search procedure

Im p lem enta t ion  de ta i ls  of th e  tw o  phases are discussed below.

Hessian Update
The d irect ion of search is determ ined by a choice of e ither th e  BFGS (Eq. 2-6) 
or th e  DFP method given in th e  “Quasi-Newton M ethods” section (set 
opt i  o n s (6) = 1 to  select th e  DFP method.). The Hessian, H , is a lways m a in ­
ta ined to  be posit ive  de f in ite  so th a t  th e  d irect ion of search, d, is  a lways in a 
descent d irect ion. T h is  means th a t for some a rb i t ra r i ly  small step, a , in the  
direct ion, d, th e  objective funct ion decreases in magnitude. Positive de f in ite ­
ness of H is achieved by ensuring  th a t  H is in i t ia l ized  to  be posit ive  d e f in ite  and 
therea fte r  q js k  (from Eq. 2-6) is a lways positive. The  te rm  qksk is a product 
of th e  l ine  search step length parameter, ak and a combination of th e  search 
direct ion, d, w i th  past and present grad ient evaluations,

q Tsk = ak (V f  (xk + 1) Td -  V f  (xk ) Td ) (2-14)

The condit ion th a t qksk is posit ive  is a lways achieved by ensuring  th a t  a suf­
f ic ien t ly  accurate l ine  search is performed. T h is  is because th e  search d irection, 
d, is a descent d irect ion so th a t  ak and - V f ( x k ) Td are a lways positive. Thus, 
th e  possible negative  te rm  V f(xk  +1 )Td can be made as small in m agn itude  
as required by increasing th e  accuracy of th e  l ine  search.

Line Search Procedures
Tw o l ine  search strategies are used depending on w he ther  g rad ient in fo rm a ­
tion is read ily  ava i lab le  or w he ther i t  must be calculated using a f in i te  d if fe r ­
ence method. When grad ient in fo rm a t ion  is available, th e  default is  to  use a 
cubic polynomia l method. When g rad ient in fo rm a t ion  is not available, the  
default is to  use a m ixed q ua d ra t ic  and cubic polynomia l method.
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C ub ic  P o lyno m ia l  M e thod
In th e  proposed cubic polynomia l method, a g rad ient and a funct ion evaluation 
is made at every i te ra t ion , k. A t  each i te ra t ion  an update  is performed when a 
new point is found, xk + 1 , which satisfies th e  condit ion th a t

f(xk  + 1 ) <  f (xk )  (2-15)

A t each i te ra t ion  a step, a k , is a ttem pted  to  form  a new ite ra te  of th e  form

x k + 1 = x k + a  kd (2-16)

I f  th is  step does not sa tisfy th e  condit ion (Eq. 2-15) then a k is reduced to  form  
a new step, ak + 1 . The  usual method for th is  reduction is to  use bisection (i.e., 
to  con t inua l ly  halve th e  step length u n t i l  a reduction is achieved in f(x). H ow ­
ever, th is  procedure is slow when compared to  an approach th a t  involves using 
grad ient and funct ion  eva lua tions together w i th  cubic in te rpo la t ion /ex trapo la ­
t ion methods to  iden t ify  estimates of step length.

When a point is found th a t  sa tisfies th e  condition (Eq. 2-15), an update  is per­
formed i f  q j s k  is positive. I f  it is not, then fu r th e r  cubic in te rpo la t ions  are per­
formed u n t i l  th e  u n iva r ia te  g rad ient te rm  V f (xk + 1)Td is su ff ic ien t ly  small so 
th a t  qTsk is positive.

I t  is usual practice to  reset a  k to  u n i ty  after every i te ra t ion . However, note th a t 
th e  qua d ra t ic  model (Eq. 2-3) is genera lly  only a good one near to  th e  solution 
point. Therefore, a k , is modif ied at each major i te ra t ion  to  compensate for th e  
case when th e  approx im ation  to  th e  Hessian is m onoton ica lly  increasing or 
decreasing. To ensure th a t ,  as x k approaches th e  so lution point, th e  procedure 
reverts  to  a va lue  of a k close to  un ity ,  th e  va lues of qTsk -  V f (xk )Td and a k + 1 
are used to  es t im a te  th e  closeness to  th e  solution point and th u s  to  control the  
va r ia t ion  in a k .

A f te r  each update  procedure, a step length a k is a ttempted , fo l low ing  w hich  a 
number of scenarios are possible. Consideration of all th e  possible cases is qu ite  
complicated and so they  are represented p ic to r ia l ly  in Fig. 2 -3 , w here  th e  
le ft-hand point on th e  graphs represents th e  point xk . The slope of th e  l ine  
b isecting each point represents th e  slope of th e  u n iv a r ia te  g rad ient, V f (x k )Td , 
w hich is a lways negative  for th e  le ft-hand point. The r igh t-hand  point is the  
point xk + 1 after a step of a k is taken in th e  d irect ion d.
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Figure 2-3: Cubic Pol ynomial  Line Search Procedures 

Case 1: f  (xk + 1) > f (xk ), V f (xk + 1)Td > 0

f  (x )
\ /

0 a k a k + 1 a 

Case 2: f (xk + 1) < f (xk ), V f (xk + 1)Td > 0 

\f  (x )

0 a  k a  k + 1 a

Reduce step length.

a k +1
a c/ 2 i f  ak < 0.1 

a c o therw ise

tk + 1 = m in{ 1 ,a c} ak + 1 = 0.9 a c

Case 3: f  (x k + 1) < f (x k), V f (x k + 1)Td < 0 

f  (x )

\

\

0 a  k a  k + 1
l k + '

Case 4: f(xk  + 1 ) >  f ( x k ) ,V f (x k  + 1 )Td < 0 w here  p = 1 + qkksk -  Vfxk + 1Td + m in {  0 ,a k  + 1}

f  (x )

\
\

Reduce step length.

0 a ka k +1 a
ak + 1 = m in {ac , a k / 2 }

a
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Cases 1 and 2 show th e  procedures performed when th e  va lue  
V f (xk + 1) Td is positive. Cases 3 and 4 show th e  procedures performed when 
th e  va lue  V f  (xk + 1) Td is negative. The notation min {a, b, c} refers to  th e  
smallest va lue  of th e  set {a, b, c}.

A t each i te ra t ion  a cubicly in terpo la ted  step length a c is calculated and then 
used to  adjust th e  step length parameter a k + 1 . Occasionally, for very non­
l inear func t ions  a c may be negative, in which case a c is given a va lue  of 2 ak . 
The methods for changing th e  step length have been refined over a period of 
t im e  by considering a large number of test problems.

C erta in  robustness measures have also been included so th a t ,  even in th e  case 
when fa lse grad ient in fo rm a t ion  is supplied, a reduction in f(x) can be achieved 
by ta k in g  a negative  step. T h is  is done by se tt ing  ak + 1 = - a  k /2 w h e n  a  k 
fa l ls  below a certa in th resho ld  va lue  (e.g., 1e-8). T h is  is im p o r ta n t  when 
extrem ely  h igh precision is required  i f  only f in i te  d ifference g rad ien ts  are a va i l ­
able.

M ix e d  C u b ic /Q u a d ra t ic  P o lyno m ia l M e th od
The cubic in te rpo la t ion /ex trapo la t ion  method has proved successful for a large 
number of optim iza t ion  problems. However, when a na ly t ic  de r iva t ives  are not 
available, th e  eva lua t ing  f in i te  d ifference g rad ien ts  is com puta t iona lly  expen­
sive. Therefore, another in te rpo la t ion /ex trapo la t ion  method is imp lem ented  so 
th a t  g rad ien ts  are not needed at every i te ra t ion . The approach in these c ircum ­
stances, when g rad ien ts  are not readily  available, is to  use a q ua d ra t ic  in te r ­
polation method. The  m in im u m  is genera lly  bracketed using some form  of 
bisection method. T h is  method, however, has th e  d isadvantage th a t all the  
ava i lab le  in fo rm a tion  about th e  funct ion is not used. For instance, a gradient 
ca lcu lation is a lw ays performed at each major i te ra t ion  for th e  Hessian update. 
Therefore, given th ree  po in ts  th a t  bracket th e  m in im u m , it is possible to  use 
cubic in te rpo la t ion , which is l ike ly  to  be more accurate than  using qua d ra t ic  
in te rpo la t ion . F u r th e r  efficiencies are possible if, instead of using bisection to  
bracket th e  m in im u m , extrapo lat ion  methods s im i la r  to  those used in th e  cubic 
polynomia l method are used.

Hence, th e  method th a t is used in f m n u ,  l eas t  sq, and f s o l v e  is to  f ind  th ree  
points th a t  bracket th e  m in im u m  and to  use cubic in te rpo la t ion  to  est im a te  the  
m in im u m  at each l ine  search. The estimation  of step length, at each m inor i te r ­
ation, j ,  is shown in Fig. 2-4 for a number of point combinations. The left-hand 
point in each graph represents th e  funct ion va lue  f (x 1) and u n iva r ia te  gra-
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dient V f (xk ) obtained at th e  last update. The r igh t-hand  po in ts  represent th e  
points accumulated in th e  m inor i te ra t ions  of th e  l ine  search procedure.

The te rm s  a q and a c refer to  th e  m in im u m  obta ined from  a respective qua­
d ra t ic  and cubic in te rpo la t ion  or extrapo la t ion. For h igh ly  non linear functions, 
a c and aq may be negative, in w hich  case they are set to  a va lue  of 2 ak so th a t 
they are a lways m a in ta ined  to  be positive. Cases 1 and 2 use q u a d ra t ic  in te r ­
polation w i th  tw o  points and one grad ient to  estimate  a t h i r d  point th a t 
brackets th e  m in im u m . I f  th is  fails, cases 3 and 4 represent th e  possib i l i t ies for 
changing th e  step length when at least th ree  po in ts  are available.

When th e  m in im u m  is f in a l ly  bracketed, cubic in te rpo la t ion  is achieved using 
one g rad ient and th ree  funct ion  evaluations. I f  th e  in terpo la ted  point is greater 
than  any of the  th ree  used for th e  in te rpo la t ion , then it is replaced w i th  th e  
point w i th  th e  smallest funct ion value. Fo llow ing  th e  l ine  search procedure th e  
Hessian update procedure is performed as for th e  cubic polynomial l ine  search 
method.
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Figure 2-4: Line Search Procedures wi t h  Only Grad ien t fo r  the First Point. 
Case 1: f  (x j ) >  f  (x k)

f  (x )
\

0 a  j a  j + 1 a 

Case 2: f (x j ) <  f (xk )

Reduce step length.

r
a j + 1 a  q

-
f  (x ) \

• 0 I ncrease step length.

* a 10 a  j a  j + 1
a  j + 1 = 1.2 aq

Case 3: f (xj + 1 ) <  f (xk )

f  (x ) \

aj + 2 = max{ 1 .2 a q, 2 aj + 1 }
0 aj aj + 1 aj + 2

Case 4: f  (xj + 1 ) > f  (x k)

f  (x )
\

0 a  j + 2 a  j + 1a  j
a j + 2 = a c

a

a
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Least Squares Opt im iza t ion
The l ine  search procedures used in conjunction w i th  a quasi-Newton method 
are used in th e  funct ion fminu.  They are also used as part of a non linear least 
squares (LS) op t im iza t ion  routine, l ea s t s q .  In t he  least squares problem a 
funct ion, f(x) is m in im ized  th a t  is a sum of squares.

LS

1 2 1 ж i 2
min n f (x ) = 21 F (x ) ||2 = 2 У  F- ( x) (2-17)

x e ЭТn 2 2 2 “  ii

Problems of th is  type  occur in a large number of practical app lica t ions espe­
c ia l ly  when f i t t in g  model func t ions  to  data, i.e., non linear parameter es t im a­
t ion. They are also prevalent in control w he re  you w an t th e  output,  y (x , t ) t o 
fo l low some continuous model tra jectory , f ( t ) ,  for vector x and scalar t. T h is  
problem can be expressed as

‘ 1
min n J (y (x, t ) -  f ( t ) )2d t (2-18)

x e Шn Jt2 v '

w he re  y (x, t ) and f (  t ) are scalar functions.

When th e  in tegra l is  discretized using a su itab le  qua d ra tu re  fo rm u la , Eq. 2-18 
can be fo rm u la ted  as a least squares problem

min n f  (x ) = У  (y (x, t i ) -  f (  t i ) ) 2 
x e ЭТn ^  i i

i = 1

(2-19)

w here  y and f  inc lude th e  w e igh ts  of th e  q ua d ra tu re  scheme. Note th a t  in th is  
problem th e  vector F(x) is

F ( x ) =

y (x, 1 1) -  f (  t 1) 

y (x, 12 ) -  f (  t 2 )

y (x, tm ) -  f (  tm )

In problems of th is  k ind  th e  residual || F (x ) || is l ike ly  to  be small at th e  
op t im um  since it is general practice to  set rea lis t ica l ly  achievable target
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trajectories. A lthough the function in LS (Eq. 2-18) can be m inim ized using a 
general unconstrained m inim ization technique as described in the  “Uncon­
strained O ptim iza tion” section, certain characteristics of the  problem can often 
be exploited to  improve the ite ra tive  efficiency of the  solution procedure. The 
gradient and Hessian m atrix  of LS (Eq. 2-18) have a special structure.

Denoting the  m x n Jacobian m atrix  of F(x) as J(x), the  gradient vector of f(x) 
as G (x) ,  the  Hessian m atrix  of f(x) as H (x ) ,  and the  Hessian m atrix  of each 
F j(x ) as H j(x ) ,  we have

G ( x ) = 2J ( x )TF (x )

H (x ) = 2 J (x ) TJ (x ) + 2 Q (x )
where

m

Q (x ) = £  Fj (x )• Hj ( x )
j = 1 (2-20)

The m atrix  Q(x) has the  property tha t when the residual || F (x ) || tends to  zero 
as xk approaches the  solution, then Q(x) also tends to  zero. Thus when 
|| F (x ) || is small at the  solution, a very effective method is to  use the 
Gauss-Newton direction as a basis for an optim ization procedure.

G a u s s - N e w to n  Method
I n the  Gauss-Newton method, a search direction, dk , is obtained at each major 
ite ra tion , k, tha t is a solution of the  linear least-squares problem

Gauss-Newton

min n II J (xk)dk -  F (xk) ||2 (2-21)
x e ЭТn 11 k k k 112

The direction derived from th is  method is equivalent to  the  Newton direction 
when the  term s of Q(x) can be ignored. The search direction dk can be used as 
part of a line  search strategy to  ensure tha t at each ite ra tion  the  function f(x) 
decreases.

To consider the  efficiencies tha t are possible w ith  the  Gauss-Newton method, 
Fig. 2-5 shows the  path to  the m in im um  on Rosenbrock's function (Eq. 2-2) 
when posed as a least squares problem. The Gauss-Newton method converges
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2 Introduction to Algorithms

after only 48 function evaluations using f in ite  difference gradients compared to 
140 ite ra tions using an unconstrained BFGS method.

The Gauss-Newton method often encounters problems when the  second order 
term  Q(x) in Eq. 2-20 is sign ificant. A method tha t overcomes th is  problem is 
the  Levenberg-Marquardt method.

Figure 2-5: Gauss-Newton Method on Rosenbrock's Function

L e v e n b e r g - M a r q u a r d t  Method
The Levenberg-Marquardt [18,19] method uses a search direction tha t is a 
solution of the  linear set of equations

(J (xk )TJ ( x ) + 1kl )dk = -J  (xk) F (xk) (2-22

where the s c a la r lk controls both the  m agnitude and direction of dk . When l k 
is zero, the  direction dk is identical to  tha t of the  Gauss-Newton method. As 
l k tends to  in fin ity , dk tends towards a vector of zeros and a steepest descent 
direction. Th is im plies tha t for some suffic ien tly  large Ik  , the  term
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F (xk + d k )<  F (xk) holds true. The term  Ik  can therefore be controlled to 
ensure descent even when second order terms, which restrict the  efficiency of 
the  Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction tha t is a 
cross between the  Gauss-Newton direction and the steepest descent. Th is is 
illus tra ted  in Fig. 2-6 below. The solution for Rosenbrock's function (Eq. 2-2) 
converges after 90 function evaluations compared to  48 for the  Gauss-Newton 
method. The poorer efficiency is partly  because the  Gauss-Newton method is 
generally more effective when the residual is zero at the  solution. However, 
such inform ation is not always available beforehand, and occasional poorer 
efficiency of the  Levenberg-Marquardt method is compensated for by its  
increased robustness.

Figure 2-6: Levenberg-M arquardt Method on Rosenbrock's Function
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Non l inear  Least Squares Imp lementa t ion
For a general survey of nonlinear least squares methods see Dennis [21]. Spe­
c ific  deta ils on the  Levenberg-M arquardt method can be found in More [20]. 
Both the  Gauss-Newton method and the Levenberg-M arquardt method are 
implemented in the  O ptim ization Toolbox. Details of the  im plem entations are 
discussed below.

G a u s s - N e w to n  I m p le m e n ta t i o n
The Gauss-Newton method is implemented using s im ila r polynomial line 
search strategies discussed for unconstrained optim ization. In solving the 
linear least squares problem (Prob. 2.18), exacerbation of the  conditioning of 
the  equations is avoided by using the  QR decomposition of J (xk) and applying 
the  decomposition to  F (xk ) (using the  MATLAB \ operator). Th is is in contrast 
to  inve rting  the explicit m atrix , J (xk )TJ (xk ) , which can cause unnecessary 
errors to  occur.

Robustness measures are included in the  method. These measures consist of 
changing the  a lgorithm  to  the  Levenberg-M arquardt method when either the  
step length goes below a threshold value (in th is  im plem entation 1e-15) or 
when the condition number of J (xk ) is below 1e-10. The condition number is 
a ra tio  of the  largest singular value to  the  smallest.

L e v e n b e r g - M a r q u a r d t  Im p le m e n ta t io n
The main d ifficu lty  in the  im plem entation of the  Levenberg-Marquardt 
method is an effective strategy for contro lling the  size of Ik  at each ite ra tion  so 
tha t it is efficient for a broad spectrum of problems. The method used in th is  
im plem entation is to  estim ate the re la tive non linearity  of f(x) using a linear 
predicted sum of squares fp (xk ) and a cubicly interpolated estim ate of the  m in­
im um  fk (x *) . In th is  way the  size o f lk  is determ ined at each ite ra tion .

The linear predicted sum of squares is calculated as

fp (xk) = (J(xk -1 ))  Tdk -1 + F ( x ) (2-23)

and the  term  fk (x * ) is obtained by cubicly in te rpo la ting  the  points f (xk ) and 
f (x k - 1) .  A step length parameter a* is also obtained from th is  in terpo lation, 

which is the  estimated step to  the  m inim um . I f  fp (xk) is greater than fk (x *) , 
then Ik  is reduced, otherwise it is increased. The jus tifica tion  for th is  is that
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the  difference between f p(xk ) and fk (x *) is a measure of the  effectiveness of 
the  Gauss-Newton method and the linea rity  of the  problem. This determ ines 
whether to  use a direction approaching the  steepest descent direction or the 
Gauss-Newton direction. The form ulas for the  reduction and increase in l k , 
which have been developed through consideration of a large number of test 
problems, are shown in Fig. 2-7 below.

Figure 2-7: Updating l  k

Follow ing the  update of l w , a solution of Eq. 2-22 is used to  obtain a search 
direction, dk . A step length of un ity  is then taken in the direction dk , which is 
followed by a line  search procedure s im ila r to  tha t discussed for the  uncon­
strained im plem entation. The line  search procedure ensures tha t 
f (xk + 1) < f (xk ) at each major ite ra tion  and the method is therefore a descent 

method.

The implem entation has been successfully tested on a large number of non­
linear problems. It has proved to  be more robust than the  Gauss-Newton 
method and ite ra tive ly  more efficient than an unconstrained method. The Lev- 
enberg-Marquardt a lgorithm  is the  default method used by le a s tsq . The 
Gauss-Newton method can be selected by setting opti ons( 5) = 1.
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Constrained Opt im iza t ion
In constrained optim ization, the  general aim is to  transform  the problem in to  
an easier subproblem tha t can then be solved and used as the  basis of an ite r­
a tive process. A characteristic of a large class of early methods is the  trans la ­
tion of the  constrained problem to  a basic unconstrained problem by using a 
penalty function for constraints, which are near or beyond the  constraint 
boundary. I n th is  way the  constrained problem is solved using a sequence of 
parameterized unconstrained optim izations, which in the  lim it (of the 
sequence) converge to  the  constrained problem. These methods are now consid­
ered re la tive ly ineffic ient and have been replaced by methods that have focused 
on the  solution of the  Kuhn-Tucker (KT) equations. The KT equations are 
necessary conditions for op tim a lity  for a constrained optim ization problem. I f  
the  problem is a so-called convex programm ing problem, tha t is, f(x) and 
Gj (x ), j = 1 ,..., m, are convex functions, then the  KT equations are both 

necessary and sufficient for a global solution point.

