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Preface

The emphasis of “‘MATLAB Simulations for Radar Systems Design” is on
radar systems design. However, a strong presentation of the theory is provided
so that the reader will be equipped with the necessary background to perform
radar systems analysis. The organization of this book is intended to teach a
conceptual design process of radars and related trade-off analysis and calcula-
tions. It is intended to serve as an engineering reference for radar engineers

working in the field of radar systems. The MATLAB®1 code provided in this
book is designed to provide the user with hands-on experience in radar sys-
tems, analysis and design.

A radar design case study is introduced in Chapter 1and carried throughout
the text, where the authors’ view of how to design this radar is detailed and
analyzed. Trade off analyses and calculations are performed. Additionally, sev-
eral mini design case studies are scattered throughout the book.

‘MATLAB Simulationsfor Radar Systems Design” is divided into two parts:
Part | provides a comprehensive description of radar systems, analyses and
design. A design case study, which is carried throughout the text, is introduced
in Chapter 1. In each chapter the authors’ view of how to design the case-study
radar is presented based on the theory covered up to that point in the book. As
the material coverage progresses through the book, and new theory is dis-
cussed, the design case-study requirements are changed and/or updated, and of
course the design level of complexity is also increased. This design process is
supported by a comprehensive set of MATLAB 6 simulations developed for
this purpose. This part will serve as a valuable tool to students and radar engi-
neers in helping them understand radar systems, design process. This includes
1) learning how to go about selecting different radar parameters to meet the
design requirements; 2) performing detailed trade-off analysis in the context of
radar sizing, modes of operations, frequency selection, waveforms and signal
processing; 3) establishing and developing loss and error budgets associated
with the design; and 4) generating an in-depth understanding of radar opera-
tions and design philosophy. Additionally, Part | includes several mini design
case studies pertinent to different chapters in order to help enhance understand-
ing of radar design in the context of the material presented in different chap-
ters.

Part Il includes few chapters that cover specialized radar topics, some of
which is authored and/or coauthored by other experts in the field. The material

1 MATLAB is a registered trademark of the The MathWorks, Inc. For product infor-
mation, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098 USA. Web: www.mathworks.com.

© 2004 by Chapman & Hall/CRC CRC Press LLC


http://www.mathworks.com

included in Part Il is intended to further enhance the understanding of radar
system analysis by providing detailed and comprehensive coverage of these
radar related topics. For this purpose, MATLAB 6 code has also been devel-
oped and made available.

All MATLAB programs and functions provided in this book can be down-
loaded from the CRC Press Web site (www.crcpress.com). For this purpose,
follow this procedure: 1) from your Web browser type “http://www.crc-
press.com”, 2) click on “Electronic Products”, 3) click on ‘Download &
Updates”, and finally 4) follow instructions of how to download a certain set
of code offthat Web page. Furthermore, this MATLAB code can also be down-
loaded from The MathWorks Web site by following these steps: 1) from your
Web browser type: “http://mathworks.com/matlabcentral/fileexchange/”, 2)
place the curser on “Companion Softwarefor Books” and click on “Communi-
cations”. The MATLAB functions and programs developed in this book
include all forms of the radar equation: pulse compression, stretch processing,
matched filter, probability of detection calculations with all Swerling models,
High Range Resolution (HRR), stepped frequency waveform analysis, ghk
tracking filter, Kalman filter, phased array antennas, clutter calculations, radar
ambiguity functions, ECM, chaff, and many more.

Chapter 1 describes the most common terms used in radar systems, such as
range, range resolution, and Doppler frequency. This chapter develops the
radar range equation. Finally, a radar design case study entitled ‘MyRadar
Design Case Study” is introduced. Chapter 2 is intended to provide an over-
view of the radar probability of detection calculations and related topics.
Detection of fluctuating targets including Swerling I, I, 1Il, and 1V models is
presented and analyzed. Coherent and non-coherent integration are also intro-
duced. Cumulative probability of detection analysis is in this chapter. Visit 2 of
the design case study ‘MyRadar” is introduced.

Chapter 3 reviews radar waveforms, including CW, pulsed, and LFM. High
Range Resolution (HRR) waveforms and stepped frequency waveforms are
also analyzed. The concept of the Matched Filter (MF) is introduced and ana-
lyzed. Chapter 4 presents in detail the principles associated with the radar
ambiguity function. This includes the ambiguity function for single pulse, Lin-
ear Frequency Modulated pulses, train of unmodulated pulses, Barker codes,
and PRN codes. Pulse compression is introduced in Chapter 5. Both the MF
and the stretch processors are analyzed.

Chapter 6 contains treatment of the concepts of clutter. This includes both
surface and volume clutter. Chapter 7 presents clutter mitigation using Moving
Target Indicator (MTI). Delay line cancelers implementation to mitigate the
effects of clutter is analyzed.

Chapter 8 presents detailed analysis of Phased Arrays. Linear arrays are
investigated and detailed and MATLAB code is developed to calculate and plot

© 2004 by Chapman & Hall/CRC CRC Press LLC
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the associated array patterns. Planar arrays, with various grid configurations,
are also presented.

Chapter 9 discusses target tracking radar systems. The first part of this chap-
ter covers the subject of single target tracking. Topics such as sequential lob-
ing, conical scan, monopulse, and range tracking are discussed in detail. The
second part of this chapter introduces multiple target tracking techniques.
Fixed gain tracking filters such as the ap and the aPy filters are presented in
detail. The concept of the Kalman filter is introduced. Special cases of the Kal-
man filter are analyzed in depth.

Chapter 10 is coauthored with Mr. J. Michael Madewell from the US Army
Space and Missile Defense Command, in Huntsville, Alabama. This chapter
presents an overview of Electronic Counter Measures (ECM) techniques. Top-
ics such as self screening and stand offjammers are presented. Radar chaff is
also analyzed and a chaff mitigation technique for Ballistic Missile Defense
(BMD) is introduced.

Chapter 11 is concerned with the Radar Cross Section (RCS). RCS depen-
dency on aspect angle, frequency, and polarization is discussed. The target
scattering matrix is developed. RCS formulas for many simple objects are pre-
sented. Complex object RCS is discussed, and target fluctuation models are
introduced. Chapter 12 is coauthored with Dr. Brian Smith from the US Army
Aviation and Missile Command (AMCOM), Redstone Arsenal in Alabama.
This chapter presents the topic of Tactical Synthetic Aperture Radar (SAR).
The topics of this chapter include: SAR signal processing, SAR design consid-
erations, and the SAR radar equation. Finally Chapter 13 presents an overview
of signal processing.

Using the material presented in this book and the MATLAB code designed
by the authors by any entity or person is strictly at will. The authors and the
publisher are neither liable nor responsible for any material or non-material
losses, loss of wages, personal or property damages of any kind, or for any
other type of damages of any and all types that may be incurred by using this
book.

Bassem R. Mahafza
Huntsville, Alabama
July, 2003

Atef Z. Elsherbeni

Oxford, Mississippi
July, 2003
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Chapter 1 Introduction to Radar
Basics

1.1. Radar Classifications

The word radar is an abbreviation for RAdio Detection And Ranging. In
general, radar systems use modulated waveforms and directive antennas to
transmit electromagnetic energy into a specific volume in space to search for
targets. Objects (targets) within a search volume will reflect portions of this
energy (radar returns or echoes) back to the radar. These echoes are then pro-
cessed by the radar receiver to extract target information such as range, veloc-
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship
based radar systems. They can also be classified into numerous categories
based on the specific radar characteristics, such as the frequency band, antenna
type, and waveforms utilized. Another classification is concerned with the
mission and/or the functionality of the radar. This includes: weather, acquisi-
tion and search, tracking, track-while-scan, fire control, early warning, over
the horizon, terrain following, and terrain avoidance radars. Phased array
radars utilize phased array antennas, and are often called multifunction (multi-
mode) radars. A phased array is a composite antenna formed from two or more
basic radiators. Array antennas synthesize narrow directive beams that may be
steered mechanically or electronically. Electronic steering is achieved by con-
trolling the phase of the electric current feeding the array elements, and thus
the name phased array is adopted.

Radars are most often classified by the types of waveforms they use, or by
their operating frequency. Considering the waveforms first, radars can be Con-
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tinuous Wave (CW) or Pulsed Radars (PR).1CW radars are those that continu-
ously emit electromagnetic energy, and use separate transmit and receive
antennas. Unmodulated CW radars can accurately measure target radial veloc-
ity (Doppler shift) and angular position. Target range information cannot be
extracted without utilizing some form of modulation. The primary use of
unmodulated CW radars is in target velocity search and track, and in missile
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula-
tion). In this category, radar systems can be classified on the basis of the Pulse
Repetition Frequency (PRF) as low PRF, medium PRF, and high PRF radars.
Low PRF radars are primarily used for ranging where target velocity (Doppler
shift) is not of interest. High PRF radars are mainly used to measure target
velocity. Continuous wave as well as pulsed radars can measure both target
range and radial velocity by utilizing different modulation schemes.

Table 1.1 has the radar classifications based on the operating frequency.

TABLE 1.1. Radar frequency bands.

Letter New band designation
designation Frequency (GHz) (GHz)
HF 0.003 - 0.03 A
VHF 0.03-0.3 A<0.25; B>0.25
UHF 0.3-1.0 B<0.5; C>0.5
L-band 1.0-20 D
S-band 2.0-4.0 E<3.0; F>3.0
C-band 40-8.0 G<6.0; H>6.0
X-band 8.0-12.5 1<10.0; J>10.0
Ku-band 125-18.0 J
K-band 18.0 - 26.5 J<20.0; K>20.0
Ka-band 26.5-40.0 K
MMW Normally >34.0 L<60.0; M>60.0

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off
the ionosphere to detect targets beyond the horizon. Very High Frequency
(VHF) and Ultra High Frequency (UHF) bands are used for very long range
Early Warning Radars (EWR). Because of the very large wavelength and the
sensitivity requirements for very long range measurements, large apertures are
needed in such radar systems.

1 See Appendix 1A
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During each PRI the radar radiates energy only for T seconds and listens for
target returns for the rest of the PRI. The radar transmitting duty cycle (factor)
dt is defined as the ratio dt  T/T. The radar average transmitted power is

Pa Ptxdt> (1.3)

where Pt denotes the radar peak transmitted power. The pulse energy is
Ep PtT PaT _ Pa/fr-

The range corresponding to the two-way time delay T is known as the radar
unambiguous range, Ru. Consider the case shown in Fig. 1.3. Echo 1 repre-
sents the radar return from a target at range R1 _ cAt/ 2 due to pulse 1. Echo 2
could be interpreted as the return from the same target due to pulse 2, or it may
be the return from a faraway target at range R2 due to pulse 1 again. In this

case,
R2 CAt or R?2 c(T+At- )
2 2
transmitted pulses
IPP
pulse 1 7 ~| pulse 2 [+ pulse 3 ["L time
At M pulse 1 M pulse2 M pulse3 .
received pulses 3 TLech® J Lecho J Lecho ~ lime

Figure 1.2. Train oftransmitted and received pulses.
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Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is
transmitted the radar must wait a sufficient length of time so that returns from
targets at maximum range are back before the next pulse is emitted. It follows
that the maximum unambiguous range must correspond to half of the PRI,

R T c

Ru_c2 _ - (L5

1.3. Range Resolution

Range resolution, denoted as AR, is a radar metric that describes its ability
to detect targets in close proximity to each other as distinct objects. Radar sys-
tems are normally designed to operate between a minimum range Rmin, and
maximum range Rmax. The distance between Rmin and Rmax is divided into M
range bins (gates), each of width AR,

M _ (Rmax- Rmin)/AR (16)
Targets separated by at least AR will be completely resolved in range. Targets
within the same range bin can be resolved in cross range (azimuth) utilizing
signal processing techniques. Consider two targets located at ranges R1 and
R2, corresponding to time delays t1 and t2, respectively. Denote the difference
between those two ranges as AR :

St

(t2 t
g -- c2 w7

u--r _

~—

AR _R2-R1_c
Now, try to answer the following question: What is the minimum St such

that target 1at R1 and target 2 at R2 will appear completely resolved in range
(different range bins)? In other words, what is the minimum AR ?
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First, assume that the two targets are separated by ct/4 , where t is the
pulsewidth. In this case, when the pulse trailing edge strikes target 2 the lead-
ing edge would have traveled backwards a distance ct, and the returned pulse
would be composed of returns from both targets (i.e., unresolved return), as
shown in Fig. 1.4a. However, if the two targets are at least ct/2 apart, then as
the pulse trailing edge strikes the first target the leading edge will start to return
from target 2, and two distinct returned pulses will be produced, as illustrated
by Fig. 1.4b. Thus, AR should be greater or equal to ct/ 2. And since the radar
bandwidth B is equal to 1/t , then

In general, radar users and designers alike seek to minimize AR in order to
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve
fine range resolution one must minimize the pulsewidth. However, this will
reduce the average transmitted power and increase the operating bandwidth.
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques.

R1 R,
incident pulse
reflected pulse return return
P gt VIS g
tgtl tgt2
3
T
shaded area has returns from both targets m
(@) R1  R2
ct
2
reflected pulses return return
tgtl tgt2
cT ct
tgtl tgt2
(b)

Figure 1.4. (a) Two unresolved targets. (b) Two resolved targets.
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1.4. Doppler Frequency

Radars use Doppler frequency to extract target radial velocity (range rate), as
well as to distinguish between moving and stationary targets or objects such as
clutter. The Doppler phenomenon describes the shift in the center frequency of
an incident waveform due to the target motion with respect to the source of
radiation. Depending on the direction of the target’s motion, this frequency
shift may be positive or negative. A waveform incident on a target has
equiphase wavefronts separated by X, the wavelength. A closing target will
cause the reflected equiphase wavefronts to get closer to each other (smaller
wavelength). Alternatively, an opening or receding target (moving away from
the radar) will cause the reflected equiphase wavefronts to expand (larger
wavelength), as illustrated in Fig. 1.5.

radar

\ J opening target

fr
radar

incident
reflected-M- — — -

Figure 1.5. Effect of target motion on the reflected equiphase waveforms.

Consider a pulse of width t (seconds) incident on a target which is moving
towards the radar at velocity v, as shown in Fig. 1.6. Define d as the distance
(in meters) that the target moves into the pulse during the interval At,

d = vAt (L9)

where At is equal to the time between the pulse leading edge striking the target
and the trailing edge striking the target. Since the pulse is moving at the speed
of light and the trailing edge has moved distance ct - d, then

ct = cAt+vAt (1.10)

and
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trailing leading

incident pulse
edge p edge |
attime t = tn L =ct
1 s =CcAt
s = CAt
. , d VAt
attime t = tO+At ' L =ct
=N4
. reflected pulse N
leading trailing

edge

Figure 1.6. Illustrating the impact of target velocity on a single pulse.

ct' = cAt- vAt (111)
Dividing Eq. (1.11) by Eq. (1.10) yields,

ct' CAt- VAt

ct cAt +VAtL (112)

which after canceling the terms ¢ and At from the left and right side of Eq.
(1.12) respectively, one establishes the relationship between the incident and
reflected pulses widths as

o (1.13)

In practice, the factor (c- v)/(c+v) is often referred to as the time dilation
factor. Notice thatif v = 0,then T = t . In a similar fashion, one can compute
t* for an opening target. In this case,

= x5 A 1%

To derive an expression for Doppler frequency, consider the illustration
shown in Fig. 1.7. It takes the leading edge of pulse 2 At seconds to travel a
distance (c/fr)-d to strike the target. Over the same time interval, the leading
edge of pulse 1travels the same distance cAt. More precisely,

d = VAt (1.15)

fr-d = cAt (1.16)
fr

solving for At yields
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c/fr

incident pulse 2 pulse 1
TE LE TE LE
ct' cT
d

pulse 1has already come back

pulse 2 starts to strike the target pulse 1 pulse 2

LE TE TE LE
s-d =c/fr ot 2d
reflected pulse 1 pulse 2
LE TE LE TE

, LE: Pulse leading edge,
' TE: Pulse trailing edge’

Figure 1.7. lllustration of target motion effects on the radar pulses.
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Figure 1.8. Closing target with velocity v

Substituting Eq. (1.26) into Eq. (1.25) and collecting terms yield

2V
xr(t) =40 1+—jt- "0 (127)

where the constant phase y 0 is

2RO, 2v
+4 128
oLk (128)
Define the compression or scaling factor y by
Y= 42V (129)

Note that for a receding target the scaling factor is y = 1- (2v/ c). Utilizing
Eqg. (1.29) we can rewrite Eq. (1.27) as

xr(t) = x(Yt- ~0) (130)

Eqg. (1.30) is a time-compressed version of the return signal from a stationary
target (v. = 0). Hence, based on the scaling property of the Fourier transform,
the spectrum of the received signal will be expanded in frequency to a factor of

Y.
Consider the special case when
x(t) =y(t)cosrolt (1.32)

where 100 is the radar center frequency in radians per second. The received sig-
nal xr(t) is then given by

xr(t) =y (Yt- ~0)cos(Y&0t- 7 0) (132)

The Fourier transform of Eq. (1.32) is

-w =1 (<«-"0+ Y((?_+ <o) (133)
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where for simplicity the effects of the constant phase y 0 have been ignored in
Eq. (1.33). Therefore, the bandpass spectrum of the received signal is now cen-
tered at yto0 instead of 100. The difference between the two values corresponds
to the amount of Doppler shift incurred due to the target motion,

@d = ®0- Y&0 (1-34)

md is the Doppler frequency in radians per second. Substituting the value of y
in Eq. (1.34) and using 2nf = 10 yield

fd=c fo=2 (135)

which is the same as Eq. (1.23). It can be shown that for a receding target the
Doppler shiftis fd = -2v/X . This is illustrated in Fig. 1.9.

closing target receding target
Figure 1.9. Spectra of received signal showing Doppler shift.

In both Eq. (1.35) and Eq. (1.23) the target radial velocity with respect to the
radar is equal to v, but this is not always the case. In fact, the amount of Dop-
pler frequency depends on the target velocity component in the direction of the
radar (radial velocity). Fig. 1.10 shows three targets all having velocity v : tar-
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as
defined in Eq. (1.35). The amount of Doppler frequency of target 3 is
fd = 2vcos0/X , where vcosO is the radial velocity; and 0 is the total angle
between the radar line of sight and the target.

Thus, a more general expression for fd that accounts for the total angle
between the radar and the target is

fd = "Xwvcos0 (1.36)
and for an opening target
fd = -~cos0 (1.37)

where cosO = cosOe cosOa. The angles Oe and Oa are, respectively, the eleva-
tion and azimuth angles; see Fig. 1.11.
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AT~
tgtl tgt2 tgt3

Figure 1.10. Target 1 generates zero Doppler. Target 2 generates
maximum Doppler. Target 3 is in between.

Figure 1.11. Radial velocity is proportional to the azimuth and elevation angles.

1.5. The Radar Equation

Consider a radar with an omni directional antenna (one that radiates energy
equally in all directions). Since these kinds of antennas have a spherical radia-
tion pattern, we can define the peak power density (power per unit area) at any
point in space as

_ Peak transmitted power watts

n
PD = area of a sphere m (1-38)

The power density at range R away from the radar (assuming a lossless propa-

gation medium) is

Pa =4 (1-39)
4nR

2
where Pt is the peak transmitted power and 4nR is the surface area of a
sphere of radius R . Radar systems utilize directional antennas in order to
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increase the power density in a certain direction. Directional antennas are usu-
ally characterized by the antenna gain G and the antenna effective aperture Ae.
They are related by

4nAe
G =
X

(1-40)

where X is the wavelength. The relationship between the antenna’s effective
aperture Ae and the physical aperture A is

Ae = pA (1-41)
0<p<1

p is referred to as the aperture efficiency, and good antennas require p”~ 1. In
this book we will assume, unless otherwise noted, that A and Ae are the same.
We will also assume that antennas have the same gain in the transmitting and
receiving modes. In practice, p = 0.7 is widely accepted.

The gain is also related to the antenna’s azimuth and elevation beamwidths by

G =kif,

where k <1 and depends on the physical aperture shape; the angles 0e and 0a
are the antenna’s elevation and azimuth beamwidths, respectively, in radians.
An excellent approximation of Eq. (1.42) introduced by Stutzman and reported
by Skolnik is

G 00-° 1-43
7 26e8a (1-43)
where in this case the azimuth and elevation beamwidths are given in degrees.

The power density at a distance R away from a radar using a directive
antenna of gain G is then given by

PtG

PD (144)

=-4

4nR
When the radar radiated energy impinges on a target, the induced surface cur-
rents on that target radiate electromagnetic energy in all directions. The amount
of the radiated energy is proportional to the target size, orientation, physical
shape, and material, which are all lumped together in one target-specific
parameter called the Radar Cross Section (RCS) denoted by a .

The radar cross section is defined as the ratio of the power reflected back to
the radar to the power density incident on the target,
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a Pl (1-45)
PD

where Pr is the power reflected from the target. Thus, the total power deliv-
ered to the radar signal processor by the antenna is

PtGa

PDr = —— 2 Ae (146)
(4nR )2

Substituting the value of Ae from Eq. (1.40) into Eq. (1.46) yields

PtG2X2a

O = R (147)

Let Smin denote the minimum detectable signal power. It follows that the
maximum radar range Rmax is

0PtG2X2a 1174
Rmex = |- H - I (148)
.(4n)3Smi/
Eqg. (1.48) suggests that in order to double the radar maximum range one must
increase the peak transmitted power Pt sixteen times; or equivalently, one
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor-
rupted with noise, which introduces unwanted voltages at all radar frequencies.
Noise is random in nature and can be described by its Power Spectral Density
(PSD) function. The noise power N is a function of the radar operating band-
width, B . More precisely

N = Noise PSD xB (1-49)
The input noise power to a lossless antenna is
Nt = kTeB (1-50)

where k = 1.38 x 10_23j0ule/degree Kelvin is Boltzman’s constant, and Te
is the effective noise temperature in degrees Kelvin. It is always desirable that
the minimum detectable signal (Smin) be greater than the noise power. The
fidelity of a radar receiver is normally described by a figure of merit called the
noise figure F (see Appendix 1B for details). The noise figure is defined as
(SNRV  S/N,
F = - = - (1-51)
(SNR)o  So/No
(SNR), and (SNR)o are, respectively, the Signal to Noise Ratios (SNR) at the
input and output of the receiver. Si is the input signal power; Ni is the input
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noise power. So and No are, respectively, the output signal and noise power.
Substituting Eq. (1.50) into Eqg. (1.51) and rearranging terms yields

St = kTeBF(SNR)o (152
Thus, the minimum detectable signal power can be written as
Smin = kTeBF(SNR)Q,... (153)

The radar detection threshold is set equal to the minimum output SNR,
(SNR)o . Substituting Eq. (1.53) in Eq. (1.48) gives

R e (1.54)
(4n)3KTeBF{SNR)0 |,

or equivalently,

PtG2l 20
(SNR)O . = = Breoemm- — (1.55)

m (4T 3kTeBFRAmax

In general, radar losses denoted as L reduce the overall SNR, and hence

P1G2k2G
(SNR)O = —mm 3rmiemiicn 4 (1.56)

(4n)3KTeBFLR

Although it may take on many different forms, Eg. (1.56) is what is widely
known as the Radar Equation. It is a common practice to perform calculations
associated with the radar equation using decibel (dB) arithmetic. A review is
presented in Appendix A.

MATLAB Function “radar_eq.m”

The function “radar eq.m” implements Eq. (1.56); it is given in Listing 1.1
in Section 1.10. The syntax is as follows:

[snr] =radar eq (pt, freq, g, sigma, te, b, nf, loss, range)

where
Symbol Description Units Status
pt peak power Watts input
freq radar centerfrequency Hz input
g antenna gain dB input
sigma target cross section m2 input
te effective noise temperature Kelvin input
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Symbol Description Units Status

b bandwidth Hz input
nf noisefigure dB input
loss radar losses dB input
range target range (can be either a sin- meters input

gle value or a vector)

snr SNR (single value or a vector, dB output
depending on the input range)

The function “radareq.m”is designed such that it can accept a single value
for the input “range”, or a vector containing many range values. Figure 1.12
shows some typical plots generated using MATLAB program “igl_12.m”
which is listed in Listing 1.2 in Section 1.10. This program uses the function
“radar eqg.m”, with the following default inputs: Peak power Pt = 1.5MW,
operating frequency fO = 5.6GHz, antenna gain G = 45dB, effective tempera-
ture Te = 290K, radar losses L = 6dB, noise figure F = 3dB. The radar band-
width is B = 5MHz. The radar minimum and maximum detection range are
Rmin = 25Km and Rmax = 165Km . Assume target cross section ¢t = 0.1m2.

Note that one can easily modify the MATLAB function “radar eq.m” so
that it solves Eq. (1.54) for the maximum detection range as a function of the
minimum required SNR for a given set of radar parameters. Alternatively, the
radar equation can be modified to compute the pulsewidth required to achieve
a certain SNR for a given detection range. In this case the radar equation can be
written as

_____________ (157)

Figure 1.13 shows an implementation of Eq. (1.57) for three different detection
range values, using the radar parameters used in MATLAB program
figl_13.m™.Itis given in Listing 1.3 in Section 1.10.

When developing radar simulations, Eq. (1.57) can be very useful in the fol-
lowing sense. Radar systems often utilize a finite number of pulsewidths
(waveforms) to accomplish all designated modes of operations. Some of these
waveforms are used for search and detection, others may be used for tracking,
while a limited number of wideband waveforms may be used for discrimina-
tion purposes. During the search mode of operation, for example, detection ofa
certain target with a specific RCS value is established based on a predeter-
mined probability of detection PD . The probability of detection, PD, is used to
calculate the required detection SNR (this will be addressed in Chapter 2).
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-dB

Detection range - Km

Figure 1.12a. SNR versus detection range for three different values of RCS.

Detection range - Km

Figure 1.12b. SNR versus detection range for three different values of radar
peak power.
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Once the required SNR is computed, Eq. (1.57) can then be used to find the
most suitable pulse (or waveform) that achieves the required SNR (or equiva-
lently the required PD). Often, it may be the case that none of the available
radar waveforms may be able to guarantee the minimum required SNR for a
particular RCS value at a particular detection range. In this case, the radar has
to wait until the target is close enough in range to establish detection, otherwise
pulse integration (coherent or non-coherent) can be used. Alternatively, cumu-
lative probability of detection can be used. All these issues will be addressed in
Chapter 2.

Minimum required SNR - dB

Figure 1.13. Pulsewidth versus required SNR for three different detection
range values.

1.5.1. Radar Reference Range

Many radar design issues can be derived or computed based on the radar ref-
erence range Rref which is often provided by the radar end user. It simply
describes that range at which a certain SNR value, referred to as SNRref, has to
be achieved using a specific reference pulsewidth xref for a pre-determined
target cross section, eref. Radar reference range calculations assume that the
target is on the line defined by the maximum antenna gain within a beam
(broad side to the antenna). This is often referred to as the radar line of sight, as
illustrated in Fig. 1.14.

The radar equation at the reference range is
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Figure 1.14. Definition of radar line of sight and radar reference range.

un?2\?2 \1/4
R = [e—dmh - 1 (158)
1(4n)3kTeFL(SNR)ref

The radar equation at any other detection range for any other combination of
SNR, RCS, and pulsewidth can be given as

R i x a SNRrf 1]174 (159
R f ~,f “SNR 1J <'*>
where the additional loss term Lp is introduced to account for the possibility
that the non-reference target may not be on the radar line of sight, and to
account for other losses associated with the specific scenario. Other forms of
Eqg. (1.59) can be in terms of the SNR. More precisely,

SNR = SNRr f L. -r'fir)4 (1.60)
rel ref Lp areflR ;

As an example, consider the radar described in the previous section, in this
case, define aref = 0.1m2, Rref = 86Km, and SNRref = 20dB. The reference
pulsewidth is xref = 0.1usec. Using Eq. (1.60) we compute the SNR at
R = 120Km for a target whose RCS is a = 0.2m2. Assume that Lp = 2dB to
be equal to (SNR)120Km = 15.2dB. For this purpose, the MATLAb program
“ref snr.m ”” has been developed; it is given in Listing 1.4 in Section 1.10.

1.6. Search (Surveillance)

The first task a certain radar system has to accomplish is to continuously
scan a specified volume in space searching for targets of interest. Once detec-
tion is established, target information such as range, angular position, and pos-
sibly target velocity are extracted by the radar signal and data processors.
Depending on the radar design and antenna, different search patterns can be
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adopted. A two-dimensional (2-D) fan beam search pattern is shown in
Fig.1.15a. In this case, the beamwidth is wide enough in elevation to cover the
desired search volume along that coordinate; however, it has to be steered in
azimuth. Figure 1.15b shows a stacked beam search pattern; here the beam has
to be steered in azimuth and elevation. This latter kind of search pattern is nor-
mally employed by phased array radars.

Search volumes are normally specified by a search solid angle Q in steradi-
ans. Define the radar search volume extent for both azimuth and elevation as
©A and ©E. Consequently, the search volume is computed as

Q = (®a®e)//(57.296)2 steradians (1.61)

where both @A and ©E are given in degrees. The radar antenna 3dB beam-
width can be expressed in terms of its azimuth and elevation beamwidths Oa
and Oe, respectively. It follows that the antenna solid angle coverage is Oa0e
and, thus, the number of antenna beam positions nB required to cover a solid
angle Q is

- - Q (1.62)
(0a0e) /(57.296)2

In order to develop the search radar equation, start with Eq. (1.56) which is
repeated here, for convenience, as Eq. (1.63)

P1G2) 2¢
SNR = - fromonenmneeee (1.63)

(4%)3KTeBFLR4

Using the relations T = 1/B and Pt = PavT/T, where T is the PRI and T is
the pulsewidth, yields

T Pa G2 2ax
SNR = - — — - 4 (1.64)

T (4n)3KT,FLR
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Define the time it takes the radar to scan a volume defined by the solid angle
Q as the scan time Tsc. The time on target can then be expressed in terms of

Tsc as

T = 5 = 190808 (1.65)

Assume that during a single scan only one pulse per beam per PRI illuminates
the target. It follows that Ti = T and, thus, Eq. (1.64) can be written as

P G2X2a Tsc
SNR = — @ ——-mmmmmmm - Q?0a0, (1.66)
(4n)3kT,FLR Q

Substituting Eqgs. (1.40) and (1.42) into Eq. (1.66) and collecting terms yield
the search radar equation (based on a single pulse per beam per PRI) as

PavAe- Tsc
SNR = —ave -Q (1.67)

4nkT,FLR Q

The quantity PavA in Eq. (1.67) is known as the power aperture product. In
practice, the power aperture product is widely used to categorize the radar’s
ability to fulfill its search mission. Normally, a power aperture product is com-
puted to meet a predetermined SNR and radar cross section for a given search
volume defined by Q.

As a special case, assume a radar using a circular aperture (antenna) with
diameter D . The 3-dB antenna beamwidth 03dB is

03dB*D (1.68)

and when aperture tapering is used, 03dB* 1.25X/D. Substituting Eq. (1.68)
into Eq. (1.62) yields

D2
B =-T Q (1.69)
X2
For this case, the scan time Tsc is related to the time-on-target by
2
T = T8 = TsX_ (1.70)
nB  D2Q

Substitute Eq. (1.70) into Eq. (1.64) to get

PavG% 5 TSCXE
SNR = — av— - LU— (1.72)

(4n) R kT,FLD Q
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and by using Eq. (1.40) in Eq. (1.71) we can define the search radar equation
for a circular aperture as

SNR = --PAVAU__ Tsc 172
16R kTeLF Q

2
where the relation A = nD /4 (aperture area) is used.
MATLAB Function ‘power_aperture.m”

The function ‘power aperture.m” implements the search radar equation
given in Eqg. (1.67); it is given in Listing 1.5 in Section 1.10. The syntax is as
follows:

PAP =power aperture (snr, tsc, sigma, range, te, nf, loss, az angle, el angle)

where

Symbol Description Units Status
snr sensitivity snr dB input
tsc scan time seconds input
sigma target cross section m2 input
range target range (can be either sin- meters input

gle value or a vector)
te effective temperature Kelvin input
nf noisefigure dB input
loss radar losses dB input
az angle search volume azimuth extent degrees input
el_angle search volume elevation extent degrees input
PAP power aperture product dB output

Plots of the power aperture product versus range and plots of the average
power versus aperture area for three RCS choices are shown in Figure 1.16.
MATLAB program figl_16.m” was used to produce these figures. It is given
in Listing 1.6 in Section 1.10. In this case, the following radar parameters were
used

9 T O0e = 0a R Te nfx loss snr

01 m> 2.5sec 2° 250Km 900K 13dB 15dB
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Power aperture product n dB

Detection range in Km

Figure 1.16a. Power aperture product versus detection range.

Figure 1.16b. Radar average power versus power aperture product.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Example:

Compute the power aperture product corresponding to the radar that has the
following parameters: Scan time Tsc = 2sec, Noise figure F = 8dB, losses
L = 6dB, search volume Q = 7.4 steradians, range ofinterestis R = 75Km,
and the required SNR is 20dB. Assume that Te = 290Kelvin and

2
ct = 3.162m .

Solution:

Note that Q = 7.4 steradians corresponds to a search sector that is three
fourths ofa hemisphere. Thus, using Eq. (1.61) we conclude that 0a = 180°

and Oe = 135°. Using the MATLABfunction ‘poweraperture.m”with thefol-
lowing syntax:

PAP =power_aperture(20, 2, 3.162, 75e3, 290, 8, 6, 180, 135)

we compute the power aperture product as 36.7 dB.

1.6.1. Mini Design Case Study 1.1

Problem Statement:

Design a ground based radar that is capable of detecting aircraft and mis-
siles at 10 Km and 2 Km altitudes, respectively. The maximum detection range
for either target type is 60 Km. Assume that an aircraft average RCS is 6 dBsm,
and that a missile average RCS is -10 dBsm. The radar azimuth and elevation
search extents are respectively —A = 360° and —E = 10°. The required scan

rate is 2 seconds and the range resolution is 150 meters. Assume a noisefigure
F = 8 dB, and total receiver noise L = 10 dB. Use afan beam with azimuth
beamwidth less than 3 degrees. The SNR is 15 dB.

A Design:

The range resolution requirement is AR = 150m; thus by using Eq. (1.8) we
calculate the required pulsewidth T = 1usec, or equivalently require the
bandwidth B = IMHz. The statement ofthe problem lends itselfto radar siz-
ing in terms ofpower aperture product. For this purpose, one mustfirst com-
pute the maximum search volume at the detection range that satisfies the
design requirements. The radar search volume is

Q= -—A— = 360x10 = 1097 steradians (1-73)
(57.296)2  (57.296)2

At this point, the designer is ready to use the radar search equation (Eq.
(1.67)) to compute the power aperture product. For thispurpose, one can mod-
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ify the MATLAB function ‘boweraperture.m”to compute andplot the power
aperture product for both target types. To this end, the MATLAB program
“casestudyl_1.m”, which is given in Listing 1.7 in Section 1.10, was devel-
oped. Use the parameters in Table 1.2 as inputsfor thisprogram. Note that the
selection of Te = 290Kelvin is arbitrary.

TABLE 1.2: Input parameters to MATLAB program “casestudyl_1.m”.

Symbol Description Units Value

snr sensitivity snr dB 15

tsc scan time seconds 2
sigma tgtm missile radar cross section dBsm -10
sigma tgta aircraft radar cross section dBsm 6
rangem missile detection range Km 60
rangea aircraft detection range Km 60
te effective temperature Kelvin 290

nf noisefigure dB 8

loss radar losses dB 10
az_angle search volume azimuth extent degrees 360
el_angle search volume elevation extent degrees 10

Figure 1.17 shows aplot ofthe outputproduced by thisprogram. The same
program also calculates the corresponding power aperture productfor both
the missile and aircraft cases, which can also be readfrom the plot,

PAPmissile = 3853dB
PAPaircraft = 2253dB

(1-74)

Choosing the more stressing case for the design baseline (i.e.,, select the
power-aperture-product resultingfrom the missile analysis) yields

PavXAS = 10383 = 712853~ Ag = 7]&53\753 (1.75)
2
Choose Ae = 1.75m to calculate the average power as

P =7128.53 = 4073kw (1.76)
av 1.75

and assuming an aperture efficiency of p = 0.8 yields the physical aperture

area. More precisely,

= 2.1875m2 (177)

A=A =—
p 08
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Figure 1.17. Power aperture product versus detection range for
radar in mini design case study 1.1.

Use f0 =2.0GHz as the radar operating frequency. Then by using
Ae = 1.75m2 we calculate using Eq. (1.40) G = 29.9dB. Now one must deter-
mine the antenna azimuth beamwidth. Recall that the antenna gain is also
related to the antenna 3-dB beamwidth by the relation

26000
0ela
where (0Oa Oe) are the antenna 3-dB azimuth and elevation beamwidths,
respectively. Assume afan beam with 0e= ®E = 15°. Itfollows that

G (1.78)

26000 26000

0a :2.66° >0a = 46.43mrad (179)
' 0eg 10x977.38

1.7. Pulse Integration

When a target is located within the radar beam during a single scan it may
reflect several pulses. By adding the returns from all pulses returned by a given
target during a single scan, the radar sensitivity (SNR) can be increased. The
number of returned pulses depends on the antenna scan rate and the radar PRF.
More precisely, the number of pulses returned from a given target is given by

R
nB =-3n 1 (1.80)
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where 0Oa is the azimuth antenna beamwidth, Tsc is the scan time, and fr is the
radar PRF. The number of reflected pulses may also be expressed as

np (1.81)

Acan
where Oscan is the antenna scan rate in degrees per second. Note that when
using Eqg. (1.80), Oa is expressed in radians, while when using Eq. (1.81) it is
expressed in degrees. As an example, consider a radar with an azimuth antenna
beamwidth 0a = 3°, antenna scan rate Oscan = 45°/sec (antenna scan time,
Tsc = 8seconds), and a PRF fr = 300Hz. Using either Eq.s (1.80) or (1.81)
yields np = 20 pulses.

The process of adding radar returns from many pulses is called radar pulse
integration. Pulse integration can be performed on the quadrature components
prior to the envelope detector. This is called coherent integration or pre-detec-
tion integration. Coherent integration preserves the phase relationship between
the received pulses. Thus a build up in the signal amplitude is achieved. Alter-
natively, pulse integration performed after the envelope detector (where the
phase relation is destroyed) is called non-coherent or post-detection integra-
tion.

Radar designers should exercise caution when utilizing pulse integration for
the following reasons. First, during a scan a given target will not always be
located at the center of the radar beam (i.e., have maximum gain). In fact, dur-
ing a scan a given target will first enter the antenna beam at the 3-dB point,
reach maximum gain, and finally leave the beam at the 3-dB point again. Thus,
the returns do not have the same amplitude even though the target RCS may be
constant and all other factors which may introduce signal loss remain the same.
This is illustrated in Fig. 1.18, and is normally referred to as antenna beam-
shape loss.

antenna 3-dB beamwidth

................................ >
1 1
1 *_
al 1 / s
\ 1
1 / \
1/ 4
\'|
/
/1 S N R — >

Figure 1.18. Pulse returns from a point target using a rotating
(scanning) antenna
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(SNR)CL = np(SNR)1 (1.82)

Coherent integration cannot be applied over a large number of pulses, partic-
ularly if the target RCS is varying rapidly. If the target radial velocity is known
and no acceleration is assumed, the maximum coherent integration time is lim-
ited to

td = Jk/2ar (1.83)

where k is the radar wavelength and ar is the target radial acceleration. Coher-
ent integration time can be extended if the target radial acceleration can be
compensated for by the radar.

1.7.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detector. Non-coherent integration is less efficient
than coherent integration. Actually, the non-coherent integration gain is always
smaller than the number of non-coherently integrated pulses. This loss in inte-
gration is referred to as post detection or square law detector loss. Marcum and
Swerling showed that this loss is somewhere between Jrp and np . DiFranco
and Rubin presented an approximation of this loss as

LNC1 = 10log(-Fp) - 55 dB (1.84)
Note that as np becomes very large, the integration loss approaches Jrp .

The subject of integration loss is treated in great levels of detail in the litera-
ture. Different authors use different approximations for the integration loss
associated with non-coherent integration. However, all these different approxi-
mations yield very comparable results. Therefore, in the opinion of these
authors the use of one formula or another to approximate integration loss
becomes somewhat subjective. In this book, the integration loss approximation
reported by Barton and used by Curry will be adopted. In this case, the non-
coherent integration loss which can be used in the radar equation is

1+ (SNR)j

LNCl = (AR 1 (1.85)

It follows that the SNR when np pulses are integrated non-coherently is

np(SNRA (SNR)j

NGl = MP(SNR)L* 11 (5udls (1.86)

(SNR)nci =

1.7.3. Detection Range with Pulse Integration

The process of determining the radar sensitivity or equivalently the maxi-
mum detection range when pulse integration is used is as follows: First, decide
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whether to use coherent or non-coherent integration. Keep in mind the issues
discussed in the beginning of this section when deciding whether to use coher-
ent or non-coherent integration.

Second, determine the minimum required (SNR)CI or (SNR)NCI required for
adequate detection and track. Typically, for ground based surveillance radars
that can be on the order of 13 to 15 dB. The third step is to determine how
many pulses should be integrated. The choice of np is affected by the radar
scan rate, the radar PRF, the azimuth antenna beamwidth, and of course by the
target dynamics (remember that range walk should be avoided or compensated
for, so that proper integration is feasible). Once np and the required SNR are
known one can compute the single pulse SNR (i.e., the reduction in SNR). For
this purpose use Eqg. (1.82) in the case of coherent integration. In the non-
coherent integration case, Curry presents an attractive formula for this calcula-
tion, as follows

Finally, use (SNR)j from Eq. (1.87) in the radar equation to calculate the
radar detection range. Observe that due to the integration reduction in SNR the
radar detection range is now larger than that for the single pulse when the same
SNR value is used. This is illustrated using the following mini design case
study.

1.7.4. Mini Design Case Study 1.2

Problem Statement:

A MMW radar has the following specifications: Center frequency
f = 94GHz, pulsewidth T = 50 x 10-9sec, peakpowerPt = 4W, azimuth cov-
erage Aa = £120°, Pulse repetition frequency PRF = 10KHz, noise figure
F = 7dB; antenna diameter D = 12in ; antenna gain G = 47dB ; radar cross
section of target is a = 20m ; system losses L = 10dB; radar scan time
Tsc = 3sec. Calculate: The wavelength k; range resolution AR; bandwidth

B ; antenna halfpower beamwidth; antenna scan rate; time on target. Com-
pute the range that corresponds to 10 dB SNR. Plot the SNR as afunction of
range. Finally, compute the number ofpulses on the target that can be usedfor
integration and the corresponding new detection range when pulse integration
is used, assuming that the SNR stays unchanged (i.e., the same as in the case of
a single pulse). Assume Te = 290 Kelvin.
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A Design:
The wavelength X is

X=c¢=-3* = 0.00319ra
f 94 x 109

The range resolution AR is

ct = (3 x 108)(50 X10-9) = 7.5m
2

Radar operating bandwidth B is

B =- = 20MHz
]) 50X109

The antenna 3-dB beamwidth is

-3dB = 1-25|) = 0.7499°

Time on target is

It follows that the number of pulses available for integration is calculated
using Eq. (1.81),

scan

Coherent Integration case:
Using the radar equation given in Eq. (1.58) yields Rref = 2.245Km. The

SNR improvement due to coherently integrating 94 pulses is 19.73dB. How-
ever, since it is requested that the SNR remains at 10dB, we can calculate the
new detection range using Eq. (1.59) as

o = 2245 x (94)'/4 = 6.99Km

rci\rp

Using the MATLAB Function “radareq.m”with thefollowing syntax

[snr] =radareq (4, 94e9, 47, 20, 290, 20e6, 7, 10, 6.99e3)

yields SNR =-9.68 dB. This means that using 94 pulses integrated coherently
at 6.99 Km where each pulse has a SNR 0f-9.68 dB provides the same detec-
tion criteria as using a single pulse with SNR = 10dB at 2.245Km. This is illus-
trated in Fig. 1.19, using the MATLAB program ‘figl_19.m ”, which isgiven in
Listing 1.8 in Section 1.10. Figure 1.19 shows the improvement o fthe detection
range ifthe SNR is kept constant before and after integration.
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Detection range - Km

Figure 1.19. SNR versus detection range, using parameters from example.

Non-coherent Integration case:

Startwith Eq. (1.87) with (SNR)nci = 10dB and np = 94,

GNR) L0 (109)2 X
2x94" gy x 042
Therefore, the single pulse SNR when 94 pulses are integrated non-coher-
ently is -4.16dB. You can verify this result by using Eq. (1.86). The integration
loss Lnci is calculated using Eq. (1.85). It is

1+ 0.38366
0.38366

3.6065 ~ 5571dB

Therefore, the net non-coherent integration gain is
10 x log(94) - 5571 = 14.16dB " 26.06422

and, consequently, the maximum detection range is

Ranei 2.245 x (26.06422)]/4 5.073Km
P
This means that using 94 pulses integrated non-coherently at 5.073 Km where
eachpulse has SNR o0f-4.16dB provides the same detection criterion as using a
single pulse with SNR = 10dB at 2.245Km. This is illustrated in Fig. 1.20,
using the MATLAB program “igl_19.m”.
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Figure 1.20. SNR versus detection range, for the same example.

MATLAB Function ‘pulse_integration.m”

Figure 1.21 shows the SNR gain versus the number of integrated pulses for
both coherent and non-coherent integration. This figure corresponds to param-
eters from the previous example at R = 5.01Km . Figure 1.22 shows the gen-
eral case SNR improvement versus number of integrated pulses. Both figures
were generated using MATLAB program ‘figl_21.m” which is given in List-
ing 1.9 in Section 1.10. For this purpose the MATLAB function
‘pulseintegration.m” was developed. It is given in Listing 1.10 in Section
1.10. This function calculates the radar equation given in Eq. (1.56) with pulse
integration. The syntax for MATLAB function ‘pulse integration.m”is as fol-
lows

[snr] =pulse integration (pt,freq, g, sigma, te, b, nf, loss, range, np, ci nci)

where

Symbol Description Units Status

pt peak power Watts input

freq radar centerfrequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective noise temperature Kelvin input

b bandwidth Hz input
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Symbol Description Units Status

nf noisefigure dB input
loss radar losses dB input
range target range (can be either a sin- meters input
gle value or a vector)
np number ofintegratedpulses none input
ci_nci 1for CI; 2for NCI none input
snr SNR (single value or a vector, dB output

depending on the input range)

Figure 1.21. SNR improvement when integration is utilized.

1.8. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely propor-
tional to the radar losses. Hence, any increase in radar losses causes a drop in
the SNR, thus decreasing the probability of detection, as it is a function of the
SNR. Often, the principal difference between a good radar design and a poor
radar design is the radar losses. Radar losses include ohmic (resistance) losses
and statistical losses. In this section we will briefly summarize radar losses.
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Figure 1.22. SNR improvement when integration is utilized.

1.8.1. Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna
input port, and between the antenna output port and the receiver front end,
respectively. Such losses are often called plumbing losses. Typically, plumbing
losses are on the order of 1to 2 dB.

1.8.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna
gain. This is true only if the target is located along the antenna’s boresight axis.
However, as the radar scans across a target the antenna gain in the direction of
the target is less than maximum, as defined by the antenna’s radiation pattern.
The loss in SNR due to not having maximum antenna gain on the target at all
times is called the antenna pattern (shape) loss. Once an antenna has been
selected for a given radar, the amount of antenna pattern loss can be mathemat-
ically computed.

For example, consider a sinx/x antenna radiation pattern as shown in Fig.
1.23. It follows that the average antenna gain over an angular region of £0/2

about the boresight axis is
- - (?) m <«*
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where r is the aperture radius and X is the wavelength. In practice, Gaussian
antenna patterns are often adopted. In this case, if 03dB denotes the antenna
3dB beamwidth, then the antenna gain can be approximated by

G(0) = expl-27100 (1.89)

0348

If the antenna scanning rate is so fast that the gain on receive is not the same
as on transmit, additional scan loss has to be calculated and added to the beam
shape loss. Scan loss can be computed in a similar fashion to beam shape loss.
Phased array radars are often prime candidates for both beam shape and scan
losses.

Figure 1.23. Normalized (sin x / x) antenna pattern.

1.8.3. Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency,
target range, and elevation angle. Atmospheric attenuation can be as high as a
few dB.

1.8.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The
collapsing loss factor is defined as
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Pe = n+m (1.90)

where n is the number of pulses containing both signal and noise, while m is
the number of pulses containing noise only. Radars detect targets in azimuth,
range, and Doppler. When target returns are displayed in one coordinate, such
as range, noise sources from azimuth cells adjacent to the actual target return
converge in the target vicinity and cause a drop in the SNR. This is illustrated
in Fig. 1.24.

Figure 1.24. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5
converge to increase the noise level in cell 3.

1.8.5. Processing Losses
a. Detector Approximation:

The output voltage signal of a radar receiver that utilizes a linear detector is

vit) = t)+vQ() (1:91)

where (vr,vQ) are the in-phase and quadrature components. For a radazr usingza
square law detector, we have v=(t) = v}(t) +vQ(t).

Since in real hardware the operations of squares and square roots are time
consuming, many algorithms have been developed for detector approximation.
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss:

In many cases the radar detection threshold is constantly adjusted as a func-
tion of the receiver noise level in order to maintain a constant false alarm rate.
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in
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order to keep the number of false alarms under control in a changing and
unknown background of interference. CFAR processing can cause a loss in the
SNR level on the order of 1 dB.

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference.

¢. Quantization Loss:

Finite word length (number of bits) and quantization noise cause an increase
in the noise power density at the output of the Analog to Digital (A/D) con-
verter. The A/D noise level is q2/ 12, where g is the quantization level.

(a) Target on the center of a range gate.

echo envelope

Figure 1.25. Illustration of range gate straddling.
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d. Range Gate Straddle:

The radar receiver is normally mechanized as a series of contiguous range
gates (bins). Each range bin is implemented as an integrator matched to the
transmitted pulsewidth. Since the radar receiver acts as a filter that smears
(smooths), the received target echoes. The smoothed target return envelope is
normally straddled to cover more than one range gate.

Typically, three gates are affected; they are called the early, on, and late
gates. If a point target is located exactly at the center of a range gate, then the
early and late samples are equal. However, as the target starts to move into the
next gate, the late sample becomes larger while the early sample gets smaller.
In any case, the amplitudes of all three samples should always roughly add up
to the same value. Fig. 1.25 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shaped. In prac-
tice, triangular shaped envelopes may be easier and faster to implement. Since
the target is likely to fall anywhere between two adjacent range bins, a loss in
the SNR occurs (per range gate). More specifically, a target’s returned energy
is split between three range bins. Typically, straddle loss of about 2 to 3 dB is
not unusual.

Example:

Consider the smoothed target echo voltage shown below. Assume 1Q resis-
tance. Find the power loss due to range gate straddling over the interval

{0,t}.
v(t)f
K

Solution:
The smoothed voltage can be written as

; 1<0
v(t) =

; £>0

The power loss due to straddle over the interval {0, t} is
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2
is =g3=1-2

The average power loss is then

X2
dt

2
= 1-K+1 +(*-+1>
2K 2

and, for example, if K = 15, then Ls = 2.5dB.
e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case
the Doppler filter spectrum is spread (widened) due to weighting functions.
Weighting functions are normally used to reduce the sidelobe levels. Since the
target Doppler frequency can fall anywhere between two Doppler filters, signal
loss occurs.

1.8.6. Other Losses

Other losses may include equipment losses due to aging radar hardware,
matched filter loss, and antenna efficiency loss. Tracking radars suffer from
crossover (squint) loss.

1.9. “MyRadar” Design Case Study - Visit 1

In this section, a design case study, referred to as ‘MyRadar” design case
study, is introduced. For this purpose, only the theory introduced in this chapter
is used to fulfill the design requirements. Note that since only a limited amount
of information has been introduced in this chapter, the design process may
seem illogical to some readers. However, as new material is introduced in sub-
sequent chapters, the design requirements are updated and/or new design
requirements are introduced based on the particular material of that chapter.
Consequently, the design process will also be updated to accommodate the new
theory and techniques learned in that chapter.

1.9.1. Authors and Publisher Disclaimer

The design case study “MyRadar” is a ground based air defense radar
derived and based on Brookner’s1 open literature source. However, the design
approach introduced in this book is based on the authors’ point of view of how
to design such radar. Thus, the design process takes on a different flavor than
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that introduced by Brookner. Additionally, any and all design alternatives pre-
sented in this book are based on and can be easily traced to open literature
sources.

Furthermore, the design approach adopted in this book is based on modeling
many of the radar system components with no regards to any hardware con-
straints nor to any practical limitations. The design presented in this book is
intended to be tutorial and academic in nature and does not adhere to any other
requirements. Finally, the MATLAB code presented in this book is intended to
be illustrative and academic and is not designed nor intended for any other
uses.

Using the material presented in this book and the MATLAB code
designed by the authors of this book by any entity or person is strictly at
will. The authors and the publisher are neither liable nor responsible for
any material or non-material losses, loss of wages, personal or property
damages of any kind, or for any other type of damages of any and all types
that may be incurred by using this book.

1.9.2. Problem Statement

You are to design a ground based radar to fulfill the following mission:
Search and Detection. The threat consists ofaircraft with an average RCS of6
dBsm (ua=4m ), and missiles with an average RCS of -3 dBsm
(<8n = 0.5m2). The missile altitude is 2Km, and the aircraft altitude is about 7
Km. Assume a scanning radar with 360 degrees azimuth coverage. The scan
rate is less than or equal to 1 revolution every 2 seconds. Assume L to X band.
We need range resolution of 150 m. No angular resolution is specified at this
time. Also assume that only one missile and one aircraft constitute the whole
threat. Assume a noisefigure F = 6 dB, and total receiver loss L =8 dB. For
now use afan beam with azimuth beamwidth of less than 3 degrees. Assume
that 13 dB SNR is a reasonable detection threshold. Finally, assumeflat earth.

1.9.3. A Design

The desired range resolution is AR = 150m . Thus, using Eq. (1.8) one calcu-
lates the required pulsewidth as T = 1usec, or equivalently the required band-
width B = 1MHz. At this point a few preliminary decisions must be made.
This includes the selection of the radar operating frequency, the aperture size,
and the single pulse peak power.

1 Brookner, Eli, Editor, Practical Phased Array Antenna Systems, Artech House,
1991, Chapter 7.
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The choice of an operating frequency that can fulfill the design requirements
is driven by many factors, such as aperture size, antenna gain, clutter, atmo-
spheric attenuation, and the maximum peak power, to name a few. In this
design, an operating frequency f = 3GHz is selected. This choice is somewhat
arbitrary at this point; however, as we proceed with the design process this
choice will be better clarified.

Second, the transportability (mobility) of the radar drives the designer in the
direction of a smaller aperture type. A good choice would be less than 5 meters
squared. For now choose Ae = 2.25m2. The last issue that one must consider is
the energy required per pulse. Note that this design approach assumes that the
minimum detection SNR (13 dB) requirement is based on pulse integration.
This condition is true because the target is illuminated with several pulses dur-
ing a single scan, provided that the antenna azimuth beamwidth and the PRF
choice satisfy Eq. (1.81).

The single pulse energy is E =Ptx. Typically, a given radar must be
designed such that it has a handful of pulsewidths (waveforms) to choose from.
Different waveforms (pulsewidths) are used for definite modes of operations
(search, track, etc.). However, for now only a single pulse which satisfies the
range resolution requirement is considered. To calculate the minimum single
pulse energy required for proper detection, use Eq. (1.57). More precisely,

(4n)3KTEFLR4SNR,
E=PiT="" "-m-2 - omemev 1 (192)

G Xa

All parameters in Eq. (1.92) are known, except for the antenna gain, the detec-
tion range, and the single pulse SNR. The antenna gain is calculated from

G=— *=4nx225=28274|" G = 345dB (1.93)
X  (0.1)2

where the relation (X = c/f) was used.

In order to estimate the detection range, consider the following argument.
Since an aircraft has a larger RCS than a missile, one would expect an aircraft
to be detected at a much longer range than that of a missile. This is depicted in
Fig. 1.26, where Ra refers to the aircraft detection range and Rm denotes the
missile detection range. As illustrated in this figure, the minimum search ele-
vation angle 9j is drivenby the missile detection range, assuming that the mis-
siles are detected, with the proper SNR, as soon as they enter the radar beam.
Alternatively, the maximum search elevation angle 92 is driven the aircraft’s
position along with the range that corresponds to the defense’s last chance to
intercept the threat (both aircraft and missile). This range is often called “keep-
out minimum range” and is denoted by Rmin. In this design approach,
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Rmin = 30Km is selected. In practice, the keep-out minimum range is normally
specified by the user as a design requirement.

The determination of Ra and Rm is dictated by how fast can a defense inter-
ceptor reach the keep-out minimum range and Kill the threat. For example,
assume that the threatening aircraft velocity is 400m/s and the threatening
missile velocity is 150m/ s . Alternatively, assume that an interceptor average
velocity is 250m/s . It follows that, the interceptor time of flight, based on

Rmin = 30Km, is
TmtercePtor = = 120 >** 494>

Therefore, an aircraft and a missile must be detected by the radar at

Ra = 30Km +120 x400 = 78Km

195
Ry = 30Km  +120 x 150 = 48Km (199

Note that these values should be used only as a guide. The actual detection
range must also include a few more kilometers, in order to allow the defense
better reaction time. In this design, choose Rm = 55Km; and Ra = 90Km.
Therefore, the maximum PRF that guarantees an unambiguous range of at least
90Km is calculated from Eq. (1.5). More precisely,

frr TFT = 3*108 3 = 167KHz (1.96)
2Ru 2x90x 103

Since there are no angular resolution requirements imposed on the design at
this point, then Eq. (1.96) is the only criterion that will be used to determine the
radar operating PRF. Select,

f = 1000Hz (L97)
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The minimum and maximum elevation angles are, respectively, calculated
as

6j = atan.5-) = 2.08° (1.98)

02 = atan(-f:J = 13.13° (1.99)

These angles are then used to compute the elevation search extent (remember
that the azimuth search extent is equal to 360°). More precisely, the search vol-
ume Q (in steradians) is given by

0 —0
Q = —2—11 x 360 (L.100)
(57.296)2

Consequently, the search volume is

xB.13:208 _ 1515 steradians (1.101)

(57.296)2 (57.296)2

The desired antenna must have a fan beam; thus using a parabolic rectangu-
lar antenna will meet the design requirements. Select Ae = 2.25m2; the corre-
sponding antenna 3-dB elevation and azimuth beamwidths are denoted as
0Oe, Oa, respectively. Select

0e = 02- 0j = 13.13- 2.08 = 11.05° (1.102)
The azimuth 3-dB antenna beamwidth is calculated using Eq. (1.42) as
2
0a= 4n = 4xnx18° =1 ° (103)
& GOe 28274 xn3x1l

It follows that the number of pulses that strikes a target during a single scan is
calculated using Eq. (1.81) as

, Qr 03x1000 739 © 7
Mb- By = — 180 =7397 P =7 (1.104)

The design approach presented in this book will only assume non-coherent
integration (the reader is advised to re-calculate all results by assuming coher-
ent integration, instead). The design requirement mandates a 13 dB SNR for
detection. By using Eq. (1.87) one calculates the required single pulse SNR,

(SNR)j =i-0—+ /(10 ) +1°— =3.635" (SNR)j = 5.6dB (1.105)
2 X7 4x72 7
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Figure 1.27. SNR versus detection range for both target types with and
without pulse integration.

It follows that the new missile and aircraft detection ranges are

Ra4 78 x 1.63 4 126.9Km
Rm4 48 x 163 4 78.08Km

Note that extending the minimum detection range for a missile to Rm 4 78Km
would increase the size of the extent of the elevation search volume. More pre-
cisely,

(1.112)

6j 4 atan.78) 4 1.47° (L.113)

It follows that the search volume Q (in steradians) is now

Q 4 360 x~82:915 4 360 x 1313: 1871 279 steradians  (1114)
(57.296)2 (57.296)

Alternatively, integrating 7 pulses non-coherently with (SNR)nci 4 13dB
yields

(SNR)j 4 5.6dB (1.115)

and the integration loss is
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Lnci 4 1.057dB (L116)
Then, the net non-coherent integration gain is
NClgain 4 10 x log(7) - 1.057 4 7.394dB * NClgain 4 5.488 (1117

Thus, the radar detection range is now improved due to a 7-pulse non-coherent
integration to

R 4 78x(5.488)025 4 119.38Km

0 (1.118)
Rm 4 48 x (5.488) Zé 4 73.467Km
Again, the extent of the elevation search volume is changed to

el4da ta n 4 156° (1119

It follows that the search volume Q (in steradians) is now

Q 4 360%%°-8p 4 36b%32125 4 1960 steradians  (1.120)
(57.296)2 (57.296)2

1.10. MATLAB Program and Function Listings

This section presents listings for all MATLAB functions and programs used
in this chapter. Users are encouraged to vary the input parameters and rerun
these programs in order to enhance their understanding of the theory presented
in the text. All selected parameters and variables follow the same nomenclature
used in the text; thus, understanding the structure and hierarchy of the pre-
sented code should be an easy task once the user has read the chapter.

Note that all MATLAB programs and functions developed in this book can
be downloaded from CRC Press Web Site “www.crcpress.com”. Additionally,
all MATLAB code developed for this book was developed using MATLAB 6.5
Release 13 for Microsoft Windows.

Listing 1.1. MATLAB Function “radar eq.m”

function [snr] =radar_eq(pt, freq, g, sigma, te, b, nf, loss, range)

% Thisprogram implements Eq. (1.56)

¢ =3.0e+8; % speed oflight

lambda =c/freq; % wavelength

p_peak = 10*log10(pt); % convertpeak power to dB

lambda sqdb = 10*log10(lambdaA2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB

four_pi_cub =10*log10((4.0 *pi)A3); % (4pi)A3 in dB
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k_db =10*log10(1.38e-23); % Boltzman} constant in dB

te db = 10*log10(te); % noise temp. in dB

b_db = 10*log10(b); % bandwidth in dB

range_pwr4_db = 10*log10(rangeA4); % vector oftarget rangeA4 in dB
% Implement Equation (1.56)

num =p_peak +g +g +lambdasqdb + sigmadb;

den =four_pi cub +kdb +te db +b db +nf+loss +range_pwr4 db;
snr =num - den;

return

Listing 1.2. MATLAB Program ‘figl_12.m”

% Use thisprogram to reproduce Fig. 1.12 oftext.

close all

clear all

pt = 1.5e+6; %peakpower in Watts

freq =5.6e+9; % radar operatingfrequency in Hz

g =45.0; % antenna gain in dB

sigma = 0.1; % radar cross section in m squared

te =290.0; % effective noise temperature in Kelvins

b =5.0e+6; % radar operating bandwidth in Hz

nf=3.0; %noisefigure in dB

loss = 6.0; % radar losses in dB

range = linspace(25e3,165e3,1000); % traget range 25 -165 Km, 1000 points
snrl =radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 =radar_eq(pt, freq, g, sigma/10, te, b, nf, loss, range);
snr3 =radar_eq(pt, freq, g, sigma*10, te, b, nf, loss, range);
% plot SNR versus range

figure(1)

rangekm =range ./1000;
plot(rangekm,snr3,'k',rangekm,snrl,'k -.",rangekm,snr2,'k:")
grid

legend("\sigma = 0 dBsm','\sigma = -10dBsm’ A\sigma = -20 dBsm})
xlabel ('Detection range - Km');

ylabel ('SNR - dB");

snrl =radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 =radar_eq(pt*.4, freq, g, sigma, te, b, nf, loss, range);
snr3 =radar_eq(pt*1.8, freq, g, sigma, te, b, nf, loss, range);
figure (2)

plot(rangekm,snr3,k rangekm,snrl,k -." rangekm,snr2,'k:")
grid

legend('Pt =2.16 MW','Pt = 1.5MW"'Pt = 0.6 MW")

xlabel ('Detection range - Km');

ylabel ('SNR - dB");
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Listing 1.3. MATLAB Program ‘figl_13.m”

% Use thisprogram to reproduce Fig. 1.13 oftext.

close all

clear all

pt = l.e+6; %peakpower in Watts

freq =5.6e+9; % radar operatingfrequency in Hz

g =40.0; % antenna gain in dB

sigma = 0.1; % radar cross section in m squared

te =300.0; % effective noise temperature in Kelvins

nf=5.0; %noisefigure in dB

loss = 6.0; % radar losses in dB

range =[75e3,100e3,150e3]; % three range values

snrdb =linspace(5,20,200); % SNR valuesfrom 5 dB to 20 dB 200 points
snr = 10A(0.1.*snr_db); % convertsnr into base 10

gain = 10A(0.1*g); %convert antenna gain into base 10

loss = 10A(0.1*loss); % convert losses into base 10

F = 10A(0.1*nf); % convert noisefigure into base 10

lambda = 3.e8/freq; % compute wavelength

% ImplementEq.(1.57)

den =pt *gain *gain *sigma * lambdaA2;

numl = (4*pi)A3 *1.38e-23 *te *F *loss *range(1)A4 .* snr;
num2 = (4*pi)A3 *1.38e-23 *te *F *loss *range(2)A4 .* snr;
num3 = (4*pi)A3 *1.38e-23 *te *F *loss *range(3)A4 .* snr;
taul =numl ./den ;

tau2 =num?2 ./ den;

tau3 =num3 ./ den;

%plot tau versus snr

figure(1)

semilogy(snr_db,1e6*taul,'k',snr_db,le6*tau2,'k -.",snr_db,le6*tau3,'k:")
grid

legend('R = 75 Km','R = 100 Km','R = 150 Km")

xlabel (Minimum required SNR - dB");

ylabel ("\tau (pulsewidth) in \mu sec');

Listing 1.4. MATLAB Program “ref_snr.m”

% Thisprogram implements Eq. (1.60)
clear all

close all

Rref=286e3; % ref. range

tau ref=.le-6; % ref. pulsewidth
SNRref=20.; % RefSNR in dB
snrref= 10A(SNRref/10);
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Sigmaref=0.1; % refRCS in mA2

Lossp =2; % processing loss in dB

lossp = 10A(Lossp/10);

% Enter desired value

tau =tauref;

R = 120e3;

rangeratio = (Rref/ R)A4;

Sigma = 0.2;

% Implement Eq. (1.60)

snr =snrref* (tau/ tauref) * (L / lossp) *..
(Sigma/ Sigmaref) *rangeratio;

snr = 10*log10(snr)

Listing 1.5. MATLAB Function ‘power_aperture.m”

function PAP =
power_aperture(snr, tsc,sigma,range,te,nf,loss,az_angle,el_
angle)

% Thisprogram implements Eq. (1.67)

Tsc = 10*log10(tsc); % convert Tsc into dB

Sigma = 10*log10(sigma); % convertsigma to dB

four_pi = 10*log10(4.0 *pi); % (4pi) in dB

k_db = 10*log10(1.38e-23); % Boltzman's constant in dB

Te = 10*log10(te); % noise temp. in dB

range_pwr4_db = 10*log10(rangeA4); % target rangeA4 in dB

omega =az angle *el angle/ (57.296)A2; % compute search volume in stera-
dians

Omega = 10*log10(omega) % search volume in dB

% implement Eq. (1.67)

PAP =snr +four_pi +k db + Te +nf+ loss + range_pwr4 db + Omega ...

- Sigma - Tsc;
return

Listing 1.6. MATLAB Program ‘figl_16.m”

% Use thisprogram to reproduce Fig. 1.16 oftext.
close all

clear all

tsc = 2.5; % Scan time is 2.5 seconds

sigma = 0.1; % radar cross section in m squared

te =900.0; % effective noise temperature in Kelvins
snr = 15; % desired SNR in dB

nf=6.0; %noisefigure in dB

loss = 7.0; % radar losses in dB
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azangle =2; % search volume azimuth extent in degrees

el angle =2; % search volume elevation extent in degrees

range = linspace(20e3,250e3,1000); % range to target 20 Km 250 Km, 1000
points

papl =power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);

pap2 =power_aperture(snr, tsc,sigma, range,te,nf,loss,az_angle,el_angle);

pap3 =power_aperture(snr, tsc,sigma*10,range,te,nf,loss,az_angle,el_angle);

% plotpower aperture product versus range

%figure 1.16a

figure(1)

rangekm =range ./1000;

plot(rangekm,papl,'k’,rangekm,pap2,'k -.",rangekm,pap3,'k:")

grid

legend("\sigma =-20 dBsm’ \sigma = -10dBsm’ \sigma = 0 dBsm)

xlabel ('Detection range in Km');

ylabel (Power aperture product in dB');

% generate Figure 1.16b

lambda = 0.03; % wavelength in meters

G =45; % antenna gain in dB

ae = linspace(1,25,1000);% aperture size 1to 25 meter squared, 1000points

Ae =10*log10(ae);

range =250e3; % range ofinterest is 250 Km

papl =power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);

pap2 =power_aperture(snr, tsc,sigma, range,te,nf,loss,az_angle,el_angle);

pap3 =power_aperture(snr, tsc,sigma*10,range,te,nfloss,az_angle,el_angle);

Pavl =papl -Ae;

Pav2 =pap2 -Ae;

Pav3 =pap3 -Ae;

figure(2)

plot(ae,Pavl, 'k',ae,Pav2,'k -. Jae,Pav3,k:)

grid

xlabel('Aperture size in square meters')

ylabel('Pav in dB")

legend("\sigma =-20 dBsm’ \sigma = -10dBsm’,"\sigma = 0 dBsm)

Listing 1.7. MATLAB Program “casestudyl 1.m”

% This program is used to generate Fig. 1.17
% it implements the search radar equation defined in Eq. 1.67

clear all

close all

snr =15.0; % Sensitivity SNR in dB

tsc =2; % Antenna scan time in seconds

sigma tgtm =-10; % Missile RCS in dBsm
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sigmatgta =6;  %AircraftRCS in dBsm
range = 60.0; % Sensitivity range in Km,

te =290.0; % Effective noise temperature in Kelvins
nf=8; % Noisefigure in dB
loss = 10.0; % Radar losses in dB

az angle =360.0; % Search volume azimuth extent in degrees
elangle =10.0; % Search volume elevation extent in degrees
¢ =3.0e+8; % Speed oflight
% Compute Omega in steradians
omega = (az angle/ 57.296) * (el angle /57.296);
omega db = 10.0*log10(omega); % Convert Omega to dBs
k_db =10*log10(1.38e-23);
tedb = 10*log10(te);
tscdb = 10*log10(tsc);
factor = 10*log10(4*pi);
rangemdb = 10*log10(range *1000.);
rangeadb = 10*log10(range * 1000.);
PAPMissile =snr - sigmatgtm -tsc db +factor +4.0 *rangemdb + ...
k_db +te db +nf+ loss + omega db
PAP_Aircraft =snr - sigma tgta - tsc db +factor +4.0 *rangeadb + ..
k_db +te db +nf+ loss + omega db
index = 0;
% vary rangefrom 2Km to 90 Km
for rangevar =2 :1:90
index = index + 1;
rangedb = 10*log10(rangevar * 1000.0);
papm(index) =snr - sigma tgtm - tsc db +factor +4.0 *rangedb + ..
k db +te db +nf+ loss + omega db;
missilePAP(index) =PAPMissile;
aircraftPAP(index) = PAPAircraft;
papa(index) =snr - sigma tgta - tsc db +factor + 4.0 *rangedb + ..
k db +te db +nf+ loss +omega db;

end
var =2 :1:90;
figure (1)

plot (var,papm,’k’,var,papa,'k-.")

legend ('Missile','Aircraft")

xlabel ('Range - Km");

ylabel (Power Aperture Product - dB");

hold on

plot(var,missile_PAP, 'k:'var,aircraft_PAP, 'k:")
grid

hold off
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Listing 1.8. MATLAB Program ‘figl_19.m”

% Use thisprogram to reproduce Fig. 1.19 and Fig. 1.20 oftext.

close all

clear all

pt =4; %peakpower in Watts

freq = 94e+9; % radar operatingfrequency in Hz

g =47.0; % antenna gain in dB

sigma = 20; % radar cross section in m squared

te =293.0; % effective noise temperature in Kelvins

b =20e+6; % radar operating bandwidth in Hz

nf= 7.0; %noisefigure in dB

loss = 10.0; % radar losses in dB

range = linspace(1.e3,12e3,1000); % range to targetfrom 1 Km 12 Km, 1000
points

snrl =radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);

Rnewci = (94A0.25) .* range;

snrCl =snrl + 10*log10(94); % 94pulse coherent integration

% plot SNR versus range

figure(1)

rangekm =range ./1000;

plot(rangekm,snrl,'k',Rnewci./1000,snr1,'k -.")

axis([1 12 -20 45])

grid

legend('single pulse','94 pulse CI')

xlabel ('Detection range - Km');

ylabel ('SNR - dB);

% Generate Figure 1.20

snr_b10 = 10.A(snrl1./10);

SNR_1 =snr_b10./(2*94) +sqrt(((snr_b10A2) ./ (4*94*94)) + (snr_b10./
94)); % Equation 1.80 oftext

LNCI = (1+SNR_1) ./SNR_1; % Equation 1.78 oftext

NClgain = 10*log10(94) - 10*log10(LNCI);

Rnewnci = ((10.A(0.1*NClgain)).A0.25) .* range;

snrnci =snrl +NClgain;

figure (2)

plot(rangekm,snrl,k ;Rnewnci./1000,snr1,k -.’ Rnewci./1000,snr1,'k:")

axis([1 12 -20 45])

grid

legend('single pulse','94 pulse NC1’, 94 pulse Cl)

xlabel ('Detection range - Km');

ylabel ('SNR - dB);
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Listing 1.9. MATLAB Program ‘figl_21.m”

%use thisfigure to generate Fig. 1.21 oftext

clear all

close all

np = linspace(1,10000,1000);

snrci =pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,1);
snrnci =pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,2);
semilogx(np,snrci, 'k',np,snrnci, 'k:")

legend('Coherent integration', Non-coherent integration")

grid

xlabel ('Number ofintegratedpulses");

ylabel ('SNR - dB);

Listing 1.10. MATLAB Function ‘pulse_integration.m”

function [snrout] =pulse_integration(pt, freq, g, sigma, te, b, nf, loss,
range,np,ci_nci)
snrl =radar_eq(pt, freq, g, sigma, te, b, nf, loss, range) % single pulse SNR
if (ci nci == 1) % coherent integration
snrout =snrl + 10*log10(np);
else % non-coherent integration
if (ci_nci == 2)
snrnci = 10.A(snrl./10);
vall = (snr_nci.A2) ./ (4.*np.*np);
val2 =snr nci./np;
val3 =snr nci./ (2.*np);
SNR_1 =val3 +sqgrt(vall +val2); % Equation 1.87 oftext
LNCI = (1+SNR_1) ./SNR_1; % Equation 1.85 oftext
snrout =snrl + 10*log10(np) - 10*log10(LNCI);
end
end
return

Listing 1.11. MATLAB Program “myradarvisitl_1.m”

close all

clear all

pt = 724.2e+3; %peakpower in Watts

freq =3e+9; % radar operatingfrequency in Hz

g =37.0; % antenna gain in dB

sigmam = 0.5; % missile RCS in m squared

sigmaa =4.0; % aircraftRCS in m squared

te =290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
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nf=6.0; %noisefigure in dB

loss =8.0; % radar losses in dB

range = linspace(5e3,125e3,1000); % range to targetfrom 25 Km 165 Km,
1000 points

snrl =radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);

snr2 =radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);

% plot SNR versus range

figure(1)

rangekm =range ./1000;

plot(rangekm,snrl,'k’,rangekm,snr2,'k:")

grid

legend(Misssile’ Aircraft)

xlabel ('Detection range - Km');

ylabel ('SNR - dB);

Listing 1.12. MATLAB Program “figl_27.m”

% Use thisprogram to reproduce Fig. 1.27 oftext.

close all

clear all

np =7

pt = 165.8e3; %peak power in Watts

freq = 3e+9; % radar operatingfrequency in Hz

g =34.5139; % antennagain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa =4; % aircraft RCS m squared

te =290.0; % effective noise temperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf=6.0; %noisefigure in dB

loss =8.0; % radar losses in dB

% compute the single pulse SNR when 7-pulse NCI is used

SNR_1 = (10A1.3)/(2*7) +sqrt((((10A1.3)A2) / (4*7*7)) + ((10*1.3)/ 7));

% compute the integration loss

LNCI = 10*log10((1+SNR_1)/SNR_1);

losstotal =loss +LNCI;

range = linspace(15e3,100e3,1000); % range to targetfrom 15to 100 Km,
1000 points

% modify pt by np*pt to accountfor pulse integration

snrmnci =radar_eq(np*pt, freq, g, sigmam, te, b, nf, loss total, range);

snrm =radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);

snranci =radar_eq(np*pt, freq, g, sigmaa, te, b, nf, loss_total, range);

snra =radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);

% plot SNR versus range

rangekm =range ./1000;

© 2004 by Chapman & Hall/CRC CRC Press LLC



figure(1)

subplot(2,1,1)
plot(rangekm,snrmnci,'k’,rangekm,snrm,’k -.")
grid

legend(‘With 7-pulse NCI','Singlepulse)
ylabel ('SNR - dB";

title('Missile case’)

subplot(2,1,2)

plot(rangekm,snranci, 'k',rangekm,snra,'k -.")
grid

legend("With 7-pulse NCI','Singlepulse)
ylabel ("SNR - dB");

title(Aircraft case’)

xlabel('Detection range - Km")
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Appendix 1A PulsedRadar

1A.1. Introduction

Pulsed radars transmit and receive a train of modulated pulses. Range is
extracted from the two-way time delay between a transmitted and received
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency
can be extracted from the range rate R = AR/At. This approach works fine as
long as the range is not changing drastically over the interval At. Otherwise,
pulsed radars utilize a Doppler filter bank.

Pulsed radar waveforms can be completely defined by the following: (1)
carrier frequency which may vary depending on the design requirements and
radar mission; (2) pulsewidth, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse repeti-
tion frequency. Different modulation techniques are usually utilized to enhance
the radar performance, or to add more capabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maximize the average transmitted power.

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, long, unambiguous range measurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitted power and excellent clutter rejection capabilities.
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are in Table 1A.1.
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Figure 1A.1. Pulsed radar block diagram.

If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detecting high speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each
dwell interval (scan or integration frame) or the radar can use a single PRF in
one scan and resolve ambiguity in the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

1A.3. Resolving Range Ambiguity

Consider a radar that uses two PRFs, frl and fr2, on transmit to resolve
range ambiguity, as shown in Fig. 1A.3. Denote Rul and RW2 as the unambigu-
ous ranges for the two PRFs, respectively. Normally, these unambiguous
ranges are relatively small and are short of the desired radar unambiguous
range Ru (where Ru»RulRw2). Denote the radar desired PRF that corre-
sponds to Ru asfrd.
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Figure 1A.2. Spectra oftransmitted and received waveforms, and Doppler
bank. (a) Doppler is resolved. (b) Spectral lines have moved
into the next Doppler filter. This results in an ambiguous Dop-
pler measurement.

We choose frl and fr2 such that they are relatively prime with respect to one
another. One choice is to select frl = Nfrd and fr2 = (N+21)frd for some
integer N . Within one period of the desired PRI ( Td = 1/frd ) the two PRFs
frl and fr2 coincide only at one location, which is the true unambiguous target
position. The time delay Td establishes the desired unambiguous range. The
time delays t1 and t2 correspond to the time between the transmit of a pulse on
each PRF and receipt of a target return due to the same pulse.

Let M1 be the number of PRF1 intervals between transmit of a pulse and
receipt of the true target return. The quantity M2 is similar to M1 except it is
for PRF2. It follows that, over the interval 0 to Td, the only possible results
are M1=M2=M or M1+ 1 = M2 .The radar needs only to measure t1 and
t2. First, consider the case when t1<t2. In this case,

f o4} (1A2)
rl r

for which we get
M (1A3)
T1- T2

where T1= 1U/frl and T2 = 1/fr2 . It follows that the round trip time to the
true target location is
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Figure 1A.3. Resolving range ambiguity.
tr=MT1+t1
(1A4)
tr = MT2+t2
and the true target range is
R = ctr/2 (1A5)
Now if t1>12, then
M M+1 (1A6)
1 frl 2 fr2
Solving for M we get
T1- T2
and the round-trip time to the true target location is
trl = MT1+t1 (1A8)
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and in this case, the true target range is

ctrl
R=-f1

Finally, if t1 = t2, then the target is in the first ambiguity. It follows that

2 =tl=1t2 (1A.10)

and

R =ct22 (1A11)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integer N is selected, then in order to
guarantee that the three PRFs are relatively prime with respect to one another.
In this case, one may choose frl = N(N+2Lfrd , fr2 = N(N+2)frd , and

fr3 = (N+1)(N +2)frd .

1A.4. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology can be used to resolve Doppler ambiguity. In
this case, we measure the Doppler frequencies fdl and fd2 instead of t1 and

2.
Iffdl >f d2, then we have

M = o2 (1A12)
frL fr2
And iffdl <fd2,
f-f
M=d®& d (1A13)
Jl~fr2
and the true Doppler is
j dl=f +fdl (lA.14)
fd=Mfr2+d2

Finally, if fdl =fd®, then

fd=fd =fd2 (1A.15)

Again, blind Doppler can occur, which can be resolved using a third PRF.
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Example:

A certain radar uses two PRFs to resolve range ambiguities. The desired
unambiguous range is Ru = 100Km . Choose N =59 . Compute frl, fr2,

Rul, and R m
Solution:

First let us compute the desired PRF, frd
{rjd = _c = ____5_)_(_;]'98 = }gKHZ
u 200x10

Itfollows that
frl = Nfrd = (59)(1500) = 88.5KHz
fro = (N+1)frd = (59 + 1)(1500) = 90KHz

Ru= - = 1.695Km
2frl 2 x885x 103

R = -C- = --i-1i0--- = 1.667Km.
X, 2x90x 10

Example:

Consider a radar with three PRFs; frl = 15KHz , fr2 = 18KHz , and
fr3 = 21KHz . Assume f0 = 9GHz . Calculate thefrequency position ofeach
PRFfor a target whose velocity is 550m/s . Calculate fd (Dopplerfrequency)
for another target appearing at 8KHz , 2KHz , and 17KHz for each PRF.

Solution:

The Dopplerfrequency is

f _,vio _ 2x550x9x 109 _ By,

a7 T ax1of

Then by using Eq. (1A.14) nfri+d =fd where i = 1,2, 3, we can write

M- r1+fdl 15n1 +fd1 = 33

n2fr2+H 2 = 18n2+ d2 = 33

nFr3+Hd3 =21n3+Hd3 = 33

We will show here how to compute n1, and leave the computations of n2 and
n3 to the reader. First, ifwe choose n1 =0, thatmeans fdl = 33KHz , which
cannot be true since fdl cannot be greater than frl. Choosing n1 = 1 is also
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invalid since fdl = 18KHz cannot be true either. Finally, if we choose
nl=2 weget fdl = 3KHz , which is an acceptable value. Itfollows that the
minimum n1n2n3 that may satisfy the above three relations are n1=2,
n2=1 and n3=1 Thus, the apparent Doppler frequencies are
fdl= 3KHz, f®2 = 15KHz , and fd3 = 12KHz .

A

fdl fl

Nowfor the secondpart ofthe problem. Again by using Eq. (1A.14) we have
nfrl+dl=fd = 15n1+8
nfr2+fd2 =fd = 18n2+2

nfr3 +fd3 =fd =21n3 + 17
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We can now solve for the smallest integers n1,n2n3 that satisfy the above
three relations. See the table below.

n 0 1 2 3 4
fd fromfrl S
fd fromfrz 2 20 B 5%

fd fromfz Y ¥

Thus, nl=2=n2, and n3=1 and the true target Doppler is
fd = 38KHz . Itfollows that

vr = S50 x 0333 - g3pp. M.
r 2 sec

© 2004 by Chapman & Hall/CRC CRC Press LLC



Appendix 1B Noise Figure

1B.1. Noise Figure

Any signal other than the target returns in the radar receiver is considered to
be noise. This includes interfering signals from outside the radar and thermal
noise generated within the receiver itself. Thermal noise (thermal agitation of
electrons) and shot noise (variation in carrier density of a semiconductor) are
the two main internal noise sources within a radar receiver.

