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1 Introduction

As a Maple user, you may fall into any number of categories. You may 
have used Maple only interactively. You may already have written many 
of your own programs. Even more fundamentally, you may or may not 
have programmed in another computer language before attempting your 
first Maple program. Indeed, you may have used Maple for some time 
without realizing that the same powerful language you regularly use to 
enter commands is itself a complete programming language.

Writing a Maple program can be very simple. It may only involve 
putting a proc() and an end proc around a sequence of commands that 
you use every day. On the other hand, the limits for writing Maple pro­
cedures with various levels of complexity depend only on you. Ninety to 
ninety-five percent of the thousands of commands in the Maple language 
are themselves Maple programs. You are free to examine these programs 
and modify them to suit your needs, or extend them so that Maple can 
tackle new types of problems. You should be able to write useful Maple 
programs in a few hours, rather than the few days or weeks that it often 
takes with other languages. This efficiency is partly due to the fact that 
Maple is interactive ; this interaction makes it easier to test and correct 
programs.

Coding in Maple does not require expert programming skills. Unlike 
traditional programming languages, the Maple language contains many 
powerful commands which allow you to perform complicated tasks with 
a single command instead of pages of code. For example, the solve com­
mand computes the solution to a system of equations. Maple comes with a 
large library of routines, including graphical display primitives, so putting- 
useful programs together from its powerful building blocks is easy.

The aim of this chapter is to provide basic knowledge for proficiently 
writing Maple code. To learn quickly, read until you encounter some ex­
ample programs and then write your own variations. This chapter includes 
many examples along with exercises for you to try. Some of them highlight

1
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important differences between Maple and traditional computer languages, 
which lack symbolic computation capability. Thus, this chapter is also im­
portant for those who have written programs in other languages.

This chapter informally presents the most essential elements of the 
Maple language. You can study the details, exceptions, and options in the 
other chapters, as the need arises. The examples of basic programming 
tasks for you to do come with pointers to other chapters and help pages 
that give further details.

1.1 Getting Started
Maple runs on many different platforms. You can use it through a special­
ized worksheet interface, or directly through interactive commands typed 
at a plain terminal. In either case, when you start a Maple session, you 
will see a Maple prompt character.

>
The prompt character > indicates that Maple is waiting for input.

Throughout this book, the command-line (or one-dimensional) input 
format is used. For information on how to toggle between Maple notation 
and standard math notation , please refer to the first chapter of the 
Getting Started Guide.

Your input can be as simple as a single expression. A command is 
followed immediately by its result.

> 103993/33102;
103993
33102

Ordinarily, you complete the command with a semicolon, then press 
e n t e r . Maple echoes the result— in this case an exact rational number—  
to the worksheet or to the terminal and the particular interface in use, 
displaying the result as closely to standard mathematical notation as pos­
sible.1

You may enter commands entirely on one line (as in the previous 
example) or stretch them across several lines.

1section 10.6 discusses specific commands to control printing.
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> 103993
> / 33102
> ;

103993
33102

You can even put the terminating semicolon on a separate line. Noth­
ing evaluates until you complete the command. Maple may, however, parse 
the command for errors at this stage.

Associate names with results by using the assignment statement, :=.
> a := 103993/33102;

103993
a : = ----------

33102

Once assigned a value in this manner, you can use the name a as if 
it were the value 103993/33102. For example, you can use Maple’s evalf 
command to compute an approximation to 103993/33102 divided by 2.

> evalf(a/2);

1.570796326

A Maple program is essentially just a prearranged group of commands 
that Maple always carries out together. The simplest way of creating such 
a Maple program (or procedure) is to encapsulate the sequence of com­
mands that you would have used to carry out the computation interac­
tively. The following is a program corresponding to the above statement.

> half := proc(x)
> evalf(x/2);
> end proc;

half :=  ргос(ж) evalf(l/2 * x) end proc

The program takes the input, called x within the procedure, and ap­
proximates the value of x divided by two. Since this is the last calculation 
done within the procedure, the half procedure returns this approxima­
tion. Give the name half to the procedure using the : = notation, just as 
you would assign a name to any other object. Once you have defined a 
new procedure, you can use it as a command.
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> half(2/3);

.3333333333

> half(a);

1.570796326

> half(1) + half(2);

1.500000000

Merely enclosing the command evalf (x/2) ; between a proc(.. . )  
and the words end proc turns it into a procedure.

Create another program corresponding to the following two state­
ments.

> a := 103993/33102;

> evalf(a/2);

The procedure needs no input.
> f := procO local a;
> a := 103993/33102;
> evalf(a/2);
> end proc;

/  :=  proc() 
local a;

a :=  103993/33102 ; evalf(l/2 * a) 
end proc

Maple’s interpretation of this procedure definition appears immedi­
ately after the command lines that created it. Examine it carefully and 
note the following:

• The name of this program (procedure) is f .

• The procedure definition starts with proc(). The empty parenthesis 
indicate that this procedure does not require any input data.
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• Semicolons separate the individual commands that make up the pro­
cedure. Another semicolon after the words end pro с signals the end 
of the procedure definition.

• You see a display of the procedure definition (just as for any other 
Maple command) only after you complete it with an end proc and a 
semicolon. Even the individual commands that make up the procedure 
do not display until you complete the entire procedure and enter the 
last semicolon.

• The procedure definition that echoes as the value of the name f is 
equivalent to but not identical to the procedure definition that you 
entered.

• The local a; statement declares a as a local variable. This means 
that the variable a within the procedure is not the same as the variable 
a outside the procedure. Thus, it does not matter if you use that name 
for something else. Section 1.1 discusses these further.

Execute the procedure f — that is, cause the statements forming the 
procedure to execute in sequence— by typing its name followed by paren­
theses. Enclose any input to the procedure, in this case none, between the 
parentheses.

> f();

1.570796326

The execution of a procedure is also referred to as an invocation or 
a procedure call.

When you invoke a procedure, Maple executes the statements forming 
the procedure body one at a time. The procedure returns the result of 
the last computed statement as the value of the procedure call.

As with ordinary Maple expressions, you can enter procedure defini­
tions with a large degree of flexibility. Individual statements may appear 
on different lines, or span several lines. You may also place more than one 
statement on one line, though that can affect readability of your code. 
You may even put extra semicolons between statements without causing 
problems. In some instances, you may omit semicolons.2

2For example, the semicolon in the definition of a procedure between the last com­
mand and the end proc is optional.
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Sometimes you may not want Maple to display the result of con­
structing a complicated procedure definition. To suppress the display, use 
a colon ( : )  instead of a semicolon ( ; )  at the end of the definition.

> g := procO local a;
> a := 103993/33102;
> evalf(a/2);
> end proc:

Sometimes you may find it necessary to examine the body of a pro­
cedure long after constructing it. For ordinary named objects in Maple, 
such as e, defined below, you can obtain the actual value of the name 
simply by referring to it by name.

> e := 3;

e :=  3

> e;

3

If you try this with the procedure g, Maple displays only the name g 
instead of its true value. Both procedures and tables potentially contain 
many subobjects. This model of evaluation, referred to as last name 
evaluation, hides the detail. To obtain the true value of the name g, use 
the eval command, which forces full evaluation.

> g;

9

> eval(g);

proc() 
local a;

a :=  103993/33102 ; evalf(l/2 * a) 
end proc

To print the body of a Maple library procedure, set the interface 
variable verboseproc to 2. See ?interface for details on interface
variables.
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Locals and Globals
Variables that you use at the interactive level in Maple, that is, not within 
a procedure body, are called global variables.

Variables that can be accessed only from the procedures in which 
they are declared are called local variables. While Maple executes a pro­
cedure, a global variable by the same name remains unchanged, no matter 
what value the local variables assume. This allows you to make tempo­
rary assignments inside a procedure without affecting anything else in 
your session.

The scope of a variable refers to the collection of procedures and 
statements which have access to the value of the variable. With simple 
(that is, non-nested) procedures in Maple, only two possibilities exist. 
Either the value of a name is available everywhere (that is, global) or 
only to the statements that form the particular procedure definition (that 
is, local). The more involved rules that apply for nested procedures are 
outlined in Section 2.2.

To demonstrate the distinction between local and global names, first 
assign a value to the global (that is, top-level) name b.

> b := 2;

b : =  2

Next, define two nearly identical procedures: g, explicitly using b as 
a local variable and h, explicitly using b as a global variable.

> g := procO
> local b;
> b := 103993/33102;
> evalf(b/2);
> end proc:

and
> h := procO
> global b ;
> b := 103993/33102;
> evalf(b/2);
> end proc:

Defining the procedures has no effect on the global value of b. In fact, you 
can even execute the procedure g (which uses local variables) without 
affecting the value of b.

> g();

1.570796326
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Therefore, the value of the global variable b is still 2. The procedure 
g made an assignment to the local variable b which is different from the 
global variable of the same name.

> b;

2

The effect of using the procedure h (which uses global variables) is 
very different.

> h () ;

1.570796326

h changes the global variable b, so it is no longer 2. When you invoke 
h, the global variable b changes as a side effect.

> b;
103993
33102

If you do not indicate whether a variable used inside a procedure is 
local or global, Maple decides on its own and warns you of this. You can 
always use the local or global statements to override Maple’s choice. 
However, it is good programming style to declare all variables either local 
or global.

Inputs, Parameters, Arguments
An important class of variables that you can use in procedure definitions 
are neither local nor global. These represent the inputs to the procedure. 
Parameters or arguments are other names for this class.

Procedure arguments are placeholders for the actual values of data 
that you supply when you invoke the procedure, which may have more 
than one argument. The following procedure h accepts two quantities, p 
and g, and constructs the expression p/q.

> к := proc(p,q)
> p/q;> end proc:

The arguments to this procedure are p and q. That is, p and q are 
placeholders for the actual inputs to the procedure.
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> k(103993,33102) ;

103993
33102

Maple considers floating-point values to be approximations, rather 
than exact expressions. Floating-point expressions compute immediately.

> k( 23, 0.56);

41.07142857

In addition to support for exact and floating-point approximate num­
bers and symbols, Maple provides direct support for complex numbers. 
By default, Maple uses the capital letter I to represent the imaginary 
unit, \ /^ l.

> (2 + 3*1)"2;

- 5  +  1 2 /

> k(2 + 3*1, %);

> k(l.362, 5*1);

-.2724000000/

Suppose you want to write a procedure which calculates the norm, 
\/a2 +  62, of a complex number z =  a +  bi. You can make such a procedure 
in several ways. The procedure abnorm takes the real and imaginary parts, 
a and b, as separate parameters.

> abnorm := proc(a,b)
> sqrt(a~2+b~2);
> end proc;

abnorm, :=  proc(a, b) sqrt(a2 +  b2) end proc

Now abnorm can calculate the norm of 2 +  3i.
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> abnorm(2, 3);

\/l3

You could instead use the Re and Im commands to pick out the real 
and imaginary parts, respectively, of a complex number. Hence, you can 
also calculate the norm of a complex number in the following manner.

> znorm := proc(z)
> sqrt( Re(z)~2 + Im(z)~2 );
> end proc;

znorm  :=  proc(z) sq r t^ ^ )2 +  ^(^)2) end proc

The norm of 2 +  3i is still \/T3.
> znorm( 2+3*1 );

\/l3

Finally, you can also compute the norm by re-using the abnorm pro­
cedure. The abznorm procedure below uses Re and Im to pass information 
to abnorm in the form it expects.

> abznorm := proc(z)
> local r, i;
> r := Re(z);
> i := Im(z);
> abnorm(r, i);
> end proc;

abznorm :=  proc(z) 
local r, i;

r :=  ; г :=  ; abnorm(r, i) 
end proc

Use abznorm to calculate the norm of 2 +  3i.
> abznorm( 2+3*1 );

\/l3

If you do not specify enough information for Maple to calculate the 
norm, abznorm returns a symbolic formula. Here Maple treats x and у
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as complex numbers. If they were real numbers, then +  г у) would 
simplify to x.

