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Preface

The emphasis of “MATLAB Simulations fo r  Radar Systems D esign” is on 
radar systems design. However, a strong presentation of the theory is provided 
so that the reader will be equipped with the necessary background to perform 
radar systems analysis. The organization of this book is intended to teach a 
conceptual design process of radars and related trade-off analysis and calcula­
tions. It is intended to serve as an engineering reference for radar engineers 
working in the field of radar systems. The MATLAB®1 code provided in this 
book is designed to provide the user with hands-on experience in radar sys­
tems, analysis and design.

A radar design case study is introduced in Chapter 1 and carried throughout 
the text, where the authors’ view of how to design this radar is detailed and 
analyzed. Trade off analyses and calculations are performed. Additionally, sev­
eral mini design case studies are scattered throughout the book.

“MATLAB Simulations fo r  Radar Systems Design” is divided into two parts: 
Part I provides a comprehensive description of radar systems, analyses and 
design. A design case study, which is carried throughout the text, is introduced 
in Chapter 1. In each chapter the authors’ view of how to design the case-study 
radar is presented based on the theory covered up to that point in the book. As 
the material coverage progresses through the book, and new theory is dis­
cussed, the design case-study requirements are changed and/or updated, and of 
course the design level of complexity is also increased. This design process is 
supported by a comprehensive set of MATLAB 6 simulations developed for 
this purpose. This part will serve as a valuable tool to students and radar engi­
neers in helping them understand radar systems, design process. This includes 
1) learning how to go about selecting different radar parameters to meet the 
design requirements; 2) performing detailed trade-off analysis in the context of 
radar sizing, modes of operations, frequency selection, waveforms and signal 
processing; 3) establishing and developing loss and error budgets associated 
with the design; and 4) generating an in-depth understanding of radar opera­
tions and design philosophy. Additionally, Part I includes several mini design 
case studies pertinent to different chapters in order to help enhance understand­
ing of radar design in the context of the material presented in different chap­
ters.

Part II includes few chapters that cover specialized radar topics, some of 
which is authored and/or coauthored by other experts in the field. The material

1. MATLAB is a registered trademark of the The MathWorks, Inc. For product infor­
mation, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 
01760-2098 USA. Web: www.mathworks.com.
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included in Part II is intended to further enhance the understanding of radar 
system analysis by providing detailed and comprehensive coverage of these 
radar related topics. For this purpose, MATLAB 6 code has also been devel­
oped and made available.

All MATLAB programs and functions provided in this book can be down­
loaded from the CRC Press Web site (www.crcpress.com). For this purpose, 
follow this procedure: 1) from your Web browser type “http://www.crc- 
press.com”, 2) click on “Electronic Products”, 3) click on “Download & 
Updates”, and finally 4) follow instructions of how to download a certain set 
o f code off that Web page. Furthermore, this MATLAB code can also be down­
loaded from The MathWorks Web site by following these steps: 1) from your 
Web browser type: “http://mathworks.com/matlabcentral/fileexchange/”, 2) 
place the curser on “Companion Software fo r  Books” and click on “Communi­
cations”. The MATLAB functions and programs developed in this book 
include all forms of the radar equation: pulse compression, stretch processing, 
matched filter, probability of detection calculations with all Swerling models, 
High Range Resolution (HRR), stepped frequency waveform analysis, ghk 
tracking filter, Kalman filter, phased array antennas, clutter calculations, radar 
ambiguity functions, ECM, chaff, and many more.

Chapter 1 describes the most common terms used in radar systems, such as 
range, range resolution, and Doppler frequency. This chapter develops the 
radar range equation. Finally, a radar design case study entitled “MyRadar 
Design Case Study” is introduced. Chapter 2 is intended to provide an over­
view of the radar probability of detection calculations and related topics. 
Detection of fluctuating targets including Swerling I, II, III, and IV models is 
presented and analyzed. Coherent and non-coherent integration are also intro­
duced. Cumulative probability of detection analysis is in this chapter. Visit 2 of 
the design case study “M yRadar” is introduced.

Chapter 3 reviews radar waveforms, including CW, pulsed, and LFM. High 
Range Resolution (HRR) waveforms and stepped frequency waveforms are 
also analyzed. The concept of the Matched Filter (MF) is introduced and ana­
lyzed. Chapter 4 presents in detail the principles associated with the radar 
ambiguity function. This includes the ambiguity function for single pulse, Lin­
ear Frequency Modulated pulses, train of unmodulated pulses, Barker codes, 
and PRN codes. Pulse compression is introduced in Chapter 5. Both the MF 
and the stretch processors are analyzed.

Chapter 6 contains treatment of the concepts of clutter. This includes both 
surface and volume clutter. Chapter 7 presents clutter mitigation using Moving 
Target Indicator (MTI). Delay line cancelers implementation to mitigate the 
effects o f clutter is analyzed.

Chapter 8  presents detailed analysis of Phased Arrays. Linear arrays are 
investigated and detailed and MATLAB code is developed to calculate and plot

© 2004 by Chapman & Hall/CRC CRC Press LLC
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the associated array patterns. Planar arrays, with various grid configurations, 
are also presented.

Chapter 9 discusses target tracking radar systems. The first part o f this chap­
ter covers the subject o f single target tracking. Topics such as sequential lob- 
ing, conical scan, monopulse, and range tracking are discussed in detail. The 
second part o f this chapter introduces multiple target tracking techniques. 
Fixed gain tracking filters such as the a p  and the a P y  filters are presented in 
detail. The concept of the Kalman filter is introduced. Special cases of the Kal­
man filter are analyzed in depth.

Chapter 10 is coauthored with Mr. J. Michael Madewell from the US Army 
Space and Missile Defense Command, in Huntsville, Alabama. This chapter 
presents an overview of Electronic Counter Measures (ECM) techniques. Top­
ics such as self screening and stand off jammers are presented. Radar chaff is 
also analyzed and a chaff mitigation technique for Ballistic Missile Defense 
(BMD) is introduced.

Chapter 11 is concerned with the Radar Cross Section (RCS). RCS depen­
dency on aspect angle, frequency, and polarization is discussed. The target 
scattering matrix is developed. RCS formulas for many simple objects are pre­
sented. Complex object RCS is discussed, and target fluctuation models are 
introduced. Chapter 12 is coauthored with Dr. Brian Smith from the US Army 
Aviation and Missile Command (AMCOM), Redstone Arsenal in Alabama. 
This chapter presents the topic of Tactical Synthetic Aperture Radar (SAR). 
The topics of this chapter include: SAR signal processing, SAR design consid­
erations, and the SAR radar equation. Finally Chapter 13 presents an overview 
of signal processing.

Using the material presented in this book and the MATLAB code designed 
by the authors by any entity or person is strictly at will. The authors and the 
publisher are neither liable nor responsible for any material or non-material 
losses, loss of wages, personal or property damages of any kind, or for any 
other type of damages of any and all types that may be incurred by using this 
book.

Bassem R. Mahafza 
Huntsville, Alabama 

July, 2003

Atef Z. Elsherbeni 
Oxford, Mississippi 

July, 2003
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Chapter 1 Introduction to Radar 
Basics

1.1. Radar Classifications
The word radar is an abbreviation for RAdio Detection And Ranging. In 

general, radar systems use modulated waveforms and directive antennas to 
transmit electromagnetic energy into a specific volume in space to search for 
targets. Objects (targets) within a search volume will reflect portions of this 
energy (radar returns or echoes) back to the radar. These echoes are then pro­
cessed by the radar receiver to extract target information such as range, veloc­
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship 
based radar systems. They can also be classified into numerous categories 
based on the specific radar characteristics, such as the frequency band, antenna 
type, and waveforms utilized. Another classification is concerned with the 
mission and/or the functionality of the radar. This includes: weather, acquisi­
tion and search, tracking, track-while-scan, fire control, early warning, over 
the horizon, terrain following, and terrain avoidance radars. Phased array 
radars utilize phased array antennas, and are often called multifunction (multi­
mode) radars. A phased array is a composite antenna formed from two or more 
basic radiators. Array antennas synthesize narrow directive beams that may be 
steered mechanically or electronically. Electronic steering is achieved by con­
trolling the phase of the electric current feeding the array elements, and thus 
the name phased array is adopted.

Radars are most often classified by the types of waveforms they use, or by 
their operating frequency. Considering the waveforms first, radars can be Con­
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tinuous Wave (CW) or Pulsed Radars (PR) .1 CW radars are those that continu­
ously emit electromagnetic energy, and use separate transmit and receive 
antennas. Unmodulated CW radars can accurately measure target radial veloc­
ity (Doppler shift) and angular position. Target range information cannot be 
extracted without utilizing some form of modulation. The primary use of 
unmodulated CW radars is in target velocity search and track, and in missile 
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula­
tion). In this category, radar systems can be classified on the basis of the Pulse 
Repetition Frequency (PRF) as low PRF, medium PRF, and high PRF radars. 
Low PRF radars are primarily used for ranging where target velocity (Doppler 
shift) is not of interest. High PRF radars are mainly used to measure target 
velocity. Continuous wave as well as pulsed radars can measure both target 
range and radial velocity by utilizing different modulation schemes.

Table 1.1 has the radar classifications based on the operating frequency.

TABLE 1.1. Radar frequency bands.

Letter
designation Frequency (GHz)

New band designation 
(GHz)

HF 0.003 - 0.03 A

VHF 0.03 - 0.3 A<0.25; B>0.25
UHF 0.3 -1.0 B<0.5; C>0.5

L-band 1.0 - 2.0 D
S-band 2.0 - 4.0 E<3.0; F>3.0

C-band 4.0 - 8.0 G<6.0; H>6.0
X-band 8.0 -12.5 I<10.0; J>10.0

Ku-band 12.5 -18.0 J
K-band 18.0 - 26.5 J<20.0; K>20.0

Ka-band 26.5 - 40.0 K
MMW Normally >34.0 L<60.0; M>60.0

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off 
the ionosphere to detect targets beyond the horizon. Very High Frequency 
(VHF) and Ultra High Frequency (UHF) bands are used for very long range 
Early Warning Radars (EWR). Because of the very large wavelength and the 
sensitivity requirements for very long range measurements, large apertures are 
needed in  such radar systems.

1. See Appendix 1A.
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Radars in the L-band are primarily ground based and ship based systems that 
are used in long range military and air traffic control search operations. Most 
ground and ship based medium range radars operate in the S-band. Most 
weather detection radar systems are C-band radars. Medium range search and 
fire control military radars and metric instrumentation radars are also C-band.

The X-band is used for radar systems where the size of the antenna consti­
tutes a physical limitation; this includes most military multimode airborne 
radars. Radar systems that require fine target detection capabilities and yet can­
not tolerate the atmospheric attenuation of higher frequency bands may also be 
X-band. The higher frequency bands (Ku, K, and Ka) suffer severe weather 
and atmospheric attenuation. Therefore, radars utilizing these frequency bands 
are limited to short range applications, such as police traffic radar, short range 
terrain avoidance, and terrain following radar. Milli-Meter Wave (MMW) 
radars are mainly limited to very short range Radio Frequency (RF) seekers 
and experimental radar systems.

1.2. Range
Figure 1.1 shows a simplified pulsed radar block diagram. The time control 

box generates the synchronization timing signals required throughout the sys­
tem. A modulated signal is generated and sent to the antenna by the modulator/ 
transmitter block. Switching the antenna between the transmitting and receiv­
ing modes is controlled by the duplexer. The duplexer allows one antenna to be 
used to both transmit and receive. During transmission it directs the radar elec­
tromagnetic energy towards the antenna. Alternatively, on reception, it directs 
the received radar echoes to the receiver. The receiver amplifies the radar 
returns and prepares them for signal processing. Extraction of target informa­
tion is performed by the signal processor block. The target’s range, R , is com­
puted by measuring the time delay, A t , it takes a pulse to travel the two-way 
path between the radar and the target. Since electromagnetic waves travel at 
the speed of light, c _ 3 x 108m/ sec, then

R _ ccA (1-1)

where R is in meters and At is in seconds. The factor of 2 is needed to 
account for the two-way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illus­
trated by Fig. 1.2. The Inter Pulse Period (IPP) is T , and the pulsewidth is т . 
The IPP is often referred to as the Pulse Repetition Interval (PRI). The inverse 
of the PRI is the PRF, which is denoted by f r ,

fr _ —  _ 1 (1-2)r PRI T
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During each PRI the radar radiates energy only for т seconds and listens for 
target returns for the rest o f the PRI. The radar transmitting duty cycle (factor)

т/ T . The radar average transmitted power isdt is defined as the ratio dt

Pa Pt x dt > (1.3)

where P t denotes the radar peak transmitted power. The pulse energy is
Ep PtT P T _ P / f  .av av r

The range corresponding to the two-way time delay T is known as the radar 
unambiguous range, Ru . Consider the case shown in Fig. 1.3. Echo 1 repre­
sents the radar return from a target at range R1 _ cAt/ 2 due to pulse 1. Echo 2 
could be interpreted as the return from the same target due to pulse 2 , or it may 
be the return from a faraway target at range R2 due to pulse 1 again. In this 
case,

R2
cAt
2 R 2 c(T+At-

2
(1.4)or

transmitted pulses 

pulse 1
IPP

~| pulse 2______ [~| pulse 3_______|""L time

At П  pulse 1 П  pulse 2 П  pulse 3 
received pulses __ J  TLech°________ J  Lecho_______ J Lecho ^ time

Figure 1.2. Train of transmitted and received pulses.

т
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Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is 
transmitted the radar must wait a sufficient length of time so that returns from 
targets at maximum range are back before the next pulse is emitted. It follows 
that the maximum unambiguous range must correspond to half of the PRI,

R T c 
Ru _ c2 _ - (1.5)

1.3. Range Resolution
Range resolution, denoted as AR , is a radar metric that describes its ability 

to detect targets in close proximity to each other as distinct objects. Radar sys­
tems are normally designed to operate between a minimum range Rmin, and 
maximum range Rmax. The distance between Rmin and Rmax is divided into M  
range bins (gates), each of width A R ,

M  _ (Rmax -  Rmin)/A R  (16)

Targets separated by at least AR will be completely resolved in range. Targets 
within the same range bin can be resolved in cross range (azimuth) utilizing 
signal processing techniques. Consider two targets located at ranges R 1 and 
R2 , corresponding to time delays t1 and t2 , respectively. Denote the difference 
between those two ranges as AR :

(t2 t i ) St
AR _ R2 -  R1 _ c- Ц - - 1- _ c2  (1.7)

Now, try to answer the following question: What is the minimum St such 
that target 1 at R 1 and target 2 at R2 will appear completely resolved in range 
(different range bins)? In other words, what is the minimum AR ?
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First, assume that the two targets are separated by ct / 4  , where t  is the 
pulsewidth. In this case, when the pulse trailing edge strikes target 2 the lead­
ing edge would have traveled backwards a distance c t , and the returned pulse 
would be composed of returns from both targets (i.e., unresolved return), as 
shown in Fig. 1.4a. However, if  the two targets are at least c t / 2 apart, then as 
the pulse trailing edge strikes the first target the leading edge will start to return 
from target 2 , and two distinct returned pulses will be produced, as illustrated 
by Fig. 1.4b. Thus, AR should be greater or equal to ct/ 2 . And since the radar 
bandwidth B is equal to 1 / t  , then

In general, radar users and designers alike seek to minimize AR in order to 
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve 
fine range resolution one must minimize the pulsewidth. However, this will 
reduce the average transmitted power and increase the operating bandwidth. 
Achieving fine range resolution while maintaining adequate average transmit­
ted power can be accomplished by using pulse compression techniques.

incident pulse

reflected pulse return return 
tgt1 V ///////S  tgt2

3 
--cT

R1 R,

tgt1 tgt2

shaded area has returns from both targets ■ 

(a) R1 R2

reflected pulses return return
tgt1 tgt2
c T ct

ct
2

tgt1 tgt2

(b )

Figure 1.4. (a) Two unresolved targets. (b) Two resolved targets.
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1.4. Doppler Frequency
Radars use Doppler frequency to extract target radial velocity (range rate), as 

well as to distinguish between moving and stationary targets or objects such as 
clutter. The Doppler phenomenon describes the shift in the center frequency of 
an incident waveform due to the target motion with respect to the source of 
radiation. Depending on the direction of the target’s motion, this frequency 
shift may be positive or negative. A waveform incident on a target has 
equiphase wavefronts separated by X, the wavelength. A closing target will 
cause the reflected equiphase wavefronts to get closer to each other (smaller 
wavelength). Alternatively, an opening or receding target (moving away from 
the radar) will cause the reflected equiphase wavefronts to expand (larger 
wavelength), as illustrated in Fig. 1.5.

*

radar

f r
radar

\  J  opening target

incident
reflected -M- — — -  

Figure 1.5. Effect of target motion on the reflected equiphase waveforms.

Consider a pulse of width t  (seconds) incident on a target which is moving 
towards the radar at velocity v , as shown in Fig. 1.6. Define d as the distance 
(in meters) that the target moves into the pulse during the interval A t ,

d = vAt (1.9)

where At is equal to the time between the pulse leading edge striking the target 
and the trailing edge striking the target. Since the pulse is moving at the speed 
of light and the trailing edge has moved distance c t  -  d , then

c t = cAt + v At (1.10)

and
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trailing 
edge

incident pulse
leading
edge

at time t = tn L = c t

1 s = c At

s = c At

at time t = t0 + At ' L  = c t'
d_ 

= ^ 4

v At

reflected pulse 
leading trailing

edge

Figure 1.6. Illustrating the impact of target velocity on a single pulse.

v

ct' = cAt -  vAt (1.11)

Dividing Eq. (1.11) by Eq. (1.10) yields,

ct' cAt -  vAt
ct cAt + vAt (112)

which after canceling the terms c and At from the left and right side of Eq. 
(1.12) respectively, one establishes the relationship between the incident and 
reflected pulses widths as

c— t (1.13)c + v

In practice, the factor (c -  v ) / ( c + v) is often referred to as the time dilation 
factor. Notice that if  v = 0 , then T = t  . In a similar fashion, one can compute 
t '  for an opening target. In this case,

’ v + c ,л лл\t  = ------- t  (1.14)c -  v

To derive an expression for Doppler frequency, consider the illustration 
shown in Fig. 1.7. It takes the leading edge of pulse 2 At seconds to travel a 
distance (c/ f r)-d  to strike the target. Over the same time interval, the leading 
edge of pulse 1 travels the same distance c A t . More precisely,

d = vA t (1.15)

fr -  d = cAt (1.16)
f r

solving for At yields
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c/fr

pulse 1
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ct' c T

pulse 1 has already come back 
pulse 2 starts to strike the target pulse 1 pulse 2
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s -  d = c/ fr

pulse 1 
LE TE

LE

ct' 2d

pulse 2
LE TE

, LE: Pulse leading edge, 
' TE: Pulse trailing edge'

Figure 1.7. Illustration of target motion effects on the radar pulses.
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c /frAt = — -- (1.17)
c + v

c v /fr
d = -----  (1.18)

c + v

The reflected pulse spacing is now s -  d and the new PRF is f r' ,  where

c c v / f  
s -  d = — = cAt------ --r (1.19)

fr ' c + v

It follows that the new PRF is related to the original PRF by

fr' = ^  fr  (120)

However, since the number of cycles does not change, the frequency of the 
reflected signal will go up by the same factor. Denoting the new frequency by 
f0' , it follows

fo' = ^  fo (1.21)

where f 0 is the carrier frequency of the incident signal. The Doppler frequency 
f d is defined as the difference f 0' - f 0 . More precisely,

fd = / 0' - /0  = ^  / 0 - f0  = ^  /0  (1.22)

but since v « c and c = Xf0 , then

f d * 2  f 0 = 2f  (1.23)

Eq. (1.23) indicates that the Doppler shift is proportional to the target velocity, 
and, thus, one can extract f d from range rate and vice versa.

The result in Eq. (1.23) can also be derived using the following approach: 
Fig. 1.8 shows a closing target with velocity v . Let R0 refer to the range at 
time t0 (time reference); then the range to the target at any time t is

R (t) = R0-v( t - 10) (1.24)

The signal received by the radar is then given by

Xr(t) = x (t -  y ( t)) (1.25)

where x (t) is the transmitted signal, and

V( t) = 2 (R0 -  vt + vt0) (1.26)
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Figure 1.8. Closing target with velocity v  

Substituting Eq. (1.26) into Eq. (1.25) and collecting terms yield

2v
xr( t) = 4 0  1 + — j t -  ^0

where the constant phase y 0 is

^0
2 R 0 2 v+ - 0c c

Define the compression or scaling factor у by

i 2vY = 1 + —

(127)

(128)

(129)

Note that for a receding target the scaling factor is y = 1 -  (2v/ c) . Utilizing 
Eq. (1.29) we can rewrite Eq. (1.27) as

xr(t) = x(Yt -  ^ 0) (130)

Eq. (1.30) is a time-compressed version of the return signal from a stationary 
target (v = 0 ). Hence, based on the scaling property of the Fourier transform, 
the spectrum of the received signal will be expanded in frequency to a factor of
Y.

Consider the special case when

x (t) = y( t) cos ro0t (1.31)

where ю0 is the radar center frequency in radians per second. The received sig­
nal xr(t) is then given by

xr(t) = y (Yt -  ^ 0) cos (Y®0t -  ^ 0) 

The Fourier transform of Eq. (1.32) is

- w  = 1  ( <  «- -  “ 0) + Y( «-+ «>0)'Y

(132)

(133)
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where for simplicity the effects of the constant phase y 0 have been ignored in 
Eq. (1.33). Therefore, the bandpass spectrum of the received signal is now cen­
tered at ую0 instead of ю0 . The difference between the two values corresponds 
to the amount of Doppler shift incurred due to the target motion,

®d = ®0 -  Y®0 (1-34)

md is the Doppler frequency in radians per second. Substituting the value of у 
in Eq. (1.34) and using 2nf  = ю yield

f d = c  f 0 = 2f  (135)

which is the same as Eq. (1.23). It can be shown that for a receding target the 
Doppler shift is f d = -2 v / X . This is illustrated in Fig. 1.9.

closing target receding target

Figure 1.9. Spectra of received signal showing Doppler shift.

In both Eq. (1.35) and Eq. (1.23) the target radial velocity with respect to the 
radar is equal to v , but this is not always the case. In fact, the amount of Dop­
pler frequency depends on the target velocity component in the direction of the 
radar (radial velocity). Fig. 1.10 shows three targets all having velocity v : tar­
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as 
defined in Eq. (1.35). The amount of Doppler frequency of target 3 is 
f d = 2v cos 0 /X , where v cos 0 is the radial velocity; and 0 is the total angle 
between the radar line of sight and the target.

Thus, a more general expression for f d that accounts for the total angle 
between the radar and the target is

fd = ^Xvcos 0 (1.36)

and for an opening target

fd = - ^ c o s  0 (1.37)

where cos0 = cos 0e cos0a . The angles 0e and 0a are, respectively, the eleva­
tion and azimuth angles; see Fig. 1.11.
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Figure 1.10. Target 1 generates zero Doppler. Target 2 generates 
maximum Doppler. Target 3 is in between.

VV

Figure 1.11. Radial velocity is proportional to the azimuth and elevation angles.

1.5. The Radar Equation
Consider a radar with an omni directional antenna (one that radiates energy 

equally in all directions). Since these kinds of antennas have a spherical radia­
tion pattern, we can define the peak power density (power per unit area) at any 
point in space as

л Peak transmitted power watts
PD = T - 2 (1-38)area of a sphere ml

The power density at range R away from the radar (assuming a lossless propa­
gation medium) is

P t
Pd = — 4  (1-39)

4nR
2

where Pt is the peak transmitted power and 4 nR is the surface area of a 
sphere of radius R . Radar systems utilize directional antennas in order to
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increase the power density in a certain direction. Directional antennas are usu­
ally characterized by the antenna gain G and the antenna effective aperture A e . 
They are related by

4 nAe
G = (1-40)

X

where X is the wavelength. The relationship between the antenna’s effective 
aperture Ae and the physical aperture A is

Ae = pA (1-41)
0 < p < 1

p is referred to as the aperture efficiency, and good antennas require p ^  1. In 
this book we will assume, unless otherwise noted, that A and A e are the same. 
We will also assume that antennas have the same gain in the transmitting and 
receiving modes. In practice, p = 0.7 is widely accepted.

The gain is also related to the antenna’s azimuth and elevation beamwidths by

G = ki f ,

where k < 1 and depends on the physical aperture shape; the angles 0e and 0a 
are the antenna’s elevation and azimuth beamwidths, respectively, in radians. 
An excellent approximation of Eq. (1.42) introduced by Stutzman and reported 
by Skolnik is

G » 2f00-° (1-43)
0e 0a

where in this case the azimuth and elevation beamwidths are given in degrees.

The power density at a distance R away from a radar using a directive 
antenna of gain G is then given by

P tG
PD = - 4  (1-44)

4nR

When the radar radiated energy impinges on a target, the induced surface cur­
rents on that target radiate electromagnetic energy in all directions. The amount 
of the radiated energy is proportional to the target size, orientation, physical 
shape, and material, which are all lumped together in one target-specific 
parameter called the Radar Cross Section (RCS) denoted by a .

The radar cross section is defined as the ratio of the power reflected back to 
the radar to the power density incident on the target,
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Pr 27T m (1-45)
PD

where Pr is the power reflected from the target. Thus, the total power deliv­
ered to the radar signal processor by the antenna is

P tGa
PDr = — -— 2 A e (1-46)

(4nR )2

Substituting the value of A e from Eq. (1.40) into Eq. (1.46) yields

P tG2X2a
PDr = —  (1-47)

(4n )3 R

Let Smin denote the minimum detectable signal power. It follows that the 
maximum radar range Rmax is

0 PtG2X2a 1 17 4
R max = l - H ----- I (1-48)

.(  4n)3Smin/

Eq. (1.48) suggests that in order to double the radar maximum range one must 
increase the peak transmitted power Pt sixteen times; or equivalently, one 
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor­
rupted with noise, which introduces unwanted voltages at all radar frequencies. 
Noise is random in nature and can be described by its Power Spectral Density 
(PSD) function. The noise power N  is a function of the radar operating band­
width, B . More precisely

N  = Noise PSD x B (1-49)

The input noise power to a lossless antenna is

Nt = kTeB (1-50)
—23where k = 1.38 x 10 joule/degree Kelvin is Boltzman’s constant, and Te 

is the effective noise temperature in degrees Kelvin. It is always desirable that 
the minimum detectable signal (Smin) be greater than the noise power. The 
fidelity of a radar receiver is normally described by a figure of merit called the 
noise figure F  (see Appendix 1B for details). The noise figure is defined as

(SNRV S /N ,
F  = --------i = ----- (1-51)

(SNR)o So/No

(SNR), and (SNR)o are, respectively, the Signal to Noise Ratios (SNR) at the 
input and output of the receiver. Si is the input signal power; Ni is the input

a
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noise power. So and No are, respectively, the output signal and noise power. 
Substituting Eq. (1.50) into Eq. (1.51) and rearranging terms yields

St = kTeBF( SNR)o (1.52)

Thus, the minimum detectable signal power can be written as

Smin = kTeBF(SNR)o . (1.53)m i n  e u min

The radar detection threshold is set equal to the minimum output SNR, 
(SNR)o . Substituting Eq. (1.53) in Eq. (1.48) gives

R
max

(4n )3 kTeBF{SNR)o ,
c wm in

(1.54)

or equivalently,

P tG2l 2o
(SNR)o . = ----- 33t--------- —  (1.55)

m“ (4П)3 kTeBFR4max

In general, radar losses denoted as L reduce the overall SNR, and hence

P tG2k 2G
(SNR)o = ----- 3------------4 (1.56)

(4n)3kTeBFLR

Although it may take on many different forms, Eq. (1.56) is what is widely 
known as the Radar Equation. It is a common practice to perform calculations 
associated with the radar equation using decibel (dB) arithmetic. A review is 
presented in Appendix A.

MATLAB Function “radar_eq.m”

The function “radar eq.m ” implements Eq. (1.56); it is given in Listing 1.1 
in Section 1.10. The syntax is as follows:

[snr] = radar eq (pt, freq, g, sigma, te, b, nf, loss, range)

where

Symbol Description Units Status

pt peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective noise temperature Kelvin input
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Symbol Description Units Status

b bandwidth Hz input

n f noise figure dB input
loss radar losses dB input

range target range (can be either a sin­
gle value or a vector)

meters input

snr SNR (single value or a vector, 
depending on the input range)

dB output

The function “ra d a re q .m ” is designed such that it can accept a single value 
for the input “range”, or a vector containing many range values. Figure 1.12 
shows some typical plots generated using MATLAB program “fig1_12.m ” 
which is listed in Listing 1.2 in Section 1.10. This program uses the function 
“radar eq.m ”, with the following default inputs: Peak power Pt = 1.5MW , 
operating frequency f 0 = 5.6GHz, antenna gain G = 45dB , effective tempera­
ture Te = 290K , radar losses L = 6dB , noise figure F  = 3dB . The radar band­
width is B = 5M Hz. The radar minimum and maximum detection range are 
Rmin = 25Km and Rmax = 165Km . Assume target cross section ct = 0.1m2 .

Note that one can easily modify the MATLAB function “radar eq.m ” so 
that it solves Eq. (1.54) for the maximum detection range as a function of the 
minimum required SNR for a given set of radar parameters. Alternatively, the 
radar equation can be modified to compute the pulsewidth required to achieve 
a certain SNR for a given detection range. In this case the radar equation can be 
written as

(4n )3 kTeFLR4SNR 
т = — -----e— --------  (1.57)

PtG X ct

Figure 1.13 shows an implementation of Eq. (1.57) for three different detection 
range values, using the radar parameters used in MATLAB program 
“fig1_13.m ”. It is given in Listing 1.3 in Section 1.10.

When developing radar simulations, Eq. (1.57) can be very useful in the fol­
lowing sense. Radar systems often utilize a finite number of pulsewidths 
(waveforms) to accomplish all designated modes of operations. Some of these 
waveforms are used for search and detection, others may be used for tracking, 
while a limited number of wideband waveforms may be used for discrimina­
tion purposes. During the search mode of operation, for example, detection of a 
certain target with a specific RCS value is established based on a p redeter­
mined probability of detection PD . The probability of detection, PD , is used to 
calculate the required detection SNR (this will be addressed in Chapter 2).
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Figure 1.12a. SNR versus detection range for three different values of RCS.

D e te c tio n  ra n g e  - Km

Figure 1.12b. SNR versus detection range for three different values of radar 
peak power.
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Once the required SNR is computed, Eq. (1.57) can then be used to find the 
most suitable pulse (or waveform) that achieves the required SNR (or equiva­
lently the required PD ). Often, it may be the case that none of the available 
radar waveforms may be able to guarantee the minimum required SNR for a 
particular RCS value at a particular detection range. In this case, the radar has 
to wait until the target is close enough in range to establish detection, otherwise 
pulse integration (coherent or non-coherent) can be used. Alternatively, cumu­
lative probability of detection can be used. All these issues will be addressed in 
Chapter 2.

M in im u m  re q u ire d  S N R  - dB

Figure 1.13. Pulsewidth versus required SNR for three different detection 
range values.

1.5.1. Radar Reference Range

Many radar design issues can be derived or computed based on the radar ref­
erence range Rref which is often provided by the radar end user. It simply 
describes that range at which a certain SNR value, referred to as SNRref, has to 
be achieved using a specific reference pulsewidth xref for a pre-determined 
target cross section, e ref. Radar reference range calculations assume that the 
target is on the line defined by the maximum antenna gain within a beam 
(broad side to the antenna). This is often referred to as the radar line of sight, as 
illustrated in Fig. 1.14.

The radar equation at the reference range is
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Figure 1.14. Definition of radar line of sight and radar reference range.

u n 2\2  \1  /4
R = | ----- 1------ ^ - 1  (1.58)

1 (4n )3 kTeFL( SNR)ref

The radar equation at any other detection range for any other combination of 
SNR, RCS, and pulsewidth can be given as

R = R i x a SNRr f  1 | 174 (1 59)
R = R f  ~ , f  “ SN R  l J  <'*>

where the additional loss term Lp is introduced to account for the possibility 
that the non-reference target may not be on the radar line of sight, and to 
account for other losses associated with the specific scenario. Other forms of 
Eq. (1.59) can be in terms of the SNR. More precisely,

SNR = SNRr,f L . -Г"  f i r ) 4 (1.60)
rel ref Lp a ref1 R ;

As an example, consider the radar described in the previous section, in this 
case, define a ref  = 0.1m2 , Rref  = 86Km , and SNRref  = 20dB . The reference 
pulsewidth is xref  = 0.1цsec. Using Eq. (1.60) we compute the SNR at 
R = 120Km for a target whose RCS is a = 0.2m2 . Assume that Lp = 2dB to 
be equal to (SNR)120Km = 15.2dB. For this purpose, the MATLAb program 
“re f snr.m ” has been developed; it is given in Listing 1.4 in Section 1.10.

1.6. Search (Surveillance)
The first task a certain radar system has to accomplish is to continuously 

scan a specified volume in space searching for targets of interest. Once detec­
tion is established, target information such as range, angular position, and pos­
sibly target velocity are extracted by the radar signal and data processors. 
Depending on the radar design and antenna, different search patterns can be
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adopted. A two-dimensional (2-D) fan beam search pattern is shown in 
Fig.1.15a. In this case, the beamwidth is wide enough in elevation to cover the 
desired search volume along that coordinate; however, it has to be steered in 
azimuth. Figure 1.15b shows a stacked beam search pattern; here the beam has 
to be steered in azimuth and elevation. This latter kind of search pattern is nor­
mally employed by phased array radars.

Search volumes are normally specified by a search solid angle Q in  steradi- 
ans. Define the radar search volume extent for both azimuth and elevation as 
©A and ©E . Consequently, the search volume is computed as

Q = (®a ®e )//(57.296)2 steradians (1.61)

where both ©A and ©E are given in degrees. The radar antenna 3dB beam­
width can be expressed in terms of its azimuth and elevation beamwidths 0a 
and 0e , respectively. It follows that the antenna solid angle coverage is 0a0e 
and, thus, the number of antenna beam positions nB required to cover a solid 
angle Q is

- -  Q (1.62)
(0a0e) / ( 57.296 )2

In order to develop the search radar equation, start with Eq. (1.56) which is 
repeated here, for convenience, as Eq. (1.63)

P tG2) 2c
SNR = ------ t-------------  (1.63)

(4%)3kTeBFLR4

Using the relations т = 1 /B  and Pt = PavT/т , where T is the PRI and т is 
the pulsewidth, yields

T Pa G2\ 2ax 
SNR = -  — —---------- 4 (1.64)

T (4n)3kT,FLR
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Define the time it takes the radar to scan a volume defined by the solid angle 
Q as the scan time Tsc. The time on target can then be expressed in terms of
Tsc as

Ti = —  = T-Q  0a0e (1.65)1 nB Q a e

Assume that during a single scan only one pulse per beam per PRI illuminates 
the target. It follows that Ti = T and, thus, Eq. (1.64) can be written as

P G2X2a Tsc
SNR = — a ---------- --Q?0a 0, (1.66)

(4n)3kT,FLR  Q

Substituting Eqs. (1.40) and (1.42) into Eq. (1.66) and collecting terms yield 
the search radar equation (based on a single pulse per beam per PRI) as

PavAe-  Tsc
SNR = ---- av e -Q  (1.67)

4nkT,FLR Q

The quantity PavA in Eq. (1.67) is known as the power aperture product. In 
practice, the power aperture product is widely used to categorize the radar’s 
ability to fulfill its search mission. Normally, a power aperture product is com­
puted to meet a predetermined SNR and radar cross section for a given search 
volume defined by Q .

As a special case, assume a radar using a circular aperture (antenna) with 
diameter D . The 3-dB antenna beamwidth 03dB is

03dB * D (1.68)

and when aperture tapering is used, 03 dB * 1.25X/D. Substituting Eq. (1.68) 
into Eq. (1.62) yields

D 2
nB = -T  Q (1.69)

X2

For this case, the scan time Tsc is related to the time-on-target by

2

nB D 2Q

Substitute Eq. (1.70) into Eq. (1.64) to get

2 2 2 PavG\ 2-  TscX2 
SNR = — av— ---------- Ц— (1.71)

(4n) R kT,FLD  Q

Tsc TsXT = _££ = _ sc_  (1.70)
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and by using Eq. (1.40) in Eq. (1.71) we can define the search radar equation 
for a circular aperture as

p avAu TscSNR = -----a--------- -- (1.72)
16R kTeLF Q

2
where the relation A = nD / 4 (aperture area) is used.

MATLAB Function “power_aperture.m”

The function “power aperture.m” implements the search radar equation 
given in Eq. (1.67); it is given in Listing 1.5 in Section 1.10. The syntax is as 
follows:

PAP = power aperture (snr, tsc, sigma, range, te, nf, loss, az angle, el angle) 

where

Symbol Description Units Status

snr sensitivity snr dB input

tsc scan time seconds input
sigma target cross section m2 input

range target range (can be either sin­
gle value or a vector)

meters input

te effective temperature Kelvin input

n f noise figure dB input
loss radar losses dB input

az angle search volume azimuth extent degrees input
el_angle search volume elevation extent degrees input

PAP power aperture product dB output

Plots of the power aperture product versus range and plots of the average 
power versus aperture area for three RCS choices are shown in Figure 1.16. 
MATLAB program “fig1_16.m ” was used to produce these figures. It is given 
in Listing 1.6 in Section 1.10. In this case, the following radar parameters were 
used

<j Tsc 0e = 0a R Te n f  x loss snr

2
0.1 m 2.5sec 2 ° 250Km 900K 13 dB 15 dB
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Figure 1.16a. Power aperture product versus detection range.

Figure 1.16b. Radar average power versus power aperture product.
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Example:

Compute the power aperture product corresponding to the radar that has the 
following parameters: Scan time Tsc = 2sec, Noise figure F  = 8d B , losses

L = 6dB, search volume Q = 7.4 steradians, range o f  interest is R = 75Km, 
and the required SNR is 20d B . Assume that Te = 290Kelvin and

2
ct = 3.162m .

Solution:

Note that Q = 7.4 steradians corresponds to a search sector that is three 
fourths o f  a hemisphere. Thus, using Eq. (1.61) we conclude that 0a = 180 ° 

and 0e = 135°. Using the MATLAB function “pow eraperture.m ” with the fo l­

lowing syntax:

PAP = power_aperture(20, 2, 3.162, 75e3, 290, 8, 6, 180, 135) 

we compute the power aperture product as 36.7 dB.

1.6.1. Mini Design Case Study 1.1 

Problem Statement:
Design a ground based radar that is capable o f  detecting aircraft and mis­

siles at 10 Km and 2 Km altitudes, respectively. The maximum detection range 
fo r  either target type is 60 Km. Assume that an aircraft average RCS is 6 dBsm, 
and that a missile average RCS is -10 dBsm. The radar azimuth and elevation 
search extents are respectively —A = 360 ° and —E = 10 ° . The required scan

rate is 2 seconds and the range resolution is 150 meters. Assume a noise figure 
F  = 8 dB, and total receiver noise L = 10 dB. Use a fa n  beam with azimuth 
beamwidth less than 3 degrees. The SNR is 15 dB.

A Design:
The range resolution requirement is AR = 150m; thus by using Eq. (1.8) we 

calculate the required pulsewidth т = 1ц sec , or equivalently require the 
bandwidth B = 1 M H z. The statement o f  the problem lends itse lf to radar siz­
ing in terms ofpow er aperture product. For this purpose, one must firs t com­
pute the maximum search volume at the detection range that satisfies the 
design requirements. The radar search volume is

Q = ----A——  = 360 x 10 = 1 097 steradians (1-73)
(57.296)2 (57.296 )2

A t this point, the designer is ready to use the radar search equation (Eq. 
(1.67)) to compute the power aperture product. For this purpose, one can mod­
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ify the MATLAB function “pow eraperture.m ” to compute and p lo t the power 
aperture product fo r  both target types. To this end, the MATLAB program  
“casestudy1 _1 .m ”, which is given in Listing 1.7 in Section 1.10, was devel­
oped. Use the parameters in Table 1.2 as inputs fo r  this program. Note that the 
selection o f  Te = 290Kelvin is arbitrary.

TABLE 1.2: Input parameters to MATLAB program “casestudy1_1.m”.

Symbol Description Units Value

snr sensitivity snr dB 15

tsc scan time seconds 2
sigma tgtm missile radar cross section dBsm -10

sigma tgta aircraft radar cross section dBsm 6
rangem missile detection range Km 60

rangea aircraft detection range Km 60
te effective temperature Kelvin 290

n f noise figure dB 8
loss radar losses dB 10

az_angle search volume azimuth extent degrees 360
el_angle search volume elevation extent degrees 10

Figure 1.17 shows a p lo t o f  the output produced by this program. The same 
program also calculates the corresponding power aperture product fo r  both 
the missile and aircraft cases, which can also be read from  the plot,

PAPmissile = 3853dB
(1-74)

PAPaircraft = 2253dB

Choosing the more stressing case fo r  the design baseline (i.e., select the 
power-aperture-product resulting from  the missile analysis) yields

P x A e = 103 853 = 7 1 28.53 ^  A e = 7128-53 (1.75)av e e Pav
2

Choose Ae = 1.75 m to calculate the average power as

P = 7128.53 = 4073  k w  (1.76)
av 1.75

and assuming an aperture efficiency o f  p = 0.8 yields the physical aperture 
area. More precisely,

A = A  = —  = 2.1875m2 (1.77)
p 0.8 ' '
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Figure 1.17. Power aperture product versus detection range for 
radar in mini design case study 1.1.

Use f 0 = 2.0GHz as the radar operating frequency. Then by using 
A e = 1.75m2 we calculate using Eq. (1.40) G = 29.9dB. Now one must deter­
mine the antenna azimuth beamwidth. Recall that the antenna gain is also 
related to the antenna 3-dB beamwidth by the relation

G 26000
0e0 a

(1.78)

where (0a, 0e) are the antenna 3-dB azimuth and elevation beamwidths, 
respectively. Assume a fa n  beam with 0e= ®E = 15°. I t follows that

0a
26000 

' 0 e G
26000 

10 x 977. 3 8
: 2 .66° >0a = 46.43mrad (179)

1.7. Pulse Integration
When a target is located within the radar beam during a single scan it may 

reflect several pulses. By adding the returns from all pulses returned by a given 
target during a single scan, the radar sensitivity (SNR) can be increased. The 
number of returned pulses depends on the antenna scan rate and the radar PRF. 
More precisely, the number of pulses returned from a given target is given by

0 T f
nP = - a n 1  (1.80)P 2 п
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where 0a is the azimuth antenna beamwidth, Tsc is the scan time, and f r is the 
radar PRF. The number of reflected pulses may also be expressed as

np = (1.81)
Âscan

where 0scan is the antenna scan rate in degrees per second. Note that when 
using Eq. (1.80), 0a is expressed in radians, while when using Eq. (1.81) it is 
expressed in degrees. As an example, consider a radar with an azimuth antenna 
beamwidth 0a = 3°, antenna scan rate 0 scan = 4 5 °/ sec (antenna scan time, 
Tsc = 8 seconds), and a PRF f r = 300Hz. Using either Eq.s (1.80) or (1.81) 
yields np = 20 pulses.

The process of adding radar returns from many pulses is called radar pulse 
integration. Pulse integration can be performed on the quadrature components 
prior to the envelope detector. This is called coherent integration or pre-detec­
tion integration. Coherent integration preserves the phase relationship between 
the received pulses. Thus a build up in the signal amplitude is achieved. Alter­
natively, pulse integration performed after the envelope detector (where the 
phase relation is destroyed) is called non-coherent or post-detection integra­
tion.

Radar designers should exercise caution when utilizing pulse integration for 
the following reasons. First, during a scan a given target will not always be 
located at the center of the radar beam (i.e., have maximum gain). In fact, dur­
ing a scan a given target will first enter the antenna beam at the 3-dB point, 
reach maximum gain, and finally leave the beam at the 3-dB point again. Thus, 
the returns do not have the same amplitude even though the target RCS may be 
constant and all other factors which may introduce signal loss remain the same. 
This is illustrated in Fig. 1.18, and is normally referred to as antenna beam- 
shape loss.

ed
dtu

antenna 3-dB beamwidth
-------------------------

1
------- ►

1
1 *—
1 / s

\ 1
1 / \
1 / 4
/ Vj

/
/  1 — 1— i --------------►

time
Figure 1.18. Pulse returns from a point target using a rotating 

(scanning) antenna
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Other factors that may introduce further variation to the amplitude of the 
returned pulses include target RCS and propagation path fluctuations. Addi­
tionally, when the radar employs a very fast scan rate, an additional loss term is 
introduced due to the motion of the beam between transmission and reception. 
This is referred to as scan loss. A distinction should be made between scan loss 
due to a rotating antenna (which is described here) and the term scan loss that 
is normally associated with phased array antennas (which takes on a different 
meaning in that context). These topics will be discussed in more detail in other 
chapters.

Finally, since coherent integration utilizes the phase information from all 
integrated pulses, it is critical that any phase variation between all integrated 
pulses be known with a great level o f confidence. Consequently, target dynam­
ics (such as target range, range rate, tumble rate, RCS fluctuation, etc.) must be 
estimated or computed accurately so that coherent integration can be meaning­
ful. In fact, if a radar coherently integrates pulses from targets without proper 
knowledge of the target dynamics it suffers a loss in SNR rather than the 
expected SNR build up. Knowledge of target dynamics is not as critical when 
employing non-coherent integration; nonetheless, target range rate must be 
estimated so that only the returns from a given target within a specific range 
bin are integrated. In other words, one must avoid range walk (i.e., avoid hav­
ing a target cross between adjacent range bins during a single scan).

A comprehensive analysis o f pulse integration should take into account 
issues such as the probability of detection PD , probability of false alarm Pfa , 
the target statistical fluctuation model, and the noise or interference statistical 
models. These topics will be discussed in Chapter 2. However, in this section 
an overview of pulse integration is introduced in the context of radar measure­
ments as it applies to the radar equation. The basic conclusions presented in 
this chapter concerning pulse integration will still be valid, in the general 
sense, when a more comprehensive analysis of pulse integration is presented; 
however, the exact implementation, the mathematical formulation, and /or the 
numerical values used will vary.

1.7.1. Coherent Integration
In coherent integration, when a perfect integrator is used (100% efficiency), 

to integrate np pulses the SNR is improved by the same factor. Otherwise, 
integration loss occurs, which is always the case for non-coherent integration. 
Coherent integration loss occurs when the integration process is not optimum. 
This could be due to target fluctuation, instability in the radar local oscillator, 
or propagation path changes.

Denote the single pulse SNR required to produce a given probability of 
detection as (SNR)l . The SNR resulting from coherently integrating np pulses 
is then given by
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(SNR)C1 = np(SNR)1 (1.82)

Coherent integration cannot be applied over a large number of pulses, partic­
ularly if the target RCS is varying rapidly. If the target radial velocity is known 
and no acceleration is assumed, the maximum coherent integration time is lim­
ited to

t d  = J k / 2 ar (1.83)

where k is the radar wavelength and ar is the target radial acceleration. Coher­
ent integration time can be extended if the target radial acceleration can be 
compensated for by the radar.

1.7.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector, 
also known as the quadratic detector. Non-coherent integration is less efficient 
than coherent integration. Actually, the non-coherent integration gain is always 
smaller than the number of non-coherently integrated pulses. This loss in inte­
gration is referred to as post detection or square law detector loss. Marcum and 
Swerling showed that this loss is somewhere between Jn~p and np . DiFranco 
and Rubin presented an approximation of this loss as

LNC1 = 10log (-Fp) -  5 5 dB (1.84)
Note that as np becomes very large, the integration loss approaches Jn~p .

The subject of integration loss is treated in great levels o f detail in the litera­
ture. Different authors use different approximations for the integration loss 
associated with non-coherent integration. However, all these different approxi­
mations yield very comparable results. Therefore, in the opinion of these 
authors the use of one formula or another to approximate integration loss 
becomes somewhat subjective. In this book, the integration loss approximation 
reported by Barton and used by Curry will be adopted. In this case, the non­
coherent integration loss which can be used in the radar equation is

1 + (SNR)j 
(SNR)-,LNCI = / ПЛ 7T>\ 1 (1.85)

It follows that the SNR when np pulses are integrated non-coherently is

np(SNR^ _ (SNR)j
(SNR)nci = = np(SNR)1 * 1 Г ( 5 Щ (1.86)

I ^  I Л  I V f T  INC1

1.7.3. Detection Range with Pulse Integration

The process of determining the radar sensitivity or equivalently the maxi­
mum detection range when pulse integration is used is as follows: First, decide
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whether to use coherent or non-coherent integration. Keep in mind the issues 
discussed in the beginning of this section when deciding whether to use coher­
ent or non-coherent integration.

Second, determine the minimum required (SNR)CI or (SNR)NCI required for 
adequate detection and track. Typically, for ground based surveillance radars 
that can be on the order of 13 to 15 dB. The third step is to determine how 
many pulses should be integrated. The choice of np is affected by the radar 
scan rate, the radar PRF, the azimuth antenna beamwidth, and of course by the 
target dynamics (remember that range walk should be avoided or compensated 
for, so that proper integration is feasible). Once np and the required SNR are 
known one can compute the single pulse SNR (i.e., the reduction in SNR). For 
this purpose use Eq. (1.82) in the case of coherent integration. In the non­
coherent integration case, Curry presents an attractive formula for this calcula­
tion, as follows

Finally, use (SNR)j from Eq. (1.87) in the radar equation to calculate the 
radar detection range. Observe that due to the integration reduction in SNR the 
radar detection range is now larger than that for the single pulse when the same 
SNR value is used. This is illustrated using the following mini design case 
study.

1.7.4. Mini Design Case Study 1.2 

Problem Statement:

A M M W  radar has the following specifications: Center frequency 

f  = 94GHz, pulsewidth т = 50 x 10-9sec, peakpow erP t = 4W , azimuth cov­

erage Aa = ±120°, Pulse repetition frequency PRF = 10KHz, noise figure 
F  = 7d B ; antenna diameter D = 12in ; antenna gain G = 47dB ; radar cross

section o f  target is a = 20m ; system losses L = 10d B ; radar scan time 
Tsc = 3sec. Calculate: The wavelength k ; range resolution AR; bandwidth

B ; antenna h a lf power beamwidth; antenna scan rate; time on target. Com­
pute the range that corresponds to 10 dB SNR. Plot the SNR as a function o f  
range. Finally, compute the number ofpulses on the target that can be used fo r  
integration and the corresponding new detection range when pulse integration 
is used, assuming that the SNR stays unchanged (i.e., the same as in the case o f  
a single pulse). Assume Te = 290 Kelvin .
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A Design:

The wavelength X is

X = c = -3-*— = 0.00319ra 
f  94 x 109

The range resolution AR is

ct = (3 x 108)(50 X 10-9) = 7.5m
2

Radar operating bandwidth B is

B = -) = 20 MHz
т 50 x 10 9

The antenna 3-dB beamwidth is

-3 dB = 1-25|) = 0.7499°

Time on target is

It follows that the number of pulses available for integration is calculated 
using Eq. (1.81),

Coherent Integration case:
Using the radar equation given in Eq. (1.58) yields Rref  = 2.245Km. The

SNR improvement due to coherently integrating 94 pulses is 19.73dB. How­
ever, since it is requested that the SNR remains at 10dB, we can calculate the 
new detection range using Eq. (1.59) as

Using the MATLAB Function “ra d a re q .m ” with the following syntax 

[snr] = ra d a req  (4, 94e9, 47, 20, 290, 20e6, 7, 10, 6.99e3)

yields SNR = -9.68 dB. This means that using 94 pulses integrated coherently 
at 6.99 Km where each pulse has a SNR o f  -9.68 dB provides the same detec­
tion criteria as using a single pulse with SNR = 10dB at 2.245Km. This is illus­
trated in Fig. 1.19, using the MATLAB program “fig1_19.m ”, which is given in 
Listing 1.8 in Section 1.10. Figure 1.19 shows the improvement o f  the detection 
range i f  the SNR is kept constant before and after integration.

scan

r c i\ = 2.245 x (94) ' /4  = 6.99Km
Inp = 94
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D e te c tio n  ra n g e  - Km

Figure 1.19. SNR versus detection range, using parameters from example. 

Non-coherent Integration case:

Start with Eq. (1.87) with (SNR)nci = 10dB and np = 94,

( SNR)j 10
2 x 9 4 '

( 10)2 i 10
*14 x 942 94

Therefore, the single pulse SNR when 94 pulses are integrated non-coher- 
ently is -4.16dB. You can verify this result by using Eq. (1.86). The integration 
loss Lnci is calculated using Eq. (1.85). I t  is

1 + 0.38366 3.6065 ^  5.571 dB
0.38366

Therefore, the net non-coherent integration gain is

10 x log(94) -  5.571 = 14.16dB ^  26.06422 

and, consequently, the maximum detection range is

R•NCI\ 2.245 x (26.06422) 1 /  4 5.073Km

This means that using 94 pulses integrated non-coherently at 5.073 Km where 
each pulse has SNR o f  -4.16dB provides the same detection criterion as using a 
single pulse with SNR = 10dB at 2.245Km. This is illustrated in Fig. 1.20, 
using the MATLAB program “fig1_19.m ”.

p
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Figure 1.20. SNR versus detection range, for the same example.

MATLAB Function “pulse_integration.m”

Figure 1.21 shows the SNR gain versus the number of integrated pulses for 
both coherent and non-coherent integration. This figure corresponds to param­
eters from the previous example at R = 5.01Km . Figure 1.22 shows the gen­
eral case SNR improvement versus number of integrated pulses. Both figures 
were generated using MATLAB program “fig1_21.m ” which is given in List­
ing 1.9 in Section 1.10. For this purpose the MATLAB function 
“pulsein tegra tion .m ” was developed. It is given in Listing 1.10 in Section
1.10. This function calculates the radar equation given in Eq. (1.56) with pulse 
integration. The syntax for MATLAB function “pulse integration.m” is as fol­
lows

[snr] = pulse integration (pt, freq, g, sigma, te, b, nf, loss, range, np, ci nci)

where

Symbol Description Units Status

p t peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective noise temperature Kelvin input

b bandwidth Hz input
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Symbol Description Units Status

n f noise figure dB input

loss radar losses dB input
range target range (can be either a sin­

gle value or a vector)
meters input

np number o f integrated pulses none input

ci_nci 1 for CI; 2 for NCI none input
snr SNR (single value or a vector, 

depending on the input range)
dB output

Figure 1.21. SNR improvement when integration is utilized.

1.8. Radar Losses
As indicated by the radar equation, the receiver SNR is inversely propor­

tional to the radar losses. Hence, any increase in radar losses causes a drop in 
the SNR, thus decreasing the probability of detection, as it is a function of the 
SNR. Often, the principal difference between a good radar design and a poor 
radar design is the radar losses. Radar losses include ohmic (resistance) losses 
and statistical losses. In this section we will briefly summarize radar losses.
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Figure 1.22. SNR improvement when integration is utilized.

1.8.1. Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna 
input port, and between the antenna output port and the receiver front end, 
respectively. Such losses are often called plumbing losses. Typically, plumbing 
losses are on the order of 1 to 2 dB.

1.8.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna 
gain. This is true only if  the target is located along the antenna’s boresight axis. 
However, as the radar scans across a target the antenna gain in the direction of 
the target is less than maximum, as defined by the antenna’s radiation pattern. 
The loss in SNR due to not having maximum antenna gain on the target at all 
times is called the antenna pattern (shape) loss. Once an antenna has been 
selected for a given radar, the amount of antenna pattern loss can be mathemat­
ically computed.

For example, consider a sinx /x  antenna radiation pattern as shown in Fig. 
1.23. It follows that the average antenna gain over an angular region of ± 0 / 2 
about the boresight axis is

- '  -  ( ? )  206 < « *
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where r is the aperture radius and X is the wavelength. In practice, Gaussian 
antenna patterns are often adopted. In this case, if 03 dB denotes the antenna 
3dB beamwidth, then the antenna gain can be approximated by

G(0) = exp I —2.7760
02

3dB
(1.89)

If the antenna scanning rate is so fast that the gain on receive is not the same 
as on transmit, additional scan loss has to be calculated and added to the beam 
shape loss. Scan loss can be computed in a similar fashion to beam shape loss. 
Phased array radars are often prime candidates for both beam shape and scan 
losses.

Figure 1.23. Normalized (sin x / x) antenna pattern.

1.8.3. Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later 
chapter. Atmospheric attenuation is a function of the radar operating frequency, 
target range, and elevation angle. Atmospheric attenuation can be as high as a 
few dB.

1.8.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target 
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The 
collapsing loss factor is defined as
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n + m
Pc = — — (1.90)

where n is the number of pulses containing both signal and noise, while m is 
the number of pulses containing noise only. Radars detect targets in azimuth, 
range, and Doppler. When target returns are displayed in one coordinate, such 
as range, noise sources from azimuth cells adjacent to the actual target return 
converge in the target vicinity and cause a drop in the SNR. This is illustrated 
in Fig. 1.24.

Figure 1.24. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5 
converge to increase the noise level in cell 3.

1.8.5. Processing Losses

a. Detector Approximation:

The output voltage signal of a radar receiver that utilizes a linear detector is

v (t) = t ) + vQ( t) (1-91)

where (vr, vQ) are the in-phase and quadrature components. For a radar using a
2 2 2 square law detector, we have v (t) = v} (t) + vQ(t).

Since in real hardware the operations of squares and square roots are time 
consuming, many algorithms have been developed for detector approximation. 
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss:

In many cases the radar detection threshold is constantly adjusted as a func­
tion of the receiver noise level in order to maintain a constant false alarm rate. 
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in
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order to keep the number of false alarms under control in a changing and 
unknown background of interference. CFAR processing can cause a loss in the 
SNR level on the order of 1 dB.

Three different types of CFAR processors are primarily used. They are adap­
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference.

c. Quantization Loss:

Finite word length (number of bits) and quantization noise cause an increase 
in the noise power density at the output of the Analog to Digital (A/D) con­
verter. The A/D noise level is q2/ 12 , where q is the quantization level.

(a) Target on the center of a range gate.

echo envelope

Figure 1.25. Illustration of range gate straddling.
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d. Range Gate Straddle:

The radar receiver is normally mechanized as a series of contiguous range 
gates (bins). Each range bin is implemented as an integrator matched to the 
transmitted pulsewidth. Since the radar receiver acts as a filter that smears 
(smooths), the received target echoes. The smoothed target return envelope is 
normally straddled to cover more than one range gate.

Typically, three gates are affected; they are called the early, on, and late 
gates. If a point target is located exactly at the center of a range gate, then the 
early and late samples are equal. However, as the target starts to move into the 
next gate, the late sample becomes larger while the early sample gets smaller. 
In any case, the amplitudes of all three samples should always roughly add up 
to the same value. Fig. 1.25 illustrates the concept of range straddling. The 
envelope of the smoothed target echo is likely to be Gaussian shaped. In prac­
tice, triangular shaped envelopes may be easier and faster to implement. Since 
the target is likely to fall anywhere between two adjacent range bins, a loss in 
the SNR occurs (per range gate). More specifically, a target’s returned energy 
is split between three range bins. Typically, straddle loss of about 2 to 3 dB is 
not unusual.

Example:

Consider the smoothed target echo voltage shown below. Assume 1Q resis­
tance. Find the power loss due to range gate straddling over the interval
{0, t} .

v(t)f
K

Solution:
The smoothed voltage can be written as

; t < 0
v( t) =

; t > 0

The power loss due to straddle over the interval {0, t} is

© 2004 by Chapman & Hall/CRC CRC Press LLC



2
is  = *3 = 1 -  21K2

The average power loss is then

x/ 2
dt

0

= 1 -  K +1  + (*-+1>
2K 2

2

and, for example, if K = 15 , then Ls = 2.5dB.

e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case 
the Doppler filter spectrum is spread (widened) due to weighting functions. 
Weighting functions are normally used to reduce the sidelobe levels. Since the 
target Doppler frequency can fall anywhere between two Doppler filters, signal 
loss occurs.

1.8.6. Other Losses

Other losses may include equipment losses due to aging radar hardware, 
matched filter loss, and antenna efficiency loss. Tracking radars suffer from 
crossover (squint) loss.

1.9. “MyRadar ” Design Case Study - Visit 1
In this section, a design case study, referred to as “MyRadar” design case 

study, is introduced. For this purpose, only the theory introduced in this chapter 
is used to fulfill the design requirements. Note that since only a limited amount 
of information has been introduced in this chapter, the design process may 
seem illogical to some readers. However, as new material is introduced in sub­
sequent chapters, the design requirements are updated and/or new design 
requirements are introduced based on the particular material of that chapter. 
Consequently, the design process will also be updated to accommodate the new 
theory and techniques learned in that chapter.

1.9.1. Authors and Publisher Disclaimer

The design case study “MyRadar” is a ground based air defense radar 
derived and based on Brookner’s1 open literature source. However, the design 
approach introduced in this book is based on the authors’ point of view of how 
to design such radar. Thus, the design process takes on a different flavor than
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that introduced by Brookner. Additionally, any and all design alternatives pre­
sented in this book are based on and can be easily traced to open literature 
sources.

Furthermore, the design approach adopted in this book is based on modeling 
many of the radar system components with no regards to any hardware con­
straints nor to any practical limitations. The design presented in this book is 
intended to be tutorial and academic in nature and does not adhere to any other 
requirements. Finally, the MATLAB code presented in this book is intended to 
be illustrative and academic and is not designed nor intended for any other 
uses.

Using the material presented in this book and the MATLAB code 
designed by the authors of this book by any entity or person is strictly at 
will. The authors and the publisher are neither liable nor responsible for 
any material or non-material losses, loss of wages, personal or property 
damages of any kind, or for any other type of damages of any and all types 
that may be incurred by using this book.

1.9.2. Problem Statement

You are to design a ground based radar to fulfill the following mission: 
Search and Detection. The threat consists o f aircraft with an average RCS o f 6 
dBsm (ua = 4m ), and missiles with an average RCS o f  -3 dBsm 
(<3m = 0.5m2). The missile altitude is 2Km, and the aircraft altitude is about 7 
Km. Assume a scanning radar with 360 degrees azimuth coverage. The scan 
rate is less than or equal to 1 revolution every 2 seconds. Assume L to X  band. 
We need range resolution o f 150 m. No angular resolution is specified at this 
time. Also assume that only one missile and one aircraft constitute the whole 
threat. Assume a noise figure F  = 6 dB, and total receiver loss L = 8 dB. For 
now use a fan beam with azimuth beamwidth o f  less than 3 degrees. Assume 
that 13 dB SNR is a reasonable detection threshold. Finally, assume fla t earth.

1.9.3. A Design

The desired range resolution is AR = 150m . Thus, using Eq. (1.8) one calcu­
lates the required pulsewidth as т = 1ц sec, or equivalently the required band­
width B = 1MHz. At this point a few preliminary decisions must be made. 
This includes the selection of the radar operating frequency, the aperture size, 
and the single pulse peak power.

1. Brookner, Eli, Editor, Practical Phased Array Antenna Systems, Artech House, 
1991, Chapter 7.
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The choice of an operating frequency that can fulfill the design requirements 
is driven by many factors, such as aperture size, antenna gain, clutter, atmo­
spheric attenuation, and the maximum peak power, to name a few. In this 
design, an operating frequency f  = 3 GHz is selected. This choice is somewhat 
arbitrary at this point; however, as we proceed with the design process this 
choice will be better clarified.

Second, the transportability (mobility) of the radar drives the designer in the 
direction of a smaller aperture type. A good choice would be less than 5 meters 
squared. For now choose Ae = 2.25m2 . The last issue that one must consider is 
the energy required per pulse. Note that this design approach assumes that the 
minimum detection SNR (13 dB) requirement is based on pulse integration. 
This condition is true because the target is illuminated with several pulses dur­
ing a single scan, provided that the antenna azimuth beamwidth and the PRF 
choice satisfy Eq. (1.81).

The single pulse energy is E = Ptx . Typically, a given radar must be 
designed such that it has a handful of pulsewidths (waveforms) to choose from. 
Different waveforms (pulsewidths) are used for definite modes of operations 
(search, track, etc.). However, for now only a single pulse which satisfies the 
range resolution requirement is considered. To calculate the minimum single 
pulse energy required for proper detection, use Eq. (1.57). More precisely,

(4n)3 kTeFLR4SNR,
E = PtT = ---- 2 - --------- 1 (1.92)

G X2a

All parameters in Eq. (1.92) are known, except for the antenna gain, the detec­
tion range, and the single pulse SNR. The antenna gain is calculated from

G = — * = 4n x 2-25 = 2827.4 | ^  G = 34.5dB (1.93)
X2 (0.1 )2

where the relation (X = c/ f ) was used.

In order to estimate the detection range, consider the following argument. 
Since an aircraft has a larger RCS than a missile, one would expect an aircraft 
to be detected at a much longer range than that of a missile. This is depicted in 
Fig. 1.26, where Ra refers to the aircraft detection range and Rm denotes the 
missile detection range. As illustrated in this figure, the minimum search ele­
vation angle 9j is driven by the missile detection range, assuming that the mis­
siles are detected, with the proper SNR, as soon as they enter the radar beam. 
Alternatively, the maximum search elevation angle 92 is driven the aircraft’s 
position along with the range that corresponds to the defense’s last chance to 
intercept the threat (both aircraft and missile). This range is often called “keep- 
out minimum range” and is denoted by Rmin. In this design approach,
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Rmin = 30Km is selected. In practice, the keep-out minimum range is normally 
specified by the user as a design requirement.

The determination of Ra and Rm is dictated by how fast can a defense inter­
ceptor reach the keep-out minimum range and kill the threat. For example, 
assume that the threatening aircraft velocity is 400m / s and the threatening 
missile velocity is 150m/ s . Alternatively, assume that an interceptor average 
velocity is 250m/ s . It follows that, the interceptor time of flight, based on
Rmin = 30Km , is

TmtercePtor = = 120 >** <1‘94>

Therefore, an aircraft and a missile must be detected by the radar at

Ra = 30Km + 120 x 400 = 78Km
(1.95)

R = 30Km + 120 x 150 = 48Kmm
Note that these values should be used only as a guide. The actual detection 
range must also include a few more kilometers, in order to allow the defense 
better reaction time. In this design, choose Rm = 55Km; and Ra = 90Km. 
Therefore, the maximum PRF that guarantees an unambiguous range of at least 
90Km is calculated from Eq. (1.5). More precisely,

fr TFT = 3 * 10)8 3 = 167KHz (1.96)
2Ru 2 x 90 x 103

Since there are no angular resolution requirements imposed on the design at 
this point, then Eq. (1.96) is the only criterion that will be used to determine the 
radar operating PRF. Select,

f  = 1000Hz (1.97)
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The minimum and maximum elevation angles are, respectively, calculated
as

6 j = atan . 5 -) = 2.08 ° (1.98)

7
30.02 = atan (-j'-J = 13.13° (1.99)

These angles are then used to compute the elevation search extent (remember 
that the azimuth search extent is equal to 360°). More precisely, the search vol­
ume Q (in steradians) is given by

0 — 0
Q = — 2---- Ц x 360 (1.100)

(57.296)2

Consequently, the search volume is

0? -  0i 13 13 -  2 08 Q = 360 x ----------- = 360 x —:------- -— = 1.212 steradians (1.101)
(57.296 )2 (57.296 )2

The desired antenna must have a fan beam; thus using a parabolic rectangu­
lar antenna will meet the design requirements. Select Ae = 2.25m2 ; the corre­
sponding antenna 3-dB elevation and azimuth beamwidths are denoted as 
0e, 0a , respectively. Select

0e = 02 -  0 j = 13.13 -  2.08 = 11.05° (1.102)

The azimuth 3-dB antenna beamwidth is calculated using Eq. (1.42) as

2
0a = 4п = 4 x n x 1 8 ° = 1 ° (103)

a 2 G0e 2827.4 xn 2 x 11
It follows that the number of pulses that strikes a target during a single scan is 
calculated using Eq. (1.81) as

, Q/ r  0 3 x 1 0 0 0  739  ^  7 
Пр -  A-  = ---- 180 = 7 39 ^  nP = 7 (1.104)°scan

The design approach presented in this book will only assume non-coherent 
integration (the reader is advised to re-calculate all results by assuming coher­
ent integration, instead). The design requirement mandates a 13 dB SNR for 
detection. By using Eq. (1.87) one calculates the required single pulse SNR,

(SNR)j = i-0— + /(10 ) + 1-°— = 3.635 ^  (SNR)j = 5.6dB (1.105) 
2 x 7 4 x 72 7

© 2004 by Chapman & Hall/CRC CRC Press LLC



Furthermore the non-coherent integration loss associated with this case is com­
puted from Eq. (1.85),

Lnci = L+-6 f 35 = 1.27 ^  Lnci = 1.056dB (1.106)

It follows that the corresponding single pulse energy for the missile and the 
aircraft cases are respectively given by

= (4n fkTeFLR^SNK)! _

m G2X2um
m (1.107)

E = (4n)3(H.38 x 10--23)(^^0)(1^ 8)(10ft(5)(^^ x 103Л 0 0-56 = 0 1658 j ouies 
m 2 2(2827.4 )2(0.1 )2(0.5)

e = (An fkTeFLR^SNR)! _
Ea = 2 2 ^G2X a a

a (1.108)
E = (4n)3(1.38 x 10-:23)(290)(100-8)(100-6)(90 x- 103) V -56 = 0 1487 { 

a 2 2(2827.4)2(0.1 )2(4)

Hence, the peak power that satisfies the single pulse detection requirement for 
both target types is

P 4 E 4 0-1658 4 165.8KW (1.109)
т 1 x 10-6

The radar equation with pulse integration is

1 2 2 p ! g ! 2o
SNR 4 ----- 3----------- 4 ^  (1.110)

(4 n)3 kTeBFLR Lnci

Figure 1.27 shows the SNR versus detection range for both target-types with 
and without integration. To reproduce this figure use MATLAB program 
“fig1_27.m” which is given in Listing 1.12 in Section 1.10.

1.9.4. A Design Alternative

One could have elected not to reduce the single pulse peak power, but rather 
keep the single pulse peak power as computed in Eq. (1.109) and increase the 
radar detection range. For example, integrating 7 pulses coherently would 
improve the radar detection range by a factor of

Rimp 4 (7)025 4 1.63 (1.111)
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Figure 1.27. SNR versus detection range for both target types with and 
without pulse integration.

It follows that the new missile and aircraft detection ranges are 

Ra 4 78 x 1.63 4 126.9Km
(1.112)

R 4 48 x 1.63 4 78.08Kmm
Note that extending the minimum detection range for a missile to Rm 4 78Km 
would increase the size of the extent of the elevation search volume. More pre­
cisely,

6j 4 atan.78) 4 1.47° (1.113)

It follows that the search volume Q (in steradians) is now

е2 - 01 13.13 -  1,47 --------- 2 4 360 x -----------
(57.296 )2 (57.296)

Q 4 360 x ----------2 4 360 x —:------- 4 1.279 steradians (1.114)

Alternatively, integrating 7 pulses non-coherently with (SNR)nci 4 13dB 
yields

(SNR)j 4 5.6dB (1.115)

and the integration loss is
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Lnci 4 1.057dB (1.116)

Then, the net non-coherent integration gain is

NCIgain 4 10 x log(7) -  1.057 4 7.394dB ^  NCIgain 4 5.488 (1.117)

Thus, the radar detection range is now improved due to a 7-pulse non-coherent 
integration to

R 4 78 x (5.488)0 25 4 119.38Km
(1.118)0 25Rm 4 48 x (5.488) 5 4 73.467Km 

Again, the extent of the elevation search volume is changed to

е 1 4 a t a n 4 ! .56° (1.119)

It follows that the search volume Q (in steradians) is now 

e2 -  e, 1313 - 1 5 6Q 4 360 x ----------2 4 360 x —-------- 4 1.269 steradians (1.120)
(57.296 )2 (57.296 )2

1.10. MATLAB Program and Function Listings
This section presents listings for all MATLAB functions and programs used 

in this chapter. Users are encouraged to vary the input parameters and rerun 
these programs in order to enhance their understanding of the theory presented 
in the text. All selected parameters and variables follow the same nomenclature 
used in the text; thus, understanding the structure and hierarchy of the pre­
sented code should be an easy task once the user has read the chapter.

Note that all MATLAB programs and functions developed in this book can 
be downloaded from CRC Press Web Site “www.crcpress.com”. Additionally, 
all MATLAB code developed for this book was developed using MATLAB 6.5 
Release 13 for Microsoft Windows.

Listing 1.1. MATLAB Function “radar eq.m”
function [snr] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range)
% This program implements Eq. (1.56)
c = 3.0e+8; % speed o f  light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda sqdb = 10*log10(lambdaA2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)A3); % (4pi)A3 in dB
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k_db = 10*log10(1.38e-23); % Boltzman’s constant in dB 
te db = 10*log10(te); % noise temp. in dB 
b_db = 10*log10(b); % bandwidth in dB
range_pwr4_db = 10*log10(rangeA4); % vector o f  target rangeA4 in dB
% Implement Equation (1.56)
num = p_peak + g  + g  + lambdasqdb + sigmadb;
den = four_pi cub + k d b  + te db + b db + n f + loss + range_pwr4 db;
snr = num - den;
return

Listing 1.2. MATLAB Program “fig1_12.m”
% Use this program to reproduce Fig. 1.12 o f  text. 
close all 
clear all
p t = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te = 290.0; % effective noise temperature in Kelvins
b = 5.0e+6; % radar operating bandwidth in Hz
n f  = 3.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = linspace(25e3,165e3,1000); % traget range 25 -165 Km, 1000 points 
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range); 
snr2 = radar_eq(pt, freq, g, sigma/10, te, b, nf, loss, range); 
snr3 = radar_eq(pt, freq, g, sigma*10, te, b, nf, loss, range);
% plot SNR versus range 
figure(1)
rangekm = range . / 1000;
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:') 
grid
legend('\sigma = 0 dBsm','\sigma = -10dBsm’, ’\sigma = -20 dBsm’) 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB');
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range); 
snr2 = radar_eq(pt*.4, freq, g, sigma, te, b, nf, loss, range); 
snr3 = radar_eq(pt*1.8, freq, g, sigma, te, b, nf, loss, range); 
figure (2)
plot(rangekm,snr3,’k ’,rangekm,snr1,’k -.',rangekm,snr2,'k:') 
grid
legend('Pt = 2.16 MW','Pt = 1.5 MW','Pt = 0.6 MW') 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB');
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% Use this program to reproduce Fig. 1.13 o f text. 
close all 
clear all
p t = 1.e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 40.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te =300.0; % effective noise temperature in Kelvins
n f  = 5.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = [75e3,100e3,150e3]; % three range values
sn rd b  = linspace(5,20,200); % SNR values from 5 dB to 20 dB 200 points
snr = 1 0 A(0.1.*snr_db); % convert snr into base 10
gain = 10A(0.1*g); %convert antenna gain into base 10
loss = 10A(0.1*loss); % convert losses into base 10
F  = 10A(0.1*nf); % convert noise figure into base 10
lambda = 3.e8/ freq; % compute wavelength
% ImplementEq.(1.57)
den = p t * gain * gain * sigma * lambdaA2;
num1 = (4*pi)A3 * 1.38e-23 * te * F  * loss * range(1)A4 .* snr;
num2 = (4*pi)A3 * 1.38e-23 * te * F  * loss * range(2)A4 .* snr;
num3 = (4*pi)A3 * 1.38e-23 * te * F  * loss * range(3)A4 .* snr;
tau1 = num1 ./ den ;
tau2 = num2 ./ den;
tau3 = num3 ./ den;
% plot tau versus snr 

figure(1)
semilogy(snr_db,1e6*tau1,'k',snr_db,1e6*tau2,'k -.',snr_db,1e6*tau3,'k:') 
grid
legend('R = 75 Km','R = 100 Km','R = 150 Km') 
xlabel (’Minimum required SNR - dB'); 
ylabel ('\tau (pulsewidth) in \mu sec');

Listing 1.3. MATLAB Program “fig1_13.m”

Listing 1.4. MATLAB Program “ref_snr.m”
% This program implements Eq. (1.60) 
clear all 
close all
R ref = 86e3; % ref. range 
tau ref = .1e-6; % ref. pulsewidth 
SNRref = 20.; % R e f SNR in dB 
snrref = 10A(SNRref/10);
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Sigmaref = 0.1; % ref RCS in mA2 
Lossp = 2; % processing loss in dB 
lossp = 10A(Lossp/10);
% Enter desired value 
tau = tauref;
R = 120e3;
rangeratio = (Rref /  R)A4;
Sigma = 0.2;
% Implement Eq. (1.60)
snr = snrref* (tau /  tauref) * (1. /  lossp) * ...

(Sigma /  Sigmaref) * rangeratio; 
snr = 10*log10(snr)

Listing 1.5. MATLAB Function “power_aperture.m”
function PAP =

power_aperture(snr, tsc,sigma,range,te,nf,loss,az_angle,el_ 
angle)

% This program implements Eq. (1.67)
Tsc = 10*log10(tsc); % convert Tsc into dB
Sigma = 10*log10(sigma); % convert sigma to dB
four_pi = 10*log10(4.0 * pi); % (4pi) in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
Te = 10*log10(te); % noise temp. in dB
range_pwr4_db = 10*log10(rangeA4); % target rangeA4 in dB 
omega = az angle * el angle /  (57.296)A2; % compute search volume in stera- 

dians
Omega = 10*log10(omega) % search volume in dB 
% implement Eq. (1.67)
PAP = snr + four_pi + k db + Te + n f + loss + range_pwr4 db + Omega ...

- Sigma - Tsc; 
return

Listing 1.6. MATLAB Program “fig1_ 16.m”
% Use this program to reproduce Fig. 1.16 o f  text. 
close all 
clear all
tsc = 2.5; % Scan time is 2.5 seconds
sigma = 0.1; % radar cross section in m squared
te = 900.0; % effective noise temperature in Kelvins
snr = 15; % desired SNR in dB
n f  = 6.0; %noise figure in dB
loss = 7.0; % radar losses in dB
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azangle = 2; % search volume azimuth extent in degrees 
el angle = 2; % search volume elevation extent in degrees 
range = linspace(20e3,250e3,1000); % range to target 20 Km 250 Km, 1000 

points
pap1 = power_aperture(snr, tsc,sigma/10,range,te,nf,loss,az_angle,el_angle); 
pap2 = power_aperture(snr, tsc,sigma, range,te,nf,loss,az_angle,el_angle); 
pap3 = power_aperture(snr, tsc,sigma*10,range,te,nf,loss,az_angle,el_angle); 
% plot power aperture product versus range 
% figure 1.16a 
figure(1)
rangekm = range . / 1000;
plot(rangekm,pap1,'k',rangekm,pap2,'k -.',rangekm,pap3,'k:') 
grid
legend('\sigma = -20 dBsm’, ’\sigma = -10dBsm’, ’\sigma = 0 dBsm’) 
xlabel ('Detection range in Km'); 
ylabel (’Power aperture product in dB');
% generate Figure 1.16b
lambda = 0.03; % wavelength in meters
G = 45; % antenna gain in dB
ae = linspace(1,25,1000);% aperture size 1 to 25 meter squared, 1000points 
Ae = 10*log10(ae);
range = 250e3; % range o f interest is 250 Km
pap1 = power_aperture(snr, tsc,sigma/10,range,te,nf,loss,az_angle,el_angle); 
pap2 = power_aperture(snr, tsc,sigma, range,te,nf,loss,az_angle,el_angle); 
pap3 = power_aperture(snr, tsc,sigma*10,range,te,nfloss,az_angle,el_angle); 
Pav1 = pap1 - Ae;
Pav2 = pap2 - Ae;
Pav3 = pap3 - Ae; 
figure(2)
plot(ae,Pav1,'k',ae,Pav2,'k -. ’,ae,Pav3,’k:’) 
grid
xlabel('Aperture size in square meters') 
ylabel('Pav in dB')
legend('\sigma = -20 dBsm’, ’\sigma = -10dBsm','\sigma = 0 dBsm’)

Listing 1.7. MATLAB Program “casestudy1_1.m”
% This program is used to generate Fig. 1.17 
% it implements the search radar equation defined in Eq. 1.67 
clear all 
close all
snr = 15.0; % Sensitivity SNR in dB 
tsc = 2.; % Antenna scan time in seconds
sigma tgtm = -10; % Missile RCS in dBsm
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sigm atgta = 6; % Aircraft RCS in dBsm
range = 60.0; % Sensitivity range in Km,
te = 290.0; % Effective noise temperature in Kelvins
n f = 8; % Noise figure in dB
loss = 10.0; % Radar losses in dB
az angle = 360.0; % Search volume azimuth extent in degrees
elangle = 10.0; % Search volume elevation extent in degrees
c = 3.0e+8; % Speed o f  light
% Compute Omega in steradians
omega = (az angle /  57.296) * (el angle /57.296);
omega db = 10.0*log10(omega); % Convert Omega to dBs
k_db = 10*log10(1.38e-23);
te d b  = 10*log10(te);
tscd b  = 10*log10(tsc);
factor = 10*log10(4*pi);
rangemdb = 10*log10(range * 1000.);
rangeadb = 10*log10(range * 1000.);
PAPMissile = snr - sigmatgtm  - tsc db + factor + 4.0 * rangemdb + ...

k_db + te db + n f  + loss + omega db 
PAP_Aircraft = snr - sigma tgta - tsc db + factor + 4.0 * rangeadb + ...

k_db + te db + n f  + loss + omega db 
index = 0;
% vary range from 2Km to 90 Km 

for rangevar = 2 : 1 : 90 
index = index + 1;
rangedb = 10*log10(rangevar * 1000.0);
papm(index) = snr - sigma tgtm - tsc db + factor + 4.0 * rangedb + ...

k_db + te db + n f  + loss + omega db; 
missilePAP(index) = PAPMissile; 
aircraftPAP(index) = PAPAircraft;
papa(index) = snr - sigma tgta - tsc db + factor + 4.0 * rangedb + ... 

k_db + te db + n f  + loss +omega db;
end
var = 2 : 1 : 90; 
figure (1)
plot (var,papm,'k',var,papa,'k-.')
legend ('Missile','Aircraft')
xlabel ('Range - Km');
ylabel (’Power Aperture Product - dB');
hold on
plot(var,missile_PAP, 'k:',var,aircraft_PAP, 'k:')
grid
hold off
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Listing 1.8. MATLAB Program “fig1_ 19.m”
% Use this program to reproduce Fig. 1.19 and Fig. 1.20 o f text. 
close all 
clear all
pt = 4; % peak power in Watts
freq = 94e+9; % radar operating frequency in Hz
g = 47.0; % antenna gain in dB
sigma = 20; % radar cross section in m squared
te = 293.0; % effective noise temperature in Kelvins
b = 20e+6; % radar operating bandwidth in Hz
n f  = 7.0; %noise figure in dB
loss = 10.0; % radar losses in dB
range = linspace(1.e3,12e3,1000); % range to target from 1. Km 12 Km, 1000 

points
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
Rnewci = (94A0.25) .* range;
snrCI = snr1 + 10*log10(94); % 94pulse coherent integration
% plot SNR versus range
figure(1)
rangekm = range . / 1000; 
plot(rangekm,snr1,'k',Rnewci./1000,snr1,'k -.') 
axis([1 12 -20 45]) 
grid
legend('single pulse','94 pulse CI') 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB);
% Generate Figure 1.20 
snr_b10 = 10.A(snr1./10);
SNR_1 = snr_b10./(2*94) + sqrt(((snr_b10A2) ./ (4*94*94)) + (snr_b10./ 

94)); % Equation 1.80 o f  text 
LNCI = (1+SNR_1) . / SNR_1; % Equation 1.78 o f  text 
NCIgain = 10*log10(94) - 10*log10(LNCI);
Rnewnci = ((10.A(0.1*NCIgain)).A0.25) .* range; 
snrnci = snr1 + NCIgain; 
figure (2)
plot(rangekm,snr1,’k ’,Rnewnci./1000,snr1,’k -.’, Rnewci./1000,snr1,'k:')
axis([1 12 -20 45])
grid
legend('single pulse','94 pulse NCI’, ’94 pulse CI’) 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB);
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%use this figure to generate Fig. 1.21 o f text 
clear all 
close all
np = linspace(1,10000,1000);
snrci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,1);
snrnci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,2);
semilogx(np,snrci, 'k',np,snrnci, 'k:')
legend('Coherent integration', ’Non-coherent integration')
grid
xlabel ('Number o f  integrated pulses'); 
ylabel ('SNR - dB);

Listing 1.10. MATLAB Function “pulse_integration.m”
function [snrout] = pulse_integration(pt, freq, g, sigma, te, b, nf, loss, 

range,np,ci_nci)
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range) % single pulse SNR 

i f  (ci nci == 1) % coherent integration 
snrout = snr1 + 10*log10(np); 

else % non-coherent integration 
i f  (ci_nci == 2)

sn rn ci = 10.A(snr1./10);
val1 = (snr_nci.A2) ./ (4.*np.*np);
val2 = snr n c i. / np;
val3 = snr n c i./ (2.*np);
SNR_1 = val3 + sqrt(val1 + val2); % Equation 1.87 o f  text 
LNCI = (1+SNR_1) . / SNR_1; % Equation 1.85 o f  text 
snrout = snr1 + 10*log10(np) - 10*log10(LNCI); 

end 
end 
return

Listing 1.9. MATLAB Program “fig1_21.m”

Listing 1.11. MATLAB Program “myradarvisit1_1.m”
close all 
clear all
p t = 724.2e+3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 37.0; % antenna gain in dB
sigmam = 0.5; % missile RCS in m squared
sigmaa = 4.0; % aircraft RCS in m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
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n f  = 6.0; %noise figure in dB 
loss = 8.0; % radar losses in dB
range = linspace(5e3,125e3,1000); % range to target from 25 Km 165 Km, 

1000 points
snr1 = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range); 
snr2 = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range 
figure(1)
rangekm = range . / 1000;
plot(rangekm,snr1,'k',rangekm,snr2,'k:')
grid
legend(’Misssile’, ’Aircraft’) 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB);

Listing 1.12. MATLAB Program “fig1_27.m”
% Use this program to reproduce Fig. 1.27 o f text. 
close all 
clear all 
np = 7;
p t = 165.8e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
n f  = 6.0; %noise figure in dB
loss = 8.0; % radar losses in dB
% compute the single pulse SNR when 7-pulse NCI is used
SNR_1 = (10A1.3)/(2*7) + sqrt((((10A1.3)A2) /  (4*7*7)) + ((10*1.3) /  7));
% compute the integration loss
LNCI = 10*log10((1+SNR_1)/SNR_1);
lossto ta l = loss + LNCI;
range = linspace(15e3,100e3,1000); % range to target from 15 to 100 Km, 

1000 points
% modify p t by np*pt to account for pulse integration
snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, loss total, range);
snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, loss_total, range);
snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range 
rangekm = range . / 1000;
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figure(1)
subplot(2,1,1)
plot(rangekm,snrmnci,'k',rangekm,snrm,'k -.') 
grid
legend('With 7-pulse NCI','Singlepulse’) 
ylabel ('SNR - dB'); 
title('Missile case') 
subplot(2,1,2)
plot(rangekm,snranci, 'k',rangekm,snra,'k -.') 
grid
legend('With 7-pulse NCI','Singlepulse’) 
ylabel ('SNR - dB'); 
title(Aircraft case') 
xlabel('Detection range - Km')
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A p p e n d ix  1A Pulsed Radar

1A.1. Introduction
Pulsed radars transmit and receive a train of modulated pulses. Range is 

extracted from the two-way time delay between a transmitted and received 
pulse. Doppler measurements can be made in two ways. If accurate range mea­
surements are available between consecutive pulses, then Doppler frequency 
can be extracted from the range rate R = AR/А  t . This approach works fine as 
long as the range is not changing drastically over the interval At. Otherwise, 
pulsed radars utilize a Doppler filter bank.

Pulsed radar waveforms can be completely defined by the following: (1) 
carrier frequency which may vary depending on the design requirements and 
radar mission; (2) pulsewidth, which is closely related to the bandwidth and 
defines the range resolution; (3) modulation; and finally (4) the pulse repeti­
tion frequency. Different modulation techniques are usually utilized to enhance 
the radar performance, or to add more capabilities to the radar that otherwise 
would not have been possible. The PRF must be chosen to avoid Doppler and 
range ambiguities as well as maximize the average transmitted power.

Radar systems employ low, medium, and high PRF schemes. Low PRF 
waveforms can provide accurate, long, unambiguous range measurements, but 
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both 
range and Doppler ambiguities; however, they provide adequate average trans­
mitted power as compared to low PRFs. High PRF waveforms can provide 
superior average transmitted power and excellent clutter rejection capabilities. 
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar 
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR). 
Range and Doppler ambiguities for different PRFs are in Table 1A.1.
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TABLE 1A.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous
Low PRF No Yes

Medium PRF Yes Yes
High PRF Yes No

Radars can utilize constant and varying (agile) PRFs. For example, Moving 
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind 
of agility is known as PRF staggering. PRF agility is also used to avoid range 
and Doppler ambiguities, as will be explained in the next three sections. Addi­
tionally, PRF agility is also used to prevent jammers from locking onto the 
radar’s PRF. These two latter forms of PRF agility are sometimes referred to as 
PRF jitter.

Fig. 1A.1 shows a simplified pulsed radar block diagram. The range gates 
can be implemented as filters that open and close at time intervals that corre­
spond to the detection range. The width of such an interval corresponds to the 
desired range resolution. The radar receiver is often implemented as a series of 
contiguous (in time) range gates, where the width of each gate is matched to 
the radar pulsewidth. The NBF bank is normally implemented using an FFT, 
where bandwidth of the individual filters corresponds to the FFT frequency 
resolution.

1A.2. Range and Doppler Ambiguities
As explained earlier, a pulsed radar can be range ambiguous if a second 

pulse is transmitted prior to the return of the first pulse. In general, the radar 
PRF is chosen such that the unambiguous range is large enough to meet the 
radar’s operational requirements. Therefore, long-range search (surveillance) 
radars would require relatively low PRFs.

The line spectrum of a train of pulses has sinx/ x  envelope, and the line 
spectra are separated by the PRF, f r , as illustrated in Fig. 1A.2. The Doppler 
filter bank is capable of resolving target Doppler as long as the anticipated 
Doppler shift is less than one half the bandwidth of the individual filters (i.e., 
one half the width of an FFT bin). Thus, pulsed radars are designed such that

fr = Ifdmax = ^ ma (1A.1)

where f dmax is the maximum anticipated target Doppler frequency, vrmax is the 
maximum anticipated target radial velocity, and X is the radar wavelength.
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Figure 1A.1. Pulsed radar block diagram.

If the Doppler frequency of the target is high enough to make an adjacent spec­
tral line move inside the Doppler band of interest, the radar can be Doppler 
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems 
require high PRF rates when detecting high speed targets. When a long-range 
radar is required to detect a high speed target, it may not be possible to be both 
range and Doppler unambiguous. This problem can be resolved by using multi­
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each 
dwell interval (scan or integration frame) or the radar can use a single PRF in 
one scan and resolve ambiguity in the next. The latter technique, however, may 
have problems due to changing target dynamics from one scan to the next.

1A.3. Resolving Range Ambiguity
Consider a radar that uses two PRFs, f r1 and f r2, on transmit to resolve 

range ambiguity, as shown in Fig. 1A.3. Denote Ru1 and Ru2 as the unambigu­
ous ranges for the two PRFs, respectively. Normally, these unambiguous 
ranges are relatively small and are short of the desired radar unambiguous 
range Ru (where Ru »Ru1 ,Ru2 ). Denote the radar desired PRF that corre­
sponds to R u as f rd .
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Figure 1A.2. Spectra of transmitted and received waveforms, and Doppler 
bank. (a) Doppler is resolved. (b) Spectral lines have moved 
into th e n e x t D o ppler filter. This results in an ambiguous Dop­
pler measurement.

We choose f r1 and f r2 such that they are relatively prime with respect to one 
another. One choice is to select f r1 = Nfrd and f r2 = (N + 1 )frd for some 
integer N . Within one period of the desired PRI ( Td = 1 / f rd ) the two PRFs 
f r1 and f r2 coincide only at one location, which is the true unambiguous target 
position. The time delay Td establishes the desired unambiguous range. The 
time delays t1 and t2 correspond to the time between the transmit of a pulse on 
each PRF and receipt of a target return due to the same pulse.

Let M1 be the number of PRF1 intervals between transmit of a pulse and 
receipt of the true target return. The quantity M2 is similar to M1 except it is 
for PRF2. It follows that, over the interval 0 to Td, the only possible results 
are M1 = M2 = M  or M1 + 1 = M2 . The radar needs only to measure t1 and 
t2 . First, consider the case when t1 < t2 . In this case,

fr1
t2 + f  

r
M (1A.2)

for which we get

M
T1 -  T2

(1A.3)

where T1 = 1 / f r1 and T2 = 1 / f r2 . It follows that the round trip time to the 
true target location is
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tr

tr = MT1 + t1 

tr = MT2 + t2

1 fr1 2 fr2

Solving for M  we get

T1 -  T2

(1A.4)

and the true target range is

R = ctr/2  (1A.5)

Now if t1 > t2 , then

M  M  + 1 (1A.6)

and the round-trip time to the true target location is

tr1 = MT1 + t1 (1A.8)
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and in this case, the true target range is

ctr1
R = - f  (1A.9)

Finally, if t1 = t2 , then the target is in the first ambiguity. It follows that

tr2 = t1 = t2 (1A.10)

and

R = c t 2/2  (1A.11)

Since a pulse cannot be received while the following pulse is being transmit­
ted, these times correspond to blind ranges. This problem can be resolved by 
using a third PRF. In this case, once an integer N  is selected, then in order to 
guarantee that the three PRFs are relatively prime with respect to one another. 
In this case, one may choose f r1 = N(N + 1)f rd , f r2 = N(N + 2)f rd , and 
fr3 = (N + 1)(N + 2)frd .

1A.4. Resolving Doppler Ambiguity
The Doppler ambiguity problem is analogous to that of range ambiguity. 

Therefore, the same methodology can be used to resolve Doppler ambiguity. In 
this case, we measure the Doppler frequencies f d 1 and f d2 instead of t1 and

If f d1 > f d 2, then we have

f r1 f r2 

And if f d1 <f d2,

M  = ---- ----- ------2 (1A.12)

f  -  f
M  = d2 d  (1A.13)

Jr1 ~f r2

and the true Doppler is

j dd = f  + fd1 (1A.14)
f d = M fr2 + f d2

Finally, if f d1 = f d2 , then

f d = f d1 = f d 2 (1A.15) 

Again, blind Doppler can occur, which can be resolved using a third PRF.

t2 .
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Example:

A certain radar uses two PRFs to resolve range ambiguities. The desired 
unambiguous range is Ru = 100Km . Choose N = 59 . Compute f r1, f r2,
Ru1 , and Ru2 ■

Solution:

First let us compute the desired PRF, f rd

f  c -5 x 108 1 5 t i  = ---- = ----------- = 1.5 KHzrd 3 u 200 x 103

It follows that

fr1 = Nfrd = (59)( 1500) = 88.5KHz 

fr 2 = (N + 1)frd = (59 + 1)(1500) = 90KHz

Ru1 = ----- = 1.695Km
2fr1 2 x 88.5 x 103

Ru2 = -C- = - - i - l i 0---- = 1.667Km.
2frr2 2 x 90 x 10

Example:

Consider a radar with three PRFs; f r1 = 15KHz , f r2 = 18KHz , and 
f r3 = 21KHz . Assume f 0 = 9GHz . Calculate the frequency position o f each 
PRF for a target whose velocity is 550m/s . Calculate f d (Doppler frequency) 
for another target appearing at 8KHz , 2KHz , and 17KHz for each PRF.

Solution:

The Doppler frequency is

f  vfo 2 x 550 x 9 x 109 33 = 2— = -------------------  = 33 KHzd 8 c 3 x 108

Then by using Eq. (1A.14) n f ri + f di = f d where i = 1,2, 3 , we can write 

П1- г 1 +fd1 = 15 n1 +fd 1 = 33

n2fr 2 +f d2 = 18 n2 + f d 2 = 33 

n3f r 3 +f d3 = 21 n3 +f d 3 = 33

We will show here how to compute n1, and leave the computations o f  n2 and 
n3 to the reader. First, i f  we choose n1 = 0 , that means f d1 = 33KHz , which 
cannot be true since f d 1 cannot be greater than f r1. Choosing n1 = 1 is also
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invalid since f dl = 18KHz cannot be true either. Finally, i f  we choose 
n1 = 2 we get f d 1 = 3KHz , which is an acceptable value. It follows that the 

minimum n1, n2, n3 that may satisfy the above three relations are n1 = 2 , 
n2 = 1, and n3 = 1. Thus, the apparent Doppler frequencies are 
f d 1 = 3KHz , f d2 = 15KHz , and f d3 = 12KHz .

A

f d 1 f '1

KHz
---------- — i------------------- <------------------ -------------------1------------------ 1------------------ <------------------ <---------- ►

3 5 10 15 20 25 30 35

Now for the second part o f  the problem. Again by using Eq. (1A.14) we have

n1f r1 + f d 1 = f d = 15n1 + 8 

n f r2 + f d 2 = f d = 18n2 + 2 

nfr3 +fd3 = f d = 21n3 + 17
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We can now solve for the smallest integers n1, n2, n3 that satisfy the above 
three relations. See the table below.

n 0 1 2 3 4

fd  fr0m f r1
8 23 38 53 68

f d fr0m f r2 2 20 38 56

f d fr0m f r3 17 38 39

Thus, n1 = 2 = n2 , and n3 = 1, and the true target Doppler is 
f d = 38 KHz . It follows that

,onnn 0.0333 n mvr = 38000 x —-—  = 632.7-----r 2 sec

© 2004 by Chapman & Hall/CRC CRC Press LLC



A p p e n d ix  1B Noise Figure

1B.1. Noise Figure

Any signal other than the target returns in the radar receiver is considered to 
be noise. This includes interfering signals from outside the radar and thermal 
noise generated within the receiver itself. Thermal noise (thermal agitation of 
electrons) and shot noise (variation in carrier density of a semiconductor) are 
the two main internal noise sources within a radar receiver.