The power spectral density of thermal noise is given by

S W = oo (181

where M is the absolute value of the frequency in radians per second, T is the
temperature of the conducting medium in degrees Kelvin, k is Boltzman’s
constant, and h is Plank’s constant (h = 6.625 x 10-34 joule seconds). When
the condition || «2nkT/ h is true, it can be shown that Eq. (1B.1) is approxi-
mated by

Sn(m)« 2kT (1B.2)

This approximation is widely accepted, since, in practice, radar systems oper-
ate at frequencies less than 100 GHz ; and, for example, if T = 290K, then
2nkT/h « 6000 GHz .
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The mean square noise voltage (noise power) generated across a 1 ohm
resistance is then

do = 4kTB (1B.3)

where B is the system bandwidth in hertz.

Any electrical system containing thermal noise and having input resistance
Rin can be replaced by an equivalent noiseless system with a series combina-
tion of a noise equivalent voltage source and a noiseless input resistor Rin
added at its input. This is illustrated in Fig. 1B.1.

noiseless
system

Figure 1B.1. Noiseless system with an input noise
voltage source.

The amount of noise power that can physically be extracted from (n2>is one
fourth the value computed in Eq. (1B.3). The proofis left as an exercise.

Consider a noisy system with power gain AP, as shown in Fig. 1B.2. The
noise figure is defined by

_ total noise power out (1B4)
FdB = 10 logngise power out due to Rin alone '

More precisely,

Figure 1B.2. Noisy amplifier replaced by its noiseless equivalent
and an input voltage source in series with a resistor.
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No
FdB = 10 log”™-Ar (1B.5)
where No and Ni are, respectively, the noise power at the output and input of
the system.

If we define the input and output signal power by S; and So, respectively,
then the power gain is

Ap = S0 (1B.6)
It follows that
'Si/NiI\  'Sn fS\
FdB = 10bg(ftv) = (n) B- (N&eB (BY)

where

§)iB>0)e (1B

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio
due to the added thermal noise of the amplifier ((SNR)o=(SNR);- F in dB).

We can also express the noise figure in terms of the system’s effective tem-
perature Te. Consider the amplifier shown in Fig. 1B.2, and let its effective
temperature be Te. Assume the input noise temperature is To. Thus, the input
noise power is

Nt = kToB (1B.9)

and the output noise power is

No = kToB Ap+kTe8 Ap (1B.10)

where the first term on the right-hand side of Eq. (1B.10) corresponds to the
input noise, and the latter term is due to thermal noise generated inside the sys-
tem. It follows that the noise figure can be expressed as

(SNRY S; To+Te Te
=-——- =7UT; kBAp 0- e= 1+ 1B.11
(SNR)o ~ kToB p So To

Equivalently, we can write

Te = (F- 1)To (1B.12)
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Example:

An amplifier has a 4dB noisefigure; the bandwidth is B = 500 KHz . Cal-
culate the input signal power thatyields a unity SNR at the output. Assume
To = 290 degrees Kelvin and an input resistance ofone ohm.

Solution:

The input noise power is

kToB = 1.38 x 10-23 x 290 x 500 x 103 = 2.0 x 10-15w

Assuming a voltage signal, then the input noise mean squared voltage is

<n2) = kToB =2.0x 1015 v2

F = 1004 = 251

From the noisefigure definition we get

and

<s5) = F<n§) - 251 x20x 10B = 502 x 103 V2

Finally,

Jis2) = 70.852nv

Consider a cascaded system as in Fig. 1B.3. Network 1 is defined by noise
figure F j, power gain Gx, bandwidth B, and temperature Tel. Similarly, net-
work 2 is defined by F2, G2, B, and Te2. Assume the input noise has temper-
ature TO.

network 1 network 2

Tel Te2,G2F 2

Figure 1B.3. Cascaded linear system.
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The output signal power is

So =Sfi1G2 (1B.13)

The input and output noise powers are, respectively, given by
Ni = kToB (1B.14)

No = KTBG1G2+kTelBG 1G2 +kTe2BG2 (1B.15)

where the three terms on the right-hand side of Eq. (1B.15), respectively, corre-
spond to the input noise power, thermal noise generated inside network 1, and
thermal noise generated inside network 2.

Now if we use the relation Te = (F- 1)TO along with Eqg. (1B. 13) and Eq.
(1B.14), we can express the overall output noise power as

No = FING1G: +(F2- 1)NG2 (1B.16)

It follows that the overall noise figure for the cascaded system is

poOIND P2t 1B.17
T (SUNO 1 G1 (817

In general, for an n-stage system we get

Fop+ 2L P30 0y Fp-t (1B.18)
1 Gl GIG2 GIG2G3 - - -Gn-1 ()

Also, the n-stage system effective temperatures can be computed as

Te=Tel+@2+GiEb* - - - *B15® T Gp1 (B9

As suggested by Eq. (1B.18) and Eq. (1B.19), the overall noise figure is mainly
dominated by the first stage. Thus, radar receivers employ low noise power
amplifiers in the first stage in order to minimize the overall receiver noise fig-
ure. However, for radar systems that are built for low RCS operations every
stage should be included in the analysis.

Example:

A radar receiver consists ofan antenna with cable loss L = 1dB =F1, an
RF amplifier with F2 = 6dB , and gain G2 = 20dB , followed by a mixer
whose noisefigure is F3 = 10dB and conversion loss L = 8dB , andfinally,
an integrated circuitIF amplifier with F4 = 6dB andgain G4 = 60dB . Find
the overall noisefigure.
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Solution:
From Eqg. (1B.18) we have

F2-1 FE3-1 F4-1
F=F +— +-3 + 4

1 GI GIG2 G1G2G3

Gl G2 G3 G4 F1 F2 F3 Fa
-1dB 20dB -8dB 60dB  1dB 6dB 10dB  6dB
0.7943 100 0.1585 106 12589 39811 10 3.9811

Itfollows that

F = 12589+ " HAd 1 100%% Foa3 ¥ ortsex 100 x oo~ 03620

F = 10log(5.3628) = 7.294dB
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Chapter 2 Radar Detection

2.1. Detection in the Presence ofNoise

A simplified block diagram of a radar receiver that employs an envelope
detector followed by a threshold decision is shown in Fig. 2.1. The input signal
to the receiver is composed of the radar echo signal 5(t) and additive zero
mean white Gaussian noise n(t) , with variance y . The input noise is
assumed to be spatially incoherent and uncorrelated with the signal.

The output of the bandpass IF filter is the signal v(t), which can be written
as

v(t) = vj(t) cosralt + Vq(t) sinro0t = r(t) cos(ralt- ¢ (0)
vj(t) = r(t)cost (0 (.2)
Va(t) = r(t)sind(t)

where ra0 = 2nf0 is the radar operating frequency, r(t) is the envelope of
v(t), the phase is ¢ (t) = atan(Vqg/ vl), and the subscripts I, Q , respectively,
refer to the in-phase and quadrature components.

A target is detected when r(t) exceeds the threshold value VT, where the
decision hypotheses are

s(t) +n(t) >VT Detection
n(t) >VT False alarm
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— >%%1

Threshold

Figure 2.1. Simplified block diagram of an envelope detector and threshold
receiver.

The case when the noise subtracts from the signal (while a target is present) to
make r(t) smaller than the threshold is called a miss. Radar designers seek to
maximize the probability of detection for a given probability of false alarm.

The IF filter output is a complex random variable that is composed of either
noise alone or noise plus target return signal (sine wave of amplitude A ). The
quadrature components corresponding to the first case are

Vi(t) = ni(t) 2
Va(t) = nQ(t)
and for the second case,
vi(t) =A +nl(t) =r(t)coshp(t) ® nl(t) = r(t)cosdp(t)- A
Vg(t) = nQ(t) = r(t)sind(t)

where the noise quadrature components nl(t) and nQ(t) are uncorrelated zero
mean low pass Gaussian noise with equal variances, y 2. The joint Probability
Density Function (pdf) of the two random variables n ;nQ is

23)

1/ n2+nQ
f(nl,nQ = é—ﬁ—)—/iexp T @.4)

L_exp|_(rcc™-A)2+ (rsnKp)21
'2,y2 "l- 2y2 )

The pdfs of the random variables r(t) and ¢(t), respectively, represent the
modulus and phase of v(t). The joint pdf for the two random variables

r(t);m(t) is given by
f(r, ®) = f(ni, nQ)|J (25)

where [J] is a matrix of derivatives defined by
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dnl dnl

0] = dr ad cc.quo-rsinqo 26)
dnQ dnQ sing rcos®
dr adp

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

J =r(t) 27
Substituting Egs. (2.4) and (2.7) into Eqg. (2.5) and collecting terms yield

r2+A2 [rAcosq
——————— r 1exp [—) 2:8)
2y Yy

Thepdffor r alone is obtained by integrating Eq. (2.8) over ¢

1l
f(r) = Jf(r, G)dd = -~expr r +A =1 [TACSED o)
2y 2MJ expl y
0 0
where the integral inside Eqg. (2.9) is known as the modified Bessel function of
zero order,
n
Bos0
|
=e) = 2M] of (2.10)
0
Thus,
(2.12)
y vy 2y

which is the Rician probability density function. IfA/y = 0 (noise alone),
then Eq. (2.11) becomes the Rayleigh probability density function

f(r) = —expl=d=r\ (2.12)
y 2y?2

Also, when (A/y ) isvery large, Eq. (2.1%) becomes a Gaussian probability
density function of mean A and variance y
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Fig. 2.2 shows plots for the Rayleigh and Gaussian densities. For this purpose,
use MATLAB program fig2_2.m” given in Listing 2.1 in Section 2.11. This
program uses MATLAB functions “hormpdf.m”and ‘raylpdf.m”. Both func-
tions are part of the MATLAB Statistics toolbox. Their associated syntax is as
follows

normpdf(x,mu,sigma)
raylpdf(x,sigma)

“X ”is the variable, “mu”is the mean, and “sigma”is the standard deviation.

gy

03

Figure 2.2. Gaussian and Rayleigh probability densities.

The density function for the random variable ¢ is obtained from
r

[(p) = If(r, ) dr (219
0
While the detailed derivation is left as an exercise, the result of Eq. (2.14) is

no) :%n exp[ll, +A » expl-*MUMaT] f/I~ 0O (2.15)
2y 2> J2ny 2y y
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where

X
F(x) = f-j= e<l/2 d| (2.16)
J

-0,

The function F (x) can be found tabulated in most mathematical formula refer-
ence books. Note that for the case of noise alone (A = 0), Eq. (2.15) collapses
to a uniformpdfover the interval {0, 2n}.

2N

One excellent approximation for the function F(x) is

F(x) = 1-] -mmmeeeeee- —- ]-pre- 72 x>0 (2.17)
+0.661x + 0.339n/x2 + 5.51/ V2~

and for negative values of x
F(-x) = 1- F(x) (2.18)
MATLAB Function “que_func.m”

The function “quejunc.m”computes F(x) using Egs. (2.17) and (2.18) and
is given in Listing 2.2 in Section 2.11. The syntax is as follows:

fofx =que_func (x)

2.2. Probability of False Alarm

The probability of false alarm P*a is defined as the probability that a sample
R of the signal r(t) will exceed the threshold voltage VT when noise alone is
present in the radar,

a

"ta = f~ expl'B dr = exp[Il S (" 19a)
T

Vet = J2y2n(jp-/ (2.19b)

Fig. 2.3 shows a plot of the normalized threshold versus the probability of false
alarm. It is evident from this figure that Pfa is very sensitive to small changes
in the threshold value. This figure can be reproduced using MATLAB program
‘fig2_3.m” given in Listing 2.3 in Section 2.11.

The false alarm time Tfa is related to the probability of false alarm by
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log (1/ Pfa)
Figure 2.3. Normalized detection threshold versus probability of false alarm.

Ta = tin/Pfa (2.20)

where tint represents the radar integration time, or the average time that the
output of the envelope detector will pass the threshold voltage. Since the radar
operating bandwidth B is the inverse of tint, then by substituting Eq. (2.19)
into Eq. (2.20) we can write Tfa as

(@.21)

Minimizing Tfa means increasing the threshold value, and as a result the radar
maximum detection range is decreased. Therefore, the choice of an acceptable
value for Tfa becomes a compromise depending on the radar mode of opera-
tion.

Fehlnerldefines the false alarm number as

nfa (2.22)

T In(1- Pfa) Pfa

1 Fehlner, L. F.,Marcums and Swerling$ Data on Target Detection by a Pulsed
Radar, Johns Hopkins University, Applied Physics Lab. Rpt. # TG451, July 2, 1962,
and Rpt. # TG451A, September 1964.
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Other slightly different definitions for the false alarm number exist in the liter-
ature, causing a source of confusion for many non-expert readers. Other than
the definition in Eq. (2.22), the most commonly used definition for the false
alarm number is the one introduced by Marcum (1960). Marcum defines the
false alarm number as the reciprocal of Pfa. In this text, the definition given in
Eq. (2.22) is always assumed. Hence, a clear distinction is made between Mar-
cum’s definition of the false alarm number and the definition in Eq. (2.22).

2.3. Probability ofDetection

The probability of detection PD is the probability that a sample R of r(t)
will exceed the threshold voltage in the case of noise plus signal,

@

ri+Al
PD = f -2 70(L) expl,-~ dr 223

If we assume that the radar signal is a sine waveform with amplitude A, then its
power_is A /2. Now, by using SNR = A /2— (single-pulse SNR) and
(vt 22—) = In(1/Pfa), then Eq. (2.23) can be rewritten as

PD = dar = 2.24)
J2-2An(1/ Pfa)
Q
@
QJa, p] = fc/o(aZ)e Z +a)/2 dz (2.25)
P

Q is called Marcum’s Q-function. When Pfa is small and PD is relatively
large so that the threshold is also large, Eq. (2.24) can be approximated by

PR*F, - P (2.26)

where F(x) is given by Eq. (2.16). Many approximations for computing Eq.
(2.24) can be found throughout the literature. One very accurate approximation
presented by North (see bibliography) is given by

PD* 05 xerfcQ -InPfa-4SNR +0.5) 2.27)

where the complementary error function is
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z
erfc(z) = 1- -p fe vdv (2.28)
0
MATLAB Function “marcumsg.m”

The integral given in Eq. (2.24) is complicated and can be computed using
numerical integration techniques. Parll developed an excellent algorithm to
numerically compute this integral. It is summarized as follows:

angypf azh) a<b
— 2.29)
L Q_n exp/(__q___@_z a>h
2p
2n
an = dn+aban-1+an-2 0
Pn = 1+ ObPn-1+ Pn-2 (231)
dn+l = dndl @)
1 a<b
= 2.33
- al b a<bh 2.34)
" bla a>b |

a_j = 0.0, p0 = 05,and p_j = 0. Tlie recursive Egs. (2.30) through (2.32)
are computed continuously until Pn> 10" forvalues ofp > 3. The accuracy of
the algorithm is enhanced as the value of p is increased. The MATLAB func-
tion “marcumsg.m” given in Listing 2.4 in Section 2.11 implements Parl’s
algorithm to calculate the probability of detection defined in Eq. (2.24). The
syntax is as follows:
Pd =marcumsq (alpha, beta)

where alpha and beta are from Eq. (2.25). Fig. 2.4 shows plots of the probabil-
ity of detection, PD, versus the single pulse SNR, with the P"a as a parameter.
This figure can be reproduced using the MATLAB program ‘probsnrl.m”
given in Listing 2.5 in Section 2.11.

1 Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans.
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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Single pulse SNR -dB

Figure 2.4. Probability of detection versus single pulse SNR, for several
values of Pfa.

2.4. Pulse Integration

Pulse integration was discussed in Chapter 1in the context of radar measure-
ments. In this section a more comprehensive analysis of this topic is introduced
in the context of radar detection. The overall principles and conclusions pre-
sented earlier will not change; however, the mathematical formulation and spe-
cific numerical values will change. Coherent integration preserves the phase
relationship between the received pulses, thus achieving a build up in the sig-
nal amplitude. Alternatively, pulse integration performed after the envelope
detector (where the phase relation is destroyed) is called non-coherent or post-
detection integration.

2.4.1. Coherent Integration

In coherent integration, if a perfect integrator is used (100% efficiency), then
integrating nP pulses would improve the SNR by the same factor. Otherwise,
integration loss occurs which is always the case for non-coherent integration.
In order to demonstrate this signal buildup, consider the case where the radar
return signal contains both signal plus additive noise. The mth pulse is
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ym(t) = ~(t) + nm(t) (2.35)

where 5(t) is the radar return of interest and nm(t) is white uncorrelated addi-
tive noise signal. Coherent integration of nP pulses yields

np np np
Z) =1 2 ym(*) = 2 1p[5(*)+nmt)] = 5()+ 2 /jpnmt) (236)
m=1 m=1 m=1
The total noise power in z(t) is equal to the variance. More precisely,

[ nP 0/ rP 0
ViZ=E 2 j'm@) 2 1 (> (237)
_m=1 yM=1
where E[ ] is the expected value operator. It follows that
np np
2
Vnz = T 2 E[nmt)nI*t)] = "T 2 ~ny8m = -f-"y (2'38)
P P
=1 =1
where y ny is the single pulse noise power and 5l is equal to zero for m ~ |
and unity for m = |. Observation of Egs. (2.36) and (2.38) shows that the

desired signal power after coherent integration is unchanged, while the noise
power is reduced by the factor 1/ nP. Thus, the SNR after coherent integration
is improved by nP .

Denote the single pulse SNR required to produce a given probability of
detection as (SNR)1. Also, denote (SNR) as the SNR required to produce
the same probability of detection when nP pulses are integrated. It follows that

(SNR)np = 1 (SNR)! (2.39)

The requirements of knowing the exact phase of each transmitted pulse as well
as maintaining coherency during propagation is very costly and challenging to
achieve. Thus, radar systems would not utilize coherent integration during
search mode, since target micro-dynamics may not be available.

2.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detector. A block diagram of radar receiver utiliz-
ing a square law detector and non-coherent integration is illustrated in Fig. 2.5.
In practice, the square law detector is normally used as an approximation to the
optimum receiver.
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Figure 2.5. Simplified block diagram ofa square law detector and
non-coherent integration.

The pdffor the signal r(t) was derived earlier and it is given in Eq. (2.11).
Define a new dimensionless variable y as

(240)
and also define
= — = 2SNR 41
\Y
It follows that the p dffor the new variable is then given by
dr. -Cy2+—)
1(Yr) =1(rn) dyn = Yn 10— p) exp ) (242

The output of a square law detector for the n  pulse is proportional to the
square of its input, which, after the change of variable in Eq. (2.40), is propor-
tional to yn. Thus, it is convenient to define a new change variable,

xn = i%n (2.43)

The pdffor the variable at the output of the square law detector is given by

[(xn) =/(Yn) jz: = exp Xxn+—))W 2xn-p) (2.44)

Non-coherent integration of np pulses is implemented as

np
z=Dh X' 249)
n=1

Since the random variables xn are independent, the p d ffor the variable z is
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[(z) =1(x1) «/(X2) - </(xm) (2.46)

The operator <  symbolically indicates convolution. The characteristic
functions for the individual pdfs can then be used to compute the jointpdfin
Eq. (2.46). The details of this development are left as an exercise. The result is

f(z) = (np-r) P exp("z- 2"p- P7"P- 2"Pz—p) (247)

Inp_j is the modified Bessel function of order nP- 1. Therefore, the probabil-
ity of detection is obtained by integrating /(z) from the threshold value to
infinity. Alternatively, the probability of false alarm is obtained by letting —p
be zero and integrating the pdf from the threshold value to infinity. Closed
form solutions to these integrals are not easily available. Therefore, numerical
techniques are often utilized to generate tables for the probability of detection.

Improvement Factor and Integration Loss

Denote the SNR that is required to achieve a specific PD given a particular
P/a when nP pulses are integrated non-coherently by (SNR)nci. And thus,
the single pulse SNR, (SNR)1, is less than (SNR)nci . More precisely,

(SNR)nci = (SNR)L x 1 (np) (2.48)

where I(nP) is called the integration improvement factor. An empirically
derived expression for the improvement factor that is accurate within 0.8dB is
reported in Peebleslas

[1(np)]dB = 6.79(1+0.235Pd)(1+~ 4 6 / log("p) (2.49)

(1 - 0.140log(nP) + 0.018310 (lognP)2)

Fig. 2.6a shows plots of the integration improvement factor as a function of the
number of integrated pulses with PD and P/a as parameters, using Eq. (2.49).
This plot can be reproduced using the MATLAB program fig2_6a.m * given
in Listing 2.6 in Section 2.11. Note this program uses the MATLAB function
“improvjac.m”, which is given in Listing 2.7 in Section 2.11.

MATLAB Function “improv_fac.m”

The function “improvfac.m calculates the improvement factor using Eq.
(2.49). Itis given in Listing 2.7 in Section 2.11. The syntax is as follows:

[impr o/ np] =improv/ac (np, p/a, pd)

1 Peebles Jr., P. Z.,, Radar Principles, John Wiley & Sons, Inc., 1998.
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Number of pulses

Figure 2.6a. Improvement factor versus number of non-coherently integrated
pulses.

Number of pulses

Figure 2.6b. Ir;tegration loss versus number of non-coherently integrated
pulses.
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where

Symbol Description Units Status
np number of integrated pulses none input
pfa probability offalse alarm none input
pd probability ofdetection none input

impr of np improvementfactor output dB

The integration loss is defined as

Lnci = np/ 1(np) (2-50)

Figure 2.6b shows a plot of the integration loss versus nP. This figure can be
reproduced using MATLAB program “fig2_6b.m” given in Listing 2.8 in Sec-
tion 2.11. It follows that, when non-coherent integration is utilized, the corre-
sponding SNR required to achieve a certain PD given a specific Pfa is now
given by

(SnR)nci = (np x (SNR)j)/Lnci (251)

which is very similar to Eq. (1.86) derived in Chapter 1

2.4.3. Mini Design Case Study 2.1

An L-band radar has the following specifications: operating frequency
f0 = 1.5GHz, operating bandwidth B = 2MHz, noise figure F = 8dB,
system losses L = 4dB, time offalse alarm Tfa = 12 minutes, detection
range R = 12Km, the minimum required SNR is SNR = 13.85dB, antenna
gain G = 5000, and target RCS ct = 1m2. (@) Determine the PRF fr, the
pulsewidth T, thepeak power Pt, the probability o ffalse alarm Pfa, the corre-

sponding PD, and the minimum detectable signal level Smin. (b) How can you

reduce the transmitter power to achieve the same performance when 10 pulses
are integrated non-coherently? (c) I f the radar operates at a shorter range in
the single pulse mode, find the new probability of detection when the range

decreases to 9K m.
A Solution

Assume that the maximum detection corresponds to the unambiguous range.
From that the PRF is computed as
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f = _c_= 3X10 = 125KHz

Jr 2Ry 2x 12000

The pulsewidth is proportional to the inverse ofthe bandwidth,

T=1=—%+ =05us
B 2 x 106

The probability offalse alarm is

Pa= — = - Lo = 6.94 x 10-10
BTfa 2 x 106x 12 x 60

Itfollows that by using MATLABfunction “marcumsg.m’the probability of
detection is calculatedfrom

with thefollowing syntax
marcumsq(alpha, beta)

where

alpha = n/2 x n/10138710 = 6.9665
beta = 2Inl--------—-- -1= 6.494
V  +694x10 J
Remember that (Azl)? ) = 2SNR. Thus, the detection probability is
PD = marcumsq(6.9665, 6.944) = 0.508

Using the radar equation one can calculate the radar peak power. More pre-

cisely, 34
(4n)R kTOBFL
PL=SNR ——— 0"

= 101.385(m¥%'3 X 120004 x 1.38 x 10-23 x 290 x 2 x 106 x 6.309 x 2.511

t 50005X 0.25x 1

= 126.61 Watts
And the minimum detectable signal is
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S . PtG At 126.61 x 50002x 0.22x 1
Smin = ------3-7- = 3
(4n)3x 120004 x 2.511

, . -12V t

= = 12254 x 10~ Volts
(4n) R L

When 10pulses are integrated non-coherently, the corresponding improvement

factor is calculatedfrom the MATLABfunction “improvfac.m” using thefol-
lowing syntax

improv_fac (10,1e-11,0.5)

whichyields 1 (10) =6~ 7.78dB. Consequently, by keeping the probability
ofdetection the same (with and without integration) the SNR can be reduced by
afactor ofalmost 6 dB (13.85 - 7.78). The integration loss associated with a
10-pulse non-coherent integration is calculatedfrom Eq. (2.50) as

Lnci = =10 = 167~ 2.2dB
NI 1(10) 6

Thus the net single pulse SNR with 10-pulse non-coherent integration is
(SNR)nci = 13.85-7.78 +2.2 = 8.27dB.

Finally, the improvement in the SNR due to decreasing the detection range to 9
Km is

(SNR)okm = 10logh6%R4+ 1385 = 18.85d8B.

2.5. Detection of Fluctuating Targets

So far the probability of detection calculations assumed a constant target
cross section (non-fluctuating target). This work was first analyzed by Mar-
cum. 1 Swerling2 extended Marcum’s work to four distinct cases that account
for variations in the target cross section. These cases have come to be known as
Swerling models. They are: Swerling I, Swerling I, Swerling 111, and Swerling
IV. The constant RCS case analyzed by Marcum is widely known as Swerling
0 or equivalently Swerling V. Target fluctuation lowers the probability of
detection, or equivalently reduces the SNR.

1 Marcum, J. I, A Statistical Theory of Target Detection by Pulsed Radar, IRE Trans-
actions on Information Theory. Vol IT-6, pp 59-267. April 1960.

2. Swerling, P., Probability ofDetectionfor Fluctuating Targets, IRE Transactions on
Information Theory. Vol IT-6, pp 269-308. April 1960.
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Swerling | targets have constant amplitude over one antenna scan; however,
a Swerling | target amplitude varies independently from scan to scan according
to a Chi-square probability density function with two degrees of freedom. The
amplitude of Swerling Il targets fluctuates independently from pulse to pulse
according to a Chi-square probability density function with two degrees of
freedom. Target fluctuation associated with a Swerling 11l model is similar to
Swerling I, except in this case the target power fluctuates independently from
pulse to pulse according to a Chi-square probability density function with four
degrees of freedom. Finally, the fluctuation of Swerling IV targets is from
pulse to pulse according to a Chi-square probability density function with four
degrees of freedom. Swerling showed that the statistics associated with Swer-
ling 1 and 1l models apply to targets consisting of many small scatterers of
comparable RCS values, while the statistics associated with Swerling 11l and
IV models apply to targets consisting of one large RCS scatterer and many
small equal RCS scatterers. Non-coherent integration can be applied to all four
Swerling models; however, coherent integration cannot be used when the tar-
get fluctuation is either Swerling Il or Swerling IV. This is because the target
amplitude decorrelates from pulse to pulse (fast fluctuation) for Swerling 1l
and IV models, and thus phase coherency cannot be maintained.

The Chi-square pdfwith 2N degrees of freedom can be written as
f(ct) = ————-ct exp(-* 252
(©) (N-I)! ¢ « ps- ct)] @5

where ct is the average RCS value. Using this equation, the pdfassociated with
Swerling | and 1l targets can be obtained by letting N = 1, which yields a
Rayleigh pdf. More precisely,

/() = aexpf-Q) ct>0 (253)
a +ao

Letting N = 2 yields the pdffor Swerling Ill and IV type targets,

/(c) = "expf-~ ct>0 254
a ct/

The probability of detection for a fluctuating target is computed in a similar
fashion to Eq. (2.23), except in this case f (r) is replaced by the conditionalpdf
f(r/ct) . Performing the analysis for the general case (i.e., using Eq. (2.47))
yields

cry I 2z )Y(P-)2 f 1 ct21T
f(z/ICT) = fﬁ-r;-(jZ;":Z) exp|=- z - 2"p~_\)7"»-l
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To obtainf(z) use the relations
f(z, ct) = f(z/a)f(a) (2.56)
f(z) = pTz ct)da 2.57)

Finally, using Eq. (2.56) in Eq. (2.57) produces

f(z) = J(zlct)/(ct) &CT (2.59)

where f(z/ct) is defined in Eq. (2.55) and /(ct) is in either Eq. (2.53) or
(2.54). The probability of detection is obtained by integrating the p d f derived
from Eq. (2.58) from the threshold value to infinity. Performing the integration
in Eq. (2.58) leads to the incomplete Gamma function.

2.5.1. Threshold Selection

When only a single pulse is used, the detection threshold VT is related to the
probability of false alarm Pfa as defined in Eq. (2.19). DiFranco and Rubinl
derived a general form relating the threshold and Pfa for any number of pulses
when non-coherent integration is used. It is

Pfa = 1- [/[V - '[P - A (2.59)

where I is used to denote the incomplete Gamma function. It is given by

y o VI/IP ( 1)1
I VT 0 roe vy
UETnr-1)= 1 ¢mprap-13p * 0
0
Note that the limiting values for the incomplete Gamma function are
ro,N)=0 M (@mN) =1 (2.61)

For our purposes, the incomplete Gamma function can be approximated by

X np-1 v P- 1 (nP- 1)(nP-2)
_ _ ., nP- nP- 1)(nP-
Fif' e 121 V) of T1e—v = )
, , (nP-1)! VT VI
(nP- 1)
e
T

1 DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech House, 1980.
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The threshold value VT can then be approximated by the recursive formula
used in the Newton-Raphson method. More precisely,

G(VT ]
Vtm= Vtu-t- V m-~ 'm =123 .. (2.63)
G (VI,m-1)
The iteration is terminated when |[VT,m-V Tm-1 < VT,m-1/ 10000.0. The
functions G and G' are

G(VLm) = (0.5)  “T (Vi nP) 264)
e Vvl viiP 1
G'( Vt, m) = - —(n-ls-_“l—)! (265)

The initial value for the recursion is

VT,0 = nP- JnP +2.3 AklogPfa U -logPfa+JnP -1) (2.66)
MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some integer N is

X -v N-1

FIXN) = 1.b -" I)l-dv (2.67)
0

The function “incomplete_gamma.m” implements Eq. (2.67). It is given in
Listing 2.9 in Section 2.11. Note that this function uses the MATLAB function
‘factor.m” which is given in Listing 2.10. The function factor.m” calculates
the factorial of an integer. Fig. 2.7 shows the incomplete Gamma function for
N = 1, 3,6, 10. This figure can be reproduced using the MATLAB program
‘fig2_7.m” given in Listing 2.11. The syntax for this function is as follows:

[value] =incomplete_gamma (x, N)

where
Symbol Description Units Status
X variable inputto I, (x, N) units 0fx input
N variable inputto Tj(x, N) none / integer input
value I, (x, N) none output
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Figure 2.7. The incomplete Gamma function for four values of N.

MATLAB Function “threshold.m”

The function “threshold.m” calculates the threshold using the recursive for-
mula used in the Newton-Raphson method. It is given in Listing 2.12 in Sec-
tion 2.11. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where
Symbol Description Units Status
nfa Marcumsfalse alarm number none input
np number ofintegrated pulses none input
pfa probability offalse alarm none output
vt threshold value none output

Fig. 2.8 shows plots of the threshold value versus the number of integrated
pulses for several values of nfa; remember that Pfa« In(2)/nfa. This figure
can be reproduced using MATLAB program fig2_8.m given in Listing 2.13.
This program uses both “threshold.m ”’and “incomplete_gamma ™.

© 2004 by Chapman & Hall/CRC CRC Press LLC



2.6. Probability of Detection Calculation

Marcum defined the probability of false alarm for the case when nP> 1 as

Pfa* In(2)(nP/ nfa) (2.68)

The single pulse probability of detection for non-fluctuating targets is given in
Eq. (2.24). When nP> 1, the probability of detection is computed using the
Gram-Charlier series. In this case, the probability of detection is

PD= ‘Jh -e— [C3(V2- 1)+ C4aV(3-V?2) (2.69)
2 72n

-C 6V(V4- 10\V2+ 15)]

where the constants C3, C4, and C6 are the Gram-Charlier series coefficients,
and the variable V is

_______________ @2.70)
Ta

In general, values for C3, C4, C6, and Ta vary depending on the target fluctu-
ation type.
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2.6.1. Detection of Swerling V Targets

For Swerling V (Swerling 0) target fluctuations, the probability of detection
is calculated using Eqg. (2.69). In this case, the Gram-Charlier series coeffi-

cients are
C3=- ~n +1/3 271)
JAp(2SNR + 1)15
C4= SNR+1/4 272
np(2SNR + 1)2
C6=C3/2 273
Ta = Jnp(2SNR + 1) 274

MATLAB Function ‘pd_swerling5.m”

The function ‘pd_swerling5.m” calculates the probability of detection for
Swerling V targets. It is given in Listing 2.14. The syntax is as follows:

[pd] =pd_swerling5 (inputl, indicator, np, snr)

where
Symbol Description Units Status
inputl Pfa, or rfa none input
indicator 1when inputl =Pfa none input
2 when inputl =nfa

np number of integrated pulses none input

snr SNR dB input

pd probability ofdetection none output

Fig. 2.9 shows a plot for the probability of detection versus SNR for cases
np = 1, 10. This figure can be reproduced using the MATLAB program
‘fig2_9.m™. Itis given in Listing 2.15 in Section 2.11.

Note that it requires less SNR, with ten pulses integrated non-coherently, to
achieve the same probability of detection as in the case of a single pulse.
Hence, for any given PD the SNR improvement can be read from the plot.
Equivalently, using the function “improvjiac.m” leads to about the same
result. For example, when PD = 0.8 the function “improv_fac.m” gives an
SNR improvement factor of 1(10) n 8.55dB. Fig. 2.9 shows that the ten pulse
SNR is about 6.03dB. Therefore, the single pulse SNR is about (from Eq.
(2.49)) 14.5dB, which can be read from the figure.
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SNR -dB

Figure 2.9. Probability of detection versus SNR, Pfa = 10 , and non-
coherent integration.

2.6.2. Detection ofSwerling | Targets

The exact formula for the probability of detection for Swerling I type targets
was derived by Swerling. It is

VT(1 +S\R)

PD = e ;np =1 (2.75)
) n,-1 Vt
Pd = 1-ri(Vtnp- D)+11+ -nP 1 (2.76)
nPSNR 1+4-
nPSNR
VT( 1+nPN\R)
e cnP>1

MATLAB Function ‘pd_swerlingl.m”

The function ‘pd swerlingl.m” calculates the probability of detection for
Swerling I type targets. It is given in Listing 2.16 in Section 2.11. The syntax is
as follows:

[pd] =pd_swerlingl (nfa, np, snr)
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where

Symbol Description
nfa Marcumsfalse alarm number
np number ofintegrated pulses
snr SNR
pd probability ofdetection

Units

none

none
dB

none

Status
input
input
input

output

Fig. 2.10 shows a plot of the probability of detection as a function of SNR
fornp = 1 and Pfa = 10- forboth Swerling I and V type fluctuations. Note
that it requires more SNR, with fluctuation, to achieve the same PD as in the
case with no fluctuation. This figure can be reproduced using MATLAB pro-
gram fig2 10.m” given in Listing 2.17.

Fig. 2.11a shows a plot of the probability of detection versus SNR for
ip = 1, 10, 50, 10Q, where Paa = 10-8.Fig. 2.11b is similar to Fig. 2.11a; in
this case Pfa = 10 — . These figures can be reproduced using MATLAB pro-
gram fig2 1lab.m”given in Listing 2.18.

0.9

° 0.5

0.2

0.1

)

12
SNR-dB

1

Swerling V

Swerling 1 _

Figure 2.10. Probability of detection versus SNR, single pulse. Pfa = 10 o
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2.6.3. Detection of Swerling Il Targets

In the case of Swerling Il targets, the probability of detection is given by

pd = 1- r'((T7SNR)" ™) ; "ps 50 (277)

For the case when nP>50 Eqg. (2.69) is used to compute the probability of
detection. In this case,

1 c3

C3s = ——-7= , Cb = -3 (278)
2

C =4k (279)

to = tInP (1 + SNR) (2.80)

MATLAB Function ‘pd_swerling2.m”

The function ‘pd_swerling2.m” calculates PD for Swerling Il type targets.
Itis given in Listing 2.19 in Section 2.11. The syntax is as follows:

[pd] =pd_swerling2 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcumsfalse alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability ofdetection none output

Fig. 2.12 shows a plot of the probability of detection as a function of SNR
for nP = 1, 10, 50, 100, where P*a = 10- . This figure can be reproduced
using MATLAB program fig2_12.m " given in Listing 2.20.

2.6.4. Detection of Swerling 111 Targets

The exact formulas, developed by Marcum, for the probability of detection
for Swerling 11 type targets when nP = 1, 2 is

PD=exp(l+v Wr/2X 1+"SR )"P 2*K
(2.81)

K 1 vt 2 | 2,
K° = 1+ 1+nPSNR/2 ~nPSNR("P~2)
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For nP> 2 the expression is

VBT e
(1+nPSNR/2)(nP- 2)!
VT
M1y 2/ npR™P D

MATLAB Function ‘pd_swerling3.m”

PD = + 1-I,(VT.nP- 1)+ KO 2.82
D |(yT P )J 0 (282)

The function ‘pd_swerling3.m” calculates PD for Swerling I11 type targets.
Itis given in Listing 2.21 in Section 2.11. The syntax is as follows:

[pd] =pd_swerling3 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcuméfalse alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability ofdetection none output
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Fig. 2.13 shows a plot of the probability of detection as a function of SNR
for nP = 1, 10, 50, 100, where P?a = 10- . This figure can be reproduced
using MATLAB program “fig2_13.m  given in Listing 2.22.

2.6.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling 1V targets for
nP <50 is

(SNRJ (SNRJ2'p("p-1)
PD =1 Yo++— J"pYl++— J —- 22+ - + 283)

J'P_Yi SNRJ-
W Yp +l+oT-J

where

Yi=T21+ (SN2 ""P+i (2-84)

By using the recursive formula

M i+1) =ri(xi)- -m-x-— (2.85)
ilexp (x)

then only yO needs to be calculated using Eq. (2.84) and the rest of yi are cal-
culated from the following recursion:
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Yi = Yi-1-Ai i>0 (2.86)

. Wt/(1 + (SNR)/2) | .
Al = e B Ai-! ;i>1 (2.87)
i P+i-1 i1

Aj = (V" (1 +(SNR)/2-) P (2.88)
1  nPlexp(VTI(1+ (SNR-/2--

YO FL((1+ (SNR)/ 2- ,"pJ @%)

For the case when nP > 50, the Gram-Charlier series and Eq. (2.69) can be
used to calculate the probability of detection. In this case,

C3 = ol 263~ 15 : Cg= a3 288
3J"P(2p2- 1-' 2
C =1 2P4- 1 52913
C4 = 4™ 2 2 291
4"p(2p2- 1-
to = Jip(2p2- 1- (292
P=1+Sp (293)

MATLAB Function ‘pd_swerling4.m”

The function ‘pd_swerling4.m” calculates PD for Swerling IV type targets.
Itis given in Listing 2.23 in Section 2.11. The syntax is as follows:

[pd] =pd_swerling4 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcuméfalse alarm number none input
np number ofintegrated pulses none input
snr SNR dB input
pd probability ofdetection none output

Figure 2.14 shows a plot of the probability of detection as a function of SNR
for nP = 1, 10, 50, 100, where P?a = 10- . This figure can be reproduced
using MATLAB program “fig2_14.m * given in Listing 2.24.
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2.7. The Radar Equation Revisited

The radar equation developed in Chapter 1 assumed a constant target RCS
and did not account for integration loss. In this section, a more comprehensive
form of the radar equation is introduced. In this case, the radar equation is
given by

R4 = P avGtGrX2c-1{nP) (294)
(4n)3KTeFBXfrLtLf (SNR)1

where Pav = Ptifr is the average transmitted power, Pt is the peak transmit-
ted power, T is pulsewidth, fr is PRF, Gt is transmitting antenna gain, Gr is
receiving antenna gain, X is wavelength, ct is target cross section, I(nP) is
improvement factor, nP is the number of integrated pulses, k is Boltzman’s
constant, Te is effective noise temperature, F is the system noise figure, B is
receiver bandwidth, Lt is total system losses including integration loss, Lf is
loss due to target fluctuation, and (SNR)1 is the minimum single pulse SNR
required for detection.

The fluctuation loss, Lf, can be viewed as the amount of additional SNR
required to compensate for the SNR loss due to target fluctuation, given a spe-
cific PD value. This was demonstrated for a Swerling | fluctuation in Fig.
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2.10. Kanterl developed an exact analysis for calculating the fluctuation loss.
In this text the authors will take advantage of the computational power of
MATLAB and the MATLAB functions developed for this text to numerically
calculate the amount of fluctuation loss with an accuracy of 0.005dB or better.
For this purpose the MATLAB function fluctloss.m” was developed. It is
given in Listing 2.25 in Section 2.11. Its syntax is as follows:

[Lf, Pd_Sw5] =fluct_loss(pd, pfa, np, sw_case)

where
Symbol Description Units Status
pd desiredprobability ofdetection none input
Fa probability offalse alarm none input
np number ofpulses none input
SW case 1, 2, 3, or 4 depending on the none input
desired Swerling case
Lf fluctuation loss dB output
Pd Swbs Probability ofdetection correspond- none output

ing to a Swerling V case

For example, using the syntax
[LfPd_Sw5]=fluctJoss(0.65, 1le-9, 10,1)

will calculate the SNR corresponding to both Swerling VV and Swerling I fluc-
tuation when the desired”probability of detection PD = 0.65 and probability
of false alarm Pfa = 10- and 10 pulses of non-coherent integration. The fol-
lowing is a reprint of the output:

PDSW5 =0.65096989459928

SNR_SW5 =5.52499999999990

PDSW1 =0.65019653294095

SNR_SW1 =8.32999999999990
L f =2.80500000000000

Note that a negative value for Lf indicates a fluctuation SNR gain instead of
loss. Finally, it must be noted that the function fluctloss.m” always assumes
non-coherent integration. Fig. 2.15 shows a plot for the additional SNR (or
fluctuation loss) required to achieve a certain probability of detection. This fig-
ure can be reproduced using MATLAB program fig2_16.m” given in Listing
2.26 in Section 2.11.

1 Kanter, I., Exact Detection Probability for Partially Correlated Rayleigh Targets,
IEEE Trans, AES-22, pp. 184-196, March 1986.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Pfa=1e-9, np=1
— Swerling 1& 1l
Swerling Il & IV

10

0.8 0.9

0.5 0.6 0.7

0.1 0.2 0.3 0.4
Probability of detection

Figure 2.15. Fluctuation loss versus probability of detection.

2.8. Cumulative Probability ofDetection

Denote the range at which the single pulse SNR is unity (0 dB) as RO, and
refer to it as the reference range. Then, for a specific radar, the single pulse

SNR at RO is defined by the radar equation and is given by
PtG2X2a
(295)

CNR\ =y STosEirs = 1

The single pulse SNR at any range R is

PtG2} 2t
SNR = - L (2.96)
(4n)3kTOBFLR4
Dividing Eqg. (2.96) by Eq. (2.95) yields
4
SNR /RO 2.97)
(SNR)ro +R

Therefore, if the range RO is known then the SNR at any other range R is
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(SNR)dB = 40l0g0 °) (2.98)

Also, define the range R0 as the range at which PD = 0.5 = P50. Normally,
the radar unambiguous range Ru is set equal to 2R50.

The cumulative probability of detection refers to detecting the target at least
once by the time it is at range R . More precisely, consider a target closing on a
scanning radar, where the target is illuminated only during a scan (frame). As
the target gets closer to the radar, its probability of detection increases since the
SNR is increased. Suppose that the probability of detection during the nth
frame is PD ; then, the cumulative probability of detecting the target at least
once during the nth frame (see Fig. 2.16) is given by

n

Pc,=1-M (1- P°9 (299
i=1
PDi is usually selected to be very small. Clearly, the probability of not detect-

ing the target during the nth frame is 1- P C . The probability of detection for
the ith frame, PDj, is computed as discussed in the previous section.

nthframe frame 1

PBh+1 PBh PD1

(Dthframe

Figure 2.16. Detecting a target in many frames.

2.8.1. Mini Design Case Study 2.2

A radar detects a closing target at R = 10K m, with probability of detection
PD equal to 0.5. Assume Pfa = 10 . Compute and sketch the single look
probability of detection as a function of normalized range (with respect to
R = 10Km), over the interval (2 - 20)Km. I fthe range between two succes-
sive frames is 1Km, what is the cumulative probability of detection at
R = 8Km?
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A Solution:

From thefunction “marcumsqg.m”the SNR corresponding to PD = 0.5 and
Pfa = 10 is approximately 12dB. By using a similar analysis to that which
led to Eqg. (2.98), we can express the SNR at any range R as

(SNR)r = (SNR)D+40 log10 = 52- 40 logR

By using thefunction “marcumsq.m”we can construct thefollowing table:

RKm (SNR) dB Pd

2 39.09 0.999
4 27.9 0.999
6 20.9 0.999
8 159 0.999
9 138 0.9
10 120 05
1 103 0.25
12 8.8 0.07
14 6.1 0.01
16 38 e

20 0.01 e

where e is very small. A sketch of PD versus normalized range is shown in
Fig. 2.17.

The cumulative probability o fdetection isgiven in Eq. (2.95), where the proba-
bility ofdetection ofthefirstframe is selected to be very small. Thus, we can
arbitrarily chooseframe 1to be at R = 16Km . Note that selecting a different
starting pointfor frame 1 would have a negligible effect on the cumulative
probability (we only need PD to be very small). Below is a range listingfor
frames 1through 9, whereframe 9 corresponds to R = 8Km . The cumulative

frame 1 2 3 4 5 6 7 8 9

range inKm 16 15 14 13 12 n 10 9 8

probability ofdetection at 8 Km is then

PC = 1- (1- 0.999)(1-0.9)(1 - 0.5)(1 - 0.25)(1 - 0.07)
(1 - 0.01)(1 - €)2110.9998
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Figure 2.17. Cumulative probability of detection versus normalized range.

2.9. Constant False Alarm Rate (CFAR)

The detection threshold is computed so that the radar receiver maintains a
constant pre-determined probability of false alarm. Eq. (2.19b) gives the rela-
tionship between the threshold value VT and the probability of false alarm
Pfa, and for convenience is repeated here as Eq. (2.100):

Vt = ~2y2In(P-) (2.100)

If the noise power y is assumed to be constant, then a fixed threshold can sat-
isfy Eq. (2.100). However, due to many reasons this condition is rarely true.
Thus, in order to maintain a constant probability of false alarm the threshold
value must be continuously updated based on the estimates of the noise vari-
ance. The process of continuously changing the threshold value to maintain a
constant probability of false alarm is known as Constant False Alarm Rate
(CFAR).

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference. In this book only analog Cell-Aver-
aging CFAR (CA-CFAR) technique is examined. The analysis presented in this
section closely follows Urkowitz1.

1 Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed
Martin Co., Moorestown, NJ.
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2.9.1. Cell-Averaging CFAR (SinglePulse)

The CA-CFAR processor is shown in Fig. 2.18. Cell averaging is performed
on a series of range and/or Doppler bins (cells). The echo return for each pulse
is detected by a square law detector. In analog implementation these cells are
obtained from a tapped delay line. The Cell Under Test (CUT) is the central
cell. The immediate neighbors of the CUT are excluded from the averaging
process due to a possible spillover from the CUT. The output of M reference
cells (M /2 on each side of the CUT) is averaged. The threshold value is
obtained by multiplying the averaged estimate from all reference cells by a
constant KO (used for scaling). A detection is declared in the CUT if

Y1>K0Z (2.101)

Cell-averaging CFAR assumes that the target of interest is in the CUT and all
reference cells contain zero mean independent Gaussian noise of variance y 2.
Therefore, the output of the reference cells, Z, represents a random variable
with gamma probability density function (special case of the Chi-square) with
2M degrees of freedom. In this case, the gammapdfis

(M/2)-1 (-r/2y2)
f(r) = :MTZ""W -------- ;>0 (2.102)

The probability of false alarm corresponding to a fixed threshold was
derived earlier. When CA-CFAR is implemented, then the probability of false
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alarm can be derived from the conditional false alarm probability, which is
averaged over all possible values of the threshold in order to achieve an uncon-
ditional false alarm probability. The conditional probability of false alarm
wheny = VT can be written as

2
Pfa(Vt =Y) = -- 72y (2.103)

It follows that the unconditional probability of false alarm is

a

Pfa = j Pfa(VT =Y)f(y)dy (2.104)
0

where f(y) is the pdfof the threshold, which except for the constant KO is the
same as that defined in Eq. (2.102). Therefore,

m- 1 (-y/2KoY2)
fly) =y— e——— ;Y >0 (2.105)
(2KoY2) (M)

Performing the integration in Eq. (2.104) yields

Pfa [ et (2106)
(1+ Ko)

Observation of Eg. (2.106) shows that the probability of false alarm is now
independent of the noise power, which is the objective of CFAR processing.

2.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is often implemented after non-coherent inte-
gration, as illustrated in Fig. 2.19. Now, the output of each reference cell is the
sum of nP squared envelopes. It follows that the total number of summed ref-
erence samples is MnP. The output Y1 is also the sum of nP squared enve-
lopes. When noise alone is present in the CUT, Y1 is a random variable whose
pdfis a gamma distribution with 2np degrees of freedom. Additionally, the
summed output of the reference cells is the sum of MnP squared envelopes.
Thus, Z is also a random variable which has a gammapd fwith 2M nP degrees
of freedom.

The probability of false alarm is then equal to the probability that the ratio
Y1/ Z exceeds the threshold. More precisely,

Pfa = Prob{ YV Z >K1} (2.107)
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odls %ﬁg

outpu.

Figure 2.19. Conventional CA-CFAR with non-coherent integration.

Eq. (2.107) implies that one must first find the joint pdf for the ratio Y1 Z .
However, this can be avoided if Pfa is first computed for a fixed threshold
value VT, then averaged over all possible values of the threshold. Therefore,
let the conditional probability of false alarm wheny = VT be Pfa(VT =y). It
follows that the unconditional false alarm probability is given by

Gl
Pfa = j Pfa(VT =y)f(y)dy (2.108)
0

where f(y) is the pdfof the threshold. In view of this, the probability density
function describing the random variable K 1Z is given by

MhP- 1 (Y 2KV )
0/7) -

fy) = PMP iy >0 (2.109)
(2y ) K1 F(MnP)

It can be shown that in this case the probability of false alarm is independent
of the noise power and is given by

np
1 1FrMnP+k)/ K
Pfa = (2.110)

(1+K1) g
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Instead, resort to accomplishing the desired probability of detection by using
cumulative probabilities. The single frame increment for the missile and air-
craft cases are

RMisslle = scan rate xvm = 2 x 150 = 300m (2111)

Raircraft = scan rate xva = 2 x 400 = 800m (2112

2.10.2.1 Single Pulse (Per Frame) Design Option

As a first design option, consider the case where during each frame only a
single pulse is used for detection (i.e., no integration). Consequently, if the sin-
gle pulse detection does not achieve the desired probability of detection at 90
Km for the aircraft or at 55 Km for the missile, then non-coherent integration
of a few pulses per frame can then be utilized. Keep in mind that only non-
coherent integration can be used in the cases of Swerling type I and Il fluctua-
tions (see Section 2.4).

Assume that the first frame corresponding to detecting the aircraft is 106
Km. This assumption is arbitrary and it provides the designer with 21 frames.
It follows that the first frame, when detecting the missile, is at 61 Km. Further-
more, assume that the SNR at R = 90Km is (SNR)aircraft = 8.5dB, for the
aircraft case. And, for the missile case assume that at R = 55Km the corre-
sponding SNR is (SNR)missile = 9dB . Note that these values are simply edu-
cated guesses, and the designer may be required to perform several iterations in
order to accomplish the desired cumulative probability of detection,
PD>0.995 . In order to calculate the cumulative probability of detection at a
certain range, the MATLAB program ‘“myradar_visit2_2.m” was developed.
This program is given in Listing 2.28 in Section 2.11.

Initialization of the program “myradar_visit2_2.m” includes entering the
following inputs: The desired Pfa; the number of pulses to be used for non-
coherent integration per frame; the range at which the desired cumulative oper-
ability of detection must be achieved; the frame size; and finally the target fluc-
tuation type. For notational purposes, denote the range at which the desired
cumulative probability of detection must be achieved as R0O. Then for each
frame, the following list includes the outputs of this program: SNR, probability
of detection, fluctuation loss, and cumulative probability of detection.

The logic used by this program for calculating the proper probability of
detection at each frame and for computing the cumulative probability of detec-
tion is described as follows:

1 Initialize the program, by entering the desired input values. Assume Swer-
ling V fluctuation and use Eq. (2.98) to calculate the frame-SNR, (SNR)i.
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1.1 For the *MyRadar” design case study, use nP = 1, RO = 90Km, and
(SNROQ)aircraft = 8.5dB. Alternatively use RO = 55Km and

(SNR)missile = 9dB for the missile case. Note that the selected SNR
values are best estimates or educated guesses, and it may require going
through few iterations before finally selecting an acceptable set.

2. The program will then calculate the number of frames and their associated
ranges. The program uses the function ‘fluct loss.m” to calculate the
Swerling V PD at each frame and the additional SNR required to accom-
plish the same probability of detection when target fluctuation is included.

3. Depending on the fluctuation type, the program will then use the proper
MATLAB function to calculate the probability of detection for each frame,

PD,.

31 For the ‘“MyRadar” design case study, these functions are
‘pd_swerlingl.m”and ‘pdswerling 3.m”.

4. Finally, the program uses Eq. (2.99) to compute the cumulative probability
of detection, PJ% .

A Graphical User Interface (GUI) has been developed for this program; Fig.
2.20 shows its associated GUI workspace. To use this GUI, from the MATLAB
command window type “myradar_visit2_2_gui”. Executing the program
“myradar_visit2_2.m *using the input values stated above yields the following
cumulative probabilities of detection for the aircraft and missile cases,

P mMﬂle = 0.99872

Plxa.m = 0.99687

These results clearly satisfy the design requirement of PD> 0.995 . However,
one must re-validate the peak power requirement for the design. To do that, go
back to Eq.s (1.107) and (1.108), and replace the SNR values used in Chapter 1
by the values adopted in this chapter (i.e., (SNRO)aircraft = 8.5dB and
(SNR)missile = 9dB). It follows that the corresponding single pulse energy
for the missile and the aircraft cases are respectively given by

1009

Em = 0.1658 x ; = 0.36273Joules (2113)
m 10
10°'&
Ea = 0.1487 x = 0.28994Joules (2114
10 %
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Initialization Start Quit

Swerling type 1
1.2, 3. 4,0r5
Number of pulses 1
DE
Note:
In order to run this program.
Range to 1st 106e3 1) You must click on
frame the initilization button

2) Enter your current values
——————— in each field

Range to last 3) Press start

frame

Desired single pulse 8.5
SNR at last frame

Frame size 300
meters
Pfa 1 Oe-7

Figure 2.20. GUI workspace associated with program “myradar_visit2_2_gui.m”.

This indicates that the stressing single pulse peak power requirement (i.e., mis-
sile detection) exceeds 362KW . This value for the single pulse peak power is
high for a mobile ground based air defense radar and practical constraints
would require using less peak power.

In order to bring the single pulse peak power requirement down, one can use
non-coherent integration of a few pulses per frame prior to calculating the
frame probability of detection. For this purpose, the program
“myradar_visit2_2.m” can be used again. However, in this case nP> 1. This is
analyzed in the next section.

2.10.2.2. Non-Coherent Integration Design Option

The single frame probability of detection can be improved significantly
when pulse integration is utilized. One may use coherent or non-coherent inte-
gration to improve the frame cumulative probability of detection. In this case,
caution should be exercised since coherent integration would not be practical
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when the target fluctuation type is either Swerling | or Swerling Ill. Alterna-
tively, using non-coherent integration will always reduce the minimum
required SNR.

Rerun the MATLAB program “myradar_visit2_2_gui”. Use nP = 4 and
use SNR = 4dB (single pulse) for both the missile and aircraft single pulse

SNR1 at their respective reference ranges, RO = 55Km and
Roa'rcratt = 90Km . The resulting cumulative probabilities of detection are
Pnr,\/1S§i|e = 0.99945
P drodt = 0.99812

which are both within the desired design requirements. It follows that the cor-
responding minimum required single pulse energy for the missile and the air-
craft cases are now given by

Em = 0.1658 x 1004 _ 0.1147Joules (2.115)
m 10
1004
Ea = 0.1487 x T’(‘%—Sﬁ = 0.1029Joules (2.116)

Thus, the minimum single pulse peak power (assuming the same pulsewidth as
that given in Section1.9.2) is

Pt = 01147 = 1147KW (2.117)
1x10 6

Note that the peak power requirement will be significantly reduced while
maintaining a very fine range resolution when pulse compression techniques
are used. This will be discussed in a subsequent chapter.

Fig. 2.21 shows a plot of the SNR versus range for both target types. This
plot assumes 4-pulse non-coherent integration. It can be reproduced using
MATLAB program fig2_21.m”. Itis given in Listing 2.29 in Section 2.11.

2.11. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

1 Again these values are educated guesses. The designer my be required to go through
a few iterations before arriving at an acceptable set of design parameters.
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Missile case

0
—  With 4-pulse NO
) - - mSingle pulse
H " J.
1 S
cr: 10
Z
> 9
-10 ! cor "‘Ham- .

20 30 40 60 60 70 80 [¢l0] 100 110 120
Aircraft case

40 . | i i
- With 4-pulse NCI

30 t---N mSingle pulse .

20 30 40 50 60 70 80 90 100 110 120
Detection range - Km

Figure 2.21. SNR versus detection range for both target types. The 4-pulse
NCI curves correspond to 21 frame cumulative detection with
the last frame at: 55 Km for the missile and 90 Km for the
aircraft.

Listing 2.1. MATLAB Program ‘fig2_2.m”

% Thisprogram can be used to reproduce Figure 2.2 ofthe text
clear all

close all

xg = linspace(-6,6,1500); % random variable between -6 and 6
xr = linspace(0,6,1500); % random variable between 0 and 6
mu = 0; % zero mean Gaussian pdfmean

sigma = 1.5; % standard deviation (sqrt(variance))

ynorm = normpdf(xg,mu,sigma); % use MATLABfunction normpdf
yray =raylpdf(xr,sigma); % use MATLABfunction raylpdf
plot(xg,ynorm, k' xr,yray, k-.");

grid

legend(Gaussian pdf,'Rayleigh pdf)

xlabel('x")
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ylabel(Probability density)
gtext("\mu = 0; \sigma = 1.5")
gtext("\sigma =1.5")

Listing 2.2. MATLAB Function “que_func.m”

functionfofx = que_func(x)
% Thisfunction computes the value ofthe Q-function
% listed in EQ.(2.16). It uses the approximation in Egs. (2.17) and (2.18)
if(x>=0)

denom = 0.661 *x + 0.339 *sqrt(xA2 +5.51);

expo =exp(-xA2/2.0);

fofx =1.0- (1.0/ sqrt(2.0 *pi)) *(1.0/ denom) *expo;
else

denom = 0.661 *x + 0.339 *sqrt(xA2 + 5.51);

expo =exp(-xA2/2.0);

value = 1.0 - (1.0/ sqrt(2.0 *pi)) *(1.0/ denom) *expo;

fofx = 1.0 - value;
end

Listing 2.3. MATLAB Program ‘fig2_3.m”

%Thisprogram generates Figure 2.3.
close all

clear all

logpfa = linspace(.01,250,1000);

var = 10.A(logpfa ./10.0);

vtnorm = sqrt(log (var));
semilogx(logpfa, vtnorm,'k")

grid

Listing 2.4. MATLAB Function “marcumsg.m”

function Pd =marcumsq (a,b)
% Thisfunction uses Parls method to compute PD
max_test_value =5000.;
if(a<hbh)

alphan0 = 1.0;

dn =a/b;
else

alphan0 =0,

dn =b/ g
end
alphan_1 =0;
betan0 = 0.5;
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betan_1 =0,;
D1 =dn;
n=0;
ratio =2.0/ (a *b);
rl =0.0;
betan = 0.0;
alphan = 0.0;
while betan < 1000.,
n=n-+1
alphan =dn +ratio *n *alphan0 + alphan;
betan = 1.0 +ratio *n *betan0 + betan;
alphan_1 =alphan0;
alphan0 =alphan;
betan_1 = betan0;
betan0 = betan;

dn =dn *D1;
end
PD = (alphan0/ (2.0 *betan0)) *exp(-(a-b)A2/ 2.0);
if(a>=h)
PD =1.0-PD;
end
return

Listing 2.5. MATLAB Program ‘prob_snrl.m”

% Thisprogram is used to produce Fig. 2.4
close all
clear all
for nfa =2:2:12
b =sqrt(-2.0 * log(10A(-nfa)));
index = 0;
hold on
for snr =0:.1:18
index =index +1;
a =sqrt(2.0 * 10A(.1*snr));
pro(index) =marcumsq(a,b);
end
x =0:.1:18;
set(gca,'ytick',[.1.2.3.4.5.6 .7.75 .8 .85 .9 ..
.95 .9999])
set(gca,'xtick',[1 23456 789 10 11 12 13 14 15 16 17 18])

loglog(x, pro,'k’);
end
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hold off

xlabel ('Singlepulse SNR - dB)
ylabel ('Probability ofdetection)
grid

Listing 2.6. MATLABprogram ‘fig2_6a.m”

% Thisprogram is used to produce Fig. 2.6a
% It uses thefunction "improv_fac"

clear all

close all

pfal = 1.0e-2;
pfa2 = 1.0e-6;
pfa3 = 1.0e-10;
pfad = 1.0e-13;
pdl =.5;

pd2 =.8;

pd3 =.95;

pd4 =.999;
index = 0;

for np =1:1:1000
index = index + 1;
11(index) =improv_fac (np, pfal, pdl);
12(index) =improv_fac (np, pfa2, pd2);
13(index) = improv_fac (np, pfa3, pd3);
14(index) = improv_fac (np, pfa4, pd4);
end
np = 1:1:1000;
semilogx (np, 11, k', np, 12, k--', np, 13, 'k-.', np, 14, k:")
xlabel ('Number ofpulses);
ylabel (Improvementfactor | - dB)
legend (‘pd=.5, nfa=e+2','pd=.8, nfa=e+6','pd=.95, nfa=e+10','pd=.999,
nfa=e+13");
grid

Listing 2.7. MATLAB Function “improv_fac.m”
function impr of np =improv_fac (np, pfa, pd)
% Thisfunction computes the non-coherent integration improvement
%factor using the empiricalformula defined in Eq. (2.49)
factl = 1.0 +1og10(1.0/pfa) / 46.6;
fact2 =6.79 * (1.0 + 0.235 *pd);
fact3 = 1.0 - 0.14 *logl0(np) + 0.0183 * (log10(np))A2;
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impr of np =factl *fact2 *fact3 *1log10(np);
return

Listing 2.8. MATLAB Program ‘fig2_6b.m”

% Thisprogram is used to produce Fig. 2.6b
% It uses thefunction "improv_fac".

clear all

close all

pfal = 1.0e-12;
pfa2 = 1.0e-12;
pfa3 = 1.0e-12;
pfad = 1.0e-12;
pdl =.5;

pd2 =.8;

pd3 =.95;

pd4 =.99;
index = 0;

for np =1:1:1000

index = index+1;

11 =improv_fac (np, pfal, pdl);
11 = 10.A0.1*11);

L1(index) =-1*10*log10(il1 ./np);
12 = improv_fac (np, pfa2, pd2);
12 = 10.A(0.1*12);

L2(index) =-1*10*log10(i2 ./np);
13 = improv_fac (np, pfa3, pd3);
13 = 10.A(0.1*13);

L3(index) =-1*10*log10(i3 ./np);
14 = improv_fac (np, pfa4, pd4);

i4 = 10A0.1*14);
L4 (index) =-1*10*log10(i4 ./np);
end
np = 1:1:1000;
semilogx (np, L1, 'K, np, L2, k--;np, L3, k-.7 np, L4, k:)
axis tight

xlabel ('Number ofpulses);

ylabel (‘Integration loss - dB)

legend (‘pd=.5, nfa=e+12''pd=.8, nfa=e+12','pd=.95, nfa=e+12','pd=.99,
nfa=e+12");

grid
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Listing 2.9. MATLAB Function “incomplete_gamma.m”

function [value] = incomplete_gamma (vt, np)
% Thisfunction implements Eq. (2.67) to compute the Incomplete Gamma
Function
% Thisfunction needs "factor,m" to run
format long
eps = 1.000000001;
% Testto see ifnp =1
if(np==1)
valuel =vt *exp(-vt);
value = 1.0 - exp(-vt);

return
end
sumold = 1.0;
sumnew =1.0;
calcl = 1.0;
calc2 =np;

xx =np *log(vt+0.0000000001) - vt -factor(calc2);
templ = exp(xx);
temp2 =np/ (vt+0.0000000001);

diff=.0;
ratio = 1000.0;
if (vt >=np)
while (ratio >= eps)
diff=diff+ 1.0;

calcl =calcl * (calc2 - diff) / vt;
sumnew =sumold + calcl;

ratio = sumnew / sumold;

sumold =sumnew;

end
value = 1.0 - templ *sumnew *temp2;
return
else
diff=0.;
sumold = 1;
ratio = 1000.;
calcl =1;
while(ratio >= eps)
diff=diff+ 1.0;

calcl =calcl *vt/ (calc2 + diff);
sumnew =sumold + calcl;

ratio = sumnew / sumold;

sumold =sumnew;
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end
value =templ *sumnew;
end

Listing 2.10. MATLAB Function “factor.m”

function [val] =factor(n)
% Compute thefactorial ofn using logarithms to avoid overflow.
format long
n=n+9.0;
n2 =n *n;
temp = (n-1) *log(n) - n + log(sqrt(2.0 *pi *n)) ...
+ ((1.0 - (1.0/30. + (1.0/105)/n2)/n2) / 12) / n;
val =temp - log((n-1)*(n-2)*(n-3) *(n-4) *(n-5)*(n-6) ...
*(n-7) *(n-8));
return

Listing 2.11. MATLAB Program ‘fig2_7.m”

% Thisprogram can be used to reproduce Fig. 2.7
close all
clear all
format long
i =0;
for x =0:.1:20
il =ii+1;
vall(ii) =incomplete_gamma(x, 1);
val2(ii) =incomplete_gamma(x, 3);
val = incomplete_gamma(x, 6);
val3(ii) =val;
val =incomplete_gamma(x, 10);
vald(ii) =val;
end
xx =0:.1:20;
plot(xx,vall, 'k’ xx,val2,'k:" xx,val3,'k--',xx,val4,'k-.")
legend('N =1''N=3''N =6",'N = 10"
xlabel('x")
ylabel(Incomplete Gammafunction (x,N)")
grid

Listing 2.12. MATLAB Function “threshold.m”

function [pfa, vt] = threshold (nfa, np)
% Thisfunction calculates the threshold valuefrom nfa and np.
% The Newton-Raphson recursiveformula is used (Egs. (2-63) through (2-66))

© 2004 by Chapman & Hall/CRC CRC Press LLC



% Thisfunction uses "incomplete_gamma.m".
delmax =.00001;
eps = 0.000000001;
delta =10000.;
pfa =np *log(2) / nfa;
sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vt0 -factor(np-1);
deno = exp(temp);
vt =vt0 + (num/ (deno+eps));
delta = abs(vt - vt0) *10000.0;
vi0 =wt;
end

Listing 2.13. MATLAB Program “fig2_8.m”

% Use thisprogram to reproduce Fig. 2.8 oftext
clear all
for n= 1: 1:150
[pfal y1(n)] = threshold(1000,n);
[pfa2y3(n)] = threshold(10000,n);
[pfa3 y4(n)] = threshold(500000,n);
end
n =1:1:150;
loglog(n,y1,'k',n,y3, 'k--",n,y4, 'k-.");
axis([0 200 1 300])
xlabel ('Number ofpulses);
ylabel('Threshold")
legend('nfa=1000",'nfa=10000",'nfa=500000")
grid

Listing 2.14. MATLAB Function ‘pd_swerling5.m”

function pd =pd_swerling5 (inputl, indicator, np, snrbar)
% Thisfunction is used to calculate the probability of
%for Swerling 5 or O targetsfor np>1.

ifnp == 1)
Stop, np must be greater than 1'
return
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end

format long

snrbar = 10.0.A(snrbar./10.);
eps = 0.00000001;

delmax =.00001;

delta =10000.;

% Calculate the threshold Vt
if (indicator ~=1)

nfa = inputl;

pfa = np *log(2) / nfa;
else

pfa =inputl;

nfa =np *log(2) / pfa;
end

sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vt0 -factor(np-1);
deno = exp(temp);
vt =vt0 + (num/ (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
% Calculate the Gram-Charlier coefficients
templ =2.0 .* snrbar + 1.0;
omegabar =sqrt(np .* templ);
c3 =-(snrbar + 1.0/ 3.0) ./ (sqrt(np) .* temp1.AL.5);
¢4 = (snrbar + 0.25) ./ (np .* temp1A2.);
c6 =¢3 .*c3 ./2.0;
V = (vt-np .* (1.0 +snrbar)) ./omegabar;
Vsqr =V .*V;
vall =exp(-Vsqr ./2.0) ./sqrt(2.0 *pi);
val2 =c3 .* (VA2 -1.0) +c4 .* V.* (3.0 - VA2) -...
c6.* V.* (VA4 - 10. .* VA2 + 15.0);
g =0.5 .* erfc (V./sqrt(2.0));
pd = q-vall .*val2;
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Listing 2.15. MATLAB Program “fig2_9.m”

% Thisprogram is used to produce Fig. 2.9
close all
clear all
pfa = le-9;
nfa =log(2) / pfa;
b =sqrt(-2.0 *log(pfa));
index = 0;
for snr =0:.1:20
index = index +1;
a =sqrt(2.0 * 10A(.1*snr));
pro(index) =marcumsq(a,b);
prob205(index) = pd_swerling5 (pfa, 1, 10, snr);
end
x = 0:.1:20;
plot(x, pro,'k',x,prob205,'k:";
axis([020 0 1])
xlabel ('SNR - dB")
ylabel ('Probability ofdetection)
legend('np = 1''np = 10")
grid

Listing 2.16. MATLAB Function ‘pd_swerlingl.m”

function pd =pd_swerlingl (nfa, np, snrbar)
% Thisfunction is used to calculate the probability of detection
%for Swerling 1 targets.
format long
snrbar = 10.0A(snrbar/10.);
eps = 0.00000001,;
delmax =.00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vtO -factor(np-1);
deno = exp(temp);
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vt =vt0 + (num/ (deno+eps));
delta = abs(vt - vt0) *10000.0;
vi0 =wt;
end
if(np==1
temp =-vt/ (1.0 + snrbar);
pd = exp(temp);
return
end
templ = 1.0 +np *snrbar;
temp2 = 1.0/ (np *snrbar);
temp = 1.0 + temp2;
vall =tempA(np-1.);
igfl = incomplete_gamma(vt,np-1);
igf2 = incomplete_gamma(vt/temp,np-1);
pd =1.0-igfl +vall *igf2 *exp(-vt/templ);

Listing 2.17. MATLAB Program “fig2_10.m”

% Thisprogram is used to reproduce Fig. 2.10
close all
clear all
pfa = 1le-9;
nfa =log(2) / pfa;
b =sqrt(-2.0 *log(pfa));
index = 0;
for snr =0:.1:22
index = index +1;
a =sqrt(2.0 * 10A(.1*snr));
pro(index) =marcumsq(a,b);
prob(index) = pd_swerlingl (nfa, 1, snr);
end
x =0:.1:22;
plot(x, pro,'k',x,prob,'k:");
axis([2 22 0 1])
xlabel ('SNR - dB)
ylabel (‘Probability o fdetection)
legend(*Swerling V','Swerling 1)
grid
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Listing 2.18. MATLAB Program “fig2_11ab.m”

% Thisprogram is used to produce Fig. 2.11a&b
clear all
pfa = le-11;
nfa =log(2) / pfa;
index = 0;
for snr =-10:.5:30
index = index +1;
probl(index) = pd_swerlingl (nfa, 1, snr);
probl10(index) = pd_swerlingl (nfa, 10, snr);
prob50(index) = pd_swerlingl (nfa, 50, snr);
prob100(index) = pd_swerlingl (nfa, 100, snr);
end
x =-10:.5:30;
plot(x, probl,'k',x,prob10,'k:" x,prob50,'k--", ...
X, prob100,'k-.");
axis([-10 30 0 1])
xlabel ('SNR - dB)
ylabel ('Probability ofdetection)
legend('np = 1''np = 10','np =50",'np = 100"
grid

Listing 2.19. MATLAB Function ‘pd_swerling2.m”

function pd =pd_swerling2 (nfa, np, snrbar)
% Thisfunction is used to calculate the probability of detection
%for Swerling 2 targets.
format long
snrbar = 10.0A(snrbar/10.);
eps = 0.00000001,;
delmax =.00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vtO -factor(np-1);
deno = exp(temp);
vt =vt0 + (num/ (deno+eps));
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delta = abs(vt - vt0) *10000.0;
vi0 =wt;
end
if (np <=50)
temp =vt/ (1.0 + snrbar);
pd = 1.0 - incomplete_gamma(temp,np);
return
else
templ =snrbar + 1.0;
omegabar =sqrt(np) *templ;
¢3 =-1.0/sqrt(9.0 *np);
¢4 =0.25/ np;
c6 =c3 *¢c3/2.0;
V = (vt- np *templ) / omegabar;
Vsgr =V *V,
vall =exp(-Vsqr/ 2.0) / sqrt(2.0 *pi);
val2 =¢3 * (VA2 -1.0) +c4 *V *(3.0- VA2) - ...
c6 *V * (VA4 - 10. *VA + 15.0);
g = 0.5 *erfc (V/sqrt(2.0));
pd = g-vall *val2;
end

Listing 2.20. MATLAB Program “fig2_12.m”

% Thisprogram is used to produce Fig. 2.12

clear all

pfa = 1e-10;

nfa =log(2) /pfa;

index = 0;

for snr =-10:.5:30
index = index +1;
probl(index) = pd_swerling2 (nfa, 1, snr);
prob10(index) = pd_swerling2 (nfa, 10, snr);
prob50(index) = pd_swerling2 (nfa, 50, snr);
prob100(index) = pd_swerling2 (nfa, 100, snr);

end

X =-10:.5:30;

plot(x, probl,'k’,x,prob10,'k:" x,prob50,'k--", ...
X, prob100,'k-.");

axis([-10 30 0 1])

xlabel ('SNR - dB)

ylabel (‘Probability o fdetection)

legend('np = 1','np = 10','np =50",'np = 100"

grid
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Listing 2.21. MATLAB Function ‘pd_swerling3.m”

function pd =pd_swerling3 (nfa, np, snrbar)
% Thisfunction is used to calculate the probability o f detection
%for Swerling 3 targets.
format long
snrbar = 10.0A(snrbar/10.);
eps = 0.00000001;
delmax =.00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vt0 -factor(np-1);
deno = exp(temp);
vt =vt0 + (num/ (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
templ =vt/ (1.0 + 0.5 *np *snrbar);
temp2 = 1.0 + 2.0/ (np *snrbar);
temp3 =2.0 *(np - 2.0) / (np *snrbar);
ko = exp(-templ) *temp2A(np-2.) * (1.0 +templ - temp3);
if(np <=2
pd =ko;
return
else
temp4 = vtA(np-1.) *exp(-vt) / (templ *exp(factor(np-2.)));
temp5 = vt/ (1.0 + 2.0/ (np *snrbar));
pd =temp4 + 1.0 - incomplete_gamma(vt,np-1.) +ko *..
incomplete_gamma(temp5,np-1.);
end

Listing 2.22. MATLAB Program ‘fig2_13.m”

% Thisprogram is used to produce Fig. 2.13
clear all
pfa = le-9;
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nfa =log(2) /pfa;

index = 0;

for snr =-10:.5:30
index = index +1;
probl(index) = pd_swerling3 (nfa, 1, snr);
probl10(index) = pd_swerling3 (nfa, 10, snr);
prob50(index) = pd_swerling3(nfa, 50, snr);
prob100(index) = pd_swerling3 (nfa, 100, snr);

end

X =-10:.5:30;

plot(x, probl,'k',x,prob10,'k:" x,prob50,'k--", ...
X, prob100,'k-.");

axis([-10 30 0 1])

xlabel ("SNR - dB)

ylabel ('Probability ofdetection)

legend('np = 1''np =10','np =50",'np = 100"

grid

Listing 2.23. MATLAB Function ‘pd_swerling4.m”

function pd =pd_swerling4 (nfa, np, snrbar)
% Thisfunction is used to calculate the probability of detection
%for Swerling 4 targets.
format long
snrbar = 10.0A(snrbar/10.);
eps = 0.00000001;
delmax =.00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa =sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 =np - sqrtnp + 2.3 *sqrtpfa * (sqrtpfa +sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf=incomplete_gamma(vt0,np);
num = 0.5A(np/nfa) - igf;
temp = (np-1) *log(vtO+eps) - vtO -factor(np-1);
deno = exp(temp);
vt =vt0 + (num/ (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
h8 =snrbar /2.0;
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beta = 1.0 +h8;
beta2 =2.0 *betaA2 - 1.0;
beta3 =2.0 *betaA3;
if (np >=50)
templ =2.0 *beta -1;
omegabar =sqgrt(np *templ);
¢3 = (beta3 - 1.)/ 3.0/ beta2 / omegabar;
c4 = (beta3 *beta3 - 1.0) / 4. / np /beta2 /beta2;
c6 =c3 *¢c3/2.0;
V = (vt-np *(1.0 +snrbar)) / omegabar;
Vsgr =V *V,
vall =exp(-Vsqr/ 2.0) / sqrt(2.0 *pi);
val2 =c3 * (VA2 -1.0) +c4 *V*(3.0- VA?) - ..
c6 *V * (VA4 - 10. * VA2 + 15.0);
g = 0.5 *erfc (V/sqrt(2.0));
pd = g-vall *val2;
return
else
snr =1.0;
gamma0 = incomplete_gamma(vt/beta,np);
al = (vt/ beta)Anp/ (expfactor(np)) *exp(vt/beta));
sum =gammao;
fori=1:1:np
templ = 1;
ifi==1
ai =al;
else
ai = (vt/ beta) *al/ (np +i-1);
end
al =ai;
gammai =gammao - ai;
gamma0 =gammai;

al =ai;
for ii = 1:1:i

templ =templ * (np + 1 - ii);
end

term = (snrbar/2.0)Ai *gammai *templ / exp(factor(i));
sum =sum +term;
end
pd = 1.0 - sum/ betaAnp;
end
pd =max(pd,0.);
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Listing 2.24. MATLAB Program “fig2_14.m”

% Thisprogram is used to produce Fig. 2.14

clear all

pfa = le-9;

nfa =log(2) /pfa;

index = 0;

for snr =-10:.5:30
index = index +1;
probl(index) = pd_swerling4 (nfa, 1, snr);
probl10(index) = pd_swerling4 (nfa, 10, snr);
prob50(index) = pd_swerling4(nfa, 50, snr);
prob100(index) = pd_swerling4 (nfa, 100, snr);

end

x =-10:.5:30;

plot(x, probl,'k',x,prob10,'k:" x,prob50,'k--", ...
X, prob100,'k-.");

axis([-10 30 0 1.1])

xlabel ('SNR - dB)

ylabel ('Probability ofdetection)

legend('np = 1''np = 10','np =50",'np = 100"

grid

axis tight

Listing 2.25. MATLAB Function “fluct_loss.m”

function [Lf,Pd_Sw5] =fluct_loss(pd, pfa, np, sw_case)

% Thisfunction calculates the SNRfluctuation lossfor Swerling models
% A negative L fvalue indicates SNR gain instead ofloss

format long

% compute thefalse alarm number

nfa = log(2) /pfa;

% *hkhkkhkhkkhkkhkkhkhkhkhkhkikk er“ng 5 case *hkkhkhkkhkkhkhkhkhkhkhiikkx

% check to make sure that np>1

if (np ==1)
b =sqrt(-2.0 *log(pfa));
Pd_Sw5 = 0.001;

snr inc = 0.1 - 0.005;
while(Pd_Sw5 <=pd)
snrinc =snrinc + 0.005;
a =sqrt(2.0 * 10A(.1*snr_inc));
Pd_Sw5 =marcumsq(a,b);
end
PD SW5 =Pd Swb
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SNR_SWS5 =snrinc
else
% np > 1 use MATLABfunction pd_swerling5.m
snr inc = 0.1 - 0.005;
Pd_Sw5 =0.001;
while(Pd_Sw5 <=pd)
snrinc =snrinc + 0.005;
Pd_Sw5 =pd_swerling5(pfa, 1, np, snr inc);
end
PDSW5 =Pd_Swb
SNR_SWS5 =snrinc
end
ifsw_case ==
Lf=0
return
end

Qp Fxdkkdkkdkkk **% Swerling 1 case **xakdkkdokkoktk
if(swcase == 1)
Pd_Swl =0.001;
snr inc = 0.1 - 0.005;
while(Pd_Swl <=pd)
snrinc =snrinc + 0.005;
Pd_Swl =pd_swerlingl(nfa, np, snr inc);
end
PDSW1 =Pd_Swl
SNR_SW1 =snrinc
Lf=SNR_SW1 - SNR_SW5
end

% *hkkkhkhkhkkhkkhkhkhkhhkikk SWGI’“ng 2 case *hkhkhkhkkhkkhkhkhkhkkhkhkhiikkx

if(swcase == 2)
Pd_Sw2 =0.001;
snr inc = 0.1 - 0.005;
while(Pd_Sw2 <=pd)
snrinc =snrinc + 0.005;
Pd_Sw2 =pd_swerling2(nfa, np, snr inc);
end
PDSW2 =Pd_Sw?2
SNR_SW2 =snrinc
L f=SNR_SW2 - SNR_SW5
end

% *hkhkhkhkhkhkkhkkhkhkhkhhkik SWGI’“ng 3 case *hkhkhkkhkkhkkhkhkhkhkkhkhkiiikkx
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if (swcase == 3)
Pd_Sw3 =0.001;
snr inc = 0.1 - 0.005;
while(Pd_Sw3 <=pd)
snrinc =snrinc + 0.005;
Pd_Sw3 =pd_swerling3(nfa, np, snr inc);
end
PDSW3 =Pd_Sw3
SNR_SW3 =snrinc
L f=SNR_SW3 - SNR_SW5
end

% *hkhkhkhkhkhkkhkkhkhkhkhhkik er“ng 4 case *hkhkhkhkkhkkhkhkhkkhkhkhiikkx

if(swcase == 4)
Pd_Sw4 =0.001;
snr inc = 0.1 - 0.005;
while(Pd_Sw4 <=pd)
snrinc =snrinc + 0.005;
Pd_Sw4 =pd_swerling4(nfa, np, snr inc);
end
PDSW4 =Pd_Sw4
SNR_SW4 =snrinc
L f=SNR_SW4 - SNR_SW5
end

return

Listing 2.26. MATLAB Program “fig2_15.m”

% Use thisprogram to reproduce Fig. 2.15 oftext
clear all
close all
index =0,
forpd =0.01:.05:1
index =index + 1;
[Lf,Pd_Sw5] =fluct_loss(pd, 1le-9,1,1);
Lfl(index) =Lf;
[Lf,Pd_Sw5] =fluct_loss(pd, 1le-9,1,4);
Lf4(index) =Lf;

end
pd =0.01:.05:1;
figure (2)

plot(pd, Lf1, 'K'pd, Lf4,'K:")
xlabel(Probability o fdetection)
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ylabel(Fluctuation loss - dB")
legend('Swerling I & IF/Swerling 111 & I1V")
title("Pfa=1e-9, np=1")

grid

Listing 2.27. MATLAB Program “myradar_visit2_1.m”

% Myradar design case study visit2 1

close all

clear all

pfa = le-7;

pd =0.995;

np =7

pt = 165.8e3; % peak power in Watts

freq =3e+9; % radar operatingfrequency in Hz

g =34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

te =290.0; % effective noise temperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf=6.0; %noisefigure in dB

loss = 8.0; % radar losses in dB

% compute the improvementfactor due to 7-pulse non-coherent integration
Improv =improvfac (np, pfa, pd);

% calculate the integration loss

lossnci = 10*log10(np) - Improv;

% calculate netgain in SNR due to integration

SNR net =Improv - lossnci;

loss_total = loss + lossnci;

rangem = 55e3;

rangea = 90e3;

SNR_single_pulse_missile =radar_eq(pt, freq, g, sigmam, te, b, nf, loss, ran-
gem)

SNR_7_pulse_NCI_missile =SNR_single_pulse_missile + SNRnet
SNR_single_pulse_aircraft =radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, ran-
gea)

SNR_7_pulse_NCI_aircraft = SNR_single_pulse_aircraft + SNRnet

Listing 2.28. MATLAB Program “myradar_visit2_2.m”

%clear all
% close all
% swid =3;

© 2004 by Chapman & Hall/CRC CRC Press LLC



%pfa = le-7;
%np =1;
% R_1stframe =61e3; % Rangeforfirstframe
% RO =55e3; % range to lastframe
% SNRO =9; % SNR atR0
%frame = 0.3e3; %frame size
nfa =log(2) /pfa;
range_frame =R_1st_frame:-frame:R0; % Range to eachframe
% implement Eq. (2.98)
SNRi =SNRO + 40 .* log10((R0O./rangeframe));
% calculate the Swerling 5 Pd at eachframe
b =sqrt(-2.0 *log(pfa));
ifnp ==

forframe = 1:1:size(SNRi,2)

a =sqrt(2.0 * 10A(.1*SNRi(frame)));
pd5(frame) =marcumsq(a,b);

end
else

[pd5] =pd_swerling5(pfa, 1, np, SNRi);
end
% compute additional SNR needed due tofluctuation
forframe = 1:1:size(SNRi,2)

[Lf(frame),Pd_Sw5] =fluct_loss(pd5(frame), pfa, np, swid);

end
% adjust SNR at eachframe
SNRi =SNRi - Lf;

% compute theframe Pd
forframe = 1:1:size(SNRi,2)

if(swid==1)
Pdiframe) =pd swerlingl (nfa, np, SNRi(frame));
end
if(swid==2)
Pdiframe) =pd_swerling2 (nfa, np, SNRi(frame));
end
if(swid==3)
Pdiframe) =pd_swerling3 (nfa, np, SNRi(frame));
end
if(swid==4)
Pdiframe) =pd_swerling4 (nfa, np, SNRi(frame));
end
if(swid==5)
Pdi(frame) =pd5(frame);
end
end
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Pdc(1:size(SNRi,2)) =0;
Pdc(1) =1 - Pdi(1);
% compute the cumulative Pd
forframe = 2:1:size(SNRi,2)
Pdc(frame) = (1-Pdi(frame)) *Pdc(frame-1);
end
PDC = 1-Pdc(21)

Listing 2.29. MATLAB Program “fig2_21.m”

% Use thisprogram to reproduce Fig. 2.20 oftext.

close all

clear all

np =4,

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvementfactor

Im =improv_fac(np,pfa, pdm);

la =improv_fac(np, pfa, pda);

% caculate the integration loss

Lm = 10*log10(np) - Im;

La =10*log10(np) - la;

pt = 114.7e3; %peakpower in Watts

freq =3e+9; % radar operatingfrequency in Hz

g =34.5139; % antennagain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa =4; % aircraft RCS m squared

te =290.0; % effective noise temperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf=6.0; % noisefigure in dB

loss =8.0; % radar losses in dB

losstm =loss +Lm; % total lossfor missile

lossta = loss +La; % total lossfor aircraft

range = linspace(20e3,120e3,1000); % range to targetfrom 20 to 120 Km,
1000 points

% modify pt by np*pt to accountfor pulse integration
snrmnci =radar_eq(np*pt, freq, g, sigmam, te, b, nf, losstm, range);
snrm =radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snranci =radar_eq(np*pt, freq, g, sigmaa, te, b, nf, lossta, range);
snra =radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range

rangekm =range ./1000;

figure(1)
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subplot(2,1,1)
plot(rangekm,snrmnci,'k’,rangekm,snrm,’k -.")
grid

legend(‘With 4-pulse NCI','Singlepulse)
ylabel ('SNR - dB";

title("Missile case’)

subplot(2,1,2)

plot(rangekm,snranci, 'k',rangekm,snra,'k -.")
grid

legend("With 4-pulse NCI','Singlepulse)
ylabel ("SNR - dB");

title(Aircraft case")

xlabel('Detection range - Km")

© 2004 by Chapman & Hall/CRC CRC Press LLC



Chapter 3 Radar Waveforms

Choosing a particular waveform type and a signal processing technique in a
radar system depends heavily on the radar’s specific mission and role. The cost
and complexity associated with a certain type of waveform hardware and soft-
ware implementation constitute a major factor in the decision process. Radar
systems can use Continuous Waveforms (CW) or pulsed waveforms with or
without modulation. Modulation techniques can be either analog or digital.
Range and Doppler resolutions are directly related to the specific waveform
frequency characteristics. Thus, knowledge of the power spectrum density of a
waveform is very critical. In general, signals or waveforms can be analyzed
using time domain or frequency domain techniques. This chapter introduces
many of the most commonly used radar waveforms. Relevant uses of a spe-
cific waveform will be addressed in the context of its time and frequency
domain characteristics. In this book, the terms waveform and signal are used
interchangeably to mean the same thing.