> abznorm( x+y*I );

у/Щх +  I  у )2 +  +  I  у )2

Many Maple commands return unevaluated in such cases. Thus, you 
might alter abznorm to return abznorm(x+y*I) in the above example. 
Later examples in this book show how to give your own procedures this 
behavior.

1.2 Basic Programming Constructs
This section describes the programming constructs you require to get 
started with real programming tasks. It covers assignment statements, 
for loops and while loops, conditional statements (if statements), and 
the use of local and global variables.

The Assignment Statement
Use assignment statements to associate names with computed values. 
They have the following form.

variable := value ;

This syntax assigns the name on the left-hand side of : = to the com­
puted value on the right-hand side. You have seen this statement used in 
many of the earlier examples.

The use of := here is similar to the assignment statement in program­
ming languages, such as Pascal. Other programming languages, such as С 
and Fortran, use = for assignments. Maple does not use = for assignments, 
since it is such a natural choice for representing mathematical equations.

If you want to write a procedure called plotdiff which plots an 
expression f ( x ) together with its derivative f ' ( x ) on the interval [a, b\, 
you can accomplish this task by computing the derivative of f ( x ) with 
the diff command and then plotting both f ( x )  and f ' (x )  on the same 
interval with the plot command.

> у := x~3 -  2*x + 1;
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у :=  x 3 — 2 ж +  1

Find the derivative of у with respect to x.

> yp := diff(y, x);

yp :=  3 x 2 — 2

Plot у and yp together.
> plot( [y, yp], x=-l..l );

The following procedure combines this sequence of steps.
> plotd iff  := proc(y,x ,a ,b)
> local yp;
> yp := d i f f ( y ,x ) ;
> p lo t ( [y, yp], x=a..b ) ;
> end proc;

plotdiff :=  proc(?/, x , a , b) 
loca l yp ;

yp :=  d if% , x ) ; plot([y, yp], x =  a..b) 
end proc

The procedure name is p lo t d i f f .  It has four parameters: ?/, the ex­
pression it differentiates; x , the name of the variable it uses to define the 
expression; and a and b, the beginning and the end of the interval over 
which it generates the plot. The procedure returns a Maple plot object 
which you can either display, or use in further plotting routines.

By specifying that yp is a local variable, you ensure that its usage in 
the procedure does not clash with any other usage of the variable that 
you may have made elsewhere in the current session.



To use the procedure, simply invoke it with appropriate arguments. 
Plot cos(t) and its derivative, for t running from 0 to 2tt.

> p lo td iff(  c os (t) ,  t ,  0, 2*Pi ) ;
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The fo r  Loop
Use looping constructs, such as the for loop, to repeat similar actions a 
number of times. For example, you can calculate the sum of the first five 
natural numbers in the following way.

> total := 0;

> total := total + 1;

> total := total + 2;

> total := total + 3;

> total := total + 4;

> total := total + 5;

You may instead perform the same calculations by using a for loop.
> total := 0:
> for i  from 1 to 5 do
> total := total + i ;
> end do;
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total := 1

total := 3 

total := 6 
total := 10 

total :=  15

For each cycle through the loop, Maple increments the value of i  by 
one and checks whether i  is greater than 5. If it is not, then Maple executes 
the body of the loop again. When the execution of the loop finishes, the 
value of total is 15.

> total;

15

The following procedure uses a for loop to calculate the sum of the 
first n natural numbers.

> SUM := proc(n)
> local i, total;
> total := 0;
> for i from 1 to n do
> total := total+i;
> end do;
> total;
> end proc:

The purpose of the total statement at the end of SUM is to ensure that 
SUM returns the value total. Calculate the sum of the first 100 numbers.

> SUM(100);

5050

The for statement is an important part of the Maple language, but 
the language also provides many more succinct and efficient looping con­
structs. For example, the command add.

> add(n, n=1..100);

5050
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The Conditional Statement
The loop is one of the two most basic constructs in programming. The 
other basic construct is the if or conditional statement. It arises in 
many contexts. For example, you can use the if statement to implement 
an absolute value function.

, | _  f x if x > 0 
\ —x if x < 0.

Below is a first implementation of ABS. Maple executes the if statement 
as follows: If x < 0, then Maple calculates —x ; otherwise it calculates x. In 
either case, the absolute value of x is the last result that Maple computes 
and so is the value that ABS returns.

The closing words end if completes the if statement.
> ABS := proc(x)
> if x<0 then
> -x ;
> else
> x;
> end if;
> end proc;

ABS  :=  ргос(ж) if ж < 0 then —x else x end if end proc

> ABS(3); ABS(-2.3);

3

2.3

Returning Unevaluated The ABS procedure above cannot handle non­
numeric input.

> ABS( a );
Error, (in ABS) cannot evaluate boolean: a < 0

The problem is that since Maple knows nothing about a, it cannot 
determine whether a is less than zero. In such cases, your procedure should 
return unevaluated; that is, ABS should return ABS (a). To achieve this 
result, consider the following example.

> ’ABS’(a);

ABS(a)
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The single quotes tell Maple not to evaluate ABS. You can modify the ABS 
procedure by using the type(. . . , numeric) command to test whether 
x is a number.

> ABS := proc(x)
> if type(x,numeric) then
> if x<0 then -x else x end if;
> else
> ’ABS’(x);
> end if;
> end proc:

The above ABS procedure contains an example of a nested if statement, 
that is, one if statement appearing within another. You need an even 
more complicated nested if statement to implement the function

0 if X < 0
X if 0 < X <
2 - x  if 1 < X <
0 if X > 2.

Here is a first version of HAT.
> HAT := proc(x)
> if type(x, numeric) then
> if x<=0 then
> 0 ;
> else
> if x<=l then
> x;
> else
> if x<=2 then
> 2-x;
> else
> 0 ;
> end if;
> end if;
> end if;
> else
> ’НАТЧх);
> end if;
> end proc:

The indentations make it easier to identify which statements belong to 
which if conditions.

A better implementation uses the optional elif clause (else if) in the 
second-level if statement.

> HAT := proc(x)
> if type(x, numeric) then
> if x<=0 then 0;
> elif x<=l then x;
> elif x<=2 then 2-x;
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> else 0;
> end if;
> else
> ’НАТЧх);
> end if;
> end proc:

You may use as many elif branches as you need.

Symbolic Transformations You can improve the ABS procedure from 
the last section even further. Consider the product ab. Since ab is an 
unknown, ABS returns unevaluated.

> ABS( a*b );

ABS (ab)

However, the absolute value of a product is the product of the absolute 
values.

\ab\ —>• |a| |fo|

That is, ABS should map over products.
> map( ABS, a*b );

ABS(a) ABS(6)

You can use the type ( . . . , c * c) command to test whether an ex­
pression is a product and use the map command to apply ABS to each 
operand of the product.

> ABS := proc(x)
> if type(x, numeric) then
> if x<0 then -x else x end if;
> elif type(x, (*‘) then
> map(ABS, x);
> else
> ’ABS’(x);
> end if;
> end proc:
> ABS( a*b );

ABS(a) ABS(6)

This feature is especially useful if some of the factors are numbers.
> ABS( -2*a );
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You may want to improve ABS further so that it can calculate the 
absolute value of a complex number.

Parameter Type Checking Sometimes when you write a procedure, you 
intend it to handle only a certain type of input. Calling the procedure 
with a different type of input may not make any sense. You can use type 
checking to verify that the inputs to your procedure are of the correct 
type. Type checking is especially important for complicated procedures 
as it helps you to identify mistakes early .

Consider the original implementation of SUM.
> SUM := proc(n)
> local i, total;
> total := 0;
> for i from 1 to n do
> total := total+i;
> end do;
> total;
> end proc:

Clearly, n should be an integer. If you try to use the procedure on symbolic 
data, it breaks.

> SUM("hello world");
Error, (in SUM) final value in for loop must be numeric 
or character

The error message indicates what went wrong inside the for statement 
while trying to execute the procedure. The test in the for loop failed 
because "hello world" is a string, not a number, and Maple could 
not determine whether to execute the loop. The following implemen­
tation of SUM provides a much more informative error message. The 
type(. . . , integer) command determines whether n is an integer.

> SUM := proc(n)
> local i,total;
> if not type(n, integer) then
> error("input must be an integer");
> end if;
> total := 0;
> for i from 1 to n do total := total+i end do;
> total;
> end proc:

Now the error message is more helpful.

2 ABS(a)
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> SUM("hello world");
Error, (in SUM) input must be an integer

Using type to check inputs is such a common task that Maple provides 
a simple means of declaring the type of an argument to a procedure. For 
example, you can rewrite the SUM procedure in the following manner. An 
informative error message helps you to find and correct a mistake quickly.

> SUM := proc(n::integer)
> local i, total;
> total := 0;
> for i from 1 to n do total := total+i end do;
> total;
> end proc:

> SUM("hello world");
Error, invalid input: SUM expects its 1st argument, n, 
to be of type integer, but received hello world

Maple understands a large number of types. In addition, you can 
combine existing types algebraically to form new types, or you can define 
entirely new types. See ?type.

The while Loop
The while loop is an important type of structure. It has the following 
structure.

while condition do commands end do;

Maple tests the condition and executes the commands inside the loop 
over and over again until the condition fails.

You can use the while loop to write a procedure that divides an inte­
ger n by two as many times as is possible. The iquo and irem commands 
calculate the quotient and remainder, respectively, using integer division.

> iquo( 7 , 3 ) ;

2

> irem( 7, 3 ) ;
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Thus, you can write a d ivideby2 procedure in the following manner.
> divideby2 := proc(n::posint)
> local q;
> q := n;
> while irem(q, 2) = 0 do
> q := iquo(q, 2);
> end do;
> q;> end proc:

Apply divideby2 to 32 and 48.
> divideby2(32) ;

1

> divideby2(48);

3

The while and fo r  loops are both special cases of a more general 
repetition statement; see section 4.3.

Modularization
When you write procedures, identifying subtasks and writing these as 
separate procedures is a good idea. Doing so makes your procedures easier 
to read, and you may be able to reuse some of the subtask procedures in 
another application.

Consider the following mathematical problem. Suppose you have a 
positive integer, in this case, forty.

> 40;

40

Divide the integer by two, as many times as possible; the divideby2 
procedure above does just that for you.

> divideby2( % );

1

5
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Multiply the result by three and add one.
> 3*°/0 + 1;

16

Again, divide by two.
> divideby2( % );

1

Multiply by three and add one.
> 3*°/0 + 1;

4

Divide.
> divideby2( % );

1

The result is 1 again, so from now on you will get 4, 1, 4, 1, 
Mathematicians have conjectured that you always reach the number 1 in 
this way, no matter with which positive integer you begin. You can study 
this conjecture, known as the 3n +  1 conjecture, by writing a procedure 
which calculates how many iterations you need to get to the number 1. 
The following procedure makes a single iteration.

> iteration := proc(n::posint)
> local a;
> a := 3*n + 1;
> divideby2( a );
> end proc:

The checkconjecture procedure counts the number of iterations.
> checkconjecture := proc(x::posint)
> local count, n;
> count := 0;
> n := divideby2(x);
> while n>l do
> n := iteration(n);
> count : = count + 1;
> end do;
> count;
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> end proc:
You can now check the conjecture for different values of x.

> checkconjecture( 40 );

1

> checkconjecture( 4387 );

49

You could write checkconjecture as one self-contained procedure 
without references to iteration or divideby2. But then, you would have 
to use nested while statements, thus making the procedure much harder 
to read.

Recursive Procedures
Just as you can write procedures that call other procedures, you can also 
write a procedure that calls itself. This is called recursive programming. 
As an example, consider the Fibonacci numbers, which are defined in the 
following procedure.

fn =  f n - i  +  fn —2 for n >  2,

where /о  =  0, and / i  =  1. The following procedure calculates f n for any 
n.

> Fibonacci := proc(n::nonnegint)
> if n<2 then
> n;
> else
> Fibonacci(n-l)+Fibonacci(n-2);
> end if;
> end proc:

Here is a sequence of the first sixteen Fibonacci numbers.
> seq( Fibonacci(i), i=0..15 );

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610

The time command tells you the number of seconds a procedure takes 
to execute. Fibonacci is not very efficient.