Referring to  GP (Eq. 2-1), the  Kuhn-Tucker equations can be stated as

m

f (x *) + £  1 j* • VG j (x*) = 0 

j = 1
VGj (x *) = 0 j = 1 , . ,  m e

1 j*>  0 j = m e + 1 , . ,  m (2-24)

The firs t equation describes a canceling of the  gradients between the objective 
function and the active constra ints at the  solution point. For the  gradients to  
be canceled, Lagrange M u ltip lie rs  (1j, j = 1 , .  m ) are necessary to  balance 
the  deviations in m agnitude of the  objective function and constraint gradients. 
Since only active constra ints are included in th is  canceling operation, 
constra ints tha t are not active must not be included in th is  operation and so 
are given Lagrange m u ltip lie rs  equal to  zero. Th is is stated im p lic itly  in the  
last tw o  equations of Eq. 2-24.

The solution of the  KT equations forms the basis to  many nonlinear program­
ming algorithm s. These algorithm s attem pt to  compute d irectly the  Lagrange 
m u ltip lie rs . Constrained quasi-Newton methods guarantee superlinear 
convergence by accumulating second order in form ation regarding the KT equa­
tions using a quasi-Newton updating procedure. These methods are commonly 
referred to  as Sequential Q uadratic Programming (SQP) methods since a QP
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sub-problem is solved at each major ite ra tion  (also known as Ite ra tive  
Q uadratic Programming, Recursive Q uadratic Programming, and Constrained 
Variab le  M etric  methods).

Sequent ia l  Q u a d r a t i c  P r o g r a m m i n g  (SQP)
SQP methods represent state-of-the-art in nonlinear programming methods. 
Schittowski [22], for example, has implemented and tested a version tha t out 
performs every other tested method in term s of efficiency, accuracy, and 
percentage of successful solutions, over a large number of test problems.

Based on the  work of Biggs [9], Han [10], and Powell [11,12], the  method allows 
you to  closely m im ic Newton's method for constrained optim ization jus t as is 
done for unconstrained optim ization. At each major ite ra tion  an approximation 
is made of the  Hessian of the  Lagrangian function using a quasi-Newton 
updating method. Th is is then used to  generate a QP sub-problem whose solu­
tion is used to  form a search direction for a line search procedure. An overview 
of SQP is found in Fletcher [2], G ill et al. [1], Powell [13], and Schittowski [14]. 
The general method, however, is stated here.

Given the problem description in GP (Eq. 2.1) the  principal idea is the  form u­
lation of a QP sub-problem based on a quadratic  approxim ation of the  
Lagrangian function.

m

L (x ,1 ) = f (x ) + £  l  • g, (x )

i = 1 (2-25)

Here Eq. 2.1 is sim plified by assuming tha t bound constraints have been 
expressed as inequa lity constraints. The QP sub-problem is obtained by linear­
izing the  nonlinear constraints.

QP Su bp ro b lem
1

minimize ~ d TH kd + V f (x k) Td 
d e Шn 2 k k

Vg, (xk) Td + g , (xk) = 0 i = 1 ,... m e 

Vg, (xk )Td + g, (xk )<  0 i = m e + 1 , .  m
(2-26)
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This sub-problem can be solved using any QP a lgorithm  (see, for instance, the 
“Q uadratic Programming Solution” section). The solution is used to  form  a new 
ite ra te

x k +1 = x k + a kd k

The step length parameter ak is determ ined by an appropria te line search 
procedure so tha t a sufficient decrease in a merit function is obtained (see the 
“Updating the  Hessian M a tr ix ” section). The m atrix  Hk is a positive defin ite  
approximation of the  Hessian m atrix  of the  Lagrangian function (Eq. 2-25). Hk 
can be updated by any of the  quasi-Newton methods, although the BFGS 
method (see the  section “ Updating the  Hessian M a tr ix ”) appears to  be the  most 
popular.

A nonlinearly constrained problem can often be solved in fewer ite ra tions than 
an unconstrained problem using SQP. One of the  reasons for th is  is tha t, 
because of lim its  on the  feasible area, the  optim izer can make well-inform ed 
decisions regarding directions of search and step length.

Consider Rosenbrock's function (Eq. 2-2) w ith  an additional nonlinear 
inequa lity constraint, g(x)

x 2 + x2 -  1.5 < 0 (2-27)

This was solved by an SQP im plem entation in 96 ite ra tions compared to  140 
for the  unconstrained case. Fig. 2-8 shows the  path to  the  solution point 
x = [0.9072,0.8228] s ta rting  at x = [-1 .9 ,2 ].
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Figure 2-8: SQP Method on Nonlinear Linearly Constrained Rosenbrock's 
Function
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SQP Implementa t ion
The MATLAB SQP im plem entation consists of th ree main stages, which are 
discussed brie fly in the  fo llow ing sub-sections:

• Updating of the  Hessian m atrix  of the  Lagrangian function
• Q uadratic programming problem solution
• L ine search and m erit function calculation

U p da t i ng  the Hessian M a t r i x
At each major ite ra tion  a positive defin ite  quasi-Newton approximation of the 
Hessian of the  Lagrangian function, H ,is calculated using the BFGS method 
where 1  (i = 1,...,m) is an estim ate of the  Lagrange m ultip lie rs .

Hessian U pdate (BFGS)

H k +1 H k +
q k q i  

qT sk Si H kSk
where

sk _ x k + 1 - x k (2-28)
n (  n A

qk = v f ( x k +1) + Z  1 i • V9 i(x k + 1 )-  V f(x k) + Z  1  • V9i (xk) 
i = 1 ^ i = 1

Powell [11] recommends keeping the Hessian positive de fin ite  even though it 
may be positive inde fin ite  at the  solution point. A positive defin ite  Hessian is 
m aintained providing qTsk is positive at each update and tha t H is in itia lized  
w ith  a positive defin ite  m atrix . When qTsk is not positive, qk is modified on 
an element by element basis so tha t qTsk > 0 . The general aim of th is  m odifi­
cation is to  d istort the  elements of qk , which contribute to  a positive defin ite  
update, as li t t le  as possible. Therefore, in the  in itia l phase of the  modification, 
the  most negative element of qk .* ̂ k is repeatedly halved. Th is procedure is 
continued un til qTsk is greater than or equal to  1e-5. I f  after th is  procedure, 
qTsk is s till not positive, qk is modified by adding a vector v m u ltip lied  by a 
constant scalar w, tha t is,

qk = qk + w v
(2-29)
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where

Vg, (xk + 1  )• g, (xk + 1 ) -  Vg, (xk )• g, (xk), i f  (qk), • w  < 0 and (qk), • (Sk), < 0

(, = 1 , .  m )
0, otherwise

and w  is system atically increased un til qTsk becomes positive.

The functions c o n s tr , mini max, at tgoal , and semi nf all use SQP. I f 
opti ons( 1) is set to  1, then various inform ation is given such as function 
values and the maximum  constraint v io la tion. When the  Hessian has to  be 
modified using the  firs t phase of the  procedure described above to  keep it posi­
tive  defin ite, then Hessian modi f ie d  is displayed. I f  the  Hessian has to  be 
modified again using the  second phase of the  approach described above, then 
Hessian modif ie d  t wi ce is displayed. When the QP sub-problem is infeasible, 
then infeasible w ill be displayed. Such displays are usually not a cause for 
concern but indicate tha t the  problem is highly nonlinear and tha t convergence 
may take longer than usual. Sometimes the  message no updat e is displayed 
ind ica ting  tha t qTsk is nearly zero. Th is can be an indication tha t the  problem 
setup is wrong or you are try in g  to  m in im ize a noncontinuous function.

Q u a d r a t i c  P r o g r a m m i n g  Solut ion
At each major ite ra tion  of the  SQP method a QP problem is solved of the  form 
where A, refers to  the i th row of the  m-by-n m atrix  A.

QP

minimize 
d e Жn

q (d ) = =5d THd + cTd

A,d = b, 

A,d < b,

m (2-30)

, = m e + 1, m

The method used in the  O ptim ization Toolbox is an active set strategy (also 
known as a projection method) s im ila r to  tha t of G ill et a ld e sc rib e d  in [16] and
[17]. It has been modified for both LP and QP problems.

The solution procedure involves tw o phases: the  firs t phase involves the calcu­
lation of a feasible point ( if one exists), the  second phase involves the  genera­
tion of an ite ra tive  sequence of feasible points tha t converge to  the solution. In
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th is  method an active set is maintained, Ak  , which is an estim ate of the  active 
constraints (i.e., which are on the  constraint boundaries) at the  solution point. 
V ir tu a lly  all QP algorithm s are active set methods. Th is point is emphasized 
because there exist many d ifferent methods tha t are very s im ila r in s tructu re  
but tha t are described in w idely d ifferent terms.

Ak  is updated at each ite ra tion , k, and th is  is used to  form a basis fo r  a search 
direction <3k . Equa lity  constraints always remain in the  active set, Ak  . The 
notation for the  variable, <3k , is used here to  d istinguish it from dk in the 
major ite ra tions of the  SQP method. The search direction, <3k , is calculated and 
m inim izes the objective function w h ile  rem aining on any active constraint 
boundaries. The feasible subspace for <3k is formed from _a basis, Z k whose 
columns are orthogonal to  the  estim ate of the  active set Ak (i.e., AkZk  = 0 ). 
Thus a search direction, which is formed from a linear summation of any 
combination of the  columns of Zk  , is guaranteed to  remain on the  boundaries 
of the  active constraints.

The m atrix  Z^  is formed from the  last m-l columns of the  QR decomposition of 
the  m atrix  Ak  , w h e re l is the  number of active constra ints and l < m. That is, 
Zk is given by

Having found Z k , a new search direction dk is sought tha t m inim izes q (d ) 
where <3k is in the  null space of the  active constraints, tha t is, <3k is a linear 
combination of the  columns of Z k : <3k = ZkP for some vector p.

Then if  we view our quadratic  as a function of p, by substitu ting  for <3k , we 
have

V q( p) is referred to  as the  projected gradient of the  quadratic  function because 
it is the  gradient projected in the  subspace defined by Zk . The term  Z T H Z k  is

Zk = Q [:, l + 1 :m ]

(2-31)

q ( p ) = 2 PJ Z T HZkP  + cTZkP (2-32)

D iffe ren tia ting  th is  w ith  respect to  p yields

Vq ( p ) = Z^-H Zkp  + Z ^ (2-33)
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called the  projected Hessian. Assuming the  Hessian m atrix  H is positive defi­
n ite  (which is the  case in th is  implem entation of SQP), then the  m in im um  of 
the  function q(p) in the  subspace defined by Zk occurs when Vq( p) = 0 , which 
is the  solution of the  system of linear equations

At each ite ra tion , because of the  quadratic  nature of the  objective function, 
there are only tw o choices of step length a . A step of un ity  along <3k is the  exact 
step to  the  m in im um  of the  function restricted to  the  null space of Ak  . I f  such 
a step can be taken, w ithou t vio lation of the  constraints, then th is  is the  solu­
tion to  QP (Eq. 2.31). Otherwise, the  step along <3k to  the  nearest constraint is 
less than un ity  and a new constraint is included in the  active set at the  next 
iterate. The distance to  the constraint boundaries in any direction <3k is given 
by

which is defined for constraints not in the  active set, and where the  direction 
< k is towards the  constraint boundary, i.e., A i<3k > 0, i = 1 ,..., m .

When n independent constraints are included in the  active set, w ithou t loca­
tion of the  m inim um , Lagrange m u ltip lie rs , 1 k are calculated tha t satisfy the 
nonsingular set of linear equations

I f  all elements of 1k are positive, xk is the  optimal solution of QP (Eq. 2.31). 
However, i f  any component of 1 k is negative, and it does not correspond to  an 
equality constraint, then the  corresponding element is deleted from the active 
set and a new ite ra te  is sought.

Z k H Z kp = -  Z Tc (2-34)

A step is then taken of the  form

xk +1 = xk + a < k where (3 k = Z T p (2-35)

(2-36)

(2-37)
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In itia liza tio n
The algorithm  requires a feasible point to  start. I f  the  current point from the 
SQP method is not feasible, then a point can be found by solving the  linear 
programm ing problem

minimize g 
y e « ,  x e Шn

A,x  = b, , = 1 , m e

A ,x -  g < b, , = m e + -I,..., m (2-38)

The notation A, indicates the i th  row of the  m atrix  A. A feasible point ( if one 
exists) to  Eq. 2.38 can be found by setting x to  a value tha t satisfies the 
equality constraints. Th is can be achieved by solving an under- or over-deter­
mined set of linear equations formed from the  set of equality constraints. I f  
there is a solution to  th is  problem, then the  slack variab le g is set to  the  
maximum inequa lity constraint at th is  point.

The above QP a lgorithm  is modified for LP problems by setting the  search 
direction to  the  steepest descent direction at each ite ra tion  where gk is the  
gradient of the  objective function (equal to  the  coefficients of the  linear objec­
tive  function)

d k = - Z kZ k g k (2-39)

I f  a feasible point is found using the above LP method, the  main QP phase is 
entered. The search direction <3k is in itia lized  w ith  a search direction d 1 found 
from solving the  set of linear equations

H d  1 = -gk (2-40)

where gk is the  gradient of the  objective function at the  current ite ra te  xk (i.e., 
Hxk + c ).

I f  a feasible solution is not found for the  QP problem, the  direction of search for 
the  main SQP routine  d k is taken as one tha t m inim izes g.
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Line Search and Mer i t  Funct ion
The solution to  the QP sub-problem produces a vector <k , which is used to  form 
a new ite ra te

x k +1 = x k + a <k (2-41)

The step length parameter ak is determ ined in order to  produce a sufficient 
decrease in a m erit function. The merit function used by Han [15] and 
Powell [15] of the  form below has been used in th is  implem entation

M erit F unction

Y (x ) = f (x ) + £  r i • 9i(x) + Z  r-i • m ax{0, g i(x )} 

i = 1 i = me + 1

Powell recommends setting the  penalty parameter

= ( rk + 1) i = max <j 1j, 2 ( ( r k) i + 1  i ) k  i = 1 , . ,  m

(2-42)

(2-43)

This allows positive contribution form constra ints tha t are inactive in the  QP 
solution but were recently active. I n th is  im plem entation, in it ia lly  the  penalty 
parameter r  is set to

P _ II V f(x ) ||
i II Vgi (x) II (2-44)

where || • || represents the  Euclidean norm.

This ensures larger contributions to  the  penalty parameter from constraints 
w ith  smaller gradients, which would be the  case for active constra ints at the 
solution point.

m
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Mult iob ject ive Opt im iza t ion
The rig id ity  of the  mathematical problem posed by the  general optim ization 
form ulation given in GP (Eq. 2-1) is often remote from that of a practical design 
problem. Rarely does a single objective w ith  several hard constraints 
adequately represent the  problem being faced. More often there  is a vector of 
objectives F (x ) = { F 1 (x ), F2(x ) ,..., Fm(x)}  tha t must be traded off in some 
way. The re la tive  im portance of these objectives is not generally known un til 
the  system's best capabilities are determ ined and trade-offs between the objec­
tives fu lly  understood. As the  number of objectives increases, trade-offs are 
like ly  to  become complex and less easily quantified. There is much reliance on 
the  in tu itio n  of the  designer and his or her ab ility  to  express preferences 
throughout the  optim ization cycle. Thus, requirements for a m ultiobjective 
design strategy are to  enable a natural problem form ulation to  be expressed, 
yet be able to  solve the  problem and enter preferences in to  a num erically trac­
tab le  and rea lis tic  design problem.

This section begins w ith  an introduction to  m ultiob jective optim ization, 
looking at a number of a lte rna tive  methods. A tten tion  is focused on the  Goal 
A tta inm ent method, which can be posed as a nonlinear program ing problem. 
A lgo rithm  improvements to  the SQP method are presented for use w ith  the 
Goal A tta inm ent method.

In t roduc t ion  to M u l t i ob je c t i v e  O p t im i z a t i o n
M ultiob jective  optim ization is concerned w ith  the m in im ization of a vector of 
objectives F(x) tha t may be the  subject of a number of constraints or bounds.

MO

minimize F (x ) 
x e Шn

G i(x ) = 0 i = 1, me 

G i (x )< 0  i = me + 1, m

x l < x < x u (2-45)

Note tha t, because F(x) is a vector, i f  any of the  components of F(x) are 
competing, there  is no unique solution to  th is  problem. Instead, the  concept of 
non in fe rio rity  [25] (also called Pareto op tim a lity  [24], [26]) must be used to  
characterize the  objectives. A noninferior solution is one in which an improve-
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ment in one objective requires a degradation of another. To define th is  concept 
more precisely, consider a feasible region, W, in the  parameter space x e Жn 
tha t satisfies all the  constraints, i.e.,

W = { x e Жn} 
subject to  gi (x) = 0 i = 1 ,..., me 

g i(x) < 0 i = m e + 1, m

x l < x < x u (2-46)

This allows us to  define the corresponding feasible region for the  objective func­
tion space Л

Л = { у e Ж™} where y = F (x ) subject to  x e W. (2-47)

The performance vector, F(x), maps parameter space in to  objective function 
space as is represented for a two-dimensional case in Fig. 2-9 below.

Figure 2-9: Mapping from Parameter Space into Objective Function Space.

A noninferior solution point can now be defined.

Defin ition: A point x * e W is a noninferior solution if  for some neighborhood of 
x * there does not exist a Ax such tha t (x * + Ax) e W and

F i(x* + Ax) < F i(x* ) 

Fj(x * + Ax) < Fj(x * )

i = 1 ,..., m 

for some j . (2-48)
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In the  two-dimensional representation of Fig. 2-10 the  set of noninferior solu­
tions lies on the  curve between C and D. Points A  and B represent specific 
noninferior points.

Figure 2-10: Set of N oninferior Solutions.

A  and B are clearly noninferior solution points because an improvement in one 
objective, F 1 , requires a degradation in the  other objective, F2 , i.e.,

F 1 B < F 1 A’ F2B > F2A .
Since any point in W tha t is not a noninferior point represents a point in which 
improvement can be attained in all the  objectives, it is clear tha t such a point 
is of no value. M ultiob jective  optim ization is, therefore, concerned w ith  the 
generation and selection of noninferior solution points. The techniques for 
m ultiobjective optim ization are w ide and varied and all the  methods cannot be 
covered w ith in  the  scope of th is  toolbox. However, some of the  techniques are 
described below.

W eighted Sum S trategy
The weighted sum strategy converts the  m ultiobjective problem of m in im iz ing  
the  vector F (x ) in to  a scalar problem by constructing a weighted sum of all the 
objectives.

W eighted Sum
I I I

linimize f  (x ) = X  W\ • F \ ( x )2 (2-49)
i = 1
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The problem can then be optim ized using a standard unconstrained optim iza­
tion algorithm . The problem here is in attaching w eighting coefficients to  each 
of the  objectives. The w eighting coefficients do not necessarily correspond 
d irectly to  the  re la tive  importance of the  objectives or allow trade-offs between 
the  objectives to  be expressed. Further, the  noninferior solution boundary may 
be nonconcurrent so tha t certain solutions are not accessible.

This can be illus tra ted  geometrically. Consider the  tw o objective case in Fig. 
2-11. In the  objective function space a line, L, w T F (x ) = c is drawn. The m in i­
m ization of Eq. 2-49 can be interpreted as find ing  the value of c for which L just 
touches the  boundary of Л as it proceeds outwards from the  orig in. Selection of 
weights w  1 and w  2 , therefore, defines the slope of L, which in tu rn  leads to 
the  solution point where L touches the  boundary of Л.

Figure 2-11: Geometrical Representation of the Weighted Sum Method.

nonconvex as shown in Fig. 2-12. In th is  case the  set of noninferior solutions 
between A  and В is not available.
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2

e-C onstra in t Method
A procedure tha t overcomes some of the  convexity problems of the  weighted 
sum technique is the  e -constraint method. This involves m in im iz ing  a prim ary 
objective, Fp , and expressing the  other objectives in the form of inequa lity 
constraints

subject to

minimize F_ (x ) 
x e W p

F i(x) £ ei i = 1 , m
(2-50)

i *  P

Fig. 2-13 shows a two-dimensional representation of the  e -constraint method 
for a tw o objective problem.
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Figure 2-13: Geometrical Representation of e-Constraint Method

minimize F 1(x ) subject to: F2X < e 2

This approach is able to  iden tify  a number of noninferior solutions on a 
nonconvex boundary tha t are not obtainable using the  weighted sum tech­
nique, for example, at the  solution point F 1 = F 1S and F2 = e 2 - A problem 
w ith  th is  method is, however, a su itab le  selection of e to  ensure a feasible solu­
tion. A fu rthe r disadvantage of th is  approach is tha t the  use of hard constraints 
is rarely adequate for expressing tru e  design objectives. S im ilar methods exist, 
such as tha t of W altz [31], which p rio ritize  the  objectives. The optim ization 
proceeds w ith  reference to  these p rio rities  and allowable bounds of acceptance. 
The d ifficu lty  here is in expressing such inform ation at early stages of the  opti­
m ization cycle.