3.1. Low Pass, Band Pass Signals, and Quadrature
Components

Signals that contain significant frequency composition at a low frequency
band including DC are called Low Pass (LP) signals. Signals that have signifi-
cant frequency composition around some frequency away from the origin are
called Band Pass (BP) signals. A real BP signal x(t) can be represented math-
ematically by

Xt) = r(t)cos(2 / +dt)) 31
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where r(t) is the amplitude modulation or envelope, dx(t) is the phase modu-
lation, /0 is the carrier frequency, and both r(t) and dx(t) have frequency com-
ponents significantly smaller than /0. The frequency modulation is

m*)y=2MtM 0 32

and the instantaneous frequency is

/(1) =2M i (2 /0+dx(t) =f0+ m(t) (33)

If the signal bandwidth is B, and if /0 is very large compared to B, the signal
x(t) is referred to as a narrow band pass signal.

Band pass signals can also be represented by two low pass signals known as
the quadrature components; in this case Eq. (3.1) can be rewritten as

x(t) = Xj(t)cos2n/0t - Xg(t) sin2n/0t (34)

where Xj(t) and xQ(t) are real LP signals referred to as the quadrature compo-
nents and are given, respectively, by

X, () = r(t)cos )
xQ0) = r(t)sin™ (0

Fig. 3.1 shows how the quadrature components are extracted.

35)

2cos2n/0t

Figure 3.1. Extraction of quadrature components.
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3.2. The Analytic Signal

The sinusoidal signal x(t) defined in Eqg. (3.1) can be written as the real part
of the complex signal y (t).More precisely,

X(1)= Re{y(1)} = Re{r(nePOe2"y 36)
Define the “analytic signal” as
wowmﬂw @37
where
v(t) = r(t)efﬁlg (38
and
- 0
Y(«) = \_/2x§o) §i8 39)

Y(ro) is the Fourier transform of y(t) and X(i0) is the Fourier transform of
X(t) . Eq. (3.9) can be written as

T(0) = 2U(rn)X(rn) (3.10)

where U(to) is the step function in the frequency domain. Thus, it can be
shown that y (t) is

v(t) =x(t) Hx(t) (311)
X(t) is the Hilbert transform of x(t).
Using Egs. (3.6) and (3.11), one can then write (shown here without proof)
X(t) = uOI(t) costo01- uOq(t) sinroOt (312
which is similar to Eq. (3.4) with 100 = 2n/0.

Using Parseval’s theorem it can be shown that the energy associated with the
signal x(t) is

Ex =2 jx2t) dt =1 Ju2(t) dt = (3.13)
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3.3. CW and Pulsed Waveforms

The spectrum of a given signal describes the spread of its energy in the fre-
quency domain. An energy signal (finite energy) can be characterized by its
Energy Spectrum Density (ESD) function, while a power signal (finite power)
is characterized by the Power Spectrum Density (PSD) function. The units of
the ESD are Joules per Hertz and the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a
nonzero spectrum. In general, any signal can be defined using its duration
(time domain) and bandwidth (frequency domain). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (time-lim-
ited) will have infinite bandwidths, while band-limited signals have infinite
durations. The extreme case is a continuous sine wave, whose bandwidth is
infinitesimal.

A time domain signal f(t) has a Fourier Transform (FT) F(ro) given by

F(ro) = Jf(t)e4fit dt (3.14)
vy

where the Inverse Fourier Transform (IFT) is

W
f() =20 JF(“) d ® (3.15)
W

The signal autocorrelation function R (t) is

W
RF(T) = JF*(D)f(t+T1) dt (3.16)
W

The asterisk indicates the complex conjugate. The signal amplitude spectrum is

|F(ro)| . I1ff(t) were an energy signal, then its ESD is |F(r0)|2 ; and if it were a
power signal, then its PSD is Sf(m) which is the FT of the autocorrelation
function

w
Sf(m) = J Rf(T)e ;ut dT (3.17)
vy

First, consider a CW waveform given by
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frequency

-fo 0 fo
Figure 3.2. Amplitude spectrum for a continuous sine wave.

fj(t) = A cosrolt (3.18)

The FT of fj(t) is

Fj(ro) = Artc[5(to0 - t00) + 8(t0 + t00)] (319

where 8( < ) is the Dirac delta function, and 00 = 2nf0 . As indicated by
the amplitude spectrum shown in Fig. 3.2, the signal fj(t) has infinitesimal
bandwidth, located at £f0.

Next consider the time domain signal f2(t) given by
f2(t) = ARect[T) BT (3.20)
otherwise

It follows that the FT is
F2(ro) = ATSinc-®2) (321
where

Sinc(x) = smlg(tx) (322

The amplitude spectrum of f2(t) is shown in Fig. 3.3. In this case, the band-
width is infinite. Since infinite bandwidths cannot be physically implemented,
the signal bandwidth is approximated by 2n/t radians per second or Ut
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Hertz. In practice, this approximation is widely accepted since it accounts for
most of the signal energy.

Figure 3.3. Amplitude spectrum for a single pulse, or a
train of non-coherent pulses.

Now consider the coherent gated CW waveform f3(t) given by

W

£3(t) = X f2(t-nT) B2
n=-Ww

Clearly f3(t) is periodic, where T is the period (recall that fr = 1/ T is the
PRF). Using the complex exponential Fourier series we can rewrite f3(t) as

W j2nn-

il
f3() = X Fne (3.24)
n=W

where the Fourier series coefficients Fn are given by

" AT -
Fn=T Sinc{n—TK (3.25)

It follows that the FT of f3(t) is
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Figure 3.4. Amplitude spectrum for a coherent pulse train of infinite length.

w
F3(ro) = 2n X Fn8(ro - 2nnfr) (3.26)
n=Ww

The amplitude spectrum off3(t) is shown in Fig. 3.4. In this case, the spectrum
has a sinx/x envelope that corresponds to Fn. The spacing between the spec-
tral lines is equal to the radar PRF, fr.

Finally, define the function f4(t) as

N
14(t) = X f2(t- nT) (3.27)
n=0

Note that f4(t) is a limited duration of f3(t). The FT of f4(t) is

F4(ib) = AMT Sinc-r o ¢ X Sinc(nnTt/n)5(t0 - 2w 1) (328)

where the operator ( * ) indicates convolution. The spectrum in this case is
shown in Fig. 3.5. The envelope is still a sinx/x which corresponds to the
pulsewidth. But the spectral lines are replaced by sinx/x spectra that corre-
spond to the duration NT.
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frequency

Figure 3.5. Amplitude spectrum for a coherent pulse train of finite length.

3.4. Linear Frequency Modulation Waveforms

Frequency or phase modulated waveforms can be used to achieve much
wider operating bandwidths. Linear Frequency Modulation (LFM) is com-
monly used. In this case, the frequency is swept linearly across the pulsewidth,
either upward (up-chirp) or downward (down-chirp). The matched filter band-
width is proportional to the sweep bandwidth, and is independent of the pulse-
width. Fig. 3.6 shows a typical example of an LFM waveform. The pulsewidth
is T, and the bandwidth is B .

The LFM up-chirp instantaneous phase can be expressed by

(3.29)

where f0 is the radar center frequency, and u = (2nB)/T is the LFM coeffi-
cient. Thus, the instantaneous frequency is

Similarly, the down-chirp instantaneous phase and frequency are given, respec-
tively, by
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o)
Figure 3.6. Typical LFM waveforms. (a) up-chirp; (b) down-chirp.

W(t) = 2n(fot - 2/) - g<t<2 (331)

f(t) = 2N TtV(H) =f0 - 2t - 2<t<2 (332)

A typical LFM waveform can be expressed by

. /2nf+2
ij(t) = Rectme n 9 (333
where Rect(t/T) denotes a rectangular pulse of width 1. Eq. (3.33) is then
written as
sit) = 2% ) (334)
where
s(t) = Rect-2) (3.35)

is the complex envelope of sj(t).
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The spectrum of the signal sj(t) is determined from its complex envelope
s(t). The complex exponential term in Eq. (3.34) introduces a frequency shift
about the center frequency fo. Taking the FT of s(t) yields

&9)
S(m) = J Rect-Tj e-atdt = J exp(AS-2i--| e ™ ‘dt (3.36)

Let u' = 2ny = 2nB/T, and perform the change of variable

X= A(IFI'(t_ S,D dx = NLrH dt (3.37)

Thus, Eq. (3.36) can be written as

J?
5(») ='U eMfiz2yJ/ X72 dx (3.38)
X
S(«) = In e-a 72y F™/2 g fol™I2 4 (3:39)
where
ne u 'E(l +E (3.40)
X2 = u-(1- B (1-N
5=y ARk (341)
The Fresnel integrals, denoted by C(x) and S(x), are defined by
X 2
C(x) =Jcos-"2")du (342
0
X . 2.
S(x) =Jsin-m ~ du (3.43)

0

© 2004 by Chapman & Hall/CRC CRC Press LLC



Fresnel integrals are approximated by

CQI() « %+ asin@x?} x»1 (3.44)
S(x) « %WcongXZ} px» 1 (345)

Note that C(-x) = -C(x) and S(-x) = -S(x). Fig. 3.7 shows a plot of both
C(x) and S(x) for 0<x<4.0. This figure can be reproduced using MATLAB
program fig3_7.m” given in Listing 3.1 in Section 3.12.

Using Egs. (3.42) and (3.43) into (3.39) and performing the integration yield

P( IT -/«VAD)?2A0 A +CCA +[S(x2) +SED]] @@
S»1=Vv B i ¥ } 1)

Fig. 3.8 shows typical plots for the LFM real part, imaginary part, and ampli-
tude spectrum. The square-like spectrum shown in Fig. 3.8c is widely known
as the Fresnel spectrum. This figure can be reproduced using MATLAB pro-
gram fig3_8.m”, given in Listing 3.2 in Section 3.12.

A MATLAB GUI (see Fig. 3.8d) was developed to input LFM data and dis-
play outputs as shown in Fig. 3.8. It is called “LFM_gui.m™. Its inputs are the
uncompressed pulsewidth and the chirp bandwidth.
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T = 10 Microsecond, B =200 MHz
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Figure 3.8a. Typical LFM waveform, real part.
T = 10 Microsecond, B =200 MHz
g
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Figure 3.8b. Typical LFM waveform, imaginary part.
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Spectrum for an LFM waveform and T = 10 Microsecond, B =200 MHZ

-200 -160 -100 -60 0 50 100 150 200
Frequency - MHz

Figure 3.8c. Typical spectrum for an LFM waveform.

Initialization Start Quit
Bandwidth in Hz Uncompressed pulsewidth
in seconds
200e6 10e6

Figure 3.8d. GUI workspace “LFM_gui.m".

3.5. High Range Resolution

An expression for range resolution AR in terms of the pulsewidth T was
derived in Chapter 1. When pulse compression is not used, the instantaneous
bandwidth B of radar receiver is normally matched to the pulse bandwidth,
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and in most radar applications this is done by setting B = 1/1 . Therefore,
range resolution is given by

AR = (cT)/2 = ¢/ (2B) (347)

Radar users and designers alike seek to accomplish High Range Resolution
(HRR) by minimizing AR. However, as suggested by Eq. (3.47) in order to
achieve HRR one must use very short pulses and consequently reduce the aver-
age transmitted power and impose severe operating bandwidth requirements.
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques, which
will be discussed in Chapter 5. By means of frequency or phase modulation,
pulse compression allows us to achieve the average transmitted power of a rel-
atively long pulse, while obtaining the range resolution corresponding to a very
short pulse. As an example, consider an LFM waveform whose bandwidth is B
and un-compressed pulsewidth (transmitted) is 7. After pulse compression the
compressed pulsewidth is denoted by T', where T' «T, and the HRR is

AR=Ar A (348)
2 2

Linear frequency modulation and Frequency-Modulated (FM) CW wave-
forms are commonly used to achieve HRR. High range resolution can also be
synthesized using a class of waveforms known as the “Stepped Frequency
Waveforms” (SFW). Stepped frequency waveforms require more complex
hardware implementation as compared to LFM or FM-CW; however, the radar
operating bandwidth requirements are less restrictive. This is true because the
receiver instantaneous bandwidth is matched to the SFW sub-pulse bandwidth
which is much smaller than the LFM or FM-CW bandwidth. A brief discussion

of SFW waveforms is presented in the following section.

3.6. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro-
files because the target range profile is computed by means of Inverse Discrete
Fourier Transformation (IDFT) of frequency domain samples of the actual tar-
get range profile. The process of generating a synthetic HRR profile is
described in Wehner.11t is summarized as follows:

1. A series of n narrow-band pulses are transmitted. The frequency from
pulse to pulse is stepped by a fixed frequency step Af. Each group of n
pulses is referred to as a burst.

1 Wehner, D. R.,HighResolutionRadar, second edition, Artech House, 1993.
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2. The received signal is sampled at a rate that coincides with the center of
each pulse.

3. The quadrature components for each burst are collected and stored.

4. Spectral weighting (to reduce the range sidelobe levels) is applied to the
quadrature components. Corrections for target velocity, phase, and ampli-
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu-
lated to synthesize a range profile for that burst. The process is repeated for
N bursts to obtain consecutive synthetic HRR profiles.

Fig. 3.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is
T, and the pulsewidth is T'. Each pulse can have its own LFM, or other type of
modulation; in this book LFM is assumed. The center frequency for the ith
step is

f =fo+iAf i =0n-1 (3.49)
Within a burst, the transmitted waveform for the ith step can be described as

Cicos2nft + 0i iT<t<iT+T8

s((t) = § L ; (3.50)

elsewhere
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where 0i are the relative phases and Ci are constants. The received signal from
atarget located at range RO attime t = 0 is then given by

sri(t) = C/cos(2nf(t- T(") + 0i) JIT+HT(A< t<iT+T +7(F) (351)

where Ci' are constant and the round trip delay T(t) is given by

RO- vt

™o = cl2

(352)

c is the speed of light and v is the target radial velocity.

The received signal is down-converted to base-band in order to extract the
quadrature components. More precisely, sri(t) is mixed with the signal

yi(t) = Ccos(2nft+ 0i) JIT<t<iT+T (3.53)

After low pass filtering, the quadrature components are given by

X/(t)8 _ (AicosNi(t)' (3.54)
xQ(t)e U isinWi(t)

where Ai are constants, and

w.(t) =-2n f(2(4;?° -C" (3.55)
where now f = Af. For each pulse, the quadrature components are then sam-
pled at

L r 2RO
ti =T +g + ’\C (3.56)

Tr is the time delay associated with the range that corresponds to the start of
the range profile.

The quadrature components can then be expressed in complex form as

Xt = Aj (357)

Eq. (3.57) represents samples of the target reflectivity, due to a single burst, in
the frequency domain. This information can then be transformed into a series
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol-
lows that
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n-1
2nli
n, £ Xi exp( 0<l<n-1 (3.58)

i=0

Substituting Egs. (3.57) and (3.55) into (3.58) and collecting terms yield

n-1
H =nE Ai xpw2f -2 -2?)) (3.59)
i=0

By normalizing with respect to n and by assuming that Ai = 1 and that the
target is stationary (i.e., v = 0), then Eq. (3.59) can be written as

n-1
2R

2nli
no e exp - 2nfi (3:60)
i=0

Using f. = iAf inside Eg. (3.60) yields

n-1
2ni( 2nROAf
", E expV +1 (3.61)
i=0
which can be simplified to
N ‘soi - A (362
sin—* >l
n
where
-2nROAf
) G — — +1 (363)
Finally, the synthesized range profile is
sin7txX (3.64)

mX

3.6.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth.
Assuming a SFW with n steps, and step size A , then the corresponding range
resolution is equal to
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(3.65)

Range ambiguity associated with a SFW can be determined by examining
the phase term that corresponds to a point scatterer located at range R0. More

precisely,
2R0
y(t) = 2nfi"CT 366>
It follows that
Ay RO = 4nRO (, 67>
4-= onN-fo ¢ =T - (367)
or equivalently,
Ro= Afan (3.68)

It is clear from Eq. (3.68) that range ambiguity exists for Ay = Ay +2nn.
Therefore,

Ay +2nn ¢ ” (c)
— AT~4n =R0+n(2a/J

and the unambiguous range window is

Hence, a range profile synthesized using a particular SFW represents the rel-
ative range reflectivity for all scatterers within the unambiguous range win-
dow, with respect to the absolute range that corresponds to the burst time delay.
Additionally, if a specific target extent is larger than Ru, then all scatterers fall-
ing outside the unambiguous range window will fold over and appear in the
synthesized profile. This fold-over problem is identical to the spectral fold-
over that occurs when using a Fast Fourier Transform (FFT) to resolve certain
signal frequency contents. For example, consider an FFT with frequency reso-
lution Af = 50Hz , and size NFFT = 64 . In this case, this FFT can resolve
frequency tones between -1600Hz and 1600Hz . When this FFT is used to
resolve the frequency content of a sine-wave tone equal to 1800Hz , fold-over
occurs and a spectral line at the fourth FFT bin (i.e., 200Hz ) appears. There-
fore, in order to avoid fold-over in the synthesized range profile, the frequency
step A must be
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Af<c/ 2E (3.71)
where E is the target extent in meters.

Additionally, the pulsewidth must also be large enough to contain the whole
target extent. Thus,

Af< 1T (372
and, in practice,

Af< 1/ 2T (3.73)

This is necessary in order to reduce the amount of contamination of the synthe-
sized range profile caused by the clutter surrounding the target under consider-
ation.

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m” computes and plots the synthetic HRR profile
for a specific SFW. Itis given in Listing 3.3 in Section 3.12. This function uti-
lizes an Inverse Fast Fourier Transform (IFFT) of a size equal to twice the
number of steps. Hamming window of the same size is also assumed. The syn-
tax is as follows:

[h1] = hrr_profile (nscat, scatrange, scatrcs, n, deltaf, prf, v, r0, winid)

where
Symbol Description Units Status
nscat number ofscatterers that make up none input
the target
scat_range  vector containing range to individ- meters input
ual scatterers
scat_rcs vector containingRCS ofindividual ~ meter square input
scatterers
n number ofsteps none input
deltaf frequency step Hz input
prf PRF ofSFW Hz input
v target velocity meter/second input
r0 profile starting range meters input
winid number>0for Hamming window none input
number < 0for no window
hi range profile dB output
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160 MATLAB Simulationsfor Radar Systems Design

For example, assume that the range profile starts at RO = 900m and that

nscat tau n deltaf prf v
3 10011seC 64 10MHz 10K Hz 0.0
In this case,
AR = 3x10 0.235m

2x64x10x 10

= 3L gy
2 x 10 x 106

Thus, scatterers that are more than 0.235 meters apart will appear as distinct
peaks in the synthesized range profile. Assume two cases; in the first case,

[scat range] =[908, 910, 912] meters, and in the second case, [scat range] =
[908, 910, 910.2] meters. Inboth cases, let [scat rcs] =[100, 10, 1] meters
squared.

Fig. 3.10 shows the synthesized range profiles generated using the function
“hrr_profile.m ”and the first case when the Hamming window is not used. Fig.
3.11 is similar to Fig. 3.10, except in this case the Hamming window is used.
Fig. 3.12 shows the synthesized range profile that corresponds to the second
case (Hamming window is used). Note that all three scatterers were resolved in
Figs. 3.10 and 3.11; however, the last two scatterers are not resolved in Fig.
3.12, since they are separated by less than AR.

Figure 3.10. Synthetic range profile for three resolved scatterers. No window.
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o] 5 10 15
relative distance - meters

Figure 3.11. Synthetic range profile for three scatterers. Hamming window.

0 5 10 15
relative distance - meters

Figure 3.12. Synthetic range profile for three scatterers. Two are unresolved.
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Next, consider another case where [scat range] = [908, 912, 916] meters.
Fig. 3.13 shows the corresponding range profile. In this case, foldover occurs,
and the last scatterer appears at the lower portion of the synthesized range pro-
file. Also, consider the case where

[scat range] =[908, 910, 923] meters

Fig. 3.14 shows the corresponding range profile. In this case, ambiguity is
associated with the first and third scatterers since they are separated by 15m.
Both appear at the same range bin.

3.6.2. Effect of Target Velocity

The range profile defined in Eq. (3.64) is obtained by assuming that the tar-
get under examination is stationary. The effect of target velocity on the synthe-
sized range profile can be determined by substituting Egs. (3.55) and (3.56)
into Eq. (3.58), which yields

n-1 r t

Hi =1 Aexpj f -,2nf[2R-c -iT+X +2R)]J (3.74)
=0

0 5 10 15

relative distance - meters

Figure 3.13. Synthetic range profile for three scatterers. Third scatterer folds
over.
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0 5 10 15
relative distance - meters

Figure 3.14. Synthetic range profile for three scatterers. The first and third
scatterers appear in the same FFT bin.

The additional phase term present in Eqg. (3.74) distorts the synthesized range
profile. In order to illustrate this distortion, consider the SFW described in the
previous section, and assume the three scatterers of the first case. Also, assume
that v = 100m/ s . Fig. 3.15 shows the synthesized range profile for this case.
Comparisons of Figs. 3.11 and 3.15 clearly show the distortion effects caused
by the uncompensated target velocity. Figure 3.16 is similar to Fig. 3.15 except
in this case, v =-100m/s. Note in either case, the targets have moved from
their expected positions (to the left or right) by Disp =2 xnxVv/PRF (1.28
m).

This distortion can be eliminated by multiplying the complex received data
at each pulse by the phase term

h = exp (iT+X +n ] (3.75)

v and R are, respectively, estimates of the target velocity and range. This pro-
cess of modifying the phase of the quadrature components is often referred to
as “phase rotation.” In practice, when good estimates of v and R are not avail-
able, then the effects of target velocity are reduced by using frequency hopping
between the consecutive pulses within the SFW. In this case, the frequency of
each individual pulse is chosen according to a predetermined code. Waveforms
of this type are often called Frequency Coded Waveforms (FCW). Costas
waveforms or signals are a good example of this type of waveform.
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0 5 10 15

relative distance - meters

Figure 3.15. lllustration of range profile distortion due to target velocity.

0 5 10 15

relative distance - meters

Figure 3.16. Illlustration of range profile distortion due to target velocity.
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Figure 3.17 shows a synthesized range profile for a moving target whose
RCSis d = 10m2 and v = 15m/s . The initial target range is at R = 912m . All
other parameters are as before. This figure can be reproduced using the MAT-
LAB program “ig3_17.m” given in Listing 3.4 in Section 3.12.

Figure 3.17. Synthesized range profile for a moving target (4 seconds long).

3.7. The Matched Filter

The most unique characteristic of the matched filter is that it produces the
maximum achievable instantaneous SNR at its output when a signal plus addi-
tive white noise is present at the input. The noise does not need to be Gaussian.
The peak instantaneous SNR at the receiver output can be achieved by match-
ing the radar receiver transfer function to the received signal. We will show
that the peak instantaneous signal power divided by the average noise power at
the output of a matched filter is equal to twice the input signal energy divided
by the input noise power, regardless of the waveform used by the radar. This is
the reason why matched filters are often referred to as optimum filters in the
SNR sense. Note that the peak power used in the derivation of the radar equa-
tion (SNR) represents the average signal power over the duration of the pulse,
not the peak instantaneous signal power as in the case of a matched filter. In
practice, it is sometimes difficult to achieve perfect matched filtering. In such
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cases, sub-optimum filters may be used. Due to this mismatch, degradation in
the output SNR occurs.

Consider a radar system that uses a finite duration energy signal si(t).
Denote the pulsewidth as T, and assume that a matched filter receiver is uti-
lized. The main question that we need to answer is: What is the impulse, or fre-
guency, response of the filter that maximizes the instantaneous SNR at the
output of the receiver when a delayed version of the signal s.(t) plus additive
white noise is at the input?

The matched filter input signal can then be represented by
x(t) = C s.(t- 1) +nt(t) (3.76)

where C is a constant, t1 is an unknown time delay proportional to the target
range, and ni(t) is input white noise. Since the input noise is white, its corre-
sponding autocorrelation and Power Spectral Density (PSD) functions are
given, respectively, by

RN(t) = 3'\/'0 S(t) 3.77)

(3.78)

where NO is a constant. Denote so(t) and no(t) as the signal and noise filter
outputs, respectively. More precisely, we can define

y(t) = C so(t- t1) +no(t) (3.79)

where
so(t) = si(t) h(t) (3.80)
no(t) = ni(t)e h(t) (381)

The operator ( + ) indicates convolution, and h(t) is the filter impulse
response (the filter is assumed to be linear time invariant).

Let Rh(t) denote the filter autocorrelation function. It follows that the output
noise autocorrelation and PSD functions are

Rno(t) = Rn(1)* Rh(t) = 20 S@OARN(D) = P Rh(t) 3:82)

Sno(m) = éni(rn)|ff(m)|§ = ;'\/'0 \H(m)\ 2 (383)
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where H(ro) is the Fourier transform for the filter impulse response, h(t) . The
total average output noise power is equal to Rn (t) evaluated at t = 0. More

precisely,
N K))
Rno(0) = -2 J |h(u)| du (384)
A

The output signal power evaluated at time t is |Cso(t- 11)| , and by using Eq.
(3.80) we get

o
so(t- 1) = Jsi(t- t1- u) h(u) du (3.85)
W

A general expression for the output SNR at time t can be written as

Rno(0)

Substituting Eqgs. (3.84) and (3.85) into Eq. (3.86) yields
0 2
C Js.(t-"-u) h(u) du
SNR(t) 0 (387)
N0 3 hquy)rdu
-0

The Schwartz inequality states that

0 0
JP(X)Q(x)dx < J|P(x)2dx J|Q(x) 2dx (3.88)
-0 -0 -0

where the equality applies only when P = kQ* , where K is a constant and can
be assumed to be unity. Then by applying Eq. (3.88) on the numerator of Eq.
(3.87), we get

0 0 0
C2J%.(t- 11- u)|]2 du J|h(u)]2 du 2C Js;(t- 11- u)2 du
SNR(t)< — N (3.89)
N NO
A J|h(u)| du
0
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Eq. (3.89) tells us that the peak instantaneous SNR occurs when equality is
achieved (i.e., from Eqg. (3.88) h = ks*). More precisely, if we assume that
equality occurs at t = t0, and that k = 1, then

h(u) = s*(t0- t1- u) (3.90)
and the maximum instantaneous SNR is
0
2C3 3 |s:(t0- 11- u)|2 du

SNR(t0) = - (3.91)
NO

Eqg. (3.91) can be simplified using Parseval’s theorem,

E = C2J |s.(t0- t1- u)|2 du (3.92)

where E denotes the energy of the input signal; consequently we can write the
output peak instantaneous SNR as

SNR(t0) = N- (3.93)
NO

Thus, we can draw the conclusion that the peak instantaneous SNR depends
only on the signal energy and input noise power, and is independent of the
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq.
(3.90). If we desire the peak to occur at t0 = t1, we get the non-causal matched
filter impulse response,

hne(t) = s*(-t) (3.94)

Alternatively, the causal impulse response is

he(t) =s*(x- 1 (3.95)

where, in this case, the peak occurs at t0 = t1+ 71 . It follows that the Fourier
transforms of hnc(t) and hc(t) are given, respectively, by

Hnc((0) = ST((0) (3.96)

Hc(m) = S*(m)e-J¥o (3.97)
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where Si(m) is the Fourier transform of si(t) . Thus, the moduli of H(m) and
Si(m) are identical; however, the phase responses are opposite of each other.

Example:

Compute the maximum instantaneous SNR at the output of a linear filter
whose impulse response is matched to the signal x(t) = exp(-t /2T)

Solution:

The signal energy is

a a a fj
E = j |x(t)|2dt = j e -)/Tdt = JriT Joules
—# —H

Itfollows that the maximum instantaneous SNR is

JriT
No/ 2

SNR

where NO/ 2 is the input noise power spectrum density.

3.8. The Replica

Again, consider a radar system that uses a finite duration energy signal si(t) ,
and assume that a matched filter receiver is utilized. The input signal is given
in Eq. (3.76) and is repeated here as Eq. (3.98),

x(t) = C si(t—tl) +ni(t) (3.98)

The matched filter output y () can be expressed by the convolution integral
between the filter’s impulse response and x(t),

a
y(t) = j x(u)h(t—u)du (399
a
Substituting Eq. (3.95) into Eq. (3.99) yields

a
y(t) = j x(u)s*(x —t+u)du = Rxs(t—t) (3.100)
a

where Rxs (t—t) is a cross-correlation between x(t) and si(x—t) . Therefore,
the matched filter output can be computed from the cross-correlation between
the radar received signal and a delayed replica of the transmitted waveform. If
the input signal is the same as the transmitted signal, the output of the matched
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filter would be the autocorrelation function of the received (or transmitted) sig-
nal. In practice, replicas of the transmitted waveforms are normally computed
and stored in memory for use by the radar signal processor when needed.

3.9. Matched Filter Response to LFM Waveforms

In order to develop a general expression for the matched filter output when
an LFM waveform is utilized, we will consider the case when the radar is
tracking a closing target with velocity v . The transmitted signal is

18 J2n(fot +2t9
si(t) =Rect, e (3.101)

The received signal is then given by

sri(t) = si(t-A (1) (3.102)

A(t) = ~A-2¢-(t-to) (3.103)

where t0 is the time corresponding to the target initial detection range, and c is
the speed of light. Using Eq. (3.103) we can rewrite Eq. (3.102) as

sri(t) = sl-t-to+“Mt-t0)) = s1i(Yt-to)) (3.104)

and

Y=1+ Zé/ (3.105)

is the scaling coefficient. Substituting Eq. (3.101) into Eq. (3.104) yields
srlgt) = Igecu'l—f—t—';ﬂ?ren FO(t-10) nWAL-t02 (3.106)
which is the analytical signal representation for sr (t). The complex envelope

of the signal sr (t) is obtained by multiplying Eq. (3.106) by exp(-j2nf0t) .
Denote the complex envelope by sr(t) ; then after some manipulation we get

sift) = &1 MY 1 (110} 20V~ DE-t0) Jn\i(t-t02 (3.107)

The Doppler shift due to the target motion is
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fd = <3.108>

and since y- 1 = 2v/ c, we get

fd = (Y- 1f0 (3.109)
Using the approximation y ~ 1 and Eq. (3.109), Eq. (3.107) is rewritten as

J2rte(t-10)

sr(t)* s(t-to) (3.110)

where

-12n/01
s(t-to) = e sx(t-to) (3.111)
s1(t) is given in Eq. (3.101). The matched filter response is given by the con-
volution integral

W
so(t) = j h(u)sr(t-u)du (3.112)

For a non-causal matched filter the impulse response h(u) is equal to s*(-1) ; it
follows that

so(t) = j s*(-u)sr(t-u)du (3.113)
-W
Substituting Eq. (3.111) into Eq. (3.113), and performing some algebraic
manipulations, we get

W
) = [orq S

W

so(t s(t+u-t0)du (3.114)

Finally, making the change of variable t = t+u yields

w
biblt -
so(t) = ] 5* (t-t)s(t-t0)e 0 4 (3.115)
w
Itis customary to set t0 = 0. It follows that
w
so(tfd) = j s(t)s*(t-t)e2nfdf dt (3.116)
W
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where t is the difference in delay between the two returns. One can assume
that the reference time is t0, and thus without any loss of generality one may
set t0 = 0. It follows that the two targets are distinguishable by how large or
small the delay t can be.

In order to measure the difference in range between the two targets consider
the integral square error between y(t) and y(t- t) . Denoting this error as eR,
it follows that

a
eR=j Mt)- Wt-t)| dt (3.123)
-a
Eqg. (3.123) can be written as

a a
& = JIvl dt+j |y(t-t)] dt- (3.124)
q B a0

i {0 ()VA(t- 1) +V*OV(t- 1)) d}

a0

Using Eq. (3.118) into Eq. (3.124) yields

a
R =2 |u(®)|2 dt- 2Re | y*(t)y(t- 1) dt (3.125)
a

a
2 ju(t)2 dt- 2Re=e 1 0 ['u*(tu(t- t) dt>

The first term in the right hand side of Eq. (3.125) represents the signal energy,
and is assumed to be constant. The second term is a varying function of t with
its fluctuation tied to the carrier frequency. The integral inside the right-most
side of this equation is defined as the “range ambiguity function,”

a
X () = ju*®u(t-t) dt (3.126)
a0

The maximum value of xr (t) is at t = 0. Target resolvability in range is
measured by the squared magnitude |xr(t)|2. It follows that if
[xr (t)] = XR(0) for some nonzero value of t , then the two targets are indistin-
guishable. Alternatively, if |xr (t)] * xr(0) for some nonzero value of t , then
the two targets may be distinguishable (resolvable). As a consequence, the
most desirable shape for xr (t) is a very sharp peak (thumb tack shape) cen-
tered at t = 0 and falling very quickly away from the peak.
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The time delay resolution is

&
J Ixr(t)[2 dr
At = (3.127)
xR(0)
Using Parseval’s theorem, Eq. (3.127) can be written as
&
j lU(m)j4 dm
At = 2n (3.128)
a
j JU(m)|2 dm
&

The minimum range resolution corresponding to At is

AR =cAt/2 (3.129)
However, since the signal effective bandwidth is
a 2
j U(m)|2 dm
B = (3.130)

2n j \U(m)|4 dm
a0
the range resolution is expressed as a function of the waveform’s bandwidth as

AR = c/ (2B) (3.131)

The comparison between Egs. (3.116) and (3.126) indicates that the output
of the matched filter and the range ambiguity function have the same envelope
(in this case the Doppler shift fd is set to zero). This indicates that the matched
filter, in addition to providing the maximum instantaneous SNR at its output,
also preserves the signal range resolution properties.

3.10.2. Doppler Resolution

It was shown in Chapter 1 that the Doppler shift corresponding to the target
radial velocity is

2v = 2fo

3.132
fd 'y ¢ (3132)

where v is the target radial velocity, X is the wavelength, f0 is the frequency,
and c is the speed of light.
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Let
a
Y (f = 3y e at (3.133)
a

Due to the Doppler shift associated with the target, the received signal spec-
trum will be shifted by fd. In other words the received spectrum can be repre-
sented by Y f-fd). In order to distinguish between the two targets located at
the same range but having different velocities, one may use the integral square
error. More precisely,

&
& = 11T ()- W -fd)|2 df (3.134)
a
Using similar analysis as that which led to Eqg. (3.125), one should minimize

2Re Jy* (/W -fd) df (3.135)

By using the analytic signal in Eq. (3.118) it can be shown that
Y f = U(2nf- 2nf0) (3.136)

Thus, Eq. (3.135) becomes

a @
J U*@2nf)u(2nf- 2nfd) df = J U*(2nf- 2nfO)U (2nf-2f - 2nfd) df (3.137)
- a

The complex frequency correlation function is then defined as

a A a A
fd) = JU*2nf)u(2n f-2nfd) df = J |u(t)|2 j2~ dt (3.138)
-8 -
and the Doppler resolution constant Afd is
a A a &
J|fd)2dfd J lu(t™4dt
Ad 571 (3139)
dt
&

where T is pulsewidth.
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Finally, one can define the corresponding velocity resolution as

AV cAfd C

(3.140)
2fo 2foT

Again observation of Egs. (3.138) and (3.116) indicate that the output of the
matched filter and the ambiguity function (when T = 0) are similar to each
other. Consequently, one concludes that the matched filter preserves the wave-
form Doppler resolution properties as well.

3.10.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair
of variables (T1,fd). For this purpose, assume that the complex envelope of the
transmitted waveform is

y(1) = u(ne ™ (3.141)
Then the delayed and Doppler-shifted signal is

y'(t- 1 = u(t- Ty 2@-FAE-D (3.142)
Computing the integral square error between Eqgs. (3.142) and (3.141) yields

a a
s2 = j Iv(t) - y'(t- T)]2 dt = 2j |y(t)[2dt- 2Re | y*(t)- y'(t- T)dt (3.143)
a a

which can be written as

a
2= 2 Jut)\2 dt- 2Re IZ"RFATy | yux(t- Te3 £ dt (3.144)
a

Again, in order to maximize this squared error for T* 0 one must minimize the
last term of Eq. (3.144).

Define the combined range and Doppler correlation function as

&
XA3d) = j uu(t- e 2 ddt (3.145)
a

In order to achieve the most range and Doppler resolution, the modulus square
of this function must be minimized for T* 0 and fd* 0. Note that the output of
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the matched filter in Eq. (3.116) is identical to that given in Eq. (3.145). This
means that the output of the matched filter exhibits maximum instantaneous
SNR as well as the most achievable range and Doppler resolutions.

3.11. “MyRadar” Design Case Study - Visit3

3.11.1. Problem Statement

Assuming a matchedfilter receiver, select a set o fwaveforms that can meet
the design requirements as stated in the previous two chapters. Assume linear
frequency modulation. Do not use more than a total o f5 waveforms. Modify the
design so that the range resolution AR = 30m during the search mode, and
AR = 7.5m during tracking.

3.11.2. A Design

The major characteristics of radar waveforms include the waveform’s
energy, range resolution, and Doppler (or velocity) resolution. The pulse
(waveform) energy is

E = P& (3.146)

where Pt is the peak transmitted power and T is the pulsewidth. Range resolu-
tion is defined in Eq. (3.131), while the velocity resolution is in Eq. (3.140).

Close attention should be paid to the selection process of the pulsewidth. In
this design we will assume that the pulse energy is the same as that computed
in Chapter 2. The radar operating bandwidth during search and track are calcu-
lated from Eq. (3.131) as

B _
search 3Xx 108/&/2 x30) = 5 MHz 1 (3.147)
B track 3x108/(2x75) =20 MHz'

Since the design calls for a pulsed radar, then for each pulse transmitted (one
PRI) the radar should not be allowed to receive any signal until that pulse has
been completely transmitted. This limits the radar to a minimum operating
range defined by

Rmin = J <38.148>

In this design choose Rmin> 15Km . It follows that the minimum acceptable
pulsewidth is T~ x< 100]is.
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Figure 3.18b. Imaginary part of search waveform.
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Figure 3.19a. Real part of waveform.
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Track Waveform #3

Imaginary part d waveform
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Figure 3.19b. Imaginary part of waveform.
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Figure 3.19c. Amplitude spectrum.
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freqlimit = 0.5/ 1.e-9;% the sampling interval 1 nano-second
freq = linspace(-freglimit/1.e6,freqlimit/1.e6,10001);
figure(1)

plot(delt*1e6,Ichannal,’k");

axis([-1 1-1 1])

grid

xlabel('Time - microsecs')

ylabel('Realpart)

title('T = 10Microsecond, B =200MHz")

figure(2)

plot(delt*1e6,Qchannal,’k");

axis([-1 1-1 1])

grid

xlabel('Time - microsecs)

ylabel(‘Imaginary part'’)

title("'T = 10Microsecond, B =200MHz'")

figure(3)

plotfreq, abs(LFMFFT), 'k);

%axis tight

grid

xlabel(Frequency - MHZz)

ylabel(Amplitude spectrum)

title(Spectrumfor an LFM waveform and T = 10 Microsecond, ...
B =200 MHZ")

Listing 3.3. MATLAB Function “hrr_profile.m”

function [hl] =hrr_profile (nscat, scat range, scat rcs, n, deltaf, prf, v,
rnote,winid)

% Range or Time domain Profile

% RangeProfile returns the Range or Time domain plot ofa simulated

% HRR SFWF returningfrom apredetermined number o ftargets with aprede-
termined

% RCSfor each target.

c=3.0e8; % speed oflight (m/s)

num_pulses =n;

SNRdB =40;

nfft = 256;

%carrier_freq = 9.5e9; %Hz (10GHz)

freq step =deltaf; %Hz (10MHz)

V =v; % radial velocity (m/s) -- (+)=towards radar (-)=away

pri=21/prf; % (5)

if (nfft > 2*num_pulses)

num_pulses = nfft/2;
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end
Inphase =zeros((2*num_pulses),1);
Quadrature =zeros((2*num_pulses),1);
Inphasetgt =zeros(num_pulses,1);
Quadraturetgt =zeros(num_pulses,1);
1Q_freq_domain =zeros((2*num_pulses),1);
Weighted_I_freq_domain =zeros((num_pulses),1);
Weighted_Q_freq_domain =zeros((num_pulses),1);
Weighted_IQ_time_domain =zeros((2*num_pulses),1);
Weighted_1Q_freq_domain =zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur =2. *rnote/ c;
forjscat = l:nscat
ii=0;
for i = 1:num_pulses
i =ii+1;
rec_freq = ((i-1)*freq_step);
Inphase tgt(ii) =Inphase tgt(ii) + sqrt(scat_rcs(jscat)) *cos(-
2*pi*rec_freg*...
(2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 +
2*scat_range(jscat)/c)));
Quadraturetgt(ii) = Quadraturetgt(ii) + sqrt(scat_rcs(jscat))*sin(-
2*pi*rec_freg*...
(2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 +
2*scat_range(jscat)/c)));
end
end
if(winid >= Q)
window(1:num_pulses) =hamming(num_pulses);
else
window(1:num_pulses) = 1;
end
Inphase =Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) =Inphase(1:num_pulses).* window’
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1l:num_pulses).* win-
dow
Weighted_1Q_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
Weighted_Q_freq_domain *j;
Weighted_1Q_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
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dB_abs_Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_I1Q_time_domain)+SNR_dB;

% calculate the unambiguous range window size

Ru = c/2/deltaf;

hl = dB_abs_Weighted_1Q_time_domain;

numb = 2*num_pulses;

delxmeter =Ru/ numb;

xmeter = 0:delx_meter:Ru-delx_meter;

plot(xmeter, dB_abs_Weighted_IQ_time_domain, 'k')

xlabel (‘relative distance - meters)

ylabel ('Range profile - dB)

grid

Listing 3.4. MATLAB Program ‘fig3_17.m”

% use this program to reproduce Fig. 3.17 oftext
clear all
close all
nscat = 1;
scatrange =912;
scatrcs = 10;
n =64;
deltaf= 10e6;
prf=10e3;
v = 15;
rnote =900,
winid = 1;
count = 0;
for time = 0:.05:3
count =count +1;
hl =hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote,winid);
array(count,:) =transpose(hl);
hi(1:end) =0;
scat_range = scat_range - 2 *n *v/prf;
end
figure (1)
numb = 2*256;% this number matches that used in hrr_profile.
delxmeter = 15/ numb;
xmeter = 0:delx_meter:15-delx_meter;
imagesc(xmeter, 0:0.05:4,array)
colormap(gray)
ylabel (‘'Time in seconds)
xlabel(‘'Relative distance in meters')
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Chapter 4 TheRadar Ambiguity
Function

4.1. Introduction

The radar ambiguity function represents the output of the matched filter, and
it describes the interference caused by the range and/or Doppler shift of a tar-
get when compared to a reference target of equal RCS. The ambiguity function
evaluated at (t,fd) = (0, 0) is equal to the matched filter output that is
matched perfectly to the signal reflected from the target of interest. In other
words, returns from the nominal target are located at the origin of the ambigu-
ity function. Thus, the ambiguity function at nonzero t and fd represents
returns from some range and Doppler different from those for the nominal tar-
get.

The radar ambiguity function is normally used by radar designers as a means
of studying different waveforms. It can provide insight about how different
radar waveforms may be suitable for the various radar applications. It is also
used to determine the range and Doppler resolutions for a specific radar wave-
form. The three-dimensional (3-D) plot of the ambiguity function versus fre-
quency and time delay is called the radar ambiguity diagram. The radar
ambiguity function for the signal 5(t) is defined as the modulus squared of its
2-D correlation function, i.e., |%(t-fd)] . More precisely,

d 2
Ix(t\fd\2 =  s(t)s*(t- vye2* dt @)

&

In this notation, the target of interest is located at (t,fd) = (0, 0), and the
ambiguity diagram is centered at the same point. Note that some authors define
the ambiguity function as |%(tf d) |. In this book, |%(Tfd)| is called the uncer-
tainty function.
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5(t) = -p:Rect-nlj (4.8

VT
From Eq. (4.1) we have
a
X(tfd) = j 5(t)s*(t- t)e 2wfdtdt 49
a
Substituting Eq. (4.8) into Eqg. (4.9) and performing the integration yield
2
Ix(tfd)\2 = It <t’ (4.10)

T. f (t'- H)
MATLAB Function “single_pulse_ambg.m”

The function “single_pulse_ambg.m” implements Eqg. (4.10). It is given in
Listing 4.1 in Section 4.6. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulsewidth. Fig 4.2 (a-d) show 3-D and contour plots of single pulse
uncertainty and ambiguity functions. These plots can be reproduced using
MATLAB program fig4_2.m” given in Listing 4.2 in Section 4.6.

The ambiguity function cut along the time delay axis t is obtained by setting

fd = 0.More precisely,

IX(t;0))2= (1- TO bl<T' (4.ii)
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Figure 4.2a. Single pulse 3-D uncertainty plot. Pulsewidth is 2 seconds.
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Figure 4.2b. Contour plot corresponding to Fig. 4.2a.
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Figure 4.2c. Single pulse 3-D ambiguity plot. Pulsewidth is 2 seconds.
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Figure 4.2d. Contour plot corresponding to Fig. 4.2c.
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Note that the time autocorrelation function of the signal s(t) is equal to
X(t-0). Similarly, the cut along the Doppler axis is

X(0/d)2 = sinnTfd: 4.12)

nTfd
Figs. 4.3 and 4.4, respectively, show the plots of the uncertainty function
cuts defined by Eqgs. (4.11) and (4.12). Since the zero Doppler cut along the
time delay axis extends between -t' and t', then, close targets would be
unambiguous if they are at least t' seconds apart.

Figure 4.3. Zero Doppler uncertainty function cut along the time delay axis.

Figure 4.4. Uncertainty function of a single frequency pulse (zero delay). This
plot can be reproduced using MATLAB program figd_4.m” given
in Listing 4.3 in Section 4.6.
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2
The zero time cut along the Doppler frequency axis has a (sinx/ x) shape.
It extends from -ga to ga. The first null occurs at fd = +1/7". Hence, it is
possible to detect two targets that are shifted by 1/1 ", without any ambiguity.

We conclude that a single pulse range and Doppler resolutions are limited by
the pulsewidth t'. Fine range resolution requires that a very short pulse be
used. Unfortunately, using very short pulses requires very large operating
bandwidths, and may limit the radar average transmitted power to impractical
values.

4.2.2. LFMAmbiguity Function
Consider the LFM complex envelope signal defined by
s(t) = -—Rect- (4.13)

T -T1

In order to compute the ambiguity function for the LFM complex envelope, we
will first consider the case when 0 < T <T". In this case the integration limits
are from - t'/2 to (t'/2) - T. Substituting Eqg. (4.13) into Eq. (4.9) yields

L}
X(Ttfd) = T-! Rec”"T-)Rect-~-r) "N e-n*t-T) e 2Wddt (4.14)
i
It follows that
. 2 5-T
xfrfaf = &10T [ J 20T+t ft 1)
2

Finishing the integration process in Eq. (4.15) yields

. sin-n." ("t +fdy. 1 - -))
jn-fJ ™Tm v \Y !
X(Tfd)y = e [1- [ )— 0<T<T  (4.16)
T nt'(4- +fd)-1- -J

Similar analysis for the case when --"< -< 0 can be carried out, where in
this case the integration limits are from (--'/2) - T to -'/ 2. The same result
can be obtained by using the symmetry property of the ambiguity function

(Ix(-T, -fd) = |x(.fd) ). It follows that an expression for x(-ifd) that is
valid for any T is given by
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) sin(nt'(ur +fd)/1- -In
( f\ jnTfd, rm - - vV T

T>=e 11-Y nTV(urif'dﬂ-'l-t'!?

and the LFM ambiguity function is

sin-n-'(u- +fd)/1- HY
[x (-\fd)\2 =

Again the time autocorrelation function is equal to %(-, 0). The reader can
verify that the ambiguity function for a down-chirp LFM waveform is given by

2
sinln-*(u- -fd)l1- —

Ix(tfd)\2 = el <-* (419
n-‘(u- -fd-1- —0
MATLAB Function “Ifm_ambg.m”

The function “Ifm_ambg.m” implements Egs. (4.18) and (4.19). Itis given
in Listing 4.4 in Section 4.6. The syntax is as follows:

Ifm ambg [taup, b, up down]

where
Symbol Description Units Status
taup pulsewidth seconds input
b bandwidth Hz input
up down up down = 1for up chirp none input

up down =-1for down chirp

Fig. 4.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi-
guity functions for

taup b up_down
1 10 1

These plots can be reproduced using MATLAB program ‘fig4_5.m” given in
Listing 4.5 in Section 4.6. This function generates 3-D and contour plots of an
LFM ambiguity function.
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Uncobiinty hincbon

Figure 4.5a. Up-chirp LFM 3-D uncertainty plot. Pulsewidth is 1 second; and
bandwidth is 10 Hz.

i -oe -06 -04 -02 0 02 04 06 08 1
Delay - seconds

Figure 4.5b. Contour plot corresponding to Fig. 4.5a.
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The up-chirp ambiguity function cut along the time delay axis T is

sinl nuTT'I1- L
1X(T,0)|2 - 1- Hi |T| <T (4.20)
T nyTT-1 - T

Fig. 4.6 shows a plot for a cut in the uncertainty function corresponding to
Eq. (4.20). Note that the LFM ambiguity function cut along the Doppler fre-
quency axis is similar to that of the single pulse. This should not be surprising
since the pulse shape has not changed (we only added frequency modulation).
However, the cut along the time delay axis changes significantly. It is now
much narrower compared to the unmodulated pulse cut. In this case, the first
null occurs at

T,i* 1B (4.21)

which indicates that the effective pulsewidth (compressed pulsewidth) of the
matched filter output is completely determined by the radar bandwidth. It fol-
lows that the LFM ambiguity function cut along the time delay axis is narrower
than that of the unmodulated pulse by a factor

' W
n

[Py
[Py
[PRN

[TEN

0.9
0.8
0.7

* 06
C
B

? 0.5

S 04
0.3
0.2

01

EJ1.5 1 -05 0 05 1 15
Delay - seconds

Figure 4.6. Zero Doppler uncertainty of an LFM pulse (7" = 1,

b = 20). This plot can be reproduced using MATLAB
program fig4_6.m” given in Listing 4.6 in Section 4.6.
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= = B (4.22)
(1/B)

I is referred to as the compression ratio (also called time-bandwidth product
and compression gain). All three names can be used interchangeably to mean
the same thing. As indicated by Eq. (4.22) the compression ratio also increases
as the radar bandwidth is increased.

Example:

Compute the range resolution before and after pulse compression corre-
sponding to an LFM waveform with the following specifications: Bandwidth
B = 1GHz; andpulsewidth T = 10ms.

Solution:

The range resolution before pulse compression is

.D cT 3x108x 10 x 10 3 , - ,Nn6
ARuncomp = y = 2 = 15 X10 meters

Using Eq. (4.21) yields

! = 1ns
1X10
AD cmml 3 X10° X1X10 9
ARcoOmp = — = - 2-—-—mmm- = 15 cm.

4.2.3. CoherentPulse Train Ambiguity Function

Fig. 4.7 shows a plot of a coherent pulse train. The pulsewidth is denoted as
T and the PRI is T. The number of pulses in the train is N ; hence, the train’s
length is (N - 1) T seconds. A normalized individual pulse s(t) is defined by

sl(t) = -jzRect-T 4.23)
nr

(N-DT

Figure 4.7. Coherent pulse train. N=5.
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When coherency is maintained between the consecutive pulses, then an expres-
sion for the normalized train is

N- 1
s(t) = -p V sl(t-iT 4.29)
() = 5p v, st i)
i=0
The output of the matched filter is
X(fd) = j s(t)s*(t+T)e 2Wfdt (4.25)

Substituting Eq. (4.24) into Eq. (4.25) and interchanging the summations and
integration yield

x(7fd) = NV V  jsi(t-iT) s1*(t-jT -re"d t (4.26)
i=0 j=0 -0

Making the change of variable t1 = t- iT yields
N-1 N-1 o
X(fi) = NV e2nfdTV  jsa(t) sa*(ta- [T- (i-])T])e 2nUldt: (4.27)
i=0 j=0 -o

The integral inside Eq. (4.27) represents the output of the matched filter for a
single pulse, and is denoted by X . It follows that

N-1 N-1
X(Td) = NV el 2 f £ * 1[r- (i-j)Tf ] (429
i =0 j=0
When the relation g = i-j is used, then the following relation is true:1
N N 0 N-1-[d N-1 N-1-\4
vV V. =V % FEVERRY (4.29)

i=0 m=0 q:-(N- 1) i=0 forj:i-q g=1 J:O for i:j+q
Using Eq. (4.29) into Eq. (4.28) gives

1 Rihaczek, A. W., Principles ofHigh Resolution Radar, Artech House, 1994.
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0 N-1-1d

. j2nfJT
x(Tf) =N V S XUT-qTfd) Ve (4.30)
q=-(n-1) =0
N-1 N- 1- g
1 j2nfdoT Ar\oxAL o j2fiT
+NV d dqx1(T- qTfrd) VR
q=1 j=0
Setting z = exp (/'2nfdT ), and using the relation
N- 1- g
. N- i
Zj = 1-1z (431)
\% 1-z
i=0
yield
N- 1-
j2nfdT = U N - 1-|gT] sin[nfd(N -1 -\g\T)- 432
V. e =e N (nyr
=0

Using Eq. (4.32) in Eq. (4.30) yields two complementary sums for positive and
negative g .Both sums can be combined as

N- 1
[fN -1+9T] sin[nfd(N - |g T)]
x(1fd) = NV i - qTfd)i sin (fdT) 439
q=-(n-1)
Finally, the ambiguity function associated with the coherent pulse trainis com-
puted as the modulus square of Eq. (4.33). For 7' < T/ 2, the ambiguity func-
tion reduces to

N-1
sin[nfd(N - |q| T)]
sin(nfdT)

Xx(T")=N v  1xit-qf ) \ (4.34)
-N- D

Thus, the ambiguity function for a coherent pulse train is the superposition
of the individual pulse’s ambiguity functions. The ambiguity function cuts
along the time delay and Doppler axes are, respectively, given by

L
IX(T:0)| = \ @a-m@m@-t-Mm) ;IT- 9T <10 (435)
g=-(N-1
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lsin(ft') sin(nfdNT)

N f sin (nfdT) (4.36)

[x(0 fd)\2 =

MATLAB Function “train_ambg.m”

The function “train ambg.m” implements Eq. (4.34). It is given in Listing
4.7 in Section 4.6. The syntax is as follows:

train ambg [taup, n, pri]

Symbol Description Units Status
taup pulsewidth seconds input
n number ofpulses in train none input
pri pulse repetition interval seconds input

Fig. 4.8 (a-d) shows typical outputs of this function, for

taup n pri
0.2 5 1

Figure 4.8a. Three-dimensional ambiguity plot for a five pulse equal amplitude
coherent train. Pulsewidth is 0.2 seconds; and PRI is 1 second,
N=5. This plot can be reproduced using MATLAB program
‘figd_8.m™ given in Listing 4.8 in Section 4.6.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Ambiguity function

Figure 4.8b. 3-D plot corresponding to Fig. 4.8a.
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delay

Figure 4.8c. Zero Doppler cut corresponding to Fig. 4.8a.

Figure 4.8d. Zero delay cut corresponding to Fig. 4.8a.
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4.3. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given
waveform, the corresponding ambiguity diagram is normally used to determine
the waveform properties such as the target resolution capability, measurement
(time and frequency) accuracy, and its response to clutter. Three-dimensional
ambiguity diagrams are difficult to plot and interpret. This is the reason why
contour plots of the 3-D ambiguity diagram are often used to study the charac-
teristics of awaveform. An ambiguity contour is a 2-D plot (frequency/time) of
a plane intersecting the 3-D ambiguity diagram that corresponds to some
threshold value. The resultant plots are ellipses. It is customary to display the
ambiguity contour plots that correspond to one half of the peak autocorrelation
value.

Fig. 4.9 shows a sketch of typical ambiguity contour plots associated with a
gated CW pulse. It indicates that narrow pulses provide better range accuracy
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse
than it is for a short one. This trade-off between range and Doppler measure-
ments comes from the uncertainty associated with the time-bandwidth product
of a single sinusoidal pulse, where the product of uncertainty in time (range)
and uncertainty in frequency (Doppler) cannot be much smaller than unity.
Note that an exact plot for Fig. 4.9 can be obtained using the function
“single_pulse_ambg.m” and the MATLAB command contour.

frequency frequency

Figure 4.9. Ambiguity contour plot associated with a sinusoid
modulated gated CW pulse. See Fig. 4.2,

Multiple ellipses in an ambiguity contour plot indicate the presence of multi-
ple targets. Thus, it seems that one may improve the radar resolution by
increasing the ambiguity diagram threshold value. This is illustrated in Fig.
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4.10. However, in practice this is not possible for two reasons. First, in the
presence of noise we lack knowledge of the peak correlation value; and sec-
ond, targets in general will have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 4.7. For a
pulse train, range accuracy is still determined by the pulsewidth, in the same
manner as in the case of a single pulse, while Doppler accuracy is determined
by the train length. Thus, time and frequency measurements can be made inde-
pendently of each other. However, additional peaks appear in the ambiguity
diagram which may cause range and Doppler uncertainties (see Fig. 4.11).

frequency

Figure 4.10. Effect of threshold value on resolution.

frequency
0 T-' 3T
! f.
o O O o, ,
- T
0 0 0 oy'o 0 f =21U(K-1)T
o 0 O o O o o o
time
-0- 00— 0—ro" O— 0— o- -0-
o O O o0 0 O o 0
0 0 O O 0 o
o O O O
0 0

Figure 4.11. Ambiguity contour plot corresponding to Fig. 4.7. For an exact
plot see Fig. 4.8a.
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As one would expect, high PRF pulse trains (i.e., small T) lead to extreme
uncertainty in range, while low PRF pulse trains have extreme ambiguity in
Doppler. Medium PRF pulse trains have moderate ambiguity in both range and
Doppler, which can be overcome by using multiple PRFs. It is possible to
avoid ambiguities caused by pulse trains and still have reasonable independent
control on both range and Doppler accuracies by using a single modulated
pulse with a time-bandwidth product that is much larger than unity. Fig. 4.12
shows the ambiguity contour plot associated with an LFM waveform. In this
case, T' is the pulsewidth and B is the pulse bandwidth. The exact plots can be
obtained using the function “Ifmambg.m”.

frequency

Figure 4.12. Ambiguity contour plot associated with an up-chirp LFM
waveform. For an exact plot see Fig. 4.5b.

4.4. Digital Coded Waveforms

In this section we will briefly discuss the digital coded waveform. We will
determine the waveform range and Doppler characteristics on the basis of its
autocorrelation function, since in the absence of noise, the output of the
matched filter is proportional to the code autocorrelation.

4.4.1. Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro-
cess of Stepped Frequency Waveforms (SFW) described in Chapter 3. In SFW,
a relatively long pulse of length 1" is divided into N subpulses, each of width
Tj (1" = NTj). Each group of N subpulses is called aburst. Within each burst
the frequency is increased by Af from one subpulse to the next. The overall
burst bandwidth is N [ f. More precisely,
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Tj = T/N (4.37)

and the frequency for the ith subpulse is

f =fo+iAf ;i = 1,N (4.38)

where f0 is a constant frequency and fO» A f. It follows that the time-band-
width product of this waveform is

AfT = N2 (4.39)

Costas signals (or codes) are similar to SFW, except that the frequencies for
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the N x N matrix shown in Fig.
4.13b. In this case, the rows are indexed from i = 1,2, ..N and the columns
are indexed fromj =0, 1,2, ..., (N- 1). The rows are used to denote the
subpulses and the columns are used to denote the frequency. A “dot” indicates
the frequency value assigned to the associated subpulse. In this fashion, Fig.
4.13a shows the frequency assignment associated with a SFW. Alternatively,
the frequency assignments in Fig. 4.13b are chosen randomly. For a matrix of
size N x N, there are a total of N! possible ways of assigning the “dots™ (i.e.,
N!' possible codes).

01234567829 0123456789

RPNVNWbhOoO~N®OE
HNOJ-bU‘IO?\JOO@'S

(a) (b)

Figure 4.13. Frequency assignment for a burst of N subpulses. (a) SFW (stepped
LFM); (b) Costas code of length Nc = 10.
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The sequences of “dot” assignments for which the corresponding ambiguity
function approaches an ideal or a “thumbtack™ response are called Costas
codes. A near thumbtack response was obtained by Costaslusing the following
logic: there is only one frequency per time slot (row) and per frequency slot
(column). Therefore, for an N x N matrix the number of possible Costas codes
is drastically less than N'!. For example, there are Nc = 4 possible Costas
codes for N = 3, and Nc = 40 possible codes for N = 5. It can be shown
that the code density, defined as the ratio Nc/ N !, gets significantly smaller as
N becomes larger.

There are numerous analytical ways to generate Costas codes. In this section
we will describe two of these methods. First, let g be an odd prime number,
and choose the number of subpulses as

N=ogq-1 (4.40)

Define y as the primitive root of q . A primitive root of q (an odd prime num-
ber) is defined as y such that the powers y, y2,y3, . . yg 1 modulo q generate
every integer from 1 to q- 1

In the first method, for an N x N matrix, label the rows and columns, respec-
tively, as

i=°12..(q-2)

) (4.41)
j =123 ...,(9- 1
Place a dot in the location (i,j) correspondingto f if and only if
i = (y/ (modulo q) (4.42)

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of length N = gq- 2.

Define the normalized complex envelope of the Costas signal as

N-1
s(t) = -pLrY s, (t- 1) (4.43)
1=0
lexp(j2nfjt) 0<t<T, o
s'(t>= ( 0 esewhere ) (4'44)

1 Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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Costas showed that the output of the matched filter is

X(TfD) = INN exp<RnlfDT> ®,I(TfD)+ ~ ®lg(T- (I- 4)THFD) (445)

1=0
on (TfD) = -T1- = A exp(-j p-j2nfqm (4.46)
T
a = n(fl-fq-fD)(T1- IT) (4.47)
P = n(fl-fq-fD)(T1+ IT) (4.48)

Three-dimensional plots of the ambiguity function of Costas signals show
the near thumbtack response of the ambiguity function. All sidelobes, except
for few around the origin, have amplitude 1/ N . Few sidelobes close to the ori-
gin have amplitude 2/ N, which is typical of Costas codes. The compression
ratio of a Costas code is approximately N .

4.4.2. Binary Phase Codes

Consider the case of binary phase codes in which a relatively long pulse of
width t* is divided into N smaller pulses; each is of width At = t'/ N . Then,
the phase of each sub-pulse is randomly chosen as either 0 or n radians rela-
tive to some CW reference signal. It is customary to characterize a sub-pulse
that has 0 phase (amplitude of +1 Volt) as either “1” or “+.” Alternatively, a
sub-pulse with phase equal to n (amplitude of -1 Volt) is characterized by
either “0” or “-.” The compression ratio associated with binary phase codes is
equalto \ = t'/At, and the peak value is N times larger than that of the long
pulse. The goodness of a compressed binary phase code waveform depends
heavily on the random sequence of the phases of the individual sub-pulses.

One family of binary phase codes that produces compressed waveforms with
constant sidelobe levels equal to unity is the Barker code. Fig. 4.14 illustrates a
Barker code of length seven. A Barker code of length n is denoted as Bn.
There are only seven known Barker codes that share this unique property; they
are listed in Table 4.1. Note that B2 and B4 have complementary forms that
have the same characteristics. Since there are only seven Barker codes, they
are not used when radar security is an issue.
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Figure 4.14. Binary phase code of length 7.

TABLE 4.1. Barker codes.

Code Code Side lode
symbol length Code elements reduction (dB)
B2 2 1-1 6.0
11
B3 3 11-1 9.5
B4 4 11-11 120
111-1
B5 5 111-11 14.0
B7 7 111-1-11-1 16.9
B, n 111-1-1-11-1-11-1 20.8
BB 13 11111-1-111-11-11 22.3

In general, the autocorrelation function (which is an approximation of the
matched filter output) for a BN Barker code will be 2N AT wide. The main
lobe is 241 wide; the peak value is equal to N . There are (N - 1)/2 side-
lobes on either side of the main lobe. This is illustrated in Fig. 4.15 for a B13.
Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code is -22.3dB, which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this case, a Bm code can be
used within a Bn code (m within n) to generate a code of length mn . The
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compression ratio for the combined Brmn code is equal to mn . As an example,
a combined BX is given by

B = {11101, 11101, 00010, 11101} (4.49)

and is illustrated in Fig. 4.16. Unfortunately, the sidelobes of a combined
Barker code autocorrelation function are no longer equal to unity.

Figure 4.15. Barker code of length 13, and its corresponding
autocorrelation function.

2 ~L

BS4T LTL

+ 4+ + -+ T+ + - - - -+ -+ -

Figure 4.16. A combined B54 Barker code.
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MATLAB Function “pbarker_ambig.m”

The MATLAB function “pbarker ambig.m” calculates and plots the ambigu-
ity function for Barker code. It is given in Listing 4.9 in Section 4.6. The syn-
tax as follows:

[ambiguity] = barkerambig(u)

where u is avector that defines the input code in terms of “18”and “-1%.” For
example,usingu = [1 1 1 -1 -1 1 -1] asaninput, the function will cal-
culate and plot the ambiguity function corresponding to B7. Fig. 4.17 shows
the output of this function when B 13 is used as an input. Fig. 4.18 is similar to
Fig. 4.17, except in this case B7 is used as an input.

nay frequency

Figure 4.17a. Ambiguity function for B 13 Barker code.

© 2004 by Chapman & Hall/CRC CRC Press LLC



-10 -5 0 5 10
delay

Figure 4.17b. Zero Doppler cut for the B 13 ambiguity function.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
frequency

Figure 4.17c. Contour plot corresponding to Fig. 4.17a.
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ambiguity function

delav frequency

Figure 4.18a. Ambiguity function for B7 Barker code.

normelized amibiguity cut (o 0

delay

Figure 4.18b. Zero Doppler cut for the B7 ambiguity function.
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frequency

Figure 4.18c. Contour plot corresponding to Fig. 4.18a.

4.4.3. Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length
Sequences (MLS) codes. These codes are called pseudo-random because the
statistics associated with their occurrence are similar to that associated with the
coin-toss sequences. Maximum length sequences are periodic. The MLS codes
have the following distinctive properties:

1. The number of ones per period is one more than the number of minus-ones.

2. Halfthe runs (consecutive states of the same kind) are of length one and
one fourth are of length two.

3. Every maximal length sequence has the “shift and add” property. This
means that, if a maximal length sequence is added (modulo 2) to a shifted
version of itself, then the resulting sequence is a shifted version of the orig-
inal sequence.

4. Every «-tuple of the code appears once and only once in one period of the
sequence.

5. The correlation function is periodic and is given by
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1L n =0, =+, £2L, ...

®(n) =7?
<-1 elsewhere

(4.50)

Fig. 4.19 shows a typical sketch for an MLS autocorrelation function. Clearly
these codes have the advantage that the compression ratio becomes very large
as the period is increased. Additionally, adjacent peaks (grating lobes) become
farther apart.

Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to
use linear shift registers. When the binary sequence generated using a shift reg-
ister implementation is periodic and has maximal length it is referred to as an
MLS binary sequence with period L, where

L =2n-1 (4.51)

n is the number of stages in the shift register generator.

A linear shift register generator basically consists of a shift register with
modulo-two adders added to it. The adders can be connected to various stages
of the register, as illustrated in Fig. 4.20 for n = 4 (i.e.,, L = 15). Note that
the shift register initial state cannot be “zero.”

output

shift register

Figure 4.20. Circuit for generating an MLS sequence oflength L = 15.
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The feedback connections associated with a shift register generator deter-
mine whether the output sequence will be maximal or not. For a given size
shift register, only few feedback connections lead to maximal sequence out-
puts. In order to illustrate this concept, consider the two 5-stage shift register
generators shown in Fig. 4.21. The shift register generator shown in Fig. 4.21a
generates a maximal length sequence, as clearly depicted by its state diagram.
However, the shift register generator shown in Fig. 4.21b produces three non-
maximal length sequences (depending on the initial state).

1 2 3 4 5
10000
00001 01000
start
L =31
(@)
f
» 1 2 3 4 5
L =3
N2X1X22-
00001 start
start
L =21
L=7
start
(b)

Figure 4.21. g_a) A 5-stage shift register generator. (b) Non-maximal length
stage shift register generator.
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Given an n-stage shift register generator, one would be interested in knowing
how many feedback connections will yield maximal length sequences. Zierler
showed that the number of maximal length sequences possible for a given n-
stage linear shift register generator is given by

NI = 2™ - 1) (452)
n

where  is the Euler’s totient (or Euler’s phi) function. Euler’s phi function is
defined by

(4.53)

where pi are the prime factors of k. Note that when pi has multiples, then
only one of them is used (see example in Eq. (4.56)). Also note that when K is
a prime number, then the Euler’s phi function is

d(K) = k-1 (4.54)

For example, a 3-stage shift register generator will produce
N =®23-1) =p(7) =7-1=2 455
L 3 3 3 (4.55)

and a 6-stage shift register,

NL:<D(26—1) = p(63) =63x(3-1),(7-1) =6

6 6 6 3 7 (4:50)

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback
connections correspond to n, k, m, etc. This maximal length shift register can
be described using its characteristic polynomial defined by

(4.57)

where the additions are modulo 2. Therefore, if the characteristic polynomial
for an n-stage shift register is known, one can easily determine the register
feedback connections and consequently deduce the corresponding maximal
length sequence. For example, consider a 6-stage shift register whose charac-
teristic polynomial is

1 Zierler, N., SeveralBinary-Sequence Generators, MIT Technical Report No. 95,
Sept. 1955.
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)%6 +5x +1 (4.58)

It follows that the shift register which generates a maximal length sequence is

shown in Fig. 4.22.

12 3 45

output

Figure 4.22. Linear shift register whose characteristic polynomial is
X+ 1,

One of the most important issues associated with generating a maximal
length sequence using a linear shift register is determining the characteristic
polynomial. This has been and continues to be a subject of research for many
radar engineers and designers. It has been shown that polynomials which are
both irreducible (not factorable) and primitive will produce maximal length
shift register generators.

A polynomial of degree n is irreducible if it is not divisible by any polyno-
mial of degree less than n. It follows that all irreducible polynomials must have
an odd number of terms. Consequently, only linear shift register generators
with an even number of feedback connections can produce maximal length
sequences. An irreducible polynomial is primitive if and only if it divides
Xn- 1 for novalue of n less than 2n- 1.

MATLAB Function ‘prn_ambig.m”

The MATLAB function ‘prn ambig.m” calculates and plots the ambiguity
function associated with a given PRN code. It is given in Listing 4.10 in Sec-
tion 4.6. The syntax is as follows:

[ambiguity] =prnambig(u)

where u is a vector that defines the input maximal length code (sequence) in
terms of “15”and “-1 S Fig. 4.23 shows the output of this function for

ust =[1-1-1-1-11-11-1111-111-1-1-111111-1-111-11-1-1]

Fig. 4.24 is similar to Fig. 4.23, except in this case the input maximal length
sequence is

uls=[1-1-1-11111-11-111-1-1]
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ambiguity function a PRN code

Figure 4.23a. Ambiguity function corresponding to a 31-bit PRN code.
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-30 -20 -10 0 10 20 30
delay

Figure 4.23b. Zero Doppler cut corresponding to Fig. 4.23a.
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-0.1 -0.05 0 0.05 0.1
frequency

Figure 4.23c. Contour plot corresponding to Fig. 4.23a.

1V

detay frequency

Figure 4.24a. Ambiguity function corresponding to a 15-bit PRN code.
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15 -10 5 0 5 10 15
delay

Figure 4.24b. Zero Doppler cut corresponding to Fig. 4.24a.

frequency

Figure 4.24c. Contour plot corresponding to Fig. 4.24a.
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4.5. “‘MyRadar” Design Case Study - Visit 4

4.5.1. Problem Statement
Generate the ambiguity plots for the waveforms selected in Chapter 3 for
this design case study.

4.5.2. A Design

In this section we will show the 3-D ambiguity diagram and the correspond-
ing contour plot for only the search waveform. The user is advised to do the
same for the track waveforms. For this purpose, use the MATLAB program
“myradar_visit4.m”. It is given in Listing 4.11 in Section 4.6.

Figs. 4.25 and 4.26 show the output figures produced by the program
“myradar_visit4.m” that correspond to the search waveform.

Figure 4.25. Ambiguity plot for “MyRadar” search waveform.
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Delay - Microseconds

Figure 4.26. Contour of the ambiguity plot for “MyRadar” search
waveform.

4.6. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance his understanding of this chapter’s material.

Listing 4.1. MATLAB Function “single_pulse_ambg.m”

function x =single_pulse_ambg (taup)
colormap (gray(1))
eps = 0.000001;
i=0;
taumax = 1.1 *taup;
taumin = -taumax;
for tau = taumin;.05:taumax
i =i+1;
j =0
forfd =-5/taup:.05:5/taup %-2.5:.05:2.5
j =i+
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vall = 1. - abs(tau) /taup;
val2 =pi *taup * (1.0 - abs(tau) /taup) *fd;
x(j,i) = abs(vall *sin(val2+eps)/(val2+eps));
end
end

Listing 4.2. MATLABProgram ‘figd_2.m”

% Use thisprogram to reproduce Fig. 4.2 oftext
close all

clear all

eps = 0.000001;

taup =2,;

taumin =-1.1 *taup;
taumax = -taumin;

X =single_pulse_ambg(taup);
taux = taumin:.05:taumax;
fdy =-5/taup:.05:5/taup;
figure(l)

mesh(taux,fdy, x);

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)
zlabel ("Ambiguityfunction)
colormap([.5 .5 .5])
colormap (gray)

figure(2)

contour(taux,fdy, x);

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)
colormap([.5 .5 .5])
colormap (gray)

grid

y =X.2;

figure(3)

mesh(taux,fdy,y);

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)
zlabel (‘Ambiguityfunction)
colormap([.5 .5 .5])
colormap (gray)

figure(4)
contour(taux,fdy,y);

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)
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colormap([.5 .5 .5])
colormap (gray)
grid

Listing 4.3. MATLAB Program ‘fig4_4.m”

% Use thisprogram to reproduce Fig 4.4 oftext
close all

clear all

eps = 0.0001;

taup = 2,;

fd =-10./taup:.05:10./taup;
uncer = abs(sinc(taup .*fd));
ambg = uncer. n2;

plotfd, ambg,'k")

xlabel (Frequency - Hz)
ylabel ("Ambiguity - Volts)
grid

figure(2)

plot (fd, uncer, k);

xlabel (Frequency - Hz)
ylabel ("Uncertainty - Volts)
grid

Listing 4.4. MATLAB Function “Ifm_ambg.m”

ffunction x = Ifm_ambg(taup, b, updown)
eps = 0.000001;
i=0;
mu =up down *b/2. /taup;
delt = 2.2*taup/250;
delf=2*b /250;
for tau = -1.1*taup:.05:1.1*taup
i =i+1
i =0
forfd =-b:.05:b
i =i+
vall = 1. - abs(tau) /taup;
val2 =pi *taup * (1.0 - abs(tau) /taup);
val3 = (fd + mu * tau);
val =val2 *val3;
x(j,i) = abs(vall * (sin(val+eps)/(val+eps))).A;
end
end
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Listing 45. MATLABProgram ‘fig4_5.m”

% Use thisprogram to reproduce Fig. 4.5 oftext
close all

clear all

eps = 0.0001;

taup = 1.;

b =10.;

up_down =1,

x = Ifm_ambg(taup, b, up down);
taux =-1.1*taup:.05:1.1*taup;
fdy =-b:.05:b;

figure(1)

mesh(taux,fdy,x)

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

zlabel ("Ambiguityfunction)
figure(2)

contour(taux,fdy,x)

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

y =sart(x);

figure(3)

mesh(taux,fdy,y)

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

zlabel ("Uncertaintyfunction)
figure(4)

contour(taux,fdy,y)

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

Listing 4.6. MATLAB Program ‘fig4d_6.m”

% Use thisprogram to reproduce Fig. 4.6 oftext
close all

clear all

taup = 1;

b =20

up_down =1,

taux =-1.5*taup:.01:1.5*taup;

fd =0,

mu = up_down *b /2. /taup;

ii=0;
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for tau = -1.5*taup:.01:1.5*taup
i =ii +1;
vall =1. - abs(tau) /taup;
val2 =pi *taup * (1.0 - abs(tau) /taup);
val3 = (fd + mu * tau);
val =val2 *val3;
x(ii) = abs(vall * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel (‘Delay - seconds)
ylabel (*Uncertainty")
figure(2)
plot(taux,x.A2)
grid
xlabel (‘Delay - seconds")
ylabel (‘Ambiguity")

Listing 4.7. MATLAB Function “trainambg.m”

function x =train ambg (taup, n, pri)
if(taup >pri /72)
‘ERROR. Pulsewidth must be less than the PRI/2."
return
end
gap =pri - 2.*taup;
eps = 0.000001;
b =1. /taup;
ii=0.;
for g =-(n-1):1:n-1
tauo =q - taup ;
index =-1,;
for taul =tauo0:0.0533:tauo+gap+2.*taup
index = index + 1;
tau =-taup + index*.0533;
i =ii +1;
j =0,
forfd =-b:.0533:b
i=i+ 0
if (abs(tau) <= taup)
vall = 1. -abs(tau) /taup;
val2 =pi *taup *fd * (1.0 - abs(tau) /taup);
val3 =abs(vall *sin(val2+eps) /(val2+eps));
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val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
x(j,il)= val3 *val4 /n;

else
x(j,ii) =0,

end

end
end
end

Listing 4.8. MATLAB Program ‘fig4_8.m”

% Use thisprogram to reproduce Fig. 4.8 oftext
close all

clear all

taup =0.2;

pri=1;

n=>5;

X =trainambg (taup, n, pri);
figure(1)

mesh(x)

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

zlabel (‘Ambiguityfunction)
figure(2)

contour(x);

xlabel (‘Delay - seconds)
ylabel (‘Doppler - Hz)

Listing 4.9. MATLAB Function “barkerambig.m”

function [ambig] = barker_ambig(uinput)

% Compute and plot the ambiguityfunctionfor a Barker code
%Compute the ambiguityfunction

% by utilizing the FFT through combining multiple range cuts
N = size(uinput,2);

tau =N;

Barkercode = uinput;

samp num = size(Barker_code,2) *10;

n = ceil(log(samp_num) /log(2));

nfft = 2An;

u(l:nfft) =0;

j =0;

for index = 1:10:samp_num
index;
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i =i+l
Ju(i#1dex:index+10-1) =Barkercode(j);
end
v =y
delay = linspace(-tau, tau, nfft);
freq del =12 /tau /100;
=0
vift =fft(v,nfft);
forfreq = -6/tau:freq_del:6/tau;
i =i+
exf=exp(sqrt(-1) *2. *pi *freq .* delay);
u times exf=u.* exf;
ufft =fft(utimesexfnfft);
prod = ufft .* conj(vfft);
ambig(:j) =fftshift(abs(ifft(prod))");
end
freq = -6/tau:freq_del:6/tau;
delay = linspace(-N,N,nfft);
figure (1)
mesh(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel(*frequency"’)
ylabel(*delay")
zlabel(*fambiguityfunction’)
figure (2)
value =10 *N;
plot(delay, ambig(:,51)/value, k)
xlabel(*delay")
ylabel(*normalized amibiguity cutforf=0")
grid
axis tight
figure (3)
contour(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap (gray)
xlabel(*frequency"’)
ylabel("delay")
grid on

Listing 4.10. MATLAB Function ‘prn ambig.m”

function [ambig] =prn ambig(uinput)
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% Compute andplot the ambiguityfunctionfor a PRN code
% Compute the ambiguityfunction by utilizing the FFT
% through combining multiple range cuts

N = size(uinput,2);

tau =N;

PRN = uinput;

samp num =size(PRN,2) * 10;

n = ceil(log(samp_num) /log(2));

nfft = 2/n;
u(l:nfft) =0;
i =0;
for index = 1:10:samp_num
index;
j =i+
u(index:index+10-1) =PRN(j);
end
% set-up the array v
v =u;

delay = linspace(0,5*tau,nfft);
freq del =8 /tau /100;
i =0
vift =fft(v,nfft);
forfreq = -4/tau:freq_del:4/tau;
j =i+
exf=exp(sqrt(-1) *2. *pi *freq .* delay);
u_times_exf=u.* exf;
ufft =fft(u_times_exf,nfft);
prod = ufft .* conj(vfft);
ambig(:j) =fftshift(abs(ifft(prod))");
end
freq = -4/tau:freq_del:4/tau;
delay = linspace(-N,N,nfft);
figure(1)
mesh(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel(*frequency"’)
ylabel(*delay")
zlabel(*ambiguityfunction a PRN code)
figure(2)
plot(delay,ambig(;,51)/ (max(max(ambig))),'k")
xlabel(*delay")
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ylabel('normalized amibiguity cutforf=0)
grid

axis tight

figure(3)
contour(freq,delay,ambig./max(max(ambig)))
axis tight

colormap([.5 .5 .5])

colormap(gray)

xlabel(*frequency")

ylabel('delay")

Listing 4.11. MATLAB Program “myradar_visit4.m”
% Use thisprogram to reproduce Figs. 4.25 to 4.27 ofthe text

close all

clear all

eps = 0.0001;
taup = 20.e-6;
b =1.e6;
updown =1,
i=0;

mu =up down *b/2. /taup;
delt = 2.2*taup /250;
delf=2*b /300;
for tau =-1.1*taup:delt:1.1 *taup
i =i+1;
=0
forfd =-b:delf:b
i=i+1
vall = 1. - abs(tau) /taup;
val2 =pi *taup * (1.0 - abs(tau) /taup);
val3 = (fd + mu * tau);
val =val2 *val3;
x(j,i) = abs(vall * (sin(val+eps)/(val+eps))).A2;
end
end
taux = linspace(-1.1 *taup,l.1*taup,251).*1e6;
fdy = linspace(-b,b,301) .* le-6;
figure(1)
mesh(taux,fdy, sqrt(x))
xlabel (‘Delay - Micro-seconds)
ylabel (‘Doppler - MHz")
zlabel ("Ambiguityfunction)
figure(2)
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contour(taux,fdy, sqrt(x))
xlabel (‘Delay - Micro-seconds)

ylabel (‘Doppler - MHz")
grid
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Chapter 5 Pulse Compression

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utilizing short pulses decreases the average
transmitted power, which can hinder the radar’s normal modes of operation,
particularly for multi-function and surveillance radars. Since the average trans-
mitted power is directly linked to the receiver SNR, it is often desirable to
increase the pulsewidth (i.e., increase the average transmitted power) while
simultaneously maintaining adequate range resolution. This can be made pos-
sible by using pulse compression techniques. Pulse compression allows us to
achieve the average transmitted power of a relatively long pulse, while obtain-
ing the range resolution corresponding to a short pulse. In this chapter, we will
analyze analog and digital pulse compression techniques.