The power spectral density of thermal noise is given by

S „ W  = ---------------------  (1B.1)

where M is the absolute value of the frequency in radians per second, T is the 
temperature of the conducting medium in degrees Kelvin, k is Boltzman’s 
constant, and h is Plank’s constant (h = 6.625 x 10-34 joule seconds). When 
the condition |<»| « 2nkT/ h is true, it can be shown that Eq. (1B.1) is approxi­
mated by

Sn(m)« 2kT (1B.2)

This approximation is widely accepted, since, in practice, radar systems oper­
ate at frequencies less than 100 GHz ; and, for example, if T = 290K, then 
2nkT/h  « 6000 GHz .
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The mean square noise voltage (noise power) generated across a 1 ohm 
resistance is then

where B is the system bandwidth in hertz.

Any electrical system containing thermal noise and having input resistance 
Rin can be replaced by an equivalent noiseless system with a series combina­
tion of a noise equivalent voltage source and a noiseless input resistor Rin 
added at its input. This is illustrated in Fig. 1B.1.

fourth the value computed in Eq. (1B.3). The proof is left as an exercise.

Consider a noisy system with power gain AP , as shown in Fig. 1B.2. The 
noise figure is defined by

dro = 4kTB (1B.3)

noiseless
system

Figure 1B.1. Noiseless system with an input noise 
voltage source.

The amount of noise power that can physically be extracted from (n2> is one

FdB = 10 log
total noise power out (1B.4)

noise power out due to Rin alone

More precisely,

Figure 1B.2. Noisy amplifier replaced by its noiseless equivalent 
and an input voltage source in series with a resistor.
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No
FdB = 10 log^-A r (1B.5)

where No and Ni are, respectively, the noise power at the output and input of 
the system.

If we define the input and output signal power by S; and So , respectively, 
then the power gain is

S_o
S;

AP = (1B.6)

It follows that

'S i /  Ni\ ' Sл f S \
FdB = 10l»g ( f t v )  = ( n )  -  (N& ... (,BJ)i dB o dB

where

§ ) iB > (ж )„  (1B-S)i dB o dB

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio 
due to the added thermal noise of the amplifier ((SNR)o = (SNR); - F in dB) .

We can also express the noise figure in terms of the system’s effective tem­
perature Te . Consider the amplifier shown in Fig. 1B.2, and let its effective 
temperature be Te . Assume the input noise temperature is To . Thus, the input 
noise power is

Nt = kToB (1B.9)

and the output noise power is

No = kToB Ap + kTeB Ap (1B.10)

where the first term on the right-hand side of Eq. (1B.10) corresponds to the 
input noise, and the latter term is due to thermal noise generated inside the sys­
tem. It follows that the noise figure can be expressed as

(SNRY S; To + Te Te
F = ------ - = ттгт; kBAp o-  e = 1 + (1B.11)

(SNR)o kToB p So To ( )

Equivalently, we can write

Te = (F -  1 )To (1B.12)
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Example:

An amplifier has a 4dB noise figure; the bandwidth is B = 500 KHz . Cal­
culate the input signal power that yields a unity SNR at the output. Assume 
To = 290 degrees Kelvin and an input resistance o f  one ohm.

Solution:

The input noise power is

kToB = 1.38 x 10-23 x 290 x 500 x 103 = 2.0 x 10-15w 

Assuming a voltage signal, then the input noise mean squared voltage is 

<n2) = kToB = 2.0 x 10-15 v2

F = 1004 = 2.51 

From the noise figure definition we get

and

2 2 -15 -15 2<s2) = F <n2) = 2.51 x 2.0 x 10 15 = 5.02 x 10 15 v

Finally,

J i s 2) = 70.852nv

Consider a cascaded system as in Fig. 1B.3. Network 1 is defined by noise 
figure F j , power gain Gx, bandwidth B , and temperature Te1. Similarly, net­
work 2 is defined by F 2, G2, B , and Te2. Assume the input noise has temper­
ature T0 .

network 1 network 2

S
Te 1 Te 2 ,G2 F 2

So

N No

Figure 1B.3. Cascaded linear system.
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The output signal power is

So = Sfi1G 2 (1B.13)

The input and output noise powers are, respectively, given by

Ni = kToB (1B.14)

No = kT0BG1G2 + kTe1 BG1G2 + kTe2BG2 (1B.15)

where the three terms on the right-hand side of Eq. (1B.15), respectively, corre­
spond to the input noise power, thermal noise generated inside network 1, and 
thermal noise generated inside network 2.

Now if we use the relation Te = (F -  1)T0 along with Eq. (1B. 13) and Eq. 
(1B.14), we can express the overall output noise power as

No = F1NG1G2 + (F2 -  1)NG 2 (1B.16)

It follows that the overall noise figure for the cascaded system is

(S7 / Ni) F2 -  1 
F = — ------ = F, + —----  (1B.17)

(S0/N 0) 1 G1 ( )

In general, for an n-stage system we get

F2 -  1 F3 -  1 Fn -  1 F = F-. + —----+ —-----+ - - - + ------------ n--------------  (1B.18)
1 G1 G1G2 G1G2G3 - - - Gn - 1 ( )

Also, the n-stage system effective temperatures can be computed as

Te = Te 1 + G 2 + G r t  + - - - + G G G Ten G (1B'19)G1 G1G2 G1G2G3 - - - Gn - 1

As suggested by Eq. (1B.18) and Eq. (1B.19), the overall noise figure is mainly 
dominated by the first stage. Thus, radar receivers employ low noise power 
amplifiers in the first stage in order to minimize the overall receiver noise fig­
ure. However, for radar systems that are built for low RCS operations every 
stage should be included in the analysis.

Example:

A radar receiver consists o f  an antenna with cable loss L = 1 dB = F1 , an 
RF amplifier with F2 = 6dB , and gain G2 = 20dB , followed by a mixer 
whose noise figure is F3 = 10dB and conversion loss L = 8dB , and finally, 
an integrated circuit IF  amplifier with F4 = 6dB and gain G4 = 60dB . Find 
the overall noise figure.
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Solution:

From Eq. (1B.18) we have
F2 -  1 F 3 -  1 F4 -  1 

F = F + —__ + —3___ + 4
1 G1 G1G2 G1G2G3

G1 G2 G3 G4 F 1 F 2 F 3 F4

-1dB 20dB -8dB 60dB 1dB 6dB 10dB 6dB

0.7943 100 0.1585 106 1.2589 3.9811 10 3.9811

It follows that

F  = 1.2589 + ^ H 11- 1 + 1(0- 1 + ____3^ ~ ^ ____ = 5.3629
0.7943 100 x 0.7943 0.158 x 100 x 0.7943

F = 10log (5.3628) = 7.294dB
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Chapter 2 Radar Detection

2.1. Detection in the Presence o f Noise
A simplified block diagram of a radar receiver that employs an envelope 

detector followed by a threshold decision is shown in Fig. 2.1. The input signal 
to the receiver is composed of the radar echo signal 5(t) and additive zero 
mean white Gaussian noise n (t) , with variance у  . The input noise is 
assumed to be spatially incoherent and uncorrelated with the signal.

The output of the bandpass IF filter is the signal v (t) , which can be written
as

v(t) = vj(t) cos ra0t + Vq (t) sinro0t = r(t) cos (ra0t -  ф (0)

vj( t) = r( t) cos ф (0  (2.1)

Vq( t ) = r (t ) sin ф( t )

where ra0 = 2 n f0 is the radar operating frequency, r (t ) is the envelope of 
v (t ) , the phase is ф(t) = atan(Vq/ vI) , and the subscripts I, Q , respectively, 
refer to the in-phase and quadrature components.

A target is detected when r (t ) exceeds the threshold value VT, where the 
decision hypotheses are

s (t) + n (t) > VT Detection  
n (t) > VT False alarm
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Low Pass
— ► Filter 1

Threshold V-

Figure 2.1. Simplified block diagram of an envelope detector and threshold 
receiver.

The case when the noise subtracts from the signal (while a target is present) to 
make r (t) smaller than the threshold is called a miss. Radar designers seek to 
maximize the probability of detection for a given probability of false alarm.

The IF filter output is a complex random variable that is composed of either 
noise alone or noise plus target return signal (sine wave of amplitude A ). The 
quadrature components corresponding to the first case are

Vi (t) = ni(t) (2.2)
Vq (t) = nQ( t)

and for the second case,

vI(t) = A + nI (t ) = r (t ) cos ф( t ) ^  nI(t ) = r (t) cos ф( t ) -  A
(2.3)

Vq (t) = nQ (t) = r (t) sin ф( t)

where the noise quadrature components nI(t) and nQ(t) are uncorrelated zero 
mean low pass Gaussian noise with equal variances, у 2 . The joint Probability 
Density Function (pdf) of the two random variables n ;nQ is

1 /  n2 + nQQ]
f(n I, nQ) = ----- i exp I--------2 I (2.4)

2 п у  + 2 у  ,

____ L _ exp| _ ( r c c ^ - A ) 2 + (rsnKp)21
"  2„ у 2 ” l -  2у2 )

The pdfs of the random variables r (t ) and ф(t ) , respectively, represent the 
modulus and phase of v ( t ) . The joint p d f  for the two random variables 
r (t ) ;ф( t ) is given by

f(r , ф) = f(n i, nQ)|J  (2.5)

where [J] is a matrix of derivatives defined by

© 2004 by Chapman & Hall/CRC CRC Press LLC



[J] =

dnI dnI 
dr дф

dnQ dnQ
dr дф

cos ф - r  sinф 
sinф r cos ф

(2.6)

The determinant of the matrix of derivatives is called the Jacobian, and in this 
case it is equal to

J  = r  (t) (2.7)

Substituting Eqs. (2.4) and (2.7) into Eq. (2.5) and collecting terms yield

r | r 2 + A2] / rAcosф'
f ( r , ф) = ----- 2exp I------- Г I exp l ----- 2

2п у  l  2 у  ,  У
(2.8)

The p d f  for r alone is obtained by integrating Eq. (2.8) over ф

2П
1 Г / rA cos ф0 ,

2П J exp I  ^f ( r ) = J f(r , ф)dф = -^ ex p ^  r  +A
2 у

(2.9)
у

where the integral inside Eq. (2.9) is known as the modified Bessel function of 
zero order,

2п

=<e) = 2П J
В cos 0 7r,e d0 (2.10)

Thus,

у у 2 у
(2.11)

which is the Rician probability density function. If A / у  = 0 (noise alone), 
then Eq. (2.11) becomes the Rayleigh probability density function

f( r) = — exp I----- r
у

-  J— \
2 у 2,

(2.12)

Also, when (A/ у  ) is very large, Eq. (2.11) becomes a Gaussian probability2
density function of mean A and variance у  :

0 0

I

0
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f (  r )'■
/J2 п у 2 l  2 у

1 [ (r -  A )' -----exp I -  -------- (2.13)

Fig. 2.2 shows plots for the Rayleigh and Gaussian densities. For this purpose, 
use MATLAB program “fig2_2.m” given in Listing 2.1 in Section 2.11. This 
program uses MATLAB functions “normpdf.m” and “raylpdf.m”. Both func­
tions are part of the MATLAB Statistics toolbox. Their associated syntax is as 
follows

normpdf(x,mu,sigma)

raylpdf(x,sigma)

“x ” is the variable, “m u” is the mean, and “sigma” is the standard deviation.

0 3

---- Gaussian pdt
---- Rayleigh pdt

/ '•

t =1.5

[1 = 0 cr = 1.5^
J

f \

r \ \
/ \ \

i \
\ ...........

Figure 2.2. Gaussian and Rayleigh probability densities.

The density function for the random variable ф is obtained from

r

/(ф ) = Jf(r, ф) dr (2.14)

While the detailed derivation is left as an exercise, the result of Eq. (2.14) is 

Лф) = 1  exp[ Щ  + A »  expI - ^ И й Т ]  f / ^ 0  (2.15)
2 п 2 у 2̂  J:2п у 2 у у

0
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where

F(x) = f - j =  e<1/2 d |  (2.16)
J Т2Л
-ад

The function F  (x) can be found tabulated in most mathematical formula refer­
ence books. Note that for the case of noise alone (A = 0), Eq. (2.15) collapses 
to a uniform p d f  over the interval {0 , 2 n }.

One excellent approximation for the function F  (x) is

F (x) = 1 - |  ----------------1— - ] - p r e-  72 x > 0 (2.17)
+0.661 x + 0.339л/x2 + 5.51/ V2^

and for negative values of x

F ( -x ) = 1 -  F  (x) (2.18)

MATLAB Function “que_func.m”

The function “quejunc.m ” computes F (x ) using Eqs. (2.17) and (2.18) and 
is given in Listing 2.2 in Section 2.11. The syntax is as follows:

fo fx = que_func (x)

x

2.2. Probability o f False Alarm
The probability of false alarm P^a is defined as the probability that a sample 

R of the signal r (t) will exceed the threshold voltage VT when noise alone is 
present in the radar,

ад

"'a  = f  ^ expI ' В  dr = exp[ I S  (" 19a)

Vt = J2  y 2ln (jp -/ (2.19b)

Fig. 2.3 shows a plot of the normalized threshold versus the probability of false 
alarm. It is evident from this figure that Pfa is very sensitive to small changes 
in the threshold value. This figure can be reproduced using MATLAB program 
“fig2_3.m” given in Listing 2.3 in Section 2.11.

The false alarm time Tfa is related to the probability of false alarm by

T
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log ( 1 /  Pfa)

Figure 2.3. Normalized detection threshold versus probability of false alarm.

Tfa = ti n / Pfa (2.20)

where tint represents the radar integration time, or the average time that the 
output of the envelope detector will pass the threshold voltage. Since the radar 
operating bandwidth B is the inverse of tint, then by substituting Eq. (2.19) 
into Eq. (2.20) we can write Tfa as

(2.21)

Minimizing Tfa means increasing the threshold value, and as a result the radar 
maximum detection range is decreased. Therefore, the choice of an acceptable 
value for Tfa becomes a compromise depending on the radar mode of opera­
tion.

Fehlner1 defines the false alarm number as

nfa = ln ( 1 -  Pfa) P
(2.22)

fa

1. Fehlner, L. F., Marcum’s and Swerling’s Data on Target Detection by a Pulsed 
Radar, Johns Hopkins University, Applied Physics Lab. Rpt. # TG451, July 2, 1962, 
and Rpt. # TG451A, September 1964.
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Other slightly different definitions for the false alarm number exist in the liter­
ature, causing a source of confusion for many non-expert readers. Other than 
the definition in Eq. (2.22), the most commonly used definition for the false 
alarm number is the one introduced by Marcum (1960). Marcum defines the 
false alarm number as the reciprocal of P fa . In this text, the definition given in 
Eq. (2.22) is always assumed. Hence, a clear distinction is made between Mar­
cum’s definition of the false alarm number and the definition in Eq. (2.22).

2.3. Probability o f Detection
The probability of detection P D is the probability that a sample R  of r  (t ) 

will exceed the threshold voltage in the case of noise plus signal,

PD = f  —2 7о (Ц ) expI -J у  — +
r1 + A1 
--2---—--2--- dr (2.23)

If we assume that the radar signal is a sine waveform with amplitude A , then its
power is A  / 2. Now, by using SN R  = A  / 2— (single-pulse SNR) and

2 2( VT/ 2 — ) = ln (1 /P fa) , then Eq. (2.23) can be rewritten as

PD = dr =

,/2—2ln (1 /Pfa)

Q

(2.24)

Q [a, p] = fc /o (aZ ) e (Z + a ) / 2 dZ

P

(2.25)

Q is called Marcum’s Q-function. When P fa is small and P D is relatively 
large so that the threshold is also large, Eq. (2.24) can be approximated by

Pd * F  -  D +— Pfa
(2.26)

where F  (x ) is given by Eq. (2.16). Many approximations for computing Eq. 
(2.24) can be found throughout the literature. One very accurate approximation 
presented by North (see bibliography) is given by

P D * 0.5 x e r f c Q - lnPfa - 4 S N R  + 0.5) 

where the complementary error function is

(2.27)

ад

ад
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er fc ( z )  = 1 -  - p  f  e v d v (2.28)

MATLAB Function “marcumsq.m”

The integral given in Eq. (2.24) is complicated and can be computed using 
numerical integration techniques. Parl1 developed an excellent algorithm to 
numerically compute this integral. It is summarized as follows:

Q [ a, b ] =

a n /  (a - b )'—-exp | ---------

1

2 P

(
2p
a n / ( a - b )' —  exp ---------

2 n

a < b

a > b

a n = dn + ab a n- 1 + a n- 2

Pn = 1 + Ob Pn- 1 + Pn-2

dn + 1 = dnd1

(2.29)

(2.30)

(2.31)

(2.32)

a 0 =

d1 =

1
0

a /  b 
b /  a

a < b 
a > b

a < b 
a > b

(2.33)

(2.34)

z

0

a_j = 0.0, p0 = 0.5 , and p_j = 0 . Tlie recursive Eqs. (2.30) through (2.32) 
are computed continuously until Pn > 10  ̂ for values of p  > 3 . The accuracy of 
the algorithm is enhanced as the value of p  is increased. The MATLAB func­
tion “marcumsq.m” given in Listing 2.4 in Section 2.11 implements Parl’s 
algorithm to calculate the probability of detection defined in Eq. (2.24). The 
syntax is as follows:

Pd = marcumsq (alpha, beta) 
where alpha and beta are from Eq. (2.25). Fig. 2.4 shows plots of the probabil­
ity of detection, PD, versus the single pulse SNR, with the P^a as a parameter. 
This figure can be reproduced using the MATLAB program “p ro b sn r l.m ” 
given in Listing 2.5 in Section 2.11.

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans.
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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Single pulse SNR - dB

Figure 2.4. Probability of detection versus single pulse SNR, for several 
values of Pfa .

2.4. Pulse Integration

Pulse integration was discussed in Chapter 1 in the context of radar measure­
ments. In this section a more comprehensive analysis of this topic is introduced 
in the context of radar detection. The overall principles and conclusions pre­
sented earlier will not change; however, the mathematical formulation and spe­
cific numerical values will change. Coherent integration preserves the phase 
relationship between the received pulses, thus achieving a build up in the sig­
nal amplitude. Alternatively, pulse integration performed after the envelope 
detector (where the phase relation is destroyed) is called non-coherent or post­
detection integration.

2.4.1. Coherent Integration
In coherent integration, if a perfect integrator is used (100% efficiency), then 

integrating nP pulses would improve the SNR by the same factor. Otherwise, 
integration loss occurs which is always the case for non-coherent integration. 
In order to demonstrate this signal buildup, consider the case where the radar 
return signal contains both signal plus additive noise. The mth pulse is
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ym ( t )  =  ^ ( t )  +  n m ( t) (2.35)

where 5 (t ) is the radar return of interest and nm (t) is white uncorrelated addi­
tive noise signal. Coherent integration of nP pulses yields

Z(t) = 1  2  ym(*) = 2  1  [5(*) + nm(t)] = 5(*) + 2  /jpnm(t) (2'36)P P
m = 1 m = 1 m = 1

The total noise power in z (t ) is equal to the variance. More precisely,

Vnz = E

/  nP 0 /  nP 0

2  i ," m (t) 2  I1  ('>
_ m = 1 y Vl = 1

where E [ ] is the expected value operator. It follows that

(2.37)

2
Vnz = "T 2  E  [ nm( t) nl*( t)] = "T 2  ^ny8ml = -f-^Пу (2'38)

, l = 1 , l = 1
where y ny is the single pulse noise power and 5ml is equal to zero for m ^  l 
and unity for m = l . Observation of Eqs. (2.36) and (2.38) shows that the 
desired signal power after coherent integration is unchanged, while the noise 
power is reduced by the factor 1 / nP . Thus, the SNR after coherent integration 
is improved by nP .

Denote the single pulse SNR required to produce a given probability of 
detection as (SNR )1. Also, denote (SNR) as the SNR required to produce 
the same probability of detection when nP pulses are integrated. It follows that

n n nP P P

n nP P

P P

(SNR)np = 1  (SNR)! (2.39)
P nP

The requirements of knowing the exact phase of each transmitted pulse as well 
as maintaining coherency during propagation is very costly and challenging to 
achieve. Thus, radar systems would not utilize coherent integration during 
search mode, since target micro-dynamics may not be available.

2.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector, 
also known as the quadratic detector. A block diagram of radar receiver utiliz­
ing a square law detector and non-coherent integration is illustrated in Fig. 2.5. 
In practice, the square law detector is normally used as an approximation to the 
optimum receiver.
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Figure 2.5. Simplified block diagram of a square law detector and 
non-coherent integration.

The p d f  for the signal r (t) was derived earlier and it is given in Eq. (2.11). 
Define a new dimensionless variable y  as

and also define

(2.40)

- p = — = 2SNRp 2
V

It follows that the p d f  for the new variable is then given by

(2.41)

/(Уп ) = / ( rn)
dr.
dyn

= Уп 10(Уп*— р) exp
-Су2 + — )' (2.42)

The output of a square law detector for the n pulse is proportional to the 
square of its input, which, after the change of variable in Eq. (2.40), is propor­
tional to y n . Thus, it is convenient to define a new change variable,

1 2xn = ---yn (2.43)

The p d f  for the variable at the output of the square law detector is given by

/ ( x n ) = / (Уп )
dyn
dxn

= exp xn + — ))  W 2 xn - p ) (2.44)

Non-coherent integration of np pulses is implemented as

z = b  X"
n = 1

Since the random variables xn are independent, the p d f  for the variable z is

(2.45)

nP

© 2004 by Chapman & Hall/CRC CRC Press LLC



/ ( z )  =  / ( x 1 ) •  / ( x 2) •  -  •  / ( x np) (2.46)

The operator • symbolically indicates convolution. The characteristic 
functions for the individual pdfs can then be used to compute the joint p d f  in 
Eq. (2.46). The details of this development are left as an exercise. The result is

f(z) = (n p - r )  P exp ( " z -  2" p- р07"P- 2"Pz —p) (2.47)

Inp _ j is the modified Bessel function of order nP -  1. Therefore, the probabil­
ity of detection is obtained by integrating / ( z) from the threshold value to 
infinity. Alternatively, the probability of false alarm is obtained by letting — p 
be zero and integrating the p d f  from the threshold value to infinity. Closed 
form solutions to these integrals are not easily available. Therefore, numerical 
techniques are often utilized to generate tables for the probability of detection.

Improvement Factor and Integration Loss

Denote the SNR that is required to achieve a specific PD given a particular 
P/a when nP pulses are integrated non-coherently by (SNR)nci . And thus, 
the single pulse SNR, (SN R)1, is less than (SNR)nci . More precisely,

(SNR)nci = (SNR)1 x I (np) (2.48)

where I( nP) is called the integration improvement factor. An empirically 
derived expression for the improvement factor that is accurate within 0.8dB is 
reported in Peebles1 as

[I (np )] dB = 6.79( 1 + 0.235P d ) ( 1 + ^ 4 6 /  log ( "p ) (2.49)

(1 -  0.140log (nP) + 0.018310 (log nP )2)

Fig. 2.6a shows plots of the integration improvement factor as a function of the 
number of integrated pulses with PD and P/a as parameters, using Eq. (2.49). 
This plot can be reproduced using the MATLAB program “fig2_6a.m ” given 
in Listing 2.6 in Section 2.11. Note this program uses the MATLAB function 
“improvjac.m”, which is given in Listing 2.7 in Section 2.11.

MATLAB Function “improv_fac.m”

The function “im provfac.m ” calculates the improvement factor using Eq.
(2.49). It is given in Listing 2.7 in Section 2.11. The syntax is as follows:

[impr o /  np] = improv/ac (np, p/a, pd)

1. Peebles Jr., P. Z., Radar Principles, John Wiley & Sons, Inc., 1998.
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Number of pulses

Figure 2.6a. Improvement factor versus number of non-coherently integrated 
pulses.

Number of pulses

Figure 2.6b. Integration loss versus number of non-coherently integrated 
pulses.

© 2004 by Chapman & Hall/CRC CRC Press LLC



where

Symbol Description Units Status
np number of integrated pulses none input

pfa probability of false alarm none input
pd probability of detection none input

impr of np improvement factor output dB

The integration loss is defined as

Lnci = np / 1 (np ) (2-50)

Figure 2.6b shows a plot of the integration loss versus nP . This figure can be 
reproduced using MATLAB program “fig2_6b.m” given in Listing 2.8 in Sec­
tion 2.11. It follows that, when non-coherent integration is utilized, the corre­
sponding SNR required to achieve a certain PD given a specific Pfa is now 
given by

(Sn R)nci = (np x (SNR)j ) / Lnci (2-51)

which is very similar to Eq. (1.86) derived in Chapter 1.

2.4.3. Mini Design Case Study 2.1

An L-band radar has the following specifications: operating frequency 
f 0 = 1.5GHz, operating bandwidth B = 2M H z, noise figure F  = 8d B , 

system losses L = 4dB, time o f  false alarm Tfa = 12 m inutes, detection

range R = 12Km, the minimum required SNR is SNR = 13.85d B , antenna
2

gain G = 5000, and target RCS ct = 1m . (a) Determine the PRF f r, the 

pulsewidth т , the peak power P t , the probability o f  false alarm Pfa, the corre­

sponding PD, and the minimum detectable signal level Smin. (b) How can you 
reduce the transmitter power to achieve the same performance when 10 pulses 
are integrated non-coherently? (c) I f  the radar operates at a shorter range in 
the single pulse mode, find  the new probability o f  detection when the range 
decreases to 9K m .

A Solution

Assume that the maximum detection corresponds to the unambiguous range. 
From that the PRF is computed as
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f  = _c_ = 3 X 10 = 12.5KHz 
Jr 2R„ 2 x 12000u

The pulsewidth is proportional to the inverse o f  the bandwidth,

т = 1  = — 1—  = 0.5 us 
B  2 x 106

The probability o f  false alarm is

P aa = —  = ---------- 1----------  = 6.94 x 10-10
BTfa 2 x 106 x 12 x 60

It follows that by using MATLAB function “marcumsq.m”the probability o f  
detection is calculated from

Q

with the following syntax

h 2 'P r *

marcumsq(alpha, beta)

where

alpha  = л/2 x л/1013'85710 = 6.9665

beta  = 2 ln I--------------1 = 6.494
V + 6.94 x 10 J

2 2Remember that (A / у  ) = 2SN R . Thus, the detection probability is

PD = marcum sq(6.9665, 6.944) = 0.508

Using the radar equation one can calculate the radar peak power. More pre­
cisely,^ 3 4

(4n) R kT0BFL
P t = SNR -— — — 0------^

t 2 G Act

= 101.385(-■4-̂7t:̂3 X 120004 x 1.38 x 10-23 x 290 x 2 x 106 x 6.309 x 2.511 
t 2 250002 x 0.22 x 1

= 126.61 Watts 

And the minimum detectable signal is
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S PtG A ct 126.61 x 50002 x 0.22 x 1 , , , , .  -12V t
Smin = ------3 -7 - = ------- 3----------- 4-----------  = 12254 x 10 Volts

(4n) R L (4n )3 x 120004 x 2.511

When 10 pulses are integrated non-coherently, the corresponding improvement 
factor is calculated from the MATLAB function “improvfac.m” using the fo l­
lowing syntax

improv_fac (10,1e-11,0.5)

which yields I (10) = 6 ^  7.78dB. Consequently, by keeping the probability 
o f  detection the same (with and without integration) the SNR can be reduced by 
a factor o f  almost 6 dB (13.85 - 7.78). The integration loss associated with a 
10-pulse non-coherent integration is calculated from Eq. (2.50) as

Lnci = = 10 = 1.67 ^  2.2dB
NCI I  (10) 6

Thus the net single pulse SNR with 10-pulse non-coherent integration is

( SNR)nci = 13.85 -7 .7 8  + 2.2 = 8.27 dB.

Finally, the improvement in the SNR due to decreasing the detection range to 9 
Km is

/ 120000 4(SNR)9Km = 10log+-900^ + 13.85 = 18.85 d B .

2.5. Detection o f Fluctuating Targets
So far the probability of detection calculations assumed a constant target 

cross section (non-fluctuating target). This work was first analyzed by Mar­
cum. 1 Swerling2 extended Marcum’s work to four distinct cases that account 
for variations in the target cross section. These cases have come to be known as 
Swerling models. They are: Swerling I, Swerling II, Swerling III, and Swerling 
IV. The constant RCS case analyzed by Marcum is widely known as Swerling 
0 or equivalently Swerling V. Target fluctuation lowers the probability of 
detection, or equivalently reduces the SNR.

1. Marcum, J. I., A Statistical Theory of Target Detection by Pulsed Radar, IRE Trans­
actions on Information Theory. Vol IT-6, pp 59-267. April 1960.

2. Swerling, P., Probability of Detection for Fluctuating Targets, IRE Transactions on
Information Theory. Vol IT-6, pp 269-308. April 1960.
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Swerling I targets have constant amplitude over one antenna scan; however, 
a Swerling I target amplitude varies independently from scan to scan according 
to a Chi-square probability density function with two degrees of freedom. The 
amplitude of Swerling II targets fluctuates independently from pulse to pulse 
according to a Chi-square probability density function with two degrees of 
freedom. Target fluctuation associated with a Swerling III model is similar to 
Swerling I, except in this case the target power fluctuates independently from 
pulse to pulse according to a Chi-square probability density function with four 
degrees of freedom. Finally, the fluctuation of Swerling IV targets is from 
pulse to pulse according to a Chi-square probability density function with four 
degrees of freedom. Swerling showed that the statistics associated with Swer­
ling I and II models apply to targets consisting of many small scatterers of 
comparable RCS values, while the statistics associated with Swerling III and
IV models apply to targets consisting of one large RCS scatterer and many 
small equal RCS scatterers. Non-coherent integration can be applied to all four 
Swerling models; however, coherent integration cannot be used when the tar­
get fluctuation is either Swerling II or Swerling IV. This is because the target 
amplitude decorrelates from pulse to pulse (fast fluctuation) for Swerling II 
and IV models, and thus phase coherency cannot be maintained.

The Chi-square p d f  with 2N  degrees of freedom can be written as

f (ct) = ----- —----ct exp( - ^ )  (2.52)
( N - 1)! ct ct + c t]

where ct is the average RCS value. Using this equation, the p d f  associated with 
Swerling I and II targets can be obtained by letting N  = 1 , which yields a 
Rayleigh pdf. More precisely,

/ ( ct) = ct exp f - CT) ct> 0 (2.53)
ct + ct)

Letting N  = 2 yields the p d f  for Swerling III and IV type targets,

/ ( ct) = ^ e x p f - ^  ct> 0 (2.54)
ct ct7

The probability of detection for a fluctuating target is computed in a similar 
fashion to Eq. (2.23), except in this case f (r) is replaced by the conditional p d f  
f ( r /c t) . Performing the analysis for the general case (i.e., using Eq. (2.47)) 
yields

/( / ) /  2z ) ("P -1)72 f  1 ct2 1T
f(z/CT) = f -----2”"—2) exp l - z - 2" p ~ \ 7"»-1npCT / — f  ^ — )
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To obtain f( z ) use the relations

f (z, ct) = f ( z /a ) f ( a )  (2.56)

f(z) = р Т z, ct)d a  (2.57)

Finally, using Eq. (2.56) in Eq. (2.57) produces

f ( z ) = J/(z/ct)/(ct) dCT (2.58)

where f( z /ct) is defined in Eq. (2.55) and /(ct) is in either Eq. (2.53) or 
(2.54). The probability of detection is obtained by integrating the p d f  derived 
from Eq. (2.58) from the threshold value to infinity. Performing the integration 
in Eq. (2.58) leads to the incomplete Gamma function.

2.5.1. Threshold Selection

When only a single pulse is used, the detection threshold VT is related to the 
probability of false alarm P fa as defined in Eq. (2.19). DiFranco and Rubin1 
derived a general form relating the threshold and P fa for any number of pulses 
when non-coherent integration is used. It is

Pfa = 1 - Г/ [ V - ’ ПР -  ^  (2.59)

where Г  is used to denote the incomplete Gamma function. It is given by

✓ ч VT'/ J^P ( 1 ) 1

~ 1 ((n P - 1) - 1)!
0

Note that the limiting values for the incomplete Gamma function are

Г  (0, N ) = 0 Г  (да, N ) = 1 (2.61)

For our purposes, the incomplete Gamma function can be approximated by

I VT 0 г e-  y
Ч ё т nP - 1 ) = 1  c(n„r- 1 > -1 > !  * (2-60)

X np- 1 - Vr
t i I l . 10 = 1 V /  e r
r i I .—, nP 1 1 = 1,  (n P - 1) ! 

(n P -  1)!

. nP -  1 (nP -  1)(nP - 2 )
1 + —---- + — ---------------- - + (2.62)

VT V2T

... + VnP 1
T

1. DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech House, 1980.
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The threshold value VT can then be approximated by the recursive formula 
used in the Newton-Raphson method. More precisely,

G ( VT 1)
Vt, m = Vt, и - t -  V m-^  ; m = 1, 2, 3, ... (2.63)

G ( VT, m- 1 )

The iteration is terminated when |VT, m- V T, m - 1 < VT, m- 1 / 10000.0. The 
functions G and G' are

G( Vt,m) = (0.5) “ T ( Vt, nP) (2.64)

e VT VnTP 1
G '( Vt, m) = -  — -----—  (2.65)(n P -  1)!

The initial value for the recursion is

VT, 0 = nP - JnP  + 2 .3 -v/-lo g Pfa U -lo g Pfa + J nP - 1 ) (2.66)

MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some integer N  is

X -v N -1

Г!(X, N) = 1 . b - " 11)!-dv (2.67)
0

The function “incomplete_gamma.m” implements Eq. (2.67). It is given in 
Listing 2.9 in Section 2.11. Note that this function uses the MATLAB function 
“factor.m” which is given in Listing 2.10. The function “factor.m” calculates 
the factorial of an integer. Fig. 2.7 shows the incomplete Gamma function for 
N  = 1, 3, 6 , 10 . This figure can be reproduced using the MATLAB program 
“fig2_7.m” given in Listing 2.11. The syntax for this function is as follows:

[value] = incomplete_gamma (x, N)

where

Symbol Description Units Status
X variable input to Г ,(x, N) units of x input

N variable input to Tj(x, N) none /  integer input

value Г,(x, N) none output
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Figure 2.7. The incomplete Gamma function for four values of N.

MATLAB Function “threshold.m”

The function “threshold.m” calculates the threshold using the recursive for­
mula used in the Newton-Raphson method. It is given in Listing 2.12 in Sec­
tion 2.11. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
pfa probability of false alarm none output
vt threshold value none output

Fig. 2.8 shows plots of the threshold value versus the number of integrated 
pulses for several values of nfa ; remember that Pfa « ln (2 ) / nfa . This figure 
can be reproduced using MATLAB program “fig2_8.m ” given in Listing 2.13. 
This program uses both “threshold.m ” and “incomplete_gamma ”.
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2.6. Probability o f Detection Calculation
Marcum defined the probability of false alarm for the case when nP > 1 as

Pfa * ln (2 )(nP/ nfa) (2.68)

The single pulse probability of detection for non-fluctuating targets is given in 
Eq. (2.24). When nP > 1, the probability of detection is computed using the 
Gram-Charlier series. In this case, the probability of detection is

PD = ' J h - e——  [C3(V2 -  1) + C4V(3 - V 2) (2.69)
2 72П

- C 6 V( V4-  10 V2 + 15)]

where the constants C3 , C4 , and C6 are the Gram-Charlier series coefficients, 
and the variable V is

VT- n P (1 + SNR)
V = —-----—----------- - (2.70)

та

In general, values for C3, C4 , C6, and та vary depending on the target fluctu­
ation type.
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2.6.1. Detection o f Swerling V Targets

For Swerling V (Swerling 0) target fluctuations, the probability of detection 
is calculated using Eq. (2.69). In this case, the Gram-Charlier series coeffi­
cients are

C3 = -  ^ + 1 / 3  (2.71)
J^p  (2 SNR + 1 )15

C4 = SNR+ 1/4 (2.72)
np( 2SNR + 1)2

C6 = C3 /  2 (2.73)

та = Jn p( 2SNR + 1) (2.74)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for 
Swerling V targets. It is given in Listing 2.14. The syntax is as follows:

[pd] = pd_swerling5 (inputl, indicator, np, snr)

where

Symbol Description Units Status
inputl Pfa, or nfa none input

indicator 1 when inputl = Pfa

2 when inputl = nfa

none input

np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 2.9 shows a plot for the probability of detection versus SNR for cases 
np = 1, 10. This figure can be reproduced using the MATLAB program 
“fig2_9.m”. It is given in Listing 2.15 in Section 2.11.

Note that it requires less SNR, with ten pulses integrated non-coherently, to 
achieve the same probability of detection as in the case of a single pulse. 
Hence, for any given PD the SNR improvement can be read from the plot. 
Equivalently, using the function “improvjiac.m” leads to about the same 
result. For example, when PD = 0.8 the function “improv_fac.m” gives an 
SNR improvement factor of 1( 10) и 8.55dB. Fig. 2.9 shows that the ten pulse 
SNR is about 6.03d B . Therefore, the single pulse SNR is about (from Eq.
(2.49)) 14.5dB, which can be read from the figure.
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SNR -dB

Figure 2.9. Probability of detection versus SNR, Pfa = 10 , and non­
coherent integration.

2.6.2. Detection o f Swerling I  Targets

The exact formula for the probability of detection for Swerling I type targets 
was derived by Swerling. It is

PD = e
-VT/(1 + SNR)

; np = 1 (2.75)

P d = 1 - r i (  Vt, np -  1) + I 1 +
nPSNR

n„- 1 Vt
-, nP 1

1 + -
nPSNR

(2.76)

-VT/( 1 + nPSNR)
x e ; nP > 1

MATLAB Function “pd_swerling1.m”

The function “pd  swerlingl.m” calculates the probability of detection for 
Swerling I type targets. It is given in Listing 2.16 in Section 2.11. The syntax is 
as follows:

[pd] = pd_swerlingl (nfa, np, snr)
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where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 2.10 shows a plot of the probability of detection as a function of SNR 
10- for both Swerling I and V type fluctuations. Notefor np = 1 and Pfa =

that it requires more SNR, with fluctuation, to achieve the same PD as in the 
case with no fluctuation. This figure can be reproduced using MATLAB pro­
gram “fig2 10.m” given in Listing 2.17.

Fig. 2.11a shows a plot of the probability of detection versus SNR for 
= 1, 10, 50, 100, where Paa = 10-8 . Fig. 2.11b is similar to Fig. 2.11a; inip

this case Pfa = -1110 . These figures can be reproduced using MATLAB pro­
gram “fig2 11ab.m” given in Listing 2.18.

0.9

о  0.7

°  0.5

0.2

0.1

Swerling V 
Swerling 1 _

/

j '

У

*

■ — --- "
) 12 1 
S N R -d B

Figure 2.10. Probability of detection versus SNR, single pulse. Pfa = 10 9
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2.6.3. Detection o f Swerling II Targets 

In the case of Swerling II targets, the probability of detection is given by

p d = 1 -  r ' ( ( T 7 S N R ) '  "*) ; " p s  50 (277)

For the case when nP > 50 Eq. (2.69) is used to compute the probability of 
detection. In this case,

1 c 3
C3 = ----- 7= , Сб = - 3 (2.78)

2

C  = 4 k  (279)

to = tJnP ( 1  + SN R) (2.80)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates PD for Swerling II type targets. 
It is given in Listing 2.19 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 2.12 shows a plot of the probability of detection as a function of SNR 
for nP = 1, 10, 50, 100, where P^a = 10-  . This figure can be reproduced 
using MATLAB program “fig2_12.m ” given in Listing 2.20.

2.6.4. Detection o f Swerling III Targets

The exact formulas, developed by Marcum, for the probability of detection 
for Swerling III type targets when nP = 1, 2 is

PD = exp(  1 + v VN r /2 X 1 + " S R ) "P 2 * K
(2.81)

K 1 v t 2 ( 2 ,
K ° = 1 + 1 + nPS N R /2  ~ nPSN R (" P ~ 2 )
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For nP > 2 the expression is

"p — 1 —VtVTP e
PD = ---------- -------------------- + 1-Г ,( VT, nP -  1) + K0 (2.82)

D ( 1 + nPS N R /2 )(nP -  2 )! i y T P J 0 ' '

VT
Г1+ 1 t-T\TJR’ "p 1)1 + 2 /  npS N R

MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates PD for Swerling III type targets. 
It is given in Listing 2.21 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr)

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output
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Fig. 2.13 shows a plot of the probability of detection as a function of SNR 
for nP = 1, 10, 50, 100, where P^a = 10- . This figure can be reproduced 
using MATLAB program “fig2_13.m ” given in Listing 2.22.

2.6.5. Detection o f Swerling IV  Targets

The expression for the probability of detection for Swerling IV targets for 
nP < 50 is

PD = 1
(SNRJ (SNRJ 2" p ("p - 1 )  ____

Y0 + + — J "pY1 + + — J -----2 ----- Y2 + -  + (283)

:J "P Y i  SN RJ- 
■J Ynp +1 + -T -J

where

Yi = Г1( 1 + (.S,Nr)/2 ' "P + iJ (2-84)

By using the recursive formula

Г1 (x, i + 1) = r i ( x, i ) -  -■--x-—  (2.85)
i! exp (x)

then only y0 needs to be calculated using Eq. (2.84) and the rest of yi are cal­
culated from the following recursion:
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Vt / ( 1  + (S N R )/2 )
P

Yi = Yi-1 -  Ai ; i > 0 (2.86)

Ai = -------------------------  Ai - ! ; i > 1 (2.87)
i "p + i -  1 i 1

Aj = ( Vt^ (1 + (SN R ) /2 - )  P (2.88)
1 nP! exp( VT/ (  1 + (S N R - /2--

Y0 Г1 ( ( 1 + ( SNR)/  2 - , "pJ
(2.89)

For the case when nP > 50, the Gram-Charlier series and Eq. (2.69) can be 
used to calculate the probability of detection. In this case,

C = _j ____2 e 3 -  1 ; C = c 3 (2 90)3 =  ̂ /— 2 15 ; 6 = •• (2.90)
3J"P (2p2 -  1 - '  2

C = J _  2 P4 -  1 (291)
C4 = 4" 2 2 (2.91)

4"p(2p2 -  1 -

to = J n p (2p2 -  1 -" p (2p -  1 - (2.92)

P = 1 + S p  (2.93)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates PD for Swerling IV type targets. 
It is given in Listing 2.23 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input

np number o f integrated pulses none input
snr SNR dB input

pd probability o f detection none output

Figure 2.14 shows a plot of the probability of detection as a function of SNR 
for nP = 1, 10, 50, 100, where P^a = 10- . This figure can be reproduced 
using MATLAB program “fig2_14.m ” given in Listing 2.24.
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2.7. The Radar Equation Revisited
The radar equation developed in Chapter 1 assumed a constant target RCS 

and did not account for integration loss. In this section, a more comprehensive 
form of the radar equation is introduced. In this case, the radar equation is 
given by

R4 = ____ P avGtGrX2c-l{nP)____  (294)

(4n )3kT eF B xfrLtLf  (S N R )1

where P av = P tтf r is the average transmitted power, P t is the peak transmit­
ted power, т is pulsewidth, f r is PRF, Gt is transmitting antenna gain, Gr is 
receiving antenna gain, X is wavelength, ct is target cross section, I (n P) is 
improvement factor, nP is the number of integrated pulses, k  is Boltzman’s 
constant, Te is effective noise temperature, F  is the system noise figure, B  is 
receiver bandwidth, Lt is total system losses including integration loss, Lf  is 
loss due to target fluctuation, and (SNR)1 is the minimum single pulse SNR 
required for detection.

The fluctuation loss, L f , can be viewed as the amount of additional SNR 
required to compensate for the SNR loss due to target fluctuation, given a spe­
cific PD value. This was demonstrated for a Swerling I fluctuation in Fig.
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2.10. Kanter1 developed an exact analysis for calculating the fluctuation loss. 
In this text the authors will take advantage of the computational power of 
MATLAB and the MATLAB functions developed for this text to numerically 
calculate the amount of fluctuation loss with an accuracy of 0.005dB or better. 
For this purpose the MATLAB function “flu c tlo ss .m ” was developed. It is 
given in Listing 2.25 in Section 2.11. Its syntax is as follows:

[Lf, Pd_Sw5] = fluct_loss(pd, pfa, np, sw_case)
where

Symbol Description Units Status
pd desired probability of detection none input

Pfa probability of false alarm none input
np number of pulses none input

sw case 1, 2, 3, or 4 depending on the 
desired Swerling case

none input

L f fluctuation loss dB output
Pd Sw5 Probability of detection correspond­

ing to a Swerling V case
none output

For example, using the syntax

[LfPd_Sw5]=fluctJoss(0.65, 1e-9, 10,1)

will calculate the SNR corresponding to both Swerling V and Swerling I fluc­
tuation when the desired ̂ probability of detection PD = 0.65 and probability 
of false alarm Pfa = 10- and 10 pulses of non-coherent integration. The fol­
lowing is a reprint o f the output:

P D SW 5 = 0.65096989459928 
SNR_SW5 = 5.52499999999990 
PD SW 1 = 0.65019653294095 
SNR_SW1 = 8.32999999999990 

L f  = 2.80500000000000

Note that a negative value for Lf  indicates a fluctuation SNR gain instead of 
loss. Finally, it must be noted that the function “flu c tlo ss .m ” always assumes 
non-coherent integration. Fig. 2.15 shows a plot for the additional SNR (or 
fluctuation loss) required to achieve a certain probability of detection. This fig­
ure can be reproduced using MATLAB program “fig2_16.m” given in Listing 
2.26 in Section 2.11.

1. Kanter, I., Exact Detection Probability for Partially Correlated Rayleigh Targets, 
IEEE Trans, AES-22, pp. 184-196, March 1986.
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Figure 2.15. Fluctuation loss versus probability of detection.

2.8. Cumulative Probability o f Detection
Denote the range at which the single pulse SNR is unity (0 dB) as R0 , and 

refer to it as the reference range. Then, for a specific radar, the single pulse 
SNR at R0 is defined by the radar equation and is given by

PtG2X2a
(SNR\  = ------3------------ 4 = 1 (2-95)(4n) kT0BFLR0 

The single pulse SNR at any range R is

P tG2} 2 ct
SNR = ------- t-------------  (2.96)

(4 n )3 kT0BFLR4

Dividing Eq. (2.96) by Eq. (2.95) yields

SNR /R 0 4

( SN R)ro + R

Therefore, if the range R0 is known then the SNR at any other range R  is

(2.97)
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(SN R )dB = 40log 0 ° ) (2.98)

Also, define the range R50 as the range at which PD = 0.5 = P 50. Normally, 
the radar unambiguous range R u is set equal to 2R50.

The cumulative probability of detection refers to detecting the target at least 
once by the time it is at range R  . More precisely, consider a target closing on a 
scanning radar, where the target is illuminated only during a scan (frame). As 
the target gets closer to the radar, its probability of detection increases since the 
SNR is increased. Suppose that the probability of detection during the nth  
frame is PD ; then, the cumulative probability of detecting the target at least 
once during the nth  frame (see Fig. 2.16) is given by

n

P c„ = 1 -  П (  1 - P ° ‘) (2-99)
i = 1

PDi is usually selected to be very small. Clearly, the probability of not detect­
ing the target during the nth  frame is 1 -  P C . The probability of detection for 
the ith  frame, PDj, is computed as discussed in the previous section.

!
nth frame frame 1

PD P D, Dn + 1 Dn PD1

(n+1)th frame

Figure 2.16. Detecting a target in many frames.

2.8.1. Mini Design Case Study 2.2

A radar detects a closing target at R = 10K m , with probability o f  detection 
PD equal to 0.5. Assume Pfa = 10 . Compute and sketch the single look 
probability o f  detection as a function o f normalized range (with respect to 
R = 10 Km), over the interval (2 -  20) K m . I f  the range between two succes­
sive frames is 1Km, what is the cumulative probability o f  detection at 
R = 8Km ?
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A Solution:

From thefunction “marcumsq.m” the SNR corresponding to PD = 0.5 and 
Pfa = 10 is approximately 12dB. By using a similar analysis to that which 
led to Eq. (2.98), we can express the SNR at any range R  as

(SN R)r = (S N R )10 + 40 log10 = 52 -  40 logR
R

By using the function “marcumsq.m” we can construct the following table:

R Km (SNR) dB Pd

2 39.09 0.999

4 27.9 0.999
6 20.9 0.999

8 15.9 0.999
9 13.8 0.9

10 12.0 0.5
11 10.3 0.25

12 8.8 0.07
14 6.1 0.01

16 3.8 e

20 0.01 e

where e is very small. A  sketch o f  PD versus normalized range is shown in 
Fig. 2.17.

The cumulative probability o f  detection is given in Eq. (2.95), where the proba­
bility o f  detection o f  the firs t fram e is selected to be very small. Thus, we can 
arbitrarily choose fram e 1 to be at R  = 16Km . Note that selecting a different 
starting point fo r  fram e 1 would have a negligible effect on the cumulative 
probability (we only need PD to be very small). Below is a range listing fo r  
fram es 1 through 9, where fram e 9 corresponds to R  = 8Km . The cumulative

frame 1 2 3 4 5 6 7 8 9
range in Km 16 15 14 13 12 11 10 9 8

probability o f  detection at 8 Km is then

P Ĉ = 1 -  (1 -  0 .999)(1-0 .9)(1  -  0.5)(1 -  0.25)(1 -  0.07) 

(1 -  0.01)(1 -  e )2 И 0.9998
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Figure 2.17. Cumulative probability of detection versus normalized range.

2.9. Constant False Alarm Rate (CFAR)
The detection threshold is computed so that the radar receiver maintains a 

constant pre-determined probability of false alarm. Eq. (2.19b) gives the rela­
tionship between the threshold value VT and the probability of false alarm 
Pfa , and for convenience is repeated here as Eq. (2.100):

Vt = ^ 2 y 2ln ( P - )  (2.100)

If the noise power у  is assumed to be constant, then a fixed threshold can sat­
isfy Eq. (2.100). However, due to many reasons this condition is rarely true. 
Thus, in order to maintain a constant probability of false alarm the threshold 
value must be continuously updated based on the estimates of the noise vari­
ance. The process of continuously changing the threshold value to maintain a 
constant probability of false alarm is known as Constant False Alarm Rate 
(CFAR).

Three different types of CFAR processors are primarily used. They are adap­
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference. In this book only analog Cell-Aver­
aging CFAR (CA-CFAR) technique is examined. The analysis presented in this 
section closely follows Urkowitz1.

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed 
Martin Co., Moorestown, NJ.
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2.9.1. Cell-Averaging CFAR (SinglePulse)

The CA-CFAR processor is shown in Fig. 2.18. Cell averaging is performed 
on a series of range and/or Doppler bins (cells). The echo return for each pulse 
is detected by a square law detector. In analog implementation these cells are 
obtained from a tapped delay line. The Cell Under Test (CUT) is the central 
cell. The immediate neighbors of the CUT are excluded from the averaging 
process due to a possible spillover from the CUT. The output of M  reference 
cells ( M /  2 on each side of the CUT) is averaged. The threshold value is 
obtained by multiplying the averaged estimate from all reference cells by a 
constant K0 (used for scaling). A detection is declared in the CUT if

Y1 > K 0Z  (2.101)

Cell-averaging CFAR assumes that the target of interest is in the CUT and all 
reference cells contain zero mean independent Gaussian noise of variance y 2 . 
Therefore, the output of the reference cells, Z , represents a random variable 
with gamma probability density function (special case of the Chi-square) with 
2M  degrees of freedom. In this case, the gamma p d f  is

(M/2) - 1 (-г/2y2)
f(г ) = ------------ e----------  ; г > 0 (2.102)'  ~M/2 Mw ,2 y  Y ( M /  2 )

The probability of false alarm corresponding to a fixed threshold was 
derived earlier. When CA-CFAR is implemented, then the probability of false
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alarm can be derived from the conditional false alarm probability, which is 
averaged over all possible values of the threshold in order to achieve an uncon­
ditional false alarm probability. The conditional probability of false alarm 
when y  = VT can be written as

2
Pfa( Vt = У) = - - 7 2y (2.103)

It follows that the unconditional probability of false alarm is

Pfa = j  Pfa(VT = У )f(y ) dy (2.104)

where f ( y ) is the p d f  of the threshold, which except for the constant K0 is the 
same as that defined in Eq. (2.102). Therefore,

m - 1 (-y/ 2К0У2)
f ( y ) = y — e- — --------  ; y  > 0 (2.105)

( 2 К0 У2) Г(M)

Performing the integration in Eq. (2.104) yields

--1---- MPfa = ---------- M (2.106)
( 1 + K0 )

Observation of Eq. (2.106) shows that the probability of false alarm is now 
independent of the noise power, which is the objective of CFAR processing.

2.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is often implemented after non-coherent inte­
gration, as illustrated in Fig. 2.19. Now, the output of each reference cell is the 
sum of nP squared envelopes. It follows that the total number of summed ref­
erence samples is M nP . The output Y1 is also the sum of nP squared enve­
lopes. When noise alone is present in the CUT, Y1 is a random variable whose 
p d f  is a gamma distribution with 2 np degrees of freedom. Additionally, the 
summed output of the reference cells is the sum of M nP squared envelopes. 
Thus, Z  is also a random variable which has a gamma p d f  with 2M nP degrees 
of freedom.

The probability of false alarm is then equal to the probability that the ratio 
Y1 / Z  exceeds the threshold. More precisely,

Pfa = Prob{  Y1 / Z  > K 1} (2.107)

ад

0
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Figure 2.19. Conventional CA-CFAR with non-coherent integration.

Eq. (2.107) implies that one must first find the joint p d f  for the ratio Y1 / Z . 
However, this can be avoided if  Pfa is first computed for a fixed threshold 
value VT, then averaged over all possible values of the threshold. Therefore, 
let the conditional probability of false alarm when y  = VT be Pfa( VT = y ) .  It 
follows that the unconditional false alarm probability is given by

Pfa = j  Pfa(VT = у  ) f(y ) dy (2.108)

where f ( y ) is the p d f  o f the threshold. In view of this, the probability density 
function describing the random variable K 1 Z  is given by

f ( y ) =

MnP - 1 (-У/ 2K0V ) 
0 / ^ )  -___________

2 MnP
(2 y  ) K1 Г(MnP)

; y  > 0 (2.109)

It can be shown that in this case the probability of false alarm is independent 
of the noise power and is given by

Pfa =
1

( 1 + K 1) k = 0

1 Г( M nP + k ) /  K
(2.110)

ад

0

nP
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which is identical to Eq. (2.106) when K 1 = K0 and nP = 1

2.10. “MyRadar ” Design Case Study - Visit 21

2.10.1. Problem Statement
Modify the design introduced in Chapter 1 for the “MyRadar ” design case 

study so that the effects o f target RCS fluctuations are taken into account. For 
this purpose modify the design such that: The aircraft and missile target types 
follow Swerling I  and Swerling III fluctuations, respectively. Also assume that 
a PD > 0.995 is required at maximum range with Pfa = 10 or better. You 
may use either non-coherent integration or cumulative probability o f  detection. 
Also, modify any other design parameters i f  needed.

2.10.2. A Design

The missile and the aircraft detection ranges were calculated in Chapter 1. 
They are R a = 90Km for the aircraft and R m = 55Km for the missile. First, 
determine the probability of detection for each target type with and without the 
7-pulse non-coherent integration. For this purpose, use MATLAB program 
“myradar_visit2_1.m” given in Listing 2.27. This program first computes the 
improvement factor and the associated integration loss. Second it calculates the 
single pulse SNR. Finally it calculates the SNR when non-coherent integration 
is utilized. Executing this program yields:

SNR_singl-_puls-_missil- = 5.5998 dB 
SNR_7_pulse_NCI_missile = 11.7216 dB 
SNR_singl-_puls-_aircraft = 6.0755 dB 
SNR_7_pulse_NCI_aircrfat = 12.1973 dB

Using these values in functions “pdsw erlingLm ” and “pd_swerling3.m” 
yields

Pd_single_pulse_missile = 0.013 
Pd_7_pulse_NCI_missile= 0.9276 
Pd_single_pulse_aircraft = 0.038 
Pd_7_pulse_NCI_aircraft = 0.8273

Clearly in all four cases, there is not enough SNR to meet the design require­
ment of PD > 0.995 .

1. Please read disclaimer in Section 1.9.1.
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Instead, resort to accomplishing the desired probability of detection by using 
cumulative probabilities. The single frame increment for the missile and air­
craft cases are

RMlsslle = scan rate x vm = 2 x 150 = 300m (2.111)

Rai rcraf t = scan rate x va = 2 x 400 = 800m (2.112)

2.10.2.1 Single Pulse (Per Frame) Design Option

As a first design option, consider the case where during each frame only a 
single pulse is used for detection (i.e., no integration). Consequently, if the sin­
gle pulse detection does not achieve the desired probability of detection at 90 
Km for the aircraft or at 55 Km for the missile, then non-coherent integration 
of a few pulses per frame can then be utilized. Keep in mind that only non­
coherent integration can be used in the cases of Swerling type I and III fluctua­
tions (see Section 2.4).

Assume that the first frame corresponding to detecting the aircraft is 106 
Km. This assumption is arbitrary and it provides the designer with 21 frames. 
It follows that the first frame, when detecting the missile, is at 61 Km. Further­
more, assume that the SNR at R = 90Km is (SNR)aircraft = 8 .5dB , for the 
aircraft case. And, for the missile case assume that at R = 55Km the corre­
sponding SNR is (SNR)missile = 9 d B . Note that these values are simply edu­
cated guesses, and the designer may be required to perform several iterations in 
order to accomplish the desired cumulative probability of detection, 
PD > 0.995 . In order to calculate the cumulative probability of detection at a 
certain range, the MATLAB program “myradar_visit2_2.m” was developed. 
This program is given in Listing 2.28 in Section 2.11.

Initialization of the program “myradar_visit2_2.m” includes entering the 
following inputs: The desired Pfa ; the number of pulses to be used for non­
coherent integration per frame; the range at which the desired cumulative oper­
ability of detection must be achieved; the frame size; and finally the target fluc­
tuation type. For notational purposes, denote the range at which the desired 
cumulative probability of detection must be achieved as R 0 . Then for each 
frame, the following list includes the outputs of this program: SNR, probability 
of detection, fluctuation loss, and cumulative probability of detection.

The logic used by this program for calculating the proper probability of 
detection at each frame and for computing the cumulative probability of detec­
tion is described as follows:

1. Initialize the program, by entering the desired input values. Assume Swer­
ling V fluctuation and use Eq. (2.98) to calculate the frame-SNR, (SNR)i .
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1.1. For the “M yRadar” design case study, use nP = 1, R 0 = 90 K m , and 

(SN R 0)aircraft = 8 .5 d B . Alternatively use R0 = 55Km  and 

(SN R )missile = 9dB  for the missile case. Note that the selected SNR

values are best estimates or educated guesses, and it may require going 
through few iterations before finally selecting an acceptable set.

2. The program will then calculate the number of frames and their associated 
ranges. The program uses the function “fluc t loss.m” to calculate the 
Swerling V PD at each frame and the additional SNR required to accom­

plish the same probability of detection when target fluctuation is included.
3. Depending on the fluctuation type, the program will then use the proper 

MATLAB function to calculate the probability of detection for each frame,

PD, .

3.1. For the “M yRadar” design case study, these functions are
“pd_swerling1.m” and “p d sw erlin g  3 .m ”.

4. Finally, the program uses Eq. (2.99) to compute the cumulative probability 
of detection, P D .^n

A Graphical User Interface (GUI) has been developed for this program; Fig. 
2.20 shows its associated GUI workspace. To use this GUI, from the MATLAB 
command window type “myradar_visit2_2_gui”. Executing the program 
“myradar_visit2_2.m ” using the input values stated above yields the following 
cumulative probabilities of detection for the aircraft and missile cases,

P DC = 0.99872Missile
P DC = 0.99687aircraft

These results clearly satisfy the design requirement of P D > 0.995 . However, 
one must re-validate the peak power requirement for the design. To do that, go 
back to Eq.s (1.107) and (1.108), and replace the SNR values used in Chapter 1 
by the values adopted in this chapter (i.e., (SN R 0)aircraf t = 8.5dB and 
(S N R )missile = 9 d B ). It follows that the corresponding single pulse energy 
for the missile and the aircraft cases are respectively given by

1009E m = 0.1658 x ; = 0.36273Jo u les  (2.113)
m 10

10°'85
E a = 0.1487 x = 0.28994Joules (2.114)

10 56
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Initialization Start Quit

Swerling type 
1. 2, 3. 4, or 5

Number of pulses
_______DE_______

Range to 1 st 
frame

Range to last 
frame

Desired single pulse 
SNR at last frame

Frame size 
meters

Pfa

Figure 2.20. GUI workspace associated with program “myradar_visit2_2_gui.m”.

This indicates that the stressing single pulse peak power requirement (i.e., mis­
sile detection) exceeds 362K W  . This value for the single pulse peak power is 
high for a mobile ground based air defense radar and practical constraints 
would require using less peak power.

In order to bring the single pulse peak power requirement down, one can use 
non-coherent integration of a few pulses per frame prior to calculating the 
frame probability of detection. For this purpose, the program 
“myradar_visit2_2.m” can be used again. However, in this case nP > 1. This is 
analyzed in the next section.

2.10.2.2. Non-Coherent Integration Design Option

The single frame probability of detection can be improved significantly 
when pulse integration is utilized. One may use coherent or non-coherent inte­
gration to improve the frame cumulative probability of detection. In this case, 
caution should be exercised since coherent integration would not be practical

1

1

Note:
__________  In order to run this program.
1 06e3 1) You must click on

the initilization button 
2) Enter your current values

------- in each field
3) Press start

8.5

800

1 Oe-7
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when the target fluctuation type is either Swerling I or Swerling III. Alterna­
tively, using non-coherent integration will always reduce the minimum 
required SNR.

Rerun the MATLAB program “myradar_visit2_2_gui”. Use nP = 4 and 
use SNR = 4 dB  (single pulse) for both the missile and aircraft single pulse 
SNR1 at their respective reference ranges, R0 = 55Km  and 
R 0 t = 90Km  . The resulting cumulative probabilities of detection areaircraft

P nr = 0.99945Missile
P = 0.99812aircraft

which are both within the desired design requirements. It follows that the cor­
responding minimum required single pulse energy for the missile and the air­
craft cases are now given by

1004E m = 0.1658 x = 0.1147Jo u le s  (2.115)
m 10

100.4
E a = 0.1487 x ■^0—  = 0.1029Jo u le s  (2.116)100.56

Thus, the minimum single pulse peak power (assuming the same pulsewidth as 
that given in Section1.9.2) is

P t = 0Л147 = 114.7 K W  (2.117)
1 x 10 6

Note that the peak power requirement will be significantly reduced while 
maintaining a very fine range resolution when pulse compression techniques 
are used. This will be discussed in a subsequent chapter.

Fig. 2.21 shows a plot of the SNR versus range for both target types. This 
plot assumes 4-pulse non-coherent integration. It can be reproduced using 
MATLAB program “fig2_21.m ”. It is given in Listing 2.29 in Section 2.11.

2.11. MATLAB Program and Function Listings
This section presents listings for all MATLAB programs/functions used in 

this chapter. The user is advised to rerun these programs with different input 
parameters.

1. Again these values are educated guesses. The designer my be required to go through
a few iterations before arriving at an acceptable set of design parameters.
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Figure 2.21. SNR versus detection range for both target types. The 4-pulse 
NCI curves correspond to 21 frame cumulative detection with 
the last frame at: 55 Km for the missile and 90 Km for the 
aircraft.

Listing 2.1. MATLAB Program “fig2_2.m”
% This program can be used to reproduce Figure 2.2 o f  the text 
clear all 
close all
xg = linspace(-6,6,1500); % random variable between -6 and 6
xr = linspace(0,6,1500); % random variable between 0 and 6
mu = 0; % zero mean Gaussian p d f mean
sigma = 1.5; % standard deviation (sqrt(variance))
ynorm = normpdf(xg,mu,sigma); % use MATLAB function normpdf
yray = raylpdf(xr,sigma); % use MATLAB function raylpdf
plot(xg,ynorm, 'k',xr,yray, k - .');
grid
legend(Gaussian pdf,'Rayleigh pdf) 
xlabel('x')
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ylabel(’Probability density’) 
gtext('\mu = 0; \sigma = 1.5') 
gtext('\sigma =1.5')

Listing 2.2. MATLAB Function “que_func.m”
function fofx = que_func(x)
% This function computes the value o f  the Q-function 
% listed in Eq.(2.16). It uses the approximation in Eqs. (2.17) and (2.18) 
i f  (x >= 0)

denom = 0.661 * x + 0.339 * sqrt(xA2 + 5.51); 
expo = exp(-xA2 /2.0);
fofx = 1.0 - (1.0 /  sqrt(2.0 * pi)) * (1.0 /  denom) * expo; 

else
denom = 0.661 * x + 0.339 * sqrt(xA2 + 5.51); 
expo = exp(-xA2 /2.0);
value = 1.0 - (1.0 /  sqrt(2.0 * pi)) * (1.0 /  denom) * expo; 
fofx = 1.0 - value; 

end

Listing 2.3. MATLAB Program “fig2_3.m”
%Thisprogram generates Figure 2.3. 
close all 
clear all
logpfa = linspace(.01,250,1000); 
var = 10.A(logpfa . / 10.0); 
vtnorm = sqrt( log (var)); 
semilogx(logpfa, vtnorm,'k') 
grid

Listing 2.4. MATLAB Function “marcumsq.m”
function Pd = marcumsq (a,b)
% This function uses Parl’s method to compute PD 
max_test_value = 5000.; 
i f  (a < b)

alphan0 = 1.0; 
dn = a /  b; 

else 
alphan0 = 0.; 
dn = b /  a; 

end
alphan_1 = 0.; 
betan0 = 0.5;
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betan_1 = 0.;
D1 = dn; 
n = 0;
ratio = 2.0 /  (a * b); 
r1 = 0.0; 
betan = 0.0; 
alphan = 0.0; 
while betan < 1000., 

n = n + 1;
alphan = dn + ratio * n * alphan0 + alphan; 
betan = 1.0 + ratio * n * betan0 + betan; 
alphan_1 = alphan0; 
alphan0 = alphan; 
betan_1 = betan0; 
betan0 = betan; 
dn = dn * D1; 

end
PD = (alphan0 /  (2.0 * betan0)) * exp(-(a-b)A2 / 2.0); 
i f  ( a >= b)

PD = 1.0 - PD; 
end 
return

Listing 2.5. MATLAB Program “prob_snr1.m”
% This program is used to produce Fig. 2.4
close all
clear all
for nfa = 2:2:12

b = sqrt(-2.0 * log(10A(-nfa))); 
index = 0; 
hold on
for snr = 0:.1:18 

index = index +1; 
a = sqrt(2.0 * 10A(.1*snr)); 
pro(index) = marcumsq(a,b); 

end
x = 0:.1:18;
set(gca,'ytick',[.1.2 .3 .4 .5 .6 .7.75 .8 .85 .9 ...

.95 .9999])
set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])

loglog(x, pro,'k'); 
end
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hold o ff
xlabel ('Singlepulse SNR - dB’) 
ylabel ('Probability o f  detection’) 
grid

Listing 2.6. MATLAB program “fig2_6a.m”
% This program is used to produce Fig. 2.6a 
% It uses the function "improv_fac" 
clear all 
close all 
pfa1 = 1.0e-2; 
pfa2 = 1.0e-6; 
pfa3 = 1.0e-10; 
pfa4 = 1.0e-13; 
pd1 = .5; 
pd2 = .8; 
pd3 = .95; 
pd4 = .999; 
index = 0; 
for np = 1:1:1000 

index = index + 1;
I1(index) = improv_fac (np, pfa1, pd1);
I2(index) = improv_fac (np, pfa2, pd2);
I3(index) = improv_fac (np, pfa3, pd3);
I4(index) = improv_fac (np, pfa4, pd4); 

end
np = 1:1:1000;
semilogx (np, I1, k', np, I2, k--', np, I3, 'к-.', np, I4, 'k:') 
xlabel ('Number o f  pulses’); 
ylabel (’Improvement factor I  - dB’)
legend ('pd=.5, nfa=e+2','pd=.8, nfa=e+6','pd=.95, nfa=e+10','pd=.999,
nfa=e+13');
grid

Listing 2.7. MATLAB Function “improv_fac.m”
function impr o f  np = improv_fac (np, pfa, pd)
% This function computes the non-coherent integration improvement
% factor using the empirical formula defined in Eq. (2.49)
fact1 = 1.0 + log10( 1.0/pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.235 * pd);
fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np))A2;
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impr o f  np = fact1 * fact2 * fact3 * log10(np); 
return

Listing 2.8. MATLAB Program “fig2_6b.m”
% This program is used to produce Fig. 2.6b 
% It uses the function "improv_fac". 
clear all 
close all 
pfa1 = 1.0e-12; 
pfa2 = 1.0e-12; 
pfa3 = 1.0e-12; 
pfa4 = 1.0e-12; 
pd1 = .5; 
pd2 = .8; 
pd3 = .95; 
pd4 = .99; 
index = 0; 
for np = 1:1:1000 

index = index+1;
I1 = improv_fac (np, pfa1, pd1);
11 = 10.A(0.1*I1);
L1(index) = -1*10*log10(i1 . / np);
12 = improv_fac (np, pfa2, pd2);
12 = 10.A(0.1*I2);
L2(index) = -1*10*log10(i2 . / np);
13 = improv_fac (np, pfa3, pd3);
13 = 10.A(0.1*I3);
L3(index) = -1*10*log10(i3 . / np);
14 = improv_fac (np, pfa4, pd4); 
i4 = 1 0 A(0.1*I4);
L4 (index) = -1*10*log10(i4 . / np); 

end
np = 1:1:1000;
semilogx (np, L1, 'k', np, L2, ’к--’, np, L3, ’к-.’, np, L4, ’к:’) 
axis tight
xlabel ('Number o f  pulses’); 
ylabel ('Integration loss - dB)
legend ('pd=.5, nfa=e+12','pd=.8, nfa=e+12','pd=.95, nfa=e+12','pd=.99,
nfa=e+12');
grid
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function [value] = incomplete_gamma ( vt, np)
% This function implements Eq. (2.67) to compute the Incomplete Gamma 
Function
% This function needs "factor, m" to run
format long
eps = 1.000000001;
% Test to see i f  np = 1 
i f  (np == 1)

value1 = vt * exp(-vt); 
value = 1.0 - exp(-vt); 
return 

end
sumold = 1.0; 
sumnew =1.0; 
calc1 = 1.0; 
calc2 = np;
xx = np * log(vt+0.0000000001) - vt - factor(calc2); 
temp1 = exp(xx); 
temp2 = np /  (vt+0.0000000001); 
diff = .0; 
ratio = 1000.0; 
i f  (vt >= np) 

while (ratio >= eps) 
diff = diff + 1.0;
calc1 = calc1 * (calc2 - diff) /  v t ; 
sumnew = sumold + calc1; 
ratio = sumnew /  sumold; 
sumold = sumnew; 

end
value = 1.0 - temp1 * sumnew * temp2; 
return 

else 
diff = 0.; 
sumold = 1.; 
ratio = 1000.; 
calc1 = 1.; 
while(ratio >= eps) 

diff = diff + 1.0;
calc1 = calc1 * vt /  (calc2 + diff); 
sumnew = sumold + calc1; 
ratio = sumnew /  sumold; 
sumold = sumnew;

Listing 2.9. MATLAB Function “incomplete_gamma.m”
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end
value = temp1 * sumnew; 

end

Listing 2.10. MATLAB Function “factor.m”
function [val] = factor(n)
% Compute the factorial o f  n using logarithms to avoid overflow. 
format long 
n = n + 9.0; 
n2 = n * n;
temp = (n-1) * log(n) - n + log(sqrt(2.0 * pi * n)) ...

+ ((1.0 - (1.0/30. + (1.0/105)/n2)/n2) / 12) / n; 
val = temp - log((n-1)*(n-2)*(n-3) *(n-4) *(n-5)*(n-6) ...

*(n-7) *(n-8)); 
return

Listing 2.11. MATLAB Program “fig2_7.m”
% This program can be used to reproduce Fig. 2.7 
close all 
clear all 
format long
ii = 0;
for x = 0:.1:20

ii = ii+1;
val1(ii) = incomplete_gamma(x, 1); 
val2(ii) = incomplete_gamma(x, 3); 
val = incomplete_gamma(x, 6); 
val3(ii) = val;
val = incomplete_gamma(x, 10); 
val4(ii) = val; 

end
xx = 0:.1:20;
plot(xx,val1,'k',xx,val2,'k:',xx,val3,'k--',xx,val4,'k-.') 
legend('N = 1','N = 3','N = 6','N = 10') 
xlabel('x')
ylabel(’Incomplete Gamma function (x,N)') 
grid

Listing 2.12. MATLAB Function “threshold.m”
function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The Newton-Raphson recursive formula is used (Eqs. (2-63) through (2-66))
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% This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) /  nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num /  (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end

Listing 2.13. MATLAB Program “fig2_8.m”
% Use this program to reproduce Fig. 2.8 o f  text 
clear all 
for n= 1: 1:150 

[pfa1 y1(n)] = threshold(1000,n);
[pfa2 y3(n)] = threshold(10000,n);
[pfa3 y4(n)] = threshold(500000,n); 

end
n =1:1:150;
loglog(n,y1,'k',n,y3, 'k--',n,y4, 'k-.'); 
axis([0 200 1 300]) 
xlabel ('Number o f  pulses’); 
ylabel('Threshold')
legend('nfa=1000','nfa=10000','nfa=500000')
grid

Listing 2.14. MATLAB Function “pd_swerling5.m”
function pd  = pd_swerling5 (input1, indicator, np, snrbar)
% This function is used to calculate the probability o f  
% for Swerling 5 or 0 targets for np>1. 
if(np == 1)

’Stop, np must be greater than 1 ' 
return
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end
format long
snrbar = 10.0.A(snrbar./10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
% Calculate the threshold Vt 
i f  (indicator ~=1) 

nfa = input1; 
pfa = np * log(2) /  nfa; 

else 
pfa = input1; 
nfa = np * log(2) /  pfa; 

end
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num /  (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
% Calculate the Gram-Charlier coefficients
temp1 = 2.0 .* snrbar + 1.0;
omegabar = sqrt(np .* temp1);
c3 = -(snrbar + 1.0 /  3.0) ./  (sqrt(np) .* temp1.A1.5);
c4 = (snrbar + 0.25) ./ (np .* temp1A2.);
c6 = c3 .* c3 ./2.0;
V = (vt - np .* (1.0 + snrbar)) . / omegabar;
Vsqr = V .*V;
val1 = exp(-Vsqr . / 2.0) . / sqrt( 2.0 * pi);
val2 = c3 .* (VA2 -1.0) + c4 .* V .* (3.0 - VA2) -...

c6 .* V .* (VA4 - 10. .* VA2 + 15.0); 
q = 0.5 .* erfc (V./sqrt(2.0)); 
pd = q - val1 .* val2;
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Listing 2.15. MATLAB Program “fig2_9.m”
% This program is used to produce Fig. 2.9 
close all 
clear all 
pfa = 1e-9; 
nfa = log(2) /  pfa; 
b = sqrt(-2.0 * log(pfa)); 
index = 0; 
for snr = 0:.1:20 

index = index +1; 
a = sqrt(2.0 * 10A(.1*snr)); 
pro(index) = marcumsq(a,b); 
prob205(index) = pd_swerling5 (pfa, 1, 10, snr); 

end
x = 0:.1:20;
plot(x, pro,'k',x,prob205,'k:');
axis([0 20 0 1])
xlabel ('SNR - dB')
ylabel ('Probability o f  detection’)
legend('np = 1','np = 10')
grid

Listing 2.16. MATLAB Function “pd_swerling1.m”
function pd  = pd_swerling1 (nfa, np, snrbar)
% This function is used to calculate the probability o f  detection 
% for Swerling 1 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
% Calculate the threshold Vt 
pfa = np * log(2) /  nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp);
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vt = vt0 + (num /  (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
i f  (np == 1) 

temp = -vt /  (1.0 + snrbar); 
pd  = exp(temp); 
return 

end
temp1 = 1.0 + np * snrbar;
temp2 = 1.0 /  (np *snrbar);
temp = 1.0 + temp2;
val1 = tempA(np-1.);
igf1 = incomplete_gamma(vt,np-1);
igf2 = incomplete_gamma(vt/temp,np-1);
pd  = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);

Listing 2.17. MATLAB Program “fig2_ 10.m”
% This program is used to reproduce Fig. 2.10 
close all 
clear all 
pfa = 1e-9; 
nfa = log(2) /  pfa; 
b = sqrt(-2.0 * log(pfa)); 
index = 0; 
for snr = 0:.1:22 

index = index +1; 
a = sqrt(2.0 * 10A(.1*snr)); 
pro(index) = marcumsq(a,b); 
prob(index) = pd_swerling1 (nfa, 1, snr); 

end
x = 0:.1:22;
plot(x, pro,'k',x,prob,'k:');
axis([2 22 0 1])
xlabel ('SNR - dB’)
ylabel ('Probability o f  detection’)
legend('Swerling V','Swerling I ’)
grid
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Listing 2.18. MATLAB Program “fig2_11ab.m”
% This program is used to produce Fig. 2.11a&b 
clear all 
pfa = 1e-11; 
nfa = log(2) /  pfa; 
index = 0; 
for snr = -10:.5:30 

index = index +1;
prob1(index) = pd_swerling1 (nfa, 1, snr); 
prob10(index) = pd_swerling1 (nfa, 10, snr); 
prob50(index) = pd_swerling1 (nfa, 50, snr); 
prob100(index) = pd_swerling1 (nfa, 100, snr); 

end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...

x, prob100,'k-.'); 
axis([-10 30 0 1]) 
xlabel ('SNR - dB’) 
ylabel ('Probability o f  detection’) 
legend('np = 1','np = 10','np = 50','np = 100') 
grid

Listing 2.19. MATLAB Function “pd_swerling2.m”
function pd  = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability o f  detection 
% for Swerling 2 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
% Calculate the threshold Vt 
pfa = np * log(2) /  nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num /  (deno+eps));
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delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
i f  (np <= 50) 

temp = vt /  (1.0 + snrbar); 
pd  = 1.0 - incomplete_gamma(temp,np); 
return 

else
temp1 = snrbar + 1.0; 
omegabar = sqrt(np) * temp1; 
c3 = -1.0 / sqrt(9.0 * np); 
c4 = 0.25 /  np; 
c6 = c3 * c3 /2.0;
V = (vt - np * temp1) /  omegabar;
Vsqr = V *V;
val1 = exp(-Vsqr / 2.0) / sqrt(2.0 * pi); 
val2 = c3 * (VA2 -1.0) + c4 * V * (3.0 - VA2) - ...

c6 * V * (VA4 - 10. * VA2 + 15.0); 
q = 0.5 * erfc (V/sqrt(2.0)); 
pd  = q - val1 * val2; 

end

Listing 2.20. MATLAB Program “fig2_12.m”
% This program is used to produce Fig. 2.12 
clear all 
pfa = 1e-10; 
nfa = log(2) /pfa; 
index = 0; 
for snr = -10:.5:30 

index = index +1;
prob1(index) = pd_swerling2 (nfa, 1, snr); 
prob10(index) = pd_swerling2 (nfa, 10, snr); 
prob50(index) = pd_swerling2 (nfa, 50, snr); 
prob100(index) = pd_swerling2 (nfa, 100, snr); 

end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...

x, prob100,'k-.'); 
axis([-10 30 0 1]) 
xlabel ('SNR - dB’) 
ylabel ('Probability o f  detection’) 
legend('np = 1','np = 10','np = 50','np = 100') 
grid
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function pd  = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability o f  detection 
% for Swerling 3 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
% Calculate the threshold Vt 
pfa = np * log(2) /  nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num /  (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
temp1 = vt /  (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0 /  (np * snrbar);
temp3 = 2.0 * (np - 2.0) /  (np * snrbar);
ko = exp(-temp1) * temp2A(np-2.) * (1.0 + temp1 - temp3);
i f  (np <= 2)

pd  = ko; 
return 

else
temp4 = vtA(np-1.) * exp(-vt) /  (temp1 * exp(factor(np-2.))); 
temp5 = v t/  (1.0 + 2.0 /  (np *snrbar)); 
pd  = temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ... 

incomplete_gamma(temp5,np-1.);
end

Listing 2.21. MATLAB Function “pd_swerling3.m”

Listing 2.22. MATLAB Program “fig2_ 13.m”
% This program is used to produce Fig. 2.13 
clear all 
pfa = 1e-9;
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nfa = log(2) /pfa; 
index = 0; 
for snr = -10:.5:30 

index = index +1;
prob1(index) = pd_swerling3 (nfa, 1, snr); 
prob10(index) = pd_swerling3 (nfa, 10, snr); 
prob50(index) = pd_swerling3(nfa, 50, snr); 
prob100(index) = pd_swerling3 (nfa, 100, snr); 

end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...

x, prob100,'k-.'); 
axis([-10 30 0 1]) 
xlabel ('SNR - dB’) 
ylabel ('Probability o f  detection’) 
legend('np = 1','np = 10','np = 50','np = 100') 
grid

Listing 2.23. MATLAB Function “pd_swerling4.m”
function pd  = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability o f  detection 
% for Swerling 4 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
% Calculate the threshold Vt 
pfa = np * log(2) /  nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

ig f = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num /  (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
h8 = snrbar /2.0;
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beta = 1.0 + h8; 
beta2 = 2.0 * betaA2 - 1.0; 
beta3 = 2.0 * betaA3; 
i f  (np >= 50) 

temp1 = 2.0 * beta -1; 
omegabar = sqrt(np * temp1); 
c3 = (beta3 - 1.) /  3.0 /  beta2 /  omegabar; 
c4 = (beta3 * beta3 - 1.0) /  4. /  np /beta2 /beta2; 
c6 = c3 * c3 /2.0;
V = (vt - np * (1.0 + snrbar)) /  omegabar;
Vsqr = V *V;
val1 = exp(-Vsqr / 2.0) / sqrt(2.0 * pi); 
val2 = c3 * (VA2 -1.0) + c4 * V * (3.0 - VA2) - ...

c6 * V * (VA4 - 10. * VA2 + 15.0); 
q = 0.5 * erfc (V/sqrt(2.0)); 
pd  = q - val1 * val2; 
return 

else 
snr = 1.0;
gamma0 = incomplete_gamma(vt/beta,np); 
a1 = (vt/ beta)Anp /  (expfactor(np)) * exp(vt/beta)); 
sum = gamma0; 
for i = 1:1:np 

temp1 = 1; 
i f  (i == 1) 

ai = a1; 
else

ai = (vt /  beta) * a1 /  (np + i -1); 
end
a1 = ai;
gammai = gamma0 - ai; 
gamma0 = gammai; 
a1 = ai; 
for ii = 1:1:i

temp1 = temp1 * (np + 1 - ii); 
end
term = (snrbar /2.0)Ai * gammai * temp1 / exp(factor(i)); 
sum = sum + term; 

end
pd  = 1.0 - sum /  betaAnp; 

end
pd  = max(pd,0.);
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Listing 2.24. MATLAB Program “fig2_ 14.m”
% This program is used to produce Fig. 2.14 
clear all 
pfa = 1e-9; 
nfa = log(2) /pfa; 
index = 0; 
for snr = -10:.5:30 

index = index +1;
prob1(index) = pd_swerling4 (nfa, 1, snr); 
prob10(index) = pd_swerling4 (nfa, 10, snr); 
prob50(index) = pd_swerling4(nfa, 50, snr); 
prob100(index) = pd_swerling4 (nfa, 100, snr); 

end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...

x, prob100,'k-.'); 
axis([-10 30 0 1.1]) 
xlabel ('SNR - dB’) 
ylabel ('Probability o f  detection’) 
legend('np = 1','np = 10','np = 50','np = 100') 
grid
axis tight

Listing 2.25. MATLAB Function “fluct_loss.m”
function [Lf,Pd_Sw5] = fluct_loss(pd, pfa, np, sw_case)
% This function calculates the SNR fluctuation loss for Swerling models 
% A negative L f  value indicates SNR gain instead o f  loss 
format long
% compute the false alarm number 
nfa = log(2) /pfa;
% *************** erling 5 case ****************
% check to make sure that np>1
i f  (np ==1)

b = sqrt(-2.0 * log(pfa));
Pd_Sw5 = 0.001; 
snr inc = 0.1 - 0.005; 
while(Pd_Sw5 < = pd)

sn rin c  = sn r in c  + 0.005; 
a = sqrt(2.0 * 10A(.1*snr_inc));
Pd_Sw5 = marcumsq(a,b); 

end
PD SW5 = Pd Sw5
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SNR_SW5 = sn rin c  
else

% np > 1 use MATLAB function pd_swerling5.m 
snr inc = 0.1 - 0.005;
Pd_Sw5 = 0.001; 
while(Pd_Sw5 < = pd)

sn rin c  = sn r in c  + 0.005;
Pd_Sw5 = pd_swerling5(pfa, 1, np, snr inc); 

end
P D SW 5 = Pd_Sw5 
SNR_SW5 = sn rin c  

end
i f  sw_case == 5 

L f  = 0.
return

end
*************** End Swerling 5 case ************ 

% *************** Swerling 1 case **************** 
i f  (sw case == 1)

Pd_Sw1 = 0.001; 
snr inc = 0.1 - 0.005; 
while(Pd_Sw1 < = pd)

sn rin c  = sn r in c  + 0.005;
Pd_Sw1 = pd_swerling1(nfa, np, snr inc); 

end
P D SW 1 = Pd_Sw1 
SNR_SW1 = sn rin c  
L f  = SNR_SW1 - SNR_SW5 

end
*************** End Swerling 1 case ************ 

% *************** Swerling 2 case **************** 
i f  (sw case == 2)

Pd_Sw2 = 0.001; 
snr inc = 0.1 - 0.005; 
while(Pd_Sw2 < = pd)

sn rin c  = sn r in c  + 0.005;
Pd_Sw2 = pd_swerling2(nfa, np, snr inc); 

end
P D SW 2 = Pd_Sw2 
SNR_SW2 = sn rin c  
L f  = SNR_SW2 - SNR_SW5 

end
*************** End Swerling 2 case ************ 

% *************** Swerling 3 case ****************
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i f  (sw case == 3)
Pd_Sw3 = 0.001; 
snr inc = 0.1 - 0.005; 
while(Pd_Sw3 < = pd)

sn rin c  = sn r in c  + 0.005;
Pd_Sw3 = pd_swerling3(nfa, np, snr inc); 

end
P D SW 3 = Pd_Sw3 
SNR_SW3 = sn rin c  
L f  = SNR_SW3 - SNR_SW5 

end
*************** End Swerling 3 case ************ 

% *************** erling 4 case **************** 
i f  (sw case == 4)

Pd_Sw4 = 0.001; 
snr inc = 0.1 - 0.005; 
while(Pd_Sw4 < = pd)

sn rin c  = sn r in c  + 0.005;
Pd_Sw4 = pd_swerling4(nfa, np, snr inc); 

end
P D SW 4 = Pd_Sw4 
SNR_SW4 = sn rin c  
L f  = SNR_SW4 - SNR_SW5 

end
*************** End Swerling 4 case ************ 

return

Listing 2.26. MATLAB Program “fig2_15.m”
% Use this program to reproduce Fig. 2.15 o f text 
clear all 
close all 
index = 0.; 
for pd  = 0.01:.05:1 

index = index + 1;
[Lf,Pd_Sw5] = fluct_loss(pd, 1e-9,1,1);
Lf1(index) = Lf;
[Lf,Pd_Sw5] = fluct_loss(pd, 1e-9,1,4);
Lf4(index) = Lf; 

end
pd  = 0.01:.05:1; 
figure (2)
plot(pd, Lf1, 'k',pd, Lf4,'K:') 
xlabel(’Probability o f  detection’)
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ylabel(’Fluctuation loss - dB') 
legend('Swerling I  & IF/Swerling III & IV') 
title('Pfa=1e-9, np=1') 
grid

Listing 2.27. MATLAB Program “myradar_visit2_1.m”
% Myradar design case study visit 2 1
close all
clear all
pfa = 1e-7;
pd  = 0.995;
np = 7;
p t = 165.8e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
n f  = 6.0; %noise figure in dB
loss = 8.0; % radar losses in dB
% compute the improvement factor due to 7-pulse non-coherent integration 
Improv = improvfac (np, pfa, pd);
% calculate the integration loss 
lossnci = 10*log10(np) - Improv;
% calculate net gain in SNR due to integration
SNR net = Improv - lossnci;
loss_total = loss + lossnci;
rangem = 55e3;
rangea = 90e3;
SNR_single_pulse_missile = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, ran- 
gem)
SNR_7_pulse_NCI_missile = SNR_single_pulse_missile + SN R net 
SNR_single_pulse_aircraft = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, ran- 
gea)
SNR_7_pulse_NCI_aircraft = SNR_single_pulse_aircraft + SN R net

Listing 2.28. MATLAB Program “myradar_visit2_2.m”
%clear all 
% close all 
% swid = 3;
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% pfa = 1e-7;
% np = 1;
% R_1stfram e = 61e3; % Range for first frame 
% R0 = 55e3; % range to last frame 
% SNR0 = 9; % SNR atR0  
% frame = 0.3e3; % frame size 
nfa = log(2) /pfa;
range_frame = R_1st_frame:-frame:R0; % Range to each frame 
% implement Eq. (2.98)
SNRi = SNR0 + 40 .* log10((R0. / rangeframe));
% calculate the Swerling 5 Pd at each frame 
b = sqrt(-2.0 * log(pfa)); 
i f  np ==1 

for frame = 1:1:size(SNRi,2)
a = sqrt(2.0 * 10A(.1*SNRi(frame))); 
pd5(frame) = marcumsq(a,b); 

end 
else

[pd5] = pd_swerling5(pfa, 1, np, SNRi); 
end
% compute additional SNR needed due to fluctuation 
for frame = 1:1:size(SNRi,2)

[Lf(frame),Pd_Sw5] = fluct_loss(pd5(frame), pfa, np, swid); 
end
% adjust SNR at each frame 
SNRi = SNRi - Lf;
% compute the frame Pd 
for frame = 1:1:size(SNRi,2) 

if(swid==1)
Pdiframe) = pd  swerling1 (nfa, np, SNRi(frame)); 

end
if(swid==2)

Pdiframe) = pd_swerling2 (nfa, np, SNRi(frame)); 
end
if(swid==3)

Pdiframe) = pd_swerling3 (nfa, np, SNRi(frame)); 
end
if(swid==4)

Pdiframe) = pd_swerling4 (nfa, np, SNRi(frame)); 
end
if(swid==5)

Pdi(frame) = pd5(frame); 
end 

end
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Pdc(1:size(SNRi,2)) = 0;
Pdc(1) = 1 - Pdi(1);
% compute the cumulative Pd 
for frame = 2:1:size(SNRi,2)

Pdc(frame) = (1-Pdi(frame)) * Pdc(frame-1); 
end
PDC = 1 - Pdc(21)

Listing 2.29. MATLAB Program “fig2_21.m”
% Use this program to reproduce Fig. 2.20 o f text.
close all
clear all
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor 
Im = improv_fac(np,pfa, pdm);
Ia = improv_fac(np, pfa, pda);
% caculate the integration loss 
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
p t = 114.7e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
n f  = 6.0; % noise figure in dB
loss = 8.0; % radar losses in dB
losstm = loss + Lm; % total loss for missile
lossta = loss + La; % total loss for aircraft
range = linspace(20e3,120e3,1000); % range to target from 20 to 120 Km, 
1000 points
% modify p t by np*pt to account for pulse integration 
snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, losstm, range); 
snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range); 
snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, lossta, range); 
snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range 
rangekm = range . / 1000; 
figure(1)
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subplot(2,1,1)
plot(rangekm,snrmnci,'k',rangekm,snrm,'k -.') 
grid
legend('With 4-pulse NCI','Singlepulse’) 
ylabel ('SNR - dB'); 
title('Missile case') 
subplot(2,1,2)
plot(rangekm,snranci, 'k',rangekm,snra,'k -.') 
grid
legend('With 4-pulse NCI','Singlepulse’) 
ylabel ('SNR - dB'); 
title(Aircraft case') 
xlabel('Detection range - Km')
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Chapter 3 Radar Waveforms

Choosing a particular waveform type and a signal processing technique in a 
radar system depends heavily on the radar’s specific mission and role. The cost 
and complexity associated with a certain type of waveform hardware and soft­
ware implementation constitute a major factor in the decision process. Radar 
systems can use Continuous Waveforms (CW) or pulsed waveforms with or 
without modulation. Modulation techniques can be either analog or digital. 
Range and Doppler resolutions are directly related to the specific waveform 
frequency characteristics. Thus, knowledge of the power spectrum density of a 
waveform is very critical. In general, signals or waveforms can be analyzed 
using time domain or frequency domain techniques. This chapter introduces 
many of the most commonly used radar waveforms. Relevant uses of a spe­
cific waveform will be addressed in the context of its time and frequency 
domain characteristics. In this book, the terms waveform and signal are used 
interchangeably to mean the same thing.

3.1. Low Pass, Band Pass Signals, and Quadrature 
Components

Signals that contain significant frequency composition at a low frequency 
band including DC are called Low Pass (LP) signals. Signals that have signifi­
cant frequency composition around some frequency away from the origin are 
called Band Pass (BP) signals. A real BP signal x(t) can be represented math­
ematically by

X (t) = r (t) cos (2 /  + Фх( t)) (3.1)
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where r (t) is the amplitude modulation or envelope, фх( t) is the phase modu­
lation, / 0 is the carrier frequency, and both r(t) and фх(t) have frequency com­
ponents significantly smaller than / 0 . The frequency modulation is

m ' ) = 2П t M  0) (3-2)

and the instantaneous frequency is

/ ( t )  = 2П i ( 2 / 0 + фх(t)) = f 0 +/ m(t) (33)

If the signal bandwidth is B , and if /0 is very large compared to B , the signal 
x(t) is referred to as a narrow band pass signal.

Band pass signals can also be represented by two low pass signals known as 
the quadrature components; in this case Eq. (3.1) can be rewritten as

x (t) = Xj( t) cos2n/0t -  Xq( t) sin2 n/0t (3.4)

where Xj(t) and xQ(t) are real LP signals referred to as the quadrature compo­
nents and are given, respectively, by

x, (t) = r (t) cos ФД t)
(3.5)

xQ(0) = r(t) sin^ (0)

Fig. 3.1 shows how the quadrature components are extracted.

2cos2n/0t

Figure 3.1. Extraction of quadrature components.
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3.2. The Analytic Signal
The sinusoidal signal x(t) defined in Eq. (3.1) can be written as the real part 

of the complex signal y ( t ) . More precisely,

/фу(t) /2n/0t
x( t)= Re{y(  t)} = Re{ r( t) e e } (3.6)

Define the “analytic signal” as

where

and

/ 2 П /01
V( t) = v (t )e Л (3.7)

/'Ф, (t)
v (t) = r(t) eJ4lK> (3.8)

-2Х(ю) ю> 0
Y («) = - 0 0 (3.9)

v 0 ю < 0

Y(ro) is the Fourier transform of y ( t) and Х(ю) is the Fourier transform of 
x(t) . Eq. (3.9) can be written as

Т(ю) = 2 U(rn)X(rn) (3.10)

where U(ю) is the step function in the frequency domain. Thus, it can be 
shown that у (t) is

v( t) = x (t) + j'x (t) (3.11)

x(t) is the Hilbert transform of x( t ) .

Using Eqs. (3.6) and (3.11), one can then write (shown here without proof)

x(t) = u0I(t) cos ю01 -  u0 q (t) sinro0t (3.12)

which is similar to Eq. (3.4) with ю0 = 2n/ 0 .

Using Parseval’s theorem it can be shown that the energy associated with the 
signal x( t) is

Ex = 2 j  x2(t) dt = I  J u2(t) dt = (3.13)
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3.3. CW and Pulsed Waveforms
The spectrum of a given signal describes the spread of its energy in the fre­

quency domain. An energy signal (finite energy) can be characterized by its 
Energy Spectrum Density (ESD) function, while a power signal (finite power) 
is characterized by the Power Spectrum Density (PSD) function. The units of 
the ESD are Joules per Hertz and the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a 
nonzero spectrum. In general, any signal can be defined using its duration 
(time domain) and bandwidth (frequency domain). A signal is said to be band- 
limited if  it has finite bandwidth. Signals that have finite durations (time-lim­
ited) will have infinite bandwidths, while band-limited signals have infinite 
durations. The extreme case is a continuous sine wave, whose bandwidth is 
infinitesimal.

A time domain signal f(t) has a Fourier Transform (FT) F(ro) given by

F(ro) = J f ( t)e4 fflt dt (3.14)
—W

where the Inverse Fourier Transform (IFT) is

W

f ( t) = 21  J F( “ ) d ®  (3.15)
—W

The signal autocorrelation function R ( t) is

W
Rf(T) = J f*(t)f(t + т) dt (3.16)

—W

The asterisk indicates the complex conjugate. The signal amplitude spectrum is 
|F(ro)| . If f(t) were an energy signal, then its ESD is |F(ro)|2 ; and if  it were a 

power signal, then its PSD is Sf(m) which is the FT of the autocorrelation 
function

W
Sf(m) = J Rf(T)e ;ит dT (3.17)

—W

First, consider a CW waveform given by
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frequency

- f 0 0 f 0 
Figure 3.2. Amplitude spectrum for a continuous sine wave.

f j ( t) = A cosro0t (3.18)

The FT of f j (t) is

Fj(ro) = Атс[5(ю - ю0) + 8(ю + ю0)] (3.19)

where 8( • ) is the Dirac delta function, and ю0 = 2nf0 . As indicated by 
the amplitude spectrum shown in Fig. 3.2, the signal fj( t) has infinitesimal 
bandwidth, located at ±f0 .