In order for the  designers' tru e  preferences to  be put in to  a mathematical 
description, the  designers must express a fu ll table of the ir preferences and 
satisfaction levels for a range of objective value combinations. A procedure 
must then be realized tha t is able to  find  a solution w ith  reference to  th is . Such 
methods have been derived for discrete functions using the branches of s ta tis ­
tics known as decision theory and game theory (for a basic in troduction , see
[28]). Im plem entation for continuous functions requires su itab le  discretization 
strategies and complex solution methods. Since it is rare for the  designer to 
know such detailed inform ation, th is  method is deemed im practical for most 
practical design problems. It is, however, seen as a possible area for fu rthe r 
research.

What is required is a form ulation tha t is sim ple to  express, reta ins the 
designers preferences, and is num erically tractable.
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Goal  A t t a i n m e n t  Method
The method described here is the  Goal A tta inm ent method of Gembicki [27]. 
Th is involves expressing a set of design goals, F * = { F* ,F2 ,. . .F * * } , which is 
associated w ith  a set of objectives, F(x) = { F i(x) ^ ( x )  , . . . ,Fm(x) } . The 
problem form ulation allows the  objectives to  be under- or over-achieved 
enabling the  designer to  be re la tive ly imprecise about in itia l design goals. The 
re la tive  degree of under- or over-achievement of the  goals is controlled by a 
vector of w eighting coefficients, w  = { w  1, w 2, w m}, and is expressed as a 
standard optim ization problem using the  fo llow ing form ulation:

Goal A tta in m e n t

minimize g 
y e « , x e W

such tha t Fi(x) - W i  g£  F* i = 1 , . ,  m 51)

The term  Wig introduces an element of slackness in to  the  problem, which 
otherw ise imposes that the  goals be rig id ly  met. The w eighting vector, w, 
enables the  designer to  express a measure of the  re la tive  trade-offs between the 
objectives. For instance, setting the  w eighting vector, w, equal to  the  in itia l 
goals indicates tha t the  same percentage under- or over-atta inm ent of the 
goals, F *, is achieved. Hard constra ints can be incorporated in to  the design by 
setting a particu lar w eighting factor to  zero (i.e., wi  = 0). The Goal A tta inm ent 
method provides a convenient in tu it iv e  in terpre ta tion  of the  design problem, 
which is solvable using standard optim ization procedures. I llu s tra tive  exam­
ples of the  use of Goal A tta inm ent method in control system design can be 
found in Flem ing [29,30].

The Goal A tta inm ent method is represented geometrically in Fig. 2-14 for the  
two-dimensional problem.
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Figure 2-14: Geometrical Representation of Goal A tta inm ent Method.

minimize g subject to: F 1 (x ) - w  1 g< F* 
g, x e W 1 1 1

F2(x ) -  w 2g < F2

Specification of the  goals, { F * , F 2 } , defines the  goal point, P. The weighting 
vector defines the  direction of search from P to  the feasible function space, 
L(g) ■ D uring the optim ization g is varied, which changes the size of the  feasible 
region. The constraint boundaries converge to  the  unique solution point
F 1 S’ F 2S}

A l g o r i t h m  I m p r o v e m e n t s  f o r  Goa l  A t t a i n m e n t  
Method
The Goal A tta inm ent method has the  advantage tha t it can be posed as a 
nonlinear programm ing problem. Characteristics of the  problem can also be 
exploited in a nonlinear programm ing algorithm . In Sequential Q uadratic 
Programming (SQP) the  choice of merit function for the  line  search is not easy 
because, in many cases, it is d ifficu lt to  “define” the  re la tive  im portance 
between im proving the  objective function and reducing constraint vio lations. 
Th is has resulted in a number of d ifferent schemes for constructing the  m erit 
function (see, for example, Schittowski [22]). In Goal A tta inm ent programming
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there may be a more appropria te m erit function, which can be achieved by 
posing Eq. 2-51 as the  m inim ax problem

minimize max (Л ,}
X £ I '

F i ( X ) -  F f
where Л, = --------------  i = 1 , m

1 w i (2-52)

Follow ing the  argument of Brayton et al. [32] for m inim ax optim ization using 
SQP, using the  merit function of Eq. 2-43 for the  Goal A tta inm ent problem of 
Eq. 2-52, gives

y (x ,g ) = g + X  r, • max (0 , F i( x ) - w, g -  F * } (2-53)

i = 1
When the  m erit function of Eq. 2-53 is used as the  basis of a line  search proce­
dure, then, although y (  x, g) may decrease for a step in a given search direc­
tion, the  function max Л i may paradoxically increase. Th is is accepting a 
degradation in the  worst case objective. Since the  worst case objective is 
responsible for the  value of the  objective function g, th is  is accepting a step tha t 
u ltim a te ly  increases the objective function to  be m inim ized. Conversely, 
y (x ,g ) may increase when max Л, decreases im p ly ing  a rejection of a step that 
improves the worst case objective.

Follow ing the lines of Brayton et al. [32], a solution is therefore to  set y (x) 
equal to  the  worst case objective, i.e.,

y ( x ) = max Л i . (2-54)
I i

A problem in the Goal A tta inm ent method is tha t it is common to  use a 
w eighting coefficient equal to  zero to  incorporate hard constraints. The m erit 
function of Eq. 2-54 then becomes in fin ite  for a rb itra ry  v io la tions of the 
constraints. To overcome th is  problem w h ile  s till re ta in ing the  features of Eq. 
2-54 the  m erit function is combined w ith  tha t of Eq. 2-43 g iving the  following:

y (  x ) = X  
i = 1

r i • max (0 , F | ( x ) - w ,g -  F * } i f  w , = 0

max Л,, I = 1 , . ,  m otherwise
1 (2-55)

m

m
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Another feature tha t can be exploited in SQP is the objective function g. From 
the  KT equations (Eq. 2-24) it can be shown tha t the  approxim ation to  the 
Hessian of the  Lagrangian, H, should have zeros in the rows and columns asso­
ciated w ith  the  variab le  g. By in itia liz in g  H as the iden tity  m atrix , th is  prop­
erty does not appear. H is therefore in itia lized  and m aintained to  have zeros in 
the  rows and columns associated w ith  g.

These changes make the  Hessian, H, indefin ite , therefore H is set to  have zeros 
in the  rows and columns associated w ith  g, except for the  diagonal element, 
which is set to  a small positive number (e.g., 1e-10). Th is allows use of the  fast 
converging positive de fin ite  QP method described in the “Q uadratic Program­
ming Solution” section.

The above modifications have been implemented in a ttgoa l and have been 
found to  make the  method more robust. However, due to  the  rapid convergence 
of the  SQP method, the  requirement tha t the  m erit function s tr ic tly  decrease 
sometimes requires more function evaluations than an im plem entation of SQP 
using the  m erit function of (Eq. 2-43).
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Review
A number of d ifferent optim ization strategies have been discussed. The algo­
rithm s used (e.g., BFGS, Levenberg-Marquardt and SQP) have been chosen for 
the ir robustness and ite ra tive  efficiency. The choice of problem form ulation 
(e.g., unconstrained, least squares, constrained, m inim ax, m ultiobjective, or 
goal a tta inm ent) depends on the  problem being considered and the  required 
execution efficiency.
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3 Reference

This chapter contains descriptions of the  Optim ization Toolbox functions, 
listed alphabetically. I nformation is also available through the  online Help 
fac ility .
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N o n l i n e a r  M in im iz a t i o n

Function Purpose

at tgoal M ultiob jective  goal a tta inm ent

constr Constrained nonlinear m inim ization

fm in Scalar nonlinear m inim ization

fm inu, fm ns Unconstrained nonlinear m inim ization

lp Linear programming

mi ni max M in im ax optim ization

qp Q uadratic programming

semi nf S em i-in fin ite  m inim ization

Equat ion Solv ing

Function Purpose

\ Linear equation solving (see M ATLAB Language 
Reference guide)

fso l ve Nonlinear equation solving

fz e r o Scalar nonlinear equation solving
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Leas t -Squares (Curve f i t t i ng )

Function Purpose

\ L inear least squares (see M ATLAB Language Ref­
erence guide)

conl s Constrained linear least squares

cu rve fi t Nonlinear curve f itt in g

le a s ts q Nonlinear least squares

nnls Nonnegative linear least squares

Ut i l i ty

Function Purpose

fo p t ions Parameter settings

D e m o n s t ra t i o n s

Function Purpose

bandemo M in im iza tion  of the  banana function

df i l  demo Finite-precision filte r  design (requires Signal Pro­
cessing Toolbox)

goal demo Goal a tta inm ent example

optdemo Menu of demonstration routines

tutdemo Tutoria l walk-through
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attgoa l

P u rp o s e

S y n o p s is

D e s c r ip t io n

Solve m ultiobjective goal a tta inm ent problem,

minimize g such tha t F (x ) - w g < goal
x ,g

given F(x), w  and goal, where x , w  , and goal are vectors, g is a scalar v a r i­
able, and F (x ) is a function tha t re tu rns a vector value.

x = a ttg o a l( f un' ,x0, goal w)
x = a ttg o a l( f un' ,x0, goal w, opt ons)
x = a ttg o a l( f un' ,x0, goal w, opt ons, v lb ,vu b )
x = a ttg o a l( f un' ,x0, goal w, opt ons, v lb , vub, grad' )
x = a ttg o a l( f un' ,x0, goal w, opt ons, v lb , vub, grad' ,p1
[ x ,o p t ions] = a tt goal ( ' f u n ' ,  x0,

a ttgoa l solves the  goal a tta inm ent problem, which is one form ulation for m in i­
m izing a m ultiobjective optim ization problem.

x = a t tg o a l( ' fu n ',x 0 ,g o a l,w )  s ta rts  at x0 and solves the  goal a tta inm ent 
problem, given a weight vector wand a goal vector goal , for the  function 
defined in the  M -file  fun. mi

x = a t tg o a l( ' f u n ', x 0 ,  goal ,w, opti ons) uses the  parameter values in the 
vector opti ons rather than the  default option values.

x = a t tg o a l( ' f u n ', x ,g o a l ,  w,opt io n s ,v lb ,  vub) defines a set of lower and 
upper bounds on x through the matrices vl b and vub. Th is restricts the  solu­
tion to  the range v lb  <= x <= vub.

x = at tgoal ( ' fun ' ,x 0 ,g o a l, w, opt io n s ,v lb ,v u b , 'g ra d ' ) uses the  gradient 
in form ation calculated by the  function gr ad, defined in the  M -file  gr ad.m 
rather than the  default of approxim ating the  partia l derivatives via f in ite  
differencing.

x = a t tg o a l( ' f u n ', x 0 ,  goal ,w, opti ons, v lb ,v u b , ' grad' ,p 1 ,p 2 , . . . )  
passes the  problem-dependent parameters p1, p2, etc., d irectly to  the functions 
fun  and gr ad.
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A r g u m e n ts

[x ,o p t io n s ]  = a t tg o a l( 'fu n ',x 0 ,g o a l,w )  re tu rns  the  parameters used in 
the  optim ization method. For example, opti ons( 10) contains the number of 
function evaluations used.

fun  A s tring  containing the name of the  function tha t computes
the  objective function to  be m inim ized at the  point x. The 
function fun  re tu rns one argument: a vector value f,

f = fu n (x )

a ttgoa l a ttem pts to  m in im ize the  values in the  vector f to  
atta in the  goal values given by goal .

A lte rnative ly , a s tring  expression can be used w ith  x 
representing the  independent variables. For example,

x = a tt g o a l( 's in ( x . * x ) '  ,x0, goal ,w)

To make an objective function as near as possible to  a goal 
value, (i.e., neither greater than nor less than) set 
opt ions(15 ) to  the  number of objectives required to  be in the  
neighborhood of the  goal values. Such objectives must be 
partitioned in to  the  firs t elements of the  vector f returned by 
fu n .m

goal Vector of values tha t the  objectives attem pt to  a tta in . Prior
to  the  optim ization, it is generally unknown whether the 
objectives w ill be m inim ized less than the  goals (over 
a tta inm ent), or w ill only approach the goals (under 
atta inm ent).
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w

opti ons

A w eighting vector to  control the  re la tive  under-atta inm ent 
or over-attainm ent of the  objectives. When the  values of goal 
are all nonzero, to  ensure the same percentage of under- or 
over-attainm ent of the  active objectives, set the  weighting 
function w = a b s (g o a l) . (The active objectives are the set of 
objectives tha t are barriers to  fu rthe r improvement of the  
goals at the  solution.) When the  w eighting function w is 
positive, a ttgoa l a ttem pts to  make the  objectives less than 
the  goal values. To make the  objective functions greater than 
the  goal values, set w to  be negative rather than positive.To 
make an objective function as near as possible to  a goal value 
is described below under fun .

A vector of control parameters. Of the  18 elements of 
op tions , the  input options used by a ttgoa l are: 1, 2, 3, 4,
7, 9, 14, 15, 16, 17. When op tions  is an output parameter, 
the  options used by a ttgoa l to  re turn values are: 8, 10, 11,
18.

• o p tio n s (1 ) controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p tio n s (2 ) controls the  accuracy of x at the  solution.
• o p tio n s (3 ) controls the  accuracy of f  at the  solution.
• o p tio n s (4 ) sets the m aximum constraint v io lation tha t is 

acceptable.

The term ination  crite ria  invo lv ing opti o n s (2 ), opti ons( 3), 
and opti ons(4) must all hold tru e  for the  a lgorithm  to 
term inate.

The use of op tions(15 ) by a ttgoa l is discussed under the 
description of fun  above. The use of o p tio n s (7 ) and 
o p tio n s (8 ) by a ttgoa l is discussed in the “A lg o rith m ” 
section below. For more inform ation on the  opti ons vector, 
includ ing default settings, see the  fop t ions reference page 
and the  “Default Parameters Settings” section in the 
T u to ria l.
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grad A s tring  containing the name of the  function tha t computes
the  gradient of the  function at the  point x. Th is function has 
the  form

df = grad(x)

The variab le  df is a m atrix  where the  columns of df contain 
the  partia l derivatives for each of the  objectives respectively, 
(i.e., the  i th  column of df corresponds to  the  partia l 
deriva tive  of the  i th  objective w ith  respect to  each of the 
elements in x).

x0, See constr.

p1,p2-------

v lb ,v u b

Consider a linear system of d iffe rentia l equations.

An output feedback controller, K, is designed producing a closed loop system

= (A + B K C ) x + Bu 

= Cx

The eigenvalues of the  closed loop system are determ ined from the  matrices A,
B, C, and K using the  command ei g( A+B*K*C). Closed loop eigenvalues must lie 
on the  real axis in the  complex plane to  the  left of the  points [-5 ,-3 ,-1 ]. In order 
not to  sa turate the  inputs, no element in K can be greater than 4 or be less than 
-4 .

The system is a tw o-input, two-output, open loop, unstable system, w ith  
state-space matrices.

A =

-0.5 0 0 1 0

0 -2 10 B = 2 2

0 1 -  2 0 1_

C =
1 0 0 

0 0 1
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The set of goal values for the  closed loop eigenvalues are in itia lized  as

goal = [ - 5 , - 3 ,  -1 ] ;

To ensure the  same percentage of under- or over-attainm ent in the active objec­
tives at the  solution, the  w eighting m atrix , w, is set to  abs( g o a l) .

S ta rting  w ith  a controller, K = [0 ,0 ; 0 ,0 ],  firs t w r ite  an M -file.

Step 1: W rite  an M -file  fun.m :
fu n c t io n  F = f un( K ,A B ,C )
F = so rt(e ig (A + B *K *C )); % Evaluate o b je c tiv e s

Step 2: Enter system m atrices and invoke  an o p tim iza tio n  routine:
A = [ - 0 .5  0 0; 0 -2  10; 0 1 -2 ] ;
B = [1 0; 2 2; 0 1];
C = [1 0 0; 0 0 1];
K = zeros( 2,2) 
goal = [ - 5  -3  -1 ] ;

w = abs( goal)

v lb  = -4 *o n e s (s iz e (K )) ;

vub = 4 *o n e s (s ize (K ));

op tions  = 1;
[K ,op t ions] = . . .  

at tg o a l( 'fu n ',K ,g o a l

% I n i t i a l i z e  cont r o l le r  matr ix  
% Set goal va lues fo r  the  
% e igenva lues
% Set w fo r  same percentage 
% atta inm ent
% Set lower bounds on the  
% cont r o l le r
% Set upper bounds on the  
% cont r o l le r  
% Set d is p la y  parameter

w, opt io n s ,v lb ,v u b , [  ] ,A , B, C)
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D is c u s s io n

This example can be run by using the  demonstration script goal demo. A fter 118 
function evaluations, a solution is

Acti ve constra i nts:
1
2

K =
-4 .0000  0. 2564

4. 0000 -4 .0000 
fun( K, A, B,C) 
ans =

-6 .9313
-4 .1588
-1 .4099

The atta inm ent factor is opti ons( 8)

opti ons( 8) 
ans =

-0 .3863

The atta inm ent factor indicates tha t each of the  objectives has been 
over-achieved by at least 38.63% over the original design goals. The active 
constraints, in th is  case constra ints 1 and 2, are the objectives tha t are barriers 
to  fu rthe r improvement and for which the  percentage of over-attainm ent is met 
exactly.

In the  above design, the  optim izer tr ie s  to  make the  objectives less than the 
goals. For a worst case problem where the objectives must be as near to  the 
goals as possible, set o p tions (15 ) to  the  number of objectives for which th is  is 
required.

Consider the above problem when you want eigenvalues to  be equal to  the goal 
values. A solution to  th is  problem is found by invoking a ttgoa l w ith  
opti ons( 15) set to  3.

opti ons( 15) = 3;
[K ,op t ions ] = . . .
a t tg o a l( 'fu n ',K ,g o a l,w ,o p t io n s ,v lb ,v u b ,  [ ],A ,B ,C )

3 -1 0



attgoa l

N o te s
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After 37 function evaluations the  solution is

K =
-2 .4294 -0.4891 

3. 9999 -2 .0706

fun( K, A, B, C) 
ans =

-5 .0000
-3.0000
-1.0000

The atta inm ent factor is

opti ons( 8) 
ans =

1. 0859e-20

I n th is  case the optim izer has tried  to  match the objectives to the goals. The 
atta inm ent factor of 1.0859e-20 indicates tha t the  goals have been matched 
almost exactly.

Th is problem has d iscontinu ities when the eigenvalues become complex; th is  
explains why the  convergence is slow. A lthough the underlying methods are 
based on functions tha t are continuous, the  method is able to  make steps 
toward the solution since the  d iscontinu ities do not occur at the  solution point. 
When the objectives and goals are complex, a ttgoa l tr ies  to  achieve the  goals 
in a least-squares sense.

M ultiob jective  optim ization concerns the  m in im ization of a set of objectives 
sim ultaneously. One form ulation for th is  problem, and implemented in 
a ttg o a l, is the  goal a tta inm ent problem of Gembicki[1]. Th is enta ils the  
construction of a set of goal values for the  objective functions. M ultiob jective 
optim ization is discussed fu lly  in the  Introduction to A lgorithm s chapter.

In th is  im plem entation, the  slack variab le  g is used as a dummy argument to 
m in im ize the vector of objectives F (x ) sim ultaneously; goal is a set of values 
tha t the  objectives a tta in . Generally, prior to  the optim ization, it is unknown 
whether the  objectives w ill reach the goals (under a tta inm ent) or be m inim ized 
less than the goals (over atta inm ent). A w eighting vector, w  , controls the  re la­
tive  under-atta inm ent or over-attainm ent of the  objectives.
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L im ita t io n s  

See A ls o  

R e fe re n c e s

at tgoal uses a Sequential Q uadratic Programming (SQP) method, which is 
described fu lly  in the  I ntroduction to A lgorithm s chapter. M odifications are 
made to  the  line  search and Hessian. In the line search an exact merit function 
(see [5] and [6]) is used together w ith  the  m erit function proposed by [2, 3]. The 
line  search is te rm inated when either m erit function shows improvement. A 
modified Hessian, which takes advantage of special s tructu re  of th is  problem, 
is also used (see [5] and [6]). A fu ll description of the  modifications used is found 
in the  “Goal A tta inm ent M ethod” section of the  I ntroduction to A lgorithm s. 
Setting o p tio n s (7 ) = 1 uses the m erit function and Hessian used in c o n s tr .

opti ons(8) contains the value of g at the  solution. A negative value of g in d i­
cates over a tta inm ent in the  goals.