Two LFM pulse compression techniques are discussed in this chapter. The
first technique is known as “correlation processing” which is predominantly
used for narrow band and some medium band radar operations. The second
technique is called “stretch processing” and is normally used for extremely
wide band radar operations.

5.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the
matched filter receiver bandwidth be denoted as B . Then the noise power
available within the matched filter bandwidth is given by

NO
N =2-2 B (5.1)
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Figure 5.1. Input noise power.

where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 5.1. The average input signal power over a
pulse duration t' is

& =E 2

E is the signal energy. Consequently, the matched filter input SNR is given by

(SNR)i = S . & .3)
T Ni NOBt' '

The output peak instantaneous SNR to the input SNR ratio is

SNR(to)
(SNR)i

= 2Bt (.4)

The quantity Bt' is referred to as the “time-bandwidth product” for a given
waveform or its corresponding matched filter. The factor Bt' by which the
output SNR is increased over that at the input is called the matched filter gain,
or simply the compression gain.

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase modulation. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to Bt' . Clearly, the compression gain becomes smaller than
Bt' as the spectrum of the matched filter deviates from that of the input signal.

5.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as
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PIT G2X2cx
SNR = - troooooemooeee (55)

(4n)3R4kTeFL

where Pt is peak power, t* is pulsewidth, G is antenna gain, ct is target RCS,
R is range, K is Boltzman’s constant, Te is effective noise temperature, F is
noise figure, and L is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse as being composed of a series of very short subpulses
(duty is 100%), where the width of each subpulse is equal to the desired com-
pressed pulsewidth. Denote the compressed pulsewidth as tc. Thus, for an
individual subpulse, Eq. (5.5) can be written as

(SNR), = pTf 4X O (5.6)
* (4n)3R KTeFL

The SNR for the uncompressed pulse is then derived from Eg. (5.6) as

SR = PY(T_=TTc)G2X2a G.7)

(4n)3RAKTeFL

where n is the number of subpulses. Equation (5.7) is denoted as the radar
equation with pulse compression.

Observation of Egs. (5.5) and (5.7) indicates the following (note that both
equations have the same form): For a given set of radar parameters, and as long
as the transmitted pulse remains unchanged, the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintained while the range resolution is drastically
improved by keeping the pulsewidth unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth,

IR = c/2B (5.8)

5.3. LFM Pulse Compression

Linear FM pulse compression is accomplished by adding frequency modula-
tion to a long pulse at transmission, and by using a matched filter receiver in
order to compress the received signal. As a result, the matched filter output is
compressed by a factor \ = BT', where t' is the pulsewidth and B is the
bandwidth. Thus, by using long pulses and wideband LFM modulation large
compression ratios can be achieved.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 5.2 shows an ideal LFM pulse compression process. Part (a) shows
the envelope for a wide pulse, part (b) shows the frequency modulation (in this
case it is an upchirp LFM) with bandwidth B =f2-f1. Part (c) shows the
matched filter time-delay characteristic, while part (d) shows the compressed
pulse envelope. Finally part (e) shows the Matched filter input /output wave-
forms.

(b)
! (d)
M T
Matched Filter
(e)

Figure 5.2 Ideal LFM pulse compression.

Fig. 5.3 illustrates the advantage of pulse compression using more rez'llistic
LFM waveform. In this example, two targets with RCS Cj = 1m and
ct2 = 0.5m are detected. The two targets are not separated enough in time to
be resolved. Fig. 5.3a shows the composite echo signal from those targets.
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Clearly, the target returns overlap and, thus, they are not resolved. However,
after pulse compression the two pulses are completely separated and are
resolved as two distinct targets. In fact, when using LFM, returns from neigh-
boring targets are resolved as long as they are separated in time by Tul, the
compressed pulsewidth. This figure can be reproduced using MATLAB pro-
gram ‘fig5_3.m” given in Listing 5.1 in Section 5.5.

6 - 4 - 2 [e] 2 4 6
Relative delay - Oecond3 x 10°

Figure 5.3a. Composite echo signal for two unresolved targets.

[¢] 5 10 15 20 25 GO 35 40 45 50
Target relative position in meters

Figure 5.3b. Composite echo signal corresponding to Fig. 5.3a, after
pulse compression.
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5.3.1. Correlation Processor

Radar operations (search, track, etc.) are usually carried out over a specified
range window, referred to as the receive window and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collected and passed through matched filter cir-
cuitry to perform pulse compression. One implementation of such analog pro-
cessors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base-band. The fast
convolution process is illustrated in Fig. 5.4

Figure 5.4. Computing the matched filter output using an FFT.

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response,

y ()= s(t) « h() 9

where s(t) is the input signal, h(t) is the matched filter impulse response
(replica), and the < operator symbolically represents convolution. From the
Fourier transform properties,

FET{s(V h(t)} = S(f) «H() (5.10)
and when both signals are sampled properly, the compressed signal y (t) can
be computed from

y =FFT- {SH} (5.19)

where FFT1 is the inverse FFT. When using pulse compression, it is desir-
able to use modulation schemes that can accomplish a maximum pulse com-
pression ratio, and can significantly reduce the sidelobe levels of the
compressed waveform. For the LFM case the first sidelobe is approximately
13.4dB below the main peak, and for most radar applications this may not be
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sufficient. In practice, high sidelobe levels are not preferable because noise
and/orjammers located at the sidelobes may interfere with target returns in the
main lobe.

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the sidelobe levels. The cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR). Weighting the time domain transmitted or received sig-
nal instead of the compressed pulse spectrum will theoretically achieve the
same goal. However, this approach is rarely used, since amplitude modulating
the transmitted waveform introduces extra burdens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e.,
matched filter). The receive window in meters is defined by

Rrec = Rnmax—Rmin (-12)

where Rnmex and Rmin, respectively, define the maximum and minimum range
over which the radar performs detection. Typically Rrec is limited to the extent
ofthe target complex. The normalized complex transmitted signal has the form

5(t) = exp0/2n(fot + 2t2) O<t<t' (5.13)

t' is the pulsewidth, 1, = B/T , and B is the bandwidth.

The radar echo signal is similar to the transmitted one with the exception of a
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range R1. The echo received by the radar from this target is

Sr(t) = aiexp(/2n f t- Ti) + L{t- T)" (5.14)

where al is proportional to target RCS, antenna gain, and range attenuation.
The time delay t1 is given by

tl = 2R1/c (5.15)

The first step of the processing consists of removing the frequency f0. This
is accomplished by mixing sr(t) with a reference signal whose phase is 2nf01.
The phase of the resultant signal, after low pass filtering, is then given by

V(1) = 200-/OTi +2(t- Ti)2) (5.16)

and the instantaneous frequency is

fi(° = 2n Y= t-Ti>=B(U-T ) (517)

© 2004 by Chapman & Hall/CRC CRC Press LLC



The quadrature components are

X ()3
Xq(t)

| = zc05|_u(t)31 5 15
- c()siny(t) (6.18)

Sampling the quadrature components is performed next. The number of sam-
ples, N, must be chosen so that foldover (ambiguity) in the spectrum is
avoided. For this purpose, the sampling frequency, fs (based on the Nyquist
sampling rate), must be

fs >2B (5.19)
and the sampling interval is

Nt<1/2B (5.20)

Using Eqg. (5.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

I/ =1UUT (5.21)

The minimum required number of samples is

N=— =— (5.22)
afaot At
Equating Eqgs. (5.20) and (5.22) yields
N>2BT (5.23)

Consequently, a total of 2Bt" real samples, or BT complex samples, is suf-
ficient to completely describe an LFM waveform of duration t' and bandwidth
B. For example, an LFM signal of duration t' =20 |a and bandwidth
B =5 MHz requires 200 real samples to determine the input signal (100
samples for the I-channel and 100 samples for the Q-channel).

For better implementation of the FFT N is extended to the next power of
two, by zero padding. Thus, the total number of samples, for some positive
integer m, is

Nffe = 2m>N (5.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam-
pled sequence; (2) multiplying the frequency domain sequence of the signal
with the FFT of the matched filter impulse response; and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse (HRR profile). Of course, weighting,
antenna gain, and range attenuation compensation must also be performed.
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Assume that I targets at ranges R1, R2, and so forth are within the receive
window. From superposition, the phase of the down-converted signal is

i
y(t) =" 2 n f +Pt- X (5.25)
i=1

The times {t1=(2Ri/c); i =1 2, I} represent the two-way time delays,
where t 1 coincides with the start of the receive window.

MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is
given in Listing 5.2 in Section 5.5. The syntax is as follows:

[yl = matched_filter(nscat, taup, b, rrec, scat range, scat rcs, win)

where
Symbol Description Units Status
nscat number ofpoint scatterers within the none input
received window

rrec receive window size m input
taup uncompressedpulsewidth seconds input
b chirp bandwidth Hz input
scat range vector ofscatterers’ relative range m input

(within the receive window)
scat rcs vector ofscatterers’RCS m2 input
win 0 =no window none input

1 =Hamming
2 =Kaiser with parameter pi
3 = Chebychev - sidelobes at -60dB

y normalized compressed output volts output

The user can access this function either by a MATLAB function call, or by
executing the MATLAB program “matched_filter_gui.m” which utilizes a
MATLAB based GUI. The work space associated with this program is shown
in Fig. 5.5. The outputs for this function include plots of the compressed and
uncompressed signals as well as the replica used in the pulse compression pro-
cess. This function utilizes the function ‘power_integer_2.m” which imple-
ments Eq. (5.24). Itis given in Listing 5.3 in Section 5.5.
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Initialization Start Quit

number of 3
scatterers
receive window 200
in meters
uncompressed pulse Q0ke3
width
bandwidth 1006
in Hz

scatterers relative range  [103010]]

in meters
scatterers RCS ni2
inm'2
winid 2
0.1.2.0r3

Figure 5.5. GUI workspace associated with the function “matched_JUter_guim”.

As an example, consider the case where

nscat 3
rrec 200m
taup 0.005 s
b 100e6 Hz
scat range [10 751201 m
scat_rcs [121]m2
win 2

Note that the compressed pulsed range resolution, without using a window,
is AR = 1.5m. Figs. 5.6 shows the real part and the amplitude spectrum for
the replica used in the pulse compression. Fig. 5.7 shows the uncompressed
echo, while Fig. 5.8 shows the compressed MF output. Note that the scatterer
amplitude attenuation is a function of the inverse of the scatterer’s range within

the receive window.
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Real (part) d replica

3 2 - 1 0 1 2 3
time in seconds X 1o®
8
I3
o
©
IS
2
I3
<
A
Frequency in Hz X m5

Figure 5.6. Real part and amplitude spectrum of replica.

-3 2 - 1 0 1 2 3
Relative delay - seconds X 10®

Figure 5.7. Uncompressed echo signal. Scatterers are not resolved.
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Figure 5.8. Compressed echo signal corresponding to Fig. 5.7.
Scatterers are completely resolved.

Fig. 5.9 is similar to Fig. 5.8, except in this case the first and second scatter-
ers are less than 1.5 meter apart (they are at 70 and 71 meters within the receive
window).

Figure 5.9. Compressed echo signal of three scatterers, two of
which are not resolved.
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5.3.2. Stretch Processor

Stretch processing, also known as “active correlation, ™ is normally used to
process extremely high bandwidth LFM waveforms. This processing technique
consists of the following steps: First, the radar returns are mixed with a replica
(reference signal) of the transmitted waveform. This is followed by Low Pass
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver-
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch pro-
cessing effectively converts time delay into frequency. All returns from the
same range bin produce the same constant frequency. Fig. 5.10a shows a block
diagram for a stretch processing receiver. The reference signal is an LFM
waveform that has the same LFM slope as the transmitted LFM signal. It exists
over the duration of the radar “receive-window,” which is computed from the
difference between the radar maximum and minimum range. Denote the start
frequency of the reference chirp as fr.

Consider the case when the radar receives returns from a few close (in time
or range) targets, as illustrated in Fig. 5.10a. Mixing with the reference signal
and performing low pass filtering are effectively equivalent to subtracting the
return frequency chirp from the reference signal. Thus, the LPF output consists
of constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by

(5.26)

where 1, = B/T1" is the LFM coefficient and f0 is the chirp start frequency.
Assume a point scatterer at range R . The signal received by the radar is

(5.27)

where a is proportional to target RCS, antenna gain, and range attenuation.
The time delay AT is

At = 2R/c (5.28)

The reference signal is
0 <t<Tye (5.29)

The receive window in seconds is

2(Rmax Rmin) = 2 Rrec
c c

Trec (5.30)
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Figure 5.10a. Stretch processing block diagram.
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It is customary to let fr = /0. The output of the mixer is the product of the
received and reference signals. After low pass filtering the signal is

sO(t) = acos(2n/00x +2nu AT - nu(4x) ) (5.31)
Substituting Eq. (5.28) into (5.31) and collecting terms yield

rilBR-1t+2R22nf - 2*BR

sO(t) = a cos Vv CT 1 co o cr (5.32)
and since T » 2R/ c, Eq. (5.32) is approximated by
sO(t) ka cos B4_nBR1\.+ 4_” R/E) (5.33)
The instantaneous frequency is
j_ = J-d 24nBR  4%RA = 2BR (5.34)
Jinst = 2ndf\ ct' c Jol = ct

which clearly indicates that target range is proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
the sampled sequence lead to the following conclusion: a peak at some fre-
quency /1 indicates presence of a target at range

R1 =/jcx'/2B (5.35)

Assume | close targets at ranges R1, R2, and so forth (R1<R2<... <Rj).
From superposition, the total signal is

sr(t) =~ ai(t)cos 2n(fost- T)+2(t- t )2) (5.36)

i=1
where {ai(t); i =1,2, ..., 1} are proportional to the targets’ cross sections,
antenna gain, and range. The times {xi = (2Ri/c); i =12, ...,1} represent

the two-way time delays, where t 1 coincides with the start of the receive win-
dow. Using Eq. (5.32) the overall signal at the output of the LPF can then be
described by

S<o =y. aicos (5.37)

And hence, target returns appear as constant frequency tones that can be
resolved using the FFT. Consequently, determining the proper sampling rate
and FFT size is very critical. The rest of this section presents a methodology
for computing the proper FFT parameters required for stretch processing.
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Assume a radar system using a stretch processor receiver. The pulsewidth is
T' and the chirp bandwidth is B . Since stretch processing is normally used in
extreme bandwidth cases (i.e., very large B), the receive window over which
radar returns will be processed is typically limited to from a few meters to pos-
sibly less than 100 meters. The compressed pulse range resolution is computed
from Eqg. (5.8). Declare the FFT size to be N and its frequency resolution to be
[Of . The frequency resolution can be computed using the following procedure:
consider two adjacent point scatterers at range R1 and R2. The minimum fre-
quency separation, Af, between those scatterers so that they are resolved can
be computed from Eq. (5.34). More precisely,

b/ =f2-fl =cB(R2- Rj) = 2B-AR (5.38)
Substituting Eq. (5.8) into Eq. (5.38) yields
2B ¢ 1
=0 Jg =+ (5:39)

The maximum frequency resolvable by the FFT is limited to the region
+NAf/2 . Thus, the maximum resolvable frequency is

N f>ZB(Rma*-er> _ 2BR,,c

—— T T & (540)
Using Egs. (5.30) and (5.39) into Eq. (5.40) and collecting terms yield
N >2BTrec (5.41)
For better implementation of the FFT, choose an FFT of size
NPPt>N = 2m (5.42)
m is a nonzero positive integer. The sampling interval is then given by
Of = %" Ts= k- (5.43)

TsNPPT a/nppt
MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. Itis given in Listing 5.4 in Section 5.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, scat range, rrec, scat rcs, win)

where
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Symbol
nscat

taup
fo
b
scat range
rrec
scat_rcs

win

y

Description

number ofpoint scatterers within the
received window

uncompressedpulsewidth
chirp startfrequency
chirp bandwidth
vector ofscatterers’ range
range receive window
vector ofscatterers’RCS
0 =no window
1 =Hamming
2 =Kaiser with parameter pi
3 =Chebychev - sidelobes at -60dB
compressed output

Units
none

seconds
Hz
Hz
m
m

B

none

volts

Status
input

input
input
input
input
input
input

input

output

The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_gui.m” which utilizes MATLAB based
GUI and is shown in Fig. 5.10b. The outputs of this function are the complex
array y and plots of the uncompressed and compressed echo signal versus
time. As an example, consider the case where

nscat 3
taup 10 ms
fo 5.6 GHz
b 1GHz
rrec 30m
scat_range [2510]m
scat_rcs [1, 1, 2]
win 2 (Kaiser)

Note that the compressed pulse range resolution, without using a window, is
AR = 0.15m. Figs. 5.11 and 5.12, respectively, show the uncompressed and
compressed echo signals corresponding to this example. Fig. 5.13 is similar to
Figs. 5.11 and 5.12 except in this case two of the scatterers are less than 15 cm
apart (i.e., unresolved targets at Rreiative = [3, 3.1]m).
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Initialization

number of 1
Gcattorers *

receive window ||
in meters

uncompressed pulse
width

bandwidth
in 1z

scatterers relative range
in meters

scatterers RCS H
in m*2

center frequency
in HZ

Start Quit
30
10e-3

le9

LU

M 17

1e9

Figure 5.10b. GUI workspace associated with the function “stretch_gui.m”.

Figure 5.11. Uncompressed echo signal. Three targets are unresolved.
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1.6
1.4

O 12

"1

Relative range in meters

Figure 5.12. Compressed echo signal. Three targets are resolved.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Relative delay - seconds

Figure 5.13a. Uncompressed echo signal. Three targets.
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12

Relative range in meters

Figure 5.13b. Compressed echo signal. Three targets, two are not
resolved.

5.3.3. Distortion Due to Target Velocity

Up to this point, we have analyzed pulse compression with no regard to tar-
get velocity. In fact, all analyses provided assumed stationary targets. Uncom-
pensated target radial velocity, or equivalently Doppler shift, degrades the
quality of the HRR profile generated by pulse compression. In Chapter 3, the
effects of radial velocity on SFW were analyzed. Similar distortion in the HRR
profile is also present with LFM waveforms when target radial velocity is not
compensated for.

The two effects of target radial velocity (Doppler frequency) on the radar
received pulse were developed in Chapter 1. When the target radial velocity is
not zero, the received pulsewidth is expanded (or compressed) by the time dila-
tion factor. Additionally, the received pulse center frequency is shifted by the
amount of Doppler frequency. When these effects are not compensated for, the
pulse compression processor output is distorted. This is illustrated in Fig. 5.14.
Fig. 5.14a shows a typical output of the pulse compression processor with no
distortion. Alternatively, Figs. 5.14b, 5.14c, and 5.14d show the output of the
pulse compression processor when 5% shift of the chirp center frequency, 10%
time dilation, and both are present.
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Normalized compressed pulse

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Relative delay - seconds

5.14a. Compressed pulse output of a pulse compression processor. No
distortion is present. This figure can be reproduced using
MATLAB program ‘fig5_14" given in Listing 5.5 in Section 5.5.

e

Normalized compressed pulse

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Relative delay - seconds

Figure 5.14b. Mismatched compressed pulse; 5% Doppler shift.
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Normalized compressed pulse

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Relative delay - seconds

Figure 5.14c. Mismatched compressed pulse; 10% time dilation.

Normalized compressed pulse

Relative delay - seconds

Figure 5.14d. Mismatched compressed pulse; 10% time dilation and 5%
Doppler shift.
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where G =,34.5dB, X,= 0.1m,Te = 290Kelvin, F = 6dB, L = 8dB,
Om=05m", ca = 4m, and Pt = 20KW (from Chapter 3). The search
pulsewidth is T = 20uc and the track waveforms are 12.5u5<T't<20ucC.
First consider the missile case. The single pulse SNR at the maximum detec-
tion range RYyex = 55Km is given by
on™ 20 x 10§x 20 x 10'%x(10345)2x (O.1)%x0.5 _
SNRm 4 (1574*)
(4n)3x (55 x 103) x 1.38 x 10-23 x 290 x 1008 x 1006

8.7028 ~ SNRm = 9.39dB

Alternatively, the single pulse SNR, with pulse compression, for the aircraft is

SNR = 20 x 10°x 20 x 107 x (10345)2x (0.1;)2x 4 =

(4n)3x (90 x 103)4 x 1.38 x 10-23 x 290 x 1008x 1006
9.7104 A SNRm= 9.87dB

Using these calculated SNR values into the MATLAB program
“myradar_visit2_2.m” (see Chapter 2) yields

PDC = 0.999

Aircarft

PDC = 0.9984

Miccile

(5.49)

which clearly satisfies the design requirement of PD>0.995 .

Next, consider the matched filter and its replicas and pulsed compressed out-
puts (due to different waveforms). For this purpose use the program
“matchedjilter_gui.m”. Assume a receive window of 200 meters during
search and 50 meters during track.

Fig. 5.15 shows the replica and the associated uncompressed and com-
pressed signals. The targets consist of two aircraft separated by 50 meters. Fig.
5.16 is similar to Fig. 5.15, except it is for track waveform number 4 and the
target separation is 20 m.
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Real (part) o replica

time in seconds X 101

e hm [ o

Frequency in Hz

Figure 5.15a. Replica associated with search waveform.

Figure 5.15b. Uncompressed signal of two aircraft separated by 50 m.
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Compressed echo

Target relative position in meters

5.15c. Compressed signal corresponding to Fig. 5.15b. No window.

3

8
&
©
3
4
time in seconds X 10
8
&
©
(S
:
Frequency in Hz X 107

Figure 5.16a. Replica associated with track waveform number 4.
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Uncompressed echo

Compressed echo

Target relative position in meters

Figure 5.16b. Compressed signal of two aircraft separated by 20 m.
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5.5. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance his understanding of this chapter’s material.

Listing 5.1. MATLAB Program ‘fig5_3.m”

% use this program to reproduce Fig. 5.3 oftext

clear all

close all

nscat = 2; %two point scatterers

taup = 10e-6; % 10 microsecond uncompressedpulse

b =50.0e6; % 50 MHz bandwidth

rrec =50; % 50 meter processing window

scat range =[15 25]; % scatterers are 15 and 25 meters into window
scat rcs =[1 2]; % RCS 1 m” and 2mA

winid = 0; %no window used

[y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid);

Listing 5.2. MATLAB Function “matched_filter.m”

function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product =b * taup;
if(time B_product <5)
fprintf("********** Time Bandwidth product is TOO SMALL ***#***xx*A
fprintf("\n Change b and or taup)
return
end
% speed oflight
c =3.e8;
% number o fsamples
n =fix(5 *taup *b)
% initialize input, output and replica vectors
x(nscat,1:n) =0
y(lin) =0,
replica(l:n) =0,
% determine proper window

if(winid == 0))
win(l:n) =1,
win =win”*

else
if(winid == 1))
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win = hamming(n);

else
if(winid == 2.)
win = kaiser(n,pi);
else
if(winid ==3.)
win = chebwin(n,60);
end
end
end
end

% check to ensure that scatterers are within receive window
index =find(scat_range > rrec);

if (index ~= 0)
Error. Receive window is too large; or scatterersfall outside window’
return
end

% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i *pi * (b/taup) .* t.2);
figure(l)
subplot(2,1,)
plot(t,real(replica))
ylabel(Real (part) ofreplica)
xlabel(time in seconds)
grid
subplot(2,1,2)
sampling_interval =taup /n;
freqlimit = 0.5/samplinginterval,
freq = linspace(-freglimit,freglimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel(*Spectrum ofreplica)
xlabel(Frequency in Hz)
grid
forj =1l:1:nscat

range =scatrange(j) ;;

X(j,:) =scatrcs(j) .* exp(i *pi * (b/taup) .* (t +(2*range/c)).”A) ;

Y=x@) +y;
end
figure(2)

plot(t,real(y),"k")

xlabel (Relative delay - seconds)
ylabel ("Uncompressedecho)
grid
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out =xcorr(replica, y);

out = out./n;

s =taup *c/2

Npoints = ceil(rrec *n /s);

dist =linspace(0, rrec, Npoints);

delr = ¢/2/b

figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k")
xlabel ("Target relative position in meters)
ylabel (‘'Compressedecho)

grid

Listing 5.3. MATLAB Function ‘power_integer_2.m”

function n =power_integer_2 (X)
m=0.;
forj =1:30
m=m+1;
delta =x - 2 An;
if(delta < 0.)
n=m;
return
else
end
end

Listing 5.4. MATLAB Function “stretch.m”

function [y] = stretch(nscat,taup,f0,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
htau =taup /72.;
c =3.e8;
trec =2. *rrec/c;
n =fix(2. *trec *b);
m =power_integer_2(n);
nfft = 2.Am;
x(nscat,1:n) =0
y(lin) =0;
if(winid == 0.
win(l:n) =1,
win =win";
else
if(winid == 1))
win = hamming(n);
else
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if(winid == 2.)
win = kaiser(n,pi);

else
if(winid ==3.)
win = chebwin(n,60);
end
end
end
end

deltar =c /2. /b;

maxrrec = deltar *nfft/2.;

maxr = max(scatrange);

if(rrec > max rrec |maxr >=rrec)
Error. Receive window is too large; or scatterersfall outside window’
return

end

t = linspace(0,taup,n);

forj = 1l:l:nscat
range =scat_range(j);% + rmin;
psil =4. *pi *range *f0/c- ..

4, *pi *b *range *range /c /c/taup;
psi2 = (2*4. *pi *b *range /c /taup) .* t;
X(j,:) =scat rcs(j) .* exp(i *psil +i.*psi2);
y =y +x(.);

end

figure(l)

plot(t,real(y),"k")

xlabel (Relative delay - seconds)
ylabel ("'Uncompressedecho)
ywin =y .* win’,

yfft =fft(y,n) ./n;
out=fftshift(abs(yfft));

figure(2)

delinc =rrec/n;

%dist = linspace(-delinc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out, k)

xlabel (Relative range in meters)
ylabel ('Compressedecho)

axis auto

grid
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Listing 5.5. MATLAB Program ‘fig5_14.m”

% use this program to reproduce Fig. 5.14 oftext
clearall

eps = 1.5e-5;

t =0:0.001:.5;

y =chirp(t,0,.25,20);

figure(l)

plot(t,y);

yfft =fft(y,512) ;

ycomp =fftshift(abs(ifft(yfft .* conj(yfft))));
maxval = max (ycomp);

ycomp = eps +ycomp ./maxval;

figure(1)

del =.5/512.;

tt = 0:del:.5-eps;

plot (tt,ycomp,'k")

axis tight

xlabel (Relative delay - seconds");
ylabel(*Normalized compressedpulse)
grid

y1 =chirp (t,0,.25,21); % change centerfrequency
y fft =fft(y1,512);

ylcomp =fftshift(abs(ifft(ylfft .* conj(yfft))));
maxval = max (ylcomp);

ylcomp =eps +ylcomp ./maxval;
figure(2)

plot (tt,ylcomp,'k")

axis tight

xlabel (Relative delay - seconds");
ylabel(*Normalized compressedpulse)
grid

t =0:0.001:.45; % changepulsewidth

y2 = chirp (t,0,.225,20);

y2fft =fft(y2,512);

y2comp =fftshift(abs(ifft(y2fft .* conj(yfft))));
maxval = max (y2comp);

y2comp =eps +y2comp ./maxval;
figure(3)

plot (tt,y2comp,'k")

axis tight

xlabel (Relative delay - seconds");
ylabel(*Normalized compressedpulse)
grid
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Chapter 6 Surface and Volume Clutter

6.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere with normal radar operations. Parasitic returns
that enter the radar through the antenna’s main lobe are called main lobe clut-
ter; otherwise they are called sidelobe clutter. Clutter can be classified into two
main categories: surface clutter and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has a large extent (size) and
includes chaff, rain, birds, and insects. Surface clutter changes from one area
to another, while volume clutter may be more predictable.

Clutter echoes are random and have thermal noise-like characteristics
because the individual clutter components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much higher than the
receiver noise level. Thus, the radar’s ability to detect targets embedded in
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR.

White noise normally introduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. Since
clutter returns are target-like echoes, the only way a radar can distinguish tar-
get returns from clutter echoes is based on the target RCS at, and the antici-
pated clutter RCS ctc (via clutter map). Clutter RCS can be defined as the
equivalent radar cross section attributed to reflections from a clutter area, Ac.
The average clutter RCS is given by

cte = a°Ac <)
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where aO(mZ/mZ) is the clutter scattering coefficient, a dimensionless quan-
tity that is often expressed in dB. Some radar engineers express a in terms of
squared centimeters per squared meter. Inthese cases, a is 40dB higher than
normal.

6.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area
clutter. Area clutter manifests itself in airborne radars in the look-down mode.
Itis also a major concern for ground-based radars when searching for targets at
low grazing angles. The grazing angle is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 6.1.

Three factors affect the amount of clutter in the radar beam. They are the
grazing angle, surface roughness, and the radar wavelength. Typically, the clut-
ter scattering coefficient a is larger for smaller wavelengths. Fig. 6.2 shows a
sketch describing the dependency of a on the grazing angle. Three regions
are identified; they are the low grazing angle region, flat or plateau region, and
the high grazing angle region.

a0 dB

Figure 6.2. Clutter regions.
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The low grazing angle region extends from zero to about the critical angle.
The critical angle is defined by Rayleigh as the angle below which a surface is
considered to be smooth, and above which a surface is considered to be rough;
Denote the root mean square (rms) of a surface height irregularity as hrms,
then according to the Rayleigh criteria the surface is considered to be smooth if

4nhr
x siny <2 (62)

Consider a wave incident on a rough surface, as shown in Fig. 6.3. Due to
surface height irregularity (surface roughness), the “rough path” is longer than

the “smooth path” by a distance 2hmrssiny g. This path difference translates
into a phase differential 4y :

2n
AY =T 2hmmssinVg (6-3)

\ / .. smooth surface level

Figure 6.3. Rough surface definition.

The critical angle y gc is then computed when Ay = n (first null), thus

9 .
4—/05@5 sinygc = I (6.9)

or equivalently,

= asin;rrlln-.b_ (65)

In the case of sea clutter, for example, the rms surface height irregularity is
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hrms - 0.025 +0.046 S]7te (6.6)

where Sstate is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wave height, period, length, particle velocity,
and wind velocity. For example, Sstate = 3 refers to a moderate sea state,
where in this case the wave height is approximately between
0.9144 to 1.2192 m, the wave period 6.5 to 4.5 seconds, wave length
1.9812 to 33.528 m, wave velocity 20.372 to 25.928 Km/hr, and wind
velocity 22.224 to 29.632 Km/hr.

Clutter at low grazing angles is often referred to as diffuse clutter, where
there are a large number of clutter returns in the radar beam (non-coherent
reflections). In the flat region the dependency of a on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter components disappear. In this region the
smooth surfaces have larger a0 than rough surfaces, opposite of the low graz-
ing angle region.

6.2.1. Radar Equationfor Area Clutter - Airborne Radar

Consider an airborne radar in the look-down mode shown in Fig. 6.4. The
intersection of the antenna beam with the ground defines an elliptically shaped
footprint. The size of the footprint is a function of the grazing angle and the
antenna 3dB beamwidth 93dB, as illustrated in Fig. 6.5. The footprint is
divided into many ground range bins each of size (ct/2)secy g, where T is
the pulsewidth.

From Fig. 6.5, the clutter area Ac is

cT
Ac~R93dBysecVvg 6-7)
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Figure 6.5. Footprint definition.

The power received by the radar from a scatterer within Ac is given by the

radar equation as

c PtG2X2at

St = 37
(4n)R

where, as usual, Pt is the peak transmitted power, G is the antenna gain, X is
the wavelength, and at is the target RCS. Similarly, the received power from
clutteris

6-8)

s PtG2X2c-c
t 34C («-B)
(4n)R

where the subscript C is used for area clutter. Substituting Eq. (6.1) for ac
into Eq. (6.9), we can then obtain the SCR for area clutter by dividing Eq. (6.8)
by Eqg. (6.9). More precisely,

Sc =

(SCR)c = — - n (6.10)
CPO3dBRCT

Example:

Consider an airborne radar shown in Fig. 6.4. Let the antenna 3dB beam-
width be 93dB = 0.02rad, the pulsewidth T = 2us, range R = 20Km, and
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. . 2
grazing angle yg = 20°. The targetRCS is CE = 1m .Assume that the clut-
ter reflection coefficientis o« = 0.0136 . Compute the SCR.

Solution:

The SCR is given by Eq. (6.10) as

2 Ciicos
(SCR)c =V — ~ A
e« QBABRCT
(SCR)C = --mmmmmmmmmmeee (2)(1)(cos20 °)-mmmmmmmmmmmmm =576Xi0-

(6.6136)(0.02)(20000) (3 x 108)(2 x 10 6)
Itfollows that
(SCR)C = -32.4dB

Thus, for reliable detection the radar must somehow increase its SCR by at
least (32 +X)dB, where X is on the order of 13 to 15dB or better.

6.2.2. Radar Equationfor Area Clutter - Ground Based Radar

Again the received power from clutter is also calculated using Eg. (6.9).
However, in this case the clutter RCS oc is computed differently. Itis

ac = QvBc+ CBle (e-11)

where dVBc is the main beam clutter RCS and oSlLc is the sidelobe clutter
RCS, as illustrated in Fig. 6.6.

Figure 6.6. Geometry for ground based radar clutter
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In order to calculate the total clutter RCS given in Eq. (6.11), one must first
compute the corresponding clutter areas for both the main beam and the side-
lobes. For this purpose, consider the geometry shown in Fig. 6.7. The angles
0A and OE represent the antenna 3-dB azimuth and elevation beamwidths,
respectively. The radar height (from the ground to the phase center of the
antenna) is denoted by hr, while the target height is denoted by ht. The radar
slant range is R, and its ground projection is Rg. The range resolution is AR
and its ground projection is ARg. The main beam clutter area is denoted by
AMBc and the sidelobe clutter area is denoted by ASLc.

Figure 6.7. Clutter geometry for ground based radar. Side view and
top view.
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From Fig. 6.7 the following relations can be derived

9r = asin(hr/R) (6.12)
9e = asin((ht- hr)/R) (6-13)
ARg = ARcos9r (6-14)

where AR is the radar range resolution. The slant range ground projection is
Rg = Rcos9r (6.15)
It follows that the main beam and the sidelobe clutter areas are
AMBc = ARg Rg 9A (6-16)
ASlc = ARg nRg 6.17)

Assume a radar antennabeam G (9) ofthe form

G(9) = expl- 27682 Gaussian (6-18)
JE
(s 2.78—
o n9E
G(9) = 2 78f- ’191<T7E (6-19)
0 ;elsewhere

Then the main beam clutter RCS is

°MBc = aA mbcG (9e+9r) = a ARg Rg 9aG (9 +9r) (6:20)

and the sidelobe clutter RCS is

a = a AsLc(SLrms)2 = a0ARg nRe(SLAT (621)

where the quantity SLns is the root-mean-square (rms) for the antenna side-
lobe level.

Finally, in order to account for the variation of the clutter RCS versus range,
one can calculate the total clutter RCS as a function of range. Itis given by
°c (R) = (6.22)
(1 + (R/Rh)4)

where Rh is the radar range to the horizon calculated as
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n 8hrre

Rh = tl~ir % 23)
where re is the Earth’s radius equal to 6371Km. The denominator in Eq.
(6.22) is put in that format in order to account for refraction and for round
(spherical) Earth effects.

The radar SNR due to a target at range R is

P1G2X2
SNR = — CRek <6.24)

(4n)3R4AKTOBFL

where, as usual, Pt is the peak transmitted power, G is the antenna gain, X is
the wavelength, o3 is the target RCS, k is Boltzman’s constant, TO is the
effective noise temperature, B is the radar operating bandwidth, F is the
receiver noise figure, and L is the total radar losses. Similarly, the Clutter-to-
Noise (CNR) at the radar is

CNR = ——PtG X Clt— (6.25)
(4n)3R4KTOBFL

where the dc is calculated using Eq. (6.21).

When the clutter statistic is Gaussian, the clutter signal return and the noise
return can be combined, and a new value for determining the radar measure-
ment accuracy is derived from the Signal-to-Clutter+Noise-Ratio, denoted by
SIR. Itis given by

SIR = - 1------- (6.26)
- 1- +-1-
SNR SCR
Note that the SCR is computed by dividing Eq.(6.24) by Eqg. (6.25).
MATLAB Function “clutter_rcs.m”

The function “clutterrcs.m” implements Eq. (6.22); it is given in Listing
6.1 in Section 6.6. It also generates plots of the clutter RCS and the CNR ver-
sus the radar slant range. Its outputs include the clutter RCS in dBsm and the
CNR in dB. The syntax is as follows:

[sigmaC,CNR] = clutter_rcs(sigma0, thetakE, thetaA, SL, range, hr, ht, pt, f0, b,
to,f I, ant id)

where
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Symbol

sigma0

thetakE

thetaA
SL

range

hr
ht
pt
fo

t0

ant_id

sigmac

Description
clutter back scatterer coefficient
antenna 3dB elevation beanwidth
antenna 3dB azimuth beamwidth
antenna sidelobe level
range; can be a vector or a single value
radar height
target height
radar peak power
radar operatingfrequency
bandwidth
effective noise temperature
noisefigure
radar losses
1for (sin(X)/x)Apattern
2for Gaussian pattern

clutter RCS; can be either vector or sin-
gle value depending on “range”

clutter to noise ratio; can be either vec-
tor or single value depending on
“range”

Units
dB
degrees
degrees
dB

meters
meters
KW
Hz
Hz
Kelvins
dB
dB
none

dB

dB

Status
input
input
input
input
input
input
input
input
input
input
input
input
input
input

output

output

A GUI called “clutter_rcs_gui” was developed for this function. Executing
this GUI generates plots of the ac and CNR versus range. Figure 6.8 shows
typical plots produced by this GUI using the antenna pattern defined in Eq.
(6.18). Figure 6.9 is similar to Fig. 6.8 except in this case Eq. (6.19) is used for
the antenna pattern. Note that the dip in the clutter RCS (at very close range)
occurs at the grazing angle corresponding to the null between the main beam
and the first sidelobe. Fig. 6.9c shows the GUI workspace associated with this

function.

In order to reproduce those two figures use the following MATLAB calls:

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -20, linspace(2,50,100), 3, 100, 75,

5.6e9, 1le6, 290, 6, 10, 1)

(6.27)

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -25, linspace(2,50,100), 3, 100, 100,

5.6e9, 1e6, 290, 6, 10, 2)
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o 5 10 15 20 25 30 35 40 45 50
Slant Range in Km

Figure 6.8a. Clutter RCS versus range using the function call in Eq. (6.27).

0 5 10 15 20 25 30 35 40 45 50
Slant Range in Km

Figure 6.8b. CNR versus range using the function call in Eg. (6.27).
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(e} 5 10 15 20 25 30 35 40 45 50
Slant Range in Km

Figure 6.9a. Clutter RCS versus range using the function call in Eq. (6.28).

0 5 10 15 20 25 30 35 40 45 50
Slant Range in Km

Figure 6.9b. CNR versus range using the function call in Eqg. (6.28).
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clear all start quit

Sigma 0 in dBsm 20
ThetaE degrees 2
ThetaA « degrees 1
SL-dB | %0]
hi mm 3
ht mm 100
pt-Kw s
fO-Hz 5.6€9
b Hz 1eB
10 - degiees Kelvin 20
f (noise liguie) - dB 6
1(losses] dR 10
1 ==> Sinc*2; 1

2 m«> Gaussian

minimum lange 2
Km

maximum lange 50
Km

entei Rmin = Rmax
foi a single point

Figure 6.9c. GUI workspace for “clutter_rcs_gui.m”.
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6.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds,
and insects. The volume clutter coefficient is normally expressed in square
meters (RCS per resolution volume). Birds, insects, and other flying particles
are often referred to as angle clutter or biological clutter.

As mentioned earlier, chaffis used as an ECM technique by hostile forces. It
consists of a large number of dipole reflectors with large RCS values. Histori-
cally, chaff was made of aluminum foil; however, in recent years most chaff is
made of the more rigid fiberglass with conductive coating. The maximum chaff
RCS occurs when the dipole length L is one half the radar wavelength.

Weather or rain clutter is easier to suppress than chaff, since rain droplets
can be viewed as perfect small spheres. We can use the Rayleigh approxima-
tion of a perfect sphere to estimate the rain droplets’ RCS. The Rayleigh
approximation, without regard to the propagation medium index of refraction
is:

(6.29)

where k = 2n/ X, and r is radius of a rain droplet.

Electromagnetic waves when reflected from a perfect sphere become
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, for example, a right-hand-circular (RHC)
polarized wave, then the received waves are left-hand-circular (LHC) polar-
ized, because they are propagating in the opposite direction. Therefore, the
back-scattered energy from rain droplets retains the same wave rotation (polar-
ization) as the incident wave, but has a reversed direction of propagation. It
follows that radars can suppress rain clutter by co-polarizing the radar transmit
and receive antennas.

Denote n as RCS per unit resolution volume VW. It is computed as the sum
of all individual scatterers RCS within the volume,

N
(6.30)
i=1
where N is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is

(6.31)
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A resolution volume is shown in Fig. 6.10, and is approximated by

Vw- 89a(eR cT (6.32)

where 9a, 9e are, respectively, the antenna azimuth and elevation beamwidths
in radians, T is the pulsewidth in seconds, ¢ is speed of light, and R is range.

Figure 6.10. Definition of a resolution volume.

Consider a propagation medium with an index of refraction m. The ith rain
droplet RCS approximation in this medium is

cmr- M-K2D6 (6.33)
X4
where
2 2
m-+2

and Di is the ith droplet diameter. For example, temperatures between 32°F
and 68 °F yield

ot - 0.9-,3"‘?Df (6.35)
X4
and for ice Eq. (6.33) can be approximated by
5
Ci- °.25%Di (6.36)

Substituting Eq. (6.33) into Eqg. (6.30) yields

© 2004 by Chapman & Hall/CRC CRC Press LLC



n=v » (6.37)

where the weather clutter coefficient Z is defined as
N
Z=" D6 (6.38)
i=1
In general, a rain droplet diameter is given in millimeters and the radar reso-

lution volume is expressed in cubic meters; thus the units of Z are often
expressed in millimeter6/m3.

6.3.1. Radar Equationfor Volume Clutter

The radar equation gives the total power received by the radar from a at tar-
getatrange R as

PtO \2at
(4n)3R

o
St = (6.39)

where all parameters in Eq. (6.39) have been defined earlier. The weather clut-
ter power received by the radar is

S =PtO\2aw

W = - 3- 4 (6.40)
(4n)3rR

Using Eq. (6.31) and Eq. (6.32) in Eq. (6.40) and collecting terms yield

PtG2&k n 2 N
Sw = 3-4n-R0a0ce™TY ar (6.41)
(4n)R 8 N
i=1
The SCR for weather clutter is then computed by dividing Eq. (6.39) by Eq.
(6.41). More precisely,

= /§t = -------_-_8_?_t
(SCR)v L. _ (6.42)
Swv
noaoechZT"a,-

i=1

where the subscript v is used to denote volume clutter.
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Example:

2
A certain radar has target RCS CE = 0.Im , pulsewidth T = 0.2 |as,
antenna beamwidth 9a = 9e = 0.02radians. Assume the_geteftlog range to
be R = 50Km, and compute the SCR — =16x10 (m/m))

Solution:

From Eqg. (6.42) we have

_ 8at
(SCR)V = N

n9a%ecTR2N .«
i=1

Substituting the proper values we get

(SCR)V = (8)(M) = 0.265
n(0.02)2(3 x 108)(0.2 x 10-6)(50 x 103)2(1.6 x 10-8)

(SCR)V = -5.76dB .

6.4. Clutter Statistical Models

Since clutter within a resolution cell or volume is composed of a large num-
ber of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle.

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the
echo received from another scatterer, then the clutter may be modeled using a
Rayleigh distribution,

f(x) = —exp2—3 ; x>0 (6.43)
x0 2x03

where x0 is the mean squared value of x .
The log-normal distribution best describes land clutter at low grazing angles.
It also fits sea clutter in the plateau region. It is given by

(Inx-Inxm
f(x) = . expl- x>0 (6.44)
jJ2n 2c2
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Symbol Value Units

thetaA 1.33 (see page 45) degrees
SL -20 dB
range linspace(10,120,1000) Km
hr 5 meter
ht 2000for missile; 10000for aircraft meter
Pt 20 KW
fo 3e9 Hz
b 5e6 Hz
to 290 Kelvins
f 6 dB
I 8 dB
ant id 2for Gaussian pattern none

Clutter RCS n dBsm

Slant Range in Km

Figure 6.11a. Clutter RCS entering the radar for the missile case.
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0] 20 40 00 80 100 120
Slant Range in Km

Figure 6.11b. Clutter RCS entering the radar for the aircraft case.

The MATLAB program “myradar_visit6.m” was developed to calculate and
plot the CNR and SIR for “‘MyRadar” design case study. It is given in Listing
6.2 in Section 6.6. This program assumes the design parameters derived in

Chapters 1 and 2. More precisely:

Symbol Description Value
q° clutter backscatter coefficient -15 dBsm
SL antenna sidelobe level -20 dB

e )
o) missile RCS 05m
o aircraft RCS o
3
€E antenna elevation beamwidth 11 deg
oA antenna azimuth beanmwidth 1.33 deg
hr radar height 5m
hta target height (aircraft) 10 Km
htm target height (missile) 2Km
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Symbol Description Value

Pt radar peakpower 20 KW

f0 radar operatingfrequency 3GHz

T0 effective noise temperature 290 degrees Kelvin
E noisefigure 6 dB

L radar total losses 8dB

t' Uncompressed pulsewidth 20 microseconds

Figure 6.12 shows a plot of the CNR and the SIR associated with the mis-
sile. Figure 6.13 is similar to Fig. 6.12 except it is for the aircraft case. It is
clear from these figures that the required SIR has been degraded significantly
for the missile case and not as much for the aircraft case. This should not be
surprising, since the missile’s altitude is much smaller than that of the aircraft.
Without clutter mitigation, the missile would not be detected at all. Alterna-
tively, the aircraft detection is compromised at R <80Km . Clutter mitigation
is the subject of the next chapter.

Missile case; 21 -frame cumulative detection

—  Desired SNR; from Chapter 5
....... CNR

20 30 40 50 60 70 0 90 100 110 120
Slant Range in Km

Figure 6.12. SNR, CNR, and SIR versus range for the missile case.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Aircraft case; 21 -frame cumulative detection

20 30 40 50 60 0 0 90 100 110 120
Slant Range in Km

Figure 6.13. SNR, CNR and SIR versus range for the aircraft case.

6.6. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in

this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 6.1. MATALB Function “clutter_rcs.m”
function [sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht,
pt,f0, b, t0,f l,ant_id)
% Thisfunction calculates the clutter RCS and the CNRfor a ground based
radar.
clight = 3.e8; % speed oflight in meters per second
lambda = clight /f0;
thetaAdeg = thetaA,
thetaEdeg = thetaE;
thetaA = thetaA deg *pi /180; % antenna azimuth beamwidth in radians
thetakE = thetakE deg *pi /180.; % antenna elevation beamwidth in radians
re = 6371000; % earth radius in meters
rh =sqrt(8.0*hr*re/3.); % range to horizon in meters
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SLv = 10.0A(SL/10); % radar rms sidelobes in volts
sigmaOv = 10.0A(sigma0/10); % clutter backscatter coefficient
tau = I/b; % pulsewidth
deltar = clight *tau /72.; % range resolutionfor unmodulatedpulse
%% % % % % % % % % % % %% % % % % % % % % % % % % % % % %
rangem = 1000 .* range; % range in meters
% 9% % % % % % %% % % % %% % % % % % % % % % % % % % % % %
thetar = asin(hr ./range m);
thetae =asin((ht-hr) ./range m);
propagatten = 1. + ((range m./rh)A4); % propagation attenuation due to
round earth
Rg =range m.* cos(thetar);
deltaRg = deltar .* cos(thetar);
thetasum = thetae + thetar;
% use sincA? antennapattern when ant_id=1
% use Gaussian antenna pattern when ant_id=2
if(ant_id ==1) % use sincA2 antenna pattern
ant arg = (2.78 *theta sum) ./ (pi*thetaE);
gain = (sinc(ant_arg))A2;
else
gain =exp(-2.776 .*(theta_sum./thetaE)A2);
end
% compute sigmac
sigmac = (sigmalv .* Rg .* deltaRg) .* (pi * SLv *SLv + thetaA .*gain.A2) ./
propagatten;
sigmaC = 10*log10(sigmac);
%% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
if (size(range,2)==1)
fprintf(‘Sigma_Clutter="); sigmaC
else
figure(1)
plot(range, sigmaC)
grid
xlabel(*SlantRange in Km)
ylabel(‘Clutter RCS in dBsm)
end
%% % % % % % % % % % % % % %% % % %% % % % % %% % %6 % % % % %
% Calculate CNR
pt =pt *1000;
g =26000 / (thetaA_deg*thetaE_deg); % antenna gain
F = 10.A(f/10); % noisefigure is 6 dB
Lt = 10.A(1710); % total radar losses 13 dB
k = 1.38e-23; % Boltzman} constant
TO =1t0; % noise temperature 290K
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argnumC = 10*log10(pt*g*g*lambda*lambda*tau .* sigmac);
argdem = 10*1og10(((4*pi)A)*k*TO*Lt*F .*(range_m).Ad);
CNR =argnumC - argdem;
%% % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
if (size(range,2) ==1)

fprintf("Cluuter_to_Noise_ratio="); CNR
else

figure(2)

plot(range, CNR,'r")

grid

xlabel(*SlantRange in Km)

ylabel("CNR in dB")
end

Listing 6.2. MATLAB Program “myradar_visit6.m”

clear all

close all

thetaA= 1.33; % antenna azimuth beamwidth in degrees

thetaE = 11; % antenna elevation beamwidth in degrees

hr =5.; % radar height to center ofantenna (phase reference) in meters

htm = 2000.; % target (missile) high in meters

hta = 10000.; % target (aircraft) high in meters

SL =-20; % radar rms sidelobes in dB

sigma0 = -15; % clutter backscatter coefficient

b = 1.0e6; %1-MHz bandwidth

t0 =290; % noise temperature 290 degrees Kelvin

f0 =3e9; % 3 GHz centerfrequency

pt = 114.6; % radar peak power in KW

f =6; % 6 dB noisefigure

| =8; % 8 dBradar losses

range = linspace(25,120,500); % radar slantrange 25 to 120 Km, 500 points
% calculate the clutter RCS and the associated CNRfor both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, hta, pt,

f0, b, 0, f, I, 2);

[sigmaCm,CNRm] = clutter_rcs(sigma0, thetak, thetaA, L, range, hr, htm, pt,
f0, b, t0,f |, 2);

close all

%% % % % % % % % % % % % % % % % % % % % % % %

np =4;

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvementfactor
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Im =improv_fac(np,pfa, pdm);

la = improv_fac(np, pfa, pda);

% calculate the integration loss

Lm = 10*log10(np) - Im;

La = 10*logl0(np) - la;

pt =pt *1000; % peakpower in watts

range m = 1000 .* range; % range in meters

g =34.5139; % antennagain in dB

sigmam = 0.5; % missile RCS msquared

sigmaa = 4; % aircraft RCS msquared

nf=f; %noisefigure in dB

loss =1; % radar losses in dB

losstm = loss + Lm; % total lossfor missile

lossta = loss + La; % total lossfor aircraft

% modify pt by np*pt to accountfor pulse integration

SNRm =radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range m);
SNRa =radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range m);
snrm = 10.A(SNRm./10);

snra = 10.A(SNRa./10);

cnrm = 10.A(CNRm./10);

cnra = 10.A(CNRa./10);

SIRm = 10*log10(snrm ./ (1+cnrm));

SIRa = 10*logl0(snra ./ (1+cnra));

%% % % % % % % % % %% % % %% % % % % % % % % % % % % % %%
figure(3)

plot(range, SNRm, 'K, range, CNRm,’k:", range,SIRm, 'k-.")

grid

legend(*DesiredSNR; from Chapter 5','CNR’,'SIR")
xlabel('SlantRange in Km)

ylabel(*dB")

title("Missile case; 21-frame cumulative detection)

%69 % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % %
%%%%%

figure(4)

plot(range, SNRa,'k’, range, CNRa,'k:", range,SIRa, k-.")

grid

legend(*DesiredSNR; from Chapter 5','CNR’,'SIR")
xlabel(*SlantRange in Km)

ylabel("dB")

title(Aircraft case; 21-frame cumulative detection)
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Chapter 7 Moving TargetIndicator (MTI)
and Clutter Mitigation

7.1. Clutter Spectrum

The power spectrum of stationary clutter (zero Doppler) can be represented
by a delta function. However, clutter is not always stationary; it actually exhib-
its some Doppler frequency spread because of wind speed and motion of the
radar scanning antenna. In general, the clutter spectrum is concentrated around
f = 0 and integer multiples of the radar PRF fr, and may exhibit a small
amount of spreading.

The clutter power spectrum can be written as the sum of fixed (stationary)
and random (due to frequency spreading) components. For most cases, the ran-
dom component is Gaussian. If we denote the stationary-to-random power
ratio by W2, then we can write the clutter spectrum as

Sc(®) = ao] W 2b(rco) + --------- CP - expf-c ~ ( (7.9
N+ W& (1 +WwW2)J2nal % 2a2 &

where ra® = 2nf°® is the radar operating frequency in radians per second, afl
is the rms frequency spread component (determines the Doppler frequency
spread), and a° is the Weibull parameter.

The first term of the right-hand side of Eq. (7.1) represents the PSD for sta-
tionary clutter, while the second term accounts for the frequency spreading.
Nevertheless, since most of the clutter power is concentrated around zero Dop-
pler with some spreading (typically less than 100 Hz), it is customary to model
clutter using a Gaussian-shaped power spectrum (which is easier to analyze
than Eqg. (7.1)). More precisely,
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gc/(ra) - _Pg exp?-!-([z-i--'--rfjIO % (7.2

Ren % 2-ra

where Pc is the total clutter power; c112a and ra0 were defined earlier. Fig. 7.1
shows a typical PSD sketch of radar returns when both target and clutter are
present. Note that the clutter power is concentrated around DC and integer
multiples of the PRF.

Figure 7.1. Typical radar return PSD when clutter and target are present.

7.2. Moving Target Indicator (MTI)

The clutter spectrum is normally concentrated around DC (f = 0) and mul-
tiple integers of the radar PRF fr, as illustrated in Fig. 7.2a. In CW radars, clut-
ter is avoided or suppressed by ignoring the receiver output around DC, since
most of the clutter power is concentrated about the zero frequency band.
Pulsed radar systems may utilize special filters that can distinguish between
slowly moving or stationary targets and fast moving ones. This class of filter is
known as the Moving Target Indicator (MTI). In simple words, the purpose of
an MTI filter is to suppress target-like returns produced by clutter, and allow
returns from moving targets to pass through with little or no degradation. In
order to effectively suppress clutter returns, an MT] filter needs to have a deep
stop-band at DC and at integer multiples of the PRF. Fig. 7.2b shows a typical
sketch of an MTI filter response, while Fig. 7.2c shows its output when the
PSD shown in Fig. 7.2a is the input.

MTI filters can be implemented using delay line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filter is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
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guencies equal to nfr are severely attenuated. Since Doppler is proportional to
target velocity (fd = 2v/X), target speeds that produce Doppler frequencies
equal to integer multiples of fr are known as blind speeds. More precisely,

Xfr
\Vbiind =Y ; n>o (7.3)

Radar systems can minimize the occurrence of blind speeds by either
employing multiple PRF schemes (PRF staggering) or by using high PRFs
where in this case the radar may become range ambiguous. The main differ-
ence between PRF staggering and PRF agility is that the pulse repetition inter-
val (within an integration interval) can be changed between consecutive pulses
for the case of PRF staggering.

Figure 7.2. (a) Typical radar return PSD when clutter and target are
R/ﬁgl'sleﬁt (b) MTI filter frequency response. (c) Output from an
ilter.
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Fig. 7.3 shows a block diagram of a coherent MT1 radar. Coherent transmis-
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the
STALO, fLO, and the COHerent Oscillator (COHO), fc, are mixed to produce
the transmission frequency, fLO+fc. The Intermediate Frequency (IF),
fc £fd, is produced by mixing the received signal with fLO. After the IF
amplifier, the signal is passed through a phase detector and is converted into a
base band. Finally, the video signal is inputted into an MTI filter.

np-— > (
fLO+fc +fd

Figure 7.3. Coherent MTI radar block diagram.

7.3. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 7.4. The
canceler’s impulse response is denoted as h(t). The output y (t) is equal to the
convolution between the impulse response h(t) and the input x(t). The single
delay canceler is often called a “two-pulse canceled since it requires two dis-
tinct input pulses before an output can be read.

The delay T is equal to the PRI of the radar (1 /fr). The output signal y (t)

is

Y() =x(0)-x(t- T (7.4)
The impulse response of the canceler is given by

h(t) = S(t) - S(t- T) (7.5)
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h(t)

Figure 7.4. Single delay line canceler.

where 5( < ) isthe delta function. It follows that the Fourier transform (FT)
of h(t) is

H@o) = 1-ewT (7.6)
where 0 = 2nf.

In the z-domain, the single delay line canceler response is
HZz) = 1- z— @7
The power gain for the single delay line canceler is given by
IHG0)|2 = H(lo)H*(t0) = (1 - es0T)(1- ) (7.8)
It follows that
[H)|2 = 1+ 1- (e wdl+e-t0T) = 2(1 - costoT) (7.9)
2
and using the trigonometric identity (2 - 2co0s2S) = 4(sinS) yields
[H(t0)|2 = 4(sin(10T/2))2 (7.10)
MATLAB Function “single_canceler.m”

The function “single canceler.m” computes and plots (as a function off /r)
the amplitude response for a single delay line canceler. Itis given in Listing 7.1
in Section 7.11. The syntax is as follows:

[resp] =single canceler (fofr)

where fofr is the number of periods desired. Typical output of the function
“single canceler.m” is shown in Fig. 7.5. Clearly, the frequency response of a
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single canceler is periodic with a period equal to fr. The peaks occur at
f = (2n + 1)/ (2fr), and the nulls are atf = nfr,where n>0.

Figure 7.5. Single canceler frequency response.

In most radar applications the response of a single canceler is not acceptable
since it does not have a wide notch in the stop-band. A double delay line can-
celer has better response in both the stop- and pass-bands, and thus it is more
frequently used than a single canceler. Inthis book, we will use the names “sin-
gle delay line canceler” and “single canceler” interchangeably.

7.4. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
7.6. Double cancelers are often called “three-pulse cancelers” since they
require three distinct input pulses before an output can be read. The double line
canceler impulse response is given by

h(t) = S(t)- 2S(t- T) +S(t- 2T) (7.10)

Again, the names “double delay line” canceler and “double canceler” will be
used interchangeably. The power gain for the double delay line canceler is
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[H(o)I2 = H (0)] 2]H (0)] 2 (7.12)

Figure 7.6. Two configurations for a double delay line canceler.

where [HL(t0)]2 is the single line canceler power gain given in Eq. (7.10). It
follows that

[H(0)|2 = 16%sin %0 (7.13)

And in the z-domain, we have

H(z) = (1- z_l)2 =1- 22_1+z_2 (7.14)

MATLAB Function “double_canceler.m”

The function “doublecanceler.m” computes and plots (as a function of
f /ir) the amplitude response for a double delay line canceler. It is given in
Listing 7.2 in Section 7.11. The syntax is as follows:

[resp] = doublecanceler (fofr)
wherefo fr is the number of periods desired.

Fig. 7.7 shows typical output from this function. Note that the double can-
celer has a better response than the single canceler (deeper notch and flatter
pass-band response).
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Figure 7.7. Normalized frequency responses for single and double cancelers.

7.5. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The
advantage of a recursive filter is that through a feedback loop we will be able
to shape the frequency response of the filter. As an example, consider the sin-

gle canceler shown in Fig. 7.8. From the figure we can write
y (1) =x(t)- (1 - Kw(t)
v(t) =y () +w(t)
w(t) = v(t-T)

Applying the z-transform to the above three equations yields
Y(z) =X(z)- (1 - K)YW(2)
V(z) = Y(z) + W(z)

W(z) =z -V(2)
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Solving for the transfer function H(z) = Y(z)/X(z) yields

HE) = 121 (7.20)

1 Kz1

The modulus square of H(z) is then equal to

IH?12 = (1-~ )(1-~ = Nz o+z") (7.22)
1-Kz D)(1-Kz) (L+K)-K(z+z))

Using the transformation z = eTT yields

z+z-1 = 2costoT (7.23)
Thus, Eg. (7.22) can now be rewritten as

|HEe M2 = ------ 2 (1 (7.24)
(1 +K2)- 2Kcos(0T)
Note that when K = 0, Eq. (7.24) collapses to Eq. (7.10) (single line can-
celer). Fig. 7.9 shows a plot of Eq. (7.24) for K = 0.25, 0.7, 0.9 . Clearly, by
changing the gain factor K one can control the filter response.

In order to avoid oscillation due to the positive feedback, the value of K
should be less than unity. The value (1 - K)- is normally equal to the number
of pulses received from the target. For example, K = 0.9 corresponds to ten
pulses, while K = 0.98 corresponds to about fifty pulses.
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Figure 7.9. Frequency response corresponding to Eq. (7.24). This
plot can be reproduced usmg MATLAB program
fig7_9.m” given in Listing 7.3 in Section 7.11.

7.6. PRF Staggering

Target velocities that correspond to multiple integers of the PRF are referred
to as blind speeds. This terminology is used since an MTI filter response is
equal to zero at these values (see Fig. 7.7). Blind speeds can pose serious limi-
tations on the performance of MTI radars and their ability to perform adequate
target detection. Using PRF agility by changing the pulse repetition interval
between consecutive pulses can extend the first blind speed to tolerable values.
In order to show how PRF staggering can alleviate the problem of blind
speeds, let us first assume that two radars with distinct PRFs are utilized for
detection. Since blind speeds are proportional to the PRF, the blind speeds of
the two radars would be different. However, using two radars to alleviate the
problem of blind speeds is a very costly option. A more practical solution is to
use a single radar with two or more different PRFs.

For example, consider a radar system with two interpulse periods Ti1 and
T2, such that
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T1 nl
T

= - 7-25
T2 n2 (+29)
where nl and n2 are integers. The first true blind speed occurs when
nl_n2 (7.26)
T1 T2

This is illustrated in Fig. 7.10 for n1=4 and n2 = 5. Note that if
n2 = nl+ 1, then the process of PRF staggering is similar to that discussed in
Chapter 3. The ratio

kg = 04 7.27)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinity of 1/ T1
becomes deeper, as illustrated in Fig. 7.11 for stagger ratio ks = 63/64 . In
general, if there are M PRFs related by

== =_ (7.28)

and if the first blind speed to occur for any of the individual PRFs is vblindl,
then the first true blind speed for the staggered waveform is

nj +n2+... +nM
vblind = M vblind: (729

7.7. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor-
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)”
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio
between the MTI filter input clutter power Ci to the output clutter power Co,

CA = Ct/Co (7.30)

The MTI improvement factor is defined as the ratio of the Signal to Clutter
(SCR) at the output to the SCR at the input,

which can be rewritten as
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Figure 7.10. Frequency responses of a single canceler. Top plot
corresponds to T1 middle plot corresponds to T2
bottom plot corresponds to stagger ratio T/T2=4/3.
This plot can be reproduced using MATLAB program
‘fig7_10.m” given in Listing 7.4 in Section 7.11.
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Figure 7.11. MTI responses, staggerin% ratio 63/64. This plot can be
reproduced using MATLAB program fig7_11.m” given
in Listing 7.5 in Section 7.11.

/ = 1fca (7.32)

The ratio So/Si is the average power gain of the MTI filter, and it is equal to
|A(0)] . In this section, a closed form expression for the improvement factor

using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped
clutter power spectrum is given by
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W(f) = exp (- f /2a]) (7.33)
V2n at

where Pc is the clutter power (constant), and at is the clutter rms frequency
(which describes the clutter spectrum spread in the frequency domain). It is
given by

-2 2 2
at=Jav+as+aw (7-34)
av is the standard deviation for the clutter spectrum spread due to wind veloc-
ity; as is the standard deviation for the clutter spectrum spread due to antenna
scanning; and av is the standard deviation for the clutter spectrum spread due
to the radar platform motion (if applicable). It can be shown thatl

av =~ (7-35)

ax=0.265(mTL-) (7-36)
a scan

asu |-(--sin0 (7.37)

where K is the wavelength and aw is the wind rms velocity; ©a is the antenna
3-db azimuth beamwidth (in radians); Tscan is the antenna scan time; v is the
platform velocity; and 0 is the azimuth angle (in radians) relative to the direc-
tion of motion.

The clutter power at the input of an MTI filter is
il
C, = f—S -—expJ- d (7.38)
®V2n at % 22&
il

Factoring out the constant Pc yields

G =PcJ J2ratexp%h 24 jdf (739)
a0

It follows that

1 Berkowtiz, R. S., Modern Radar, Analysis, Evaluation, and System Deign, John
Wiley & Sons, New York, 1965.
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Ci = Pc (7.40)
The clutter power at the output of an MTI1 is
©
Co = /7 Wf) H(f)2 df (7.41)
el

7.7.1. Two-Pulse MTI Case

In this section we will continue the analysis using a single delay line can-
celer. The frequency response for a single delay line canceler is given by Eq.
(7.6). The single canceler power gain is given in Eq. (7.10), which will be
repeated here, in terms of f rather than 1o, as Eq. (7.42),

Hf) p = 4)sin°/§ 2 (7.42)
r

It follows that

Co= exp(- 2a-)4%in%n df (743)
—&
Now, since clutter power will only be significant for small f , then the ratio
f/fr is very small (i.e., at«f ). Consequently, by using the small angle
approximation, Eq. (7.43) is approximated by

®
Co-J-pn-expl- a%fij df (7.44)
T fh texp% of 2 df
-an
which can be rewritten as
2 @
Co=f - _faue 1 Xp% U/ df (715)

The integral part in Eq. (7.45) is the second moment gf a zero mean Gaussian
distribution with variance aT. Replacing the integral in Eq. (7.45) by at
yields

Co=-f- at (7.46)

Substituting Egs. (7.46) and (7.40) into Eq. (7.30) produces
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(7.47)

It follows that the improvement factor for a single canceler is

(7.48)
The power gain ratio for a single canceler is (remember that |Hf)| is periodic
with period fr)
fr/2

4r/2
2
Using the trigonometric identity (2 —2c0s2S) = 4(sinS) yields

(7.50)

It follows that

(7.51)

The expression given in Eqg. (7.51) is an approximation valid only for
at«fr. When the condition at«fr is not true, then the autocorrelation func-
tion needs to be used in order to develop an exact expression for the improve-
ment factor.

Example:

A certain radar has fr = 800Hz. Ifthe clutter rmsis av = 6.4Hz (wooded
hills with aw = 1.16311”m/hr), find the improvementfactor when a single
delay line canceler is used.

Solution:

In this case at = av. Itfollows that the clutter attenuation CA is

andsince So/Si = 2 = 3dB we get
IdB = (CA +So/Si)dB = 3+25.97 = 28.974dB.
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7.7.2. The General Case

A general expression for the improvement factor for the n-pulse MTI (shown
for a 2-pulse MTI in Eq. (7.51)) is given by

1 ) f *2An—
= b BRI i e/ (7.52)
where the double factorial notation is defined by
(2n—1)! = 1x3x5x...x(2n —1) (7.53)
(2Nl =2x4x...x2n (7.54)
Ofcourse 0! = 1; Q is defined by
Q2 = —pad- (7.55)

Ap
i=1

2
where Ai are the Binomial coefficients for the MTI filter. It follows that Q
for a 2-pulse, 3-pulse, and 4-pulse MTI are respectively

22070 1 (7.56)

Using this notation, then the improvement factor for a 3-pulse and 4-pulse
MTI are respectively given by

h —pul,, = 296 1 P.S7I

14-Pul- = k( 7-'9)

7.8. “MyRadar” Design Case Study - Visit 7

7.8.1. Problem Statement

The impact ofsurface clutter on the “‘MyRadar” design case study was ana-
lyzed. Assume that the wind rms velocity aw = 0.45m/s . Propose a clutter
mitigation process utilizing a 2-pulse and a 3-pulse MTI. All other parameters
are as calculated in the previous chapters.
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7.8.2. A Design

In earlier chapters we determined that the wavelength is X = 0.1m , the PRF
is fr = 1KHz, the scan rate is Tscan = 2s, and the antenna azimuth 3-db
beamwidth is ©a = 1.3°. It follows that

av="_ =2X045 = 9Hz (7.59)
Y X 0.1
as = 02659 T &= 0.265 « --—---- 2X-TH----- = 36.136Hz (7.60)
" aTscan 132 « —

x 2
132 X180 X2

Thus, the total clutter rms spectrum spread is

at=7a2+a2 = /8l + 1305.810 = ~1386.810 = 37.24Hz (7.61)

The expected clutter attenuation using a 2-pulse and a 3-pulse MTI are
respectively given by

h,ul..e = 2f = 2x)2x,4” 241 = 36531u:- 1563dB (762)

hrule = 2( " )4 =2X%« 1o 244 =667247] - 2824dB (763)

To demonstrate the effect of a 2-pulse and 3-pulse MTI on ‘MyRadar”
design case study, the MATLAB program “myradar_visit7.m” has been devel-
oped. Itis given in Listing 7.6 in Section 7.5. This program utilizes the radar
equation with pulse compression. In this case, the peak power was established
in Chapter 5as Pt< 10KW. Figs. 7.12 and 7.13 show the desired SNR and the
calculated SIR using a 2-pulse and a 3-pulse MTI filter respectively, for the
missile case. Figs. 7.14 and 7.15 show similar output for the aircraft case.

One may argue, depending on the tracking scheme adopted by the radar, that
for a tracking radar

at=av =9Hz (7.64)

since as = 0 for a radar that employes a monopulse tracking option. In this
design, we will assume a Kalman filter tracker. For more details the reader is
advised to visit Chapter 9.
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Missile case; 21 -frame cumulative detection
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Figure 7.12. SIR for the missile case using a 2-pulse MT] filter.

Figure 7.13. SIR for the missile case using a 3-pulse M T1 filter.
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Aircraft case; 21 -frame cumulative detection
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Figure 7.14. SIR for the aircraft case using a 2-pulse MTI filter.

Aircraft case; 21 -frame cumulative detection
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Figure 7.15. SIR for the aircraft case using a 3-pulse M T1 filter.
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As clearly indicated by the previous four figures, a 3-pulse MTI filter would
provide adequate clutter rejection for both target types. However, if we assume
that targets are detected at maximum range (90 Km for aircraft and 55 Km for
missile) and then are tracked for the rest of the flight, then 2-pulse MTI may be
adequate. This is true since the SNR would be expected to be larger during
track than it is during detection, especially when pulse compression is used.
Nonetheless, in this design a 3-pulse MTI filter is adopted.

7.9. MATLAB Program and Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun this code with different inputs in
order to enhance their understanding of the theory.

Listing 7.1. MATLAB Function “single_canceler.m”

function [resp] =singlecanceler (fofrl)
eps = 0.00001;

fofr = 0:0.01:fofrl;

argl =pi .*fofr;

resp = 4.0 .*((sin(argi))A2);

maxi = max(resp);

resp =resp ./makxi;

subplot(2,1,1)

plot(fofr,resp,'k")

xlabel (Normalizedfrequency -f/fr")
ylabel( Amplitude response - Volts)
grid

subplot(2,1,2)

resp=10. *log10(resp+eps);
plot(fofr,resp,'k");

axis tight

grid

xlabel (Normalizedfrequency -f/fr)
ylabel( Amplitude response - dB)

Listing 7.2. MATLAB Function “double canceler.m”
function [resp] = double_cancelerfofri)

eps = 0.00001;
fofr = 0:0.01:fofri;
argi =pi .*fofr;

© 2004 by Chapman & Hall/CRC CRC Press LLC



resp = 4.0 .* ((sin(argl)).A2);

maxi = max(resp);

resp =resp ./makxi;

resp2 =resp .* resp;
subplot(2,1,1);
plotfofr,resp,k--"fofr, resp2,'k’);
ylabel (Amplitude response - Volts)
resp2 =20. .* logl0(resp2+eps);
respi =20. .* logl0(resp+eps);
subplot(2,1,2)
plotfof,respl,'k--",fofr,resp2,'k");
legend (single canceler’,"double canceler)
xlabel (Normalizedfrequencyf/fr)
ylabel (Amplitude response - dB)

Listing 7.3. MATLAB Program ‘fig7_9.m”

clear all

fofr =0:0.001:1;

arg = 2.*pi.*fofr;

nume = 2. *(1.-cos(arg));

denll = (1. + 0.25 *0.25);
denl2 = (2. *0.25) .* cos(arg);
denl =denll - denl2;

den2l =1.0 + 0.7 *0.7;

den22 = (2. *0.7) .* cos(arg);
den2 =den2l - den22;

den3l = (1.0 + 0.9 *0.9);
den32 = ((2. *0.9) .* cos(arg));
den3 =den3l - den32;

respl =nume ./denl;

resp2 = nume ./den;

resp3 = nume ./den3;
plotfofr,respl,k’fofr,resp2, k-.’fofr,resp3,k--);
xlabel(Normalizedfrequency)
ylabel(Amplitude response")
legend(K=0.25"K=0.7,K=0.9)
grid

axis tight

Listing 7.4. MATLAB Program ‘fig7_10.m”

clear all
fofr =0:0.001:1;
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fi =4.0 .* fofr;

f2 =5.0 .*fofr;
argi =pi .*fi;
arg2 =pi .*f2;

respi =abs(sin(argi));

resp2 = abs(sin(arg2));

resp =respi+resp2;

maxi = max(resp);

resp =resp./maxi;
plot(fofr,respi,fofr,resp2,fofr,resp);
xlabel(*Normalizedfrequencyf/fr")
ylabel(*Filter response")

Listing 7.5. MATLAB Program ‘fig7_11.m”

clear all

fofr =0.0i:0.00i:32;

a =63.0/64.0;

termi = (i. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr))A2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr))A2;

resp = 0.25 .* sqrt(termi + term2);

resp =i0. .* log(resp);

plot(fofr,resp);

axis([0 32 -40 0]);

grid

Listing 7.6. MATLAB Program “myradar_visit7.m”

clear all

close all

clutterattenuation = 28.24;

thetaA= i.33; % antenna azimuth beamwidth in degrees
thetaE = ii; % antenna elevation beamwidth in degrees
hr =5.; % radar height to center ofantenna (phase reference) in meters
htm = 2000.; % target (missile) height in meters

hta =i0000.; % target (aircraft) height in meters

SL =-20; % radar rms sidelobes in dB

sigma0 =-i5; % clutter backscatter coefficient in dB

b =i.0e6; %i-MHz bandwidth

t0 = 290; % noise temperature 290 degrees Kelvin

f0 =3e9; % 3 GHz centerfrequency

pt =ii4.6; % radar peak power in KW

f =6; % 6 dB noisefigure

| =8; % 8 dBradar losses
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range = linspace(25,120,500); % radar slantrange 25 to 120 Km, 500 points
% calculate the clutter RCS and the associated CNRfor both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetak, thetaA, SL, range, hr, hta, pt,
fo, b, t0,f 1,2);

[sigmaCm,CNRm] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, htm, pt,
fo, b, t0,f 1,2);

close all

%% %% % %% %% % % %% %% % % % %% % % %%

np =4,

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvementfactor

Im =improvfac(np,pfa, pdm);

la = improvfac(np, pfa, pda);

% caculate the integration loss

Lm = 10*logl10(np) - Im;

La =10*logl0(np) - la;

pt =pt *1000; % peakpower in watts

range m = 1000 .* range; % range in meters

g =34.5139; % antennagain in dB

sigmam = 0.5; % missile RCS msquared

sigmaa = 4; % aircraft RCS msquared

nf=f; %noisefigure in dB

loss =1; % radar losses in dB

losstm = loss + Lm; % total lossfor missile

lossta = loss + La; % total lossfor aircraft

% modify pt by np*pt to accountfor pulse integration

SNRm =radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range m);
SNRa =radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range m);
snrm = 10.ASNRm./10);

snra = 10.A(SNRa./10);

CNRm = CNRm - clutter attenuation;

CNRa = CNRa - clutter attenuation;

cnrm = 10.ACCNRm./10);

cnra = 10.ACNRa./10);

SIRm = 10*log10(snrm ./ (1+cnrm));

SIRa = 10*logl0(snra ./ (1+cnra));

%% % % % % % % % % %% % % % %% % % % %% % % % % % % % % %
figure(3)

plot(range, SNRm, 'K, range, CNRm,’k:", range,SIRm, 'k-.")

grid

legend(*DesiredSNR; from Chapter 5',"CNR",'SIR with 3-pulse’,"MTIfilter")
xlabel('SlantRange in Km)
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ylabel('dB)

title("Missile case; 2i-frame cumulative detection)

% 9% % % % % % % % % %% % % % % %% % % % %% % % % %% % % % % % % % % %
figure(4)

plot(range, SNRa,'k’, range, CNRa,’k:", range,SIRa, k-.")

grid

legend(*DesiredSNR; from Chapter 5',"CNR",'SIR with 3-pulse’,"MT Ifilter")
xlabel('SlantRange in Km)

ylabel(*dB")

title(Aircraft case; 2i-frame cumulative detection)
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Chapter 8 PhasedArrays

8.1. Directivity, Power Gain, and Effective Aperture

Radar antennas can be characterized by the directive gain GD, power gain
G, and effective aperture Ae. Antenna gain is a term used to describe the abil-
ity of an antenna to concentrate the transmitted energy in a certain direction.
Directive gain, or simply directivity, is more representative of the antenna radi-
ation pattern, while power gain is normally used in the radar equation. Plots of
the power gain and directivity, when normalized to unity, are called antenna
radiation pattern. The directivity of a transmitting antenna can be defined by

G _ maximum radiation intensity 81)
D average radiation intensity

The radiation intensity is the power per unit solid angle in the direction
(9, @) and denoted by P(9, ). The average radiation intensity over 4n radi-
ans (solid angle) is the total power divided by 4n . Hence, Eq. (8.1) can be
written as

G _ 4n(maximum radiated power/unit solid angle) ©2)
total radiated power '

It follows that

JJP(9, d)d9dp
00
As an approximation, it is customary to rewrite Eq. (8.3) as

319
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G 4n

(84)
D*“ 63%3

where 93 and dB are the antenna half-power (3-dB) beamwidths in either
direction.

The antenna power gain and its directivity are related by

G = prGD (85)

where pr is the radiation efficiency factor. In this book, the antenna power
gain will be denoted as gain. The radiation efficiency factor accounts for the
ohmic losses associated with the antenna. Therefore, the definition for the
antenna gain is also given in Eq. (8.1). The antenna effective aperture Ae is
related to gain by

Ae = an (8.6)

where X is the wavelength. The relationship between the antenna’s effective
aperture Ae and the physical aperture A is

Ae = pA 8.7)
o<p<1

p is referred to as the aperture efficiency, and good antennas require p — 1
(in this book p = 1 is always assumed, i.e., Ae = A).