Next consider the time domain signal f 2( t) given by

f 2( t) = ARect[ T) -T * t * T 2 2
otherwise

(3.20)

It follows that the FT is

F 2(ro) = A TSinc -®2-) (3.21)

where

Sinc(x) = sm(7tx) (3.22)
KX

The amplitude spectrum of f2( t) is shown in Fig. 3.3. In this case, the band­
width is infinite. Since infinite bandwidths cannot be physically implemented, 
the signal bandwidth is approximated by 2п/т radians per second or 1 /т
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Hertz. In practice, this approximation is widely accepted since it accounts for 
most of the signal energy.

Figure 3.3. Amplitude spectrum for a single pulse, or a 
train of non-coherent pulses.

Now consider the coherent gated CW waveform f3( t) given by

W

f 3(t) = X  f 2(t -  nT) (3.23)

Clearly f3(t) is periodic, where T is the period (recall that f r = 1 /  T is the 
PRF). Using the complex exponential Fourier series we can rewrite f 3( t) as

Fne

j2nn-
T

f 3(t) = X
n = -W

where the Fourier series coefficients Fn are given by

(3.24)

„  Ат -птк
Fn = T  Sinc{ — (3.25)

It follows that the FT of f3( t) is

n = -W

W
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/о -  (1 /т ) fo + (1 /т )

Figure 3.4. Amplitude spectrum for a coherent pulse train of infinite length.

F 3(ro) = 2п X  F n8(ro - 2nnfr) (3.26)

The amplitude spectrum of f 3 (t) is shown in Fig. 3.4. In this case, the spectrum 
has a sinx/x envelope that corresponds to Fn . The spacing between the spec­
tral lines is equal to the radar PRF, f r .

Finally, define the function f4( t) as

/ 4(t) = X  f 2(t -  nT)
n = 0

Note that f4(t) is a limited duration of f 3(t). The FT of f4(t) is

(3.27)

F4(ib) = А^т Sinc-r o • X  Sinc(плт/г)5(ю -  2пж/ г) (3.28)

where the operator ( • ) indicates convolution. The spectrum in this case is 
shown in Fig. 3.5. The envelope is still a sinx/x which corresponds to the 
pulsewidth. But the spectral lines are replaced by sin x /x  spectra that corre­
spond to the duration N T .

W

W

n = -W

N
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Figure 3.5. Amplitude spectrum for a coherent pulse train of finite length.

3.4. Linear Frequency Modulation Waveforms
Frequency or phase modulated waveforms can be used to achieve much 

wider operating bandwidths. Linear Frequency Modulation (LFM) is com­
monly used. In this case, the frequency is swept linearly across the pulsewidth, 
either upward (up-chirp) or downward (down-chirp). The matched filter band­
width is proportional to the sweep bandwidth, and is independent of the pulse- 
width. Fig. 3.6 shows a typical example of an LFM waveform. The pulsewidth 
is т , and the bandwidth is B .

The LFM up-chirp instantaneous phase can be expressed by

where f 0 is the radar center frequency, and ц = (2nB)/т  is the LFM coeffi­
cient. Thus, the instantaneous frequency is

Similarly, the down-chirp instantaneous phase and frequency are given, respec­
tively, by

(3.29)
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(b)

Figure 3.6. Typical LFM waveforms. (a) up-chirp; (b) down-chirp.

W(t) = 2n(f0t -  2-/ )  -  2 < t < 2 (3.31)2 2

f(t) = 2П T t V(t) = f 0 -  2t -  2 < t <2 (3.32)

A typical LFM waveform can be expressed by

( t8 / 2 n f +2t2) 
ij(  t) = Rect[T7 e (3.33)

where Rect(t/ т ) denotes a rectangular pulse of width т . Eq. (3.33) is then 
written as

/2n/0tSj( t) = e s (t) (3.34)

where

s (t) = Rect-2) 

is the complex envelope of sj (t ) .

(3.35)
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The spectrum of the signal s j ( t) is determined from its complex envelope 
s(t). The complex exponential term in Eq. (3.34) introduces a frequency shift 
about the center frequency f o . Taking the FT of s (t) yields

S(m) = J Rect-Tj e-a tdt = J exp(AS-2i-- | e ^ ‘dt

Let ц' = 2пц = 2nB/ т , and perform the change of variable

X = Ц  t -  ® 
А/ п ( ц'

Thus, Eq. (3.36) can be written as

dx = ц  dt 
N п

Л-2

5(») = 'Ц  e !'ffl2/2ц' J / X72 dx

where

S(«) = In  e-a  72ц' С /пх /  2 у С /п x /  2 7J e dx -  J e dx

п (2 ц '
I—  (1 + f
2 ( B

х2 = ц- (т -  B  (1 -  Л
2 V п (2 ц '  А/ 2 ( B /2

The Fresnel integrals, denoted by C(x) and S(x), are defined by

X 2.
C(x) = J cos -^2"') du

0

x 2.
S(x) = J sin -пп ^  du

so

x

x

0

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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Fresnel integrals are approximated by

C(x) « 1- + — sin-пx2j ; x » 1 w  2 пx (2 ) (3.44)

S(x) « 1 —— cos(пx2j ; x » 1 (3.45)2 пx (2 7

Note that C(-x ) = -C (x) and S(-x) = -S (x). Fig. 3.7 shows a plot of both 
C(x) and S (x) for 0 < x < 4.0 . This figure can be reproduced using MATLAB 
program “fig3_7.m” given in Listing 3.1 in Section 3.12.

Using Eqs. (3.42) and (3.43) into (3.39) and performing the integration yield

P( , IT  - /« V ^ b )?^ О ^  + С С ^  +ДS(x2) + S(-:-l )] '] @ @
S(» 1 = v B  ‘  i ------------------ -Д------------------ } } )

Fig. 3.8 shows typical plots for the LFM real part, imaginary part, and ampli­
tude spectrum. The square-like spectrum shown in Fig. 3.8c is widely known 
as the Fresnel spectrum. This figure can be reproduced using MATLAB pro­
gram “fig3_8.m”, given in Listing 3.2 in Section 3.12.

A MATLAB GUI (see Fig. 3.8d) was developed to input LFM data and dis­
play outputs as shown in Fig. 3.8. It is called “LFM_gui.m”. Its inputs are the 
uncompressed pulsewidth and the chirp bandwidth.
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Figure 3.8a. Typical LFM waveform, real part.

T = 10 Microsecond, В = 200 MHz

Time - microsecs 

Figure 3.8b. Typical LFM waveform, imaginary part.
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Spectrum for an LFM waveform and T  = 10 Microsecond, В = 200 MHZ

-200 -160 -100 -60 0 50 100 150 200 
Frequency - MHz

Figure 3.8c. Typical spectrum for an LFM waveform.

Initialization Start Quit

Bandwidth in Hz

200e6

Uncom pressed pulsewidth 
in seconds

10e-6

Figure 3.8d. GUI workspace “LFM_gui.m".

3.5. High Range Resolution
An expression for range resolution AR in terms of the pulsewidth т was 

derived in Chapter 1. When pulse compression is not used, the instantaneous 
bandwidth B of radar receiver is normally matched to the pulse bandwidth,
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and in most radar applications this is done by setting B = 1 /т  . Therefore, 
range resolution is given by

AR = (c т)/2 = c /  (2B) (3.47)

Radar users and designers alike seek to accomplish High Range Resolution 
(HRR) by minimizing AR. However, as suggested by Eq. (3.47) in order to 
achieve HRR one must use very short pulses and consequently reduce the aver­
age transmitted power and impose severe operating bandwidth requirements. 
Achieving fine range resolution while maintaining adequate average transmit­
ted power can be accomplished by using pulse compression techniques, which 
will be discussed in Chapter 5. By means of frequency or phase modulation, 
pulse compression allows us to achieve the average transmitted power of a rel­
atively long pulse, while obtaining the range resolution corresponding to a very 
short pulse. As an example, consider an LFM waveform whose bandwidth is B 
and un-compressed pulsewidth (transmitted) is т . After pulse compression the 
compressed pulsewidth is denoted by т ' , where т' « т , and the HRR is

AR = ^  ^  (3.48)
2 2

Linear frequency modulation and Frequency-Modulated (FM) CW wave­
forms are commonly used to achieve HRR. High range resolution can also be 
synthesized using a class of waveforms known as the “Stepped Frequency 
Waveforms” (SFW). Stepped frequency waveforms require more complex 
hardware implementation as compared to LFM or FM-CW; however, the radar 
operating bandwidth requirements are less restrictive. This is true because the 
receiver instantaneous bandwidth is matched to the SFW sub-pulse bandwidth 
which is much smaller than the LFM or FM-CW bandwidth. A brief discussion 
of SFW waveforms is presented in the following section.

3.6. Stepped Frequency Waveforms
Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro­

files because the target range profile is computed by means of Inverse Discrete 
Fourier Transformation (IDFT) of frequency domain samples of the actual tar­
get range profile. The process of generating a synthetic HRR profile is 
described in Wehner.1 It is summarized as follows:

1. A series of n narrow-band pulses are transmitted. The frequency from 
pulse to pulse is stepped by a fixed frequency step A f . Each group of n 
pulses is referred to as a burst.

1. Wehner, D. R.,HighResolutionRadar, second edition, Artech House, 1993.
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2. The received signal is sampled at a rate that coincides with the center of 
each pulse.

3. The quadrature components for each burst are collected and stored.
4. Spectral weighting (to reduce the range sidelobe levels) is applied to the 

quadrature components. Corrections for target velocity, phase, and ampli­
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu­
lated to synthesize a range profile for that burst. The process is repeated for 
N  bursts to obtain consecutive synthetic HRR profiles.

Fig. 3.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is 
T , and the pulsewidth is т '. Each pulse can have its own LFM, or other type of 
modulation; in this book LFM is assumed. The center frequency for the ith 
step is

f  = fo + iA f ; i = 0, n -  1 (3.49)
thWithin a burst, the transmitted waveform for the i step can be described as

(Cicos2nf t + 0i iT < t < iT + т'8
s((t) = ( i ; . . ) (3.50)0 elsewhere
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where 0i are the relative phases and Ci are constants. The received signal from 
a target located at range R0 at time t = 0 is then given by

sri(t) = C / cos (2nf(t -  т(^) + 0i) ; iT  + т(^<  t < iT  + т' + т(t) (3.51) 

where Ci' are constant and the round trip delay т(t) is given by

R0 -  vt
т(t) = (3.52)

с /  2

с is the speed of light and v is the target radial velocity.

The received signal is down-converted to base-band in order to extract the 
quadrature components. More precisely, sri( t) is mixed with the signal

y i(t) = Ccos(2nf t + 0i) ; iT < t < iT + т' (3.53)

After low pass filtering, the quadrature components are given by

X/(t)8 _ (Aicos^i(t)' 
xQ( t )e U i sin Wi( t)

(3.54)

where Ai are constants, and

w.(t) = - 2 n f ( 2-R° -  ^  (3.55)
с с

where now f  = A f . For each pulse, the quadrature components are then sam­
pled at

тг 2R0
ti = iT  + 2  + ^  (3.56)

2 с

тг is the time delay associated with the range that corresponds to the start of 
the range profile.

The quadrature components can then be expressed in complex form as

X t = A j  (3.57)

Eq. (3.57) represents samples of the target reflectivity, due to a single burst, in 
the frequency domain. This information can then be transformed into a series 
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol­
lows that
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n -1

и , : £  X i exp (j
2 n li 0 < l < n -  1 (3.58)

Substituting Eqs. (3.57) and (3.55) into (3.58) and collecting terms yield

n-1

H  = n E  Ai 'x p W 2- f  - 2 - 2- ? ) ) (3.59)

By normalizing with respect to n and by assuming that A i = 1 and that the 
target is stationary (i.e., v = 0 ), then Eq. (3.59) can be written as

n-1
И, 2 nli

E  exp - 2 nfi
2R

(3.60)

Using f. = i Af inside Eq. (3.60) yields

n-1
И, E  exp V

2ni( 2nR0Af+l (3.61)

which can be simplified to

И  = ^  ' xp j f - ^
sin—-* 

n

(3.62)

where

-2nR0A f  
X = -------—  + l (3.63)

Finally, the synthesized range profile is

sin7tX
ППХ

(3.64)

3.6.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth. 
Assuming a SFW with n steps, and step size Af , then the corresponding range 
resolution is equal to

i = 0

i = 0

i =0

i =0
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(3.65)

Range ambiguity associated with a SFW can be determined by examining 
the phase term that corresponds to a point scatterer located at range R0 . More 
precisely,

2R0
y (  t) = '2n.fi "CT <3-66>

It follows that

Ay R 0 = 4 n R 0 (, 67>
4 - = o ^ - f o  с = T -  (367)

or equivalently,

R = (3.68)
0 Af 4 n ' '

It is clear from Eq. (3.68) that range ambiguity exists for Ay = Ay + 2nn . 
Therefore,

Ay + 2nn с „ ( с )
— A T ~ 4 n  = R0 + n( 2a/J

and the unambiguous range window is

Hence, a range profile synthesized using a particular SFW represents the rel­
ative range reflectivity for all scatterers within the unambiguous range win­
dow, with respect to the absolute range that corresponds to the burst time delay. 
Additionally, if a specific target extent is larger than R u, then all scatterers fall­
ing outside the unambiguous range window will fold over and appear in the 
synthesized profile. This fold-over problem is identical to the spectral fold- 
over that occurs when using a Fast Fourier Transform (FFT) to resolve certain 
signal frequency contents. For example, consider an FFT with frequency reso­
lution Af = 50Hz , and size NFFT  = 64 . In this case, this FFT can resolve 
frequency tones between -1600Hz and 1600Hz . When this FFT is used to 
resolve the frequency content of a sine-wave tone equal to 1800Hz , fold-over 
occurs and a spectral line at the fourth FFT bin (i.e., 200Hz ) appears. There­
fore, in order to avoid fold-over in the synthesized range profile, the frequency 
step Af  must be
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where E  is the target extent in meters.

Additionally, the pulsewidth must also be large enough to contain the whole 
target extent. Thus,

Af < 1 /т' (3.72)

and, in practice,

Af < 1 /  2 T (3.73)
This is necessary in order to reduce the amount of contamination of the synthe­
sized range profile caused by the clutter surrounding the target under consider­
ation.

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m” computes and plots the synthetic HRR profile 
for a specific SFW. It is given in Listing 3.3 in Section 3.12. This function uti­
lizes an Inverse Fast Fourier Transform (IFFT) of a size equal to twice the 
number of steps. Hamming window of the same size is also assumed. The syn­
tax is as follows:

A f < c / 2E  (3.71)

[hl] = hrr_profile (nscat, scatrange, sca trcs, n, deltaf, prf, v, r0, winid) 

where

Symbol Description Units Status
nscat number o f scatterers that make up 

the target
none input

scat_range vector containing range to individ­
ual scatterers

meters input

scat_rcs vector containing RCS o f individual 
scatterers

meter square input

n number o f steps none input

deltaf frequency step Hz input
prf PRF o f SFW Hz input

v target velocity meter/second input
r0 profile starting range meters input

winid number>0 for Hamming window 

number < 0 for no window
none input

hl range profile dB output
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For example, assume that the range profile starts at R0 = 900m and that

nscat tau n deltaf p rf v

3 100 ц sec 64 10MHz 10 KHz 0.0

In this case,

AR = 3 x 10 0.235m
2 x 64 x 10 x 10

= 3 x 10
'u 6

2 x 10 x 106
Ru = 15 m

Thus, scatterers that are more than 0.235 meters apart will appear as distinct 
peaks in the synthesized range profile. Assume two cases; in the first case,

[scat range] = [908, 910, 912] meters, and in the second case, [scat range] = 
[908, 910, 910.2] meters. In both cases, let [scat rcs] = [100, 10, 1] meters 
squared.

Fig. 3.10 shows the synthesized range profiles generated using the function 
“hrr_profile.m ” and the first case when the Hamming window is not used. Fig. 
3.11 is similar to Fig. 3.10, except in this case the Hamming window is used. 
Fig. 3.12 shows the synthesized range profile that corresponds to the second 
case (Hamming window is used). Note that all three scatterers were resolved in 
Figs. 3.10 and 3.11; however, the last two scatterers are not resolved in Fig. 
3.12, since they are separated by less than AR.

Figure 3.10. Synthetic range profile for three resolved scatterers. No window.
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О 5 10 15
relative distance - m eters

Figure 3.11. Synthetic range profile for three scatterers. Hamming window.

0 5 10 15
relative distance - meters

Figure 3.12. Synthetic range profile for three scatterers. Two are unresolved.
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Next, consider another case where [scat range] = [908, 912, 916] meters. 
Fig. 3.13 shows the corresponding range profile. In this case, foldover occurs, 
and the last scatterer appears at the lower portion of the synthesized range pro­
file. Also, consider the case where

[scat range] = [908, 910, 923] meters

Fig. 3.14 shows the corresponding range profile. In this case, ambiguity is 
associated with the first and third scatterers since they are separated by 15m . 
Both appear at the same range bin.

3.6.2. Effect o f Target Velocity

The range profile defined in Eq. (3.64) is obtained by assuming that the tar­
get under examination is stationary. The effect of target velocity on the synthe­
sized range profile can be determined by substituting Eqs. (3.55) and (3.56) 
into Eq. (3.58), which yields

n - 1 r t
H l = I  A  exp j f  -,2nf.[2R -  c -iT  + XA  + 2R)]J (3.74)

i = 0

0 5 10 15
relative distance - meters

Figure 3.13. Synthetic range profile for three scatterers. Third scatterer folds 
over.
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0 5 10 15
relative distance - meters

Figure 3.14. Synthetic range profile for three scatterers. The first and third 
scatterers appear in the same FFT bin.

The additional phase term present in Eq. (3.74) distorts the synthesized range 
profile. In order to illustrate this distortion, consider the SFW described in the 
previous section, and assume the three scatterers of the first case. Also, assume 
that v = 100m /  s . Fig. 3.15 shows the synthesized range profile for this case. 
Comparisons of Figs. 3.11 and 3.15 clearly show the distortion effects caused 
by the uncompensated target velocity. Figure 3.16 is similar to Fig. 3.15 except 
in this case, v = -100m/ s . Note in either case, the targets have moved from 
their expected positions (to the left or right) by Disp = 2 x n x v/PRF (1.28 
m).

This distortion can be eliminated by multiplying the complex received data 
at each pulse by the phase term

ф = exp (iT + X2  + ^  ]) (3.75)

v and R are, respectively, estimates of the target velocity and range. This pro­
cess of modifying the phase of the quadrature components is often referred to 
as “phase rotation.” In practice, when good estimates of v and R are not avail­
able, then the effects of target velocity are reduced by using frequency hopping 
between the consecutive pulses within the SFW. In this case, the frequency of 
each individual pulse is chosen according to a predetermined code. Waveforms 
of this type are often called Frequency Coded Waveforms (FCW). Costas 
waveforms or signals are a good example of this type of waveform.
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0 5 10 15
relative distance - meters

Figure 3.15. Illustration of range profile distortion due to target velocity.

0 5 10 15
relative distance - meters

Figure 3.16. Illustration of range profile distortion due to target velocity.
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Figure 3.17 shows a synthesized range profile for a moving target whose 
RCS is ct = 10m2 and v = 15m/ s . The initial target range is at R = 912m . All 
other parameters are as before. This figure can be reproduced using the MAT­
LAB program “fig3_17.m ” given in Listing 3.4 in Section 3.12.

Figure 3.17. Synthesized range profile for a moving target (4 seconds long).

3.7. The Matched Filter
The most unique characteristic of the matched filter is that it produces the 

maximum achievable instantaneous SNR at its output when a signal plus addi­
tive white noise is present at the input. The noise does not need to be Gaussian. 
The peak instantaneous SNR at the receiver output can be achieved by match­
ing the radar receiver transfer function to the received signal. We will show 
that the peak instantaneous signal power divided by the average noise power at 
the output of a matched filter is equal to twice the input signal energy divided 
by the input noise power, regardless of the waveform used by the radar. This is 
the reason why matched filters are often referred to as optimum filters in the 
SNR sense. Note that the peak power used in the derivation of the radar equa­
tion (SNR) represents the average signal power over the duration of the pulse, 
not the peak instantaneous signal power as in the case of a matched filter. In 
practice, it is sometimes difficult to achieve perfect matched filtering. In such
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cases, sub-optimum filters may be used. Due to this mismatch, degradation in 
the output SNR occurs.

Consider a radar system that uses a finite duration energy signal si(t) . 
Denote the pulsewidth as T , and assume that a matched filter receiver is uti­
lized. The main question that we need to answer is: What is the impulse, or fre­
quency, response of the filter that maximizes the instantaneous SNR at the 
output of the receiver when a delayed version of the signal s.(t) plus additive 
white noise is at the input?

The matched filter input signal can then be represented by

where C is a constant, t1 is an unknown time delay proportional to the target 
range, and ni(t) is input white noise. Since the input noise is white, its corre­
sponding autocorrelation and Power Spectral Density (PSD) functions are 
given, respectively, by

where N0 is a constant. Denote so(t) and no(t) as the signal and noise filter 
outputs, respectively. More precisely, we can define

The operator ( • ) indicates convolution, and h (t) is the filter impulse 
response (the filter is assumed to be linear time invariant).

Let Rh(t) denote the filter autocorrelation function. It follows that the output 
noise autocorrelation and PSD functions are

x (t) = C s.(t - 11) + nt(t) (3.76)

-  N0 
Rn(t) = у  S(t) (3.77)

(3.78)

y (t) = C so( t -  t1 ) + no(t) (3.79)

where

so(t) = si( t)  ̂h(t) (3.80)

no( t) = ni(t ) •  h (t) (3.81)

Rno(t) = Rn( !)•  Rh(t) = у  S(t)^Rh(t) = -2  Rh(t)
N0 N0 (3.82)

- - 2 N0
Sno(m) = Sni(rn)|ff(rn)|2 = у  \H(m)\ 2 (3.83)
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where H(ro) is the Fourier transform for the filter impulse response, h (t) . The 
total average output noise power is equal to Rn (t) evaluated at t = 0 . More 
precisely,

N
Rno(0) = -2  J |h(u)| du (3.84)

The output signal power evaluated at time t is |Cso(t - 11)| , and by using Eq. 
(3.80) we get

so(t - 11) = J si(t -  t1 -  u) h(u) du (3.85)
-W

A general expression for the output SNR at time t can be written as

\Cso( t - tJ)\2SNR( t) _
Rno( 0)

Substituting Eqs. (3.84) and (3.85) into Eq. (3.86) yields

(3.86)

C

SNR( t)

J s.(t -  ^ -  u) h(u) du

(3.87)
N0 J |h(u)|‘du

The Schwartz inequality states that

J P (x) Q (x) dx < J |P(x)2dx J |Q(x) 2dx (3.88)

where the equality applies only when P = kQ* , where к is a constant and can 
be assumed to be unity. Then by applying Eq. (3.88) on the numerator of Eq. 
(3.87), we get

C2 J \s .(t - 11 -  u)|2 du J |h(u)|2 du 2C  J |s;(t - 11 -  u )2 du 

SNR(t)< — ^ ---------------------  (3.89)
N N0
^  J |h (u)| du

30

X)

о

20

0

-0

0 0

-0 -0 -0

0 0 0

0
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Eq. (3.89) tells us that the peak instantaneous SNR occurs when equality is 
achieved (i.e., from Eq. (3.88) h = k s * ). More precisely, if  we assume that 
equality occurs at t = t0 , and that к = 1, then

h(u) = s * ( t0 -  t1 -  u) (3.90)

and the maximum instantaneous SNR is

0
22C2 J |s;(t0 - 11 -  u)|2 du

SNR( t0) = -------------------------------  (3.91)
N0

Eq. (3.91) can be simplified using Parseval’s theorem,

-
E = C2 J |s.(t0 -  t1 -  u)|2 du (3.92)

- ­

where E  denotes the energy of the input signal; consequently we can write the 
output peak instantaneous SNR as

SNR( t0) = N- (3.93)
N0

Thus, we can draw the conclusion that the peak instantaneous SNR depends 
only on the signal energy and input noise power, and is independent of the 
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq. 
(3.90). If we desire the peak to occur at t0 = t1, we get the non-causal matched 
filter impulse response,

hnc( t) = s* (- t)  (3.94)

Alternatively, the causal impulse response is

hc( t) = s*(x - 1) (3.95)

where, in this case, the peak occurs at t0 = t1 + т . It follows that the Fourier 
transforms of hnc(t) and hc(t) are given, respectively, by

Hnc((0) = S1*((0)

Hc(m) = S*(m) e-JW%

(3.96)

(3.97)
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where Si(m) is the Fourier transform of si(t) . Thus, the moduli of H(m) and 
Si(m) are identical; however, the phase responses are opposite of each other.

Example:

Compute the maximum instantaneous SNR at the output o f  a linear filter  
whose impulse response is matched to the signal x(t) = exp(- t  /2T )  .

Solution:

The signal energy is

а д а д
E = j  |x(t)|2dt = j  e - )/Tdt = JriT Joules

—ад —ад

I t follow s that the maximum instantaneous SNR is

JriT

TheReplica 169

No /  2
SNR

where N0 / 2 is the input noise power spectrum density.

3.8. The Replica
Again, consider a radar system that uses a finite duration energy signal si(t) , 

and assume that a matched filter receiver is utilized. The input signal is given 
in Eq. (3.76) and is repeated here as Eq. (3.98),

x(t) = C si(t — t1) + ni(t) (3.98)

The matched filter output y (t) can be expressed by the convolution integral 
between the filter’s impulse response and x(t ) ,

ад
y(t) = j  x(u)h(t — u)du (3.99)

ад

Substituting Eq. (3.95) into Eq. (3.99) yields

ад
y(t) = j  x(u)s*(x — t + u)du = Rxs(t — t) (3.100)

ад

where Rxs (t — t) is a cross-correlation between x(t) and si(x — t) . Therefore, 
the matched filter output can be computed from the cross-correlation between 
the radar received signal and a delayed replica of the transmitted waveform. If 
the input signal is the same as the transmitted signal, the output of the matched
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filter would be the autocorrelation function of the received (or transmitted) sig­
nal. In practice, replicas of the transmitted waveforms are normally computed 
and stored in memory for use by the radar signal processor when needed.
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3.9. Matched Filter Response to LFM Waveforms
In order to develop a general expression for the matched filter output when 

an LFM waveform is utilized, we will consider the case when the radar is 
tracking a closing target with velocity v . The transmitted signal is

18 J'2n(fot + 2t2]
s1 (t) = R ec t, e (3.101)

The received signal is then given by

sri( t) = si( t - A (  t)) (3.102)

A( t) = ^ -2 c - (t - to ) (3.103)

where t0 is the time corresponding to the target initial detection range, and c is 
the speed of light. Using Eq. (3.103) we can rewrite Eq. (3.102) as

sr1 (t) = s1- t - t o + “V ( t - t o)) = s1(Y( t - t o)) (3.104)

and

Y = 1 + 2V (3.105)c

is the scaling coefficient. Substituting Eq. (3.101) into Eq. (3.104) yields

( R jH(t - t j 2 n f 0Y(t-t0) J'nW2(t- t0)2 sr1(t) = Rect, ---- ;— J e e (3.106)

which is the analytical signal representation for sr (t ) . The complex envelope 
of the signal sr (t) is obtained by multiplying Eq. (3.106) by exp(-j2nf0t) . 
Denote the complex envelope by sr(t) ; then after some manipulation we get

(t) -j 2nf0t0u tH ( t - t 0 \  j2nf0(Y- 1)(t- t0) jnV-Y1(t- t0)2 sr(t) = e Recty— — J e e (3.107)

The Doppler shift due to the target motion is
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fd = <3.108>

and since y -  1 = 2v /  c , we get

f d = (Y -  1 f0  (3.109)

Using the approximation y ~ 1 and Eq. (3.109), Eq. (3.107) is rewritten as

j2 nfd( t-t0 )
sr( t)*  e  °' s (t - t 0 ) (3.110)

where

-/2n/01
s ( t - t 0 ) = e s x (t - t 0 ) (3.111)

s1(t) is given in Eq. (3.101). The matched filter response is given by the con­
volution integral

W
so(t) = j  h (u)sr( t-u )d u  (3.112)

-

For a non-causal matched filter the impulse response h(u) is equal to s* (- 1 ) ; it 
follows that

so(t) = j  s*(-u)sr( t-u )d u  (3.113)
-  W

Substituting Eq. (3.111) into Eq. (3.113), and performing some algebraic 
manipulations, we get

W
/* j2nfd(. t + u —10)

so(t) = j  s*(u) e s(t + u - t 0)du (3.114)
W

Finally, making the change of variable t  = t + u yields

W
г /Ъ-кЫt -  t0)

so(t) = j  s * ( t - t ) s ( t - t 0)e dt (3.115)
W

It is customary to set t0 = 0 . It follows that

W

so(tfd) = j  s (t ) s * ( t - t ) e 2nfdf dt (3.116)

Matched Filter Response to LFM Waveforms 171
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where we used the notation so( t fd) to indicate that the output is a function of 
both time and Doppler frequency.

3.10. Waveform Resolution and Ambiguity
As indicated by Eq. (3.93) the radar sensitivity (in the case of white additive 

noise) depends only on the total energy of the received signal and is indepen­
dent of the shape of the specific waveform. This leads us to ask the following 
question: If the radar sensitivity is independent of the waveform, then what is 
the best choice for a transmitted waveform? The answer depends on many fac­
tors; however, the most important consideration lies in the waveform’s range 
and Doppler resolution characteristics.

As discussed in Chapter 1, range resolution implies separation between dis­
tinct targets in range. Alternatively, Doppler resolution implies separation 
between distinct targets in frequency. Thus, ambiguity and accuracy of this 
separation are closely associated terms.

3.10.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated 
in range by distance A R . What is the smallest value of AR so that the returned 
signal is interpreted by the radar as two distinct targets? In order to answer this 
question, assume that the radar transmitted pulse is denoted by s(t) ,

where f 0 is the carrier frequency, A (t) is the amplitude modulation, and ф(t) is 
the phase modulation. The signal s (t) can then be expressed as the real part of 
the complex signal y ( t) , where

s (t) = A (t) cos (2nf0t + ф( t)) (3.117)

y( t) = A( t)ej (®0t-<Kt)) = u (t) e (3.118)

and

u(t) = A (t)e /Ф(̂ (3.119)

It follows that

s (t) = Re{W( t) }

The returns from both targets are respectively given by

(3.120)

sr1(t) = W( t -  T0) (3.121)

sr2(t) = V(t - T0-  T) (3.122)
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where t  is the difference in delay between the two returns. One can assume 
that the reference time is t 0 , and thus without any loss of generality one may 
set t 0 = 0 . It follows that the two targets are distinguishable by how large or 
small the delay t  can be.

In order to measure the difference in range between the two targets consider 
the integral square error between y (t) and y (t -  t) . Denoting this error as eR, 
it follows that

eR = j  M t) -  W(t -  t)| dt
-ад

Eq. (3.123) can be written as

(3.123)

8r = J lv(t)l dt + j  |y ( t -  t)| dt -
-ад -адад

j  {0 (t)V*( t - t) + V*(0V( t - t)) dt}

(3.124)

Using Eq. (3.118) into Eq. (3.124) yields

eR = 2 j  |u(t)|2 dt -  2Re j  y*(t)y (t -  t) dt (3.125)

2 j |u (t)|2 dt -  2Re= e 1 0 |" u*( t)u (t -  t) dt >

The first term in the right hand side of Eq. (3.125) represents the signal energy, 
and is assumed to be constant. The second term is a varying function of t  with 
its fluctuation tied to the carrier frequency. The integral inside the right-most 
side of this equation is defined as the “range ambiguity function,”

ад

ад ад

-ад

ад

ад

ад

ад

Xr (t) = j  u*(t)u(t -  t) dt (3.126)
-ад

The maximum value of xr (t) is at t  = 0 . Target resolvability in range is 
measured by the squared magnitude |xr (t) |2 . It follows that if 
|xr (t)| = xR( 0) for some nonzero value of t  , then the two targets are indistin­
guishable. Alternatively, if |xr (t)| * xr (0) for some nonzero value of t  , then 
the two targets may be distinguishable (resolvable). As a consequence, the 
most desirable shape for xr (t) is a very sharp peak (thumb tack shape) cen­
tered at t  = 0 and falling very quickly away from the peak.
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The time delay resolution is

j  |x r(t) |2 dT

At =
xR(0)

(3.127)

Using Parseval’s theorem, Eq. (3.127) can be written as

j  |U(m)|4 dm

At = 2n

j  |U(m)|2 dm

The minimum range resolution corresponding to At is

AR = cA t/2 

However, since the signal effective bandwidth is

(3.128)

(3.129)

B =

j  U(m)|2 dm

(3.130)

2n j  \U(m)|4 dm
-ад

the range resolution is expressed as a function of the waveform’s bandwidth as

AR = c /  (2B) (3.131)

The comparison between Eqs. (3.116) and (3.126) indicates that the output 
of the matched filter and the range ambiguity function have the same envelope 
(in this case the Doppler shift f d is set to zero). This indicates that the matched 
filter, in addition to providing the maximum instantaneous SNR at its output, 
also preserves the signal range resolution properties.

3.10.2. Doppler Resolution

It was shown in Chapter 1 that the Doppler shift corresponding to the target 
radial velocity is

f d
2v = 2 fo
X c

(3.132)

where v is the target radial velocity, X is the wavelength, f 0 is the frequency, 
and c is the speed of light.

ад

ад

ад

ад

-i2ад
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Let

Y (f  = J y (t)e
—j2nft dt (3.133)

Due to the Doppler shift associated with the target, the received signal spec­
trum will be shifted by f d. In other words the received spectrum can be repre­
sented by Y f  -  f d). In order to distinguish between the two targets located at 
the same range but having different velocities, one may use the integral square 
error. More precisely,

ад

8f  = !1 Т (/) -  W - f d ) |2 d f  (3.134)
-ад

Using similar analysis as that which led to Eq. (3.125), one should minimize

2Re J y * ( / W - fd ) d f

By using the analytic signal in Eq. (3.118) it can be shown that

Y f  = U( 2nf -  2nf0)

Thus, Eq. (3.135) becomes

(3.135)

(3.136)

J U*(2nf)U(2nf-  2nfd) d f = J U*(2nf-  2nf0)U ( 2 n f - 2 f  -  2nfd) d f  (3.137)
-ад -ад

The complex frequency correlation function is then defined as

а д а д
f d )  = J U*(2nf)U(2n f - 2nfd) df = J |u(t)|2 j2^  dt (3.138)

-ад -ад

and the Doppler resolution constant Afd is

а д а д

J | f d )  2dfd J lu (t^ 4dt

Afd

dt

_ = 1
2 T (3.139)

where T is pulsewidth.

ад

ад

ад ад

ад
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Finally, one can define the corresponding velocity resolution as

cAfd СA v
2fo 2foT'

(3.140)

Again observation of Eqs. (3.138) and (3.116) indicate that the output of the 
matched filter and the ambiguity function (when т = 0 )  are similar to each 
other. Consequently, one concludes that the matched filter preserves the wave­
form Doppler resolution properties as well.

3.10.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair 
of variables (т, f d). For this purpose, assume that the complex envelope of the 
transmitted waveform is

i2nfoty( t) = u (t) e 

Then the delayed and Doppler-shifted signal is

(3.141)

4 N j 2 n(f0 -fd)(t -  T)у '(t -  т) = u(t -  т)е (3.142)

Computing the integral square error between Eqs. (3.142) and (3.141) yields

s2 = j  lv(t) -  у'(t -  т)|2 dt = 2 j  |y(t)|2dt-  2Re j  y*(t) -  у '(t -  T)dt (3.143)

which can be written as

s2 = 2 j  |u(t)\2 dt -  2Re j'2nC/0- f d)T j  u(t)u*(t-  T)e3 f  dt (3.144)

Again, in order to maximize this squared error for т * 0 one must minimize the 
last term of Eq. (3.144).

Define the combined range and Doppler correlation function as

ад
j2 f  -

X ^ J d ) = j  u(t)u*( t -  i)e  d dt (3.145)

In order to achieve the most range and Doppler resolution, the modulus square 
of this function must be minimized for т * 0 and f d * 0 . Note that the output of

ад ад

ад ад

ад

ад

ад
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the matched filter in Eq. (3.116) is identical to that given in Eq. (3.145). This 
means that the output of the matched filter exhibits maximum instantaneous 
SNR as well as the most achievable range and Doppler resolutions.

3.11. “MyRadar” Design Case Study - Visit 3

3.11.1. Problem Statement

Assuming a matched filter receiver, select a set o f  waveforms that can meet 
the design requirements as stated in the previous two chapters. Assume linear 
frequency modulation. Do not use more than a total o f  5 waveforms. M odify the 
design so that the range resolution AR = 30m during the search mode, and 
AR = 7.5m during tracking.

3.11.2. A Design

The major characteristics of radar waveforms include the waveform’s 
energy, range resolution, and Doppler (or velocity) resolution. The pulse 
(waveform) energy is

E  = Ptx  (3.146)

where Pt is the peak transmitted power and т is the pulsewidth. Range resolu­
tion is defined in Eq. (3.131), while the velocity resolution is in Eq. (3.140).

Close attention should be paid to the selection process of the pulsewidth. In 
this design we will assume that the pulse energy is the same as that computed 
in Chapter 2 . The radar operating bandwidth during search and track are calcu­
lated from Eq. (3.131) as

B
search 

B track

Since the design calls for a pulsed radar, then for each pulse transmitted (one 
PRI) the radar should not be allowed to receive any signal until that pulse has 
been completely transmitted. This limits the radar to a minimum operating 
range defined by

3 x 108/ ( 2 x 30) = 5 MHz ,
v ' 1 (3.147)

3 x 108/ ( 2 x 7 5) = 20 MHz '

Rmin = J  <3.148>

In this design choose R min > 15Km . It follows that the minimum acceptable 
pulsewidth is т ^ х < 100 | i s .
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For this design select 5 waveforms, one for search and four for track. Typi­
cally search waveforms are longer than track waveforms; alternatively, track­
ing waveforms require wider bandwidths than search waveforms. However, in 
the context of range, more energy is required at longer ranges (for both track 
and search waveforms), since one would expect the SNR to get larger as range 
becomes smaller. This was depicted in the example shown in Fig. 1.13 in 
Chapter 1.

Assume that during search and initial detection the single pulse peak power 
is to be kept under 10 KW (i.e., Pt < 20 K W ). Then by using the single pulse 
energy calculated using Eq. (2.115) in Chapter 2, one can compute the mini­
mum required pulsewidth as

0 1147
^ in  > = 5-735^s (3.149)

20 x 103

Choose тsearch = 20 |is , with bandwidth B = 5MHz and use LFM modulation. 
Fig. 3.18 shows plots of the real part, imaginary part, and the spectrum of this 
search waveform. This figure was produced using the GUI workspace 
"LFM_gui.m". As far as the track waveforms, choose four waveforms of the 
same bandwidth (Btrack = 20M Hz) and with the following pulsewidths.

TABLE 3.1. “MyRadar” design case study track waveforms.

Pulsewidth Range window

тп = 20|is 

тд = 17.5 |is 

тй = 15 |is 

тм = 12.5 |is

Rmax ^  0'15Rmax 

° '75Rmax ^  05Rmax 

05Rmax ^  °'25Rmax 

R < 0 25Rmax

Note that R max refers to the initial range at which track has been initiated. Fig. 
3.19 is similar to Fig. 3.18 except it is for тй .

For the waveform set selected in this design option, the radar duty cycle var­
ies from 1.25% to 2.0%. Remember that the PRF was calculated in Chapter 1 
as f r = 1KHz; thus the PRI is T = 1ms.

At this point of the design, one must verify that the selected waveforms pro­
vide the radar with the desired SNR that meets or exceeds what was calculated 
in Chapter 2, and plotted in Fig. 2.21. In other words, one must now re-run 
these calculations and verify that the SNR has not been degraded. This task 
will be postponed until Chapter 5, where the radar equation with pulse com­
pression is developed.
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Search Waveform

Time - seconds x ю'5

Figure 3.18a. Real part of search waveform.

Search Waveform

Time - seconds x ю 5

Figure 3.18b. Imaginary part of search waveform.
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Search Wavefonn

Frequency - Hz 

Figure 3.18c. Amplitude spectrum.

X 10

Figure 3.19a. Real part o f waveform.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Am
pli

tud
e 

sp
ec

tru
m 

Im
ag

in
ar

y 
pa

rt 
of 

w
av

ef
or

m

"MyRadar"Design Case Study - Visit 3 181

Track Waveform #3

Time - seconds 

Figure 3.19b. Imaginary part of waveform.

Figure 3.19c. Amplitude spectrum.
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This section presents listings for all MATLAB programs/functions used in 
this chapter.

3.12. MATLAB Program and Function Listings

Listing 3.1. MATLAB Program “fig3_7.m”
% Use this program to reproduce Fig 3.7 from text 
clear all 
close all 
n = 0;
for x = 0:.05:4 

n = n+1;
sx(n) = quadl(’fresnels’,.0,x); 
cx(n) = quadl(’fresnelc’,.0,x); 

end
plot(cx)
x=0:.05:4;
plot(x,cx,’k ’,x,sx,’k--’)
grid
xlabel ('x')
ylabel ('Fresnel integrals: C(x); S(x)’) 
legend('C(x)','S(x)')

Listing 3.2. MATLAB Program “fig3_8.m”
% Use this program to reproduce Fig. 3.8 o f  text
close all
clear all
eps = 0.000001;
%Enter pulsewidth and bandwidth 
B = 200.0e6; %200 MHZ bandwidth 
T = 10.e-6; %10 micro second pulse;
% Compute alpha 
mu = 2. * pi * B /  T;
% Determine sampling times
delt = linspace(-T/2., T/2., 10001); % 1 nano second sampling interval
% Compute the complex LFM representation
Ichannal = cos(mu .* deltA2 /  2.); % Real part
Qchannal = sin(mu .* deltA2 /  2.); % Imaginary Part
LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT o f  the LFM waveform
LFMFFT = fftshift(fft(LFM));
% Plot the real and Imaginary parts and the spectrum
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freqlim it = 0.5 /  1.e-9;% the sampling interval 1 nano-second 
freq  = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001); 
figure(1)
plot(delt*1e6,Ichannal,'k');
axis([-1 1 -1 1])
grid
xlabel('Time - microsecs') 
ylabel('Real p a rt’)
title('T = 10Microsecond, B  = 200MHz') 
figure(2)
plot(delt*1e6,Qchannal,'k');
axis([-1 1 -1 1])
grid
xlabel('Time - microsecs’)
ylabel('Imaginary part')
title('T = 10Microsecond, B  = 200MHz')
figure(3)
p lotfreq , abs(LFMFFT), 'k');
%axis tight 
grid
xlabel(’Frequency - M H z’) 
ylabel(Amplitude spectrum’)
title(’Spectrum fo r  an LFM  waveform and T = 10 Microsecond, ...
B = 200 MHZ')

Listing 3.3. MATLAB Function “hrr_profile.m”
function [hl] = hrr_profile (nscat, scat range, scat rcs, n, deltaf, prf, v, 

rnote,winid)
% Range or Time domain Profile
% R angeP rofile  returns the Range or Time domain plo t o f  a simulated 
% HRR SFWF returning from  a predetermined number o f  targets with a prede­

termined 
% RCS fo r  each target. 
c=3.0e8; % speed o f  light (m/s) 
num _pulses = n;
S N R d B  = 40; 
nfft = 256;
%carrier_freq = 9.5e9; %Hz (10GHz) 
freq  step = deltaf; %Hz (10MHz)
V = v; % radial velocity (m/s) -- (+)=towards radar (-)=away
p r i  = 1. /p rf; % (s)
i f  (nfft > 2*num_pulses) 

num_pulses = nfft/2;
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end
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphasetgt = zeros(num_pulses,1);
Quadraturetgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num _pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num _pulses),1); 
Weighted_IQ_time_domain = zeros((2*num_pulses),1); 
Weighted_IQ_freq_domain = zeros((2*num_pulses),1); 
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1); 
dB_abs_Weighted_IQ_time_domain = zeros((2*num _pulses),1); 
taur = 2. * rnote /  c; 
for jscat = 1:nscat 

ii = 0;
for i = 1:num_pulses 

ii = ii+1;
rec_freq = ((i-1)*freq_step);
Inphase tgt(ii) = Inphase tgt(ii) + sqrt(scat_rcs(jscat)) * cos(- 

2*pi*rec_freq*...
(2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 

2*scat_range(jscat)/c)));
Quadraturetgt(ii) = Quadraturetgt(ii) + sqrt(scat_rcs(jscat))*sin(- 

2*pi*rec_freq*...
(2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 

2*scat_range(jscat)/c)));
end

end
if(winid >= 0)

window(1:num_pulses) = hamming(num_pulses); 
else

window(1:num_pulses) = 1; 
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses).* window’; 
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* win­

dow ’;
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...

Weighted_Q_freq_domain *j;
Weighted_IQ_freq_domain(num _pulses:2*num_pulses)=0.+0.i; 
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain)); 
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
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dB_abs_Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB; 

% calculate the unambiguous range window size 
Ru = c /2/deltaf;
hl = dB_abs_Weighted_IQ_time_domain;
numb = 2*num_pulses;
delxm eter = Ru /  numb;
xmeter = 0:delx_meter:Ru-delx_meter;
plot(xmeter, dB_abs_Weighted_IQ_time_domain, 'k')
xlabel ('relative distance - meters’)
ylabel ('Range profile - dB’)
grid

Listing 3.4. MATLAB Program “fig3_ 17.m”
% use this program to reproduce Fig. 3.17 o f  text
clear all
close all
nscat = 1;
scatrange = 912;
sca trcs = 10;
n =64;
deltaf = 10e6; 
p r f  = 10e3; 
v = 15; 
rnote = 900, 
winid = 1; 
count = 0; 
for time = 0:.05:3 

count = count +1;
hl = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote,winid); 
array(count,:) = transpose(hl); 
hl(1:end) = 0;
scat_range = scat_range - 2 * n * v /  prf; 

end
figure (1)
numb = 2*256;% this number matches that used in hrr_profile. 
delxm eter = 15 /  numb; 
xmeter = 0:delx_meter:15-delx_meter; 
imagesc(xmeter, 0:0.05:4,array) 
colormap(gray) 

ylabel ('Time in seconds’) 
xlabel('Relative distance in meters')
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Chapter 4 The Radar Ambiguity 
Function

4.1. Introduction
The radar ambiguity function represents the output of the matched filter, and 

it describes the interference caused by the range and/or Doppler shift of a tar­
get when compared to a reference target of equal RCS. The ambiguity function 
evaluated at (t, f d) = (0, 0) is equal to the matched filter output that is 
matched perfectly to the signal reflected from the target of interest. In other 
words, returns from the nominal target are located at the origin of the ambigu­
ity function. Thus, the ambiguity function at nonzero t  and f d represents 
returns from some range and Doppler different from those for the nominal tar­
get.

The radar ambiguity function is normally used by radar designers as a means 
of studying different waveforms. It can provide insight about how different 
radar waveforms may be suitable for the various radar applications. It is also 
used to determine the range and Doppler resolutions for a specific radar wave­
form. The three-dimensional (3-D) plot of the ambiguity function versus fre­
quency and time delay is called the radar ambiguity diagram. The radar 
ambiguity function for the signal 5(t) is defined as the modulus squared o f its 
2-D correlation function, i.e., |%(t-.fd)| . More precisely,

|x ( t  \fd)\2 = s ( t) s*( t -  t )  e 2^  dt (4.1)

In this notation, the target of interest is located at (t, f d) = (0, 0 ) , and the 
ambiguity diagram is centered at the same point. Note that some authors define 
the ambiguity function as |%(tf d) | . In this book, |%(Tfd)| is called the uncer­
tainty function.

2ад

ад
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Denote E  as the energy of the signal s (t),

ад

E  = J  |s( t)|2dt (4.2)

-ад

The following list includes the properties for the radar ambiguity function:

1) The maximum value for the ambiguity function occurs at (t, f d) = (0, 0) 
and is equal to 4E ,

m ax{  |x (tfd ) |2 } = lx(0;0)|2 = (2E )2 (4.3)

|x ( t 'fd)|2 ^ lx (0 ;0 )|2 (4.4)

2) The ambiguity function is symmetric,

|x ( t  ;fd) \2 = |x ( - t  ;-fd)\2 (4.5)

3) The total volume under the ambiguity function is constant,

J J |x ( t & )|2 dT dfd = (2E )2

4) If the function S (f)  is the Fourier transform of the signal s ( t )
Parseval’s theorem we get

|X(Tfd)|2 = |JS * ( f ) S ( f - f d)е-2Птd f  2

4.2. Examples o f the Ambiguity Function
The ideal radar ambiguity function is represented by a spike of infinitesi­

mally small width that peaks at the origin and is zero everywhere else, as illus­
trated in Fig. 4.1. An ideal ambiguity function provides perfect resolution 
between neighboring targets regardless of how close they may be to each other. 
Unfortunately, an ideal ambiguity function cannot physically exist. This is 
because the ambiguity function must have finite peak value equal to (2 E)2
and a finite volume also equal to (2E) . Clearly, the ideal ambiguity function 
cannot meet those two requirements.

4.2.1. Single Pulse Ambiguity Function

Consider the normalized rectangular pulse s ( t) defined by

(4.6)

, then by using

(4.7)
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5 (t) = -p :R e c t-■T'j (4.8)
VT

From Eq. (4.1) we have

X(t fd) = j  5 (t) s*( t -  t )  e 2wfdtdt (4.9)

Substituting Eq. (4.8) into Eq. (4.9) and performing the integration yield

|x ( t  f d)\2 =
2

|t| < t '  (4.10)
T'.  f ( t ' -  H )

MATLAB Function “single_pulse_ambg.m”

The function “single_pulse_ambg.m” implements Eq. (4.10). It is given in 
Listing 4.1 in Section 4.6. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulsewidth. Fig 4.2 (a-d) show 3-D and contour plots of single pulse 
uncertainty and ambiguity functions. These plots can be reproduced using 
MATLAB program “fig4_2.m ” given in Listing 4.2 in Section 4.6.

The ambiguity function cut along the time delay axis t  is obtained by setting 
f d = 0 . More precisely,

Ix(t ;0 )|2 = (1 -  Т 0 Ы <т' (4.ii)

ад

ад
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Figure 4.2a. Single pulse 3-D uncertainty plot. Pulsewidth is 2 seconds.

T--------- 1--------- 1--------- 1--------- 1--------- 1--------- г
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Delay - seconds

Figure 4.2b. Contour plot corresponding to Fig. 4.2a.
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Delay - seconds

Figure 4.2c. Single pulse 3-D ambiguity plot. Pulsewidth is 2 seconds.
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Figure 4.2d. Contour plot corresponding to Fig. 4.2c.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Note that the time autocorrelation function of the signal 5  ( t) is equal to 
X(t -0). Similarly, the cut along the Doppler axis is

|x( 0 /d ) |2 = sinnT'f d : 
nT'f d

(4.12)

Figs. 4.3 and 4.4, respectively, show the plots of the uncertainty function 
cuts defined by Eqs. (4.11) and (4.12). Since the zero Doppler cut along the 
time delay axis extends between - t' and t' , then, close targets would be 
unambiguous if  they are at least t' seconds apart.

Figure 4.3. Zero Doppler uncertainty function cut along the time delay axis.

Figure 4.4. Uncertainty function of a single frequency pulse (zero delay). This 
plot can be reproduced using MATLAB program “fig4_4.m” given 
in Listing 4.3 in Section 4.6.
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The zero time cut along the Doppler frequency axis has a ( sinx / x ) shape. 
It extends from -да to да. The first null occurs at f d = ±1 / т ' . Hence, it is 
possible to detect two targets that are shifted by 1 / т ' , without any ambiguity.

We conclude that a single pulse range and Doppler resolutions are limited by 
the pulsewidth t' . Fine range resolution requires that a very short pulse be 
used. Unfortunately, using very short pulses requires very large operating 
bandwidths, and may limit the radar average transmitted power to impractical 
values.

4.2.2. LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

s ( t) = -.-—R e c t- -̂ 1 (4.13)
л/Т' -T1

In order to compute the ambiguity function for the LFM complex envelope, we 
will first consider the case when 0 < т < т ' . In this case the integration limits 
are from - t' / 2 to (t ' / 2) -  т . Substituting Eq. (4.13) into Eq. (4.9) yields

да

Х(т fd ) = T- !  Rec^T-) R e c t- ^ -r )  ^ ^  e- n^(t-T) e 2Wfd‘d t (4.14)

-да
It follows that

2

. 2 5 -  T
( f   ̂ e ;1фТ Г j2n(|iT +fd)t r i1-ix (T\fd) = — I e dt (4.15)

2
Finishing the integration process in Eq. (4.15) yields

sin-л .' ( ^t  + f d) - 1 -  - ) )  
j п- f J  ТЛ v V - / /

X(T f d) = e [ 1 -  / -------)—  0 < T < T' (4.16)
T пт'(Ц-  + f d) - 1 -  -J

Similar analysis for the case when - - ' < - <  0 can be carried out, where in 
this case the integration limits are from (- - ' / 2) -  т to -'/ 2 . The same result 
can be obtained by using the symmetry property of the ambiguity function 
( |x(-T, -fd ) = |x ( . f d )  ). It follows that an expression for x(-ifd) that is 
valid for any т is given by
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sin (л т'( цт + f d) / 1 -  - I n
( f  \ jnTfd/ , I'll) -  V T

’ > = e 11 -  У  v + , / ,  H )п т ( Ц-  + f d) - 1 -  I--!.  

and the LFM ambiguity function is

sin-л - ' (ц-  + f d) / 1 -  !---i)̂ )

Again the time autocorrelation function is equal to %(-, 0 ) . The reader can 
verify that the ambiguity function for a down-chirp LFM waveform is given by

2

|t| < - ' (4.19)

MATLAB Function “lfm_ambg.m”

The function “lfm_ambg.m” implements Eqs. (4.18) and (4.19). It is given 
in Listing 4.4 in Section 4.6. The syntax is as follows:

Ifm ambg [taup, b, up down]

where

Symbol Description Units Status
taup pulsewidth seconds input
b bandwidth Hz input
up down up down = 1 for up chirp 

up down = -1 for down chirp
none input

Fig. 4.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi­
guity functions for

taup b up_down
1 10 1

These plots can be reproduced using MATLAB program “fig4_5.m ” given in 
Listing 4.5 in Section 4.6. This function generates 3-D and contour plots of an 
LFM ambiguity function.

|x ( t  f d)\2 =

sin 1л- ' ( ц-  -  f d ) l 1 -  —

п -'( ц-  -  f d) - 1 -  —0

|x ( - \fd)\2 =
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Figure 4.5a. Up-chirp LFM 3-D uncertainty plot. Pulsewidth is 1 second; and 
bandwidth is 10 Hz.
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Figure 4.5b. Contour plot corresponding to Fig. 4.5a.
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The up-chirp ambiguity function cut along the time delay axis т is

1х(т ;0 )l2 = 1 -  Hi
sinI лцтт'I 1 -  L-l

т лцтт'-1 -  T
|т| < т' (4.20)

Fig. 4.6 shows a plot for a cut in the uncertainty function corresponding to 
Eq. (4.20). Note that the LFM ambiguity function cut along the Doppler fre­
quency axis is similar to that of the single pulse. This should not be surprising 
since the pulse shape has not changed (we only added frequency modulation). 
However, the cut along the time delay axis changes significantly. It is now 
much narrower compared to the unmodulated pulse cut. In this case, the first 
null occurs at

т„ i * 1 / B  (4.21)

which indicates that the effective pulsewidth (compressed pulsewidth) of the 
matched filter output is completely determined by the radar bandwidth. It fol­
lows that the LFM ambiguity function cut along the time delay axis is narrower 
than that of the unmodulated pulse by a factor

' ----------- 1----------- 1----------- ж----------- 1----------- 1------------
0.9

0.8

0.7

* 0.6
с
‘В■с 0.5<DОС
=) 0.4

0.3

0.2

0.1

0
-1.5 -1 -0.5 0 0.5 1 1.5

Delay - seconds

Figure 4.6. Zero Doppler uncertainty of an LFM pulse (т' = 1,
b = 20 ). This plot can be reproduced using MATLAB 
program “fig4_6.m” given in Listing 4.6 in Section 4.6.
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I  =
(1 /  B )

= т'В (4.22)

I is referred to as the compression ratio (also called time-bandwidth product 
and compression gain). All three names can be used interchangeably to mean 
the same thing. As indicated by Eq. (4.22) the compression ratio also increases 
as the radar bandwidth is increased.

Example:

Compute the range resolution before and after pulse compression corre­
sponding to an LFM  waveform with the following specifications: Bandwidth 
В  = 1G H z; and pulsewidth т' = 10 m s.

Solution:

The range resolution before pulse compression is

. D cт' 3 x 108 x 10 x 10 3 , - , n6
ARuncomp = у  = ----------- 2-----------  = 1-5 X 10 m eters

Using Eq. (4.21) yields

n1
1

1 X 10
= 1 ns

AD cтп1 3 X 10° X 1 X 10 9
ARcomp = —  = ---------- 2----------  = 15 cm .

4.2.3. Coherent Pulse Train Ambiguity Function

Fig. 4.7 shows a plot of a coherent pulse train. The pulsewidth is denoted as 
т' and the PRI is T . The number of pulses in the train is N ; hence, the train’s 
length is (N  -  1) T  seconds. A normalized individual pulse s ( t) is defined by

s1 (t ) = -jzR ect-  т  
л/т' ~

(4.23)

т'

T
(N -  1) T

Figure 4.7. Coherent pulse train. N=5.
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When coherency is maintained between the consecutive pulses, then an expres­
sion for the normalized train is

s (t) = - p  V  s1(t -  iT)
J N ^

i = 0

The output of the matched filter is

Х(т fd) = j  s (t) s*( t + т) e 2 Wfd‘dt

(4.24)

(4.25)

Substituting Eq. (4.24) into Eq. (4.25) and interchanging the summations and 
integration yield

х(т fd) = N- V  V  j  s1 (t -  iT) s 1*( t - j T  -  ^ e ^ d t  (4.26)
i = 0 j = 0 -o

Making the change of variable t 1 = t -  iT  yields

Х(т f i )  = N V  e 2nfd'T V  j s 1(t1) s 1*(t1 -  [т -  ( i - j ) T])e 2nUldt1 (4.27)

i = 0 j = 0 -o

The integral inside Eq. (4.27) represents the output of the matched filter for a 
single pulse, and is denoted by X1 . It follows that

N - 1 N - 1

Х(т -fd) = N- V  el 2 f  £ * 1[т -  (i -  j ) T f  ] (4.28)

i =0 j =0
When the relation q = i -  j  is used, then the following relation is true:1

N N 0 N -1 - |q|

V  V  = V  V
i = 0 m = 0 q = -(N - 1) i = 0

N- 1 N- 1 - \q\

+ V  V
for j = i - q q = 1 j = 0

(4.29)

for i = j + q

Using Eq. (4.29) into Eq. (4.28) gives

1. Rihaczek, A. W., Principles of High Resolution Radar, Artech House, 1994.
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х (т f )  = N V  ‘

q = -( n  - 1)

N -1
1

+ N V
q =1

N - 1 - |q|
_  j 2n fJT

Х1(т -  q T f d) V  e
i =0

N - 1 - |q| '
j2nfdqT , ^  г \ х -1 j 2f/T

e Х1(т -  q T f d) V  e
j =0

Setting z = exp (/'2nf dT ) , and using the relation

(4.30)

N - 1 - |q|

V
j = 0

zj = 1 -  zN - Iql

1 -  z

yield

N - 1 - |q|
j2nfdiT = U fN  - 1 - |q|T)] sin [nf d( N - 1 - \q\T)-

V  e = e ^ ( пу-г

(4.31)

(4.32)

Using Eq. (4.32) in Eq. (4.30) yields two complementary sums for positive and 
negative q . Both sums can be combined as

х (т f d) = N V  х 1(т -  q T f d)i
[ f N  -  1 + q)T] sin [nfd( N  -  |q| T)]

(4.33)
u1V' sin (ПfdT )

q = -( n  - 1)
Finally, the ambiguity function associated with the coherent pulse train is com­
puted as the modulus square of Eq. (4.33). For т' < T/ 2 , the ambiguity func­
tion reduces to

0

i =0

N -  1

х (т^ ) = N v  1x1(т -  q f ) \
-(N - 1)

sin [nfd(N  -  |q| T)]

sin (n fdT)
(4.34)

Thus, the ambiguity function for a coherent pulse train is the superposition 
of the individual pulse’s ambiguity functions. The ambiguity function cuts 
along the time delay and Doppler axes are, respectively, given by

1х(т ;0 )| = V  (1 -  И ) (1  -  t - M )

q = -(N - 1)

; |т -  q T  <т' (4.35)

N -  1

L
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|x (  0 f d)\2 =
1 sin  ( f t ' )  sin  (nfdNT)
N  f  sin (nfdT)

(4.36)

MATLAB Function “train_ambg.m”

The function “train ambg.m” implements Eq. (4.34). It is given in Listing 
4.7 in Section 4.6. The syntax is as follows:

train ambg [taup, n, pri]

Symbol Description Units Status
taup pulsewidth seconds input

n number o f pulses in train none input
pri pulse repetition interval seconds input

Fig. 4.8 (a-d) shows typical outputs of this function, for

taup n pri
0.2 5 1

Figure 4.8a. Three-dimensional ambiguity plot for a five pulse equal amplitude 
coherent train. Pulsewidth is 0.2 seconds; and PRI is 1 second, 
N=5. This plot can be reproduced using MATLAB program 
“fig4_8.m” given in Listing 4.8 in Section 4.6.
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Figure 4.8b. 3-D plot corresponding to Fig. 4.8a.
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delay

Figure 4.8c. Zero Doppler cut corresponding to Fig. 4.8a.

Figure 4.8d. Zero delay cut corresponding to Fig. 4.8a.
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Plots of the ambiguity function are called ambiguity diagrams. For a given 
waveform, the corresponding ambiguity diagram is normally used to determine 
the waveform properties such as the target resolution capability, measurement 
(time and frequency) accuracy, and its response to clutter. Three-dimensional 
ambiguity diagrams are difficult to plot and interpret. This is the reason why 
contour plots of the 3-D ambiguity diagram are often used to study the charac­
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of 
a plane intersecting the 3-D ambiguity diagram that corresponds to some 
threshold value. The resultant plots are ellipses. It is customary to display the 
ambiguity contour plots that correspond to one half o f the peak autocorrelation 
value.

Fig. 4.9 shows a sketch of typical ambiguity contour plots associated with a 
gated CW pulse. It indicates that narrow pulses provide better range accuracy 
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse 
than it is for a short one. This trade-off between range and Doppler measure­
ments comes from the uncertainty associated with the time-bandwidth product 
of a single sinusoidal pulse, where the product of uncertainty in time (range) 
and uncertainty in frequency (Doppler) cannot be much smaller than unity. 
Note that an exact plot for Fig. 4.9 can be obtained using the function 
“single_pulse_ambg.m” and the MATLAB command contour.

frequency frequency

4.3. Ambiguity Diagram Contours

Figure 4.9. Ambiguity contour plot associated with a sinusoid 
modulated gated CW pulse. See Fig. 4.2.

Multiple ellipses in an ambiguity contour plot indicate the presence of multi­
ple targets. Thus, it seems that one may improve the radar resolution by 
increasing the ambiguity diagram threshold value. This is illustrated in Fig.
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4.10. However, in practice this is not possible for two reasons. First, in the 
presence of noise we lack knowledge of the peak correlation value; and sec­
ond, targets in general will have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 4.7. For a 
pulse train, range accuracy is still determined by the pulsewidth, in the same 
manner as in the case of a single pulse, while Doppler accuracy is determined 
by the train length. Thus, time and frequency measurements can be made inde­
pendently of each other. However, additional peaks appear in the ambiguity 
diagram which may cause range and Doppler uncertainties (see Fig. 4.11).

frequency

Figure 4.10. Effect of threshold value on resolution.
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Figure 4.11. Ambiguity contour plot corresponding to Fig. 4.7. For an exact
plot see Fig. 4.8a.
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As one would expect, high PRF pulse trains (i.e., small T ) lead to extreme 
uncertainty in range, while low PRF pulse trains have extreme ambiguity in 
Doppler. Medium PRF pulse trains have moderate ambiguity in both range and 
Doppler, which can be overcome by using multiple PRFs. It is possible to 
avoid ambiguities caused by pulse trains and still have reasonable independent 
control on both range and Doppler accuracies by using a single modulated 
pulse with a time-bandwidth product that is much larger than unity. Fig. 4.12 
shows the ambiguity contour plot associated with an LFM waveform. In this 
case, т' is the pulsewidth and B  is the pulse bandwidth. The exact plots can be 
obtained using the function “lfm a m b g .m ”.

frequency

Figure 4.12. Ambiguity contour plot associated with an up-chirp LFM 
waveform. For an exact plot see Fig. 4.5b.

4.4. Digital Coded Waveforms
In this section we will briefly discuss the digital coded waveform. We will 

determine the waveform range and Doppler characteristics on the basis o f its 
autocorrelation function, since in the absence of noise, the output of the 
matched filter is proportional to the code autocorrelation.

4.4.1. Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro­
cess of Stepped Frequency Waveforms (SFW) described in Chapter 3. In SFW, 
a relatively long pulse of length т' is divided into N  subpulses, each of width 
Tj (т' = N Tj). Each group of N  subpulses is called a burst. Within each burst 
the frequency is increased by Дf  from one subpulse to the next. The overall 
burst bandwidth is N Д f . More precisely,
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Tj = т'/ N (4.37)

and the frequency for the ith  subpulse is

where f 0 is a constant frequency and f 0 » A f . It follows that the time-band- 
width product of this waveform is

f  = fo  + i A f  ; i = 1, N  (4.38)

A fT  = N2 (4.39)

Costas signals (or codes) are similar to SFW, except that the frequencies for 
the subpulses are selected in a random fashion, according to some predeter­
mined rule or logic. For this purpose, consider the N  x N  matrix shown in Fig. 
4.13b. In this case, the rows are indexed from i = 1, 2, . . N  and the columns 
are indexed from j  = 0, 1, 2, ..., (N  -  1).  The rows are used to denote the 
subpulses and the columns are used to denote the frequency. A “do t” indicates 
the frequency value assigned to the associated subpulse. In this fashion, Fig. 
4.13a shows the frequency assignment associated with a SFW. Alternatively, 
the frequency assignments in Fig. 4.13b are chosen randomly. For a matrix of 
size N  x N , there are a total o f N! possible ways of assigning the “dots” (i.e., 
N! possible codes).

0 1 2 3 4 5 6 7 8 9
10 
9 
8 
7 
6 
5 
4 
3 
2 
1

0 1 2 3 4 5 6 7 8 9
10 
9 
8 
7 
6 
5 
4 
3 
2 
1

(a ) (b )

Figure 4.13. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10.
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The sequences of “dot” assignments for which the corresponding ambiguity 
function approaches an ideal or a “thumbtack” response are called Costas 
codes. A near thumbtack response was obtained by Costas1 using the following 
logic: there is only one frequency per time slot (row) and per frequency slot 
(column). Therefore, for an N  x N  matrix the number of possible Costas codes 
is drastically less than N ! . For example, there are Nc = 4 possible Costas 
codes for N  = 3 , and N c = 40 possible codes for N  = 5 . It can be shown 
that the code density, defined as the ratio N c/ N ! , gets significantly smaller as 
N  becomes larger.

There are numerous analytical ways to generate Costas codes. In this section 
we will describe two of these methods. First, let q be an odd prime number, 
and choose the number of subpulses as

N  = q -  1 (4.40)

Define у as the primitive root of q . A primitive root of q (an odd prime num­
ber) is defined as y such that tl 
every integer from 1 to q -  1.
ber) is defined as у such that the powers y, y2, y3, . . yq 1 modulo q generate

In the first method, for an N  x N  matrix, label the rows and columns, respec­
tively, as

i = °, 1, 2, . . . , (q -  2 )
(4.41)

j  = 1, 2, 3, . . . , ( q -  1)

Place a dot in the location (i, j ) corresponding to f  if and only if

i = (y /  (m odulo  q) (4.42)

In the next method, Costas code is first obtained from the logic described 
above; then by deleting the first row and first column from the matrix a new 
code is generated. This method produces a Costas code of length N  = q -  2 .

Define the normalized complex envelope of the Costas signal as

N - 1

s (t) = -p L r У  s ,( t -  l^  ) (4.43)

l = 0

/ exp(j2nfjt) 0 < t < т, 0

s '(t> = (  0 e s e w h e r e  )  (4'44)

1. Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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Costas showed that the output of the matched filter is

X(T f D) = IN^  exp <J2 n lfDT>
l = 0

Ф, l(T  f D) + ^  Фlq(T -  (l -  4 )T1> f D) (4.45)

Ф^ (т f D) = -T1 -  —. ^  exp ( -  j  p -  j 2 n fqT) 
т 1

(4.46)

a  = n (fl - f q - f D)(T1 -  lT) (4.47)

P = n (fl -  f q -  f D)(T1 + lT) (4.48)

Three-dimensional plots of the ambiguity function of Costas signals show 
the near thumbtack response of the ambiguity function. All sidelobes, except 
for few around the origin, have amplitude 1 /  N . Few sidelobes close to the ori­
gin have amplitude 2 /  N , which is typical of Costas codes. The compression 
ratio of a Costas code is approximately N .

4.4.2. Binary Phase Codes

Consider the case of binary phase codes in which a relatively long pulse of 
width t' is divided into N  smaller pulses; each is of width At = t'/ N . Then, 
the phase of each sub-pulse is randomly chosen as either 0 or n  radians rela­
tive to some CW reference signal. It is customary to characterize a sub-pulse 
that has 0 phase (amplitude of +1 Volt) as either “1” or “+.” Alternatively, a 
sub-pulse with phase equal to n (amplitude of -1 Volt) is characterized by 
either “0” or “-.” The compression ratio associated with binary phase codes is 
equal to \  = t ' /A t  , and the peak value is N  times larger than that o f the long 
pulse. The goodness of a compressed binary phase code waveform depends 
heavily on the random sequence of the phases of the individual sub-pulses.

One family of binary phase codes that produces compressed waveforms with 
constant sidelobe levels equal to unity is the Barker code. Fig. 4.14 illustrates a 
Barker code of length seven. A Barker code of length n is denoted as B n. 
There are only seven known Barker codes that share this unique property; they 
are listed in Table 4.1. Note that B 2 and B4 have complementary forms that 
have the same characteristics. Since there are only seven Barker codes, they 
are not used when radar security is an issue.
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+  +  +  -  -  +  +

Figure 4.14. Binary phase code of length 7.

TABLE 4.1. Barker codes.

Code
symbol

Code
length Code elements

Side lode 
reduction (dB)

B 2 2 1 -1 6.0

1 1

B3 3 1 1 -1 9.5

B4 4 1 1 -1 1 12.0

1 1 1 -1

B5 5 1 1 1 -1 1 14.0

B7 7 1 1 1 -1 -1 1 -1 16.9

B „ 11 1 1 1 -1 -1 -1 1 -1 -1 1 -1 20.8

B13 13 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 22.3

In general, the autocorrelation function (which is an approximation of the 
matched filter output) for a BN Barker code will be 2N Дт wide. The main 
lobe is 2 Дт wide; the peak value is equal to N . There are (N  -  1) / 2 side- 
lobes on either side of the main lobe. This is illustrated in Fig. 4.15 for a B 13. 
Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code is -22.3 d B , which 
may not be sufficient for the desired radar application. However, Barker codes 
can be combined to generate much longer codes. In this case, a B m code can be 
used within a B n code (m within n ) to generate a code of length mn . The
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compression ratio for the combined B mn code is equal to mn . As an example, 
a combined B54 is given by

B54 = { 11101, 11101, 00010, 11101} (4.49)

and is illustrated in Fig. 4.16. Unfortunately, the sidelobes of a combined 
Barker code autocorrelation function are no longer equal to unity.

-► At

+ 1 + 1 + 1 + 1 + - - I + I + I - I + I - I  +

13 At = t'

Figure 4.15. Barker code of length 13, and its corresponding 
autocorrelation function.

B3A
+

B54 Г

+  +  +  - +

+ +
~L 

LTL
+ +  +  - +, - - - +  - ■ +  +  +  - +

Figure 4.16. A  combined B 54 Barker code.
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MATLAB Function “barker_ambig.m”

The MATLAB function “barker ambig.m” calculates and plots the ambigu­
ity function for Barker code. It is given in Listing 4.9 in Section 4.6. The syn­
tax as follows:

[ambiguity] = barkeram big(u)

where u is a vector that defines the input code in terms of “1 ’s ” and “-1 ’s .” For 
example, using u = [ 1 1 1 -1  -1  1 -1  ] as an input, the function will cal­
culate and plot the ambiguity function corresponding to B7 . Fig. 4.17 shows 
the output of this function when B 13 is used as an input. Fig. 4.18 is similar to 
Fig. 4.17, except in this case B7 is used as an input.

ййаУ frequency

Figure 4.17a. Ambiguity function for B 13 Barker code.
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-10 -5 0 5 10
delay

Figure 4.17b. Zero Doppler cut for the B 13 ambiguity function.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
frequency

Figure 4.17c. Contour plot corresponding to Fig. 4.17a.
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Figure 4.18a. Ambiguity function for B7 Barker code.

delay

F igu re  4.18b. Zero D oppler cut fo r the B 7 am b igu ity  function.
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frequency

Figure 4.18c. Contour plot corresponding to Fig. 4.18a.

4.4.3. Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length 
Sequences (MLS) codes. These codes are called pseudo-random because the 
statistics associated with their occurrence are similar to that associated with the 
coin-toss sequences. Maximum length sequences are periodic. The MLS codes 
have the following distinctive properties:

1. The number o f ones per period is one more than the number o f minus-ones.
2. Half the runs (consecutive states o f the same kind) are o f length one and 

one fourth are o f length two.
3. Every maximal length sequence has the “shift and add” property. This 

means that, if a maximal length sequence is added (modulo 2) to a shifted 
version of itself, then the resulting sequence is a shifted version of the orig­
inal sequence.

4. Every «-tuple o f the code appears once and only once in one period o f the 
sequence.

5. The correlation function is periodic and is given by
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IL n = 0, ±L, ±2L, ...
Ф( n) = ? @ (4.50)

<-1 elsewhere

Fig. 4.19 shows a typical sketch for an MLS autocorrelation function. Clearly 
these codes have the advantage that the compression ratio becomes very large 
as the period is increased. Additionally, adjacent peaks (grating lobes) become 
farther apart.

Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to 
use linear shift registers. When the binary sequence generated using a shift reg­
ister implementation is periodic and has maximal length it is referred to as an 
MLS binary sequence with period L , where

L = 2n -  1 (4.51)

n is the number o f stages in the shift register generator.

A  linear shift register generator basically consists of a shift register with 
modulo-two adders added to it. The adders can be connected to various stages 
of the register, as illustrated in Fig. 4.20 for n = 4 (i.e., L = 15). Note that 
the shift register initial state cannot be “zero.”

output

shift register

4

F igu re  4.20. C ircu it fo r g en era tin g  an  M L S  sequence o f length  L = 15 .
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The feedback connections associated with a shift register generator deter­
mine whether the output sequence will be maximal or not. For a given size 
shift register, only few feedback connections lead to maximal sequence out­
puts. In order to illustrate this concept, consider the two 5-stage shift register 
generators shown in Fig. 4 .2 1. The shift register generator shown in Fig. 4.21a  
generates a maximal length sequence, as clearly depicted by its state diagram. 
However, the shift register generator shown in Fig. 4.21b produces three non- 
maximal length sequences (depending on the initial state).

1 2 3 4 5

10000  
00001 01000

start

L = 31

(a)

f
► 1 2 3 4 5

0 0 0 0 1  start

^ 2 X 1 X 2 2 -
L = 3

start

L = 21

L = 7
start

(b)

Figure 4.21. (a) A 5-stage shift register generator. (b) Non-maximal length 
5 stage shift register generator.
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Given an n-stage shift register generator, one would be interested in knowing

showed that the number of maximal length sequences possible for a given n- 
stage linear shift register generator is given by

where ф is the Euler’s totient (or Euler’s phi) function. Euler’s phi function is 
defined by

where p i are the prime factors of к . Note that when p i has multiples, then 
only one of them is used (see example in Eq. (4.56)). Also note that when к is 
a prime number, then the Euler’s phi function is

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback 
connections correspond to n, к, m, e tc . This maximal length shift register can 
be described using its characteristic polynomial defined by

where the additions are modulo 2. Therefore, if  the characteristic polynomial 
for an n-stage shift register is known, one can easily determine the register 
feedback connections and consequently deduce the corresponding maximal 
length sequence. For example, consider a 6-stage shift register whose charac­
teristic polynomial is

1. Zierler, N., SeveralBinary-Sequence Generators, MIT Technical Report No. 95, 
Sept. 1955.

how many feedback connections will yield maximal length sequences. Zierler

Nl = фС2" - 1 ) (4.52)
n

(4.53)

ф(к) = к -  1

For example, a 3-stage shift register generator will produce

(4.54)

N = Ф(23- 1 )  = ф(7) = 7_-_1 = 2
L о  о  о3 3 3

(4.55)

and a 6-stage shift register,

N = Ф(26- 1 )  = ф(63) = 63 х ( 3 - 1 ) ,, ( 7 - 1 )  = 6
L 6 6 6 3 7

(4.56)

(4.57)
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6 5  X + X + 1 (4.58)

It follows that the shift register which generates a maximal length sequence is 
shown in Fig. 4.22.

output

Figure 4.22. Linear shift register whose characteristic polynomial is
6 5  X + X + 1 .

One of the most important issues associated with generating a maximal 
length sequence using a linear shift register is determining the characteristic 
polynomial. This has been and continues to be a subject of research for many 
radar engineers and designers. It has been shown that polynomials which are 
both irreducible (not factorable) and primitive will produce maximal length 
shift register generators.

A polynomial of degree n is irreducible if it is not divisible by any polyno­
mial of degree less than n. It follows that all irreducible polynomials must have 
an odd number of terms. Consequently, only linear shift register generators 
with an even number of feedback connections can produce maximal length 
sequences. An irreducible polynomial is primitive if and only if it divides 
Xn -  1 for no value of n less than 2n -  1.

MATLAB Function “prn_ambig.m”

The MATLAB function “prn ambig.m” calculates and plots the ambiguity 
function associated with a given PRN code. It is given in Listing 4.10 in Sec­
tion 4.6. The syntax is as follows:

[ambiguity] = prnambig(u)

where u is a vector that defines the input maximal length code (sequence) in 
terms of “1 ’s ” and “-1 S. ” Fig. 4.23 shows the output of this function for

u31 = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1]

Fig. 4.24 is similar to Fig. 4.23, except in this case the input maximal length 
sequence is

u15=[1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1]

A
1 2 3 4 5 6
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Figure 4.23a. Ambiguity function corresponding to a 31-bit PRN code.
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F igu re  4.23b. Zero D oppler cut correspond ing to F ig. 4.23a.
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frequency

Figure 4.23c. Contour plot corresponding to Fig. 4.23a.

1 V

detay frequency

Figure 4.24a. Ambiguity function corresponding to a 15-bit PRN code.
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Figure 4.24b. Zero Doppler cut corresponding to Fig. 4.24a.

frequency

F igu re  4.24c. C ontour p lo t correspond ing to F ig. 4.24a.
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4.5. “MyRadar” Design Case Study - Visit 4

4.5.1. Problem Statement

Generate the ambiguity plots fo r the waveforms selected in Chapter 3 for 
this design case study.

4.5.2. A Design

In this section we will show the 3-D ambiguity diagram and the correspond­
ing contour plot for only the search waveform. The user is advised to do the 
same for the track waveforms. For this purpose, use the MATLAB program 
“myradar_visit4.m”. It is given in Listing 4.11 in Section 4.6.

Figs. 4.25 and 4.26 show the output figures produced by the program 
“myradar_visit4.m” that correspond to the search waveform.

* Sb

Figure 4.25. Ambiguity plot for “MyRadar” search waveform.
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Delay - Microseconds

Figure 4.26. Contour of the ambiguity plot for “MyRadar” search 
waveform.

4.6. MATLAB Program and Function Listings
This section presents listings for all MATLAB programs/functions used in 

this chapter. The user is strongly advised to rerun the MATLAB programs in 
order to enhance his understanding o f this chapter’s material.

Listing 4.1. MATLAB Function “single_pulse_ambg.m”
function x = single_pulse_ambg (taup) 
colormap (gray(1)) 
eps = 0.000001;
i = 0;
taumax = 1.1 * taup; 
taumin = -taumax; 
fo r tau = taumin:.05:taumax

i = i + 1; 
j  = 0;
for fd  = -5/taup:.05:5/taup %-2.5:.05:2.5 

j  = j  + 1;
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val1 = 1. - abs(tau) / taup; 
val2 = pi * taup * (1.0 - abs(tau) / taup) * fd; 
x(j,i) = abs( val1 * sin(val2+eps)/(val2+eps)); 

end 
end

Listing 4.2. MATLABProgram “fig4_2.m”
% Use this program to reproduce Fig. 4.2 o f text
close all
clear all
eps = 0.000001;
taup = 2.;
taumin = -1.1 * taup; 
taumax = -taumin; 
x = single_pulse_ambg(taup); 
taux = taumin:.05:taumax; 
fdy = -5/taup:.05:5/taup; 
figure(1) 
mesh(taux,fdy, x); 
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’) 
zlabel ('Ambiguity function’) 
colormap([.5 .5 .5]) 
colormap (gray) 
figure(2)
contour(taux,fdy, x); 
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’) 
colormap([.5 .5 .5]) 
colormap (gray) 
grid
y  = x.A2; 
figure(3) 
mesh(taux,fdy,y); 
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’) 
zlabel ('Ambiguity function’) 
colormap([.5 .5 .5]) 
colormap (gray) 
figure(4)
contour(taux,fdy,y); 
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’)
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colormap([.5 .5 .5]) 
colormap (gray) 
grid

% Use this program to reproduce Fig 4.4 o f text
close all
clear all
eps = 0.0001;
taup = 2.;
fd  = -10./taup:.05:10./taup; 
uncer = abs(sinc(taup .* fd)); 
ambg = uncer. л2; 
plotfd, ambg,'k') 
xlabel (’Frequency - Hz’) 
ylabel ('Ambiguity - Volts’) 
grid
figure(2)
plot (fd, uncer, ’k’); 
xlabel (’Frequency - Hz’) 
ylabel (’Uncertainty - Volts’) 
grid

Listing 4.3. MATLAB Program “fig4_4.m”

Listing 4.4. MATLAB Function “lfm_ambg.m”
ffunction x = lfm_ambg(taup, b, updown) 
eps = 0.000001;
i = 0;
mu = up down * b / 2. / taup; 
delt = 2.2*taup/250; 
delf = 2*b /250;
fo r tau = -1.1*taup:.05:1.1*taup

i = i + 1; 
j  = 0;
for fd  = -b:.05:b 

j  =j  + 1;
val1 = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).A2; 

end 
end
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Listing 4.5. MATLABProgram “fig4_5.m”
% Use this program to reproduce Fig. 4.5 o f text
close all
clear all
eps = 0.0001;
taup = 1.;
b =10.;
up_down = 1.;
x = lfm_ambg(taup, b, up down);
taux = -1.1*taup:.05:1.1*taup;
fdy = -b:.05:b;
figure(1)
mesh(taux,fdy, x)
xlabel ('Delay - seconds’)
ylabel ('Doppler - Hz’)
zlabel ('Ambiguity function’)
figure(2)
contour(taux,fdy,x)
xlabel ('Delay - seconds’)
ylabel ('Doppler - Hz’)
y  = sqrt(x);
figure(3)
mesh(taux,fdy,y)
xlabel ('Delay - seconds’)
ylabel ('Doppler - Hz’)
zlabel ('Uncertainty function’)
figure(4)
contour(taux,fdy,y) 
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’)

Listing 4.6. MATLAB Program “fig4_6.m”
% Use this program to reproduce Fig. 4.6 o f text 
close all 
clear all 
taup = 1; 
b =20.; 
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup; 
fd  = 0.;
mu = up_down * b / 2. / taup;
ii = 0.;
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fo r tau = -1.5*taup:.01:1.5*taup
ii = ii + 1;
val1 = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(ii) = abs( val1 * (sin(val+eps)/(val+eps))); 

end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds’)
ylabel ('Uncertainty')
figure(2)
plot(taux,x.A2)
grid
xlabel ('Delay - seconds') 
ylabel ('Ambiguity')

Listing 4.7. MATLAB Function “trainam bg.m ”
function x = train ambg (taup, n, pri) 
if( taup > pri / 2.)

'ERROR. Pulsewidth must be less than the PRI/2. ' 
return 

end
gap = pri - 2.*taup; 
eps = 0.000001; 
b = 1. / taup;
ii = 0.;
fo r q = -(n-1):1:n-1 

tauo = q - taup ; 
index = -1.;
for tau1 = tauo:0.0533:tauo+gap+2.*taup 

index = index + 1; 
tau = -taup + index*.0533;
ii = ii + 1; 
j  = 0.;
fo r fd  = -b:.0533:b 

j  =j  + 1;
i f  (abs(tau) <= taup) 

val1 = 1. -abs(tau) / taup; 
val2 = pi * taup * fd  * (1.0 - abs(tau) / taup); 
val3 = abs(val1 * sin(val2+eps) /(val2+eps));
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val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps))); 
x(j,ii)= val3 * val4 / n; 

else 
x(j,ii) = 0.; 

end 
end 

end 
end

Listing 4.8. MATLAB Program “fig4_8.m”
% Use this program to reproduce Fig. 4.8 o f text
close all
clear all
taup =0.2;
pri=1;
n=5;
x = trainambg (taup, n, pri);
figure(1)
mesh(x)
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’) 
zlabel ('Ambiguity function’) 
figure(2) 
contour(x);
xlabel ('Delay - seconds’) 
ylabel ('Doppler - Hz’)

Listing 4.9. MATLAB Function “barkerambig.m”
function [ambig] = barker_ambig(uinput)
% Compute and plot the ambiguity function fo r a Barker code 
%Compute the ambiguity function
% by utilizing the FFT through combining multiple range cuts 
N = size(uinput,2); 
tau = N;
Barkercode = uinput; 
samp num = size(Barker_code,2) *10; 
n = ceil(log(samp_num) /log(2)); 
nfft = 2An; 
u(1:nfft) = 0; 
j  = 0;
fo r index = 1:10:samp_num 

index;
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j  = j +1;
u(index:index+10-1) = Barkercode(j); 

end 
v = u;
delay = linspace(-tau, tau, nfft); 
freq del = 12 / tau /100; 
j  = 0;
vfft = fft(v,nfft);
fo r freq = -6/tau:freq_del:6/tau; 

j  = j +1;
exf = exp(sqrt(-1) * 2. * pi * freq .* delay); 
u times exf = u .* exf; 
ufft = fft(utim esexfnfft); 
prod = ufft .* conj(vfft); 
ambig(:j) = fftshift(abs(ifft(prod))'); 

end
freq = -6/tau:freq_del:6/tau; 
delay = linspace(-N,N,nfft); 
figure (1)
mesh(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function')
figure (2)
value = 10 * N ;
plot(delay, ambig(:,51)/value,’k’)
xlabel('delay')
ylabel('normalized amibiguity cut fo r f=0') 
grid
axis tight 
figure (3)
contour(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap (gray)
xlabel('frequency')
ylabel('delay')
grid on

Listing 4.10. MATLAB Function “prn ambig.m”
function [ambig] = prn ambig(uinput)
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% Compute and plot the ambiguity function fo r a PRN code 
% Compute the ambiguity function by utilizing the FFT 
% through combining multiple range cuts

N = size(uinput,2); 
tau = N;
PRN = uinput;
samp num = size(PRN,2) * 10; 
n = ceil(log(samp_num) /log(2)); 
nfft = 2An; 
u(1:nfft) = 0; 
j  = 0;
fo r index = 1:10:samp_num 

index; 
j  = j +1;
u(index:index+10-1) = PRN(j); 

end
% set-up the array v 
v = u;
delay = linspace(0,5*tau,nfft); 
freq del = 8 / tau /100; 
j  = 0;
vfft = fft(v,nfft);
fo r freq = -4/tau:freq_del:4/tau; 

j  = j +1;
exf = exp(sqrt(-1) * 2. * pi * freq .* delay); 
u_times_exf = u .* exf; 
ufft = fft(u_times_exf,nfft); 
prod = ufft .* conj(vfft); 
ambig(:j) = fftshift(abs(ifft(prod))'); 

end
freq = -4/tau:freq_del:4/tau; 
delay = linspace(-N,N,nfft); 
figure(1)
mesh(freq,delay,ambig./max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function a PRN code’) 
figure(2)
plot(delay,ambig(:,51)/(max(max(ambig))),'k')
xlabel('delay')
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ylabel(’normalized amibiguity cut fo r f= 0 ’) 
grid
axis tight 
figure(3)
contour(freq,delay,ambig./max(max(ambig))) 
axis tight
colormap([.5 .5 .5]) 
colormap(gray) 
xlabel('frequency') 
ylabel('delay')

Listing 4.11. MATLAB Program “myradar_visit4.m”
% Use this program to reproduce Figs. 4.25 to 4.27 o f the text
close all
clear all
eps = 0.0001;
taup = 20.e-6;
b =1.e6;
updown = 1.;
i = 0;
mu = up down * b / 2. / taup; 
delt = 2.2*taup /250; 
delf = 2*b /300;
fo r tau = -1.1*taup:delt:1.1 *taup

i = i + 1; 
j  = 0;
for fd  = -b:delf:b 

j  =j  + 1;
val1 = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).A2; 

end 
end
taux = linspace(-1.1 *taup,1.1*taup,251).*1e6;
fdy = linspace(-b,b,301) .* 1e-6;
figure(1)
mesh(taux,fdy, sqrt(x)) 
xlabel ('Delay - Micro-seconds’) 
ylabel ('Doppler - MHz') 
zlabel ('Ambiguity function’) 
figure(2)
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contour(taux,fdy, sqrt(x)) 
xlabel ('Delay - Micro-seconds’) 
ylabel ('Doppler - MHz') 
grid
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Chapter 5 Pulse Compression

Range resolution for a given radar can be significantly improved by using 
very short pulses. Unfortunately, utilizing short pulses decreases the average 
transmitted power, which can hinder the radar’s normal modes o f operation, 
particularly for multi-function and surveillance radars. Since the average trans­
mitted power is directly linked to the receiver SNR, it is often desirable to 
increase the pulsewidth (i.e., increase the average transmitted power) while 
simultaneously maintaining adequate range resolution. This can be made pos­
sible by using pulse compression techniques. Pulse compression allows us to 
achieve the average transmitted power of a relatively long pulse, while obtain­
ing the range resolution corresponding to a short pulse. In this chapter, we will 
analyze analog and digital pulse compression techniques.

Two LFM pulse compression techniques are discussed in this chapter. The 
first technique is known as “correlation processing” which is predominantly 
used for narrow band and some medium band radar operations. The second 
technique is called “stretch processing” and is normally used for extremely 
wide band radar operations.

5.1. Time-Bandwidth Product
Consider a radar system that employs a matched filter receiver. Let the 

matched filter receiver bandwidth be denoted as B . Then the noise power 
available within the matched filter bandwidth is given by

N0
N  = 2 - 2  B (5.1)
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Figure 5.1. Input noise power.

where the factor of two is used to account for both negative and positive fre­
quency bands, as illustrated in Fig. 5.1. The average input signal power over a 
pulse duration t' is

& = E (5.2)

E is the signal energy. Consequently, the matched filter input SNR is given by

(5.3)
S T7 

(SNR)i = - -  = E
Ni N0 B t'

The output peak instantaneous SNR to the input SNR ratio is

SNR( to)
(SNR)i

= 2 Bt' (5.4)

The quantity B t ' is referred to as the “time-bandwidth product” for a given 
waveform or its corresponding matched filter. The factor B t ' by which the 
output SNR is increased over that at the input is called the matched filter gain, 
or simply the compression gain.

In general, the time-bandwidth product of an unmodulated pulse approaches 
unity. The time-bandwidth product of a pulse can be made much greater than 
unity by using frequency or phase modulation. If the radar receiver transfer 
function is perfectly matched to that of the input waveform, then the compres­
sion gain is equal to Bt ' . Clearly, the compression gain becomes smaller than 
B t ' as the spectrum of the matched filter deviates from that of the input signal.

5.2. Radar Equation with Pulse Compression
The radar equation for a pulsed radar can be written as
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PtT G2X2 ct
SNR = ---- t--------------  (5.5)

(4n)3 R4 kTeFL

where Pt is peak power, t '  is pulsewidth, G is antenna gain, ct is target RCS, 
R is range, к is Boltzman’s constant, Te is effective noise temperature, F  is 
noise figure, and L is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation) 
and process the radar echo into very short pulses (compressed). One can view 
the transmitted pulse as being composed of a series of very short subpulses 
(duty is 100%), where the width of each subpulse is equal to the desired com­
pressed pulsewidth. Denote the compressed pulsewidth as tc . Thus, for an 
individual subpulse, Eq. (5.5) can be written as

(SNR), = pTf 4 X CT (5.6)
' (4n)3R kTeFL

The SNR for the uncompressed pulse is then derived from Eq. (5.6) as

олгп Pt(T = П Tc) G2 X2CTSNR = — ---------- - ---------  (5.7)
(4n)3 R4 kTeFL

where n is the number of subpulses. Equation (5.7) is denoted as the radar 
equation with pulse compression.

Observation of Eqs. (5.5) and (5.7) indicates the following (note that both 
equations have the same form): For a given set of radar parameters, and as long 
as the transmitted pulse remains unchanged, the SNR is also unchanged 
regardless of the signal bandwidth. More precisely, when pulse compression is 
used, the detection range is maintained while the range resolution is drastically 
improved by keeping the pulsewidth unchanged and by increasing the band­
width. Remember that range resolution is proportional to the inverse of the sig­
nal bandwidth,

Д R = c/2B (5.8)

5.3. LFM Pulse Compression
Linear FM pulse compression is accomplished by adding frequency modula­

tion to a long pulse at transmission, and by using a matched filter receiver in 
order to compress the received signal. As a result, the matched filter output is 
compressed by a factor \ = Вт' , where t ' is the pulsewidth and B is the 
bandwidth. Thus, by using long pulses and wideband LFM modulation large 
compression ratios can be achieved.
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Figure 5.2 shows an ideal LFM pulse compression process. Part (a) shows 
the envelope for a wide pulse, part (b) shows the frequency modulation (in this 
case it is an upchirp LFM) with bandwidth B = f 2 -  f 1. Part (c) shows the 
matched filter time-delay characteristic, while part (d) shows the compressed 
pulse envelope. Finally part (e) shows the Matched filter input / output wave­
forms.

(b)

(d)

Matched Filter

(e)

т

тX

Figure 5.2 Ideal LFM pulse compression.

Fig. 5.3 illustrates the advantage of pulse compression using more realistic2
LFM waveform. In this example, two targets with RCS CTj = 1 m and 
ct2 = 0.5m are detected. The two targets are not separated enough in time to 
be resolved. Fig. 5.3a shows the composite echo signal from those targets.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Clearly, the target returns overlap and, thus, they are not resolved. However, 
after pulse compression the two pulses are completely separated and are 
resolved as two distinct targets. In fact, when using LFM, returns from neigh­
boring targets are resolved as long as they are separated in time by ти1, the 
compressed pulsewidth. This figure can be reproduced using MATLAB pro­
gram “fig5_3.m” given in Listing 5.1 in Section 5.5.

- 6 - 4 - 2  О 2  4  6

Relative delay - 0econd3 x 10 °

Figure 5.3a. Composite echo signal for two unresolved targets.

O 5  10  1 5  2 0  2 5  GO 3 5  4 0  4 5  50

Target relative position in m eters

Figure 5.3b. Composite echo signal corresponding to Fig. 5.3a, after 
pulse compression.
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Radar operations (search, track, etc.) are usually carried out over a specified 
range window, referred to as the receive window and defined by the difference 
between the radar maximum and minimum range. Returns from all targets 
within the receive window are collected and passed through matched filter cir­
cuitry to perform pulse compression. One implementation of such analog pro­
cessors is the Surface Acoustic Wave (SAW) devices. Because of the recent 
advances in digital computer development, the correlation processor is often 
performed digitally using the FFT. This digital implementation is called Fast 
Convolution Processing (FCP) and can be implemented at base-band. The fast 
convolution process is illustrated in Fig. 5.4

5.3.1. Correlation Processor

Figure 5.4. Computing the matched filter output using an FFT.

Since the matched filter is a linear time invariant system, its output can be 
described mathematically by the convolution between its input and its impulse 
response,

y (t)= s (t) • h(t) (5.9)

where s ( t) is the input signal, h ( t) is the matched filter impulse response 
(replica), and the • operator symbolically represents convolution. From the 
Fourier transform properties,

F F T { s (V  h(t)} = S(f) • H(f) (5.10)

and when both signals are sampled properly, the compressed signal y (t) can 
be computed from

y  = FFT-  {S • H} (5.11)

where F F T 1 is the inverse FFT. When using pulse compression, it is desir­
able to use modulation schemes that can accomplish a maximum pulse com­
pression ratio, and can significantly reduce the sidelobe levels of the 
compressed waveform. For the LFM case the first sidelobe is approximately 
13.4dB below the main peak, and for most radar applications this may not be
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sufficient. In practice, high sidelobe levels are not preferable because noise 
and/or jammers located at the sidelobes may interfere with target returns in the 
main lobe.

Weighting functions (windows) can be used on the compressed pulse spec­
trum in order to reduce the sidelobe levels. The cost associated with such an 
approach is a loss in the main lobe resolution, and a reduction in the peak value 
(i.e., loss in the SNR). Weighting the time domain transmitted or received sig­
nal instead of the compressed pulse spectrum will theoretically achieve the 
same goal. However, this approach is rarely used, since amplitude modulating 
the transmitted waveform introduces extra burdens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e., 
matched filter). The receive window in meters is defined by

Rrec = Rmax — Rmin (5-12)

where Rmax and Rmin, respectively, define the maximum and minimum range 
over which the radar performs detection. Typically Rrec is limited to the extent 
of the target complex. The normalized complex transmitted signal has the form

5( t) = exp0/2n(fot + 2-t2J )  0 < t < t' (5.13)

t' is the pulsewidth, ц = B/Т , and B is the bandwidth.