See also SQP im plem entation section in the  Introduction to A lgorithm s chapter 
for more deta ils on the  a lgorithm  used and the  display of procedures for 
opti ons( 1) = 1 setting.

The objectives must be continuous. at tgoal may give only local solutions.

c o n s tr , fo p t i ons

[1] F.W. Gembicki, “Vector O ptim ization for Control w ith  Performance and 
Parameter S ensitiv ity  Indices,” Ph.D. D issertation, Case Western Reserve 
Univ., Cleveland, Ohio, 1974.

[2] S.P. Han, “A G lobally Convergent Method For Nonlinear Program m ing,” 
Journal of Optim ization Theory and Applications, Vol. 22, p. 297, 1977.

[3] M.J.D. Powell, “A Fast A lgo rithm  for Nonlineary Constrained O ptim ization 
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Varleg, Vol. 630, 1978.

[4] P.J. Flem ing and A.P. Pashkevich, Computer Aided Control System Design 
Using a M ulti-O bjective O ptim isation Approach, Control 1985 Conference, 
Cambridge, UK, p. 174-179.

[5] R.K. Brayton, S.W. D irector, G.D. Hachtel, and L.V id igal, “A New Algo­
rithm  for S tatistical C ircu it Design Based on Quasi-Newton Methods and 
Function S p littin g ,” IEEE T  ransactions on C ircu its  and Systems, Vol. CAS-26, 
pp. 784-794, Sept. 1979.
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[6] A.C.W. Grace, “Com puter-A ided Control System Design Using O ptim iza­
tion Techniques” , Ph.D. Thesis, U n ivers ity  of Wales, Bangor, Gwynedd, UK, 
1989.

3 -1 3



conls

P u rp o s e

S y n o p s is

D e s c r ip t io n
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Solve the  constrained linear least-squares problem,

1 2
min I Ax -  b|L such tha t Cx < d 

x 2 2

where A  and C are matrices and b, d, and x are vectors.

x = conl s(A, b,C ,d)
x = conl s(A, b ,C ,d ,v lb )
x = conl s(A, b ,C ,d ,v lb ,v u b )
x = conl s(A, b ,C ,d ,v lb ,v u b , x0)
x = conl s(A, b ,C ,d ,v lb ,v u b , x0 ,n e q cs tr)
x = conl s(A, b ,C ,d ,v lb ,v u b , x 0 ,n e q c s tr ,d is p la y )
[ x , l  ambda, how] = conl s (A ,b ,C ,d , . . .  )

conl s solves the constrained linear least-squares problem.

x = co n ls (A ,b ,C ,d ) re tu rns a vector x tha t finds the least-squares solution to  
Ax=b subject to  C*x <= d.

x = con ls( A, b, C, d, v lb ,v u b ) sets lower and upper bounds on x. Th is restricts 
the  solution to  the  range v lb  <= x <= vub.

x = conl s( A, b ,C ,d ,v lb ,v u b , x0) sets the  in itia l s ta rting  point to  x0.

x = conl s(A, b ,C ,d ,v lb ,v u b , x0 ,n e q cs tr)  specifies tha t the  firs t neqcst r 
constra ints are equality constraints.

x = conl s(A, b ,C ,d ,v lb ,v u b , x 0 ,n e q c s tr ,d is p la y )  controls the  display of 
w arn ing messages.

[x,lambda] = co n ls (A ,b ,C ,d ) re tu rns values for the  Lagrange m u ltip lie rs  at 
the  solution in the  variab le  lambda.

[x, l ambda,how] = co n ls (A ,b ,C ,d ) also re tu rns a s tring  howthat indicates 
error conditions at the  final iteration.

A ,b The m atrix  A and vector b form  the  set of coefficients of the
over- or under-determined linear system to  be solved.
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C, d

v lb , vub

x0

neqcst r 

display

l ambda

how

The m atrix  C and vector d are the  coefficients of the  linear 
constraints. The coefficients for the  equality constraints 
must be partitioned in to  the  firs t rows of C and the firs t 
elements of d.

Upper and lower bound vectors. The variables, vl b and vub, 
are norm ally the  same size as x. However, i f  v lb  has n 
elements and less elements than x then only the  firs t n 
elements in x are bounded below; upper bounds in vub are 
defined in the same manner.

S tarting  vector. conl s generally s ta rts  its  search at the  point 
ze ros(s i z e ( x ) ) . Setting the  in itia l s ta rting  point can result 
in faster convergence. I f  the  problem is badly conditioned, 
th is  can also result in an improved solution.

Number of equality constraints.

Flag to  control the  display of w arn ing messages. The default 
value for the  parameter di sp lay  is 0, which displays warn ing 
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the  set of Lagrange m u ltip lie rs  at the  
solution. The length of lambda is
l eng th (b )+ leng t h(vl b) +l ength(vub) and the Lagrange 
m u ltip lie rs  are given in the  corresponding order: firs t the  
m u ltip lie rs  for A, then vl b, then vub.

A s tring  tha t indicates error conditions at the  solution. The 
s tring  how = ' i  n fe a s ib le ' indicates tha t the  problem is 
infeasible (i.e., the  constraints are overly restrictive); 
how = ' unbounded' indicates that the  problem has an 
unbounded solution; how = 'dependent' indicates tha t 
dependent equality constraints were detected and removed; 
how = ' ok' indicates tha t the  problem was solved w ithou t 
d ifficu lty.

As w ith  all O ptim ization Toolbox functions, empty matrices in the  calling 
sequence result in the  use of default options. For example, the  command

conl s(A, b, C ,d ,[ ] , [  ] , [  ] ,  l eng th (b ))
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indicates tha t the  problem is an equality constrained problem, having no upper 
or lower bounds on the  variables, and using a default s ta rting  point.

Find the least-squares solution to  the  over-determined system Ax  = b subject 
to  Cx < d and v lb < x < vub  .

Step 1: Enter the coe ffic ien t matrices:
A =

C

0 9501 0.7620 0. 6153 0. 4057
0 2311 0.4564 0. 7919 0. 9354
0 6068 0.0185 0. 9218 0. 9169
0 4859 0.8214 0. 7382 0. 4102
0 8912 0.4447 0. 1762 0. 8936

0 0578
0 3528
0 8131
0 0098
0 1388

0 2027 0. 2721 0. 7467 0. 4659
0 1987 0.1988 0. 4450 0. 4186
0 6037 0.0152 0. 9318 0. 8462

0 5251
0 2026
0 6721
= 0. 1*ones( 4, 1);
= 2*ones(4 ,1 );

v lb
vub

Step 2: Invoke the constra ined linea r least-squares routine:

[ x , l  ambda] = conl s(A, b ,C ,d ,v lb ,v u b )

b

d
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A lg o r i th m

D ia g n o s t ic s

This generates the  solution

x =
-0 .1000 
-0 .1000 

0. 2152 
0. 3502 

lambda =
0

0. 2392 
0

0. 0409 
0. 2784 

0 
0
0
0
0
0

The firs t th ree elements of the  Lagrange m u ltip lie rs  (i.e., lambda) are associ­
ated w ith  the  inequa lity  constraints. Nonzero elements of lambda indicate 
active constraints at the  solution. In th is  case, the  second linear inequa lity 
constraint and the  firs t tw o lower bound constra ints are active constra ints (i.e., 
the  solution is on the ir constraint boundaries).

The last tw o elements of the  Lagrange m u ltip lie rs  are associated w ith  the  
lower bounds on x. In th is  case, the  bounds are inactive.

con ls is based on qp, which uses an active set method s im ila r to  tha t described 
in [1]. It finds an in it ia l feasible solution by firs t solving a linear programming 
problem. See the quadra tic  programming method discussed in the  Introduction 
to A lgorithm s chapter.

con ls  gives a w arn ing when the  solution is infeasible:

Warning: The c o n s tra in ts  are o ve rly  s tr in g e n t;  
t her e is  no fe a s ib l e s o lu t i on.

In th is  case, con ls  produces a result tha t m inim izes the  worst case constraint 
vio lation.
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N o te s  

See A ls o  

R e fe re n c e s

When the  equality constra ints are inconsistent, con ls  gives

Warning: The eq u a l i t y  c ons t r a i n t s  are over l y  s t r i ngen t ;  
t here i s  no f eas i b l  e so l u t i  on.

Unbounded solutions, which can occur when the  Hessian H is negative 
sem idefinite, may result in

Warning: The s o l u t i o n  i s  unbounded and at i n f i n i t y ;  
t he c ons t r a i n t s  are not r e s t r i c t i v e  enough.

I n th is  case, conls re tu rns a value of x tha t satisfies the  constraints.

For problems w ith  no constraints, \ should be used: x= A\b. 

qp, \ , nnls.

[1] P.E. G ill, W. M urray, and M .H. W righ t, Practical O ptim ization, Academic 
Press, London, UK, 1981.
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Find the  m in im um  of a constrained nonlinear m u ltiva riab le  function,

min f (x ) such tha t G (x )<  0 
x

where x is a vector, G(x) is a function tha t re tu rns a vector, and f(x) is a func­
tion tha t re tu rns a scalar. Both f(x) and G(x) can be nonlinear functions. G(x) 
can define both equality and inequa lity  constraints.

x = c o n s t r ( ' f u n ' ,  x0)
x = c o n s t r ( ' f u n ' , x 0 , o p t i o n s )
x = c o n s t r ( ' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ' )
x = c o n s t r ( ' f u n ' , x 0 , o p t i o n s , v l b , v u b , ' g r a d ' , p 1 , p 2 ,  . . . )
[ x,opt  ions]  = const r ( ' f u n ' , x 0 ,  . . .  )
[ x,opt  i ons , l  ambda] = c o n s t r ( ' f u n ' ,  x0, . . .  )
[ x , o p t i o n s , l  ambda,hess] = c o n s t r ( ' f u n ' , x 0 ,  . . .  )

const r  finds the  constrained m in im um  of a scalar function of several variables 
s ta rting  at an in itia l estimate. Th is is generally referred to  as constrained 
nonlinear optim ization.

x = c o n s t r ( ' f u n ' , x 0 )  s ta rts  at the  point x0 and finds a m in im um  of the  func­
tion and constra ints defined in the  M -file  named fun. mi

x = c o n s t r ( ' f u n ' , x 0 , o p t i o n s )  uses the  parameter values in the vector 
opt i  ons rather than the  default option values.

x = c o n s t r ( ' f u n ' , x ,  opt i  ons ,v l b , vub)  defines a set of lower and upper 
bounds on x through the matrices vl b and vub. Th is restricts the  solution to 
the  range vl b <= x <= vub.

x = c o n s t r ( ' f u n ' ,  x0,opt  ions,  vl b, vub, ' g r a d ' )  uses the  gradient in form a­
tion calculated by the  function grad, defined in the M -file  grad.m rather than 
the  default of approxim ating the  partia l derivatives via f in ite  differencing.

x = const r ( ' f u n '  ,x0, opt i  o n s , v l b , v ub , ' g r ad '  , p 1 , p 2 , . . . )  passes the 
problem-dependent parameters p1, p2, etc., d irectly to  the  functions fun  and 
grad.
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[ x , op t  ions]  = const r ( ' f u n ' , x 0 )  re tu rns the  parameters used in the  op tim i­
zation method. For example, opt i ons(10)  contains the  number of function 
evaluations used.

[ x , op t i ons , l ambda]  = c o n s t r ( ' f u n ' , x 0 )  re tu rns the  vector lambda of the  
Lagrange m u ltip lie rs  at the  solution x.

[ x ,opt i ons, l ambda,hess]  = c o n s t r ( ' f u n ' , x 0 )  also re tu rns the  approxim a­
tion to  the Hessian at the  fina l iteration.

x0 S ta rting  vector.

fun  A s tring  containing the name of the  function tha t computes
the  objective function to  be m inim ized and the  constraint 
function at the  point x. The function fun  re tu rns tw o 
arguments: a scalar valued function f to  be m inim ized and a 
vector of constraint values g,

[ f , g ]  = f un(x)

When inequa lity constra ints are present, the  objective func­
tion f is m inim ized such tha t g <= z e r o s ( s i z e ( g ) ) .

Equa lity  constraints, when present, are placed in the  firs t 
elements of g. When using equality constraints, opt i  ons(13) 
must be set to  the  number of equality constra ints (see the  
“ Equa lity  Constrained Exam ple” section in the  T u to ria l).

A lte rna tive ly , a s tring  expression can be used w ith  x 
representing the  independent variables and w ith  f and g 
representing the  function and constraints. For example,

x = c o n s t r ( ' f  = f un ( x ) ;  g = c s t r ( x ) ; ' , x 0 )

v lb,  vub Upper and lower bound vectors. The variables, v lb  and vub, 
are norm ally the  same size as x. However, i f  vl b has n 
elements and fewer elements than x, then only the  firs t n 
elements in x are lower bounded; upper bounds in vub are 
defined in the  same manner.
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opt i ons

grad

A vector of control parameters. Of the  18 elements of 
opt i  ons, the  input options used by const r  are: 1, 2, 3, 4, 9, 
13, 14, 16, 17. When opt i ons is an output parameter, the 
options used by const r  to return values are: 8, 10, 11, 18.

• opt i ons(1)  controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f  at the  solution.
• opt i ons(4)  sets the m aximum constraint v io lation tha t is 

acceptable.

The term ination  crite ria  invo lv ing opt i  o ns ( 2 ) , opti  ons( 3), 
and opt i  ons(4) must all hold t rue for the  a lgorithm  to 
term inate.

For more inform ation on the  opt i  ons vector, includ ing default 
settings, see the  f o p t i o n s  reference page and the  “ Default 
Parameters Settings” section in the Tu to ria l.

A s tring  containing the  name of the  function tha t computes 
the  gradient of the  function and the gradient of the  
constra ints at the  point x. Th is function has the  form

[d f ,  dg] = grad(x)

The variab le  df is a vector tha t contains the partia l 
derivatives of f  w ith  respect to  x. The variab le  dg is a m atrix 
where the  columns of dg contain the  partia l derivatives for 
each of the  constraints respectively, (i.e., the  i th  column of dg 
corresponds to  the partia l deriva tive  of the  i th  constraint 
w ith  respect to  each of the  elements in x).
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Additiona l arguments to  be passed to  fun,  tha t is, when 
const r calls fun,  and grad when it exists, the  calls are

[ f , g ]  = f un(x, p1,p2, .. .)
[ d f , dg] = gr ad(x,p1,p2,  . . .

Using th is  feature, the  same M -file  can solve a number of 
s im ila r problems w ith  d ifferent parameters w h ile  avoiding 
the  need to  use global variables. Note tha t since all the 
argum ents preceding p1, p2, etc., in the  call to  const r  .m must 
be defined, empty matrices may be passed in for opt i  ons, 
v l b ,  vub, and ' grad '  to indicate tha t default arguments are 
to  be used, as in

x = c o n s t r ( ' f u n ' , x 0 , [ ] , [ ] , [ ] , [ ] , p 1 , p 2 ,  . . . )

A vector tha t re tu rns the  set of Lagrange m u ltip lie rs  at the 
solution. The length of lambda is
l ength(g)+ l  eng th( v l b )+ l eng th( vub)  and the  Lagrange 
m u ltip lie rs  are given in the corresponding order: firs t the 
m u ltip lie rs  for g, then vl b, then vub.

The Quasi-Newton approxim ation to  the  Hessian m atrix  at 
the  final ite ration.

E x a m p l e s  Find values of x tha t m in im ize f (x ) = - x 1 x 2x3 , s ta rting  at the  point
x = [10 10 10]  and subject to  the  constraints

-  x 1 -  2x2 -  2x3 < 0 

x 1 + 2 x2 + 2 x3 < 72.

Step 1: W rite  an M -file :
f u n c t i on  [ f , g ]  = fun(  x) 
f = - x (1)  * x( 2) * x ( 3 ) ;
g(1) = -x (1)  -  2 * x(2)  -  2 * x(3) ;  % Eval uate Const r a i n t s  
g( 2) = x(1)  + 2 * x( 2) + 2 * x(3)  -  72;

Step 2: Invoke an op tim iza tio n  routine:
x0 = [10 ,10 ,10 ] ;  % S t a r t i n g  guess at t he so l u t i  on
x = c o n s t r ( ' f u n ' ,  x0) % I nvoke opt imizer
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constr

A l g o r i t h m

L i m i t a t i o n s

N o t e s

See  A l s o

A fter 49 function evaluations, the  solution is

x =
24.0000 12.0000 12.0000 

[ f , g ]  = fun(x)  
f =

-3.4560e+03
g =

-72 0

const r  uses a Sequential Q uadratic Programming (SQP) method. In th is  
method, a Q uadratic Program ming (QP) subproblem is solved at each iteration. 
An estim ate of the  Hessian of the  Lagrangian is updated at each iteration 
using the  BFGS form ula (see fminu,  references [3, 6]).

A line search is performed using a m erit function s im ila r to  tha t proposed by
[1] and [2, 3]. The QP subproblem is solved using an active set strategy s im ila r 
to  tha t described in [4]. A fu ll description of th is  a lgorithm  is found in the 
“Constrained O ptim iza tion” section of the  Introduction to A lgorithm s chapter.

See also SQP im plem entation section in the  Introduction to A lgorithm s chapter 
for more deta ils on the  a lgorithm  used and the  display of procedures for 
opt i  ons( 1) = 1 setting.

The function to  be m inim ized and the  constra ints must both be continuous. 
const r  may only give local solutions.

When the  problem is infeasible, const r  a ttem pts to  m in im ize the  maximum 
constraint value.

The objective function and constraint function must be real-valued, tha t is they 
cannot return complex values.

I f  equality constraints are present and dependent equalities are detected and 
removed in the quadra tic  subproblem, 'dependent ’ w ill be printed under the 
Procedures heading (when output is asked for using opt i  ons ( 1)=1) . The 
dependent equalities are only removed when the  equalities are consistent. I f  
the  system of equalities is not consistent, the  subproblem is infeasible and 
' in f  easi bl e’ w ill be printed under the  Pr ocedures heading.

fminu,  f op t i  ons
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R e fe re n c e s [1] S.P. Han, “A G lobally Convergent Method for Nonlinear Program m ing,” 
Journal of Optim ization Theory and Applications, Vol. 22, 1977, p. 297.

[2] M.J.D. Powell, “The Convergence of Variab le  M e tric  Methods For N on lin ­
early Constrained O ptim ization Calculations,” Nonlinear Programm ing 3, 
(O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.) Academic Press, 
1978.

[3] M.J.D. Powell, “A Fast A lgo rithm  for Nonlineary Constrained O ptim ization 
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Verlag, Vol. 630, 1978.

[4] P.E. G ill, W. M urray, and M.H. W righ t, Practical O ptim ization, Academic 
Press, London, 1981.

3 -2 4



curvef i t

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve nonlinear cu rve-fitting  (da ta -fitting) problems in the  least-squares sense. 
That is, given input data xdata, the  observed output ydata, we want to  find 
coefficients x tha t “best-fit” the  equation F(x, xdata)

1 2 1 2
min 2 1| F(x,x d a ta ) - y d a ta 2 = 2 Z ( F (x, x d a t a i ) -  ydata i )

where xdata and ydata are vectors and F(x, xdata) is a vector valued function.