Using simple algebraic manipulations of Eqgs. (8.4) through (8.6) (assuming
that pr = 1)yields

4nAe 4n

G = 5T *gas ©.8)

Consequently, the angular cross section of the beam is

X2
93¢8* A ©®

Eq. (8.9) indicates that the antenna beamwidth decreases as ,,jAe increases. It
follows that, in surveillance operations, the number of beam positions an
antenna will take on to cover avolume V is

NBeans > 9-(h 4.10>
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and when V represents the entire hemisphere, Eq. (8.10) is modified to

NBeans 211 : ZnAe"% 8-11
2y 1)

8.2. Near and Far Fields

The electric field intensity generated from the energy emitted by an antenna
is a function of the antenna physical aperture shape and the electric current
amplitude and phase distribution across the aperture. Plots of the modulus of
the electric field intensity of the emitted radiation, |E9, )], are referred to as
the intensity pattern of the antenna. Alternatively, plots of |E(9, )] are called
the power radiation pattern (the same as P (9, &v)).

Based on the distance from the face of the antenna, where the radiated elec-
tric field is measured, three distinct regions are identified. They are the near
field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel
regions, rays emitted from the antenna have spherical wavefronts (equi-phase
fronts). In the Fraunhofer regions the wavefronts can be locally represented by
plane waves. The near field and the Fresnel regions are normally of little inter-
est to most radar applications. Most radar systems operate in the Fraunhofer
region, which is also known as the far field region. In the far field region, the
electric field intensity can be computed from the aperture Fourier transform.

Construction of the far criterion can be developed with the help of Fig. 8.1.
Consider a radiating source at point O that emits spherical waves. A receiving
antenna of length d is at distance r away from the source. The phase differ-
ence between a spherical wave and a local plane wave at the receiving antenna
can be expressed in terms of the distance 5 r. The distance 5r is given by

5 _AO-0OB _ ~r2+ -r (8.12)

and since in the far field r » d, Eq. (8.12) is approximated via binomial expan-
sion by

d32 n d2
5r _ rl1al+024) - Mr (8-13)

It is customary to assume far field when the distance 5r corresponds to less
than 1/ 16 ofa wavelength (i.e., 22.5°). More precisely, if

5r _ d /8r<X/16 (8.14)
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then a useful expression for far field is

2
r>2d /X (8.15)

Note that far field is a function of both the antenna size and the operating
wavelength.

8.3. General Arrays

An array is a composite antenna formed from two or more basic radiators.
Each radiator is denoted as an element. The elements forming an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically, in many directions. Electronic steering is
achieved by controlling the phase of the current feeding the array elements.
Arrays with electronic beam steering capability are called phased arrays.
Phased array antennas, when compared to other simple antennas such as dish
reflectors, are costly and complicated to design. However, the inherent flexibil-
ity of phased array antennas to steer the beam electronically and also the need
for specialized multi-function radar systems have made phased array antennas
attractive for radar applications.
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Figure 8.2 Geometry for an array antenna.
Single element

Fig. 8.2 shows the geometrical fundamentals associated with this problem.
Ingeneral, consider the radiation source located at (x1,y 1, z1) with respectto a
phase reference at (0, 0, 0). The electric field measured at far field point P is

_iji
E(0, =lo - 8.16
() R0 @ (8.16)
where 10 is the complex amplitude, k = 2n/X is the wave number, and
f(o, ) is the radiation pattern.

Now, consider the case where the radiation source is an array made of many
elements, as shown in Fig. 8.3. The coordinates of each radiator with respect to
the phase reference is (xi,y, zt), and the vector from the origin to the ith ele-
ment is given by

ri = axxi +ayy, +az, (8.17)

The far field components that constitute the total electric field are

KR
E QO &) =1,— f(0i, o) (8.18)

where

Ri= IRl =ir-r
(8.19)

=N J1+ (X2 +'Yy2+22)Trr —2(XX~+'yy~+2zzi)7r2

Using spherical coordinates, where x = rsin0Ocosc, y = rsin0sind, and
z = rcos0 yields
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Figure 8.3 Geometry for an array antenna.

2 2 .24 |
{_X':ﬂ_“'z) {Fa? (820)

«
r2 - r2
Thus, a good approximation (using binomial expansion) for Eq. (8.19) is
Ri _ r-r(xisin9 costp+yisin9sind+ zfcos9) (8.21)

It follows that the phase contribution at the far field point from the ith radiator
with respect to the phase reference is

e-ij N ikr ejk(xi sindcosgprytsindsind+zt0os9)

(8.22)
Remember, however, that the unit vector o along the vector I" is
P0 L axsing cosch+ aysin9 sindp+ azcos9 (8.23)
H
Hence, we can rewrite Eq. (8.22) as
e—iji B e-jkr eik(ri-ro) B e-]kre 0] (8.24)
Finally, by virtue of superposition, the total electric field is
N
EOQ, &) _ £ le (8.25)
i1

which is known as the array factor for an array antenna where the complex cur-
rent for the ith elementis Ii.
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In general, an array can be fully characterized by its array factor. This is true
since knowing the array factor provides the designer with knowledge of the
array’s (1) 3-dB beamwidth; (2) null-to-null beamwidth; (3) distance from the
main peak to the first sidelobe; (4) height of the first sidelobe as compared to
the main beam; (5) location of the nulls; (6) rate of decrease of the sidelobes;
and (7) grating lobes’ locations.

8.4. Linear Arrays

Fig. 8.4 shows a linear array antenna consisting of N identical elements. The
element spacing is d (normally measured in wavelength units). Let element #1
serve as a phase reference for the array. From the geometry, it is clear that an
outgoing wave at the nth element leads the phase at the (n + 1)th element by
kdsiny , where Kk = 2n/X. The combined phase at the far field observation
point P is independent of ¢ and is computed from Eq. (8.24) as

T(y, ¢ = K(riero) = (n- 1)kdsiny (8.26)

Thus, from Eq. (8.25), the electric field at a far field observation point with
direction-sine equal to siny (assuming isotropic elements) is

N
E(siny) = £ j n-1)(kdsiny) 8.27)
n=1

Expanding the summation in Eq. (8.27) yields

E(siny) = l+eldsny + ... +e (N- L)(kdsiny) (8.28)

The right-hand side of Eq. (8.29) is a geometric series, which can be expressed
in the form

l+a+az2+a3+..+aN ] = 11—z (8.29)

Replacing a by e Idgllr% yields

E(sin ) = 1- eNkdsmy = 1- (cosNkdsiny) - /(sinM-fi-siny) (8.30)
1 _ e'kdsiny 1- (coskdsiny) -j (sinkdsiny)

The far field array intensity pattern is then given by

|E(siny)] = JE(siny )E*(siny) (8.31)
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Figure 8.4. Linear array ofequally spaced elements.

Substituting Eq. (8.30) into Eqg. (8.31) and collecting terms yield

|E(siny)] _ /|(1- costdsiny)2+(sindesiny)2 8.32)
\ (1 - coskdsiny)2+(sinkdsiny)2
_ M1- cosNkdsiny
V 1- coskdsiny

2
and using the trigonometric identity 1- cos9 _ 2(sin9/2) yields
sin sin(Nkdsiny/2) 8.33)
Bl sin(kdsiny / 2)
which is a periodic function of kdsiny , with a period equal to 2n .
The maximum value of |Esiny)|,which occursaty _ 0, isequalto N. It
follows that the normalized intensity pattern is equal to
. N sin((Nkdsiny)/2- (8.34)
En(siny™ _ N sin((kdsiny)/ 2)

The normalized two-way array pattern (radiation pattern) is given by
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G<Si,y) = E.(smy)]2=N- 0 = 835)

Fig. 8.5 shows a plot of Eq. (8.35) versus sin9 for N = 8. The radiation
pattern G<siny) has cylindrical symmetry about its axis <siny = 0), and is
independent of the azimuth angle. Thus, it is completely determined by its val-
ues within the interval <0 <y <n). This plot can be reproduced using MAT-
LAB program ‘fig8_5.m” given in Listing 8.1 in Section 8.8.

The main beam of an array can be steered electronically by varying the
phase of the current applied to each array element. Steering the main beam into
the direction-sine siny 0 is accomplished by making the phase difference
between any two adjacent elements equal to kdsiny 0. In this case, the normal-
ized radiation pattern can be written as

1 2sin[<Nkd/2)<siny - siny 0)]

G<si = —
siny) N2 o0 sin[<kd/2)(siny - siny 0)]

(8.36)
If y 0 = 0 then the main beam is perpendicular to the array axis, and the array
is said to be a broadside array. Alternatively, the array is called an endfire array
when the main beam points along the array axis.

The radiation pattern maxima are computed using L’Hopital’s rule when
both the denominator and numerator of Eq. (8.35) are zeros. More precisely,

'-‘-9'-§2-i-r1¥ = +mn m=o12, 837)
\
0.6
6 1
v o vov o ivov 1 1 v vivivuv

-08 -06 -04

sine angle -dimensionless

Figure 8.5a. Normalized radiation pattern for a linear array; N = 8; d = X.
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Figure 8.5hb. Polar plot for the array pattern in Fig. 8.5a.

Figure 8.5c. Polar plot for the power pattern in Fig. 8.5a.
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Electric Far Field (E-Total) fdBI

Figure 8.5d. Three-dimensional plot for the radiation pattern in Fig. 8.5a.

Solving for y yields

f X
ym= asin2x—] 'm=0,12"mm (8 38)

where the subscript m is used as a maxima indicator. The first maximum
occurs at yo = 0, and is denoted as the main beam (lobe). Other maxima
occurring at \™\> 1 are called grating lobes. Grating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in Eq. (8.38) is greater than unity; it follows
that d <X. Under this condition, the main lobe is assumed to be at y = 0
(broadside array). Alternatively, when electronic beam steering is considered,
the grating lobes occur at

Isiny - siny 0] = i)ﬁ] yn=12,.. (8.39)

Thus, in order to prevent the grating lobes from occurring between +90 ° , the
element spacing should be d <X/2 .

The radiation pattern attains secondary maxima (sidelobes) when the numer-
ator of Eq. (8.35) is maximum, or equivalently
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Kblwily = :(21+ 1)E = 1,2, . (8.40)

Solving for y yields

yl = asin0

I+

X = 1>2> . (8 41)

where the subscript i is used as an indication of sidelobe maxima. The nulls of
the radiation pattern occur when only the numerator of Eq. (8.36) is zero. More

precisely,
N . n=12 ..
—kdsiny = %nn ; (8.42)
2 n ®N, 2N, ...
Again solving for y yields
yn= as'oﬂZ%)_(r_]B .= 12>, 843
n 0 dNJ n®N, 2N, ...

where the subscript n is used as anull indicator. Define the angle which corre-
sponds to the half power point as y ia. It follows that the half power (3 dB)
beamwidth is 2 Jym- vy Ii]. This occurs when

N kdsiny n= 1.391 di A yii = asin 8.44
2 y radians =y bond N 1 @49

84.1. Array Tapering

Fig. 8.6a shows a normalized two-way radiation pattern of a uniformly
excited linear array of size N = 8, element spacing d = X/2.The first side-
lobe is about 13.46 dB below the main lobe, and for most radar applications
this may not be sufficient. Fig. 8.6b shows the 3-D plot for the radiation pattern
shown in Fig. 8.6.a.

In order to reduce the sidelobe levels, the array must be designed to radiate
more power towards the center, and much less at the edges. This can be
achieved through tapering (windowing) the current distribution over the face
of the array. There are many possible tapering sequences that can be used for
this purpose. However, as known from spectral analysis, windowing reduces
sidelobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the
trade-off between sidelobe reduction and main beam widening. The MATLAB
signal processing toolbox provides users with awide variety of built-in win-
dows. This list includes: “Bartlett, Barthannwin, Blackmanharrls, Bohman-
win, Chebwlin, Gausswin, Hamming, Hann, Kaiser, Nuttallwin, Rectwin,
Trlang, and TukeywIn.”
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sine angle - dimensionless

Figure 8.6a. Normalized pattern for alineararray. N = 8,d = X/2.

50

45

Figure 8.6b. Three-dimensional plot for the radiation pattern in Fig. 8.6a
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Table 8.1 summarizes the impact of most commonwindows on the array pat-
tern in terms of main beam widening and peak reduction. Note that the rectan-
gular window is used as the baseline. This is also illustrated in Fig. 8.7.

TABLE 8.1. Common windows.

Window Null-to-null Beamwidth Peak Reduction
Rectangular 1 1
Hamming 2 0.73
Hanning 2 0.664
Blackman 6 0.577
Kaiser (P = 6) 2.76 0.683
Kaiser (P = 3) 175 0.882

Figure 8.7. Most common windows. This figure can be reproduced using
M ATLAB program fig8_7.m” given in Listing 8.2 in Section 8.8.
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8.4.2. Computation ofthe Radiation Pattern via the DFT

Fig. 8.8 shows alinear array of size N , element spacing d, and wavelength
X. The radiators are circular dishes of diameter d. Let w(n) and @ (n),
respectively, denote the tapering and phase shifting sequences. The normalized
electric field at afar field point in the direction-sine siny is

E(siny) = 'V ‘'wn)e " V)

(849

n=20

where in this case the phase reference is taken as the physical center of the
array, and

Ob = A)’(\—siny (8.46)

Expanding Eq. (8.45) and factoring the common phase term
exp[j(N - 1)Ad/2] yield

E (siny) = e (N-D)Ow(0)e-(N- habp+ w(1l)e-'(N-2ap (8.47)
+ ... +w(N- 1)}

By using the symmetry property of awindow sequence (remember that awin-
dow must be symmetrical about its central point), we can rewrite Eq. (8.47) as

E (siny) = gdgw(N- 1)eN - nap+ w(N - 2)e-(N - 2ap (8.48)
+ ... +w(0)}

d

Figure 8.8. Linear array ofsize 5, with tapering and phase shifting hardware.
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where d® = (N- 1)4Adp/2.

Define {\\ = exp< jA®n);n=0, 1, ... ,N- 1}. It follows that
E<siny) = e™[w<0) + w<1)W + ... + w<N- 1)Vf 1] (8.49)
N-1
A
=e
n=0

The discrete Fourier transform of the sequence w<n) is defined as

N- 1 <j2nnq)
W(q) = ~ w<h)e N ;g =20,1, y,N-1 (8.50)
n=0

The set { sinyq} which makes V1 equal to the D FT kernel is

sinyq = Nd ;. g=20,1 N- 1 (8.51)

Then by using Eq. (8.51) in Eq. (8.50) yields

E(siny) = e OW<Q) (8.52)

The one-way array pattern is computed as the modulus of Eq. (8.52). It follows
that the one-way radiation pattern of atapered linear array of circular dishes is

G<siny) = Ge \W<g)]| (853)

where Ge is the element pattern.

In practice, phase shifters are normally implemented as part of the Transmit/
Receive (TR) modules, using afinite number of bits. Consequently, due to the
quantization error (difference between desired phase and actual quantized
phase) the sidelobe levels are affected.

M ATLAB Function “linear_array.m”

The function “lineararray.m” computes and plots the linear array gain pat-
tern as afunction of real sine-space (sine the steering angle). It is givenin List-
ing 8.3 in Section 8.8. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, thetaO, winid, win, nbits)
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where

Symbol Description Units Status
Nr number ofelements in array none input
dolr element spacing in lambda units wavelengths input
thetal steering angle degrees input
winid -1: No weighting is used none input
1: Use weighting defined in win
win windowfor sidelobe control none input
nbits negative #: perfect quantization none input
positive # use 2nPhle quantization levels
theta real angle availablefor steering degrees output
patternr array pattern dB output
patterng gain pattern dB output

A MATLAB based GUI workspace called “lnear_array_gul.m”1 was
developed for this function. It shown in Fig. 8.9.

Initialize 1 Plot
Number of 25
elements
Window choice
Element spacing 0.5
in lambda units [n
Steering angle 0.0
in degrees
nbits -3
neg ==> no

Quantization

Figure 8.9. M ATLAB G Ulworkspace associated with the function
“linear_array.m”.

1 The MATLAB “Signal Processing” Toolbox is required to execute this program.
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Figs. 8.10 through 8. 18 respectively show plots of the array gain pattemver-

sus steering angle for the following cases:
[theta, patternr, patterng] = linear_array(25, 0.5,
[theta, patternr, patterng] = linear_array(25, 0.5,
[theta, patternr, patterng] = linear_array(25, 0.5,
[theta, patternr, patterng] = linear_array(25, 0.5,
[theta, patternr, patterng] = linear_array(25, 0.5,
[theta, patternr, patterng] = linear_array(25, 1.5,
[theta, patternr, patterng] = linear_array(25, 1.5,
[theta, patternr, patterng] = linear_array(25, 1.5,

[theta, patternr, patterng] = linear_array(25, 1.5,

o, -1, -1, -3);

0, 1, Hamming’ -3);
5, -1, -1, 3);

5, 1, Hamming’ 3);
25, 1, Hamming’ 3);
40, -1, -1, -3);

40, 1, Hamming’ -3);
-40, -1, -1, 3);

-40, 1, Hamming’, 3);

Users are advised to utilize the G Ul developed for this function and test a

few cases of their own.

-80 -eo ~10 -20 0 20
Steering angle - degrees

Figure 8.10. Array gain pattern: Nr = 25; dol

win = none; nbits = -3.
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r=0.5; 90 = 0°;



-00 -60 -40 -20 0 20 40 60 80
Steering angle - degrees

Figure 8.11. Array gain pattern: Nr = 25; dolr = 0.5; 90 = 0°;

win = Hamming; nbits = -3

-80 -60 -40 -20 0 20 40 60 80
Steering angle - degrees

Figure 8.12. Array gain pattern: Nr = 25; dolr = 0.5; 90 = 5°;

win = none; nbits = 3
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-80 -60 -40 -20 0 20 40 60 BO
Steering angle - degrees

Figure 8.13. Array gain pattern: Nr = 25; dolr = 0.5; 90 = 5°;

win = Hamming; nbits = 3

-80 -60 -40 -20 0 20 40 60 80
Steering angle - degrees

Figure 8.14. Array gain pattern: Nr = 25; dolr = 0.5; 90 = 25°;

win = Hamming; nbits = 3
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J i i i i
-40 -20 0 20 40 00
Steering angle - degrees

-80 -60

Figure 8.15. Array gain pattern: Nr = 25; dolr = 1.5; 90 = 40°;
= -3

win = none; nbits

-40 -20 0 20 40 00 80
Steering angle - degrees
Figure 8.16. Array gain pattern: Nr = 25; dolr = 1.5; 90 = 40°;

= Hamming;

win = nbits = -3
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udB

Gain  pettem

Steering angle - degrees

is'

8.17. Array gain pattern: Nr = 25; dolr = 1.5; 90 = -40°

’

win = none; nbits = 3

-B

Gain pettem

Steering angle - degrees

Figure 8.18. Array gain pattern: Nr = 25; dolr = 1.5; 90 = -40° ;

,

win = Hamming; nbits = 3
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8.5. PlanarArrays

Planar arrays are a natural extension of linear arrays. Planar arrays can take
on many configurations, depending on the element spacing and distribution
defined by a “grid.” Examples include rectangular, rectangular with circular
boundary, hexagonal with circular boundary, circular, and concentric circular
grids, asillustrated in Fig. 8.19.

Planar arrays can be steered in elevation and azimuth ((9, ), as illustrated
in Fig. 8.20 for arectangular grid array. The element spacing along the x- and
y-directions are respectively denoted by dx and dy . The total electric field at a
far field observation point for any planar array can be computed using Eqs.
(8.24) and (8.25).

©

Figure 8.19. Planar array grids. (a) Rectangular; (b) Rectangular with circular
boundary; (c) Circular; (d) Concentric circular; and (e) Hexagonal.
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Rectangular Grid Arrays

~ Considerthe N XM rectangular grid as shown in Fig. 8.20. The dot product
I «r0, where the vector ri is the vectorto the ith elementin the aray and r 0
is the unit vector to the far field observation point, can be broken linearly into
its x- and”™-components. It follows that the electric field components due to the
elements distributed along the x- andy-directions are respectively, given by

j (n- 1)kdxsin9 cosdp

E..Q,0) =2 v (8.54)
n=1
N
£ 5 ej(m— 1)kd, sin9sindp (8.55)
m=1
The total electric field at the far field observation point is then given by
E(9, d = Ex(9, DEY(9, D = (8.56)
2 n N N
j(m - 1)kd,sin9sindp j(n- 1)kdxsin9 cosdp
7 I, e 7 Ix e
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Eq. (8.56) canbe expressed in terms of the directional cosines

u = sin9cosd
(8.57a)
v = sin9sind
(8.57b)
9 = asinn/u2 ey
The visible region is then defined by
u2+v2<1 (8.58)

It is very common to express a planar array’s ability to steer the beam in
space in terms of the U, V space instead of the angles 9, cp. Fig. 8.21 shows
how abeam steered in a certain 9, dodirection is translated into U, V space.
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where | n represents the complex current distribution for the nth element.

When the array main beam is directed in the (90, d®), Eq. (8.65) takes on the
following form

N

£(9, dha) = }/ i In expM [sin9 cos(®n - ) - sin9oCos (¢n - dw)U(8.66)

n=1

M ATLAB program “circular_array.m”

The MATLAB program “circular array.m” calculates and plots the rectan-
gular and polar array patterns for a circular array versus 9 and do constant

planes. It is given in Listing 8.4 in Section 8.8. The input parameters to this
program include:

Symbol Description Units
a Circular array radius X
N number ofelements none
thetaO main direction in 9 degrees
phio main direction in d degrees
Variations Theta’, or Phi’ none
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Symbol Description

phid constant doplane

thetad constant 0 plane

Consider the case when the inputs are:

a 1.5
N 10 dipole antennas
thetaO
O 2 POUIC
phio B = ©0o®
Variations Theta’
phid
'8'9- 2 o °
thetad
Cn g BOTC

Fig.s 8.23 and 8.24 respectively show the array pattemn in relative amplitude
and the power pattem versus the angle 0 . Figs. 8.25 and 8.26 are similar to
Figs. 8.23 and 8.24 except in this case the pattems are plotted in polar coordi-

nates.

Fig. 8.27 shows a plot of the normalized single element pattem (upper left
comer), the normalized array factor (upper right corner), and the total aray
pattern (lower left corner). Fig. 8.28 shows the 3-D pattern for this example in

the 0, dospace.

Figs. 8.29 through 8.33 are similar to those in Figs. 8.23 through 8.27,

except in this case the input parameters are given by:

a 15
N 10dipole antennas
thetaO
S5 z MO
phio & = 0o°
Variations Phi’
phid
_8_Q 2 o °
thetad
Cp g ROTC
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Figure 8.23. Array factor pattemn for acircular array, using the parameters
defined in the table on top of page 346 (rectangular coordinates).

phi = 90° plane
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Figure 8.24. Same as Fig. 8.23 using dB scale.
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Figure 8.26. Same as Fig. 8.25 using dB scale.
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Figure 8.27. Element, array factor, and total pattem for the circular array
defined in the table on top of page 346.

Figure 8.28. 3-D total array pattemn (in 9, dospace) for the circular array
defined in the table on top of page 346.
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Theta = 90? plane
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Figure 8.29. Array factor pattem for acircular array, using the parameters
defined in the table on bottom of page 346 (rectangular coordinates).

Theta= 90P plane
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Figure 8.30. Same as Fig. 8.29 using dB scale.
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Total normalized E field [dB]

Figure 8.33. Element, array factor, and total pattem for the circular array
defined in the table on bottom of page 346.

Concentric Grid Circular Arrays

The geometry of interest is shown in Fig. 8.19d and Fig. 8.34. In this case,
N2 elements are distributed equally on the outer circle whose radius is a2,
while other N1 elements are linearly distributed on the inner circle whose
radius is al. The element located on the center of both circles is used as the
phase reference. In this configuration, there are N1+ N2+ 1 total elements in
the array.

The array patternis derived in two steps. First, the array pattern correspond-
ing to the linearly distributed concentric circular arrays with N1 and N2 ele-
ments and the center element are computed separately. Second, the overall
array pattern corresponding to the two concentric arrays and the center element
are added. The element pattern of the identical antenna elements are consid-
ered in the first step. Thus, the total pattern becomes,

e(,9) =EQo0,d)+e (0,Pa)+£2(0,da) (8.67)

Fig. 8.35 shows a 3-D plotfor concentric circular array in the 0, ® space for

the following parameters:
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al Ni a2 N2

1x 8 (X/2 dipoles) 2X 8 (X/2 dipoles)

Figure 8.34. Concentric circular array geometry.

Total normakzed E field

----- n
- 09
Figure 8.35. 3-D array pattern for aconcentric circular array; 0 = 45°

and ® = 90°
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Rectangular Grid with CircularBoundary Arrays

The far field electric field associated with this configuration can be easiy
obtained from that corresponding to arectangular grid. In order to accomplish
this task follow these steps: First, select the desired maximum number of ele-
ments along the diameter of the circle and denote it by Nd. Also select the
associated element spacings dx, dy. Define a rectangular aray of size
Ndx Nd.Draw acircle centered at (x,y) = (0, 0) with radius r d where

Nd- 1
r, = a- T nx (8:68)

and Ax < dx/ 4 . Finally, modify the weighting function across the rectangular
array by multiplying it with the two-dimensional sequence a(m, n), where

1 , if dis to (m,n)th element<rd
a(m,n) = (869)
0 ; elsewhere

where distance, dis, is measured from the center of the circle. This is illus-
trated in Fig. 8.36.

Figure 8.36. Elements with solid dots have a(m, n) = 1; other elements
have a(m,n) = 0.

Hexagonal Grid Arrays

The analysis provided in this section is limited to hexagonal arrays with cir-
cular boundaries. The horizontal element spacing is denoted as dx and the ver-
tical element spacing is

(8.70)
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The array is assumed to have the maximum number of identical elements along
the x-axis (y = 0). This number is denoted by Nx, where Nx is an odd num-
ber in order to obtain a symmetric array, where an element is present at
(x,y) = (0, 0). The number of rows in the array is denoted by M . The hori-
zontal rows are indexed by m which varies from -(Nx- 1)/2 to (Nx- 1)/2.
The number of elements in the mth row is denoted by Nr and is defined by

Nr = Nx- | (8.71)

The electric field at a far field observation point is computed using Eq.
(8.24) and (8.25). The phase associated with (m, n)th location is

2ndx . .
N, -sin9 m + 23 cosch+ n“2-sindp 8.72)

M ATLAB Function “rect_array.m”

The function “rectarray.m” computes and plots the rectangular antenna
gain pattern in the visible U,V space. This function is given in Listing 8.5 in
Section 8.8. The syntax is as follows:

[pattern] = rect_array(Nxr, Nyr, dolxr, dolyr, thetaO, phiO, winid, win, nbits)

where
Symbol Description Units Status
Nxr number ofelements along x none input
Nyr number ofelements alongy none input
dolxr element spacing in lambda units along x wavelengths input
dolyr element spacing in lambda units alongy wavelengths input
thetaO elevation steering angle degrees input
phiO azimuth steering angle degrees input
winid -1: No weighting is used none input
1: Use weighting defined in win
win windowfo r sidelobe control none input
nbits negative #: perfect quantization none input
positive # use 2" quantization levels
pattern gain pattern dB output
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A MATLAB based GUI workspace called “array.m” was developed for this
function. It shown in Fig. 8.37. The user is advised to use this MATLAB GUI1
workspace to generate array gain patterns that match this requirement.

Fig.s 8.38 through 8.43 respectively show plots of the array gain pattern in
the U-V space, for the following cases:

""""""""""""""" window array pattern
___ | CditTe*: [non! 3 ltectanguiar  ~
Ncirc | EditTex
dolxr | EditTex
dolyr | EditTex
thetaO Y~ Edit Tex: deg
phio 1 Edit Tex: deg
nbitc | CditTex

Figure 8.37. MATLAB G Ulworkspace “array.m. ™

[pattern] = rect_array(15, 15, 0.5, 0.5, 0, O, -1, -1, -3) (8.73)
[pattern] = rect_array(15, 15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.74)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, 1, Hamming’, -3) (8.75)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.76)
[pattern] = rect_array(15, 15, 1, 0.5, 10, 30, -1, -1, -3) (8.77)
[pattern] = rect_array(15, 15, 1, 1, 0, 0, -1, -1, -3) (8.78)

1 This GUIlwas developed by Mr. David J. Hall, Consultant to Decibel Research, Inc.,
Huntsville, Alabama.
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dB

Gain pattern -

Figure 8.38a. 3-D gain pattemn corresponding to Eq. (8.73).

Figure 8.38b. Contour plot corresponding to Eq. (8.73).
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Electric Far Field (E-Total) [dB]
80

10

60

Figure 8.38c. Three-dimensional plot (9, dospace) coresponding to Eq. (8.73).

-dB

Gain pattern

Figure 8.39a. 3-D gain pattern corresponding to Eq. (8.74).

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 8.39b. Contour plot corresponding to Eq. (8.74).

Figure 8.39c. 3-D plot (9, db space) corresponding to Eq. (8.74).
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- dB

Gain pattern

Figure 8.40a. 3-D gain pattem corresponding to Eq. (8.75).

Figure 8.40b. Contour plot corresponding to Eq. (8.75).
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Electric Far Field (E-Total) [dB]

X

Figure 8.41c. 3-D plot (0, dospace) corresponding to Eq. (8.76).

- dB

Gain pattern

Figure 8.42a. 3-D gain pattern corresponding to Eq. (8.77).
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Figure 8.42c. 3-D plot (9, db space) corresponding to Eq. (8.77).
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Figure 8.43b. Contour plot corresponding to Eq. (8.78).
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Electric Far Field (E-Total) [dB]

Figure 8.43c. 3-D plot (9, dospace) corresponding to Eq. (8.78).

M ATLAB Function “circ_array.m”

The function “circ array.m” computes and plots the rectangular grid with a
circular array boundary antenna gain pattern in the visible U,V space. This
function is given in Listing 8.6 in Section 8.8. The syntax is as follows:

[pattern, amn] = circ_array(N, dolxr, dolyr, thetaO, phi0, winid, win, nbits);

where

Symbol Description Units Status

N number ofelements along diameter none input

dolxr element spacing in lambda units along x wavelengths input
dolyr element spacing in lambda units alongy wavelengths input
theta0 elevation steering angle degrees input
phio azimuth steering angle degrees input
winid -1: No weighting is used none input

1: Use weighting defined in win
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Symbol Description
win windowfor sidelobe control

nbits negative #: perfect quantization

positive # use 2"°"° quantization levels
patterng gain pattern

amn a(m,n) sequence definedin Eq. (8.68)

Units
none

none

dB

none

Status
input
input

output
output

Figs. 8.44 through 8.49 respectively show plots of the array gain pattern ver-

sus steering for the following cases:

[pattern, amn] = circ_array(15, 0.5, 0.5, O, O, -1, -1, -3)
[pattern, amn] = circ_array(15, 0.5, 0.5, 20, 30, -1, -1, -3)
[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, 1, Hamming’ -3)
[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, -1, -1, 3)

[pattern, amn] = circ_array(15, 1, 0.5, 10, 30, -1, -1, -3)

[pattern, amn] = circ_array(15, 1, 1, 0, O, -1, -1, -3)

@®79
(8.80)
8381
882
883

(8.84)

Note the function “circ array.m” uses the function “rec to circ.m”, which

computes the array a(m, n). It is givenin Listing 8.7 in Section 8.8.

The MATLAB GUI workspace defined in “array.m” canbe used to execute

this function.
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dB

Gain pattemn -

Figure 8.44a. 3-D gain pattemn corresponding to Eq. (8.79).

-1 -0.5 0 05 1
\

Figure 8.44b. Contour plot corresponding to Eq. (8.79).
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Electric Far Field (E-Total) [dB] 190

10

Figure 8.44c. 3-D plot (9, dospace) comresponding to Eq. (8.79).

Figure 8.45a. 3-D gain pattern corresponding to Eq. (8.80).
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Figure 8.45b. Contour plot corresponding to Eq. (8.80).

Figure 8.45c. 3-D plot (9, d space) corresponding to Eq. (8.80).
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Gain pattern « dB

Figure 8.46a. 3-D gain pattern coresponding to Eq. (8.81).

Figure 8.46b. Contour plot corresponding to Eq. (8.81).
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- dB

Gain pattern

Figure 8.47a 3-D gain pattemn corresponding to Eq. (8.82).

Figure 8.47b. Contour plot corresponding to Eq. (8.82).
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Electric Far Field (E-Total) [dB]

Figure 8.47c. 3-D plot (0, dospace) corresponding to Eq. (8.82).

- dB

Gain pattern

Figure 8.48a. 3-D gain pattern corresponding to Eq. (8.83).
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Figure 8.48b. Contour plot corresponding to Eq. (8.83).

Electric Far Field (E-Total) [dB]

Figure 8.48c. 3-D plot (9, d space) corresponding to Eq. (8.83).
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Figure 8.49a. 3-D gain pattem comresponding to Eq. (8.84).

Figure 8.49b. Contour plot corresponding to Eq. (8.84).
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Electric Far Field (E-Total) [dB]

Figure 8.49c. 3-D plot (9, do space) corresponding to Eq. (8.84).

The program “array.m” also plots the array’s element spacing pattern. Figs.
8.50a and 8.50b show two examples. The “x 5 indicate the location of actual
active array elements, while the “o% ” indicate the location of dummy or virtual
elements created merely for computational purposes. More precisely, Fig.
8.50a shows arectangular grid with circular boundary as defined in Eqgs. (8.67)
and (8.68) with dx = dy = 0.5X and a = 0.35X.Fig. 8.50b shows asimilar
configuration except that an element spacing dx = 15X and dy = 0.5X.

8.6. Array Scan Loss

Phased arrays experience gain loss when the beam is steered away from the
array boresight, or zenith (normal to the face of the array). This loss is due to
the fact that the array effective aperture becomes smaller and consequently the
array beamwidth is broadened, as illustrated in Fig. 8.51. This loss in antenna
gain is called scanloss, L scan, where

A9 is effective aperture area at scan angle 9, and G9 is effective array gain at
the same angle.
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Figure 8.50a. A 15 element circular array made from arectangular
array with circular boundary. Element spacing dx = 0.5X = dv.

antenna spacing pattern
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Figure 8.50b. A 15 element circular array made from arectangular array

with circular boundary. Element spacing dv = 0.5X and dx = 1.5X.
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*

containing t_ steering

the array Jpangle_
effective
aperture

maximum effective aperture effective aperture is reduced

Figure 8.51. Reduction in array effective aperture due to electronic
scanning.

The beamwidth at scan angle 9 is

(8.86)

due to the increased scan loss at large scanning angles. In order to limit the
scan loss to under some acceptable practical values, most arrays do not scan
electronically beyond about 9 = 60°. Such arrays are called Full Field Of
View (FFOV). FFOV arrays employ element spacing of 0.6X or less to avoid
grating lobes. FFO V array scan loss is approximated by

Lican  (c059)*° (8.87)

Arrays that limit electronic scanning to under 9 = 60° are referred to as
Limited Field of View (LFOV) arrays. In this case the scanloss is

L scan (8.88)

Fig. 8.52 shows aplot for scanloss versus scan angle. This figure canbe repro-
duced using M ATLAB program ‘fig8_52.m” givenin Listing 8.8.
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Element spacing isd = 0.6 X

16

scan angle in degrees
Figure 8.52. Scan loss versus scan angle, based on Eq. (8.87).

8.7. “‘MyRadar” Design Case Study - Visit 8
8.7.1. Problem Statement

Modify the “MyRadar” design case study such that we employ a phased
array antenna. For this purpose, modify the design requirements such that the
search volume is now defined by ©e = 10° and ©a< 45°.Assume X-band, if
possible. Design an electronically steered radar (ESR). Non-coherent integra-
tion of afew pulses may be used, if necessary. Size the radar so thatit canful-
fill this mission. Calculate the antenna gain, aperture size, missile and aircraft
detection range, number of elements in the array, etc. A |l other design require-
ments are as defined in the previous chapters.

8.7.2. A Design

The searchvolume is

1 o 4 o
Q = __Q__)_(___S__ = 0.1371 steradian (8.89)

(57.296)2
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For an X-band radar, choose fo = 9G Hz, then

X = 3x 10 = 0.0333m (8.90)
9 x 109

2
Assume an aperture size Ae = 2.25m ; thus

G = = 4xT7x 225 = 25451.991 ~ G = 44dB (8.92)
X2 (0.0333)2
Assume square aperture. It follows that the aperture 3-dB beamwidth is cal-
culated from
2
4xnx 1800 = 13° (8.92)
3dB
J3b 25451.991 x n2

The number of beams required to fill the search volume is

(ST ¢ s R 2 nb = 399.5  choose nb = 400 (8.93)
(1.3/57.296)2

:15

Note that the packing factor kp is used to allow for beam overlap in order to
avoid gaps in the beam coverage. The search scan rate is 2 seconds. Thus, the
minimum PRF should correspond to 200 beams per second (i.e., fr = 200H z).
This PRF will allow the radar to visit each beam position only once during a
complete scan.

It was determined in Chapter 2 that 4-pulse non-coherent integration along
with a cumulative detection scheme are required to achieve the desired proba-
bility of detection. It was also determined that the single pulse energy for the
missile and aircraft cases are respectively given by (see page 118)

Em= 0.1147Joules (8.94)

Ea = 0.1029Joules (8.95)

However, these values were derived using X = 0.1m and G = 2827.4. The
new wavelength is X = 0.0333m and the new gainis G = 25451.99 . Thus,
the missile and aircraft single pulse energy, assuming the same single pulse
SNR as derived in Chapter 2 (i.e., SNR = 4dB) are

Em= 0.1147 x Q1 x28274 - = 0.012765Joules (8.96)
0.03332x 254522

© 2004 by Chapman & Hall/CRC CRC Press LLC



2 2
Ea= 01029 x 0J1 x 28274 - = 0.01145Joules (8.97)
0.03332x 254522

The single pulse peak power that will satisfy detection for both target types

is

Pt = 0012765 = 638.25W (8.98)
20 x 10 6

where T = 20us is used.

Note that since a 4-pulse non-coherent integration is adopted, the minimum
PRF is increased to

fr = 200 x 4 = 800Hz (8.99)

and the total number of beams is nb = 1600 . Consequently the unambiguous
range is

Ru* ~ 187 5Km @« )
(1.101)

2
Since the effective aperture is Ae = 2.25m , then by assuming an array effi-

ciency p = 0.8 the actual array size is

A = %‘285 - 2.8125m° (8.102)

It follows that the physical array sides are 1.68m x 1.68m . Thus, by selecting
the array element spacing d = 0.6X an array of size 84 x 84 elements satis-
fies the design requirements.

Since the field of view is less than +22.5°, one can use element spacing as
large as d = 1.5X without introducing any grating lobes into the array FOV
Using this optionyields an array of size 34 x 34 = 1156 elements. Hence, the
required power per element is less than 0.6 W .

8.8. MATLAB Program and Function Listings

This section contains listings of all M ATLAB programs and functions used
in this chapter. Users are encouraged to rerun this code with different inputs in
order to enhance their understanding of the theory.
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% It uses the F F T to compute the pattern
%%% %% %% %Y *FFEXFEERE INPUYTS *Frxxxxxrrrr 04040 % %% %% %%
% Nr ==> number ofelements; dolr ==> element spacing (d) in lambda units
divided by lambda
% theta0 ==> steering angle in degrees; winid ==> use winid negativefor no
window, winid positive to enteryour window ofsize(Nr)
% win is input window, N O TE that win must be an NrX1 row vector; nbits
==> number of bits used in the phase shifters
% negative nbits mean no quantization is used
% %%%%W% *rxxxxrxkkk QUTPUTS *xkxkxkrrs 04050 9% % % % % % % % %
% theta ==> real-space angle; patternr ==> array radiation pattern in dBs
% patterng ==> array directive gain pattern in dBs
% % % % % % % % % % % % *xxxxxxxkxxxxxxx 0 04 0 % % % % % % % % %
eps = 0.00001;
n = 0:Nr-1;
i =sqrt(-1);
% ifdolris > 0.5 then; choose dol = 0.25 and compute new N
if(dolr <=0.5)

dol = dolr;

N =Nr;
else

ratio = ceil(dolr/.25);

N = Nr *ratio;

dol = 0.25;
end
% choose proper size fft, for minimum value choose 256
Nrx = 10 *N;
nfft = 2A(ceil(log(Nrx)/log(2)));
if nfft < 256
nfft = 256;
end

% convert steering angle into radians; and compute the sine of angle
thetaO = thetaO *pi/180.;
sinthetaO = sin(theta0);
% determine and compute quantized steering angle
if nbits < 0
phase0 = exp(i*2.0*pi .* n * dolr * sintheta0);
else
% compute and add the phase shift terms (W ITH nbits quantization)
% Useformula thetal = (2*pi*n*dol) *sin(theta0) divided into 2Anbits
% and rounded to the nearest qunatization level
levels = 2Anbits;
glevels = 2.0 *pi/ levels; % compute quantization levels
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% compute the phase level and round it to the closest quantization level at
each array element
angleq = round(dolr .* n *sintheta0 * levels) .* glevels; % vector ofpossi-
ble angles
phase0 = exp(i*angleq);
end
% generate array ofelements with or without window
if winid < 0
wr(1:Nr) = 1;
else
wr = win?}
end
% add the phase shift terms
wr = wr .* phase0;
% determine if interpolation is needed (i.e., N > Nr)
ifN > Nr
w(1:N) = 0;
w(l:ratio:N) = wr(1:Nr);
else
W = wr;
end
% compute the sine(theta) in real space that corresponds to the F F T index
arg = [-nfft/2:(nfft/2)-1]./ (nfft*dol);
idx =find(abs(arg) <= 1);
sinetheta = arg(idx);
theta = asin(sinetheta);
% convert angle into degrees
theta = theta .* (180.0 /pi);
% Computefft ofw (radiation pattern)
patternv = (abs(fftshift(fft(w,nfft)))).A2;
% convertradiationa pattern to dBs
patternr = 10*logl0(patternv(idx) ./Nr + eps);
% Compute directive gain pattern
rbarr = 0.5 *sum(patternv(idx)) ./ (n fft * dol);
patterng = 10*logl0(patternv(idx) + eps) - 10*loglO0(rbarr + eps);
return

Listing 84. MATLAB Program “circular array.m”

v CircularArray in the x-y plane

® Elementis ashort dipole antennaparallel to the z axis
% 2D Radiation Patternsforfixed phi orfixed theta

% dB polarplots uses the polardb.mfile

v Last modified: July 13, 2003

X X

X X
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%
% % % % Element expression needs to be modified if different
% % % % than ashort dipole antenna along the z axis

clear all

clf

% close all

% ==== InputParameters === =

a=1,; % radius ofthe circle

N = 20; % number ofElements ofthe circular array

thetaO = 45; % main beam Theta direction

phi0 = 60; % main beam Phi direction

% Theta or Phi variationsfor the calculations o fthefarfield pattern
Variations = 'Phi'; % Correctselections are Theta’or 'Phi’

phid = 60; % constantphiplanefor theta variations
thetad = 45; % constant theta planefor phi variations
% ==== End oflnputparameters section ====

dtr = pi/180; % conversionfactors

rtd = 180/pi;

phiOr = phi0 *dtr;
thetaOr = thetaO*dtr;

lambda = 1,
k = 2*pi/lambda;
ka = k*a; % Wavenumber times the radius
jka =j*ka;
I(1:N) = 1; % Elements excitation Amplitude and Phase
alpha(1:N) =0;
forn=1:N % Elementpositions Uniformly distributed along the circle
phin(n) = 2*pi*n/N;
end
switch Variations
case Theta’
phir = phid*dtr; % Pattern in a constantPhi plane
i =0;
for theta = 0.001:1:181
i =i+1;

thetar(i) = theta*dtr;
angled(i) = theta; angler(i) = thetar(i);
Arrayfactor(i) = 0;
forn= 1:N
Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp(jka*(sin(thetar(i))*cos(phir -phin(n))) ...
-ijka*(sin(thetaOr )*cos(phiOr-phin(n))) );
end
Arrayfactor(i) = abs(Arrayfactor(i));
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Element(i) = abs(sin(thetar(i) + 0*dtr)); % use the absfunction to avoid

end
case 'Phi'
thetar = thetad*dtr; % Pattern in a constant Theta plane
i =0;
forphi = 0.001:1:361

i =i+1;
phir(i) =phi*dtr;
angled(i) = phi; angler(i) = phir(i);
Arrayfactor(i) = 0;
forn= 1:N
Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp(jka*(sin(thetar)*cos(phir(i)-phin(n))) ...
-jka*(sin(thetaOr)*cos(phiOr -phin(n))) );
end
Arrayfactor(i) = abs(Arrayfactor(i));
Element(i) = abs(sin(thetar+0*dtr)); % use the absfunction to avoid
end
end
angler = angled*dtr;
Element = Element/max(Element);
Array = Arrayfactor/max(Arrayfactor);
ArraydB = 20*log10(Array);
EtotalR =(Element.*Arrayfactor)/max(Element.*Arrayfactor);
figure(1)
plot(angled,Array)
ylabel(‘Array pattern)
grid
switch Variations
case Theta’
axis ([0 1800 1])
% theta = theta +pi/2;
xlabel(Theta [Degrees])
title ( 'phi = 90Aoplane’)
case 'Phi'
axis ([0 360 01])
xlabel(Phi [Degrees])
title ( 'Theta = 90Aoplane’)
end
figure(2)
plot(angled,ArraydB)
Y%axis ([-1 1-60 0])
ylabel('Power pattern [dB])
grid;
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switch Variations
case Theta’

axis ([0 180 -60 0])

xlabel("Theta [Degrees])

title ( 'phi = 90Aoplane")

case 'Phi'
axis ([0 360 -600])

xlabel(Phi [Degrees])

title ( "Theta = 90Aoplane’)

end
figure(3)
polar(angler,Array)
title ("Arraypattern)
figure(4)
polardb(angler,Array)
title (Power pattern [dB])
% the plots provided above arefor the arrayfactor based on the circular
% array plotsfor otherpatterns such as thosefor the antenna element
% (Element)or the total pattern (Etotal based on Element*Arrayfactor) can
% also be displayed by the user as all these patterns are already computed
% above.
figure(10)
subplot(2,2,1)
polardb (angler,Element,b-); % rectangular plot ofelementpattern
title(Element normalized Efield [dB])
subplot(2,2,2)
polardb(angler,Array, b-)
title(Array Factor normalized [dB])
subplot(2,2,3)
polardb(angler,EtotalR,b-); % polar plot
title("Total normalized Efield [dB])
%% % % % % % %% % % % % % % % % % %% % % %% % %
%% % % % % % %% % % % % % % % % % %% % % %% % %
function polardb(theta, rho, linestyle)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot usingpolar coordinates of
% the angle THETA, in radians, versus the radius RHO in dB.
% The maximum value o fRHO should not exceed 1. It should not be
% normalized, however (i.e., its max. value may be less than 1).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOTfor a description oflegal linestyles.
ifnargin <1

error("Requires 2 or 3 input arguments.)
elseifnargin ==
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ifisstr(rho)
linestyle =rho;
rho = theta;
[mr,nr] =size(rho);
ifmr ==
theta = 1:nr;
else
th = (L:mn)";
theta = th(:,ones(1,nr));
end
else
linestyle = ‘auto’;
end
elseifnargin ==
linestyle = "auto’;
rho = theta;
[mr,nr] = size(rho);
ifmr ==
theta = 1:nr;
else
th = (L:mr)";
theta = th(:,ones(1,nr));
end
end
ifisstr(theta) |isstr(rho)
error(1nput arguments must be numeric.);
end
if ~isequal(size(theta),size(rho))
error("'THETA and RHO must be the same size.");
end
% get hold state
cax =newplot;
next = lower(get(cax,NextPlot));
holdstate =ishold;

% get x-axis text color so grid is in same color

tc = get(cax,'xcolor");

Is =get(cax,gridlinestyle);

% Hold on to current Text defaults, reset them to the
% Axes’font attributes so tick marks use them.
fAngle =get(cax, DefaultTextFonAngle);

fName =get(cax, 'DefaultTextFontName");

fSize =get(cax, 'DefaultTextFontSize");

fWeight =get(cax, 'DefaultTextFontWeight");
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fUnits =get(cax, 'DefaultTextUnits");

set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle"), ...
'DefaultTextFontName', get(cax, ‘FontName"), ...
'DefaultTextFontSize', get(cax, 'FontSize"), ...
'DefaultTextFontWeight', get(cax, 'FontWeight'), ...
'DefaultTextUnits','data’)

% make a radial grid

hold on;

maxrho =1;

hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -
maxrho]);

set(gca,'dataaspectratio’,[1 1 1],"plotboxaspectratiomode’,'auto’)
v = [get(cax,"xlim") get(cax,'ylim")];

ticks = sum(get(cax,ytick')>=0);

delete(hhh);

% check radial limits and ticks
rmin = 0; rmax = v(4); rticks = max(ticks-1,2);
ifrticks >5 % see ifwe can reduce the number

ifrem(rticks,2) == 0
rticks = rticks/2;
elseifrem(rticks,3) == 0
rticks = rticks/3;
end
end

% only do grids ifhold is off

if ~hold_state

% define a circle
th = 0:pi/50:2*pi;
xunit = cos(th);
yunit = sin(th);

% now reallyforce points on x/y axes to lie on them exactly
inds = 1:(length(th)-1)/4:length(th);
xunit(inds(2:2:4)) =zeros(2,1);
yunit(inds(1:2:5)) =zeros(3,1);

% plot background ifnecessary
if ~isstr(get(cax, color)),

patch(xdata’xunit*rmax,ydata’yunit*rmax, ...
‘edgecolor’tc,facecolor’get(gca,color),...
"handlevisibility', 'off);
end

% draw radial circles with dB ticks
€82 = cos(82*pi/180);
s82 =sin(82*pi/180);
rinc = (rmax-rmin)/rticks;
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tickdB=-10*(rticks-1); % the innermost tick dB value
for i=(rmin+rinc):rinc:rmax
hhh =plot(xunit*i,yunit*i,ls,"color’,tc,’linewidth’,1,...
"handlevisibility’, 'off);
text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[ 'num2str(tickdB) ' dB],"verticalalignment',’bottom’,...
handlevisibility’,off)
tickdB=tickdB+10;
end
set(hhh,'linestyle’,"-") % Make outer circle solid
% plot spokes
th = (1:6)*2*pi/12;
cst = cos(th); snt =sin(th);
cs = [-cst; cst];
sn =[-snt; snt];
plot(rmax*cs,rmax*sn,ls, "color',tc, ‘linewidth’,1,...
handlevisibility’, off)
% annotate spokes in degrees
rt = 1.1*rmax;
for i = 1:length(th)
text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment’, ‘center’,...
"handlevisibility’, "off);
ifi == length(th)
loc = int2str(0);
else
loc = int2str(180+i*30);
end
text(-rt*cst(i),-rt*snt(i),loc, horizontalalignment’, center’...
"handlevisibility', 'off)
end
% set view to 2-D
view(2);
% set axis limits
axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, 'DefaultTextFontAngle’, fAngle , ..
'DefaultTextFontName', fName, ...
'DefaultTextFontSize', fSize, ...
'DefaultTextFontWeight', fWeight, ...
'DefaultTextUnits', fUnits);
% Transfrom data to dB scale
rmin = 0; rmax=1;
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rinc = (rmax-rmin)/rticks;
rhodb =zeros(1,length(rho));
for i=1:length(rho)
ifrho(i)==
rhodb(i)=0;
else
rhodb(i)=rmax+2 *log10(rho(i))*rinc;
end
ifrhodb(i)<=0
rhodb(i)=0;
end
end
% transform data to Cartesian coordinates.
xx =rhodb.*cos(theta);
yy = rhodb.*sin(theta);
% plot data on top ofgrid
i fstrcmp(line_style,"auto’)
q =plot(xx,yy);
else
g =plot(xx,yy,line_style);
end
ifnargout > 0
hpol = g;
end
if ~hold_state
set(gca,'dataaspectratio’,[1 1 1]), axis off; set(cax,"NextPlot’,next);
end
set(get(gca,'xlabel"), visible','on")
set(get(gca,'ylabel"),'visible','on")

Listing 85. MATLAB Function “rect array.m”

function [pattern] =

rect_array(Nxr, Nyr, dolxr, dolyr, theta0,phi0,winid,win,nbits);
%%%%%%%%%% *hkkhkkkhkkkhkhkkhkhkkkhkkhkkkhkhkkhkkhkkikkkikk %%%%%%%%%%

% Thisfunction computes the 3-D directive gain patternsfor aplanar array
% Thisfunction uses thefft2 to compute its output

%%%%%%%% *khkkhkkhkkhkhkkhkkhkkikkhkikk INPUTS *khkkhkhkkhkkhkkhkkhkkkikkikk %%%%%%%%%
% Nxr ==> number ofalong x-axis; Nyr ==> number o felements alongy-
axis

% dolxr ==> element spacing in x-direction; dolyr ==> element spacing iny-
direction Both are in lambda units

% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering
angle in degrees
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% winid ==> window identifier; winid negative ==> no window ; winidposi-
tive ==> use window given by win

% win ==> input windowfunction (2-D window) MUST be ofsize (NxrXNyr)
% nbits is the number o fnbits used in phase quantization; nbits negative ==>
NO quantization

%%%%% *kkkhkkhkkkkkk OUTPUTS khkhkkkhkkhkhkhkhkhkhkk*k %%%%%%%

% pattern ==> directive gain pattern

%%%%%%% *khkkhkkhkkhkhkhkhkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhhkikik %%%%%%%%%%%%

eps = 0.0001;
nx = 0:Nxr-1;
ny = 0:Nyr-1;
i =sqrt(-));

% check that window size is the same as the array size

[nw,mw] = size(win);

ifwinid >0
if nw ~= Nxr
fprintf('STOP == Window size must be the same as the array")
return

end

if mw ~= Nyr
fprintf(STOP == Window size must be the same as the array")
return

end

end

%ifdol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)

ratiox =1 ;

dolx = dolxr;

NXx = NXxr ;
else

ratiox = ceil(dolxr/.5) ;

Nx = (Nxr-1) *ratiox +1;

dolx = 0.5;
end
if(dolyr <=0.5)
ratioy =1 ;
doly =dolyr;
Ny = Nyr ;
else

ratioy = ceil(dolyr/.5) ;
Ny = (Nyr -1) *ratioy + 1 ;
doly =0.5;

end
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% choose proper sizefft, for minimum value choose 256 X256
Nrx = 10 *Nx;

Nry =10 *Ny;

nfftx = 2A(ceil(log(Nrx)/1og(2)));

nffty = 2A(ceil(log(Nry)/log(2)));

ifnfftx <256

nfftx = 256;
end
ifnffty <256
nffty = 256;
end
% generate array ofelements with or without window
ifwinid <0
array = ones(Nxr,Nyr);
else
array =win;
end

% convert steering angles (theta0, phi0) to radians
theta0 = theta0 *pi /180;
phi0 =phi0 *pi /180;
% convert steering angles (theta0, phi0) to U-Vsine-space
u0 =sin(thetal * cos(phi0);
v0 =sin(thetal) *sin(phi0);
% Useformula thetal = (2*pi*n*dol) * sin(theta0) divided into 2Am levels
% and rounded to the nearest qunatization level
ifnbits <0
phasem = exp(i*2 *pi*dolx*u0 .* nx *ratiox);
phasen = exp(i*2 *pi*doly*v0 .* ny *ratioy);
else
levels = 2Anbits;
glevels = 2.0*pi /levels; % compute quantization levels
sinthetaq = round(dolx .* nx *u0 * levels *ratiox) .* glevels; % vector of
possible angles
sinphiq =round(doly .* ny *v0 * levels *ratioy) .* glevels; % vector ofpos-
sible angles
phasem = exp(i*sinthetaq);
phasen = exp(i*sinphiq);
end
% add the phase shift terms
array = array .* (transpose(phasem) *phasen);
% determine ifinterpolation is needed (i.e., N > Nr)
if (Nx > Nxr)\ (Ny > Nyr)
for xloop =1 : Nxr
temprow = array(xloop, :) ;
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w( (xloop-1)*ratiox+1, L:ratioy:Ny) = temprow ;
end
array =w;
else
w =array ;
% w(L:Nx, :) =array(1:N,);
end
% Compute array pattern
arrayfft = abs(fftshift(fft2 (w,nfftx,nffty))).A2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./ (dolx*nfftx);
indexx =find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2) - 1] ./(doly*nffty);
indexy =find(abs(V) <= 1);
V = V(indexy);
%Normalize to generate gain patern
rbar=sum(sum(arrayfft(indexx,indexy))) / dolx/doly/4./nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,V);
indx =find((SU.AR + SV.&) >1);
arrayfft(indx) = eps/10;
pattern = 10*logl10 (arrayfft +eps);
figure()
mesh(V,U,pattern);
xlabel("V")
ylabel(*U");
zlabel(*Gain pattern - dB)
figure(2)
contour(V,U,pattern)
grid
axis image
xlabel("V")
ylabel(*U");
axis([-1 1 -1 1])
figure(3)
X0 = (Nx+1)/2;
y0 = (Ny+1)/2;
radiusx = dolx*((Nx-1)/2) ;
radiusy = doly*((Ny-1)/2) ;
[xxx, yyy]=find(abs(array)>eps);
XXX = XXX-X0 ;

YYyy=yyyyo0;
plot(yyy*doly, xxx*dolx,'rx")
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hold on

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
grid

title("antenna spacing pattern);

xlabel("y - \lambda units")

ylabel("x - \lambda units")

[xxx0, yyyO]=find(abs(array)<=eps);

XxX0 = xxx0-x0 ;

yyy0 =yyy0-y0;

plot(yyy0*doly, xxx0*dolx,'co")

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
hold off

return

Listing 8.6. MATLAB Function “circarray.m”

function [pattern,amn] =
circ_array(N,dolxr,dolyr,theta0,phi0,winid,win,nbits);

%%%%%%%%% *hkkhkkkhkkkhkkkhkhkkkhkkkhkkkhkkkhkkhkkhkkkikk %%%%%%%%%%%

% Thisfunction computes the 3-D directive gain patternsfor a circularplanar
array

% Thisfunction uses thefft2 to compute its output. It assumes that there are the
same number of elements along the major x- andy-axes

%%%%%%%% *hkkkkhkkikkikkik INPUTS *kkhkkkkikkkhkkkkikk %%%%%%%%

% N ==> number ofelements along x-aixs ory-axis

% dolxr ==> element spacing in x-direction; dolyr ==> element spacing iny-
direction. Both are in lambda units

% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering
angle in degrees

% Thisfunction uses thefunction (rectocirc) which computes the circular
arrayfrom a square

% array (ofsize NXN) using the notation developed by ALLEN,J.L.," The The-
ory ofArray Antennas

% (with Emphasis on Radar Application) MIT-LL Technical Report No. 323,
July, 25 1965.

% winid ==> window identifier; winid negative ==> no window ; winid posi-
tive ==> use window given by win

% win ==> input windowfunction (2-D window) MUST be ofsize (NxrXNyr)
% nbits is the number o fnbits used in phase quantization; nbits negative ==>
NO quantization

%%%%%%% *kkhkkkhkkkkikkkx OUTPUTS *kkkkhkkkhkkikkkikkk %%%%%%%%

% amn ==> array ofones and zeros; ones indicate true element location on
the grid

% zeros mean no elements at that location; pattern ==> directive gain pattern
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%%%%%%%%% *hkkhkhkkhhkkhkhkkhkhkikkhkhkkhhkkhhkkiikkihkkiixkx %%%%%%%%%%%%

eps = 0.0001;
nx = 0:N-1;
ny = 0:N-1;
i =sqrt(-1);

% check that window size is the same as the array size
[nw,mw] = size(win);
ifwinid >0

ifmw ~—=N

fprintf("'STOP == Window size must be the same as the array")
return
end
ifnw~=N
fprintf('STOP == Window size must be the same as the array")
return

end
end
% ifdol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)

ratiox =1 ;

dolx = dolxr;

Nx =N;
else

ratiox = ceil(dolxr/.5) ;

Nx = (N-1) *ratiox +1;

dolx =0.5;

end

if(dolyr <=0.5)
ratioy =1 ;
doly =dolyr;
Ny =N;

else

ratioy = ceil(dolyr/.5);

Ny = (N-1)*ratioy + 1;

doly =0.5;
end
% choose proper sizefft, for minimum value choose 256 X256
Nrx = 10 *Nx;
Nry =10 *Ny;
nfftx = 2A(ceil(log(Nrx)/log(2)));
nffty = 2A(ceil(log(Nry)/log(2)));
ifnfftx <256

nfftx = 256;
end
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if nffty <256

nffty = 256;
end
% generate array ofelements with or without window
ifwinid <0
array = ones(N,N);
else
array =win;
end

% convert steering angles (theta0, phiQ) to radians
theta0 = theta0 *pi /180;
phi0 =phi0 *pi /180;
% convert steering angles (theta0, phi0) to U-Vsine-space
u0 =sin(thetal * cos(phi0);
v0 =sin(thetaQ) *sin(phi0);
% Useformula thetal = (2*pi*n*dol) *sin(theta0) divided into 2Am levels
% and rounded to the nearest qunatization level
if nbits <0
phasem = exp(i*2 *pi*dolx*u0 .* nx * ratiox);
phasen = exp(i*2 *pi*doly*v0 .* ny * ratioy);
else
levels = 2Anbits;
glevels = 2.0*pi /levels; % compute quantization levels
sinthetaq = round(dolx .* nx *u0 * levels * ratiox) .* glevels; % vector of
possible angles
sinphiq =round(doly .* ny *v0 * levels *ratioy) .* glevels; % vector ofpos-
sible angles
phasem = exp(i*sinthetaq);
phasen = exp(i*sinphiq);
end
% add the phase shift terms
array = array .* (transpose(phasem) *phasen) ;

% determine ifinterpolation is needed (i.e., N > Nr)
if (Nx>N)I (Ny>N)
for xloop =1: N
temprow = array(xloop, :) ;
w( (xloop-1)*ratiox+1, L:ratioy:Ny) = temprow ;

end

array =w;
else

w(l:Nx, :) =array(1:N,:);
end

% Convert rectangular array into circular usingfunction rectocirc

© 2004 by Chapman & Hall/CRC CRC Press LLC



[m,n] =size(w) ;
NC = max(m,n); % Use Allens algorithm

ifNx == Ny
temparray =w;
else

midpoint = (NC-1)/2 +1;
midwm = (m-1)/2 ;
midwn = (n-1)/2 ;
temparray =zeros(NC,NC);
temp_array(midpoint-midwm:midpoint+midwm, midpoint-midwn:mid-
point+midwn) =w ;
end
amn =rec to circ(NC); % must be rectangular array (Nx=Ny)
amn =temp array .* amn;

% Compute array pattern

arrayfft = abs(fftshift(fft2(amn,nfftx,nffty))).A2;
%compute [su,sv] matrix

U = [-nfftx/2:(nfftx/2)-1] ./ (dolx*nfftx);
indexx =find(abs(U) <= 1);

U = U(indexx);

V = [-nffty/2:(nffty/2) - 1] ./(doly*nffty);
indexy =find(abs(V) <= J);

V = V(indexy);

[SU,SV] = meshgrid(V,U);

indx =find((SU.A2 + SVA2) >1);
arrayfft(indx) = eps/10;

%Normalize to generate gain pattern
rbar=sum(sum(arrayfft(indexx,indexy))) 7 dolx/doly/4./nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);

indx =find((SU.A2 + SVA2) >1);
arrayfft(indx) = eps/10;

pattern = 10*log10 (arrayfft +eps);
figure(l)

mesh(V,U,pattern);

xlabel("V")

ylabel(*U");

zlabel(*Gain pattern - dB)

figure(2)

contour(V,U,pattern)

axis image

grid

xlabel("V")
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ylabel('U);

axis([-1 1 -1 1])

figure(3)

X0 = (NC+1)/2;

y0 = (NC+1)/2;

radiusx = dolx*((NC-1)/2 + 0.05/dolx) ;

radiusy = doly*((NC-1)/2 + 0.05/dolx) ;

theta =5 ;

[xxx, yyy]=find(abs(amn)>0);

XXX = XXX-X0 ;

yyy=yyyyo0;

plot(yyy*doly, xxx*dolx,'rx")

axis equal

hold on

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
grid

title("antenna spacing pattern);

xlabel("y - \lambda units")

ylabel("x - \lambda units")

[%, y]= makeellip(0, 0, radiusx, radiusy, theta) ;

plot(y, x) ;

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
[xxx0, yyy(Q]=find(abs(amn)<=0);

XxX0 = xxx0-x0 ;

yyyO0 =yyy0-y0;

plot(yyy0*doly, xxx0*dolx,co)

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
axis equal

hold off;

return

Listing 8.7. MATLAB Function “rec_to_circ.m”

function amn =rec to circ(N)
midpoint = (N-1)/2 + 1;
amn = zeros(N);
arrayl(midpoint,midpoint) =N;
X0 = midpoint;
y0 =x0;
fori=1N

forj = 1:N

distance(i,j) =sqrt((x0-) 2 + (y0-))A);

end

end
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idx =find(distance < (N-1)/2 + .4);
amn (idx) = 1;
return

Listing 88. MATLAB Program ‘fig8_52.m”

%Use thisprogram to reproduce Fig. 8.40. Based on Eq. (8.87)
clear all

close all

d = 0.6; % element spacing in lambda units
betadeg = linspace(0,22.5,1000);

beta = betadeg .*pi ./180;

den =pi *d.* sin(beta);

numarg = den;

num = sin(numarg);

Iscan = (num./den).A-4;

LSCAN = 10*logl10(Iscan+eps);

figure (1)

plot(betadeg,LSCAN)

xlabel('scan angle in degrees)

ylabel(*Scan loss in dB)

grid

title("Element spacing is d = 0.6 \lambda °)
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Chapter 9 Target Tracking

Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in
range, azimuth angle, elevation angle, and velocity. Then, by using and keep-
ing track of these measured parameters the radar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-target track-while-scan (TWS) radars. Tracking
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason
that a separate search radar is needed to facilitate target acquisition by the
tracker. Still, the tracking radar has to search the volume where the target’s
presence is suspected. For this purpose, tracking radars use special search pat-
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

9.1, Angle Tracking

Angle tracking is concerned with generating continuous measurements of
the target’s angular position in the azimuth and elevation coordinates. The
accuracy of early generation angle tracking radars depended heavily on the
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size of the pencil beam employed. Most modem radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.

Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generate an error signal. This deviation is normally
measured from the antenna’s main axis. The resultant error signal describes
how much the target has deviated from the beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the
case.

In order to be able to quickly change the beam position, the error signal
needs to be a linear function of the deviation angle. It can be shown that this
condition requires the beam’s axis to be squinted by some angle (squint angle)
off the antenna’s main axis.

9.1.1. Sequential Lohing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switching. It has a tracking accuracy that is lim-
ited by the pencil beamwidth used and by the noise caused by either mechani-
cal or electronic switching mechanisms. However, it is very simple to
implement. The pencil beam used in sequential lobing must be symmetrical
(equal azimuth and elevation beamwidths).

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determined symmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 9.1.

As the beam is switched between the two positions, the radar measures the
returned signal levels. The difference between the two measured signal levels
is used to compute the angular error signal. For example, when the target is
tracked on the tracking axis, as the case in Fig. 9.1a, the voltage difference is
zero. However, when the target is off the tracking axis, as in Fig. 9.1b, a non-
zero error signal is produced. The sign of the voltage difference determines the
direction in which the antenna must be moved. Keep in mind, the goal here is
to make the voltage difference be equal to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required for that coordinate. Thus, tracking in two
coordinates can be accomplished by using a cluster of four antennas (two for
each coordinate) or by a cluster of five antennas. In the latter case, the middle
antenna is used to transmit, while the other four are used to receive.
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return return
beam A
return beam B
return

(b)

Figure 9.1. Sequential lobing. (a) Target is located on track axis.
(b) Target is off track axis.

9.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case,
the antenna is continuously rotated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 9.2 shows a typical conical scan
beam. The beam scan frequency, in radians per second, is denoted as . The
angle between the antenna’s LOS and the rotation axis is the squint angle ¢.
The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Fig. 9.3 shows a simplified conical scan radar system. The envelope detector
is used to extract the return signal amplitude and the Automatic Gain Control
(AGC) tries to hold the receiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth and elevation) are functions of the target’s RCS; they are
functions of its angular position off the main beam axis.

In order to illustrate how conical scan tracking is achieved, we will first con-
sider the case shown in Fig. 9.4. Inthis case, as the antenna rotates around the
tracking axis all target returns have the same amplitude (zero error signal).
Thus, no further action is required.

feed

Figure 9.2. Conical scan beam.

Az & El
servo motor
servo Amp drive
elevs transmitterJ ----- (duplexer)n >
o=
en
det = 1
iL envelope mixer & 1
detector IF Amp. » 1
It acc 1
azimuth N scan motor & 1
error scan reference |
detector

Figure 9.3. Simplified conical scan radar system.
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faxis for camical scan.

Next, consider the case depicted by Fig. 9.5. Here, when the beam is at posi-
tion B, returns from the target will have maximum amplitude, and when the
antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponds to the relative position of the target
within the beam. Thus, the extracted AM envelope can be used to derive a
servo-control system in order to position the target on the tracking axis.

Now, let us derive the error signal expression that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
9.6. Assume that t = 0 is the starting beam position. The locations for maxi-
mum and minimum target returns are also identified. The quantity ¢ defines
the distance between the target location and the antenna’s tracking axis. It fol-
lows that the azimuth and elevation errors are, respectively, given by

ea = esing 3.3)
8¢ = 2CoSqp 9.2)

These are the error signals that the radar uses to align the tracking axis on the
target.
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Figure 9.5. Error signal produced when the target is off the
tracking axis for conical scan.

Figure 9.6. Top view of beam axis for a complete scan.
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The AM signal E(t) can then be written as

E(t) = Eocos(ast- ¢) = EOeecosmst +EOeasinrost (9.3)

where Eo is a constant called the error slope, ms is the scan frequency in radi-
ans per seconds, and ¢ is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). The elevation error signal is obtained by mixing the sig-
nal E(t) with cosmst (the reference signal) followed by low pass filtering.
More precisely,

Ee(t) = Eocos(ast- h)cosast = - -EQcosth+--cos(2ast- ¢p)  (94)

and after low pass filtering we get

Ee(t) = - 1Eocosd 95

Negative elevation error drives the antenna beam downward, while positive
elevation error drives the antenna beam upward. Similarly, the azimuth error
signal is obtained by multiplying E(t) by sinmst followed by low pass filter-
ing. Itfollows that

Ea(t) = 1Eosind 96)

The antenna scan rate is limited by the scanning mechanism (mechanical or
electronic), where electronic scanning is much faster and more accurate than
mechanical scan. In either case, the radar needs at least four target returns to be
able to determine the target azimuth and elevation coordinates (two returns per
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on the tracking axis), the SNR suffers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.

9.2. Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beams are generated simultaneously rather than
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sequentially. For this purpose, a special antenna feed is utilized such that the
four beams are produced using a single pulse, hence the name “monopulse.”
Additionally, monopulse tracking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing, variations in the radar echoes degrade the track-
ing accuracy; however, this is not a problem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectors as well as phased array antennas.

Fig. 9.7 show a typical monopulse antenna pattern. The four beams A, B, C,
and D represent the four conical scan beam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

Figure 9.7. Monopulse antenna pattern.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal by a circle centered at the antenna’s tracking
axis, as illustrated by Fig. 9.8a, where the four quadrants represent the four
beams. In this case, the four horns receive an equal amount of energy, which
indicates that the target is located on the antenna’s tracking axis. However,
when the target is off the tracking axis (Figs. 9.8b-d), an imbalance of energy
occurs in the different beams. This imbalance of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a sum E and two difference [ (azimuth and elevation)
antenna patterns. Then by dividing a [l channel voltage by the E channel volt-
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam
returns to sense the amount of target displacement off the tracking axis. It is
critical that the phases of the four signals be constant in both transmit and
receive modes. For this purpose, either digital networks or microwave compar-
ator circuitry are utilized. Fig. 9.9 shows a block diagram for a typical micro-
wave comparator, where the three receiver channels are declared as the sum
channel, elevation angle difference channel, and azimuth angle difference
channel.
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@) (b) (d

Figure 9.8. lllustration of monopulse concept. 2 Target is on the
tracking axis. (b) - (d) Target is off the tracking axis.
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Figure 9.9. Monopulse comparator.

To generate the elevation difference beam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva-
tion difference signal, Ael. Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi-
muth difference signal, Aaz, is produced.

A simplified monopulse radar block diagram is shown in Fig. 9.10. The sum
channel is used for both transmit and receive. In the receive mode the sum
channel provides the phase reference for the other two difference channels.
Range measurements can also be obtained from the sum channel. In order to
illustrate how the sum and difference antenna patterns are formed, we will
assume a sindp/dp single element antenna pattern and squint angle 0. The
sum signal in one coordinate (azimuth or elevation) is then given by

2(¢) = sin(* "~ 0 - +sin(™ +dp) 0.7)
(- d0) (p+ cp0)
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Figure 9.10. Simplified amplitude comparison monopulse radar block diagram.
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and a difference signal in the same coordinate is

— ™ (Cb-(*)0>- ™ (L;|>.|_¢.> |9.S|
(- ®)  (P+d0>

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Egs. (9.7) and (9.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence>to>sum ratio. It is given in Listing 9.1 in Section 9.11. The syntax is as
follows:

mono_pulse (phi0)
where phi0 is the squint angle in radians.

Fig. 9.11 (a>c) shows the corresponding plots for the sum and difference pat>
terns for qo = 0.15 radians. Fig. 9.12 (a>c) is similar to Fig. 9.11, except in
this case o = 0.75 radians. Clearly, the sum and difference patterns depend
heavily on the squint angle. Using a relatively small squint angle produces a
better sum pattern than that resulting from a larger angle. Additionally, the dif>
ference pattern slope is steeper for the small squint angle.

-4 -3 -2 -1 0 1 2 3 4
Angle - radians

Figure 9.11a. Two squinted patterns. Squint angle is do = 0.15 radians.
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Sum  pattern

-4 -3 -2 -1 0 1 2 3

Angle - radians

Figure 9.11b. Sum pattern corresponding to Fig. 9.11a.

Difference pattern

-4 -3 -2 -1 0 1 2 3
Angle - radians

Figure 9.11c. Difference pattern corresponding to Fig. 9.11a.
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-4 -3 -2 -1 0 1 2 3 4
Angle - radians

Figure 9.12a. Two squinted patterns. Squint angleis @0 = 0.75 radians.

4 - 3 - 2 - 1 0 1 2 3 4

Angle - radians

Figure 9.12b. Sum pattern corresponding to Fig. 9.12a.
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-4 -3 -2 -1 0 1 2 3 4

Angle - radians

Figure 9.12c. Difference pattern corresponding to Fig. 9.12a.

The difference channels give us an indication of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target’s range and RCS. For this reason
the ratio A/S (delta over sum) can be used to accurately estimate the error
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the
azimuth error signal. Define the signals S1 and S2 as

51=A+D 9.9
52=B+C (9.10

The sum signal is S= S1+S2, and the azimuth difference signal is
Aaz= Sj- S2. If Sj >S2, then both channels have the same phase 0° (since
the sum channel is used for phase reference). Alternatively, if Sj <S2, then the
two channels are 180° out of phase. Similar analysis can be done for the ele-
vation channel, where in this case S1 = A+B and S2 = D +C . Thus, the
error signal output is

S, = N cosE (9.12)

where £ is the phase angle between the sum and difference channels and it is
equal to 0° or 180°. More precisely, if £ = 0, then the target is on the track-
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ing axis; otherwise it is off the tracking axis. Fig. 9.13 (a,b) shows a plot for the
ratio /E for the monopulse radar whose sum and difference patterns are in
Figs. 9.11 and 9.12.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Angle - radians

Figure 9.13a. Difference-to-sum ratio corresponding to Fig. 9.11a.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Angle - radians

Figure 9.13b. Difference-to-sum ratio corresponding to Fig. 9.12a.
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9.3. Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angular coordinates are extracted from one sum and
two difference channels. The main difference is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phases. Phase comparison monopulse tracking
radars use a minimum of a two-element array antenna for each coordinate (azi-
muth and elevation), as illustrated in Fig. 9.14. A phase error signal (for each
coordinate) is computed from the phase difference between the signals gener-
ated in the antenna elements.

target

Figure 9.14. Single coordinate phase comparison monopulse antenna.
Consider Fig. 9.14; since the angle a isequalto, +n/2, itfollows that

9.12)
= R2+92- dRsin,
and since d « R we can use the binomial series expansion to get

(9.13)
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Similarly,
(9.14)
The phase difference between the two elements is then given by

® = —(Ri - R2 = —dsing (9.15)

where X is the wavelength. The phase difference ¢ is used to determine the
angular target location. Note that if ¢ = 0, then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angle b, which causes serious performance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 9.15.

The (single coordinate) sum and difference signals are, respectively, given
by

E(h) = S1+S2 (9.16)
[i(ch) = Si- S2 9.17)

where the S1 and S2 are the signals in the two elements. Now, since S1 and
S2 have similar amplitude and are different in phase by ¢, we can write

Si = Sogj (9.18)
It follows that

A(h) = Sa(1- e ) (919)

Figure 9.15. Single coordinate phase monopulse antenna,
with sum and difference channels.
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E(,) = S2(1 + e (9.20)

The phase error signal is computed from the ratio A/E. More precisely,

9.21)
which is purely imaginary. The modulus of the error signal is then given by

9.22)

This kind of phase comparison monopulse tracker is often called the half-angle
tracker.

9.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constantly adjusted to keep the target locked in
range. This can be accomplished using a split gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 9.16, where a sketch ofa typical pulsed radar echo is shown in the
figure. The early gate opens at the anticipated starting time of the radar echo
and lasts for half its duration. The late gate opens at the center and closes at the
end of the echo signal. For this purpose, good estimates of the echo duration
and the pulse center time must be reported to the range tracker so that the early
and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into an integrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates are not timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.

© 2004 by Chapman & Hall/CRC CRC Press LLC



— ' brmrmseemaennaees radar echo

© 2004 by Chapman & Hall/CRC CRC Press LLC



Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this end, the Kalman filter and the Alpha-Beta-
Gamma (aPy) filter are commonly used. Once a particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track file for that target. Target position, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in
this part. First, an overview of state representation for Linear Time Invariant
(LTI) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers are developed. These filters are, respec-
tively, known as the ap and aPy filters (also known as the g-h and g-h-k fil-
ters). Finally, the equations for an w-dimensional multi-state Kalman filter are
introduced and analyzed. As a matter of notation, small case letters, with an
underbar, are used.

9.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, tracking, and discrimination. With the aid of sophisticated
computer systems, multi-function radars are capable of simultaneously track-
ing many targets. In this case, each target is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for
that detection; this ensures that sequential detections from that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main components of the track file. Typically, at
least one other confirmation detection (verify detection) is required before the
track file is established.

Unlike single target tracking systems, TWS radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. And in order to accomplish this task, TWS radar
systems utilize correlation and association algorithms. In the correlation pro-
cess each new detection is correlated with all previous detections in order to
avoid establishing redundant tracks. 1f a certain detection correlates with more
than one track, then a pre-determined set of association rules is exercised so

© 2004 by Chapman & Hall/CRC CRC Press LLC



that the detection is assigned to the proper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 9.17.

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable that a fixed reference of an inertial coordi-
nate system be adopted. The radar measurements consist of target range, veloc-
ity, azimuth angle, and elevation angle. The TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so that targets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target has been observed for several scans the size of
the gate is reduced considerably.

Figure. 9.17. Simplified block diagram of TWS data processing.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (new detection). Gating algorithms are nor-
mally based on computing a statistical error distance between a measured and
an estimated radar observation. For each track file, an upper bound for this
error distance is normally set. If the computed difference for a certain radar
observation is less than the maximum error distance of a given track file, then
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance
of a given track are said to correlate with that track. For each observation that
does not correlate with any existing tracks, a new track file is established
accordingly. Since new detections (measurements) are compared to all existing
track files, a track file may then correlate with no observations or with one or
more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix
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represent radar observations, while columns represent track files. In cases
where several observations correlate with more than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file.

9.6. State Variable Representation ofan LTI System

A linear time invariant system (continuous or discrete) can be described
mathematically using three variables. They are the input, output, and the state
variables. In this representation, any LTI system has observable or measurable
objects (abstracts). For example, in the case ofa radar system, range may be an
object measured or observed by the radar tracking filter. States can be derived
in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representing range can be given by

R
(9.23)

R

where R, R, and R are, respectively, the range measurement, range rate
(velocity), and acceleration. The state vector defined in Eg. (9.23) can be rep-
resentative of continuous or discrete states. In this book, the emphasis is on
discrete time representation, since most radar signal processing is executed
using digital computers. For this purpose, an n-dimensional state vector has the
following form:

(9.24)

where the superscript indicates the transpose operation.

The LTI system of interest can be represented using the following state equa-
tions:

x(t) = A x(t) +Bw(t) (9.25)

y(t) = C x(t) +Dw(t) (9.26)

where: x is the value ofthe n x 1 state vector; y is the value ofthe p x 1 out-
put vector; w is the value of the m x 1 input vector; A is an n x n matrix; B
is an nxm matrix; C is p xn matrix; and D is an p xm matrix. The

© 2004 by Chapman & Hall/CRC CRC Press LLC



homogeneous solution (i.e., w = 0) to this linear system, assuming known
initial condition x(0) at time to, has the form

x(t) = ®(t- W)X(t- to) 9.27)

The matrix @ is known as the state transition matrix, or fundamental matrix,
and is equal to

Bt-t0) = &Y ©.29)
Eqg. (9.28) can be expressed in series format as
a
O(t- to) } =eA0 =1 +At+A222-!+... =" Ak It<j'( (9.29)
K=0

Example:

Compute the state transition matrixfor an LTI system when

Solution:

The state transi'tion m%trix can be computed using Eg. (9.29). For thispur-

pose, compute A~ and A~ ___Itfollows
1 11
_ o ! 2 2
A2 = A3 =
1 1 1 0
2 2 4
Therefore,
H2 H3 113
1+ot- — +— + O+t--t2+2—+
o = 2l 3 2! 3
1 it2 48 12
0- -14+2— — + 1-1+2 +ot-+,
2 22! 3! 2T 3l

The state transition matrix has the following properties (the proof is left as
an exercise):

1. Derivative property
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go.

t_(t- to) =A®(t- to) (9.30)

o

2. ldentityproperty

P(to- to) = ®(0) = I (9.31)

3. Initial value property

=A 9.32
P o(t- t0) {— (932

4. Transition property
®(t2- to) = P (t2- )P (t1- to) ; to<ti<t2 (9.33)

5. Inverse property

®(to- t1) = &-1(tL - to) (9.39)

6. Separation property
®(tL- to) = d(1)P-1(to) (9.35)

The general solution to the system defined in Eq. (9.25) can be written as
t
x(t) = ®(t- tox(to) +"d (t- x)Bw (x)dx (9.36)

to

The first term of the right-hand side of Eq. (9.36) represents the contribution
from the system response to the initial condition. The second term is the contri-
bution due to the driving force w . By combining Egs. (9.26) and (9.36) an
expression for the output is computed as

y(t) = Ce ( ox(to) +J[CeAlt t)B- DS(t- x)]w(x)dx (9.37)

Note that the system impulse response is equal to Ce B - DS(t).

The difference equations describing a discrete time system, equivalent to
Eqgs. (9.25) and (9.26), are

x(n +1) =A x(n)+Bw(n) (9.38)

y(n) = C x(n) +Dw(n) (9.39)
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where n defines the discrete time nT and T is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (9.38), with initial condition x(no), is

x(n) =A  ®&(no) (9.40)

In this case the state transition matrix is an n X n matrix given by

®(n,ng) = d(n-no) =A o (9.41)

Th-e following is the list of properties associated with the discrete transition
matrix

®(n+1-no =A®P(n- no (942

®(no- no) = ®(0) =1 9.43)

®(no+1-ng = P(1) =A (9.44)

d(n2- no) = p(n2- )P (n1- no) (9.45)

p(no-n) = ® 1(n1- no) (9.46)

®(n1- no) = ®(n1)® 1(no) 9.47)

The solution to the general case (i.e., non-homogeneous system) is given by
n-1
x(n) = ®(n- nojx(ng) + Z. d(n- m- 1)Bw(m) 0.48)
m =ro
It follows that the output is given by
n- 1
y(n) = C®(n- no)x(no) + C ®(n- m- 1)Bw(m) +Dw(n) (9.49)
m=no
where the system impulse response is given by
n-1
hiny = Z C ®(n- m- 1)B§(m) +Ds(n) (950)
m =no

Taking the Z-transform for Egs. (9.38) and (9.39) yields

© 2004 by Chapman & Hall/CRC CRC Press LLC






y(n) = G x(n) +v(n) (9.61)

The homogeneous solution to this system is given in Eq. (9.27) for continuous
time, and in Eq. (9.40) for discrete time.