The radar echo signal is similar to the transmitted one with the exception of a 
time delay and an amplitude change that correspond to the target RCS. Con­
sider a target at range R1 . The echo received by the radar from this target is

Sr( t) = a iexp (/ 2 n f  t -  Ti) + Ц ( t -  Ti) ̂ (5.14)

where a1 is proportional to target RCS, antenna gain, and range attenuation. 
The time delay t1 is given by

t1 = 2 R 1 /c (5.15)

The first step of the processing consists of removing the frequency f 0 . This 
is accomplished by mixing sr(t) with a reference signal whose phase is 2nf 01 . 
The phase of the resultant signal, after low pass filtering, is then given by

V(t) = 2л0-/ОTi + 2-(t -  Ti )2) (5.16)

and the instantaneous frequency is

f i( °  = 2П ' ) = t -  Ti > = B (l -  T -)  (5-17)
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The quadrature components are

Xi( t)3 2  cos ш( t)3
I = ( 1 (5.18)

Xq (t)  0 sin y (  t)

Sampling the quadrature components is performed next. The number of sam­
ples, N , must be chosen so that foldover (ambiguity) in the spectrum is 
avoided. For this purpose, the sampling frequency, f s (based on the Nyquist 
sampling rate), must be

fs > 2B (5.19)

and the sampling interval is

Дt < 1 /2B (5.20)

Using Eq. (5.17) it can be shown that (the proof is left as an exercise) the fre­
quency resolution of the FFT is

Д/ = 1 /Т (5.21)

The minimum required number of samples is

N = — = — (5.22)
ДfДt Д t

Equating Eqs. (5.20) and (5.22) yields

N > 2BT (5.23)

Consequently, a total of 2Bt' real samples, or B T complex samples, is suf­
ficient to completely describe an LFM waveform of duration t ' and bandwidth 
B . For example, an LFM signal of duration t ' = 20 |as and bandwidth 
B = 5 MHz requires 200 real samples to determine the input signal (100 
samples for the I-channel and 100 samples for the Q-channel).

For better implementation of the FFT N is extended to the next power of 
two, by zero padding. Thus, the total number of samples, for some positive 
integer m , is

Nfft = 2m > N (5.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam­
pled sequence; (2) multiplying the frequency domain sequence of the signal 
with the FFT of the matched filter impulse response; and (3) performing the 
inverse FFT of the composite frequency domain sequence in order to generate 
the time domain compressed pulse (HRR profile). Of course, weighting, 
antenna gain, and range attenuation compensation must also be performed.
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Assume that I  targets at ranges R 1, R2 , and so forth are within the receive 
window. From superposition, the phase of the down-converted signal is

i

y (  t) = ^  2 n f  + |2 (t -  X1O23) (5.25)

i = 1

The times { t 1 = (2Ri/c); i = 1, 2, I } represent the two-way time delays, 
where t 1 coincides with the start of the receive window.

MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is 
given in Listing 5.2 in Section 5.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, b, rrec, scat range, scat rcs, win)

where

Symbol Description Units Status
nscat number of point scatterers within the 

received window
none input

rrec receive window size m input
taup uncompressed pulsewidth seconds input

b chirp bandwidth Hz input
scat range vector of scatterers’ relative range 

(within the receive window)
m input

scat rcs vector of scatterers’ RCS 2m2 input

win 0 = no window 
1 = Hamming 

2 = Kaiser with parameter pi 
3 = Chebychev - sidelobes at -60dB

none input

у normalized compressed output volts output

The user can access this function either by a MATLAB function call, or by 
executing the MATLAB program “matched_filter_gui.m” which utilizes a 
MATLAB based GUI. The work space associated with this program is shown 
in Fig. 5.5. The outputs for this function include plots of the compressed and 
uncompressed signals as well as the replica used in the pulse compression pro­
cess. This function utilizes the function “power_integer_2.m” which imple­
ments Eq. (5.24). It is given in Listing 5.3 in Section 5.5.
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Initialization Start Quit

number of 3
scatterers

receive window 200

in meters

uncompressed pulse 0.005e-3
width

bandwidth 100e6
in Hz

scatterers relative range [10 30100]
in meters

scatterers RCS П 12]
in m'2

winid 2

0 .1 .2 . or 3

Figure 5.5. GUI workspace associated with the function “matched_JUter_guim”. 

As an example, consider the case where

nscat 3
rrec 200 m
taup 0.005 ms

b 100e6 Hz
scat range [10 75 1 20] m

scat_rcs [1 2 1]m2
win 2

Note that the compressed pulsed range resolution, without using a window, 
is AR = 1.5m . Figs. 5.6 shows the real part and the amplitude spectrum for 
the replica used in the pulse compression. Fig. 5.7 shows the uncompressed 
echo, while Fig. 5.8 shows the compressed MF output. Note that the scatterer 
amplitude attenuation is a function of the inverse of the scatterer’s range within 
the receive window.
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Figure 5.6. Real part and amplitude spectrum of replica.

-3 -2 - 1 0 1 2 3  
Relative delay - seconds x ю ®

Figure 5.7. Uncompressed echo signal. Scatterers are not resolved.
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Figure 5.8. Compressed echo signal corresponding to Fig. 5.7. 
Scatterers are completely resolved.

Fig. 5.9 is similar to Fig. 5.8, except in this case the first and second scatter­
ers are less than 1.5 meter apart (they are at 70 and 71 meters within the receive 
window).

Figure 5.9. Compressed echo signal of three scatterers, two of 
which are not resolved.
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5.3.2. Stretch Processor

Stretch processing, also known as “active correlation, ” is normally used to 
process extremely high bandwidth LFM waveforms. This processing technique 
consists of the following steps: First, the radar returns are mixed with a replica 
(reference signal) of the transmitted waveform. This is followed by Low Pass 
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver­
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in 
order to extract the tones that are proportional to target range, since stretch pro­
cessing effectively converts time delay into frequency. All returns from the 
same range bin produce the same constant frequency. Fig. 5.10a shows a block 
diagram for a stretch processing receiver. The reference signal is an LFM 
waveform that has the same LFM slope as the transmitted LFM signal. It exists 
over the duration of the radar “receive-window,” which is computed from the 
difference between the radar maximum and minimum range. Denote the start 
frequency of the reference chirp as f r .

Consider the case when the radar receives returns from a few close (in time 
or range) targets, as illustrated in Fig. 5.10a. Mixing with the reference signal 
and performing low pass filtering are effectively equivalent to subtracting the 
return frequency chirp from the reference signal. Thus, the LPF output consists 
of constant tones corresponding to the targets’ positions. The normalized trans­
mitted signal can be expressed by

where ц = B/т' is the LFM coefficient and f 0 is the chirp start frequency. 
Assume a point scatterer at range R . The signal received by the radar is

where a is proportional to target RCS, antenna gain, and range attenuation. 
The time delay Дт is

(5.26)

(5.27)

Дт = 2R / c (5.28)

The reference signal is

0 < t < Т.rec (5.29)

The receive window in seconds is

T
2( R,max Rmin) = 2_Rrec (5.30)rec c c
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Figure 5.10a. Stretch processing block diagram.
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It is customary to let f r = /0 . The output of the mixer is the product of the 
received and reference signals. After low pass filtering the signal is

s0( t) = a cos (2 л/0Дх + 2 лцДТ -  лц(Дх) ) 

Substituting Eq. (5.28) into (5.31) and collecting terms yield

s0(t) = a cos r  llB R -l t + 2R 2 2 n f  -  2*BR
V CT 1 С 0 0 CT

and since T » 2R/ c , Eq. (5.32) is approximated by

s0(t) к a cos Г4nBR\ 4 n R -  
.0 — 1 '+ — /0.

The instantaneous frequency is

j  = J - d  2 4nBR 4%RA  = 2BR 
Jinst = 2ndf\ ct' c Jo1 = ct'

(5.31)

(5.32)

(5.33)

(5.34)

which clearly indicates that target range is proportional to the instantaneous 
frequency. Therefore, proper sampling of the LPF output and taking the FFT of 
the sampled sequence lead to the following conclusion: a peak at some fre­
quency /1 indicates presence of a target at range

R 1 = /j cx'/2B (5.35)

Assume I  close targets at ranges R 1, R2 , and so forth (R 1 <R2 < ... <R j). 
From superposition, the total signal is

sr (t) = ^  ai (t) cos 2n (/o<t -  T ) + 2- (t -  t )2) (5.36)

i = 1
where {ai(t) ; i = 1, 2, ..., I } are proportional to the targets’ cross sections, 
antenna gain, and range. The times {xi = (2Ri/c); i = 1, 2, . . . , I } represent 
the two-way time delays, where t 1 coincides with the start of the receive win­
dow. Using Eq. (5.32) the overall signal at the output of the LPF can then be 
described by

,< о = y . a icos (5.37)

And hence, target returns appear as constant frequency tones that can be 
resolved using the FFT. Consequently, determining the proper sampling rate 
and FFT size is very critical. The rest of this section presents a methodology 
for computing the proper FFT parameters required for stretch processing.

s
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Assume a radar system using a stretch processor receiver. The pulsewidth is 
т' and the chirp bandwidth is B . Since stretch processing is normally used in 
extreme bandwidth cases (i.e., very large B ), the receive window over which 
radar returns will be processed is typically limited to from a few meters to pos­
sibly less than 100 meters. The compressed pulse range resolution is computed 
from Eq. (5.8). Declare the FFT size to be N and its frequency resolution to be 
Дf . The frequency resolution can be computed using the following procedure: 
consider two adjacent point scatterers at range R 1 and R2 . The minimum fre­
quency separation, Дf , between those scatterers so that they are resolved can 
be computed from Eq. (5.34). More precisely,

Д/ = f2 -  f l = cB(R2 -  R j) = 2В-Д R (5.38)

Substituting Eq. (5.8) into Eq. (5.38) yields

2B c 1
Д/ = T  T - = — (5.39)J c^  2B т'

The maximum frequency resolvable by the FFT is limited to the region 
±NAf/ 2 . Thus, the maximum resolvable frequency is

NAf 2B(Rma*-Rm;n:> 2BR„c
—-Г > ---------------------- = ----- — (540)2 cx  cт'

Using Eqs. (5.30) and (5.39) into Eq. (5.40) and collecting terms yield

N > 2BTrec (5.41)

For better implementation of the FFT, choose an FFT of size

NPPt > N = 2m (5.42)

m is a nonzero positive integer. The sampling interval is then given by

Дf  = ----1----^  Ts = ----- 1----  (5.43)
TsNPPT a/nppt

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro­
cessing. It is given in Listing 5.4 in Section 5.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, scat range, rrec, scat rcs, win)

where
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Symbol Description Units Status
nscat number of point scatterers within the 

received window
none input

taup uncompressed pulsewidth seconds input

f0 chirp start frequency Hz input
b chirp bandwidth Hz input

scat range vector of scatterers’ range m input
rrec range receive window m input

scat_rcs vector of scatterers’ RCS 2m2 input

win 0 = no window 
1 = Hamming 

2 = Kaiser with parameter pi 
3 = Chebychev - sidelobes at -60dB

none input

у compressed output volts output

The user can access this function either by a MATLAB function call or by exe­
cuting the MATLAB program “stretch_gui.m” which utilizes MATLAB based 
GUI and is shown in Fig. 5.10b. The outputs of this function are the complex 
array у  and plots of the uncompressed and compressed echo signal versus 
time. As an example, consider the case where

nscat 3
taup 10 ms
f0 5.6 GHz
b 1 GHz

rrec 30 m
scat_range [2 5 10] m

scat_rcs [1, 1, 2] m2
win 2 (Kaiser)

Note that the compressed pulse range resolution, without using a window, is 
AR = 0.15m . Figs. 5.11 and 5.12, respectively, show the uncompressed and 
compressed echo signals corresponding to this example. Fig. 5.13 is similar to 
Figs. 5.11 and 5.12 except in this case two of the scatterers are less than 15 cm 
apart (i.e., unresolved targets at Rreiative = [3, 3.1 ]m ).
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Initialization Start Quit

number of 1
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receive window | | 30

in meters

uncompressed pulse 
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10e-3
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in 1 Iz

1e9

scatterers relative range 
in meters

[2 Щ

scatterers RCS H И 11]
in m *2 "

center frequency 1e9

in HZ

Figure 5.10b. GUI workspace associated with the function “stretch_gui.m”.

Figure 5.11. Uncompressed echo signal. Three targets are unresolved.
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Relative range in meters 

Figure 5.12. Compressed echo signal. Three targets are resolved.

0 0.001 0.002 0.003 0.004 0.005 0 .006 0.007 0 .008 0 .009 0.01 
Relative delay - seconds

Figure 5.13a. Uncompressed echo signal. Three targets.
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1.2

Relative range in meters

Figure 5.13b. Compressed echo signal. Three targets, two are not 
resolved.

5.3.3. Distortion Due to Target Velocity

Up to this point, we have analyzed pulse compression with no regard to tar­
get velocity. In fact, all analyses provided assumed stationary targets. Uncom­
pensated target radial velocity, or equivalently Doppler shift, degrades the 
quality of the HRR profile generated by pulse compression. In Chapter 3, the 
effects of radial velocity on SFW were analyzed. Similar distortion in the HRR 
profile is also present with LFM waveforms when target radial velocity is not 
compensated for.

The two effects of target radial velocity (Doppler frequency) on the radar 
received pulse were developed in Chapter 1. When the target radial velocity is 
not zero, the received pulsewidth is expanded (or compressed) by the time dila­
tion factor. Additionally, the received pulse center frequency is shifted by the 
amount of Doppler frequency. When these effects are not compensated for, the 
pulse compression processor output is distorted. This is illustrated in Fig. 5.14. 
Fig. 5.14a shows a typical output of the pulse compression processor with no 
distortion. Alternatively, Figs. 5.14b, 5.14c, and 5.14d show the output of the 
pulse compression processor when 5% shift of the chirp center frequency, 10% 
time dilation, and both are present.
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5.14a. Compressed pulse output of a pulse compression processor. No 
distortion is present. This figure can be reproduced using 
MATLAB program “fig5_14” given in Listing 5.5 in Section 5.5.
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Figure 5.14b. Mismatched compressed pulse; 5%  Doppler shift.
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Figure 5.14c. Mismatched compressed pulse; 10% time dilation.
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Figure 5.14d. Mismatched compressed pulse; 10% time dilation and 5%  
Doppler shift.
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Correction for the distortion caused by the target radial velocity can be over­
come by using the following approach. Over a period of a few pulses, the radar 
data processor estimates the radial velocity of the target under track. Then, the 
chirp slope and pulsewidth of the next transmitted pulse are changed to 
account for the estimated Doppler frequency and time dilation.

5.4. “MyRadar” Design Case Study - Visit 5

5.4.1. Problem Statement

Assume that the threat may consist o f multiple aircraft and missiles. Show 
how the matched filter receiver can resolve multiple targets with a minimum 
range separation o f 50 meters. Also verify that the waveforms selected in 
Chapter 3 are adequate to maintain proper detection and tracking (i.e., pro­
vide sufficient SNR).

5.4.2. A Design

It was determined in Chapter 3 that the pulsed compressed range resolutions 
during search and track are respectively given by

ЛКsearch = 30m ; Bsearch = 5MHz (544)

ЛRtrack = 7.5m; B^ck = 20MHz (5.45)

It was also determined that a single search waveform and 4 track waveforms 
would be used.

Assume that track is initiated once detection is declared. Aircraft target type 
are detected at Ramax = 90Km while the missile is detected at Rmax = 55Km . 
It was shown in Section 2.10.2.2 that the minimum SNR at these ranges for 
both target types is SNR > 4 dB when 4-pulse non-coherent integration is uti­
lized along with cumulative detection. It was also determined that a single 
pulse option was not desirable since it required prohibitive values for the peak 
power. At this point one should however take advantage of the increased SNR 
due to pulse compression. From Chapter 3, the pulse compression gain, for the 
selected waveforms, is equal to 100 (10 dB). One should investigate this SNR 
enhancement in the context of eliminating the need for pulse integration.

The pulsed compressed SNR can be computed using Eq. (5.7), which is 
repeated here as Eq. (5.46)

P t x'G2X2ct
SNR = ---- t--------------- (5.46)

(4n)3 R4 kTeFL
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where G = 34.5dB, X = 0.1 m , Te = 290Kelvin  , F  = 6dB , L = 8dB ,2 2CTm = 0.5m , ста = 4m , and Pt = 20KW  (from Chapter 3). The search 
pulsewidth is T = 20цс and the track waveforms are 12.5ц5 < т 't < 20ц с . 
First consider the missile case. The single pulse SNR at the maximum detec­
tion range R̂ nax = 55Km is given by

3 - 6 3 45 2 2
од™ _ 20 x 103 x 20 x 10 6 x (  10 ) x (  0.1 )2 x 0.5 _ „
SNRm 4 (5,4* )

(4n)3 x (55 x 103) x 1.38 x 10-23 x 290 x 100 8 x 100 6 

8.7028 ^  SNRm = 9.39dB 

Alternatively, the single pulse SNR, with pulse compression, for the aircraft is

3 -6 3.45 2 2SNR = 20 x 10 x 20 x 10 x (10 ) x (0.1;) x 4 =

(4n)3 x (90 x 103)4 x 1.38 x 10-23 x 290 x 100 8 x 100 6 

9.7104 ^  SNRm = 9.87dB

Using these calculated SNR values into the MATLAB program
“myradar_visit2_2.m” (see Chapter 2) yields

P DC = 0.999
A ir c a r ft

P DC = 0.9984
M iccile

(5.49)

which clearly satisfies the design requirement of PD > 0.995 .

Next, consider the matched filter and its replicas and pulsed compressed out­
puts (due to different waveforms). For this purpose use the program 
“matchedjilter_gui.m”. Assume a receive window of 200 meters during 
search and 50 meters during track.

Fig. 5.15 shows the replica and the associated uncompressed and com­
pressed signals. The targets consist of two aircraft separated by 50 meters. Fig. 
5.16 is similar to Fig. 5.15, except it is for track waveform number 4 and the 
target separation is 20 m.
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Figure 5.15a. Replica associated with search waveform.

Figure 5.15b. Uncompressed signal of two aircraft separated by 50 m.
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Figure 5.16a. Replica associated with track waveform number 4.
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Figure 5.16b. Compressed signal of two aircraft separated by 20 m.
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This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is strongly advised to rerun the MATLAB programs in 
order to enhance his understanding of this chapter’s material.

5.5. MATLAB Program and Function Listings

Listing 5.1. MATLAB Program “fig5_3.m”
% use this program to reproduce Fig. 5.3 o f text 
clear all 
close all
nscat = 2; %two point scatterers
taup = 10e-6; % 10 microsecond uncompressed pulse
b = 50.0e6; % 50 MHz bandwidth
rrec = 5 0 ; % 50 meter processing window
scat range = [15 25]; % scatterers are 15 and 25 meters into window 
scat rcs = [1 2]; % RCS 1 mA2 and 2mA2 
winid = 0; %no window used
[y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid);

Listing 5.2. MATLAB Function “matched_filter.m”
function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid) 
eps = 1.0e-16;
% time bandwidth product 
time_B_product = b * taup; 
if(time B_product < 5 ) 

fprintf('********** Time Bandwidth product is TOO SMALL *********^ 
fprintf(’\n Change b and or taup’) 
return 

end
% speed o f light 
c = 3.e8;
% number o f samples 
n = fix(5 * taup * b)
% initialize input, output and replica vectors 
x(nscat,1:n) = 0.; 
y(1:n) = 0.; 
replica(1:n) = 0.;
% determine proper window 
if( winid == 0.) 

win(1:n) = 1.; 
win =win’; 

else 
if(winid == 1.)
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win = hamming(n); 
else

if( winid == 2.)
win = kaiser(n,pi); 

else 
if(winid = = 3.)

win = chebwin(n,60); 
end 

end 
end 

end
% check to ensure that scatterers are within receive window 
index = find(scat_range > rrec); 
i f  (index ~= 0)

’Error. Receive window is too large; or scatterers fa ll outside window’ 
return 

end
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t.A2);
figure(l)
subplot(2,l,l)
plot(t,real(replica))
ylabel(Real (part) o f replica’)
xlabel(’time in seconds’)
grid
subplot(2,1,2)
sampling_interval = taup / n; 
freqlimit = 0.5/ samplinginterval; 
freq = linspace(-freqlimit,freqlimit,n); 
plot(freq,fftshift(abs(fft(replica)))); 
ylabel('Spectrum o f replica’) 
xlabel(’Frequency in Hz’) 
grid
for j  = 1:1:nscat 

range = scatrange(j) ;;
x(j,:) = scatrcs(j) .* exp(i * pi * (b/taup) .* (t + (2*range/c)).A2) ;
У = x(j,:) + y; 

end
figure(2)
plot(t,real(y),'k')
xlabel (’Relative delay - seconds’) 
ylabel (’Uncompressedecho’) 
grid
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out =xcorr(replica, y); 
out = out./n; 
s = taup * c /2;
Npoints = ceil(rrec * n /s); 
dist =linspace(0, rrec, Npoints); 
delr = c/2/b 
figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k') 
xlabel (’Target relative position in meters’) 
ylabel (’Compressedecho’) 
grid

Listing 5.3. MATLAB Function “power_integer_2.m”
function n = power_integer_2 (x) 
m = 0.; 
fo r j  = 1:30 

m = m + 1.; 
delta = x - 2 Am; 
if(delta < 0.) 

n = m; 
return 

else 
end 

end

Listing 5.4. MATLAB Function “stretch.m”
function [y] = stretch(nscat,taup,f0,b,rrec,scat_range,scat_rcs,winid) 
eps = 1.0e-16; 
htau = taup / 2.; 
c = 3.e8;
trec = 2. * rrec / c; 
n = fix(2. * trec * b); 
m = power_integer_2(n); 
nfft = 2.Am; 
x(nscat,1:n) = 0.; 
y(1:n) = 0.; 
if(winid == 0.) 

win(1:n) = 1.; 
win =win'; 

else 
if(winid == 1.)

win = hamming(n); 
else
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if( winid == 2.)
win = kaiser(n,pi); 

else 
if(winid = = 3.)

win = chebwin(n,60); 
end 

end 
end 

end
deltar = c / 2. / b; 
m axrrec = deltar * nfft / 2.; 
maxr = max(scatrange); 
if(rrec > max rrec | maxr >= rrec)

’Error. Receive window is too large; or scatterers fa ll outside window’ 
return 

end
t = linspace(0,taup,n); 
fo r j  = 1:1:nscat

range = scat_range(j);% + rmin; 
psi1 = 4. * pi * range * f 0 /c - ...

4. * pi * b * range * range / c / c/ taup; 
psi2 = (2*4. * pi * b * range / c / taup) .* t; 
x(j,:) = scat rcs(j) .* exp(i * psi1 + i .* psi2); 
y  = y  + x(j,:); 

end
figure(1)
plot(t,real(y),'k')
xlabel (’Relative delay - seconds’) 
ylabel (’Uncompressedecho’) 
ywin = y  .* win’;
yfft = fft(y,n) ./n;
out=fftshift (abs(yfft));
figure(2)
delinc = rrec/ n;
%dist = linspace(-delinc-rrec/2,rrec/2,n); 
dist = linspace((-rrec/2), rrec/2,n); 
plot(dist,out,’k’)
xlabel (’Relative range in meters’) 
ylabel (’Compressedecho’) 
axis auto 
grid
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% use this program to reproduce Fig. 5.14 o f text
clear all
eps = 1.5e-5;
t = 0:0.001:.5;
y  = chirp(t,0,.25,20);
figure(1)
plot(t,y);
yfft = fft(y,512) ;
ycomp = fftshift(abs(ifft(yfft .* conj(yfft))));
maxval = max (ycomp);
ycomp = eps + ycomp ./maxval;
figure(1)
del = .5 /512.;
tt = 0:del:.5-eps;
plot (tt,ycomp,'k')
axis tight
xlabel (’Relative delay - seconds'); 
ylabel('Normalized compressed pulse’) 
grid
y1 = chirp (t,0,.25,21); % change center frequency 
y f f t  = fft(y1,512);
y1comp = fftshift (abs(ifft(y1fft .* conj(yfft)))); 
maxval = max (y1comp); 
y1comp = eps + y1comp ./maxval; 
figure(2)
plot (tt,y1comp,'k') 
axis tight
xlabel (’Relative delay - seconds'); 
ylabel('Normalized compressed pulse’) 
grid
t = 0:0.001:.45; % changepulsewidth 
y2 = chirp (t,0,.225,20); 
y2fft = fft(y2,512);
y2comp = fftshift (abs(ifft(y2fft .* conj(yfft)))); 
maxval = max (y2comp); 
y2comp = eps + y2comp ./maxval; 
figure(3)
plot (tt,y2comp,'k') 
axis tight
xlabel (’Relative delay - seconds'); 
ylabel('Normalized compressed pulse’) 
grid

Listing 5.5. MATLAB Program “fig5_14.m”
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Chapter 6 Surface and Volume Clutter

6.1. Clutter Definition
Clutter is a term used to describe any object that may generate unwanted 

radar returns that may interfere with normal radar operations. Parasitic returns 
that enter the radar through the antenna’s main lobe are called main lobe clut­
ter; otherwise they are called sidelobe clutter. Clutter can be classified into two 
main categories: surface clutter and airborne or volume clutter. Surface clutter 
includes trees, vegetation, ground terrain, man-made structures, and sea sur­
face (sea clutter). Volume clutter normally has a large extent (size) and 
includes chaff, rain, birds, and insects. Surface clutter changes from one area 
to another, while volume clutter may be more predictable.

Clutter echoes are random and have thermal noise-like characteristics 
because the individual clutter components (scatterers) have random phases and 
amplitudes. In many cases, the clutter signal level is much higher than the 
receiver noise level. Thus, the radar’s ability to detect targets embedded in 
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather 
than the SNR.

White noise normally introduces the same amount of noise power across all 
radar range bins, while clutter power may vary within a single range bin. Since 
clutter returns are target-like echoes, the only way a radar can distinguish tar­
get returns from clutter echoes is based on the target RCS a t , and the antici­
pated clutter RCS c t c  (via clutter map). Clutter RCS can be defined as the 
equivalent radar cross section attributed to reflections from a clutter area, A c . 
The average clutter RCS is given by

Ctc = a°A c (<5.1)
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0 2 2where a  (m /m ) is the clutter scattering coefficient, a dimensionless quan­
tity that is often expressed in dB. Some radar engineers express a  in terms of 
squared centimeters per squared meter. In these cases, a  is 40 dB higher than 
normal.

6.2. Surface Clutter
Surface clutter includes both land and sea clutter, and is often called area 

clutter. Area clutter manifests itself in airborne radars in the look-down mode. 
It is also a major concern for ground-based radars when searching for targets at 
low grazing angles. The grazing angle is the angle from the surface of the 
earth to the main axis of the illuminating beam, as illustrated in Fig. 6.1.

Three factors affect the amount of clutter in the radar beam. They are the 
grazing angle, surface roughness, and the radar wavelength. Typically, the clut­
ter scattering coefficient a  is larger for smaller wavelengths. Fig. 6.2 shows a 
sketch describing the dependency of a  on the grazing angle. Three regions 
are identified; they are the low grazing angle region, flat or plateau region, and 
the high grazing angle region.

a 0 dB

Figure 6.2. Clutter regions.
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The low grazing angle region extends from zero to about the critical angle. 
The critical angle is defined by Rayleigh as the angle below which a surface is 
considered to be smooth, and above which a surface is considered to be rough; 
Denote the root mean square (rms) o f a surface height irregularity as hrms, 
then according to the Rayleigh criteria the surface is considered to be smooth if

4nhr
x  sinу  < 2 (62)

Consider a wave incident on a rough surface, as shown in Fig. 6.3. Due to 
surface height irregularity (surface roughness), the “rough path” is longer than 
the “smooth path” by a distance 2hrms sin y g . This path difference translates 
into a phase differential Д у :

2n
ДУ = T  2hrmssin Vg (6-3)

/
smooth /  
pathу

\  I /  “y  

\  _______ / . „ smooth surface level

Figure 6.3. Rough surface definition.

The critical angle y gc is then computed when Д у = n (first null), thus

4%hrms •— X—  sin ygc = П (6.4)

or equivalently,

= asin; r h -  (65)rms

In the case o f sea clutter, for example, the rms surface height irregularity is
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where Sstate is the sea state, which is tabulated in several cited references. The 
sea state is characterized by the wave height, period, length, particle velocity, 
and wind velocity. For example, Sstate = 3 refers to a moderate sea state, 
where in this case the wave height is approximately between 
0.9144 to 1.2192 m , the wave period 6.5 to 4.5 seconds, wave length 
1.9812 to 33.528 m, wave velocity 20.372 to 25.928 Km/h r , and wind 

velocity 22.224 to 29.632 Km/h r .

Clutter at low grazing angles is often referred to as diffuse clutter, where 
there are a large number of clutter returns in the radar beam (non-coherent 
reflections). In the flat region the dependency of a  on the grazing angle is 
minimal. Clutter in the high grazing angle region is more specular (coherent 
reflections) and the diffuse clutter components disappear. In this region the 
smooth surfaces have larger a 0 than rough surfaces, opposite of the low graz­
ing angle region.

6.2.1. Radar Equation for Area Clutter - Airborne Radar

Consider an airborne radar in the look-down mode shown in Fig. 6.4. The 
intersection of the antenna beam with the ground defines an elliptically shaped 
footprint. The size of the footprint is a function of the grazing angle and the 
antenna 3dB beamwidth 93dB, as illustrated in Fig. 6.5. The footprint is 
divided into many ground range bins each of size (c т/2) sec y g , where т is 
the pulsewidth.

From Fig. 6.5, the clutter area A c is

c т
A c ~ R93dBysecVg (6-7)

hrms -  0 .0 2 5  + 0 .0 4 6  S ]7te (6.6)
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Figure 6.5. Footprint definition.

The power received by the radar from a scatterer within A c is given by the 
radar equation as

c PtG2X2a t 
St = 3 /  (8-8)

(4n )3 R

where, as usual, Pt is the peak transmitted power, G is the antenna gain, X is 
the wavelength, and a t is the target RCS. Similarly, the received power from 
clutter is

s P tG2X2c-c
S c  =  t 3 4C («-в)

(4n)3R

where the subscript C is used for area clutter. Substituting Eq. (6.1) for a c 
into Eq. (6.9), we can then obtain the SCR for area clutter by dividing Eq. (6.8) 
by Eq. (6.9). More precisely,

2ct, cos
( SCR)c = — ------^  (6.10)

CT°03 dBRcT

Example:

Consider an airborne radar shown in Fig. 6.4. Let the antenna 3dB beam- 
width be 93dB = 0.02rad, the pulsewidth т = 2цs, range R = 20Km , and
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grazing angle y g = 2 0 ° . The target RCS is CTt = 1m . Assume that the clut­
ter reflection coefficient is ct = 0.0136 . Compute the SCR.

Solution:

The SCR is given by Eq. (6.10) as

2 CTt cos 
(SCR)c = V — ^  ^

ct  Q3dBRcT

(SCR)C = ----------------- ( 2 ) ( 1 )( cos 20 ° )-------------- = 5 7 6 x io -
(0.0 8 6

It follows that

2

(0.0136)(0.02)(20000)(3 x 10°)(2 x 10 6)

(SCR)C = -32.4dB

Thus, fo r reliable detection the radar must somehow increase its SCR by at 
least (32 + X)dB, where X  is on the order o f 13 to 15dB or better.

6.2.2. Radar Equation for Area Clutter - Ground Based Radar

Again the received power from clutter is also calculated using Eq. (6.9). 
However, in this case the clutter RCS ctc is computed differently. It is

CT c = CTMBc + CT SLc (e-11)

where ctMBc is the main beam clutter RCS and ctSLc is the sidelobe clutter 
RCS, as illustrated in Fig. 6 .6 .

\ \

Figure 6.6. Geometry for ground based rad a r  clutter
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In order to calculate the total clutter RCS given in Eq. (6.11), one must first 
compute the corresponding clutter areas for both the main beam and the side- 
lobes. For this purpose, consider the geometry shown in Fig. 6.7. The angles 
0A and 0E represent the antenna 3-dB azimuth and elevation beamwidths, 
respectively. The radar height (from the ground to the phase center o f the 
antenna) is denoted by hr , while the target height is denoted by ht . The radar 
slant range is R , and its ground projection is Rg . The range resolution is AR 
and its ground projection is ARg . The main beam clutter area is denoted by 
AMBc and the sidelobe clutter area is denoted by A SLc.

Figure 6.7. Clutter geometry for ground based radar. Side view and
top view.
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9 r = asin (hr /R)
9 e = asin ((ht -  hr )/R)

ARg = AR cos 9 r

From  F ig . 6 .7  the fo llo w in g  re lations can  be derived

(6.12)

(6-13)

(6-14)

where AR is the radar range resolution. The slant range ground projection is

(6.15)

It follows that the main beam and the sidelobe clutter areas are

Rg = R cos9r

AMBc = ARg Rg 9 A 
A SLc = ARg nRg

Assume a radar antenna beam G (9) o f the form

G (9) = exp I - 2.77---6---9--9---2---
JE

Gaussian

G (9) =

( ■sin 2.78--

2 .7 8 f-

, , n 9 E 
; 9 < — E 
1 1 2.78

;elsewhere

Then the main beam clutter RCS is

(6-16)
(6.17)

(6-18)

(6-19)

°MBc = a A mbcG (9e + 9r) = a  ARg Rg 9aG ( 9e + 9r) 

and the sidelobe clutter RCS is

(6.20)

= a  AsLc(SLrms)2 = a 0ARg nRe(S L ^ T (6-21)

where the quantity SLrms is the root-mean-square (rms) for the antenna side- 
lobe level.

Finally, in order to account for the variation o f the clutter RCS versus range, 
one can calculate the total clutter RCS as a function o f range. It is given by

°c  (R) =
(1  + (R / Rh )4)

(6.22)

where Rh is the radar range to the horizon calculated as

0

a
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n 8hrre
Rh = t l ~ i r  <6 23)

where r e is the Earth’s radius equal to 6371 K m . The denominator in Eq. 
(6 .22) is put in that format in order to account for refraction and for round 
(spherical) Earth effects.

The radar SNR due to a target at range R is

PtG2X2CTtSNR = ------ 3--------- t----  <6.24)
(4n )3 R4 kToBFL

where, as usual, Pt is the peak transmitted power, G is the antenna gain, X is 
the wavelength, ct3 is the target RCS, k is Boltzman’s constant, T0 is the 
effective noise temperature, B is the radar operating bandwidth, F  is the 
receiver noise figure, and L is the total radar losses. Similarly, the Clutter-to- 
Noise (CNR) at the radar is

CNR = ----PtG X CTc----  (6.25)
(4n)3R4kToBFL

where the ctc is calculated using Eq. (6.21).

When the clutter statistic is Gaussian, the clutter signal return and the noise 
return can be combined, and a new value for determining the radar measure­
ment accuracy is derived from the Signal-to-Clutter+Noise-Ratio, denoted by 
SIR. It is given by

SIR = ------- 1-------  (6.26)
- 1-  + - 1-
SNR SCR

Note that the SCR is computed by dividing Eq.(6.24) by Eq. (6.25).

MATLAB Function “clutter_rcs.m”

The function “clutterrcs.m” implements Eq. (6.22); it is given in Listing
6.1 in Section 6 .6 . It also generates plots o f the clutter RCS and the CNR ver­
sus the radar slant range. Its outputs include the clutter RCS in dBsm and the 
CNR in dB. The syntax is as follows:

[sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, pt, f0, b,
t0, f  l, ant id)

where
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Symbol Description Units Status
sigma0 clutter back scatterer coefficient dB input
thetaE antenna 3dB elevation beamwidth degrees input
thetaA antenna 3dB azimuth beamwidth degrees input

SL antenna sidelobe level dB input
range range; can be a vector or a single value Km input

hr radar height meters input
ht target height meters input
pt radar peak power KW input

f0 radar operating frequency Hz input
b bandwidth Hz input
t0 effective noise temperature Kelvins input

f noise figure dB input
l radar losses dB input

ant_id 1 for (sin(x)/x)A2pattern 
2 for Gaussian pattern

none input

sigmac clutter RCS; can be either vector or sin­
gle value depending on “range”

dB output

CNR clutter to noise ratio; can be either vec­
tor or single value depending on 

“range”

dB output

A  GUI called “clutter_rcs_gui” was developed for this function. Executing 
this GUI generates plots o f the a c and CNR versus range. Figure 6.8 shows 
typical plots produced by this GUI using the antenna pattern defined in Eq. 
(6.18). Figure 6.9 is similar to Fig. 6.8 except in this case Eq. (6.19) is used for 
the antenna pattern. Note that the dip in the clutter RCS (at very close range) 
occurs at the grazing angle corresponding to the null between the main beam 
and the first sidelobe. Fig. 6.9c shows the GUI workspace associated with this 
function.

In order to reproduce those two figures use the following MATLAB calls:

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -20, linspace(2,50,100), 3, 100, 75,
5.6e9, 1e6, 290, 6, 10, 1) (6.27)

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -25, linspace(2,50,100), 3, 100, 100,
5.6e9, 1e6, 290, 6, 10, 2) (6.28)

© 2004 by Chapman & Hall/CRC CRC Press LLC



О 5 10 15 20 25 30 35 40 45 50 
Slant Range in Km

Figure 6.8a. Clutter RCS versus range using the function call in Eq. (6.27).

0 5 10 1 5 20 2 5 30 3 5 40 4 5 50 
Slant Range in Km

Figure 6.8b. CNR versus range using the function call in Eq. (6.27).
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О 5 10 15 20 25 30 35 40 45 50 
Slant Range in Km

Figure 6.9a. Clutter RCS versus range using the function call in Eq. (6.28).

0 5 10 15 20 25 30 35 40 45 50 
Slant Range in Km

Figure 6.9b. CNR versus range using the function call in Eq. (6.28).
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clear all start quit

Sigma 0 in dBsm •20

ThetaE degrees 2

ThetaA • degrees 1

S L -d B ■20

hi ■ m 3

ht ■ m 100

p t-K W 75

fO -H z 5.6e9

b Hz 1eB

10 - degiees Kelvin 290

f (noise liguie) - dB 6

1 (losses] dR 10

1 ==> S inc*2;
2 ■«> Gaussian

1

minimum lange 
Km

2

maximum lange 
Km

50

entei Rmin = Rmax 
foi a single point

Figure 6.9c. GUI workspace for “clutter_rcs_gui.m”.
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6.3. Volume Clutter
Volume clutter has large extents and includes rain (weather), chaff, birds, 

and insects. The volume clutter coefficient is normally expressed in square 
meters (RCS per resolution volume). Birds, insects, and other flying particles 
are often referred to as angle clutter or biological clutter.

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It 
consists o f a large number o f dipole reflectors with large RCS values. Histori­
cally, chaff was made o f aluminum foil; however, in recent years most chaff is 
made o f the more rigid fiberglass with conductive coating. The maximum chaff 
RCS occurs when the dipole length L is one half the radar wavelength.

Weather or rain clutter is easier to suppress than chaff, since rain droplets 
can be viewed as perfect small spheres. We can use the Rayleigh approxima­
tion of a perfect sphere to estimate the rain droplets’ RCS. The Rayleigh 
approximation, without regard to the propagation medium index o f refraction 
is:

where k = 2 n/X , and r  is radius o f a rain droplet.

Electromagnetic waves when reflected from a perfect sphere become 
strongly co-polarized (have the same polarization as the incident waves). Con­
sequently, i f  the radar transmits, for example, a right-hand-circular (RHC) 
polarized wave, then the received waves are left-hand-circular (LHC) polar­
ized, because they are propagating in the opposite direction. Therefore, the 
back-scattered energy from rain droplets retains the same wave rotation (polar­
ization) as the incident wave, but has a reversed direction o f propagation. It 
follows that radars can suppress rain clutter by co-polarizing the radar transmit 
and receive antennas.

Denote n as RCS per unit resolution volume VW. It is computed as the sum 
of all individual scatterers RCS within the volume,

where N is the total number o f scatterers within the resolution volume. Thus, 
the total RCS o f a single resolution volume is

(6.29)

N

(6.30)

i = 1

N

(6.31)

i = 1
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Vw -  8-9 aQeR cT (6.32)

where 9 a , 9 e are, respectively, the antenna azimuth and elevation beamwidths 
in radians, т is the pulsewidth in seconds, c is speed o f light, and R is range.

A  reso lution  vo lum e is  show n in  F ig . 6 .10 , and is  approxim ated  by

Figure 6.10. Definition of a resolution volume.

Consider a propagation medium with an index o f refraction m . The ith rain 
droplet RCS approximation in this medium is

стг -  П-K2D6r 
X4

(6.33)

where

K2 = 2m -  1
2m + 2

(6.34)

and Di is the ith droplet diameter. For example, temperatures between 32°F  
and 68 °F  yield

5
c t , -  0.93^-Dfi i

X4
(6.35)

and for ice Eq. (6.33) can be approximated by

5
CTi -  °.2 “ D,i X4 i (6.36)

Substituting Eq. (6.33) into Eq. (6.30) yields

2
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х4

5П 2
П = V  ^  (6.37)

where the weather clutter coefficient Z is defined as

N

Z = ^  D6 (6.38)

i = 1

In general, a rain droplet diameter is given in millimeters and the radar reso­
lution volume is expressed in cubic meters; thus the units of Z are often 
expressed in millimeter6/m3 .

6.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a a t tar­
get at range R as

c PtO \ 2a t
St = - _ -  (6.39)

(4 n )3 R

where all parameters in Eq. (6.39) have been defined earlier. The weather clut­
ter power received by the radar is

S = PtO \ 2a w
Sw = ------- 3- 4-  (6.40)

(4 n )3 R

Using Eq. (6.31) and Eq. (6.32) in Eq. (6.40) and collecting terms yield

PtG2"k2 n 2 N  
Sw = 3 - 4 n - R 0 a 0е ^ т У а г (6.41)

(4n )R  8 ^
i = 1

The SCR for weather clutter is then computed by dividing Eq. (6.39) by Eq. 
(6.41). More precisely,

St 8 a t

Sw
( SCR)v = ^  = -------------L_ _  (6.42)

S w
n 0a0 ecxR2V  а,-T'

i = 1
where the subscript v  is used to denote volume clutter.
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A certain radar has target RCS CTt = 0.1m , pulsewidth т = 0.2 |as, 
antenna beamwidth 9a = 9e = 0.02radians. Assume the detection range to_ —8 2 3be R = 50 Km, and compute the SCR = 1.6 x 10 (m / m ) .

Solution:

From Eq. (6.42) we have

8ct,

Example:
2

(SCR)V = N

n9a 9ecT R2 ̂  c t ,

i = 1

Substituting the proper values we get

(SCR)V = ------------------------------ (8 ) (M )------------- -----------------  = 0.265
n (0 .02)2(3 x 10 8)(0.2 x 10—6)(50 x 103)2( 1.6  x 10—8)

(SCR)V = -5.76dB  .

6.4. Clutter Statistical Models
Since clutter within a resolution cell or volume is composed of a large num­

ber of scatterers with random phases and amplitudes, it is statistically 
described by a probability distribution function. The type of distribution 
depends on the nature of clutter itself (sea, land, volume), the radar operating 
frequency, and the grazing angle.

If sea or land clutter is composed of many small scatterers when the proba­
bility of receiving an echo from one scatterer is statistically independent of the 
echo received from another scatterer, then the clutter may be modeled using a 
Rayleigh distribution,

f(x ) = — exp2 — 3 ; x > 0 (6.43)
x 0 2 x 0 3

where x0 is the mean squared value of x .

The log-normal distribution best describes land clutter at low grazing angles. 
It also fits sea clutter in the plateau region. It is given by

; x > 0 (6.44)f ( x) =
jJ 2 n

exp l-
( ln x - ln x m)

2ct2
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where xm is the median of the random variable x , and a  is the standard devi­
ation of the random variable ln (x ) .

The Weibull distribution is used to model clutter at low grazing angles (less 
than five degrees) for frequencies between 1 and 10GHz. The Weibull proba­
bility density function is determined by the Weibull slope parameter a (often 
tabulated) and a median scatter coefficient a 0 , and is given by

bx - 1 6 xb 7f(x ) = — —  exp I - — I ; x > 0 (6.45)
ao 2 ao 3

where b = 1 /a is known as the shape parameter. Note that when b = 2 the 
Weibull distribution becomes a Rayleigh distribution.

6.5. “MyRadar ” Design Case Study - Visit 6

6.5.1. Problem Statement

Analyze the impact o f ground clutter on “MyRadar” design case study. 
Assume a Gaussian antenna pattern. Assume that the radar height is 5 meters. 
Consider an antenna sidelobe level SL = -20  dB and a ground clutter coef­

ficient а  = -15 dBsm . What conclusions can you draw about the radar's 
ability to maintain proper detection and track o f both targets? Assume a radar 
height hr > 5m.

6.5.2. A Design

From the design processes established in Chapters 1 and 2, it was determined 
that the minimum single pulse SNR required to accomplish the design objec­
tives was SNR > 4dB when non-coherent integration (4 pulses) and cumula­
tive detection were used. Factoring in the surface clutter will degrade the SIR. 
However, one must maintain SIR > 4dB in order to achieve the desired prob­
ability of detection.

Figure 6.11 shows a plot of the clutter RCS versus range corresponding to 
“MyRadar” design requirements. This figure can be reproduced using the 
MATLAB GUI “clutter_rcs_gui” with the following inputs:

Symbol Value Units
sigmaO -15 dB
thetaE 11 (see page 45) degrees
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Cl
ut

ter
 R

CS
 

in 
dB

sm
Symbol Value Units
thetaA 1.33 (see page 45) degrees

SL -20 dB
range linspace(10,120,1000) Km

hr 5 meter
ht 2000for missile; 10000for aircraft meter

Pt 20 KW

f0 3e9 Hz
b 5e6 Hz
to 290 Kelvins

f 6 dB
l 8 dB

ant id 2 for Gaussian pattern none

Slant Range in Km 

Figure 6.11a. Clutter RCS entering the radar for the missile case.
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О 20 40 00 80 100 120
Slant Range in Km

Figure 6.11b. Clutter RCS entering the radar for the aircraft case.

The MATLAB program “myradar_visit6.m” was developed to calculate and 
plot the CNR and SIR for “MyRadar” design case study. It is given in Listing
6.2 in Section 6 .6 . This program assumes the design parameters derived in 
Chapters 1 and 2. More precisely:

Symbol Description Value
0CT clutter backscatter coefficient -15 dBsm

SL antenna sidelobe level -20 dB

CTm missile RCS 2
0.5 m

CT a aircraft RCS 2m4

®E antenna elevation beamwidth 11 deg

0A antenna azimuth beamwidth 1.33 deg

hr radar height 5 m
hta target height (aircraft) 10 Km
htm target height (missile) 2 Km
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Symbol Description Value

Pt radar peak power 20 KW

f0 radar operating frequency 3GHz

T0 effective noise temperature 290 degrees Kelvin

F noise figure 6 dB

L radar total losses 8 dB

t ' Uncompressed pulsewidth 20 microseconds

Figure 6.12 shows a plot o f the CNR and the SIR associated with the mis­
sile. Figure 6.13 is similar to Fig. 6.12 except it is for the aircraft case. It is 
clear from these figures that the required SIR has been degraded significantly 
for the missile case and not as much for the aircraft case. This should not be 
surprising, since the missile’s altitude is much smaller than that o f the aircraft. 
Without clutter mitigation, the missile would not be detected at all. Alterna­
tively, the aircraft detection is compromised at R < 80Km . Clutter mitigation 
is the subject of the next chapter.

Missile case; 21 -frame cumulative detection

—  Desired SNR; from Chapter 5 
.......CNR
------SIR -

-  - -

' '
' ■ s

....

20 30 40 50 60 70 90 90 100 110 120
Slant Range in Km 

Figure 6.12. SNR, CNR, and SIR versus range for the missile case.
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Aircraft case; 21 -frame cumulative detection

-----  Desired SNR; from Chapter 5
------CNR
------SIR "

Чч

\

20 30 40 50 60 70 90 90 100 110 120 
Slant Range in Km

Figure 6.13. SNR, CNR and SIR versus range for the aircraft case.

6.6. MATLAB Program and Function Listings
This section presents listings for all MATLAB programs/functions used in 

this chapter. The user is advised to rerun these programs with different input 
parameters.

Listing 6.1. MATALB Function “clutter_rcs.m”
function [sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, 
pt, f0, b, t0, f  l,ant_id)
% This function calculates the clutter RCS and the CNR for a ground based 
radar.
clight = 3.e8; % speed o f light in meters per second 
lambda = clight /f0; 
thetaAdeg = thetaA; 
thetaEdeg = thetaE;
thetaA = thetaA deg * pi /180; % antenna azimuth beamwidth in radians 
thetaE = thetaE deg * pi /180.; % antenna elevation beamwidth in radians 
re = 6371000; % earth radius in meters 
rh = sqrt(8.0*hr*re/3.); % range to horizon in meters
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SLv = 10.0A(SL/10); % radar rms sidelobes in volts 
sigmaOv = 10.0A(sigma0/10); % clutter backscatter coefficient 
tau = 1/b; % pulsewidth
deltar = clight * tau / 2.; % range resolution for unmodulated pulse 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rangem = 1000  .* range; % range in meters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
thetar = asin(hr ./range m); 
thetae = asin((ht-hr) ./range m);
propagatten = 1. + ((range m ./rh )A4); % propagation attenuation due to 
round earth
Rg = range m .* cos(thetar); 
deltaRg = deltar .* cos(thetar); 
thetasum = thetae + thetar;
% use sincA2 antenna pattern when ant_id=1 
% use Gaussian antenna pattern when ant_id=2 
if(ant_id ==1) % use sincA2 antenna pattern 

ant arg = (2.78 * theta sum) ./(pi*thetaE); 
gain = (sinc(ant_arg))A2; 

else
gain = exp(-2.776 .*(theta_sum./thetaE)A2); 

end
% compute sigmac
sigmac = (sigma0v .* Rg .* deltaRg) .* (pi * SLv * SLv + thetaA .* gain.A2) ./ 
propagatten;
sigmaC = 10*log10(sigmac); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
i f  (size(range,2)==1) 

fprintf('Sigma_Clutter='); sigmaC 
else 

figure(1)
plot(range, sigmaC) 
grid
xlabel('SlantRange in Km’) 
ylabel('Clutter RCS in dBsm') 

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate CNR 
pt = pt * 1000;
g = 26000 / (thetaA_deg*thetaE_deg); % antenna gain 
F  = 10.A(f/10); % noise figure is 6 dB 
Lt = 10.A(l/10); % total radar losses 13 dB 
k = 1.38e-23; % Boltzman’s constant 
T0 = t0; % noise temperature 290K
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argnumC = 10*log10(pt*g*g*lambda*lambda*tau .* sigmac); 
argdem = 10*log10(((4*pi)A3)*k*T0*Lt*F .*(range_m).A4); 
CNR = argnumC - argdem; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
i f  (size(range,2) ==1)

fprintf('Cluuter_to_Noise_ratio= '); CNR 
else 

figure(2)
plot(range, CNR,'r') 
grid
xlabel('SlantRange in Km’) 
ylabel('CNR in dB') 

end

Listing 6.2. MATLAB Program “myradar_visit6.m”
clear all 
close all
thetaA= 1.33; % antenna azimuth beamwidth in degrees
thetaE = 11; % antenna elevation beamwidth in degrees
hr = 5.; % radar height to center o f antenna (phase reference) in meters
htm = 2000.; % target (missile) high in meters
hta = 10000.; % target (aircraft) high in meters
SL = -20; % radar rms sidelobes in dB
sigma0 = -15; % clutter backscatter coefficient
b = 1.0e6; %1-MHz bandwidth
t0 = 290; % noise temperature 290 degrees Kelvin
f0  = 3e9; % 3 GHz center frequency
pt = 114.6; % radar peak power in KW
f  = 6; % 6 dB noise figure
l = 8; % 8 dB radar losses
range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points 
% calculate the clutter RCS and the associated CNR fo r both targets 
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, hta, pt, 
f0, b, t0, f, l, 2);
[sigmaCm,CNRm] = clutter_rcs(sigma0, thetaE, thetaA, L, range, hr, htm, pt, 
f0, b, t0, f  l, 2); 
close all
%%%%%%%%%%%%%%%%%%%%%%%%
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor
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Im = improv_fac(np,pfa, pdm);
Ia = improv_fac(np, pfa, pda);
% calculate the integration loss 
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
pt = pt * 1000; % peak power in watts
range m = 1000 .* range; % range in meters
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
nf = f ; %noise figure in dB
loss = l; % radar losses in dB
losstm = loss + Lm; % total loss fo r missile
lossta = loss + La; % total loss fo r aircraft
% modify pt by np*pt to account fo r pulse integration
SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range m);
SNRa = radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range m);
snrm = 10.A(SNRm./10);
snra = 10.A(SNRa./10);
cnrm = 10.A(CNRm./10);
cnra = 10.A(CNRa./10);
SIRm = 10*log10(snrm ./ (1+cnrm));
SIRa = 10*log10(snra ./ (1+cnra)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(3)
plot(range, SNRm, 'k', range, CNRm,'k:', range,SIRm, 'k -.') 
grid
legend('DesiredSNR; from Chapter 5','CNR','SIR')
xlabel('SlantRange in Km’)
ylabel('dB')
title('Missile case; 21-frame cumulative detection’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%

figure(4)
plot(range, SNRa,'k', range, CNRa,'k:', range,SIRa, 'k -.') 
grid
legend('DesiredSNR; from Chapter 5','CNR','SIR')
xlabel('SlantRange in Km’)
ylabel('dB')
title(Aircraft case; 21-frame cumulative detection’)

© 2004 by Chapman & Hall/CRC CRC Press LLC



Chapter 7 Moving Target Indicator (MTI) 
and Clutter Mitigation

7.1. Clutter Spectrum
The power spectrum o f stationary clutter (zero Doppler) can be represented 

by a delta function. However, clutter is not always stationary; it actually exhib­
its some Doppler frequency spread because o f wind speed and motion o f the 
radar scanning antenna. In general, the clutter spectrum is concentrated around 
f  = 0 and integer multiples of the radar PRF f r , and may exhibit a small 
amount o f spreading.

The clutter power spectrum can be written as the sum o f fixed (stationary) 
and random (due to frequency spreading) components. For most cases, the ran­
dom component is Gaussian. If we denote the stationary-to-random power 
ratio by W2 , then we can write the clutter spectrum as

Sc(®) = a 0| W 2b ( r c 0) + ---------CT° --------  e x p f-(c° ^  (  (7.1)
^  + W & (1  + W2 ) J 2 n a l  % 2 a 2 &

where ra° = 2 nf° is the radar operating frequency in radians per second, a ffl 
is the rms frequency spread component (determines the Doppler frequency 
spread), and a° is the Weibull parameter.

The first term o f the right-hand side o f Eq. (7.1) represents the PSD for sta­
tionary clutter, while the second term accounts for the frequency spreading. 
Nevertheless, since most o f the clutter power is concentrated around zero Dop­
pler with some spreading (typically less than 100 Hz), it is customary to model 
clutter using a Gaussian-shaped power spectrum (which is easier to analyze 
than Eq. (7.1)). More precisely,
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0/ Pc ) (га -  га0)2*
Sc(ra) = — £ =  exp!-!------- - 0- -  I (7.2)

л/2^  % 2 -га
2

where P c is the total clutter power; стга and ra0 were defined earlier. Fig. 7.1 
shows a typical PSD sketch of radar returns when both target and clutter are 
present. Note that the clutter power is concentrated around DC and integer 
multiples of the PRF.

Figure 7.1. Typical radar return PSD when clutter and target are present.

7.2. Moving Target Indicator (MTI)
The clutter spectrum is normally concentrated around DC ( f  = 0 ) and mul­

tiple integers of the radar PRF f r , as illustrated in Fig. 7.2a. In CW radars, clut­
ter is avoided or suppressed by ignoring the receiver output around DC, since 
most of the clutter power is concentrated about the zero frequency band. 
Pulsed radar systems may utilize special filters that can distinguish between 
slowly moving or stationary targets and fast moving ones. This class of filter is 
known as the Moving Target Indicator (MTI). In simple words, the purpose of 
an MTI filter is to suppress target-like returns produced by clutter, and allow 
returns from moving targets to pass through with little or no degradation. In 
order to effectively suppress clutter returns, an MTI filter needs to have a deep 
stop-band at DC and at integer multiples of the PRF. Fig. 7.2b shows a typical 
sketch of an MTI filter response, while Fig. 7.2c shows its output when the 
PSD shown in Fig. 7.2a is the input.

MTI filters can be implemented using delay line cancelers. As we will show 
later in this chapter, the frequency response of this class of MTI filter is peri­
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre­
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quencies equal to nfr are severely attenuated. Since Doppler is proportional to 
target velocity (fd = 2v/X ), target speeds that produce Doppler frequencies 
equal to integer multiples of f r are known as blind speeds. More precisely,

Xfr
Vbiind = Y  ; n > 0 (7 .3)

Radar systems can minimize the occurrence o f blind speeds by either 
employing multiple PRF schemes (PRF staggering) or by using high PRFs 
where in this case the radar may become range ambiguous. The main differ­
ence between PRF staggering and PRF agility is that the pulse repetition inter­
val (within an integration interval) can be changed between consecutive pulses 
for the case o f PRF staggering.

Figure 7.2. (a) Typical radar return PSD when clutter and target are
present. (b) MTI filter frequency response. (c) Output from an 
MTI filter.
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Fig. 7.3 shows a block diagram o f a coherent MTI radar. Coherent transmis­
sion is controlled by the STAble Local Oscillator (STALO). The outputs o f the 
STALO, f LO, and the COHerent Oscillator (COHO), f c , are mixed to produce 
the transmission frequency, fLO + f c . The Intermediate Frequency (IF), 
f c ± f d, is produced by mixing the received signal with fLO. After the IF 
amplifier, the signal is passed through a phase detector and is converted into a 
base band. Finally, the video signal is inputted into an MTI filter.

■ф-— ► (

f LO + f c ± f d

Figure 7.3. Coherent MTI radar block diagram.

7.3. Single Delay Line Canceler
A  single delay line canceler can be implemented as shown in Fig. 7.4. The 

canceler’s impulse response is denoted as h (t). The output y  (t) is equal to the 
convolution between the impulse response h (t) and the input x (t) . The single 
delay canceler is often called a “two-pulse canceled since it requires two dis­
tinct input pulses before an output can be read.

The delay T is equal to the PRI of the radar (1 /f r ). The output signal y ( t)
is

У( t) = x(t) -  x(t -  T) 

The impulse response o f the canceler is given by

h(t) = S (t) -  S (t -  T)

(7.4)

(7.5)
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h(t)

Figure 7.4. Single delay line canceler.

where 5( • ) is the delta function. It follows that the Fourier transform (FT) 
of h (t) is

H (ю) = 1 -  e-w T (7.6)

where ю = 2 n f .

In the z-domain, the single delay line canceler response is

H (z) = 1 -  z~- (7.7)

The power gain for the single delay line canceler is given by

|Н(ю)|2 = Н(ю)Н*(ю) = (1 -  е-юТ)(1 -  T) (7.8)

It follows that

|Н(ю)|2 = 1 + 1 -  (е юТ + е-юТ) = 2 (1  -  cosю Т) (7.9)
2

and using the trigonometric identity (2 -  2 cos2S) = 4 ( sinS) yields

|Н(ю)|2 = 4( sin (юТ/ 2 ))2 (7.10)

MATLAB Function “single_canceler.m”

The function “single canceler.m” computes and plots (as a function o f f /f r ) 
the amplitude response for a single delay line canceler. It is given in Listing 7.1 
in Section 7.11. The syntax is as follows:

[resp] = single canceler (fofr)

where fofr is the number o f periods desired. Typical output of the function 
“single canceler.m” is shown in Fig. 7.5. Clearly, the frequency response o f a
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single canceler is periodic with a period equal to f r . The peaks occur at 
f  = (2n + 1)/ (2f r) ,  and the nulls are at f  = nfr , where n > 0 .

Figure 7.5. Single canceler frequency response.

In most radar applications the response of a single canceler is not acceptable 
since it does not have a wide notch in the stop-band. A double delay line can­
celer has better response in both the stop- and pass-bands, and thus it is more 
frequently used than a single canceler. In this book, we will use the names “sin­
gle delay line canceler” and “single canceler” interchangeably.

7.4. Double Delay Line Canceler
Two basic configurations of a double delay line canceler are shown in Fig.

7.6. Double cancelers are often called “three-pulse cancelers” since they 
require three distinct input pulses before an output can be read. The double line 
canceler impulse response is given by

h(t) = S (t) -  2S(t -  T) + S (t -  2T) (7.11)

Again, the names “double delay line” canceler and “double canceler” will be 
used interchangeably. The power gain for the double delay line canceler is
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|Н(ю)|2 = Н  (ю)| 2|Н (ю)| 2 (7.12)

п г

Figure 7.6. Two configurations for a double delay line canceler.

where |Н1(ю)|2 is the single line canceler power gain given in Eq. (7.10). It 
follows that

|Н(ю)|2 = 16% sin %ю (7.13)

And in the z-domain, we have

-1 2 - 1 -2 
H(z) = (1 -  z ) = 1 -  2z + z (7.14)

MATLAB Function “double_canceler.m”

The function “doublecanceler.m” computes and plots (as a function of 
f /f r ) the amplitude response for a double delay line canceler. It is given in 
Listing 7.2 in Section 7.11. The syntax is as follows:

[resp] = doublecanceler (fofr)

where fo fr is the number of periods desired.

Fig. 7.7 shows typical output from this function. Note that the double can- 
celer has a better response than the single canceler (deeper notch and flatter 
pass-band response).
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Figure 7.7. Normalized frequency responses for single and double cancelers.

7.5. Delay Lines with Feedback (Recursive Filters)
Delay line cancelers with feedback loops are known as recursive filters. The 

advantage of a recursive filter is that through a feedback loop we will be able 
to shape the frequency response of the filter. As an example, consider the sin­
gle canceler shown in Fig. 7.8. From the figure we can write

y (t) = x (t) -  (1 - K)w(t) (7.15)

v ( t) = y  ( t) + w (t) (7.16)

w (t) = v(t -  T) (7.17) 

Applying the z-transform to the above three equations yields

Y(z) = X(z) -  (1 -  K) W(z) (7.18)

V( z) = Y (z) + W( z) (7.19)

W(z) = z - V(z) (7.20)
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Solving for the transfer function H(z) = Y (z )/X(z) yields

1 - z _1H (z) = (7.21)
1 Kz 1

The modulus square of H( z) is then equal to

|H(z)|2 = ( 1 - ^ ) ( 1 - ^  = ^ z  + z " )  (7 .22)
(1 -  Kz 1)(1 -K z ) (1 + K ) - K(z + z 1)

Using the transformation z = e7fflT yields

z + z -1 = 2cos ю T (7.23)

Thus, Eq. (7.22) can now be rewritten as

|H( e mT )|2 = ------2 ( 1 ------ (7.24)
(1 + K2) -  2K cos (ю T)

Note that when K  = 0 , Eq. (7.24) collapses to Eq. (7.10) (single line can­
celer). Fig. 7.9 shows a plot of Eq. (7.24) for K  = 0.25, 0.7, 0.9 . Clearly, by 
changing the gain factor K  one can control the filter response.

In order to avoid oscillation due to the positive feedback, the value of K  
should be less than unity. The value (1 -  K )- is normally equal to the number 
of pulses received from the target. For example, K  = 0.9 corresponds to ten 
pulses, while K  = 0.98 corresponds to about fifty pulses.
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Figure 7.9. Frequency response corresponding to Eq. (7.24). This 
plot can be reproduced using MATLAB program 
“fig7_9.m” given in Listing 7.3 in Section 7.11.

7.6. PRF Staggering
Target velocities that correspond to multiple integers of the PRF are referred 

to as blind speeds. This terminology is used since an MTI filter response is 
equal to zero at these values (see Fig. 7.7). Blind speeds can pose serious limi­
tations on the performance of MTI radars and their ability to perform adequate 
target detection. Using PRF agility by changing the pulse repetition interval 
between consecutive pulses can extend the first blind speed to tolerable values. 
In order to show how PRF staggering can alleviate the problem of blind 
speeds, let us first assume that two radars with distinct PRFs are utilized for 
detection. Since blind speeds are proportional to the PRF, the blind speeds of 
the two radars would be different. However, using two radars to alleviate the 
problem of blind speeds is a very costly option. A more practical solution is to 
use a single radar with two or more different PRFs.

For example, consider a radar system with two interpulse periods T1 and 
T2 , such that
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T1 n1
T  = -  (7-25)
T2 n2

where n1 and n2 are integers. The first true blind speed occurs when

n1 n2— = — (7.26)
T1 T2

This is illustrated in Fig. 7.10 for n1 = 4 and n2 = 5. Note that if 
n2 = n1 + 1, then the process of PRF staggering is similar to that discussed in 
Chapter 3. The ratio

n1ks = - -  (7.27)s n2
is known as the stagger ratio. Using staggering ratios closer to unity pushes the 
first true blind speed farther out. However, the dip in the vicinity of 1 / T1 
becomes deeper, as illustrated in Fig. 7.11 for stagger ratio ks = 63 /64 . In 
general, if there are M PRFs related by

— = — = ... = — (7.28)
T1 T2 Tm

and if the first blind speed to occur for any of the individual PRFs is vblind1, 
then the first true blind speed for the staggered waveform is

nj + n2 + ... + nM
vblind = M vblind1 (7 29)

7.7. MTI Improvement Factor
In this section two quantities that are normally used to define the perfor­

mance of MTI systems are introduced. They are “Clutter Attenuation (CA)” 
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio 
between the MTI filter input clutter power Ci to the output clutter power Co,

CA = Ct / Co (7.30)

The MTI improvement factor is defined as the ratio of the Signal to Clutter 
(SCR) at the output to the SCR at the input,

which can be rewritten as
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Figure 7.10. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, 
bottom plot corresponds to stagger ratio T /T 2 = 4/3. 
This plot can be reproduced using MATLAB program 
“fig7_10.m” given in Listing 7.4 in Section 7.11.
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Figure 7.11. MTI responses, staggering ratio 63/64. This plot can be 

reproduced using MATLAB program “fig7_11.m” given 
in Listing 7.5 in Section 7.11.

So
/ = 1TCA (7.32)

The ratio So/Si is the average power gain of the MTI filter, and it is equal to 
|Я(ю )| . In this section, a closed form expression for the improvement factor 
using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped 
clutter power spectrum is given by

0 5

8
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W(f) = exp (- f  / 2a]) (7.33)
V2 n a t

where P c is the clutter power (constant), and a t is the clutter rms frequency 
(which describes the clutter spectrum spread in the frequency domain). It is 
given by

l~2 2 2 
a t = J a v + a s + a w (7-34)

a v is the standard deviation for the clutter spectrum spread due to wind veloc­
ity; a s is the standard deviation for the clutter spectrum spread due to antenna 
scanning; and a v is the standard deviation for the clutter spectrum spread due 
to the radar platform motion (if applicable). It can be shown that1

av = ^  (7-35)

а х = 0.265 ( ;■- T L - )  (7-36)
a scan

a s и ---sin0 (7.37)к

where к  is the wavelength and a w is the wind rms velocity; ©a is the antenna 
3-db azimuth beamwidth (in radians); Tscan is the antenna scan time; v is the 
platform velocity; and 0 is the azimuth angle (in radians) relative to the direc­
tion of motion.

The clutter power at the input of an MTI filter is
ад

С, = f  —S -—expJ-  df  (7.38)
■> V2n a t % 2a2&

Factoring out the constant Pc yields

C< = Pc J  72= a-exp %-  2 a j d f  (739)J 2 n a t % 2a
-ад

It follows that

ад

1. Berkowtiz, R. S., Modern Radar, Analysis, Evaluation, and System Deign, John 
Wiley & Sons, New York, 1965.

© 2004 by Chapman & Hall/CRC CRC Press LLC



The clutter power at the output of an MTI is

Ci = Pc (7.40)

Co = / W f )  I H(f) 12 df (7.41)

7.7.1. Two-Pulse MTI Case

In this section we will continue the analysis using a single delay line can­
celer. The frequency response for a single delay line canceler is given by Eq. 
(7.6). The single canceler power gain is given in Eq. (7.10), which will be 
repeated here, in terms o f f  rather than ю, as Eq. (7.42),

H  f )  |2 = 4 )  sin % f 2
J г

It follows that

(7.42)

ад

Co = exp( -  2 a - )4 %sin%л df (743)
—ад

Now, since clutter power will only be significant for small f , then the ratio 
f/ fr is very small (i.e., a t « f ). Consequently, by using the small angle 
approximation, Eq. (7.43) is approximated by

co

T f h t exp%-  В4 %.f 2 df
Co -  J - p ^ - e x p l -  4% f i j  df (7.44)

-ад
which can be rewritten as

ад2

C o = f -  f e xp %- U/ d f  (7Л5)—ад ” 1
The integral part in Eq. (7.45) is the second moment of a zero mean Gaussian2 2  distribution with variance a t . Replacing the integral in Eq. (7.45) by a t
yields

2
4P cn2 2

Co = - f -  a t (7.46)

Substituting Eqs. (7.46) and (7.40) into Eq. (7.30) produces

CO

ад
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(7.47)

It follows that the improvement factor for a single canceler is

(7.48)

The power gain ratio for a single canceler is (remember that |Hf)| is periodic 
with period f r )

The expression given in Eq. (7.51) is an approximation valid only for 
a t « f r . When the condition a t « f r is not true, then the autocorrelation func­
tion needs to be used in order to develop an exact expression for the improve­
ment factor.

Example:

A certain radar has f r = 800Hz. I f  the clutter rms is a v = 6.4Hz (wooded 
hills with a w = 1.16311^m / hr), find the improvement factor when a single 
delay line canceler is used.

f r / 2

—f r / 2
2

Using the trigonometric identity (2 — 2cos2S) = 4 (s inS ) yields

f r / 2

(7.50)

- f r / 2
It follows that

(7.51)

Solution:

In this case a t = a v . It follows that the clutter attenuation CA is

and since So/Si = 2 = 3 dB we get

IdB = (CA + So / Si )dB = 3 + 25.97 = 28.974 dB.
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A general expression for the improvement factor for the n-pulse MTI (shown 
for a 2-pulse MTI in Eq. (7.51)) is given by

1 )  f  * 2(n —
I = 1 -------------------- % (7.52)Q (2 (n — 1) — 1)!!%2лст/ 

where the double factorial notation is defined by

(2n — 1)!! = 1 x 3 x 5 x . . . x ( 2 n  — 1) (7.53)

(2n)!! = 2 x 4 x ... x 2n (7.54)

Of course 0!! = 1; Q is defined by

Q2 = --n---1--- (7.55)

7.7.2. The General Case

A i2
z
i =1

2
where A i are the Binomial coefficients for the MTI filter. It follows that Q 
for a 2-pulse, 3-pulse, and 4-pulse MTI are respectively

1 1 1
2’ 20’ 70 1 (7.56)

Using this notation, then the improvement factor for a 3-pulse and 4-pulse 
MTI are respectively given by

4
h  — pul,, = 2 % ̂ 1  P.S7I

I4 — Pul- = I- ( '7-'8)

7.8. “MyRadar” Design Case Study - Visit 7

7.8.1. Problem Statement

The impact o f surface clutter on the “MyRadar” design case study was ana­
lyzed. Assume that the wind rms velocity a w = 0.45m/s . Propose a clutter 
mitigation process utilizing a 2-pulse and a 3-pulse MTI. All other parameters 
are as calculated in the previous chapters.
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7.8.2. A Design

In earlier chapters we determined that the wavelength is X = 0.1m , the PRF 
is f r = 1 KHz, the scan rate is Tscan = 2 s , and the antenna azimuth 3-db 
beamwidth is ©a = 1.3° . It follows that

a v = ^  = 2 X 045 = 9Hz (7.59)
v X 0.1

a s = 0.265%^  T  & = 0.265 x ------2 х -П------ = 36.136Hz (7.60)
^ aT scan 132 x  —  x  2

132 X 180 X 2

Thus, the total clutter rms spectrum spread is

a t = 7 а2 + a  2 = л/81 + 1305.810 = ^1386.810 = 37.24Hz (7.61)

The expected clutter attenuation using a 2-pulse and a 3-pulse MTI are 
respectively given by

h,ul.,e = 2 f  = 2 x )  2 х ,ц” .24;г  = 36.531 ц :-  15.63dB (7-62)

h r ul,e = 2( ^ ) 4 = 2 X % 2 x , 1C” .24& 4 = 667'247|  -  2824dB (7-63)

To demonstrate the effect of a 2-pulse and 3-pulse MTI on “MyRadar” 
design case study, the MATLAB program “myradar_visit7.m” has been devel­
oped. It is given in Listing 7.6 in Section 7.5. This program utilizes the radar 
equation with pulse compression. In this case, the peak power was established 
in Chapter 5 as Pt < 10K W . Figs. 7.12 and 7.13 show the desired SNR and the 
calculated SIR using a 2-pulse and a 3-pulse MTI filter respectively, for the 
missile case. Figs. 7.14 and 7.15 show similar output for the aircraft case.

One may argue, depending on the tracking scheme adopted by the radar, that 
for a tracking radar

a t = a v = 9 Hz (7.64)

since a s = 0 for a radar that employes a monopulse tracking option. In this 
design, we will assume a Kalman filter tracker. For more details the reader is 
advised to visit Chapter 9.
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Figure 7.12. SIR for the missile case using a 2-pulse MTI filter.

Figure 7.13. SIR  for the m issile case using a 3-pulse M TI filter.
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Aircraft case; 21 -frame cumulative detection
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Figure 7.14. SIR for the aircraft case using a 2-pulse MTI filter.

Aircraft case; 21 -frame cumulative detection
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Figure 7.15. SIR  for the a ircraft case using a 3-pulse M TI filter.
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As clearly indicated by the previous four figures, a 3-pulse MTI filter would 
provide adequate clutter rejection for both target types. However, i f  we assume 
that targets are detected at maximum range (90 Km for aircraft and 55 Km for 
missile) and then are tracked for the rest o f the flight, then 2-pulse MTI may be 
adequate. This is true since the SNR would be expected to be larger during 
track than it is during detection, especially when pulse compression is used. 
Nonetheless, in this design a 3-pulse MTI filter is adopted.

7.9. MATLAB Program and Function Listings
This section contains listings o f all MATLAB programs and functions used 

in this chapter. Users are encouraged to rerun this code with different inputs in 
order to enhance their understanding of the theory.

Listing 7.1. MATLAB Function “single_canceler.m”
function [resp] = singlecanceler (fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .*fofr;
resp = 4.0 .*((sin(argi))A2);
maxi = max(resp);
resp = resp ./maxi;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel (’Normalized frequency - f/fr') 
ylabel( ’Amplitude response - Volts’) 
grid
subplot(2,1,2)
resp=10. *log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel (’Normalized frequency - f/fr’) 
ylabel( ’Amplitude response - dB’)

Listing 7.2. MATLAB Function “double canceler.m”
function [resp] = double_cancelerfofri) 
eps = 0.00001; 
fofr = 0:0.01:fofri; 
argi = pi .* fofr;
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resp = 4.0 .* ((sin(arg1)).A2); 
maxi = max(resp); 
resp = resp ./maxi; 
resp2 = resp . * resp; 
subplot(2,1,1);
plotfofr,resp,’k--’,fofr, resp2,'k'); 
ylabel (’Amplitude response - Volts’) 
resp2 = 20. .* log10(resp2+eps); 
respi = 20. .* log10(resp+eps); 
subplot(2,1,2)
plotfof,resp1,'k--',fofr,resp2,'k'); 
legend (’single canceler','double canceler’) 
xlabel (’Normalized frequency f/fr’) 
ylabel (’Amplitude response - dB’)

Listing 7.3. MATLAB Program “fig7_9.m”
clear all
fofr = 0:0.001:1; 
arg = 2.*pi.*fofr; 
nume = 2. *(1.-cos(arg)); 
den11 = (1. + 0.25 * 0.25); 
den12 = (2. * 0.25) .* cos(arg); 
den1 = den11 - den12; 
den21 = 1.0 + 0.7 * 0.7; 
den22 = (2. * 0.7) .* cos(arg); 
den2 = den21 - den22; 
den31 = (1.0 + 0.9 * 0.9); 
den32 = ((2. * 0.9) .* cos(arg)); 
den3 = den31 - den32; 
resp1 = nume ./ den1; 
resp2 = nume ./ den2; 
resp3 = nume ./ den3;
plotfofr,resp1,’k’,fofr,resp2, ’k-.’,fofr,resp3,’k--’); 
xlabel(’Normalized frequency) 
ylabel(’Amplitude response') 
legend(’K=0.25’, ’K=0.7’, ’K=0.9’) 
grid
axis tight

Listing 7.4. MATLAB Program “fig7_10.m”
clear all
fofr = 0:0.001:1;

© 2004 by Chapman & Hall/CRC CRC Press LLC



f i  = 4.0 .* fofr;
f2  = 5.0 .* fofr;
argi = pi .* f i ;
arg2 = pi .* f2 ;
respi = abs(sin(argi));
resp2 = abs(sin(arg2));
resp = respi+resp2;
maxi = max(resp);
resp = resp./maxi;
plot(fofr,respi,fofr,resp2,fofr,resp);
xlabel('Normalized frequency f/fr')
ylabel('Filter response')

Listing 7.5. MATLAB Program “fig7_11.m”
clear all
fofr = 0.0i:0.00i:32; 
a = 63.0 / 64.0;
termi = (i. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr))A2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr))A2;
resp = 0.25 .* sqrt(termi + term2);
resp = i0. .* log(resp);
plot(fofr,resp);
axis([0 32 -40 0]);
grid

Listing 7.6. MATLAB Program “myradar_visit7.m”
clear all 
close all
clutterattenuation = 28.24;
thetaA= i.33; % antenna azimuth beamwidth in degrees
thetaE = i i ;  % antenna elevation beamwidth in degrees
hr = 5.; % radar height to center o f antenna (phase reference) in meters
htm = 2000.; % target (missile) height in meters
hta = i0000.; % target (aircraft) height in meters
SL = -20; % radar rms sidelobes in dB
sigma0 = -i5 ; % clutter backscatter coefficient in dB
b = i.0e6; %i-MHz bandwidth
t0 = 290; % noise temperature 290 degrees Kelvin
f0  = 3e9; % 3 GHz center frequency
pt = ii4 .6 ; % radar peak power in KW
f  = 6; % 6 dB noise figure
l = 8; % 8 dB radar losses
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range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points 
% calculate the clutter RCS and the associated CNR fo r both targets 
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, hta, pt, 
f0, b, t0, f  l,2);
[sigmaCm,CNRm] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, htm, pt, 
f0, b, t0, f  l,2); 
close all
%%%%%%%%%%%%%%%%%%%%%%%%
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor 
Im = improvfac(np,pfa, pdm);
Ia = improvfac(np, pfa, pda);
% caculate the integration loss 
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
pt = pt * 1000; % peak power in watts
range m = 1000 .* range; % range in meters
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
n f = f ;  %noise figure in dB
loss = l; % radar losses in dB
losstm = loss + Lm; % total loss fo r missile
lossta = loss + La; % total loss fo r aircraft
% modify pt by np*pt to account fo r pulse integration
SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range m);
SNRa = radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range m); 
snrm = 10.A(SNRm./10); 
snra = 10.A(SNRa./10);
CNRm = CNRm - clutter attenuation;
CNRa = CNRa - clutter attenuation; 
cnrm = 10.A(CNRm./10); 
cnra = 10.A(CNRa./10);
SIRm = 10*log10(snrm ./ (1+cnrm));
SIRa = 10*log10(snra ./ (1+cnra)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(3)
plot(range, SNRm, 'k', range, CNRm,'k:', range,SIRm, 'k -.') 
grid
legend('DesiredSNR; from Chapter 5 ','CNR','SIR with 3-pulse','MTI filter') 
xlabel(’SlantRange in Km’)
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ylabel(’dB’)
title('Missile case; 2i-frame cumulative detection’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(4)
plot(range, SNRa,'k', range, CNRa,'k:', range,SIRa, 'k -.') 
grid
legend('DesiredSNR; from Chapter 5 ','CNR','SIR with 3-pulse','MTI filter')
xlabel('SlantRange in Km’)
ylabel('dB')
title(Aircraft case; 2i-frame cumulative detection’)
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Chapter 8 Phased Arrays

8.1. Directivity, Power Gain, and Effective Aperture
Radar antennas can be characterized by the directive gain GD, power gain 

G , and effective aperture A e . Antenna gain is a term used to describe the abil­
ity of an antenna to concentrate the transmitted energy in a certain direction. 
Directive gain, or simply directivity, is more representative of the antenna radi­
ation pattern, while power gain is normally used in the radar equation. Plots of 
the power gain and directivity, when normalized to unity, are called antenna 
radiation pattern. The directivity of a transmitting antenna can be defined by

G _ maximum radiation intensity (8 1)
D average radiation intensity

The radiation intensity is the power per unit solid angle in the direction 
(9, ф) and denoted by P (9, ф). The average radiation intensity over 4n radi­
ans (solid angle) is the total power divided by 4n . Hence, Eq. (8.1) can be 
written as

G _ 4n(maximum radiated power/unit solid angle)

It follows that

total radiated power
(8.2)

G 4 P ( 9 . ф ) m ax
Gd _ 4п 2-ПП----------------- (83)

J  J P (9, ф)d9dф

0 0

As an approximation, it is customary to rewrite Eq. (8.3) as

319
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G 4л
D “ бзФз

(8.4)

where 9 3 and ф3 are the antenna half-power (3-dB) beamwidths in either 
direction.

The antenna power gain and its directivity are related by

G = prGD (8.5)

where pr is the radiation efficiency factor. In this book, the antenna power 
gain will be denoted as gain. The radiation efficiency factor accounts for the 
ohmic losses associated with the antenna. Therefore, the definition for the 
antenna gain is also given in Eq. (8.1). The antenna effective aperture A e is 
related to gain by

Ae = (8.6)4n

where X is the wavelength. The relationship between the antenna’s effective 
aperture A e and the physical aperture A is

Ae = pA (8.7)
0 < p < 1

p is referred to as the aperture efficiency, and good antennas require p — 1 

(in this book p = 1 is always assumed, i.e., Ae = A ).

Using simple algebraic manipulations o f Eqs. (8.4) through (8.6) (assuming 
that pr = 1 ) yields

4 nAe 4n
G = — T  * (8.8)X 9 3ф3

Consequently, the angular cross section o f the beam is

X2
9 3ф3 *  A  (8-®)

Eq. (8.9) indicates that the antenna beamwidth decreases as „jAe increases. It 
follows that, in surveillance operations, the number o f beam positions an 
antenna will take on to cover a volume V is

NBeams > 9-ф  <8.10>
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and when V represents the entire hemisphere, Eq. (8.10) is modified to

2 П *  2 nAe G
93ф3 X2

NBeams > 9  ф *  2 ~ 2 (8-11)

8.2. Near and Far Fields
The electric field intensity generated from the energy emitted by an antenna 

is a function of the antenna physical aperture shape and the electric current 
amplitude and phase distribution across the aperture. Plots of the modulus of 
the electric field intensity of the emitted radiation, |E(9, ф)|, are referred to as 
the intensity pattern of the antenna. Alternatively, plots of |E (9, ф)| are called 
the power radiation pattern (the same as P (9, ф)).

Based on the distance from the face of the antenna, where the radiated elec­
tric field is measured, three distinct regions are identified. They are the near 
field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel 
regions, rays emitted from the antenna have spherical wavefronts (equi-phase 
fronts). In the Fraunhofer regions the wavefronts can be locally represented by 
plane waves. The near field and the Fresnel regions are normally of little inter­
est to most radar applications. Most radar systems operate in the Fraunhofer 
region, which is also known as the far field region. In the far field region, the 
electric field intensity can be computed from the aperture Fourier transform.

Construction of the far criterion can be developed with the help of Fig. 8.1. 
Consider a radiating source at point O that emits spherical waves. A receiving 
antenna of length d is at distance r  away from the source. The phase differ­
ence between a spherical wave and a local plane wave at the receiving antenna 
can be expressed in terms of the distance 5 r . The distance 5r is given by

5r _ AO -  OB _ ^ r2 + -  r (8.12)

and since in the far field r  » d , Eq. (8.12) is approximated via binomial expan­
sion by

d 32 Л d2
5r _ r 1.11 + 02Я) -  Гг (8-13)

It is customary to assume far field when the distance 5r  corresponds to less 
than 1 / 16 of a wavelength (i.e., 22.5°). More precisely, if

5 r  _  d / 8 r  < X / 16 (8.14)
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then a useful expression for far field is

2
r > 2d  /X (8.15)

Note that far field is a function o f both the antenna size and the operating 
wavelength.

8.3. General Arrays
An array is a composite antenna formed from two or more basic radiators. 

Each radiator is denoted as an element. The elements forming an array could 
be dipoles, dish reflectors, slots in a wave guide, or any other type o f radiator. 
Array antennas synthesize narrow directive beams that may be steered, 
mechanically or electronically, in many directions. Electronic steering is 
achieved by controlling the phase o f the current feeding the array elements. 
Arrays with electronic beam steering capability are called phased arrays. 
Phased array antennas, when compared to other simple antennas such as dish 
reflectors, are costly and complicated to design. However, the inherent flexibil­
ity o f phased array antennas to steer the beam electronically and also the need 
for specialized multi-function radar systems have made phased array antennas 
attractive for radar applications.
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Figure 8.2 Geometry for an array antenna.
Single element

Fig. 8.2 shows the geometrical fundamentals associated with this problem. 
In general, consider the radiation source located at (x1, y 1, z1) with respect to a 
phase reference at (0, 0, 0 ). The electric field measured at far field point P is

-jkRi
E(0, ф) = Io

R 1-f(0 , Ф) (8.16)

where I0 is the complex amplitude, к = 2n/X is the wave number, and 
f ( 0 , ф) is the radiation pattern.

Now, consider the case where the radiation source is an array made of many 
elements, as shown in Fig. 8.3. The coordinates of each radiator with respect to 
the phase reference is (xi, y ,  zt) ,  and the vector from the origin to the ith ele­
ment is given by

r i = axxi + ayy, + azz,

The far field components that constitute the total electric field are

-jkRi
E, (0, ф) = I, — f(0i, Фг)

where

Ri= IRI = ir -  r

= ^ J1+ (x 2 +'y2 + z2)7 rr —2(xx~+'yy~+zzi)7r2

(8.17)

(8.18)

(8.19)

Using spherical coordinates, where x = r  sin 0 cos ф, y  = r  sin 0 sin ф, and 
z = r  cos 0 yields
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Figure 8.3 Geometry for an array antenna.

/ 2 2 24 |> I(xi + yi + i i ) \Га л 
—— —----- — _ « 1 (8.20)

r2 r 2

Thus, a good approximation (using binomial expansion) for Eq. (8.19) is

Ri _ r- r(x isin9 cosф + y isin9sinф + zfcos9) (8.21)

It follows that the phase contribution at the far field point from the ith radiator 
with respect to the phase reference is

-jkR: - ikr jk(xi sin9 cosф + yt sin9 sinф + zt cos9)
e _ e e (8.22)

Remember, however, that the unit vector Го along the vector Г is

» r - - -r 0 _ — _ axsin9 cosф + ay sin9 sinф + azcos9 (8.23)
|r|

Hence, we can rewrite Eq. (8.22) as

-jkRi -jkr jk(ri • Го)  -]kr Ф)e _ e e _ e e (8.24)

Finally, by virtue o f superposition, the total electric field is

N

E(9, ф) _ £ Ie  (8.25)

i _ 1
which is known as the array factor for an array antenna where the complex cur­
rent for the ith element is Ii .
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In general, an array can be fully characterized by its array factor. This is true 
since knowing the array factor provides the designer with knowledge o f the 
array’s (1) 3-dB beamwidth; (2) null-to-null beamwidth; (3) distance from the 
main peak to the first sidelobe; (4) height o f the first sidelobe as compared to 
the main beam; (5) location of the nulls; (6) rate o f decrease of the sidelobes; 
and (7) grating lobes’ locations.

8.4. Linear Arrays
Fig. 8.4 shows a linear array antenna consisting of N identical elements. The 

element spacing is d (normally measured in wavelength units). Let element #1 
serve as a phase reference for the array. From the geometry, it is clear that an 
outgoing wave at the nth element leads the phase at the (n + 1 )th element by 
kd sin y , where к = 2 л / Х . The combined phase at the far field observation 
point P is independent o f ф and is computed from Eq. (8.24) as

T (y , ф) = к(r i • r o) = (n -  1 )kdsiny (8.26)

Thus, from Eq. (8.25), the electric field at a far field observation point with 
direction-sine equal to s in y  (assuming isotropic elements) is

N

E( siny) = £  j n -1)(kdsiny) (8.27)

n = 1

Expanding the summation in Eq. (8.27) yields

E( sin y )  = 1 + e kd sin y + ... + e (N - 1)( kdsin y) (8.28)

The right-hand side of Eq. (8.29) is a geometric series, which can be expressed 
in the form

1 + a + a2 + a3 + ... + â N 1) = 1— — (8.29)
1 -  a

kd sin yReplacing a by e  siny yields

E( sin ) = 1 -  e,Nkdsmy = 1 -  (cosN kdsiny) -  /(sinM-fi-siny)
1 _ e'kdsiny 1 -  ( cos kdsin y )  -  j  ( sin kd sin y )

The far field array intensity pattern is then given by 

|E( sin y)| = JE (  sin y ) E* ( sin y )

(8.30)

(8.31)
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Figure 8.4. Linear array of equally spaced elements. 

Substituting Eq. (8.30) into Eq. (8.31) and collecting terms yield

I 2 2
|E( siny)| _ /( 1 -  cosN kdsiny) + ( sinNkdsiny)

\ (1 -  coskds in y )2 + ( sinkdsiny)2
_ /1 -  cosNkdsiny 

V 1 -  cos kd s iny
2

and using the trigonometric identity 1 -  cos 9 _ 2 ( sin9/2) yields

|E( siny)| _ sin(N kdsiny/2)
sin (kd sin y / 2)

which is a periodic function of kd sin y , with a period equal to 2n .

(8.32)

(8.33)

The maximum value of |E( siny)| , which occurs at y  _ 0 , is equal to N . It 
follows that the normalized intensity pattern is equal to

iEn( sin y ^  _ NN
sin ( (Nkd s in y ) / 2 -
sin ((kdsin y ) / 2)

(8.34)

The normalized two-way array pattern (radiation pattern) is given by
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G< Si„ у )  = |£,(  s,„y)|2 = N- 0 = (8.35)

Fig. 8.5 shows a plot o f Eq. (8.35) versus sin9 for N = 8 . The radiation 
pattern G < sin y )  has cylindrical symmetry about its axis < sin у  = 0 ) , and is 
independent of the azimuth angle. Thus, it is completely determined by its val­
ues within the interval <0 < у  < n ) . This plot can be reproduced using MAT­
LAB program “fig8_5.m” given in Listing 8.1 in Section 8 .8 .

The main beam of an array can be steered electronically by varying the 
phase o f the current applied to each array element. Steering the main beam into 
the direction-sine sin y 0 is accomplished by making the phase difference 
between any two adjacent elements equal to kd sin y 0 . In this case, the normal­
ized radiation pattern can be written as

G< sin y )  = —
1 2 sin [<Nkd/ 2 )< sin у  -  sin y 0)]

N2 0 sin [< kd / 2 )( sin у  -  sin y 0)]
(8.36)

If y 0 = 0 then the main beam is perpendicular to the array axis, and the array 
is said to be a broadside array. Alternatively, the array is called an endfire array 
when the main beam points along the array axis.

The radiation pattern maxima are computed using L’Hopital’s rule when 
both the denominator and numerator o f Eq. (8.35) are zeros. More precisely,

kdsiny----------- = ±mn
2

m = 0, 1 , 2 , (8.37)

E 0.6 о

\

1

-

I v Vi V iv V 1 1 V Vi V iV V J
-0.8 -0.6 -0.4

s i n e  a n g l e  -  d i m e n s i o n l e s s  

Figure 8.5a. Normalized radiation pattern for a linear array; N = 8 ; d = X .
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Figure 8.5b. Polar plot for the array pattern in Fig. 8.5a.

Figure 8.5c. P o lar plot for the power pattern in Fig. 8.5a.
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Electric Far Field (E-Total) fdBl

Figure 8.5d. Three-dimensional plot for the radiation pattern in Fig. 8.5a.

Solving for у  yields

f  X
у m = asin2±— J ; m = 0, 1  2’ ■■■ (8 38)

where the subscript m is used as a maxima indicator. The first maximum 
occurs at y 0 = 0 ,  and is denoted as the main beam (lobe). Other maxima 
occurring at \m\ > 1 are called grating lobes. Grating lobes are undesirable and 
must be suppressed. The grating lobes occur at non-real angles when the abso­
lute value o f the arc-sine argument in Eq. (8.38) is greater than unity; it follows 
that d < X . Under this condition, the main lobe is assumed to be at у  = 0 
(broadside array). Alternatively, when electronic beam steering is considered, 
the grating lobes occur at

XnI sin у  -  sin y 0| = ±—  ; n = 1, 2 , . . .  (8.39)

Thus, in order to prevent the grating lobes from occurring between ±90 ° , the 
element spacing should be d < X/2 .

The radiation pattern attains secondary maxima (sidelobes) when the numer­
ator o f Eq. (8.35) is maximum, or equivalently
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у1 = asin0 ± ; l  = 1> 2> .  (8.41)

where the subscript i  is used as an indication of sidelobe maxima. The nulls of 
the radiation pattern occur when only the numerator of Eq. (8.36) is zero. More 
precisely,

N  n = 1, 2, ...
—kdsin у  = ±nn ; (8.42)
2 n Ф N, 2N, ...

Again solving for у  yields

• 2±Xn3 n = 1 2>.  . . .у п = asin ± - -  ; (8.43)
n 0 dNJ n ФN, 2 N , ...

where the subscript n is used as a null indicator. Define the angle which corre­
sponds to the half power point as у й. It follows that the half power (3 dB) 
beamwidth is 2 |уда -  у й|. Th is occurs when

N kdsinу й = 1.391 ra d ia ns ^  у й = asin( (8.44)
2 02nd N  1

Ж Ы ш 1 у  =  ± ( 2 1 +  1 )ZE . i  =  1, 2 , .  (8.40)

S o lv in g  fo r  у  y ie ld s

8.4.1. Array Tapering
Fig. 8.6a shows a normalized two-way radiation pattern of a uniformly 

excited linear array of size N  = 8 , element spacing d = X / 2 . The first side- 
lobe is about 13.46 dB below the main lobe, and for most radar applications 
this may not be sufficient. Fig. 8.6b shows the 3-D plot for the radiation pattern 
shown in Fig. 8.6.a.

In order to reduce the sidelobe levels, the array must be designed to radiate 
more power towards the center, and much less at the edges. Th is can be 
achieved through tapering (windowing) the current distribution over the face 
of the array. There are many possible tapering sequences that can be used for 
this purpose. However, as known from spectral analysis, windowing reduces 
sidelobe levels at the expense of widening the main beam. Thus, for a given 
radar application, the choice of the tapering sequence must be based on the 
trade-off between sidelobe reduction and main beam widening. The M A TLA B  
signal processing toolbox provides users with a wide variety of built-in win­
dows. Th is list includes: “Bartlett, Barthannwin, Blackmanharrls, Bohman- 
wln, Chebwln, Gausswln, Hamming, Hann, Kaiser, Nuttallwln, Rectwln, 
Trlang, and Tukeywln.”
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sine angle - dimensionless 

Figure 8.6a. Normalized pattern for a linear array. N  = 8 , d = X /2 .

50

45

Figure 8.6b. Three-dimensional plot for the radiation pattern in Fig. 8.6a.
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Table 8.1 summarizes the impact of most common windows on the array pat­
tern in terms of main beam widening and peak reduction. Note that the rectan­
gular window is used as the baseline. Th is is also illustrated in Fig. 8.7.

TABLE 8.1. Common windows.

Window Null-to-null Beamwidth Peak Reduction
Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser (P = 6 ) 2.76 0.683

Kaiser (P = 3 ) 1.75 0.882

x

Figure 8.7. Most common windows. This figure can be reproduced using 
M A TLA B program “fig8_7.m” given in Listing 8.2 in Section 8.8.
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Fig. 8.8 shows a linear array of size N , element spacing d , and wavelength 
X . The radiators are circular dishes of diameter d . Let w (n ) and Ф (n ), 
respectively, denote the tapering and phase shifting sequences. The normalized 
electric field at a far field point in the direction-sine sin у  is

l 1 4 n - ( V ) )
E (  sin у ) = V  w (n ) e (8.45)

8.4.2. Computation o f the Radiation Pattern via the DFT

where in this case the phase reference is taken as the physical center of the 
array, and

Дф = ^^-sin  у  (8.46)
X

Expanding Eq. (8.45) and factoring the common phase term 
exp [ j  (N  -  1 )Дф/2 ] yield

E  ( sin у ) = e (N-1 )Дф/2{ w( 0 )e -(N - 1 )Дф + w( 1) e-'(N - 2)Дф (8.47)
+ ... + w (N  -  1)}

By using the symmetry property of a window sequence (remember that a win­
dow must be symmetrical about its central point), we can rewrite Eq. (8.47) as

E  ( sin у ) = ej фо{ w (N  -  1) ej N  -  1)Дф + w (N  -  2) e-(N  -  2)Дф (8.48)
+ ... + w (0 )}

n =  0

d
F ig u re  8.8. L in e a r a rra y o f size 5, w ith  tapering and phase sh iftin g  hardware.
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where ф0 = (N -  1 )Дф/2 .