The function c u r v e f i t  uses the  same algorithm  as l eastsq.  I ts purpose is to 
provide an interface designed specifically for da ta -fitting  problems.

x = c u r v e f i t ( ' f u n ' , x 0 , x d a t a ,  ydat a)
x = c u r v e f i t ( ' f u n ' , x 0 , x d a t a ,  ydat a, opt ions)
x = c u r v e f i t ( ' f u n ' , x 0 , x d a t a ,  ydat a, op t i ons , '  grad ' )
x = c u r v e f i t ( ' f u n ' , x 0 , x d a t a ,  ydat a , op t i o n s , ' g r a d ' , p 1 , p 2 ,  . . .  )
[ x,opt  ions]  = c u r v e f i t ( ' f u n '  ,x0,  xdat a , ydata . . .  )
[ x , o p t i o n s , f u n v a l ]  = c u r v e f i t ( ' f u n ' , x 0 ,  xdat a, ydata . . .  )
[ x,opt  i o n s , f  unval , j  acob] = curvef  i t ( ' f u n ' , x 0 ,  xda ta , yda ta  . . .  )

curvef  i t  solves nonlinear da ta -fitting  problems.

curvef  i t  requires an user-defined function to  compute the vector-valued func­
tion F(x, xdata). The size of the  vector returned by the user-defined function 
must be the  same as the  size of ydata.

x = curvef  i t  ( '  fun'  , x0 , xda ta , yda t  a) s ta rts  at x0 and finds the  least squares 
m in im um  of the  functions described in the  M -file  fun.

x = curvef  i t  ( '  f u n ' ,  x0 , xdata, ydat  a, opt i  ons) uses the  parameter values in 
the  vector options rather than the  default option values.

x = c u r v e f i t ( ' f u n ' , x 0 , x d a t a ,  ydat a, op t i ons , '  grad ' )  calls the  function 
grad to obtain the partia l derivatives of the  functions

x = curvef  i t ( ' f u n ' ,  x0,xdata,  ydat a, op t i ons , '  gr a d ' , p 1 , p 2 , . . . )  passes 
parameters (i.e., p1, p2, etc.), d irectly to  the  function fun.
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A r g u m e n t s

[ x , o p t i on s ]  = c u r v e f i t ( ' f u n ' , x 0 , x d a t a , y d a t a )  re tu rns the  parameters 
used in the  optim ization. For example, opt i ons(10)  contains the number of 
function evaluations used.

[ x , op t  i ons , f unv a l ]  = c u r v e f i t ( ' f u n ' , x 0 ,  xdat a, ydata)  re tu rns the  func­
tion value fun(x )  at the  solution x.

[ x , op t i on s , f u n v a l , j ac o b ]  = c u r v e f i t ( ' f u n ' , x 0 , x d a t a , y d a t  a) also 
re tu rns the  approximation to  the  Jacobian of the  function at the  solution x.

fun  A s tring  containing the name of the  function tha t computes
the  equation to  be fitted  evaluated at the  point x. The 
function fun  re tu rns one argument: a vector-valued function 
f to  be m inim ized,

f = fun(  x, xdat a)

NOTE The sum of squares should not be formed exp lic itly .
I nstead your function should return a vector of function 
values. See the examples below.

grad A s tring  containing the name of the  function tha t computes
the  gradient of the  objective functions at the  point x. This 
function has the  form

df = gr ad(x, xdat a)

The variab le  df is a m atrix  tha t contains the  partia l 
derivatives of F w ith  respect to  x. The i th column of df 
corresponds to  the  partia l deriva tive  of the  i th function in f 
w ith  respect to  x. (This is the  transpose of the  Jacobian 
m atrix  of F(x).)
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E x a m p le s

op tions

x0, 

p1,p2, 
f unval 

j acob

• A vector of control parameters. O f the  18 elements of 
opti ons, the  input options used by curvef i t are: 1, 2, 3,
5, 7, 9, 14, 16, 17. When op tions  is an output parameter, 
the  options used by cu rve fi t to  re turn  values are: 8, 10, 11, 
18.

• opti ons( 1) controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p tio n s (2 ) controls the  accuracy of x at the  solution.
• o p tio n s (3 ) controls the  accuracy of f at the  solution.

The term ination  c rite ria  invo lv ing opti ons(2) and 
opti ons( 3) must both hold tru e  for the  a lgorithm  to 
term inate.

The use of o p tio n s (5 ) and o p tio n s (7 ) by c u rv e f it  is 
discussed in the  “A lg o rith m ” section below.

For more inform ation on the  opti ons vector, includ ing default 
settings, see the  fo p t io n s  reference page and the  “ Default 
Parameters Settings” section in the Tu to ria l.

See fm inu.

The value of the  function at the  solution x. 

The Jacobian of the  function at the  solution x.

Say you have a vectors of data xdata and ydata of length n, and you want to
find coefficients x to  find the best f it  to  the  equation
y d a ta ( i ) = x (1) + x (2) • e(xdata(i) + x(3)) ; tha t is, you want to  m in im ize 0 

i i

1 2
min 2  X ( F (x, x d a ta i) - y d a ta i)

i = 1

where F (x, x d a ta ) = x (1) + x (2) • e(xdata(i) + x(3)) , s ta rting  at the  point 
x= [0 .3 , 0. 4, 0. 1].
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Step 1: W rite  an M -file :
fu n c t io n  f = fu n (x ,x d a ta )
f = x (1 ) + x (2 )*e x p (x d a ta  + x (3 ) ) ;  %Note: f is  a vector

Step 2: Invoke an op tim iza tio n  routine:
% Assume: xdata and ydata e x is t and are the  same s ize
x0 = [0 .3  0 .4  0.1] % S ta r t in g  guess
x = c u r v e f i t ( ' f u n ', x 0 ,x d a t  a, ydat a) % Invoke opti mi zer

Note tha t at the  tim e  tha t cu rve fi t is called, we assume tha t xdat a and ydat a 
both exist and tha t they are the  vectors of the  same size. Th is is necessary as 
the  value f returned by fun  must be the  same size as ydata.

A fter 41 function evaluations, th is  example gives the  solution:

x =
0. 25783 0. 25783 

sum (fun (x ,xda ta ) . *  fu n (x ,x d a ta ))%  res idua l or sum of squares 
ans =

124.3622

The choice of a lgorithm  is made by setting opt io n s (5 ) . The default is the 
Levenberg-Marquardt method [1-3]. Setting o p tio n s (5 ) = 1 im plem ents a 
Gauss-Newton method [4], which is generally faster when the  residual 
|| F (x, x d a ta ) - y d a ta  2 is small.

The default line search a lgorithm , opti ons(7) = 0, is a safeguarded mixed 
quadratic  and cubic polynomial in terpolation and extrapolation method. A 
safeguarded cubic polynomial method can be selected by setting 
opti ons(7) = 1. Th is method generally requires fewer function evaluations 
but more gradient evaluations. Thus, if  gradients are being supplied and can 
be calculated inexpensively, the  cubic polynomial line  search method is prefer­
able. The a lgorithm s used are described fu lly  in the  Introduction to A lgorithm s 
chapter.

The function to  be m inim ized must be continuous. c u rv e f it  may only give local 
solutions.

curvef i t  only handles real variables (the user-defined function must only 
return real values). When x has complex variables, the  variables must be split 
in to  real and im aginary parts.
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R e fe re n c e s

fo p t io n s , le a s t sq, \ , l l s ,  nn ls.

[1] K. Levenberg, “A Method for the  Solution of Certain Problems in Least 
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm  for Least-squares Estim ation of Nonlinear 
Parameters,” SIAM J.  Appl. M ath. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and 
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics 
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares” , State of the  A rt in Numerical 
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
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P u rp o s e

S y n o p s is

D e s c r ip t io n

Find the m in im um  of a function of one variab le  on a fixed in terva l, 

min f (a ) such tha t a1 < a < a 2

where a, a1 , and a2 are scalars and f(a) is a function tha t re tu rns a scalar.

a = f m n ( ' f u n ' , a 1 , a 2 )
a = f m n ( ' f u n ' , a 1 , a 2 ,  op tions)
a = f m n ( ' f u n c t i o n ' , a 1 , a 2 , o p t i o n s , p 1 , p 2 ,  . . . )
[ a ,opt  ions]  = f m n ( ' f  unc t i on ' , a1 , a2 ,  .. . )

fmin finds the  m in im um  of a function of one variab le  w ith in  a fixed in terva l.

a = f m n ( '  f u n ' ,  a1,a2) re tu rns a value of x tha t is a local m in im izer of fun( a) 
on the in terva l a1 < a < a2.

a = f m n ( ' f u n ' , a 1 , a 2 ,  opt i ons)  uses the parameter values in the  vector 
opti ons rather than the  default option values.

a = f m n ( ' f u n ' , a 1 , a 2 ,  opt i ons ,p1,p2,  . . . )  passes the  problem-dependent 
parameters p1, p2, etc., d irectly to  the  function fun.

[ a ,opt  ions]  = f m n ( ' f u n ' , a 1 ,  a2) re tu rns the  parameters used in the  opti­
m ization method. For example, opti ons(10) contains the number of function 
evaluations used.
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A r g u m e n t s fun

a1, a2 

opt i ons

p1, p2,

A s tring  containing the  name of the  function tha t computes 
the  objective function to  be m inim ized at the  point x. The 
function fun  re turns one argument: a scalar valued function f 
to  be m inim ized,

[ f ]  = fun(x)

A lternative ly , an expression can be substituted for the  
function name, w ith  x representing the  independent variable. 
For example, a = f m n ( ' s i n ( x * x ) ' , a 1 , a 2 )  ( we have been 
using a's to  emphasize tha t th is  function is for 
one-dimensional problems only; here x must be used as the  
independent variab le  in the  s tring  expression).

In terva l over which fun  is m inim ized.

A vector of control parameters. Of the  18 elements of 
opti ons, the  input options used by fmin are: 1, 2, 14.
When opti ons is an output parameter, the  options used by 
fmin to re turn  values are: 8, 10.

• opti ons( 1) controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(14)  sets the  maximum number of function evalua­

tions.

For more inform ation on the  opt i ons vector, includ ing default 
settings, see the f opt i ons reference page and the  “ Default 
Parameters Settings” section in the  T u to ria l.

A dditiona l arguments to  be passed to  fun,  tha t is, when fmin 
calls fun, the  call is

[ f , g ]  = f un(x ,p1,  p2, .)

Using th is  feature, the  same M -file  can solve a number of 
s im ila r problems w ith  d ifferent parameters w h ile  avoiding 
the  need to  use global variables.
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A m in im um  of sin (a ) occurs at

a = f m n ( ' s i n ' , 0 ,  2 *pi ) 
a =

4.7118

The value of the  function at the  m in im um  is

y = s i n(  a) 
y =

-1 .0000

To find  the  m in im um  of the  function

f  (a ) = (a -  3 )2 -  1 

on the in terva l (0,5), w rite  an M -file , and then invoke fmin.

Step 1: W rite  an M -file :
f u n c t i on  f = fun(  a) 
f = ( a -3 ). л2 -  1;

Step 2: Invoke an op tim iza tio n  routine:
a = f m n ( ' f u n ' , 0 , 5 )

This generates the  solution

a =
3

The value at the  m in im um  is

y = f (  a) 
y =

-1

fmin is an M -file  in the  MATLAB Toolbox. The a lgorithm  is based on golden 
section search and parabolic in terpolation. A Fortran program im plem enting 
the  same a lgorithm  is given in [1].

The function to  be m inim ized must be continuous. fmin may only give local 
solutions.



fmin

See A ls o  

R e fe re n c e s

f min often exh ib its slow convergence when the  solution is on a boundary 
in te rva l. In such a case, const r  often gives faster and more accurate solutions.

f min only handles real variables.

fmins,  fminu,  fopt  ions

[1] G.F. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for M ath­
ematical Computations, Prentice H all, 1976.
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A r g u m e n t s

Find the m in im um  of an unconstrained m u ltiva riab le  function,

min f  (x ) 
x

where x is a vector, and f(x) is a function tha t re tu rns a scalar.

x = f m n u (  ' f u n ' , x 0 )
x = f mn u (  ' f u n ' , x 0 ,  opt i  ons)
x = f m n u ( ' f u n ' , x 0 , o p t i o n s , ' g r a d ' )
x = f m n u ( ' f u n ' , x 0 , o p t i o n s , ' g r a d ' , p 1 , p 2 ,  . . .  )
[ x , op t  ions]  = fm nu( ' f u n ' ,  x0, . . .  )
[ . . .  ] = f m n s ( ' f u n ' , x 0 ,  . . .  )

fminu and fmins find  the  m in im um  of a scalar function of several variables, 
s ta rting  at an in itia l estimate. Th is is generally referred to  as unconstrained 
nonlinear optim ization.

x = f m n u ( ' f u n ' , x 0 )  s ta rts  at the  point x0 and finds a m in im um  of the  func­
tion fun  described in the  M -file  fun.  mi

x = f m n u ( ' f u n ' , x 0 ,  opti ons) uses the parameter values in the  vector 
opti ons rather than the  default option values.

x = f m n u ( ' f u n ' , x 0 ,  opti ons, '  grad ' )  uses the  gradient in form ation calcu­
lated by the  function grad, defined in the  M -file  grad.m rather than the  default 
of approxim ating the  partia l derivatives via f in ite  differencing.

x = f mi nu( ' f u n ' ,  x0 ,opt ions,  ' grad '  , p 1 , p 2 , . . . )  passes the  problem-depen­
dent parameters p1, p2, etc., d irectly to  the  functions fun  and grad.

[ x , op t  ions]  = f m i n u ( ' f u n ' ,  x0) re tu rns the  parameters used in the  op tim i­
zation method. For example, opt i ons(10)  contains the  number of function 
evaluations used.

x0 S ta rting  vector.
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fun

opt i ons

A s tring  containing the  name of the  function tha t computes 
the  objective function to  be m inim ized at the  point x. The 
function fun  re turns one argument: a scalar valued function f 
to  be m inim ized,

[ f ]  = fun(x)

A lte rna tive ly , an expression can be substituted for the  
function name, w ith  x representing the  independent 
variables. For example,

x = f m n u ( ' s i n ( x . * x ) ' , x 0 )

A vector of control parameters. Of the  18 elements of 
opti ons, the  input options used by fminu are: 1, 2, 3, 6, 7, 9,
14, 16, 17. When opt i ons is an output parameter, the  
options used by fminu to re turn values are: 8, 10, 11, 18. Of 
the  18 elements of opti ons, the  input options used by fmins 
are: 1, 2, 3, 14. When opt i ons is an output parameter, the 
options used by fmins to re turn values are: 8, 10.

• opti ons( 1) controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f at the  solution.

The term ination  c rite ria  invo lv ing opt i  ons(2) and 
opt i  ons( 3) must both hold tru e  for the  a lgorithm  to 
term inate.

The use of opt i ons(6)  and opt i ons(7)  by fminu is discussed 
in the  “A lgo rithm s” section below.

For more inform ation on the  opt i  ons vector, includ ing default 
settings, see the  f o p t i o n s  reference page and the  “ Default 
Parameters Settings” section in the Tu to ria l.
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grad A s tring  containing the name of the  function tha t computes
the  gradient of the  function at the  point x. Th is function has 
the  form

df = grad(x)

The variab le  df is a vector tha t contains the  partia l 
derivatives of f  w ith  respect to  x. Note tha t th is  parameter 
is ignored by fmins as it does not use gradient inform ation.

p1, p2, . . .  Additiona l arguments to  be passed to  fun,  tha t is, when
fminu ( fmins)  calls fun,  and gr ad when it exists, the  calls 
are

[ f , g ]  = f un(x, p1,p2, .. .)
[ d f ,  dg] = grad(x,p1,  p2, .. .)

Using th is  feature, the  same M -file  can solve a number of 
s im ila r problems w ith  d ifferent parameters avoiding the  need 
to  use global variables. Note tha t since all the  argum ents 
preceding p1, p2, etc., in the  call to  fminu. m (f mins. m) must 
be defined, empty matrices may be passed in for opti ons and 
' grad '  to indicate tha t default arguments are to  be used, as 
in

x = f m n u ( ' f u n ' , x 0 , [ ] , [ ] , p 1 , p 2 ,  . . . )

Find values tha t m in im ize

f(x ) = 100 (x2 -  x1 )2 + (1 -  x 1 )2 

s ta rting  at the  point

x = [-1 .2  1]

Step 1: W rite  an M -file :
f u n c t i on  f = fun(  x)
f = 100* (x (2) - x (  1)Л2)Л2+( 1-x( 1) )л2; % Cost f u n c t i on
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Step 2: Invoke an op tim iza tio n  routine:
x = [ - 1 , 1 ]  % Make a s t a r t i n g  guess at t he so l u t i  on
x = f m n u (  ' f u n ' , x )

A fter 132 function evaluations, th is  example generates the  solution

x =
1. 0000 1. 0000 

fun(x )  =
8. 8348e-11

fminu:  The default a lgorithm  for fminu is a quasi-Newton method. This 
quasi-Newton method uses the  BFGS [2-5] form ula for updating the  approxi­
mation of the  Hessian m atrix . The DFP [7, 8] form ula, which approximates the 
inverse Hessian m atrix , is selected by setting opt i ons(6)  = 1. A steepest 
descent method is selected by setting opt i ons(6)  = 2, although th is  is not 
recommended.

For fminu,  the  default line search a lgorithm , i.e., when opti ons( 7) = 0, is a 
safeguarded mixed quadratic  and cubic polynomial in terpolation and extrapo­
lation method. A safeguarded cubic polynomial method can be selected by 
setting opt i  ons(7) = 1. Th is second method generally requires fewer function 
evaluations but more gradient evaluations. Thus, i f  gradients are being 
supplied and can be calculated inexpensively, the  cubic polynomial line search 
method is preferable. A fu ll description of the  a lgorithm s is given in the  In tro ­
duction to A lgorithm s chapter.

fm ins: fmins uses the  simplex search method of [1]. Th is is a direct search 
method tha t does not use numerical or ana ly tic  gradients like  fminu.

I f  n is the  length of x, a simplex in n-dimensional space is characterized by the 
n+1 d istinct vectors tha t are its  vertices. In two-space, a simplex is a triang le ; 
in three-space, it is a pyram id. A t each step of the  search, a new point in or 
near the  current simplex is generated. The function value at the  new point is 
compared w ith  the  function 's values at the  vertices of the  simplex and, usually, 
one of the  vertices is replaced by the  new point, g iv ing a new simplex. This step 
is repeated un til the  diameter of the  simplex is less than the  specified to le r­
ance.
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fmins is generally less efficient than f mnu for problems of order greater than 
two. However, when the problem is highly discontinuous, fmins may be more 
robust.

fmins has the  identical calling syntax as fminu.  Note tha t since fmins does not 
use gradient in form ation, gr ad is always ignored.

For fminu,  the  function to  be m inim ized must be continuous. fmins can often 
handle d iscontinu ity, pa rticu la rly  i f  it does not occur near the  solution. fminu 
and fmins may only give local solutions.

fminu and f mins only m in im ize over the  real numbers, tha t is, x must only 
consist of real numbers and f(x) must only return real numbers. When x has 
complex variables, they must be sp lit in to  real and im aginary parts.

NOTE fmins and fminu should not be used to  solve problems tha t are
2 2 2sums-of-squares, tha t is, of the  form: min f (x ) = f 1 (x ) + f 2(x ) + f 3(x ) + L 

Instead use the  least  sq function, which has been optim ized for problems of 
th is  form, for better performance.

fopt  ions

[1] J.A. Nelder and R. Mead, “A Simplex Method for Function M in im iza tion ,” 
Computer J., Vol. 7, pp. 308-313.

[2] C.G. Broyden, “The Convergence of a Class of Double-rank M in im iza tion  
A lgorithm s,” J.  Inst. M ath. Applic., Vol. 6, pp. 76-90, 1970.

[3] R. Fletcher, “A New Approach to  Variab le  M e tric  A lgorithm s,” Computer J., 
Vol. 13, pp. 317-322, 1970.

[4] D. Goldfarb, “A Fam ily of Variab le  M etric  Updates Derived by Varia tiona l 
Means,” Mathem atics of Computing, Vol. 24, pp. 23-26, 1970.

[5] D.F. Shanno,” Condition ing of Quasi-Newton Methods for Function M in i­
m ization,” Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

[6] W.C. Davidon, “Variab le  M etric  Method for M in im iza tion ,” A.E.C.  Research 
and Development Report, ANL-5990, 1959.
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[7] R. Fletcher and M.J.D. Powell, “A Rapidly Convergent Descent Method for 
M in im iza tion ,” Computer J., Vol. 6, pp. 163-168, 1963.

[8] R. Fletcher, “Practical Methods of O ptim iza tion ,” Vol. 1, Unconstrained 
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See A ls o

Set optim ization parameters and display parameter values.

hel p fopt  ions 
opt i  ons = f op t i  ons

The O ptim ization Toolbox functions f m n ,  fmins,  fminu,  c o n s t r , at tgoal  , 
mi ni max, l east sq, semi n f , and fsol  ve use optim ization parameters tha t can be 
changed by setting new values in the  opt i ons  vector.

For consistency, the  optim ization parameters have the  same meaning, where 
possible, throughout the  O ptim ization Toolbox functions.