Figure 9.18. An LTI system.

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector x . More precisely,

j2
X =X+Tx+—x+..
(9.62)
X =x+Tc+..
X =X+...
It follows that the elements of the state transition matrix are defined by
O®M =JT-1"(-") 1 <i,j <n (9.63)
H 0 j<i
Using matrix notation, the state transition matrix is then given by
2
1 T V. .
o= 4 1 T (9.64)
0 0 1

The matrix given in Eq. (9.64) is often called the Newtonian matrix.
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9.8. Fixed-Gain Tracking Filters

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil-
ters. The most common examples of this class of filters are the ap and aPy
filters and their variations. The ap and aPy trackers are one-dimensional sec-
ond and third order filters, respectively. They are equivalent to special cases of
the one-dimensional Kalman filter. The general structure of this class of esti-
mators is similar to that of the Kalman filter.

The standard aPy filter provides smoothed and predicted data for target
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor-
rector linear recursive filter. This filter can reconstruct position, velocity, and
constant acceleration based on position measurements. The aPy filter can also
provide a smoothed (corrected) estimate of the present position which can be
used in guidance and fire control operations.

Notation:

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adopted: x(n]jm) represents the estimate during the
nth sampling interval, using all data up to and including the mth sampling
interval; yn is the nth measured value; and en is the nth residual (error).

The fixed-gain filter equation is given by
x(njn) = ®x(n- 1n- 1) +K[yn- Gdx(n- 1]n- 1)] (9.65)
Since the transition matrix assists in predicting the next state,
x(n+1]n) = dx(n|n) (9.66)
Substituting Eq. (9.66) into Eq. (9.65) yields
x(n]n) = x(njn- 1) +K[yn- Gx(n|n - 1)] (9.67)

The term enclosed within the brackets on the right hand side of Eq. (9.67) is
often called the residual (error) which is the difference between the measured
input and predicted output. Eq. (9.67) means that the estimate of x(n) is the
sum of the prediction and the weighted residual. The term Gx(n|n- 1) repre-
sents the prediction state. Inthe case ofthe aPy estimator, G is the row vector
given by

(9.68)

and the gain matrix K is given by
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a
K= p/T (9.69)

y/ T

One of the main objectives of a tracking filter is to decrease the effect of the
noise observation on the measurement. For this purpose the noise covariance
matrix is calculated. More precisely, the noise covariance matrix is

C(nIn) = E{x(n]n) )x(nIn)} ;yn =wn (9.70)

where E indicates the expected value operator. Noise is assumed to be a zero
mean random process with variance equal to ctv. Additionally, noise measure-
ments are also assumed to be uncorrelated,

Sav
E {Vivim} = .77
0
Eqg. (9.65) can be written as
x(nn) =Ax(n- 1]n- 1) +Kyn 9.72
where
A = (- KG)® 9.73)

Substituting Egs. (9.72) and (9.73) into Eq. (9.70) yields
C(nln) = E{(Ax(n - 1|n- 1) +Kyn)(Ax(n - 1|n- 1) +Kynt} (9.74)
Expanding the right hand side of Eq. (9.74) and using Eq. (9.71) give
C(nln) =AC(n- 1]n- 1)A +K<K 9.75)
Under the steady state condition, Eq. (9.75) collapses to
c(n|n) = ACAt+KAVK (9.76)
where C is the steady state noise covariance matrix. In the steady state,
C(nln) = C(n- t1n- 1) =C for any n 9.77)

Several criteria can be used to establish the performance of the fixed-gain
tracking filter. The most commonly used technique is to compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows that in the steady state case, the VRR is the
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steady state ratio of the output variance (auto-covariance) to the input measure-
ment variance.

In order to determine the stability of the tracker under consideration, con-
sider the Z-transform for Eq. (9.72),

X(z) = Az~Ix(z) +Kyn(z) (9.78)
Rearranging Eq. (9.78) yields the following system transfer functions:

h(z) = x(z) = (1-Az-)-1K 9.79)
Yr(z)
where (I - Az- ) is called the characteristic matrix. Note that the system trans-
fer functions can exist only when the characteristic matrix is a non-singular
matrix. Additionally, the system is stable if and only if the roots of the charac-
teristic equation are within the unit circle in the z-plane,

I(1-Az- )| = o (9.80)

The filter’s steady state errors can be determined with the help of Fig. 9.19.
The error transfer function is

y(2)
e(z) = 15:”(23 981>

and by using Abel’s theorem, the steady state error is

ex = tI|m eét) = IlAm1 27 0 e(z) (9.82
Substituting Eq. (9.82) into (9.81) yields

ea:zn,mle'Zl {(ﬁizf N CY:5)

Figure 9.19. Steady state error computation.
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9.8.1. The aP Filter

The ap tracker produces, on the nth observation, smoothed estimates for
position and velocity, and a predicted position for the (n + 1)th observation.
Fig. 9.20 shows an implementation of this filter. Note that the subscripts “p”
and “s” are used to indicate, respectively, the predicated and smoothed values.
The ap tracker can follow an input ramp (constant velocity) with no steady
state errors. However, a steady state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the
predicted position through adding a weighted difference between the measured
and predicted values to the predicted position, as follows:

xs(n) = x(n]n) = xp(n) +a(xo(n) - xp(n)) (9.84)
xs(n) = x'(n|n) = xx(n- 1) +T (xo(n) - xp(n)) (9.85)
X0 is the position input samples. The predicted position is given by
xp(n) =xs(njn- 1) =xs(n- 1) +Txs(n- 1) (9.86)
The initialization process is defined by
Xs(1) = xp(2) = xo(1)

xs(1) = o

A general form for the covariance matrix was developed in the previous sec-
tion, and is given in Eqg. (9.75). In general, a second order one-dimensional
covariance matrix (in the context of the a p filter) can be written as

(9.87)
where, in general, Cxy is
Cxy = E{xy } (9.88)
By inspection, the ap filter has
A= 1-a (1 - a)T (989)

- =[p/t (@-p_
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K= 2@ (9.90)

T

G = [10] (9.97)

o= 1T (99)
[0

Figure 9.20. An implementation ofan ap tracker.

Finally, using Egs. (9.89) through (9.92) in Eq. (9.72) yields the steady state
noise covariance matrix,

\VJ 2a M 3ap +2p

= 9.93
¢ a(4-2a-P) P(2a- P) 2£ %)

T T2

It follows that the position and velocity VRR ratios are, respectively, given by

(VRR)x =C /oV = —-—-3aP+2P (9.94)
\Y X X v a(4-2a-P)

— — 2V
(VRR)x = Cxx/oV = _?.2 a(4- 2a - P) (9.95)

The stability of the ap filter is determined from its system transfer func-
tions. For this purpose, compute the roots for Eq. (9.80) with A from Eq.
(9.89),
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[I-Az» =1-(2-a-P)zi1+@-a)z2=0 (9.96)

Solving Eq. (9.96) for z yields

7212 =1-a+J)-+"(a-P)2-4P (9.97)
and in order to guarantee stability

lz1,2 <1 (9.98)

Two cases are analyzed. First, z1,2 are real. In this case (the details are left as
an exercise),

P>o ;a>-p (9.99
The second case is when the roots are complex; in this case we find
a>o0 (9.100)
The system transfer functions can be derived by using Egs. (9.79), (9.89),
and (9.90),
hx(z) (9.101)
hx(z) 22-z(2-a-P) +(1-a) Pz(z_l_l)

Up to this point all relevant relations concerning the ap filter were made
with no regard to how to choose the gain coefficients (a and p). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The twofold purpose of the ap tracker can
be described as follows:

1. The tracker must reduce the measurement noise as much as possible.
2. Thefilter must be able to track maneuvering targets, with as little residual
(tracking error) as possible.

The reduction of measurement noise is normally determined by the VRR
ratios. However, the maneuverability performance of the filter depends heavily
on the choice of the parameters a and p .

A special variation of the ap filter was developed by Benedict and Bord-
nerl, and is often referred to as the Benedict-Bordner filter. The main advan-

1 Benedict, T. R. and Bordner, G W., S%nthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations, IRE Transaction on Automatic Control, AC-7,
July 1962, pp. 21-32.
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tage of the Benedict-Bordner is reducing the transient errors associated with
the ap tracker. This filter uses both the position and velocity VRR ratios as
measures of performance. It computes the sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionally, it computes the squared differences
between the real velocity and the velocity output when the input is as described
earlier. Both error differences are minimized when
az2
P=x" (9.102)
2-a

In this case, the position and velocity VRR ratios are, respectively, given by

(VRR)x = a(6-5a) (9.103)
a2 8a +8
(VRR)X = ﬂ- a3/(2-a) (9.104)

Another important sub-class ofthe ap tracker is the critically damped filter,
often called the fading memory filter. In this case, the filter coefficients are
chosen on the basis of a smoothing factor £, where o <£ <1. The gain coeffi-
cients are given by

a =1-£ (9.105)

P=(1-£)2 (9.106)

Heavy smoothing means £/ 1 and little smoothing means £~ 0. The ele-
ments of the covariance matrix for a fading memory filter are

Ox = (1 +4£ +5£2) (9.107)
(1 +£)3
OX=0Cx=T1J ---L3 (1 +2£ +3£2) o (9.108)
T (1 +£)3

ox =4 (L-£)2 o (9.109)
T (1 +£)3

982, The " Py Filter

The aPy tracker produces, for the nth observation, smoothed estimates of
position, velocity, and acceleration. It also produces the predicted position and
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velocity for the (n + 1)th observation. An implementation ofthe aPy tracker
is shown in Fig. 9.21.

The aPy tracker will follow an input whose acceleration is constant with no
steady state errors. Again, in order to reduce the error at the output of the
tracker, a weighted difference between the measured and predicted values is
used in estimating the smoothed position, velocity, and acceleration as follows:

xs(n) = xv(n) +a(xo(n) - xv(n)) (9.110)

xs(n) =xs(n- 1) +Txs(n- 1) +e (xo(n)- xp(n)) (9.111)
xs(n) = xs(n- 1) +Tv (xo(n) - xp(n)) (9.112)

xp(n +1) =xs(n) +T xs(n) +y xs(n) (9.113)

and the initialization process is
xs(1) =xp(2) = xo(1)
xs(1) =xs(1) =xs(2) =0

x0(2) - xo(1)

xs(2) = T

Figure 9.21. An implementation for an aPy tracker.
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x0(3) +x0(1)-2x0(2-
xs(3) = ™

Using Eq. (9.63) the state transition matrix for the aPy filter is

v
1 T F
¢ = 2 (9.114)
o1 T
0 0 1

The covariance matrix (which is symmetric) can be computed from Eqg. (9.76).
For this purpose, note that

a
K= p/T (9.115)
/T
G=1[00] (9.116)
and
1-a (1-a)T (@-a)Tr2
A=(1-KG® = .p/T -p+1 (1-p/2)T (9.117)

-2y/T -2y/T (1-v)

Substituting Eq. (9.117) into (9.76) and collecting terms the VRR ratios are
computed as

(VRR) = VP(2a +2[3- 3a[3)- ay(4 - 2a- 3 (9.118)
X (4- 2a- P)(2aP +ay - 2y) '
(VRR), = VgMAMNANNI(ANGO) (9.129)

X T2(4-2a- P)(2ap +ay - 2y)

(VRR)X (9.120)

T(@4-2a-P)(2ap +ay - 2y)

As in the case ofany discrete time system, this filter will be stable if and only if
all ofits poles fall within the unit circle in the z-plane.

The aPy characteristic equation is computed by setting
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\I-Az A =0 (9.121)

Substituting Eqg. (9.117) into (9.121) and collecting terms yield the following
characteristic function:

3

f(z) =z +(- 3a grp+y)z +@3-p-2a+y)z-(1-a) (9.122)

The aPy becomes a Benedict-Bordner filter when
2p-ala+P+2j =o0 (9.123)

Note that for y = o Eq. (9.123) reduces to Eq. (9. KO2). For a critically damped
filter the gain coefficients are

a=1-£ (9.124)
P=15(1-£(1-£) = 151 - £)2(1+£) (9.125)
Y=(1-£)3 (9.126)

Note that heavy smoothing takes place when £~ 1, while £ = 0 means that
no smoothing is present.

MATLAB Function “ghk_tracker.m”

The function “ghktracker.m” implements the steady state ” Py filter. It is
given in Listing 9.2 in Section 9.11. The syntax is as follows:

[residual, estimate] =ghk tracker (X0, smoocof, inp, npts, T, nvar)

where

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array ofposition measurements input

npts number ofpoints in inputposition input

T sampling interval input

nvar desired noise variance input
residual array ofposition error (residual) output
estimate array ofpredictedposition output
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Note that “‘ghktracker.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.
If this toolbox is not available to the user, then “ghk tracker.m” function-call
must be modified to

[residual, estimate] =ghktrackerl (X0, smoocof, inp, npts, T)

which is also part of Listing 9.2. In this case, noise measurements are either to
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk tracker.m and ghk trackerl.m,
consider the inputs shown in Figs. 9.22 and 9.23. Fig. 9.22 assumes an input
with lazy maneuvering, while Fig. 9.23 assumes an aggressive maneuvering
case. For this purpose, the program called “fig9_21.m” was written. It is given
in Listing 9.3 in Section 9.11.

Figs. 9.24 and 9.25 show the residual error and predicted position corre-
sponding (generated using the program ‘fig9_21.m”) to Fig. 9.22 for two
cases: heavy smoothing and little smoothing with and\/without noise. The noise
is white Gaussian with zero mean and variance of ctv = 0.05 . Figs. 9. 26 and
9.27 show the residual error and predicted position corresponding (generated
using the program €ig9_20.m?) to Fig. 9.23 with and without noise.

Sam ple num ber

Figure 9.22. Position (truth-data); lazy maneuvering.
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Sam ple num ber

Figure 9.23. Position (truth-data); aggressive maneuvering.

Sam ple num ber

Figure 9.24a-1. Predicted and true position. £ = 0.1 (i.e., large gain
coefficients). No noise present.
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Sam ple num ber

Figure 9.24a-2. Position residual (error). Large gain coefficients.
No noise. The error settles to zero fairly quickly.

Sam ple num ber

Figure 9.24b-1. Predicted and true position. £ = 0.9 (i.e., small
gain coefficients). No noise present.
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Sam ple num ber

Figure 9.24b-2. Position residual (error). Small gain coefficients. No noise.
It takes the filter longer time for the error to settle down.

Sam ple num ber

Figure 9.25a-1. Predicted and true position. £ = 0.l (i.e., large
gain coefficients). Noise is present.

© 2004 by Chapman & Hall/CRC CRC Press LLC



0 50 100 150 200 250 300 350 400 450 500
Sam ple num ber

Figure 9.25a-2. Position residual (error). Large gain coefficients. Noise present.
The error settles down quickly. The variation is due to noise.

Sam ple num ber

Figure 9.25b-1. Predicted and true position. £ = 0.9 (i.e., small gain
coefficients). Noise is present.
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Sam ple num ber

Figure 9.25b-2. Paosition residual (error). Small gain coefficients. Noise present.
The error requires more time before settling down. The
variation is due to noise.

Sam ple num ber

Figure 9.26a. Predicted and true position. £ = 0.1 (i.e., large gain
coefficients). Noise is present.
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Sam ple num ber

Figure 9.26b. Position residual (error). Large gain coefficients. No noise.
The error settles down quickly.

Sample number

Figure 9.27a. Predicted and true position. £ = 0.8 (i.e., small gain coefficients).
Noise is present.
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Sam ple num ber

Figure 9.27b. Position residual (error). Small gain coefficients. Noise present. The
error stays fairly large; however, its average is around zero. The
variation is due to noise.

9.9. The Kalman Filter

The Kalmanfilter is alinear estimator that minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such as the aPy and the Benedict-Bordner filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same
filter can be usedfor a variety ofmaneuvering target environments.

2. The Kalmanfilter gain computation adapts to varying detection histories,
including missed detections.

3. The Kalmanfilter provides an accurate measure ofthe covariance matrix.
This allowsfor better implementation o fthe gating and association pro-
cesses.

4. The Kalmanfilter makes it possible to partially compensatefor the effects
ofmis-correlation and mis-association.

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 9.28 shows ablock diagram for the Kalman filter.
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The Kalman filte r equations canbe deduced from Fig. 9.28. The filtering equa-
tion is

x(npn) = xs(n) = x(njn- 1) +K (n)[y(n) - Gx(n|n- 1)] (9.127)
The measurement vector is
Y(n) = Gx(n) + v(n) (9.128)

where v(n) is zero mean, white Gaussian noise with covariance " c,

Ac = E{Y(n) yt(n)} (9.129)

The gain (weight) vector is dynamically computed as

K(n) = P(nn- 1)Gt[GP(nln- 1)Gt+ " d-1 (9.130)

where the measurement noise matrix P represents the predictor covariance
matrix, and is equal to

P+ 1Jn) = E {xs(n+ 1)x*s(n)} = ®P(nIn)® + Q (9.131)
where Q is the covariance matrix for the input u ,

Q = E{u(n) u(n)} (9.132)
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The corrector equation (covariance of the smoothed estimate) is
P(nln) = [I-K (M)G]P(nln- 1) (9.133)

Finally, the predictor equation is

x(n+ 1]n) = ox(n|n) (9.134)

9.9.1. The Singer aPy -Kalman Filter

The Singerlfilter is a special case of the Kalman where the filter is gov-
erned by a specified target dynamic model whose acceleration is arandom pro-
cess with autocorrelation function given by

-N
V. Tm
E{x(t) x(t+t)} = aa e (9.135)
where Tm is the correlation time of the acceleration due to target maneuvering
or atmospheric turbulence. The correlation time Tm may vary from as low as
10 seconds for aggressive maneuvering to as large as 60 seconds for lazy
maneuvering cases.

Singer defined the random target acceleration model by afirst order Markov
process given by

x(n+ 1) = Pm x(n)+ 71 - pm am w(n) (9.136)

where w(n) is azero mean, Gaussian random variable with unity variance,
am is the maneuver standard deviation, and the maneuvering correlation coef-
ficient Pm is given by

T
Pm = eTm

(9.137)

The continuous time domain system that corresponds to these conditions is the
same as the Wiener-Kolmogorov whitening filter which is defined by the dif-
ferential equation

d V(t) = - PmV(t) + w(t) (9.138)

1 Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets, IEEE Transaction on Aerospace andElectronics, AES-5, July, 1970,
pp. 473-483.
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where Pmis equal to 1/xm. The maneuvering variance using Singer’s model
is given by

2 AZnaxTi -
e e (9.139)

Anmex is the maximum target acceleration with probability pmex and the term
po defines the probability that the target has no acceleration.

The transition matrix that corresponds to the Singerfilteris given by

17 i (-1+PmT+ Pm)
em
> _ (9.140)
0o 1 B-(1 -Pm)
0 0 P m

Note that when TPm_ T/xmis small (the target has constant acceleration),
then Eq. (9.140) reduces to Eq. (9.114). Typically, the sampling interval T is
much less than the maneuvering time constant xm; hence, Eq. (9.140) can be
accurately replaced by its second order approximation. More precisely,

17 T2/2
®_ 0 1 TQA-T/2Tm (9.141)
00 Pm

The covariance matrix was derived by Singer, and it is equal to

,ay CLCRCB
C_ cz cz cB (9142)
Cilc2Cc3
where
2 1
cu _ Ox _ 5 1-e2pmi+2pPmT + -f- - 2pmT2- 4PmTe-PmT (9.143)

2em

C2_ C2A _ -4-[e2Pni+ 1-2e-mT+ 2PmTe”Pml-2Pm T+ p~/] (9.144)
2P
1 2P PmT
C13_ Cc3a _ [1l-e ™ -2 Pnie ] (9.145)
2em
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Ew

L Ll (9.146)

vem
C 1 27, 1V P
C\B = Cav = —7 [e +1-2e (9.147)
2em
C 1 [1 ~Ri] (9.148)
= vemll- e 1

Two limiting cases are of interest:

1 The shortsampling interval case (T « Tm),

T5/20 T /8 T%6
am o € = T/8 T3 T /2 (9.149)
T¥6 t22 T

and the state transition matrix is computed from Eq. (9.141) as

1 1T 1T/2
H,I;ri']’]/\o fD 0 1 T (9150)
0 O 1

which is the same as the case for the aPy filte r (constant acceleration).

2. The long sampling interval (T » Tm). This condition represents the case

when acceleration is a white noise process. The corresponding covariance
and transition matrices are, respectively, given by

----3--- m T m
lim C = an Vi (9.151)
PmT T T VIT,. T,
2
T, T 1
1 7 Tr,
lim b = 0o 1 - (9.152)
PmT - '
0 0 0

Note that under the conditionthat T » T, , the cross correlation terms C13 and
C\8 become very small. It follows that estmates of acceleration are no longer
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available, and thus atwo state filte r model canbe used to replace the three state
model. In this case,

133 T2 2
C = 2anm, (9.153)
22 7
o= 1T (9.154)
01

9.9.2. Relationship between Kalman and aPy Filters

The relationship between the Kalman filter and the aPy filters canbe easily
obtained by using the appropriate state transition matrix @ , and gain vector K
corresponding to the aPy in Eq. (9.127). Thus,

x(n]n) x(nln- 1) M n)
x(nin) = x(nJn- 1) * kv(n) [x0(n) - x(nn- 1)] (9.155)
x(n]n) x(nln- 1) ks(n)

with (see Fig. 9.21)

x(nh-1) =xs(n- 1)+ T xs(n- 1)+ — xs(n- 1) (9.156)
x(nn- 1) = xs(n- 1)+ T xs(n- 1) (9.157)
x(nn- 1) = xs(n- 1) (9.158)

Comparing the previous three equations with the aPy filte r equations yields
k

e

T = K (9.159)
k

Additionally, the covariance matrix elements are related to the gain coeffi-
cients by
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k1 c."
1
k2 A 2 CR2
- Ccu+ Qv
C*

Eq. (9.160) indicates that the first gain coefficient depends on the estimation
error variance of the total residual variance, while the other two gain coeffi-
cients are calculated through the covariances between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalmanlilter.m” implements astate Singer-aPy Kalman fil-
ter. It is givenin Listing 9.4 in Section 9.11. The syntax is as follows:

[residual, estimate] = kalman_fiter(npts, T, X0, inp, R, nvar)

where

Symbol Description Status
npts number ofpoints in inputposition input
T sampling interval input
X0 initial state vector input
inp input array input

R noise variance see Eq. (9-129) input
nvar desired state noise variance input
residual array ofposition error (residual) output
estimate array ofpredictedposition output

Note that “kalm anjiter.m ” uses M ATLAB’s function “normrnd.m ” to gener-
ate zero mean Gaussian noise, which is part of M ATLA B’s Statistics Toolbox.

To illustrate how to use the functions “kalmanJilte r.m ”, consider the inputs
shown in Figs. 9.22 and 9.23. Figs. 9.29 and 9.30 show the residual error and
predicted position corresponding to Figs. 9.22 and 9.23. These plots can be
reproduced using the program ‘fig9_28.m ™ given in Listing 9.5 in Section
9.11.
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Figure 9.29a. True and predicted positions. Lazy maneuvering. Plot produced
using the function “kalman_fdter.m”.
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Figure 9.29b. Residual corresponding to Fig. 9.29a.
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Sam ple num ber

Figure 9.30a. True and predicted positions. Aggressive maneuvering. Plot
produced using the function “kalman_fiter.m™.

Figure 9.30b. Residual corresponding to Fig. 9.30a.
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9.10. “MyRadar” Design Case Study - Visit9

9.10.1.Problem Statement

Implement aKalmanfilter tracker into the “MyRadar” design case study.

9.10.2. A Designl

For this purpose, the M ATLAB GUI workspace entitled “kalman_gui.m”
was developed. It is shown in Fig. 9.31. In this design, the inputs canbe initial-
ized to comespond to either target type (aircraft and missile). For example,
whenyou click on the button ‘ResetMissile,” the initial x- y-, and z-detection
coordinates for the missile are loaded into the “Starting Location” field. The
corresponding target velocity is also loaded in the “velocity in x direction”
field. Finally, all other fields associated with the Kalman filte r are also loaded
using default values that are appropriate for this design case study. Note that
the user can alter these entries as appropriate.

This program generates a fictitious trajectory for the selected target type.
This is accomplished using the function “maketraj.m”. It is given in Listing
9.6 in Section 9.11. The user can either use this program, or import their own
specific trajectory. The function “maketraj.m” assumes constant altitude, and
generates amanuevering trajectory in the x-y plane, as shownin Fig. 9.32.This
trajectory can be changed using the different fields in the “trajectory Parame-
ter” fields.

Next the program corrupts the trajectory by adding white Guassian noise to
it. This is accompilished by the function “addnoise.m” which is given in List-
ing 9.7 in Section 9.11. A six-state Kalman filte r named “kalfilt.m” is then uti-
lized to perform the tracking task. This function is given in Listing 9.8.

The azimuth, elevation, and range errors are input to the program using their
corresponding fields on the GUI. In this example, these entries are assumed
constant throughout the simulation. In practice, this is not true and these values
w ill change. They are caluclated by the radar signal processor on a “per pro-
cessing interval” basis and then are input into the tracker. For example, the
standard deviation of the error in the range measurement is

ar= AR - ___ ¢ (9.161)

/2 x SNR 2B*I12 X SNR

1 The MATLAB codein this section was developed by Mr. David Hall, Consultant to
Decibel Research, Inc., Huntsville, Alabama.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Trajectory Parameters

Starting Location

velocity in x direction

maneuvering amplitude (m) maneuvering period (s)
y-axis 1 0 1 Y

maneuvering amplitude Im) maneuvering period ($)

Q
1 1
sec
sampling time 1 0 sampling interval 1
rad rad

azimuth error elevation error

Kalman Parameters

Calculate ResetMissile ResetAirplane Exit

Figure 9.31. MATLAB GUI workspace associated with the “MyRadar” design
case study- visit 9.
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Figure 9.32. Missile uncorrupted trajectory.

corrupted trajectory

Figure 9.33. Missile corrupted trajectory.
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Figure 9.34. Missile x-position from 153 to 160 secondks.
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Figure 9.35. Missile y-position.
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Figure 9.36. Missile z-position.

Figure 9.37. Missile trajectory and filtered trajectory.
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Figure 9.38. Missile velocity filtered.
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Figure 9.40. Missile velocity residuals.

Figure 9.41. Missile covariance matrix components versus time.
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Figure 9.42. Kalman filter gains versus time.

9.11. MATLAB Program and Function Listings

This section contains listings of all M ATLAB programs and functions used
in this chapter. Users are encouraged to rerun this code with different inputs in
order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “mono_pulse.m”

function mono_pulse(phi0)
eps = 0.0000001;

angle = -pi:0.01:pi;

y1l = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ysum =yl +y2;

ydif= -yl +y2;

figure (1)

plot (angle,yl,'k',angle,y2, 'k');
grid;

xlabel (Angle - radians)
ylabel ('Squintedpatterns')
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figure (2)
plot(angle,ysum,k);
grid;

xlabel ('Angle - radians)
ylabel (Sumpattern)
figure (3)

plot (angle,ydif,'k);
grid;

xlabel (Angle - radians)
ylabel (Differencepattern)
angle = -pi/4:0.01:pi/4;
y | = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif= -yl +y2;

ysum =y | +y2;

dovrs = ydif./ysum;
figure(4)

plot (angle,dovrs,k);
grid;

xlabel (Angle - radians)
ylabel (Vvoltage gain)

Listing 9.2. MATLAB Function “ghk_tracker.m”

function [residual, estimate] = ghktracker (X0, smoocof, inp, npts, T, nvar)
m = 1.,
% read the initial estimate for the state vector
X =XO0;
theta = smoocof;
%compute valuesfor alpha, beta, gamma
wl = 1. - (theta”3);
w2 = 1.5 * (1. + theta) * ((1. - theta)A2) / T;
((1. - theta)M3) / (TA2);
% setup the transition matrix PH |
PHI=1[1. T (TA2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
%use the transition matrix to predict the next state
XN =PHI *X;
error = (inp(rn) + normrnd(0,nvar)) - XN (1);
residual(rn) = error;
tmpl = wl * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state

w3

© 2004 by Chapman & Hall/CRC CRC Press LLC



X(1) = XN(1) + tmpl;
X(2) =XN(2) + tmp2;
X(3) =XN(3) + tmp3;
estimate(rn) = X(1);

m=rn + 1,

end
return

MATLAB Function “ghk_trackerl.m”

function [residual, estimate] = ghk_trackerl (X0, smoocof, inp,

m = 1;

% read the initial estimatefo r the state vector

X =X0;

theta = smoocof;

%compute valuesfor alpha, beta, gamma

wl = 1. - (thetaA3);

w2 = 1.5 * (1. + theta) * ((1. - theta)A2) / T;
w3 = ((1. - theta)A3) / (TA2);

% setup the transition matrix PH |
PHI=1[1. T (TA2)/2.;0. 1. T;0. 0. 1.];

while rn < npts ;

%use the transition matrix to predict the next state

XN =PHI *X;

error = inp(rn) -XN(1);
residual(rn) = error;

tmpl
tmp2
tmp3

% compute the next state
X(1) = XN(1) + tmpl;
X(2) =XN(2) + tmp2;
X(3) =XN(3) + tmps3;
estimate(rn) = X(1);

wl * error;
w2 * error,
w3 * error;

m=rm + 1,

end
return

Listing 9.3. MATLAB Program ‘fig9_21.m”

clear all
eps = 0.0000001;
npts = 5000;

del = 1./5000.;
t=0 :del: 1;
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% generate input sequence

inp = 1.+ tA3 + .5 *tA2 + cos(2.*pi*10 .* t) ;
% read the initial estimatefor the state vector
X0 =[2,.1,.01];

% this is the update interval in seconds

T = 100. * del;

% this is the value ofthe smoothing coefficient

xi = .91,

[residual, estimate] = ghktracker (X0, xi, inp, npts, T, .01);
figure(1)

plot (residual(1:500))
xlabel (Sample number)
ylabel ('Residual error)
grid

figure(2)

NN = 4999,

n = 1:NN;

plot (n,estimate(1:NN), 'b',n,inp(1:NN),r")
xlabel (Sample number)
ylabel ('Position’)

legend (‘Estimated’,'Input’)

Listing 9.4. MATLAB Function “kalman_filter.m”

function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;

m=1;

% read the initial estimatefor the state vector

X =XO0;

% it is assumed that the measurement vector H=[1,0,0]
% this is the state noise variance

VAR = nvar;

% setup the initial valuefor the prediction covariance.
S=[1.11;111;111]

% setup the transition matrix PH |

PHI=1[1. T (TA2)/2.;0. 1. T; 0. 0. 1.];

% setup the state noise covariance matrix

Q(.,1) = (VAR * (1A5)) / 20.;

Q(1,2) = (VAR * (TA4))/ 8,;

Q(1,3) = (VAR * (TA3))/ 6.;

Q(2,1) = Q(1,2);

Q(2,2) = (VAR * (TA3))/ 3,;

Q(2,3) = (VAR * (TA2))/ 2,

Q(3.1) = Q(1,3);
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Q(3.2) = Q(2,3);
Q(3.,3) = VAR * T,
whilern <N ;
%use the transition matrix to predict the next state
XN =PHI *X;
% Perform error covariance extrapolation
S=PHI*S *PHI' + Q;
% compute the Kalman gains
ak(l) = S(1,1) / (S(1,1) +R);
ak(2) = S(1,2) / (S(1,1) +R);
ak(3) = S(1,3) 7/ (S(1,1) +R);
%perform state estimate update:
error = inp(rn) + normrnd(0,R) - XN (1);
residual(rn) = error;
tmpl = ak(1) * error;
tmp2 = ak(2) * error;
tmp3 = ak(3) * error;
X(1) =XN(1) + tmpl;
X(2) =XN(2) + tmp2;
X(3) =XN(3) + tmps3;
estimate(rn) = X(1);
% update the error covariance
S(1,1) =S(1,1) * (1. -ak(1));
S(1,2) =S(1,2) * (1. -ak(1));
S(1,3) =S(1,3) * (1. -ak(1));
S(2,1) = S(1,2);

S(2,2) = -ak(2) *S(1,2) + S(2,2);
S(2,3) = -ak(2) *S(1,3) + S(2,3);
S(3,1) = S(1,3);
S(3,3) = -ak(3) *S(1,3) + S(3,3);
m=rn+ 1;

end

Listing 9.5. MATLAB Program ‘fig9_28.m”

clear all

npts = 2000;

del = 1/2000;

t = 0:del:1;

inp = (1+.2 .*t+ .1 *t.A2) + cos(2. *pi *2.5.* t);
X0 =[1,.1,.01]%

% it is assumed that the measurement vector H=[1,0,0]
% this is the update interval in seconds

T=1,
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% enter the measurement noise variance

R = .035;

% this is the state noise variance

nvar = .5;

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)

plot(residual)

xlabel (Sample number)
ylabel (‘lResidual’)
figure(2)

subplot(2,1,1)

plot(inp)

axis tight

ylabel (position - truth)
subplot(2,1,2)
plot(estimate)

axis tight

xlabel (Sample number)
ylabel (Predictedposition)

Listing 9.6. MATLAB Function “maketraj.m”

function [tim es, trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod,
zamp, zperiod, samplingtime, deltat)

% maketraj.m

% byDavidJ. Hall

% for Bassem Mahafza

% 17 June 2003

% 17:01

% USAGE: [times, trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod,
zamp, zperiod, samplingtime, deltat)

% NOTE: all coordinates are in radar reference coordinates.

% INPUTS

% name dimension explanation units
L

% start loc 3X 1 starting location oftarget t
% xvelocity 1 velocity oftarget m/s
% yamp 1 amplitude ofoscillationy direction
% yperiod 1 period ofoscillationy direction

% zamp 1 amplitude ofoscillation z direction
% zperiod 1 period ofoscillation z direction

% samplingtime 1 length ofinterval oftrajectory

% deltat 1 time between samples set

%
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% OUTPUTS

%

% name dimension explanation units

0f) mmmmmmm mmmmmemeem

% times 1X samplingtime/deltat vector oftimes

% corresponding to samples sec

% trajectory 3 X samplingtime/deltat trajectory x,y,z m

%
times = 0: deltat: samplingtime ;
x = start_loc(1)+xvelocity. *times;

ifyperiod~=

y = start_loc(2)+yamp*cos(2*pi*(1/yperiod).*times) ;
else

y = ones(1, length(times))*start_loc(2) ;
end
ifzperiod~=0

z = start_loc(3)+zamp*cos(2*pi*(1/zperiod).*times) ;
else

z = ones(1, length(times))*start_loc(3) ;
end

trajectory = [x;y ;z];

Listing 9.7. MATLAB Function “addnoise.m”

function [noisytraj] = addnoise(trajectory, sigmaaz, sigmael, sigmarange)
% addnoise.m

% by DavidJ. Hall

% fo r Bassem Mahafza

% 10 June 2003

% 11:46

% USAGE: [noisytraj] = addnoise(trajectory, sigmaaz, sigmael, sigmarange)
% INPUTS

% name dimension explanation units

0f —mcmme mmmeem | e e

% trajectory 3XP O INTS trajectory in radar reference coords [m;m;m]
% sigmaaz 1 standard deviation ofazimuth error radians

% sigmael 1 standard deviation ofelevation error radians

% sigmarange 1 standard deviation ofrange error m

%

% OUTPUTS

% name dimension explanation units

0f —mcmme cmmeem | e e

% noisytraj 3XPOINTS noisy trajectory [m;m;m]

noisytraj = zeros(3, size(trajectory,?)) ;

© 2004 by Chapman & Hall/CRC CRC Press LLC



forloop = 1: size(trajectory,?)
x = trajectory(l,loop);
y = trajectory(2,loop);
z = trajectory(3,loop);
azimuth corrupted = atan2(y,x) + sigmaaz*randn(l) ;
elevationcorrupted = atan2(z, sqrt(xA2 +yA2)) + sigmaelrandn(l ;
range corrupted = sqrt(xA2+yA2+zA2) + sigmarange*randn(l) ;
xcorrupted =
range_corrupted*cos(elevation_corrupted)*cos(azimuth_corrupted) ;
ycorrupted =
range_corrupted*cos(elevation_corrupted)*sin(azimuth_corrupted) ;
z corrupted = range_corrupted*sin(elevation_corrupted) ;
noisytraj(:,Joop) = [x corrupted;y corrupted;z corupted] ;
end % nextloop

Listing 9.8. MATLAB Function “kafilt.m”

function [fitered, residuals , covariances, kalmgains] = kalffilt(trajectory, x0,
PO, phi, R, Q)

% kalfilt.m

% byDavidJ. Hall

% fo r Bassem Mahafza

% 10 June 2003

% 11:46

% USAGE: [fitered, residuals, covariances, kalmgains] = kalffit(trajectory,
x0, PO, phi, R, Q)

%

%INPUTS

% name dimension explanation units

% trajectory NUMMEASUREMENTSXNUMPOINTS trajectory in radar

reference coords [m;m;m]

% x0 NUM STATESX1 initia | estmate o fstate vector m,
m/s

% PO NUM STATESX NUM STATES initia | estimate o fcovariance
m atrix m, m/s

% phi NUM STATESX NUM STATES state transition m atrix

% R NUMMEASUREMENTSX NUMMEASUREMENTS measurement

error covariance matrix m

% Q NUM STATESX NUM STATES state error covariance m atrix
m, m/s

%
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% OUTPUTS
% name dimension explanation units

% fitered NUMSTATESX NUMPOINTS fitered trajectory x,y,zpos, vel
[m; m/s; m; m/s; m; m/s]
% residuals NUMSTATESX NUMPOINTS residuals o ffiltering
[m;m;m]
% covariances NUM STATESX NUMPOINTS diagonal o fcovariance
m atrix [m;m;m]
% kalmgains (NUMSTATESXNUM M EASUREMENTS)
% X NUMPOINTS Kalman gain m atrix -
NUM STATES = 6;
NUMMEASUREMENTS = 3;
NUMPOINTS = size(trajectory, 2) ;
% initialize output matrices
fitered = zeros(NUMSTATES, NUMPOINTS) ;
residuals = zeros(NUMSTATES, NUMPOINTS) ;
covariances = zeros(NUM STATES, NUMPOINTS) ;
kalmgains = zeros(NUM STATES*NUM M EASUREMENTS, NUMPOINTS) ;
% setmatrix relating measurements to states
H=[100000;001000;000010];
xhatminus = x0;
Pminus = PO ;
forloop = 1: NUMPOINTS
% compute the Kalman gain
K =Pminus*H*inv(H*Pminus*H' + R) ;
kalmgains(:,loop) = reshape(K, NUM STATES*NUM MEASUREMENTS, 1) ;
% update the estimate with the measurementz
z = trajectory(:loop) ;
xhat = xhatminus + K*(z - H*xhatminus) ;
fitered(:loop) = xhat;
residuals(;,loop) = xhat - xhatminus ;
% update the error covariancefo r the updated estmate
P = (eye(NUMSTATES, NUM STATES) - K*H)*Pm inus ;
covariances(;,loop) = diag(P) ; % only save diagonal o fcovariance m atrix
% project ahead
xhatminus next = phi*xhat;
Pminus next=phi*P*phi' + Q;
xhatminus = xhatminus next;
Pminus = Pminus next;
end
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Chapter 10 Electronic Countermeasures
(ECM)

This chapter is coauthored with J. Michael Madewelll

10.1. Introduction

Any deliberate electronic effort intended to disturb normal radar operation is
usually referred to as an Electronic Countermeasure (ECM). This may also
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency
absorbing materials), and, of course, radarjamming.

In general, ECM is used by the offense to accomplish one, several, or possi-
bly all of the following objectives: (1) deny proper target detection; (2) gener-
ate operator confusion and / or deception; (3) force delays in detection and
tracking initiation; (4) generate false tracks of non-real targets; (5) overload
the radar computer with an excessive number of targets; (6) deny accurate
measurements of the target range and range rate; (7) force dropped tracks; and
(8) introduce errors in target position and range rate. Alternatively, the defense
may utilize Electronic counter-countermeasures (ECCM) to overcome and
mitigate the effects of ECM on the radar. When deployed properly, ECCM
techniques and / or hardware can have the following effects: (1) prevent
receiver saturation; (2) maintain a reasonable CFAR rate; (3) enhance the sig-
nal to jammer ratio; (4) properly identify and discriminate directional interfer-
ence; (5) reject invalid targets; and (6) maintain true target tracks.

ECM techniques can be exploited by aradar system in many different ways
and can be categorized into two classes:

1 Mr. J. Michael Madewell is with the US Army Space and Missile Defense Com-
mand in Huntsville, Alabama.
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1 Denial ECM techniques: Denial ECM techniques can be either active or
passive. Active denial ECM techniques include: CW, short pulse, long
pulse, spot noise, barrage noise, and sidelobe repeaters. Passive EC M tech-
niques include chaff and Radar Absorbing Material (RAM).

2. Deception ECM techniques: Deception ECM techniques are also broken
down into active and passive techniques. Active deceptionEC M techniques
include repeater jammers and false target generators. Passive deception
ECM include chaffandRAM.

10.2. Jammers

Jammers can be categorized into two general types: (1) barrage jammers and
(2) deceptive jammers (repeaters). When strong jamming is present, detection
capability is determined by receiver signal-to-noise plus interference ratio
rather than SNR. In fact, in most cases, detection is established based on the
signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn,
makes it difficult to detect the desired targets. This is the reason why barrage
jammers are often called maskers (since they mask the target returns). Barrage
jammers can be deployed in the main beam or in the sidelobes of the radar
antenna. |f a barrage jammer is located in the radar main beam, it can take
advantage of the antenna maximum gain to amplify the broadcasted noise sig-
nal. Alternatively, sidelobe barrage jammers must either use more power, or
operate at a much shorter range than main beamjammers. Main beam barrage
jammers can be deployed either on-board the attacking vehicle, or act as an
escort to the target. Sidelobe jammers are often deployed to interfere with a
specific radar, and since they do not stay close to the target, they have a wide
variety of stand-off deployment options.

Repeater jammers carry receiving devices on board in order to analyze the
radar’s transmission, and then send back false target-like signals in order to
confuse the radar. There are two common types of repeaterjammers: spot noise
repeaters and deceptive repeaters. The spot noise repeater measures the trans-
mitted radar signal bandwidth and then jams only a specific range of frequen-
cies. The deceptive repeater sends back altered signals that make the target
appear in some false position (ghosts). These ghosts may appear at different
ranges or angles than the actual target. Furthermore, there may be several
ghosts created by a single jammer. By not having to jam the entire radar band-
width, repeaterjammers are able to make more efficient use of theirjamming
power. Radar frequency agility may be the only way possible to defeat spot
noise repeaters.
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In general ajammer can be identified by its effective operating bandwidth
BJ and by its Effective Radiated Power (ERP), which is proportional to the
jammer transmitter power PJ . More precisely,

ERP = Ip- (10.1)
Lj
where GJ is the jammer antenna gain and LJ is the total jammer losses. The
effect of ajammer on aradar is measured by the Signal-to-Jammer ratio (S/J).

10.2.1. Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers and as main
beamjammers, are aclass of ECM systems carried on the vehicle they are pro-
tecting. Escort jammers (carried on vehicles that accompany the attacking
vehicles) can also be treated as SSJs if they appear at the same range as that of
the target(s).

Assume aradar with an antenna gain G, wavelength X, aperture Ar, band-
width Br, receiver losses L , and peak power Pt. The single pulse power
received by the radar from atarget of RCS c:, atrangeR , is

PtG2x 2ctt
S = (1n)§?4L <0-2>

T is the radar pulsewidth. The power received by the radar from an SSJ jam-
mer at the same range is

r Pijgi Ar N

V7 el Bils 103>
where PJ, GJ,BJ,LJ are, respectively, thejammer’s peak power, antenna gain,
operating bandwidth, and losses. Using the relation

Ar = 10.4
4n (104)

then Eq. (10.3) canbe written as

r pigji X2G 1
= - A B - 1°.5
4nR 4n  BJLJ
Note that BJ > Br . This is needed in order to compensate for the fact that the
jammer bandwidth is usually larger than the operating bandwidth of the radar.
Jammers are normally designed to operate against awide variety of radar sys-
tems with different bandwidths.
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Substituting Eq. (10.1) into Eq. (10.5) yields,
(10.6)

Thus, S/J ratio for a SSJ case is obtained from Eqgs. (10.6) and (10.2),

J  (ERP)(4n)R2L

and when pulse compression is used, with time-bandwidth-product GPC, then
Eq. (10.7) canbe written as

S = PtGCBIGPC 108)
J  (ERP)(4n)R2B1L

Note that to obtain Eq. (10.8), one must multiply Eq. (10.7) by the factor
Br/Br and use the fact that GPC = B r%.

The jamming power reaches the radar on a one-way transmission basis,
whereas the target echoes involve two-way transmission. Thus, the jamming
power is generally greater than the target signal power. In other words, the ratio
S/J is less than unity. However, as the target becomes closer to the radar,
there will be a certain range such that the ratio S/J is equal to unity. This
range is known as the cross-over range. The range window where the ratio
S/J is sufficiently larger than unity is denoted as the detection range. In order
to compute the crossover range R co, set S/J to unity in Eq. (10.8) and solve
for range. It follows that

(10.9)

MATLAB Program “ssj_req.m”

The program “ssj req.m” implements Eqgs. (10.9); it is givenin Listing 10.1
in Section 10.5. This program calculates the cross-over range and generates
plots of relative S and J versus range normalized to the cross-over range, as
illustrated in Fig. 10.1a.

In this example, the following parameters were utilized: radar peak power
Pt = 50KW, jammer peak power Pj = 200 W, radar operating bandwidth
Br = 667K H z, jammer bandwidth BJ = 50M Hz, radar and jammer losses
L = LJ = 0.10dB, target cross section <« = 10.m , radar antenna gain
G = 35dB,jammer antenna gain GJ = 10d B, the radar operating frequency
isf = 5.6GHz.The syntax s asfollows:
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[BR range] =ssjreq (pt, g, freq, sigma, br, loss, pj, bj, gj, 10ssj)

where

Symbol Description Units Status

pt radarpeak power w input

g radar antenna gain dB input

freq radar operatingfrequency Hz input

sigma target cross section m2 input

br radar operating bandwidth Hz input

loss radar losses dB input

G jammer peak power w input

bj jammer bandwidth Hz input

gi jammer antenna gain dB input

lossj jammer losses dB input
BR range cross-over range Km output
10" 10° 10’ 102 10

Range normalized to cross-over range

Figure 10.1a. Target and jammer echo signals. Plots were generated using
the program “ssj req.m” and using the input parameters
defined on the previous page.
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Jammer peak power - Wans

Radar peak power - KW

Figure 10.1b. Burn-through range versus jammer and radar peak powers
corresponding to example used in generating Fig. 10.1a

Burn-through Range

If jamming is employed in the form of Gaussian noise, then the radar
receiver has to deal with the jamming signal the same way it deals with noise
power in the radar. Thus, detection, tracking, and other functions of the radar
signal and data processors are no longer dependent on the SNR. In this case,
the S/(J+N) ratio must be calculated. More precisely,

, PtGCTAT-
s = W)ZV (10.10)
J+" f(ERP)AT™ + W
4nR

where k is Boltzman’s constant and T 0 is the effective noise temperature.

The S/(J+N) ratio should be used in place of the SNR when calculating the
the radar equation and when computing the probability of detection. Further-
more, S/(J+N) must also be used in place of the SNR when using coherent or
non-coherent pulse integration.
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The range at which the radar can detect and perform proper measurements
for agiven S/(J+N) value is defined as the burn-through range. It is given by

, (ERP)At P tGCIAT (ERP)AT

- 10.11
RBT = *8% BjkTO 8% BjkTO (o1

(4n)2 -AT1//-KT0
{+N)

MATLAB Function “sir.m”

The MATLAB function “sir.m” implements Eq. (10.10). It generates plots
of the S/(J+N) versus detection range and plots of the burn-through range ver-
sus thejammerERP. It is givenin Listing 10.2 in Section 10.5. The syntax is as

follows:
[SIR] = sir (pt, g, sigma, freq, tau,T0, loss, R, pj, bj, gj, lossj)
where
Symbol Description Units Status
pt radarpeak power w input
g radar antenna gain dB input
sigma target cross section m2 input
freq radar operatingfrequency Hz input
tau radar pulsewidth seconds input
TO effective noise temperature Kelvin input
loss radar losses dB input
R range. can besingle value or a vector Km input
pj jammer peak power w input
bj jammer bandwidth Hz input
gj jammer antenna gain dB input
lossj jammer losses dB input
SIR S/(J+N) dB output

Fig. 10.2 shows some typical outputs generated by this function when the
inputs are as follows:

Input Parameter Value
pt 50KW
g 35dB
sigma 10 square meters
freq 5.6 GHz
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Input Parameter
tau
TO

loss

bj
gi
lossj

o 50 100 150

Value
50 micro-seconds
290
5dB
linspace(10,400,5000) Km
200 Watts
50 MHz
10dB
0.3dB

200 250 300 350

Detection range in Km

Figure 10.2. S/(J+N) versus detection range.

MATLAB Function “burn_thru.m”

The MATLAB function “burnthru.m” implements Eq. (10.10) and (10.11).
It generates plots of the S/(J+N) versus detection range and plots of the burn-
through range versus the jammer ERP. It is given in Listing 10.3 in Section

10.5. The syntax is as follows:

[Range] = burnthru (pt, g, sigma, freq, tau, T0, loss, pj, bj, gj, lossj, sir0,
ERP)
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where

Symbol Description Units Status
pt radarpeak power w input

g radar antenna gain dB input
sigma target cross section m2 input
freq radar operatingfrequency Hz input
tau radar pulsewidth seconds input
TO effective noise temperature Kelvin input
loss radar losses dB input
pj jammer peak power w input
bj jammer bandwidth Hz input

gj jammer antenna gain dB input
lossj jammer losses dB input
sir0 desired SIR dB input
ERP desired ERP. can be a vector Watts input
Range burn-through range Km output

Fig. 10.3 shows some typical outputs generated by this function when the
inputs are as follows:

Input Parameter Value
pt 50KW
g 35dB
sigma 10 square meters
freq 5.6 GHz
tau 0.5 milli-seconds
TO 290
loss 5dB
pj 200 Watts
bj 500 MHz
gij 10 dB
lossj 0.3dB
sir0 15dB
ERP linspace(1, 1000, 1000) W
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o 5 10 15 20 25 30
Jammer ERP in dB

Figure 10.3. Burn-through range versus ERP. (S/(J+N) = 15 dB.

10.2.2. Stand-Off Jammers (S0J)

Stand-off jammers (SOJ) emit ECM signals from long ranges which are
beyond the defense’s lethal capability. The power received by the radar from
an SOJjammer atrange R, is

i =PJ XG-- _1_ = ERP XG 1_ (10 12
4nRj 4n BjLj 4nRj 4n Bj

where all terms in Eq. (10.12) are the same as those for the SSJ case except for
G'.The gainterm G' represents the radar antenna gain in the direction of the
jammer and is normally considered to be the sidelobe gain.

The SOJ radar equation is then computed as

S PITGR|§B,
‘ 1%, (10.13)

J  4n(ERP)GRA

and when pulse compression is used, with time-bandwidth-product GPC then
Eq. (10.13) canbe written as
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s PIGR 0 BIP PC
- —J PC (10.14)
J  4n(ERP)G'R4BIL

Again, the cross-over range is that correspondingto S = J ; it is given by

,PtG RJgBjP pc)
(Rc® soj = *4n(ERP)G’B,LJ (10-15)

MATLAB Program “soj_req.m”

The program “sojreq.m” implements Eqs. (10.15); it is given in Listing
10.4 in Section 10.5. The inputs to the program “sojreq.m” are the same as in
the SSJ case, with two additional inputs: the radar antenna gain on the jammer
G' and radar-to-jammer range Rj . This program generates the same types of
plots as in the case of the SSJ. Typical output is in Fig. 10.4 utilizing the same
parameters as those in the SSJ case, with jammer peak power PJ = 5000 W,
jammer antenna gain GJ = 30dB, radar antenna gain on the jammer
G' = 10dB, andradartojammerrange Rj = 22.2Km .

Figure 10.4. Target and jammer echo signals. Plots were generated using
the program “sojreq.m?.
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Again if the jamming is employed in the form of Gaussian noise, then the
radar receiver has to deal with the jamming signal the same way it deals with
noise power in the radar. In this case, the S/(J+N) is

, ptGaArT-
_S_ = 1(4n)2RV (10.16)
J+N , (ERP)ArG' + kTo
4nR2B | 0

10.3. Range Reduction Factor

Consider aradar system whose detection range R in the absence ofjamming
is governed by

P tG2X2dt
(SNR)O = -——-- R - (10.17)

(4n)3KTEBIFLR

The term Range Reduction Factor (RRF) refers to the reduction in the radar
detection range due to jamming. More precisely, in the presence of jamming
the effective radar detection range is

Rd =R x RRF (10.18)

In order to compute RRF, consider aradar characterized by Eq. (10.17), and
a barrage jammer whose output power spectral density is J0 (i.e., Gaussian-
like). Then the amount ofjammer power in the radar receiver is

J = kTJBr (10.19)

where Tj is the jammer effective temperature. It follows that the total jammer
plus noise power in the radar receiver is given by

NI+J = kTeBr+kT,Br (10.20)

In this case, the radar detection range is now limited by the receiver signal-to-
noise plus interference ratio rather than SNR. More precisely,

- P tG2X2a

T J t (10.21)
+ N+  (4n)3k(Te+T,)BrFLR 4

The amount of reduction in the signal-to-noise plus interference ratio because
of the jammer effect can be computed from the difference between EqQs.
(10.17) and (10.21). It is expressed (in dB) by
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Y = 10.0 xlog*1+, (10.22)

Te
Consequently, the RRF is
-Y
RRF = 1040 (10.23)
MATLAB Function “range_red_factor.m”

The function “rangeredJactor.m” implements Eqgs. (10.22) and (10.23); it
is given in Listing 10.5 in Section 10.5. This function generates plots of RRF
versus: (1) the radar operating frequency; (2) radar to jammer range; and (3)
jammer power. Its syntax is as follows:

[RRF] = range_red_factor (te, pj, gj, 9, freq, bj, rangej, lossj)

where
Symbol Description Units Status
te radar effective temperature K input
o jammerpeakpower w input
gi jammer antenna gain dB input
g radar antenna gain onjammer dB input
freq radar operatingfrequency Hz input
bj jammer bandwidth Hz input
rangej radar tojammer range Km input
lossj jammer losses dB input

The following values were used to produce Figs. 10.5 through 10.7.

Symbol Value
te 500 kelvin
pj 500 KW
gj 3dB
g 45 dB

freq 10 GHz

bj 10MHZ

rangej 750 Km
lossj 1dB
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Figure 10.5. Range reduction factor versus radar operating wavelength. This
plot was generated using the function “range_red_factor.m”.

Figure 10.6. Range reduction factor versus radar to jammer range. This
plot was generated using the function “range_red_factor.m”.
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Figure 10.7. Range reduction factor versus jammer peak power. This plot was
generated using the function “range_red_factor.m”.

10.4. Chaff

In principle, chaffis composed of alarge number of small RF reflectors that
have large RCS values. Chalffis usually deployed around the target as means of
ECM. Historically, chaff was made of aluminum foil; however, in recent years
most chaffis made of the more rigid fiber glass with conductive coating.

Chaff can be categorized into two types: (1) denial chaff and (2) deceptive
chaff. In the first case, the chaff is deployed in order to screen targets that
reside within or near the deployed chaff cloud. In the second case, the chaff
cloud is dispersed to complicate and/or overwhelm the tracking and processing
functions of the radar by luring the tracker away from the target and/or creating
multiple false targets.

The maximum chaffRCS occurs when the individual chaff-dipole length L
is one half the radar wavelength. The average RCS for a single dipole when
viewed broadside is

2
°chaffi * 0.88X (10.24)
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and for an average aspect angle, it drops to

2
achaffl * 018 X (10.25)

where the subscript chaffl is used to indicate a single dipole, and X is the
radar wavelength. The total chaffRCS within aradar resolution volume is

0.18X2NdvCs L
ac* — J-———- V— (10.26)

beam R
where ND is the total number of dipoles, VR is the radar resolution cell vol-
ume, VCS is the chaff scattering volume, and L beam is the radar antenna beam
shape loss for the chaff cloud.

Echoes from a chaff cloud are typically random and have thermal noise-like
characteristics because the individual clutter components (scatterers) have ran-
dom phases and amplitudes. Due to these characteristics, chaffis often statisti-
cally described by a probability distribution function. The type of distribution
depends on the nature of the chaff cloud itself, radar operating parameters, and
the viewing angle of the radar. Thus, the signal-to-chaff ratio is given by

S = —CCR (10.27)

C chaff

where a is the target RCS and CCR is the chaff-cancellation-ratio. The value
of CCR depends on the type of chaff mitigation techniques adopted by the
radar signal and data processors. Since chaffis a form of volumetric clutter,
signal processing and M Tl techniques developed for rain and other forms of
volumetric clutter can be applied to mitigate many of the effects of chaff. The
next section provides an example of one such chaff mitigation technique.

10.4.1. Multiple MTI ChaffMitigation Techniquel

In this section, an algorithmic (schema) approach for detecting and tracking
targets in highly cluttered environments is presented. The approach is to accu-
rately track the centroid of the chaff cloud using a combination of medium
band (MB) and wide-band (WB) range resolution radar waveforms.

At moderate Pulse Repetition Frequencies (PRFs), differential target veloci-
ties (about the centroid of the chaff cloud) are detected and tracked via Doppler
banks of transversal filters that are tuned to detect the target velocity differ-

1 This sectionis extracted from the paper: J. Michael Madewell, Mitigating the Effects
ofChaffin Ballistic Missile Defense, 2003 IEEE Radar Conference, Huntsville, AL,
May 2°°3.
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ences. Through sensitivity analysis models, the theoretical lower bound on
detectable differential target velocity as afunction of the chaff cloud composi-
tion (e.g., clutter cross section, clutter spectral width, number of dipoles, and
clutter velocity standard deviation) and radar related parameters (e.g., wave-
form frequency, bandwidth, integration times, PRFs, and signal-to-clutter
ratio) are analyzed.

Overview

A five-step approach for detecting and tracking targets in highly cluttered
environments has been developed. The five steps are:

1 Utilize a1to 5 percent M B bandwidth, high PRF radar waveform, to mea-
sure the chaff cloud range extent, centroid, and velocity growth rate.

2. Establish track on the centroid of the chaff cloud with the M B waveform.

3. Based on course track information obtained in steps 1) and 2), implement
W B track (10% or greater bandwidth waveform) on the cloud centroid.

4. Design adoppler bank of Moving Target Indicator (M TI) transversal filters
to provide adequate gain at specific velocity increments about the WB cen-
troid track.

5. Process the Multiple M T1 (M2) doppler filters in parallel to detect differ-
ences in target Doppler (with respect to the cloud centroid track velocity).
Targets are detected when integration at the correct Doppler difference
occurs.

Operational concerns that have been identified for implementation of this
approach include: (1) the ability of a radar to adequately track the centroid of
the chaff cloud (i.e., track precision); (2) the ability of a radar to detect small
differences in target Doppler relative to the chaff cloud centroid (i.e., Doppler
precision); and (3) the ability of a filter (in this case, a bank of MTI's) to
achieve the necessary processing gain to detect the target

Theoretical tracking accuracy ofa chaffcloud
The single pulse thermal-noise error cy in avelocity tracking measurement

for optimum processing can be described by

cy = ——————- / (10.28)
1.81x72 x SNR

where X is the pulsewidth and SNR is that for the target in track. To detecttar-
gets in clutter, substitute the difference-channel chaff-to-signal ratio for SNR .
More precisely,

(o) e — 1 (10.29)
7 1.81x72 x Cchaff/s
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Fig. 10.8 shows a graph for versus Cde S and 1. This figure can be
reproduced using MATLAB program ‘“igl10_8.m” given in Listing 10.6 in
Section 10.5. This graph will be utilized in the analysis and of the expected M 2
signal processing performance.

Figure 10.8. Single pulse thermal noise error versus Cchdf/S and 1.

Multiple MTI1 (M2 Doppler Filter Design

The M 2Doppler filter design is derived from the theoretical N-tap delay line
M TI canceller. The general formula for the improvement factor was derived in
Chapter 7 (Section 7.7.2). A bank of N M TI Doppler filters that cover the fre-
quency range from 0 to the PRF will achieve performance beyond that of a
conventional MTI. The weights are given by:
j27i(i-1)
k/N
(10.30)
where the index t is between 0 to N-1 and corresponds to the N M T1 Doppler
filter bank. In this design, a5-tap delay line M TI filter is considered. The trans-
fer function for the overall Doppler bank is
N
a (f) - £ (-j2n)(i- 1)(fT- k/N) (10.31)

i=1
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where
T = 1/PRF (10.32)
It follows that the magnitude of the frequency response is

SiIN(TIA/~(/T-K /N ))

(10.33)

sin(n (fT- k/N))

The impulse response for a kth 5-tap M Tl filter is

k
Y (t) = VK(t) - 5Vk(t- T) + 10Vk(t- 2T) - (10.34)
10VKk(t - 3T) + 5Vk(t- 4T)- Vk(t- 5T)
Vk is the input signal. The corresponding transfer function is

YK(f) = 25(sin(nfT))5 (10.35)

Fig. 10.9 shows ablock diagram for the M 2 filter. Since each filter occupies
approximately (1/N)th the clutter and signal bandwidth, the combined per-
formance of the M 2 Doppler filter performance is greater than that of a single
delay-line canceller that does not utilize Doppler information. The clutter miti-
gation performance of the M2 Doppler filter, however, will likely be deter-
mined by the coherence times of the target and/or the clutter.

-4INT -3INT -2/NT -I/NT 0 1INT 2/NT 3INT 4INT

Figure 10.9. Block diagram for the M2 algorithm, and corresponding
frequency response ofthe M T1 filters (N=8).
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Processor Implementation And Simulated Results

The M 2filter approach outlined in this section requires avery accurate track
ofthe centroid of the chaff cloud being probed. As described earlier, initiation
of track on the chaff cloud centroid is achieved with a MB range resolution
waveform (step 1). As an example, assume that an X-band radar (10 GHz) is
engaging one or more ballistic targets enveloped in a chaff cloud that contains
1 million dipoles occupying a 1-kilometer range extent. Assuming that the
chaff cloud velocity distribution canbe accurately modeled by Gaussian statis-
tics, approximately 67% of these dipoles will reside in 333 meters of range
extent. With these assumptions, the combined average RCS of the dipoles
(RCSd) contained within a radar range resolution cell of this length (333 m)
can be approximated by

RCSd = 0.18NdX2= 0.18 x 670, 000 x 0.032 = 108.54 ~ 20.4dBsm (10.36)

The RCS of atypical ballistic Reentry Vehicle (RV) at forward aspect view-
ing angles canbe -20 dBsm or smaller. Therefore, the MB Cdeff/S for atyp-
ical RV enveloped by the chaff cloud assumed above can approach 40dB or
greater. Using an 8-msec pulsewidth and 30dB Cdef/ S, the theoretical, sin-
gle pulse, minimum rms track error is approximately fe = 1Hz. At X-band
frequencies, this translates to a single pulse velocity error of

ve = % = 0.015m/s (10.37)

Note that for atrain of pulses, this velocity error can be reduced by afactor of
10 or more. Thus, for atypical X-band radar, theory suggests that the track pre-
cision of the chaff cloud centroid can approach 0.0015 m/s or better. This track
precision is much less than the W B range resolution capability of the radar and
therefore can be utilized to bootstrap the WB tracker (steps 2 and 3).

Assume a Gaussian chaff clutter velocity distribution and denote it Vg. If
Vg = 1.8m/s (£0.9m/s relative to the cloud centroid velocity), the mini-
mum PRF required to meet the Nyquist sampling criterion is

PRF =fr>2x>r = 240Hz (10.38)
X

Also, assume that abank of Doppler MTI's (step 4) canbe formed to cover this
frequency range. Note that 256 is the closest 2N multiple for implementation
with the Fast Fourier Transform (FFT). Using a256 point FFT design, eachfil-
ter will contain approximately 1/256 of the total clutter velocities (about 0.03
m/s of velocity clutter per M T Doppler filter). In addition, by utilizing the WB
track waveform, avery precise range-Doppler image can be formed (with each
range-Doppler resolution cell containing approximately 15 cm by 0.03 m/s of
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clutter). This design effectively reduces the amount of clutter that competes
with an individual target scatter by afactor of more than 40 dB, thus reducing
the Cdef/S by this same amount.

For extreme chaff cases where the initial WB range-Doppler image S/C is
negative, an N-pulse coherent sliding window routine can be applied to the
data prior to implementing the M 2 algorithm. For example, a 16 pulse coherent
sliding window can provide up to 12 dB of S/ Cdef improvement. One
should ensure that the number of pulses integrated is less than the coherency
time of the target and clutter. Other constraints in implementing this approach
are to ensure that the target phase does not deviate very much during the inte-
gration period (to ensure optimum coherent processing gain) and the target
position does not migrate to another range and/or Doppler cell (often referred
to as range-Doppler walk). The zero Doppler filter (and/or near zero Doppler
filters) can be used to perform statistics on the clutter and to adaptively adjust
the optimal threshold setting to obtain low false alarms and high probabilities
of detection over time.

A model for the M2 signal processor has been developed using MATLAB.
Fig. 10.10 shows a plot of the amplitude versus range and Doppler (256x256
range-Doppler image) of three constant -20 dBsm target scatterers that are
embedded in approximately -15 dBsm Gaussian white noise. In this figure, the
noise completely envelops the signal. These modeling results are comparable
to the output of atypical range Doppler imaging radar. Fig. 10.11 shows the
results obtained by executing the first two blocks of the M 2 signal processor.
As expected, the three scatterers rise from above the noise and now have an
S/ Cddf ratio of approximately 7 dB.

Finally, Fig. 10.12 shows the results obtained by implementing the entire top
portion of the M 2 signal processing chain. No attempt was made to optimize
the threshold level. Instead, the threshold was manually set to -43 dB to allow
for some of the higher false alarms to be seen in the figure. The largest ampli-
tude false alarms are approximately -34 dB. Meanwhile, the amplitudes of the
target returns have been reduced (less than 1 dB) from that of Fig. 10.11.
Therefore, the S/ Cdef improvement in Fig. 10.12 over that shown in Fig.
10.11 is approximately 8 to 9 dB. Hence, the processing gain attributed to the
M 2 signal processor is more than 20 dB above that of traditional range Doppler
processing.

In summary, one concludes that the M2 signal processing algorithm for
detecting and tracking ballistic missile targets in highly cluttered environments
can provide better than 20 dB S/ Cdeff improvement over that of traditional
range Doppler processing techniques alone.
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Figure 10.10. Range -Doppler image for three targets embedded in chaff.

Figure 10.11. Image from Fig. 10.10 after a 16-point sliding window coherent
integration process.
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Doppler Bin

Figure 10.12. Image from Fig. 10.11 after applying the M2 algorithm.

10.5. MATLAB Program and Function Listings

This section presents listings for all M ATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 10.1. MATLAB Function “ssjreq.m”

function [BR_range] = ssjreq (pt, g,freq, sigma, b, loss, ...
Pj, bj, gj, lossj)

% Thisfunction implementsEq. (10.9)

c = 3.0e+8;

lambda = c/freq;

lambdadb = 10*logl0(lambdaA?);

if (loss == 0.0)
loss = 0.000001;
end

if (lossj == 0.0)
lossj =0.000001;
end
sigmadb =10*log10(sigma);
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ptdb = 10*log10(pt);
b_db = 10*log10(b);
bjdb = 10*log10(bj);
pjdb = 10*log10(pj);
factor = 10*1og10(4.0 *pi);
BRrange = sqrt((pt * (10A(g/10)) *sigma * bj * (10A(lossj/10))) / ...
(4.0 *pi *pj * (10A(gj/10)) *b * ...
(10A(loss/10)))) / 1000.0
satbr =ptdb + 2.0 *g + lambdadb + sigmadb - ...
3.0 *factor - 4.* 10*log10(BR_range) - loss
index =0;
forran_var = .1:10:10000
index = index + 1;
ran db = 10*logl0(ran_var * 1000.0);
ssj(iindex) = pj db + gj + lambda db + g + b_db - 2.0 *factor - ...
2.0 *ran db-bj db-lossj+s at br;
s(index) = pt db + 2.0 *g + lambda db + sigmadb - ...
3.0 *factor-4.*ran db-loss +s at br;
end
ranvar = .1:10:10000;
ranvar = ranvar ./BR range;
semilogx (ranvar,s,'k',ranvar,ssj, k-.);
axis([.1 1000 -90 40])
xlabel (Range normalized to cross-over range);
legend('Target echo’,'SSJ)
ylabel (Relative sighal orjamming amplitude - dB");
grid
pjvar = 1:1:1000;
BR_pj = sqrt((pt * (L0A(g/10)) *sigma * bj * (10A(lossj/10))) ...
/(4.0 *pi . *pj_var * (10A(gj/10)) * b * (10A(loss/10)))) ./1000;
ptvar = 1000:100:10e6;
BR_pt = sqrt((pt_var * (10A(g/10)) *sigma * bj * (10A(lossj/10))) ...
/(4.0 *pi .*pj * (10A(gj/10)) * b * (10A(loss/10)))) ./1000;
figure (2)
subplot (2,1,1)
semilogx (BR_pj,'k)
xlabel (Jammer peak power - Watts);
ylabel (Burn-through range - Km')
grid
subplot (2,1,2)
semilogx (BR_pt,'k)
xlabel (Radarpeakpower - KW )
ylabel (Burn-through range - Km)
grid
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Listing 10.2. MATLAB Function “sir.m”

function [SIR] = sir (pt, g, freq, sigma, tau,T70, loss, R, pj, bj, gj, 10ssj);
c = 3.0e+8;

K = 1.38e-23;

%R = linspace(rmin, rmax, 1000);
range = R .* 1000;

lambda = c/freq;

gj = 10A(gj/10);

G = 10A(g/10);

ERP1 =pj *gj/lossj;

ERPdb = 10*logl10(ERP1);

% Calculate Eq. (10.10)

Ar = lambda *lambda * G/ 4 /pi;
numl =pt *tau * G *sigma *Ar;
demol = 4A2 *piA *loss .* range.Ad;
demo2 = 4 *pi *bj.*ranged;
num2 = ERP1 *Ar;

valll = numl ./ demol;

val2l = num2 ./demo2;

sir = valll./ (val2l + k * T0);
SIR = 10*log10(sir);

figure (1)

plot (R, SIR, k)

xlabel ('Detection range in Km');
ylabel (5/(J+N) in dB')

grid

Listing 10.3. MATLAB Function “burn_thru.m”

function [Range] = burn thru (pt, g, freq, sigma, tau, T0, loss, pj, bj, gj,
lossj,sir0,ERP);

c = 3.0e+8;

K = 1.38e-23;

%R = linspace(rmin, rmax, 1000);
sir0 = 10A(sir0/10);

lambda = c/freq;

gj = 10A(gj/10);

G = 10A(g/10);

Ar = lambda *lambda * G / 4 /pi;
%ERP = linspace(1,1000,5001);
num32 = ERP .*Ar;

demo3 = 8 *pi *bj *k * T0;
demo4 = 4A2 *piA2 *k *TO *sir0;
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vall = (num32 ./demo3)A2;

val2 = (pt *tau * G *sigma *Ar)/(4A2 *piA2 *loss *sir0 *k *T0);
val3 = sqrt(vall + val2);

val4d = (ERP .*Ar) ./demos;

Range = sqrt(val3 - val4) ./1000;

figure (1)

plot (10*log10(ERP), Range, 'k’

xlabel ( JammerERP in dB)

ylabel (‘Burnthrough range in Km®)

grid

Listing 10.4. MATLAB Function “soj req.m”

function [BR range] = soj req (pt, g, sigma, b, freq, loss, range, ...
pj, bj,gj, lossj, gprime, rangej)

% Thisfunction implements equationsfor SOJs

c = 3.0e+8;

lambda = c/freq;

lambdadb = 10*logl0(lambdaA?2)

if (loss == 0.0)
loss = 0.000001;
end

if (lossj == 0.0)
lossj =0.000001;

end

sigmadb = 10*logl10(sigma);

range db = 10*logl0O(range * 1000.);

rangej db = 10*logl10(rangej * 1000.)

ptdb = 10*log10(pt);

b_db = 10*log10(b);

bjdb = 10*log10(bj);

pjdb = 10*log10(pj);

factor = 10*log10(4.0 *pi);

BR range = ((pt * 10A(2.0*g/10) *sigma * bj * 10A(lossj/10) * ...
(rangej)A2) / (4.0 *pi *pj * 10A(gj/10) * 10A(gprime/10) * ...
b * 10A(loss/10)))a.25 / 1000.

s at br=pt db + 2.0 *g + lambda db + sigmadb - ...
3.0 *factor- 4.0 * 10*log10(BR_range) - loss

index =0;

forran_var = .1:1:1000;
index = index + 1;
ran db = 10*logl0(ran_var * 1000.0);
s(iindex) =pt db + 2.0 *g + lambda db + sigmadb - ...

3.0 *factor- 4.0 *ran db-loss +s at br;
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soj(index) =satbr -s_at_br;
end
ranvar = .1:1:1000;
%ranvar = ranvar ./BRrange;
semilogx (ranvar,s,'k',ranvar,soj,'k-. };
xlabel (‘(Range normalized to cross-over range);
legend('Target echo’,'SOJ")
ylabel (Relative signhal orjamming amplitude - dB);

Listing 10.5. MATLAB Function “range_red_factor.m”

function RRF = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
% Thisfunction computes the range reductionfactor andproduces
% plots ofR R F versus wavelength, radar tojammer range, andjammer power
c = 3.0e+8;
K = 1.38e-23;
lambda = c/freq;
gj_10 = 10A(gj/10);
g_10 = 10A(g/10);
lossj_10 = 10A(lossj/10);
index = 0;
for wavelength = .01:.001:1
index = index +1,
jamer temp = (pj *gj_10 *g_10 *wavelengthA2) / ...
(4.0A2 *piA2 *K * bj *lossj_10 * (rangej * 1000.0)A2);
delta = 10.0 *1og10(1.0 + (jamer temp/ te));
rrf(index) = 10A(-delta /40.0);
end
w = 0.01:.001:1;
figure (1)
semilogx(w,rrf'k")
grid
xlabel ("Wavelength in meters)
ylabel ((Range reductionfactor)
index = 0;
forran =rangej*.3:1:;rangej*2
index = index + 1,
jamer temp = (pj *gj_10 *g_10 *wavelengthA2) / ...
(4.0A2 *piA2 *K *bj *lossj_10 * (ran * 1000.0)A2);
delta = 10.0 *1og10(1.0 + (jamer temp/ te));
rrfl(index) = 10A(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:1l:rangej*2;
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plot(ranvar,rrfl,k")

grid

xlabel (Radar tojammer range - Km')

ylabel (Range reductionfactor)

index = 0;

forpjvar =pj*.01:1:pj*2
index = index + 1,
jamertemp = (pjvar *gj_10 *g_10 *wavelengthA2) / ...

(4.0A2 *piA2 *k * bj *lossj_10 * (rangej * 1000.0)A2);

delta = 10.0 *log10(1.0 + (jamer temp/ te));
rrf2(index) = 10A(-delta /40.0);

end

figure(3)

pjvar = pj*.01:1:pj*2;

prrvanin/n)

grid

xlabel (Jammer peakpower - Watts')

ylabel (‘(Range reductionfactor)

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Use this inputfile to reproduce Figs. 10.5 through 10.7

clear all

te = 500.0; % radar effective temp. in Kelvin

pj= 500; % jammerpeakpowerin W

gj = 3.0; % jammer antenna gain in dB

g = 45.0; % radar antenna gain

freq = 10.0e+9;% radar operatingfrequency in Hz

bj= 10.0e+6; % radar operating bandwidth in Hz

rangej = 750.0;% radar tojammer range in Km

lossj = 1.0; % jammer losses in dB

Listing 10.6. MATLAB Program “figl0_8.m”

% Use this program to reproduce Fig. 10.8 in the text
clear all
close all
tau = linspace(.25,10,500);
taum = tau .* le-3;
C_S=1[-20-10 0 10];
c s = 10.a(C_S./10);
forn = 1:size(C_S,2)
vall = 1/ (1.81*sqrt(2*c_s(n)));
sigma(n,:) = vall./taum;
end
figure (1)
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3’

semilogy(tau,sigma(l,:),k ‘tau,sigma(2,:),k-- Jtau,sigma(3,:),k-.;
tau,sigma(4,:),'k:");

xlabel('Pulsewidth in Milliseconds)

ylabel('RMS thermal error in Hz)

legend(’-20 dB C/S','-10 dB C/S','0 dB C/S','10 dB C/S")

grid
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Chapter 11 Radar Cross Section
(RCS)

In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fluctuations due to aspect angle, fre-
quency, and polarization are presented. Radar cross section characteristics of
some simple and complex targets are also introduced.

11.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif-
fracted or scattered in all directions when incident on atarget. These scattered
waves are broken down into two parts. The first part is made of waves that
have the same polarization as the receiving antenna. The other portion of the
scattered waves will have a different polarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principal Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of the backscattered energy that has the same
polarization as the radar’s receiving antenna is used to define the target RCS.
When atarget is illuminated by RF energy, it acts like an antenna, and will
have near and far fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decom-
posed into alinear combination of plane waves.

Assume the power density of awave incident on atarget located at range R
away from the radaris P D, as illustrated in Fig. 11.1. The amount of reflected
power from the targetis

Pr = aPDi (11.1)
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a denotes the target cross section. Define PDr as the power density of the
scattered waves at the receiving antenna. It follows that

PDr = P/ (4nR2) (11.2)
Equating Eqgs. (11.1) and (11.2) yields

a = 4nR2(P -) (11.3)
PO
and in order to ensure that the radar receiving antenna is in the far field (i.e.,
scattered waves received by the antenna are planar), Eq. (11.3) is modified

= 4nR2li 11.4
a n R|m %di (11.4)

The RCS defined by Eq. (11.4) is often referred to as either the monostatic
RCS, the backscattered RCS, or simply target RCS.

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS at, where at> a. Assuming a
spherical coordinate system defined by (p, 9, ¢), then at range p the target
scattered cross section is a function of (9, ¢). Let the angles (91, i) define the
direction of propagation of the incident waves. Also, let the angles (95 dx)
define the direction of propagation of the scattered waves. The special case,
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when 0s = 0i and t s = Ti, defines the monostatic RCS. The RCS measured
by the radar at angles 0s ®0i and t s ®Ti is called the bistatic RCS.

The total target scattered RCS is given by

an n
at=1 i ] a(0s Ts)sinOs dO dTs (115)
T5=00s=0

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, X, of the incident waves. Infact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible to the radar since they are much smaller than the
wavelength. RCS measurements in the frequency region, where the target
extent and the wavelength are comparable, are referred to as the Rayleigh
region. Alternatively, the frequency region where the target extent is much
larger than the radar operating wavelength is referred to as the optical region.
In practice, the majority of radar applications fall within the optical region.

The analysis presented in this book mainly assumes far field monostatic
RCS measurements in the optical region. Near field RCS, bistatic RCS, and
RCS measurements in the Rayleigh region will not be considered since their
treatment falls beyond this book’s intended scope. Additionally, RCS treatment
in this chapter is mainly concerned with Narrow Band (NB) cases. In other
words, the extent of the target under consideration falls within a single range
bin of the radar. Wide Band (WB) RCS measurements will be briefly addressed
in a later section. Wide band radar range bins are small (typically 10 - 50 cm);
hence, the target under consideration may cover many range bins. The RCS
value in an individual range bin corresponds to the portion of the target falling
within that bin.

11.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to
understand the significance of RCS prediction. Most radar systems use RCS as
a means of discrimination. Therefore, accurate prediction of target RCS is crit-
ical in order to design and develop robust discrimination algorithms. Addition-
ally, measuring and identifying the scattering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculations require broad and extensive technical
knowledge; thus, many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate.
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Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require solving either differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers.

Due to the difficulties associated with the exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical region, and each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such a variation is quite acceptable by radar engineers and
designers. Approximate methods are usually the main source for predicting
RCS of complex and extended targets such as aircrafts, ships, and missiles.
When experimental results are available, they can be used to validate and ver-
ify the approximations.

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods.

11.3. Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. An isotropic scatterer is one that scatters incident waves equally in all
directions. Consider the geometry shown in Fig. 11.2. In this case, two unity
(1m2) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field range R . The spacing between the two scatter-
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted.

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is 2m2. Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle 10°, the electrical
spacing between the two scatterers is

erec_spaci'ng = g__)f_(_l_:q__)f_f:_(_)_s_g_l_p_f))_ (]_]_6)

X is the radar operating wavelength.
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Figure 11.2. RCS dependency on aspect angle. (a) Zero aspect angle, zero
electrical spacing. (b) 45° aspect angle, 1.414X electrical spacing.

Fig. 11.3 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB function “rcsaspect.m™given in List-
ing 11.1 in Section 11.9. As clearly indicated by Fig. 11.3, RCS is dependent
on the radar aspect angle; thus, knowledge of this constructive and destructive
interference between the individual scatterers can be very critical when a radar
tries to extract the RCS of complex or maneuvering targets. This is true
because of two reasons. First, the aspect angle may be continuously changing.
Second, complex target RCS can be viewed to be made up from contributions
of many individual scattering points distributed on the target surface. These
scattering points are often called scattering centers. Many approximate RCS
prediction methods generate a set of scattering centers that define the back-
scattering characteristics of such complex targets.

MATLAB Function “rcs_aspect.m”

The function ‘“rcs aspect.m” computes and plots the RCS dependency on
aspect angle. Its syntax is as follows:

[rcs] =rcsaspect (scatspacing, freq)

where
Symbol Description Units Status
scat spacing scatterer spacing meters input
freq radarfrequency Hz input
rcs array ofRCS versus dBsm output
aspectangle
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Frequency is 8GHz; scatterrer spacing is 0.25m

40

iy

0 20 40 60 80 100 120 140 160 100
aspect angle - degrees

Figure 11.3. Illustration of RCS dependency on aspect angle.

Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 11.4. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 11.5
and 11.6 show the composite RCS versus frequency for scatterer spacing of
0.25 and 0.75 meters.

radar line of sight

radar

Figure 11.4. Experiment setup which demonstrates RCS
dependency on frequency; dist=0.1, or 0.7 m.
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X=Band; scatterer spacing is 0.25m

T 1 1 r

a 85 9 95 10 105 1 ns 12 125
Frequency - GHz

Figure 115. Illustration of RCS dependency on frequency.

X=Band; scatterer spacing is 0.75m

RCS in dBsm

Frequency - GHz

Figure 11.6. Illustration of RCS dependency on frequency.
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range bins

Figure 11.7. NB detection of the two scatterers shown in Fig. 11.2

20 40 60 00 100
range bins

Figure 11.8. WB detection of the two scatterers shown in Fig. 11.2.
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11.4.1. Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

Ex = Elsin(rat- kz) (11.7)

Ey = E2sin(rat- kz +5) (11.8)

where k = 2n/X, ra is the wave frequency, the angle 5 is the time phase
angle which Ey leads Ex, and, finally, E1 and E2 are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 11.9.