Define { V\ = exp <- j ДФп ) ;n = 0, 1, ... , N  -  1 } . It follows that

E< siny) = e^°[ w< 0) + w< 1) v\ + ... + w <N -  1) V f  1 ] (8.49)

N  -  1

A= e

n =  0

The discrete Fourier transform of the sequence w < n) is defined as

N  -  1 <j2nnq)

W(q) = ^  w < n ) e N ; q = 0, 1, , N  -  1 (8.50)

n = 0

The set { s in y q} which makes V1 equal to the D F T  kernel is

sin yq = Nd ; q = 0, 1, , N  -  1 (8.51)

Then by using Eq. (8.51) in Eq. (8.50) yields

E (  siny) = e 0W<q) (8.52)

The one-way array pattern is computed as the modulus of Eq. (8.52). It follows 
that the one-way radiation pattern of a tapered linear array of circular dishes is

G<siny) = Ge \W<q)| (8.53)

where Ge is the element pattern.

In practice, phase shifters are normally implemented as part of the Transmit/ 
Receive (TR ) modules, using a finite number of bits. Consequently, due to the 
quantization error (difference between desired phase and actual quantized 
phase) the sidelobe levels are affected.

M A T L A B  Function “linear_array.m”

The function “linea ra rra y.m ” computes and plots the linear array gain pat­
tern as a function of real sine-space (sine the steering angle). It is given in L is t­
ing 8.3 in Section 8.8. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, theta0, winid, win, nbits)
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where

Symbol Description Units Status

N r number of elements in array none input

dolr element spacing in lambda units wavelengths input

theta0 steering angle degrees input

winid -1: No weighting is used 

1: Use weighting defined in win

none input

win window fo r sidelobe control none input

nbits negative #: perfect quantization

. . и n b lt s  , ,positive #: use 2 quantization levels

none input

theta real angle available fo r steering degrees output

patternr array pattern dB output

patterng gain pattern dB output

A M A TLA B  based GUI workspace called “llnear_array_gul.m”1 was 
developed for this function. It shown in Fig. 8.9.

Initialize 1  Plot

Number of 
elements

25

Element spacing 
in lambda units

0.5
[n

Steering angle 
in degrees

0.0

Window choice

nbits -3
neg ==> no

Quantization

Figure 8.9. M A TLA B G UI workspace associated with the function 
“linear_array. m”.

1. The MATLAB “Signal Processing” Toolbox is required to execute this program.
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Figs. 8.10 through 8. 18 respectively show plots of the array gain pattern ver­
sus steering angle fo r the following cases:

[theta, patternr, patterng] = linear_array(25, 0.5, 0, -1, -1, -3);

[theta, patternr, patterng] = linear_array(25, 0.5, 0, 1, ‘Hamming’, -3);

[theta, patternr, patterng] = linear_array(25, 0.5, 5, -1, -1, 3);

[theta, patternr, patterng] = linear_array(25, 0.5, 5, 1, ‘Hamming’, 3);

[theta, patternr, patterng] = linear_array(25, 0.5, 25, 1, ‘Hamming’, 3);

[theta, patternr, patterng] = linear_array(25, 1.5, 40, -1, -1, -3);

[theta, patternr, patterng] = linear_array(25, 1.5, 40, 1, ‘Hamming’, -3);

[theta, patternr, patterng] = linear_array(25, 1.5, -40, -1, -1, 3);

[theta, patternr, patterng] = linear_array(25, 1.5, -40, 1, ‘Hamming’, 3);

Users are advised to utilize  the G U I developed fo r th is function and test a 
few cases of their own.

-80 -eo ^10 -20 0  20 40 60 80 
Steering angle - degrees

F ig u re  8.10. A rra y  gain pattern: N r  =  2 5 ; d o lr  =  0 .5 ; 9 0 =  0 °  ;

w in  =  n o n e ; n b it s  =  - 3 .
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-00 -60 -40 -20 0 20 40 60 80 
Steering angle - degrees

Figure 8.11. Array gain pattern: N r = 25; d o lr = 0.5; 90 = 0 ° ;
w in = Ham m ing; n b its = -3

-80 -60 -40 -20 0 20 40 60 80 
Steering angle - degrees

F ig u re  8.12. A rra y  gain pattern: N r  =  2 5 ; d o lr  =  0 .5 ; 9 0 =  5 °  ;

w in  =  n o n e ; n b it s  =  3
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Т-------------- 1-------------- 1-------------- 1-------------- Г 7 \ ---------1-------------- г

-80 -60 -40 -20 0 20 40 60 BO 
S teerin g  a n g le  - d e g r e e s

Figure 8.13. Array gain pattern: N r = 25; d o lr = 0.5; 90 = 5° ;
w in = Ham m ing; n b its = 3

-80 -60 -40 -20 0 20 40 60 80 
Steering angle - degrees

F ig u re  8.14. A rra y  gain pattern: N r  =  2 5 ; d o lr  =  0 .5 ; 9 0 =  2 5 ° ;

w in  =  H a m m in g ; n b it s  =  3
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f

J________ i________ i i________ i________ L
-80 -60 -40 -20 0 20 40 00 SO 

Steering angle - degrees

Figure 8.15. Array gain pattern: N r = 25; d o lr = 1.5; 90 = 40° ;
w in = none; n b its = -3

■80 -60 -40 -20 0 20 40 00 80 
Steering angle - degrees

F ig u re  8.16. A rra y  gain pattern: N r  =  2 5 ; d o lr  =  1 .5 ; 9 0 =  4 0 ° ;

w in  =  H a m m in g ; n b it s  =  - 3
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Steering angle - degrees

8.17. Array gain pattern: N r = 25; d o lr = 1.5; 90 = -4 0 ° ;
win = none; n b its = 3

Steering angle - degrees

F ig u re  8.18. A rra y  gain pattern: N r  =  2 5 ; d o lr  =  1 .5 ; 9 0 =  - 4 0 °  ;

w in  =  H a m m in g ; n b it s  =  3
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8.5. Planar Arrays
Planar arrays are a natural extension of linear arrays. Planar arrays can take 

on many configurations, depending on the element spacing and distribution 
defined by a “grid.” Examples include rectangular, rectangular with circular 
boundary, hexagonal with circular boundary, circular, and concentric circular 
grids, as illustrated in Fig. 8.19.

Planar arrays can be steered in elevation and azimuth ((9, ф), as illustrated 
in Fig. 8.20 f or a rectangular grid array. The element spacing along the x- and 
y-directions are respectively denoted by dx and dy . The total electric field at a 
far field observation point for any planar array can be computed using Eqs.
(8.24) and (8.25).

• •

• •

• •

• •

(e)

Figure 8.19. Planar array grids. (a) Rectangular; (b) Rectangular with circular 
boundary; (c) Circular; (d) Concentric circular; and (e) Hexagonal.
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Rectangular Grid Arrays

 ̂Consider the N  x M  rectangular grid as shown in  Fig . 8.20. The dot product 
Г  • r 0 , where the vector r i is  the vector to the ith  element in  the array and r 0 
is  the unit vector to the far field observation point, can be broken linearly into 
its x- and ̂ -components. It  follows that the electric field components due to the 
elements distributed along the x- and y-directions are respectively, given by

E. :(9 ,Ф) = Z V
j ( n -  1)kdx s in 9 cos ф

n =1

N

E I ,  e
j ( m -  1 ) k d , sin9 s in ф

m =1

(8.54)

(8.55)

The total electric field at the far field observation point is  then given by 

E(9 , ф) = Ex(9, ф)Ey(9, ф) = (8.56)

2 n

Z

N

I ,  e
j ( m  -  1)k d ,s in 9 s in ф

'N

Z Ix  e
j (  n -  1)kdx s in 9 cos ф

N
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Eq. (8.56) can be expressed in terms of the directional cosines

u = sin 9 cos ф 

v = sin 9 sin ф

9 = asin л/i 

The visible region is then defined by

2 2  
u + v

u2 + v2 < 1

(8.57a)

(8.57b)

(8.58)

It is very common to express a planar array’s ability to steer the beam in 
space in terms of the U, V  space instead of the angles 9, ф . Fig. 8.21 shows 
how a beam steered in a certain 9, ф direction is translated into U, V  space.
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The rectangular array one-way intensity pattern is  then equal to the product 
of the individual patterns. More precisely fo r a uniform excitation
(I y = I x = c onst),

y m n

E (9 , ф) = sin((N kdxs in 9 o ^ )/ 2 - sin ( (Nkdy sin  9 s i^  ) / 2  -
sin  ((kdx sin  9 cos ф)/2) sin  ((kdy sin  9 sin  ф)/2)

(8.59)

The radiation pattern maxima, nulls, sidelobes, and grating lobes in  both the 
x- and y-axes are computed in  a sim ila r fashion to the linear array case. Addi­
tionally, the same conditions fo r grating lobe control are applicable. Note the 
symmetry is  about the angle ф .

Circular Grid Arrays

The geometry of interest is  shown in  Fig . 8.19c. In  this case, N  elements are 
distributed equally on the outer circle whose radius is  a . Fo r this purpose con­
sider the geometry shown in  Fig. 8.22. From the geometry

2n
Фп = N  n ; n = 1,2, N  (8.60)

The coordinates of the nth element are

x n = a cos Ф п

Уп = a sin  Фп (8.61)

Zn = 0

It follows that

k(Гп • Г0) = T n = k (a s in 9 cos ф cos Ф п + a sin 9 s i^  s in Ф п + 0 ) (8.62)

which can be rearranged as

T n = ak sin  9( cos ф cos Ф п + sin  ф sin  Ф п ) (8.63)

Then by using the identity cos (A -  B ) = cosA cosB  + sinA s in B , Eq.(8.63) 
collapses to

T n = aksin9 cos (Фп-ф) (8.64)

Fina lly by using Eq. (8.25), the far field electric field is  then given by

N

E (9 , ф^) = Z  In  exp у  ^ ^ s in  9 cos (Фп -  ф) N (8.65)

n =1
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where I n represents the complex current distribution for the nth element. 
When the array main beam is directed in the (90, ф0), Eq. (8.65) takes on the 
following form

Z - i
n = 1

£(9, ф ;a) = V  In  exp Mj [ sin9 cos (Фп -  ф) -  sin9oCos (Фп -  фо )U(8.66)

N

M A T L A B  program “circular_array.m”

The M A TLA B  program “circular array.m” calculates and plots the rectan­
gular and polar array patterns for a circular array versus 9 and ф constant 
planes. It is given in Listing 8.4 in Section 8.8. The input parameters to this 
program include:

Symbol Description Units
a Circular array radius X

N number of elements none

thetaO main direction in 9 degrees

phiO main direction in ф degrees

Variations ‘Theta’; or ‘P h i’ none
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Symbol Description Units

phid constant ф plane degrees

thetad constant 0 plane degrees

Consider the case when the inputs are:

a 1.5

N 10 dipole antennas

thetaO °54м00
phiO ф О м 6 О о

Variations ‘Theta’

phid °06мdф

thetad °54мd0

F ig .s 8.23 and 8.24 respectively show the array pattern in  relative amplitude 
and the power pattern versus the angle 0 . Fig s. 8.25 and 8.26 are sim ila r to 
Figs. 8.23 and 8.24 except in  th is case the patterns are plotted in  polar coordi­
nates.

Fig . 8.27 shows a plot of the normalized single element pattern (upper left 
corner), the normalized array factor (upper right corner), and the total array 
pattern (lower left corner). Fig . 8.28 shows the 3-D pattern fo r this example in  
the 0, ф space.

Figs. 8.29 through 8.33 are sim ila r to those in  Figs. 8.23 through 8.27, 
except in  th is case the input parameters are given by:

a 1.5

N 1O dipole antennas

thetaO °54м00

phiO ф О м 6 О о

Variations ‘P h i’

phid °06мdф

thetad °54мd0
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Figure 8.23. Array factor pattern for a circular array, using the parameters 
defined in the table on top of page 346 (rectangular coordinates).

phi = 90° plane

.QQ ___________I___________I___________I___________I___________ I___________I___________ I___________I___________
0 20 40 60 00 100 120 140 1 60 1 00 

Theta [Degrees]

F ig u re  8.24. Same as F ig . 8.23 using d B scale.
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F ig u re  8.26. Same as F ig . 8.25 using d B scale.
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Figure 8.27. Element, array factor, and total pattern for the circular array 
defined in the table on top of page 346.

Figure 8.28. 3-D total array pattern (in 9, ф space) for the circular array 
defined in the table on top of page 346.
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Theta = 90? plane

0 50 100 1 50 200 250 300 350
Phi [Degrees]

Figure 8.29. Array factor pattern for a circular array, using the parameters 
defined in the table on bottom of page 346 (rectangular coordinates).

T heta=  90P plane

0 50 100 1 50 200 250 300 350
Phi [Degrees]

F ig u re  8.30. Same as F ig . 8.29 using d B scale.
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Total normalized E field [dB]

Figure 8.33. Element, array factor, and total pattern for the circular array 
defined in the table on bottom of page 346.

Concentric Grid Circular Arrays

The geometry of interest is shown in Fig. 8.19d and Fig. 8.34. In this case, 
N 2 elements are distributed equally on the outer circle whose radius is a2, 
while other N 1 elements are linearly distributed on the inner circle whose 
radius is a1 . The element located on the center of both circles is used as the 
phase reference. In this configuration, there are N 1 + N2 + 1 total elements in 
the array.

The array pattern is derived in two steps. First, the array pattern correspond­
ing to the linearly distributed concentric circular arrays with N 1 and N 2 ele­
ments and the center element are computed separately. Second, the overall 
array pattern corresponding to the two concentric arrays and the center element 
are added. The element pattern of the identical antenna elements are consid­
ered in the first step. Thus, the total pattern becomes,

e  (0, Ф) = E 0 (0 , Ф) + e  (0, Ф а ) + £2(0, Ф а ) (8.67)

F ig . 8 .35  sh ow s a 3 -D  p lo t fo r  concentric c ircu la r array in  the 0 , Ф space fo r

the fo llo w in g  parameters:
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a! N i a2 N 2
1 X 8 (X /2 dipoles) 2 X 8 (X /2 dipoles)

Figure 8.34. Concentric circular array geometry.

Total normakzed E field

----- 11

■ - 10.9

F ig u re  8.35. 3 -D  a rra y pattern fo r a concentric c ircu la r a rray; 0 =  4 5 °

and Ф =  9 0 °
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Rectangular Grid with Circular Boundary Arrays

The far field electric field associated with this configuration can be easily 
obtained from that corresponding to a rectangular grid. In  order to accomplish 
this task follow these steps: F irst, select the desired maximum number of ele­
ments along the diameter of the circle and denote it  by N d. Also select the 
associated element spacings dx, dy . Define a rectangular array of size 
N d x N d. Draw a circle centered at (x, y ) = (0, 0) with radius r d where

Nd -  1
■ + Д x (8.68)

and Дх < dx/ 4 . Fina lly, modify the weighting function across the rectangular 
array by multiplying it  w ith the two-dimensional sequence a (m, n ) , where

a(m, n ) =
1 , i f  d is to (m, n)th element < r d

0 ; elsewhere
(8.69)

where distance, d is , is  measured from the center of the circle. Th is  is  illu s ­
trated in  Fig. 8.36.

Figure 8.36. Elements with solid dots have a (m, n ) = 1 ; other elements 
have a(m, n) = 0 .

Hexagonal Grid Arrays

The analysis provided in  this section is  limited to hexagonal arrays w ith cir­
cular boundaries. The horizontal element spacing is  denoted as dx and the ver­
tical element spacing is

(8.70)

r =d
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The array is assumed to have the maximum number of identical elements along 
the x-axis (y = 0). Th is number is denoted by Nx , where N x is an odd num­
ber in order to obtain a symmetric array, where an element is present at 
(x, y ) = (0, 0). The number of rows in the array is denoted by M . The hori­
zontal rows are indexed by m which varies from - (Nx -  1)/  2 to (Nx -  1)/  2 . 
The number of elements in the mth row is denoted by N r and is defined by

N r = Nx -  |да| (8.71)

The electric field at a far field observation point is computed using Eq.
(8.24) and (8.25). The phase associated with (m, n )th location is

2 n dx
XV„ -sin 9 m + 23 cos ф + n “2-sin ф (8.72)

M A T L A B  Function “rect_array.m”

The function “rectarray.m ” computes and plots the rectangular antenna 
gain pattern in the visible U ,V  space. Th is function is given in Listing 8.5 in 
Section 8.8. The syntax is as follows:

[pattern] = rect_array(Nxr, Nyr, dolxr, dolyr, theta0, phi0, winid, win, nbits)

where

Symbol Description Units Status

Nxr number of elements along x none input

Nyr number of elements along y none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units alongy wavelengths input

thetaO elevation steering angle degrees input

phiO azimuth steering angle degrees input

winid -1: No weighting is used 

1: Use weighting defined in win

none input

win window fo r sidelobe control none input

nbits negative #: perfect quantization

. . ,, r , n b it s  . .positive #: use 2 quantization levels

none input

pattern gain pattern dB output
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A M A TLA B  based GUI workspace called “array.m” was developed for this 
function. It shown in Fig. 8.37. The user is advised to use this M A TLA B  G UI1 
workspace to generate array gain patterns that match this requirement.

Fig.s 8.38 through 8.43 respectively show plots of the array gain pattern in 
the U -V  space, for the following cases:

Nx Г Edit
----------------------------  window

_____ I CditTe*: [non!  3

Ncirc | Edit Tex:

dolxr | Edit Tex:

dolyr | Edit Tex:

thetaO У~ Edit Tex: deg

phiO Г” Edit Tex: deg

nbitc j C dit T ex:

Figure 8.37. M A TLA B G UI workspace “array.m. ’’

array pattern

Itectanguiar ^

[pattern] = rect_array(15, 15, 0.5, 0.5, 0, 0, -1, -1, -3) (8.73)

[pattern] = rect_array(15, 15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.74)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3) (8.75)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.76)

[pattern] = rect_array(15, 15, 1, 0.5, 10, 30, -1, -1, -3) (8.77)

[pattern] = rect_array(15, 15, 1, 1, 0, 0, -1, -1, -3) (8.78)

1. Th is GUI was developed by Mr. David J. Hall, Consultant to Decibel Research, Inc., 
Huntsville, Alabama.
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Figure 8.38a. 3-D gain pattern corresponding to Eq. (8.73).

F ig u re  8.38b. Contour plot corresponding to Eq . (8.73).
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Figure 8.38c. Three-dimensional plot (9, ф space) corresponding to Eq. (8.73).

F ig u re  8.39a. 3 -D  gain pattern corresponding to Eq . (8.74).
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Figure 8.39b. Contour plot corresponding to Eq. (8.74).

F ig u re  8.39c. 3 -D  plot (9 , ф space) corresponding to Eq . (8.74).
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Figure 8.40a. 3-D gain pattern corresponding to Eq. (8.75).

-1 -0 .5  0 0.5 1
V

F ig u re  8.40b. Contour plot corresponding to Eq . (8.75).
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Figure 8.41c. 3-D plot (0, ф space) corresponding to Eq. (8.76).

F ig u re  8.42a. 3 -D  gain pattern corresponding to Eq . (8.77).
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F ig u re  8.42c. 3 -D  plot (9 , ф space) corresponding to Eq . (8.77).
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F ig u re  8.43b. Contour plot corresponding to Eq . (8.78).
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---------1150
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130

Figure 8.43c. 3-D plot (9, ф space) corresponding to Eq. (8.78).

M A T L A B  Function “circ_array.m”

The function “circ array.m” computes and plots the rectangular grid with a 
circular array boundary antenna gain pattern in the visible U ,V  space. Th is  
function is given in Listing 8.6 in Section 8.8. The syntax is as follows:

[pattern, amn] = circ_array(N, dolxr, dolyr, thetaO, phi0, winid, win, nbits);

where

Symbol Description Units Status

N number of elements along diameter none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units alongy wavelengths input

theta0 elevation steering angle degrees input

phi0 azimuth steering angle degrees input

winid -1: No weighting is used 

1: Use weighting defined in win

none input
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Symbol Description Units Status

win window fo r sidelobe control none input

nbits negative #: perfect quantization

. . ,, r , n b it s  . .positive #: use 2 quantization levels

none input

patterng gain pattern dB output

amn a(m,n) sequence defined in Eq. (8.68) none output

Figs. 8.44 through 8.49 respectively show plots of the array gain pattern ver­
sus steering for the following cases:

[pattern, amn] = circ_array(15, 0.5, 0.5, 0, 0, -1, -1, -3) (8.79)

[pattern, amn] = circ_array(15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.80) 

[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3) (8.81)

[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.82)

[pattern, amn] = circ_array(15, 1, 0.5, 10, 30, -1, -1, -3) (8.83)

[pattern, amn] = circ_array(15, 1, 1, 0, 0, -1, -1, -3) (8.84)

Note the function “circ array.m” uses the function “rec to circ.m”, which 
computes the array a(m, n ). It is given in Listing 8.7 in Section 8.8.

The M A TLA B  G UI workspace defined in “array.m” can be used to execute 
this function.
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Figure 8.44a. 3-D gain pattern corresponding to Eq. (8.79).
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F ig u re  8.44b. C ontour plot corresponding to Eq . (8.79).
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Figure 8.44c. 3-D plot (9, ф space) corresponding to Eq. (8.79).

F ig u re  8.45a. 3 -D  gain pattern corresponding to Eq . (8.80).
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Figure 8.45b. Contour plot corresponding to Eq. (8.80).

F ig u re  8.45c. 3 -D  plot (9 , ф space) corresponding to Eq . (8.80).
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Figure 8.46a. 3-D gain pattern corresponding to Eq. (8.81).

F ig u re  8.46b. Contour plot corresponding to Eq . (8.81).
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Figure 8.47 a. 3-D gain pattern corresponding to Eq. (8.82).
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F ig u re  8.47b. C ontour plot corresponding to Eq . (8.82).
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Figure 8.47c. 3-D plot (0, ф space) corresponding to Eq. (8.82).

F ig u re  8.48a. 3 -D  gain pattern corresponding to Eq . (8.83).
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Figure 8.48b. Contour plot corresponding to Eq. (8.83).
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F ig u re  8.48c. 3 -D  plot (9 , ф space) corresponding to Eq . (8.83).
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Figure 8.49a. 3-D gain pattern corresponding to Eq. (8.84).

v

F ig u re  8.49b. Contour plot corresponding to Eq . (8.84).
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Figure 8.49c. 3-D plot (9, ф space) corresponding to Eq. (8.84).

The program “array.m” also plots the array’s element spacing pattern. Figs. 
8.50a and 8.50b show two examples. The “x ’s ” indicate the location of actual 
active array elements, while the “o’s ” indicate the location of dummy or virtual 
elements created merely for computational purposes. More precisely, Fig. 
8.50a shows a rectangular grid with circular boundary as defined in Eqs. (8.67) 
and (8.68) with dx = dy = 0.5 X and a = 0.35 X . Fig. 8.50b shows a similar 
configuration except that an element spacing dx = 1.5 X and dy = 0.5 X .

8.6. Array Scan Loss
Phased arrays experience gain loss when the beam is steered away from the 

array boresight, or zenith (normal to the face of the array). Th is loss is due to 
the fact that the array effective aperture becomes smaller and consequently the 
array beamwidth is broadened, as illustrated in Fig. 8.51. Th is loss in antenna 
gain is called scan loss, L scan , where

A 9 is effective aperture area at scan angle 9 , and G9 is effective array gain at 
the same angle.
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Figure 8.51. Reduction in array effective aperture due to electronic
scanning.

The beamwidth at scan angle 9 is

due to the increased scan loss at large scanning angles. In order to limit the 
scan loss to under some acceptable practical values, most arrays do not scan 
electronically beyond about 9 = 60°. Such arrays are called Fu ll Field Of 
View (FFOV). FFO V  arrays employ element spacing of 0.6X or less to avoid 
grating lobes. FFO V  array scan loss is approximated by

Arrays that limit electronic scanning to under 9 = 60° are referred to as 
Limited Field of View (LFOV) arrays. In this case the scan loss is

Fig. 8.52 shows a plot for scan loss versus scan angle. Th is figure can be repro­
duced using M A TLA B  program “fig8_52.m ” given in Listing 8.8.

(8.86)

L (cos9) 2.5 (8.87)sc a n

L sc a n (8.88)
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1.6 Element spacing is d = 0.6 X

scan angle in degrees 

Figure 8.52. Scan loss versus scan angle, based on Eq. (8.87).

8.7. “MyRadar” Design Case Study - Visit 8
8.7.1. Problem Statement

Modify the “MyRadar” design case study such that we employ a phased 
array antenna. F o r  th is purpose, modify the design requirements such that the 
search volume is  now defined by © e = 10° and © a < 45 ° . Assume X-band, i f  
possible. Design an electronically steered radar (ESR). Non-coherent integra­
tion of a few pulses may be used, i f  necessary. Size the radar so that it  can fu l­
f i l l  th is mission. Calculate the antenna gain, aperture size, m issile and aircraft 
detection range, number of elements in the array, etc. A l l  other design require­
ments are as defined in the previous chapters.

8.7.2. A Design
The search volume is

10° x 45°Q = ----------- = 0.1371 steradian  (8.89)
(57.296 )2
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For an X-band radar, choose f o = 9 G H z , then

X = 3 x 10 = 0.0333m (8.90)
9 x 109

2
Assume an aperture size A e = 2.25m ; thus

G = = 4 x 71 x 2-25 = 25451.991 ^  G = 44dB (8.91)
X2 (0.0333)2

Assume square aperture. It follows that the aperture 3-dB beamwidth is cal­
culated from

3dB
J3db

24 x n x  180 = 1.3 ° (8.92)
25451.991 x n2

The number of beams required to f i l l  the search volume is 

Q
nb = kp------------------- 2

(1.3 / 57.296)2
nb = 399.5 ^  choose nb = 400 (8.93)

: 1.5

Note that the packing factor kp is used to allow for beam overlap in order to 
avoid gaps in the beam coverage. The search scan rate is 2 seconds. Thus, the 
minimum P R F  should correspond to 200 beams per second (i.e., f r = 200H z ). 
Th is P R F  w ill allow the radar to visit each beam position only once during a 
complete scan.

It was determined in Chapter 2 that 4-pulse non-coherent integration along 
with a cumulative detection scheme are required to achieve the desired proba­
bility of detection. It was also determined that the single pulse energy for the 
missile and aircraft cases are respectively given by (see page 118)

E m = 0.1147 Jo u le s (8.94)

E a = 0.1029Jo u le s  (8.95)

However, these values were derived using X = 0.1m and G = 2827.4. The 
new wavelength is X = 0.0333m and the new gain is G = 25451.99 . Thus, 
the missile and aircraft single pulse energy, assuming the same single pulse 
SN R as derived in Chapter 2 (i.e., SN R  = 4 d B ) are

E m = 0.1147 x Q-1 x 2827-4 - = 0.012765Jo u le s  (8.96)
0.03332 x 254522
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2 2
E a = 0.1029 x 0Л x 2827-4 - = 0.01145Jo u le s (8.97)

0.03332 х 254522

The single pulse peak power that w ill satisfy detection for both target types
is

P t = 0012765 = 638.25 W (8.98)
20 x 10 6

where т  = 20 ц s is used.

Note that since a 4-pulse non-coherent integration is adopted, the minimum 
P R F  is increased to

f r = 200 x 4 = 800H z (8.99)

and the total number of beams is nb = 1600 . Consequently the unambiguous 
range is

R u *  ^  = 187 5Km  (8'“ )

(1.101)
2

Since the effective aperture is A e = 2.25m , then by assuming an array effi­

ciency p = 0.8 the actual array size is

2.25 2A = —  = 2.8125 m (8.102)
0.8

It follows that the physical array sides are 1.68m x 1.68m . Thus, by selecting 
the array element spacing d = 0.6X an array of size 84 x 84 elements satis­
fies the design requirements.

Since the field of view is less than ±22.5 ° , one can use element spacing as 
large as d = 1.5 X without introducing any grating lobes into the array FO V  
Using this option yields an array of size 34 x 34 = 1156 elements. Hence, the 
required power per element is less than 0.6 W .

8.8. MATLAB Program and Function Listings
Th is section contains listings of all M A TLA B  programs and functions used 

in this chapter. Users are encouraged to rerun this code with different inputs in 
order to enhance their understanding of the theory.
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%  Use th is code to produce figure 8.5a and 8.5b based on equation 8.34 
clear a ll 
close a ll 
eps = 0.00001; 
k  = 2 *pi;
theta = -p i: p i / 10791 : p i; 
var = sin(theta); 
nelements = 8; 
d = 1; %  d = 1;
num = sin((nelements * k  * d * 0.5) .*  var);

if(abs(num) < = eps) 
num = eps; 

end
den = sin ((k* d * 0.5) .*  var); 
if(abs(den) < = eps) 

den = eps; 
end

pattern = abs(num ./ den); 
maxval = max(pattern); 
pattern = pattern ./ maxval;

figure(1) 
plot(var, pattern)
xlabel('sine angle - dimensionless’)
ylabel(Array pattern’)
grid

figure(2)
plot(var,20*log10(pattern)) 
axis ([-1 1 -60 0]) 
xlabel(’sine angle - dimensionless’) 
ylabel(’Power pattern [d B ]’)  
grid;

figure(3)
theta = theta +pi/2; 
polar(theta,pattern) 
title ('Arraypattern’)

figure(4)

Listing 8.1. MATLAB Program “fig8_5.m”
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polardb(theta,pattern) 
title ( ’Power pattern [d B ]’)

%  Use th is program to reproduce Fig. 8.7 o f text
clear a ll
close a ll
eps =0.00001;
N  = 32; 
rect(1:32) = 1; 
ham = hamming(32); 
han = hanning(32); 
blk = blackman(32); 
k3 = kaiser(32,3); 
k6 = kaiser(32,6);
R E C T  = 20*log10(absfftshiftfft(rect, 512)))./32 +eps); 
H A M  = 20*log10(abs(fftshiftfft(ham, 512)))./32 +eps); 
H A N  = 20*log10(absfftshiftfft(han, 512)))./32+eps); 
B L K  = 20*log10(abs(fftshift(fft(blk, 512)))./32+eps);
K 6  = 20*log10(abs(fftshiftfft(k6, 512)))./32+eps);
x  = linspace(-1,1,512);
figure
subplot(2,1,1)
plot(x,RECT, ’k - - ’,x,HAM ,’k ’,x,HA N ,’k -.’) ;
xlabel(’x ’)
ylabel('Window')
g rid
axis tight
legend(’Rectangular’, ’Hamming’, ’Hanning’)
subplot(2,1,2)
plot(x,RECT, ’k --’,x ,B LK , ’k ’,x ,K 6 ,’K - . ’)
xlabel(’x ’)
ylabel('Window')
legend('Rectangular','Blackman','Kasier at \beta = 6') 
grid
axis tight

Listing 8.2. MATLAB Program “fig8_7.m”

Listing 8.3. MATLAB Function “linear array.m”
function [theta,patternr,patterng] = 
linear_array(Nr, dolr, theta0,winid,win,nbits);
%  Th is  function computes and returns the gain radiation pattern fo r  a linear 
array
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%  I t  uses the F F T  to compute the pattern
%%%%%%%%% **** * * * ** *  IN P U T S  * * * * * * * ** * *  %%%%%%%%%%  
%  N r = = >  number o f elements; dolr = = >  element spacing (d) in lambda units 
divided by lambda
%  theta0 = = >  steering angle in degrees; winid = = >  use winid negative fo r no 
window, winid positive to enter your window o f size(Nr)
%  win is  input window, N O TE  that win must be an N rX1 row vector; nbits 
= = >  number of bits used in the phase shifters 
%  negative nbits mean no quantization is  used
% % % % % %  * * * * * * * * * * *  O U T P U T S  * * * * * * * * * * *  % % % % % % % % % % % %  
%  theta = = >  real-space angle; patternr = = >  array radiation pattern in dBs 
%  patterng = = >  array directive gain pattern in dBs 
% % % % % % % % % % % %  * * * * * * * * * * * * * * * *  % % % % % % % % % % % %  
eps = 0.00001; 
n = 0:N r-1; 
i  = sqrt(-1);
% i f  dolr is  > 0.5 then; choose dol = 0.25 and compute new N  
if(do lr <=0.5) 

dol = dolr;
N  = N r; 

else
ratio = ceil(dolr/.25);
N  = N r * ratio; 
dol = 0.25; 

end
%  choose proper size fft, fo r  minimum value choose 256 
N rx  = 10 * N;
nfft = 2A(ceil(log(Nrx)/log(2))); 
i f  nfft < 256 

nfft = 256; 
end
%  convert steering angle into radians; and compute the sine of angle 
theta0 = theta0 *pi /180.; 
sintheta0 = sin(theta0);
%  determine and compute quantized steering angle 
i f  nbits < 0

phase0 = exp(i*2.0*pi .*  n * dolr * sintheta0); 
else

%  compute and add the phase sh ift terms (W ITH  nbits quantization)
%  Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2Anbits 
%  and rounded to the nearest qunatization level 
levels = 2Anbits;
qlevels = 2.0 * p i /  levels; %  compute quantization levels
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%  compute the phase level and round it  to the closest quantization level at 
each array element

angleq = round(dolr .* n * sintheta0 * levels) .* qlevels; %  vector o f possi­
ble angles 

phase0 = exp(i*angleq); 
end
%  generate array o f elements with or without window 
i f  w inid < 0 

w r(1:Nr) = 1; 
else

w r = w in’; 
end
%  add the phase sh ift terms 
w r = w r .*  phase0;
%  determine i f  interpolation is  needed (i.e., N  > Nr) 

i f  N  > N r  
w(1:N) = 0;
w(1:ratio:N) = w r(1:N r); 

else 
w = wr; 

end
%  compute the sine(theta) in real space that corresponds to the F F T  index
arg = [-nfft/2:(nfft/2)-1]./ (nfft*dol);
idx = find(abs(arg) < =  1);
sinetheta = arg(idx);
theta = asin(sinetheta);
%  convert angle into degrees 
theta = theta .*  (180.0 /p i);
%  Compute f f t  o f w (radiation pattern) 
patternv = (abs(fftshift(fft(w,nfft)))).A2;
%  convert radiationa pattern to dBs 
patternr = 10*log10(patternv(idx) ./Nr + eps);
%  Compute directive gain pattern
rbarr = 0.5 *sum(patternv(idx)) ./ (n fft * dol);
patterng = 10*log10(patternv(idx) + eps) - 10*log10(rbarr + eps);
return

Listing 8.4. MATLAB Program “circular array.m”
%  Circular A rray in the x-y plane
%  Element is  a short dipole antenna parallel to the z  axis 
%  2D Radiation Patterns fo r fixed phi or fixed theta 
%  dB polar plots uses the polardb.m file  
%  Last modified: Ju ly 13, 2003
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%
% % % %  Element expression needs to be modified i f  different 
% % % %  than a short dipole antenna along the z  axis 
clear a ll 
c lf
%  close a ll
%  = = = =  Input Parameters = = =  = 
a = 1.; %  radius o f the circle
N  = 20; %  number o f Elements o f the circular array 
theta0 = 45; %  main beam Theta direction 
phi0 = 60; %  main beam P h i direction
%  Theta or P h i variations fo r the calculations o f the fa r fie ld  pattern
Variations = 'Ph i'; %  Correct selections are ’Theta’ or 'Ph i'
phid = 60; %  constant phi plane fo r theta variations
thetad = 45; %  constant theta plane fo r  phi variations
%  = = = =  End o f Input parameters section = = = =
dtr = pi/180; %  conversion factors
rtd  = 180/pi;
phi 0r = phi0 *dtr;
theta0r = theta0*dtr;
lambda = 1;
k  = 2*pi/lambda;
ka = k*a; %  Wavenumber times the radius
jka  = j*k a ;
I(1 :N ) = 1; %  Elements excitation Amplitude and Phase
alpha(1:N) =0;
fo r  n = 1 :N  %  Element positions Uniformly distributed along the circle

phin(n) = 2*pi*n/N; 
end
switch Variations 
case ’Theta’

p h ir = phid*dtr; %  Pattern in a constant P h i plane 
i  = 0;
fo r theta = 0.001:1:181 

i  = i+ 1 ;
thetar(i) = theta*dtr;
angled(i) = theta; angler(i) = thetar(i);
Arrayfactor(i) = 0; 
fo r n = 1:N

Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp( jka*(sin(thetar(i))*cos(phir -phin(n))) ... 

-jka*(sin(theta0r )*cos(phi0r-phin(n))) ) ;
end
Arrayfactor(i) = abs(Arrayfactor(i));
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Element(i) = abs(sin(thetar(i) + 0*dtr)); %  use the absfunction to avoid 
end 

case 'Ph i'
thetar = thetad*dtr; %  Pattern in a constant Theta plane 
i  = 0;
fo r  phi = 0.001:1:361

i  = i+ 1 ;
p h ir(i) = phi*dtr;
angled(i) = phi; angler(i) = p h ir(i);
Arrayfactor(i) = 0; 
fo r n = 1:N

Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp( jka*(sin(thetar)*cos(phir(i)-phin(n))) ... 

-jka*(sin(theta0r)*cos(phi0r -phin(n))) ) ;
end
Arrayfactor(i) = abs(Arrayfactor(i));
Element(i) = abs(sin(thetar+0*dtr)); %  use the abs function to avoid 

end 
end
angler = angled*dtr;
Element = Element/max(Element);
A rra y = Arrayfactor/max(Arrayfactor);
ArraydB = 20*log10(Array);
EtotalR =(Element.*Arrayfactor)/max(Element.*Arrayfactor); 
figure(1)
plot(angled,Array) 
ylabel('Array pattern’) 
grid
switch Variations 
case ’Theta’ 

axis ([0 180 0 1 ])
%  theta = theta +pi/2; 

xlabel(’Theta [Degrees]’) 
title ( 'phi = 90Aoplane') 

case 'Ph i' 
axis ([0 360 0 1 ])  

xlabel(’P h i [Degrees]’)  
title (  'Theta = 90Aoplane') 

end
figure(2)
plot(angled,ArraydB)
% axis ([-1 1 -60 0]) 
ylabel('Power pattern [d B ]’)  
grid;
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switch Variations 
case ’Theta’ 

axis ([0 180 -60 0 ]) 
xlabel(’Theta [Degrees]’) 

title ( 'phi = 90Aoplane') 
case 'Phi'
axis ([0 360 -60 0 ]) 

xlabel(’Phi [Degrees]’)
title ( 'Theta = 90Aoplane')

end
figure(3)
polar(angler,Array) 
title ('Arraypattern’) 
figure(4)
polardb(angler,Array) 
title (’Power pattern [dB]’)
% the plots provided above are fo r the array factor based on the circular
% array plots fo r other patterns such as those for the antenna element
% (Element)or the total pattern (Etotal based on Element*Arrayfactor) can
% also be displayed by the user as all these patterns are already computed
% above.
figure(10)
subplot(2,2,1)
polardb (angler,Element,’b-’); % rectangular plot o f element pattern
title(’Element normalized E field [dB]’)
subplot(2,2,2)
polardb(angler,Array, ’b-’)
title( Array Factor normalized [dB]’)
subplot(2,2,3)
polardb(angler,EtotalR,’b-’); % polar plot 
title(’Total normalized E field [dB]’) 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function polardb(theta, rho, linestyle)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot using polar coordinates o f 
% the angle THETA, in radians, versus the radius RHO in dB.
% The maximum value o f RHO should not exceed 1. It should not be 
% normalized, however (i.e., its max. value may be less than 1).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOT fo r a description o f legal linestyles. 
i f  nargin < 1

error('Requires 2 or 3 input arguments.’) 
elseif nargin == 2
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i f  isstr(rho)
linestyle = rho; 
rho = theta;
[mr,nr] = size(rho); 
if mr == 1 

theta = 1 :nr; 
else

th = (1 :mr)'; 
theta = th(:,ones(1,nr)); 

end 
else

linestyle = 'auto'; 
end

elseif nargin == 1 
linestyle = 'auto'; 
rho = theta;
[mr,nr] = size(rho); 
i f  mr == 1 

theta = 1 :nr; 
else

th = (1 :mr)'; 
theta = th(:,ones(1,nr)); 

end 
end
i f  isstr(theta) | isstr(rho)

error(’Input arguments must be numeric.’); 
end
i f  ~isequal(size(theta),size(rho))

error(’THETA and RHO must be the same size.'); 
end
% get hold state 
cax = newplot;
next = lower(get(cax,’NextPlot’)); 
holdstate = ishold;

% get x-axis text color so grid is in same color 
tc = get(cax,'xcolor'); 
ls = get(cax,’gridlinestyle’);
% Hold on to current Text defaults, reset them to the 
% Axes’ font attributes so tick marks use them. 
fAngle = get(cax, ’DefaultTextFonAngle’); 
fName = get(cax, 'DefaultTextFontName'); 
fSize = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight');
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fUnits = get(cax, 'DefaultTextUnits'); 
set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ... 

'DefaultTextFontName', get(cax, 'FontName'), ...
'DefaultTextFontSize', get(cax, 'FontSize'), ...
'DefaultTextFontWeight', get(cax, 'FontWeight'), ... 
'DefaultTextUnits','data')

% make a radial grid 
hold on; 
maxrho =1;
hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho - 

maxrho]);
set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto') 
v = [get(cax,'xlim') get(cax,'ylim')]; 
ticks = sum(get(cax,’ytick')>=0); 
delete(hhh);

% check radial limits and ticks
rmin = 0; rmax = v(4); rticks = max(ticks-1,2); 
i f  rticks > 5 % see i f  we can reduce the number 

i f  rem(rticks,2) == 0 
rticks = rticks/2; 

elseif rem(rticks,3) == 0 
rticks = rticks/3; 

end 
end

% only do grids i f  hold is off 
i f  ~hold_state 
% define a circle 

th = 0:pi/50:2*pi; 
xunit = cos(th); 
yunit = sin(th);

% now really force points on x/y axes to lie on them exactly 
inds = 1:(length(th)-1)/4:length(th); 
xunit(inds(2:2:4)) = zeros(2,1); 
yunit(inds(1:2:5)) = zeros(3,1);

% plot background if  necessary 
i f  ~isstr(get(cax, ’color’)), 

patch(’xdata’,xunit*rmax,’ydata’,yunit*rmax, ... 
’edgecolor’,tc,’facecolor’,get(gca,’color’),...
'handlevisibility', ’off);

end
% draw radial circles with dB ticks 

c82 = cos(82*pi/180); 
s82 = sin(82*pi/180); 
rinc = (rmax-rmin)/rticks;
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tickdB=-10*(rticks-1); % the innermost tick dB value 
for i=(rmin+rinc):rinc:rmax

hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...
'handlevisibility', 'off); 

text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[ ’ ’ num2str(tickdB) ’ dB],'verticalalignment','bottom',... 
’handlevisibility',’off) 

tickdB=tickdB+10; 
end
set(hhh,'linestyle','-') % Make outer circle solid 

% plot spokes
th = (1 :6)*2 *pi/12;
cst = cos(th); snt = sin(th);
cs = [-cst; cst];
sn = [-snt; snt];
plot(rmax*cs,rmax*sn,ls, 'color',tc, 'linewidth',1,... 

’handlevisibility’, ’off)
% annotate spokes in degrees 

rt = 1.1 *rmax; 
for i = 1 :length(th)

text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment', 'center',...
'handlevisibility', 'off); 

i f  i == length(th) 
loc = int2str(0); 

else
loc = int2str(180+i*30); 

end
text(-rt*cst(i),-rt*snt(i),loc,’horizontalalignment’, ’center’,... 

'handlevisibility', 'off)
end

% set view to 2-D 
view(2);

% set axis limits
axis(rmax*[-1 1 -1.15 1.15]); 

end
% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ... 

'DefaultTextFontName', fName, ...
'DefaultTextFontSize', fSize, ...
'DefaultTextFontWeight', fWeight, ...
'DefaultTextUnits', fUnits );

% Transfrom data to dB scale 
rmin = 0; rmax=1;
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rinc = (rmax-rmin)/rticks; 
rhodb =zeros(1,length(rho)); 
fo r i=1 :length(rho) 

i f  rho(i)==0 
rhodb(i)=0; 

else
rhodb(i)=rmax+2 *log10(rho(i))*rinc;

end
i f  rhodb(i)<=0 

rhodb(i)=0; 
end 

end
% transform data to Cartesian coordinates. 
xx = rhodb.*cos(theta); 
yy = rhodb.*sin(theta);
% plot data on top o f grid 
i f  strcmp(line_style,'auto') 

q = plot(xx,yy); 
else

q = plot(xx,yy,line_style); 
end
i f  nargout > 0 

hpol = q; 
end
i f  ~hold_state

set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next); 
end
set(get(gca,'xlabel'),'visible','on')
set(get(gca,'ylabel'),'visible','on')

Listing 8.5. MATLAB Function “rect array.m”
function [pattern] =
rect_array(Nxr, Nyr, dolxr, dolyr, theta0,phi0,winid,win,nbits); 
%%%%%%%%%% ************************ %%%%%%%%%%
% This function computes the 3-D directive gain patterns fo r a planar array 
% This function uses the fft2 to compute its output
%%%%%%%% ************ INPUTS ************ %%%%%%%%%
% Nxr ==> number o f along x-axis; Nyr ==> number o f elements along y- 
axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y- 
direction Both are in lambda units
% theta0 = => elevation steering angle in degrees, phi0 ==> azimuth steering 
angle in degrees
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% winid ==> window identifier; winid negative ==> no window ; winid posi­
tive ==> use window given by win
% win ==> input window function (2-D window) MUST be o f size (Nxr XNyr) 
% nbits is the number o f nbits used in phase quantization; nbits negative ==> 
NO quantization
%%%%% *********** OUTPUTS ************* %%%%%%%
% pattern ==> directive gain pattern
%%%%%%% ************************ %%%%%%%%%%%%
eps = 0.0001;
nx = 0:Nxr-1;
ny = 0:Nyr-1;
i = sqrt(-1);
% check that window size is the same as the array size 
[nw,mw] = size(win); 
i f  winid >0 

if nw ~= Nxr
fprintf('STOP == Window size must be the same as the array') 
return 

end
if mw ~= Nyr

fprintf(’STOP == Window size must be the same as the array') 
return 

end 
end

% if dol is > 0.5 then; choose dol = 0.5 and compute new N 
if(dolxr <=0.5) 

ratiox = 1 ; 
dolx = dolxr;
Nx = Nxr ; 

else
ratiox = ceil(dolxr/.5) ;
Nx = (Nxr -1 )  * ratiox + 1 ;  
dolx = 0.5; 

end
if(dolyr <=0.5) 

ratioy = 1 ; 
doly = dolyr;
Ny = Nyr ; 

else
ratioy = ceil(dolyr/.5) ;
Ny = (Nyr -1) * ratioy + 1 ; 
doly = 0.5; 

end
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% choose proper size fft, fo r minimum value choose 256X256 
Nrx = 10 * Nx;
Nry = 10 * Ny;
nfftx = 2A-(ceil(log(Nrx)/log(2))); 
nffty = 2A(ceil(log(Nry)/log(2))); 
i f  nfftx < 256 

nfftx = 256; 
end
if  nffty < 256 

nffty = 256; 
end
% generate array o f elements with or without window 
i f  winid < 0 

array = ones(Nxr,Nyr); 
else 

array = win; 
end
% convert steering angles (theta0, phi0) to radians 
theta0 = theta0 * pi / 180; 
phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-Vsine-space 
u0 = sin(theta0) * cos(phi0); 
v0 = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2Am levels 
% and rounded to the nearest qunatization level 
i f  nbits < 0

phasem = exp(i*2 *pi*dolx*u0 .* nx *ratiox); 
phasen = exp(i*2 *pi*doly*v0 .* ny *ratioy); 

else
levels = 2Anbits;
qlevels = 2.0 *pi /levels; % compute quantization levels 
sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector o f 

possible angles
sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector o f pos­

sible angles 
phasem = exp(i*sinthetaq); 
phasen = exp(i*sinphiq); 

end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen);
% determine i f  interpolation is needed (i.e., N > Nr) 
i f  (Nx > Nxr)\ (Ny > Nyr) 

for xloop = 1 : Nxr
temprow = array(xloop, :) ;

© 2004 by Chapman & Hall/CRC CRC Press LLC



w( (xloop-1)*ratiox+1, 1:ratioy:Ny) = temprow ; 
end
array = w; 

else
w = array ;

% w(1:Nx, :) = array(1:N,:); 
end
% Compute array pattern
arrayfft = abs(fftshift(fft2(w,nfftx,nffty))).A2 ;
%compute [su,sv] matrix 
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx); 
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2) -1]  ./(doly*nffty); 
indexy = find(abs(V) <= 1);
V = V(indexy);
%Normalize to generate gain patern
rbar=sum(sum(arrayfft(indexx,indexy))) /dolx/doly/4./nfftx/nffty; 
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U); 
indx = find((SU.A2 + SV.A2) >1); 
arrayfft(indx) = eps/10; 
pattern = 10 *log10(arrayfft +eps); 
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB’) 
figure(2)
contour(V,U,pattern)
grid
axis image
xlabel('V')
ylabel('U');
axis([-1 1 -1 1])
figure(3)
x0 = (Nx+1)/2;
y0 = (Ny+1)/2;
radiusx = dolx*((Nx-1)/2) ;
radiusy = doly*((Ny-1)/2) ;
[xxx, yyy]=find(abs(array)>eps); 
xxx = xxx-x0 ;
y y y =yyy-y 0 ;
plot(yyy*doly, xxx*dolx,'rx')
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hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]); 
grid
title('antenna spacing pattern’); 
xlabel('y - \lambda units') 
ylabel('x - \lambda units')
[xxx0, yyy0]=find(abs(array)<=eps); 
xxx0 = xxx0-x0 ; 
yyy0 = yyy0-y0 ; 
plot(yyy0*doly, xxx0 *dolx,'co')
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
hold off
return

Listing 8.6. MATLAB Function “circarray.m”
function [pattern,amn] =
circ_array(N,dolxr,dolyr,theta0,phi0,winid,win,nbits);
%%%%%%%%% ************************ %%%%%%%%%%%
% This function computes the 3-D directive gain patterns fo r a circular planar 
array
% This function uses the fft2 to compute its output. It assumes that there are the 
same number o f elements along the major x- andy-axes 
%%%%%%%% ************ INPUTS ************ %%%%%%%%
% N ==> number o f elements along x-aixs or y-axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y- 
direction. Both are in lambda units
% theta0 = => elevation steering angle in degrees, phi0 ==> azimuth steering 
angle in degrees
% This function uses the function (rectocirc) which computes the circular 
array from a square
% array (of size NXN) using the notation developed by ALLEN,J.L.,"The The­
ory o f Array Antennas
% (with Emphasis on Radar Application)" MIT-LL Technical Report No. 323, 
July, 25 1965.
% winid ==> window identifier; winid negative ==> no window ; winid posi­
tive ==> use window given by win
% win ==> input window function (2-D window) MUST be o f size (Nxr XNyr) 
% nbits is the number o f nbits used in phase quantization; nbits negative ==> 
NO quantization
%%%%%%% *********** OUTPUTS ************* %%%%%%%%
% amn ==> array o f ones and zeros; ones indicate true element location on 
the grid
% zeros mean no elements at that location; pattern ==> directive gain pattern
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%%%%%%%%% ************************ %%%%%%%%%%%% 
eps = 0.0001; 
nx = 0:N-1; 
ny = 0:N-1;
i = sqrt(-1);
% check that window size is the same as the array size 
[nw,mw] = size(win); 
i f  winid >0 

i f  mw ~= N
fprintf('STOP == Window size must be the same as the array') 
return 

end
if  nw ~= N

fprintf(’STOP == Window size must be the same as the array') 
return 

end 
end
% if dol is > 0.5 then; choose dol = 0.5 and compute new N 
if(dolxr <=0.5) 

ratiox = 1 ; 
dolx = dolxr;
Nx = N; 

else
ratiox = ceil(dolxr/.5) ;
Nx = (N-1) * ratiox + 1 ;  
dolx = 0.5; 

end
if(dolyr <=0.5) 

ratioy = 1 ; 
doly = dolyr;
Ny = N; 

else
ratioy = ceil(dolyr/.5);
Ny = (N-1)*ratioy + 1 ;  
doly = 0.5; 

end
% choose proper size fft, fo r minimum value choose 256X256 
Nrx = 10 * Nx;
Nry = 10 * Ny;
nfftx = 2A(ceil(log(Nrx)/log(2))); 
nffty = 2A(ceil(log(Nry)/log(2))); 
i f  nfftx < 256 

nfftx = 256; 
end
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if nffty < 256 
nffty = 256; 

end
% generate array o f elements with or without window 
if winid < 0 

array = ones(N,N); 
else

array = win; 
end
% convert steering angles (theta0, phi0) to radians 
theta0 = theta0 * pi / 180; 
phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-Vsine-space 
u0 = sin(theta0) * cos(phi0); 
v0 = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2Am levels 
% and rounded to the nearest qunatization level 
if nbits < 0

phasem = exp(i*2 *pi*dolx*u0 .* nx * ratiox); 
phasen = exp(i*2 *pi*doly*v0 .* ny * ratioy); 

else
levels = 2Anbits;
qlevels = 2.0 *pi /levels; % compute quantization levels 
sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector o f 

possible angles
sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector o f pos­

sible angles 
phasem = exp(i*sinthetaq); 
phasen = exp(i*sinphiq); 

end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen) ;

% determine i f  interpolation is needed (i.e., N > Nr) 
i f  (Nx > N )l (Ny > N) 

for xloop = 1 : N
temprow = array(xloop, :) ; 
w( (xloop-1)*ratiox+1, 1:ratioy:Ny) = temprow ; 

end
array = w; 

else
w(1:Nx, :) = array(1:N,:); 

end
% Convert rectangular array into circular using function re c to c irc
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[m,n] = size(w) ;
NC = max(m,n); % Use Allens algorithm 
i f  Nx == Ny

tem parray = w; 
else

midpoint = (NC-1)/2 + 1; 
midwm = (m-1)/2 ; 
midwn = (n-1)/2 ; 
tem parray = zeros(NC,NC);
temp_array(midpoint-midwm:midpoint+midwm, midpoint-midwn:mid- 

point+midwn) = w ; 
end
amn = rec to circ(NC); % must be rectangular array (Nx=Ny) 
amn = temp array .* amn ;

% Compute array pattern
arrayfft = abs(fftshift(fft2(amn,nfftx,nffty))).A2;
%compute [su,sv] matrix 
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx); 
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2) -1]  ./(doly*nffty); 
indexy = find(abs(V) <= 1);
V = V(indexy);
[SU,SV] = meshgrid(V,U); 
indx = find((SU.A2 + SVA2) >1); 
arrayfft(indx) = eps/10;
%Normalize to generate gain pattern
rbar=sum(sum(arrayfft(indexx,indexy))) /dolx/doly/4./nfftx/nffty; 
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U); 
indx = find((SU.A2 + SVA2) >1); 
arrayfft(indx) = eps/10; 
pattern = 10 *log10(arrayfft +eps); 
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB’) 
figure(2)
contour(V,U,pattern)
axis image
grid
xlabel('V')
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ylabel(’U’); 
axis([-1 1 -1 1]) 
figure(3) 
x0 = (NC+1)/2; 
y0 = (NC+1)/2;
radiusx = dolx*((NC-1)/2 + 0.05/dolx) ; 
radiusy = doly*((NC-1)/2 + 0.05/dolx) ; 
theta = 5 ;
[xxx, yyy]=find(abs(amn)>0); 
xxx = xxx-x0 ;
y y y =yyy-y 0 ;
plot(yyy*doly, xxx*dolx,'rx') 
axis equal 
hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]); 
grid
title('antenna spacing pattern’); 
xlabel('y - \lambda units') 
ylabel('x - \lambda units')
[x, y]= makeellip( 0, 0, radiusx, radiusy, theta) ; 
plot(y, x) ;
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
[xxx0, yyy0]=find(abs(amn)<=0);
xxx0 = xxx0-x0 ;
yyy0 = yyy0-y0 ;
plot(yyy0*doly, xxx0 *dolx,’co’)
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]); 
axis equal 
hold off ; 
return

Listing 8.7. MATLAB Function “rec_to_circ.m”
function amn = rec to circ(N) 
midpoint = (N-1)/2 + 1; 
amn = zeros(N); 
array1(midpoint,midpoint) = N; 
x0 = midpoint; 
y 0 = x0; 
fo r i = 1:N 

for j  = 1:N
distance(i,j) = sqrt((x0-i) A2 + (y0-j)A2); 

end 
end
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idx = find(distance < (N-1)/2 + .4);
amn (idx) = 1;
return

Listing 8.8. MATLAB Program “fig8_52.m”
%Use this program to reproduce Fig. 8.40. Based on Eq. (8.87) 
clear all 
close all
d = 0.6; % element spacing in lambda units
betadeg = linspace(0,22.5,1000);
beta = betadeg .*pi ./180;
den = pi *d .* sin(beta);
numarg = den;
num = sin(numarg);
lscan = (num./den).A-4;
LSCAN = 10*log10(lscan+eps); 
figure (1)
plot(betadeg,LSCAN) 
xlabel('scan angle in degrees’) 
ylabel('Scan loss in dB’) 
grid
title('Element spacing is d = 0.6 \lambda ')
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Chapter 9 Target Tracking

Single Target Tracking
Tracking radar systems are used to measure the target’s relative position in 

range, azimuth angle, elevation angle, and velocity. Then, by using and keep­
ing track of these measured parameters the radar can predict their future val­
ues. Target tracking is important to military radars as well as to most civilian 
radars. In military radars, tracking is responsible for fire control and missile 
guidance; in fact, missile guidance is almost impossible without proper target 
tracking. Commercial radar systems, such as civilian airport traffic control 
radars, may utilize tracking as a means of controlling incoming and departing 
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle 
tracking. It is also customary to distinguish between continuous single-target 
tracking radars and multi-target track-while-scan (TWS) radars. Tracking 
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason 
that a separate search radar is needed to facilitate target acquisition by the 
tracker. Still, the tracking radar has to search the volume where the target’s 
presence is suspected. For this purpose, tracking radars use special search pat­
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

9.1. Angle Tracking
Angle tracking is concerned with generating continuous measurements of 

the target’s angular position in the azimuth and elevation coordinates. The 
accuracy of early generation angle tracking radars depended heavily on the
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size of the pencil beam employed. Most modem radar systems achieve very 
fine angular measurements by utilizing monopulse tracking techniques.

Tracking radars use the angular deviation from the antenna main axis of the 
target within the beam to generate an error signal. This deviation is normally 
measured from the antenna’s main axis. The resultant error signal describes 
how much the target has deviated from the beam main axis. Then, the beam 
position is continuously changed in an attempt to produce a zero error signal. If 
the radar beam is normal to the target (maximum gain), then the target angular 
position would be the same as that of the beam. In practice, this is rarely the 
case.

In order to be able to quickly change the beam position, the error signal 
needs to be a linear function of the deviation angle. It can be shown that this 
condition requires the beam’s axis to be squinted by some angle (squint angle) 
off the antenna’s main axis.

9.1.1. Sequential Lobing
Sequential lobing is one of the first tracking techniques that was utilized by 

the early generation of radar systems. Sequential lobing is often referred to as 
lobe switching or sequential switching. It has a tracking accuracy that is lim­
ited by the pencil beamwidth used and by the noise caused by either mechani­
cal or electronic switching mechanisms. However, it is very simple to 
implement. The pencil beam used in sequential lobing must be symmetrical 
(equal azimuth and elevation beamwidths).

Tracking is achieved (in one coordinate) by continuously switching the pen­
cil beam between two pre-determined symmetrical positions around the 
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is 
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 9.1.

As the beam is switched between the two positions, the radar measures the 
returned signal levels. The difference between the two measured signal levels 
is used to compute the angular error signal. For example, when the target is 
tracked on the tracking axis, as the case in Fig. 9.1a, the voltage difference is 
zero. However, when the target is off the tracking axis, as in Fig. 9.1b, a non­
zero error signal is produced. The sign of the voltage difference determines the 
direction in which the antenna must be moved. Keep in mind, the goal here is 
to make the voltage difference be equal to zero.

In order to obtain the angular error in the orthogonal coordinate, two more 
switching positions are required for that coordinate. Thus, tracking in two 
coordinates can be accomplished by using a cluster of four antennas (two for 
each coordinate) or by a cluster of five antennas. In the latter case, the middle 
antenna is used to transmit, while the other four are used to receive.
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Figure 9.1. Sequential lobing. (a) Target is located on track axis. 
(b) Target is off track axis.

9.1.2. Conical Scan
Conical scan is a logical extension of sequential lobing where, in this case, 

the antenna is continuously rotated at an offset angle, or has a feed that is 
rotated about the antenna’s main axis. Fig. 9.2 shows a typical conical scan 
beam. The beam scan frequency, in radians per second, is denoted as . The 
angle between the antenna’s LOS and the rotation axis is the squint angle ф. 
The antenna’s beam position is continuously changed so that the target will 
always be on the tracking axis.

Fig. 9.3 shows a simplified conical scan radar system. The envelope detector 
is used to extract the return signal amplitude and the Automatic Gain Control 
(AGC) tries to hold the receiver output to a constant value. Since the AGC 
operates on large time constants, it can hold the average signal level constant 
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth and elevation) are functions of the target’s RCS; they are 
functions of its angular position off the main beam axis.

In order to illustrate how conical scan tracking is achieved, we will first con­
sider the case shown in Fig. 9.4. In this case, as the antenna rotates around the 
tracking axis all target returns have the same amplitude (zero error signal). 
Thus, no further action is required.

feed

Figure 9.2. Conical scan beam.
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axis for conical scan.

Next, consider the case depicted by Fig. 9.5. Here, when the beam is at posi­
tion B, returns from the target will have maximum amplitude, and when the 
antenna is at position A, returns from the target have minimum amplitude. 
Between those two positions, the amplitude of the target returns will vary 
between the maximum value at position B, and the minimum value at position 
A. In other words, Amplitude Modulation (AM) exists on top of the returned 
signal. This AM envelope corresponds to the relative position of the target 
within the beam. Thus, the extracted AM envelope can be used to derive a 
servo-control system in order to position the target on the tracking axis.

Now, let us derive the error signal expression that is used to drive the servo- 
control system. Consider the top view of the beam axis location shown in Fig. 
9.6. Assume that t = 0 is the starting beam position. The locations for maxi­
mum and minimum target returns are also identified. The quantity e defines 
the distance between the target location and the antenna’s tracking axis. It fol­
lows that the azimuth and elevation errors are, respectively, given by

ea = e sin ф (9.1)

ee = e cos ф (9.2)

These are the error signals that the radar uses to align the tracking axis on the 
target.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Figure 9.5. Error signal produced when the target is off the 
tracking axis for conical scan.

Figure 9.6. Top view  o f  beam  axis fo r  a com plete scan.
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The A M  sign a l E ( t) ca n  th en  b e w ritte n  as

E(t) = E0cos( a st -  ф) = E0eecosrnst + E0easinrost (9.3)

where E0 is a constant called the error slope, rns is the scan frequency in radi­
ans per seconds, and ф is the angle already defined. The scan reference is the 
signal that the radar generates to keep track of the antenna’s position around a 
complete path (scan). The elevation error signal is obtained by mixing the sig­
nal E( t) with cosrnst (the reference signal) followed by low pass filtering. 
More precisely,

Ee(t) = E0cos( a st -  ф)cosa st = -  -E 0cosф + --cos(2a st -  ф) (9.4) 

and after low pass filtering we get

Negative elevation error drives the antenna beam downward, while positive 
elevation error drives the antenna beam upward. Similarly, the azimuth error 
signal is obtained by multiplying E( t) by sinrnst followed by low pass filter­
ing. It follows that

The antenna scan rate is limited by the scanning mechanism (mechanical or 
electronic), where electronic scanning is much faster and more accurate than 
mechanical scan. In either case, the radar needs at least four target returns to be 
able to determine the target azimuth and elevation coordinates (two returns per 
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of 
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error 
signal can be measured. However, due to the squint angle, the antenna gain in 
the direction of the tracking axis is less than maximum. Thus, when the target 
is in track (located on the tracking axis), the SNR suffers a loss equal to the 
drop in the antenna gain. This loss is known as the squint or crossover loss. 
The squint angle is normally chosen such that the two-way (transmit and 
receive) crossover loss is less than a few decibels.

9.2. Amplitude Comparison Monopulse
Amplitude comparison monopulse tracking is similar to lobing in the sense 

that four squinted beams are required to measure the target’s angular position. 
The difference is that the four beams are generated simultaneously rather than

Ee (t) = -  1  E0cos ф (9.5)

Ea (t) = 1  E0sin ф (9.6)
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sequentially. For this purpose, a special antenna feed is utilized such that the 
four beams are produced using a single pulse, hence the name “monopulse.” 
Additionally, monopulse tracking is more accurate and is not susceptible to 
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in 
sequential and conical lobing, variations in the radar echoes degrade the track­
ing accuracy; however, this is not a problem for monopulse techniques since a 
single pulse is used to produce the error signals. Monopulse tracking radars can 
employ both antenna reflectors as well as phased array antennas.

Fig. 9.7 show a typical monopulse antenna pattern. The four beams A, B, C, 
and D represent the four conical scan beam positions. Four feeds, mainly 
horns, are used to produce the monopulse antenna pattern. Amplitude 
monopulse processing requires that the four signals have the same phase and 
different amplitudes.

A

Figure 9.7. Monopulse antenna pattern.

A good way to explain the concept of amplitude monopulse technique is to 
represent the target echo signal by a circle centered at the antenna’s tracking 
axis, as illustrated by Fig. 9.8a, where the four quadrants represent the four 
beams. In this case, the four horns receive an equal amount of energy, which 
indicates that the target is located on the antenna’s tracking axis. However, 
when the target is off the tracking axis (Figs. 9.8b-d), an imbalance of energy 
occurs in the different beams. This imbalance of energy is used to generate an 
error signal that drives the servo-control system. Monopulse processing con­
sists of computing a sum E and two difference Д (azimuth and elevation) 
antenna patterns. Then by dividing a Д channel voltage by the E channel volt­
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam 
returns to sense the amount of target displacement off the tracking axis. It is 
critical that the phases of the four signals be constant in both transmit and 
receive modes. For this purpose, either digital networks or microwave compar­
ator circuitry are utilized. Fig. 9.9 shows a block diagram for a typical micro­
wave comparator, where the three receiver channels are declared as the sum 
channel, elevation angle difference channel, and azimuth angle difference 
channel.
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(a) (b) (d)

Figure 9.8. Illustration of monopulse concept. (a) Target is on the 
tracking axis. (b) - (d) Target is off the tracking axis.

(A+C)-(B+D)

A

D
B

A
e l  (A+B)-(D+C) elevation error

a z  (A+D)-(B+C) azimuth error

2  (A+D)+(B+C) h , ----------------------  sum channel

Figure 9.9. Monopulse comparator.

To generate the elevation difference beam, one can use the beam difference 
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C) 
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva­
tion difference signal, Ae l. Similarly, by first forming the sum patterns (A+D) 
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi­
muth difference signal, Aaz, is produced.

A simplified monopulse radar block diagram is shown in Fig. 9.10. The sum 
channel is used for both transmit and receive. In the receive mode the sum 
channel provides the phase reference for the other two difference channels. 
Range measurements can also be obtained from the sum channel. In order to 
illustrate how the sum and difference antenna patterns are formed, we will 
assume a sinф/ф single element antenna pattern and squint angle ф0 . The 
sum signal in one coordinate (azimuth or elevation) is then given by

2 (ф) = sin(^ ^ 0 -  + sin(^  + фр) 
(ф -  ф0) (ф + ф0)

(9.7)

C
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Figure 9.10. Simplified amplitude comparison monopulse radar block diagram.
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= ™ (ф -ф 0> -  ™ (Ч> + Ф.> |9.S|
(ф -  Фи) (Ф + Фо >

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (9.7) and (9.8). Its output 
includes plots of the sum and difference antenna patterns as well as the differ- 
ence>to>sum ratio. It is given in Listing 9.1 in Section 9.11. The syntax is as 
follows:

mono_pulse (phi0) 

where phi0 is the squint angle in radians.

Fig. 9.11 (a>c) shows the corresponding plots for the sum and difference pat> 
terns for ф0 = 0.15 radians. Fig. 9.12 (a>c) is similar to Fig. 9.11, except in 
this case ф0 = 0.75 radians. Clearly, the sum and difference patterns depend 
heavily on the squint angle. Using a relatively small squint angle produces a 
better sum pattern than that resulting from a larger angle. Additionally, the dif> 
ference pattern slope is steeper for the small squint angle.

an d  a  d iffe ren ce  sign a l in  th e sam e coo rd in ate  is

-4 -3 -2 -1 0 1 2 3 4
An g l e  - r ad i ans

Figure 9.11a. Two squinted patterns. Squint angle is ф0 = 0.15 radians.
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-4 -3 -2 -1 0 1 2 3 4

A n g l e  - r a d i ans

Figure 9.11b. Sum pattern corresponding to Fig. 9.11a.

-4 -3 -2 -1 0 1 2  3 4
A n g l e  - r a d i ans

Figure 9.11c. Difference pattern corresponding to Fig. 9.11a.
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-4 -3 -2 -1 0 1 2 3 4
A n g l e  - r ad i ans

Figure 9.12a. Two squinted patterns. Squint angle is Ф0 = 0.75 radians.

- 4 - 3 - 2 - 1 0 1 2 3 4  

A n g l e  - r ad i ans

Figure 9.12b . Sum  p atte rn  corresponding to Fig. 9 .12a .
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-4 -3 -2 -1 0 1 2 3 4
A n g l e  - r a d i a n s

Figure 9.12c. Difference pattern corresponding to Fig. 9.12a.

The difference channels give us an indication of whether the target is on or 
off the tracking axis. However, this signal amplitude depends not only on the 
target angular position, but also on the target’s range and RCS. For this reason 
the ratio A/S (delta over sum) can be used to accurately estimate the error 
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the 
azimuth error signal. Define the signals S 1 and S2 as

5 1 = A + D (9.9)

52 = B + C (9.10)

The sum signal is S= S 1 + S2 , and the azimuth difference signal is 
Aaz= S j - S2 . If S j > S2 , then both channels have the same phase 0 ° (since 
the sum channel is used for phase reference). Alternatively, if  S j < S2 , then the 
two channels are 180 ° out of phase. Similar analysis can be done for the ele­
vation channel, where in this case S 1 = A + B and S2 = D + C . Thus, the 
error signal output is

S, = И cos £ (9.11)

where £ is the phase angle between the sum and difference channels and it is 
equal to 0 ° or 18 0 ° . More precisely, if  £ = 0 , then the target is on the track­
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ing axis; otherwise it is off the tracking axis. Fig. 9.13 (a,b) shows a plot for the 
ratio Д/E for the monopulse radar whose sum and difference patterns are in 
Figs. 9.11 and 9.12.

- 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0 0 . 2  0 . 4  0 . 6  0 . 8
A n g l e  - r a d i a n s

Figure 9.13a. Difference-to-sum ratio corresponding to Fig. 9.11a.

- 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0 0 . 2  0 . 4  0 . 6  0 . 8

A n g l e  - r a d i a n s

Figure 9.13b . D ifference-to-sum  ratio  corresponding to Fig. 9 .12a .
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9.3. Phase Comparison Monopulse
Phase comparison monopulse is similar to amplitude comparison monopulse 

in the sense that the target angular coordinates are extracted from one sum and 
two difference channels. The main difference is that the four signals produced 
in amplitude comparison monopulse will have similar phases but different 
amplitudes; however, in phase comparison monopulse the signals have the 
same amplitude and different phases. Phase comparison monopulse tracking 
radars use a minimum of a two-element array antenna for each coordinate (azi­
muth and elevation), as illustrated in Fig. 9.14. A phase error signal (for each 
coordinate) is computed from the phase difference between the signals gener­
ated in the antenna elements.

Figure 9.14. Single coordinate phase comparison monopulse antenna.

Consider Fig. 9.14; since the angle a  is equal to ,  + л / 2 , it follows that

target

d

(9.12)

2 d2 = R + 4  -  dR sin,

and since d « R we can use the binomial series expansion to get

(9.13)
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Similarly,

(9.14)

The phase difference between the two elements is then given by

Ф = — (Ri -  R2) = — d sinф (9.15)

where X is the wavelength. The phase difference ф is used to determine the 
angular target location. Note that if ф = 0 , then the target would be on the 
antenna’s main axis. The problem with this phase comparison monopulse tech­
nique is that it is quite difficult to maintain a stable measurement of the off 
boresight angle ф, which causes serious performance degradation. This prob­
lem can be overcome by implementing a phase comparison monopulse system 
as illustrated in Fig. 9.15.

The (single coordinate) sum and difference signals are, respectively, given

where the S1 and S2 are the signals in the two elements. Now, since S1 and
S2 have similar amplitude and are different in phase by ф, we can write

by

Е(ф) = S1 + S2 

Д(ф) = Si -  S2

(9.16)

(9.17)

Si = S2 ej (9.18)

It follows that

Д(ф) = S2( 1 -  e ;ф) (9.19)

Figure 9.15. Single coordinate phase monopulse antenna, 
with sum and difference channels.
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E ( , )  = S 2 ( 1  + е~УФ) (9.20)

The phase error signal is computed from the ratio A/E. More precisely,

which is purely imaginary. The modulus of the error signal is then given by

This kind of phase comparison monopulse tracker is often called the half-angle 
tracker.

9.4. Range Tracking
Target range is measured by estimating the round-trip delay of the transmit­

ted pulses. The process of continuously estimating the range of a moving target 
is known as range tracking. Since the range to a moving target is changing with 
time, the range tracker must be constantly adjusted to keep the target locked in 
range. This can be accomplished using a split gate system, where two range 
gates (early and late) are utilized. The concept of split gate tracking is illus­
trated in Fig. 9.16, where a sketch of a typical pulsed radar echo is shown in the 
figure. The early gate opens at the anticipated starting time of the radar echo 
and lasts for half its duration. The late gate opens at the center and closes at the 
end of the echo signal. For this purpose, good estimates of the echo duration 
and the pulse center time must be reported to the range tracker so that the early 
and late gates can be placed properly at the start and center times of the 
expected echo. This reporting process is widely known as the “designation pro­
cess.”

The early gate produces positive voltage output while the late gate produces 
negative voltage output. The outputs of the early and late gates are subtracted, 
and the difference signal is fed into an integrator to generate an error signal. If 
both gates are placed properly in time, the integrator output will be equal to 
zero. Alternatively, when the gates are not timed properly, the integrator output 
is not zero, which gives an indication that the gates must be moved in time, left 
or right depending on the sign of the integrator output.

(9.21)

(9.22)
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Multiple Target Tracking
Track-while-scan radar systems sample each target once per scan interval, 

and use sophisticated smoothing and prediction filters to estimate the target 
parameters between scans. To this end, the Kalman filter and the Alpha-Beta- 
Gamma ( a P y ) filter are commonly used. Once a particular target is detected, 
the radar may transmit up to a few pulses to verify the target parameters, before 
it establishes a track file for that target. Target position, velocity, and accelera­
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in 
this part. First, an overview of state representation for Linear Time Invariant 
(LTI) systems is discussed. Then, second and third order one-dimensional 
fixed gain polynomial filter trackers are developed. These filters are, respec­
tively, known as the ap  and aP y filters (also known as the g-h and g-h-k fil­
ters). Finally, the equations for an w-dimensional multi-state Kalman filter are 
introduced and analyzed. As a matter of notation, small case letters, with an 
underbar, are used.

9.5. Track-While-Scan (TWS)
Modern radar systems are designed to perform multi-function operations, 

such as detection, tracking, and discrimination. With the aid of sophisticated 
computer systems, multi-function radars are capable of simultaneously track­
ing many targets. In this case, each target is sampled once (mainly range and 
angular position) during a dwell interval (scan). Then, by using smoothing and 
prediction techniques future samples can be estimated. Radar systems that can 
perform multi-tasking and multi-target tracking are known as Track-While- 
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for 
that detection; this ensures that sequential detections from that target are pro­
cessed together to estimate the target’s future parameters. Position, velocity, 
and acceleration comprise the main components of the track file. Typically, at 
least one other confirmation detection (verify detection) is required before the 
track file is established.

Unlike single target tracking systems, TWS radars must decide whether each 
detection (observation) belongs to a new target or belongs to a target that has 
been detected in earlier scans. And in order to accomplish this task, TWS radar 
systems utilize correlation and association algorithms. In the correlation pro­
cess each new detection is correlated with all previous detections in order to 
avoid establishing redundant tracks. If a certain detection correlates with more 
than one track, then a pre-determined set of association rules is exercised so

© 2004 by Chapman & Hall/CRC CRC Press LLC



that the detection is assigned to the proper track. A simplified TWS data pro­
cessing block diagram is shown in Fig. 9.17.

Choosing a suitable tracking coordinate system is the first problem a TWS 
radar has to confront. It is desirable that a fixed reference of an inertial coordi­
nate system be adopted. The radar measurements consist of target range, veloc­
ity, azimuth angle, and elevation angle. The TWS system places a gate around 
the target position and attempts to track the signal within this gate. The gate 
dimensions are normally azimuth, elevation, and range. Because of the uncer­
tainty associated with the exact target position during the initial detections, a 
gate has to be large enough so that targets do not move appreciably from scan 
to scan; more precisely, targets must stay within the gate boundary during suc­
cessive scans. After the target has been observed for several scans the size of 
the gate is reduced considerably.

Figure. 9.17. Simplified block diagram of TWS data processing.

Gating is used to decide whether an observation is assigned to an existing 
track file, or to a new track file (new detection). Gating algorithms are nor­
mally based on computing a statistical error distance between a measured and 
an estimated radar observation. For each track file, an upper bound for this 
error distance is normally set. If the computed difference for a certain radar 
observation is less than the maximum error distance of a given track file, then 
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance 
of a given track are said to correlate with that track. For each observation that 
does not correlate with any existing tracks, a new track file is established 
accordingly. Since new detections (measurements) are compared to all existing 
track files, a track file may then correlate with no observations or with one or 
more observations. The correlation between observations and all existing track 
files is identified using a correlation matrix. Rows of the correlation matrix
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represent radar observations, while columns represent track files. In cases 
where several observations correlate with more than one track file, a set of pre­
determined association rules can be utilized so that a single observation is 
assigned to a single track file.

9.6. State Variable Representation o f an LTI System
A linear time invariant system (continuous or discrete) can be described 

mathematically using three variables. They are the input, output, and the state 
variables. In this representation, any LTI system has observable or measurable 
objects (abstracts). For example, in the case of a radar system, range may be an 
object measured or observed by the radar tracking filter. States can be derived 
in many different ways. For the scope of this book, states of an object or an 
abstract are the components of the vector that contains the object and its time 
derivatives. For example, a third-order one-dimensional (in this case range) 
state vector representing range can be given by

where R , R , and R are, respectively, the range measurement, range rate 
(velocity), and acceleration. The state vector defined in Eq. (9.23) can be rep­
resentative of continuous or discrete states. In this book, the emphasis is on 
discrete time representation, since most radar signal processing is executed 
using digital computers. For this purpose, an n-dimensional state vector has the 
following form:

where the superscript indicates the transpose operation.

The LTI system of interest can be represented using the following state equa­
tions:

where: x is the value of the n x 1 state vector; y  is the value of the p  x 1 out­
put vector; w is the value of the m x 1 input vector; A is an n x n matrix; B 
is an n x m matrix; C is p  x n matrix; and D is an p  x m matrix. The

R
(9.23)

R

(9.24)

x ( t) = A x (t) + Bw( t) (9.25)

y (t) = C x (t) + Dw(t) (9.26)
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homogeneous solution (i.e., w = 0 ) to this linear system, assuming known 
initial condition x (0 ) at time to, has the form

x (t) = Ф(t -  to)X(t -  to) (9.27)

The matrix Ф is known as the state transition matrix, or fundamental matrix, 
and is equal to

\ A( t -  to)ф(t -  to) = e 

Eq. (9.28) can be expressed in series format as

(9.28)

Ф(t -  to) |t = eA(0 = I + A t + A22- + ... = ^ Ak tk

к = o
2 ! k!

(9.29)

Example:

Compute the state transition matrix fo r an LTI system when

A = o 1 

-o.5 - 1

Solution:

The state transition matrix can be computed using Eq. (9.29). For this pur-
2 3pose, compute A and A __It follows

A 2 =
1

- 1
1 1

2 A3 = 2 2
1 1 1 o

_ 2 2 _ 4

Therefore,

Ф =

-1--t2 -1--t3

1 + o t -  —  + —  +
2! 3!

1 i t 2 4-t3
o -  - 1 + 2—  —  +

2 2! 3!

1 13
t2 20 + t -  -  + —  + ...
2! 3!

1 12
1 - 1 + 2_  + ot- + .

2! 3!

The state transition matrix has the following properties (the proof is left as 
an exercise):

1. Derivative property

ОТ
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—Ф (t -  to) = AФ (t -  to) (9.30)
d t— —
d

2. Identityproperty

Ф(to -  to) = Ф(0) = I  (9.31)

3. Initial value property

! Ф( t -  to)
= A (9.32)

t = to
4. Transition property

Ф(t2 -  to) = Ф(t2 - 11 )Ф (t1 -  to) ; to < t1 < t2 (9.33)

5. Inverse property

Ф(to -  t1) = Ф-1(t1 -  to) (9.34)

6. Separation property

Ф(t1 -  to) = Ф(t1 )Ф-1 (to) (9.35)

The general solution to the system defined in Eq. (9.25) can be written as

t

x (t) = Ф(t -  to)x ( to) + ^Ф (t -  x)Bw (x)dx (9.36)

to

The first term of the right-hand side of Eq. (9.36) represents the contribution 
from the system response to the initial condition. The second term is the contri­
bution due to the driving force w . By combining Eqs. (9.26) and (9.36) an 
expression for the output is computed as

y (t)  = Ce ( o)x (to) + J [ CeA(t t)B -  DS (t -  x)]w(x)dx (9.:37)

Note that the system impulse response is equal to Ce B -  DS ( t ) .

The difference equations describing a discrete time system, equivalent to 
Eqs. (9.25) and (9.26), are

x(n + 1 ) = A x(n) + Bw(n) (9.38)

y (n) = C x (n) + Dw(n) (9.39)

o
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where n defines the discrete time nT and T is the sampling interval. All other 
vectors and matrices were defined earlier. The homogeneous solution to the 
system defined in Eq. (9.38), with initial condition x (no) ,  is

x( n) = A ox (n o) (9.40)

In this case the state transition matrix is an n x n matrix given by

Ф(n, no) = Ф (n -  no) = A o (9.41)

The following is the list of properties associated with the discrete transition 
matrix

Ф(n + 1 - no) = AФ (n - no) (9.42)

Ф(no -  no) = Ф(o) = I  (9.43)

Ф( no + 1 -  no) = Ф( 1) = A (9.44)

ф(n2 -  no) = ф(n2 -  ^ )Ф (n1 -  no) (9.45)

ф(no -  n  ) = Ф 1(n1 -  no) (9.46)

Ф(n1 -  no) = Ф(n1 )Ф 1(no) (9.47)

The solution to the general case (i.e., non-homogeneous system) is given by

n  -  1

x (n) = Ф(n -  no)x (no) + Z Ф (n -  m -  1)Bw(m) (9.48)

m  = no

It follows that the output is given by

n  -  1

y ( n) = CФ(n -  no)x (no) + C Ф(n -  m -  1 )Bw(m) + Dw(n) (9.49)

m = no

where the system impulse response is given by

n  - 1

h (n) = Z C Ф(n -  m -  1)B §(m) + D8 (n) (9.50)
m = no

Taking the Z-transform for Eqs. (9.38) and (9.39) yields
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y  (z) = Cx( z) + Dw( z) (9.52) 

Manipulating Eqs. (9.51) and (9.52) yields

x( z) = [ zI -  A] 1Bw(z) + [ zI -  A] 1 zx( o ) (9.53)

y  (z) = { C [ zI -  A ]-1 B + D } w (z) + C [ zI -  A ] - 1zx( o ) (9.54) 

It follows that the state transition matrix is

Ф( z) = z [zI -  A ]-1 = [I -  z^A ]-1 (9.55) 

and the system impulse response in the z-domain is

h (z) = CФ( z) z~lB + D (9.56)

z x (  z) = Ax( z) + Bw( z) + zx( o ) (9.51)

9.7. The LTI System o f Interest
For the purpose of establishing the framework necessary for the Kalman fil­

ter development, consider the LTI system shown in Fig. 9.18. This system 
(which is a special case of the system described in the previous section) can be 
described by the following first order differential vector equations

x (t) = A x ( t) + u( t) (9.57)

y ( t) = G x(t) + v ( t) (9.58)

where y  is the observable part of the system (i.e., output), u is a driving force, 
and v is the measurement noise. The matrices A and G vary depending on the 
system. The noise observation v is assumed to be uncorrelated. If the initial 
condition vector is x ( to) ,  then from Eq. (9.36) we get

t

x ( t) = Ф(t -  to)x( to) + ^Ф (t -  t)u (t)d x  (9.59)

to

The object (abstract) is observed only at discrete times determined by the 
system. These observation times are declared by discrete time nT where T is 
the sampling interval. Using the same notation adopted in the previous section, 
the discrete time representations of Eqs. (9.57) and (9.58) are

x (n) = A x (n -  1) + u(n) (9.60)
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y ( n) = G x (n ) + v (n ) (9.61)

The homogeneous solution to this system is given in Eq. (9.27) for continuous 
time, and in Eq. (9.4o) for discrete time.

Figure 9.18. An LTI system.

The state transition matrix corresponding to this system can be obtained 
using Taylor series expansion of the vector x . More precisely,

j 2
x = x + Tx + — x + ...

x = x + Tic + ... 
x = x + ...

It follows that the elements of the state transition matrix are defined by

Ф М  = J T - !  " ( j  - ' )! 1 < i, j  < n 
H o j  < i

Using matrix notation, the state transition matrix is then given by

(9.62)

(9.63)

Ф =

t2

1 T V. .
o 1 T .
o o 1 ...

(9.64)

The matrix given in Eq. (9.64) is often called the Newtonian matrix.
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9.8. Fixed-Gain Tracking Filters
This class of filters (or estimators) is also known as “Fixed-Coefficient” fil­

ters. The most common examples of this class of filters are the ap  and aPy 
filters and their variations. The ap  and aP y trackers are one-dimensional sec­
ond and third order filters, respectively. They are equivalent to special cases of 
the one-dimensional Kalman filter. The general structure of this class of esti­
mators is similar to that of the Kalman filter.

The standard aP y filter provides smoothed and predicted data for target 
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor­
rector linear recursive filter. This filter can reconstruct position, velocity, and 
constant acceleration based on position measurements. The aP y filter can also 
provide a smoothed (corrected) estimate of the present position which can be 
used in guidance and fire control operations.

For the purpose of the discussion presented in the remainder of this chapter, 
the following notation is adopted: x (n|m) represents the estimate during the 
nth sampling interval, using all data up to and including the mth sampling 
interval; y n is the nth measured value; and en is the nth residual (error).

The fixed-gain filter equation is given by

x(n|n) = Фx(n -  1 |n -  1) + K [y n -  GФx(n -  1 |n -  1)] (9.65)

Since the transition matrix assists in predicting the next state,

The term enclosed within the brackets on the right hand side of Eq. (9.67) is 
often called the residual (error) which is the difference between the measured 
input and predicted output. Eq. (9.67) means that the estimate of x (n) is the 
sum of the prediction and the weighted residual. The term Gx( n|n -  1) repre­
sents the prediction state. In the case of the aP y estimator, G is the row vector 
given by

Notation:

x (n + 1 |n ) = Фx( n|n ) 

Substituting Eq. (9.66) into Eq. (9.65) yields

(9.66)

x (n|n) = x (n|n -  1) + K[y n -  Gx(n|n -  1)] (9.67)

(9.68)

and the gain matrix K  is given by
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K  =

a  
р/ T

у/ T

(9.69)

One of the main objectives of a tracking filter is to decrease the effect of the 
noise observation on the measurement. For this purpose the noise covariance 
matrix is calculated. More precisely, the noise covariance matrix is

C(n|n) = E{(x(n|n) )x(n|n)} ; yn = vn (9.70)

where E indicates the expected value operator. Noise is assumed to be a zero 
mean random process with variance equal to ctv . Additionally, noise measure­
ments are also assumed to be uncorrelated,

E {VnVm} =
5ctv

o

Eq. (9.65) can be written as

x(n|n) = Ax(n -  1 |n -  1 ) + Kyn

where

A = (I -  KG )Ф 

Substituting Eqs. (9.72) and (9.73) into Eq. (9.7o) yields

C(n|n) = E{(Ax(n -  1 |n -  1) + Kyn)(Ax(n -  1 |n -  1) + Kyn)t} 

Expanding the right hand side of Eq. (9.74) and using Eq. (9.71) give

C(n|n) = AC(n -  1 |n -  1 )A  + K<52vK  

Under the steady state condition, Eq. (9.75) collapses to

C (n|n) = ACAt + K^VK 

where C is the steady state noise covariance matrix. In the steady state,

C(n|n) = C(n -  1 |n -  1 ) = C fo r  any n

(9.71)

(9.72)

(9.73)

(9.74)

(9.75)

(9.76)

(9.77)

Several criteria can be used to establish the performance of the fixed-gain 
tracking filter. The most commonly used technique is to compute the Variance 
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker 
is noise measurements. It follows that in the steady state case, the VRR is the
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steady state ratio of the output variance (auto-covariance) to the input measure­
ment variance.

In order to determine the stability of the tracker under consideration, con­
sider the Z-transform for Eq. (9.72),

x (z) = Az~lx (z) + Kyn (z ) (9.78)

Rearranging Eq. (9.78) yields the following system transfer functions:

h (z) = x( z)  = (I -  Az-  )-1K (9.79)
Уп( z)

where (I  -  Az- ) is called the characteristic matrix. Note that the system trans­
fer functions can exist only when the characteristic matrix is a non-singular 
matrix. Additionally, the system is stable if and only if the roots of the charac­
teristic equation are within the unit circle in the z-plane,

|(I -  Az-  )| = o (9.80)

The filter’s steady state errors can be determined with the help of Fig. 9.19. 
The error transfer function is

y  (z)
e(z) = 1 ~ h( ) <9-81>1 + h (z)

and by using Abel’s theorem, the steady state error is

ex = lim e( t) = lim (z— e(z) (9.82)
t z ^ 1  ̂ z 0

Substituting Eq. (9.82) into (9.81) yields

z -  1 у  (z)
eот = lim ^  1- = - , (9.83)z ̂  1 z 1 + h (z)

y  (z)

+©■e (z) x (z)

Figure 9 .19 . S teady state e r ro r  com putation.
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9.8.1. The aP Filter
The ap  tracker produces, on the nth observation, smoothed estimates for 

position and velocity, and a predicted position for the (n + 1 )th observation. 
Fig. 9.2o shows an implementation of this filter. Note that the subscripts “p” 
and “s” are used to indicate, respectively, the predicated and smoothed values. 
The ap  tracker can follow an input ramp (constant velocity) with no steady 
state errors. However, a steady state error will accumulate when constant 
acceleration is present in the input. Smoothing is done to reduce errors in the 
predicted position through adding a weighted difference between the measured 
and predicted values to the predicted position, as follows:

A general form for the covariance matrix was developed in the previous sec­
tion, and is given in Eq. (9.75). In general, a second order one-dimensional 
covariance matrix (in the context of the a  p filter) can be written as

xs(n) = x (n|n) = xp(n) + a(xo(n) - xp(n)) 

xs(n) = x '(n|n) = xx(n -  1 ) + T (xo(n) -  xp(n))

(9.84)

(9.85)

xo is the position input samples. The predicted position is given by 

xp(n) = xs(n|n -  1) = xs(n -  1) + Txs(n -  1)

The initialization process is defined by

xs( 1 ) = xp (2 ) = xo ( 1 )

xs ( 1 ) = o

(9.86)

(9.87)

where, in general, Cxy is

Cxy = E {xy } (9.88)

By inspection, the ap  filter has

A = 1 -  a  (1 -  a )T  
-  = [-p / t ( 1  -  p)_

(9.89)
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K = a  
_р/ T

G = [ю ]

Ф = 1 T
o 1

(9.90)

(9.91)

(9.92)

Figure 9.20. An implementation of an ap  tracker.

Finally, using Eqs. (9.89) through (9.92) in Eq. (9.72) yields the steady state 
noise covariance matrix,

C =
a ( 4 -  2 a  -  P)

2a V-  3 ap  + 2 p

P(2a -  P)
T

2£
T2

(9.93)

It follows that the position and velocity VRR ratios are, respectively, given by

( VRR)x = C /oV = —---- 3 a P + 2 P
V ' x xx v a ( 4 -  2a  -  P)

( VRR)x = Cx x/oV = -1 _2J-V
T2 a ( 4 -  2a  -  P)

(9.94)

(9.95)

The stability of the ap  filter is determined from its system transfer func­
tions. For this purpose, compute the roots for Eq. (9.8o) with A from Eq. 
(9.89),

V
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|I -  Az  ̂ = 1 -  (2 -  a  -  P)z 1 + (1 -  a )z  2 = o 

Solving Eq. (9.96) for z yields

(9.96)

z 1,2 = 1 - a + J- ± ^ ( a - P ) 2 - 4 P (9.97)

and in order to guarantee stability

lz 1,2  < 1 (9.98)

Two cases are analyzed. First, z 1, 2 are real. In this case (the details are left as 
an exercise),

The system transfer functions can be derived by using Eqs. (9.79), (9.89), 
and (9.9o),

Up to this point all relevant relations concerning the ap  filter were made 
with no regard to how to choose the gain coefficients ( a  and p ). Before con­
sidering the methodology of selecting these coefficients, consider the main 
objective behind using this filter. The twofold purpose of the ap  tracker can 
be described as follows:

1. The tracker must reduce the measurement noise as much as possible.
2. The filter must be able to track maneuvering targets, with as little residual 

(tracking error) as possible.

The reduction of measurement noise is normally determined by the VRR 
ratios. However, the maneuverability performance of the filter depends heavily 
on the choice of the parameters a  and p .

A special variation of the ap  filter was developed by Benedict and Bord- 
ner1, and is often referred to as the Benedict-Bordner filter. The main advan-

1. Benedict, T. R. and Bordner, G W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations, IRE Transaction on Automatic Control, AC-7,
July 1962, pp. 27-32.

P > o ; a  > -p  
The second case is when the roots are complex; in this case we find

a > o (9.100)

(9.99)

hx( z )
hx( z )

(9.101)
z2 - z (  2 -  a - P )  + (1 - a )  P z (z - 1)----- T------
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tage of the Benedict-Bordner is reducing the transient errors associated with 
the ap  tracker. This filter uses both the position and velocity VRR ratios as 
measures of performance. It computes the sum of the squared differences 
between the input (position) and the output when the input has a unit step 
velocity at time zero. Additionally, it computes the squared differences 
between the real velocity and the velocity output when the input is as described 
earlier. Both error differences are minimized when

a 2
P = t"” (9.102)

2 -  a

In this case, the position and velocity VRR ratios are, respectively, given by 

( VRR)x = a ( 6 - 5 a )  (9.103)
a 2 8 a  + 8

( VRR)x = 4 a 23 / (2 - a )  (9.104)
T2 a 2 8 a  + 8

Another important sub-class of the ap  tracker is the critically damped filter, 
often called the fading memory filter. In this case, the filter coefficients are 
chosen on the basis of a smoothing factor £ , where o < £ < 1. The gain coeffi­
cients are given by

2
a  = 1 -  £ (9.105)

P = (1 - £ ) 2 (9.106)
Heavy smoothing means £ ^  1 and little smoothing means £ ^  o . The ele­
ments of the covariance matrix for a fading memory filter are

Cxx = (1 + 4£ + 5£2) (9.107)
( 1  + £)3

Cxx = Cxx = T J - - --L3 (1 + 2£ + 3 £2) ct̂  (9.108)
T ( 1  + £)3

Cxx = 4  (1 - £ ) 2 ct2 (9.109)
T ( 1  + £)3

9.8.2. The ” Py Filter
The aP y tracker produces, for the nth observation, smoothed estimates of 

position, velocity, and acceleration. It also produces the predicted position and
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velocity for the (n + 1)th observation. An implementation of the aP y tracker 
is shown in Fig. 9.21.

The aP y tracker will follow an input whose acceleration is constant with no 
steady state errors. Again, in order to reduce the error at the output of the 
tracker, a weighted difference between the measured and predicted values is 
used in estimating the smoothed position, velocity, and acceleration as follows:

xs(n) = xv(n) + a(xo(n) -  xv(n))

xs(n) = xs(n -  1) + Txs(n -  1) + e (xo(n) -  xp(n))

xs(n) = xs(n -  1) + Tv (xo(n) -  xp(n))

(9.110)

(9.111)

(9.112)

xp(n + 1) = xs(n) + T xs(n) + у  xs(n)

and the initialization process is

(9.113)

xs( 1 ) = xp (2 ) = xo ( 1 )

x s ( 1 ) = xs ( 1 ) = x s( 2 ) = o

xo (2 ) -  xo ( 1 )
x s( 2) = T

Figure 9 .21. A n  im plem entation fo r  an a P y  tracker.
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x s( 3 )  =
xo(3) + x0( 1 ) - 2 x 0(2-

T2

Using Eq. (9.63) the state transition matrix for the aP y filter is

Ф =

TV
1 T -T--

2

o 1 T 
o o 1

(9.114)

The covariance matrix (which is symmetric) can be computed from Eq. (9.76). 
For this purpose, note that

K  =
a  

p/T

and

A = (I -  KG )Ф =

_у/ T

G = [1 o o]

1 -  a  ( 1  -  a )T ( 1  -  a ) T /2  

-Р / T -  p + 1 ( 1  -  p/2 ) T

(9.115)

(9.116)

- 2  у/ T -2 y /T (1 -  у)

(9.117)

Substituting Eq. (9.117) into (9.76) and collecting terms the VRR ratios are 
computed as

( VRR) = VP(2a + 2[3 -  3a[3) -  ay (4  -  2 a  -  -3- 
x (4 -  2 a  -  P)(2aP + a y  -  2y)

( VRR), = --̂ 3̂ ^ 4 ^ V̂ ^^^ :!(^^co)
x T2(4 -  2 a  -  P )(2 ap  + a y  -  2 y)

( VRR)x =
T (4 -  2 a  -  P )(2 ap  + a y  -  2 y)

(9.118)

(9.119)

(9.120)

As in the case of any discrete time system, this filter will be stable if and only if 
all of its poles fall within the unit circle in the z-plane.