The function f o p t i o n s  re tu rns a set of default options tha t are used when the 
opt i  ons vector is not supplied to  the appropria te routines. Default values are 
also used for elements in opt i  ons tha t are set to  0 and for undefined parame­
ters caused when opti ons has fewer than 18 elements. These values may also 
be returned by specifying a second left-hand argument to  the particu la r op tim i­
zation routine. For example,

[ x , op t  i ons]  = fmi nu( ' f u n ' ,  x0);  
opt i  ons( 10) 
opt i  ons( 11)

enables the  number of function and gradient evaluations to  be obtained and 
displayed.

See the  Table 1-4, “Option Parameters,” on page25 in the  Tuto ria l chapter for 
more inform ation.

at tgoal  , const r ,  fmin,  fmins,  fminu,  f so l ve ,  l eas tsq,  mi ni max, seminf
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Solve a system of nonlinear equations,

F (x ) = 0

for x, where x is a vector and F (x ) is a function tha t re tu rns a vector value.

x = fsol  v e ( ' f u n ' ,  x0)
x = fsol  v e ( ' f u n ' ,  x0,opt  ions)
x = fsol  v e ( ' f u n ' ,  x0,opt  ions,  ' grad '  )
x = f s o l v e ( ' f u n ' , x 0 , o p t i o n s , ' g r a d ' , p 1 , p 2 ,  . . .  )
[ x,opt  ions]  = f so l ve (  ' f u n ' , x 0 ,  . . .  )

fsol  ve finds a root (zero) of a system of nonlinear equations.

x = fsol  v e ( ' f u n ' ,  x0) s ta rts  at x0 and re tu rns x, solving the  equations 
defined in the  M -file  fun.  m

x = f s o l v e ( ' f u n ' , x 0 , o p t i o n s )  uses the parameter values in the  vector 
options rather than the  default option values.

x = f s o l v e ( ' f u n ' , x 0 , o p t i o n s ,  ' grad '  ) uses the  gradient in form ation calcu­
lated by the function grad, defined in the  M -file  grad. m rather than the 
default of approxim ating the  partia l derivatives via f in ite  differencing.

x = fsol  v e ( ' f u n ' ,  x0,opt  ions,  ' grad '  , p 1 , p 2 , . . . )  passes the  
problem-dependent parameters p1, p2, etc., d irectly to  the  functions fun  and 
grad.

[ x , o p t i on s ]  = f s o l v e ( ' f u n ' , x 0 )  re turns the  parameters used in the  op tim i­
zation method. For example, opt i ons(10)  contains the  number of function 
evaluations used.
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A r g u m e n t s fun A s tring  containing the name of the  function tha t computes
the  objective function to  be m inim ized at the  point x. The 
function fun  re tu rns one argument: a vector-valued function 
f to  be m inim ized,

[ f ]  = f un(x)

A lte rna tive ly , an expression can be substituted for the 
function name, w ith  x representing the  independent variable. 
For example,

x = f s o l v e ( ' s i n ( x * x ) ' , x 0 )

opt i ons A vector of control parameters. Of the  18 elements of
opt ions,  the  input options used by l eas t sq  are: 1, 2, 3, 5, 
7, 9, 14, 16, 17. The use of opt i ons(5)  and opt i ons(7)  by 
f s o l v e  is discussed in the “A lgo rithm ” section below. When 
opt i ons is an output parameter, the  options used by fsol  ve 
to re turn  values are: 8, 10, 11, 18.

• opt i ons(1)  controls display. Setting th is  to  a value of 1 pro­
duces a tabu la r display of in term edia te  results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f at the  solution.

The term ination  crite ria  invo lv ing opt i  ons(2) and 
opt i ons(3)  must both hold t rue for the  a lgorithm  to 
term inate.

For more inform ation on the  opt i ons  vector, includ ing default 
settings, see the  f op t i  ons reference page and the  “Default 
Parameters Settings” section in the  T u to ria l.
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grad

x0, 

p1, p2 , . . .

Exam ple 1: Find a zero of the  system of tw o equations and tw o unknowns
2 x1 -  x2 = e~x'

-  x 1 + 2x2 = e- *2

Thus we want to  solve the follow ing system for x
2 x1 -  x2 -  e-x1 = 0

-  x 1 + 2x2 -  e_x2 = 0 

s ta rting  at x0 = [ - 5  - 5 ] .

Step 1: W rite  an M -file :
f u n c t i on  F = fun(  x)
F = [ 2*x (1)  -  x( 2) -  exp (-x ( 1)) ;

-x ( 1) + 2*x( 2) -  e x p ( - x ( 2 ) ) ] ;

Step 2: Invoke an op tim iza tio n  routine:
x0 = -5*ones(2 , 1); % Mfeke a s t a r t i  ng guess at the  so l u t i  on 
opt i ons=fop t i ons ;  %Set defau l t  opt i ons 
opt i ons(1)=1;  %Set opt i on t o  d i sp l ay  output
x = fsol  v e ( ' f u n ' ,  x0,opt i  ons) % I nvoke opt i mi zer
f = fun(x)

A s tring  containing the  name of the  function tha t computes 
the  gradient of the  objective functions at the  point x. Th is 
function has the  form

df = grad(x)

The variab le  df is a m atrix  tha t contains the  partia l 
derivatives of F w ith  respect to  x. The i th column of df 
corresponds to  the partia l deriva tive  of the  i th  function in f 
w ith  respect to  x. (This is the  transpose of the  Jacobian 
m atrix  of F(x).)

See f mi nu .
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After 25 function evaluations, a zero is found:

CCUNT RESI D STEP-SIZE GRAD/SD
3 47071.2 1 -9.41e+04
8 966.828 1 -1.81e+03

15 1.99465 3.85 5.6
20 0 000632051 0.895 -0.0867
25 1 39647e-15 0.998 -1 .89e -09

Cpti mi z a t i on  Termnat  ed Successf u ll y 
x =

0.5671 
0.5671

f =
1. 0e-07 *
0. 2642
0. 2642

EXample 2: Find a m atrix  X  tha t satisfies the  equation

X * X * X =
1 2 

3 4_

s ta rting  at the  point X= [1,1;  1,1] .

Step 1: W rite  an M -file :
f u n c t i o n  F = fun(  x) 
F = x * x * x - [  1 , 2 ;3 ,4 ]  ;

Step 2: Invoke an op tim iza tio n  routine:
x0 = ones(2,2) ;  % Mfeke a s t a r t i n g  guess at the  s o l u t i o n  
x = fsol  ve( ' f u n ' ,  x0) %I nvoke opt imizer
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After 44 function evaluations, the  solution is

x =
-0.1291 0. 8602 

1.2903 1.1612 
F = x * x * x - [ 1 , 2 ; 3 ,  4]
F =

1. 0e-05 *
0.0350 0.1268
0.0721 -0 .1293 

sum( sum( F. *F) )  
ans =

3. 9218e-12

I f  the  system of equations is linear, then \ (the backslash operator: see 
hel p sl ash) should be used for better speed and accuracy. For example, say 
we want to  find the  solution to  the  fo llow ing linear system of equations:

3x 1 + 1 1 x2 -  2x3 = 7

x 1 + x 2 -  2x 3 = 4

x 1 -  x 2 + x 3 = 19

Then the  problem is form ulated and solved as

A = [ 3 11 -2; 1 1 -2; 1 -1 1]; 
b = [ 7; 4; 19] ; 
x = A\b 
x =

13.2188
-2.3438

3.4375

The method is based on the  nonlinear least-squares a lgorithm  also used in 
l eastsq. The advantage of using a least-squares method is tha t i f  the  system 
of equations is never zero due to  small inaccuracies, or because it just does not 
have a zero, the  a lgorithm  s till re tu rns a point where the  residual is small. 
However, i f  the  Jacobian of the  system is singular, the  a lgorithm  may converge 
to  a point tha t is not a solution of the  system of equations (see “L im ita tions ” 
and “Diagnostics” below).
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The choice of a lgorithm  is made by setting opt i o n s ( 5 ) . The default a lgorithm  
is the  Gauss-Newton method [4]. Setting opt i ons(5)  = 1 im plem ents the 
Levenberg-Marquardt method [1-3].

The default line search a lgorithm , opt i  ons(7) = 0, is a safeguarded mixed 
quadra tic  and cubic polynomial in terpolation and extrapolation method. A 
safeguarded cubic polynomial method can be selected by setting opt i  ons( 7) 
= 1. Th is method generally requires fewer function evaluations but more 
gradient evaluations. Thus, i f  gradients are being supplied and can be calcu­
lated inexpensively, the  cubic polynomial line search method is preferable.

The function to  be solved must be continuous. When successful, fsol  ve only 
gives one root. fsol  ve may converge to  a nonzero point, in which case, try  other 
s ta rting  values.

Opt imizer  i s  s tuck at a minimum that  i s  not a root 
Try again wi t h  a new s t a r t i n g  guess

\ , fopt  ions,  l eas t sq

[1] K. Levenberg, “A Method for the  Solution of Certain Problems in Least 
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm  for Least-squares Estim ation of Nonlinear 
Parameters,” SIAM J.  Appl. Math., Vol. 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and 
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics 
630, Springer Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “ Nonlinear Least Squares,” State of the A rt in Numerical 
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312,
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Zero of a function of one variab le

z = f zer  o ( ' f u n ' , x 0 )  
z = f zer  o ( ' f un ' , x 0 ,  t o l )  
z = f z e r o ( ' f u n ' , x 0 , t o l , t r a c e )  
z = f zer  o ( ' f un ' , x 0 ,  t o l , t r  ace, P1, P2 , . . .  )

f z e r o ( ' f u n ' , x )  finds a zero of fun.  f un is a s tring  containing the  name of a 
real-valued function of a single real variable. The value returned is near a point 
where fun  changes sign, or NaN if  the  search fails.

f z e r o ( ' f u n ' , x )  where x is a vector of length 2, assumes x is an in terva l where 
the  sign of f ( x ( 1 ) )  d iffe rs from the  sign of f ( x ( 2 ) ) . An error occurs i f  th is  is 
not true. Calling f z e r o  w ith  an in terva l guarantees f zer  o w ill return a value 
near a point where fun  changes sign.

f z e r o ( ' f u n ' , x )  where x is a scalar value, uses x as a s ta rting  point. f ze r o  
looks for an in terva l containing a sign change for fun  and containing x. I f  no 
such in terva l is found, NaN is returned. I n th is  case, the  search term inates 
when the search in terva l is expanded un til an I n f , NaN, or complex value is 
found.

fzero( ' f u n ' , x , t o l )  re turns an answer accurate to  w ith in  a re la tive  error of 
to l .

z = f z e r o ( ' f u n ' , x , t o l , t r a c e )  displays inform ation at each iteration.

z = f z e r o ( ' f un' , x, t ol , t race, P1, P2, . . . ) provides for additional arguments 
passed to  the  function fun(x,P1,P2,  . . . )  . Pass an empty m atrix  for to l or 
t race to use the  default value, for example: f z e r o ( ' f u n ' , x , [ ] , [ ] , P 1 )

For the  purposes of th is  command, zeros are considered to  be points where the 
function actually crosses, not jus t touches, the  x-axis.

fun  A s tring  containing the  name of a file  in which an a rb itra ry
function of one variab le  is defined.

x0 Your in it ia l estimate of the  x-coordinate of a zero of the  function
or an in terva l in which you th in k  a zero is found.

to l The re la tive  error tolerance. By default, tol is eps.
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t r ace  A nonzero value tha t causes the  f ze r o  command to  display
inform ation at each iteration of its  calculations.

P1 ,P2, .. . Additiona l arguments passed to  the  function

Calculate p by find ing  the  zero of the  s i ne  function near 3.

x = f zer  o ( ' s i n ' ,  3) 
x =

3. 1416

To find  the  zero of cosine between 1 and 2:

x = f z e r o ( '  cos' , [1  2 ]) 
x =

1. 5708

Note tha t cos(1) and cos(2) differ in sign.

To find  a zero of the  function: 

f  (x ) = x 3 -  2 x -  5

w rite  an M -file  called f .m

f u n c t i o n  y = f (  x) 
y = x. A3-2*x-5;

To find  the  zero near 2

z = f zer  o ( ' f ' , 2 )  
z =

2.0946

Since th is  function is a polynomial, the  statement r oo t s ( [ 1  0 - 2  - 5 ] )  finds 
the  same real zero, and a complex conjugate pair of zeros.

2.0946
-1. 0473 + 1. 1359i 
-1. 0473 -  1. 1359i

The f zer  o command is an M -file . The algorithm , which was originated by 
T. Dekker, uses a combination of bisection, secant, and inverse quadratic  in te r­
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polation methods. An Algol 60 version, w ith  some improvements, is given in [1]. 
A Fortran version, upon which the f ze r o  M -file  is based, is in [2].

The f ze r o  command defines a zero as a point where the function crosses the 
x-axis. Points where the  function touches, but does not cross, the  x-axis are not 
va lid  zeros. For example, y = x. л2 is a parabola that touches the x-axis at (0,0). 
Since the  function never crosses the  x-axis, however, no zero is found. For func­
tions w ith  no va lid  zeros, f ze r o  executes un til I n f , NaN, or a complex value is 
detected.

eps, f m n ,  fsol  ve, \

[1] Brent, R., A lgorithm s for M in im iza tion  W ithout Derivatives, Prentice-Hall, 
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for 
Mathem atical Computations, Prentice-Hall, 1976.

3-49



leastsq

P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve nonlinear least-squares (nonlinear da ta -fitting ) problems,

min f (X) = f  (X)2 + f2(X)2 + f 3(X)2 + ... + fm (X)2 + L

where L is a constant.

x = l eas t sq(  ' f u n ' , x 0 )
x = l eas t sq(  ' f u n ' , x 0 ,  opt i ons
x = l e a s t s q ( ' f u n ' , x 0 , o p t i o n s , ' g r a d ' )
x = l eas t sq(  ' f u n ' , x 0 ,  op t i ons , '  gr ad ' ,p1,p2,  . . .  )
[ x , o p t i on s ]  = l e a s t s q ( ' f u n ' , x 0 ,  . . .  )
[ x , op t  i on s , f  unval ] = l east  s q ( ' f u n ' , x 0 ,  . . .  )
[ x , op t  i on s , f  unval , j  acob] = l east s q ( ' f u n ' ,  x0, . . .  )

l eas t sq  solves nonlinear least-squares problems, includ ing nonlinear 
da ta -fitting  problems.

Rather than compute the  value f(X), l eas t sq  requires the  user-defined function 
to  compute the vector-valued function

F (X) =

f  1 (X)

f  2 ( X )

f  3 (X)

In vector term s th is  optim ization problem may be restated as

min 1 1| F(X)|2 = 2 Z f i  (X)2 
i

where x is a vector and F(x) is a function tha t re tu rns a vector value.

x = l e a s t s q ( ' f u n ' , x 0 )  s ta rts  at x0 and finds the  least-squares m in im um  of 
the  functions described in the  M -file  fun.

x = l e a s t s q ( ' f u n ' , x 0 , o p t i o n s )  uses the parameter values in the  vector 
options rather than the  default option values.
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x = l e a s t s q ( ' f u n ' , x 0 , o p t i o n s , ' g r a d ' )  calls the  function grad to obtain the 
partia l derivatives of the  functions.

x = l east sq( ' f u n ' ,  x0,opt i  ons, ' g r a d ' , p 1 , p 2 , . . . )  passes parameters (i .e., 
p1, p2, etc.), d irectly to  the  function fun.

[ x , o p t i on s ]  = l e a s t s q ( ' f u n ' , x 0 )  re tu rns the  parameters used in the  opti­
m ization. opt i  ons( 10) contains the  number of function evaluations used.

[ x , o p t i o n s , f u n v a l ]  = l e a s t s q ( ' f u n ' , x 0 )  re tu rns the  function value 
f un(x) at the  solution x.

[x, opt i o n s , f u n v a l , j ac o b ]  = l e a s t s q ( ' f u n ' , x 0 )  also re tu rns the  approxi­
mation to  the Jacobian of the  function at the  solution x.

fun  A s tring  containing the  name of the  function tha t computes
the  objective function to  be m inim ized at the  point x. The 
function fun  re turns one argument: a vector-valued function 
f to  be m inim ized,

[ f ]  = fun(x)

NOTE The sum of squares should not be formed exp lic itly . 
Instead your function should return a vector of function 
values. See the  example below.

A lte rna tive ly , an expression can be substituted for the  
function name, w ith  x representing the independent 
variables. For example,

x = l e a s t s q ( ' s i n ( x ) ' ,  x0)
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opt i ons

grad

x0,

p1 , p2 , . . .

funval

j acob

• A vector of control parameters. Of the  18 elements of 
opt i  ons, the  input options used by l eas t sq  are: 1, 2, 3, 5, 
7, 9, 14, 16, 17. When opt i  ons is an output parameter, the  
options used by l eas t sq  to return values are: 8, 10, 11, 18.

• opt i ons(1)  controls display. Setting th is  to  a value of 1 pro­
duces a tabu la r display of in term edia te  results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f at the  solution.

The term ination  crite ria  invo lv ing opt i  ons(2) and 
opt i ons(3)  must both hold t rue for the  a lgorithm  to 
term inate.

The use of opt i ons(5)  and opt i  ons( 7) by l eas t sq  is 
discussed in the “A lg o rith m ” section below.

For more inform ation on the  opt i ons vector, includ ing default 
settings, see the  f op t i  ons reference page and the  “Default 
Parameters Settings” section in the  T u to ria l.

A s tring  containing the name of the  function tha t computes 
the  gradient of the  objective functions at the  point x. This 
function has the  form

df = grad(x)

The variab le  df is a m atrix  tha t contains the  partia l 
derivatives of F w ith  respect to  x. The i th column of df 
corresponds to  the  partia l deriva tive  of the  i th function in f 
w ith  respect to  x. (This is the  transpose of the  Jacobian 
m atrix  of F(x).)

See f mnu.

The value of the  function at the  solution x.

The Jacobian of the  function at the  solution x.
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N o t e s

A l g o r i t h m

Find x tha t m inim izes
10

kx, k x  2
(2 + 2 к -  e 1 -  e 2)

к = 1

sta rting  at the  point x= [0.3 ,  0.4].

Because l eastsq assumes tha t the  sum-of-squares is not exp lic itly  formed, the 
function passed to  least sq should compute the  vector valued function

_ _ kx, kx,
Fk(x ) = 2 + 2 k -  e -  e

for k = 1 to  10.

Step 1: W rite  an M -file :
f u n c t i on  f = fun(  x) 
k = [ 1 : 10 ] ;
f = 2 + 2 * k - exp ( k * x ( 1 ) ) - exp ( k * x ( 2 ) ) ;

Step 2: Invoke an op tim iza tio n  routine:
x0 = [ 0 . 3  0.4]  % S t a r t i n g  guess
x = l e a s t s q ( ' f u n ' , x 0 )  % Invoke opt i  mi zer

A fter 41 function evaluations, th is  example gives the  solution:

x =
0. 25783 0. 25783 

sum(fun(x)  . * f un(x) )%res i dual  or sum of squares 
ans =

124. 3622

For the best accuracy and performance, the  sum-of-squares should not be 
formed exp lic itly . Instead your function should re turn a vector of function 
values. See the  example above.

The choice of a lgorithm  is made by setting opt i o n s ( 5 ) . The default is the 
Levenberg-Marquardt method [1 -3 ]. Setting opt ions(  5) = 1 im plem ents a 
Gauss-Newton method [4], which is generally faster when the residual ||F(x)| 
is small.
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See A l s o  

R e fe re n c e s

The default line search a lgorithm , opt i  ons(7) = 0, is a safeguarded mixed 
quadra tic  and cubic polynomial in terpolation and extrapolation method. A 
safeguarded cubic polynomial method can be selected by setting 
opt i  ons(7) = 1. Th is method generally requires fewer function evaluations 
but more gradient evaluations. Thus, if  gradients are being supplied and can 
be calculated inexpensively, the  cubic polynomial line  search method is prefer­
able. The a lgorithm s used are described fu lly  in the  Introduction to A lgorithm s 
chapter.

The function to  be m inim ized must be continuous. l eas t sq  may only give local 
solutions.

l eas t sq  only handles real variables. When x has complex variables, the  v a ri­
ables must be sp lit in to  real and im aginary parts.

fopt  ions

[1] K. Levenberg, “A Method for the  Solution of Certain Problems in Least 
Squares,” Quart. Appl. M ath. 2, pp. 164-168, 1944.

[2] D. M arquardt, “An A lgorithm  for Least-squares Estim ation of Nonlinear 
Parameters,” SIAM J.  Appl. M ath. Vol 11, pp. 431-441, 1963.

[3] J.J. More, “The Levenberg-M arquardt A lgorithm : I mplementation and 
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathem atics 
630, Springer-Verlag, pp. 105-116, 1977.