> time( Fibonacci(20) );
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.450

The reason is that Fibonacci recalculates the same results over and 
over again. To find / 2 0 , it must find / 1 9  and /ig ; to find / 1 9 , it must 
find /is  again and / 1 7 ; and so on. One solution to this efficiency problem 
is to tell Fibonacci to remember its results. That way, Fibonacci only 
has to calculate /is  once. The remember option makes a procedure store 
its results in a remember table. Section 2.5 further discusses remember 
tables.

> Fibonacci := proc(n::nonnegint)
> option remember;
> if n<2 then
> n;
> else
> Fibonacci(n-l)+Fibonacci(n-2);
> end if;
> end proc:

This version of Fibonacci is much faster.
> time( Fibonacci(20) );

0.

> time( Fibonacci(2000) );

.133

If you use remember tables indiscriminately, Maple may run out of 
memory. You can often rewrite recursive procedures by using a loop, but 
recursive procedures are often easier to read. On the other hand, iterative 
procedures are more efficient. The procedure below is a loop version of 
Fibonacci.

> Fibonacci := proc(n::nonnegint)
> local temp, fnew, fold, i;
> if n<2 then
> n;
> else
> fold := 0;
> fnew := 1;
> for i from 2 to n do
> temp := fnew + fold;
> fold := fnew;
> fnew := temp;
> end do;
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> fnew;
> end if;
> end proc:

> time( Fibonacci(2000) );

.133

When you write recursive procedures, you must weigh the benefits of 
remember tables against their use of memory. Also, you must make sure 
that your recursion stops.

The return Statement A Maple procedure by default returns the result 
of the last computation within the procedure. You can use the return 
statement to override this behavior. In the version of Fibonacci below, if 
n <  2 then the procedure returns n and Maple does not execute the rest 
of the procedure.

> Fibonacci := proc(n::nonnegint)
> option remember;
> if n<2 then
> return n;
> end if;
> Fibonacci(n-l)+Fibonacci(n-2);
> end proc:

Using the return statement can make your recursive procedures easier 
to read; the usually complicated code that handles the general step of the 
recursion does not end up inside a nested if statement.

Exercise
1. The Fibonacci numbers satisfy the following recurrence.

F(2n ) =  2F (n  — 1 )F(n)  +  F (n )2 where n >  1

and
F(2n  +  1) =  F (n  +  l ) 2 +  F (n )2 where n >  1

Use these new relations to write a recursive Maple procedure which 
computes the Fibonacci numbers. How much recomputation does this 
procedure do?
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1.3 Basic Data Structures
The programs developed so far in this chapter have operated primarily 
on a single number or a single formula. More advanced programs often 
manipulate more complicated collections of data. A data structure is a 
systematic way of organizing data. The organization you choose for your 
data can directly affect the style of your programs and how fast they 
execute.

Maple has a rich set of built-in data structures. This section will ad­
dress the basic structure of sequences , lists, and sets.

Many Maple commands take sequences, lists, and sets as inputs, and 
produce sequences, lists, and sets as outputs. The following problem il­
lustrates how such data structures are useful in solving problems.

Problem: Write a Maple procedure which given n > 0 data values 
x\, X2 , ■ ■ ■, xn computes their average, where the following equation 
gives the average of n numbers.

You can easily represent the data for this problem as a list, nops gives 
the total number of entries in a list X, while the ith entry of the list is 
denoted X [i].

> X := [1.3, 5.3, 11.2, 2.1, 2.1] ;

i=1

X  :=  [1.3, 5.3, 11.2, 2.1, 2.1]

> nops(X);

5

> X [2] ;

5.3

You can add the numbers in a list by using the add command.
> add( i, i=X );

22.0
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The procedure average below computes the average of the entries in 
a list. It handles empty lists as a special case.

> average := proc(X::list)
> local n, i, total;
> n := nops(X);
> if n=0 then error "empty list" end if;
> total := add(i, i=X);
> total / n;
> end proc:

Using this procedure you can find the average of the list X.
> average(X);

4.400000000

The procedure still works if the list has symbolic entries.
> average( [ a , b , с ] );

1 1 , 1- a + - 6 + - c

Exercise
1. Write a Maple procedure called sigma which, given n >  1 data val­

ues, xi, X2 , ■ ■ •, x n, computes their standard deviation. The following 
equation gives the standard deviation of n >  1 numbers,

a =
\ i=i

where д is the average of the data values.

You create lists and many other objects in Maple out of more primitive 
data structures called sequences. The list X defined previously contains 
the following sequence.

> Y := X[] ;

Y  :=  1.3, 5.3, 11.2, 2.1, 2.1

You can select elements from a sequence in the same way you select 
elements from a list.
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> Y [3] ;

11.2

> Y [2. .4] ;

5.3, 11.2, 2.1

> Y [2. .-2] ;

5.3, 11.2, 2.1

The important difference between sequences and lists is that Maple 
flattens a sequence of sequences into a single sequence.

> W := a,b,c;

W  :=  a, b, с

> Y, W, Y;

1.3, 5.3, 11.2, 2.1, 2.1, a, b, c, 1.3, 5.3, 11.2, 2.1, 2.1

In contrast, a list of lists remains just that, a list of lists.
> [ X, [a,b,c], X ];

[[1.3, 5.3, 11.2, 2.1, 2.1], [a, b, c], [1.3, 5.3, 11.2, 2.1, 2.1]]

If you enclose a sequence in a pair of braces, you get a set.

> z := { Y >;

Z :=  {1.3, 5.3, 11.2, 2.1}

As in mathematics, a set is an unordered collection of distinct objects, 
unlike a list which is an ordered sequence of objects. Hence, Z has only 
four elements as the nops command demonstrates.

> nops(Z);
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You can select elements from a set in the same way you select elements 
from a list or a sequence, but the order of the elements in a set is session 
dependent. Do not make any assumptions about this order.

You may also use the seq command to build sequences.
> seq( i~2, i=1..5 );

1, 4, 9, 16, 25

> seq( f (i) , i=X );

f(1.3), f(5.3), f(l 1.2), f(2.1), f(2.1)

You can create lists or sets by enclosing a sequence in square brackets 
or braces, respectively. The following command creates a list of sets.

> [ seq( { seq( i~j, j=1..3) >, i=-2..2 ) ];

[ { -8 , -2 ,  4}, { - 1 ,  1}, {0 }, {1 }, {2, 4, 8}]

Exercise
1. Write a Maple procedure which, given a list of lists of numerical data, 

computes the means of each column of the data.

A MEMBER Procedure
You may want to write a procedure that determines whether a certain 
object is an element of a list or a set. The procedure below uses the 
return statement discussed in section 1.2.

> MEMBER := proc( a::anything, L::{list, set} )
> local i;
> for i from 1 to nops(L) do
> if a=L[i] then return true end if;
> end do;
> false;
> end proc:

Here 3 is a member of the list.
> MEMBER( 3, [1,2,3,4,5,6] );

4

true
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The type of loop that MEMBER uses occurs so frequently that Maple 
has a special version of the for loop for it.

> MEMBER := proc( a ::anything, L::{list, set} )
> local i;
> for i in L do
> if a=i then return true end if;
> end do;
> false;
> end proc:

The symbol x  is not a member of this set.
> MEMBER( x, {1,2,3,4} );

false

Instead o f using your own MEMBER procedure, you can use the built-in  
member com m and.

Exercise
1. Write a Maple procedure called POSITION which returns the position

i of an element x  in a list L. That is, POSITION(x ,L ) should return 
an integer i >  0 such that L [i] =x. Return 0 if x is not in the list L.

Binary Search
One of the most basic and well-studied computing problems is that of 
searching. A typical problem involves searching a list of words (a dictio­
nary, for example) for a specific word w.

Many possible solutions are available. One approach is to search the 
list by comparing each word in turn with w until Maple either finds w or 
it reaches the end of the list.

> Search := proc(Dictionary::list(string), w::string)
> local x;
> for x in Dictionary do
> if x=w then return true end if
> end do;
> false
> end proc:

However, if the Dictionary is large, say 50 000 entries, this approach can 
take a long time.

You can reduce the execution time required by sorting the Dictionary 
before you search it. If you sort the dictionary into ascending order then 
you can stop searching as soon as you encounter a word greater than w. 
On average, you only have to look halfway through the dictionary.
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Binary searching provides an even better approach. Check the word 
in the middle of the dictionary. Since you already sorted the dictionary 
you can tell whether w is in the first or the second half. Repeat the process 
with the appropriate half of the dictionary. The procedure below searches 
the dictionary, D , for the word, w, from position, s, to position, / ,  in D. 
The lexorder command determines the lexicographical ordering of two 
strings.

> BinarySearch :=
> proc(D::list(string), w::string, s::integer, f::integer)
> local m;
> if s>f then return false end if; # entry was not found.
> m := iquo(s+f+l, 2); # midpoint of D.
> if w=D[m] then
> true;
> elif lexorder(w, D[m]) then
> BinarySearch(D, w, s, m-1) ;
> else
> BinarySearch(D, w, m+1, f);
> end if;
> end proc:

Here is a short dictionary.
> Dictionary := [ "induna", "ion", "logarithm", "meld" ];

Dictionary  :=  [“induna” , “ion” , “logarithm” , “meld” ]

Now search the dictionary for a few words.
> BinarySearch( Dictionary, "hedgehogs", 1, nops(Dictionary) );

false

> BinarySearch( Dictionary, "logarithm", 1, nops(Dictionary) );

true

> BinarySearch( Dictionary, "melodious", 1, nops(Dictionary) );

false

Exercises
1. Can you demonstrate that the BinarySearch procedure always ter­

minates? Suppose the dictionary has n entries. How many words in 
the dictionary D  does BinarySearch look at in the worst case?
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2. Recode BinarySearch to use a while loop instead of calling itself 
recursively.

Plotting the Roots of a Polynomial
You can construct lists of any type of object, even lists. A list of two 
numbers often represents a point in the plane. The plot command uses 
this structure to generate plots of points and lines.

> plot ( [ [ 0 , 0 ] ,  [ 1 , 2 ] ,  [-1 , 2] ] ,
> style=point, color=black );
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You can use this approach to write a procedure which plots the com­
plex roots of a polynomial. Consider the polynomial x 3 — 1.

> у := x~3-l ;

у := x 3 — 1

Numeric solutions are sufficient for plotting.
> R := [ fsolve(y=0, x, complex) ];

R  :=  [-.5000000000 -  .8660254038/,
-.5000000000 +  .8660254038/, 1.]

You need to turn this list of complex numbers into a list of points in 
the plane. The Re and Im commands pick the real and imaginary parts, 
respectively.

> points := map( z -> [Re(z), Im(z)], R );
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points :=  [[-.5000000000, -.8660254038], 
[-.5000000000, .8660254038], [1., 0.]]

You can now plot the points.
> plot( points, style=point);
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You can automate this technique. The input should be a polynomial 
in x  with constant coefficients.

> rootplot := proc( p ::polynom(constant, x) )
> local R, points;
> R := [ fsolve(p, x, complex) ];
> points := map( z -> [Re(z), Im(z)], R );
> plot( points, style=point, symbol=circle );
> end proc:

Here is a plot of the roots of the polynomial x 6 +  Зж5 +  Ъх +  10.
> rootplot( x~6+3*x~5+5*x+10 );
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The randpoly command generates a random polynomial.
> у := randpoly(x, degree=100);



у :=  79 x 71 +  56 ж63 +  49 ж44 +  63 ж30 +  57 х 2А — 59 х 18
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> rootplot( у );
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When you write procedures, you often have several choices of how to 
represent the data with which your procedures work. The choice of data 
structure can have great impact on how easy it is to write your procedure 
and its resulting efficiency. Section 2.4 describes an example of choosing 
a data structure.