The aP y characteristic equation is computed by setting
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\l-A z   ̂ = o (9.121)

Substituting Eq. (9.117) into (9.121) and collecting terms yield the following 
characteristic function:

3 2f(z ) = z + ( -  3 a  + p + у)z + (3 - p  - 2 a  + y ) z -  (1 - a )  (9.122) 

The aP y becomes a Benedict-Bordner filter when

2p -  a / a  + P + 2-j = o (9.123)

Note that for у = o Eq. (9.123) reduces to Eq. (9. Ю2). For a critically damped 
filter the gain coefficients are

3
a  = 1 -  £ (9.124)

P = 1.5( 1 - £2)(1 - £ )  = 1.5 (1 -  £)2( 1 + £) (9.125)

Y = (1 - £ ) 3 (9.126)

Note that heavy smoothing takes place when £ ^  1, while £ = o means that 
no smoothing is present.

MATLAB Function “ghk_tracker.m”

The function “ghktracker.m” implements the steady state ” Py filter. It is 
given in Listing 9.2 in Section 9.11. The syntax is as follows:

[residual, estimate] = ghk tracker (X0, smoocof, inp, npts, T, nvar)

where

Symbol Description Status
X0 initial state vector input

smoocof desired smoothing coefficient input
inp array of position measurements input
npts number ofpoints in input position input

T sampling interval input
nvar desired noise variance input

residual array of position error (residual) output
estimate array of predicted position output
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Note that “ghktracker.m” uses MATLAB’s function “normrnd.m” to gener­
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 
If this toolbox is not available to the user, then “ghk tracker.m” function-call 
must be modified to

[residual, estimate] = ghktrackerl (X0, smoocof, inp, npts, T)

which is also part of Listing 9.2. In this case, noise measurements are either to 
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk tracker.m and ghk trackerl.m, 
consider the inputs shown in Figs. 9.22 and 9.23. Fig. 9.22 assumes an input 
with lazy maneuvering, while Fig. 9.23 assumes an aggressive maneuvering 
case. For this purpose, the program called “fig9_21.m” was written. It is given 
in Listing 9.3 in Section 9.11.

Figs. 9.24 and 9.25 show the residual error and predicted position corre­
sponding (generated using the program “fig9_21.m”) to Fig. 9.22 for two 
cases: heavy smoothing and little smoothing with and without noise. The noiseV
is white Gaussian with zero mean and variance of ctv = o.o5 . Figs. 9. 26 and 
9.27 show the residual error and predicted position corresponding (generated 
using the program “fig9_20.m”) to Fig. 9.23 with and without noise.

S a m  ple n um be r

F igure 9.22. Position (tru th -d ata); lazy m aneuvering.
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S a m  ple n u m be r

Figure 9.23. Position (truth-data); aggressive maneuvering.

S a m  ple n u m b e r

Figure 9 .24a-1. Pred icted  and tru e  position. £ = o.1 (i.e., la rg e gain
coefficients). No noise present.
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15 20 25  30 35 40  45  50 

S a m  ple n um b e r

Figure 9.24a-2. Position residual (error). Large gain coefficients.
No noise. The error settles to zero fairly quickly.

S a m  ple n um be r

Figure 9 .24b -1. Predicted  and tru e  position. £ = o .9  (i.e., sm all
gain coefficients). No noise present.
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0 5 0  1 00  1 50  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  5 0 0  

S a m  ple n um b e r

Figure 9.24b-2. Position residual (error). Small gain coefficients. No noise.
It takes the filter longer time for the error to settle down.

S a m  ple n um b e r

Figure 9 .25a-1. Pred icted  and tru e  position. £, = o .1  (i.e., large
gain coefficients). Noise is present.
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0 5 0  100  1 50  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  5 0 0  
S a m  ple n um b e r

Figure 9.25a-2. Position residual (error). Large gain coefficients. Noise present.
The error settles down quickly. The variation is due to noise.

S a m  p l e  n um b e r

Figure 9 .25b -1. Predicted  and tru e  position. £ = o.9 (i.e., sm all gain
coefficients). Noise is present.
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5 0 0  100 0

S a m  ple n um be r

Figure 9.25b-2. Position residual (error). Small gain coefficients. Noise present.
The error requires more time before settling down. The 
variation is due to noise.

S a m  ple n um be r

Figure 9.26a. P redicted and tru e position. £ = o .1  (i.e., large gain
coefficients). Noise is present.

0
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Sam  p le  num be r

Figure 9.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.

S a m p le  n u m b e r

Figure 9.27a. Predicted and true position. £, = o.8 (i.e., small gain coefficients).
Noise is present.

x 1 0
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Sam  p le num be r

Figure 9.27b. Position residual (error). Small gain coefficients. Noise present. The 
error stays fairly large; however, its average is around zero. The 
variation is due to noise.

9.9. The Kalman Filter
The Kalman filter is a linear estimator that minimizes the mean squared error 

as long as the target dynamics are modeled accurately. A ll other recursive f i l ­
ters, such as the aPy and the Benedict-Bordner filters, are special cases of the 
general solution provided by the Kalman filter for the mean squared estimation 
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. Th is  means that the same 
f ilte r can be used fo r  a variety o f maneuvering target environments.

2. The Kalman f ilte r gain computation adapts to varying detection histories, 
including missed detections.

3. The Kalman f ilte r provides an accurate measure o f the covariance matrix. 
Th is  allows fo r better implementation o f the gating and association pro­
cesses.

4. The Kalman f ilte r makes it  possible to partia lly compensate fo r the effects 
o f mis-correlation and mis-association.

Many derivations of the Kalman filter exist in the literature; only results are 
provided in this chapter. Fig. 9.28 shows a block diagram for the Kalman filter.
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The Kalman filte r equations can be deduced from Fig. 9.28. The filte ring equa­
tion is

x (n|n) = x s(n ) = x (n|n -  1) + K (n )[y (n) -  G x(n|n -  1)] (9.127) 

The measurement vector is

У  (n) = Gx( n) + v (n) (9.128)

where v (n) is  zero mean, white Gaussian noise with covariance ^ c,

^c = E {У (n ) y t(n )}  (9.129)

The gain (weight) vector is  dynamically computed as

K ( n) = P (n|n -  1 )Gt[G P(n|n -  1 )G t + ^ c]-1 (9.130)

where the measurement noise matrix P  represents the predictor covariance 
matrix, and is  equal to

P  (n + 1 |n) = E  { xs( n + 1) x *s( n ) }  = ФР (n|n )Ф + Q (9.131)

where Q is  the covariance matrix fo r the input u ,

Q = E { u(n ) u (n )}  (9.132)
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The corrector equation (covariance of the smoothed estimate) is

P  (n|n) = [ I  -  K  (n ) G] P  (n|n -  1) (9.133)

Finally, the predictor equation is

x  (n + 1 |n ) = Фx (n|n) (9.134)

9.9.1. The Singer aPy -Kalman Filter

The Singer1 filter is a special case of the Kalman where the filter is gov­
erned by a specified target dynamic model whose acceleration is a random pro­
cess with autocorrelation function given by

- N
V TmE { x (t) x (t + t1)} = aa e (9.135)

where T m is the correlation time of the acceleration due to target maneuvering 
or atmospheric turbulence. The correlation time T m may vary from as low as 
10 seconds for aggressive maneuvering to as large as 60 seconds for lazy 
maneuvering cases.

Singer defined the random target acceleration model by a first order Markov 
process given by

x(n + 1) = Pm x(n ) + 71 -  pm am w (n ) (9.136)

where w (n ) is a zero mean, Gaussian random variable with unity variance, 
am is the maneuver standard deviation, and the maneuvering correlation coef­
ficient Pm is given by

T_
TmPm = e m (9.137)

The continuous time domain system that corresponds to these conditions is the 
same as the Wiener-Kolmogorov whitening filter which is defined by the dif­
ferential equation

d V(t) = -  PmV(t) + w (t) (9.138)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu­
vering Targets, IE E E  Transaction on Aerospace and Electronics, AES-5, July, 1970, 
pp. 473-483.
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where Pm is  equal to 1 / x m . The maneuvering variance using Singer’s model 
is  given by

A22 _  ‘ ~ m a x г i  +  - p _  p 
m о L 1 +  4  p m a x P oJ (9.139)

A max is  the maximum target acceleration with probability pmax and the term 
po defines the probability that the target has no acceleration.

The transition matrix that corresponds to the Singer filte r is  given by

Ф _

1 T  i  ( -  1 + PmT + Pm)
em

0 1 в -(1  -Pm )
m

0 0 P m

(9.140)

Note that when T Pm _  T / x m is  small (the target has constant acceleration), 
then Eq. (9.140) reduces to Eq. (9.114). Typically, the sampling interval T  is  
much less than the maneuvering time constant xm ; hence, Eq. (9.140) can be 
accurately replaced by its second order approximation. More precisely,

Ф _
1 T  T 2/2  
0 1 T  (1 - T /  2 T m)

0 0  Pm

(9.141)

The covariance matrix was derived by Singer, and it is  equal to

C _
2 a f

C11 C12 C13 

C21 C22 C23 

C31 C32 C33

(9.142)

where

2 1
C11 _  CTx _  5

2em
1 -  e 2PmT + 2 P mT  + ^ - f -  -  2 P m T 2 -  4 P mT e - PmT (9.143)

C12 _  C21 _  - 4 - [ e~2PmT + 1 -2 e-m T + 2PmTe^PmT-2 P m T + р ^ / ] (9.144)
2 P i

1 -2 PmT -P m T,
C13 _  C31 _  [ 1 -e  ™ -2  Pm Te  ]

2 em
(9.145)

m
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П  1 г -■ -emT -j -VPmT ,oCvv = — [4e -  3-e + 2 PmT]
vem

C C 1 [ 2 PmT , 1 V -PmT]
CV3 = C3V = —7 [ e + 1 -  2 e ]

2 em

C 1 [ 1 ^  PmT]
= vem 11 - e ]

Two lim iting cases are of interest:

1. The short sampling interval case ( T  « T m),

(9.146)

(9.147)

(9.148)

lim  C =
PmT ̂  0

2 a m
T 5/20 T /8  T 3/6  

T /8  T 3/3  T /2  

T 3/6  t 2/2  T  _ 

and the state transition matrix is  computed from Eq. (9.141) as

(9.149)

lim  Ф =
PmT ̂  0 -

1 T  T /2  
0 1 T  

0 0 1

(9.150)

which is  the same as the case fo r the aPy filte r (constant acceleration).

2. The long sampling interval ( T  » T m). Th is  condition represents the case 

when acceleration is  a white noise process. The corresponding covariance 
and transition matrices are, respectively, given by

lim  C = an
PmT

2 T  T m T 2 2--------  T т  т3 m m

V
T  т  V Т т  т1 '■'m m m

т , т .

(9.151)

lim  Ф =
PmT -

1 T  Т т ,  

0 1 т ,  

0 0 0

(9.152)

Note that under the condition that T  » т ,  , the cross correlation terms C13 and 
CV3 become very small. It  follows that estimates of acceleration are no longer

2 1
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available, and thus a two state filte r model can be used to replace the three state 
model. In  th is case,

C = 2 am т ,

Ф =

T 3 3 T 2 2 

T 2 2 T

1 T

0 1

(9.153)

(9.154)

9.9.2. Relationship between Kalman and aPy Filters

The relationship between the Kalman filte r and the aPy filte rs can be easily 
obtained by using the appropriate state transition matrix Ф , and gain vector K  
corresponding to the aPy in  Eq. (9.127). Thus,

x  (n|n) x (n|n - 1) M  n )

x (n|n) = x (n|n - 1) + kv( n )
x  (n|n) x (n|n - 1) ks( n )

[x 0(n) - x (n|n -  1)] (9.155)

with (see Fig. 9.21)

x (n | n -  1) = xs (n -  1) + T  x s (n -  1) + — xs (n -  1)

x (n|n -  1) = x s(n -  1) + T  x s(n -  1) 

x (n|n -  1) = x s(n -  1)

(9.156)

(9.157)

(9.158)

Comparing the previous three equations w ith the aPy filte r equations yields

a _

e
k

T = k

X k
T 2

(9.159)

Additionally, the covariance matrix elements are related to the gain coeffi­
cients by
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k 1
1

C „"

k2 _ ^  2 C12
C11 + CTv

k " C *

Eq. (9.160) indicates that the firs t  gain coefficient depends on the estimation 
error variance of the total residual variance, while the other two gain coeffi­
cients are calculated through the covariances between the second and third 
states and the firs t  observed state.

MATLAB Function “kalman_filter.m”

The function “ka lm anJilte r.m ” implements a state Singer-aPy Kalman f i l ­
ter. It  is  given in  L istin g  9.4 in  Section 9.11. The syntax is  as follows:

[residual, estimate] = kalm an_filter(npts, T, X0, inp, R, nvar)

where

Symbol Description Status

npts number ofpoints in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (9-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array of predicted position output

Note that “ka lm a n jilte r.m ” uses M A TLA B ’s function “normrnd.m ” to gener­
ate zero mean Gaussian noise, which is  part of M A TLA B ’s Statistics Toolbox.

To illustrate how to use the functions “kalman J ilte r.m ”, consider the inputs 
shown in  Figs. 9.22 and 9.23. Fig s. 9.29 and 9.30 show the residual error and 
predicted position corresponding to Figs. 9.22 and 9.23. These plots can be 
reproduced using the program “fig 9_28.m ” given in  L istin g  9.5 in  Section 
9.11.
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Figure 9.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman_fdter.m”.
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F ig u re  9.29b. Residua l corresponding to F ig . 9.29a.
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Figure 9.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman_filter.m”.

F ig u re  9.30b. Residua l corresponding to F ig . 9.30a.
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9.10. “MyRadar ” Design Case Study - Visit 9

9.10.1.Problem Statement

Implement a Kalman f ilte r tracker into the “MyRadar” design case study.

9.10.2. A Design1

Fo r th is purpose, the M A TLA B  G UI workspace entitled “kalman_gui.m” 
was developed. It  is  shown in  Fig . 9.31. In  th is design, the inputs can be in itia l­
ized to correspond to either target type (aircraft and m issile). Fo r example, 
when you click on the button “ResetM issile ,” the in itia l x- y-, and z-detection 
coordinates fo r the m issile are loaded into the “Starting Location ” field. The 
corresponding target velocity is  also loaded in  the “velocity in x  direction ” 
field. Fina lly, a ll other fields associated with the Kalman filte r are also loaded 
using default values that are appropriate fo r this design case study. Note that 
the user can alter these entries as appropriate.

Th is  program generates a fictitious trajectory fo r the selected target type. 
Th is  is  accomplished using the function “maketraj.m” . It  is  given in  Listing
9.6 in  Section 9.11. The user can either use th is program, or import their own 
specific trajectory. The function “maketraj.m” assumes constant altitude, and 
generates a manuevering trajectory in  the x-y  plane, as shown in  Fig . 9.32. Th is 
trajectory can be changed using the different fields in  the “trajectory Parame­
te r” fields.

Next the program corrupts the trajectory by adding white Guassian noise to 
it. Th is  is  accomplished by the function “addnoise.m” which is  given in  L is t ­
ing 9.7 in  Section 9.11. A six-state Kalman filte r named “ka lfilt.m ” is  then u ti­
lized to perform the tracking task. Th is  function is  given in  L istin g  9.8.

The azimuth, elevation, and range errors are input to the program using their 
corresponding fields on the GUI. In  this example, these entries are assumed 
constant throughout the simulation. In  practice, th is is  not true and these values 
w ill change. They are caluclated by the radar signal processor on a “per pro­
cessing interval” basis and then are input into the tracker. Fo r example, the 
standard deviation of the error in  the range measurement is

AR c CTr = ; = ----  (9.161)
л/2 x S N R  2 B * l2 x S N R

1. The MATLAB code in this section was developed by Mr. David Hall, Consultant to 
Decibel Research, Inc., Huntsville, Alabama.
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Figure 9.31. M A TLA B GUI workspace associated with the “MyRadar” design
case study- visit 9.
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where AR is  the range resolution, c is  the speed of light, B  is  the bandwidth, 
and SN R  is  the measurement SNR.

The standard deviation of the error in  the velocity measurement is

CTv = ---- . X (9.162)
2т 72 x SN R

where X is  the wavelength and т  is  the uncompressed pulsewidth. The stan­
dard deviation of the error in  the angle measurement is

CTa = -----.©  (9.163)
1.6 л/2 x SN R

where © is  the antenna beamwidth of the angular coordinate of the measure­
ment (azimuth and elevation).

In  this example, the radar is  located at (x, y, z ) = (0, 0, 0 ). Th is simulation 
calculates and plots the following outputs:

TABLE 9.1. Output list generated by the “kalman_gui.m” simulation

Figure # Description
9.32 uncorrupted input trajectory

9.33 corrupted input trajectory

9.34 corrupted and uncorrupted x-position

9.35 corrupted and uncorrupted y-position

9.36 corrupted and uncorrupted z-position

9.37 corrupted and filtered x-, y- and z-positions

9.38 predicted x-, y-, and z- velocities

9.39 position residuals

9.40 velocity residuals

9.41 covariance matrix components versus time

9.42 Kalman filter gains versus time

Fig. 9.32 through Fig . 9.42 shows typical outputs produced using this simu­
lation fo r the m issile.
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Figure 9.32. Missile uncorrupted trajectory.
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F ig u re  9.33. M is s ile  corrupted trajectory.
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Figure 9.36. Missile z-position.

F ig u re  9.37. M is s ile  tra jectory and filtered trajectory.
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Figure 9.38. Missile velocity filtered.
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Figure 9.40. Missile velocity residuals.

F ig u re  9.41. M iss ile  covariance m a trix  components ve rsus time.
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Figure 9.42. Kalman filter gains versus time.

9.11. MATLAB Program and Function Listings
Th is  section contains listing s of a ll M A TLA B  programs and functions used 

in  this chapter. Users are encouraged to rerun this code with different inputs in  
order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “mono_pulse.m”
function mono_pulse(phi0) 
eps = 0.0000001; 
angle = -p i:0.01:pi; 
y1 = sinc(angle + phi0); 
y2 = sinc((angle - phi0)); 
ysum = y1 + y2; 
y d if  = -y1 + y2; 
figure (1)
plot (angle,y1,'k',angle,y2, 'k'); 
grid;
xlabel ('Angle - radians’) 
ylabel ('Squintedpatterns')
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figure (2)
plot(angle,ysum,’k ’) ;
grid;
xlabel ('Angle - radians’) 
ylabel ( ’Sumpattern’) 
figure (3)
plot (angle,ydif,'k); 
grid;
xlabel ('Angle - radians’) 
ylabel ( ’Differencepattern’) 
angle = -pi/4:0.01:pi/4; 
y l  = sinc(angle + phi0); 
y2 = sinc((angle - phi0)); 
y d if  = -y l + y2; 
ysum = y l  + y2; 
dovrs = y d if  ./ysum; 
figure(4)
plot (angle,dovrs,’k ) ;  
grid;
xlabel ( ’Angle - radians’) 
ylabel ( ’voltage gain’)

Listing 9.2. MATLAB Function “ghk_tracker.m”
function [residual, estimate] = ghktracker (X0, smoocof, inp, npts, T, nvar) 
rn  = 1.;
%  read the in itia l estimate for the state vector 
X  = X 0 ;
theta = smoocof;
%compute values fo r  alpha, beta, gamma 
w l = 1. - (thetaA3);
w2 = 1.5 * (1. + theta) * ((1. - theta)A2) /  T; 
w3 = ((1. - theta)A3) /  ( TA2);
%  setup the transition matrix P H I  
P H I = [1. T  (TA2)/2.;0. 1. T;0. 0. 1.]; 
while rn  < npts ;

%use the transition matrix to predict the next state 
X N  = P H I  * X ;
error = (inp(rn) + normrnd(0,nvar)) - XN (1);
residual(rn) = error;
tmp1 = w1 * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
%  compute the next state
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X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1); 
rn  = rn  + 1.; 

end 
return

MATLAB Function “ghk_tracker1.m”

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T) 
rn  = 1.;
%  read the in itia l estimate fo r  the state vector 
X  = X 0 ;
theta = smoocof;
%compute values fo r  alpha, beta, gamma 
w1 = 1. - (thetaA3);
w2 = 1.5 * (1. + theta) * ((1. - theta)A2) /  T; 
w3 = ((1. - theta)A3) /  (TA2);
%  setup the transition matrix P H I  
P H I = [1. T  (TA2)/2.;0. 1. T;0. 0. 1.]; 
while rn  < npts ;

%use the transition matrix to predict the next state
X N  = P H I  * X ;
error = inp(rn) - XN (1);
residual(rn) = error;
tmp1 = w1 * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
%  compute the next state 
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1); 
rn  = rn  + 1.; 

end 
return

Listing 9.3. MATLAB Program “fig9_21.m”
clear a ll
eps = 0.0000001; 
npts = 5000; 
del = 1./ 5000.; 
t = 0. : d e l: 1.;
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%  generate input sequence
inp = 1.+ tA3 + .5 .*tA2 + cos(2.*pi*10 .*  t) ;
%  read the in itia l estimate fo r  the state vector 
X 0  = [2,.1,.01]';
%  th is is  the update interval in seconds 
T  = 100. * del;
%  th is is  the value o f the smoothing coefficient
x i = .91;
[residual, estimate] = ghktracker (X0, xi, inp, npts, T, .01); 
figure(1)
plot (residual(1:500)) 
xlabel ( ’Sample number’) 
ylabel ('Residual e rro r’) 
grid
figure(2)
N N  = 4999.; 
n = 1:NN;
plot (n,estimate(1:NN), 'b',n,inp(1:NN),'r') 
xlabel ( ’Sample number’) 
ylabel ('Position') 
legend ('Estimated','Input')

Listing 9.4. MATLAB Function “kalman_filter.m”
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N  = npts;
rn = 1 ;
%  read the in itia l estimate fo r  the state vector 
X  = X 0 ;
%  it  is  assumed that the measurement vector H = [1 ,0 ,0 ]
%  th is is  the state noise variance 
VAR = nvar;
%  setup the in itia l value fo r  the prediction covariance.
S  = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
%  setup the transition matrix P H I  
P H I = [1. T  (TA2)/2.; 0. 1. T; 0. 0. 1.];
%  setup the state noise covariance matrix 
Q(1,1) = (VAR * ( TA5)) /  20.;
Q(1,2) = (VAR * ( TA4)) / 8.;
Q(1,3) = (VAR * (TA3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (TA3)) / 3.;
Q(2,3) = (VAR * (TA2)) / 2.;
Q(3,1) = Q(1,3);
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Q(3,2) = Q(2,3);
Q(3,3) = VAR * T; 
while rn  < N  ;

%use the transition matrix to predict the next state 
X N  = P H I  * X ;
%  Perform error covariance extrapolation 
S  = P H I  * S  * P H I '  + Q;
%  compute the Kalman gains 
ak(1) = S(1,1) /  (S(1,1) + R ); 
ak(2) = S(1,2) /  (S(1,1) + R ); 
ak(3) = S(1,3) /  (S(1,1) + R );
%perform state estimate update:
error = inp(rn) + normrnd(0,R) - XN (1);
residual(rn) = error;
tmp1 = ak(1) * error;
tmp2 = ak(2) * error;
tmp3 = ak(3) * error;
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1);
%  update the error covariance 
S(1,1) = S(1,1) * (1. -ak(1));
S(1,2) = S(1,2) * (1. -ak(1));
S(1,3) = S(1,3) * (1. -ak(1));
S(2,1) = S(1,2);
S(2,2) = -ak(2) * S(1,2) + S(2,2);
S(2,3) = -ak(2) * S(1,3) + S(2,3);
S(3,1) = S(1,3);
S(3,3) = -ak(3) * S(1,3) + S(3,3); 
rn  = rn  + 1.; 

end

Listing 9.5. MATLAB Program “fig9_28.m”
clear a ll 
npts = 2000; 
del = 1/2000; 
t = 0:del:1;
inp = (1+.2 .*  t + .1 .*t.A2) + cos(2. * pi * 2.5 .*  t);
X 0  = [1 ,.1 ,.01]’;
%  it  is  assumed that the measurement vector H = [1 ,0 ,0 ]  
%  th is is  the update interval in seconds 
T  = 1.;
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%  enter the measurement noise variance 
R  = .035;
%  th is is  the state noise variance 
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual)
xlabel ( ’Sample number’)
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp)
axis tight
ylabel ( ’position - truth’) 
subplot(2,1,2) 
plot(estimate) 
axis tight
xlabel ( ’Sample number’) 
ylabel ( ’Predictedposition’)

Listing 9.6. MATLAB Function “maketraj.m”
function [tim es, trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, 
zamp, zperiod, samplingtime, deltat)
%  maketraj.m 
%  by David J. H a ll 
%  fo r  Bassem Mahafza 
%  17 June 2003 
%  17:01
%  USAGE: [tim es, trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, 
zamp, zperiod, samplingtime, deltat)
%  N O TE : a ll coordinates are in radar reference coordinates.
%  IN P U T S
%  name dimension explanation units
% -------  -------  ------------------  --------
%  start loc 
%  xvelocity 
%  yamp 
%  yperiod 
%  zamp 
%  zperiod 
%  samplingtime 
%  deltat 1 
%

3 X 1 starting location o f target t
1 velocity o f target m/s
1 amplitude o f oscillation y  direction 
1 period o f oscillation y  direction 
1 amplitude o f oscillation z  direction 
1 period o f oscillation z  direction 

length o f interval o f trajectory 
time between samples set

1
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%  O U T P U T S  
%
%  name dimension explanation units
% -------  ------------  ------------------  -------
%  times 1 X  samplingtime/deltat vector o f times 
%  corresponding to samples sec
%  trajectory 3 X  samplingtime/deltat trajectory x,y,z m 
%
times = 0: deltat: samplingtime ; 
x  = start_loc(1)+xvelocity. *tim es; 
i f  yperiod~=0 

y  = start_loc(2)+yamp*cos(2*pi*(1/yperiod).*times) ; 
else

y  = ones(1, length(times))*start_loc(2) ; 
end
i f  zperiod~=0 

z  = start_loc(3)+zamp*cos(2*pi*(1/zperiod).*times) ; 
else

z  = ones(1, length(times))*start_loc(3) ; 
end
trajectory = [ x ; y  ; z ] ;

Listing 9.7. MATLAB Function “addnoise.m”
function [noisytraj ]  = addnoise(trajectory, sigmaaz, sigmael, sigmarange)
%  addnoise.m 
%  by David J. H a ll 
%  fo r  Bassem Mahafza 
%  10 June 2003 
%  11:46
%  USAGE: [no isytra j]  = addnoise(trajectory, sigmaaz, sigmael, sigmarange)  
%  IN P U T S
%  name dimension explanation units
% -------  -------  ------------------  --------
%  trajectory 3 X P O IN T S  trajectory in radar reference coords [m;m;m]
%  sigmaaz 1 standard deviation o f azimuth error radians 
%  sigmael 1 standard deviation o f elevation error radians 
%  sigmarange 1 standard deviation o f range error m 
%
%  O U T P U T S
%  name dimension explanation units
% -------  -------  ------------------  --------
%  noisytraj 3 X P O IN T S  noisy trajectory [m;m;m]
noisytraj = zeros(3, size(trajectory,2)) ;
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fo r loop = 1 : size(trajectory,2) 
x  = trajectory(1,loop); 
y  = trajectory(2,loop); 
z  = trajectory(3,loop);
azimuth corrupted = atan2 (y,x) + sigmaaz*randn(1)  ; 
elevationcorrupted = atan2 (z, sqrt(xA2 +yA2)) + sigmael*randn(1)  ; 
range corrupted = sqrt(xA2 +yA2 +zA2)  + sigmarange*randn(1)  ; 
xcorrupted =

range_corrupted*cos(elevation_corrupted)*cos(azimuth_corrupted) ; 
ycorrupted  =

range_corrupted*cos(elevation_corrupted)*sin(azimuth_corrupted) ; 
z  corrupted = range_corrupted*sin(elevation_corrupted) ; 
noisytra j(:,loop) = [x  corrupted; y  corrupted; z  corrupted] ;  

end %  next loop

Listing 9.8. MATLAB Function “kafilt.m ”
function [filtered, residuals , covariances, kalm gains] = ka lfilt(trajectory, x 0, 
P0, phi, R, Q)
%  ka lfilt.m  
%  by David J. H a ll 
%  fo r Bassem Mahafza 
%  10 June 2003 
%  11:46
%  USA G E: [filtered, re sid u a ls, covariances, kalm gains] = kalfilt(trajectory, 
x0, P0, phi, R, Q )
%
%  IN P U T S
%  name dimension explanation units
% -------  -------  ------------------  --------
%  trajectory N U M M E A SU R E M EN TSX  N U M P O IN TS trajectory in  radar 
reference coords [m ;m ;m ]
%  x0 N U M S TA TE S X 1 in itia l estimate o f state vector m,
m/s
%  P 0  N U M STA TES  X  N U M STA TE S  in itia l estimate o f covariance 
m atrix m, m/s
%  phi N U M STA TE SX  N U M STA TES  state transition m atrix

%  R  N U M M EA SU R EM EN TS X  N U M M EA SU R EM EN TS measurement 
e rro r covariance m atrix m
%  Q N U M STA TE S  X  N U M STA TE S  state e rro r covariance m atrix 
m, m/s
%
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%  O U TP U TS
%  name dimension explanation units
% -------  -------  ------------------  --------
%  filte re d  N U M STA TES  X  N U M P O IN TS filte re d  trajectory x,y,zpos, vel 
[m ; m/s; m; m/s; m; m/s]
%  residuals N U M STA TE SX  N U M P O IN TS residuals o f filte rin g  
[m ;m ;m ]
%  covariances N U M STA TE S  X  N U M P O IN TS diagonal o f covariance 
m atrix [m ;m ;m ]
%  kalmgains (N U M STA TESX N U M M EA SU R EM EN TS)
%  X  N U M P O IN TS Kalman gain m atrix -
N U M STA TES  = 6 ;
N U M M EA SU R EM EN TS = 3 ;
N U M P O IN TS = size(trajectory, 2) ;
%  in itia lize  output matrices
filte re d  = ze ros(N UM STA TES, N U M PO IN TS) ;
residuals = zeros(NUM STA TE S , N U M PO IN TS) ;
covariances = ze ro s(N UM STA TES, N U M PO IN TS) ;
kalmgains = ze ro s(N U M STA TES*N U M M EA SU REM EN TS, N U M PO IN TS) ;
%  set m atrix relating measurements to states 
H  = [1 0 0 0 0 0 ; 0 0 1 0 0 0 ; 0 0 0 0 1 0]; 
xhatminus = x 0 ;
Pm inus = P 0  ; 
fo r loop = 1: N U M P O IN TS  

%  compute the Kalman gain 
K  = P m in u s*H '*in v (H *P m in u s*H ' + R ) ;
kalmgains(:,loop) = reshape(K, N U M STA TES*N U M M EA SU R EM EN TS, 1) ;
%  update the estimate with the measurement z
z  = trajectory(:,loop) ;
xhat = xhatminus + K * (z  - H*xhatm inus) ;
filtered(:,loop) = xha t;
residuals(:,loop) = xhat - xhatminus ;
%  update the e rro r covariance fo r the updated estimate 
P  = (  eye(NUM STATES, N U M STA TES) - K *H )*P m in u s ; 
covariances(:,loop) = diag(P) ; %  only save diagonal o f covariance m atrix 
%  project ahead 
xhatminus next = p h i*xha t;
Pm inus next = p h i*P *p h i' + Q ; 
xhatminus = xhatminus next;

Pm inus = Pm inus next; 
end
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Chapter 1 о Electronic Countermeasures 
(ECM)

This chapter is coauthored with J. Michael Madewell1

10.1. Introduction
Any deliberate electronic effort intended to disturb normal radar operation is 

usually referred to as an Electronic Countermeasure (ECM). Th is may also 
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency 
absorbing materials), and, of course, radar jamming.

In general, ECM  is used by the offense to accomplish one, several, or possi­
bly all of the following objectives: (1) deny proper target detection; (2) gener­
ate operator confusion and / or deception; (3) force delays in detection and 
tracking initiation; (4) generate false tracks of non-real targets; (5) overload 
the radar computer with an excessive number of targets; (6) deny accurate 
measurements of the target range and range rate; (7) force dropped tracks; and 
(8) introduce errors in target position and range rate. Alternatively, the defense 
may utilize Electronic counter-countermeasures (ECCM) to overcome and 
mitigate the effects of ECM  on the radar. When deployed properly, ECCM  
techniques and / or hardware can have the following effects: (1) prevent 
receiver saturation; (2) maintain a reasonable CFAR rate; (3) enhance the sig­
nal to jammer ratio; (4) properly identify and discriminate directional interfer­
ence; (5) reject invalid targets; and (6) maintain true target tracks.

ECM  techniques can be exploited by a radar system in many different ways 
and can be categorized into two classes:

1. Mr. J. Michael Madewell is with the US Army Space and Missile Defense Com­
mand in Huntsville, Alabama.
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1. Denial ECM  techniques: Denial EC M  techniques can be either active or 
passive. Active denial ECM  techniques include: CW, short pulse, long 
pulse, spot noise, barrage noise, and sidelobe repeaters. Passive ECM  tech­
niques include chaff and Radar Absorbing Material (RAM).

2. Deception ECM  techniques: Deception ECM  techniques are also broken 
down into active and passive techniques. Active deception ECM  techniques 
include repeater jammers and false target generators. Passive deception 
ECM  include chaff and RAM.

10.2. Jammers
Jammers can be categorized into two general types: (1) barrage jammers and 

(2) deceptive jammers (repeaters). When strong jamming is present, detection 
capability is determined by receiver signal-to-noise plus interference ratio 
rather than SNR. In  fact, in most cases, detection is established based on the 
signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar 
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn, 
makes it difficult to detect the desired targets. Th is is the reason why barrage 
jammers are often called maskers (since they mask the target returns). Barrage 
jammers can be deployed in the main beam or in the sidelobes of the radar 
antenna. I f  a barrage jammer is located in the radar main beam, it can take 
advantage of the antenna maximum gain to amplify the broadcasted noise sig­
nal. Alternatively, sidelobe barrage jammers must either use more power, or 
operate at a much shorter range than main beam jammers. Main beam barrage 
jammers can be deployed either on-board the attacking vehicle, or act as an 
escort to the target. Sidelobe jammers are often deployed to interfere with a 
specific radar, and since they do not stay close to the target, they have a wide 
variety of stand-off deployment options.

Repeater jammers carry receiving devices on board in order to analyze the 
radar’s transmission, and then send back false target-like signals in order to 
confuse the radar. There are two common types of repeater jammers: spot noise 
repeaters and deceptive repeaters. The spot noise repeater measures the trans­
mitted radar signal bandwidth and then jams only a specific range of frequen­
cies. The deceptive repeater sends back altered signals that make the target 
appear in some false position (ghosts). These ghosts may appear at different 
ranges or angles than the actual target. Furthermore, there may be several 
ghosts created by a single jammer. By not having to jam the entire radar band­
width, repeater jammers are able to make more efficient use of their jamming 
power. Radar frequency agility may be the only way possible to defeat spot 
noise repeaters.
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In general a jammer can be identified by its effective operating bandwidth 
B J and by its Effective Radiated Power (ERP), which is proportional to the 
jammer transmitter power P J . More precisely,

E R P  = Ip- J- (10.1)
L j

where GJ is the jammer antenna gain and L J is the total jammer losses. The 
effect of a jammer on a radar is measured by the Signal-to-Jammer ratio (S/J).

10.2.1. Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers and as main 
beam jammers, are a class of ECM  systems carried on the vehicle they are pro­
tecting. Escort jammers (carried on vehicles that accompany the attacking 
vehicles) can also be treated as SSJs i f  they appear at the same range as that of 
the target(s).

Assume a radar with an antenna gain G , wavelength X , aperture A r , band­
width B r , receiver losses L , and peak power P t . The single pulse power 
received by the radar from a target of RCS ct , at range R , is

P tG2 X 2 c tt

S  = t 3 4 <10-2>(4n)3R  L

т is the radar pulsewidth. The power received by the radar from an SSJ jam­
mer at the same range is

r P j g j  A r ,____
J  = ------ j  B T "  <10-3>4n R  B JL J

where P J, GJ, B J, L J are, respectively, the jammer’s peak power, antenna gain, 
operating bandwidth, and losses. Using the relation

A r = (10.4)
4n

then Eq. (10.3) can be written as

r p j g j  X2G 1
J  = - /I E> - (1°.5)

4n R  4n B JL J

Note that B J > B r . Th is is needed in order to compensate for the fact that the 
jammer bandwidth is usually larger than the operating bandwidth of the radar. 
Jammers are normally designed to operate against a wide variety of radar sys­
tems with different bandwidths.
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Substituting Eq. (10.1) into Eq. (10.5) yields,

(10.6)

Thus, S/J ratio for a SSJ case is obtained from Eqs. (10.6) and (10.2),

J  (E R P ) (4 n )R 2L

and when pulse compression is used, with time-bandwidth-product GPC, then 
Eq. (10.7) can be written as

Note that to obtain Eq. (10.8), one must multiply Eq. (10.7) by the factor 
B r/ B r and use the fact that GPC = B r% .

The jamming power reaches the radar on a one-way transmission basis, 
whereas the target echoes involve two-way transmission. Thus, the jamming 
power is generally greater than the target signal power. In other words, the ratio 
S / J  is less than unity. However, as the target becomes closer to the radar, 
there w ill be a certain range such that the ratio S / J  is equal to unity. Th is  
range is known as the cross-over range. The range window where the ratio 
S / J  is sufficiently larger than unity is denoted as the detection range. In order 
to compute the crossover range R co, set S / J  to unity in Eq. (10.8) and solve 
for range. It follows that

MATLAB Program “ssj_req.m”

The program “s s j req.m” implements Eqs. (10.9); it is given in Listing 10.1 
in Section 10.5. Th is program calculates the cross-over range and generates 
plots of relative S  and J  versus range normalized to the cross-over range, as 
illustrated in Fig. 10.1a.

In this example, the following parameters were utilized: radar peak power 
P t = 5 0 K W , jammer peak power P j  = 200 W , radar operating bandwidth 
B r = 667K H z , jammer bandwidth B J = 5 0 M H z , radar and jammer losses 
L  = L J = 0.10d B , target cross section ct = 10.m , radar antenna gain 
G = 35d B , jammer antenna gain GJ = 10d B , the radar operating frequency 
is f  = 5 .6 G H z . The syntax is as follows:

S  = P tG(CTBJGPC 

J  (E R P ) (  4 n) R 2B rL
(10.8)

(10.9)
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where

[BR range] = s s jr e q  (pt, g, freq, sigma, br, loss, pj, bj, gj, lossj)

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

freq radar operating frequency Hz input

sigma target cross section m2 input

br radar operating bandwidth Hz input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

BR  range cross-over range Km output

10' '  10° 10’ Ю2 10’
Range normalized to cross-over range

Figure 10.1a. Target and jammer echo signals. Plots were generated using 
the program “ss j req.m” and using the input parameters 
defined on the previous page.
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Jammer peak power - Wans

Radar peak power - KW

Figure 10.1b. Burn-through range versus jammer and radar peak powers 
corresponding to example used in generating Fig. 10.1a.

Burn-through Range

I f  jamming is employed in the form of Gaussian noise, then the radar 
receiver has to deal with the jamming signal the same way it deals with noise 
power in the radar. Thus, detection, tracking, and other functions of the radar 
signal and data processors are no longer dependent on the SNR. In this case, 
the S/(J+N) ratio must be calculated. More precisely,

,  PtGCTAT'-

s _  = W)2rv  (10.10)

J + "  f  (E R P )A r. + щ2 ,4n R  B

where k  is Boltzman’s constant and T 0 is the effective noise temperature.

The S/(J+N) ratio should be used in place of the SN R when calculating the 
the radar equation and when computing the probability of detection. Further­
more, S/(J+N) must also be used in place of the SN R when using coherent or 
non-coherent pulse integration.
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The range at which the radar can detect and perform proper measurements 
for a given S/(J+N) value is defined as the burn-through range. It is given by

R B T  =
,  (E R P )A t 

*8 % B jk T0

P tG<CTAr т

(4n)2 L -Дт//- k T 0
(J  + N )

(E R P )A r

8 % B jk T0
(10.11)

MATLAB Function “sir.m”

The M A TLA B  function “sir.m ” implements Eq. (10.10). It generates plots 
of the S/(J+N) versus detection range and plots of the burn-through range ver­
sus the jammer ERP. It is given in Listing 10.2 in Section 10.5. The syntax is as 
follows:

[ S IR ]  = s i r  (pt, g, sigma, freq, tau,T0, loss, R, pj, bj, gj, lossj)

where

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulsewidth seconds input

T0 effective noise temperature Kelvin input

loss radar losses dB input

R range. can be single value or a vector Km input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

SIR S/(J+N) dB output

Fig. 10.2 shows some typical outputs generated by this function when the 
inputs are as follows:

Input Parameter Value
pt 50KW

g 35 dB

sigma 10 square meters

freq 5.6 GHz
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Input Parameter Value
tau 50 micro-seconds

T0 290

loss 5 dB

R linspace(10,400,5000) Km

pj 200 Watts

bj 50 MHz

gj 10 dB

lossj 0.3 dB

О 50 100 1 50 200 250 300 350 400 
Detection range in Km

Figure 10.2. S/(J+N) versus detection range.

MATLAB Function “burn_thru.m”

The M A TLA B  function “b urn th ru .m ” implements Eq. (10.10) and (10.11). 
It generates plots of the S/(J+N) versus detection range and plots of the burn- 
through range versus the jammer ERP. It is given in Listing 10.3 in Section 
10.5. The syntax is as follows:

[Range] = b u rn th ru  (pt, g, sigma, freq, tau, T0, loss, pj, bj, gj, lossj, sir0 ,
ER P )
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where

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulsewidth seconds input

T0 effective noise temperature Kelvin input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

sir0 desired S IR dB input

ERP desired ERP. can be a vector Watts input

Range burn-through range Km output

Fig. 10.3 shows some typical outputs generated by this function when the 
inputs are as follows:

Input Parameter Value
pt 50KW

g 35 dB

sigma 10 square meters

freq 5.6 GHz

tau 0.5 milli-seconds

T0 290

loss 5 dB

pj 200 Watts

bj 500 MHz

gj 10 dB

lossj 0.3 dB

sir0 15dB

ERP linspace(1, 1000, 1000) W
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О 5 10 1 5 20 25 30
Jammer ERP in dB

Figure 10.3. Burn-through range versus ERP. (S/(J+N) = 15 dB.

10.2.2. Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit EC M  signals from long ranges which are 
beyond the defense’s lethal capability. The power received by the radar from 
an SOJ jammer at range R ,  is

j  = Pj J  XG-- _ 1 _  = E R P  X G  _1_ (10 12)
4n R j  4 n B j L j  4 n R j 4n B j

where all terms in Eq. (10.12) are the same as those for the SSJ case except for 
G ' . The gain term G' represents the radar antenna gain in the direction of the 

jammer and is normally considered to be the sidelobe gain.

The SOJ radar equation is then computed as

S  P tT  G2 R j  <j B ,
-  ‘ J J (10.13)

J  4 n( E R P )  G’R 4L

and when pulse compression is used, with time-bandwidth-product GPC then 
Eq. (10.13) can be written as
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S  P tG2R jo B jP PC
-  = --- ------J--- J PC (10.14)
J  4 n (E R P )  G 'R 4B rL

Again, the cross-over range is that corresponding to S  = J ; it is given by

, P tG R J gB jP pc)
(R c° soj = * 4 n (E R P )G ’B ,L J (10-15)

MATLAB Program “soj_req.m”

The program “so jre q .m ” implements Eqs. (10.15); it is given in Listing  
10.4 in Section 10.5. The inputs to the program “so jre q .m ” are the same as in 
the SSJ case, with two additional inputs: the radar antenna gain on the jammer 
G' and radar-to-jammer range R j  . Th is program generates the same types of 
plots as in the case of the SSJ. Typical output is in Fig. 10.4 utilizing the same 
parameters as those in the SSJ case, with jammer peak power P J = 5000 W , 
jammer antenna gain GJ = 30d B , radar antenna gain on the jammer 
G' = 10d B , and radar to jammer range R j  = 22.2Km .

Figure 10.4. Target and jammer echo signals. Plots were generated using 
the program “sojreq.m”.
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Again i f  the jamming is employed in the form of Gaussian noise, then the 
radar receiver has to deal with the jamming signal the same way it deals with 
noise power in the radar. In this case, the S/(J+N) is

,  p tGaArT  -

_ S _  = l( 4 n )2RV  (10.16)
J  + N  ,  (E R P )A rG ' + kTo 

4 n R 2jB j  0

10.3. Range Reduction Factor
Consider a radar system whose detection range R  in the absence of jamming 

is governed by

P tG2 X2ct
(S N R )0 = ----- - t----------- - (10.17)

(4 п )3 k T eB rF L R

The term Range Reduction Factor (RRF) refers to the reduction in the radar 
detection range due to jamming. More precisely, in the presence of jamming 
the effective radar detection range is

R dj = R  x R R F  (10.18)

In order to compute R RF, consider a radar characterized by Eq. (10.17), and 
a barrage jammer whose output power spectral density is J 0 (i.e., Gaussian- 
like). Then the amount of jammer power in the radar receiver is

J  = k T JB r (10.19)

where T j  is the jammer effective temperature. It follows that the total jammer 
plus noise power in the radar receiver is given by

N l + J  = k T eB r + k T , B r (10.20)

In this case, the radar detection range is now limited by the receiver signal-to- 
noise plus interference ratio rather than SNR. More precisely,

S' - P tG2X 2a
T J  =  -------------------t------------------------------ (10.21)
+  N+ (4п)3 k( T e + T , ) B rF L R 4

The amount of reduction in the signal-to-noise plus interference ratio because 
of the jammer effect can be computed from the difference between Eqs. 
(10.17) and (10.21). It is expressed (in dB) by
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Y = 10.0 x log * 1 + J

T  e

(10.22)

Consequently, the R R F  is

-Y
R R F  = 1040 (10.23)

MATLAB Function “range_red_factor.m”

The function “rangeredJactor.m” implements Eqs. (10.22) and (10.23); it 
is given in Listing 10.5 in Section 10.5. Th is function generates plots of R R F  
versus: (1) the radar operating frequency; (2) radar to jammer range; and (3) 
jammer power. Its syntax is as follows:

[R R F ]  = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)

where

Symbol Description Units Status
te radar effective temperature K input

pj jammer peak power W input

gj jammer antenna gain dB input

g radar antenna gain on jammer dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input

rangej radar to jammer range Km input

lossj jammer losses dB input

The following values were used to produce Figs. 10.5 through 10.7.

Symbol Value
te 500 kelvin

pj 500 KW

gj 3 dB

g 45 dB

freq 10 GHz

bj 10 M H Z

rangej 750 Km

lossj 1 dB
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Figure 10.5. Range reduction factor versus radar operating wavelength. This 
plot was generated using the function “range_red_factor.m”.

Figure 10.6. Range reduction factor versus radar to jammer range. This 
plot was generated using the function “range_red_factor.m”.
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Figure 10.7. Range reduction factor versus jammer peak power. This plot was 
generated using the function “range_red_factor.m”.

10.4. Chaff
In principle, chaff is composed of a large number of small R F  reflectors that 

have large RCS values. Chaff is usually deployed around the target as means of 
ECM. Historically, chaff was made of aluminum foil; however, in recent years 
most chaff is made of the more rigid fiber glass with conductive coating.

Chaff can be categorized into two types: (1) denial chaff and (2) deceptive 
chaff. In the first case, the chaff is deployed in order to screen targets that 
reside within or near the deployed chaff cloud. In the second case, the chaff 
cloud is dispersed to complicate and/or overwhelm the tracking and processing 
functions of the radar by luring the tracker away from the target and/or creating 
multiple false targets.

The maximum chaff RCS occurs when the individual chaff-dipole length L  
is one half the radar wavelength. The average RCS for a single dipole when 
viewed broadside is

2
°chaffi *  0.88X (10.24)
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and for an average aspect angle, it drops to

2
a chaff! *  018 X (10.25)

where the subscript chaff1 is used to indicate a single dipole, and X is the 
radar wavelength. The total chaff RCS within a radar resolution volume is

0.18X2Nd VCs ..........
a c *  — J----- V---  (10.26)

beam R

where ND is the total number of dipoles, VR is the radar resolution cell vol­
ume, VCS is the chaff scattering volume, and L beam is the radar antenna beam 
shape loss for the chaff cloud.

Echoes from a chaff cloud are typically random and have thermal noise-like 
characteristics because the individual clutter components (scatterers) have ran­
dom phases and amplitudes. Due to these characteristics, chaff is often statisti­
cally described by a probability distribution function. The type of distribution 
depends on the nature of the chaff cloud itself, radar operating parameters, and 
the viewing angle of the radar. Thus, the signal-to-chaff ratio is given by

S  = — CCR (10.27)
C c h a ff

where a is the target RCS and CCR is the chaff-cancellation-ratio. The value 
of CCR depends on the type of chaff mitigation techniques adopted by the 
radar signal and data processors. Since chaff is a form of volumetric clutter, 
signal processing and M T I techniques developed for rain and other forms of 
volumetric clutter can be applied to mitigate many of the effects of chaff. The 
next section provides an example of one such chaff mitigation technique.

10.4.1. Multiple MTI Chaff Mitigation Technique1

In this section, an algorithmic (schema) approach for detecting and tracking 
targets in highly cluttered environments is presented. The approach is to accu­
rately track the centroid of the chaff cloud using a combination of medium 
band (MB) and wide-band (W B) range resolution radar waveforms.

At moderate Pulse Repetition Frequencies (PRFs), differential target veloci­
ties (about the centroid of the chaff cloud) are detected and tracked via Doppler 
banks of transversal filters that are tuned to detect the target velocity differ­

1. This section is extracted from the paper: J. Michael Madewell, Mitigating the Effects 
of Chaff in Ballistic Missile Defense, 2003 IEEE  Radar Conference, Huntsville, AL, 
May 2°°3.
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ences. Through sensitivity analysis models, the theoretical lower bound on 
detectable differential target velocity as a function of the chaff cloud composi­
tion (e.g., clutter cross section, clutter spectral width, number of dipoles, and 
clutter velocity standard deviation) and radar related parameters (e.g., wave­
form frequency, bandwidth, integration times, PRFs, and signal-to-clutter 
ratio) are analyzed.

Overview

A five-step approach for detecting and tracking targets in highly cluttered 
environments has been developed. The five steps are:

1. Utilize a 1 to 5 percent M B bandwidth, high P R F  radar waveform, to mea­
sure the chaff cloud range extent, centroid, and velocity growth rate.

2. Establish track on the centroid of the chaff cloud with the M B waveform.

3. Based on course track information obtained in steps 1) and 2), implement 
W B track (10% or greater bandwidth waveform) on the cloud centroid.

4. Design a doppler bank of Moving Target Indicator (M TI) transversal filters 
to provide adequate gain at specific velocity increments about the W B cen­
troid track.

5. Process the Multiple M T I  (M2) doppler filters in parallel to detect differ­
ences in target Doppler (with respect to the cloud centroid track velocity). 
Targets are detected when integration at the correct Doppler difference 
occurs.

Operational concerns that have been identified for implementation of this 
approach include: (1) the ability of a radar to adequately track the centroid of 
the chaff cloud (i.e., track precision); (2) the ability of a radar to detect small 
differences in target Doppler relative to the chaff cloud centroid (i.e., Doppler 
precision); and (3) the ability of a filter (in this case, a bank of M TI's) to 
achieve the necessary processing gain to detect the target

Theoretical tracking accuracy o f a chaff cloud

The single pulse thermal-noise error cy in a velocity tracking measurement 
for optimum processing can be described by

cy = ------- /  (10.28)
1.81x72 x SN R

where x is the pulsewidth and SN R  is that for the target in track. To detect tar­
gets in clutter, substitute the difference-channel chaff-to-signal ratio for S N R  . 
More precisely,

Cf = --------- 1 (10.29)
7 1.81x72 x Cchaff/S
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Fig. 10.8 shows a graph for versus Cchaf S  and т . Th is figure can be 
reproduced using M A TLA B  program “fig10_8.m ” given in Listing 10.6 in 
Section 10.5. Th is graph w ill be utilized in the analysis and of the expected M 2 
signal processing performance.

Figure 10.8. Single pulse thermal noise error versus Cchaf f / S  and т .

Multiple MTI (M2) Doppler Filter Design

The M 2 Doppler filter design is derived from the theoretical N-tap delay line 
M T I canceller. The general formula for the improvement factor was derived in 
Chapter 7 (Section 7.7.2). A bank of N  M T I  Doppler filters that cover the fre­
quency range from 0 to the P R F  w ill achieve performance beyond that of a 
conventional M TI. The weights are given by:

j27i(i-1)
к  / N

e (10.30)

where the index t  is between 0 to N-1 and corresponds to the N  M T I Doppler 
filter bank. In this design, a 5-tap delay line M T I filter is considered. The trans­
fer function for the overall Doppler bank is

Я  (f) = £
( - j 2 n ) ( i  -  1 ) ( f T  -  к / N)

(10.31)

N

j = 1

© 2004 by Chapman & Hall/CRC CRC Press LLC



where

It follows that the magnitude of the frequency response is

T = 1 /P R F  (10.32)

sin(7iA/~(/T - k / N ) ) (10.33)
sin ( n ( f T  -  k /N ))

The impulse response for a kth 5-tap M T I filter is

k _ _
У (t) = Vk(t ) -  5Vk(t -  T )  + 10Vk(t -  2 T )  -  (10.34)

10Vk(t -  3 T )  + 5Vk(t -  4 T ) -  Vk(t -  5 T )

Vk is the input signal. The corresponding transfer function is

Yk(f) = 25 ( sin (n fT ) )5 (10.35)

Fig. 10.9 shows a block diagram for the M 2 filter. Since each filter occupies 
approximately (1 / N) th the clutter and signal bandwidth, the combined per­
formance of the M 2 Doppler filter performance is greater than that of a single 
delay-line canceller that does not utilize Doppler information. The clutter miti­
gation performance of the M 2 Doppler filter, however, w ill likely be deter­
mined by the coherence times of the target and/or the clutter.

-4 /N T  -3 /N T  -2 /N T  -1 /N T  0 1/N T 2 /N T  3 /N T  4/N T

Figure 10.9. Block diagram for the M2 algorithm, and corresponding 
frequency response of the M T I filters (N=8).
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The M 2 filter approach outlined in this section requires a very accurate track 
of the centroid of the chaff cloud being probed. As described earlier, initiation 
of track on the chaff cloud centroid is achieved with a M B range resolution 
waveform (step 1). As an example, assume that an X-band radar (10 GHz) is 
engaging one or more ballistic targets enveloped in a chaff cloud that contains
1 million dipoles occupying a 1-kilometer range extent. Assuming that the 
chaff cloud velocity distribution can be accurately modeled by Gaussian statis­
tics, approximately 67% of these dipoles w ill reside in 333 meters of range 
extent. With these assumptions, the combined average RCS of the dipoles 
( R C S d ) contained within a radar range resolution cell of this length (333 m) 
can be approximated by

R C S d = 0.18N d X2 = 0.18 x 670, 000 x 0.032 = 108.54 ^  20.4dBsm  (10.36)

The RCS of a typical ballistic Reentry Vehicle (RV) at forward aspect view­
ing angles can be -20 dBsm  or smaller. Therefore, the M B Cchaf f / S  for a typ­
ical R V  enveloped by the chaff cloud assumed above can approach 40 dB or 
greater. Using an 8-msec pulsewidth and 30dB Cchaf f / S , the theoretical, sin­
gle pulse, minimum rms track error is approximately f e = 1 H z . A t X-band 
frequencies, this translates to a single pulse velocity error of

f ex
Ve = -2- = 0.015m/ s  (10.37)

Note that for a train of pulses, this velocity error can be reduced by a factor of 
10 or more. Thus, for a typical X-band radar, theory suggests that the track pre­
cision of the chaff cloud centroid can approach 0.0015 m/s or better. Th is track 
precision is much less than the W B range resolution capability of the radar and 
therefore can be utilized to bootstrap the W B tracker (steps 2 and 3).

Assume a Gaussian chaff clutter velocity distribution and denote it Vg . I f  
Vg = 1.8m/ s  (±0.9m/ s  relative to the cloud centroid velocity), the mini­
mum P R F  required to meet the Nyquist sampling criterion is

2 V g
P R F  = f r > 2 x - r -  = 240H z  (10.38)

x

Also, assume that a bank of Doppler M TI's  (step 4) can be formed to cover this 
frequency range. Note that 256 is the closest 2N multiple for implementation 
with the Fast Fourier Transform (FFT). Using a 256 point F F T  design, each f i l ­
ter w ill contain approximately 1/256 of the total clutter velocities (about 0.03 
m/s of velocity clutter per M T I Doppler filter). In addition, by utilizing the W B  
track waveform, a very precise range-Doppler image can be formed (with each 
range-Doppler resolution cell containing approximately 15 cm by 0.03 m/s of

Processor Implementation And Simulated Results
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clutter). Th is design effectively reduces the amount of clutter that competes 
with an individual target scatter by a factor of more than 40 dB, thus reducing 
the Cchaf f / S  by this same amount.

For extreme chaff cases where the initial W B  range-Doppler image S/C is 
negative, an N-pulse coherent sliding window routine can be applied to the 
data prior to implementing the M 2 algorithm. For example, a 16 pulse coherent 
sliding window can provide up to 12 dB of S / Cchaf f  improvement. One 
should ensure that the number of pulses integrated is less than the coherency 
time of the target and clutter. Other constraints in implementing this approach 
are to ensure that the target phase does not deviate very much during the inte­
gration period (to ensure optimum coherent processing gain) and the target 
position does not migrate to another range and/or Doppler cell (often referred 
to as range-Doppler walk). The zero Doppler filter (and/or near zero Doppler 
filters) can be used to perform statistics on the clutter and to adaptively adjust 
the optimal threshold setting to obtain low false alarms and high probabilities 
of detection over time.

A model for the M 2 signal processor has been developed using M A TLA B. 
Fig. 10.10 shows a plot of the amplitude versus range and Doppler (256x256 
range-Doppler image) of three constant -20 dBsm target scatterers that are 
embedded in approximately -15 dBsm Gaussian white noise. In this figure, the 
noise completely envelops the signal. These modeling results are comparable 
to the output of a typical range Doppler imaging radar. Fig. 10.11 shows the 
results obtained by executing the first two blocks of the M 2 signal processor. 
As expected, the three scatterers rise from above the noise and now have an 
S / Cchaf f  ratio of approximately 7 dB.

Finally, Fig. 10.12 shows the results obtained by implementing the entire top 
portion of the M 2 signal processing chain. No attempt was made to optimize 
the threshold level. Instead, the threshold was manually set to -43 dB to allow 
for some of the higher false alarms to be seen in the figure. The largest ampli­
tude false alarms are approximately -34 dB. Meanwhile, the amplitudes of the 
target returns have been reduced (less than 1 dB) from that of Fig. 10.11. 
Therefore, the S / Cchaf f  improvement in Fig. 10.12 over that shown in Fig. 
10.11 is approximately 8 to 9 dB. Hence, the processing gain attributed to the 
M 2 signal processor is more than 20 dB above that of traditional range Doppler 
processing.

In summary, one concludes that the M 2 signal processing algorithm for 
detecting and tracking ballistic missile targets in highly cluttered environments 
can provide better than 20 dB S / Cchaf f  improvement over that of traditional 
range Doppler processing techniques alone.
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Figure 10.10. Range -Doppler image for three targets embedded in chaff.

Figure 10.11. Image from Fig. 10.10 after a 16-point sliding window coherent 
integration process.
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Doppler Bin

Figure 10.12. Image from Fig. 10.11 after applying the M2 algorithm.

10.5. MATLAB Program and Function Listings
Th is section presents listings for all M A TLA B  programs/functions used in 

this chapter. The user is advised to rerun these programs with different input 
parameters.

Listing 10.1. MATLAB Function “ssjreq .m ”
function [BR_range] = s s jre q  (pt, g, freq, sigma, b, loss, ...

P j, bj, gj, lossj)
%  Th is  function implements Eq. (10.9) 
c = 3.0e+8; 
lambda = c / freq; 
lambdadb = 10*log10(lambdaA2); 
i f  (loss = =  0.0) 

loss = 0.000001; 
end
i f  (lo ssj = =  0.0) 

lo ssj =0.000001; 
end
sigmadb =10*log10(sigma);
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p td b  = 10*log10(pt); 
b_db = 10*log10(b); 
b jd b  = 10*log10(bj); 
p jd b  = 10*log10(pj); 
factor = 10*log10(4.0 *pi);
B R ra n g e  = sqrt((pt * (10A(g/10)) * sigma * bj * (10A(lossj/10))) / ... 

(4.0 * p i * p j * (10A(gj/10)) * b * ...
(10A(loss/10)))) / 1000.0 

s a t b r  = p td b  + 2.0 * g + lambdadb + sigmadb - ...
3.0 * factor - 4 .*  10*log10(BR_range) - loss 

index =0;
fo r  ran_var = .1:10:10000  

index = index + 1;
ran db = 10*log10(ran_var * 1000.0);
ssj(index) = p j db + g j + lambda db + g + b_db - 2.0 * factor - ...

2.0 * ran db - bj db - lo ss j + s  at b r ;
s(index) = pt db + 2.0 * g + lambda db + sigmadb - ...

3.0 * factor - 4 .*  ran db - lo ss + s  at br ;
end
ranvar = .1:10:10000; 
ranvar = ranvar ./B R  range; 
semilogx (ranvar,s,'k',ranvar,ssj, ’к -.’) ;  
axis([.1 1000 -90 40])
xlabel ('Range normalized to cross-over range’) ;  
legend('Target echo','SSJ')
ylabel ( ’Relative signal or jamming amplitude - dB'); 
grid
p jv a r  = 1:1:1000;
B R _p j = sqrt((pt * (10A(g/10)) * sigma * bj * (10A(lossj/10))) ...

./ (4.0 * pi .*  pj_var * (10A(gj/10)) * b * (10A(loss/10)))) . / 1000; 
p tv a r = 1000:100:10e6;
BR_pt = sqrt((pt_var * (10A(g/10)) * sigma * bj * (10A(lossj/10))) ...

./ (4.0 * p i .*  p j * (10A(gj/10)) * b * (10A(loss/10)))) . / 1000; 
figure (2) 
subplot (2,1,1) 
semilogx (BR_p j,'k) 
xlabel ( ’Jammer peak power - Watts’) ;  
ylabel ( ’Burn-through range - Km') 
grid
subplot (2,1,2)
semilogx (BR_pt,'k)
xlabel ( ’Radar peak power - K W ’)
ylabel ( ’Burn-through range - K m ’)
grid
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function [ S IR ]  = s i r  (pt, g, freq, sigma, tau,T0, loss, R, pj, bj, gj, lo ssj); 
c = 3.0e+8; 
к = 1.38e-23;
% R  = linspace(rmin, rmax, 1000); 
range = R  .*  1000; 
lambda = c/freq; 
g j = 10A(gj/10);
G = 10A(g/10);
E R P 1  = p j * g j /  lo ssj;
E R P d b  = 10*log10(ERP1);
%  Calculate Eq. (10.10)
A r = lambda *lambda * G /  4 /pi; 
num1 = pt * tau * G * sigma * A r; 
demo1 = 4A2 * p iA2 * loss .*  range.A4; 
demo2 = 4 * p i * bj .*  ra ng ed ; 
num2 = ER P 1  * A r; 
val11 = num1 ./ demo1; 
val21 = num2 ./demo2; 
s i r  = va l11./ (val21 + к  * T0);
S IR  = 10*log10(sir); 
figure (1) 
plot (R, S IR , ’к ’)
xlabel ('Detection range in Km ');
ylabel ( ’S/(J+N) in dB')
grid

Listing 10.2. MATLAB Function “sir.m”

Listing 10.3. MATLAB Function “burn_thru.m”
function [Range] = burn thru (pt, g, freq, sigma, tau, T0, loss, pj, bj, gj, 
lo ss j,s ir0 ,E R P ); 
c = 3.0e+8; 
к = 1.38e-23;
% R  = linspace(rmin, rmax, 1000); 
s ir0  = 10A(sir0/10); 
lambda = c/freq; 
g j = 10A(gj/10);
G = 10A(g/10);
A r = lambda *lambda * G /  4 /pi;
% E R P  = linspace(1,1000,5001); 
num32 = E R P  .* A r; 
demo3 = 8 *pi * bj * к  * T0 ; 
demo4 = 4A2 * piA2 * к  * T0  * s ir0 ;
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val1 = (num32 ./ demo3)A2;
val2 = (pt * tau * G * sigma * Ar)/(4A2 * piA2 * lo ss * s ir0  * к  *T0); 
val3 = sqrt(val1 + val2); 
val4 = (E R P  .* A r) ./ demo3;
Range = sqrt(val3 - val4) . / 1000; 
figure (1)
plot (10*log10(ERP), Range,'k') 
xlabel (  Jammer E R P  in dB) 
ylabel ('Burnthrough range in Km') 
grid

Listing 10.4. MATLAB Function “soj req.m”
function [B R  range] = so j req (pt, g, sigma, b, freq, loss, range, ...

pj, bj,gj, lossj, gprime, rangej)
%  Th is  function implements equations fo r  SOJs 
c = 3.0e+8; 
lambda = c/freq; 
lambdadb = 10*log10(lambdaA2) 
i f  (loss = =  0.0) 

loss = 0.000001; 
end
i f  (lo ssj = =  0.0) 

lo ssj =0.000001; 
end
sigmadb = 10*log10(sigma);
range db = 10*log10(range * 1000.);
rangej db = 10*log10(rangej * 1000.)
p td b  = 10*log10(pt);
b_db = 10*log10(b);
b jd b  = 10*log10(bj);
p jd b  = 10*log10(pj);
factor = 10*log10(4.0 *pi);
B R  range = ((pt * 10A(2.0*g/10) * sigma * bj * 10A(lossj/10) * ... 

(rangej)A2) / (4.0 * p i * p j * 10A(gj/10) * 10A(gprime/10) * ... 
b * 10A(loss/1 0)))a.25 / 1000. 

s  at br = pt db + 2.0 * g + lambda db + sigmadb - ...
3.0 * factor - 4.0 * 10*log10(BR_range) - loss 

index =0;
fo r  ran_var = .1:1:1000; 

index = index + 1;
ran db = 10*log10(ran_var * 1000.0);
s(index) = pt db + 2.0 * g + lambda db + sigmadb - ...

3.0 * factor - 4.0 * ran db - lo ss + s  at br;
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soj(index) = s a t b r  - s_at_br; 
end
ranvar = .1:1:1000;
%ranvar = ranvar ./BRrange; 
semilogx (ranvar,s,'k',ranvar,soj,'k-. ’) ;  
xlabel ('Range normalized to cross-over range’) ;  
legend('Target echo','SOJ')
ylabel ( ’Relative signal or jamming amplitude - dB’) ;

Listing 10.5. MATLAB Function “range_red_factor.m”
function R R F  = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
%  Th is  function computes the range reduction factor and produces
%  plots o f R R F  versus wavelength, radar to jammer range, andjammer power
c = 3.0e+8;
к  = 1.38e-23;
lambda = c/freq;
g j_10 = 10A( gj/10);
g_10 = 10A( g/10);
lo ssj_10  = 10A(lossj/10);
index = 0;
fo r  wavelength = .01:.001:1  

index = index +1;
jamer temp = (pj * gj_10  * g_10 *wavelengthA2) / ...

(4.0A2 * piA2 * к  * bj * lo ssj_10  * (rangej * 1000.0)A2); 
delta = 10.0 * log10(1.0 + (jamer temp /  te)); 
rrf(index) = 10A(-delta /40.0); 

end
w = 0.01:.001:1; 
figure (1) 
semilogx(w,rrf'k') 
grid
xlabel ( ’Wavelength in meters’)  
ylabel ('Range reduction factor’) 
index = 0;
fo r  ran =rangej*.3:1:rangej*2 

index = index + 1;
jamer temp = (pj * gj_10  * g_10 *wavelengthA2) / ...

(4.0A2 * piA2 * к  * bj * lo ssj_10  * (ran * 1000.0)A2); 
delta = 10.0 * log10(1.0 + (jamer temp /  te)); 
rrf1(index) = 10A(-delta /40.0); 

end
figure(2)
ranvar = rangej*.3:1:rangej*2;
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plot(ranvar,rrf1,k')
grid
xlabel ( ’Radar to jammer range - Km') 
ylabel ('Range reduction factor’) 
index = 0;
fo r  pjvar = p j *.01:1:p j*2  

index = index + 1;
jamertemp = (pjvar * gj_10  * g_10 *wavelengthA2) / ...

(4.0A2 * piA2 * к  * bj * lo ssj_10  * (rangej * 1000.0)A2); 
delta = 10.0 * log10(1.0 + (jamer temp /  te)); 
rrf2(index) = 10A(-delta /40.0); 

end
figure(3)
pjvar = p j*.01 :1 :p j*2 ;
p ^ ^ v a ^ r^ / ^ )
grid
xlabel ( ’Jammer peakpower - Watts') 
ylabel ('Range reduction factor’) 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
%  Use th is input f ile  to reproduce Figs. 10.5 through 10.7 
clear a ll
te = 500.0; %  radar effective temp. in Kelvin  
p j=  500; % jammer peak power in W 
g j = 3.0; %  jammer antenna gain in dB 
g = 45.0; %  radar antenna gain 
freq = 10.0e+9;% radar operating frequency in H z  
bj= 10.0e+6; %  radar operating bandwidth in H z  
rangej = 750.0;% radar to jammer range in Km  
lo ss j = 1.0; %  jammer losses in dB

Listing 10.6. MATLAB Program “fig10_8.m”
%  Use th is program to reproduce Fig . 10.8 in the text 
clear a ll 
close a ll
tau = linspace(.25,10,500); 
taum = tau .* 1e-3;
C _S = [-20  -10 0 10];
c_s  = 10.a(C_S./10);
fo r  n = 1:size(C_S,2)

val1 = 1 /  (1.81*sqrt(2*c_s(n))); 
sigma(n,:) = v a l1 ./ taum; 

end
figure (1)
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semilogy(tau,sigma(1,:),’k ’,tau,sigma(2,:),’k-- ’,tau,sigma(3,:),’k - .’, ...
tau,sigma(4,:),'k:'); 

xlabel('Pulsewidth in M illiseconds’) 
ylabel('RM S thermal e rror in H z ’) 
legend('-20 dB C/S','-10 dB C/S','0 dB C/S','10 dB C/S') 
grid
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Chapter 11 Radar Cross Section 
(RCS)

In this chapter, the phenomenon of target scattering and methods of RCS 
calculation are examined. Target RCS fluctuations due to aspect angle, fre­
quency, and polarization are presented. Radar cross section characteristics of 
some simple and complex targets are also introduced.

11.1. RCS Definition
Electromagnetic waves, with any specified polarization, are normally dif­

fracted or scattered in all directions when incident on a target. These scattered 
waves are broken down into two parts. The first part is made of waves that 
have the same polarization as the receiving antenna. The other portion of the 
scattered waves w ill have a different polarization to which the receiving 
antenna does not respond. The two polarizations are orthogonal and are 
referred to as the Principal Polarization (PP) and Orthogonal Polarization 
(OP), respectively. The intensity of the backscattered energy that has the same 
polarization as the radar’s receiving antenna is used to define the target RCS. 
When a target is illuminated by R F  energy, it  acts like an antenna, and w ill 
have near and far fields. Waves reflected and measured in the near field are, in 
general, spherical. Alternatively, in the far field the wavefronts are decom­
posed into a linear combination of plane waves.

Assume the power density of a wave incident on a target located at range R  
away from the radar is P D i, as illustrated in Fig. 11.1. The amount of reflected 
power from the target is

Pr =  aPDi (11.1)
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a  denotes the target cross section. Define PDr as the power density of the 
scattered waves at the receiving antenna. It follows that

PDr = P / (  4 nR2) (11.2)

Equating Eqs. (11.1) and (11.2) yields

a  = 4 nR2( P - )  (11.3)
PDi

and in order to ensure that the radar receiving antenna is in the far field (i.e., 
scattered waves received by the antenna are planar), Eq. (11.3) is modified

a  = 4nR2 lim & (11.4)
R & Pd i

The RCS defined by Eq. (11.4) is often referred to as either the monostatic 
RCS, the backscattered RCS, or simply target RCS.

The backscattered RCS is measured from all waves scattered in the direction 
of the radar and has the same polarization as the receiving antenna. It repre­
sents a portion of the total scattered target RCS a t , where a t > a . Assuming a 
spherical coordinate system defined by ( p, 9, ф), then at range p the target 
scattered cross section is a function of (9, ф). Let the angles (9 i, фi ) define the 
direction of propagation of the incident waves. Also, let the angles ( 9S, фх) 
define the direction of propagation of the scattered waves. The special case,
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when 0s = 0i and t s = Ti , defines the monostatic RCS. The RCS measured 
by the radar at angles 0s Ф 0i and t s Ф Ti is called the bistatic RCS.

The total target scattered RCS is given by

2п п

a t = 1  j  j  a (0 s’ Ts) sin0s d0 dTs (115)
Ts = 0 0s = 0

The amount of backscattered waves from a target is proportional to the ratio 
of the target extent (size) to the wavelength, X, of the incident waves. In fact, a 
radar will not be able to detect targets much smaller than its operating wave­
length. For example, if  weather radars use L-band frequency, rain drops 
become nearly invisible to the radar since they are much smaller than the 
wavelength. RCS measurements in the frequency region, where the target 
extent and the wavelength are comparable, are referred to as the Rayleigh 
region. Alternatively, the frequency region where the target extent is much 
larger than the radar operating wavelength is referred to as the optical region. 
In practice, the majority of radar applications fall within the optical region.

The analysis presented in this book mainly assumes far field monostatic 
RCS measurements in the optical region. Near field RCS, bistatic RCS, and 
RCS measurements in the Rayleigh region will not be considered since their 
treatment falls beyond this book’s intended scope. Additionally, RCS treatment 
in this chapter is mainly concerned with Narrow Band (NB) cases. In other 
words, the extent of the target under consideration falls within a single range 
bin of the radar. Wide Band (WB) RCS measurements will be briefly addressed 
in a later section. Wide band radar range bins are small (typically 10 - 50 cm); 
hence, the target under consideration may cover many range bins. The RCS 
value in an individual range bin corresponds to the portion of the target falling 
within that bin.

11.2. RCS Prediction Methods
Before presenting the different RCS calculation methods, it is important to 

understand the significance of RCS prediction. Most radar systems use RCS as 
a means of discrimination. Therefore, accurate prediction of target RCS is crit­
ical in order to design and develop robust discrimination algorithms. Addition­
ally, measuring and identifying the scattering centers (sources) for a given 
target aid in developing RCS reduction techniques. Another reason of lesser 
importance is that RCS calculations require broad and extensive technical 
knowledge; thus, many scientists and scholars find the subject challenging and 
intellectually motivating. Two categories of RCS prediction methods are avail­
able: exact and approximate.
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Exact methods of RCS prediction are very complex even for simple shape 
objects. This is because they require solving either differential or integral equa­
tions that describe the scattered waves from an object under the proper set of 
boundary conditions. Such boundary conditions are governed by Maxwell’s 
equations. Even when exact solutions are achievable, they are often difficult to 
interpret and to program using digital computers.

Due to the difficulties associated with the exact RCS prediction, approxi­
mate methods become the viable alternative. The majority of the approximate 
methods are valid in the optical region, and each has its own strengths and lim­
itations. Most approximate methods can predict RCS within few dBs of the 
truth. In general, such a variation is quite acceptable by radar engineers and 
designers. Approximate methods are usually the main source for predicting 
RCS of complex and extended targets such as aircrafts, ships, and missiles. 
When experimental results are available, they can be used to validate and ver­
ify the approximations.

Some of the most commonly used approximate methods are Geometrical 
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD), 
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents 
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for 
more details on these and other approximate methods.

11.3. Dependency on Aspect Angle and Frequency
Radar cross section fluctuates as a function of radar aspect angle and fre­

quency. For the purpose of illustration, isotropic point scatterers are consid­
ered. An isotropic scatterer is one that scatters incident waves equally in all 
directions. Consider the geometry shown in Fig. 11.2. In this case, two unity 
(1 m2 ) isotropic scatterers are aligned and placed along the radar line of sight 
(zero aspect angle) at a far field range R . The spacing between the two scatter­
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees, 
and the composite RCS of the two scatterers measured by the radar is com­
puted.

This composite RCS consists of the superposition of the two individual radar 
cross sections. At zero aspect angle, the composite RCS is 2m2 . Taking scat- 
terer-1 as a phase reference, when the aspect angle is varied, the composite 
RCS is modified by the phase that corresponds to the electrical spacing 
between the two scatterers. For example, at aspect angle 10°, the electrical 
spacing between the two scatterers is

, . 2 x (1.0 x cos(10°))elec-spacing = -------------------1----- — (11.6)
X

X is the radar operating wavelength.
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radar

Figure 11.2. RCS dependency on aspect angle. (a) Zero aspect angle, zero
electrical spacing. (b) 45° aspect angle, 1.414X electrical spacing.

Fig. 11.3 shows the composite RCS corresponding to this experiment. This 
plot can be reproduced using MATLAB function “rcsaspect.m” given in List­
ing 11.1 in Section 11.9. As clearly indicated by Fig. 11.3, RCS is dependent 
on the radar aspect angle; thus, knowledge of this constructive and destructive 
interference between the individual scatterers can be very critical when a radar 
tries to extract the RCS of complex or maneuvering targets. This is true 
because of two reasons. First, the aspect angle may be continuously changing. 
Second, complex target RCS can be viewed to be made up from contributions 
of many individual scattering points distributed on the target surface. These 
scattering points are often called scattering centers. Many approximate RCS 
prediction methods generate a set of scattering centers that define the back- 
scattering characteristics of such complex targets.

MATLAB Function “rcs_aspect.m”
The function “rcs aspect.m” computes and plots the RCS dependency on 

aspect angle. Its syntax is as follows:

[rcs] = rcsaspect (scatspacing, freq) 

where

Symbol Description Units Status
scat spacing scatterer spacing meters input

freq radar frequency Hz input
rcs array of RCS versus 

aspect angle
dBsm output
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Frequency is 8GHz; scatterrer spacing is 0.25m

40

■Щ

0 20 40 60 80 100 120 140 1 60 1 00 
aspect angle - degrees

Figure 11.3. Illustration of RCS dependency on aspect angle.

Next, to demonstrate RCS dependency on frequency, consider the experi­
ment shown in Fig. 11.4. In this case, two far field unity isotropic scatterers are 
aligned with radar line o f sight, and the composite RCS is measured by the 
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 11.5 
and 11.6 show the composite RCS versus frequency for scatterer spacing of 
0.25 and 0.75 meters.

radar line of sight

radar

Figure 11.4. Experiment setup which demonstrates RCS 
dependency on frequency; dist = 0.1, or 0.7 m.
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Figure 11.5. Illustration of RCS dependency on frequency.

X=Band; scatterer spacing is 0.75m

Frequency - GHz

Figure 11.6. Illustration of RCS dependency on frequency.
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The plots shown in Figs. 11.5 and 11.6 can be reproduced using MATLAB 
function “rcs_frequency.m” given in Listing 11.2 in Section 11.9. From those 
two figures, RCS fluctuation as a function of frequency is evident. Little fre­
quency change can cause serious RCS fluctuation when the scatterer spacing is 
large. Alternatively, when scattering centers are relatively close, it requires 
more frequency variation to produce significant RCS fluctuation.

MATLAB Function “rcs_frequency.m”
The function “rcs_frequency.m” computes and plots the RCS dependency 

on frequency. Its syntax is as follows:

[rcs] = rcsfrequency (scatspacing, frequ, freql)

where

Symbol Description Units Status
scat_spacing scatterer spacing meters input

freql start of frequency band Hz input
frequ end of frequency band Hz input

rcs array of RCS versus 
aspect angle

dBsm output

Referring to Fig. 11.2, assume that the two scatterers complete a full revolu­
tion about the radar line of sight in Trev = 3sec. Furthermore, assume that an 
X-band radar (f0 = 9 GHz) is used to detect (observe) those two scatterers 
using a PRF f r = 300Hz for a period of 3 seconds. Finally, assume a NB 
bandwidth BNB = 1MHz and a WB bandwidth BWB = 2GHz. It follows that 
the radar’s NB and WB range resolutions are respectively equal to 
ARnb = 150m and ARwb = 7.5cm .

Fig. 11.7 shows a plot of the detected range history for the two scatterers 
using NB detection. Clearly, the two scatterers are completely contained within 
one range bin. Fig. 11.8 shows the same; however, in this case WB detection is 
utilized. The two scatterers are now completely resolved as two distinct scat- 
terers, except during the times where both point scatterers fall within the same 
range bin.

11.4. RCS Dependency on Polarization
The material in this section covers two topics. First, a review of polarization 

fundamentals is presented. Second, the concept of the target scattering matrix 
is introduced.
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20 40 60 ВО 100
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Figure 11.7. NB detection of the two scatterers shown in Fig. 11.2.

20 40 60 00 100
range bins

Figure 11.8. WB detection of the two scatterers shown in Fig. 11.2.
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11.4.1. Polarization
The x and y electric field components for a wave traveling along the positive 

z direction are given by

Ex = E1sin(ra t -  kz) (11.7)

Ey = E2sin(rat-  kz + 5) (11.8)

where k = 2n/X , ra is the wave frequency, the angle 5 is the time phase 
angle which Ey leads Ex , and, finally, E1 and E2 are, respectively, the wave 
amplitudes along the x and y directions. When two or more electromagnetic 
waves combine, their electric fields are integrated vectorially at each point in 
space for any specified time. In general, the combined vector traces an ellipse 
when observed in the x-y plane. This is illustrated in Fig. 11.9.

The ratio of the major to the minor axes of the polarization ellipse is called 
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir­
cle, and the resultant wave is then called circularly polarized. Alternatively, 
when E1 = 0 and AR = ж the wave becomes linearly polarized.

Eqs. (11.7) and (11.8) can be combined to give the instantaneous total elec­
tric field,

/V /V

E = axEjsin(ra t -  kz) + ayE2sin(ra t -  kz + 5) (11.9)

Figure 11.9. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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where ax and ay are unit vectors along the x and y directions, respectively. At 
z = 0 , Ex = Ej sin (ю t) and Ey = E2sin (ю t + 5 ) , then by replacing 
sin (ю t) by the ratio Ex/E1 and by using trigonometry properties Eq. (11.9) 
can be rewritten as

-E---x- -E---21- -2ExEycos5 + E  = ( sin 5)2
E1E2 E22

Note that Eq. (11.10) has no dependency on ю t .

In the most general case, the polarization ellipse may have any orientation, 
as illustrated in Fig. 11.10. The angle \ is called the tilt angle of the ellipse. In 
this case, AR is given by

AR = —
OB

(1 < AR < <x>) (11.11)

When E1 = 0 , the wave is said to be linearly polarized in the y direction, 
while if E2 = 0 the wave is said to be linearly polarized in the x direction. 
Polarization can also be linear at an angle of 45° when E1 = E2 and 
| = 45 ° . When E1 = E2 and 5 = 90°, the wave is said to be Left Circu­
larly Polarized (LCP), while if 5 = -90° the wave is said to Right Circularly 
Polarized (RCP). It is a common notation to call the linear polarizations along 
the x and y directions by the names horizontal and vertical polarizations, 
respectively.
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In general, an arbitrarily polarized electric field may be written as the sum of 
two circularly polarized fields. More precisely,

-> —> —>
E = Er + El (11.12)

—̂ —>
where ER and EL are the RCP and LCP fields, respectively. Similarly, the 
RCP and LCP waves can be written as

ER = EV + jE H (11.13)

El = Ev -  JEh (11.14)
—̂ >

where EV and EH are the fields with vertical and horizontal polarizations, 
respectively. Combining Eqs. (11.13) and (11.14) yields

Er =

EL =

EH j Ev

7 2

EH +Je v

7 2

(11.15)

(11.16)

Using matrix notation Eqs. (11.15) and (11.16) can be rewritten as

'eR = _1_ 1 -j EH = [ T] EH
El = 7 2 1  j . Ev Ev

(11.17)

---1--
7 2

1 1

u  - j
(11.18)

For many targets the scattered waves will have different polarization than the 
incident waves. This phenomenon is known as depolarization or cross-polar­
ization. However, perfect reflectors reflect waves in such a fashion that an inci­
dent wave with horizontal polarization remains horizontal, and an incident 
wave with vertical polarization remains vertical but is phase shifted 180 ° . 
Additionally, an incident wave which is RCP becomes LCP when reflected, 
and a wave which is LCP becomes RCP after reflection from a perfect reflec­
tor. Therefore, when a radar uses LCP waves for transmission, the receiving 
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to 
measure the OP RCS.

H
L
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Example:
Plot the locus o f the electric field vector fo r the following cases:

л (  2n z) * r~ (  2n z casel: E (t, z) = ax cos (ro0t +------ I + ayJ  3cos ( o 0t +

case 2: E( t, z) = axcos(o0t + 2 “ ) + ay s in (o 0t + 2nz

case 3: E ( t, z) = ax cos (юс̂  + -^ -J  + ay cos (ю0t + -X - + 62nz_ + n
X 6

case 4: E(t, z) = axco s(o0t + ^ ^ J  + ayV3cos(ro0t + 'Щ-- + n

Solution:

The MATLAB program “example 11 l.m ” was developed to calculate and 
plot the loci o f the electric fields. Figs. 11.11 through 11.14 show the desired 
electric fields’ loci. See listing 11.3 in Section 11.9.

Figure 1 1 .11 . L in early  po larized  electric  field.
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Figure 11.14. Elliptically polarized electric field.

11.4.2. Target Scattering Matrix
Target backscattered RCS is commonly described by a matrix known as the 

scattering matrix, and is denoted by [S ] .  When an arbitrarily linearly polarized 
wave is incident on a target, the backscattered field is then given by

e 1 Ei1 = [ S] 1

_4 E.2 .

s 11 s 1

S21 S2

The superscripts i and s denote incident and scattered fields. The quantities 
sj}. are in general complex and the subscripts 1 and 2 represent any combina­
tion of orthogonal polarizations. More precisely, 1 = H, R , and 2 = V, L . 
From Eq. (11.3), the backscattered RCS is related to the scattering matrix com­
ponents by the following relation:

- - " 2 2
CT11 CT12 2

= 4 nR Is ii |S12
_CT21 CT22_ _|s21

2
|S22

2
(11.20)
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It follows that once a scattering matrix is specified, the target backscattered 
RCS can be computed for any combination of transmitting and receiving polar­
izations. The reader is advised to see Ruck for ways to calculate the scattering 
matrix [ S  ] .

Rewriting Eq. (11.20) in terms of the different possible orthogonal polariza­
tions yields

(11.21)
EEH SHH SHV EEH
E_Ev_ fVH svv EE v

Eer SRR SRL Eer

STR ST ET
(11.22)

By using the transformation matrix [ T] in Eq. (11.17), the circular scattering 
elements can be computed from the linear scattering elements

(11.23)SRR SRL — [ T] SHH SHV 1 0

LSL 
 ̂

| S  VH svv 0 - 1
[ T]-

Vh svv] L° -1 

and the individual components are

' _ _ SVV + SHH -  j(SHV + SvH
RR

SRT —svv + SHH + J (sHV s vH

STR —svv + SHH j(SHV SvH
(11.24)

svv + SHH + J (SHV + s vH
LL

Similarly, the linear scattering elements are given by

[ T ]SHH SHV — [ T]-1 SRR SRL 1 0

_SVH svv LSL 0 -1
(11.25)

and the individual components are
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s = SRR + SRL + SLR SLL sHH = --------------2--------------

S = j ( SRR -  SLR + SRL -  S LL)
SVH = 2

(11.26)
S = ~J(SRR + SLR -  SRL -  SLL )
SHV = 2

S = SR R + SL L +) SRL + SLR 
SVV = ~

11.5. RCS o f Simple Objects
This section presents examples o f backscattered radar cross section for a 

number o f simple shape objects. In all cases, except for the perfectly conduct­
ing sphere, only optical region approximations are presented. Radar designers 
and RCS engineers consider the perfectly conducting sphere to be the simplest 
target to examine. Even in this case, the complexity of the exact solution, when 
compared to the optical region approximation, is overwhelming. Most formu­
las presented are Physical Optics (PO) approximation for the backscattered 
RCS measured by a far field radar in the direction (9, ф), as illustrated in Fig. 
11.15.

In this section, it is assumed that the radar is always illuminating an object 
from the positive z-direction.

Figure 11.15. Direction of antenna receiving backscattered waves.
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Due to symmetry, waves scattered from a perfectly conducting sphere are 
co-polarized (have the same polarization) with the incident waves. This means 
that the cross-polarized backscattered waves are practically zero. For example, 
if the incident waves were Left Circularly Polarized (LCP), then the backscat­
tered waves will also be LCP. However, because of the opposite direction of 
propagation of the backscattered waves, they are considered to be Right Circu­
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat- 
tered waves from a sphere are LCP, while the OP backscattered waves are 
negligible.

The normalized exact backscattered RCS for a perfectly conducting sphere 
is a Mie series given by

11.5.1. Sphere

£ ( - 1 ) n (2n + 1)

П = 1

k rJn_1( k r ) -n J n(kr) 

_&krH ^  1 (kr) -  n H 1)(kr),

J n ( kr)

(11.27)

rfnl)(. kr)

where r  is the radius of the sphere, k = 2n/X , X is the wavelength, J n is the 
spherical Bessel of the first kind of order n, and } is the Hankel function of 
order n, and is given by

HnV)( kr) = J n (kr) + jYn ( kr) (11.28)

Yn is the spherical Bessel function of the second kind of order n. Plots of the 
normalized perfectly conducting sphere RCS as a function of its circumference 
in wavelength units are shown in Figs. 11.16a and 11.16b. These plots can be 
reproduced using the function “rcssphere.m” given in Listing 11.4 in Section 
11.9.

In Fig. 11.16, three regions are identified. First is the optical region (corre­
sponds to a large sphere). In this case,

а  = n r2 r  » X 

Second is the Rayleigh region (small sphere). In this case,

а  и 9n r2 (kr)4 r « X

(11.29)

(11.30)

The region between the optical and Rayleigh regions is oscillatory in nature 
and is called the Mie or resonance region.

ад
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2n r/X
Figure 11.16a. Normalized backscattered RCS for a perfectly conducting 

sphere.

S p h e re  c ir c u m fe re n ce  in w a ve le n g th s

Figure 11.16b. Normalized backscattered RCS for a perfectly 
conducting sphere using semi-log scale.
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The backscattered RCS for a perfectly conducting sphere is constant in the 
optical region. For this reason, radar designers typically use spheres of known 
cross sections to experimentally calibrate radar systems. For this purpose, 
spheres are flown attached to balloons. In order to obtain Doppler shift, 
spheres of known RCS are dropped out of an airplane and towed behind the 
airplane whose velocity is known to the radar.

11.5.2. Ellipsoid
An ellipsoid centered at (0,0,0) is shown in Fig. 11.17. It is defined by the 

following equation:

a ) 2 + (b )2 + (c )2 = i

One widely accepted approximation for the ellipsoid backscattered RCS is 
given by

2 2 2  na b c
а  = --------------------------------------------------------------------- 2 <11-32)

(a2( sin0)2 ( cos ф)2 + b2( sin0)2 ( sin ф)2 + c2( cos 0 )2)

When a = b , the ellipsoid becomes roll symmetric. Thus, the RCS is inde­
pendent of ф, and Eq. (11.32) is reduced to

Direction to
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и4 2 п b cст = --------------------------------- (11.33)
(a2 ( sin 9 )2 + c2( cos 9 )2)

and for the case when a = b = c ,

2ст = п c (11.34)

Note that Eq. (11.34) defines the backscattered RCS of a sphere. This should 
be expected, since under the condition a = b = c the ellipsoid becomes a 
sphere. Fig. 11.18a shows the backscattered RCS for an ellipsoid versus 9 for 
Ф = 45° . This plot can be generated using MATLAB program “fig11_18a.m” 
given in Listing 11.5 in Section 11.9. Note that at normal incidence (9 = 90°) 
the RCS corresponds to that of a sphere of radius c , and is often referred to as 
the broadside specular RCS value.

Ellipsoid with(a,b,c) = (0.15, 0.2, 0.95) meter
1

-----  phi = 0°
phi -4 5 °  - 

----- phi = 90°

J

f t

V-n\

1Л

i
0 20 40 60 80 100 120 140 1 60 1Э0 

Aspect angle, Theta [Degrees]

Figure 11.18a. Ellipsoid backscattered RCS versus aspect angle.

MATLAB Function “rcs_ellipsoid.m”
The function “rcsellipsoid.m” computes and plots the RCS of an ellipsoid 

versus aspect angle. It is given in Listing 11.6 in Section 11.9, and its syntax is 
as follows:

[rcs] = rcs ellipsoid (a, b, c, phi)
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where

Symbol Description Units Status
a ellipsoid a-radius meters input
b ellipsoid b-radius meters input
c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input
rcs array of RCS versus 

aspect angle
dBsm output

Fig. 11.18b shows the GUI workspace associated with function. To execute 
this GUI type “rcs_ellipsoid_gui ” from the MATLAB Command window.

Figure 11.18b. GUI workspace associated with the function “rcs_ellipsoidm”

11.5.3. Circular Flat Plate
Fig. 11.19 shows a circular flat plate o f radius r , centered at the origin. Due 

to the circular symmetry, the backscattered RCS o f a circular flat plate has no 
dependency on ф . The RCS is only aspect angle dependent. For normal inci­
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is
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0  = 0  ° (11.35)

For non-normal incidence, two approximations for the circular flat plate 
backscattered RCS for any linearly polarized incident wave are

Xr
8 n sin 0( tan (0 ))2

(11.36)

2 4(2 J ,(2 k rs in 0 ) )2 2 
ct = nk r  I — —— — —  I ( cos0) (11.37)

V 2kr sin 0 '

where k = 2n/X, and J 1 (P) is the first order spherical Bessel function evalu­
ated at p . The RCS corresponding to Eqs. (11.35) through (11.37) is shown in 
Fig. 11.20. These plots can be reproduced using MATLAB function
“rcs_circ_gui.m”.

=

MATLAB Function “rcs_circ_plate.m”
The function “rcs_circ_plate.m” calculates and plots the backscattered RCS 

from a circular plate. It is given in Listing 11.7 in Section 11.9; its syntax is as 
follows:

[rcs] = rcs_circ_plate (r, freq)

where

Symbol Description Units Status
r radius of circular plate meters input

freq frequency Hz input
rcs array of RCS versus aspect angle dBsm output
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Frequency = 10 GHz

Aspect angle - degrees

Figure 11.20. Backscattered RCS for a circular flat plate.

11.5.4. Truncated Cone (Frustum)
Figs. 11.21 and 11.22 show the geometry associated with a frustum. The half 

cone angle a  is given by

(r2 -  r , ) r2 
tan a  = —------- = — (11.38)

H L

Define the aspect angle at normal incidence with respect to the frustum’s 
surface (broadside) as 9n. Thus, when a frustum is illuminated by a radar 
located at the same side as the cone’s small end, the angle 9n is

9n = 90° -  a  (11.39)

Alternatively, normal incidence occurs at

9„ = 90° + a  (11.40)

At normal incidence, one approximation for the backscattered RCS of a trun­
cated cone due to a linearly polarized incident wave is
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Figure 11.22. Definition of half cone angle.
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„ , 3/2 3/2 ч28п( z2 -  z1 ) 2 
ст9 = -----. -.------------ tan a (  sin 9 n -  cos 9n tan a )  (11.41)

n 9X sin 9n n n

where X is the wavelength, and z1, z2 are defined in Fig. 11.21. Using trigo­
nometric identities, Eq. (11.41) can be reduced to

о , 3/2 3/242
8n(z2 - z l ) sina 

CT9n = -------- 9 .-------------------4 (11.42)
9X ( cos a )

For non-normal incidence, the backscattered RCS due to a linearly polarized 
incident wave is

ст = Xztana( sin9 -  cos9 t a n a '2 (1143)
8 п sin 9 & sin 9 tan a  + cos 9/ .

where z is equal to either z 1 or z2 depending on whether the RCS contribu­
tion is from the small or the large end of the cone. Again, using trigonometric 
identities Eq. (11.43) (assuming the radar illuminates the frustum starting from 
the large end) is reduced to

Xztana ^  /1Л nn2 ..........
ст = в Л щ ё  ( t a n ( 9  -  a ) )  (11-44)

When the radar illuminates the frustum starting from the small end (i.e., the 
radar is in the negative z direction in Fig. 11.21), Eq. (11.44) should be modi­
fied to

Xz tan a  .. 442
ст = 5ПйП9 ( t a n ( 9  + a ) )  (11-4S)

For example, consider a frustum defined by H = 20.945cm , 
r 1 = 2.057cm , r 2 = 5.753cm . It follows that the half cone angle is 10° . 
Fig. 11.23a shows a plot of its RCS when illuminated by a radar in the positive 
z direction. Fig. 11.23b shows the same thing, except in this case, the radar is 
in the negative z direction. Note that for the first case, normal incidence occur 
at 100° , while for the second case it occurs at 80° . These plots can be repro­
duced using MATLAB function “rcsjrustum_gui.m” given in Listing 11.8 in 
Section 11.9.

MATLAB Function “rcs_frustum.m”
The function “rcs_frustum.m” computes and plots the backscattered RCS of 

a truncated conic section. The syntax is as follows:

[rcs] = rcsfrustum (r1, r2, freq, indicator)
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V iew ing from  large end

A p s e c t  a n g le  - d e g re e s  

frequ ency - H z  j  9.e9

view ing from large end

small end radius - m 0205

viewing from small end

large end radius m ' 05^53

length - m 20994

Figure 11.23a. Backscattered RCS for a frustum.