[4] J.E. Dennis, Jr., “Nonlinear Least Squares,” State of the A rt in Numerical 
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
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P u r p o s e

S y n o p s i s

D e s c r ip t io n

A r g u m e n t s

Solve a linear programming problem,

min c Tx such tha t Ax  < b 
x

where c and b are vectors and A  is a m atrix . Both equality and inequa lity 
constra ints can be defined using A  and b.

x = l p ( c , A , b )
x = l p ( c , A , b , v l b )
x = l p ( c , A , b , v l b ,  vub)
x = l p ( c , A , b , v l b ,  vub, x0)
x = l p ( c , A , b , v l b ,  vub, x0,neqcst r)
x = l p ( c , A , b , v l b ,  vub, x0,neqcst r , di splay)
[ x , l  ambda, how] = l p ( c , A , b ,  . . .  )

l p  solves linear programming problems.

x = l p ( c , A , b )  re tu rns a vector x tha t m inim izes the  equation c ' * x  subject to
A*x <= b.

x = l p ( c , A , b , v l b ,  vub) sets lower and upper bounds on x. Th is restricts the  
solution to  the  range v lb  <= x <= vub.

x = l p ( c , A , b , v l b ,  vub, x0) sets the in itia l s ta rting  point to  x0.

x = l p ( c , A , b , v l b ,  vub, x0,neqcst r) specifies tha t the  firs t neqcst r  
constra ints are equality constraints.

x = l p ( c , A b , v l  b, vub, x0,neqcst r, di spl ay) controls the  display of w arn ing 
messages.

[ x , l  ambda] = l p ( c , A , b )  re tu rns the  vector lambda of the  Lagrange m u lti­
p liers at the  solution x.

[x,lambda,how] = l p ( c , A , b )  also re tu rns a s tring  how tha t indicates error 
conditions at the  fina l ite ra tion .

c The vector c is the  set of coefficients of the  linear objective
function.
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A,b

vlb,  vub

x0

neqcst r

d i sp l ay

lambda

how

The m atrix  A and vector b are the  coefficients of the  linear 
constraints. The coefficients for the  equality constraints 
must be partitioned in to  the  firs t rows of A and the  firs t 
elements of b, followed by the  coefficients for the  inequa lity 
constraints.

Upper and lower bound vectors. The variables, vl b and vub, 
are norm ally the  same size as x. However, i f  vl b has n 
elements and less elements than x then only the firs t n 
elements in x are lower bounded; upper bounds in vub are 
defined in the  same manner.

S tarting  vector. lp  generally s ta rts  its  search at the  point 
z e r o s ( s i z e ( x ) ) . Setting the in itia l s ta rting  point may result 
in faster convergence. I f  the  problem is badly conditioned, 
th is  may also result in an improved solution.

Number of equality constraints.

Flag to  control the  display of w arn ing messages. The default 
value for the  parameter di spl ay is 0, which displays w arn ing 
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the  set of Lagrange m u ltip lie rs  at the 
solution. The length of lambda is
lengt  h( b) +l eng th( v l b ) + l eng t  h(vub) and the  Lagrange 
m u ltip lie rs  are given in the corresponding order: firs t the 
m u ltip lie rs  for A, then vl b, then vub.

A s tring  tha t indicates error conditions at the  solution. The 
s tring  how = ' i  nfeasi  bl e' indicates tha t the  problem is 
infeasible (i.e., the  constra ints are overly restrictive); 
how = 'unbounded' indicates tha t the  problem has an 
unbounded solution; how = 'dependent' indicates tha t 
dependent equality constra ints were detected and removed; 
how = 'ok '  indicates that the  problem was solved w ithout 
d iffi culty.

As w ith  all O ptim ization Toolbox functions, empty matrices in the  calling 
sequence result in the  use of default variables. For example, the  command

l p ( f , A b , [  ] , [  ] , [  ] ,  l engt  h( b ) )
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indicates tha t the  problem is equality constrained, has no upper or lower 
bounds on the  variables, and uses the default s ta rting  point.

Find x tha t m inim izes f(x ) = -5  x 1 -  4x 2 -  6x 3

subject to
x 1 -  x 2 + x 3 < 20

3x 1 + 2x2 + 4x 3 < 42

3x1 + 2x2 < 30

0 < x 1,0 < x2,0 < x3

Step 1: Enter the coefficients:
c = [ - 5 , - 4 ,  - 6] 
a = [1  -1  1

3 2 4
3 2 0] ;  

b = [20; 42; 30];

Step 2: Invoke a linea r p rog ram m ing  routine:
[ x , l  ambda] = l p ( c , a , b , z e r o s ( 3 , 1 ) )

This gives the solution

x =
0 15.0000 3. 000 

lambda =
0
1. 5000 
0.5000
1.0000
0
0

The firs t th ree elements of the  Lagrange m u ltip lie rs , lambda, are associated 
w ith  the inequa lity constraints. Nonzero elements of lambda indicate active 
constra ints at the  solution. In th is  case, constra ints tw o and three are active 
constra ints (i.e., the  solution is on the ir constraint boundaries).
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See A l s o  

R e fe re n c e s

The last th ree elements of the  Lagrange m u ltip lie rs  are associated w ith  the 
lower bounds on x. Thus, the  lower bound on x 1 is also active.

lp  uses a projection method as used in the  qp a lgorithm . lp  is an active set 
method and is thus a varia tion  of the  well-known simplex method for linear 
programming [1]. It finds an in itia l feasible solution by firs t solving another 
linear programming problem. lp  calls qp w ith  special flags in order to  use effi­
ciencies for the  lp  case.

lp  gives a w arn ing when the  solution is infeasible,

Warning: The c o n s t r a i n t s  are over l y  s t r i ngen t ;  
t he r e  i s  no f e a s i b l e  so l u t i on .

I n th is  case, lp  produces a result tha t m inim izes the  worst case constraint 
vio lation.

When the  equality constra ints are inconsistent, lp  gives

Warning: The e q u a l i t y  c ons t r a i n t s  are over l y  
s t r i ngen t ;  t he r e  i s  no f e a s i b l e  so l u t i on .

Unbounded solutions result in the  w arn ing

Warning: The s o l u t i o n  i s  unbounded and at i n f i n i t y ;  
t he c o n s t r a i n t s  are not r e s t r i c t i v e  enough

In th is  case, lp  re tu rns a value of x tha t satisfies the  constraints.

qp

[1] G.B. Dantzig, A. Orden, and P. Wolfe, “Generalized Simplex Method for 
M in im iz ing  a L inear from Under Linear Inequa lity  C onstra in ts,” Pacific J. 
M ath. Vol. 5, pp. 183-195.
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P u r p o s e

S y n o p s i s

D e s c r ip t io n

Solve the m inim ax problem,

min max { Fi (x)} such tha t G (x )<  0 
x { Fi } i

where x is a vector and F(x) and G(x) are functions tha t re turn  vector values.
Fi (x ) is the  value of the  i th  element of the  vector returned by F(x). G(x) can be 
used to  define equality or inequa lity constraints.

x = mini max( ' f u n ' , x 0 )
x = mini max( ' f u n ' , x 0 ,  opt i  ons)
x = mini max( ' f u n ' , x 0 ,  opt i  o n s , v l b , v ub , ' g r ad '  )
x = mini max( ' f u n ' , x 0 ,  opt i  o n s , v l b , v ub , ' g r ad '  ,p1,p2,  .. . )
[ x,opt  ions]  = mi n i max( ' f un ' ,  x0, . . .  )

mini max m inim izes the  worst-case value of a set of m u ltiva riab le  functions, 
s ta rting  at an in itia l estimate. The values may be subject to  constraints. Th is 
is generally referred to  as the  m in im ax problem.

x = mini max( ' f u n ' , x 0 )  s ta rts  at x0 and finds the  m inim ax solution to  the 
functions described in the  M -file  fun.  m

x = mini max( ' f u n ' , x 0 ,  opt i  ons) defines a vector of optional parameters.

x = mini max( ' f u n ' , x , o p t  ions,  vl b, vub) defines a set of lower and upper 
bounds on x through the vectors vl b and vub. Th is restricts the  solution to  the 
range vl b <= x <= vub.

x = m i n i ma x ( ' f u n ' , x 0 , o p t i o n s , v l  b,vub, ' g r a d ' )  calls the  function grad to 
obtain the  partia l derivatives of the  function and the  constraints,

x = mini max( ' f un ' , x0 ,  opt i ons , v l b , vub ,  ' grad '  , p 1 , p 2 , . . . )  passes param ­
eters (i.e., p1, p2, etc.), d irectly to  the  function fun.

[ x , o p t i on s ]  = mi n i max ( ' f un ' , x0 )  re tu rns the  parameters used in the opti­
m ization. For example, opt i  ons( 10) contains the  number of function evalua­
tions used.
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A r g u m e n t s fun A s tring  containing the name of the  function tha t computes
the  objective function to  be m inim ized and the constraint func­
tion at the  point x. The function fun  re tu rns tw o arguments: 
a scalar valued function f to  be m inim ized and a vector of 
constraint values g,

[ f , g ]  = f un(x)

When inequa lity constra ints are present, the  objective func­
tion f  is m inim ized such tha t g <= zeros(s i  ze(g) ) .

E qua lity  constraints, when present, are placed in the  firs t 
elements of g. When using equality constraints, opt i  ons(13) 
must be set to  the  number of equality constra ints (see the  
“ Equa lity  Constrained Exam ple” section in the  T u to ria l).

To m in im ize the  worst case absolute values of any of the  
elements of the  vector F(x) (i.e., mi ni max abs{F(x)}), partition  
those objectives in to  the  firs t elements of F(x) and set 
opt ions(15)  to be the  number of such objectives.

A lte rna tive ly , a s tring  expression can be used w ith  x repre­
senting the independent variables and w ith  f  and g repre­
senting the function and constraints. For example,

x = mini max( ' f  = f un ( x ) ;  g = c s t r ( x ) ; ' , x 0 )

When there  are no constraints, set g to  the empty m atrix  (i.e., 
g = [ ] ) .

grad A s tring  containing the name of the  function tha t computes
the  gradient of the  function and the  gradient of the 
constra ints at the  point x. Th is function has the  form

[d f ,  dg] = grad(x)

The variab le  df is a vector tha t contains the  partia l 
derivatives of f  w ith  respect to  x. The variab le  dg is a m atrix 
where the  columns of dg contain the  partia l derivatives for 
each of the  constra ints respectively, (i.e., the  i th  column of dg 
corresponds to  the  partia l deriva tive  of the  i th constraint 
w ith  respect to  each of the  elements in x).
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opt i  ons A vector of control parameters. O f the  18 elements of opt i  ons,
the  input options used by mini max are: 1, 2, 3, 4, 7, 9, 13, 14,
15, 16, 17. When opt i  ons is an output parameter, the  options 
used by mini max to  return values are: 8 , 10 , 11 , 18.

• o p t i o n s ( 1) controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• o p t i on s ( 2 ) controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f at the  solution.
• opt i ons(4)  sets the m aximum constraint v io lation tha t is 

acceptable.

The term ination  c rite ria  invo lv ing options(2), options(3), and 
options(4) must all hold t rue for the  a lgorithm  to  term inate.

The use of opt i  ons( 15) by mi ni max is discussed under the 
description of fun  above. The use of opt i ons(7)  and 
opt i  ons( 8) by mi nimax is discussed in the  “A lgo rithm ” section 
below. For more inform ation on the  opt i  ons vector, including 
default settings, see the fopt  ions reference page and the 
“Default Parameters Settings” section in the Tu to ria l.

x0 , See const r .

p1, p 2 -------

vlb,  vub

Find values of x tha t m in im ize the  maximum value of

[  f  1 (X ) , f2 (X ) , f3 (X ) , f4 (X ) , f  5 (X ) ]
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N o t e s

where
f 1 (x) = 2x2 + x2 -  48x1 -  40x 2 + 304

f2(x) = -  x 2 -  3 x2 

f3(x) = x 1 + 3 x2 -  18 

f4(x) = -  x 1 -  X2

f5(X) = X1 + X2 -  8.

Step 1: W rite  an M -file :
f u n c t i o n  [ f , g ]  = fun(  x)
f ( 1 )  =2*x(1) A2 + x(2 )A2-48*x( 1) -4 0 *x (2 ) +304; %Cbj ect i ves
f ( 2 ) =  x( 1 ) л2 -  3*x( 2);
f ( 3 ) =  x(1)  + 3*x(2)  -18;
f ( 4 ) =  - x ( 1 ) -  x( 2);
f (  5) = x(1)  + x( 2) -  8;
g = [ ] ;  % No c ons t r a i n t s

Step 2: Invoke an op tim iza tio n  routine:
x0 = [ 0. 1 , 0 . 1 ] ;  % Mfeke a s t a r t i n g  guess at sol ut ion
x = mini max ( ' f un ' , x0 )

A fter 29 function evaluations, the  solution is

x =
4.0000 4.0000 

fun(x)  
ans =

0. 0000 -16. 0000 -2. 0000 -8 . 0000 0. 000

The number of objectives for which the  worst case absolute values of f are m in i­
mized is set in opti  ons( 15). Such objectives should be partitioned in to  the firs t 
elements of f .

For example, consider the  above problem, which requires find ing  values of x 
tha t m in im ize the  maximum absolute value of

[  f^(X)  , f 2(X) , f3(X) , f4(X) , f 5(X) ]
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See A l s o  

R e fe re n c e s

This is solved by invoking mi ni max w ith  the  commands

x0 = [ 0 . 1 , 0 .  1] ; % Make a s t a r t i n g  guess at th e  s o l u t i on  
opt i  ons( 15) = 5; % Minimize absolut e values 
x = mini max( ' f un ' , x0 ,  opt ions)

A fter 39 function evaluations, the  solution is

x =
8.7769 0.6613 

fun(x)  
ans =

10.7609 -10.7609 -7.2391 -9 .4382  1.4382

If  equality constraints are present and dependent equalities are detected and 
removed in the quadra tic  subproblem, 'dependent' w ill be printed under the 
Procedures heading (when output is asked for using opt i  ons ( 1)=1) . The 
dependent equalities are only removed when the  equalities are consistent. I f  
the  system of equalities is not consistent, the  subproblem is infeasible and 
' in f  easi bl e' w ill be printed under the  Pr ocedures heading.

mini max uses a Sequential Q uadratic Programming (SQP) method [3]. M od ifi­
cations are made to  the  line  search and Hessian. In the  line search an exact 
merit function (see [4] and [5]) is used together w ith  the  m erit function 
proposed by [2]. The line  search is te rm inated when either m erit function 
shows improvement. A modified Hessian tha t takes advantage of special s truc­
ture of th is  problem is also used. Setting opt i ons(7)  = 1 uses the  merit func­
tion and Hessian used in c o n s t r .

See also SQP im plem entation section in the  Introduction to A lgorithm s chapter 
for more deta ils on the  a lgorithm  used and the  display of procedures for 
opt i  ons( 1) = 1 setting.

The function to  be m inim ized must be continuous. mi ni max may only give local 
solutions.

f opt i ons

[1] S.P. Han, “A G lobally Convergent Method For Nonlinear Program m ing,” J. 
of O ptim ization Theory and Applications, Vol. 22, 1977, p. 297.

3-63



m in im ax

[2] M.J.D. Powell, “A Fast A lgo rithm  for Nonlineary Constrained O ptim ization 
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in M athe­
matics, Springer Varleg, Vol. 630, 1978.

[3] R.K. Brayton, S.W. D irector, G.D. Hachtel, and L.V id igal, “A New Algo­
rithm  for S tatistical C ircu it Design Based on Quasi-Newton Methods and 
Function S p littin g ,” IEEE Trans. C ircu its  and Systems, Vol. CAS-26, pp. 
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Solves the  nonnegative least squares problem,

1 2
min I Ax -  b|L such tha t x > 0 

x 2 2

where the  m atrix  A  and the  vector b are the  coefficients of the  objective func­
tion. The vector, x, of independent variables is restricted to  be nonnegative.

n n l s ( A b )
n n l s ( A b , t o l )
[x,w]  = n n l s ( A b )
[x,w]  = n n l s ( A b , t o l )

x = n n l s ( A b )  solves the  non-negative least-squares problem.

x = n n l s ( A b , t o l )  overrides the  default tolerance tha t determ ines when 
elements in the  vector x are less than zero. The default tolerance is

to l = max(size(A))  * norm(A,1) * eps

[ x , w  = n n l s ( A b )  re tu rns the  dual vector w of Lagrange m u ltip lie rs . The 
elements of x and w are related by

w( i ) <= 0, ( i | x( i ) = 0) 
w( i ) = 0, ( i | x( i ) > 0)
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N o t e s

Compare the unconstrained least squares solution to  the  nnls solution for a 
4-by-2 problem.

a =
0. 0372 0. 2869 
0.6861 0.7071 
0. 6233 0. 6245 
0.6344 0.6170

b =
0.8587
0.1781
0.0747
0.8405

[a\b,  nn l s ( a , b ) ]  = -2 .5625 0
3.1106 0.6929 

[ no r m( a* ( a \ b ) - b ) ,  norm(a*nn l s (a ,b ) -b ) ]  = 0.6677 0.9119

The solution from nnls does not f it  as well as the least squares solution. 
However, the  nonnegative least-squares solution has no negative components.

nnls uses the  a lgorithm  described in [1]. The a lgorithm  sta rts  w ith  a set of 
possible basis vectors and computes the  associated dual vector w. It then selects 
the  basis vector corresponding to  the maximum value in w in order to  swap out 
of the  basis in exchange for another possible candidate. This continues un til
w <= 0.

The nonnegative least squares problem is a subset of the  constrained linear 
least-squares problem.

Thus, when A has more rows than columns (i.e., the  system is over-determined)

[x,w]  = nnl s(A, b) 

is equivalent to 

[ m n ]  = s i ze(  A ) ;
[ x , l ]  = con l s ( A , b , - ey e ( n , n ) ,  z e r o s ( n , 1 ) ) ; 
w = - l  ;

For problems greater than order tw enty, conl s may be faster than nnls,  other­
w ise nnls is generally more efficient.
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R e fe re n c e s

\ , conls

[1] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems, Pren- 
tice-H all, 1974, Chapter 23, p. 161.
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Solve the  quadratic  programming problem,

min I x THx + cTx such tha t Ax  < b x 2

where H and A  are matrices, and c, b, and x are vectors.

x = qp(H,c,A,b)
x = qp(H,c,A,b,  vl b)
x = qp(H,c,A,b,  vl b, vub)
x = qp(H,c,A,b,  vl b, vub, x0)
x = qp(H,c,A,b,  vl b, vub, x0, neqcst r)
x = qp(H,c,A,b,  vl b, vub, x0, neqcst r, displ  ay)
[ x , l  ambda, how] = qp(H,c,A,b,  . . .  )

qp solves the  quadratic  programming problem.

x = qp(H,c,A,b)  re tu rns a vector x tha t m in im izes 1 /2*x ' *H*x  + c' *x subject
to  A*x <= b.

x = qp( H, c , A , b , v l b , v ub )  sets lower and upper bounds on x. Th is restricts the  
solution to  the  range v lb  <= x <= vub.

x = qp(H,c,A,b,  vl b, vub, x0) sets the in itia l s ta rting  point to x0.

x = qp(H,c,A,b,  vl b, vub, x0, neqcst r) specifies tha t the  firs t neqcst r  
constra ints are equality constraints.

x = qp(H,c,A,b,  vl b, vub, x0, neqcst r, displ  ay) controls the  display of 
w arn ing messages.

[x, l ambda] = qp( H, c,A,b)  re tu rns values for the  Lagrange m u ltip lie rs  at the  
solution in the  variab le  l ambda.

[x,lambda,how] = qp(H,c,A,b)  also re tu rns a s tring  how tha t indicates error 
conditions at the  fina l ite ra tion .

H,c The Hessian m atrix  H and vector c are the  set of coefficients
of the  quadra tic  objective function. H must be symmetric.
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A b

vlb,  vub

x0

neqcst r 

d i sp l ay

lambda

how

The m atrix  A and vector b are the  coefficients of the  linear 
constraints. The coefficients for the  equality constraints 
must be partitioned in to  the  firs t rows of A and the firs t 
elements of b.

Upper and lower bound vectors. The variables, vl b and vub, 
are norm ally the  same size as x. However, i f  v lb  has n 
elements and fewer elements than x, then only the  firs t n 
elements in x are bounded below; upper bounds in vub are 
defined in the same manner.

S tarting  vector. qp generally s ta rts  its  search at the  point 
zeros(s i  z e ( x ) ) . Setting the in itia l s ta rting  point can result 
in faster convergence. I f  the  problem is badly conditioned, 
th is  can also result in an improved solution.

Number of equality constraints.