The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when E1 = 0 and AR = > the wave becomes linearly polarized.

Egs. (11.7) and (11.8) can be combined to give the instantaneous total elec-
tric field,

E = ngjsin(rat- kz) +5yE25in(rat- kz +5) (11.9)

Figure 11.9. Electric field components along the x and y directions.
The positive z direction is out of the page.

© 2004 by Chapman & Hall/CRC CRC Press LLC



where ax and ay are unit vectors along the x and y directions, respectively. At
z =0, Ex =Ejsin(ot) and Ey = E2sin(lot+5), then by replacing
sin(tot) by the ratio Ex/E1 and by using trigonometry properties Eq. (11.9)
can be rewritten as

B4 -2ExEycos5 +E = (sin5)2
E1E? E2

Note that Eqg. (11.10) has no dependency on tot .

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 11.10. The angle \ is called the tilt angle of the ellipse. In
this case, AR is given by

AR (1 <AR << (11.11)

~ OB

When E1 = 0, the wave is said to be linearly polarized in the y direction,
while if E2 = 0 the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of 45° when E1=E2 and
| =45°. When E1 =E2 and 5 = 90°, the wave is said to be Left Circu-
larly Polarized (LCP), while if 5 = -90° the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively.
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In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

e —
E = Er +EI (11.12)
_A >
where ER and EL are the RCP and LCP fields, respectively. Similarly, the

RCP and LCP waves can be written as

ER = EV+EH (11.13)

El

Ev-JEh (11.14)
A >

where EV and EH are the fields with vertical and horizontal polarizations,

respectively. Combining Egs. (11.13) and (11.14) yields

Er = EHIEv (11.15)
72

L = EH*Jev (11.16)
72

Using matrix notation Egs. (11.15) and (11.16) can be rewritten as

R =L 1 EH _ g EH (1117)

Er =721 j. Ev Ev

H 4 11 (11.18)
7 2y -j L

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
wave with vertical polarization remains vertical but is phase shifted 180°.
Additionally, an incident wave which is RCP becomes LCP when reflected,
and a wave which is LCP becomes RCP after reflection from a perfect reflec-
tor. Therefore, when a radar uses LCP waves for transmission, the receiving
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to
measure the OP RCS.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Example:

Plot the locus ofthe electricfield vectorfor thefollowing cases:

casel: E(t,z) = Axcos grOOt +_g_r]_z?+ a§J 3cos (% Ot + 2nz

case 2: E(t z) = axcos(o0t+2“ ) +aysin(o0t +2nz
case 3: E(t z) = axcos (o€ +-"-] +aycos(r00t+25)2(z—¢g
case 4: E(t,z) = axcos(o0t+~"J) +ayV3cos(roOt + 1LL-+n

Solution:

The MATLAB program “examplell |.m” was developed to calculate and
plot the loci ofthe electricfields. Figs. 11.11 through 11.14 show the desired
electricfields’ loci. See listing 11.3 in Section 11.9.

Figure 11.11. Linearly polarized electric field.

© 2004 by Chapman & Hall/CRC CRC Press LLC



© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 11.14. Elliptically polarized electric field.

11.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted by [S]. When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

el Eip st sl
= 8l S21 S2
4 5.

The superscripts i and s denote incident and scattered fields. The quantities
sj}. are in general complex and the subscripts 1 and 2 represent any combina-
tion of orthogonal polarizations. More precisely, 1 = H,R, and 2 = V,L.
From Eq. (11.3), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

- - g 2 2
QU CR2 _ 4,r° kil P2

) ) (11.20)
aa gz 52 B2
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It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck for ways to calculate the scattering
matrix [S].

Rewriting Eq. (11.20) in terms of the different possible orthogonal polariza-
tions yields

EH  SHHSHv EH 1.21)
Ev fVH sw [E,

SIRRST gr

By using the transformation matrix [T] in Eq. (11.17), the circular scattering
elements can be computed from the linear scattering elements

SRR g SHHSHV 1 0

[T]- (11.23)
SWHisw] 18 =1

>
- 94
and the individual components are

' SW+ SHH- j(SHV+ SvH
e - (SHV+sv

SRr —SW +SHH+J (sHv svH
(11.24)

SR __sw+SHH j(SHV SvH

svv + SHH+J (SHV+svH
Similarly, the linear scattering elements are given by

SHHSHV _ 1y SRR 10 7 (11.25)

0-1
SWHsvv - o

and the individual components are
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$HE SRERHSIR_SIL

S =j(SRR- SLR+SRL- SLL)
SWH = 2
(11.26)

S ~J(SRR+SLR- SR_- SLL)
SHV 2
g = FRR+SLL+)R+SIR
W = ~

11.5. RCS ofSimple Objects

This section presents examples of backscattered radar cross section for a
number of simple shape objects. In all cases, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even in this case, the complexity of the exact solution, when
compared to the optical region approximation, is overwhelming. Most formu-
las presented are Physical Optics (PO) approximation for the backscattered
RCS measured by a far field radar in the direction (9, d), as illustrated in Fig.
11.15.

In this section, it is assumed that the radar is always illuminating an object
from the positive z-direction.

Figure 11.15. Direction of antenna receiving backscattered waves.
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115.1. Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarization) with the incident waves. This means
that the cross-polarized backscattered waves are practically zero. For example,
if the incident waves were Left Circularly Polarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered waves, they are considered to be Right Circu-
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible.

The normalized exact backscattered RCS for a perfectly conducting sphere
is a Mie series given by

&
krdn_1(kr)-nJn(kr)
£ (-1)n(2n+1) (11.27)
_&rH~ 1(kr) - nH 1)(kr),
M=l
Jn(kr)
rfnl) (kr)

where r is the radius of the sphere, k = 2n/X, X is the wavelength, Jn is the

spherical Bessel of the first kind of order n, and } is the Hankel function of
order n, and is given by

Hn\W)(kr) = Jn(kr) +jYn(kr) (11.28)

Yn is the spherical Bessel function of the second kind of order n. Plots of the
normalized perfectly conducting sphere RCS as a function of its circumference
in wavelength units are shown in Figs. 11.16a and 11.16b. These plots can be
reproduced using the function ‘rcssphere.m” given in Listing 11.4 in Section
119.

In Fig. 11.16, three regions are identified. First is the optical region (corre-
sponds to a large sphere). In this case,

a =nr2 r»X (11.29)

Second is the Rayleigh region (small sphere). In this case,

anoanr2(krys r«X (11.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.
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Figure 11.16a. I\rl]ormalized backscattered RCS for a perfectly conducting
sphere.

Sphere circumference in wavelengths

Figure 11.16b. Normalized backscattered RCS for a perfectly
conducting sphere using semi-log scale.
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The backscattered RCS for a perfectly conducting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally calibrate radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar.

11.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 11.17. It is defined by the
following equation:

a)2+(b)2+(c)2 =i
One widely accepted approximation for the ellipsoid backscattered RCS is
given by
na’f &
a 2 41-32)

) (a2(sin0)2(cos )2 +b2(sin0)2(sindy)2+c2(cos0)2)

When a = b, the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of ¢, and Eq. (11.32) is reduced to

Direction to
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n#'c2

a = - (11.33)
(a2(sin9)2+c2(co0s9)2)

and for the case whena = b = ¢,

c=n 02 (11.34)

Note that Eq. (11.34) defines the backscattered RCS of a sphere. This should
be expected, since under the condition a = b = c the ellipsoid becomes a
sphere. Fig. 11.18a shows the backscattered RCS for an ellipsoid versus 9 for
® = 45° , This plot can be generated using MATLAB program “figll_18a.m”
given in Listing 11.5 in Section 11.9. Note that at normal incidence (9 = 90°)
the RCS corresponds to that of a sphere of radius c, and is often referred to as
the broadside specular RCS value.

Ellipsoid with(a,b,c) =(0.15, 0.2, 0.95) meter
1

————— phi =0
phi -45
————— phi = 90°
3 Al
ft jI].|
i
0 20 40 60 80 100 120 140 160 130

Aspect angle, Theta [Degrees]

Figure 11.18a. Ellipsoid backscattered RCS versus aspect angle.

MATLAB Function “rcs_ellipsoid.m”

The function “rcsellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. Itis given in Listing 11.6 in Section 11.9, and its syntax is
as follows:

[rcs] =rcs ellipsoid (a, b, ¢, phi)
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where

Symbol Description Units Status

a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array ofRCS versus dBsm output
aspectangle

Fig. 11.18b shows the GUI workspace associated with function. To execute
this GUI type “rcs_ellipsoid_gui ” from the MATLAB Command window.

Figure 11.18b. GUI workspace associated with the function “rcs_ellipsoidm”

11.5.3. Circular FlatPlate

Fig. 11.19 shows a circular flat plate of radius r , centered at the origin. Due
to the circular symmetry, the backscattered RCS of a circular flat plate has no
dependency on . The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is
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0=o0° (11.35)

For non-normal incidence, two approximations for the circular flat plate
backscattered RCS for any linearly polarized incident wave are

= xr (11.36)
8nsin0(tan(0))2
2 4(2J,(2krsin0))2 2
e =nkr }—————"1(cos0) (11.37)

2krsin0

where k = 2n/X, and J 1(P) is the first order spherical Bessel function evalu-
ated at p. The RCS corresponding to Egs. (11.35) through (11.37) is shown in
Fig. 11.20. These plots can be reproduced using MATLAB function
“rcs_circ_gui.m”.

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. It is given in Listing 11.7 in Section 11.9; its syntax is as
follows:

[rcs] =res_circ_plate (r, freq)

where
Symbol Description Units Status
r radius ofcircularplate meters input
freq frequency Hz input
rcs array ofRCS versus aspectangle dBsm output
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Frequency = 10 GHz

Aspect angle - degrees

Figure 11.20. Backscattered RCS for a circular flat plate.

11.5.4. Truncated Cone (Frustum)

Figs. 11.21 and 11.22 show the geometry associated with a frustum. The half
cone angle a is given by

(r2-r)) r2
tana = -t = = (11.38)
H L

Define the aspect angle at normal incidence with respect to the frustum’s
surface (broadside) as 9n. Thus, when a frustum is illuminated by a radar
located at the same side as the cone’s small end, the angle 9n is

9n =90°- a (11.39)
Alternatively, normal incidence occurs at
9, = 90° +a (11.40)

At normal incidence, one approximation for the backscattered RCS of a trun-
cated cone due to a linearly polarized incident wave is
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Figure 11.22. Definition of half cone angle.
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RS -OBsra

Viewing from large end

Apsect angle -degrees

frequency-H z j 9.e9
small end radius - m 0205
large end radius m ‘05753
20994

length - m

viewing from large end

viewing from small end

Figure 11.23a. Backscattered RCS for a frustum.

Viewing from small end

40 60 80 100 120
Apsect angle -degrees

frequency Hz | 9.e9
small end radius - m .0205
large end radius - m .05753
length «m j  .20994

140 160 180

viewing from large end

viewing from small end

Figure 11.23b. Backscattered RCS for a frustum.
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@ (0)

Figure 11.24. (a) Elliptical cylinder; (b) circular cylinder.

Circular Cylinder at Frequency = 3.5 GHz

RCS-dBsm

Aspect angle - degrees

Figure 11.25a. Backscattered RCS for a symmetrical cylinder, r = 0.125m
and H = 1m.
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Elliptic Cylinder at Frequency =3.5 GHz

0 20 40 60 80 100 120 140 160 180
Aspect angle - degrees

Figure 11.25h. Backscattered RCS for an elliptical cylinder, r1 = 0.125m,
r2=005m,and H = 1Im.

MATLAB Function “rcs_cylinder.m”

The function “rcscylinder.m” computes and plots the backscattered RCS of
a cylinder. The syntax is as follows:

[res] =res_cylinder(rl, r2, h,freq, phi, CylinderType)

where

Symbol Description Units Status

rl radius rl meters input

r2 radius r2 meters input

h length of cylinder meters input

freq frequency Hz input

phi roll viewing angle degrees input
CylinderType ‘Circular, 'ie., rx = r2 none input

Elliptic, "i.e., rxdr2

rcs array ofRCS versus aspect angle dBsm output
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11.5.6. Rectangular FlatPlate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as
shown in Fig. 11.26. The two sides of the plate are denoted by 2a and 2b. For
a linearly polarized incident wave in the x-z plane, the horizontal and vertical
backscattered RCS are, respectively, given by

1 a 2
avV=—a1V a2Vv +~ (a3V+ady) asy (11.50)
aH=2 JH 2H— -"f‘(a3H+a4H) 7'5}42 (11.51)
.cose )
where k = 2n/X and
a vV = cos(kasine) - j sine = (alH* (11.52)
j ka-n/4)
az2v= (11.53)
v2n(ka) ¥2
-jkasine
3V (11.54)
(1 - sine)2
_ . kesine
aq - oS0 (11.55)
(1 +sine)

© 2004 by Chapman & Hall/CRC CRC Press LLC



/2ka- /)

gy = 1-mmmmmmmmmne | - (11.56)
8n(ka)3
a+/4)
= 47K (1L57)
V2n(ka)l
-/kasin9
a3H = - (11.58),
3H 1- sin0
/asin0
adH = Tsin : (11.59)
/(2ka+(n/2)

asg=1--ink T

Egs. (11.50) and (11.51) are valid and quite accurate for aspect angles

0°<0 <80 . For aspect angles near 90°, Ross1 obtained by extensive fitting
of measured data an empirical expression for the RCS. Itis given by
an”™ 0

n_1.T n__ 'l

2(2a/X)2- 2(2a/X)2-

3n) | (1161
5

The backscattered RCS for a perfectly conducting thin rectangular plate for
incident waves at any 0, ¢p can be approximated by

4na t (ﬁksmo cos sm(tksmo smgjfl ........
a =% sin éf)'s"(b " (00?9( Sino an]dJGz}

Eg. (11.62) is independent of the polarization, and is only valid for aspect
angles 0 <20°. Fig. 11.27 shows an example for the backscattered RCS of a
rectangular flat plate, for both vertical (Fig. 11.27a) and horizontal (Fig.
11.27b) polarizations, using Egs. (11.50), (11.51), and (11.62). Inthis example,
a =t = 10.16cm and wavelength X = 3.33cm. This plot can be repro-
duced using MATLAB function “rcs_rect_plate” given in Listing 11.10.

MATLAB Function “rcs_rect_plate.m”

The function “rcs_rect_plate.m” calculates and plots the backscattered RCS
of a rectangular flat plate. Its syntax is as follows:

[rcs] =rcs_rect_plate (a, t, freq)

1 Ross, R. A., Radar Cross Section of Rectangular Flat Plate as a Function of Aspect
Angle, IEEE Trans., AP-14,320, 1966.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Vertical Polarization, Frequency =9 GHz, a=0.1016m b=0.1016m

-dBsm

RCS

Aspect angle -deg

Figure 11.27a. Backscattered RCS for a rectangular flat plate.

Horizontal Polarization. Frequency =9 GHz. a=0 1016m b=0 1016m

RCS -dBsm

Aspect angle -deg

Figure 11.27b. Backscattered RCS for a rectangular flat plate.
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where

Symbol Description Units Status
a short side ofplate meters input

b long side ofplate meters input
freq frequency Hz input
rcs array ofRCS versus aspect angle dBsm output

Fig. 11.27c shows the GUI workspace associated with this function.

Figure 11.27c. GUI workspace associated with the function “rcs_rect_plate.m”.

115.7. Triangular FlatPlate

Consider the triangular flat plate defined by the isosceles triangle as oriented
in Fig. 11.28. The backscattered RCS can be approximated for small aspect

angles ( 0 <30°) by

a = 4—nA—(cos(J)LQaO (11.63)
X2
a0 = [(sina)2- (sin(p/2))2]2+a@ (11,64
a2- §/2)2
al = 0.25(sind)’[(2a/b) cosdpsirfp - sinchsin2a] (1165)

where a = kasinOcosd, p = kbsinOsind,andA = ab/2 .Forwavesinci-
dent in the plane ¢ = 0 ,the RCS reduces to
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Figure 11.28. Coordinates for a perfectly conducting isosceles triangular plate.

.4 . 2
o = 4—nA—(cosa)z (smz) +(sin2a -42a) (11.66)
a 4a
and for incidence in the plane ¢ = n/ 2
ct = 4—nA—(cos(J)LQ (1L.67)
X2 . (P/2)4

Fig. 11.29 shows a plot for the normalized backscattered RCS from a per-
fectly conducting isosceles triangular flat plate. In this example a = 0.2m,
b = 0.75m. This plot can be reproduced using MATLAB function
“rcsisosceles.m” given in Listing 11.11 in Section 11.9.

MATLAB Function “rcs_isosceles.m”

The function “rcs isosceles.m” calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[rcs] =rcsisosceles (a, b, freq, phi)

where
Symbol Description Units Status
a height ofplate meters input
b base ofplate meters input
freq frequency Hz input
phi roll angle degrees input
rcs array ofRCS versus aspect angle dBsm output
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(0] 10 20 30 40 50 BO 70 90 90
Aspect angle - degrees

isosceles hieghta mm 0-2 frequency-Hz

isosceles base: b - m | royangle . “ep

Figure 11.29. Backscattered RCS for a perfectly conducting triangular
flat plate, a = 20cm and b = 75cm .

11.6. Scattering From a Dielectric-Capped Wedge

The geometry of a dielectric-capped wedge is shown in Fig. 11.30. It is
required to find to the field expressions for the problem of scattering by a 2-D
perfect electric conducting (PEC) wedge capped with a dielectric cylinder.
Using the cylindrical coordinates system, the excitation due to an electric line
current of complex amplitude 10 located at (p0, g0) results in TMz incident
field with the electric field expression given by

E,=- ~ A) (<comecm>

The problem is divided into three regions, I, 11, and 11l shown in Fig. 11.30.
The field expressions may be assumed to take the following forms:

© 2004 by Chapman & Hall/CRC CRC Press LLC



El =~ anjv(kp)sinv(dp- a)sinv(d0- a)
[123)

Eit =2 (b v(kP)+ crH\>(kP))sinv (- a)sinv (¢o - a) (11.69)
Ef :’ridd—|(’\(kp)sinv(cp- a)sinv (do- a)
where
nn
n-a-p 41-7°)

while Jv(x) is the Bessel function of order v and argument x and Hw) is the
Hankel function of the second kind of order v and argument x . From Max-
well's equations, the magnetic field component Hd is related to the electric
field component Ez for a TMz wave by

H=1E (11.71)
® jap dp
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Thus, the magnetic field component Hd in the various regions may be written
as

k £
HCD:-JmlErZFOarﬂ v(klp) sinv (@- a)sinv(do- a)
(11.72)

j
T _

k Z(bn]'v(kp)+crH{()' (kp)) sinv (dp- a)sinv (d0- a)
N

Z drHy (kp)sinv (th- a)sinv(¢0- a)

j'ho 1

Where the prime indicated derivatives with respect to the full argument of the
function. The boundary conditions require that the tangential electric field
components vanish at the PEC surface. Also, the tangential field components
should be continuous across the air-dielectric interface and the virtual bound-
ary between region Il and Ill, except for the discontinuity of the magnetic field
at the source point. Thus,

Ez=0 at I=a,2n- B (11.73)
El =E? (11.74)
at p=a
Hp=H~"
Eii =Ein
at =p0 11.75
Hep- Hw= -] P=p (11.75)

The current density Je may be given in Fourier series expansion as
2 L . .
Z sinv (- a)sinv(d0- a) (11.76)
po 2n-a-B po

The boundary condition on the PEC surface is automatically satisfied by the ¢
dependence of the electric field Eqg. (11.72). From the boundary conditions in
Eqg. (11.73)

Z anv(ka)sinv (- a)sinv(d0- a) =
aal (11.77)

Z\bnly (ka)+crnH (Xka))sinv (d- a)sinv (d0- a)
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I(—V an'v(kla)sinv (g- a)sinv (d0- a) =
ap0nd

k V (b ¥(ka) +crH (y (ka))sinv (dh- a)sinv (d0- a)
Jap0nr9

From the boundary conditions in Eqg. (11.75), we have

m . .
%:O(n Jv(kPo) +cnH () (KPo))sinv) - a)sinv(do- a)

a (11.79)

V dnH( ) (kpO)sinv (¢p- a)sinv (d0- a)

[123)

V _(bry ' (KPo) +crHiiy (KPo)) sinv (- a)sinv(do- a)
jap 0 (11.80)
_ K V drH”™" (kp0)sinv (cb- a)sinv (g0- a)
japo =0
2 le \% smv(cp a)sinv(d0- a)
2n-a-B po

Since Egs. (11.77) and (11.80) hold for all ¢, the series on the left and right
hand sides should be equal term by term. More precisely,

aJ (ka)=bnv(ka)+cH{) (ka) (1181)
—an ' (kla) = (b "(ka)+ cH\2' (ka)) (11'82)
po po
bnlv (kp0) +cnH\Y) (kpo) =d ~  (kpo) (1183)
bnJ' (kp, ) +cri-\2) (kpo) = drl-ll{la)‘(kpo)---——-—Z—aG—p—IF;O (11.84)

From Egs. (11.81) and (11.83), we have

=—1—-\bJ (k H Zl k 11.85
an Jv(kja)L n J'I( a)+c ( a)L (189

dn=on+ (11.86)
n n nH(}(kpo)
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Multiplying Eqg. (11.83) by H~ and Eqg. (11.84) by H'2), and by subtraction
and using the Wronskian of the Bessel and Hankel functions, we get

=- 1 Hz2>(k00) (11.87)
2n-a-B

Substituting bn in Egs. (11.81) and (11.82) and solving for cnyield

XTLOL, kJv(ka)Jv(kla)- kJv(ka)Jv(kla)

h* (k°0)- (11.88)
kHfy (ka)Jv(ka) - kIH{2) (ka)J'v(kla)

C =e
2n-a-B

From Egs. (11.86) through (11.88), dn may be given by

4 nanae H@(kr0) Kkiv(ka)lv(kia)- kiv(ka)dv(kg _j » ) (11.89)
2n-a-s kH~ (ka)lv(ki)- kjH® (ka)l® (ki)

which can be written as

kdv(kia) J1 (ka)H~ (kpo)- H(@*(ka)dv(kp0) +K

W, ', (Ki)[H e (ka)dv(kpo)- Ju(ka)H (2 (kpoy ~ (110)

2n-a-I kHA' (ka)dv(kla)- K fIf (ka)i~ (la)

Substituting for the Hankel function in terms of Bessel and Neumann func-
tions, Eqg. (11.90) reduces to

kv (kla)[Jd' (ka)YMkpo) - Y~ (ka)dv (kp0)] +K
KJ'v (k&)|1rvv(ka™)v (kp0) - J v (ka)YMkpO) (11.91)

dn=-J .
2n-a-i kH( (ka")dv(kla) - kflV2Z (ka)J'v(kla

With these closed form expressions for the expansion coeffiecients an, bn,
cn and dn, the field components Ez and Hd can be determined from Eq.
(11.69) and Eq. (11.72), respectively. Alternatively, the magnetic field compo-
nent Hp can be computed from

Hp=— L1 4z (11.92)
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Thus, the Hp expressions for the three regions defined in Fig. 11.30 become

H p o= & e V. anvlv(kp)cos v A -a)sin v(do-a)

1 m (11.93)
Hp =— =V v (v(kp) +c,H()(kp))cosv(d -a)siny(dh0-a) '
jaupn=0 v ’
1
Hopl = - V drvH<)(kp)cosv ™ -a)sin v(p0-a)
Ja/p =0

11.6.1. Far Scattered Field

In region 111, the scattered field may be found as the difference between the
total and incident fields. Thus, using Eqgs. (11.68) and (11.69) and considering
the far field condition (p ~ pga) we get

2] R
n= + =AN~ i - i -
E'n=El +El OnkpeJkp}}/AOdnvamv(SD a)siny(dm- a)
(11.94)
1 OPI IX [eH 1 1dEz
= - e p = --
4 ynkp Jaup
Note that dn can be written as
d = aP0le% (11.95)
n 4 n
where
kJv(kla)[J" (ka)yv(kpo)- W(ka)Jv(kpo)] +K
4n k1'y (kda)[Y v(ka)J v (kpo)- Jy(ka)Yv(kp0) (11.96)
2n-a-s kHV~ (ka)J v (kia) - kIH (il (ka)J' (ka)

Substituting Eq. (11.95) into Eq. (11.94), the scattered field f () is
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ES = .=MZ {1} 49 (11.97)

(m _ )
Z drj'VsTnv"\ —afsinv’\o_af‘_elkpm(q’—@
&=0
11.6.2. Plane Wave Excitation

For plane wave excitation (p0”~ pga), the expression in Egs. (11.87) and
(11.88) reduce to

b=_ ™POe - 2J ekDd
n 2n_a_B ynkpo
------ \  (11-98)
_2Le-4® kIV(ka)lv(kla) kU (ka (kla)
2n_a_p ]jnkpo kH (y (ka)dv(ka) (ka)J[ (k)

where the complex amplitude of the incident plane wave, EO, can be given by

EO= I,—MA-2 —e 11-99
- 4 ynkpO o ( )

In this case, the field components can be evaluated in regions | and Il only.

11.6.3. Special Cases

Casel: a = p (reference at bisector); The definition of v reduces to

v=_—n__ (11.100)

2(n_B)
and the same expression will hold for the coefficients (witha = p).

Casell: a = 0 (reference at face); the definition of v takes on the form

V= nn (11.101)
2n_B

and the same expression will hold for the coefficients (with a = 0).

Case I11: kx™ m (PEC cap); Fields at region I will vanish, and the coeffi-
cients will be given by
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tn=-zManl RH() (kp0)
c = na™ e h{&kp ) Jv(ka)
cn 2n-a-BHv (pr)H\SZUVka)

= . m/mlle W(ka)l (kp0)- Jv(ka)Y (kp0)
n J2n-a-B H 2)(ka)

(11.102)

an=J-~ ) [ ~ (ka)+cH” (ka)S=0

Note that the expressions of bn and cn will yield zero tangential electric field
at p = a when substituted in Eq.(11.69).

Case IV: a~ 0 (no cap); The expressions of the coefficients in this case
may be obtained by setting k1 = k, or by taking the limit as a approaches

zero. Thus,
na/\, H kv (ka)Jv(ka) - kiv(ka')J'v(ka) _
2n-a-B KH (ka)dv(ka) - kH™ (ka')[ (ka)

= na™,
= on-a- HEOW

] kaa% Rniv(ka) +aHWka)] =

kiv(kia) JI (ka)H(2 (kpo)- HR (ka)dv(k0) +K (11.103)

KoL, kdv (Ka'j*H~a)Jv(kpo) - Jv(ka)h \A(kpo)]

M=o a-s K (ka)dv(Kia) - KHIZ(ka)Jv(Kia

na™d,
2n-a-, (00

Case V:a~ 0anda = p =0 (semi-infinite PEC plane); In this case, the
coefficients in Eq. (11.103) become valid with the exception that the values of
v reduce to n/2. Once, the electric field component Ez in the different
regions is computed, the corresponding magnetic field component Hdcp can be
computed using Eqg. (11.71) and the magnetic field component Hp may be
computed as

H=- 11 (11.104)
p JOMP o
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MATLAB Program “Capped WedgeTM.m”

The MATLAB program "‘Capped_WedgeTM.m" given in listing 11.12, along
with the following associated functions '"DielCappedWedgeTMFieldsLs.m",
“DielCappedWedgeTMFields PW", "polardb.m™, *‘dbesselj.m", "dbesselh.m",
and "'dbessely.m' given in the following listings, calculates and plots the far
field of a capped wedge in the presence of an electric line source field. The
near field distribution is also computed for both line source or plane wave exci-
tation. All near field components are computed and displayed, in separate win-
dows, using 3-D output format. The program is also capable of analyzing the
field variations due to the cap parameters. The user can execute this MATLAB
program from the MATLAB command window and manually change the input
parameters in the designated section in the program in order to perform the
desired analysis. Alternatively, the "Capped_Wedge GUI.m" function along
with the "Capped Wedge GUIL.fig" file can be used to simplify the data entry
procedure.

A sample of the data entry screen of the ""CappedWedgeGUI" program is
shown in Fig. 11.31 for the case of a line source exciting a sharp conducting
wedge. The corresponding far field pattern is shown in Fig. 11.32. When keep-
ing all the parameters in Fig. 11.31 the same except that selecting a dielectric
or conducting cap, one obtains the far field patterns in Figs. 11.33 and 11.34,
respectively. It is clear from these figures how the cap parameters affect the
direction of the maximum radiation of the line source in the presence of the
wedge. The distribution of the components of the fields in the near field for
these three cases (sharp edge, dielectric capped edge, and conducting capped
edge) is computed and shown in Figs. 11.35 to 11.43. The near field distribu-
tion for an incident plane wave field on these three types of wedges is also
computed and shown in Figs. 11.44 to 11.52. These near field distributions
clearly demonstrated the effect or cap parameters in altering the sharp edge sin-
gular behavior. To further illustrate this effect, the following set of figures
(Figs. (11.53) to (11.55)) presents the near field of the electric component of
plane wave incident on a half plane with a sharp edge, dielectric capped edge,
and conducting capped edge.

The user is encouraged to experiment with this program as there are many
parameters that can be altered to change the near and far field characteristic
due to the scattering from a wedge structure.
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Electromagnetic Scattering from a Capped Wedge (TMz)

— Souce-Type -------------

Reference 1on x-axis # Line Source —
Alpha 30 Degrees
30 r Plane Wave INea' Field
Beta Degrees
Cap radius 0.15 Lambda
---- Near Field Region
Rho_0 05 Lambda
x-dimension
(Lambda]
Phi_0 180 Degrees
y-dimension
(Lambda)
Frequency 3.0e+8 Hs
5
epst — Cap-Type
I Dielectric
mur 1
C conducloi
le 0.001 Ampere

ff None

Figure 11.31. The parameters for computing the far field pattern of a 60 degrees
wedge excited by a line source
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Figure 11.32. The far field pattern of a line source near a conducting wedge
with sharp edge characterized by the parameters in Fig. 11.31.
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Figure 11.33. The far field pattern ofa line source near a conducting wedge with
zildéilectrlc capped edge characterized by the parameters in Fig.

Figure 11.34. The far field pattern of a line source near a conducting wedge with
a conducting capped edge characterized by the parameters in Fig.
11.31.
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Figure 11.35. The Ez near field pattern of a line source near a conducting wedge
with a sharp edge characterized by the parameters in Fig. 11.31.

Figure 11.36. The Hp near field pattern ofa line source near a conducting wedge
with a sharp edge characterized by the parameters in Fig. 11.31.
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Figure 11.37. The Hip near field pattern ofa line source near a conducting wedge
with a sharp edge characterized by the parameters in Fig. 11.31.

Figure 11.38. The Ez near field pattern ofa line source near a conducting wedge
with a dielectric cap edge characterized by Fig. 11.31.
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Figure 11.39. The Hp near field pattern ofa line source near a conducting wedge
with a dielectric cap edge characterized by Fig. 11.31.

Figure 11.40. The Hd near field pattern ofa line source near a conducting wedge
with a dielectric cap edge characterized by Fig. 11.31.
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Figure 11.41. The Ez near field pattern of a line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.

Figure 11.42. The Hp near field pattern ofa line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.
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Figure 11.43. The Hip near field pattern ofa line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.

Figure 11.44. The EZ near field pattern ofa plane wave incident on a conducting
wedge with a sharp edge characterized by Fig. 11.31.
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T)0 Hp [Plane wave excitation]

Figure 11.45. The Hp near field pattern of a plane wave incident on a conducting
wedge with a sharp edge characterized by Fig. 11.31.

> H (Plane wave excitation]

Figure 11.46. The Hd near field pattern ofa plane wave incident on a conducting
wedge with a sharp edge characterized by Fig. 11.31.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 11.47. The Ez near field pattern ofa plane wave incident on a conducting
wedge with a dielectric edge characterized by Fig. 11.31.

Figure 11.48. The Hp near field pattern ofa plane wave incidenton a conducting
wedge with a dielectric edge characterized by Fig. 11.31.
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Figure 11.49. The Hip near field pattern of a plane wave incident on a conducting
wedge with dielectric capped edge characterized by Fig. 11.31.

Figure 11.50. The Ez near field pattern of a plane wave incident on a conducting
wedge with a conducting capped edge characterized by Fig. 11.31.
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T)0 Hp [Plane wave excitation]

Figure 11.51. The Hp near field pattern of a plane wave incident on a conducting
wedge with a conducting capped edge characterized by Fig. 11.31.

> H (Plane wave excitation]

Figure 11.52. The Hd near field pattern ofa plane wave incident on a conducting
wedge with a conducting capped edge characterized by Fig. 11.31.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 11.53. The Ez near field pattern of a plane wave incident on a half plane
with sharp edge. All other parameters are as in Fig. 11.31.

Figure 11.54. EZ near field pattern of a plane wave incident on a halfplane with
a dielectric capped edge. All other parameters are as in Fig. 11.31.
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Figure 11.55. Ez near field pattern of a plane wave incident on a half plane with
a conducting capped edge. All other parameters are as in Fig. 11.31.

11.7. RCS of Complex Objects

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes that make that target. In general, a complex
target RCS can be modeled as a group of individual scattering centers distrib-
uted over the target. The scattering centers can be modeled as isotropic point
scatterers (N-point model) or as simple shape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. This is true, because as seen in Section
11.3, relative spacing and aspect angles of the individual scattering centers
drastically influence the overall target RCS. Complex targets that can be mod-
eled by many equal scattering centers are often called Swerling 1 or 2 targets.
Alternatively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle.
However, in WB applications, a target may straddle many range bins. For each
range bin, the average RCS extracted by the radar represents the contributions
from all scattering centers that fall within that bin.
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As an example, consider a circular cylinder with two perfectly conducting
circular flat plates on both ends. Assume linear polarization and let H = 1m
and r = 0.125pa. The backscattered RCS for this object versus aspect angle is
shown in Fig. 11.56. Note that at aspect angles close to 0° and 180° the RCS
is mainly dominated by the circular plate, while at aspect angles close to nor-
mal incidence, the RCS is dominated by the cylinder broadside specular return.
The reader can reproduced this plot using the MATLAB program
“rc$_cyHner_copaplex.ja” given in Listing 11.19 in Section 11.9.

Aspect angle - degrees

Figure 11.56. Backscattered RCS for a cylinder with flat plates.

11.8. RCS Fluctuations and Statistical Models

In most practical radar systems there is relative motion between the radar
and an observed target. Therefore, the RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS s referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in this chapter assumed a stationary target,
where in this case, the backscattered RCS is often called static RCS.

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation
is called glint, while amplitude fluctuation is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
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radar applications, glint introduces linear errors in the radar measurements, and
thus it is not of a major concern. However, in cases where high precision and
accuracy are required, glint can be detrimental. Examples include precision
instrumentation tracking radar systems, missile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography.

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.
Thus, due to the wide variety of RCS scintillation sources, changes in the radar
cross section are modeled statistically as random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements.

11.8.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation.

Chi-Square of Degree 2m

The Chi-square distribution applies to a wide range of targets; its pdfis given
by

(11.105)

where I'(m) is the gamma function with argument m, and aav is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of values). The limit m”~ x corresponds to a con-
stant RCS target (steady-target case).

Swerling | and I1 (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu-
ation). Inthis case, the pdfis

a>0 (11.106)

where aav denotes the average RCS overall target fluctuation. Swerling I tar-
get fluctuation is more rapid than Swerling I, but the measurements are pulse to
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pulse uncorrelated. Swerlings 1 and Il apply to targets consisting of many inde-
pendent fluctuating point scatterers of approximately equal physical dimen-
sions.

Swerling 11 and 1V (Chi-Square of Degree 4)

Swerlings 111 and 1V have the same pdf, and it is given by
fexpe 47 a>0 (11.107)

The fluctuations in Swerling Il are similar to Swerling I; while in Swerling
IV they are similar to Swerling Il fluctuations. Swerlings Il and IV are more
applicable to targets that can be represented by one dominant scatterer and
many other small reflectors. Fig. 11.57 shows a typical plot of the pdfs for
Swerling cases. This plot can be reproduced using MATLAB program
“Swerling models.m” given in Listing 11.20 in Section 11.9.

X

Figure 11.57. Probability densities for Swerling targets.

11.9. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.
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Listing 1.1. MATLAB Function “rcs_aspect.m”

function [rcs] =rcsaspect (scatspacing, freq)
% Thisfunction degaonstrates the effect o faspect angle on RCS.
% Plot scatterers separated by scat spacing gaeter. Initially the two scatterers
% are aligned with radar line ofsight. The aspect angle is changedfroga
% 0 degrees to 180 degrees and the equivalent RCS is cogaputed.
% Plot ofRCS versus aspect is generated.
eps = 0.00001;
wavelength =3.0e+8/freq;
% Copapute aspect angle vector
aspectdegrees =0.:.05:180.;
aspectradians = (pi/180) .* aspectdegrees;
% Copapute electrical scatterer spacing vector in wavelength units
elecspacing = (11.0 *scat spacing /wavelength) .* cos(aspect radians);
% Copapute RCS (rcs =RCS_scatl +RCS_scat?)
% Scatl is taken as phase reference point
rcs = abs(1.0 + cos((11.0 *pi) .* elec spacing) ..
+i *sin((11.0 *pi) .* elec spacing));
rcs =rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsga
% Plot RCS versus aspect angle
figure (D);
plot (aspect_degrees,rcs,k);
grid;
xlabel (‘aspect angle - degrees);
ylabel ("RCSin dBsga);
%title ( Frequency is 3GHz; scatterer spacing is 0.5aa");

Listing 11.2. MATLAB Function “rcs_frequency.m”

function [rcs] =rcs_frequency (scat spacing, frequ, freql)
% Thisprograga degaonstrates the dependency o fRCS on wavelength
eps = 0.0001;
freqband =frequ -freql;
delfreq =freqband /500.;
index = 0;
forfreq =freql: delfreq: frequ

index = index +1,

wavelength(index) = 3.0e+8 /freq;
end
elec spacing = 2.0 *scat spacing./wavelength;
rcs =abs ( 1 + cos((11.0 *pi) .* elec spacing) ...

+i *sin((11.0 *pi) .* elec spacing));
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rcs =rcs + eps;

rcs =20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versusfrequency

freq =freql:delfreq:frequ;
plot(freq,rcs);

grid;

xlabel('Frequency");

ylabel("RCS in dBsm);

Listing 11.3. MATLAB Program “examplell 1.m”

clear all

close all

N =50;

wct = linspace(0,2*pi,N);

% Case 1

ax1 = cos(wct);

ayl =sqgrt(3) .* cos(wct);

M1 = moviein(N);

figure(l)

xc =0;

yc=0;

axis image

hold on

forii = LN
plot(ax1(ii),ay1(ii),”>r");
line([xc ax1(ii)],[yc ayl(ii)]);
plot(axl,ayl,'g";
MI(ii) =getframe;

end

grid

xlabel("Ex")

ylabel("Ey")

title("Electric Field Locus; casel")

% case 2

ax3 = cos(wct);

ay3 =sin(wct);

M3 = moviein(N);

figure(3)

axis image

hold on

forii = LN
plot(ax3(ii),ay3(ii),>r");
line([xc ax3(ii)],[yc ay3(ii)]);
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plot(ax3,ay3,'g");
M3(ii) =getfragae;
end
grid
xlabel("Ex")
ylabel("Ey")
title("Electric Field Locus; case 2)
rho =sqrt(ax3A +ay3A);
majoraxis = 2”ax(rho);
painor_axis =2”in(rho);
aspect3 = 10*log10”™ajor_axisMinor_axis)
alpha3 = (180/pi) * atan2(ay3(1),ax3(1))
% Case 3
ax4 = cos(wct);
ay4 = cos(wct+(pi/6);
M4 = paoviein(N);
figure(4)
axis igaage
hold on
forii = LN
plot(ax4(ii),ay4(ii),”>r");
line([xc ax4(ii)],[yc ay4(ii)]);
plot(ax4,ay4,'g")
M4(ii) = getfragae;
end
grid
xlabel(Ex")
ylabel(Ey")
title("Electric Field Locus; case 3')
rho =sqrt(ax4A2 + ay4.”);
majoraxis =2”ax(rho);
painor_axis =2”in(rho);
aspect4 = 10*log10”™ajor_axisMinor_axis)
alpha4 = (180/pi) * atan2(ay4(l),ax4(1))
end
% Case 4
ax6 = cos(wct);
ay6 =sqrt(3) .* cos(wct+(pi/3));
M6 = paoviein(N);
figure(6)
axis ifaage

hold on
forii = 1:N
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plot(ax6(ii),ay6(ii),>r);
line([xc ax6(ii)],[yc ay6(ii)]);
plot(ax6,ay6,qg)
M6 (ii) =getframe;
end
grid
xlabel("Ex")
ylabel("Ey")
title("Electric Field Locus; case 4)
rho =sqrt(ax6A + ay6.A?);
majoraxis = 2*max(rho);
minoraxis = 2*min(rho);
aspect6 = 10*log10(major_axis/minor_axis)
alpha6 = (180/pi) * atan2(ay6(1),ax6()

Listing 11.4. MATLAB Program “rcs_sphere.m”

% Thisprogram calculates the back-scattered RCSfor a perfectly
% conducting sphere using Eq.(11.7), and produces plots similar to Fig.2.9
% Spherical Besselfunctions are computed using series approximation and
recursion.
clear all
eps =0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300points
for kr =0.05:0.05:15
index = index + 1;
spherercs =0. + 0.*i;

fl1 =0.+ 1%,
f2 =1.+0%;
m =1;
n =0,;
q =-1;

% initially set del to huge value
del =100000+100000%*;
while(abs(del) > eps)

q =-q

n =n+1;

m =m+2;

del = (11.*n-1) *f2 /kr-fl;
f1 =f2;

f2 =del;

del =q*m/({f2 * (kr *f1-n *f2);
spherercs =spherercs + del;
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end
rcs(index) = abs(spherercs);
sphere rcsdb(index) = 10. * log10(rcs(index));
end
figure(D;
n=0.05:.05:15;
plot (n,rcs,"'k");
set (gca,"xtick',[1 23456 789 10 11 12 13 14 15]);
%xlabel ('Sphere circugaference in wavelengths);
%ylabel (Nornalized sphere RCS");
grid;
figure (9;
plot (n,sphere_rcsdb,'k");
set (gca,'xtick’,[1 23456 789 10 11 12 13 14 15]);
xlabel (Sphere circugaference in wavelengths);
ylabel (Nornalized sphere RCS - dB);
grid;
figure (3);
sepailogx (n,sphere_rcsdb,'k");
xlabel (Sphere circugaference in wavelengths);
ylabel (Nornalized sphere RCS - dB);

Listing 11.5. MATLAB Function “rcs_ellipsoid.m”

function [rcs] =rcs ellipsoid (a, b, ¢, phi)
% Thisfunction cogaputes andplots the ellipsoid RCS versus aspect angle.
% The roll angle phi isfixed,
eps = 0.00001;
sin_phi_s =sin(phi)A;
cos_phi_s = cos(phi)A2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./180.;
if@~—=b&a~=¢)

rcs = (pi *a/&R *bAR *cA) ./(a” *cos_phi_s.* (sin(theta).A) + ...

bA *sin_phi_s .* (sin(theta).A2) + ..

cA .* (cos(theta)R) ) A2 ;
else

if@==b &a~=0¢)

rcs = (pi *bAd *cA) /(bAR .* (sin(theta).A) + ..
cA .* (cos(theta)A) ) A2 ;
else
if(a==b &a ==c)
rcs =pi * cA;
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end

end
end
rcsdb =10.0 *logl0(rcs);
figure (9;
plot ((theta * 180.0 /pi),rcs_db,'k");
xlabel (*Aspect angle - degrees);
ylabel (‘RCS- dBsm);
%title ("phi =45 deg, (a,b,c) = (.15,.20,.95) meter")
grid;

Listing 11.6. MATLAB Program figll 18a.m”

% Use thisprogram to reproduce Fig. 11.18a

%Thisprogram computes the back-scattered RCSfor an ellipsoid.
% The angle phi isfixed to three values 0, 45, and 90 degrees

% The angle theta is variedfrom 0-180 deg.

% A plot ofRCS versus theta is generated

% Last modified on July 16, 2003

clear all;

% === Inputparameters ===

a =.15; % 15 cm

b =.20; % 20 cm

c =.95; % 95 cm

% === Endoflnputparameters ===

as = numa2str(a);
bs = num2str(b);
€s = numa2str(c);
eps = 0.00001;
dtr =pi/180;
forqg=1:3
|fq ==
phir =0; % thefirst value ofthe angle phi
elseifg == 2
phir =pi/4; % the second value ofthe angle phi
elseifqg ==
phir =pi/2; % the third value ofthe angle phi
end
sin_phi_s = sin(phir)A2;
cos_phi_s = cos(phir)A2;
% Generate aspect angle vector
theta = 0.:.05:180;
thetar = theta * dtr;
if@~=b&a~=¢)
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res(g,:) = (pi *aA *bA *cA) /(a” * cos_phi_s.* (sin(thetar)A2) + ..
bA *sin_phi_s .* (sin(thetar)A2) + ...
cAR .* (cos(thetar)A2)A2 ;
elseif(a == b & a ~=0¢)
res(g,:) = (pi *bA *cA?) ./(bA * (sin(thetar).A) + ..
cAR .* (cos(thetar)A) ) A ;
elseif(a == b & a ==c¢)
rcs(q,:) =pi *cA2;
end
end
rcs db =10.0 *logl10(rcs);
figure (D);
plot(theta,rcs_db (1,:),'b",theta,rcs_db(2,:),'r:" theta,rcs_db(3,:),'g--",'line-
width',1.5);
xlabel (*Aspect angle, Theta [Degrees]);
ylabel ("RCS- dBsga);
title ([Ellipsoidwith (a,b,c) = (, [as],’, ' [bs],", ' [cs], ) paeter])
legend ("phi = 0A0",'phi =45A0","'phi =90A0")
grid;

Listing 11.7. MATLAB Function “rcs_circ_plate.m”

function [rcsdb] =rcs circ_plate (r,freq)
% Thisprograga calculates and plots the backscattered RCS of
% circularflatplate ofradius .
eps = 0.000001;
% Copapute aspect angle vector
% Cogapute wavelength
lagabda = 3.e+8 /freq; % X-Band
index = 0;
for aspect deg = 0.:.1:180
index = index +1;
aspect = (pi /180.) * aspect deg;
% Copapute RCS using Eq. (2.37)
if (aspect == 0 |aspect ==pi)
rcs_po(index) = (4.0 *piA3 *rAd /lagabda”) + eps;
rcsMu(index) =res_po(D;
else
X = (4. *pi *r /lagabda) *sin(aspect);
vall =4. *piA3 *rA4 /lagabdaA2;
val2 = 2. *besselj(1,x) /x;
rcs_po(index) =vall * (val2 * cos(aspect))A2 + eps;
% Copapute RCS using Eq. (2.36)
vallp = lagabda *r;
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val2m = 8. *pi *sin(aspect) * (tan(aspect)A?);
rcsmu(index) =vallm/val2m + eps;
end
end
% Compute RCS using Eqg. (2.35) (theta=0,180)
rcsdb = 10. *log10(rcs_po);
rcsdb mu = 10 *log10(rcs_mu);

angle =0:.1:180;
plot(angle,rcsdb,’k",angle,rcsdb_mu,'k-.")
grid;

xlabel (‘Aspect angle - degrees);

ylabel (‘RCS- dBsm);

legend(*Using Eq.(11.37) *,'Using Eq.(11.36)")
freqGH = num2str(freq*1.e-9);

title (['Frequency = ',[freqGH]," GHZz']);

Listing 11.8. MATLAB Function “rcs_frustum.m”

function [rcs] =resfrustum (rl, r2, h, freq, indicator)

% Thisprogram computes the monostatic RCSfor afrustum.
% Incident linear Polarization is assumed.

% To compute RCP or LCP RCS one must use Eq. (11.24)

% When viewingfrom the small end o fthefrustum

% normal incidence occurs at aspectpi/2 - halfcone angle
% When viewingfrom the large end, normal incidence occurs at
% pi/2 + halfcone angle.

% RCS is computed using Eq. (11.43). Thisprogram assumes a geometry
format long

index = 0;

eps = 0.000001;

lambda = 3.0e+8 /freq;

% Enterfrustum’s small end radius

%rl =.02057;

% Enter Frustum’s large end radius

%r2 =.05753;

% Compute Frustum's length

%h =.20945;

% Comput halfcone angle, alpha

alpha = atan((r2 - r1)/h);

% Compute z1 and z2

z2 =r2 /tan(alpha);

z1 =r1/tan(alpha);

delta = (z2AL.5 - z1AL.5)”2;

factor = (8. *pi *delta) /(9. * lambda);
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% (’enter 1 to viewfrustumfrom large end, 0 otherwise)
largesmallend = indicator;
if(large_small_end == 1)
% Compute normal incidence, large end
normalincedence = (180./pi) * ((pi /2) + alpha)
% Compute RCSfrom zero aspect to normal incidence
for theta = 0.001:.1:normal_incedence-.5
index = index +1,
theta = theta *pi /180.;
rcs(index) = (lambda *z1 *tan(alpha) *(tan(theta - alpha))A?) /...
(8. *pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1,
rcsnormal =factor *sin(alpha) 7 ((cos(alpha))A) + eps;
rcs(index) =rcsnormal;
% Compute RCSfrom broad side to 180 degrees
for theta =normal_incedence+.5:.1:180
index = index + 1;
theta = theta *pi /180. ;
rcs(index) = (lambda *z2 * tan(alpha) *(tan(theta - alpha))A?) /...
(8. *pi *sin(theta)) + eps;
end
else
% Compute normal incidence, small end
normal incedence = (180./pi) * ((pi /2 - alpha)
% Compute RCSfrom zero aspect to normal incidence (large end o ffrustum)
for theta = 0.001:.1:normal_incedence-.5
index = index +1,
theta = theta *pi /180.;
rcs(index) = (lambda *z1 * tan(alpha) *(tan(theta + alpha))A?) /...
(8. *pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1,
rcs normal =factor *sin(alpha) 7 ((cos(alpha))A4) + eps;
rcs(index) =rcsnormal;
% Compute RCSfrom broad side to 180 degrees (small end o ffrustum)
for theta =normal_incedence+.5:.1:180
index = index + 1;
theta = theta *pi /180. ;
rcs(index) = (lambda *z2 *tan(alpha) *(tan(theta + alpha))A2) /...
(8. *pi *sin(theta)) + eps;
end
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end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs));
grid;
xlabel (*Aspect angle - degrees);
ylabel ('RCS- dBsga);
if(indicator ==

title ("Viewingfroga large end);
else

title ("Viewingfroga small end");
end

Listing 11.9. MATLAB Function “rcscylinder.m”

function [rcs] =rcs_cylinder(rl, r2, h, freq, phi, CylinderType)

% rcs_cylinderM

% Thisprograga cofaputes gaonostatic RCSfor afinite length

% cylinder ofeither curricular or elliptical cross-section.

% Plot ofRCS versus aspect angle theta is generated at a specified
% input angle phi

% Last gaodified on July 16, 2003

r=rl; % radius ofthe circular cylinder
eps =0.00001;

dtr =pi/180;

phir =phi *dtr;

freqGH = nuga2str(freq*l.e-9);
lagabda = 3.0e+8 /freq; % wavelength
% CylinderType= "Elliptic; % 'Elliptic’ or "Circular’
switch CylinderType
case 'Circular’
% Copapute RCSfroga 0 to (90-.5) degrees
index = 0;
for theta = 0.0:.1:90-.5
index = index +1;
thetar = theta * dtr;
rcs(index) = (lagabda *r * sin(thetar) /...
(8. *pi * (cos(thetar))A2)) + eps;

end
% Copapute RCSfor broadside specular at 90 degree
thetar =pi/2;

index = index +1;
rcs(index) = (2. *pi *hA2 *r /lagabda)+ eps;

© 2004 by Chapman & Hall/CRC CRC Press LLC



% Compute RCSfrom (90+.5) to 180 degrees
for theta =90+.5:.1:180.
index = index + 1;
thetar = theta * dtr;
rcs(index) = (lambda *r * sin(thetar) /...
(8. *pi * (cos(thetar))A2)) + eps;

end
case 'Elliptic’
ri2 =ril*ri;
r22 =r2*r2;
h2 =h*h;
% Compute RCSfrom 0 to (90-.5) degrees
index = 0;

for theta = 0.0:.1:90-.5
index = index +1;
thetar = theta * dtr;
rcs(index) = lambda *r12 *r22 *sin(thetar) /...
(8*pi* (cos(thetar)A2)* ( (rl2*cos(phir)A2 +r22*sin(phir)A2)ALl.5
)+ eps;
end
% Compute RCSfor broadside specular at 90 degree
index = index +1;
res(index) =2. *pi *h2 *rl12 *r22/..
(lambda*( (rl2*cos(phir)A2 +r22*sin(phir)A2)ALl.5))+ eps;
% Compute RCSfrom (90+.5) to 180 degrees
for theta =90+.5:.1:180.
index = index + 1;
thetar = theta * dtr;
rcs(index) = lambda *r12 *r22 *sin(thetar) /...
(8 *pi* cos(thetar)A2* ( (rl2*cos(phir)A2 + r22*sin(phir)A2)AL.5)) +
eps;
end
end
% Plot the results
delta= 180/(index-1);
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k", linewidth',1.5);
grid;
xlabel (‘Aspect angle, Theta [Degrees]);;
ylabel ('RCS- dBsm);
title ([[CylinderType],” Cylinder’,’ at Frequency = \[freqGH],” GHz]);
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Listing 11.10. MATLAB Function “rcs rect_plate.m”

function [rcsdb_h,rcsdb_v] =rcs_rect_plate(a, b, freq)

% Thisprograga cogaputes the backscattered RCSfor a rectangular

%flatplate. The RCS is cogaputedfor vertical and horizontal

% polarization based on Eq.s(11.50)through (11.60). Also Physical

% Optics approxmation Eq.(11.62) is cogaputed.

% User paay varyfrequency, or the plate’s dmensions.

% Default values are a=b=10.16m; lagabda=3.25ca.

eps = 0.000001;

% Enter a, b, and lagabda

lagabda =.0325;

ka =2. *pi *a /lagabda;

% Copapute aspect angle vector

thetadeg = 0.05:0.1:85;

theta = (pi/180.) .* theta deg;

siggaalv = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./sin(theta);

signaa2v = exp(i *ka - (pi 74)) / (sqrt(2 *pi) *(ka)Al.5);

siggaaldv = (1. +sin(theta)) .* exp(-i *ka .* sin(theta)) .7...
(L. - sin(theta)).A2;

sighaadv = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./...
(1. + sin(theta))A2;

signaabv = 1. - (exp(i *2. *ka - (pi /2)) /(8. *pi * (ka)A3));

siggaalh = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./sin(theta);

sighgaazh = 4. *exp(i *ka * (pi 74.)) / (sqrt(2 *pi *ka));

siggaa3h = exp(-i * ka .* sin(theta)) ./ (L. - sin(theta));

sighaadh = exp(i * ka *sin(theta)) ./ (1. + sin(theta));

siggaabh = 1. - (exp(j *2. *ka + (pi/4.)) /2. *pi *ka);

% Copgapute vertical polarization RCS

rcs_v = (bA2 /pi) .* (abs(sigmalv - siggaa2v .*((1. ./cos(theta)) ...
+.25 .* siggaa2v .* (sigmaalv + signaadv)) .* (siggaasv).A-1)).A2 + eps;

% copapute horizontal polarization RCS

rcsh = (bA2 /pi) .* (abs(siggaalh - sigaaazh .*((1. ./ cos(theta)) ...
- .25 .*sigpaa2h .* (sigmaa3h + siggaadh)) .* (sigmab5h).A-1))A2 + eps;

% Copapute RCSfroga Physical Optics, Eq.(11.62)

angle =ka .* sin(theta);

rcs_po = (4. *pi* aA2 * bA2 /lagabdaA2). * (cos(theta))A2 .* ...
((sin(angle) .Zangle)A2) + eps;

rcsdb_v = 10. .*log10(rcs_v);

rcsdb h = 10. .*log10(rcs_h);

rcsdb_po = 10. .*log10(rcs_po);

figure(2)

plot (theta deg, rcsdb_v,'k’,theta_deg,rcsdb_po,'k-.");

set(gca,"xtick",[10:10:85]);
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freqGH = num2str(freq*1.e-9);

A = num2str(a);

B = num2str(b);

title (['Vertical Polarization, ', Frequency = [freqGH],’ GHz, ', ' a =, [A],
m'* b ="[B]'m);

ylabel (‘RCS-dBsm);

xlabel (‘Aspect angle - deg’);

legend('Eq.(11.50)", Eq.(11.62)")

figure(3)

plot (thetadeg, rcsdb_h,'k",theta_deg,rcsdb_po,'k -.");
set(gca,"xtick’,[10:10:85]);

title ([HorizontalPolarization, ’,Frequency = '[freqGH],' GHz, ', ' a =
[Al, 'm’" b ="[B],'m’]);

ylabel (‘RCS-dBsm);

xlabel (‘Aspect angle - deg’);

legend('Eq.(11.51)", Eq.(11.62)")

Listing 11.11. MATLAB Function “rcs_isosceles.m”

function [rcs] =rcs isosceles (a, b, freq, phi)

% Thisprogram calculates the backscattered RCSfor a perfectly

% conducting triangularflat plate, using Egs. (11.63) through (11.65)

% The default case is to assume phi =pi/2. These equations are

% validfor aspect angles less than 30 degrees

% compute area ofplate

A =a*b/2,;

lambda = 3.e+8 /freq;

phi =pi/2;

ka = 2. *pi /lambda;

kb = 2. *pi /lambda;

% Compute theta vector

thetadeg = 0.01:.05:89;

theta = (pi /180.) .* theta deg;

alpha =ka * cos(phi) .* sin(theta);

beta = kb *sin(phi) .* sin(theta);

if (phi ==pi /2

rcs = (4. *pi *AA2 /lambdaA2) .* cos(theta)A2 .* (sin(beta ./2))A4 ...

/ (beta./2).Ad4 + eps;

end

if (phi ==

rcs = (4. *pi *AA2 /lambdaA2) .* cos(theta)A2 .*...

((sin(alpha).A4 .Zalpha.A4) + (sin(2 .* alpha) - 2. *alpha).A2 ...
/(4 * alpha.Ad)) + eps;

end
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if (phi ~= 0 &phi ~=pi/2)
sigmaol = 0.25 *sin(phi)A2 .* ((11. *a/b) * cos(phi) .*...
sin(beta) - sin(phi) .* sin(11. .* alpha))A?;
factl = (alpha).A2 - (.5 .* beta).A2;
fact2 = (sin(alpha).A2 - sin(.5 .* beta)A2)A2;
sigmao = (fact2 +sigmaol) ./factl,
rcs = (4. *pi *AA2 /lambdaA2) .* cos(theta).A2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k")
xlabel (‘Aspect angle - degrees);
ylabel ("RCS- dBsm')
%title (*freq = 9.5GHz, phi =pi/2Y);
grid;

Listing 11.12. MATLAB Program “Capped_WedgeTM.m”

% Program to calculate the nearfield ofa sharp conducting wedge
% due to an incidentfieldfrom a line source or a plane wave
% By: Dr. AtefElsherbeni -- atef@olemiss.edu
% Thisprogram uses 6 otherfunctions
% Last modifiedJuly 24, 2003

clear all

close all

img =sqrt(-1);

rtd = 180/pi; dtr =pi/180;

mu0 = 4*pi*le-7; % Permeability o ffree space

eps0 = 8.854e-12; % Permittivity o ffree space

% ===== Inputparameters =====

alphad = 30; % above x Wedge angle

betad = 30; % Below x wedge angle

reference = 'on x-axis', % Reference condition 'topface’or ‘bisector’ or
‘on x-axis'

CapType = 'Diel’; % Cap Type 'Cond', ‘diel' or ‘None’

ar =.15; % Cap radius in lambda

rhop = 0.5; % radial Position ofthe line source in terms oflambda
phipd = 180; % angular position ofthe line source

le =.001; % Amplitude ofthe current source

freq =2.998e8; %frequency

mur = 1;

epsr = 1;

ax =1.5; by=1; % areafor nearfield calculations

nx = 30; ny = 20; % Number ofpointsfor nearfield calculations
% ===== EndoflnputData =====
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alpha =alphad*dtr;
beta = betad *dtr;

switch reference
case ‘topface’
alpha = 0;
vi =pi/(2 *pi-beta);
case 'bisector’
beta = alpha;
vi =pi/(2 *pi-2 *beta);
case 'on x-axis'
vi =pi/(2 *pi-alpha-beta);
end
phip =phipd*dtr;
etar = sqrt™ur/epsr);
Jau = .U.aA e
eps = epsO*epsr;
lagabda = 2.99e8/freq;

k = 2 *pi/lagabda; %free space wavenugaber

ka = k*ar;

k1l =k*sqrt™ur*epsr); % wavenugaber inside dielectric
kla =Kkl*ar;

krhop = k*rhop;
ofaega =2 *pi*freq;
% <<< Farfield Calculations ofEz cogaponent >>>
% === Line source excitation ===
Nc =round(1+2*k*rhop); % nugaber ofternsfor series sugagaation
Tern =pi*opaega*paul/(2*pi-alpha-beta);
TernOD = mg*4*pi/(2*pi-alpha-beta);
Tern0C = -mg*4*pi/(2*pi-alpha-beta);
Tern0 =  4*pi/(2*pi-alpha-beta);
for ip =1:360
phii = (ip -D)*dtr;
xphi(ip) =ip-1;
ifphii >alpha &phii < 2*pi-beta % outside the wedge region
EzFLs(ip) =0;
for pa=1:Nc
vV = fa*vi;
sstern = (igagAv)*sin(v*(phip-alpha))*sin(v*(phii-alpha));
switch CapType
case 'Diel’
Atern =k * besselj(v,kla)*(dbesselj(v,ka)*bessely(v,krhop)...
-dbessely(v,ka)*besselj(v,krhop)) ...
+k1*dbesselj(v,kla)*( bessely(v,ka)*besselj(v,krhop)...
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-besselj(v,ka)*bessely(v,krhop));
Bterm =k*dbesselh(v,2,ka)*besselj(v,kl1a) ...
-k1*besselh(v, 2,ka)*dbesselj(v,k1a);
EzLS(m) = Term0OD*ssterm*Aterm/Bterm;
case 'Cond’
Aterm = bessely(v,ka)*besselj(v,krhop) ...
- besselj(v,ka)*bessely(v,krhop);
Bterm = besselh(v,2,ka);
EzLS(m) = Term0C*ssterm*Aterm/Bterm;

case None’
EzLS(m) = Term0*ssterm*besselj(v,krhop);
end
end
EzFLs(ip) = abs(sum(EzLS));
else
EzFLs(ip)=0;
end
end

EzFLs = EzFLs/max(EzFLs);

figure(D);

plot(xphi,EzFLs,linewidth’,1.5);
xlabel(*Observation angle \phiAo);

ylabel("Ez");

axis ([0 360 0 1])

title("Total Far Field (Ez) [Line source excitation]");

figure(2)
polardb(xphi *dtr,EzFLs,k)
title ("Total Far Field (Ez) [dB]")

% <<< Nearfield observation points >>>
delx = 2*ax/nx; dely =2 *by/ny;,

xi =-ax; yi =-by; % Initial valuesfor x andy
for i =1:nx
forj = Lliny

x(i,j) =xi + (i-D*delx;

y(i,j) =yi + (-1 *dely;

rho(i,j) = sqrt(x(i,j)A2+y(ij)A2);
phi(i,j) =atan2(y(ij),x(ij));

ifphi(i,j) <0
phi(i,j) =phi(i,j) +2*pi;
end

ifrho(i,j) <= 0.001
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rho(ij) = 0.001;
end
end
end

% Line source excitation, nearfield calculations

% ==== Line source coefficients ====
Nc =round(1+2*k”~ax”~ax(rho))); % nugaber ofternsfor series suga-
[Jaation
Tern =le*pi*opaega*gaul/(2*pi-alpha-beta);
for pa = 1:Nc

vV = ga*vi;

switch CapType

case 'Diel’

b(m) =-Tern * besselh(v,2,krhop);

c(m) =-b(m * (k*dbesselj(v,ka)*besselj(v,kla) ...
-k1*besselj(v,ka)*dbesselj(v,k1a)) ...
/(k*dbesselh(v,2,ka)*besselj(v,k1a) ...
-k1*besselh(v,2,ka)*dbesselj(v,k1a));

d(m) =c(m) + b * besselj(v,krhop) ...

/ besselh(v,2,krhop);

a(m) = (b(g) *besselj(v,ka)+c(m) ...
* besselh(v,2,ka))/besselj(v,k1a);

case 'Cond’

b(m) =-Tern * besselh(v,2,krhop);

c(m) =-b(m) * besselj(v,ka)/besselh(v,2,ka);

d(m) =c(m) + b * besselj(v,krhop) ...

/ besselh(v,2,krhop);

a@m) =0;

case None’
b(m) =-Tern * besselh(v,2,krhop);
c@) =0;
d(m) =-Tern *besselj(v,krhop);
a(m) = b(ma);

end
end

ternhphi =sqrt(-1)*opaega*gau0;
ternhrho = -ternhphi;
fori=1nx
forj = Ll:ny
for p|a=1:Nc
v = a*vi; % Equation
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[Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rho(i,j),phi(i,j),rhop, ...
phip,ar, k,k1,alpha,beta, a, b, c,d);
Eztt(m) =Ezt;
Hphitt(m) = Hphit;
Hrhott(m) = Hrhot;
end
SEz(i,j) =sum(Eztt);
SHphi(i,j) = sum(Hphitt)/termhphi;
SHrho(i,j) =sum(Hrhott)/termhrho;
end
end
figure(3);
surf(x,y, abs(SEz));
axis (‘equal’);
view(45,60);
shading interp;
xlabel(*x");
ylabel('y");
zlabel("E_z");
title("Ez [Line source excitation]);
colorbar; colormap(copper); % colormap(jet);
figure(4);
surf(x,y, 377*abs(SHrho));
axis (‘equal’);
view(45,60);
shading interp;
xlabel(*x");
ylabel('y");
zlabel("\eta_o H\rho);
title("\eta_o H\rho [Line source excitation]);
colorbar; colormap(copper); % colormap(jet);
figure(5);
surf(x,y, 377*abs(SHphi));
axis (‘equal’);
view(45,60);
shading interp;
xlabel("x");
ylabel('y");
zlabel("\eta_o H\phi");
title("\eta_o H\phi [Line source excitation])
colorbar; colormap(copper); % colormap(jet);
% === Plane wave excitation, nearfield calculations ===

© 2004 by Chapman & Hall/CRC CRC Press LLC



Nc =round(1+2*k”ax"ax(rho))); % nupgaber ofternsfor series suga-
[Jaation
Tern = 4*pi/(2*pi-alpha-beta);
for pa=1:Nc
vV = pa*vi;
switch CapType
case 'Diel’
b(m) = Tern * mgAv;
c(m) =-b(m * (k*dbesselj(v,ka)*besselj(v,k1a)...
-k1*besselj(v,ka)*dbesselj(v,k1a)) ...
/ (k*dbesselh(v,2,ka)*besselj(v,k1a) ...
-k1*besselh(v,2,ka)*dbesselj(v,k1a));
a(m) = (b(m) *besselj(v,ka)+c(m) * besselh(v,2,ka))/besselj(v,kla);
case 'Cond’
b(m) =-Tern * mgAyv;
c(m) =-b(m * besselj(v,ka)/besselh(v,2,ka);
a@m) =0;
case None’
b(m) =-Tern * mgAyv;
c@) =0;
a(m) = b(na);
end
end
ternhphi = sqrt(-1)*ogaega*pgau0;
ternhrho = -ternhphi;
for i =1:nx
forj = Lliny
for pa=1:Nc
v = a*vi; % Equation
[Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_PW(v/,rho(i,j),phi(i,j), ...
phip,ar, k,k1,alpha,beta, a, b, c);
Eztt(m) = Ezt;
Hphitt(gg) = Hphit;
Hrhott(ag) = Hrhot;
end
EzPW(i,j) = supa(Eztt);
HphiPW(i,j) = suga(Hphitt)/tergahphi;
HrhoPW(ij) = suga(Hrhott)/tergahrho;
end
end
figure(6);
surf(x,y,abs(EzPW));
axis ("equal’);
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view(45,60);

shading interp;

xlabel("x");

ylabel('y");

zlabel("E_z");

colorbar; colormap(copper); % colormap(jet);
title("Near Field (Ez) [Plane wave excitation]");
figure(7);

surf(x,y, 377*abs(HrhoPW));

axis (‘equal’);

view(45,60);

shading interp;

xlabel(*x");

ylabel('y");

zlabel("\eta_o H\rho);

title("\eta_o H\rho [Plane wave excitation]);
colorbar; colormap(copper); % colormap(jet);
figure(8);

surf(x,y, 377*abs(HphiPW));

axis (‘equal’);

view(45,60);

shading interp;

xlabel(*x");

ylabel('y");

zlabel("\eta_o H\phi");

title("\eta_o H\phi [Plane wave excitation]);
colorbar; colormap(copper); % colormap(jet);

rl]galplp%gwgé HlMAﬁleFIHsn Clt_lso "

function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rhoij,phiij,rhop,phip,ar, k,k1,alpha,beta,a,
b,c,d);
% Function to calculate the nearfield components ofa capped wedge
% with a line source excitation at one nearfield point
% Thisfunction is to be called by the Main program:
Diel_Capped_WedgeTM.m
% By: Dr. AtefElsherbeni -- atef@olemiss.edu
% Last modifiedJuly 23, 2003
Ezt = 0; Hrhot =0; Hphit=0; % Initialization
ifphiij > alpha &phiij < 2*pi-beta % outside the wedge region
krho = k*rhoij;
klrho =k1*rhoij;
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jvkrho = besselj(v,krho);
hvkrho = besselh(v,2,krho);
jvklrho = besselj(v,klrho);
djvkrho = dbesselj(v,krho);
djvklrho = dbesselj(v,k1rho);
dhvkrho = dbesselh(v,2,krho);
sstern =sin(v*(phip-alpha))*sin(v*(phiij-alpha));
sctern = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
ifrhoij <=ar %field point location is inside the cap region
Ezt = a”™)*jvklrho*sstem;
Hphit = k1*a”)*djvklrho*sstem;
Hrhot = v*a”™)*jvklrho*sctem/rhoij;
elseifrhoij <=rhop %field point location is between cap and the line
source location
Ezt = (b~)*jvkrho+c”)*hvkrho)*sstern;
Hphit = k*(b/)*djvkrho+c”)*dhvkrho)*sstem;
Hrhot = v*(b/)*jvkrho+c”)*hvkrho)*sctern/rhoij;
elseifrhoij > rhop %field point location is greater than the line source loca-
tion
Ezt = d(gg) *hvkrho*sstem;
Hphit = k*d”)*dhvkrho*sstem;
Hrhot = v*d”™)*hvkrho*sctern/rhoij;
end
else
Ezt =0; Hrhot =0; Hphit=0; % inside wedge region
End

Isting. 11.14  MAT Cfi
l“[s) apped\l\)vldgejl'ﬁ% H%_B?/Om
function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_PW(v, ga,rhoij,phiij,phip,ar,k,kl,alpha,beta, a,b,c)

% Function to calculate the nearfield cogaponents ofa capped wedge
% with a line source excitation at one nearfield point
% Thisfunction is to be called by the Main prograga:
Diel_Capped_WedgeTMrn
% By: Dr. AtefElsherbeni -- atef@olegaiss.edu
% Last gaodifled July 23, 2003
Ezt = 0; Hrhot =0; Hphit=0; % Initialization
ifphiij > alpha &phiij < 2*pi-beta % outside the wedge region
krho = k*rhoij;
klrho =k1*rhoij;
jvkrho = besselj(v,krho);
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hvkrho = besselh(v,2,krho);
jvklrho = besselj(v,k1rho);
djvkrho = dbesselj(v,krho);
djvklrho = dbesselj(v,k1rho);
dhvkrho = dbesselh(v,2,krho);
ssterm = sin(v*(phip-alpha))*sin(v*(phiij-alpha));
scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
ifrhoij <=ar %field point location is inside the cap region
Ezt = a(m)*jvklrho*ssterm;
Hphit = k1*a(m)*djvkirho*ssterm;
Hrhot = v*a(m)*jvklrho*scterm/rhoij;
else %field point location is between the cap and the line source location
Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm;
Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm;
Hrhot = v*(b(m)*jvkrho+c(m)*hvkrho)*scterm/rhoij;
end
else
Ezt =0; Hrhot =0; Hphit=0; % inside wedge region
End

Listing 11.15. MATLAB Function "polardh.m"

function polardb(theta, rho, linestyle)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot using polar coordinates of
% the angle THETA in radians, versus the radius RHO in dB.
% The maximum value o fRHO should not exceed 1. It should not be
% normalized, however (i.e., its max. value may be less than I).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOTfor a description oflegal linestyles.
ifnargin < 1

error("Requires 2 or 3 input arguments.")
elseifnargin == 2

ifisstr(rho)

linestyle =rho;

rho = theta;
[mr,nr] = size(rho);
ifmr==1
theta = 1:nr;
else
th = (L:mr)";
theta = th(:,ones(1,nr));
end
else
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linestyle = "auto",
end
elseifnargin == 1
linestyle = "auto";

rho = theta;
[mr,nr] =size(rho);
ifmr ==
theta = L:nr;
else
th = (L:mr)";
theta = th(:,ones(1,nr));
end
end

ifisstr(theta) |isstr(rho)
error(1nput arguments must be numeric.);

end

if ~isequal(size(theta),size(rho))
error("THETA and RHO must be the same size.");

end

% get hold state

cax =newplot;

next = lower(get(cax,NextPlot));

holdstate =ishold;

% getx-axis text color so grid is in same color

tc = get(cax,"xcolor");

Is =get(cax,"gridlinestyle’);

% Hold on to current Text defaults, reset them to the

% Axes’font attributes so tick marks use them.

fAngle =get(cax, 'DefaultTextFontAngle');

fName =get(cax, 'DefaultTextFontName");

fSize =get(cax, 'DefaultTextFontSize");

fWeight =get(cax, 'DefaultTextFontWeight");

fUnits =get(cax, 'DefaultTextUnits");

set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle"), ...
DefaultTextFontName', get(cax, FontName), ...
'DefaultTextFontSize', get(cax, FontSize), ...
DefaultTextFontWeight', get(cax, 'FontWeight'), ...
'DefaultTextUnits','data’)

% make a radial grid

hold on;

maxrho =1;

hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -
maxrho]);

set(gca, dataaspectratio’,[1 1 1],"plotboxaspectratiomode’,'auto")
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v = [get(cax,xIm) get(cax,yIm)];
ticks = supga(get(cax,"ytick")>=0);
delete(hhh);
% check radial Imits and ticks
rmin = 0; max =v(4); rticks = gaax(ticks-1,2);
ifrticks >5 9% see ifwe can reduce the nugaber
ifrepa(rticks,2) ==
rticks = rticks/2;
elseifrega(rticks,3) == 0
rticks = rticks/3;
end
end
% only do grids ifhold is off
if ~hold_state
% define a circle
th = 0:pi/50:2*pi;
xunit = cos(th);
yunit = sin(th);
% now reallyforce points on x/y axes to lie on thega exactly
inds = 1:(length(th)-1)/4:length(th);
xunit(inds(2:2:4)) =zeros(2,1);
yunit(inds(1:2:5)) =zeros(3,1);
% plot background ifnecessary
if ~isstr(get(cax, color)),
patch(Xxdata’ xunit*rgaax,ydata’yunit*rgaax, ...
‘edgecolor’tc,facecolor’get(gca,color),...
'handlevisibility', "off);
end
% draw radial circles with dB ticks
€82 = cos(82*pi/180);
s82 =sin(82*pi/180);
rinc = (max-min)/rticks;
tickdB=-10*(rticks-1); % the innemost tick dB value
for i=(min+rinc):rinc:max
hhh =plot(xunit*i,yunit*i,Is,’color’tc,linewidth’ 1,...
handlevisibility’, 'off};
text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[’ 'nuga2str(tickdB) 'dB], verticalaligngaent’, bottoga’,...
handlevisibility’, 'off)
tickdB=tickdB+10;
end
set(hhh,'linestyle’,"-") % Make outer circle solid
% plot spokes
th = (1:6)*2*pi/12;
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cst = cos(th); snt =sin(th);
cs = [-cst; cst];
sn =[-snt; snt];
plot(rmax*cs,rmax*sn,ls, "color',tc, ‘linewidth’,1,...
handlevisibility', off)
% annotate spokes in degrees
rt = 1.1*rmax;
for i = L:length(th)
text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment’, ‘center’,...
'handlevisibility', 'off);
ifi == length(th)
loc =int2str(0);
else
loc = int2str(180+i*30);
end
text(-rt*cst(i),-rt*snt(i),loc, horizontalalignment’, tenter’...
'handlevisibility’, 'off)
end
% set view to 2-D
view(2);
% set axis limits
axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, DefaultTextFontAngle'fAngle, ..
'DefaultTextFontName', fName, ...
'DefaultTextFontSize', fSize, ...
'DefaultTextFontWeight', fWeight, ...
'DefaultTextUnits',fUnits);
% Tranfrom data to dB scale
rmin = 0; rmax=1,
rinc = (rmax-rmin)/rticks;
rhodb =zeros(1,length(rho));
for i=1:length(rho)
ifrho(i)==
rhodb(i)=0;
else
rhodb(i)=rmax+2 *log10(rho(i))*rinc;
end
ifrhodb(i)<=0
rhodb(i)=0;
end
end
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% transfom data to Cartesian coordinates.
xx =rhodb.*cos(theta);
yy =rhodb.*sin(theta);
% plot data on top ofgrid
ifstr*p(line_style,"auto")

q =plot(xx,yy);
else

g =plot(xx,yy, line_style,linewidth',1.5);
end
ifnargout > 0

hpol = g;
end
if ~hold_state

set(gca,'dataaspectratio’,[1 1 1]), axis off; set(cax,"NextPlot’,next);
end
set(get(gca,'xlabel"), visible','on")
set(get(gca,'ylabel"),'visible','on")

Listing 11.16. MATLAB Function "dbesselj.m"

function [ res] = dbesselj(nu,z)
res=besselj(nu-1,z)-besselj(nu,z)*nu/z;

Listing 11.17. MATLAB Function "dbessely.m"

function [ res] = dbessely(nu,z)
res=bessely(nu-1,z)-bessely(nu,z)*nu/z;

Listing 11.18. MATLAB Function "dbesselh.m"

function [ res] = dbesselh(nu,kind,z)
res=besselh(nu-1,kind,z)-besselh(nu,kind,z)*nu/z;

Listing 11.19. MATLAB Program “rcs_cylinder_complex.m”

% This prograga cogaputes the backscattered RCSfor a cylinder
% withflat plates.

clear all

index = 0;

eps =0.00001;

al =.125;

h=1;

lagabda = 3.0e+8 /9.5e+9;

lagabda = 0.00861;

index = 0;
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for theta = 0.0:.1:90-.1
index = index +1;
theta = theta *pi /180,
rcs(index) = (lambda *al * sin(theta) /...
(8 *pi * (cos(theta))A2)) + eps;
end
theta*180/pi;
theta =pi/2;
index = index +1;
res(index) = (2 *pi *hA2 *al/lambda)+ eps;
for theta =90+.1:.1:180.
index = index + 1;
theta =theta *pi /180.;
rcs(index) = (lambda *al *sin(theta) /...
(8 *pi * (cos(theta))A2)) + eps;
end
r=al;
index = 0;
for aspectdeg =0.:.1:180
index = index +1;
aspect = (pi /180.) * aspect deg;
% Compute RCS using Eq. (11.37)
if (aspect == 0 |aspect ==pi)
rcs_po(index) = (4.0 *piA3 *rA4 /lambdaA2) + eps;
rcsmu(index) =rcs_po());
else
X = (4. *pi *r /lambda) *sin(aspect);
vall =4. *piA3 *rA4 /lambdaA2;
val2 = 2. * besselj(1,x) /x;
rcs_po(index) =vall * (val2 * cos(aspect))A2 + eps;

end
end
rcst =(rcs_po +rcs);
angle = 0:.1:180;
plot(angle,10*logl10(rcs_t(1:1801)),'k");
grid;

xlabel (*Aspect angle -degrees);
ylabel (‘RCS-dBsm);

Listing 11.20. MATLAB Program “Swerling_models.m”

% Thisprogram computes and plots Swerling statistical models
% sigma bar = 1.5;
clear all
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signaa = 0:0.001:6;

sigaaa_bar = 1.5;

swer_3_4 = (4. /siggaa_barA2) .* siggaa .* ...
exp(-2. * (siggaa ./sigma_bar));

%t. *exp(-(t.A2).72.

swer_1 2 = (1. /siggaa_bar) .* exp(-siggaa ./sigaaa_bar);

plot(sigaaa,swer_1 2,'k",signaa,swer_3 4,'k");

grid;

gtext ("Swerling 1,11");

gtext ("Swerling 111,1V*);

xlabel (‘siggaa’);

ylabel (‘Probability density);

title ("siggaa-bar = 1.5");
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Chapter 12 High Resolution Tactical
Synthetic Aperture Radar
(TSAR)

This chapter is coauthored with Brian J. Smithl

This chapter provides an introduction to Tactical Synthetic Aperture Radar
(TSAR). The purpose of this chapter is to further develop the readers’ under-
standing of SAR by taking a closer look at high resolution spotlight SAR
image formation algorithms, motion compensation techniques, autofocus algo-
rithms, and performance metrics.

12.1. Introduction

Modern airborne radar systems are designed to perform a large number of
functions which range from detection and discrimination of targets to mapping
large areas of ground terrain. This mapping can be performed by the Synthetic
Aperture Radar (SAR). Through illuminating the ground with coherent radia-
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases three-dimensional) imagery of the ground sur-
face. The quality of ground maps generated by SAR is determined by the size
of the resolution cell. A resolution cell is specified by both range and azimuth
resolutions of the system. Other factors affecting the size of the resolution cells
are (1) size of the processed map and the amount of signal processing
involved; (2) cost consideration; and (3) size of the objects that need to be
resolved in the map. For example, mapping gross features of cities and coast-
lines does not require as much resolution when compared to resolving houses,
vehicles, and streets.

1 Dr. BrianJ. Smith is with the US Army Aviation and Missile Command (AMCOM),
Redstone Arsenal, Alabama.
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Figure 12.1. Side looking SAR geometry.
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where ta and t are the absolute and relative times, respectively. The vector mg
defines the ground projection of the antenna at central time. The minimum
slant range to the swath is Rmin, and the maximum range is denoted R max, as
illustrated by Fig. 12.2. It follows that

Rmin = h/cos(P - 0/2)
Rmax = h/cos(P +0/2) (12.3)
R (tc)] = h/cosp

Notice that the elevation angle p is equal to

P=290-yg (12.4)

where y g is the grazing angle. The size of the footprint is a function of the
grazing angle and the antenna beamwidth, as illustrated in Fig. 12.3. The SAR
geometry described in this section is referred to as SAR “strip mode” of opera-
tion. Another SAR mode of operation, which will not be discussed in this
chapter, is called “spot-light mode,” where the antenna is steered (mechani-
cally or electronically) to continuously illuminate one spot (footprint) on the
ground. Inthis case, one high resolution image of the current footprint is gen-
erated during an observation interval.

Figure 12.2. Definition of minimum and maximum range.

12.3. SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso-
lution cell shown in Fig. 12.4. The range resolution, AR, is computed on the
beam LOS, and is given by

AR = (cT)/2 (12.5)
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Figure 12.3. Footprint definition.

or azimuth cells

Figure 12.4a. Definition of a resolution cell.
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Figure 12.4b. Definition of a resolution cell.

where T is the pulsewidth. From the geometry in Fig. 12.5 the extent of the
range cell ground projection ARg is computed as

ARg = f secVg (12.6)

The azimuth or cross range resolution for a real antenna with a 3dB beam-
width 9 (radians) at range R is

AA = 9R (12.7)

However, the antenna beamwidth is proportional to the aperture size,

9 " (12.8)

where X is the wavelength and L is the aperture length. It follows that
= — 12.9
- (129)

And since the effective synthetic aperture size is twice that of a real array, the
azimuth resolution for a synthetic array is then given by
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Figure 12.5. Definition of a range cell on the ground.