V ie w in g  f ro m  s m a ll end

0  2 0  4 0  60  80 100  120  140  160  180 
A p s e c t  a n g le  - d e g re e s

frequency H z  |  9.e9

view ing from large end

small end radius - m .0205

viewing from small end

large end radius - m .05753

length • m_______ j .20994

Figure 11.23b . B ackscattered  R C S  fo r  a frustum .
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where

Symbol Description Units Status
r1 small end radius meters input
r2 large end radius meters input

freq frequency Hz input
indicator indicator = 1 when viewing from 

large end
indicator = 0 when viewing from 

small end

none input

rcs array of RCS versus aspect angle dBsm output

11.5.5. Cylinder
Fig. 11.24 shows the geometry associated with a finite length conducting 

cylinder. Two cases are presented: first, the general case of an elliptical cross 
section cylinder; second, the case of a circular cross section cylinder. The nor­
mal and non-normal incidence backscattered RCS due to a linearly polarized 
incident wave from an elliptical cylinder with minor and major radii being r1 
and r 2 are, respectively, given by

2 2 2  2nH r 2r,
ае = --------------------- — --------- г :  (11'46)n 2 2 2 2 1.5

Ц r 1( cosф) + r 2( sinф) ]

X r^ s in  е

8n ( cosе )2[r 2(cosф)2 + r2( sinф)V '5
(11.47)

For a circular cylinder o f radius r , then due to roll symmetry, Eqs. (11.46) 
and (11.47), respectively, reduce to

2
2 nH r ... ...

ае = — ;—  (11-48)

^ r  sin еа  = ------------ - (11-49)
8n(cosе)

Fig. 11.25a shows a plot of the cylinder backscattered RCS for a symmetri­
cal cylinder. Fig. 11.25b shows the backscattered RCS for an elliptical cylin­
der. These plots can be reproduced using MATLAB function “rcscylinder.m” 
given in Listing 11.9 in Section 11.9.

=
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Figure 11.24. (a) Elliptical cylinder; (b) circular cylinder.

Circular Cylinder at Frequency = 3.5 GHz

Aspect angle - degrees

Figure 11.25a. Backscattered RCS for a symmetrical cylinder, r = 0.125m 
and H = 1 m .
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Elliptic Cylinder at Frequency = 3.5 GHz

0 20 40 60 80 100 120 140 1 60 1 80 
Aspect angle - degrees

Figure 11.25b. Backscattered RCS for an elliptical cylinder, r  1 = 0.125m ,
r 2 = 0.05m , and H = 1m .

MATLAB Function “rcs_cylinder.m”
The function “rcscylinder.m” computes and plots the backscattered RCS of 

a cylinder. The syntax is as follows:

[rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)

where

Symbol Description Units Status
r1 radius r1 meters input
r2 radius r2 meters input
h length of cylinder meters input

freq frequency Hz input
phi roll viewing angle degrees input

CylinderType ‘Circular, ’ i.e., r x = r 2 

‘Elliptic, ’ i.e., r x Ф r 2

none input

rcs array of RCS versus aspect angle dBsm output
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11.5.6. Rectangular Flat Plate
Consider a perfectly conducting rectangular thin flat plate in the x-y plane as 

shown in Fig. 11.26. The two sides of the plate are denoted by 2a and 2b . For 
a linearly polarized incident wave in the x-z plane, the horizontal and vertical 
backscattered RCS are, respectively, given by

a V = — а 1V а 2V
1 а

+ ~  ( a 3V + a 4V) а 5V (11.50)

ba H = — J1H 2 H — - ^ Я  ( a 3H + a 4H) 
.cos е 4 .

-1
75H

where k = 2 л/Х and

(11.51)

a 1V = cos (kаsinе) - j

а 2 V =

sin е

j ka - n/4)
3 / 2

= ( a 1H)*

V2n( ka)

3V
-jk asin е

(1 -  sinе )2

kasin е
а 4

= (1 -  sin
(1 + sin е)

(11.52)

(11.53)

(11.54)

(11.55)
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/(2ka - п/2)
= 1 ------------- -г- (11.56)

8п( k a)3

4 / k'a + п/4)

V2n( k a )1

-/kasin 9

(11.57)

а 3н = -г---------- (11.58)
3H 1 -  sin0 ' '

/kasin 0
a4H = T----- - 7: (11.59)

1 + sin0

/(2ka + (п/2))

а 5д = 1 -  - i n k T

Eqs. (11.50) and (11.51) are valid and quite accurate for aspect angles 
0° < 0 < 80 . For aspect angles near 90°, Ross1 obtained by extensive fitting 
of measured data an empirical expression for the RCS. It is given by

a v =
a t
X

а н ^  0

2 ^ i  п 1 Ti п "| ( 3п)  | (11.61) 1 + ----------- - + 1 -------------- - cos 2 k a ------
2 (2 a/X)2- 2 (2 a /X)2- 5

The backscattered RCS for a perfectly conducting thin rectangular plate for 
incident waves at any 0 , ф can be approximated by

2 2 24па t  ( sin(aksin0 cosф) sin(tk s in 0 sinф)Л . „ ч2 . . . . . . . .
а  = -----Г - & — T - "Б------- -i:li , ,  - Q -— ^  ( cos0 ) (11.62)X2 & ak sin 0 cos ф tk  sin 0 sin ф /

Eq. (11.62) is independent of the polarization, and is only valid for aspect 
angles 0 < 20 ° . Fig. 11.27 shows an example for the backscattered RCS of a 
rectangular flat plate, for both vertical (Fig. 11.27a) and horizontal (Fig. 
11.27b) polarizations, using Eqs. (11.50), (11.51), and (11.62). In this example, 
a = t  = 10.16cm and wavelength X = 3.33cm . This plot can be repro­
duced using MATLAB function “rcs_rect_plate” given in Listing 11.10.

MATLAB Function “rcs_rect_plate.m”
The function “rcs_rect_plate.m” calculates and plots the backscattered RCS 

of a rectangular flat plate. Its syntax is as follows:

[rcs] = rcs_rect_plate (a, t, freq)

а 5 v

=

1. Ross, R. A., Radar Cross Section of Rectangular Flat Plate as a Function of Aspect 
Angle, IEEE Trans., AP-14,320, 1966.
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Figure 11.27a. Backscattered RCS for a rectangular flat plate.

Horizontal Polarization. Frequency =  9 GHz. a = 0  1016m b = 0 1016m

Aspect angle - deg

Figure 11.27b. Backscattered RCS for a rectangular flat plate.
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where

Symbol Description Units Status
a short side of plate meters input
b long side of plate meters input

freq frequency Hz input
rcs array of RCS versus aspect angle dBsm output

Fig. 11.27c shows the GUI workspace associated with this function.

Figure 11.27c. GUI workspace associated with the function “rcs_rect_plate.m”.

11.5.7. Triangular Flat Plate
Consider the triangular flat plate defined by the isosceles triangle as oriented 

in Fig. 11.28. The backscattered RCS can be approximated for small aspect 
angles ( 0 < 30°) by

4nA , „ч2 а  = — — ( cos0) а 0
X2

(11.63)

а 0 =
[ ( sin а  ) 2 -  ( sin (p/2))2]2 + а 01 

а 2 -  ф /2)2
(11.64)

2 2  а 01 = 0 .25 (sinф) [(2 a/b) cosфsinр -  sinфsin2a] (11.65)

where а  = k asin 0 cos ф, p = kbsin 0 sin ф ,andA  = ab / 2 .Forwavesinci- 
dent in the plane ф = 0 ,the RCS reduces to
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Figure 11.28. Coordinates for a perfectly conducting isosceles triangular plate.

4nA , n,2 ct = — — ( cos 0)
4 2"(s in a ) + (s in 2a  -  2 a )

4 , 4a  4 a
(11.66)

and for incidence in the plane ф = л/ 2

4 nA „ч2 ct = — — ( cos 0)
X2 . (P/2 )4

(11.67)

Fig. 11.29 shows a plot for the normalized backscattered RCS from a per­
fectly conducting isosceles triangular flat plate. In this example a = 0.2m , 
b = 0.75m. This plot can be reproduced using MATLAB function 
“rcsisosceles.m” given in Listing 11.11 in Section 11.9.

MATLAB Function “rcs_isosceles.m”
The function “rcs isosceles.m” calculates and plots the backscattered RCS 

of a triangular flat plate. Its syntax is as follows:

[rcs] = rcsisosceles (a, b, freq, phi)

where

Symbol Description Units Status
a height of plate meters input
b base of plate meters input

freq frequency Hz input
phi roll angle degrees input
rcs array of RCS versus aspect angle dBsm output
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Figure 11.29. Backscattered RCS for a perfectly conducting triangular 
flat plate, a = 20 cm and b = 75 cm .

11.6. Scattering From a Dielectric-Capped Wedge
The geometry of a dielectric-capped wedge is shown in Fig. 11.30. It is 

required to find to the field expressions for the problem of scattering by a 2-D 
perfect electric conducting (PEC) wedge capped with a dielectric cylinder. 
Using the cylindrical coordinates system, the excitation due to an electric line 
current of complex amplitude I0 located at (p0, ф0) results in TMz incident 
field with the electric field expression given by

E, = - ^  _ A |) («■«■>

The problem is divided into three regions, I, II, and III shown in Fig. 11.30. 
The field expressions may be assumed to take the following forms:
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y

El = ^  anJ v ( k p )s in v (ф -  a )s in v (ф0 -  a )
n=0

Ei!1 = Z ( bnJ v (kP )+ cnHV2> (kP ) ) sin v (ф -  a ) sin v (фо -  a )
n=0
да

E f  = ^ dnH(  ̂(kp)s in v (ф -  a )s in v (ф0 -  a )
n=0

where

(11.69)

nn
2 a <11-7°)2n -  a -  p

while J v(x ) is the Bessel function of order v and argument x and Hv2) is the 
Hankel function of the second kind of order v and argument x . From Max­
well's equations, the magnetic field component Нф is related to the electric 
field component Ez for a TMz wave by

H = 1 E
ф ja p  dp

(11.71)
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Thus, the magnetic field component Нф in the various regions may be written 
as

k “
H Ф = - 1— Z  anJ 'v(kl p ) sin v (Ф -  a ) sin v (фо -  a )

J m̂ 0 n=0
k

j '^ 0
Z (bnJ'v (kp) + cnH{()' (kp)) sin v (ф -  a ) sin v (ф0 -  a )

(11.72)

TTlll _
j '^ 0

Z  dnH y  (kp)sin v (ф -  a )sin v (ф0 -  a )

Where the prime indicated derivatives with respect to the full argument of the 
function. The boundary conditions require that the tangential electric field 
components vanish at the PEC surface. Also, the tangential field components 
should be continuous across the air-dielectric interface and the virtual bound­
ary between region II and III, except for the discontinuity o f the magnetic field 
at the source point. Thus,

Ez = 0 at I = a, 2л  -  в (11.73)

El = E?

Hф = H^
at p = a

(11.74)

Eii = Ein

H ф -  H ш = -  J
at p = p0 (11.75)

The current density J e may be given in Fourier series expansion as

p0
2 L

2n -  a -  в  p0
Z  sin v (ф -  a )sin v (ф0 -  a ) (11.76)

The boundary condition on the PEC surface is automatically satisfied by the ф 
dependence of the electric field Eq. (11.72). From the boundary conditions in 
Eq. (11.73)

Z  anJ v (ka  )sin v (ф -  a )sin v (ф0 -  a ) =
n=0

Z\bnJy (ka ) + cnH(  ̂(ka ))sin v (ф -  a )sin v (ф0 -  a )

(11.77)

n=0
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k “
—— V  anJ'v (kla )sin v (ф -  a )sin v (ф0 -  a ) =
ap0 n=0

k V (  bnJ ’v(ka) + cnH (y (ka)) sin v (ф -  a )sin v (ф0 -  a )
J ap0 n=0

From the boundary conditions in Eq. (11.75), we have

да . .
Z ( n J v (kPo ) + cnH() (kPo ) ) sin v ) -  a ) sin v (фо -  a )
n=0

да
V  dnH( ') (kp0 )sin v (ф -  a )sin v (ф0 -  a )
n=0

k

(11.79)

V  (bnJ ' (kPo ) + cnHiiy (kPo )) sin v (ф -  a ) sin v (фо -  a )
ja p 0 n=0

k
(11.80)

V  dnH ^' (kp0 )sin v (ф -  a )sin v (ф0 -  a )
japo  n=0

2 I e
2n -  a -  в  p0

V  sin v (ф -  a )sin v (ф0 -  a )
n=0

Since Eqs. (11.77) and (11.80) hold for all ф , the series on the left and right 
hand sides should be equal term by term. More precisely,

a J  (k a ) = bnJ v (ka) + cnH {2) (ka) (1181)

—  anJ ' (k1a ) = (bnJ ' ( ka )+  c H V2)' (ka )) (11'82)
po po

bnJv (kp0 ) + cnHV2) (kpо ) = d ^  (kpо ) (1183)

rV2)' (kp0) = dnHl'iy ( kp ) ------2—0— 1

From Eqs. (11.81) and (11.83), we have

a = — -1— - \b J  (ka) + c H 2'1 (ka)]
n J v (kja)L n Л  ’ n v У ’ U

bnJ' (kp, ) + cnH{( )’ (kp0) = dnH{2)’ (kp0) -  — —-0 — ̂  (11.84)
2n -  a -  p p0

(11.85)

dn = cn + (11.86)
n n nH (}(kp0)
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Multiplying Eq. (11.83) by H ^  and Eq. (11.84) by H'2), and by subtraction 
and using the Wronskian of the Bessel and Hankel functions, we get

= -  1  H,<2> (k00)
2n -  a -  в

Substituting bn in Eqs. (11.81) and (11.82) and solving for cn yield

(11.87)

c =• жтц01,
2n -  a -  в h * (k°0)-

k J’v (k a)Jv (kla ) -  k  J v (k a )J ’v (kla )

kHf y (ka)Jv (kxa ) - klH{v2) (ka)J'v (kla)
(11.88)

From Eqs. (11.86) through (11.88), dn may be given by

dn =
n a ^ 0I e

2 n  -  a  -  в

which can be written as

H (2) ( k ^ 0 ) kJ'v (ka ) J v (k1a ) -  k J v (ka ) J 'v ( k g ) _ j  ^ ) 

k H ^  (ka ) J v (k1a ) -  k jH ®  (ka )J^  (k1a )

(11.89)

nWjU0I,
2 n  -  a  - I

kJv (k1a ) J l  (k a )H ^  (kp0 ) - H (2 '̂ (k a ) J v ( kp0 )  + K

k1 J', (k1a ) [ H «  ( k a ) J v ( kp0 ) -  J v (k a)H (2  ( kp0 )

kH ^' (k a ) J v (k1a ) -  k f l f  (k a)J^  ( k1a )

(11.90)

Substituting for the Hankel function in terms of Bessel and Neumann func­
tions, Eq. (11.90) reduces to

d n = - J
2n- a - i

kJv ( k1a ) [ J '  ( ka)YV ( kp0 ) - Y ^(ka)Jv ( kp0 ) ]  + K

KJ'v ( k1a  )|^YV (ka ")Jv (kp0) - J v (ka )YV (kp0 )

kH(  (ka")Jv ( k1a ) -  kflV2' (k a ) J'v ( k1a
(11.91)

With these closed form expressions for the expansion coeffiecients an, bn, 
cn and dn, the field components Ez and Нф can be determined from Eq. 
(11.69) and Eq. (11.72), respectively. Alternatively, the magnetic field compo­
nent Hp can be computed from

1 1  dEzHp = — --------- ф  (11.92)
jw/л p  дф
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Thus, the Hp expressions for the three regions defined in Fig. 11.30 become

1  д а

H p  =  - ----------------- V  a n v J v  ( k p ) c o s  v ^ - a ) s i n  v ( ф o - a )

j a u p  n = 0

1 да (11.93)
Hp = — :------ V v ( v ( k p )  + c„H(I)(kp))cosv ( ф - a ) s in у(ф0 - a )  '

jaupn=0 v ’
1 да

Hppl = -----------V dnvH<(1)(kp)cosv ^ - a ) s i n v(ф0 - a )
J a / p  n=0

11.6.1. Far Scattered Field
In region III, the scattered field may be found as the difference between the 

total and incident fields. Thus, using Eqs. (11.68) and (11.69) and considering 
the far field condition ( p ^  да) we get

2 j да
E’n = El + El  = A ^ ~ eJkp V dnJv sin v(SP -  a) sinу(фо -  a) Vnkp n~0

= - 1  OPl I X [ e H p = - -
1 1 dEz

4 у nkp 

Note that dn can be written as

JaU p
(11.94)

d = aP0Ie %
n 4 n

where

(11.95)

4 n
2 n  -  a  -  в

k Jv ( k1a ) [  J '  ( ka )Y v ( kp0 ) -  Yv'(k a ) J v ( kp0 ) ]  + K

k1J'y (k1a ) [Y v (k a ) J v ( kp0 ) -  J y (k a )Y v (k p 0 )

kHV ’̂ (k a ) J v (k1a ) -  k1H ( i 'i ( k a ) J '  (k1a )

(11.96)

Substituting Eq. (11.95) into Eq. (11.94), the scattered field f (ф) is
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т-s — M-Ze П Г  -jkpEz = ---- ------ \ - f - e J y (11.97)
z 4 Vnkp

(  да )

Z i .V • , 4 4 jkp0cos (Ф— Фо)dnj  s in v ^  — a ) s in v ^ 0 — a )  — e

& n = 0

11.6.2. Plane Wave Excitation
For plane wave excitation ( p0 ^  да), the expression in Eqs. (11.87) and 

(11.88) reduce to

b = _  ™ P0 Ie — v 2J e-Jkp0
n 2п _  a _  в  у nkp0

------  \ (11-98)
_ 2 L e-—kP0 kJV(k a)Jv (k1a ) _ k1J  (ka)■J  (k1a )

» _2n _ a _  p ]j nkpо kH (y (ka)Jv (kxa ) _ (ka) J[  (kxa ) 

where the complex amplitude o f the incident plane wave, E0 , can be given by

E0 = _ I„— M A-2 — e_kp0 (11-99)
4 у nkp0

In this case, the field components can be evaluated in regions I and II only.

11.6.3. Special Cases 
Case I: a  = p (reference at bisector); The definition of v reduces to

nn . . .V = — ------- - (11.100)
2 (п _  в )

and the same expression will hold for the coefficients (with a  = p ).

Case II: a  = 0 (reference at face); the definition o f v takes on the form

V = nn (11.101)
2п _ в

and the same expression will hold for the coefficients (with a  = 0 ).

Case III: kx ^  да (PEC cap); Fields at region I will vanish, and the coeffi­
cients will be given by
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bn = - 2 Лаи°1 R H( ) (kp0)
2n -  a -  в

c = па^ е h {24kp ) J v(ka) 
cn 2n -  a -  в  Hv (kp0 ) H (2Uka)

v v ' (11.102)
= . лт/и0 Ie Yv (ka ) J  (kp0) -  J v (ka) Y (kp0) 

n J  2n -  a -  в  H 2)(ka)

an = J -^ )  [ ^ (ka) + cnH^ (ka )S = 0

Note that the expressions of bn and cn w ill yield zero tangential electric field 
at p = a when substituted in Eq.(11.69).

Case IV: a ^  0 (no cap); The expressions of the coefficients in this case 
may be obtained by setting k1 = k , or by taking the limit as a approaches 
zero. Thus,

na^01,

bn =

2n -  a -  в 

na^01,

H
kJv (ka)Jv (ka) -  kJv (ka')J'v (ka) 

kH '̂ (ka)Jv (ka) -  kH  ̂(ka')J[ (ka)
= 0

H ,(2){kP0

dn =

2n -  a -

(  ) RbnJv (ka) + cnHWka)] = bn
J  v (ka)

kJv (k1a)  Jl (ka)H(2 (kp0) - H(2̂  (ka)Jv (kp0 )  + K

kJv (k1a'j^H^^a)Jv (kp0) -  Jv (ka)h V2'1 (kp0)]Ke)ju01,
2n -  a -  в

na^01, 
2n -  a -  ,

kHv (ka)Jv (k1a) -  klHJ2-1 (ka) Jv' (k1a

(11.103)

(kp0

Case V: a ^  0 and a  = p = 0 (semi-infinite PEC plane); In this case, the 
coefficients in Eq. (11.103) become valid with the exception that the values of 
v reduce to n/2 . Once, the electric field component Ez in the different 
regions is computed, the corresponding magnetic field component Нф can be 
computed using Eq. (11.71) and the magnetic field component Hp may be 
computed as

H = -  1 1
p J®MP дф

(11.104)
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The MATLAB program "Capped_WedgeTM.m" given in listing 11.12, along 
with the following associated functions "DielCappedWedgeTMFieldsLs.m", 
“DielCappedWedgeTMFields PW", "polardb.m", "dbesselj.m", "dbesselh.m", 
and "dbessely.m" given in the following listings, calculates and plots the far 
field o f a capped wedge in the presence o f an electric line source field. The 
near field distribution is also computed for both line source or plane wave exci­
tation. A ll near field components are computed and displayed, in separate win­
dows, using 3-D output format. The program is also capable o f analyzing the 
field variations due to the cap parameters. The user can execute this MATLAB 
program from the MATLAB command window and manually change the input 
parameters in the designated section in the program in order to perform the 
desired analysis. Alternatively, the "Capped_Wedge_GUI.m" function along 
with the "Capped Wedge GUI.fig" file can be used to simplify the data entry 
procedure.

A  sample o f the data entry screen o f the "CappedWedgeGUI" program is 
shown in Fig. 11.31 for the case o f a line source exciting a sharp conducting 
wedge. The corresponding far field pattern is shown in Fig. 11.32. When keep­
ing all the parameters in Fig. 11.31 the same except that selecting a dielectric 
or conducting cap, one obtains the far field patterns in Figs. 11.33 and 11.34, 
respectively. It is clear from these figures how the cap parameters affect the 
direction o f the maximum radiation o f the line source in the presence o f the 
wedge. The distribution o f the components o f the fields in the near field for 
these three cases (sharp edge, dielectric capped edge, and conducting capped 
edge) is computed and shown in Figs. 11.35 to 11.43. The near field distribu­
tion for an incident plane wave field on these three types o f wedges is also 
computed and shown in Figs. 11.44 to 11.52. These near field distributions 
clearly demonstrated the effect or cap parameters in altering the sharp edge sin­
gular behavior. To further illustrate this effect, the following set o f figures 
(Figs. (11.53) to (11.55)) presents the near field o f the electric component of 
plane wave incident on a half plane with a sharp edge, dielectric capped edge, 
and conducting capped edge.

The user is encouraged to experiment with this program as there are many 
parameters that can be altered to change the near and far field characteristic 
due to the scattering from a wedge structure.

MATLAB Program “Capped_WedgeTM.m”
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Electromagnetic Scattering from a Capped Wedge (TMz) 

—  Souce-Type -------------

Reference 1 on x-axis

A lp h a 30 Degrees

Beta 30 Degrees

Cap radius 0.15 Lambda

Rho_0 0.5 Lambda

Phi_0 180 Degrees

Frequency 3.0e+8 Hs

epsr 5

mur 1

le 0.001 Ampere

f* Line Source | Far Field

Г  Plane W ave lNea' Field

----  Near Field Region

x-di mens ion 
(Lambda]

y-di mens ion 
(Lambda) *

—  Cap-Type

Г  Dielectric 

С  Conducloi 

f f  None

Figure 11.31. The parameters for computing the far field pattern of a 60 degrees 
wedge excited by a line source

Total Far Field (Ez) [dBJ 
90

180

D/

- « , 6 0

'  I \ 3 0

V ; \  . • j
\ 4 v ̂ .-ЗсЫ в / V . /

_: 20-e(Ef' A  /330

.-1.QjdB '  \  J /

240 ^ 5 S s ^ 0 dEL^—'^ЯПП

270

Figure 11 .32 . The fa r  field  p a tte rn  o f  a line source n ea r a conducting wedge
w ith  sharp  edge characterized  by the p aram eters in Fig. 11 .31 .
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Figure 11.33. The far field pattern of a line source near a conducting wedge with 
a dielectric capped edge characterized by the parameters in Fig. 
11.31.

Figure 11 .34 . The fa r  field  p atte rn  o f  a line source n ea r a conducting wedge w ith
a conducting capped edge ch aracterized  b y  the p aram eters in  Fig.
11 .31 .
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Figure 11.35. The Ez near field pattern of a line source near a conducting wedge 
with a sharp edge characterized by the parameters in Fig. 11.31.

Figure 11 .36 . The Hp n ea r field  p a tte rn  o f  a line source n ea r a conducting wedge
w ith  a sharp  edge characterized  by the p aram eters in Fig. 11 .31 .
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Figure 11.37. The Нф near field pattern of a line source near a conducting wedge 
with a sharp edge characterized by the parameters in Fig. 11.31.

Figure 11 .38 . The Ez n ea r field  p a tte rn  o f  a line source n ea r a conducting wedge
w ith  a dielectric cap edge characterized  by Fig. 11 .31 .
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Figure 11.39. The Hp near field pattern of a line source near a conducting wedge 
with a dielectric cap edge characterized by Fig. 11.31.

Figure 11 .40 . The Нф n ea r field  p atte rn  o f  a line source n ea r a conducting wedge
w ith  a dielectric cap edge characterized  by Fig. 11 .31 .
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Figure 11.41. The Ez near field pattern of a line source near a conducting wedge 
with a conducting capped edge characterized by Fig. 11.31.

Figure 11 .42 . The Hp n ea r field  p a tte rn  o f  a line source n e a r  a conducting wedge
w ith  a conducting capped edge characterized  by Fig. 11 .31 .
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Figure 11.43. The Нф near field pattern of a line source near a conducting wedge 
with a conducting capped edge characterized by Fig. 11.31.

Figure 11 .44 . The Ez n ea r field  p a tte rn  o f  a p lane w ave  incident on a conducting
wedge w ith  a sharp  edge characterized  by Fig. 11 .31 .
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т)0 Hp [Plane wave excitation]

* -1 У:

Figure 11.45. The Hp near field pattern of a plane wave incident on a conducting 
wedge with a sharp edge characterized by Fig. 11.31.

r> Нф (P lane wave excitation]

Figure 11 .46 . The Нф n e a r  field  p a tte rn  o f  a p lane w ave  incident on a conducting
wedge w ith  a sharp  edge characterized  by Fig. 11 .31 .
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Figure 11.47. The Ez near field pattern of a plane wave incident on a conducting 
wedge with a dielectric edge characterized by Fig. 11.31.

Figure 11 .48 . The Hp n ea r field  p atte rn  o f  a p lane w ave incident on a conducting
wedge w ith  a dielectric edge characterized  by Fig. 11 .31 .
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Figure 11.49. The Нф near field pattern of a plane wave incident on a conducting 
wedge with dielectric capped edge characterized by Fig. 11.31.

Figure 11 .50 . The Ez n ea r field  p atte rn  o f  a p lane w ave incident on a conducting
wedge w ith  a conducting capped edge ch aracterized  by Fig. 11 .31 .
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т)0 Hp [Plane wave excitation]

Figure 11.51. The Hp near field pattern of a plane wave incident on a conducting 
wedge with a conducting capped edge characterized by Fig. 11.31.

r> Нф (P lane wave excitation]

Figure 11 .52 . The Нф n e a r  field  p a tte rn  o f  a p lane w ave  incident on a conducting
wedge w ith  a conducting capped edge ch aracterized  by Fig. 11 .31 .
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Figure 11.53. The Ez near field pattern of a plane wave incident on a half plane 
with sharp edge. All other parameters are as in Fig. 11.31.

Figure 11 .54 . Ez n ea r field p a tte rn  o f  a p lane w ave incident on a h a lf  p lane w ith
a dielectric capped edge. A ll o th er param eters a re  as in Fig. 11 .31 .
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Near Field (Ez) (Plane wave excitation]

1 -0 5  0 0 5
У

Figure 11.55. Ez near field pattern of a plane wave incident on a half plane with 
a conducting capped edge. All other parameters are as in Fig. 11.31.

11.7. RCS o f Complex Objects
A  complex target RCS is normally computed by coherently combining the 

cross sections o f the simple shapes that make that target. In general, a complex 
target RCS can be modeled as a group o f individual scattering centers distrib­
uted over the target. The scattering centers can be modeled as isotropic point 
scatterers (N-point model) or as simple shape scatterers (N-shape model). In 
any case, knowledge o f the scattering centers’ locations and strengths is critical 
in determining complex target RCS. This is true, because as seen in Section
11.3, relative spacing and aspect angles o f the individual scattering centers 
drastically influence the overall target RCS. Complex targets that can be mod­
eled by many equal scattering centers are often called Swerling 1 or 2 targets. 
Alternatively, targets that have one dominant scattering center and many other 
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine 
coherently to produce a single value for the target RCS at every aspect angle. 
However, in WB applications, a target may straddle many range bins. For each 
range bin, the average RCS extracted by the radar represents the contributions 
from all scattering centers that fall within that bin.
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As an example, consider a circular cylinder with two perfectly conducting 
circular flat plates on both ends. Assume linear polarization and let H = 1 да 
and r  = 0.125да . The backscattered RCS for this object versus aspect angle is 
shown in Fig. 11.56. Note that at aspect angles close to 0° and 180° the RCS 
is mainly dominated by the circular plate, while at aspect angles close to nor­
mal incidence, the RCS is dominated by the cylinder broadside specular return. 
The reader can reproduced this plot using the MATLAB program 
“гс$_суНпег_содар1ех.да” given in Listing 11.19 in Section 11.9.

A s p e c t  a n g le  - d e g re e s

Figure 11.56. Backscattered RCS for a cylinder with flat plates.

11.8. RCS Fluctuations and Statistical Models
In most practical radar systems there is relative motion between the radar 

and an observed target. Therefore, the RCS measured by the radar fluctuates 
over a period of time as a function of frequency and the target aspect angle. 
This observed RCS is referred to as the radar dynamic cross section. Up to this 
point, all RCS formulas discussed in this chapter assumed a stationary target, 
where in this case, the backscattered RCS is often called static RCS.

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation 
is called glint, while amplitude fluctuation is called scintillation. Glint causes 
the far field backscattered wavefronts from a target to be non-planar. For most
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radar applications, glint introduces linear errors in the radar measurements, and 
thus it is not of a major concern. However, in cases where high precision and 
accuracy are required, glint can be detrimental. Examples include precision 
instrumentation tracking radar systems, missile seekers, and automated aircraft 
landing systems. For more details on glint, the reader is advised to visit cited 
references listed in the bibliography.

Radar cross-section scintillation can vary slowly or rapidly depending on the 
target size, shape, dynamics, and its relative motion with respect to the radar. 
Thus, due to the wide variety of RCS scintillation sources, changes in the radar 
cross section are modeled statistically as random processes. The value of an 
RCS random process at any given time defines a random variable at that time. 
Many of the RCS scintillation models were developed and verified by experi­
mental measurements.

11.8.1. RCS Statistical Models - Scintillation Models
This section presents the most commonly used RCS statistical models. Sta­

tistical models that apply to sea, land, and volume clutter, such as the Weibull 
and Log-normal distributions, will be discussed in a later chapter. The choice 
of a particular model depends heavily on the nature of the target under exami­
nation.

Chi-Square of Degree 2m

The Chi-square distribution applies to a wide range of targets; its pdf is given 
by

where Г (m) is the gamma function with argument m , and a av is the average 
value. As the degree gets larger the distribution corresponds to constrained 
RCS values (narrow range of values). The limit m ^  x  corresponds to a con­
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)
In Swerling I, the RCS samples measured by the radar are correlated 

throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu­
ation). In this case, the pdf is

where a av denotes the average RCS overall target fluctuation. Swerling II tar­
get fluctuation is more rapid than Swerling I, but the measurements are pulse to

(11.105)

а > 0 (11.106)
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pulse uncorrelated. Swerlings I and II apply to targets consisting of many inde­
pendent fluctuating point scatterers of approximately equal physical dimen­
sions.

Swerling III and IV (Chi-Square of Degree 4)
Swerlings III and IV have the same pdf, and it is given by

f  4 a  (  2-a f ( a )  = a a  exp &- a - а > 0 (11.107)

The fluctuations in Swerling III are similar to Swerling I; while in Swerling 
IV they are similar to Swerling II fluctuations. Swerlings III and IV are more 
applicable to targets that can be represented by one dominant scatterer and 
many other small reflectors. Fig. 11.57 shows a typical plot of the pdfs for 
Swerling cases. This plot can be reproduced using MATLAB program 
“Swerling models.m” given in Listing 11.20 in Section 11.9.

Figure 11.57. Probability densities for Swerling targets.

11.9. MATLAB Program and Function Listings
This section presents listings for all MATLAB programs/functions used in 

this chapter. The user is advised to rerun these programs with different input 
parameters.

x
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function [rcs] = rcsaspect (scatspacing, freq)
% This function deдаonstrates the effect o f aspect angle on RCS.
% Plot scatterers separated by scat spacing даeter. Initially the two scatterers 
% are aligned with radar line o f sight. The aspect angle is changed froда 
% 0 degrees to 180 degrees and the equivalent RCS is coдаputed.
% Plot o f RCS versus aspect is generated. 
eps = 0.00001; 
wavelength = 3.0e+8/freq;
% Coдаpute aspect angle vector 
aspectdegrees = 0.:.05:180.; 
aspectradians = (pi/180) .* aspectdegrees;
% Coдаpute electrical scatterer spacing vector in wavelength units 
elecspacing = (11.0 * scat spacing / wavelength) .* cos(aspect radians);
% Coдаpute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point
rcs = abs(1.0 + cos((11.0 * pi) .* elec spacing) ...

+ i * sin((11.0 * pi) .* elec spacing)); 
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsда 
% Plot RCS versus aspect angle 
figure (1);
plot (aspect_degrees,rcs,’k’); 
grid;
xlabel (’aspect angle - degrees’); 
ylabel ('RCSin dBsда’);
%title ( Frequency is 3GHz; scatterer spacing is 0.5да');

Listing 11.1. MATLAB Function “rcs_aspect.m”

Listing 11.2. MATLAB Function “rcs_frequency.m”
function [rcs] = rcs_frequency (scat spacing, frequ, freql)
% This prograда deдаonstrates the dependency o f RCS on wavelength
eps = 0.0001;
freqband = frequ - freql;
delfreq = freqband / 500.;
index = 0;
fo r freq = freql: delfreq: frequ 

index = index +1; 
wavelength(index) = 3.0e+8 /freq; 

end
elec spacing = 2.0 * scat spacing./wavelength; 
rcs = abs ( 1 + cos((11.0 * pi) .* elec spacing) ...

+ i * sin((11.0 * pi) .* elec spacing));
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rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
freq = freql:delfreq:frequ;
plot(freq,rcs);
grid;
xlabel('Frequency'); 
ylabel('RCS in dBsm’);

Listing 11.3. MATLAB Program “example11_1.m”
clear all 
close all 
N = 50;
wct = linspace(0,2*pi,N);
% Case 1
ax1 = cos(wct);
ay1 = sqrt(3) .* cos(wct);
M l = moviein(N); 
figure(l) 
xc =0; 
yc=0; 
axis image 
hold on 
fo r ii = 1:N 

plot(ax1(ii),ay1(ii),’>r'); 
line([xc ax1(ii)],[yc ayl(ii)]); 
plot(ax1,ay1,'g');
Ml(ii) = getframe; 

end 
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; casel')
% case 2 
ax3 = cos(wct); 
ay3 = sin(wct);
M3 = moviein(N); 
figure(3) 
axis image 
hold on 
fo r ii = 1:N 

plot(ax3(ii),ay3(ii),’>r'); 
line([xc ax3(ii)],[yc ay3(ii)]);
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plot(ax3,ay3,'g');
M3(ii) = getfraдаe; 

end 
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case 2 ’)
rho = sqrt(ax3A2 + ay3A2);
m ajoraxis = 2 ^ax(rho);
даinor_axis = 2 ^in(rho);
aspect3 = 10*log10^ajor_axisMinor_axis)
alpha3 = (180/pi) * atan2(ay3(1),ax3(1))
% Case 3
ax4 = cos(wct);
ay4 = cos(wct+(pi/6));
M4 = даoviein(N); 
figure(4) 
axis iдаage 
hold on 
fo r ii = 1:N 

plot(ax4(ii),ay4(ii),’>r'); 
line([xc ax4(ii)],[yc ay4(ii)]); 
plot(ax4,ay4,'g')
M4(ii) = getfraдаe; 

end 
grid
xlabel(Ex')
ylabel(Ey')
title('Electric Field Locus; case 3')
rho = sqrt(ax4A2 + ay4.A2);
m ajoraxis = 2 ^ax(rho);
даinor_axis = 2 ^in(rho);
aspect4 = 10*log10^ajor_axisMinor_axis)
alpha4 = (180/pi) * atan2(ay4(1),ax4(1))
end
% Case 4 
ax6 = cos(wct);
ay6 = sqrt(3) .* cos(wct+(pi/3));
M6 = даoviein(N);
figure(6)
axis iдаage

hold on 
fo r ii = 1:N
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plot(ax6(ii),ay6(ii),’>r’); 
line([xc ax6(ii)],[yc ay6(ii)]); 
plot(ax6,ay6, ’g ’)
M6(ii) = getframe; 

end 
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case 4 ’)
rho = sqrt(ax6A2 + ay6.A2);
m ajoraxis = 2 *max(rho);
minoraxis = 2 *min(rho);
aspect6 = 10*log10(major_axis/minor_axis)
alpha6 = (180/pi) * atan2(ay6(1),ax6(1))

Listing 11.4. MATLAB Program “rcs_sphere.m”
% This program calculates the back-scattered RCS fo r a perfectly
% conducting sphere using Eq.(11.7), and produces plots similar to Fig.2.9
% Spherical Bessel functions are computed using series approximation and
recursion.
clear all
eps = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300points 

fo r kr = 0.05:0.05:15 
index = index + 1; 
spherercs = 0. + 0.*i; 
f 1 = 0. + 1.*i; 
f 2 = 1. + 0 *i; 
m = 1.; 
n = 0.;
q = -1.;
% initially set del to huge value 
del =100000+100000*i; 
while(abs(del) > eps) 

q = -q; 
n = n + 1; 
m = m + 2;
del = (11. *n-1) * f 2 / kr-f1; 
f 1 = f 2; 
f 2 = del;
del = q * m /(f2 * (kr * f 1 - n * f 2)); 
spherercs = spherercs + del;
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end
rcs(index) = abs(spherercs); 
sphere rcsdb(index) = 10. * log10(rcs(index)); 
end 

figure(1); 
n=0.05:.05:15; 
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]); 
%xlabel (’Sphere circuдаference in wavelengths’); 
%ylabel (’Nornalized sphere RCS'); 
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]); 
xlabel (’Sphere circuдаference in wavelengths’); 
ylabel (’Nornalized sphere RCS - dB’); 
grid;
figure (3);
seдаilogx (n,sphere_rcsdb,'k');
xlabel (’Sphere circuдаference in wavelengths’);
ylabel (’Nornalized sphere RCS - dB’);

Listing 11.5. MATLAB Function “rcs_ellipsoid.m”
function [rcs] = rcs ellipsoid (a, b, c, phi)
% This function coдаputes and plots the ellipsoid RCS versus aspect angle.
% The roll angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)A2;
cos_phi_s = cos(phi)A2;
% Generate aspect angle vector 
theta = 0.:.05:180.0; 
theta = (theta .* pi) ./180.; 
if(a ~= b & a ~= c) 

rcs = (pi * aA2 * bA2 * cA2) ./ (aA2 * cos_phi_s .* (sin(theta).A2) + ... 
bA2 * sin_phi_s .* (sin(theta).A2) + ... 
cA2 .* (cos(theta)A2) ) A2 ; 

else
if(a == b & a ~= c) 

rcs = (pi * bA4 * cA2) ./ ( bA2 .* (sin(theta).A2) + ... 
cA2 .* (cos(theta)A2) ) A2 ;

else
i f  (a == b & a ==c) 

rcs = pi * cA2;
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end
end

end
rcsdb = 10.0 * log10(rcs); 
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k'); 
xlabel ('Aspect angle - degrees’); 
ylabel ('RCS- dBsm’);
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter') 
grid;

Listing 11.6. MATLAB Program “fig11_18a.m”
% Use this program to reproduce Fig. 11.18a 
%This program computes the back-scattered RCS fo r an ellipsoid. 
% The angle phi is fixed to three values 0, 45, and 90 degrees 
% The angle theta is varied from 0-180 deg.
% A plot o f RCS versus theta is generated 
% Last modified on July 16, 2003 
clear all;
% === Input parameters ===
a = .15; % 15 cm
b = .20; % 20 cm
c = .95 ; % 95 cm
% === End o f Input parameters ===
as = num2str(a);
bs = num2str(b);
cs = num2str(c);
eps = 0.00001;
dtr = pi/180;
fo r q = 1:3

i f  q == 1
phir = 0; % the first value o f the angle phi 

elseif q == 2 
phir = pi/4; % the second value o f the angle phi 

elseif q == 3 
phir = pi/2; % the third value o f the angle phi 

end
sin _phi_s = sin(phir)A2; 
cos_phi_s = cos(phir)A2;
% Generate aspect angle vector 
theta = 0.:.05:180; 
thetar = theta * dtr; 
if(a ~= b & a ~= c)
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rcs(q,:) = (pi * aA2 * bA2 * cA2) ./ (aA2 * cos_phi_s .* (sin(thetar)A2) + ... 
bA2 * sin_phi_s .* (sin(thetar)A2) + ... 
cA2 .* (cos(thetar)A2))A2 ; 

elseif(a == b & a ~= c)
rcs(q,:) = (pi * bA4 * cA2) ./( bA2 .* (sin(thetar).A2) + ... 

cA2 .* (cos(thetar)A2) ) A2 ; 
elseif (a == b & a ==c) 

rcs(q,:) = pi * cA2; 
end 

end
rcs db = 10.0 * log10(rcs); 
figure (1);
plot(theta,rcs_db (1,:),'b',theta,rcs_db(2, :),'r:',theta,rcs_db(3,:),'g--','line- 
width',1.5);
xlabel ('Aspect angle, Theta [Degrees]’); 
ylabel ('RCS- dBsда’);
title ([’Ellipsoidwith (a,b,c) = (', [as],', ', [bs],', ', [cs], ') даeter])
legend ('phi = 0Ao','phi = 45Ao','phi = 90Ao')
grid;

Listing 11.7. MATLAB Function “rcs_circ_plate.m”
function [rcsdb] = rcs circ_plate (r, freq)
% This prograда calculates and plots the backscattered RCS o f 
% circular fla t plate o f radius r. 
eps = 0.000001;
% Coдаpute aspect angle vector 
% Coдаpute wavelength 
laдаbda = 3.e+8 /freq; % X-Band 
index = 0;
fo r aspect deg = 0.:.1:180 

index = index +1; 
aspect = (pi /180.) * aspect deg;

% Coдаpute RCS using Eq. (2.37) 
i f  (aspect == 0 | aspect ==pi)

rcs_po(index) = (4.0 * piA3 * rA4 /laдаbdaA2) + eps; 
rcs^u(index) = rcs_po(1); 

else
x = (4. * pi * r /laдаbda) * sin(aspect); 
val1 = 4. * piA3 * rA4 / laдаbdaA2; 
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = val1 * (val2 * cos(aspect))A2 + eps;

% Coдаpute RCS using Eq. (2.36) 
val1да = laдаbda * r;
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val2m = 8. * pi * sin(aspect) * (tan(aspect)A2); 
rcsmu(index) = val1m /val2m + eps; 

end 
end
% Compute RCS using Eq. (2.35) (theta=0,180) 

rcsdb = 10. * log10(rcs_po); 
rcsdb mu = 10 * log10(rcs_mu); 
angle = 0:.1:180;
plot(angle,rcsdb,'k',angle,rcsdb_mu,'k-.')
grid;
xlabel ('Aspect angle - degrees’); 
ylabel ('RCS- dBsm’);
legend('Using Eq.(11.37) ','Using Eq.(11.36)')
freqGH = num2str(freq*1.e-9);
title (['Frequency = ',[freqGH],' GHz']);

Listing 11.8. MATLAB Function “rcs_frustum.m”
function [rcs] = rcsfrustum (r1, r2, h, freq, indicator)
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed.
% To compute RCP or LCP RCS one must use Eq. (11.24)
% When viewing from the small end o f the frustum 
% normal incidence occurs at aspect pi/2 - half cone angle 
% When viewing from the large end, normal incidence occurs at 
% pi/2 + half cone angle.
% RCS is computed using Eq. (11.43). This program assumes a geometry
format long
index = 0;
eps = 0.000001;
lambda = 3.0e+8 /freq;
% Enter frustum's small end radius 
%r1 =.02057;
% Enter Frustum's large end radius 
%r2 = .05753;
% Compute Frustum's length 
%h = .20945;
% Comput half cone angle, alpha 
alpha = atan((r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r 1 / tan(alpha);
delta = (z2A1.5 - z1A1.5)A2;
factor = (8. * pi * delta) / (9. * lambda);
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%(’enter 1 to view frustum from large end, 0 otherwise’) 
largesm allend = indicator; 
if(large_small_end == 1)

% Compute normal incidence, large end 
normalincedence = (180./pi) * ((pi /2) + alpha)
% Compute RCS from zero aspect to normal incidence 
for theta = 0.001:.1:normal_incedence-.5 

index = index +1; 
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))A2) /...

(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS 
index = index +1;
rcsnormal = factor * sin(alpha) / ((cos(alpha))A4) + eps; 
rcs(index) = rcsnormal;
% Compute RCS from broad side to 180 degrees 
for theta = normal_incedence+.5:.1:180 

index = index + 1; 
theta = theta * pi / 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))A2) /...

(8. * pi *sin(theta)) + eps;
end

else
% Compute normal incidence, small end 
normal incedence = (180./pi) * ((pi /2) - alpha)
% Compute RCS from zero aspect to normal incidence (large end o f frustum) 
for theta = 0.001:.1:normal_incedence-.5 

index = index +1; 
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))A2) /...

(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS 
index = index +1;
rcs normal = factor * sin(alpha) / ((cos(alpha))A4) + eps; 
rcs(index) = rcsnormal;
% Compute RCS from broad side to 180 degrees (small end o f frustum) 
for theta = normal_incedence+.5:.1:180 

index = index + 1; 
theta = theta * pi / 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))A2) /...

(8. * pi *sin(theta)) + eps;
end
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end
% Plot RCS versus aspect angle 
delta = 180 /index; 
angle = 0.001:delta:180; 
plot (angle,10*log10(rcs)); 
grid;
xlabel ('Aspect angle - degrees’); 
ylabel ('RCS- dBsда’); 
if(indicator ==1)

title ('Viewing froда large end’); 
else

title ('Viewing froда small end'); 
end

Listing 11.9. MATLAB Function “rcscylinder.m”
function [rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)
% rcs_cylinderM
% This prograда coдаputes даonostatic RCS fo r a finite length 
% cylinder o f either curricular or elliptical cross-section.
% Plot o f RCS versus aspect angle theta is generated at a specified
% input angle phi
% Last даodified on July 16, 2003
r = r 1; % radius o f the circular cylinder
eps =0.00001;
dtr = pi/180;
phir = phi *dtr;
freqGH = nuда2str(freq*1.e-9);
laдаbda = 3.0e+8 /freq; % wavelength
% CylinderType= 'Elliptic'; % 'Elliptic' or 'Circular'
switch CylinderType
case 'Circular'

% Coдаpute RCS froда 0 to (90-.5) degrees 
index = 0;
for theta = 0.0:.1:90-.5 

index = index +1; 
thetar = theta * dtr;
rcs(index) = (laдаbda * r * sin(thetar) /...

(8. * pi * (cos(thetar))A2)) + eps;
end
% Coдаpute RCS for broadside specular at 90 degree 
thetar = pi/2; 
index = index +1;
rcs(index) = (2. * pi * hA2 * r / laдаbda )+ eps;
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% Compute RCS from (90+.5) to 180 degrees 
for theta = 90+.5:.1:180. 

index = index + 1; 
thetar = theta * dtr;
rcs(index) = ( lambda * r  * sin(thetar) /...

(8. * pi * (cos(thetar))A2)) + eps;
end 

case 'Elliptic' 
r 12 = r 1*r1; 
r22 = r2 *r2; 
h2 = h*h;
% Compute RCS from 0 to (90-.5) degrees 
index = 0;
for theta = 0.0:.1:90-.5 

index = index +1; 
thetar = theta * dtr;
rcs(index) = lambda * r 12 * r22 * sin(thetar) /...

( 8 *pi* (cos(thetar)A2)* ( (r12*cos(phir)A2 + r22*sin(phir)A2)A1.5
))+ eps; 

end
% Compute RCS for broadside specular at 90 degree 
index = index +1;
rcs(index) = 2. * pi * h2 * r 12 * r22/...

( lambda*( (r12*cos(phir)A2 + r22*sin(phir)A2)A1.5 ))+ eps;
% Compute RCS from (90+.5) to 180 degrees 
for theta = 90+.5:.1:180. 

index = index + 1; 
thetar = theta * dtr;
rcs(index) = lambda * r 12 * r22 * sin(thetar) /...

( 8 *pi* cos(thetar)A2* ( (r12*cos(phir)A2 + r22*sin(phir)A2)A1.5)) +
eps;

end
end
% Plot the results 
delta= 180/(index-1); 
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k','linewidth',1.5);
grid;
xlabel ('Aspect angle, Theta [Degrees]’);; 
ylabel ('RCS- dBsm’);
title ([[CylinderType],’ Cylinder’, ’ at Frequency = \[freqGH],’ GHz’]);
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function [rcsdb_h,rcsdb_v] = rcs_rect_plate(a, b, freq)
% This prograда coдаputes the backscattered RCS fo r a rectangular 
% flat plate. The RCS is coдаputed fo r vertical and horizontal 
% polarization based on Eq.s(11.50)through (11.60). Also Physical 
% Optics approxmation Eq.(11.62) is coдаputed.
% User даay vary frequency, or the plate’s dmensions.
% Default values are a=b=10.16m ; laдаbda=3.25cда. 
eps = 0.000001;
% Enter a, b, and laдаbda
laдаbda = .0325;
ka = 2. * pi * a / laдаbda;
% Coдаpute aspect angle vector 
thetadeg = 0.05:0.1:85; 
theta = (pi/180.) .* theta deg;
sigдаa1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./sin(theta); 
sigдаa2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)A1.5); 
sigдаa3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./...

(1. - sin(theta)).A2; 
sigдаa4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./...

(1. + sin(theta))A2; 
sigдаa5v = 1. - (exp(i * 2. * ka - (pi /2)) / (8. * pi * (ka)A3)); 
sigдаa1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./sin(theta); 
sigдаa2h = 4. * exp(i * ka * (pi /4.)) / (sqrt(2 * pi * ka)); 
sigдаa3h = exp(-i * ka .* sin(theta)) ./ (1. - sin(theta)); 
sigдаa4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta)); 
sigдаa5h = 1. - (exp(j * 2. * ka + (pi /4.)) /2. * pi * ka);
% Coдаpute vertical polarization RCS
rcs_v = (bA2 /pi) .* (abs(sigma1v - sigдаa2v .*((1. ./cos(theta)) ...

+ .25 .* sigдаa2v .* (sigдаa3v + sigдаa4v)) .* (sigдаa5v).A-1)).A2 + eps; 
% coдаpute horizontal polarization RCS
rcsh  = (bA2 /pi) .* (abs(sigдаa1h - sigдаa2h .*((1. ./ cos(theta)) ...

- .25 .* sigдаa2h .* (sigдаa3h + sigдаa4h)) .* (sigma5h).A-1))A2 + eps; 
% Coдаpute RCS froда Physical Optics, Eq.(11.62) 
angle = ka .* sin(theta);
rcs_po = (4. * pi* aA2 * bA2 /laдаbdaA2). * (cos(theta))A2 .* ...

((sin(angle) ./angle)A2) + eps; 
rcsdb_v = 10. .*log10(rcs_v); 
rcsdb h = 10. .*log10(rcs_h); 
rcsdb_po = 10. .*log10(rcs_po); 
figure(2)
plot (theta deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k-.'); 
set(gca,'xtick',[10:10:85]);

Listing 11.10. MATLAB Function “rcs rect_plate.m”
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freqGH = num2str(freq*1.e-9);
A = num2str(a);
B = num2str(b);
title ([’Vertical Polarization, ’, ’Frequency = ’,[freqGH],’ GHz, ’, ' a = ’, [A], '
m',' b = ’,[B],'m']);
ylabel ('RCS-dBsm’);
xlabel ('Aspect angle - deg');
legend('Eq.(11.50)', ’Eq.(11.62)')
figure(3)
plot (thetadeg, rcsdb_h,'k',theta_deg,rcsdb_po,'k -.'); 
set(gca,'xtick',[10:10:85]);
title ([’HorizontalPolarization, ’, ’Frequency = ’,[freqGH] , ' GHz, ’, ' a = ’,
[A], ' m',' b = ’,[B],'m']);
ylabel ('RCS-dBsm’);
xlabel ('Aspect angle - deg');
legend('Eq.(11.51)', ’Eq.(11.62)')

Listing 11.11. MATLAB Function “rcs_isosceles.m”
function [rcs] = rcs isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly 
% conducting triangular flat plate, using Eqs. (11.63) through (11.65)
% The default case is to assume phi = pi/2. These equations are 
% valid fo r aspect angles less than 30 degrees 
% compute area o f plate 
A = a * b / 2.; 
lambda = 3.e+8 /freq; 
phi = pi / 2.; 
ka = 2. * pi / lambda; 
kb = 2. *pi / lambda;
% Compute theta vector 
thetadeg = 0.01:.05:89; 
theta = (pi /180.) .* theta deg; 
alpha = ka * cos(phi) .* sin(theta); 
beta = kb * sin(phi) .* sin(theta); 
i f  (phi ==pi / 2)

rcs = (4. * pi * AA2 /lambdaA2) . * cos(theta)A2 .* (sin(beta ./2))A4 ...
./ (beta./2).A4 + eps; 

end 
i f  (phi == 0)

rcs = (4. * pi * AA2 / lambdaA2) .* cos(theta)A2 .*...
((sin(alpha).A4 ./alpha.A4) + (sin(2 .* alpha) - 2. *alpha).A2 ...
./ (4 .* alpha.A4)) + eps;

end
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i f  (phi ~= 0 & phi ~= pi/2) 
sigmao1 = 0.25 *sin(phi)A2 .* ((11. * a /b) * cos(phi) .*...

sin(beta) - sin(phi) .* sin(11. .* alpha))A2; 
fact1 = (alpha).A2 - (.5 .* beta).A2; 
fact2 = (sin(alpha).A2 - sin(.5 .* beta)A2)A2; 
sigmao = (fact2 + sigmao1) ./fact1;
rcs = (4. * pi * AA2 / lambdaA2) .* cos(theta).A2 .* sigmao + eps; 

end
rcsdb = 10. *log10(rcs); 
plot(theta_deg,rcsdb,'k') 
xlabel ('Aspect angle - degrees’); 
ylabel ('RCS- dBsm')
%title ('freq = 9.5GHz, phi = pi/2'); 
grid;

Listing 11.12. MATLAB Program “Capped_WedgeTM.m”
% Program to calculate the near field o f a sharp conducting wedge 

% due to an incident field from a line source or a plane wave 
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu 
% This program uses 6 other functions 
% Last modified July 24, 2003 
clear all 
close all 
img = sqrt(-1); 
rtd = 180/pi; dtr = pi/180;
mu0 = 4*pi*1e-7; % Permeability o f free space
eps0 = 8.854e-12; % Permittivity o f free space
% ===== Input parameters =====
alphad = 30; 
betad = 30; 
reference = 'on x-axis',
'on x-axis'
CapType = 'Diel'; 
ar = .15; 
rhop = 0.5; 
phipd = 180;
Ie = .001; 
freq = 2.998e8; 
mur = 1; 
epsr = 1;
ax = 1.5; by = 1; % area fo r near field calculations
nx = 30; ny = 20; % Number ofpoints fo r near field calculations
% ===== End o f Input Data =====

% above x  Wedge angle 
% Below x wedge angle

% Reference condition 'top face’ or 'bisector' or

% Cap Type 'Cond', 'diel' or 'None'
% Cap radius in lambda
% radial Position o f the line source in terms o f lambda 

% angular position o f the line source 
% Amplitude o f the current source 

% frequency
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alpha = alphad*dtr; 
beta = betad *dtr;

switch reference 
case ’topface’ 

alpha = 0; 
vi = pi/(2 *pi-beta); 

case 'bisector' 
beta = alpha; 
vi = pi/(2 *pi-2 *beta); 

case ’on x-axis'
vi = pi/(2 *pi-alpha-beta);

end
phip = phipd*dtr; 
etar = sqrt^ur/epsr); 
даu = д а ^ ^ ш ;  
eps = eps0*epsr; 
laдаbda = 2.99e8/freq; 
k = 2 *pi/laдаbda; 
ka = k*ar;
k1 = k*sqrt^ur*epsr); 
k1a = k1*ar; 
krhop = k*rhop; 
oдаega =2 *pi*freq;
% <<< Far field Calculations o f Ez coдаponent >>>
% === Line source excitation ===
Nc =round(1+2*k*rhop); % nuдаber ofterns fo r series suдадаation 
Tern = pi *oдаega*даu0/(2*pi-alpha-beta);
Tern0D = mg*4*pi/(2*pi-alpha-beta);
Tern0C = -mg*4*pi/(2*pi-alpha-beta);
Tern0 = 4*pi/(2*pi-alpha-beta); 

fo r ip = 1:360 
phii = (ip -1)*dtr; 
xphi(ip) = ip-1;
i f  phii > alpha & phii < 2 *pi-beta % outside the wedge region 

EzFLs(ip) = 0; 
fo r да = 1:Nc 

v = да*vi;
sstern = (iдаgAv)*sin(v*(phip-alpha))*sin(v*(phii-alpha)); 
switch CapType 

case 'Diel'
Atern = k * besselj(v,k1a)*(dbesselj(v,ka)*bessely(v,krhop)... 

-dbessely(v,ka)*besselj(v,krhop)) ... 
+k1*dbesselj(v,k1a)*( bessely(v,ka)*besselj(v,krhop)...

% free space wavenuдаber 

% wavenuдаber inside dielectric
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-besselj(v,ka)*bessely(v,krhop));
Bterm =k*dbesselh(v,2,ka)*besselj(v,k1a) ...

-k1*besselh(v, 2,ka)*dbesselj(v,k1a); 
EzLS(m) = Term0D*ssterm*Aterm/Bterm; 

case 'Cond'
Aterm = bessely(v,ka)*besselj(v,krhop) ...

- besselj(v,ka)*bessely(v,krhop);
Bterm = besselh(v,2,ka);
EzLS(m) = Term0C*ssterm*Aterm/Bterm; 

case ’None’
EzLS(m) = Term0*ssterm*besselj(v,krhop);

end
end
EzFLs(ip) = abs(sum(EzLS)); 

else
EzFLs(ip)=0;

end
end
EzFLs = EzFLs/max(EzFLs); 

figure(1);
plot(xphi,EzFLs,’linewidth’,1.5); 
xlabel('Observation angle \phiAo’); 
ylabel('Ez'); 
axis ([0 360 0 1])
title('Total Far Field (Ez) [Line source excitation]'); 

figure(2)
polardb(xphi *dtr,EzFLs,’k’) 
title ('Total Far Field (Ez) [dB]')

% <<< Near field observation points >>> 
delx = 2 *ax/nx; dely = 2 *by/ny;
xi = -ax; yi = -by; % Initial values fo r x  and y  
fo r i = 1:nx 

for j  = 1:ny
x(i,j) = xi + (i-1)*delx;
y(i,j) = yi + (j-1) *dely; 
rho(i,j) = sqrt(x(i,j)A2+y(ij)A2); 
phi(i,j) = atan2(y(ij),x(ij)); 
ifphi(i,j) < 0 

phi(i,j) = phi(i,j) + 2 *pi; 
end
if  rho(i,j) <= 0.001
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rho(ij) = 0.001; 
end 

end 
end

% Line source excitation, near field calculations 

% ==== Line source coefficients ====
Nc =round(1+2*k^ax^ax(rho))); % nuдаber o f terns fo r series suда- 
даation
Tern = Ie*pi*oдаega*даu0/(2*pi-alpha-beta); 

fo r да = 1:Nc 
v = да*vi; 
switch CapType 

case 'Diel'
b(да) = -Tern * besselh(v,2,krhop); 
c(да) = -b(да) * (k*dbesselj(v,ka)*besselj(v,k1a) ... 

-k1*besselj(v,ka)*dbesselj(v,k1a)) ... 
/(k*dbesselh(v,2,ka)*besselj(v,k1a) ... 
-k1*besselh(v,2,ka)*dbesselj(v,k1a)); 

d(да) = c(да) + b(да) * besselj(v,krhop) ...
/ besselh(v,2,krhop); 

a(да) = ( b(да) * besselj(v,ka)+c(да) ...
* besselh(v,2,ka))/besselj(v,k1a); 

case 'Cond'
b(да) = -Tern * besselh(v,2,krhop); 
c(да) = -b(да) * besselj(v,ka)/besselh(v,2,ka); 
d(да) = c(да) + b(да) * besselj(v,krhop) ...

/ besselh(v,2,krhop); 
a(да) = 0; 

case ’None’
b(да) = -Tern * besselh(v,2,krhop); 
c(да) = 0;
d(да) = -Tern * besselj(v,krhop); 
a(да) = b(да);

end
end

ternhphi = sqrt(-1)*oдаega*даu0; 
ternhrho = -ternhphi; 
fo r i = 1:nx 

for j  = 1:ny 
fo r да = 1:Nc

v = да *vi; % Equation
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[Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rho(i,j),phi(i,j),rhop, ...

phip,ar, k,k1,alpha,beta, a, b, c,d);
Eztt(m) = Ezt;
Hphitt(m) = Hphit;
Hrhott(m) = Hrhot; 

end
SEz(i,j) = sum(Eztt);
SHphi(i,j) = sum(Hphitt)/termhphi;
SHrho(i,j) = sum(Hrhott)/termhrho; 

end 
end
figure(3); 
surf(x,y, abs(SEz)); 
axis ('equal'); 
view(45,60); 
shading interp; 
xlabel('x'); 
ylabel('y'); 
zlabel('E_z');
title('Ez [Line source excitation]’);
colorbar; colormap(copper); % colormap(jet);
figure(4);
surf(x,y, 377*abs(SHrho));
axis ('equal');
view(45,60);
shading interp;
xlabel('x');
ylabel('y');
zlabel('\eta_o H\rho’);
title('\eta_o H\rho [Line source excitation]’);
colorbar; colormap(copper); % colormap(jet);
figure(5);
surf(x,y, 377*abs(SHphi));
axis ('equal');
view(45,60);
shading interp;
xlabel('x');
ylabel('y');
zlabel(’\eta_o H\phi');
title('\eta_o H\phi [Line source excitation]’)
colorbar; colormap(copper); % colormap(jet);
% === Plane wave excitation, near field calculations ===
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Nc =round(1+2*k^ax^ax(rho))); % nuдаber o f terns fo r series suда- 
даation
Tern = 4*pi/(2*pi-alpha-beta); 

fo r да = 1:Nc 
v = да*vi; 
switch CapType 

case 'Diel'
b(да) = Tern * mgAv;
c(да) = -b(да) * (k*dbesselj(v,ka)*besselj(v,k1a)... 

-k1*besselj(v,ka)*dbesselj(v,k1a)) ...
/ (k*dbesselh(v,2,ka)*besselj(v,k1a) ... 
-k1*besselh(v,2,ka)*dbesselj(v,k1a)); 

a(да) = ( b(да) * besselj(v,ka)+c(да) * besselh(v,2,ka))/besselj(v,k1a); 
case 'Cond'

b(да) = -Tern * mgAv; 
c(да) = -b(да) * besselj(v,ka)/besselh(v,2,ka); 
a(да) = 0; 

case ’None’
b(да) = -Tern * mgAv; 
c(да) = 0; 
a(да) = b(да);

end
end
ternhphi = sqrt(-1)*oдаega*даu0; 
ternhrho = -ternhphi; 
fo r i = 1:nx 

for j  = 1:ny 
fo r да = 1:Nc

v = да *vi; % Equation 
[Ezt,Hphit,Hrhot] = 

DielCappedWedgeTMFields_PW(v^,rho(i,j),phi(i,j), ...
phip,ar, k,k1,alpha,beta, a, b, c);

Eztt(да) = Ezt;
Hphitt(да) = Hphit;
Hrhott(да) = Hrhot;

end
EzPW(i,j) = suда(Eztt);
HphiPW(i,j) = suда(Hphitt)/terдаhphi;
HrhoPW(ij) = suда(Hrhott)/terдаhrho; 

end 
end
figure(6);
surf(x,y,abs(EzPW)); 
axis ('equal');
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view(45,60); 
shading interp; 
xlabel('x'); 
ylabel('y'); 
zlabel('E_z');
colorbar; colormap(copper); % colormap(jet); 
title('Near Field (Ez) [Plane wave excitation]'); 
figure(7);
surf(x,y, 377*abs(HrhoPW));
axis ('equal');
view(45,60);
shading interp;
xlabel('x');
ylabel('y');
zlabel(’\eta_o H\rho’);
title('\eta_o H\rho [Plane wave excitation]’); 
colorbar; colormap(copper); % colormap(jet); 
figure(8);
surf(x,y, 377*abs(HphiPW));
axis ('equal');
view(45,60);
shading interp;
xlabel('x');
ylabel('y');
zlabel(’\eta_o H\phi');
title('\eta_o H\phi [Plane wave excitation]’); 
colorbar; colormap(copper); % colormap(jet);

Listing 11.13. MATLAB Function "DielCappedWedgeTMFields_Ls.m"
function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rhoij,phiij,rhop,phip,ar, k,k1,alpha,beta,a, 
b,c,d);
% Function to calculate the near field components o f a capped wedge 
% with a line source excitation at one near field point 
% This function is to be called by the Main program: 
Diel_Capped_WedgeTM.m 
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu 
% Last modified July 23, 2003 
Ezt = 0; Hrhot = 0; Hphit = 0; % Initialization 
if  phiij > alpha & phiij < 2 *pi-beta % outside the wedge region 

krho = k*rhoij; 
k1rho = k1*rhoij;
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jvkrho = besselj(v,krho); 
hvkrho = besselh(v,2,krho); 
jvk1rho = besselj(v,k1rho); 
djvkrho = dbesselj(v,krho); 
djvk1rho = dbesselj(v,k1rho); 
dhvkrho = dbesselh(v,2,krho); 
sstern = sin(v*(phip-alpha))*sin(v*(phiij-alpha)); 
sctern = sin(v*(phip-alpha))*cos(v*(phiij-alpha)); 

i f  rhoij < = ar % field point location is inside the cap region 
Ezt = a^)*jvk1rho*sstem;
Hphit = k1*a^)*djvk1rho*sstem;
Hrhot = v*a^)*jvk1rho*sctem/rhoij; 

elseif rhoij < = rhop % field point location is between cap and the line 
source location

Ezt = (b^)*jvkrho+c^)*hvkrho)*sstern;
Hphit = k*(b^)*djvkrho+c^)*dhvkrho)*sstem;
Hrhot = v*(b^)*jvkrho+c^)*hvkrho)*sctern/rhoij; 

elseif rhoij > rhop % field point location is greater than the line source loca­
tion

Ezt = d(да) *hvkrho*sstem;
Hphit = k*d^)*dhvkrho*sstem;
Hrhot = v*d^)*hvkrho*sctern/rhoij; 

end 
else

Ezt = 0; Hrhot = 0; Hphit = 0; % inside wedge region 
End

Listing 11.14. MATLAB Function "DielCappedWedgeTMFields_PW.m"
function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_PW(v, да,rhoij,phiij,phip,ar,k,k1,alpha,beta, a,b,c)

% Function to calculate the near field coдаponents o f a capped wedge 
% with a line source excitation at one near field point 
% This function is to be called by the Main prograда: 
Diel_Capped_WedgeTMrn 
% By: Dr. Atef Elsherbeni -- atef@oleдаiss.edu 
% Last даodifled July 23, 2003 
Ezt = 0; Hrhot = 0; Hphit = 0; % Initialization 
i f  phiij > alpha & phiij < 2 *pi-beta % outside the wedge region 

krho = k*rhoij; 
k1rho = k1*rhoij; 
jvkrho = besselj(v,krho);
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hvkrho = besselh(v,2,krho); 
jvk1rho = besselj(v,k1rho); 
djvkrho = dbesselj(v,krho); 
djvk1rho = dbesselj(v,k1rho); 
dhvkrho = dbesselh(v,2,krho); 
ssterm = sin(v*(phip-alpha))*sin(v*(phiij-alpha)); 
scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha)); 
i f  rhoij < = ar % field point location is inside the cap region 

Ezt = a(m)*jvk1rho*ssterm;
Hphit = k1*a(m)*djvk1rho*ssterm;
Hrhot = v*a(m)*jvk1rho*scterm/rhoij; 

else % field point location is between the cap and the line source location 
Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm;
Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm;
Hrhot = v*(b(m)*jvkrho+c(m)*hvkrho)*scterm/rhoij; 

end 
else

Ezt = 0; Hrhot = 0; Hphit = 0; % inside wedge region 
End

Listing 11.15. MATLAB Function "polardb.m"
function polardb(theta, rho, linestyle)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot using polar coordinates o f 
% the angle THETA, in radians, versus the radius RHO in dB.
% The maximum value o f RHO should not exceed 1. It should not be 
% normalized, however (i.e., its max. value may be less than 1).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOT fo r a description o f legal linestyles. 
i f  nargin < 1

error('Requires 2 or 3 input arguments.') 
elseif nargin == 2 

i f  isstr(rho)
linestyle = rho; 
rho = theta;
[mr,nr] = size(rho); 
i f  mr == 1 

theta = 1:nr; 
else

th = (1:mr)'; 
theta = th(:,ones(1,nr)); 

end 
else
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linestyle = 'auto'; 
end

elseif nargin == 1 
linestyle = 'auto'; 
rho = theta;
[mr,nr] = size(rho); 
i f  mr == 1 

theta = 1:nr; 
else

th = (1:mr)'; 
theta = th(:,ones(1,nr)); 

end 
end
i f  isstr(theta) | isstr(rho)

error(’Input arguments must be numeric.’); 
end
i f  ~isequal(size(theta),size(rho))

error('THETA and RHO must be the same size.'); 
end
% get hold state 
cax = newplot;
next = lower(get(cax,’NextPlot’)); 
holdstate = ishold;
% get x-axis text color so grid is in same color 
tc = get(cax,'xcolor'); 
ls = get(cax,'gridlinestyle');
% Hold on to current Text defaults, reset them to the 
% Axes’ font attributes so tick marks use them. 
fAngle = get(cax, 'DefaultTextFontAngle'); 
fName = get(cax, 'DefaultTextFontName'); 
fSize = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight'); 
fUnits = get(cax, 'DefaultTextUnits'); 
set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ... 

’DefaultTextFontName’, get(cax, ’FontName’), ...
'DefaultTextFontSize', get(cax, ’FontSize’), ...
’DefaultTextFontWeight’, get(cax, 'FontWeight'), ... 
'DefaultTextUnits','data')

% make a radial grid 
hold on; 
maxrho =1;
hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho - 

maxrho]);
set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')
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v = [get(cax,’x lm ’) get(cax,’y lm ’)]; 
ticks = suда(get(cax,'ytick')>=0); 
delete(hhh);

% check radial lmits and ticks
rmin = 0; m ax = v(4); rticks = даax(ticks-1,2); 
i f  rticks > 5 % see i f  we can reduce the nuдаber 

i f  reда(rticks,2) == 0 
rticks = rticks/2; 

elseif reда(rticks,3) == 0 
rticks = rticks/3; 

end 
end

% only do grids if  hold is off 
i f  ~hold_state 
% define a circle 

th = 0:pi/50:2*pi; 
xunit = cos(th); 
yunit = sin(th);

% now really force points on x/y axes to lie on theда exactly 
inds = 1:(length(th)-1)/4:length(th); 
xunit(inds(2:2:4)) = zeros(2,1); 
yunit(inds(1:2:5)) = zeros(3,1);

% plot background if  necessary 
i f  ~isstr(get(cax, ’color’)), 

patch(’xdata’,xunit*rдаax,’ydata’,yunit*rдаax, ... 
’edgecolor’,tc,’facecolor’,get(gca,’color’),... 
'handlevisibility', 'off);

end
% draw radial circles with dB ticks 

c82 = cos(82*pi/180); 
s82 = sin(82*pi/180); 
rinc = (max-min)/rticks;
tickdB=-10*(rticks-1); % the innemost tick dB value 
for i=(min+rinc):rinc:max

hhh = plot(xunit*i,yunit*i,ls,’color’,tc,’linewidth’,1,...
’handlevisibility’, ’off1); 

text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[ ’ ' nuда2str(tickdB) ' dB’] , ’verticalalignдаent’, ’bottoда’,... 
’handlevisibility’, ’off) 

tickdB=tickdB+10; 
end
set(hhh,'linestyle','-') % Make outer circle solid 

% plot spokes
th = (1:6)*2 *pi/12;
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cst = cos(th); snt = sin(th); 
cs = [-cst; cst]; 
sn = [-snt; snt];
plot(rmax*cs,rmax*sn,ls, 'color',tc, 'linewidth',1,... 

’handlevisibility',’off)
% annotate spokes in degrees 

rt = 1.1*rmax; 
for i = 1:length(th)

text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment', 'center',...
'handlevisibility', 'off); 

i f  i == length(th) 
loc = int2str(0); 

else
loc = int2str(180+i*30); 

end
text(-rt*cst(i),-rt*snt(i),loc,’horizontalalignment’, ’center’,... 

'handlevisibility', ’off)
end

% set view to 2-D 
view(2);

% set axis limits
axis(rmax*[-1 1 -1.15 1.15]); 

end
% Reset defaults.
set(cax, ’DefaultTextFontAngle’, fAngle , ... 

'DefaultTextFontName', fName , ...
'DefaultTextFontSize', fSize, ...
'DefaultTextFontWeight', fWeight, ...
'DefaultTextUnits',fUnits );

% Tranfrom data to dB scale 
rmin = 0; rmax=1; 
rinc = (rmax-rmin)/rticks; 
rhodb =zeros(1,length(rho)); 
fo r i=1:length(rho) 

i f  rho(i)==0 
rhodb(i)=0; 

else
rhodb(i)=rmax+2 *log10(rho(i))*rinc;

end
i f  rhodb(i)<=0 

rhodb(i)=0; 
end 

end
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% transfom data to Cartesian coordinates. 
xx = rhodb.*cos(theta); 
yy = rhodb.*sin(theta);
% plot data on top o f grid 
i f  str^p(line_style,'auto') 

q = plot(xx,yy); 
else

q = plot(xx,yy, line_style,’linewidth', 1.5); 
end
i f  nargout > 0 

hpol = q; 
end
i f  ~hold_state

set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next); 
end
set(get(gca,'xlabel'),'visible','on')
set(get(gca,'ylabel'),'visible','on')

Listing 11.16. MATLAB Function "dbesselj.m"
function [  res ]  = dbesselj( nu,z ) 
res=besselj(nu-1,z)-besselj(nu,z)*nu/z;

Listing 11.17. MATLAB Function "dbessely.m"
function [  res ]  = dbessely( nu,z ) 
res=bessely(nu-1,z)-bessely(nu,z)*nu/z;

Listing 11.18. MATLAB Function "dbesselh.m"
function [  res]  = dbesselh(nu,kind,z) 
res=besselh(nu-1,kind,z)-besselh(nu,kind,z)*nu/z;

Listing 11.19. MATLAB Program “rcs_cylinder_complex.m”
% This prograда coдаputes the backscattered RCS for a cylinder 
% with fla t plates. 
clear all 
index = 0; 
eps =0.00001; 
a1 =.125; 
h = 1.;
laдаbda = 3.0e+8 /9.5e+9; 
laдаbda = 0.00861; 
index = 0;
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fo r theta = 0.0:.1:90-.1 
index = index +1; 
theta = theta * pi /180.; 
rcs(index) = (lambda * a1 * sin(theta) /...

(8 * pi * (cos(theta))A2)) + eps;
end
theta*180/pi; 
theta = pi/2; 
index = index +1;
rcs(index) = (2 * pi * hA2 * a1 / lambda)+ eps; 
fo r theta = 90+.1:.1:180. 

index = index + 1; 
theta = theta * pi / 180.; 
rcs(index) = ( lambda * a1 * sin(theta) /...

(8 * pi * (cos(theta))A2)) + eps;
end 
r = a 1; 
index = 0;
fo r aspectdeg = 0.:.1:180 

index = index +1; 
aspect = (pi /180.) * aspect deg;

% Compute RCS using Eq. (11.37) 
i f  (aspect == 0 | aspect == pi)

rcs_po(index) = (4.0 * piA3 * rA4 /lambdaA2) + eps; 
rcsmu(index) = rcs_po(1); 

else
x = (4. * pi * r /lambda) * sin(aspect); 
val1 = 4. * piA3 * rA4 / lambdaA2; 
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = val1 * (val2 * cos(aspect))A2 + eps; 

end 
end

r c s t  =(rcs_po + rcs); 
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k'); 
grid;
xlabel ('Aspect angle -degrees’); 
ylabel ('RCS-dBsm’);

Listing 11.20. MATLAB Program “Swerling_models.m”
% This program computes and plots Swerling statistical models 
% sigma bar = 1.5; 
clear all
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sigдаa = 0:0.001:6; 
sigдаa_bar = 1.5;
swer_3_4 = (4. /sigдаa_barA2) .* sigдаa .* ...

exp(-2. * (sigдаa ./sigma_bar));
%t.*exp(-(t.A2)./2.
swer_1_2 = (1. /sigдаa_bar) .* exp( -sigдаa ./sigдаa_bar);
plot(sigдаa,s’wer_1_2,'k',sigдаa,s’wer_3_4,'k');
grid;
gtext ('Swerling I,II'); 
gtext ('Swerling III,IV'); 
xlabel ('sigдаa'); 
ylabel ('Probability density’); 
title ('sigдаa-bar = 1.5');
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Chapter 12 High Resolution Tactical 
Synthetic Aperture Radar 
(TSAR)

This chapter is coauthored with Brian J. Smith1

This chapter provides an introduction to Tactical Synthetic Aperture Radar 
(TSAR). The purpose o f this chapter is to further develop the readers’ under­
standing o f SAR by taking a closer look at high resolution spotlight SAR  
image formation algorithms, motion compensation techniques, autofocus algo­
rithms, and performance metrics.

12.1. Introduction
Modern airborne radar systems are designed to perform a large number of 

functions which range from detection and discrimination o f targets to mapping 
large areas o f ground terrain. This mapping can be performed by the Synthetic 
Aperture Radar (SAR). Through illuminating the ground with coherent radia­
tion and measuring the echo signals, SAR can produce high resolution two­
dimensional (and in some cases three-dimensional) imagery o f the ground sur­
face. The quality o f ground maps generated by SAR is determined by the size 
of the resolution cell. A  resolution cell is specified by both range and azimuth 
resolutions o f the system. Other factors affecting the size o f the resolution cells 
are (1) size o f the processed map and the amount o f signal processing 
involved; (2) cost consideration; and (3) size o f the objects that need to be 
resolved in the map. For example, mapping gross features of cities and coast­
lines does not require as much resolution when compared to resolving houses, 
vehicles, and streets.

1. Dr. Brian J. Smith is with the US Army Aviation and Missile Command (AMCOM), 
Redstone Arsenal, Alabama.
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SAR systems can produce maps o f reflectivity versus range and Doppler 
(cross range). Range resolution is accomplished through range gating. Fine 
range resolution can be accomplished by using pulse compression techniques. 
The azimuth resolution depends on antenna size and radar wavelength. Fine 
azimuth resolution is enhanced by taking advantage o f the radar motion in 
order to synthesize a larger antenna aperture. Let Nr denote the number of 
range bins and let Na denote the number o f azimuth cells. It follows that the 
total number o f resolution cells in the map is NrNa . SAR systems that are gen­
erally concerned with improving azimuth resolution are often referred to as 
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro­
cessed to resolve targets in Doppler which correspond to azimuth. This chapter 
is presented in the context o f DBS.

Due to the large amount o f signal processing required in SAR imagery, the 
early SAR designs implemented optical processing techniques. Although such 
optical processors can produce high quality radar images, they have several 
shortcomings. They can be very costly and are, in general, limited to making 
strip maps. Motion compensation is not easy to implement for radars that uti­
lize optical processors. With the recent advances in solid state electronics and 
Very Large Scale Integration (VLSI) technologies, digital signal processing in 
real time has been made possible in SAR systems.

12.2. Side Looking SAR Geometry
Fig. 12.1 shows the geometry o f the standard side looking SAR. We will 

assume that the platform carrying the radar maintains both fixed altitude h and 
velocity v . The antenna 3 dB beamwidth is 9  , and the elevation angle (mea­
sured from the z-axis to the antenna axis) is p . The intersection o f the antenna 
beam with the ground defines a footprint. As the platform moves, the footprint 
scans a swath on the ground.

The radar position with respect to the absolute origin O = (0, 0, 0 ) ,  at any 
time, is the vector a (t ) . The velocity vector a  (t) is

a' (t )  = 0 x ax + v x ay + 0 x az (12.1)

The Line o f Sight (LOS) for the current footprint centered at q (tc) is defined 
by the vector R ( tc) , where tc denotes the central time o f the observation inter­
val Tob (coherent integration interval). More precisely,

( t = ta + tc)  ; - ^  < t < T- f  (12.2)
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Figure 12 .1. Side looking S A R  geom etry.
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where t a and t  are the absolute and relative times, respectively. The vector m g  
defines the ground projection of the antenna at central time. The minimum 
slant range to the swath is R min , and the maximum range is denoted R max, as 
illustrated by Fig. 12.2. It follows that

Rmin = h/ cos(P -  0/2)

R max = h  / cos (P + 0/2 ) (12.3)

R  (tc)| = h  / cos p 

Notice that the elevation angle p is equal to

P = 90 -  yg  (12.4)

where y g is the grazing angle. The size of the footprint is a function of the 
grazing angle and the antenna beamwidth, as illustrated in Fig. 12.3. The SAR 
geometry described in this section is referred to as SAR “strip mode” of opera­
tion. Another SAR mode of operation, which will not be discussed in this 
chapter, is called “spot-light mode,” where the antenna is steered (mechani­
cally or electronically) to continuously illuminate one spot (footprint) on the 
ground. In this case, one high resolution image of the current footprint is gen­
erated during an observation interval.

Figure 12.2. Definition of minimum and maximum range.

12.3. SAR Design Considerations
The quality of SAR images is heavily dependent on the size of the map reso­

lution cell shown in Fig. 12.4. The range resolution, AR , is computed on the 
beam LOS, and is given by

A R  = ( с т ) / 2  (12.5)
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Figure 12.3. Footprint definition.

or azimuth cells

Figure 12 .4a. D efinition o f  a resolution cell.
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Figure 12.4b. Definition of a resolution cell.

where т is the pulsewidth. From the geometry in Fig. 12.5 the extent of the 
range cell ground projection ARg is computed as

ARg = f sec Vg (12.6)

The azimuth or cross range resolution for a real antenna with a 3 dB beam­
width 9 (radians) at range R is

AA = 9R (12.7)

However, the antenna beamwidth is proportional to the aperture size,

9
' L

(12.8)

where X is the wavelength and L is the aperture length. It follows that

AA = —
L

(12.9)

And since the effective synthetic aperture size is twice that of a real array, the 
azimuth resolution for a synthetic array is then given by
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Figure 12.5. Definition of a range cell on the ground.

(12.10)
2L

Furthermore, since the synthetic aperture length L is equal to v T o b , Eq-
(12.10) can be rewritten as

The azimuth resolution can be greatly improved by taking advantage o f the 
Doppler variation within a footprint (or a beam). As the radar travels along its 
flight path the radial velocity to a ground scatterer (point target) within a foot­
print varies as a function o f the radar radial velocity in the direction o f that 
scatterer. The variation o f Doppler frequency for a certain scatterer is called the 
“Doppler history.”

Let R  (t )  denote the range to a scatterer at time t , and v r be the correspond­
ing radial velocity; thus the Doppler shift is

where R'  (t ) is the range rate to the scatterer. Let t 1 and t 2 be the times when 
the scatterer enters and leaves the radar beam, respectively, and t c  be the time 
that corresponds to minimum range. Fig. 12.6 shows a sketch o f the corre­
sponding R  ( t ). Since the radial velocity can be computed as the derivative of 
R  (t )  with respect to time, one can clearly see that Doppler frequency is maxi­
mum at t j , zero at tc , and minimum at t 2 , as illustrated in Fig. 12.7.

(12.11)
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Figure 12.6. Sketch of range versus time for a scatterer.

Figure 12.7. Point scatterer Doppler history.

In general, the radar maximum PRF, /  , must be low enough to avoidr max
range ambiguity. Alternatively, the minimum PRF, /  i , must be high enough 
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide 
as the extent o f a footprint. More precisely, since target returns from maximum 
range due to the current pulse must be received by the radar before the next 
pulse is transmitted, it follows that SAR unambiguous range is given by

Ru = Rmax -  Rmin (12.13)

An expression for unambiguous range was derived in Chapter 1, and is 
repeated here as Eq. (12.14),
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C o m b in in g  Eq. ( 1 2 .1 4 )  and  Eq. ( 1 2 .1 3 )  y ie ld s

f r ^ --------R— ) (12.15)'max 2( R — R )max min

SAR minimum PRF, f r i , is selected so that Doppler ambiguity is avoided. 
In other words, f r , must be greater than the maximum expected Doppler 
spread within a footprint. From the geometry of Fig. 12.8, the maximum and 
minimum Doppler frequencies are, respectively, given by

f dmlx = T  sin©  sin P ; at t1 

f dmn = ~T  sin ( ^  sinP ; at t2

(12.16)

(12.17)
X 0 2/

It follows that the maximum Doppler spread is

Af d = fd -  fd (12.18)J d J amax J amin
Substituting Eqs. (12.16) and (12.17) into Eq. (12.18) and applying the proper 
trigonometric identities yield

Afd = "Х- sin2 sinp (12.19)

Finally, by using the small angle approximation we get

Afd ~ "V Q-sinP = \  Q sinP (12.20)

Therefore, the minimum PRF is

f r > ^  Q sinP (12.21)min X

Combining Eqs. (11.15) and (11.21) we get

> f r > ^  Q sinP (12.22)
2 (R max -  R min) Г X

It is possible to resolve adjacent scatterers at the same range within a foot­
print based only on the difference o f their Doppler histories. For this purpose, 
assume that the two scatterers are within the kth range bin.
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Figure 12.8. D opp ler h isto ry  com putation. (a) F u ll v iew ; (b) top view.
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Denote their angular displacement as Д9 , and let Afd be the minimum 
Doppler spread between the two scatterers such that they will appear in two 
distinct Doppler filters. Using the same methodology that led to Eq. (12.20) we 
get

Afdmin = y  A9sinPk (12 23)

where pk is the elevation angle corresponding to the kth range bin.

The bandwidth of the individual Doppler filters must be equal to the inverse of 
the coherent integration interval Tob (i.e., Af d̂ n = 1 / Tob). It follows that

Д9 = -------------  (12.24)
2vTob sinPk

Substituting L for vTob yields

Д9 = ---------  (12.25)
2L sin pk

Therefore, the SAR azimuth resolution (within the kth range bin) is

M * = A9Rk = Rk ш щ ,  |12-26)

Note that when pk = 90°, Eq. (12.26) is identical to Eq. (12.10).

12.4. SAR Radar Equation
The single pulse radar equation was derived in Chapter 1, and is repeated 

here as Eq. (12.27),

PtG2- 2a
SNR = -------- ----------------  (12.27)

(4n) R4kT0BLLoss

where: Pt is peak power; G is antenna gain; -  is wavelength; ст is radar cross 
section; Rk is radar slant range to the kth range bin; k is Boltzman’s constant; 
T0 is receiver noise temperature; B is receiver bandwidth; and LLoss is radar 
losses. The radar cross section is a function of the radar resolution cell and ter­
rain reflectivity. More precisely,

0 0 С T
ст = ст ARgAA* = ст AA*у  sec y*  (12.28)
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where ст0 is the clutter scattering coefficient, AA is the azimuth resolution, 
and Eq. (12.6) was used to replace the ground range resolution. The number of 
coherently integrated pulses within an observation interval is

n = frTob = —  (12.29)v

where L is the synthetic aperture size. Using Eq. (12.26) in Eq. (12.29) and 
rearranging terms yield

XRfr
n = 2AAV csc (12.30)

The radar average power over the observation interval is

Pav = (Pt / B )fr (12.31)

The SNR for n coherently integrated pulses is then

PtG2 Х2ст
(SNR)n = nSNR = n ------r 1--------------  (12.32)

(4 n ) R  kToBLLoss

Substituting Eqs. (11.31), (11.30), and (11.28) into Eq. (12.32) and performing 
some algebraic manipulations give the SAR radar equation,

PavG2X3CT0 AR„
(SNR)n = ------— -----------  - z f  esc Pk (12.33)

(4n )3 R3kkT0LLosS 2v

Eq. (12.33) leads to the conclusion that in SAR systems the SNR is (1) 
inversely proportional to the third power of range; (2) independent of azimuth 
resolution; (3) function of the ground range resolution; (4) inversely propor­
tional to the velocity v ; and (5) proportional to the third power of wavelength.

12.5. SAR Signal Processing
There are two signal processing techniques to sequentially produce a SAR 

map or image; they are line-by-line processing and Doppler processing. The 
concept of SAR line-by-line processing is as follows: Through the radar linear 
motion a synthetic array is formed, where the elements of the current synthetic 
array correspond to the position of the antenna transmissions during the last 
observation interval. Azimuth resolution is obtained by forming narrow syn­
thetic beams through combinations of the last observation interval returns. Fine 
range resolution is accomplished in real time by utilizing range gating and
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pulse compression. For each range bin and each of the transmitted pulses dur­
ing the last observation interval, the returns are recorded in a two-dimensional 
array of data that is updated for every pulse. Denote the two-dimensional array 
of data as M A P .

To further illustrate the concept of line-by-line processing, consider the case 
where a map of size Na x Nr is to be produced, where Na is the number of azi­
muth cells and Nr is the number of range bins. Hence, MAP is of size 
Na x Nr , where the columns refer to range bins, and the rows refer to azimuth 
cells. For each transmitted pulse, the echoes from consecutive range bins are 
recorded sequentially in the first row of M A P . Once the first row is com­
pletely filled (i.e., returns from all range bins have been received), all data (in 
all rows) are shifted downward one row before the next pulse is transmitted. 
Thus, one row of MAP is generated for every transmitted pulse. Consequently, 
for the current observation interval, returns from the first transmitted pulse will 
be located in the bottom row of M A P , and returns from the last transmitted 
pulse will be in the first row of M A P .

In SAR Doppler processing, the array MAP is updated once every N pulses 
so that a block of N columns is generated simultaneously. In this case, N 
refers to the number of transmissions during an observation interval (i.e., size 
of the synthetic array). From an antenna point of view, this is equivalent to 
having N adjacent synthetic beams formed in parallel through electronic steer­
ing.

12.6. Side Looking SAR Doppler Processing
Consider the geometry shown in Fig. 12.9, and assume that the scatterer Ci 

is located within the kth range bin. The scatterer azimuth and elevation angles 
are ^  and pi , respectively. The scatterer elevation angle pi is assumed to be 
equal to pk, the range bin elevation angle. This assumption is true if the 
ground range resolution, AR* , is small; otherwise, Pi = pk + ei for some 
small ei ; in this chapter ei = 0 .

The normalized transmitted signal can be represented by

s (t) = cos (2 /  -  §0) (12.34)

where f0 is the radar operating frequency, and §0 denotes the transmitter 
phase. The returned radar signal from Ci is then equal to

s i(t, ^ ) = Ai cos [2n/0(t -  Ti(t, ^ )) -  §0] (12.35)

where Ti(t, ^ ) is the round-trip delay to the scatterer, and A i includes scat­
terer strength, range attenuation, and antenna gain. The round-trip delay is
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Figure 12.9. A scatterer C  within the kth range bin.

_ (t ) = 2r*(t’ . 0  Ti(t, hi) = ----------- (12.36)

where c is the speed of light and r i ( t ,  . )  is the scatterer slant range. From the 
geometry in Fig. 12.9, one can write the expression for the slant range to the 
ith scatterer within the kth range bin as

r i( t , . i ) = c f s e j 1 _ т cos eco s . i sin e + ( ? cos e

And by using Eq. (12.36) the round-trip delay can be written as

i 2v t „ . „ 2vt a
n ,1 -  -—cospicoshsinB i + “ cosP c cos p ^  h 0 h

(12.37)

(12.38)

The round-trip delay can be approximated using a two-dimensional second 
order Taylor series expansion about the reference state (t, . )  = (0, 0 ). Per­
forming this Taylor series expansion yields
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- - - t2Ti(t, | ) « х  + Xt̂  IV + Ttt j  (12.39)

where the over-bar indicates evaluation at the state (0, 0), and the subscripts 
denote partial derivatives. For example, Tt| means

- d2
( ...... ..  (0,0) (12-40)

The Taylor series coefficients are

T = ( ^ )  """T  (12.41)0 c 1 cos P.

Tti = ( ^ )  sin Pi (12.42)

2 

hc
f  2

T tt =  ( - T - r J c o s  P i (12 .43)

Note that other Taylor series coefficients are either zeros or very small. Hence, 
they are neglected. Finally, we can rewrite the returned radar signal as

s i (f  I ) = Ai cos [V i ( t , I ) -  0̂

\\l,( t , I i ) = 2n f0 ( 1 -  Tt|Ii) t  -  T -  Ttt”"
2̂  (12.44)

Observation of Eq. (12.44) indicates that the instantaneous frequency for the
ith scatterer varies as a linear function of time due to the second order phase — 2
term 2nf 0(Tttt /2) (this confirms the result we concluded about a scatterer 
Doppler history). Furthermore, since this phase term is range-bin dependent 
and not scatterer dependent, all scatterers within the same range bin produce 
this exact second order phase term. It follows that scatterers within a range bin 
have identical Doppler histories. These Doppler histories are separated by the 
time delay required to fly between them, as illustrated in Fig. 12.10.

Suppose that there are I scatterers within the kth range bin. In this case, the 
combined returns for this cell are the sum of the individual returns due to each 
scatterer as defined by Eq. (12.44). In other words, superposition holds, and the 
overall echo signal is

sr(t) = £  s , (t, |г) (12.45)

i =1

I
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Figure 12.10. Doppler histories for several scatterers within the same range bin.

A  signal processing block diagram for the kth range bin is illustrated in Fig.
12 .11 . It consists o f the following steps. First, heterodyning with the carrier 
frequency is performed to extract the quadrature components.

This is followed by LP filtering and A/D conversion. Next, deramping or 
focusing to remove the second order phase term o f the quadrature components 
is carried out using a phase rotation matrix. The last stage o f the processing 
includes windowing, performing an FFT on the windowed quadrature compo­
nents, and scaling the amplitude spectrum to account for range attenuation and 
antenna gain.

The discrete quadrature components are

XI (tn) = XI (n ) = A i cos [V i( tn h  ) -  §0]
„ (12.46)

XQ(tn) = XQ(n) = A i sin[у i(tn'> h ) -  §0]

у i(I‘w hO = у i(tn> h ) -  2n f0tn (12.47)

and tn denotes the nth sampling time (remember that -Tob/2 < tn < Tob/2). 
The quadrature components after deramping (i.e., removal o f the phase 
у  = -nfoit/n) are given by

Xi (n ) cos у -  sin у Xi (n )
Xq ( n  ) sin у cos у _x q( n )
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Doppler histories

Figure 12.11. Signal processing block diagram for the k h range bin.
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It was mentioned earlier that SAR imaging is performed using two orthogo­
nal dimensions (range and azimuth). Range resolution is controlled by the 
receiver bandwidth and pulse compression. Azimuth resolution is limited by 
the antenna beamwidth. A  one-to-one correspondence between the FFT bins 
and the azimuth resolution cells can be established by utilizing the signal 
model described in the previous section. Therefore, the problem o f target 
detection is transformed into a spectral analysis problem, where detection is 
based on the amplitude spectrum o f the returned signal. The FFT frequency 
resolution Дf  is equal to the inverse o f the observation interval Tob. It follows 
that a peak in the amplitude spectrum at k1 Дf  indicates the presence o f a scat­
terer at frequency f d1 = ^ Д f .

For an example, consider the scatterer C i within the k th  range bin. The 
instantaneous frequency f di corresponding to this scatterer is

f di = 2 ;  г  = f 0 = T sinPi|i (1249)

This is the same result derived in Eq. (12.23), with |  = Д9 . Therefore, the 
scatterers separated in Doppler by more than Д f  can then be resolved.

Fig. 12.12 shows a two-dimensional SAR image for three point scatterers 
located 10 Km down-range. In this case, the azimuth and range resolutions are 
equal to 1 m and the operating frequency is 35GHz. Fig. 12.13 is similar to Fig.
12.12, except in this case the resolution cell is equal to 6 inches. One can 
clearly see the blurring that occurs in the image. Figs. 12.12 and 12.13 can be 
reproduced using the program “f i g 1 2 _ 1 2 _ 1 3 . m ” given in Listing 12.1 in Sec­
tion 12.10.