1.4 Computing with Formulae
Maple’s real strength stems from its ability to perform symbolic manip­
ulations. This section demonstrates some of these capabilities through 
sample programs for computation with polynomials. While the examples 
are specific to polynomials, the techniques and methods apply to more 
general formulae.

In mathematics, a polynomial in the single variable, x , is most easily 
recognizable in the expanded form,

The ais are the coefficients. They can be numbers or even expressions in­
volving variables. The crucial point is that each coefficient is independent 
of (does not contain) x.

n
where if n >  0, then an ф 0.
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The Height of a Polynomial
The height of a polynomial is the largest magnitude (absolute value) of 
the largest coefficient. The procedure below finds the height of a poly­
nomial, p, in the variable x. The degree command finds the degree of a 
polynomial and the coeff command extracts specific coefficients from a 
polynomial.

> HGHT := proc(p::polynom, x::name)
> local i, c, height;
> height := 0;
> for i from 0 to degree(p, x) do
> с := coeff(p, x, i);
> height := max(height, abs(c));
> end do;
> height;
> end proc:

The height of 32ж6 — 48ж4 +  18ж2 — 1 is 48.
> p := 32*x~6-48*x~4+18*x~2-l;

p :=  32 x 6 — 48 xA +  18x 2 — 1

> HGHT(p,x);

48

A significant weakness of the HGHT procedure is its inefficiency with 
sparse polynomials; that is, polynomials with few terms relative to their 
degree. For example, to find the height of ж4321 — 1 the HGHT procedure 
has to examine 4322 coefficients.

The coeff s command returns the sequence of coefficients of a poly­
nomial.

> coeffs( p, x );

-1 ,  32, -4 8 , 18

You cannot map the abs command, or any other command, onto a 
sequence. One solution is to turn the sequence into a list or a set.

> S := map( abs, {%} );

S :=  {1, 18, 32, 48}
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The max command, however, works on sequences (but not on lists or 
sets), so now you must turn the set into a sequence again.

> max ( S [] ) ;

48

The following version of HGHT uses this technique.
> HGHT := proc(p::polynom, x::name)
> local S;
> S := { coeffs(p, x) };
> S := map( abs, S );
> max ( S [] ) ;
> end proc:

Try the procedure out on a random polynomial.
> p := randpoly(x, degree=100 );

p :=  79 x 71 +  56 x 63 +  49 xM +  63 x 30 +  57 x M — 59 x 18

> HGHT(p, x);

79

If the polynomial is in expanded form, you can also find its height 
in the following manner. You can map a command directly onto a poly­
nomial. The map command applies the command to each term in the 
polynomial.

> map( f , p );

f(79 X71) +  f(56 x 63) +  f(49 x M) +  f(63 ж30) +  f(57 x 2A)
+  f(—59 x 18)

Thus, you can map abs directly onto the polynomial.
> map( abs, p );

I I 71 I rr/? I I 63 I ЛГ\ I I 44 I n Q I I 30 I rri-7 I I 24 I г;гл I I 1879 \x\ + 5 6  \x\ + 4 9  \x\ + 6 3  \x\ + 5 7  \x\ + 5 9  \x\

Then use coeff s to find the sequence of coefficients of that polyno­
mial.
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> c o e f fs (  7. ) ;

79, 56, 49, 63, 57, 59

Finally, find the maximum.
> max ( 7. ) ;

79

Hence, you can calculate the height of a polynomial with this one- 
liner.

> p := randpoly(x, degree=50) * randpoly(x, degree=99);

p :=  (77 x 48 +  66 x M +  54 ж37 — 5 x 20 +  99 ж5 — 61 ж3)
(—47 ж57 — 91 ж33 — 47 ж26 — 61 х 25 +  41 ж18 — 58 ж8)

> max( coeffs( map(abs, expand(p)) ) );

9214

Exercise
1. Write a procedure that computes the Euclidean norm of a polynomial; 

that is, y/Y!i=Q Ы 2-

The Chebyshev Polynomials, Tn(x)
The Chebyshev polynomials, Tn(x), satisfy the following linear recurrence.

Tn(x) =  2xTn_ 1(x) -  Tn_ 2(x), for n >  2.

The first two Chebyshev polynomials are Tq(x ) =  1 and T\(x) =  x. This 
example is similar to the Fibonacci example in section 1.2. Here is a simple 
procedure, T, that computes Tn(x).

> T := proc(n::nonnegint, x::name)
> option remember, system;
> if n=0 then
> return 1;
> elif n=l then
> return x ;
> end if;
> 2*x*T(n-l,x) - T(n-2,x);
> end proc:

Maple does not automatically expand the polynomial.



> T(4,x);

2 x  (2 x  (2 x 2 — 1) — x) — 2 x 2 +  1
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You can expand the polynomial yourself.
> expand(%);

8 ж4 — 8 x 2 -\- 1

You may be tempted to rewrite the procedure so that it expands the 
result before returning it. However, this may be a waste of effort since 
you do not know whether or not the user of your procedure wants the 
Chebyshev polynomial in expanded form. Moreover, since the T procedure 
is recursive, it would expand all the intermediate results as well.

Exercise
1. The Fibonacci polynomials, Fn(x), satisfy the linear recurrence

Fn(x) =  xFn- i ( x )  +  Fn_ 2(x),

where Fq(x ) =  0 and F\(x) =  1. Write a Maple procedure to compute 
and factor Fn(x). Can you see any pattern?

Integration by Parts
Maple’s indefinite integral evaluator is very powerful. This section de­
scribes how you could write your own procedure for integrating formulae 
of the form

p (x ) f (x ) ,

where p(x) is a polynomial in x  and f ( x ) is a special function. Here 
p(x) =  x 2 and f ( x ) =  ex.

> int( x~2*exp(x), x );

x 2 ex -  2 x ex +  2 ex

As another example, here p(x) =  x 3 and f ( x ) =  sin-1 (ж).
> int( x~3*arcsin(x), x );

-  x A arcsin(x) H----- x 3 л/ l  — x 2 +  —  x л/ l  — x 2 — — arcsin(x)
4 v 7 16 32 32 v 7



Usually you would use integration by parts to compute integrals of 
this form.

> int( u(x)*v(x), x ) = u(x)*int(v(x),x) -
> int( diff(u(x), x) * int(v(x),x), x );

f  и(ж) v(x) dx =  u(x) f  v(x) dx — f  u(x)) f  v(x) dx dx

38 •  Chapter 1: Introduction

You can verify this formula by differentiating both sides of the equa­
tion.

> diff (°/0,x);

u(x) v(x)  =  u(x) v(x)

> evalb(°/0);

true

Applying integration by parts to the first example yields

J  xnex dx =  x n j  ex dx -  J i n x ' 1- 1 J  ex dx) dx =  x nex - n f  x ^ e *  dx.

It introduces a new integral, but the degree of x  in that new integral is 
one smaller than in the old integral. By applying the formula repeatedly, 
the problem eventually reduces to evaluating f  ex, which is simply ex .

The following procedure uses integration by parts to calculate the 
integral

J x V d x ,

by calling itself recursively until n =  0.
> IntExpMonomial := proc(n::nonnegint, x::name)
> if n=0 then return exp(x) end if;
> x~n*exp(x) - n*IntExpMonomial(n-l, x);
> end proc:

IntExpMonomial can calculate J x 5ex dx.

> IntExpMonomial(5, x);

z 5 ex - 5 x 4 ex +  20x 3 ex -  QOx2 еж +  120xex -  120ex



You can simplify this answer by using the collect command to group 
the terms involving ехр(ж) together.

> collect(%, exp(x));

{xb -  5 z 4 +  20 z 3 -  60 x 2 +  120 ж -  120) еж

You can now write a procedure which calculates f  p(x)ex dx for any 
polynomial p. The idea is that integration is linear:

J a f ( x ) + g ( x )  dx =  a j  f ( x ) dx +  J g(x) dx.

The IntExpPolynomial procedure below uses coeff to extract the coef­
ficients of p one at a time.

> IntExpPolynomial := proc(p::polynom, x::name)
> local i, result;
> result := add( coeff(p, x, i)*IntExpMonomial(i, x),
> i=0..degree(p, x) );
> collect(result, exp(x));
> end proc:

Here IntExpPolynomial calculates f  (x2 +  1)(1 — 3x)ex dx.

> IntExpPolynomial( (x~2+l)*(l-3*x), x );

(24 — 23 ж +  10 ж2 — 3 x 3) ex

Exercises
1. Modify the procedure IntExpPolynomial to be more efficient by pro­

cessing only the non-zero coefficients of p(x).

2. The procedure IntExpPolynomial is quadratic in degree. Modify this 
procedure again to make it linear in degree.

Computing with Symbolic Parameters
The polynomial 2ж5 +  1 is an example of an explicit polynomial in x. All 
the elements of the polynomial, except x , are explicit numbers. On the 
other hand, polynomials like 3xn +  2, where n is an unspecified positive 
integer, or a +  x 5, where a is an unknown which is independent of ж, are 
examples of symbolic polynomials ; they contain additional unspecified 
symbolic parameters.

The procedure IntExpPolynomial in section 1.4 calculates the inte­
gral j  p (x )ex dx where p is an explicit polynomial. In its present version 
IntExpPolynomial cannot handle symbolic polynomials.
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> IntExpPolynomiaK a*x~n, x );
Error, invalid input: IntExpPolynomial expects its 1st 
argument, p, to be of type polynom, but received a*x~n

You may want to extend IntExpPolynomial so that it can integrate 
p(x)ex for symbolic polynomials p as well. The first problem is that of 
finding a formula for j  xnex dx for any natural number n. Often you can 
find such a formula by carefully examining the pattern for specific results. 
Here are the first few results for explicit values of n.

> IntExpPolynomial(x, x);

( x - l ) e x

> IntExpPolynomial(x~2, x);

(x 2 - 2 x  +  2) ex

> IntExpPolynomial(x~3, x);

(.x 3 — 3 x 2 +  6 x — 6) ex

With sufficient time and ingenuity you would find the formula

( - I ) n- Vj  xnex dx = n)ex Y j
i\i= 0

This formula holds only for non-negative integers n. Use the assume 
facility to tell Maple that the unknown n has certain properties.

> assume(n, integer);
> additionally(n >= 0);

Note that a simple type check is not sufficient to determine that n is an 
integer.

> type(n, integer);

false

You need to use the is command, which is part of the assume facility.
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> is(n, integer), is(n >= 0);

true , true

Thus, you can rewrite the IntExpMonomial procedure from section 1.4 
in the following manner.

> IntExpMonomial := proc(n::anything, x::name)
> local i;
> if is(n, integer) and is(n >= 0) then
> n! * exp(x) * sum( ( (-1)~(n-i)*x~i )/i!, i=0..n );
> else
> error("Expected a non-negative integer but received", n);
> end if;
> end proc:

This version of IntExpMonomial accepts both explicit and symbolic input.
> IntExpMonomial(4, x);

24 ex (1 — x  +  -  x 2 -----x 3 -\------ x4)
v 2 6 24 7

In the next example, Maple evaluates the sum in terms of the gamma 
function. The tilde (~) on n indicates that n carries an assumption.

> IntExpMonomial(n, x);

n~! ex ((—l ) n +  x^n +1\ ( —ж)(-1-гг ) e^~x  ̂Г(2 +  n~)
— (n~ +  1) (—ж)(-1-гг ) e(~x) Г(п~ +  1, —x))/(n~ +  1)!)

You can check the answer by differentiating it with respect to x. The 
simplify command reveals xnex as expected.

> diff(%, x);
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n~! ex (

~ г_ ж) x(n~+1  ̂ ( (—ж)(-1-гГ) e(~x) Г(2 +  n~) — %1) 
( j 6 +  (n~ + 1 )!
) +  n~! ex {—(—l ) n e(~x  ̂ +  a^77, +1) (n~ +  1)
((—ж)(-1-гг ) Г(2 +  n~) — %1)/(ж (n~ +  1)!)+

x (n+i)  Л- x f - 1- 71̂  ( - 1  -  n~) Г(2 +  n~)
x

-  { - x ) ^ - 1- 71̂  e(~x) Г(2 +  n~)
(n~ +  1) (—ж)(-1-гг ) (—1 — n~) в*- ®) Г(п~ +  1, —x)

x
+  %1 — (n~ +  1) (—ж) _̂1_гг ) (—ж)п ex)/(n~ +  1)!) 
%1 :=  (n~ +  1) (—ж)̂ _1_гг ) Г(п~ +  1, —ж)

> simplify(%);

Clearly, the use of symbolic constants in this way greatly extends the 
power of the system.