Flag to  control the  display of w arn ing messages. The default 
value for the  parameter di splay is 0, which displays warn ing 
messages. A value of -1 suppresses w arn ing messages.

A vector tha t re tu rns the  set of Lagrange m u ltip lie rs  at the  
solution. The length of lambda is
l ength(b)+ lengt  h(vl  b) +l ength(vub) and the Lagrange 
m u ltip lie rs  are given in the  corresponding order: firs t the  
m u ltip lie rs  for A, then vl b, then vub.

A s tring  tha t indicates error conditions at the  solution. The 
s tring  how = ' i  n f eas i b l e '  indicates tha t the  problem is 
infeasible (i.e. the  constra ints are overly restrictive); 
how = ' unbounded' indicates that the  problem has an 
unbounded solution; how = 'dependent' indicates tha t 
dependent equality constraints were detected and removed; 
how = ' ok' indicates tha t the  problem was solved w ithou t 
d ifficu lty.

As w ith  all O ptim ization Toolbox functions, empty matrices in the  calling 
sequence result in the  use of default options. For example, the  command

q p ( H , c , A b , [  ] , [  ] , [  ] , l  engt h( b ))
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indicates tha t the  problem is an equality constrained problem, having no upper 
or lower bounds on the  variables and uses a default s ta rting  point.

Find values of x tha t m in im ize

1 2  2f(X ) = 2 X1 + x 2 -  X1 X2 -  2x 1 -  6x 2

subject to

x 1 + x 2 < 2

-  x 1 + 2 x 2 < 2

2 x 1 + x 2 < 3

0 < x 1,0 < x 2

F irst we note tha t th is  function may be w ritte n  in m atrix  notation as
1 T T 

f (x ) = 2 x Hx + c x where

1 -1 -2 x 1
H =

-1 2
, c =

-6
, x =

_x 2_

Step 1: Enter the coe ffic ien t matrices:
H = [1 -1; -1 2] 
c = [ -2 ;  -6]
A = [1 1; -1 2; 2 1] 
b = [2; 2; 3] 
v l b  = zeros(2,1)

Step 2: Invoke a q u a d ra tic  p rog ram m ing  routine:

[ x , l  ambda] = qp(H,c,A,b,  vl b)

3-70



A l g o r i t h m

D i a g n o s t i c s

qp

This generates the  solution

x =
0. 6667
1. 3333

lambda =
3.1111 
0. 4444
0
0
0

The firs t th ree elements of the  Lagrange m u ltip lie rs  (i.e., lambda) are associ­
ated w ith  the  inequa lity  constraints. Nonzero elements of lambda indicate 
active constraints at the  solution. In th is  case, constra ints one and tw o are 
active constraints (i.e., the  solution is on the ir constraint boundaries).

The last tw o elements of the  Lagrange m u ltip lie rs  are associated w ith  the  
lower bounds on x. In th is  case, the  bounds are inactive.

qp uses an active set method, which is also a projection method, s im ila r to  tha t 
described in [1]. It finds an in itia l feasible solution by firs t solving a linear 
programm ing problem. This method is discussed in the  Introduction to Algo­
rithm s chapter.

qp gives a w arn ing when the  solution is infeasible:

Warning: The c o n s t r a i n t s  are over l y  s t r i ngen t ;  
t her e i s  no f eas i b l  e so l u t i  on.

I n th is  case, qp produces a result tha t m inim izes the worst case constraint 
vio lation.

When the  equality constra ints are inconsistent, qp gives

Warning: The e q u a l i t y  c ons t r a i n t s  are over l y  s t r i ngen t ;  
t her e i s  no f eas i b l  e so l u t i  on.
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Unbounded solutions,which can occur when the Hessian H is negative semidef- 
in ite , may result in

Warning: The s o l u t i o n  i s  unbounded and at i n f i n i t y ;  
t he c ons t r a i n t s  are not r e s t r i c t i v e  enough.

In th is  case, qp re tu rns a value of x tha t satisfies the  constraints.

The solution to  inde fin ite  or negative de fin ite  problems is often unbounded, and 
when a f in ite  solution does exist, qp may only give local m in im a since the 
problem may be nonconvex.

[1] P.E. G ill, W. M urray, and M .H. W righ t, Practical O ptim ization, Academic 
Press, London, UK, 1981.
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Find m in im um  of a sem i-in fin ite ly  constrained m u ltiva riab le  nonlinear func­
tion,

min f (x ) subject to  G (x )<  0, 
x

K ^x , w т) < 0,

K2(x, w 2) < 0,

Kn (x, Wn) < 0

where x and G(x) are vectors and f(x) is a scalar function. G(x) can be used to  
define both equality and inequa lity constraints. The vectors (or matrices)
Kn(x, w n) < 0 are continuous functions of both x and an additional set of v a r i­
ables w  1; w 2, . . . , w n . The variables w  1; w 2, . . . ,  w n are vectors of, at most, 
length two.

x = semi nf ( ' f u n ' ,  n, x0)
x = semi nf ( ' f u n ' ,  n, x0,opt  ions)
x = s e m i n f ( ' f u n ' , n , x 0 , o p t i o n s , v l b , v u b )
x = s e m n f ( ' f u n ' , n , x 0 , o p t i o n s , v l b , v u b , p 1 , p 2 ,  . . .  )
[ x,opt  ions]  = s e m n f ( ' f u n ' , n , x 0 ,  . . .  )

semi nf finds the  m in im um  of a sem i-in fin ite ly  constrained scalar function of 
several variables, s ta rting  at an in itia l estimate. The aim is to  m in im ize f(x) so 
the  constraints hold for all possible values of wi  e Ш1 (or wi  e Ш2). Since it is 
impossible to  calculate all possible values of K i(x, w i ) ,  a region must be chosen 
for wi  over which to  calculate an appropria te ly sampled set of values.

x = s e m n f ( ' f u n ' , n ,  x0) s ta rts  at the  point x0 and finds a m in im um  of the  
function and constraints, includ ing n sem i-in fin ite  constraints, defined in the 
M -file  named f u n . m

x = s e m i n f ( ' f u n ' , n , x 0 , o p t  ions) uses the  parameter values in the  vector 
opt i  ons rather than the  default option values.
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x = semi nf ( ' fun'  , n, x, opt i  ons, vl b, vub) defines a set of lower and upper 
bounds on x through the matrices vl b and vub. Th is restricts the  solution to 
the  range vl b <= x <= vub.

x = semi nf ( ' f u n ' ,  x0,opt i  ons, vl b, v u b , p 1 , p 2 , . . . )  passes the 
problem-dependent parameters p1, p2, etc., d irectly to  the  function fun.

[ x , op t  ions]  = semi n f ( ' f u n ' ,  n, x0) re tu rns the  parameters used in the  opti­
m ization method. For example, opt i  ons(10) contains the number of function 
evaluations used.

fun  A s tring  containing the name of the  function tha t computes
the  objective function to  be m inim ized and the constraint func­
tion at the  point x. The function fun

[ f , g ,K1 ,K2 ,  . . . ,  Kn, s] = fun( x, s)

re tu rns a scalar value, f , of the  function to  be m inim ized, and 
a vector of constraints, g. The vectors, or matrices, K1, K2, ..., 
Kn contain the  sem i-in fin ite  constra ints evaluated for a 
sampled set of values for the  independent variables, w1, W2, ... 
W3, respectively. The tw o column m atrix , s, contains a recom­
mended sampling in terva l for values of w1, W2, .. wn which are 
used to  evaluate K1, K2, .. Kn. The i th row of s contains the 
recommended sam pling in terva l for evaluating Ki. When Ki is 
a vector, use only s ( i , 1 ) . When Ki is a m atrix , s ( i , 2 )  is used 
for the  sampling of the  rows in Ki ,s( i  ,1) is used for the 
sam pling in terva l of the  columns of Ki (see “Two-Dimensional 
Exam ple” in the  “ Examples” section.). On the  firs t ite ra tion  s 
is set to  NaN, so tha t some in it ia l sampling in terva l must be 
determ ined.

Equa lity  constraints, when present, are placed in the  firs t 
elements of g. When using equality constraints, opt i  ons(13) 
must be set to  the  number of equality constra ints (see the  
“ Equa lity  Constrained Exam ple” section in the  T u to ria l).

n The number of sem i-in fin ite  constraints.
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opt i  ons A vector of control parameters. Of the  18 elements of
opt i  ons, the  input options used by semi nf are: 1, 2, 3, 4, 9, 
13, 14, 16, 17. When opt i ons is an output parameter, the 
options used by semi nf to  return values are: 8, 10, 11, 18.

• opt i ons(1)  controls display. Setting th is  to  a value of 1 pro­
duces a tabu lar display of in term ediate results.

• opt i ons(2)  controls the  accuracy of x at the  solution.
• opt i ons(3)  controls the  accuracy of f at the  solution.
• opt i ons(4)  sets the m aximum constraint v io lation tha t is 

acceptable.

For more inform ation on the  opt i  ons vector, includ ing default 
settings, see the  f o p t i o n s  reference page and the  “ Default 
Parameters Settings” section in the Tu to ria l.

p1, p2, . . .  Additiona l arguments to  be passed to  fun,  tha t is, when 
semi nf calls fun,  the calls are

[ f , g ,K1 ,K2 ,  . . . , K n , s ]  = f un ( x , s , p1 , p2 ,  . . . )

Using th is  feature, the  same M -file  can solve a number of 
s im ila r problems w ith  d ifferent parameters avoiding the need 
to  use global variables. Note tha t since all the  arguments 
preceding p1, p2, etc., in the  call to  semi nf must be defined, 
empty matrices may be passed in for opt i  ons, vl b, and vub to 
indicate tha t default arguments are to  be used, as in

x = s e m i n f ( ' f u n ' , n , x 0 , [ ] , [ ] , [ ] , p 1 , p 2 ,  . . .  )

x0, See const r .

vlb,  vub

The recommended sampling in terva l, s, set in fun  may be varied by the  opti­
m ization routine  during  the computation. Other values may be more appro­
pria te  for efficiency or robustness. Also, the  fin ite  region , over which 
Kj (x, Wj ) is calculated, is allowed to  vary during  the  optim ization provided 
tha t it does not result in s ignificant changes in the number of local m in im a in 
K  (x, Wi ) .
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Find values of x tha t m in im ize

f  (x ) = (x 1 -  0.5)2 + (x 2 -  0.5)2 + (x 3 -  0.5)2

where
1

K 1(x, w  1) = sin (w 1 x 1) cos(w1 x2) -  (w ! -  50)2 -  sin (w 1 x3) - x 3 < 1

1
K 2 (x, w  2 ) = sin (w  2 x2 ) cos (w 2 x 1 ) -  Ю 00 (w  2 -  50 ) 2 -  sin (w  2 x3 ) -  x 3 < 1 

for all values of w 1 and w 2 over the  ranges

1 < w 1 <100

1 < w  2 < 100

Note tha t the  sem i-in fin ite  constraints are one-dimensional, tha t is, vectors.

Step 1: W rite  an M -file :
f u n c t i o n  [ f ,G j K1 , K2 , s ]  = f un( X, s)

% I n i t i a l  sampl ing i n t e rva l  
i f  i snan(s( 1, 1 ) ) , s  = [ 0 . 2  0; 0.2 0]; end 

% Sample set 
w1 = 1:s(1,  1 ) : 1 00; 
w2 = 1:s(2,  1):100;

% Semi - i n f i n i t e  const rai  nt s 
K1 = si n(w1*X( 1)) .  *cos(w1*X( 2)) -  1/ 1000*(w 1-50).A2 - . . .

si n(w1* X( 3 ) ) -X ( 3 ) - 1 ;
K2 = si n(w2*X( 2) ) .  *cos(w2*X( 1)) -  1/ 1000*(w 2-50).A2 - . . .  

si n(w2*X( 3 ))-X ( 3) -1;
% No const rai  nt s

G = [ ] ;
% Object i  ve f unct ion  

f = sum( (X-0. 5 ) . A2);
% Pl ot a gr aph of semi - i n f i n i t e  const r a i n t s  

pl ot(w1, K1, w2,K2) , t i t l e ( ' S e m - i n f i n i t e  c o n s t r a i n t s ' )
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Step 2: Invoke an op tim iza tio n  routine:
x0 = [ 0 . 5 , 0 .  2, 0. 3] ; % Star t i  ng guess at t he so l u t i  on
x = semi nf ( ' f u n ' ,  2, x0)

A fter 37 function evaluations, the  solution is

x =
0. 6956 0. 3052 0. 4261 

[ f , Q K 1 , K 2 ]  = fun(x ,  NaN); 
f =

0. 0817 
max(K1) 
ans =

-1.0617e-04 
max( K2) 
ans =

-0 .0023

A plot of the  sem i-in fin ite  constra ints is produced.

S e m i- in f in ite  c o n s tra in ts

This plot shows how peaks in both functions are on the  constraint boundary.
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Two-D im ensional Exam ple 
Find values of X tha t m inim ize

f  (X) = (X1 -  0.5)2 + (X2 -  0.5)2 + (X3 -  0.5)2

where
1

K 1(X, w ) = s in (w  1X1) cos(10 w 2X 2 ) -  1000 (w 1 -  50)2 -  sin ( 10w 1 X3) - X3 +

1
sin (w 2X2) cos(w 1 X1) -  100J0 (w 2 -  50)2 -  sin (w 2X3) + -X 3 < 1.5

for all values of w 1 and w 2 over the  ranges:

1 < w 1 <100

1 < w  2 < 100

s ta rting  at the  point X = [0.2, 0.2, 0 .2 ].

Note tha t the  sem i-in fin ite  constraint is two-dimensional, tha t is, a m atrix.

Step 1: W rite  an M -file :
f u n c t i o n  [ f  ,GjK1,s]  = fun(  X, s)

% I n i t i a l  sampl in g  i n t e r v a l s  
i f  i s n a n ( s ( 1 , 1 ) ) , s  = [ 2  2] ;  end

% Sampling sets
w1 = 1:s(1,  1 ) : 1 00;
W2 = 1: s (1 ,2) : 100 ;
[w<,w/ ]  = meshdom(w1,W2);

% Semi - i n f i n i t e  const r  aint  
K1 = si n(wx*X( 1)) .  *cos(wy*X( 2 ) ) - 1 /  1000*(wx-50). л2- . .  .

s i n(  wx*X( 3 ))-X ( 3) +sin(wy*X( 2) ) .  *cos( wx*X( 1 ) ) - . .  .
1/ 1000*( wy-50). л 2 ^  n(wy*X( 3 ))-X ( 3) -1 .5 ;

% No const rai  nt s
G = [ ] ;

% Object iv e  funct  i on
f = sum( (X-0. 2) .л2) ;

% Mfesh pl ot 
mesh( K1) , t i t l  e ( ' S e m i - i n f i n i t e  const r a i n t ' )
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Step 2: Invoke an op tim iza tio n  routine:
x0 = [ 0 . 2 , 0 . 2 , 0 . 2 ] ;  % S t a r t i ng  guess at the  s o l u t i on  
x = semi nf ( ' f u n ' ,  1, x0)

A fter 65 function evaluations, the  solution is

x =
0.2033 0.2034 0.1930 

[ f , G K 1 ]  = f un( x, NaN); 
max( max(K1)) 
ans =

-0 .0273

Note, due to  sampling there appears to  be no active constraint (i.e., no point on 
the  constraint boundary). Taking a smaller sam pling in terva l shows tha t the  
constraint is active.

The follow ing mesh plot is produced.

S e m i-in fin ite  co n stra in t

semi nf uses cubic and quadratic  in terpolation techniques to  estim ate peak 
values in the  sem i-in fin ite  constraints. The peak values are used to  form a set 
of constra ints tha t are supplied to  the  function c o n s t r . When the  number of
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constra ints changes, Lagrange m u ltip lie rs  are reallocated to  the  new set of 
constraints.

The recommended sampling in terva l calculation uses the difference between 
the  interpolated peak values and peak values appearing in the data set to  esti­
mate whether more or fewer points need to  be taken. The effectiveness of the 
interpolation is also taken in to  consideration by extrapolating the curve and 
comparing it to  other points in the  curve. The recommended sam pling in terva l 
is decreased when the peak values are close to  constraint boundaries, i.e., zero.

See also SQP im plem entation section in the  Introduction to A lgorithm s chapter 
for more deta ils on the  a lgorithm  used and the  display of procedures for 
opt i  ons( 1) = 1 setting.

The function to  be m inim ized, the  constraints, and sem i-in fin ite  constraints, 
must be continuous functions of x and w. semi nf may only give local solutions.

When the problem is not feasible, semi nf attem pts to  m in im ize the  maximum 
constraint value.

c o n s t r , f op t i  ons
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constrained minimization 3-19 
constraints 

positive 1-12 
continuous 2-3 
convex problem 2-22 
cubic interpol at i on 2-8 
curvef i  t

examples 3-27 
curve-fitting 3-25

D
data-fitting 3-25 
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dependent 3-23, 3-63 
DFP formula 3-37 
discontinuities 1-32, 2-3 
discontinuous problems 3-38 
discrete variables 1-32 
display output 1-25 
dual vector 3-65

E
e-constraint method 2-36 
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equation solving 
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F
feasible point 

finding 2-30 
finding
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fin ite  differencing 1-26 
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examples 3-32 
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f s o l ve
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function
discontinuities 1-32 

function evaluations 
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examples 3-48 J
Jacobian 3-51

G
Gauss-Newton method 2-17, 2-18, 2-21, 3-28, 

3-46, 3-53 
global minimum 1-31 
global variables 1-13 
goal attainment 2-38, 3-5 

examples 1-22 
over attainment 3-7 
under attainment 3-7 

goal parameter 3-6 
goal demo 3-10 
golden section search 3-32 
gradient

checking analytic 1-12, 1-26 
examples 1-10 

gradient methods 2-3

H
Hessian modf ie d  t w c e  2-27 
Hessian modi f i ed 2-27 
hessian update 2-10 

implementation 2-26

I
inconsistent constraints 3-58 
indefinite problems 3-72 
inequality constraints 3-57 
infeasible 3-15, 3-69 
infeasible problems 3-23 
in fin ite  loop 1-33 
installation 1-5 
integer variables 1-32

K
Kuhn-Tucker equations 2-22

L
Lagrange m ultip liers 3-15, 3-17, 3-20, 3-22, 3-56, 

3-57, 3-65, 3-69 
least squares 2-17 

categories 1-3
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convergence 1-33 
examples 1-16, 3-53 

Levenberg-Marquardt method 2-18, 2-19, 2-21, 
3-28, 3-46, 3-53 

line search 3-37, 3-46, 3-54 
line search strategy 1-4 
linear equations solve 3-45 
linear least squares 

constrained 3-14 
nonnegative 3-65 
unconstrained 3-18 

linear programming 2-2, 3-55 
implementation 2-30 

lower bounds 1-8 
lp

examples 3-57

M
maximization 1-12 
merit function 2-31 
minimax
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minimax problem 3-59 
minimization 

categories 1-2 
multiobjective optimization 2-32, 3-5 

examples 1-14

N
negative definite problems 3-72 
Nelder and Mead 2-3 
Newton's method 2-3 
no derivative method 3-37 
no update 2-27 
nonconvex problems 3-72 
noninferior solution 2-33 
nonlinear data-fitting 3-50 
nonlinear equations solving 3-41 
nonlinear least squares 3-25, 3-50 

implementation 2-20 
nonlinear programming 2-2 
notation 1-3

O
objective function

undefined values 1-32 
options

changing default 1-27 
options/parameters 1-7, 1-25, 3-40 
output display 1-25, 1-28

P
projection method 2-27, 3-58, 3-71

Q
quadratic interpolation 2-8 
quadratic programming 2-2, 3-23, 3-68 
quasi-Newton method 2-4, 2-10, 3-37 

implementation 2-9

R
residual 2-16 
Rosenbrock's function 2-3

S
sampling interval 3-75 
sem i-infinite constraints 3-73 
seminf

examples 3-76 
signal processing 1-21 
simple bounds 1-8 
simplex search 2-3, 3-37 
SIMULINK 1-14 
SQP method 2-23, 2-27, 3-23 
steepest descent 3-37 
step-size 1-27 
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system of equations solving 3-41

T
term ination criteria 1-25

U
unbounded 3-15, 3-58, 3-69 
unconstrained minimization 3-34 

multi-dimensional 3-34 
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unconstrained optimization 2-3 
upper bounds 1-9

W
warnings 1-32 

conl s 3-17 
fsol  ve 3-46 
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qp 3-71

weight parameter, defining 3-7 
weighted sum strategy 2-34, 2-35, 2-36

Z
zero finding 3-41
zero of a function, finding 3-47
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