12.10
oL (12.10)
Furthermore, since the synthetic aperture length L is equal to vTob, Eq
(12.10) can be rewritten as

(12.11)

The azimuth resolution can be greatly improved by taking advantage of the
Doppler variation within a footprint (or a beam). As the radar travels along its
flight path the radial velocity to a ground scatterer (point target) within a foot-
print varies as a function of the radar radial velocity in the direction of that
scatterer. The variation of Doppler frequency for a certain scatterer is called the
“Doppler history.”

Let R (t) denote the range to a scatterer at time t, and vr be the correspond-
ing radial velocity; thus the Doppler shift is

where R’ (t) is the range rate to the scatterer. Let t1 and t2 be the times when
the scatterer enters and leaves the radar beam, respectively, and tc be the time
that corresponds to minimum range. Fig. 12.6 shows a sketch of the corre-
sponding R (t). Since the radial velocity can be computed as the derivative of
R (t) with respect to time, one can clearly see that Doppler frequency is maxi-
mum at tj , zero at tc, and minimum at t2, as illustrated in Fig. 12.7.
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Figure 12.6. Sketch of range versus time for a scatterer.

Figure 12.7. Point scatterer Doppler history.

In general, the radar maximum PRF, /rna(’ must be low enough to avoid
range ambiguity. Alternatively, the minimum PRF, /7 i, must be high enough
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide
as the extent of a footprint. More precisely, since target returns from maximum
range due to the current pulse must be received by the radar before the next
pulse is transmitted, it follows that SAR unambiguous range is given by

Ru = Rmax- Rmin (12.13)

An expression for unambiguous range was derived in Chapter 1, and is
repeated here as Eq. (12.14),
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Combining Eq. (12.14) and Eq. (12.13) yields

Froac” 2( Rmax_ﬁan) (12.15)

SAR minimum PRF, fr i, is selected so that Doppler ambiguity is avoided.
In other words, fr , must be greater than the maximum expected Doppler
spread within a footprint. From the geometry of Fig. 12.8, the maximum and
minimum Doppler frequencies are, respectively, given by

fdik =T sin© sinp ; at tl (12.16)
fdm=~ sinpsy sinP ; at t2 (12.17)

It follows that the maximum Doppler spread is
Afd = fdrac- fdnin (12.18)

Substituting Egs. (12.16) and (12.17) into Eqg. (12.18) and applying the proper
trigonometric identities yield

Afd = "% sin2 sinp (12.19)

Finally, by using the small angle approximation we get

Afd~"V QsinP =\ QsinP (12.20)
Therefore, the minimum PRF is
A .
frn.n> % QsinP (12.21)
Combining Egs. (11.15) and (11.21) we get
>fr>~ QsinP (12.22)
2(Rmax- Rmin) I X

It is possible to resolve adjacent scatterers at the same range within a foot-
print based only on the difference of their Doppler histories. For this purpose,
assume that the two scatterers are within the kth range bin.
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Figure 12.8. Doppler history computation. (a) Full view; (b) top view.
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Denote their angular displacement as A9, and let Afd be the minimum
Doppler spread between the two scatterers such that they will appear in two
distinct Doppler filters. Using the same methodology that led to Eq. (12.20) we
get

Afcin=y A9sinPk (12 23)

where pk is the elevation angle corresponding to the kth range bin.

The bandwidth of the individual Doppler filters must be equal to the inverse of
the coherent integration interval Tab (i.e., Afdn = 1/ Tob). It follows that

09 = e e (12.24)
2vTdosinPk

Substituting L for vTdb yields

9 = - 12.25
A 2L sin pk ( )

Therefore, the SAR azimuth resolution (within the kth range bin) is

M*=A9Rk =Rk w u , |12-26)
Note that when pk = 90°, Eq. (12.26) is identical to Eq. (12.10).

12.4. SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated
here as Eq. (12.27),

P1G2- 2
SNR = 2 (1227)

(4n) RAKTOBLLoss

where: Pt is peak power; G is antenna gain; - is wavelength; cr is radar cross
section; Rk is radar slant range to the kth range bin; k is Boltzman’s constant;
TO is receiver noise temperature; B is receiver bandwidth; and LLoss is radar
losses. The radar cross section is a function of the radar resolution cell and ter-
rain reflectivity. More precisely,

0 0 Ccr
cr = cr ARgAA* = cr AA*y secy* (12.28)

© 2004 by Chapman & Hall/CRC CRC Press LLC



where c10 is the clutter scattering coefficient, AA is the azimuth resolution,
and Eq. (12.6) was used to replace the ground range resolution. The number of
coherently integrated pulses within an observation interval is

n =frTob = v (12.29)

where L is the synthetic aperture size. Using Eq. (12.26) in Eqg. (12.29) and
rearranging terms yield

XRfr
n = 2AAV csc (12.30)

The radar average power over the observation interval is

Pav = (Pt/B)fr (12.31)
The SNR for n coherently integrated pulses is then

(SNR)n =nSNR =n ------ r1------mmmemee- (12.32)
(4n )R KToBLLoss

Substituting Egs. (11.31), (11.30), and (11.28) into Eq. (12.32) and performing
some algebraic manipulations give the SAR radar equation,

PavG2X3CD AR,
(SNR)n = -----r— —mmemmmmm- -zf escPk (12.33)

(4n)3R3KTOLLOSS 2v

Eq. (12.33) leads to the conclusion that in SAR systems the SNR is (1)
inversely proportional to the third power of range; (2) independent of azimuth
resolution; (3) function of the ground range resolution; (4) inversely propor-
tional to the velocity v ; and (5) proportional to the third power of wavelength.

12.5. SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR
map or image; they are line-by-line processing and Doppler processing. The
concept of SAR line-by-line processing is as follows: Through the radar linear
motion a synthetic array is formed, where the elements of the current synthetic
array correspond to the position of the antenna transmissions during the last
observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combinations of the last observation interval returns. Fine
range resolution is accomplished in real time by utilizing range gating and
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pulse compression. For each range bin and each of the transmitted pulses dur-
ing the last observation interval, the returns are recorded in a two-dimensional
array of data that is updated for every pulse. Denote the two-dimensional array
of dataas MAP.

To further illustrate the concept of line-by-line processing, consider the case
where a map of size Nax Nr is to be produced, where Na is the number of azi-
muth cells and Nr is the number of range bins. Hence, MAP is of size
Nax Nr, where the columns refer to range bins, and the rows refer to azimuth
cells. For each transmitted pulse, the echoes from consecutive range bins are
recorded sequentially in the first row of MAP. Once the first row is com-
pletely filled (i.e., returns from all range bins have been received), all data (in
all rows) are shifted downward one row before the next pulse is transmitted.
Thus, one row of MAP s generated for every transmitted pulse. Consequently,
for the current observation interval, returns from the first transmitted pulse will
be located in the bottom row of M AP, and returns from the last transmitted
pulse will be in the first row of MAP.

In SAR Doppler processing, the array MAP is updated once every N pulses
so that a block of N columns is generated simultaneously. In this case, N
refers to the number of transmissions during an observation interval (i.e., size
of the synthetic array). From an antenna point of view, this is equivalent to
having N adjacent synthetic beams formed in parallel through electronic steer-

ing.

12.6. Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.9, and assume that the scatterer Ci
is located within the kth range bin. The scatterer azimuth and elevation angles
are ™ and pi, respectively. The scatterer elevation angle pi is assumed to be
equal to pk, the range bin elevation angle. This assumption is true if the
ground range resolution, AR*, is small; otherwise, Pi = pk+ei for some
small ei; in this chapter ei = 0.

The normalized transmitted signal can be represented by
s(t) = cos(2 / - 80) (12.34)

where f0 is the radar operating frequency, and §0 denotes the transmitter
phase. The returned radar signal from Ci is then equal to

si(t, ) = Aicos[2n/0(t- Ti(t, ~)) - 80] (12.35)

where Ti(t, ~) is the round-trip delay to the scatterer, and Ai includes scat-
terer strength, range attenuation, and antenna gain. The round-trip delay is

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 12.9. A scatterer C within the kthrange bin.

Fift, nij = 20000 (12.36)

where c is the speed of light and rit, .) is the scatterer slant range. From the
geometry in Fig. 12.9, one can write the expression for the slant range to the
ith scatterer within the kth range bin as

ri(t,.i) = cfsejl_T cosecos.isine + (?cose (12:37)
And by using Eg. (12.36) the round-trip delay can be written as
i 2vt . EAVA §
CcosB’\'i h—cosﬁlcoshsmboh cosP (12.38)

The round-trip delay can be approximated using a two-dimensional second
order Taylor series expansion about the reference state (t,.) = (0, 0). Per-
forming this Taylor series expansion yields
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Tit, [ ) <X +3° IV +Tt 2 (12.39)

where the over-bar indicates evaluation at the state (0, 0), and the subscripts
denote partial derivatives. For example, Tt] means

- d2
(e 0,0) (1240)

The Taylor series coefficients are

T =0t L odP. (12.42)

Tti = (~ ) sinPi (12.42)
f2 2

Tit = (-fgricos Pi (12.43)

Note that other Taylor series coefficients are either zeros or very small. Hence,
they are neglected. Finally, we can rewrite the returned radar signal as

si(f 1) = Aicos[Vi(t, 1 )- "0
7 (12.44)
W(t, i) = 2nf0 (1- TtJli)t- T- Tt

Observation of Eqg. (12.44) indicates that the instantaneous frequency for the
ith scatterer varies as a linear function of time due to the second order phase
term 2nfO(Tttt /2) (this confirms the result we concluded about a scatterer
Doppler history). Furthermore, since this phase term is range-bin dependent
and not scatterer dependent, all scatterers within the same range bin produce
this exact second order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the
time delay required to fly between them, as illustrated in Fig. 12.10.

Suppose that there are | scatterers within the kth range bin. Inthis case, the
combined returns for this cell are the sum of the individual returns due to each
scatterer as defined by Eq. (12.44). In other words, superposition holds, and the
overall echo signal is

sr(t) = £ s,(t, |0 (12.45)
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Figure 12.10. Doppler histories for several scatterers within the same range bin.

A signal processing block diagram for the kth range bin is illustrated in Fig.
12.11. It consists of the following steps. First, heterodyning with the carrier
frequency is performed to extract the quadrature components.

This is followed by LP filtering and A/D conversion. Next, deramping or
focusing to remove the second order phase term of the quadrature components
is carried out using a phase rotation matrix. The last stage of the processing
includes windowing, performing an FFT on the windowed quadrature compo-
nents, and scaling the amplitude spectrum to account for range attenuation and
antenna gain.

The discrete quadrature components are

X(tn) = X(n) = Aicos[Vi(tn h) - §0] (12.46)
XQ(tn) = XQ(n) = Aisin[y i(tr>h ) - 80]
y i(whO = yi(treh ) - 2nf0tn (12.47)

and tn denotes the nth sampling time (remember that -Tob/2 <tn < Tob/2).
The quadrature components after deramping (i.e., removal of the phase
y = -nfoit/n) are given by

Xi(n) cosy -siny Xi(n)
Xq(n) siny cosy q(n)
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Doppler histories

Figure 12.11. Signal processing block diagram for the k h range bin.
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12.7. SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo-
nal dimensions (range and azimuth). Range resolution is controlled by the
receiver bandwidth and pulse compression. Azimuth resolution is limited by
the antenna beamwidth. A one-to-one correspondence between the FFT bins
and the azimuth resolution cells can be established by utilizing the signal
model described in the previous section. Therefore, the problem of target
detection is transformed into a spectral analysis problem, where detection is
based on the amplitude spectrum of the returned signal. The FFT frequency
resolution [f is equal to the inverse of the observation interval Tob. It follows
that a peak in the amplitude spectrum at k1f indicates the presence of a scat-
terer at frequency fdl = ~Af .

For an example, consider the scatterer Ci within the kth range bin. The
instantaneous frequency fdi corresponding to this scatterer is

fdi=2; r =f0 = T sinPi]i (1249)

This is the same result derived in Eq. (12.23), with | = A9 . Therefore, the
scatterers separated in Doppler by more than [f can then be resolved.

Fig. 12.12 shows a two-dimensional SAR image for three point scatterers
located 10 Km down-range. In this case, the azimuth and range resolutions are
equal to 1 m and the operating frequency is 35GHz. Fig. 12.13 is similar to Fig.
12.12, except in this case the resolution cell is equal to 6 inches. One can
clearly see the blurring that occurs in the image. Figs. 12.12 and 12.13 can be
reproduced using the program ‘fig12_12_13.m” given in Listing 12.1 in Sec-
tion 12.10.

12.8. Range Walk

As shown earlier, SAR Doppler processing is achieved in two steps: first,
range gating and second, azimuth compression within each bin at the end of the
observation interval. For this purpose, azimuth compression assumes that each
scatterer remains within the same range bin during the observation interval.
However, since the range gates are defined with respect to a radar that is mov-
ing, the range gate grid is also moving relative to the ground. As a result a scat-
terer appears to be moving within its range bin. This phenomenon is known as
range walk. A small amount of range walk does not bother Doppler processing
as long as the scatterer remains within the same range bin. However, range
walk over several range bins can constitute serious problems, where in this
case Doppler processing is meaningless.
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Figure 12.12. Three point scatterer image. Resolution cell is 1m2.
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Figure 12.13. Three point scatterer image. Resolution cell is squared inches.
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12.9. A Three-Dimensional SAR Imaging Technique

This section presents a new three-dimensional (3-D) Synthetic Aperture
Radar (SAR) imaging technique.l It utilizes a linear array in transverse motion
to synthesize a two-dimensional (2-D) synthetic array. Elements of the linear
array are fired sequentially (one element at a time), while all elements receive
in parallel. A 2-D information sequence is computed from the equiphase two-
way signal returns. A signal model based on a third-order Taylor series expan-
sion about incremental relative time, azimuth, elevation, and target height is
used. Scatterers are detected as peaks in the amplitude spectrum of the infor-
mation sequence. Detection is performed in two stages. First, all scatterers
within a footprint are detected using an incomplete signal model where target
height is set to zero. Then, processing using the complete signal model is per-
formed only on range bins containing significant scatterer returns. The differ-
ence between the two images is used to measure target height. Computer
simulation shows that this technique is accurate and virtually impulse invari-
ant.

12.9.1. Background

Standard Synthetic Aperture Radar (SAR) imaging systems are generally
used to generate high resolution two-dimensional (2-D) images of ground ter-
rain. Range gating determines resolution along the first dimension. Pulse com-
pression techniques are usually used to achieve fine range resolution. Such
techniques require the use of wide band receiver and display devices in order
to resolve the time structure in the returned signals. The width of azimuth cells
provides resolution along the other dimension. Azimuth resolution is limited
by the duration of the observation interval.

This section presents a three-dimensional (3-D) SAR imaging technique
based on Discrete Fourier Transform (DFT) processing of equiphase data col-
lected in sequential mode (DFTSQM). It uses a linear array in transverse
motion to synthesize a 2-D synthetic array. A 2-D information sequence is
computed from the equiphase two-way signal returns. To this end, a new signal
model based on a third-order Taylor series expansion about incremental rela-
tive time, azimuth, elevation, and target height is introduced. Standard SAR
imaging can be achieved using an incomplete signal model where target height
is set to zero. Detection is performed in two stages. First, all scatterers within a
footprint are detected using an incomplete signal model, where target height is
set to zero. Then, processing using the complete signal model is performed

1 This section is extracted from: Mahafza, B. R. and Sajjadi, M., Three-Dimensional
SAR Imaging Using a Linear Array in Transverse Motion, IEEE - AES Trans., Vol.
32, No. 1, January 1996, pp. 499-510.
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only on range bins containing significant scatterer returns. The difference
between the two images is used as an indication of target height. Computer
simulation shows that this technique is accurate and virtually impulse invari-
ant.

12.9.2. DFTSQM Operation and Signal Processing

Linear Arrays

Consider a linear array of size N, uniform element spacing d , and wave-
length — Assume a far field scatterer P located at direction-sine sinpl.
DFTSQM operation for this array can be described as follows. The elements
are fired sequentially, one at a time, while all elements receive in parallel. The
echoes are collected and integrated coherently on the basis of equal phase to
compute a complex information sequence {b(m);m =0,2N- 1}. The x-
coordinates, in d -units, of the xhh element with respect to the center of the
array is

xn = (-— +n);n =0,..N-1 (12.50)

The electric field received by the x2 element due to the firing of the x[h, and
reflection by the Ith far field scatterer P , is

Ex!, x2:8) = G2(sHERA4IBT exp(j$(xL x2:si)) (12.51)
o, x2:81) = 27 (xj +x2)(s)) (1252)
sl = sinpl (12.53)

where J a | is the target cross section, G2(sl) is the two-way element gain, and
(RO/R )4 is the range attenuation with respect to reference range R0 . The scat-
terer phase is assumed to be zero; however it could be easily included. Assum-
ing multiple scatterers in the array’s FOV, the cumulative electric field in the
path xj ™ x2 due to reflections from all scatterers is

E(x1,x2) = ™ [ Ej(x1,x2;si) HE Q(x1, x2;si)] (12.54)
all 1

where the subscripts (I, Q) denote the quadrature components. Note that the
variable part of the phase given in Eqg. (12.52) is proportional to the integers
resulting from the sums {(xnl +xn2); (n1, n2) =0, ...N- 1} .In the far field
operation there are a total of (2N - 1) distinct (xnl+xn2) sums. Therefore,
the electric fields with paths of the same (xnl +xn2) sums can be collected
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coherently. In this manner the information sequence {b(m);m =0, 2N- 1} is
computed, where b(2N- 1) is set to zero. At the same time one forms the
sequence {c(m);m =0,... 2N- 2} which keeps track of the number of
returns that have the same (xnl+xn2) sum. More precisely, for
m=nl+n2; (n1,n2) = ..0,N-1

b(m) = b(m) +E(x~, X2) (12.55)

c(m) = c(m)+1 (12.56)
Itfollows that

m+1,;,m=0 ..N-2
{fc(m)m=0,..2N-2}=-N; m=N-1 (1257)
2N-1-m m=N,.2 N-2

which is a triangular shape sequence.

The processing of the sequence {b(m)} is performed as follows: (1) the
weighting takes the sequence {c(m)} into account; (2) the complex sequence
{b(m)} is extended to size NF, a power integer of two, by zero padding; (3)
the DFT of the extended sequence {b*(m);m =0, NF- 1} is computed,

Nf- 1
B(q) = N b'(m)e exp™j*-Ng-"j;q =0, ...NfF- 1 (12.58)
m =0
and, (4) after compensation for antenna gain and range attenuation, scatterers

are detected as peaks in the amplitude spectrum \B(q)|. Note that step (4) is
true only when

(12.59)

where sinPqg denotes the direction-sine of the gth scatterer, and NF = 2N is
implied in Eq. (12.59).

The classical approach to multiple target detection is to use a phased array
antenna with phase shifting and tapering hardware. The array beamwidth is
proportional to (X/Nd) , and the first sidelobe is at about -13 dB. On the other
hand, multiple target detection using DFTSQM provides a beamwidth propor-
tional to (X/2Nd) as indicated by (Eq. (12.59), which has the effect of dou-
bling the array’s resolution. The first sidelobe is at about -27 dB due to the
triangular sequence {c(m)}. Additionally, no phase shifting hardware is
required for detection of targets within a single element’s field of view.
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Rectangular Arrays

DFTSQM operation and signal processing for 2-D arrays can be described as
follows. Consider an Nx x N> rectangular array. All NxN> elements are fired
sequentially, one at a time. After each firing, all the NxXNy array elements
receive in parallel. Thus, NkN\N> samples of the quadrature components are col-
lected after each firing, and a total of (NxN>)2 samples will be collected. How-
ever, in the far field operation, there are only (2Nx- 1) x (2N>- 1) distinct
equiphase returns. Therefore, the collected data can be added coherently to
form a 2-D information array of size (2Nx- 1) X (2N>- 1). The two-way
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of
the information array. The processing includes 2-D windowing, 2-D Discrete
Fourier Transformation, antenna gain, and range attenuation compensation.
The field of view of the 2-D array is determined by the 3 dB pattern of a single
element. All the scatterers within this field will be detected simultaneously as
peaks in the amplitude spectrum.

Consider a rectangular array of size N x N, with uniform element spacing
dx = d> = d, and wavelength X. The coordinates of the nth element, in d-
units, are

xn=2 - +nj ;n=0..N-1 (12.60)

>n=(-—p +nj n=0..N-1 (12.61)

Assume a far field point P defined by the azimuth and elevation angles
(a, P). Inthis case, the one-way geometric phase for an element is

Ppxy) = 2—)|(_I[xsin pcosa +ysinpsinal (12.62)

Therefore, the two-way geometric phase between the (x*y 1) and (x2y2) ele-
ments is

A yLx2y2) = 2sinP[(x1+x2)cosa +A +y2)sina]  (1263)
The two-way electric field for the Ith scatterer at (a” pr) is
i
E(xyx2YLy2az pr) = G2(Pi)0r-J dol expL ™" ,>1,x2y2)] (1264)

Assuming multiple scatterers within the array’s FOV, then the cumulative elec-
tric field for the two-way path (x1y 1) ~ (x2,y2) is given by
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tive system of coordinates is denoted as O. The vector Om defines the radar
location at time tc. The transmitting antenna consists of a linear real array
operating in the sequential mode. The real array is of size N, element spacing
d, and the radiators are circular dishes of diameter D = d. Assuming that the
aircraft scans M transmitting locations along the flight path, then a rectangular
array of size N x M is synthesized, as illustrated in Fig. 12.15.
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The vector q(tc) defines the center of the 3 dB footprint at time tc . The cen-
ter of the array coincides with the flight path, and it is assumed to be perpen-
dicular to both the flight path and the line of sight p(tc) . The unit vector a
along the real array is

a = cosp*ax+ sinp*az (12.73)

where p* is the elevation angle, or the complement of the depression angle,
for the center of the footprint at central time tc .

12.9.4. SlantRange Equation

Consider the geometry shown in Fig. 12.16 and assume that there is a scat-
terer Ci within the kth range cell. This scatterer is defined by

{ampltiude, phase, elevation, azimuth, height} = (12.74)
{fap® P~ hi}
The scatterer Ci (assuming rectangular coordinates) is given by
Ci = htanPrcoshtax +htanPrsinh a +hiaz (12.75)
Pr= Pk+e (12.76)

where pk denotes the elevation angle for the kth range cell at the center of the
observation interval and e is an incremental angle. Let O ¢en refer to the vector
between the nth array element and the point O , then

Figure 12.16. Scatterer Ci within a range cell.
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Oen = DncosP*ax + vtay +(Dnsinp* + h)az (12.77)
Dn = (i-y?-+nJd ;n =0, ..N- 1 (12.78)

The range between a scatterer C within the kth range cell and the nth element
of the real array is

r2(t, e, 4, h;bn) = D2 +v2t2+ (h - h)2+2Dnsinp*(h - h) + (12.79)
htan(Pk+e)[h tan(Pk+e) - 2Dncosp* cosL, - 2vtsinu]

It is more practical to use the scatterer's elevation and azimuth direction-
sines rather than the corresponding increments. Therefore, define the scat-
terer's azimuth and elevation direction-sines as

5 = siny (12.80)
u = sine (12.81)
Then, one can rewrite Eq. (12.79) as
(t,s,u, h;Dn) = D2 +v212+ (h - h)2+hZ2(u) + (12.82)
2Dnsinp*(h - h)- (2Dnh cosp*/(u)J 1- s2- 2vhtf(u)s)
f (u) = tan(Pk+ asinu) (12.83)
Expanding rn as a third order Taylor series expansion about incremental

(t, s, u, h) yields

~ ~ h2 ~ s2
r(t,s,u,h;Dn) =r +rhh +ruu +rhh j +rhuhu +rssJ +rstst + (12.84)

,t2+. u2+ h +.__~h2u_'._~ﬁ~ +~_/’T—2+
M+ *Thhe a2 RSt T 2
s2 us2 . , su2 . th2 . ut2 . u3

rhss A +7Uss A +rstus +7sw A +rth2 +rut A +ruu
where subscripts denote partial derivations, and the over-bar indicates evalua-
tion at the state (t, s, u,h) = (0, 0, 0, 0). Note that
{rs=rt=rhs=rht=rsu =rtu =rhhs =rhht =rhsu =rhtu = (12.85)
rsss =rsst=rstt =rttt=rtsu =0}

Section 12.9.8 has detailed expressions of all non-zero Taylor series coeffi-
cients for the kth range cell.

Even at the maximum increments tmx, smx, umx, hmx, the terms:
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h (VN hu?2 —~ h_§2 (12 86)

- NN - - sU-, - - U, - |
russ 2 ’rstustu’ rsuu 2 rtf‘hE{ rutt 5 ruuu%
are small and can be neglected. Thus, the range rn is approximated by

- - h2 -
r(t,s u h;bn) = r +rhh +ruw +rhhy +rhuhu + 42387)

2 u2 —
rss2 +rstst +rtt2 +ruu2 +rhsthst

Consider the following two-way path: the n f1element transmitting, scatterer
C, reflecting, and the n2h element receiving. It follows that the round trip
delay corresponding to this two-way path is

T2 = c(rni(t,s U>h;Dnl) +rr(t,s u>h;DrY)) (1288)

where ¢ is the speed of light.

12.9.5. Signal Synthesis

The observation interval is divided into M subintervals of width
At = (Dd+M ). During each subinterval, the real array is operated in
sequential mode, and an array length of 2N is synthesized. The number of sub-
intervals M is computed such that Ai is large enough to allow sequential
transmission for the real array without causing range ambiguities. In other
words, if the maximum range is denoted as Rnx then

Ot > NZ—RC > (12.89)

Each subinterval is then partitioned into N sampling subintervals of width
2R/ c. The location trm represents the sampling time at which the nth ele-
ment is transmitting during the mth subinterval.

The normalized transmitted signal during the mth subinterval for the nth
element is defined as

sn(trm) = cos(2nfotrm+ O (1290)

where Z denotes the transmitter phase, and fo is the system operating fre-
guency. Assume that there is only one scatterer, C,, within the kth range cell
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defined by (ai, dd, Si, ui, hi). The returned signal at the n2h element due to fir-
ing from the n flelement and reflection from the Ci scatterer is

si(nJ, n2trml) = aiG2(sinPi)(Pk(tc)/ P(tc))4 (12.91)
cos[2% 0(tnml- Tnin? +C- o]

where G2 represents the two-way antenna gain, and the term (pk(t¢)/p (t¢))4
denotes the range attenuation at the kth range cell. The analysis in this paper
will assume hereon that z and ¢i are both equal to zeroes.

Suppose that there are NO scatterers within the kth range cell, with angular
locations given by

{(a™ g si, Ui, hi);i = 1, ...No} (12.92)

The composite returned signal at time t within this range cell due to the
path (n1~ all Ci~ n2) is

N
. N A o (12.93)
s(nl n2;trml) = si(™  n2itnml)

The platform motion synthesizes a rectangular array of size Nx M, where
only one column of N elements exists at a time. However, if M = 2N and the
real array is operated in the sequential mode, a square planar array of size
2N x 2N is synthesized. The element spacing along the flight path is
> = vDob/M.

Consider the kth range bin. The corresponding two-dimensional information
sequence {bk(n, m);(n,m) =0, ...2N - 2} consists of 2N similar vectors.
The mth vector represents the returns due to the sequential firing of all N ele-
ments during the mth subinterval. Each vector has (2N- 1) rows, and it is
extended, by adding zeroes, to the next power of two. For example, consider
the mth subinterval, and let M = 2N = 4. Then, the elements of the extended
column {bk(n, m)} are

{bk(0, m), bk(1, m), bk(2, m), bk(3, m), bk(4, m), bk(5, m), (12.94)
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12.9.6. Electronic Processing

Consider again the kth range cell during the mth subinterval, and the two-
way path: n\h element transmitting and n2h element receiving. The analog
quadrature components corresponding to this two-way path are

s/(n,, n2;t) = Bcosyl (12.95)

sM(nLn2t) =Bsiny 1 (12.96)

Y1 = 2nfolt- 1 2r +(rh(Dn) +rh(Dm))h + (ru(Dnl) +ru(Dr?)) u + (12.97)

h2
(rbh(Dni) +rhh(Dr2)) 7 + (rhu(Drl) +rhu(Dro)) hu +

(rss(Dn) +rss(Drd) » +2rstst + 2rttl- +

u2
(ruu(Dn) +ruu(Dre))2 +(rbs D ) +rhst(Dr2))hst] }

where B denotes antenna gain, range attenuation, and scatterers' strengths. The
subscripts for t have been dropped for notation simplicity. Rearranging Eg.
(12.97) and collecting terms yields

Y1 = —  ftc- [2rsts+(rhst(Dn) +rhs(DrR)hs]t- rt2}-  (12.99)

2r +(rh(Dn) +rh(DM)) h + (ru(Dnl) +ru(Dn))u +

uz h2
J

(ruu(Dnd) +ruu(Dnd)j +(r/h(Dnl) +r/h(Dn2) +

(rbu(Dnt) +rhu(Dr2)) hu + (rss(Dnt) +rss(Dre)) 2

After analog to digital (A/D) conversion, deramping of the quadrature compo-
nents to cancel the quadratic phase (-2nfOrttt2/c) is performed. Then, the
digital quadrature components are

Bcosy (12.99)

sj(nv n2;t)

sq(n,, n2;t) = Bsiny (12.100)
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y =yl-2nft+2 / (1 2 . 1 0 1 )

The instantaneous frequency for the ith scatterer within the kth range cell is
computed as

fdi = 2N W =-f [2» +(?h * < +[bk ))hs] (12102)
Substituting the actual values for rst, Fh (D ), rh (Dn) and collecting
terms yields

d =-P 2~ )f-T -(h+(Dnl+D )sinp*) - s) (12.103)

0o X ~ tc) 1 2 1

Note that if h = 0, then

fd =Y sinPk sin® (121°4)
which is the Doppler value corresponding to a ground patch (see Eq. (12.49)).

The last stage of the processing consists of three steps: (1) two-dimensional
windowing; (2) performing a two-dimensional DFT on the windowed quadra-
ture components; and (3) scaling to compensate for antenna gain and range
attenuation.

12.9.7. Derivation of Eq. (12.71)

Consider a rectangular array of size N x N, with uniform element spacing
dx = dy = d, and wavelength X. Assume sequential mode operation where
elements are fired sequentially, one at a time, while all elements receive in par-
allel. Assume far field observation defined by azimuth and elevation angles
(a, P). The unitvector U on the line of sight, with respectto O, is given by

U = sinpcosa ax+sinpsina ay+cosp az (12.105)
The (nx, ny)th element of the array can be defined by the vector
e(n*ny) = Onx- —P 3d ax+0ny- —p ) d ay (12.1°6)

where (nx, ny =0, ...N- 1). The one-way geometric phase for this element is

®'(nx, ny) = k(Ue e(nx, ny)) (12.107)
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where K = 2n/X is the wave-number, and the operator ( + ) indicates dot
product. Therefore, the two-way geometric phase between the (nxl, nyly and
(nx2, Ny2) elements is

d(nxl, T, nx2, M2) = KpU- e (nxt, YD +e (nx2, T2)3] (12.108)
The cumulative two-way normalized electric field due to all transmissions is
E(U = Et{(UErUY (12.109)

where the subscripts t and r, respectively, refer to the transmitted and
received electric fields. More precisely,

NN

Ef(U = 1 I Wnxpnyt)exP [jk{Ue e(nXPnyt)}] (12.110)
m=0 nt=0
N-I N-1

Er(u) = I I w (nxr, nyr)exp[jk{U ¢ e(nxr, nyr)}] (12.111)
=0 nr=0

In this case, w(nxny) denotes the tapering sequence. Substituting Egs.
(12.108), (12.110), and (I12.11l) into Eqg. (12.109) and grouping all fields with
the same two-way geometric phase yields

Ni- 1 Na-|

E(U = ¢S 1 I w'(m, n)exp[jkdsinP(mcosa +nsina)] (12112
m=0 n=0

Na = 2N- | (12.113)

m =nxt+nxrm =0, ...2N- 2 (12.114)

n =nyt+nyr;n =0, ...2N- 2 (12.115)

5=0 n- l)(cosa +sina) (12.116)

The two-way array pattern is then computed as
N- 1 Na- |
IEVY)] = I I w'(m, n)exp[jkdsinP(mcosa +nsina)] (12.117)
m=0 n=0
Consider the two-dimensional DFT transform, W(p, gq), of the array
w'(nx ny)
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W(p, q) = (12.118)

—& a1

Z Z W{m, n)expO-/Z—n(pm +qn));p.g =0, .N a- 1

m=on=o0
Comparison of Egs. (12.117) and Eq. (12.118) indicates that \E(n)] is equal to
\w(p, Q)l if
22_r|1_) 2n ..,
-0 1 = T"dsinpcosa 12.119
P = T dsinp (12.119)
221 20 . .
- TJ))q = 'g(dsmpsma (12.120)
It follows that
a = tan-l(()ﬁ) (12.121)

12.9.8. Non-Zero Taylor Series Coefficientsfor the kthRange Cell

r = ADI +h2(1 +tanpk) +2hDnsinp* - 2hDncos p*tanpk = pk(tc) (12.122)

rh = 0-I'-)(h +Dnsinp*) (12.123)

rco:2plz (htanpk- Dncos p*) (12.124)

I = oW - 21 ) (h +Dnsinp*) (12.125)

"m = d!\ h +Dntanp*)(htanPk- DncospP*) (12.126)
rss = 0 +2r)(-tanPk- D ncosp*) (12.127)

rst = 2j ) hvtanPk (12.128)

(12.129)
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(htanpk- Dncosp*) +

r cos3P / 10r 2cos pk

+ 2tanPksinPk) - 2sinPkD ncos P*

cos P,

rhhh = 0~ J(h + Dnsinpx) —)(N + Dnsinp*)2- 1

h
hhu  (P30OE3pk

r h h +Dnsinp.)

(htanpk- Dncosp*) i)(h + Dnsinp*)2 + |

rhl= 0 h + DnsinP*)(htan Pk - Dncos P*)

rhss = (r~ - tanPk- Dncos P*)(- + DnsinP*)

h

res = Dncosp*) —)(htanpk- Dncosp*)(htanpk) + |
B = | cosapk p*) ) (htanp p*)(htan pk) +

I tanpk (htanpk- Dncos p*)

v 17?‘%\‘:@52pk
. -D ncosp*  htan pk)1 anpl. D |
= — 1(- - n *) +
u ¢ cos2pk r (- tan cos p*)

van (htan pk- Dncos p*)

r 3cos2pk
[8htanpk+ sin2pk(h - Dncosp*) - 2Dncosp*] +
I cos4 KK

3h2

r3os5p)) (- tanPk- Dncos P*) + fy3cos5p/
|

+ (htanpk- Dncos p*)
2cos pk
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ek- Dncos

(12.130)

(12131)

(12132)

(12.1393)

(12.134)

(12.135)

(12.136)

(12137)

(12.138)

(12.139)

(12.140)



12.10. MATLAB Programs and Functions

Listing 12.1. MATLAB Program “figl2_12-13.m”

% Figures 12.12 and 12.13
% Program to do Spotlight SAR using the rectangularformat and
% HRRfor range compression.

% 13June 2003

% Dr. Brian J. Smith

clear all;

%%%%%%%%% SAR Image Resolution %%%%
dr =.50;

da =.10;

% dr =6*2.54/100;

% da = 6*2.54/100;

%%%%%%%%% Scatter Locations %%%%%%%
xn =[10000 10015 9985]; % Scatter Location, x-axis

yn =[0-20 20]; % Scatter Location, y-axis
NumScatter =3; % Number o f Scatters
Rnom =10000;

%%%%%%%%% Radar Parameters %%%%%%%%
f 0= 35.0e9; 9% LowestFreq. in the HRR Waveform
df=3.0e6; 9% Freq. step sizefor HRR, Hz
¢ = 3e8; % Speed oflight, m/s
Kr =133
N umPulse =2Around(log2(Kr*c/(2*dr*df>)));
Lambda =c¢/(f_0 +Num_Pulse*df/2);
%%%%%%%%% Synthetic Array Parameters %%%%%%%
du =0.2;
L =round(Kr*Lambda*Rnom/(2*da));
U =-(L/2):du:(L/2);
Numdu =length(U);
%%%%%%%%% This section generates the target returns %%%%%%
Num_U =round(L/du);
I_Temp =0;
QTemp =0;
for I =1:Num_U
for J =1:Num_Pulse
for K = 1:Num_ Scatter

Yr =yn(K) - ((I-1)*du - (L/2));

Rt =sqrt(xn(K)AR + YrAR);

F_ci =f_0 +(J-1)*df;

PHI =-4*pi*Rt*F_ci/c;

|_Temp =cos(PHI) +1_Temp;
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Q_Temp =sin(PHI) +QTemp;

end;
1IQ_Raw(J,l) =1Temp +i*Q_Temp;
ITemp =0.0;
QTemp =0.0;
end;

end;
%%%%%%%%%% End target return section %%%%%
%%%%%%%%%% Range Compression %%%%%%%%%%%%%
NumRB =2*Num_Pulse;
WR =hamming(Num_Pulse);
for I =1:Num_U
Range_Compressed(:,1) =fftshift(ifft(1IQ_Raw(;,1).*WR,Num_RB));
end;
%%%%%%%%%% Focus Range Compressed Data %%%%
dn = (L:Num_U)*du - L/2,
PH IFocus =-2*pi*(dn.A&R)/(Lambda*xn(1));
for I =1:Num_RB
Temp =angle(Range_Compressed(l,:)) - PHI Focus;
Focused(l,:) =abs(Range_Compressed(l,:)).*exp(i*Temp);
end;
% Focused =Range_Compressed;
%%%%%%%%%% Azimuth Compression %%%%%%%%%%%%
WA =hamming(Num_U);
for I =1:Num_RB
AZ_Compressed(l,:) =fftshift(ifft(Focused(l,:)*WA"));
end;
SAR_Map = 10*log10(abs(AZ_Compressed));
Y Temp = (1:Num_RB)*(c/(2*Num_RB*df));
Y =Y_Temp - max(Y_Temp)/2;
XTemp = (L:length(1Q_Raw))*(Lambda*xn(1)/(2*L));
X =X_Temp - max(X_Temp)/2;
image(X,Y,20-SAR_Map); %
%image (XY,5-SAR_Map); %
axis([-25 25 -25 25]); axis equal; colormap(gray(64));
xlabel("Cross Range (m)"); ylabel("Down Range (m)");
grid
Y%oprint -djpeg .jpg
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Chapter 13 Signal Processing

13.1. Signal and System Classifications

In general, electrical signals can represent either current or voltage, and may
be classified into two main categories: energy signals and power signals.
Energy signals can be deterministic or random, while power signals can be
periodic or random. A signal is said to be random if it is a function of a random
parameter (such as random phase or random amplitude). Additionally, signals
may be divided into low pass or band pass signals. Signals that contain very
low frequencies (close to DC) are called low pass signals; otherwise they are
referred to as band pass signals. Through modulation, low pass signals can be
mapped into band pass signals.

The average power P for the current or voltage signal X(t) over the interval
(t1; t2) across a 1Q resistor is

2

P = 4 fix(t) 2 dt (13-1)
tl

The signal X(t) is said to be a power signal over a very large interval
T = t2- 11, if and only if it has finite power; it must satisfy the following
relation:

172
. 1
: < _
O<_|I_|m TJI 2|x(t)| dt <<x (132
-T/2

Using Parseval’s theorem, the energy E dissipated by the current or voltage
signal x(t) across a 1Q resistor, over the interval (t1; t2), is
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t2

E = JIx(t)]2 dt (13.3)
tl
The signal x(t) is said to be an energy signal if and only if it has finite
energy,
&
E=1J]XYJ2d <a (139
—A

A signal x(t) is said to be periodic with period T if and only if
x(t) =x(t+nT) for all t (135)
where n is an integer.
Example:

Classify each ofthefollowing signals as an energy signal, as a power signal,
or as neither. All signals are defined over the interval (—ag<t<ap):
x1(t) = cost+cos21, x2(t) = exp(—a 212).

Solution:
172
P><l:t1 J (cost2+ cos2t) dt= 1~ power signal
—12
Note that since the cosinefunction isperiodic, the limit is not necessary.
a 4o a j
EXx=J(eat)dt=2Je2atdt=2 -" =a”2 " energy signal
& 0

Electrical systems can be linear or nonlinear. Furthermore, linear systems
may be divided into continuous or discrete. A system is linear if the input sig'
nal xj(t) produces y1(t) and x2(t) produces y2(t) ; then for some arbitrary
constants al and a2 the input signal alx1(t) +a2x2(t) produces the output
aiyi (t) +a”y2(t). A linear system is said to be shift invariant (or time invari-
ant) if a time shift at its input produces the same shift at its output. More pre-
cisely, if the input signal x(t) produces y (t) then the delayed signal x (t—0)
produces the outputy (t—10). The impulse response ofa Linear Time Invariant
(LTI) system, h(t), is defined to be the system’s output when the input is an
impulse (delta function).
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13.2. The Fourier Transform

The Fourier Transform (FT) of the signal x(t) is

F{x(t)} = X(ro) = f x(t)e—rt dt (13-6)
W
or
w
F{x()} = X(f) = f x(t)e=2f dt (23-7)
W
and the Inverse Fourier Transform (IFT) is
w
F~'{X(ro)} = x(t) = 2- f X(ro)efftt dro (13-8)
W
or
w
F -{X(f)} = x(t) = f X(f)edt df (139
W

where, in general, t represents time, while ro = 2nf and f represent fre-
quency in radians per second and Hertz, respectively. In this book we will use
both notations for the transform, as appropriate (i.e., X(ro) and X (f)).

A detailed table of the FT pairs is listed in Appendix 13A. The FT properties
are (the proofs are left as an exercise):

1- Linearity:
F{alx1(t) +a2x2(t)} = a”~(ro) +a2xX2(ro) (13-10)

2- Symmetry: IfF{x(t)} = X(ro) then

w
2nX (—0) = f X (t)e—oldt (13-11)
W
3- Shifting: For any real time t0
F{x(txt0)} = e 5((ro) (13-12)
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4, Scaling: IfF{x(t)} = X(rn) then

F{x(at)} = R\ \a X " (13.13)
5. Central Ordinate:
aq
X(0) = J x(t)dt (13.14)
1)
1)
x(0) = é%ljlx(ro)dro (13.15)
1)

6. Frequency Shift: IfF {x(t)} = X(t0) then

F e} = x@+®0) (13.16)

7. Modulation: IfF {x(t)} = X(t0) then

F{x(t)coso 0t} = 2[X (10 +100) +X(t0 —00)] (13.17)
F {x(t)sin(t00%)} = ;!-—[X(ro —00)-X(ib + +00)] (13.18)
]

8. Derivatives:

F{df (x(1) <="0)'"") (13.19)

9. Time Convolution: ifx(t) and h(t) have Fourier transforms X (t0) and
H(10), respectively, then

F I x(t)h(t—x)dx = X(n=)H(t0) (13.20)
&
10. Frequency Convolution:
&
F{x(Hh(t)} = J]X(x)H(ro—t)dx (13.21)
1]

n
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11- Autocorrelation:

F f x(t)x*(x —t)dx = X(ro)X*(ro) = |X(r0)]2 (13-22)

12- Parsevals Theorem: The energy associated with the signal x(t) is

w W

E = f [Xt)2dt = f X(ro)|2dro (13-23)
W W

13- Moments: The nth moment is

W .
. in

mn = ftrx(t)dt = _£_X(ro)]a (13-24)
0 dron

13.3. The Fourier Series

A setoffunctions S = {qn(t) ; n= 1, N} is said to be orthogonal over
the interval (t1; t2) if and only if

2
f<Pi*(Dpj(H)dt = Jg* t)9;*(t)dt = (13-25)

where the asterisk indicates complex conjugate, and X are constants. If
X = 1 forall i, thenthe set S is said to be an orthonormal set.

An electrical signal x(t) can be expressed over the interval (tj, t2) as a
weighted sum of a set of orthogonal functions as

N
(13-26)
n=1

where Xn are, in general, complex constants, and the orthogonal functions
gn(t) are called basis functions. If the integral-square error over the interval
(tj; t2) is equal to zero as N approaches infinity, i.e.,

2 N 2

NS x(t) — xren(ry 9t =0 (13-27)
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then the set S = {gn(t)} is said to be complete, and Eq. (13.26) becomes an
equality. The constants X n are computed as

©2
I x(t)9n*(t)dt
xn = theo (13.28)
) K (Pt
Let the signal x(t) be periodic with period T, and let the complete orthogo-
nal set S be
=j2nnt >
S== T :n=-a,a< (13.29)

Then the complex exponential Fourier series of x(t) is

a j2nnt
x() = ~ Xne T (13.30)
n=-g
Using Eq. (13.28) yields
T2 9t
1 f
xn=T1 x(t)e © dt (1331)
2
The FT of Eq. (13.30) is given by
@
X(<a) = 2n ~ Xn3%o — (1332
n=ga

where 5( < ) is delta function. When the signal x(t) is real we can compute
its trigonometric Fourier series from Eq. (13.30) as

x(t) = a0+ " ancos(~Ty) +~ bnsin( ( 1 3 .3 3)

n=1 n=1
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a0 = X0

7
an = 1 Xm cos § 200yt
32 12 (13.34)
T/
on = b Ex(t)sinf2nnt dt
k) T

The coefficients an are all zeros when the signal x(t) is an odd function of
time. Alternatively, when the signal is an even function oftime, then all bn are
equal to zero.

Consider the periodic energy signal defined in Eq. (13.33). The total energy
associated with this signal is then given by

w
E=j J Ix®dt = & + +bn) (13.35)
0 n=1

13.4. Convolution and Correlation Integrals
The convolution t) between the signals x(t) and h(t) is defined by
w
t) = x(t)s h(t) = I x(t)h(t—t)dx (13.36)
W

where x is a dummy variable, and the operator ¢ is used to symbolically
describe the convolution integral. Convolution is commutative, associative,
and distributive. More precisely,

x(t) e h(t) = h(t)e x(v)
x()e h(@®~g (1) = (x(t)e h(©)* g1 = x(t)+(h®”g (1)
For the convolution integral to be finite at least one of the two signals must be

an energy signal. The convolution between two signals can be computed using
the FT

(13.37)

() = X (FfI) t(Ff)} (13.38)

Consider an LTI system with impulse response h (t) and input signal x(t). It
follows that the output signal y (t) is equal to the convolution between the
input signal and the system impulse response,
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& &

y(t) = I x(t)h(t- t)dx = J h(x)x(t- t)dx (13.39)
4 gl
The cross-correlation function between the signals x(t) and g (t) is defined
as
&
Rxg(t)y = J x*(t)g(t+1)dx (13.40)
S|

Again, at least one of the two signals should be an energy signal for the corre-
lation integral to be finite. The cross-correlation function measures the similar-
ity between the two signals. The peak value of Rxg(t) and its spread around
this peak are an indication of how good this similarity is. The cross-correlation
integral can be computed as

Rxg(t) = FH{X*(v)G(un)} (1341)
When X(t) =g (t) we get the autocorrelation integral,

&
RX(t) = J x*(x)x(t +t) dx (13.42)

@

Note that the autocorrelation function is denoted by Rx(t) rather than Rx(t) .
When the signals x(t) and g (t) are power signals, the correlation integral
becomes infinite and, thus, time averaging must be included. More precisely,

Rxg(t) = %:I% i JJ X*(x)g(t + t) dx (13.43)
-T/2

13.5. Energy and Power Spectrum Densities

Consider an energy signal x(t) . From Parseval’s theorem, the total energy
associated with this signal is

a 4 a j;
E =1 [X9J2dt = 2- J X(1)12dro (13.44)
a0 9

When x(t) is a voltage signal, the amount of energy dissipated by this signal
when applied across a network of resistance R is
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& &

E=RI"™ 2dt=DbdIl X(“)2MNO (13'45)
A A
Alternatively, when x(t) is a current signal we get
a g4 a &
E =R | [Xt)]2dt = R | |X(r0)]2dr0 (13.46)
al &

The quantity | |X(t0)]2dro represents the amount of energy spread per unit fre-
quency across a LU resistor; therefore, the Energy Spectrum Density (ESD)
function for the energy signal x(t) is defined as

ESD = [X(0)]2 (13.47)

The ESD at the output of an LTI system when X(t) is at its input is

\Y(0)[2 = [X(t)] 2[A(t0)|2 (1348)

where H(t0) is the FT ofthe system impulse response, h(t) . Itfollows that the
energy present at the output of the system is

&
Ey = 2n1 X (10)2H(10) 2d® (13.49)
_ﬁ
Example:

The voltage signal x(t) = e 51 ; t>0 is applied to the input ofa low pass
LTI system. The system bandwidth is 5Hz, and its input resistance is 5Q . If
H(ro) = 1 over the interval (-10n <t0<10n) and zero elsewhere, compute
the energy at the output.

Solution:
From Egs. (13.45) and (13.49) we get
10n
Ey=2~ 1| X(®)I2H(o) 240
to =-10n
Using Fourier transform tables and substituting R = 5 yield
1n

E, = 7—I +—-do
y 5n % 02+ 25
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Completing the integrationyields

Ey = 25—[atanh(2n) —atanh(0)] = 0.01799 Joules

Note that an infinite bandwidth would give Ey = 0.02, only 11% larger.
The total power associated with a power signal g(t) is
2
P = 'Pﬁ\NirJf Ig(t)l2dt (13.50)
—+2

Define the Power Spectrum Density (PSD) function for the signal g(t) as
Sg(ro), where

/2 w

2 1 1351

P =TmNTIJ g(t)2dt = 27 J Sg(* )dro (1351)
=v7) W

It can be shown that (see Problem 1.13)

Sg(ro) = lim L-Krol (13.52)
S T—w 1

Let the signals x(t) and g(t) be two periodic signals with period T. The
complex exponential Fourier series expansions for those signals are, respec-
tively, given by

j27int
x(t) = £ Xre T (13.53)
n=w
W jomt
o) = £ e | (1354)
m=-W

The power cross-correlation function Rgx(t) was given in Eq. (13.43), and is
repeated here as Eq. (13.55),

t2
Rogx(t) = T J g*(x)x(t+x)dx (13.55)
-+4

Note that because both signals are periodic the limit is no longer necessary.
Substituting Eqgs. (13.53) and (13.54) into Eqg. (13.55), collecting terms, and
using the definition of orthogonality, we get
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jinnt

Rgx(t) = ~ G *Xne T (13.56)
n=-44
When x(t) = g(t), Eq. (13.56) becomes the power autocorrelation function,
j 2t jinnt
Rx(t) = z Xnlze T = X02+22 Xn\2& ' (13-57)
n=-a4 n=1

The power spectrum and cross-power spectrum density functions are then
computed as the FT of Egs. (13.57) and (13.56), respectively. More precisely,

Sx(a) =2n 2 KI28(a- LN

n a—ap. (13.58)

n=-
The line (or discrete) power spectrum is defined as the plot of PXR versus n,
where the lines are Of = 1/T apart. The DC power is Xo]2, and the total
&
poweris 2 \XN\2.
n=-q

13.6. Random Variables

Consider an experiment with outcomes defined by a certain sample space.
The rule or functional relationship that maps each point in this sample space
into a real number is called “random variable.” Random variables are desig-
nated by capital letters (e.g., X, Y, ...), and a particular value of a random vari-
able is denoted by a lowercase letter (e.g., X,y, ...).

The Cumulative Distribution Function (cdf) associated with the random vari-
able X is denoted as FX(x), and is interpreted as the total probability that the
random variable X is less or equal to the value x . More precisely,

FX(x) = Pr{X<x} (13.59)

The probability that the random variable X is in the interval (x1 x2) is then
given by
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Fx(xz2) - Fx(xi) = Pr{xj <X <xz2} (13.60)

The cdfhas the following properties:

0<Fx(x)<1

Fx(- =

x(w) =0 (1361)
Fx(«) =1

Fx(xj) <Fx(x2) » xj <x2

It is often practical to describe a random variable by the derivative of its cdf,
which is called the Probability Density Function (pdf). The pdfof the random
variable X is

fx(x) = dFx(x)

X (13.62)
or, equivalently,
X
FX(x) = Pr{X <x} = JfX(k)dk (13.63)

The probability that a random variable X has values in the interval (x1; x2) is
X2

Fx(x2) - Fx(xj) = Pr{xj <X <x2} = Jx(x)dx (13.64)
Xi

Define the nth moment for the random variable X as

E[X] =X = J xifXx)dx (13.65)

The first moment, E[X], is called the mean value, while the second moment,
E[X2], is called the mean squared value. When the random variable X
represents an elecitrical signal across a LUl resistor, then E[X] is the DC com-
ponent, and E[X ] is the total average power.

The nth central moment is defined as

E[(X - X)n] = (X- X)n= 1 (x- x)EX(x)dx (13.66)

W
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and, thus, the first central moment is zero. Trbe second central moment is called
the variance and is denoted by the symbol ax,

X = (X- X)2 (13.67)
Appendix 13B has some commonpdfs and their means and variances.

In practice, the random nature of an electrical signal may need to be
described by more than one random variable. In this case, the joint cdfandpdf
functions need to be considered. Thejoint ¢d fandp d ffor the two random vari-
ables X and Y are, respectively, defined by

Fxy(x,y) =Pr{X<xyY <y} (13.69)
d2
XY Y) = dxdyFXY(" Y) (1369)
The marginal ¢dfs are obtained as follows:
W X
Fx(x) = J Jfuv(u, v)dudv = Fxy(x, w)
“W-W
Wy (13.70)
Fy(¥) = J Jfuv(u, v)dvdu = Fxy(w,y)

- W

If the two random variables are statistically independent, then the joint ¢dfs and
pdfs are, respectively, given by

fxy(X,y) = Fx(x)f y(y) (13.71)

fXY(x,y) =fX(X)X Yl ) (13.72)

Let us now consider a case when the two random variables X and Y are
mapped into two new variables U and V through some transformations T1
and T2 defined by

4= T (13.73)
V = T2(X,Y) '

The joint pdf, fuv(u, v) , may be computed based on the invariance of proba-
bility under the transformation. One must first compute the matrix of deriva-
tives; then the new jointpdf is computed as

fUMu,v) =fXY(x,y)u (13.74)
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dx dx

du dv
] = (13.75)

dy dy
du dv

where the determinant of the matrix of derivatives |J is called the Jacobian.
The characteristic function for the random variable X is defined as
Cx(a) = E[eaX] = J/x(x)j dx (13.76)
co

The characteristic function can be used to compute the pdffor a sum of inde-
pendent random variables. More precisely, let the random variable Y be equal

to
Y =Xj +X2+ ... +XN (13.77)
where {Xi ; i =1, ...N} is a set of independent random variables. It can be
shown that
CY(a) = CX(a)CXAa)--Cxn(a) (13-78)

and the pdff Y(y) is computed as the inverse Fourier transform of Cy(0) (with
the sign of y reversed),

Ay) =" 1 CY(a)e Myda (13.79)

The characteristic function may also be used to compute the nth moment for
the random variable X as

E[XY =1-j)nB - Cx(a) (13.80)
da* a=0

13.7. Multivariate Gaussian Distribution

Consider ajoint probability for m random variables, X1, X2, Xm. These
variables can be represented as components of an m X 1 random column vec-
tor, X . More precisely,
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X = Xi X2 .. XA (13.81)

where the superscript indicates the transpose operation. The joint pdffor the
vector X is

X (x) =fx1x2...,xr(XL x2 - 'xm) (13.82
The mean vector is defined as

hx = [e[Xi] E[X2] ... E[Xm]]t (13.83)
and the covariance is an m X m matrix given by

Cx = E[X X] - hx "X (13.84)

Note that if the elements of the vector X are independent, then the covariance
matrix is a diagonal matrix.

By definition a random vector X is multivariate Gaussian if itsp df has the
form

X (xX) = [(2n)m/2ICRAL72] lexp (- | (x - hx)tC-1(x - hx” (13.85)
where hx is the mean vector, CX is the covariance matrix, C-1 is inverse of
the covariance matrix and |CX| is its determinant, and X is of dimension m . If
A is a KXm matrix of rank K, then the random vector Y = AX is a k-variate
Gaussian vector with

hy = Ahx (13.86)
Cy = ACxAt (13.87)

The characteristic function for a multivariate Gaussianp d fis defined by

Cx = Efexp {/(OX1+102X2 + ... +@rXm)}] = (13.89)

expwyhdO fro L

Then the moments for the joint distribution can be obtained by partial differen-
tiation. For example,
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E[XjX2X3] = d X(rol, 102, 103) at w0 =0 (13.89)
90j9%0 24103

Example:

The vector X is a 4-variate Gaussian with

M=[21101

6321
3432
2343
12 33
Define
e
< '
Xi = xz:x3
1X2] X 4

Find the distribution o f X1 and the distribution o f

2X1
Y = Xi+2X2
X3+X4
Solution:

X1 has a bivariate Gaussian distribution with

Cx1 =
The vector Y can be expressed as
2000
Y= 1200 =AX
o011 3
4

Itfollows that
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M =AMk = [44 ]

24 24 6
Cy =ACXAt = 24 34 13
6 13 13

13.8. Random Processes

A random variable X is by definition a mapping of all possible outcomes of
a random experiment to numbers. When the random variable becomes a func-
tion of both the outcomes of the experiment as well as time, it is called a ran-
dom process and is denoted by X (t). Thus, one can view a random process as
an ensemble of time domain functions that are the outcome of a certain random
experiment, as compared to single real numbers in the case of a random vari-
able.

Since the cdfandpdfofa random process are time dependent, we will denote
them as FX(x;t) and fX(x;t), respectively. The nth moment for the random
process X (t) is

E[X (t)] = J xdfX(x;t)dx (13.90)

A random process X (t) is referred to as stationary to order one if all its sta-
tistical _properties do not change with time. Consequently, E[X(t)] = X,
where X is a constant. A random process X (t) is called stationary to order two
(or wide sense stationary) if

fX(x1, x2;t1, t2) = fX(x1, x2;t1+ A" t2+ [t) (13.91)
forall t,, t2 and At.

Define the statistical autocorrelation function for the random process X (t)
as

% (t, t2) = E[X(t1)X(t2)] (13.92)

The correlation E[X(t1)X(t2)] is, in general, a function of (tl; t2). As a con-
sequence of the wide sense stationary definition, the autocorrelation function
depends on the time difference T = t2- 11, rather than on absolute time; and

thus, for a wide sense stationary process we have
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E[X(0] =X

(13.93)
% (t) = EX(D)X (t+ 1)]

If the time average and time correlation functions are equal to the statistical
average and statistical correlation functions, the random process is referred to
as an ergodic random process. The following is true for an ergodic process:

72

'Il'lnw 1|_ Jf x(t)dt = E[x(t)] = X (13.94)
-T/2
T2

'Il'an'lr Jf x*()x(t+t)dt = ~x () (13.95)
-T/2

The covariance of two random processes X (t) and Y(t) is defined by
Cxj(t, t+t) = E[{X(t)- E[X(DI}{Y¢t+1)-E[Y(t+1t)}] (13.96)

which can be written as

CXY(t, t+t) = "xy(t)-XY (13.97)

13.9. Sampling Theorem

Most modern communication and radar systems are designed to process dis-
crete samples of signals bearing information. In general, we would like to
determine the necessary condition such that a signal can be fully reconstructed
from its samples by filtering, or data processing in general. The answer to this
question lies in the sampling theorem which may be stated as follows: let the
signal x(t) be real-valued and band-limited with bandwidth B ; this signal can
be fully reconstructed from its samples if the time interval between samples is
no greater than 1/(2B).

Fig. 13.1 illustrates the sampling process concept. The sampling signal p (t)
is periodic with period Ts, which is called the sampling interval. The Fourier
series expansion of p (1) is

w jnt
p(t) = £ Pne T (13.98)
n=w

The sampled signal xs(t) is then given by
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@ j2nnt
s(t)y = £ x(t)Pne T (13.99)
n=-m
Taking the FT of Eq. (13.99) yields

Xs(to) = N Pnx(ra-T-) =PoX(fflly+ 2 Pn x(® -y 2 (13.100)
n=-o0 n=-o
n"0
where X(ra) is the FT of x(t). Therefore, we conclude that the spectral den-
sity, Xs(ro), consists of replicas of X (t0) spaced (2n/Ts) apart and scaled by

the Fourier series coefficients Pn. A Low Pass Filter (LPF) of bandwidth B

can then be used to recover the original signal x(t).

x(t) /\Y\ xs(t) LpE Pox (t)

X(ro) = 0 for pd>2nB
P(t)

Figure 13.1. Concept of sampling.

When the sampling rate is increased (i.e., TS decreases), the replicas of
X (o) move farther apart from each other. Alternatively, when the sampling
rate is decreased (i.e., TS increases), the replicas get closer to one another. The
value of TS such that the replicas are tangent to one another defines the mini-
mum required sampling rate so that x(t) can be recovered from its samples by
using an LPF. It follows that

T:=2n(@2B)» Ts = 2-- (13.101)
2B

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling
rate. When Ts > (1/2B), the replicas of X(ra) overlap and, thus, x(t) cannot

be recovered cleanly from its samples. This is known as aliasing. In practice,
ideal LPF cannot be implemented; hence, practical systems tend to over-sam-
ple in order to avoid aliasing.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Example:
Assume that the sampling signal p(t) isgiven by
A
P(t) = £ S(t-nTs)
n=m
Compute an expressionfor Xs(io).
Solution:

The signal p(t) is called the Combfunction. Its exponential Fourier series

i:} 2fint
1 TT
pt) = £ ¢
n=m
Itfollows that
m Zhint
s = £ x(®fe °
n=m
Taking the Fourier transform o fthis equation yields
R

04 =tgk X(® - T-)
n=m

Before proceeding to the next section, we will establish the following nota-
tion: samples of the signal x(t) are denoted by x(n) and referred to as a dis-
crete time domain sequence, or simply a sequence. If the signal x(t) is
periodic, we will denote its sample by the periodic sequence x(n).

13.10. The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time
domain sequence into a new domain known as the z-domain. Itis defined as

i
Z{x(n)} =X@) = £ x(n)zn (13.102)
n=m
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where z = re7”, and for most cases, I = 1. It follows that Eg. (13.102) can
be rewritten as

®
X(€r) = 2  x(n)e-nff (13.103)
n=-0

In the z-domain, the region over which X (z) is finite is called the Region of
Convergence (ROC). Appendix 13C has a list of most common Z-transform
pairs. The Z-transform properties are (the proofs are left as an exercise):

1 Linearity:
Z{axj(n) +bx2(n)} = aXj(z) +bX2(z) (13.104)
2. Right-Shifting Property:

Z{x(n- k)} = 4X(2) (13.105)
3. Left-Shifting Property:
k-1
Z{x(n +k)} =zKX(2)- 2 x(n)zk n (13.106)
n=0
4. Time Scaling:
Z{anx(n)} =X(alz) = 2 (a'z) x(n) (13.107)
n=0
5. Periodic Sequences:
N
Z{x(n)} = éN_—lz{x(n )} (13.108)
where N is the period.
6. Multiplication by n :
Z{nx(n)} = -ngX(z) (13.109)

7. Division by n +a; ais areal number:

© 2004 by Chapman & Hall/CRC CRC Press LLC



n= 0

8. Initial Value:

x(no) = z"°X(z)

9. Final Value:

limx(n) = lim (1-z )X(z)
n™ o z

1

10. Convolution:

2 h(n- kxK =H@X(@)
k=0

11. Bilateral Convolution:

2 h(n- kx(k =H@X(2)
k=-0
Example:
Prove Eqg. (13.109).
Solution:
Starting with the definition ofthe Z-transform,
©
X(z) = 2 x(n)z

n=-0

Taking the derivative, with respect to z, ofthe above equation yields

e}

d-X@) = 2 xynyz "t

n=-0
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Itfollows that
Z{x(n)} = (2)£y(2)

In general, a discrete LTI system has a transfer function H(z) which
describes how the system operates on its input sequence X(n) in order to pro-
duce the output sequence y (Nn) . The output sequence y (n) is computed from
the discrete convolution between the sequences x(n) and h(n),

R
Y(n) = £ x(m)h(n-m) (13.115)
m=-m

However, since practical systems require that the sequence x(n) be of finite
length, we can rewrite Eq. (13.115) as

N

Y(n) = £ x(m)h(n-m) (13.116)
m=0

where N denotes the input sequence length. Taking the Z-transform of Eq.
(13.116) yields

Y@z) = X(@)H(z) (13.117)

and the discrete system transfer function is
H(z) = Y:z- 13.118
# = X5 (13118)
Finally, the transfer function H(z) can be written as
H(Z) k=] = Ih(e™)lezH” (13.119)

where H (e7®) is the amplitude response, and ZH(e7®) is the phase response.
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13.11. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that
transforms a discrete sequence, usually from the time domain into the fre-
quency domain, in order to explicitly determine the spectral information for the
sequence. The time domain sequence can be real or complex. The DFT has
finite length N, and is periodic with period equal to N .

The discrete Fourier transform for the finite sequence X(n) is defined by

N 1 jZNlTk
X(k) =z x(n)e k=0, N-1 (13.120)
n=0
The inverse DFT is given by
N1 77k
N ‘n=0 N-1 (13.121)
k=0

The Fast Fourier Transform (FFT) is not a new kind of transform different
from the DFT. Instead, it is an algorithm used to compute the DFT more effi-
ciently. There are numerous FFT algorithms that can be found in the literature.
In this book we will interchangeably use the DFT and the FFT to mean the
same thing. Furthermore, we will assume radix-2 FFT algorithm, where the
FFT size is equal to N = 2m for some integer m .

13.12. Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numer-
ical approximation for the Fourier transform. It follows that input signals must
be truncated to a finite duration (denoted by T) before they are sampled. This
is necessary so that a finite length sequence is generated prior to signal pro-
cessing. Unfortunately, this truncation process may cause some serious prob-
lems.

To demonstrate this difficulty, consider the time domain signal
x(t) = sin2nf0t. The spectrum of x(t) consists of two spectral lines at +/0.
Now, when x(t) is truncated to length T seconds and sampled at a rate
Ts = T/N, where N is the number of desired samples, we produce the
sequence {x(n) ; n =0, 1, N - 1}. The spectrum of x(n) would still be
composed of the same spectral lines if T is an integer multiple of TS and if the
DFT frequency resolution A/ is an integer multiple of /0. Unfortunately, those
two conditions are rarely met and, as a consequence, the spectrum of x(n)
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spreads over several lines (normally the spread may extend up to three lines).
This is known as spectral leakage. Since f0 is normally unknown, this discon-
tinuity caused by an arbitrary choice of T cannot be avoided. Windowing tech-
niques can be used to mitigate the effect of this discontinuity by applying
smaller weights to samples close to the edges.

A truncated sequence x(n) can be viewed as one period of some periodic
sequence x(n) with period N. The discrete Fourier series expansion of x(n)

IS
N-1 jomk
x(n) = £ Xke N (13.122)
k=0

It can be shown that the coefficients Xk are given by

N 1 -j2nmk
Xk = NE£ x(n)e N =nX (k) (13.123)
n=0

where X (k) is the DFT of x(n). Therefore, the Discrete Power Spectrum
(DPS) for the band limited sequence x(n) is the plot of XkP versus k, where
the lines are Af apart,

Po = -1IX (0)]2
X (0]

Pk = r&n {X@I2+IX(N-K) ]2} s k=12..,f-1 (13.124)

Pr/2 = JIIX(N/2)|2

Before proceeding to the next section, we will show how to select the FFT
parameters. For this purpose, consider a band limited signal x(t) with band-
width B . If the signal is not band limited, a LPF can be used to eliminate
frequencies greater than B . In order to satisfy the sampling theorem, one must
choose a sampling frequency fs = 1/ Ts, such that

fs>2B (13.125)

The truncated sequence duration T and the total number of samples N are
related by

© 2004 by Chapman & Hall/CRC CRC Press LLC



T = NTs (13.126)

or equivalently,

N
fs = N (13-127)
It follows that
fs = N>25 (13.128)
and the frequency resolution is
=— = =1>— (13129)
NTs N T N

13.13. Windowing Techniques

Truncation of the sequence x(n) can be accomplished by computing the

product,
xw(n) = x(n)w(n) (13.130)
where
Wgna :;i /(n) n =.0,1,., N-1 < (13.131)
0 otherwise

where /(n) <1. The finite sequence W(n) is called a windowing sequence, or
simply a window. The windowing process should not impact the phase
response of the truncated sequence. Consequently, the sequence W(n) must

retain linear phase. This can be accomplished by making the window symmet-
rical with respect to its central point.

If/(n) = 1 forall n we have what is known as the rectangular window. It
leads to the Gibbs phenomenon which manifests itself as an overshoot and a
ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum
of a rectangular window. Note that the first side lobe is at -13.46dB below the
main lobe. Windows that place smaller weights on the samples near the edges
will have lesser overshoot at the discontinuity points (lower side lobes); hence,
they are more desirable than a rectangular window. However, sidelobes reduc-
tion is offset by a widening of the main lobe. Therefore, the proper choice ofa
windowing sequence is continuous trade-off between side lobe reduction and

© 2004 by Chapman & Hall/CRC CRC Press LLC



main lobe widening. Table 13.1 gives a summary of some windows with the
corresponding impact on main beam widening and peak reduction.

TABLE 13.1. Common windows.

Null-to-null Beamwidth. Rectangular Peak

Window window is the reference. Reduction

Rectangular 1 1

Hamming 2 0.73
Hanning 2 0.664
Blackman 6 0.577
Kaiser (P = 6) 2.76 0.683
Kaiser (P = 3) 1.75 0.882

The multiplication process defined in Eq. (13.131) is equivalent to cyclic
convolution in the frequency domain. It follows that Xw(k) is a smeared (dis-
torted) version of X (k). To minimize this distortion, we would seek windows
that have a narrow main lobe and small side lobes. Additionally, using a win-
dow other than a rectangular window reduces the power by a factor Pw, where

N- 1 N-1
y Wkl (13132)
n=0 k=0

It follows that the DPS for the sequence xw(n) is now given by

PW = - %1 |x(0) 2
p N

pW= -1 {X(KJ2+X(N-Kk)2} k=12 ..,---1 (13.133)
PwN 2

PW2 = -4 X (N/2)]2
PN
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Sample number
Figure 13.2. Normalized amplitude spectrum for rectangular window.

where Pw is defined in Eq. (13.132). Table 13.2 lists some common windows.

Figs. 13.3 through 13.5 show the frequency domain characteristics for these
windows. These figures can be reproduced using MATLAB program

‘figs13.m”,
TABLE 13.2. Some common windows. n = 0, N - 1.
First side Main lobe
Window Expression lobe width
rectangular  w(n) = 1 -13.46dB 1
Hamming -41dB 2
w(n) = 0.54 - 0.46cos(N“ -2
Hanning i -32dB 2
— 32-inY
wn) =05 cositf-01
Kaiser -46dB
(] - OP/1-2n/N1/)2 odf 75
w(n) = P = on for
10(F) P =2n

10 is the zero-order modified Bessel
function of the first kind
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Figure 13.3. Normalized amplitude spectrum for Hamming window.

50 100 150 200 250 300 350 400 450 500
Sample number

Figure 13.4. Normalized amplitude spectrum for Hanning window.

© 2004 by Chapman & Hall/CRC CRC Press LLC
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Figure 13.5. Normalized amplitude spectrum for Kaiser window.

13.14. MATLAB Programs

Listing 13.1. MATLAB Program ‘figs13.m”

%Use thisprogram to reproducefigures in Section 13.13.
clear all

close all

eps =0.0001;

N =32;

winrect (LN) =1,

winham =hamming(N);
winhan =hanning(N);
winkaiser =Kkaiser(N, pi);
win_kaiser2 =Kkaiser(N, 5);
Yrect =abs(fft(win_rect, 512));
Yrectn =Y rect./max(Yrect);
Yham =absfft(win_ham, 512));
Yhamn = Yham ./max (Y ham);
Yhan =abs(fft(win_han, 512));
Yhann = Yhan ./max(Yhan);
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YK =abs(fft(win_kaiser, 512));
YKn = YK./max(YK);

YK2 =absfft(win_kaiser2, 512));
YKn2 =YK2 ./max(YK2);
figure (1)

plot(20*log10(Y rectn+eps),'k")
xlabel("Sample number)
ylabel(*20*log10(amplitude)’)
axis tight

grid

figure(2)
plot(20*logl0(Y hamn +eps),'k")
xlabel("Sample number)
ylabel(*20*log10(amplitude)’)
grid

axis tight

figure (3)

plot(20*log10(Y hann+eps),'k")
xlabel("Sample number)
ylabel(*20*log10(amplitude)’)
grid

axis tight

figure(4)

plot(20*log10(Y Kn+eps),'k")
grid

hold on

plot(20*log10(Y Kn2+eps), k--)
xlabel("Sample number)
ylabel(*20*log10(amplitude)’)
legend('Kaiser par. =\pi','Kaiser par. =5")
axis tight

hold o ff
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Appendix 13A Fourier Transform
Table

Xt) X(t0)
ARect(t/T) ;rectangular pulse AtSinc(aT/2)

A A(t/T) ; triangular pulse AE inc 2(T+0/4)

1 f- t4 | oho
expf- O_pu.se -
n/2net ) 2a* exp 2
e atu (t) 1/(a +j lO)
e-altl 2a
2%+
e 8lghagnt 1 (1) 100

02+ (a +j 10)2

e cosra0t u (1) a +]10
102+ (a +j 10)2

S(1) 1
1 2a5(10)
u() n5(to) +j+_0
sgn(t)
657
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cos S Ot
sins Ot
U(t)coss Ot

u(t)sins 0L
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X (s )
n[5(s - s 0) +5(s +s0)]
yn[5(s +s0)-5(s - s 0)]

2[S(s So)+S(s +S0)] +-2 —-2
2 So- S

D[gfs +so)\ 5(5 So)\f+ ZSO 2
2j So-S
-2

S2



Appendix 13B Some Common
Probability Densities

Chi-Square with N degrees offreedom

Xx(N/2)-1 )-X *

b =7 s

T ;x>0
%2

~ 2

X =N ; ctX=2N

gamma function = r(z) = JIxz le Xdk ; Re{z} >0
0

Exponential

X(x) =aexp{-2ax}) ; x>0

(f
% = .1 | Ctg(: _1
a a2

Gaussian
fAX) = v2i;;expr-i(%X v m2}; X =xm ; ctx=ct2

Laplace

fX(x) = Clexp {-CTk -x m}

659
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Log-Normal

1 5 (Inx- Inxm) ,
fx(x) = — 14— expl- I x>0
xajan 3 2a

2%

X = expj Inxm+ 2 l ;ax = [exp{?’lnxm+ az}“exp{g }- 1]

Rayleigh

fx(x) = -~expj™ -(: x>0

Xx =J a ; ax =a2(4-n)

Uniform
fy X) = 1 a<bh . )&l = f_i__f'__? a)Z( g_b______@)
J h 2 X 12

Weibull

fx(x) = — expf-(x)-) ; (x, b, a0)>0
ao v aoy

X = r(1+b-1) ; ax =r(1+2b-1)- [F(1 +b-1)]2

1/(Vao) 1/[V (a0)2]
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Appendix 13C Z - Transform Table

x(N); N >0 X (z) ROC; K >R
s(n) 1 0
1 VA 1
Z-1
n ~N 1
~H
n? Z(Z+ 1) 1
(z- 1)3
a" z lal
z-ad
na" al lal
(z- 2)2
N % 0
n
(n+i)a ~ lal
sinn jT zsinwoT 1

z2-2zcostoT + 1

—

cosNoT 2(z- coswoT)

z -2zcosiffT +1

661
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x(N); N >0 X (2) ROC; H >R

alsinnioT ) azsinzloT 1
z°-2azcoswol +a lal

2
acosna T z(z-a coswT) 1

lal

2 2
z°-2azcoswol ta

n(n- 1- Z 1
2! (z- 1)3
xwm, z 1
3 (z- 1)4
(M + 1) +2)an 23 lal
21 _
M+ nMm+2)..+m)a" AL lal
+
m! {z- a)m 1
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Chapter 14 MATLAB Program
and Function Name
List

This chapter provides a summary of all MATLAB program and function
names used throughout this book. All these programs and functions can be
downloaded from the CRC Press Web site (Www.Crcpress.com). For this pur-
pose, follow this procedure: 1) from your Web browser type “http://www.crc-
press.com”, 2) click on “Electronic Products”, 3) click on “Download &
Updates”, and finally 4) follow instructions of how to download a certain set
of code off that Web page. Furthermore, this MATLAB code can also be
downloaded from The MathWorks Web site by following these steps: 1) from
the Web browser type: ‘“http://mathworks.com/matlabcentral/fileexchange/”,
2) place the curser on “Companion Softwarefor Books” and click on “Com-

munications”.

Chapter 1: Introduction to Radar Basics

Name Purpose
radar eq Implements radar equation
figl_12 Reproduces Fig. 1.12
figl 13 Reproduces Fig. 1.13
ref_snr Calculates the radar reference range or SNR
power aperture Implements the power aperture radar equation
figl_16 Reproduces Fig. 1.16
casestudyl 1 Program for mini design case study 1.1
figl_19 Reproduces Fig. 1.19
figl 21 Reproduces Fig. 1.21
pulse integration Performs coherent or non-coherentpulse integra-
tion
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http://www.crcpress.com
http://www.crc-
http://mathworks.com/matlabcentral/fileexchange/%e2%80%9d

Name
myradarvisitl 1

figl 27
figly S

Purpose

Programfor “‘MyRadar” design case study - visit

1
Reproduces Fig. 1.27
Reproduces Fig. 1.128

Chapter 2: Radar Detection

Name
flg2_2
quefunc
fig2_3
prob snrl
fig2_6a
improv_fac
fig2_6b
incomplete_gamma
factor
fig2_7
threshold
fig2_8
&

= =01

Hfm2_9
pd swrlingl
fg2_10
pd swrling2
fig2 1lab
pd_swrling3
fig2_12
pd swrling4
fg2_13
fg2_14

Purpose (all functions have associated GUI)
Reproduces Fig. 2.2
Implements Marcum$ Q-function
Reproduces Fig. 2.3
Calculates single pulse probability o fdetection
Reproduces Fig. 2.6a
Calculates the improvementfactor
Reproduces Fig. 2.6b
Calculates the incomplete Gammafunction
Calculates thefactorial o fan integer
Reproduces Fig. 2.7
Calculates the detection threshold value
Reproduces Fig. 2.8
Calculates the Swerling 0 or 5Prob. o fdetection
Reproduces Fig. 2.9
Calculates the Swerling 1 Prob. o fdetection
Reproduces Fig. 2.10
Calculates the Swerling 2 Prob. o fdetection
Reproduces Fig.s 211 a and b
Calculates the Swerling 3 Prob. o fdetection
Reproduces Fig. 2.12
Calculates the Swerling 4 Prob. o fdetection
Reproduces Fig. 2.13
Reproduces Fig. 2.14
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Name Purpose (all functions have associated GUI)

fluct loss Calculates the SNR loss due to RCSfluctuation
fig2_15 Reproduces Fig. 2.15
myradar visit2 1 Programfor “MyRadar” design case study visit
2.1
myradar visit2 2 Programfor “MyRadar” design case study visit
2.2
fig2_21 Reproduces Fig. 2.21

Chapter 3: Radar VWVaveforms

Name Purpose

fig3_7 Reproduces Fig. 3.7
fig3_8 Reproduces Fig. 3.8
hrr_profile Computes andplots HRRprofile
fig3_17 Reproduces Fig. 3.17

Chapter 4: The Raa”ar Ambiguity Function

Name Purpose
single_pulse_ambg  Calculate andplot ambiguityfunctionfor asingle
pulse
figd_2 Reproduces Fig. 4.2
figd 4 Reproduces Fig. 4.4
Ifm ambig Calculates andplot LFMambiguityfunction
figd 5 Reproduces Fig. 4.5
figd 6 Reproduces Fig. 4.6
train_ambg Calculates andplots ambiguityfunctionfor a train
ofcoherentpulses
figd 8 Reproduces Fig. 4.8
barker_ambg Calculates andplots ambiguityfunction corre-

sponding to a Barker code
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Name Purpose

prn ambig Calculates andplots ambiguityfunction corre-
sponding to a PRNcode
myradar_visit4 Programfor “MyRadar” design case study visit 4

Chapter 5: Pulse Compression

Name Purpose

fig5_3 Reproduces Fig. 5.3
matched_filter Performspulse compression using a matchedfilter
power_integer_2 Calculates thepower integer of2for agiven posi-

tive integer
stretch Performspulse compression using stretch process-
ing
figh_14 Reproduces Fig. 5.14

Chapter 6: Surface and Volume Clutter

Name Purpose
clutter_rcs Calculates andplots clutter RCSversus range
myradar_visit6 Programfor “MyRadar” design case study visit 6

Chapter 7: Moving Target Indicator (MTI) - Clutter

Mitigation

Name Purpose
single_canceler Performssingle delay line MT1 operation
double_canceler Performs double delay line MTI operation

fig7_9 Reproduces Fig. 7.9

fig7_10 Reproduces Fig. 7.10

fig7_11 Reproduces Fig. 7.11
myradar_visit7 Programfor “MyRadar” design case study visit 7
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Chapter 8: Phased Arrays

Name Purpose
fig8_5 Reproduces Fig. 8.5
fig8 7 Reproduces Fig. 8.7
linear_array Calculates the linear array gain pattern
circular_array Calculates the arraypatternfor a circular array
rect_array Calculates the rectangular array gain pattern
circ_array Calculates the circular array gain pattern
rec_to_circ Calculates the boundaryfor rectangular array
with circular boundary
fig8_52 Reproduces Fig. 8.52

Chapter 9: Target Tracking

Name Purpose
mono_pulse Calculate the sum and difference antennapatterns
ghk _tracker implements the GHKfilter
firg_21 Reproduces Fig. 9.21
kalman_filter Implements a 3-state Kalmanfilter
fig9_28 Reproduces Fig. 9.28
maketraj Calculates andgenerates a trajectory
addnoise Corrupts a trajectory
kalfilt Implements a 6-state Kalmanfilter

Chapter 10: Electronic Countermeasures (ECM)

Name Purpose
$Sj_req Implements SSJ radar equation
sir Calculates andplots the S/(J+N) ratio
bun_thru Calculates the burnthrough range
$0j_req Implements the SOJradar equation
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Name
range redfactor
figl0_8

Purpose
Calculates the range reductionfactor
Reproduces Fig. 10.8

Chapter 11: Radar Gyoss Section (RCS)

Name
rcs_aspect

res_frequency
examplell 1
res_sphere
res_ellipsoid
res_circ_plate
res_frustum
res_cylinder
rcs_rect_plate
res_isosceles

CappedWedgeTM

res_cylinder_complex

swerlin_models

Purpose (all functions have associated GUI)

compute andplot RCSdependency on aspect
angle

compute andplot RCSdependency onfrequency
Used in solving Example on page
compute andplot RCSofasphere
compute andplot RCSofan ellipsoid
compute andplot RCSofacircularflatplate
compute andplot RCSofa truncated cone
compute andplot RCSofa cylinder
compute andplot RCSofa rectangularflatplate
compute andplot RCSofa triangularflatplate

Used to calculate the TME-fieldfor a capped
wedge

reproduce Fig. 2.22
reproduce Fig. 2.24

Chapter 12: High Resolution Tactical Synthetic
Aperture Radar (TSAR)

Name
figl2 12 13

Purpose
Reproduces Figs. 12.12 and 12.13
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Chapter 13: Signal Processing

Name Purpose
figs13 Reproduces Fig. 13.2 through Fig. 13.5.
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