Exercise
1. Extend the facility above to compute f  xneax+b dx, where n is an 

integer and a and b are constants. You must handle the case n =  — 1 
separately since

f  ex/ —  dx =  — Ei(l, —x ) .
J x

Use the ispoly command from the Maple library to test for the ex­
pression ax +  b which is linear in x.

1.5 Conclusion
This chapter introduced the basics of Maple programming. It first showed 
you how to take a few lines of code and turn them into a useful procedure 
simply by inserting them between proc () and end proc statements. Then 
it introduced local and global variables and how to use them. As well, you
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were introduced to generating error messages, automatic type checking, 
recursive procedures, and efficiency.

These concepts should equip you for writing many useful procedures. 
In fact, you may put down this book and start writing some procedures 
of your own.

The remainder of the book describes procedures in more detail. It 
presents a formal introduction to the Maple language (chapter 4) and 
the details of procedure definitions (chapter 5). It contains chapters on 
special areas of application, including numerical (chapter 8) and graphical 
programming (chapter 9). Explore these chapters when you are ready to 
continue.
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2 Fundamentals

By now, you have no doubt written a number of procedures and found 
that Maple’s programming language greatly extends the range of tasks 
you can tackle. Chapter 1 introduced a number of simple examples that 
are useful as models for creating your own.

When programming in Maple, you may encounter unexpected situa­
tions. For instance, you may develop a sequence of commands which work 
reliably and correctly when you execute them interactively, but then no 
longer work when you incorporate them into a procedure by encapsulating 
them between the procO and end proc statements.

You are likely to encounter this situation if you write many programs. 
Fortunately, the solution is almost always simple. A few fundamental 
rules dictate how Maple reads what you type. An understanding of these 
basic principles is particularly important within procedures, where you 
encounter types of objects with which you may be unfamiliar.

Learning the basics is not difficult, especially if you understand five 
particularly important areas:

1. Maple’s evaluation rules;

2. nested procedures;

3. useful details of types: types which modify Maple’s evaluation rules, 
structured types, and type matching;

4. data structures: understanding how to make effective use of them in 
order to best solve a problem; and

5. remember tables.

This chapter equips you with the fundamentals of Maple program­
ming, thereby allowing you to understand and write nontrivial Maple 
code.

45



2.1 Evaluation Rules
Maple does not evaluate lines of code within procedures in quite the same 
way as it does if you enter those same lines in an interactive session. The 
rules for evaluation are demonstrated in this section.

Of course, the evaluation rules within a procedure are different for 
good reasons, some which have to do with efficiency. In an interactive 
session, Maple evaluates most names and expressions completely. For in­
stance, suppose that you assign a the value b and then assign b the value 
c. When you subsequently type a, Maple automatically follows your list 
of assignments to determine that the ultimate value of a is c.

> a := b;

a :=  b

> b := c;

b :=  с

> a + 1;

с +  1

In an interactive session, Maple tirelessly follows your chain of assign­
ments, no matter how long the list. Within a procedure, however, Maple 
is not so diligent.

The substitution of assigned values for a name is called evaluation, 
and each step in this process is known as an evaluation level. By using 
the eval command, you can explicitly ask Maple to perform evaluation 
of names to specific levels.

> eval(a, 1);

b

> eval(a, 2);

c

If you do not specify a number of levels, Maple evaluates the name to 
as many levels as exist.
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> eval(a);

с

When you enter commands at the prompt, Maple usually evaluates the 
names as if you had enclosed each one in an evalO . The main exception 
is that evaluation stops whenever evaluating to one more level would turn 
the name into one of a table, an array, a procedure, or a module. The 
command a + 1 above is almost identical to eval(a) + 1.

In procedures, some rules are different. If you use the previous assign­
ments within a procedure, you may get unexpected results.

> f := procO
> local a,b;
> a := b;
> b := c;
> a + 1;
> end proc;

/  :=  proc() local a, b; a :=  b; b :=  с ; a +  1 end proc

> f();

6 +  1

The answer is b + 1 instead of с + 1, because a is a local variable and 
Maple evaluates local variables to only one level. The procedure behaves 
as if the final line were eval(a,l) + 1. Evaluating local variables fully 
is inefficient both in terms of time and memory. To evaluate a variable 
fully, Maple may have to follow a long list of assignments, resulting in a 
large expression.

The following sections introduce Maple’s evaluation rules systemati­
cally. They discuss what types of variables can exist within a procedure 
and the evaluation rules applied to each.

Parameters
Chapter 1 introduced you to local and global variables, but proce­
dures have a more fundamental type of variable: parameters. Param­
eters are variables whose name appears between the parentheses of a 
proc () expression. They have a special role within procedures, as Maple 
replaces them with arguments when you execute the procedure.
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Examine the following procedure which squares its first argument and 
assigns the answer to the second argument, which must be a name.

> sqrl := proc(x::anything, y::name)
> У := x~2;
> end proc;

sq r l  := proc(x\\anything, y : :n a m e )  у  := x 2 end proc

> sqrl(d, ans);

d2

> ans;

d2

The procedure squares the value of d and assigns the result to the 
name ans. Try the procedure again, but this time use the name a which 
Maple earlier assigned the value b. Remember to reset ans to a name 
first.

> ans := ’ ans’;

ans := ans

> sqrl(a, ans);

> ans;

From the answer, Maple clearly remembers that you assigned b to the 
name a, and с to the name b. When did this evaluation occur?

To determine when, you must examine the value of x as soon as Maple 
enters the procedure. Use the debugger to get Maple to stop just after 
entering sqrl.

> stopat(sqrl);



2.1 Evaluation Rules •  49

[sqrl ]

> ans := ’ ans ’ :
> sqrl(a, ans);
sqrl:

1* у := x~2

The value of the formal parameter x  is c.
DBG> x 

с
sqrl:

1* у := x~2

DBG> cont

> unstopat(sqrl):

In fact, Maple evaluates the arguments before  invoking the procedure.
The steps Maple takes are best thought of in the following manner. 

When you call a procedure, Maple evaluates the arguments appropriately, 
given the context in which the call occurs. For example, if you call sqrl 
from inside a procedure, then Maple evaluates a to one level. Thus, in the 
procedure g below, Maple evaluates a to b rather than to c.

> g := procO
> local a,b,ans;
> a := b;
> b := c;
> sqrl(a,ans);
> end proc;

9 ■ =
proc() local a, b, a n s ; a :=  b ; b :=  c; sqrl(a, a n s ) end proc

> g();
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Whether you call a procedure from the interactive level or from inside 
a procedure, Maple evaluates the arguments before invoking the proce­
dure. Once Maple evaluates the arguments, it replaces all occurrences 
of the procedure’s formal parameters with the actual arguments. Then 
Maple invokes the procedure.

Because Maple only evaluates parameters once, you cannot use them 
like local variables. The author of procedure cube, below, forgot that 
Maple does not re-evaluate parameters.

> cube := proc(x::anything, y::name)
> у := x~3;
> y;
> end proc:

When you call cube as below, Maple does assign ans the value 23, but 
the procedure returns the name ans rather than its value.

> ans := ’ ans’;

ans :=  ans

> cube(2, ans);

ans

> ans;

8

Maple replaces each у with ans, but Maple does not evaluate these 
occurrences of ans again. Thus, the final line of cube returns the name 
ans, not the value that Maple assigned to ans.

Use parameters to pass information into the procedure. You may think 
of parameters as objects evaluated to zero levels.

Local Variables
Local variables are temporary storage places within a procedure. You can 
create local variables by using the local declaration statement at the 
beginning of a procedure. If you do not declare whether a variable is 
local or global, Maple decides for you. If you make an assignment to a

b 2
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variable within a procedure then Maple assumes that it should be local. 
A local variable is different from any other variable, whether global or 
local to another procedure, even if they have the same name. The rules 
for determining local variables become a little more involved when nested  
procedures  are written, but the basic concepts are similar. See Section 2.2 
for more details.

Maple only evaluates local variables to one level.
> f := procO
> local a,b;
> a := b;
> b := c;
> a + 1;
> end proc;

/  := proc() local a , b; a := b; b := с; a +  1 end proc

When you invoke f , Maple evaluates the a in a+1 one level to b.
> f();

6 +  1

Maple always uses last name evaluation for tables, arrays, modules, 
and procedures. Therefore, if you assign a table, an array, a module, or 
a procedure to a local variable, Maple does not evaluate that variable 
unless you use eval. Maple creates the local variables of a procedure each 
time you call the procedure. Thus, local variables are local to a specific 
invocation of a procedure.

If you have not written many programs you might think that one level 
evaluation of local variables is a serious limitation, but in fact code which 
requires further evaluation of local variables is difficult to understand, 
and is unnecessary. Moreover, because Maple does not attempt further 
evaluations, it saves many steps, causing procedures to run faster.

Global Variables
Global variables are available from inside any procedure in Maple as well 
as at the interactive level. Indeed, any name you use at the interactive 
level is a global variable, allowing you to write a procedure which assigns 
a value to a variable that is accessible again later from within another 
procedure, from within the same procedure, or at the interactive level.
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>
>
>
>
>

h := procO
global x; 

= 5;

5

5

Within procedures, use global variables with caution. The procedure 
h assigns a value to the global variable x but it does not leave any warning 
in your worksheet. If you then use x thinking that it is an unknown, you 
can get unexpected error messages.

> diff( x~2, x);
Error, wrong number (or type) of parameters in function

Moreover, if you write yet another procedure which uses the global 
variable x, then the two procedures may use the same x in incompatible 
ways.

Whether within a procedure or at the interactive level, Maple always 
applies the same evaluation rules to global variables. It evaluates all global 
names fully, except when the value of such a variable is a table, an array, 
or a procedure, in which case, Maple halts its evaluation at the last name 
in the chain of assignments. This evaluation rule is called last name 
evaluation.

Hence, Maple evaluates parameters to zero levels, local variables 
to one level, and global variables fully, except for last name evaluation.

As with local variables, the rules for determining which variables are 
global are fully described in Section 2.2.

Exceptions
This section describes two exceptions of particular note to the rules for 
evaluation.

The Ditto Operator The ditto operator, % which recalls the last result, 
is local to procedures but Maple evaluates it fully. When you invoke a 
procedure, Maple initializes the local version of °/0 to NULL.

diff
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> f := procO
> local a,b;
> print( "Initially [%] has the value", [%] );
> a := b;
> b := c;
> a + 1;
> print( "Now [%] has the value", [%] );
> end proc:
> f();

“Initially [%} has the value” , []

“Now [%} has the value” , [c +  1]

The same special rules apply to the 0/00/0 and %%% operators. Using local 
variables instead of ditto operators makes your procedures easier to read 
and debug.

Environment Variables The variable Digits, which determines the 
number of digits that Maple uses when calculating with floating-point 
numbers, is an example of an environment variable. Maple evaluates 
environment variables in the same manner it evaluates global variables; 
that is, Maple evaluates environment variables fully except for last name 
evaluation. When a procedure returns, Maple resets all environment vari­
ables to the values they had when you invoked the procedure.

> f := procO
> print( "Entering f. Digits is", Digits );
> Digits := Digits + 13;
> print( "Adding 13 to Digits yields", Digits );
> end proc:
> g := procO
> print( "Entering g. Digits is", Digits );
> Digits := 77;
> print( "Calling f from g. Digits is", Digits );
> f();
> print( "Back in g from f. Digits is", Digits );
> end proc:

The default value of Digits is 10.
> Digits;

10

> g();
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“Entering g. Digits is” , 10

“Calling f from g. Digits is” , 77 

“Entering f. Digits is” , 77 

“Adding 13 to Digits yields” , 90 

“Back in g from f. Digits is” , 77

When returning from g, Maple resets Digits to 10.
> Digits;

10

See ? environment for a list of environment variables. You can also 
make your own environment variables: Maple considers any variable whose 
name begins with the four characters _Env to be an environment variable.