12.7. SAR Imaging Using Doppler Processing

12.8. Range Walk
As shown earlier, SAR Doppler processing is achieved in two steps: first, 

range gating and second, azimuth compression within each bin at the end of the 
observation interval. For this purpose, azimuth compression assumes that each 
scatterer remains within the same range bin during the observation interval. 
However, since the range gates are defined with respect to a radar that is mov­
ing, the range gate grid is also moving relative to the ground. As a result a scat- 
terer appears to be moving within its range bin. This phenomenon is known as 
range walk. A  small amount o f range walk does not bother Doppler processing 
as long as the scatterer remains within the same range bin. However, range 
walk over several range bins can constitute serious problems, where in this 
case Doppler processing is meaningless.
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Figure 12.12. Three point scatterer image. Resolution cell is 1m2.
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12.9. A Three-Dimensional SAR Imaging Technique
This section presents a new three-dimensional (3-D) Synthetic Aperture 

Radar (SAR) imaging technique.1 It utilizes a linear array in transverse motion 
to synthesize a two-dimensional (2-D) synthetic array. Elements o f the linear 
array are fired sequentially (one element at a time), while all elements receive 
in parallel. A  2-D information sequence is computed from the equiphase two­
way signal returns. A  signal model based on a third-order Taylor series expan­
sion about incremental relative time, azimuth, elevation, and target height is 
used. Scatterers are detected as peaks in the amplitude spectrum o f the infor­
mation sequence. Detection is performed in two stages. First, all scatterers 
within a footprint are detected using an incomplete signal model where target 
height is set to zero. Then, processing using the complete signal model is per­
formed only on range bins containing significant scatterer returns. The differ­
ence between the two images is used to measure target height. Computer 
simulation shows that this technique is accurate and virtually impulse invari­
ant.

12.9.1. Background
Standard Synthetic Aperture Radar (SAR) imaging systems are generally 

used to generate high resolution two-dimensional (2-D) images o f ground ter­
rain. Range gating determines resolution along the first dimension. Pulse com­
pression techniques are usually used to achieve fine range resolution. Such 
techniques require the use o f wide band receiver and display devices in order 
to resolve the time structure in the returned signals. The width o f azimuth cells 
provides resolution along the other dimension. Azimuth resolution is limited 
by the duration of the observation interval.

This section presents a three-dimensional (3-D) SAR imaging technique 
based on Discrete Fourier Transform (DFT) processing o f equiphase data col­
lected in sequential mode (DFTSQM). It uses a linear array in transverse 
motion to synthesize a 2-D synthetic array. A  2-D information sequence is 
computed from the equiphase two-way signal returns. To this end, a new signal 
model based on a third-order Taylor series expansion about incremental rela­
tive time, azimuth, elevation, and target height is introduced. Standard SAR  
imaging can be achieved using an incomplete signal model where target height 
is set to zero. Detection is performed in two stages. First, all scatterers within a 
footprint are detected using an incomplete signal model, where target height is 
set to zero. Then, processing using the complete signal model is performed

1. This section is extracted from: Mahafza, B. R. and Sajjadi, M., Three-Dimensional 
SAR Imaging Using a Linear Array in Transverse Motion, IEEE - AES Trans., Vol. 
32, No. 1, January 1996, pp. 499-510.
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only on range bins containing significant scatterer returns. The difference 
between the two images is used as an indication o f target height. Computer 
simulation shows that this technique is accurate and virtually impulse invari­
ant.

12.9.2. DFTSQM Operation and Signal Processing 
Linear Arrays

Consider a linear array o f size N , uniform element spacing d , and wave­
length —. Assume a far field scatterer P  located at direction-sine sin pl . 
DFTSQM operation for this array can be described as follows. The elements 
are fired sequentially, one at a time, while all elements receive in parallel. The 
echoes are collected and integrated coherently on the basis o f equal phase to 
compute a complex information sequence { b  (m ) ;m  = 0, 2N -  1 } .  The x- 
coordinates, in d  -units, o f the x ‘nh element with respect to the center of the 
array is

xn = ( -  — + n )  ;n = 0, ...N -  1 (12.50)

The electric field received by the x t2 element due to the firing o f the x[h , and 
reflection by the l th far field scatterer P  , is

(R0) 4 r -E (x !, x2;Sl) = G 2(Sl)0-R-J J O l  e x p ( j $ ( x 1; x2;si)) (12.51)

2 nФ(x 1 , x2;Sl) = —  (xj + x2)(Sl) (12.52)

s l = sin pl (12.53)

where J a l is the target cross section, G 2 (s l) is the two-way element gain, and 
(R0/ R  )4 is the range attenuation with respect to reference range R 0 . The scat­
terer phase is assumed to be zero; however it could be easily included. Assum­
ing multiple scatterers in the array’s FOV, the cumulative electric field in the 
path xj ^  x2 due to reflections from all scatterers is

E (x 1 , x2) = ^ [ E j ( x 1 , x2;si) + j E Q(x 1 , x2;si)] (12.54)
all l

where the subscripts (I, Q ) denote the quadrature components. Note that the 
variable part o f the phase given in Eq. (12.52) is proportional to the integers 
resulting from the sums {(xn1 + xn2) ; (n1, n 2) = 0, ... N  -  1} .In  the far field 
operation there are a total o f (2N -  1) distinct (xn 1 + xn2) sums. Therefore, 
the electric fields with paths o f the same (xn1 + xn2) sums can be collected
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coherently. In this manner the information sequence {b (m) ;m = 0, 2N -  1} is 
computed, where b (2N -  1) is set to zero. At the same time one forms the 
sequence {c (m) ;m = 0 , . . .  2 N -  2} which keeps track of the number of 
returns that have the same (xn1 + xn2) sum. More precisely, for 
m = n1 + n2; (n1, n2) = ... 0, N -  1

which is a triangular shape sequence.

The processing of the sequence {b (m)} is performed as follows: (1) the 
weighting takes the sequence {c (m)} into account; (2) the complex sequence 
{b (m)} is extended to size NF , a power integer of two, by zero padding; (3) 
the DFT of the extended sequence {b'(m);m = 0, NF -  1} is computed,

and, (4) after compensation for antenna gain and range attenuation, scatterers 
are detected as peaks in the amplitude spectrum \B(q)|. Note that step (4) is 
true only when

where sinPq denotes the direction-sine of the qth scatterer, and NF = 2N is 
implied in Eq. (12.59).

The classical approach to multiple target detection is to use a phased array 
antenna with phase shifting and tapering hardware. The array beamwidth is 
proportional to (X/Nd) , and the first sidelobe is at about -13 dB. On the other 
hand, multiple target detection using DFTSQM provides a beamwidth propor­
tional to (X/2Nd) as indicated by (Eq. (12.59), which has the effect of dou­
bling the array’s resolution. The first sidelobe is at about -27 dB due to the 
triangular sequence { c (m) } . Additionally, no phase shifting hardware is 
required for detection of targets within a single element’s field of view.

b(m) = b(m) + E(x^, Xn2) (12.55)

c (m) = c (m) + 1 (12.56)

It follows that

m + 1 ; m = 0, ... N -  2 
{ c (m) ;m = 0, ...2N  -  2 } = - N ; m = N -  1

2 N -  1 -  m m = N, . 2  N -  2
(12.57)

Nf -  1

B (q) = ^  b' (m )• exp^-j^-Nq-^j ;q = 0, ... Nf -  1 (12.58)

m =0

(12.59)
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Rectangular Arrays

DFTSQM operation and signal processing for 2-D arrays can be described as 
follows. Consider an Nx x N> rectangular array. All NxN> elements are fired 
sequentially, one at a time. After each firing, all the NxNy array elements 
receive in parallel. Thus, NxN> samples of the quadrature components are col­
lected after each firing, and a total of (NxN>)2 samples will be collected. How­
ever, in the far field operation, there are only (2Nx -  1) x (2N> -  1) distinct 
equiphase returns. Therefore, the collected data can be added coherently to 
form a 2-D information array of size (2Nx -  1) x (2N> -  1). The two-way 
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of 
the information array. The processing includes 2-D windowing, 2-D Discrete 
Fourier Transformation, antenna gain, and range attenuation compensation. 
The field of view of the 2-D array is determined by the 3 dB pattern of a single 
element. All the scatterers within this field will be detected simultaneously as 
peaks in the amplitude spectrum.

Consider a rectangular array of size N x N , with uniform element spacing 
dx = d> = d , and wavelength X. The coordinates of the nth element, in d - 
units, are

xn = 2 - + nj ;n = 0, .. .N -  1 (12.60)

>n = ( -  —p  + nj ;n = 0, .. .N -  1 (12.61)

Assume a far field point P defined by the azimuth and elevation angles 
(a , P ) . In this case, the one-way geometric phase for an element is

2 Пф' (x, y ) = — [ x sin p cos a  + y  sin p sin a ]  (12.62)X

Therefore, the two-way geometric phase between the (x^ y 1) and (x2, y 2) ele­
ments is

2 Пф ^ , y 1, x2, y 2) = — sin P[( x1 + x2) cosa + ^  + y 2) s ina] (12.63)

The two-way electric field for the l th scatterer at (a^ рг) is

(R 0j 4
E(x1, x2, У1, y 2;a z, рг) = G2(P i)0r-J /Jo l e x p L ^ ^ , >1, x2, y 2))] (12.64)

Assuming multiple scatterers within the array’s FOV, then the cumulative elec­
tric field for the two-way path (x1, y 1) ^  (x2, y 2) is given by
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E ( x 1, x 2, У1 , y 2) = ^  E ( x 1, x 2, У1 , y 2 ;a l ,  Pi) (12.65)

all s cat t erers

A ll formulas for the 2-D case reduce to those of a linear array case by setting 
Ny = 1 and a  = 0 .

The variable part o f the phase given in Eq. (12.63) is proportional to the inte­
gers (x 1 + x2) and (y1 + y 2) . Therefore, after completion of the sequential fir­
ing, electric fields with paths o f the same (i, j ) sums, where

{ i = xn1 + xn 2 ;i = - ( N -  1 ) , . . . ( N -  1)} (12.66)

{ j = Уп1 + Уп 2 j  = -(N  -  1), •••( N -  1)} (12.67)

can be collected coherently. In this manner the 2-D information array 
{ b(mx, my);(mx, my) = 0, ...2 N -  1} is computed. The coefficient sequence 
{ c(mx, my);(mx, my) = 0, . . .2N -  2} is also computed. More precisely,

fo r  mx = n 1 + n2 and my = n 1 + n2 (12.68)
n1 = 0, ...N  -  1 , and n2 = 0, ... N -  1

b (mx, my) = b (mx> my) + E(xnJ, Уп 1, Xn2, Уп2 ) (12.69)

It follows that

c(m^  my) = (Nx -  Imx -  (Nx -  1 ̂  ) X (Ny -  \my -  (Ny -  1 ̂  ) (12.70)

The processing o f the complex 2-D information array { b (mx, my)} is simi­
lar to that o f the linear case with the exception that one should use a 2-D DFT. 
After antenna gain and range attenuation compensation, scatterers are detected 
as peaks in the 2-D amplitude spectrum o f the information array. A  scatterer 
located at angles ( a l, pl) will produce a peak in the amplitude spectrum at 
DFT indexes (pl, ) , where

a l = atan (| -) (12.71)

. n Xpl — ql 
sin Pl = ------—----  = ------------ (12.72)

2Ndcos a l 2N dsinal

Derivation o f Eq. (12.71) is in Section 12.9.7.

12.9.3. Geometry for DFTSQM SAR Imaging
Fig. 12.14 shows the geometry o f the DFTSQM SAR imaging system. In 

this case, tc denotes the central time of the observation interval, Dob . The air­
craft maintains both constant velocity v and height h . The origin for the rela-
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tive system of coordinates is denoted as O . The vector Om  defines the radar 
location at time tc . The transmitting antenna consists of a linear real array 
operating in the sequential mode. The real array is of size N , element spacing 
d , and the radiators are circular dishes of diameter D = d. Assuming that the 
aircraft scans M  transmitting locations along the flight path, then a rectangular 
array of size N x M  is synthesized, as illustrated in Fig. 12.15.
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The vector q ( t c ) defines the center of the 3 dB footprint at time t c . The cen­
ter of the array coincides with the flight path, and it is assumed to be perpen­
dicular to both the flight path and the line of sight p (t c ) . The unit vector a  
along the real array is

a  = cos p* a x + sin p* a z (12.73)

where p* is the elevation angle, or the complement of the depression angle, 
for the center of the footprint at central time t c .

12.9.4. Slant Range Equation
Consider the geometry shown in Fig. 12.16 and assume that there is a scat­

terer C i within the kth range cell. This scatterer is defined by

{a m p l t i u d e ,  p h a s e ,  e l e v a t i o n ,  a z i m u t h ,  h e i g h t }  =

{ a p Фp P  ̂^  h i }

The scatterer Ci  (assuming rectangular coordinates) is given by

Ci = h  tan Рг- cos h ta x + h  tan Рг- sin h a  + h  i a z

Рг = Pk + e

(12.74)

(12.75)

(12.76)

where pk denotes the elevation angle for the kth range cell at the center of the 
observation interval and e is an incremental angle. Let O e n refer to the vector 
between the n th array element and the point O , then

X

Figure 12 .16 . S ca tte re r  Ci w ith in  a range cell.
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D n = ( i-y^ - + nJ d  ;n = 0, ... N  -  1 (12.78)

The range between a scatterer C  within the kth range cell and the n th element 
of the real array is

r2 ( t ,  e, ц, h ; D n) = D2 + v 2t 2 + ( h  -  h )2 + 2 D n sinp* ( h  -  h ) + (12.79) 
h tan(Pk + e)[h tan(Pk + e) -  2 D ncosp* cosц -  2 v t sinц]

It is more practical to use the scatterer's elevation and azimuth direction- 
sines rather than the corresponding increments. Therefore, define the scat- 
terer's azimuth and elevation direction-sines as

5 = sin ц (12.80)

u  = sine (12.81)

Then, one can rewrite Eq. (12.79) as

(t, s, u,  h ; D n) = D2  + v 212 + ( h  -  h )2 + h 2/2(u ) + (12.82)
2 D n sinp* ( h  -  h ) -  (2D nh cosp*/(u ) J  1 -  s2 -  2 v h t f ( u ) s )

f (u ) = tan (Pk + asin u ) (12.83)

Expanding r n as a third order Taylor series expansion about incremental
(t, s, u, h ) yields

~ ~ h2 ~ s 2
r  (t, s, u, h  ;D n) = r  + r hh  + r uu  + r h h j  + r h uh u  + r s s J  + r sts t  + (12.84)

_ t 2 . u 2 _ h  . h 2u .  ~ _ /̂ г-2 
rtt'-r + r... — + r + r~~ + r~ h st + r~~ +tt2 2 hhh 6 hhu 2 hst huu 2

. s2 _ u s 2 . , _ s u 2 . t h 2 .  u t 2 . u3
r h~ss  ̂ + r uss  ̂ + r stus  + r suu  ̂ + r t h 2 + r utt  ̂ + r uuu 6̂

where subscripts denote partial derivations, and the over-bar indicates evalua­
tion at the state (t, s, u, h) = (0, 0, 0, 0 ) . Note that

{ r s = r t = r h s_ = r h t = r su = r tu = r h h s = r h h t = r h su = r h tu = (12.85)
r sss = r sst = r stt = r ttt = r tsu = 0 }

Section 12.9.8 has detailed expressions o f all non-zero Taylor series coeffi­
cients for the k th range cell.

Even at the maximum increments t mx, s mx, u mx, h m x , the terms:

O e n = D n co s  P * a x + v t a y  + (Dn s in  p* + h ) a z (12.77)
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_ h _ h u _ hu2 _ hs2r ------ ^  ^  ----  r~ ----  (12 86)
hhh 6 ’ hhu 2 ’ huu 2 * hss 2 *

- ;̂!ŝ  - t - su- - £/l - ut-. - u lr uss 2  ’ r stus tu ’ r suu 2  ’ r thh 2 ’ rutt 2 ’ ruuu 6

are small and can be neglected. Thus, the range r n is approximated by

- - h2 - r (t, s  u  h ;D n) = r  + r hh + r uu + r hh y  + r huhu + <12-87)

s'2 f2 u2 —
r s s2  + r sts t  + r tt2 + r uu2  + r h sth s t

Consider the following two-way path: the n f1 element transmitting, scatterer 
C, reflecting, and the n2h element receiving. It follows that the round trip 
delay corresponding to this two-way path is

Tn1 n2 = c (rn1 (t, s  u> h ;D n1) + r n2(t, s  u> h ;Dn2) ) (1288)

where c  is the speed o f light.

12.9.5. Signal Synthesis

The observation interval is divided into M  subintervals o f width 
Д t = (Dob + M ) . During each subinterval, the real array is operated in 
sequential mode, and an array length o f 2N is synthesized. The number o f sub­
intervals M  is computed such that Дi is large enough to allow sequential 
transmission for the real array without causing range ambiguities. In other 
words, i f  the maximum range is denoted as Rmx then

2 RmxДt > N— m (12.89)
c

Each subinterval is then partitioned into N sampling subintervals of width 
2Rmx/ c . The location tmn represents the sampling time at which the nth ele­
ment is transmitting during the mth subinterval.

The normalized transmitted signal during the mth subinterval for the nth 
element is defined as

sn( tmn) = cos (2nfotmn + О  (12-90)

where Z denotes the transmitter phase, and f o is the system operating fre­
quency. Assume that there is only one scatterer, C ,, within the kth range cell
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defined by (a i, фi, s i, ui, h i) . The returned signal at the n2h element due to fir­
ing from the n f1 element and reflection from the Ci scatterer is

si(nJ, n2';tmn1) = aiG2( sinPi) (Pk(tc)/ P(tc))4
cos [2%f 0(tmn1 -  Tn1n2) + С -  ф]

(12.91)

where G2 represents the two-way antenna gain, and the term ( p k( tc ) / p ( tc ) ) 4 
denotes the range attenuation at the kth range cell. The analysis in this paper 
will assume hereon that Z and фi are both equal to zeroes.

Suppose that there are N0 scatterers within the kth range cell, with angular 
locations given by

The composite returned signal at time t within this range cell due to the

The platform motion synthesizes a rectangular array o f size N x M , where 
only one column of N elements exists at a time. However, if M  = 2N and the 
real array is operated in the sequential mode, a square planar array o f size 
2N x 2N is synthesized. The element spacing along the flight path is
d> = vDob/M .

Consider the kth range bin. The corresponding two-dimensional information 
sequence { bk(n, m );(n, m ) = 0, ...2 N -  2} consists o f 2N similar vectors. 
The m th vector represents the returns due to the sequential firing of all N ele­
ments during the m th subinterval. Each vector has (2N -  1) rows, and it is 
extended, by adding zeroes, to the next power o f two. For example, consider 
the m th subinterval, and let M  = 2N = 4 . Then, the elements o f the extended 
column { bk(n, m )} are

{ bk(0, m ), bk(1, m ), bk(2, m ), bk(3, m ), bk(4, m ), bk(5, m ), (12.94)

{ (a^ ф̂  si, ui, h i) ;i = 1, . . .No} (12.92)

path (n1 ^  a ll Ci ^  n2) is

No

s(n 1, n2;tmn1) = ^ s i(^  n2';tmn1) (12.93)
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Consider again the kth range cell during the mth subinterval, and the two­
way path: n\h element transmitting and n2h element receiving. The analog 
quadrature components corresponding to this two-way path are

s/(n„ n2;t) = B co sy1 (12.95)

s^ (n1, n2 ;t) = B sin y 1 (12.96)

12.9.6. Electronic Processing

У1 = 2nfo1t -  1 2r + (rh (Dn1 ) + r h (Dn2 )) h + (ru(Dn1) + r u( Dn2 )) u + (12.97)

,h 2
( r h h ( Dn1 ) + rh h ( Dn2 )) 7  + ( r h u (Dn1 ) + r h u ( Dn2 )) hu +

(rss(Dn, ) + rss(Dn2) ) + 2rstst + 2r ttt2- +2 st tt 2

u2
( ruu(Dn1) + ruu( Dn2 )) '2  + ( r h s D  ) + r h st( Dn2 )) h st ] }

where B denotes antenna gain, range attenuation, and scatterers' strengths. The 
subscripts for t have been dropped for notation simplicity. Rearranging Eq. 
(12.97) and collecting terms yields

У1 = — tc -  [ 2rsts + ( r 'hst(Dnl ) + r 'hst(Dn2 ))hs] t -  r ttt2 } -  (12.98)c

2r + (rh (Dn1) + r h (Dn2)) h + (ru( Dn1) + r u (Dn2)) u +

u 2 h- 2 
(ruu( Dn1) + ruu( Dn2)) j  + ( г/h (Dn1) + г/h (Dn2)) +

( rh u( Dn1) + rh u (Dn2 )) hu + ( rss( Dn1) + rss( Dn2 )) 2_

After analog to digital (A/D) conversion, deramping of the quadrature compo­
nents to cancel the quadratic phase (-2n f 0 r ttt2 / c) is performed. Then, the 
digital quadrature components are

sj(nv n2;t) = B cosy (12.99)

sq(n „  n 2;t) = B s in y  (12.100)
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The instantaneous frequency for the ith scatterer within the kth range cell is 
computed as

fdi = 2П Ш = - f  [ 2 ̂  + ( ?h * < + ГЫ< ))hs ] (12102)

Substituting the actual values for rst, r~h (D ) ,  r~h (Dn ) and collecting 
terms yields

d  = - P ^ ) f - T - (h + (Dn1 + D ) sinp*) -  s) (12.103)
0 X ^  tc) 1 2 1

Note that if h = 0 , then

f di = Y  sin Pk sin ̂  (121°4)

which is the Doppler value corresponding to a ground patch (see Eq. (12.49)).

The last stage of the processing consists of three steps: (1) two-dimensional 
windowing; (2) performing a two-dimensional DFT on the windowed quadra­
ture components; and (3) scaling to compensate for antenna gain and range 
attenuation.

12.9.7. Derivation o f Eq. (12.71)

Consider a rectangular array of size N x N , with uniform element spacing 
dx = dy = d , and wavelength X. Assume sequential mode operation where 
elements are fired sequentially, one at a time, while all elements receive in par­
allel. Assume far field observation defined by azimuth and elevation angles 
(a , P ) . The unit vector U on the line of sight, with respect to O , is given by

U = sin p cos a  ax + sin p sina ay + cos p az (12.105)

The (nx, ny)th element of the array can be defined by the vector

e (n^ ny) = 0nx -  —P 3 d ax + 0ny -  —p )  d ay (12.1°6)

where (nx, ny = 0, ... N -  1). The one-way geometric phase for this element is 

Ф'(nx, ny) = k(U • e(nx, ny)) (12.107)

у  = у 1 -  2 n f0t  + 2 / ( 1 2 . 1 0 1 )
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where k = 2п / Х  is the wave-number, and the operator ( •  ) indicates dot 
product. Therefore, the two-way geometric phase between the (nxl, ny l ) and 
(n x2, ny2) elements is

ф( nxl ,  Пу!, nx 2, Пу 2) = k [ U •  { e  ( nx! ,  Пу 1) + e  (nx2, Пу 2 ) } ]  (12.108)

The cumulative two-way normalized electric field due to all transmissions is

E( U ) = Et( U ) Er( U ) (12.109)

where the subscripts t and r , respectively, refer to the transmitted and 
received electric fields. More precisely,

N -  l N -  l

Ef(U) = I  I  W (nxp nyt) exP [jk{ U • e( nxP nyt)}] (12.110)

N-l N -  l

Er( u) = I I  w (nxr, nyr)exp[jk{U • e(nxr, nyr )}] (12.111)

In this case, w (nx, ny) denotes the tapering sequence. Substituting Eqs. 
(l2 .l08 ), ( l2 . l l0 ) ,  and ( l 2 . l l l )  into Eq. ( l2 .l0 9 )  and grouping all fields with 
the same two-way geometric phase yields

E (U) = ejS I  I  w' (m, n ) exp[jkd  sin P(m cos a  + n sina)] (12.112)

m = 0 n = 0

Na = 2N -  l  (12.113)

m = nxt + nxr;m = 0, . . . 2N - 2 (12.114)

n = nyt + nyr;n = 0, ...2 N - 2 (12.115)

5 = 0 n  -  l ) ( cos a  + sina) (12.116)

The two-way array pattern is then computed as

|E( U )| =

Na -  l Na -  l

w

m = 0 n = 0

I I  w'( m, n ) exp[jkd  sin P( m cos a  + n sin a )] (12.117)

Consider the two-dimensional DFT transform, W(p, q ) , o f the array
w '(nx, ny )

nxt = 0 nyt = 0

nxr = 0 nyr = 0

Na -  l Na - l
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W (p , q )  = (12.118)

.2 nw'(
m = 0 n = 0

—a -  1 —a -  1

Z  Z  w'(m, n )exp0-/— (pm  + qn)) ;p, q = 0, . N a -  1

Comparison of Eqs. (12.117) and Eq. (12.118) indicates that \E(и )| is equal to
\w(p, q )l if

2 2 n) 2 n . . „
-0 IT ) p  = T" d  sin p cos a  (12.119)

0 N a X

22п) 2 л . .  „  .

-I IT ) q = T" d  sin p sin a  (12.120)0 N J  X

a  = tan-1 0q ) (12.121)

It follows that

a  = tan-1
0p

12.9.8. Non-Zero Taylor Series Coefficients for the kth Range Cell

r  = ^D l + h2(1 + tanpk) + 2hDnsinp* -  2hDncos p* tanpk = pk(tc) (12.122) 

r~h = 0 -Г-)( h + Dn sin p*) (12.123)

h ) (h tan pk -  Dn cos p*) (12.124)
r  cos2 pk-

I = 0 Й -  2 1 ) ( h + Dnsinp * )  (12.125)

"'hи = d-̂ h + DntanP * ) ( htanPk -  Dncos P * ) (12.126)

r ss = 0 + 2 г ) ( -  tan Pk -  D n cos P * ) (12 .127)

r st = 2 j )  h v  t an  Pk (1 2 .1 2 8 )

r
(12.129)
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(h  tan  pk -  D n cos p * )  +
r  cos3 Р / 1 0r 2cos pk-

+ 2tan PksinPkJ -  2sin PkD ncos P*cos P,

r h h h = 0 ^ J ( h + Dn sin P*) —)(h + Dnsinp*)2 -  l

hhu (p 3 ̂ r\c2
h

r 3 cos2 pk-
(h tan pk -  Dn cos p*) -3'—)(h + Dn sin p*)2 + l

r h h + Dn sin p .)

r h UU = 0 h + Dn sin P*)( h tan Pk -  Dn cos P*)

r hss = ( r ^ -  tan Pk -  Dn cos P*)( -  + Dn sin P*)

h
r  cos2 pk-

(Dncosp*)
LV -

—) (h tan pk -  Dn cos p*)( h tan pk) + l

-h  tan Pk
StU 1 -3_V г*->r 3 cos2 pk-

(h tan pk -  Dn cos p*)

-D ncosp* 

r  cos2 pk
h tan pk) 

г ; —  1( -  tan Pk -  Dn cos p*) + l

v2h
r 3 cos2 pk-

(h tan pk -  Dn cos p*)

h [8h tanpk + sin2 pk(h -  Dncosp*) -  2Dncosp*] +
r  cos4 Pk"

- W 5-r ' ) ( -  tan Pk -  Dn cos P*) +r 3 cos5 Р/
l

3 h 2
(h tan pk -  Dn cos p*)

2cos pk
+ (h tan pk -  Dn cos p*)

Л  r 3 cos5 Р/

-  “  ek -  Dncos

h

r =USS

r =SUU

(12.130)

(12.131)

(12.132)

(12.133)

(12.134)

(12.135)

(12.136)

(12.137)

(12.138)

(12.139)

(12.140)
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12.10. MATLAB Programs and Functions

Listing 12.1. MATLAB Program “fig12_12-13.m ”
% F igures 12.12 and 12.13
% Program  to do Spotlight SAR using the rectangu lar fo rm a t and 
% HRR f o r  ran ge com pression.
% 13 June 2003
% Dr. Brian J. Smith
c lea r  all;
%%%%%%%%% SAR Im age R esolution %%%% 
dr = .50; 
da = .10;
% dr = 6*2.54/100;
% da = 6*2.54/100;
%%%%%%%%% Scatter Locations %%%%%%% 
xn = [10000 10015 9985]; % Scatter Location, x-axis 
yn  = [0 -20 20]; % Scatter Location, y-axis 
N um Scatter = 3; % Number o f  S catters 
Rnom = 10000;
%%%%%%%%% Radar Param eters %%%%%%%% 
f_0 = 35.0e9; % Lowest Freq. in the HRR Waveform 
d f  = 3.0e6; % Freq. step  size f o r  HRR, Hz 
c  = 3e8; % Speed  o f  light, m/s 
Kr = 1.33;
N um P ulse = 2A(round(log2(Kr*c/(2*dr*df>)));
Lambda = c/(f_0 + Num_Pulse*df/2);
%%%%%%%%% Synthetic Array Param eters %%%%%%% 
du = 0.2;
L = round(Kr*Lambda*Rnom/(2*da));
U = -(L/2):du:(L/2);
N um du = length(U);
%%%%%%%%% This section  g en era te s  the target returns %%%%%% 
Num_U = round(L/du);
I_Temp = 0;
Q T em p = 0; 
f o r  I  = 1:Num_U 

f o r  J  = 1:Num_Pulse 
f o r  K  = 1:Num_Scatter

Yr = yn(K) - ((I-1)*du - (L/2));
Rt = sqrt(xn(K)A2 + YrA2);
F_ci = f_0 + (J-1 )*df;
PHI = -4*pi*Rt*F_ci/c;
I_Temp = cos(PHI) + I_Temp;
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Q_Temp = sin(PHI) + Q Temp; 
end;
IQ_Raw(J,I) = IT em p  + i*Q_Temp;
IT em p  = 0.0;
Q T em p = 0.0; 

end; 
end;
%%%%%%%%%% End ta rget return section  %%%%% 
%%%%%%%%%% R ange Compression %%%%%%%%%%%%% 
NumRB = 2*Num_Pulse;
WR = hamming(Num_Pulse); 

f o r  I  = 1:Num_U
Range_Compressed(:,I) = fftshift(ifft(IQ_Raw(:,I).*WR,Num_RB)); 

end;
%%%%%%%%%% F ocus Range C om pressed Data %%%% 
dn = (1:Num_U)*du - L/2;
P H IF ocu s = -2*pi*(dn.A2)/(Lambda*xn(1)); 
f o r  I  = 1:Num_RB

Temp = angle(Range_Compressed(I,:)) - PHI Focus;
Focused(I,:) = abs(Range_Compressed(I,:)).*exp(i*Temp); 

end;
% Focused = Range_Compressed;
%%%%%%%%%% Azimuth Compression %%%%%%%%%%%% 
WA = hamming(Num_U); 

f o r  I  = 1:Num_RB 
AZ_Compressed(I,:) = fftshift(ifft(Focused(I,:)*W A')); 

end;
SAR_Map = 10*log10(abs(AZ_Compressed));
YTemp = (1:Num_RB)*(c/(2*Num_RB*df));
Y = Y_Temp - max(Y_Temp)/2;
X Tem p = (1:length(IQ_Raw))*(Lambda*xn(1)/(2*L));
X = X_Temp - max(X_Temp)/2; 
image(X,Y,20-SAR_Map); %
% im age (X,Y, 5-SAR_Map); %
axis([-25 25 -25 25]); axis equal; colormap(gray(64)); 
xlabel('Cross Range (m)'); ylabel('D own Range (m)'); 
g r id
%oprint -d jp eg  .jp g
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Chapter 13 Signal Processing

13.1. Signal and System Classifications
In general, electrical signals can represent either current or voltage, and may 

be classified into two main categories: energy signals and power signals. 
Energy signals can be deterministic or random, while power signals can be 
periodic or random. A  signal is said to be random if  it is a function o f a random 
parameter (such as random phase or random amplitude). Additionally, signals 
may be divided into low pass or band pass signals. Signals that contain very 
low frequencies (close to DC) are called low pass signals; otherwise they are 
referred to as band pass signals. Through modulation, low pass signals can be 
mapped into band pass signals.

The average power P  for the current or voltage signal x( t) over the interval 
(t1; t2) across a 1 Q resistor is

t2

P = —4 "  flx( t ) 2 dt (13-1)
t2 t1J

t1
The signal x( t) is said to be a power signal over a very large interval 

T = t2 - 1 1 , i f  and only if it has finite power; it must satisfy the following 
relation:

T / 2 
1 20 < lim -  I |x(t)| dt <<x (13-2)

T T J
-T / 2

Using Parseval’s theorem, the energy E dissipated by the current or voltage 
signal x (t) across a 1Q resistor, over the interval (t1; t2) , is
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t2

t1
The signal x ( t) is said to be an energy signal if  and only if it has finite 

energy,

ад

E = J  |x( t)|2 dt < ад (13.4)

—ад

A signal x( t) is said to be periodic with period T if  and only if

x(t) = x (t + nT) fo r  a ll t (13.5)

where n is an integer.

Example:

Classify each o f the following signals as an energy signal, as a power signal, 
or as neither. All signals are defined over the interval (—ад < t < ад) : 
x1 (t) = cos t + cos21, x2(t) = exp (—a 212).

Solution:

T / 2
1 2Px1 = t  J ( cost + cos2t) dt = 1 ^  power signal

—T / 2
Note that since the cosine function is periodic, the limit is not necessary.

а д а д

Ex2 = J  (e a t ) dt = 2 J e 2a t dt = 2 -''''' = a ^ 2  ^  energy signal
—ад 0

Electrical systems can be linear or nonlinear. Furthermore, linear systems 
may be divided into continuous or discrete. A system is linear if the input sig' 
nal x j( t) produces y 1(t) and x2 ( t) produces y 2 (t) ; then for some arbitrary 
constants a 1 and a2 the input signal a1x1 (t) + a2x2(t) produces the output 
a iy i (t) + a^y2( t) .  A linear system is said to be shift invariant (or time invari­
ant) if  a time shift at its input produces the same shift at its output. More pre­
cisely, if the input signal x ( t) produces y ( t) then the delayed signal x (t —10) 
produces the output y (t —10) . The impulse response of a Linear Time Invariant 
(LTI) system, h( t) ,  is defined to be the system’s output when the input is an 
impulse (delta function).

E = J|x ( t )|2 d t  (13.3)
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13.2. The Fourier Transform
The Fourier Transform (FT) o f the signal x (t) is

F {x (t)} = X(ro) = f  x (t)e—rot dt (13-6)

—W
or

W

F {x (t)} = X(f) = f  x (t)e—2f  dt (13-7)

—W
and the Inverse Fourier Transform (IFT) is

W

F~'{X(ro)} = x(t) = 2 -  f  X (ro )efflt dro (13-8)

—W
or

W

F  - {X(f) } = x (t) = f  X (f)e 2%ft df (13-9)

—W
where, in general, t represents time, while ro = 2nf  and f  represent fre­
quency in radians per second and Hertz, respectively. In this book we will use 
both notations for the transform, as appropriate (i.e., X(ro) and X ( f) ).

A  detailed table o f the FT pairs is listed in Appendix 13A. The FT properties 
are (the proofs are left as an exercise):

1- Linearity:

F  { a 1x 1( t) + a2x2( t)} = a ^ ( r o )  + a2X 2(ro) (13-10)

2- Symmetry: I f  F {x(t)} = X (ro) then

W

2nX (—ro) = f  X (t) e—ro ldt (13-11)

—W

3- Shifting: For any real time t0

±/®toF {x (t ± t0)} = e X (ro) (13-12)
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4. S ca l in g :  I f  F {x ( t)}  = X(rn) then

\a\ \a

5. Central Ordinate:

F  { x  ( at)}  = p r X " (13. 13)

X( 0) = J  x (t) dt

ад
ад

x(0) = -1-  J X (ю)dro2 п J

(13.14)

(13.15)

6. Frequency Shift: I f  F {x(t)} = X (ю) then

±Ю 01
F{ e x( t)} = X(®+®0) (13.16)

7. Modulation: I f  F {x(t)} = X (ю) then

F{ x( t) cos o 0t } = 2 [X(ю + ю 0) + X(ю — ю0)] (13.17)

F  { x ( t) sin (ю0*)} = — [X(ю — ю0) —X(ib + ю 0)] (13.18)--1--
2j

8. Derivatives:

F { d f  (x(t)) < = ^ ю )'^ ^ )  (13.19)

9. Time Convolution: i f  x (t) and h(t) have Fourier transforms X (ю) and 
H(ю ), respectively, then

F J  x (t )  h (t — x) dx

ад

10. Frequency Convolution:

ад

F  { x ( t) h ( t)} = — J X(x) H (ю —t)  dx 
2п J

= X(n>) H(ю) (13.20)

(13.21)
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11- A utocorre la t ion :

F f  x ( t ) x * ( x  — t ) dx = X (ro )X *(ro ) = |X(ro)|2 (13-22)

12- Parseval’s Theorem: The energy associated with the signal x ( t) is
W W

E = f  |x(t)2 dt = f  X(ro)|2dro (13-23)

13- Moments: The nth moment is

m n
. in

= f tnx (t)dt = _£_X(ro)|a
dron

(13-24)

13.3. The Fourier Series
A  set o f functions S = { q n(t) ; n = 1, N} is said to be orthogonal over 

the interval (t 1; t2) i f  and only if

f<Pi*( t )фj( t) dt = J q *  t)9 ; *( t) dt = (13-25)

where the asterisk indicates complex conjugate, and Xi are constants. If 
Xj = 1 for all i , then the set S  is said to be an orthonormal set.

An electrical signal x (t) can be expressed over the interval (tj, t2) as a 
weighted sum o f a set o f orthogonal functions as

(13-26)

where Xn are, in general, complex constants, and the orthogonal functions 
q n (t) are called basis functions. If the integral-square error over the interval 
(t j; t2) is equal to zero as N approaches infinity, i.e.,

lim fN ̂ wJ x(t) — ^  X nPn(t) d t  = 0 (13-27)

W W

W

0

2

N

n = 1

N 22

n = 1
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then the set S = {<pn ( t)} is said to be complete, and Eq. (13.26) becomes an 
equality. The constants Xn are computed as

t2
I x (t)9n*(t)dt
t1Xn = -- 1--t---------------  (13.28)

J  K (t)|2 dt

Let the signal x ( t ) be periodic with period T , and let the complete orthogo­
nal set S be

= j 2nnt >
S = = e  T ; n= —ад, ад < (13.29)

Then the complex exponential Fourier series of x ( t) is

ад j2nnt
x (t) = ^  Xne T (13.30)

n = —ад

Using Eq. (13.28) yields

T / 2 .0 .—j2nnt
1 f t

Xn = T J x ( t )e  dt (13.31)
—T / 2

The FT of Eq. (13.30) is given by

X(<a) = 2п ^  XnЗ^ю — (13.32)

n = ад
where 5( • ) is delta function. When the signal x (t) is real we can compute 
its trigonometric Fourier series from Eq. (13.30) as

x ( t) = a0 + ^  an cos ( ^ T y ) + ^  bn si n( ( 1 3 . 3 3 )

n = 1 n = 1

ад
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a0 = X0 
T / 2

1 f  " (t) ( 2nnt) , = - f  x (t) cos I -— I dt
—T / 2 1
T / 21 f  2 ... . ( 2 n n t= ;pf x (t) Sin

T 2 (13.34)T / 2
T / 2

bn = T 1 x (t) sin ( dt
—T/ 2 T

The coefficients an are all zeros when the signal x( t) is an odd function of 
time. Alternatively, when the signal is an even function o f time, then all bn are 
equal to zero.

Consider the periodic energy signal defined in Eq. (13.33). The total energy 
associated with this signal is then given by

E = j,  J  |x(t)|2dt = a4  + + bn)  (13.35)

an

W

n =10

13.4. Convolution and Correlation Integrals
The convolution t ) between the signals x (t) and h (t) is defined by

t ) = x (t ) •  h (t) = J  x ( t )  h (t — t )  dx (13.36)

where x is a dummy variable, and the operator • is used to symbolically 
describe the convolution integral. Convolution is commutative, associative, 
and distributive. More precisely,

x (t) • h (t ) = h (t ) •  x (t)
(13.37)

x (t ) •  h (t)^ g  (t ) = (x (t ) •  h (t))^  g  (t) = x (t ) • (  h (t)^ g  (t ))

For the convolution integral to be finite at least one o f the two signals must be 
an energy signal. The convolution between two signals can be computed using 
the FT

фxh( t) = X(ffl) tf(ffl)} (13.38)

Consider an LTI system with impulse response h (t) and input signal x (t). It 
follows that the output signal y  (t ) is equal to the convolution between the 
input signal and the system impulse response,

W

W
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y ( t) = J  x ( t)h (t -  t ) dx = J  h(x )x (t -  t ) dx (13.39)

-ад -ад

The cross-correlation function between the signals x (t ) and g ( t) is defined
as

Rxg( t ) = J  x * (t) g  ( t  + t )  dx (13.40)

Again, at least one of the two signals should be an energy signal for the corre­
lation integral to be finite. The cross-correlation function measures the similar­
ity between the two signals. The peak value o f Rxg(t) and its spread around 
this peak are an indication o f how good this similarity is. The cross-correlation 
integral can be computed as

Rxg(t) = F~l {X *(v)G(и )} (13.41)

When x( t) = g (t) we get the autocorrelation integral,

Rx (t ) = J  x*(x) x ( t + t )  dx (13.42)

Note that the autocorrelation function is denoted by Rx(t ) rather than Rxx(t) . 
When the signals x (t) and g (t) are power signals, the correlation integral 
becomes infinite and, thus, time averaging must be included. More precisely,

Rxg(t) =  lim 1- J x*(x )g( t  + t ) dx (13.43)T —> ад 1 JT — ад
-T / 2

ад ад

ад

-ад

ад

ад

13.5. Energy and Power Spectrum Densities
Consider an energy signal x( t ) . From Parseval’s theorem, the total energy 

associated with this signal is

а д а д

E = J  |x(t)|2dt = 2 -  J  Х(и)1 2dro (13.44)

-ад -ад
When x ( t) is a voltage signal, the amount o f energy dissipated by this signal 
when applied across a network o f resistance R is
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Е = R I  ^ 2dt = Ъ Я  I  X (“ ) 2^Ю (13'45)
—ад —ад

Alternatively, when x ( t) is a current signal we get

а д а д

E = R | |x( t)|2dt = R  | |Х(ю)|2dro (13.46)

The quantity | |Х(ю)|2dro represents the amount o f energy spread per unit fre­
quency across a Ш  resistor; therefore, the Energy Spectrum Density (ESD) 
function for the energy signal x (t) is defined as

ESD = |Х(ю)|2 (13.47)

The ESD at the output o f an LTI system when x( t) is at its input is

\Y (ю)|2 = |Х(ю)| 2|Я(ю)|2 (13.48)

where Н(ю) is the FT o f the system impulse response, h (t) . It follows that the 
energy present at the output of the system is

Ey = 2п I  X (ю )21H(ю ) 2d® (13.49)
—ад

Example:

The voltage signal x ( t) = e 51 ; t > 0 is applied to the input o f a low pass 
LTI system. The system bandwidth is 5Hz, and its input resistance is 5Q . I f  
H(ro) = 1 over the interval (-1 0 п < ю < 10п) and zero elsewhere, compute 
the energy at the output.

Solution:

From Eqs. (13.45) and (13.49) we get

10п

Ey = 2 ^  I  X (® )l21H (ю)|2dro

ю = -10п
Using Fourier transform tables and substituting R = 5 yield

10п

E,, = 7— I —t —----dro
y 5 п 1 ю2 + 25

0

ад ад

ад ад

ад
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Note that an infinite bandwidth would give Ey = 0.02 , only 11% larger.

The total power associated with a power signal g ( t) is

t / 2

P = lim T f lg(t)l2dt (13.50)T — W 1 J
—T / 2

Define the Power Spectrum Density (PSD) function for the signal g ( t) as 
Sg(ro), where

T/ 2 w
2 1 (13.51)

C om p l e t in g  th e  in t e g ra t ion  y i e l d s

Ey = 2 5 — [ a t a n h ( 2 n )  — a t a n h ( 0 ) ]  = 0 .0 1 7 9 9  J o u l e s

P = T̂ mW T J  g (t) 2dt = 2^ J  Sg(“ )dro
—T/2 —W

It can be shown that (see Problem 1.13)

Sg (ro) = lim L-Krol (13.52)
s T —— w 1

Let the signals x (t) and g ( t) be two periodic signals with period T . The 
complex exponential Fourier series expansions for those signals are, respec­
tively, given by

x (t) = £  X ne T (13.53)

n = —W
W j'2'nmt 

Temg ( t) = £  Gme (13.54)

The power cross-correlation function Rgx(t) was given in Eq. (13.43), and is 
repeated here as Eq. (13.55),

t / 2

Rgx(t) = T J  g*(x )x ( t + x)dx (13.55)

—t / 2
Note that because both signals are periodic the limit is no longer necessary. 
Substituting Eqs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and 
using the definition of orthogonality, we get

j27int

m = —W
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jlnnt
Rgx(t) = ^  G *Xne T (13.56)

n = -ад
When x (t) = g ( t ) , Eq. (13.56) becomes the power autocorrelation function,

Rx(t ) = Z  Xnl2e T = X 0 2 + 2 2  Xn\2e '  (13-57)
n = -ад n = 1

The power spectrum and cross-power spectrum density functions are then 
computed as the FT of Eqs. (13.57) and (13.56), respectively. More precisely,

Sx(a ) = 2л 2  K l 28( a  -  ЦП

n = -ад (13.58)ад

The line (or discrete) power spectrum is defined as the plot of |Xn|2 versus n , 

where the lines are Дf  = 1 / T apart. The DC power is Xo|2 , and the total
ад

power is 2  \X„\2 .

j 2nnt jlnnt

CO

n = -ад

n = - ад

13.6. Random Variables
Consider an experiment with outcomes defined by a certain sample space. 

The rule or functional relationship that maps each point in this sample space 
into a real number is called “random variable.” Random variables are desig­
nated by capital letters (e.g., X, Y, . . . ) ,  and a particular value of a random vari­
able is denoted by a lowercase letter (e.g., x ,y , . . .) .

The Cumulative Distribution Function (cdf) associated with the random vari­
able X  is denoted as FX(x) ,  and is interpreted as the total probability that the 
random variable X  is less or equal to the value x . More precisely,

FX(x) = P r{X < x} (13.59)

The probability that the random variable X  is in the interval (x1; x2) is then 
given by
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Fx(x2 ) -  Fx(xi) = P r{xj <X < x2 } (13.60)

The cdf has the following properties:

0 < Fx  (x )<  1 

Fx(-w )  = 0
(13.61)

Fx ( « )  = 1 

Fx(xj) < Fx (x2) »  xj < x2

It is often practical to describe a random variable by the derivative o f its cdf, 
which is called the Probability Density Function (pdf). The pdf of the random 
variable X  is

fx(x) = d F x (x )
x (13.62)

or, equivalently,

x

FX( x) = P r{ X  < x} = J  f X(k) dk (13.63)

—CO

The probability that a random variable X  has values in the interval (x 1; x2) is

x2

Fx(x2 ) - F x(x j) = P r{x j <X < x2 } = Jfx(x)dx (13.64)

xi
Define the nth moment for the random variable X  as

E [X  ] = X  = J  xnf X( x) dx (13.65)

The first moment, E[X], is called the mean value, while the second moment, 
E [ X 2 ] , is called the mean squared value. When the random variable X  
represents an electrical signal across a Ш  resistor, then E[X] is the DC com­2
ponent, and E[X ] is the total average power.

The nth central moment is defined as

E[(X  -  X )n] = (X  -  X )n = J  (x -  x)nfX(x )dx (13.66)

w
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and, thus, the first central moment is zero. The second central moment is called2
the variance and is denoted by the symbol ctx  ,

стХ = (X -  X)2 (13.67)

Appendix 13B has some common pd fs  and their means and variances.

In practice, the random nature o f an electrical signal may need to be 
described by more than one random variable. In this case, the joint c d f  and p d f  
functions need to be considered. The joint c d f  and p d f  for the two random vari­
ables X  and Y are, respectively, defined by

Fxy(x, y )  = Pr  {X < x;Y < y} (13.68)

d 2
fXY(^  У) = dx dyFXY(^  У) (1369)

The marginal cd fs are obtained as follows:

w x

Fx(x ) = J  J  fu v (u ,  v)dudv  = Fxy(x, w)
-w - w 
w y (13.70)

Fy(У) = J  J  fu v (u ,  v )dvdu  = Fxy(w, y )

If the two random variables are statistically independent, then the joint cd fs and 
pd fs are, respectively, given by

f xy(x, y ) = Fx (x) f y (y ) (13.71)

fxY(x, y ) = fX(x)f Y(y ) (13.72)

Let us now consider a case when the two random variables X  and Y are 
mapped into two new variables U and V through some transformations T1 
and T2 defined by

u  = Tj(X, Y)
(13.73)

V = T2 (X, Y)

The joint pdf, f uv(u, v ) , may be computed based on the invariance of proba­
bility under the transformation. One must first compute the matrix o f deriva­
tives; then the new joint pdf is computed as

f UV(u , v )  = f XY(x, y )  И  (13.74)

- w — w
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J  =

dx dx
d u dv

dy dy
d u dv

(13.75)

where the determinant o f the matrix o f derivatives |J is called the Jacobian. 

The characteristic function for the random variable X is defined as

Cx ( a )  = E [ e aX] = J  /x (x) j dx (13.76)

The characteristic function can be used to compute the p d f  for a sum o f inde­
pendent random variables. More precisely, let the random variable Y be equal 
to

Y = Xj + X2 + ... + XN (13.77)

where {Xi ; i = 1, ...N } is a set o f independent random variables. It can be 
shown that

CY( a )  = CX1 (a )C X2 ( a ) --- Cxn ( a )  (13-78)

and the pdf f Y(y) is computed as the inverse Fourier transform o f Cy(o ) (with 
the sign o f y  reversed),

co

/y(y ) = ^  J  CY(a)e 1Wyda (13.79)
—CO

The characteristic function may also be used to compute the nth moment for 

the random variable X  as

n nE [X  ] = (- j  )n- B -  Cx (a )
d a  ‘

(13.80)

co

co

a = 0

13.7. Multivariate Gaussian Distribution
Consider a joint probability for m random variables, X1, X2, Xm. These 

variables can be represented as components o f an m x 1 random column vec­
tor, X . More precisely,
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X = X i Х2 ... Х^ (13.81)

where the superscript indicates the transpose operation. The joint p d f  for the 
vector X is

fx_ (x ) = f x1, x2,..., xm (x1’ x2’ - ’ xm) (13.82)

The mean vector is defined as

hx = [e[X i ] E[X2] ... E[Xm]] t (13.83)

and the covariance is an m x m matrix given by

Cx = E[X X] -  hx ^x (13.84)

Note that if the elements o f the vector X are independent, then the covariance 
matrix is a diagonal matrix.

By definition a random vector X is multivariate Gaussian i f  its p d f  has the 
form

fx_ (x) = [ (2n )m/2| Cx\172] 1exp (- | (x -  hx)tC-1 (x -  hx^ (13.85)

where hx is the mean vector, Cx is the covariance matrix, C-1 is inverse of 
the covariance matrix and |Cx| is its determinant, and X is o f dimension m . If 
A is a к  x m matrix o f rank к , then the random vector Y = AX is a k-variate 
Gaussian vector with

hy = A hx (13.86)

Cy = ACxAt (13.87)

The characteristic function for a multivariate Gaussian p d f  is defined by

Cx = E [ exp {/(Ю1Х 1 + ю 2X2 + ... + ®mXm)}] = (13.88)

exp ■̂y'hxcЮ -  f ю Ц

Then the moments for the joint distribution can be obtained by partial differen­
tiation. For example,
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E [X jX 2X 3 ] = d
9 o j 9o 2дю3

■CX(ro1, ю2, ю3) a t  ю

Example:

The v e c to r  X is a 4-variate Gaussian with

Mx = [2 1 1  0 1

6 3 2 1
3 4 3 2
2 3 4 3 
1 2  3 3

Define

Xi =

^
1 1

X 3"
X 2 =

IX2J X 4

Find the distribution o f  X1 and the distribution o f

Y =
2X 1 

Xi + 2 X 2 

X 3 + X 4

Solution:

X1 has a bivariate Gaussian distribution with

2 C  = 6 3
_1

x1
3 4_

The v e c to r  Y can be expressed as

Y =
2 0 0 0 
1 2  0 0 
0 0 1 1

= AX

It fo l low s  that

3

4

= 0 (13.89)
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My = AMx = [44 1] '

Cy = ACxAt =
24 24 6

24 34 13

6 13 13

A  random variable X  is by definition a mapping o f all possible outcomes of 
a random experiment to numbers. When the random variable becomes a func­
tion of both the outcomes of the experiment as well as time, it is called a ran­
dom process and is denoted by X (t ) . Thus, one can view a random process as 
an ensemble o f time domain functions that are the outcome o f a certain random 
experiment, as compared to single real numbers in the case o f a random vari­
able.

Since the cdf and pdf o f a random process are time dependent, we will denote 
them as FX(x ;t) and fX(x ; t ) , respectively. The nth moment for the random 
process X (t) is

co

E [X  (t)] = J  xnfX(x ;t) dx (13.90)

—co

A  random process X (t) is referred to as stationary to order one i f  all its sta­
tistical _properties do not change with time. Consequently, E[X(t)] = X , 
where X  is a constant. A  random process X (t) is called stationary to order two 
(or wide sense stationary) if

fX(x 1, x2;t 1, t2) = fX(x 1, x2;t1 + Д  ̂ t2 + Дt) (13.91)

for all t„ t2 and Д t .

Define the statistical autocorrelation function for the random process X (t)
as

% ( t„ t2) = E[X(t1 )X(t2)] (13.92)

The correlation E[X(t1 )X(t2)] is, in general, a function o f (t1; t2) . As a con­
sequence o f the wide sense stationary definition, the autocorrelation function 
depends on the time difference т = t2 - 11 , rather than on absolute time; and 

thus, for a wide sense stationary process we have

13.8. Random Processes
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% ( t ) = E [X ( t)X ( t  + t )]

If the time average and time correlation functions are equal to the statistical 
average and statistical correlation functions, the random process is referred to 
as an ergodic random process. The following is true for an ergodic process:

T / 2

lim 1  f x ( t)dt = E [ X ( t ) ]  = X  (13.94)
T — w T J

-T / 2 

T / 2

lim 1  f x * ( t ) x ( t + t ) dt = ^ x ( t ) (13.95)
T —— w T J

-T / 2

The covariance o f two random processes X ( t) and Y ( t) is defined by 

Cxj(t, t + t ) = E [ { X ( t) -  E [X( t) ] }  { Y (t + t ) - E [ Y  ( t  + t ) ] } ]  (13.96) 

which can be written as

CXY(t, t  + t ) = ^ x y ( t ) - X Y  (13.97)

E  [X (  0 ]  = X
(13.93)

13.9. Sampling Theorem
Most modern communication and radar systems are designed to process dis­

crete samples o f signals bearing information. In general, we would like to 
determine the necessary condition such that a signal can be fully reconstructed 
from its samples by filtering, or data processing in general. The answer to this 
question lies in the sampling theorem which may be stated as follows: let the 
signal x (t) be real-valued and band-limited with bandwidth B ; this signal can 
be fully reconstructed from its samples i f  the time interval between samples is 
no greater than 1 / (2B ).

Fig. 13.1 illustrates the sampling process concept. The sampling signal p  (t ) 
is periodic with period Ts , which is called the sampling interval. The Fourier 
series expansion o f p  (t) is

w j 2-I nt
p ( t )  = £  P n e  T  (13.98)

The sampled signal xs( t) is then given by

n = w
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j 2 nnt

s ( t)  = £  x ( t )P ne  T (13.99)

Taking the FT o f Eq. (13.99) yields

Xs(ю) = ^  Pn x (ra -  T - )  = PoX(ffl) + 2  Pn x (®  -  y 2)  (13.100)
n = - о n = - о

n ̂  0
where X(ra) is the FT o f x (t) . Therefore, we conclude that the spectral den­
sity, X s(ro) , consists o f replicas o f X (ю) spaced (2 л / Ts) apart and scaled by 

the Fourier series coefficients Pn . A  Low Pass Filter (LPF) o f bandwidth B 

can then be used to recover the original signal x (t ) .

x (t) / \ У \  xs( t)
LPF

Po x (t)

X(ro) = 0 f o r  |ю| > 2nB

P (t)

Figure 13.1. Concept of sampling.

When the sampling rate is increased (i.e., Ts decreases), the replicas of 
X (ю) move farther apart from each other. Alternatively, when the sampling 
rate is decreased (i.e., Ts increases), the replicas get closer to one another. The 
value o f Ts such that the replicas are tangent to one another defines the mini­
mum required sampling rate so that x (t ) can be recovered from its samples by 
using an LPF. It follows that

T : = 2n (2B ) »  Ts = 2-- (13.101)
2B

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling 
rate. When Ts > (1 / 2B ) ,  the replicas o f X(ra) overlap and, thus, x (t ) cannot 
be recovered cleanly from its samples. This is known as aliasing. In practice, 
ideal LPF cannot be implemented; hence, practical systems tend to over-sam­
ple in order to avoid aliasing.

co

n = -со
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Example:

A ssum e tha t  th e  s a m p l in g  s i g n a l  p ( t )  i s  g i v e n  b y

P ( t) = £  S (t-n T s )

Compute an expression f o r  Xs (ю).

Solution:

The signa l p ( t ) is ca lled  the Comb function . Its exponential F ourier se r ie s

да 27int
1 TT

p(t) = £  “ eTss

It fo l low s  that

s(t) = £  x(t) ̂ e

27int
1 Ts

t '

Taking the F ourier transform o f  this equation y ie ld s
да

о д  = t  £  x(®  -  T - )  •ss
n = да

Before proceeding to the next section, we will establish the following nota­
tion: samples of the signal x( t) are denoted by x (n) and referred to as a dis­
crete time domain sequence, or simply a sequence. If the signal x( t) is 
periodic, we will denote its sample by the periodic sequence x (n) .

да

n = да

n = да

да

n = да

13.10. The Z-Transform
The Z-transform is a transformation that maps samples of a discrete time 

domain sequence into a new domain known as the z-domain. It is defined as

да

Z{x(n )} = X(z) = £  x(n)z n (13.102)

n = да
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where z = re7'” , and for most cases, r  = 1 .  It follows that Eq. (13.102) can 
be rewritten as

X (e7” ) = 2  x(n )e-;nffl (13.103)

n = - о

In the z-domain, the region over which X (z) is finite is called the Region of 
Convergence (ROC). Appendix 13C has a list o f most common Z-transform 
pairs. The Z-transform properties are (the proofs are left as an exercise):

1. Linearity:

Z { ax j( n ) + bx2( n )} = aX j(z) + bX2 (z) (13.104)

2. Right-Shifting P roperty:

Z{x (n - k)} = z~kX(z) (13.105)

3. Left-Shifting P roperty:

k -1

Z{x (n + k)} = zkX(z) -  2  x (n )zk n (13.106)

n=0
4. Time Scaling:

CO

Z{anx(n )} = X (a lz) = 2 ( a ' z) x(n ) (13.107)

n=0
5. P eriod ic S equences:

N
Z { x(n )} = -N— Z { x(n )} (13.108)

z -  1

where N is the period.

6. Multiplication by n :

Z { nx( n )} = -z d X(z) (13.109)
dz

7. Division by n + a ;  a is a rea l number:

co
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(  z
a 1 - k - a -1 7u du

8. Initial Value:

9. Final Value:

10. Convolution:

n = 0 0

x (n0) = z"°X(z) \z

lim x (n ) = lim (1 - z  )X(z)
n ̂  о z ̂  1

2  h (n -  k) x (k)
k = 0

11. Bilateral Convolution:

= H(z)X (z)

2  h (n -  k) x (k)

k = -о

= H(z)X (z)

Example:

Prove Eq. (13.109).

Solution:

Starting with the definition o f the Z-transform,

X(z) = 2  x (n ) z

Taking the derivative, with respect to z, o f the above equation yields

d-X (z ) = 2  x (n)( -n  ) z
n 1

CO

co

n = -о

CO

n = -о

(13.110)

(13.111)

(13.112)

(13.113)

(13.114)
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= (-z  1) £  nx(n)z  n

n = да

Z { nx (n )} = (-z  )-£ у (z) 
dz

In general, a discrete LTI system has a transfer function H(z) which 
describes how the system operates on its input sequence x (n ) in order to pro­
duce the output sequence y ( n ) . The output sequence y (n ) is computed from 
the discrete convolution between the sequences x (n ) and h (n ) ,

да

У( n ) = £  x (m ) h (n - m ) (13.115)

m = -да

However, since practical systems require that the sequence x (n ) be o f finite 
length, we can rewrite Eq. (13.115) as

N

У(n ) = £  x (m )h (n - m ) (13.116)
m = 0

where N denotes the input sequence length. Taking the Z-transform o f Eq. 
(13.116) yields

Y (z ) = X(z ) H (z ) (13.117)

and the discrete system transfer function is

H (z) = Y -z - (13.118)
V 7 X(z )

Finally, the transfer function H( z) can be written as

H( z) |z = j  = |h( e '“ )| eZH( ̂  (13.119)

where H (e7®) is the amplitude response, and ZH(e7®) is the phase response.

It f o l l o w s  that

да
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13.11. The Discrete Fourier Transform
The Discrete Fourier Transform (DFT) is a mathematical operation that 

transforms a discrete sequence, usually from the time domain into the fre­
quency domain, in order to explicitly determine the spectral information for the 
sequence. The time domain sequence can be real or complex. The DFT has 
finite length N , and is periodic with period equal to N .

The discrete Fourier transform for the finite sequence x (n ) is defined by

N 1

X( k) = z  x (n )e
n=0

The inverse DFT is given by

j 2nnk
N ; k = 0, N -  1 (13.120)

N 1 7-27ink
N

k=0

; n = 0, N -  1 (13.121)

The Fast Fourier Transform (FFT) is not a new kind o f transform different 
from the DFT. Instead, it is an algorithm used to compute the DFT more effi­
ciently. There are numerous FFT algorithms that can be found in the literature. 
In this book we will interchangeably use the DFT and the FFT to mean the 
same thing. Furthermore, we will assume radix-2 FFT algorithm, where the 
FFT size is equal to N = 2m for some integer m .

13.12. Discrete Power Spectrum
Practical discrete systems utilize DFTs o f finite length as a means o f numer­

ical approximation for the Fourier transform. It follows that input signals must 
be truncated to a finite duration (denoted by T ) before they are sampled. This 
is necessary so that a finite length sequence is generated prior to signal pro­
cessing. Unfortunately, this truncation process may cause some serious prob­
lems.

To demonstrate this difficulty, consider the time domain signal 
x (t) = sin2nf 0t . The spectrum o f x(t) consists o f two spectral lines at ±/0 . 
Now, when x (t) is truncated to length T seconds and sampled at a rate 
Ts = T/N , where N is the number o f desired samples, we produce the 
sequence {x (n ) ; n = 0, 1, N -  1 } .  The spectrum o f x (n ) would still be 
composed o f the same spectral lines i f  T is an integer multiple o f Ts and if the 
DFT frequency resolution Д/ is an integer multiple of /0 . Unfortunately, those 
two conditions are rarely met and, as a consequence, the spectrum o f x( n )
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spreads over several lines (normally the spread may extend up to three lines). 
This is known as spectral leakage. Since f 0 is normally unknown, this discon­
tinuity caused by an arbitrary choice of T cannot be avoided. Windowing tech­
niques can be used to mitigate the effect of this discontinuity by applying 
smaller weights to samples close to the edges.

A truncated sequence x (n) can be viewed as one period of some periodic 
sequence x (n) with period N . The discrete Fourier series expansion of x( n) 
is

N -1 j 2nnk
x (n) = £  Xke N (13.122)

k = 0

It can be shown that the coefficients Xk are given by

N 1 -j2nnk

Xk = N £  x (n)e N = nX (k) (13.123)
n = 0

where X (k) is the DFT of x (n) .  Therefore, the Discrete Power Spectrum 

(DPS) for the band limited sequence x( n) is the plot of Xk|2 versus k , where 

the lines are A f apart,

Po = - llX ( 0 )|2
N

Pk = -1  {|X( k)|2 + |X(N-k)|2} ; k = 1, 2, ..., f - 1  (13.124) 
N 2

Pn/2 = -llX(N/2)|2
N

Before proceeding to the next section, we will show how to select the FFT 
parameters. For this purpose, consider a band limited signal x (t) with band­
width В . If the signal is not band limited, a LPF can be used to eliminate 
frequencies greater than В . In order to satisfy the sampling theorem, one must 
choose a sampling frequency f s = 1 / Ts , such that

f s > 2В (13.125)

The truncated sequence duration T and the total number of samples N are 
related by
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T = NTs (13.126)

or equ ivalen tly ,

N
fs = N (13-127)

It follows that

fs = N > 25  (13.128)

and the frequency resolution is

Д/ = —  = ■/  = 1  > —  (13.129)
NTs N T N

13.13. Windowing Techniques
Truncation o f the sequence x (n ) can be accomplished by computing the 

product,

xw (n ) = x (n )w  (n ) (13.130)

where

( ) i /(n) ; n = 0, 1 , . ,  N - 1 w( n ) = ;  < (13.131)
0 o th e rw is e

where /(n ) < 1 . The finite sequence w  (n ) is called a windowing sequence, or 
simply a window. The windowing process should not impact the phase 
response o f the truncated sequence. Consequently, the sequence w  (n ) must 
retain linear phase. This can be accomplished by making the window symmet­
rical with respect to its central point.

If /(n ) = 1 for all n we have what is known as the rectangular window. It 
leads to the Gibbs phenomenon which manifests itself as an overshoot and a 
ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum 
of a rectangular window. Note that the first side lobe is at - 1 3 .4 6 dB  below the 
main lobe. Windows that place smaller weights on the samples near the edges 
will have lesser overshoot at the discontinuity points (lower side lobes); hence, 
they are more desirable than a rectangular window. However, sidelobes reduc­
tion is offset by a widening o f the main lobe. Therefore, the proper choice o f a 
windowing sequence is continuous trade-off between side lobe reduction and
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main lobe widening. Table 13.1 gives a summary of some windows with the 
corresponding impact on main beam widening and peak reduction.

TABLE 13.1. Common windows.

Window
Null-to-null Beamwidth. Rectangular 

window is the reference.
Peak

Reduction
Rectangular 1 1
Hamming 2 0.73
Hanning 2 0.664
Blackman 6 0.577

Kaiser (P = 6) 2.76 0.683

Kaiser (P = 3 ) 1.75 0.882

The multiplication process defined in Eq. (13.131) is equivalent to cyclic 
convolution in the frequency domain. It follows that Xw (k) is a smeared (dis­
torted) version of X(k) .  To minimize this distortion, we would seek windows 
that have a narrow main lobe and small side lobes. Additionally, using a win­
dow other than a rectangular window reduces the power by a factor P w , where

N- 1 N- 1

n = 0 k = 0

It follows that the DPS for the sequence xw( n ) is now given by

PW = - 1-1 |x(0 ) 2 
p N

p W = - Ц  {X (k )|2 + X  (N -  k )|2} ; k = 1, 2, ..., - - - 1  (13.133)
PwN 2

P WN/ 2 = - 4 X (  N/ 2 )|2
P N

у  \w  (k Г (13.132)
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Sample number

Figure 13.2. Normalized amplitude spectrum for rectangular window.

where P w is defined in Eq. (13.132). Table 13.2 lists some common windows.
Figs. 13.3 through 13.5 show the frequency domain characteristics for these 
windows. These figures can be reproduced using MATLAB program
“figs13 .m ”.

TABLE 13.2. Some common windows. n = 0, N -  1.

Window Expression
First side 
lobe

Main lobe 
width

rectangular w (n) = 1 -13 .46d B 1

Hamming
w(n) = 0.54 -  0.46cos(N “ -2

-4 1  dB 2

Hanning
w(n) = 0.5 3 2 -in Y

l_1 - c o s  I t f - J J
-32dB 2

Kaiser -46dB  
fo r  

P = 2n

7 5
fo r
P = 2 n

( ? /0[Рл/1-(2п/Л/)2] w (n) = —-----------------------
I0 (P)

I0 is the zero-order modified Bessel
function of the first kind
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50 100 150 200 250 300 350 400 450 500 
Sample number

Figure 13.3. Normalized amplitude spectrum for Hamming window.

50 100 150 200 250 300 350 400 450 500 
Sample number

Figure 13.4. Normalized am plitude spectrum for H anning window.
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50 100 1 50 200 250 300 350 400 450 500 
Sample number

Figure 13.5. Normalized amplitude spectrum for Kaiser window.

13.14. MATLAB Programs

Listing 13.1. MATLAB Program “figs13.m”
%Use this p rogram  to rep rodu ce f ig u r e s  in Section 13.13. 
c lea r  all 
c lo s e  all 
ep s = 0.0001;
N = 32;
w in r e c t  (1:N) = 1; 
w in h a m  = hamming(N); 
w in h a n  = hanning(N); 
w in k a ise r  = kaiser(N, pi); 
win_kaiser2 = kaiser(N, 5);
Yrect = abs(fft(win_rect, 512));
Yrectn = Y rect./max(Yrect);
Yham = absfft(win_ham , 512));
Yhamn = Yham ./max(Yham);
Yhan = abs(fft(win_han, 512));
Yhann = Yhan ./max(Yhan);
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YK = abs(fft(win_kaiser, 512));
YKn = YK./max(YK);
YK2 = absfft(win_kaiser2, 512));
YKn2 = YK2 ./max(YK2); 
f ig u r e  (1)
plot(20*log10(Yrectn+eps),'k') 
xlabel('Sample num ber’) 
ylabel('20*log10(amplitude)') 
axis tight 
g r id
figure(2 )
plot(20*log10(Yhamn + eps),'k') 
xlabel('Sample num ber’) 
ylabel('20*log10(amplitude)') 
g r id
axis tight 
f ig u r e  (3)
plot(20*log10(Yhann+eps),'k') 
xlabel('Sample num ber’) 
ylabel('20*log10(amplitude)') 
g r id
axis tight 
figure(4 )
plot(20*log10(YKn+eps),'k')
g r id
ho ld  on
plot(20*log10(YKn2+eps),’k--’) 
xlabel('Sample num ber’) 
ylabel('20*log10(amplitude)') 
legend('K aiser par. = \pi','Kaiser par. =5') 
axis tight 
ho ld  o f f
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Appendix 13A Fourier Transform
Table

X ( t ) X(ю)

A R e c t ( t /т) ; rectangular pulse Ат S i n c ( a T / 2)

A  Д(t / т )  ; triangular pulse T 2
A2S i n c  (тю/4)

1  expf- t 4 o _ p u . s e  
л/2лct )  2 a  *

-  ст2ю 2.  
exp -- 2 .

e  a tu  ( t) 1 / (a +j ю)

e-a\t\ 2 a
2 2  a  + ю

- a t  • . e  Sin<£01 u ( t) ю 0
ю2 + (a  + j  ю)2

- a t  . e  cosra0t u ( t ) a  + ̂ j  ю 
ю2 + (a  + j  ю)2

S( t ) 1

1 2я5(ю )

u ( t) л5(ю) + — 
j -ю

sgn (t)

j S

657
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X ( s )

cos  s 0 t n [5 (s  -  s  0) + 5 (s  + s 0)]

sin s 0t yn [5 (s  + s 0)- 5 ( s  -  s 0)]

u  ( t) cos  s 0t
2  [S (s  So) + S (s  + So)] + - 2 ---- 2
2  So -  S

u( t) sin s  01 П r c / \ с / \т S 0
I--- [5 (s  + so ) S (s  So)] + 2 2
2j So -  S

\t\ - 2
2S
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Appendix 13B Some Common
Probability Densities

Chi-Square with N  degrees o f freedom

x (N /  2) - 1 ) - x  *
f x (  x )  = — ------------- e xp ' т  ( ;  x  > 02  2 Г (  N /  2 )  % 2  }

~ 2X  =  N  ; ctX = 2 N

g a m m a  f u n c t i o n  =  r ( z )  = J x z l e  Xd k  ; R e { z }  >  0

0

Exponential

( f X (  x ) = a  e xp  { - a x } )  ; x  > 0

X  1 2 1X  = -  ; ctx  =  —a  2a

Gaussian

f A x )  = v 2 1 ; ; e x p ^ - i ( x" v m) 2 } ;  X = x m ; c t x = ct2

Laplace

f X ( x ) = CTe x p  {-CT|x - x m\ }

659
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X  = xm 2 2  
a x  = -  

а

Log-Normal

1 5 ( l n x  -  l n x m) ,
f x ( x )  = — -1—  e x p  I -  i----------- ; x  > 0

x a j 2  n  3 2 a

2 *a  I 2 r , , ,  2 , lr , 2
X  = e x p j  l n x m +  —  ( ; a x  = [ e xp  { 2 l n x m + a  } ] [  e x p  { a  } -  1 ]

Rayleigh

f x ( x ) = - ^ e x p j ^ - ( ; x  > 0

x = J a ; a x  = a 2 ( 4  -  n )

Uniform

1 ■ v  a  +  b  2 ( b  -  a )f Y ( x ) = -------  ; a  < b  ; X  = -------  ; a x  = --------- —
J xK  ’  b  -  a  2  x  1 2

Weibull

f x ( x ) = —  e x p  f - (x) - )  ; (x,  b, a o  ) >  0
a o  v a o y

x  =  Г  ( 1 + b -1 ) ; a x  = г  ( 1 + 2  b  -  1 ) -  [ Г  ( 1  + b - 1 ) ] 2

1 / ( V a 0 ) 1 / [  V  ( a o  ) 2 ]

© 2004 by Chapman & Hall/CRC CRC Press LLC



Appendix 13C Z - Transform Table

x  ( n ) ;  n  > 0 X ( z ) R O C ;  |z| > R

S (  n ) 1 0

1 Z
Z  -  1

1

n

Z 1- 
Z 1

2n Z ( Z +  1 )

(Z -  1 ) 3

1

na Z
z  -  a

|a|

nn a a Z  
(Z -  a ) 2

|a|

na  
n  !

a / ze 0

( n  + i ) a

Z - 
Z 2

 
)

|a|

sin n j T z  s in ю T  
z 2- 2  z  cos  ю Т  + 1

1

cos  n  ю T Z ( Z -  co s ю T )
2

z  - 2 z c o s iĵ T  +  1

1
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x ( n );  n  > 0 X ( z  ) R O C ;  |z| > R

na  sin n  ю T a  z  s i n  ю T 1
2 2  

z  - 2 a z c o s ю T  +  a |a|

na  cos  n a  T
2

z  ( z  -  a  co s ю T ) 1

2 2  z  - 2 a z c o s ю T  +  a |a|

n  ( n  -  1 - Z 1
2  ! ( z  - 1 ) 3

2-n(-£К Z 1
3! ( z  - 1 )4

( n  +  1 ) ( n  +  2  ) a  n
3Z |a|

2  ! - )

( n  +  1 ) ( n  +  2  ) . . .  ( n  +  m )  a " m + 1Z |a|

m ! , m + 1
(Z -  a )
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Chapter 14 MATLAB Program 
and Function Name 
List

This chapter provides a summary of all MATLAB program and function 
names used throughout this book. A ll these programs and functions can be 
downloaded from the CRC Press Web site (www .crcpress.com ). For this pur­
pose, follow this procedure: 1) from your Web browser type “http://www.crc- 
p r e s s .com ”, 2) click on “E lectronic P rodu cts”, 3) click on “D ownload & 
Updates”, and finally 4) follow instructions o f how to download a certain set 
o f code o ff that Web page. Furthermore, this MATLAB code can also be 
downloaded from The MathWorks Web site by following these steps: 1) from 
the Web browser type: “http://mathworks.com/matlabcentral/fileexchange/”, 
2) place the curser on “Companion Software f o r  Books ” and click on “Com­
m unications”.

Chapter 1: Introduction to Radar Basics

Name Purpose

radar eq Implem ents radar equation

fig1_12 R eprodu ces Fig. 1.12
fig1_13 R eprodu ces Fig. 1.13
ref_snr Calculates the radar r e fer en ce  ran ge or SNR

p ow er  aperture Implem ents the p ow er  aperture radar equation
fig1_16 R eprodu ces Fig. 1.16

casestudy1_1 Program  f o r  mini design  ca s e  study 1.1

fig1_19 R eprodu ces Fig. 1.19
fig1_21 R eprodu ces Fig. 1.21

pu lse  integration P erform s coh eren t o r  non -coh eren t p u lse in tegra ­
tion
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Name Purpose

myradarvisit1 1 Program  f o r  “M yRadar” design  ca s e  study - visit 
1

fig1_27 R eproduces Fig. 1.27
f i g l J S R eproduces Fig. 1.128

Chapter 2: Radar Detection

Name Purpose (all functions have associated GUI)

f lg2_2 R eproduces Fig. 2.2
q u e fu n c Implem ents M arcum ’s  Q-function
fig2_3 R eproduces Fig. 2.3

prob snr1 Calculates s in g le pu lse  probability o f  d etection
fig2_6a R eproduces Fig. 2.6a

improv_fac Calculates the improvem ent fa c to r
fig2_6b R eproduces Fig. 2.6b

incomplete_gamma Calculates the in com plete Gamma fun ction
fa c to r Calculates the fa cto r ia l o f  an in teger

fig2_7 R eproduces Fig. 2.7
threshold Calculates the d etection  threshold  va lue
fig2_8 R eproduces Fig. 2.8

5ling

4s1p C alculates the Swerling 0 or 5 Prob. o f  detection
fig2_9 R eproduces Fig. 2.9

p d  swrling1 Calculates the Swerling 1 Prob. o f  d etection
fg2_ 1 0 R eproduces Fig. 2.10

p d  swrling2 Calculates the Swerling 2 Prob. o f  d etection
fig2  11ab R eproduces F ig.s 2.11 a and b

pd_swrling3 Calculates the Swerling 3 Prob. o f  d etection
fig2_12 R eproduces Fig. 2.12

p d  swrling4 Calculates the Swerling 4 Prob. o f  d etection
fg2_13 R eproduces Fig. 2.13
fg2_ 14 R eproduces Fig. 2.14
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Name Purpose (all functions have associated GUI)

f lu c t  lo ss  
fig2_15 

myradar visit2 1

myradar visit2 2

fig2_21

Chapter 3: Radar W

Calculates the SNR loss due to RCS flu ctuation
R eproduces Fig. 2.15

Program  f o r  “M yRadar” design  ca s e  study visit 
2.1

Program  f o r  “M yRadar” design  ca s e  study visit 
2.2

R eproduces Fig. 2.21

Waveforms

Name Purpose

fig3_7
fig3_8

hrr_profile
fig3_17

Chapter 4: The Raa

R eproduces Fig. 3.7 
R eproduces Fig. 3.8 

Computes and p lo ts  HRR p ro file  
R eproduces Fig. 3.17

âr Ambiguity Function

Name Purpose

single_pulse_ambg

fig4_2
fig4_4

lfm ambig

f i g 4_5
fig4_6

train_ambg

fig4_8
barker_ambg

Calculate and p lo t  ambiguity fun ction  f o r  a s in g le 
pu lse

R eproduces Fig. 4.2
R eproduces Fig. 4.4

Calculates and p lo t  LFM ambiguity fun ction
R eproduces Fig. 4.5
R eproduces Fig. 4.6

Calculates and p lo ts  ambiguity fun ction  f o r  a train 
o f  coh eren t p u lses

R eproduces Fig. 4.8
Calculates and p lo ts  ambiguity fun ction  co r r e ­

spond in g to a Barker cod e
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Name Purpose

prn  ambig 

myradar_visit4 

Chapter 5: Pulse C

Calculates and p lo ts  ambiguity fun ction  co r r e ­
sponding to a PRN cod e

Program  f o r  “MyRadar ” design  ca s e  study visit 4 

ompression

Name Purpose

fig5_3
matched_filter

power_ integer_2

stretch

fig5_14

Chapter 6: Surface

R eproduces Fig. 5.3
P erform s pu lse com pression  using a m atched  fi lte r
Calculates the p ow er  in teger o f  2 f o r  a g iv en  p o s i­

tive in teger
P erform s pu lse com pression  using stretch p r o c e s s ­

ing
R eproduces Fig. 5.14 

and Volume Clutter

Name Purpose

clutter_rcs
myradar_visit6

Calculates and p lo ts  clu tter RCS versu s ran ge 
Program  f o r  “M yRadar” design  ca s e  study visit 6

Chapter 7: Moving Target Indicator (MTI) - Clutter 
Mitigation

Name Purpose

s in g le_ can celer P erform s sin g le d ela y line MTI operation
doub le_ can celer P erform s doub le d ela y line MTI operation

fig7_9 R eproduces Fig. 7.9
fig7_10 R eproduces Fig. 7.10

fig7_11 R eproduces Fig. 7.11
myradar_visit7 Program  f o r  “M yRadar” design  ca s e  study visit 7
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Chapter 8: Phased Arrays

Name Purpose

fig8_5 R eproduces Fig. 8.5
fig8_7 R eprodu ces Fig. 8.7

linear_array Calculates the lin ear array ga in  pattern
circu lar_array Calculates the array pattern  f o r  a circu la r array

rect_array Calculates the rectangu lar array ga in  pattern
circ_array Calculates the circu la r array ga in  pattern
rec_ to_ circ Calculates the boundary f o r  rectangu lar array 

with circu la r boundary
fig8_52 R eproduces Fig. 8.52

Chapter 9: Target Tracking

Name Purpose

mono_pulse Calculate the sum and d ifferen ce antenna patterns
ghk_tracker implem ents the GHK fi lte r

fir9_21 R eproduces Fig. 9.21
kalman_filter Implem ents a 3-state Kalman fi lte r

fig9_28 R eproduces Fig. 9.28
maketraj Calculates and g en era te s  a tra jectory
addnoise Corrupts a tra jectory

kalfilt Implem ents a 6-state Kalman fi lte r

Chapter 10: Electronic Countermeasures (ECM)

Name Purpose

ssj_req Implem ents SSJ radar equation
sir Calculates and p lo ts  the S/(J+N) ratio

bun_thru Calculates the burnthrough ran ge
soj_req Implem ents the SOJ radar equation
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Name Purpose

ran ge r e d fa c t o r  
fig10_8

Chapter 11: Radar C

Calculates the ran ge reduction  fa c to r  
R eprodu ces Fig. 10.8

yoss Section (RCS)

Name Purpose (all functions have associated GUI)

rcs_aspect

rcs_ frequency 
example11 1 
rcs_ sphere 

rcs_ ellip so id  
rcs_ circ_plate 
rcs_frustum  
rcs_ cylinder 

rcs_rect_plate 
rcs_ iso sce les  

CappedWedgeTM

rcs_cylinder_complex
swerlin_models

Chapter 12: High 
Aperture Radar (TSA

com pute and p lo t  RCS dep end en cy  on a sp ect 
angle

com pute and p lo t  RCS d ep end en cy  on fr eq u en cy
Used in so lv in g  Example on p a g e
com pute and p lo t  RCS o f  a sphere

com pute and p lo t  RCS o f  an ellip so id
com pute and p lo t  RCS o f  a circu la r f la t  p la te
com pute and p lo t  RCS o f  a trunca ted con e

com pute and p lo t  RCS o f  a cy lind er
com pute and p lo t  RCS o f  a rectangu lar f la t  p la te
com pute and p lo t  RCS o f  a triangular f la t  p la te
Used to ca lcu la te the TM E-field f o r  a capp ed  

w ed ge
reprodu ce Fig. 2.22
reprodu ce Fig. 2.24

Resolution Tactical Synthetic 
R)

Name Purpose

fig12_12_13 R eprodu ces Figs. 12.12 and 12.13
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Chapter 13: Signal Processing

Name Purpose

figs13 R eprodu ces Fig. 13.2 through Fig. 13.5.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Bibliography

Abramowitz, M. and Stegun, I. A., Editors, Handbook o f Mathematical Func­
tions, with Formulas, Graphs, and Mathematical Tables, Dover Publica­
tions, 1970.

Balanis, C. A., Antenna Theory, Analysis and Design, Harper & Row, New 
York, 1982.

Barkat, M., Signal Detection and Estimation, Artech House, Norwood, MA, 
1991.

Barton, D. K., Modern Radar System Analysis, Artech House, Norwood, MA,
1988.

Benedict, T and Bordner, G., Synthesis of an Optimal Set of Radar Track- 
While-Scan Smoothing Equations, IRE Transaction on Automatic Con­
trol, Ac-7, July 1962, pp. 27-32.

Berkowitz, R. S., Modern Radar - Analysis, Evaluation, and System Design, 
John Wiley & Sons, Inc, New York, 1965.

Beyer, W. H., CRC Standard Mathematical Tables, 26th edition, CRC Press, 
Boca Raton, FL, 1981.

Billetter, D. R., Multifunction Array Radar, Artech House, Norwood, MA,
1989.

Blackman, S. S., Multiple-Target Tracking with Radar Application, Artech 
House, Norwood, MA, 1986.

Blake, L. V., A Guide to Basic Pulse-Radar Maximum Range Calculation Part­
I Equations, Definitions, and Aids to Calculation, Naval Res. Lab. 
Report 5868, 1969.

Blake, L. V., Radar-Range Performance Analysis, Lexington Books, Lexing­
ton, MA, 1980.

Boothe, R. R., A Digital Computer Program for Determining the Performance 
o f an Acquisition Radar Through Application ofRadar Detection Proba­
bility Theory, U.S. Army Missile Command: Report No. RD-TR-64-2. 
Redstone Arsenal, Alabama, 1964.

Brookner, E., Editor, Aspects o f Modern Radar, Artech House, Norwood, MA, 
1988.

Brookner, E., Editor, Practical Phased Array Antenna System, Artech House, 
Norwood, MA, 1991.

Brookner, E., Radar Technology, Lexington Books, Lexington, MA, 1996. 
Burdic, W. S., Radar Signal Analysis, Prentice-Hall, Englewood Cliffs, NJ, 

1968.
Brookner, E., Tracking and Kalman Filtering Made Easy, John Wiley & Sons, 

New York, 1998.
Cadzow, J. A., Discrete-Time Systems, an Introduction with Interdisciplinary 

Applications, Prentice-Hall, Englewood Cliffs, NJ, 1973.

671
© 2004 by Chapman & Hall/CRC CRC Press LLC



Carlson, A. B., Communication Systems, An Introduction to Signals and Noise 
in Electrical Communication, 3rd edition, McGraw-Hill, New York, 
1986.

Carpentier, M. H., Principles o f Modern Radar Systems, Artech House, Nor­
wood, MA, 1988.

Compton, R. T., Adaptive Antennas, Prentice-Hall, Englewood Cliffs, NJ, 
1988.

Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996­
1009.

Curry, G. R., Radar System Performance Modeling, Artech House, Norwood, 
2001.

DiFranco, J. V. and Rubin, W. L., Radar Detection. Artech House, Norwood, 
MA, 1980.

Dillard, R. A. and Dillard, G. M., Detectability o f Spread-Spectrum Signals, 
Artech House, Norwood, MA, 1989.

Edde, B., Radar - Principles, Technology, Applications, Prentice-Hall, Engle­
wood Cliffs, NJ, 1993.

Elsherbeni, Atef, Inman, M. J., and Riley, C., "Antenna Design and Radiation 
Pattern Visualization," The 19th Annual Review of Progress in Applied 
Computational Electromagnetics, ACES'03, Monterey, California, 
March 2003.

Fehlner, L. F., Marcum’s and Swerling’s Data on Target Detection by a Pulsed 
Radar, Johns Hopkins University, Applied Physics Lab. Rpt. # TG451, 
July 2, 1962, and Rpt. # TG451A, Septemeber 1964.

Fielding, J. E. and Reynolds, G. D., VCCALC: Vertical Coverage Calculation 
Software and Users Manual, Artech House, Norwood, MA, 1988.

Gabriel, W. F., Spectral Analysis and Adaptive Array Superresolution Tech­
niques, Proc. IEEE, Vol. 68, June 1980, pp. 654-666.

Gelb, A., Editor, Applied Optimal Estimation, MIT Press, Cambridge, MA, 
1974.

Grewal, M. S. and Andrews, A. P., Kalman Filtering - Theory and Practice 
Using MATLAB, 2nd edition, Wiley & Sons Inc., New York, 2001.

Hamming, R. W., Digital Filters, 2nd edition, Prentice-Hall, Englewood Cliffs, 
NJ, 1983.

Hanselman, D. and Littlefield, B., Mastering Matlab 5, A Complete Tutorial 
and Reference, Malab Curriculum Series, Prentice-Hall, Englewood 
Cliffs, NJ, 1998.

Hirsch, H. L. and Grove, D. C., Practical Simulation o f Radar Antennas and 
Radomes, Artech House, Norwood, MA, 1987.

Hovanessian, S. A., Radar System Design and Analysis, Artech House, Nor­
wood, MA, 1984.

James, D. A., Radar Homing Guidance for Tactical Missiles, John Wiley & 
Sons, New York, 1986.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Kanter, I., Exact Detection Probability fo r  Partially Correlated Rayleigh Targets, IEEE
Trans. AES-22, pp. 184-196. March 1986.

Kay, S. M., Fundamentals o f  Statistical Signal Processing - Estimation Theory, Volume
I, Prentice Hall Signal Processing Series, New Jersey, 1993.

Kay, S. M., Fundamentals o f  Statistical Signal Processing - Detection Theory, Volume
II, Prentice Hall Signal Processing Series, New Jersey, 1993.

Klauder, J. R., Price, A. C., Darlington, S., and Albershiem, W. J., The Theory 
and Design of Chirp Radars, The Bell System Technical Journal, Vol. 39, 
No. 4, 1960.

Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Section, 2nd edition, 
Artech House, Norwood, MA, 1993.

Lativa, J., Low-Angle Tracking Using Multifrequency Sampled Aperture 
Radar, IEEE - AES Trans., Vol. 27, No. 5, September 1991, pp.797-805.

Levanon, N., Radar Principles, John Wiley & Sons, New York, 1988.
Lewis, B. L., Kretschmer, Jr., F. F., and Shelton, W. W., Aspects o f Radar Sig­

nal Processing, Artech House, Norwood, MA, 1986.
Long, M. W., Radar Reflectivity o f Land and Sea, Artech House, Norwood, 

MA, 1983.
Lothes, R. N., Szymanski, M. B., and Wiley, R. G., Radar Vulnerability to Jam­

ming, Artech House, Norwood, MA, 1990.
Mahafza, B. R. and Polge, R. J., Multiple Target Detection Through DFT Pro­

cessing in a Sequential Mode Operation of Real Two-Dimensional 
Arrays, Proc. o f the IEEE Southeast Conf. '90, New Orleans, LA, April
1990, pp. 168-170.

Mahafza, B. R., Heifner, L.A., and Gracchi, V. C., Multitarget Detection Using 
Synthetic Sampled Aperture Radars (SSAMAR), IEEE - AES Trans., 
Vol. 31, No. 3, July 1995, pp. 1127-1132.

Mahafza, B. R. and Sajjadi, M., Three-Dimensional SAR Imaging Using a 
Linear Array in Transverse Motion, IEEE - AES Trans., Vol. 32, No. 1, 
January 1996, pp. 499-510.

Mahafza, B. R., Introduction to Radar Analysis, CRC Press, Boca Raton, FL, 
1998.

Mahafza, B. R., Radar Systems Analysis and Design Using MATLAB, CRC 
Press, Boca Raton, FL, 2000.

Marchand, P., Graphics and GUIs with Matlab, 2nd edition, CRC Press, Boca 
Raton, FL, 1999.

Marcum, J. I., A Statistical Theory of Target Detection by Pulsed Radar, Math­
ematical Appendix, IRE Trans., Vol. IT-6, April 1960, pp. 59-267.

Meeks, M. L., Radar Propagation at Low Altitudes, Artech House, Norwood, 
MA, 1982.

Melsa, J. L. and Cohn, D. L., Decision and Estimation Theory, McGraw-Hill, 
New York, 1978.

Mensa, D. L., High Resolution Radar Imaging, Artech House, Norwood, MA,
1984.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Meyer, D. P. and Mayer, H. A., Radar Target Detection: Handbook o f Theory 
and Practice, Academic Press, New York, 1973.

Monzingo, R. A. and Miller, T. W., Introduction to Adaptive Arrays, John 
Wiley & Sons, New York, 1980.

Morchin, W., Radar Engineer’s Sourcebook, Artech House, Norwood, MA, 
1993.

Morris, G. V., Airborne Pulsed Doppler Radar, Artech House, Norwood, MA, 
1988.

Nathanson, F. E., Radar Design Principles, 2nd edition, McGraw-Hill, New 
York, 1991.

Navarro, Jr., A. M., General Properties o f Alpha Beta, and Alpha Beta Gamma 
Tracking Filters, Physics Laboratory of the National Defense Research 
Organization TNO, Report PHL 1977-92, January 1977.

North, D. O., An Analysis of the Factors which Determine Signal/Noise Dis­
crimination in Pulsed Carrier Systems, Proc. IEEE 51, No. 7, July 1963, 
pp. 1015-1027.

Oppenheim, A. V. and Schafer, R. W., Discrete-Time Signal Processing, Pren- 
tice-Hall, Englewood Cliffs, NJ, 1989.

Oppenheim, A. V., Willsky, A. S., and Young, I. T., Signals and Systems, Pren­
tice-Hall, Englewood Cliffs, NJ, 1983.

Orfanidis, S. J., Optimum Signal Processing, an Introduction, 2nd edition, 
McGraw-Hill, New York, 1988.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, second 
edition, McGraw-Hill, New York, 1984.

Parl, S. A., New Method of Calculating the Generalized Q Function, IEEE 
Trans. Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.

Peebles, Jr., P. Z., Probability, Random Variables, and Random Signal Princi­
ples, McGraw-Hill, New York, 1987.

Peebles, Jr., P. Z., Radar Principles, John Wiley & Sons, New York, 1998.
Pettit, R. H., ECM and ECCM Techniques fo r Digital Communication Systems, 

Lifetime Learning Publications, New York, 1982.
Polge, R. J., Mahafza, B. R., and Kim, J. G., Extension and Updating o f the 

Computer Simulation o f Range Relative Doppler Processing fo r MM 
Wave Seekers, Interim Technical Report, Vol. I, prepared for the U.S. 
Army Missile Command, Redstone Arsenal, Alabama, January 1989.

Polge, R. J., Mahafza, B. R., and Kim, J. G., Multiple Target Detection 
Through DFT Processing in a Sequential Mode Operation of Real or 
Synthetic Arrays, IEEE 21st Southeastern Symposium on System Theory, 
Tallahassee, FL, 1989, pp. 264-267.

Poularikas, A. and Seely, S., Signals and Systems, PWS Publishers, Boston, 
MA, 1984.

Rihaczek, A. W., Principles o f High Resolution Radars, McGraw-Hill, New 
York, 1969.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Ross, R. A., Radar Cross Section of Rectangular Flat Plate as a Function of 
Aspect Angle, IEEE Trans. AP-14:320, 1966.

Ruck, G. T., Barrick, D. E., Stuart, W. D., and Krichbaum, C. K., Radar Cross 
Section Handbook, Volume 1, Plenum Press, New York, 1970.

Ruck, G. T., Barrick, D. E., Stuart, W. D., and Krichbaum, C. K., Radar Cross 
Section Handbook, Volume 2, Plenum Press, New York, 1970.

Rulf, B. and Robertshaw, G. A., Understanding Antennas fo r Radar, Communi­
cations, and Avionics, Van Nostrand Reinhold, 1987.

Scanlan, M.J., Editor, Modern Radar Techniques, Macmillan, New York, 1987.
Scheer, J. A. and Kurtz, J. L., Editors, Coherent Radar Performance Estima­

tion, Artech House, Norwood, MA, 1993.
Shanmugan, K. S. and Breipohl, A. M., Random Signals: Detection, Estima­

tion and Data Analysis, John Wiley & Sons, New York, 1988.
Sherman, S. M., Monopulse Principles and Techniques, Artech House, Nor­

wood, MA.
Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned 

Maneuvering Targets, IEEE Transaction on Aerospace and Electronics, 
AES-5, July 1970, pp. 473-483.

Skillman, W. A., DETPROB: Probability o f Detection Calculation Software 
and User’s Manual, Artech House, Norwood, MA, 1991.

Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, New York, 1982.
Skolnik, M. I., Editor, Radar Handbook, 2nd edition, McGraw-Hill, New 

York, 1990.
Stearns, S. D. and David, R. A., Signal Processing Algorithms, Prentice-Hall, 

Englewood Cliffs, NJ, 1988.
Stimson, G. W., Introduction to Airborne Radar, Hughes Aircaft Company, El 

Segundo, CA, 1983.
Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.
Stremler, F. G., Introduction to Communication Systems, 3rd edition, Addison- 

Wesley, New York, 1990.
Stutzman, G. E., Estimating Directivity and Gain o f Antennas, IEEE Antennas 

and Propagation Magazine 40, August 1998, pp 7-11.
Swerling, P., Probability o f Detection fo r  Fluctuating Targets, IRE Transaction on 

Information Theory, Vol IT-6, April 1960, pp. 269-308.
Van Trees, H. L., Detection, Estimation, and Modeling Theory, Part I. Wiley & Sons, 

Inc., New York, 2001.
Van Trees, H. L., Detection, Estimation, and Modeling Theory, Part III.Wiley & Sons, 

Inc., New York, 2001.
Van Trees, H. L ., Optimum Array Processing, Part IV of Detection, Estimation, and 

Modeling Theory, Wiley & Sons, Inc., New York, 2002.
Tzannes, N. S., Communication and Radar Systems, Prentice-Hall, Englewood 

Cliffs, NJ, 1985.
Urkowtiz, H., Signal Theory and Random Processes, Artech House, Norwood, 

MA, 1983.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Urkowitz, H., Decision and Detection Theory, Unpublished Lecture Notes, 
Lockheed Martin Co., Moorestown, NJ.

Vaughn, C. R., Birds and Insects as Radar Targets: A Review, Proc. IEEE, Vol.
73, No. 2, February 1985, pp. 205-227.

Wehner, D. R., High Resolution Radar, Artech House, Norwood, MA, 1987. 
White, J. E., Mueller, D. D., and Bate, R. R., Fundamentals o f Astrodynamics, 

Dover Publications, 1971.
Ziemer, R. E. and Tranter, W. H., Principles o f Communications, Systems, 

Modulation, and Noise, 2nd edition, Houghton Mifflin, Boston, MA,
1985.

Zierler, N., Several Binary-Sequence Generators, MIT Technical Report No. 
95, Sept. 1955.

© 2004 by Chapman & Hall/CRC CRC Press LLC