2.2 Nested Procedures
You can define a Maple procedure inside another Maple procedure. In­
deed, you may commonly write such procedures without realizing you 
are writing nested procedures. In interactive sessions, you are no doubt 
familiar with using the map command to apply some operation to the el­
ements of some type of structure. For example, you may want to divide 
each element of a list by a number, such as 8.

> 1st := [8, 4, 2, 16] :
> map( x->x/8, 1st);

r 1 1 i
i1, 2 ’ 4 ’ 2]

The map command is also very useful inside a procedure. Consider 
another variation on this command which appears in the following proce­
dure. The intent of this new procedure is to divide each element of a list 
by the first element of that list.
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> nest := proc(x::list)
> local v;
> v := x[l] ;
> map( у -> y/v, x );
> end proc:
> nest(1st);

1 1
i1, 2 ’ 4 ’

Maple considers this use of map as an example of nested procedures 
and applies its lexical scoping rules, which declare the v within the call 
to map as the same v as in the outer procedure, nest.

The following section explains Maple’s scoping rules. You will learn 
how Maple decides which variables are local to a procedure and which 
are global. Understanding Maple’s evaluation rules for parameters, and 
for local and global variables, allows you to make full use of the Maple 
language.

Local Versus Global Variables
Usually when you write a procedure, you should explicitly declare which 
variables are global and which are local. Declaring the scope of the vari­
ables makes your procedure easier to read and debug. However, sometimes 
declaring the variables is not the way to go. In the nest procedure above, 
the variable in the map command gets its meaning from the surrounding 
procedure. What happens if you define this variable, v, as local to the 
invocation of the procedure within map?

> nest2 := proc(x::list)
> local v;
> v := x[l] ;
> map( proc(y) local v; y/v; end, x );
> end proc:
> nest2(lst);

8 4 2 16
— 5 — ? JV V V V

If you examine nest2 closely, you should be able to determine why it 
didn’t work the same as nest. It is obvious that you don’t want to have 
the variables declared at all within the inner procedure, so that it can get 
it’s proper meaning from the enclosing procedure.
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Only two possibilities exist: either a variable is local to a pro­
cedure and certain procedures that are completely within it, or it is 
global to the entire Maple session.

The method Maple uses for determining whether a variable is local 
or global can be summarized as: The name of the variable is searched 
for among the parameters, local declarations, and global declarations 
of the procedure, and then among the parameters, local and global 
declarations, and implicitly declared local variables of any surrounding 
procedure(s), from the inside out. If found, that specifies the binding of 
the variable.

If, using the above rule, Maple cannot determine whether a variable 
should be global or local, the following default decisions are made for you. 
If a variable appears on the left-hand side of an explicit assignment 
or as the controlling variable of a f o r  loop, then Maple assumes that 
you intend the variable to be local. Otherwise, Maple assumes that the 
variable is global to the whole session. In particular, Maple assumes by 
default that the variables you only pass as arguments to other procedures, 
which may set their values, are global.

The Quick-Sort Algorithm
Sorting algorithms are of particular interest to computer scientists. Even 
if you have never formally studied them you can appreciate that many 
things need sorting. Sorting a few numbers is quick and easy no matter 
what approach you use, but sorting large amounts of data can be very 
time consuming; thus, finding efficient methods is important.

The following quick-sort algorithm is a classic algorithm. The key to 
understanding this algorithm is to understand the operation of partition­
ing. This involves choosing any one number from the array that you are 
about to sort. Then, you reposition the numbers in the array that are less 
than the number that you chose to one end of the array and reposition 
numbers that are greater to the other end. Lastly, you insert the chosen 
number between these two groups.

At the end of the partitioning, you have not yet entirely sorted the 
array, because the numbers less or greater than the one you chose may 
still be in their original order. This procedure divides the array into two 
smaller arrays which are easier to sort than the original larger one. The 
partitioning operation has thus made the work of sorting much easier. 
Better yet, you can bring the array one step closer in the sorting process 
by partitioning each of the two smaller arrays. This operation produces
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four smaller arrays. You sort the entire array by repeatedly partitioning 
the smaller arrays.

The partition procedure uses an array to store the list because you 
can change the elements of an array directly. Thus, you can sort the array 
in place and not waste any space generating extra copies.

The quicksort procedure is easier to understand if you look at the 
procedure partition in isolation first. This procedure accepts an array 
of numbers and two integers. The two integers are element numbers of the 
array, indicating the portion of the array to partition. While you could 
possibly choose any of the numbers in the array to partition around, this 
procedure chooses the last element of the section of the array for that 
purpose, namely A[n]. The intentional omission of global and local 
statements is to show which variables Maple thinks are local and which 
global by default. It is recommended, however, that you not make this 
omission in your procedures.

> partition := proc(A::array(1, numeric),
> m::posint, n::posint)
> i := m;
> j := n;
> x := A [j] ;
> while i<j do
> if A[i]>x then
> A [j] : = A [i] ;
> j := j-1;
> A [i] := A [j] ;
> else
> i := i+1;
> end if;
> end do;
> A [j] := x;
> eval(A);
> end proc:
Warning, (i ( is implicitly declared local to procedure 
‘partition'
Warning, ‘j* is implicitly declared local to procedure 
‘partition'
Warning, ‘ x ‘ is implicitly declared local to procedure 
‘partition'

Maple declares i, j, and x local because the partition procedure 
contains explicit assignments to those variables, partition also assigns 
explicitly to A, but A is a parameter, not a local variable. Because you 
do not assign to the name eval, Maple makes it the global name which 
refers to the eval command.
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After partitioning the array a below, all the elements less than 3 
precede 3 but they are in no particular order; similarly, the elements 
larger than 3 come after 3.

> a := array( [2,4,1,5,3] );

a : =  [2, 4, 1, 5, 3]

> partition( a, 1, 5);

[2, 1, 3, 5, 4]

The partition procedure modifies its first argument, thus changing
a.

> eval(a);

[2, 1, 3, 5, 4]

The final step in assembling the quick-sort procedure is to insert the 
partition procedure within an outer procedure. The outer procedure 
first defines the partition subprocedure, then partitions the array. Or­
dinarily, you might want to avoid inserting one procedure within another. 
However, you will encounter situations in chapter 3 where you will find it 
necessary to nest the procedures. Since the next step is to partition each 
of the two subarrays by calling quicksort recursively, partition must 
return the location of the element which divides the partition.

> quicksort := proc(A::array(1, numeric),
> m: :integer, n::integer)
> local partition, p;
>
> partition := proc(m,n)
> i := m;
> j := n;
> x := A [j] ;
> while i<j do
> if A[i]>x then
> A [j] : = A [i] ;
> j := j-1;
> A [i] := A [j] ;
> else
> i := i+1;
> end if;
> end do;
> A [j] := x;
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> P := j;
> end proc:
>
> if m<n then # if m>=n there is nothing to do
> p :=partition(m, n);
> quicksort(A, m, p—1);
> quicksort(A, p+1, n);
> end if;
>
> eval(A);
> end proc:
Warning, (i ( is implicitly declared local to procedure 
‘partition'
Warning, ‘j* is implicitly declared local to procedure 
‘partition'
Warning, ‘ x ‘ is implicitly declared local to procedure 
‘partition'

> a := array( [2,4,1,5,3] );

a := [2, 4, 1, 5, 3]

> quicksort( a, 1, 5);

[1, 2, 3, 4, 5]

> eval(a);

[1, 2, 3, 4, 5]

Maple determines that the A and p variables in the partition sub­
procedure are defined by the parameter and local variable (respectively) 
from the outer quicksort procedure and everything works as planned. 
We could also have passed A as a parameter to the partition subpro­
cedure (as we did when partition was a stand-alone procedure), but 
because of the scoping rules, it wasn’t necessary.

Creating a Uniform Random Number Generator
If you want to use Maple to simulate physical experiments, you likely 
need a random number generator. The uniform distribution is particu­
larly simple: any real number in a given range is equally likely. Thus, a
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uniform random number generator is a procedure that returns a ran­
dom floating-point number within a certain range. This section develops 
the procedure, uniform, which creates uniform random number genera­
tors.

The rand command generates a procedure which returns random in­
tegers. For example, rand(4. .7) generates a procedure that returns ran­
dom integers between 4 and 7, inclusive.

> f := rand(4..7):
> seq( f(), i=1..20 );

5, 6 , 5, 7, 4, 6, 5, 4, 5, 5, 7, 7, 5, 4, 6, 5, 4, 5, 7, 5

The uniform procedure should be similar to rand but should return 
floating-point numbers rather than integers. You can use rand to gener­
ate random floating-point numbers between 4 and 7 by multiplying and 
dividing by 10'‘Digits.

> f := rand( 4*10~Digits..7*10~Digits ) / lCPDigits:
> f();

12210706011
2000000000

The procedure f returns fractions rather than floating-point numbers 
so you must compose it with evalf; that is, use evalf (f 0). Alterna­
tively, you can perform this operation by using Maple’s composition op­
erator, 0.

> (evalf @ f)();

6.648630719

The uniform procedure below uses evalf to evaluate the constants in 
the range specification, r, to floating-point numbers, the map command to 
multiply both endpoints of the range by lCTDigits, and round to round 
the results to integers.

> uniform := proc( r ::constant..constant )
> local intrange, f;
> intrange := map( x -> round(x*10~Digits), evalf(r) );
> f := rand( intrange );
> (evalf @ eval(f)) / lCPDigits;
> end proc:
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You can now generate random floating-point numbers between 4 
and 7.

> U := uniform(4..7):
> seq( U(), i=l..20 );

4.559076346, 4.939267370, 5.542851096, 4.260060897, 
4.976009937, 5.598293374, 4.547350944,
5.647078832, 5.133877918, 5.249590037,
4.120953928, 6.836344299, 5.374608653,
4.586266491, 5.481365622, 5.384244382,
5.190575456, 5.207535837, 5.553710879,
4.163815544

The uniform procedure suffers from a serious flaw: uniform uses the 
current value of Digits to construct intrange; thus, U depends on the 
value of Digits when uniform creates it. On the other hand, the evalf 
command within U uses the value of Digits that is current when you 
invoke U. These two values are not always identical.

> U := uniform( cos(2)..sin(l) ):
> Digits := 15:
> seq( U(), i=l..8 ) ;

.828316845400000, -.328875163100000, 

.790988967100000, .624953401700000,

.362773633800000, .679519822000000, 
-.0465278542000000, -.291055180800000

The proper design choice here is that U should depend only on the 
value of Digits when you invoke U. The version of uniform below ac­
complishes this by placing all the computation inside the procedure that 
uniform returns.

> uniform := proc( r ::constant..constant )
>
> procO
> local intrange, f;
> intrange := map( x -> round(x*10~Digits),
> evalf(r) );
> f := rand( intrange );
> evalf ( f O/10~Digits );
> end proc;
> end proc:
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The r within the inner proc is not declared as local or global, so it 
becomes the same r as the parameter to the outer proc.

The procedure that uniform generates is now independent of the value 
of Digits at the time you invoke uniform.

> U := uniform( cos(2)..sin(l) ):
> Digits := 15:
> seq( U(), i=l..8 );

.476383408581006,.554836962987261,

.147655743361511,.273247304736175,

.148172828708797, -.258115633420094, 

.558246581434993, .518084711267009
This section introduced you to the rules Maple uses to decide which 

variables are global or local. You have also seen the principal implications 
of these rules. In particular, it introduced you to the tools available for 
writing nested procedures.

2.3 Types
Types that Modify Evaluation Rules
Section 2.1 introduces the details of how Maple evaluates different kinds 
of variables within a procedure: Maple evaluates global variables fully (ex­
cept for last-name evaluation) and local variables to one level. Maple eval­
uates the arguments to a procedure, depending upon the circumstances, 
before invoking the procedure, and then simply substitutes the actual 
parameters for the formal parameters within the procedure without any 
further evaluation. All these rules seem to imply that nothing within the 
procedure in any way affects the evaluation of arguments which occurs 
before Maple invokes the procedure. In reality, the exceptions provide 
convenient methods for controlling the evaluation of arguments which 
make your procedures behave more intuitively. They also prevent eval­
uation which would result in the loss of information you wish available 
within your procedure.

Maple uses different evaluation rules for some of its own commands, 
for example, the evaln command. You have no doubt used this command 
to clear the value of previously defined variables. If this command were 
to evaluate its argument normally, it would be of no use for this purpose.
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For example, if you assign x the value 7Г, then Maple evaluates x to it 

whenever you use the variable x.

> x := Pi;

x :=  7Г

> cos(x);

- 1

If Maple behaved the same way when you type evaln(x), then Maple 
would pass the value 7Г to evaln, losing all references to the name x. 
Therefore, Maple evaluates the argument to evaln in a special way: it 
evaluates the argument to a name, not to the value that name may have.

> x := evaln(x);

> cos(x);

cos(x)

You will find it useful to write your own procedures which exhibit 
this behavior. You may want to write a procedure which returns a value 
by assigning it to one of the arguments. Section 2.1 describes such a 
procedure, sq rl, but each time you call sq r l you must take care to pass 
it an unassigned name.

> sqrl:= proc(x::anything, y::name)
> У := x~2;
> end proc:

This procedure works fine the first time you call it. However, you must 
make sure that the second argument is indeed a name; otherwise, an error 
results. In the example below, the error occurs because, upon the second 
attempt, ans has the value 9.

> ans;

ans
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> sqrl(3, ans);

9

> ans;

9

> sqrl(4, ans);
Error, invalid input: sqrl expects its 2nd argument, y,
to be of type name, but received 9

You have two ways around this problem. The first is to use either 
single quotes or the evaln command to ensure that Maple passes a name 
and not a value. The second is to declare the parameter to be of type 
evaln.

Just like the evaln command, declaring a parameter to be of type 
evaln causes Maple to evaluate that argument to a name, so you do not 
have to worry about evaluation when you use the procedure.

> cube := proc(x::anything, y::evaln)
> у := x~3;
> end proc:
> ans;

9

> cube(5, ans);

125

> ans;

125

In the above case, Maple passes the name ans to the cube procedure 
instead of the value 9.

Using the evaln declaration is generally a good idea. It ensures that 
your procedures do what you expect instead of returning cryptic error 
messages. However, some Maple programmers like to use the single quotes. 
When the call to the procedure is within a procedure itself, the presence



2.3 Types •  65

of the single quotes is a reminder that you are assigning a value to a 
parameter. However, if you plan to use your procedure interactively, you 
will find using evaln far more convenient.

A second type which modifies Maple’s evaluation rules is uneval. 
Where evaln makes Maple evaluate the argument to a name, uneval 
leaves the argument unevaluated. This type is useful for two reasons. First, 
sometimes you wish to write a procedure which treats a structure as an 
object and does not require knowledge of the details. Second, sometimes 
expanding the argument within the procedure is useful. You may want 
to write a version of the map command which is capable of mapping over 
sequences. The standard map command built into Maple is not capable of 
this because it evaluates its second argument. If the second argument is 
the name of a sequence, Maple evaluates the name to the sequence before 
invoking map. Since Maple flattens sequences of sequences, it passes only 
the first element of the sequence as the second argument to map and the 
other elements become additional arguments.

The smap procedure below uses an uneval declaration to tell Maple 
not to evaluate its second argument. Once inside the procedure, the eval 
command fully evaluates S. The whattype command returns exprseq if 
you pass it a sequence.

> whattype( a , b , с );

exprseq

If S is not a sequence, smap simply calls map. args[3. . - 1 ] is the 
sequence of arguments to smap after S. If S' is a sequence, enclosing it in 
square brackets forms a list. You can then map /  onto the list and use 
the selection operator, [] , to turn the resulting list back into a sequence.

> smap := proc( f::anything, S::uneval )
> local s;
> s := eval(S);
> if whattype(s) = ’exprseq’ then
> map( f, [s] , args[3..-l] ) [] ;
> else
> map( f, s, args[3..-l] );
> end if;
> end proc:

Now you can map over sequences as well as lists, sets, and other 
expressions.

> S := 1,2,3,4;
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S  :=  1, 2 , 3, 4

> smap(f, S, x, y);

f(l, x, y), f(2, ж, 2/), f(3, ж, 2/), f(4, ж, 2/)

> smap(f, [a,b,c], x,  y) ;

[f(a, x, y), f(Ь, ж, 2/), f(c, ж, 2/)]

Both evaln and uneval greatly extend the flexibility of Maple’s pro­
gramming language and the types of procedures you can write.

Structured Types
Sometimes a simple type check, either through declared formal parameters 
or explicitly with the type command, does not provide enough informa­
tion. A simple check tells you that 2X is an exponentiation but it does not 
distinguish between 2X and x 2.

> type( 2~x, ‘~‘ ) ;

true

> type( x~2, ‘~ ‘ ) ;

true

To make such distinctions you need structured types. For example,
2 is a constant and x is a name, so 2X has type constant~name but x 2 
does not.

> type( 2~x, constant"name );

true

> type( x~2 , constant"name );

false

Suppose you want to solve a set of equations. Before proceeding you 
want to remove any equations that are trivially true, like 4 =  4. Thus,
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you need to write a procedure that accepts a set of equations as input. 
The procedure nontrivial below uses automatic type checking to ensure 
that the argument is indeed a set of equations.

> nontrivial := proc( S::set( ‘ = ‘ ) )
> remove( evalb, S );
> end proc:
> nontrivial( { x~2+2*x+l=0, y=y, z=2/x } );

r 9 2 ,{x  +  2 x +  1 =  0, z =  —}
x

You can easily extend nontrivial so that it accepts general relations 
rather than just equations, and so that it allows both sets and lists of 
relations. An expression matches a set of types if it matches one of the 
types in the set.

> nontrivial := proc( S::{ set(relation), list(relation) } )
> remove( evalb, S );
> end proc:
> nontrivial( [ 2<=78, l/x=9 ] );

You can extend nontrivial even further: if an element in S  is not a 
relation but an algebraic expression, / ,  then nontrivial should treat it 
as the equation /  =  0.

> nontrivial := proc( S::{ set( {relation, algebraic} ),
> list( {relation, algebraic} ) } )
> local istrivial;
> istrivial := proc(x)
> if type(x, relation) then evalb(x);
> else evalb( x=0 );
> end if;
> end proc;
> remove( istrivial, S );
> end proc:
> nontrivial( [ x~2+2*x+l, 23>2, x=-l, y-y ] );

\x2 +  2 x +  1 , x =  — 1]

Automatic type checking is a very powerful tool. It allows you to do a 
large amount of checking for invalid arguments automatically. You should 
make using it a habit. Structured types allow checking even when you
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design a procedure to accept a variety of inputs, or to rely on a particular 
structure in its arguments.

Automatic type checking has two weaknesses. First, if the structure 
of the type is complicated, permitting several structures, then the code 
for the type checking can become cumbersome. The second is that Maple 
does not save any of the information about the structure of the arguments. 
It parses and checks them, but then the structure is lost. If you wish to 
extract a particular component of the structure you must write more code 
to do so.

The complexity of the types is rarely of concern in practice. A pro­
cedure which relies on arguments with a complicated structure is usually 
hard to use. The typematch command addresses the duplication of ef­
fort in parsing the arguments. This command provides a more flexible 
alternative method of type checking.

Type Matching
Section 1.4 describes the following pair of procedures that implement 
indefinite integration of any polynomial multiplied by ex.

> IntExpMonomial := proc(n::nonnegint, x::name)
> if n=0 then return exp(x) end if;
> x~n*exp(x) - n*IntExpMonomial(n-l, x);
> end proc:
> IntExpPolynomial := proc(p::polynom, x::name)
> local i, result;
> result := add( coeff(p, x, i)*IntExpMonomial(i, x),
> i=0..degree(p, x) );
> collect(result, exp(x));
> end proc:

You may want to modify IntExpPolynomial so that it can also per­
form definite integration. The new version of IntExpPolynomial should 
allow its second argument to be a name, in which case IntExpPolynomial 
should perform indefinite integration, or the form name=range. You could 
use the type command and if statements to do this, but then the pro­
cedure becomes difficult to read.

> IntExpPolynomial := proc(p::polynom, xx::{name, name=range})
> local i, result, x, a, b;
> if type(xx, name) then
> x :=xx;
> else
> x := lhs(xx);
> a := lhs(rhs(xx));
> b := rhs(rhs(xx));
> end if;
> result := add( coeff(p, x, i)*IntExpMonomial(i, x),
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> i=0..degree(p, x) );
> if type(xx, name) then
> collect(result, exp(x));
> else
> eval(result, x=b) - eval(result, x=a);
> end if;
> end proc:

Using the typematch command makes your procedure much easier to 
read. The typematch command not only tests if an expression matches a 
certain type, it can also assign variables to pieces of the expression. Below, 
typematch checks that expr is of the form name=integer. . integer and 
it assigns the name to y, the left-hand limit to a, and the right-hand limit 
to b.

> expr := myvar=1..6;

expr :=  myvar =  1..6

> typematch( expr, у ::name=a::integer..b::integer );

true

> y , a, b;

m yva r , 1 , 6

The version of IntExpPolynomial below uses the typematch com­
mand.

> IntExpPolynomial := proc(p::polynom, expr::anything )
> local i, result, x, a, b;
> if not typematch( expr, {x::name,
> x ::name=a::anything..b ::anything} ) then
> error( "expects a name or name=range but received"
> expr );
> end if;
> result := add( coeff(p, x, i)*IntExpMonomial(i, x),
> i=0..degree(p, x) );
> if type(expr, name) then
> collect(result, exp(x));
> else
> eval(result, x=b) - eval(result, x=a);
> end if;
> end proc:



Now IntExpPolynomial can perform definite, as well as indefinite, 
integrals.

> IntExpPolynomial( x~2+x~5*(1-x), x=1..2 );

-118  e2 +  308 e

> IntExpPolynomial( x~2*(x-l), x);

(—4 x 2 +  8 x — 8 +  x 3) ex
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2.4 Choosing a Data Structure: Connected 
Graphs

When writing programs you have to decide how to represent the data. 
Sometimes the choice is straightforward but often it requires considerable 
thought and planning. Some choices of data structure may make your 
procedures more efficient or easier to write and debug. No doubt you are 
familiar with Maple’s many available data structures, such as sequences, 
lists, tables, and sets.

This section uses a variety of structures and discusses their advan­
tages. This section also illustrates, by means of an example, the problem 
of choosing a data structure.

Suppose you have a number of cities with roads between them. Write a 
procedure that determines whether you can travel between any two cities.

You can express this problem in terms of graph theory. Maple has 
a networks package that helps you work with graphs and more general 
structures. You do not need to understand graph theory or the networks 
package to benefit from the examples in this section; these examples pri­
marily use the networks package as a shortcut to the drawing of G , 
below.

> with(networks):

Make a new graph G  and add a few cities (or vertices , in the termi­
nology of graph theory).

> new(G):
> cities := {Zurich, Rome, Paris, Berlin, Vienna};



cities :=  { Zurich, R o m e , Paris , Berlin , Vienna}

> addvertex(cities, G);

Zurich, R o m e , Paris , Berlin, Vienna

Add roads between Zurich and each of Paris, Berlin, and Vienna. The 
connect command names the roads el, e2, and e3.

> connect( {Zurich}, {Paris, Berlin, Vienna}, G );

e l , e2 , e3

Add roads between Rome and Zurich and between Berlin and both 
Paris and Vienna.

> connect( {Rome}, {Zurich}, G);

e4

> connect( {Berlin}, {Vienna, Paris}, G);

e5, e£

Now draw the graph G.

> draw(G);
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If you look at the drawing above, you can convince yourself that, in 
this particular case, you could travel between any two cities. Instead of 
visual inspection, you can also use the connectivity command.
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> evalb( connectivity(G) > 0 );

true

The data structures that the networks package uses are quite in­
volved, because that package supports more general structures than you 
need in this example. The question then is: how would you represent the 
cities and roads? Since cities have distinct names and the order of the 
cities is irrelevant, you could represent the cities as a set of names.

> vertices(G);

{ Zurich, R om e, P aris , Berlin, Vienna}

The networks package assigns distinct names to the roads, so it can 
also represent them as set of names.

> edges(G);

{ e l , e2 , e3 , e4 , e5 , e6 }

You can also represent a road as the set consisting of the two cities 
the road connects.

> ends(e2, G);

{ Zurich, Berlin}

Thus, you can represent the roads as a set of sets.
> roads := map( ends, edges(G), G);

roads := {{Zurich, R om e}, { Zurich, Paris},
{ Zurich, Berlin}, { Zurich, Vienna}, {Paris, Berlin},
{ Berlin, V ienna}}

Unfortunately, if you want to know which cities are directly connected 
to Rome, for example, you have to search through the whole set of roads. 
Therefore, representing the data as a set of cities and a set of roads is com­
putationally inefficient for determining whether you can travel between 
any two cities.
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You can also represent the data as an adjacency matrix : a square 
matrix with a row for each city. The ( i , j ) th entry in the matrix is 1 if 
the ith and the jth  city have a road between them, and 0 otherwise. The 
following is the adjacency matrix for the graph G.

> adjacency(G);

"0 1 0  1 1 "
1 0 0 0 1
0 0 0 0 1 
1 0 0 0 1 

_ 1 1 1 1 0 _

The adjacency matrix is an inefficient representation if few roads exist 
relative to the number of cities. In that case, the matrix contains many 
zeros, representing an overall lack of roads. Also, though each row in the 
matrix corresponds to a city, you cannot tell which row corresponds to 
which city.

Here is yet another way of representing the cities and roads: Paris has 
two roads between it and both Zurich and Berlin; thus, Berlin and Zurich 
are the neighbors of Paris.

> neighbors(Paris, G);

{ Zurich, Berlin}

You can represent the data as a table of neighbors; one entry should 
be in the table for each city.

> T := table( map( v -> (v)=neighbors(v,G), cities ) );

T  := tdble([Zurich =  { R om e, P aris , Berlin, Vienna},
Rome =  {Zurich}, Paris =  { Zurich, Berlin},
Berlin =  { Zurich, Paris, Vienna},
Vienna =  { Zurich, Berlin}

])
The representation of a system of cities and roads as a table of neigh­

bors is ideally suited to answering the question of whether it is possible 
to travel between any two cities. You can begin at one city. The table al­
lows you to efficiently find the neighboring cities to which you can travel.
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Similarly, you can find the neighbors of the neighbors, and thus you can 
quickly determine how far you can travel.

The connected procedure below determines whether you can travel 
between any two cities. It uses the indices command to extract the set 
of cities from the table.

> indices(T);

[Zurich], [Rome], [Paris], [Berlin], [Vienna]

Since the indices command returns a sequence of lists, you must use 
the op and map command to generate the set.

> map( op, {%} );

{ Zurich, Rome, Paris, Berlin, Vienna}

The connected procedure initially visits the first city, v. Then 
connected adds v to the set of cities that it has already visited and v ’s 
neighbors to the set of cities to which it can travel. As long as connected 
can travel to more cities, it will. When connected has no more new cities 
to which it can travel, it determines whether it has seen all the cities.

> connected := proc( T::table )
> local canvisit, seen, v, V;
> V := map( op, { indices(T) } );
> seen := {};
> canvisit := { V[l] };
> while canvisit <> О  do
> v := canvisit [1];
> seen := seen union {v};
> canvisit := ( canvisit union T[v] ) minus seen;
> end do;
> evalb( seen = V );
> end proc:
> connected(T);

true

You can add the cities Montreal, Toronto, and Waterloo, and the 
highway between them.

> T[Waterloo] := {Toronto};



> T[Toronto] := {Waterloo, Montreal};

T  Toronto '•= {  Waterloo , Montreal}

> T[Montreal] := {Toronto};

T-'Montreal •— { Toronto}

Now you can no longer travel between any two cities; for example, 
you cannot travel from Paris to Waterloo.

> connected(T);

false

Exercises
1. The system of cities and roads above splits naturally into two com­

ponents: the Canadian cities and the roads between them, and the 
European cities and the roads between them. In each component you 
can travel between any two cities but you cannot travel between the 
two components. Write a procedure that, given a table of neighbors, 
splits the system into such components. You may want to think about 
the form in which the procedure should return its result.

2. The connected procedure above cannot handle the empty table of 
neighbors.

> connected( tableO );

Error, (in connected) invalid subscript selector

Correct this shortcoming.

The importance of this example is not to teach you about networks, 
but to emphasize how the choice of data structures suited to the problem 
allows you to create an efficient and concise version of the procedure 
connected. Sets and tables were the best choices here. The best choice 
for a problem that you wish to tackle may be very different. Before writing 
code to perform your task, pause to consider which structures best suit 
your needs. A good program design begins with choosing structures and 
methods which mirror the data and task at hand.
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2.5 Remember Tables
Sometimes procedures are designed such that they are called repeatedly 
with the same arguments. Each time, Maple has to recompute the same 
answer, unless you take advantage of Maple’s concept of remember ta­
bles.

Any Maple procedure can have a remember table. The purpose of 
a remember table is to improve the efficiency of a procedure by storing 
previous results so that Maple can retrieve them from the table instead 
of recomputing them.

A remember table uses the sequence of actual parameters to the pro­
cedure call as the table index, and the results of the procedure calls as 
the table values. Whenever you invoke a procedure which has a remem­
ber table, Maple searches the table for an index which is the sequence of 
actual parameters. If such an index is found, it returns the corresponding 
value in the table as the result of the procedure call. Otherwise, Maple 
executes the body of the procedure.

Maple tables are hash tables, so looking up previously computed re­
sults is very fast. The purpose of remember tables is to make use of fast 
table lookup in order to avoid recomputing results. Since remember tables 
can become large, they are most useful when procedures need the same 
results repeatedly and the results are expensive to compute.

The remember Option
Use the remember option to indicate to Maple that it should store the 
result of a call to a procedure in a remember table. The Fibonacci pro­
cedure in section 1.2 is an example of a recursive procedure with the 
remember option.

> Fibonacci := proc(n::nonnegint)
> option remember;
> if n<2 then return n end if;
> Fibonacci(n-1) + Fibonacci(n-2);
> end proc:

Section 1.2 demonstrates that the Fibonacci procedure is very slow 
without the remember option, since it must compute the lower Fibonacci 
numbers many times.

When you ask Fibonacci to calculate the third Fibonacci number, it 
adds four entries to its remember table. The remember table is the fourth 
operand of a procedure.

> Fibonacci(3);

76 •  Chapter 2: Fundamentals



2.5 Remember Tables •  77

table([0 =  0, 1 =  1, 2 =  1, 3 =  2])

Adding Entries Explicitly
You can also define entries in procedure remember tables yourself. To do 
so, use the following syntax.

f (x ) := result :

2

> op(4 , eval(Fibonacci));

Below is another procedure which generates the Fibonacci num­
bers. The fib procedure uses two entries in its remember table, where 
Fibonacci uses an if statement.

> fib := proc(n::nonnegint)
> option remember;
> fib(n-l) + fib(n-2);
> end proc:
> fib(0) := 0:
> fib(l) := 1:

You must add entries in the remember table after making the pro­
cedure. The option remember statement does not create the remember 
table, but rather asks Maple to automatically add entries to it. The pro­
cedure works without this option, but less efficiently.

You could even write a procedure which chooses which values to add 
to its remember table. The following version of fib only adds entries to 
its remember table when you call it with an odd-valued argument.

> fib := proc(n::nonnegint)
> if type(n,odd) then
> fib(n) := fib(n-l) + fib(n-2);
> else
> fib(n-l) + fib(n-2);
> end if;
> end proc:
> fib(0) := 0:
> fib(l) := 1:
> fib(9);

34



> op(4, eval(fib));

table([0 =  0, 1 =  1, 3 =  2, 5 =  5, 7 =  13, 9 =  34])

As in this case, sometimes you can dramatically improve the efficiency 
of a procedure by remembering only some of the values instead of none.

Removing Entries from a Remember Table
You can remove entries from a remember table in the same manner you 
remove entries from any other table: assign a table entry to its own name. 
The evaln command evaluates an object to its name.

> T := op(4, eval(fib) );

T  :=  table([0 =  0, 1 =  1, 3 =  2, 5 =  5, 7 =  13, 9 =  34])

> T[7] := evaln ( T[7] );

T7 :=  T7

Now the fib procedure’s remember table has only five entries.
> op(4, eval(fib) );

table([0 =  0, 1 =  1, 3 =  2, 5 =  5, 9 =  34])

Maple can also remove remember table entries automatically. If you 
give your procedure the system option, then Maple may remove entries in 
the procedure’s remember table when Maple performs a garbage collec­
tion. Thus, you should never  give the system option to procedures like 
fib that rely on entries in its remember table to terminate.

You can remove a procedure’s remember table altogether by substi­
tuting NULL for the procedure’s fourth operand.

> subsop( 4=NULL, eval(Fibonacci) ):
> op(4, eval(Fibonacci));

You should use remember tables only with procedures whose results 
depend exclusively on parameters. The procedure below depends on the 
value of the environment variable Digits.
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> f := proc(x::constant)
> option remember;
> evalf(x);
> end proc:
> f(Pi);

3.141592654

Even if you change the value of Digits, f (Pi) remains unchanged 
because Maple retrieves the value from the remember table.

> Digits := Digits + 34;

Digits :=  44

> f(Pi);

3.141592654

2.6 Conclusion
A thorough understanding of the concepts in this chapter will provide you 
with an excellent foundation for understanding Maple’s language. The 
time you spend studying this chapter will save you hours puzzling over 
trivial problems in subroutines and procedures which appear to behave 
erratically. With the knowledge contained here, you should now see the 
source of such problems with clarity. Just as you may have done after 
finishing chapter 1 , you may wish to put this book down for a while and 
practice creating more of your own procedures.

Chapter 3 introduces you to more advanced techniques in Maple pro­
gramming. For example, it discusses procedures which return procedures, 
procedures which query the user for input, and packages which you can 
design yourself.

The remaining chapters of this manual are independent from one an­
other. You can focus on the topics of interest to you, for example, the 
Maple debugger or Maple graphics programming. If you wish a more for­
mal presentation of the Maple language, take a look at chapters 4 and 5.
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3 Advanced Programming

As you progress in learning the Maple programming language and 
tackling more challenging projects, you may discover that you would like 
more detailed information. The topics in this chapter are more advanced 
than those in previous chapters, and some are difficult to follow without a 
sound understanding of Maple’s evaluation rules, scoping rules, and other 
principal concepts.

The first two sections in this chapter begin where section 2.2 left off, 
using and returning procedures within the same procedure. Armed with 
a basic knowledge of Maple’s evaluation rules, you will discover that such 
procedures are not difficult to write.

Surprisingly, local variables can exist long after the procedure which 
created them has finished. This feature can be particularly useful when 
you wish a procedure to return a procedure, but the new procedure needs 
a unique place to store information. Maple’s assume facility, for example, 
uses such variables. The second section clearly explains and demonstrates 
how to use them effectively.

Two special topics make up the remainder of this chapter: interactive 
input and extending Maple. Interactive input allows you to write inter­
active procedures, making them more intuitive by querying the user for 
missing information. Perhaps you wish to write an interactive tutorial 
or a test. You are already aware of the customization power which you 
gain through the ability to write procedures; Maple also supplies some 
particularly useful mechanisms for modifying or extending Maple’s func­
tionality other than by writing a completely separate group of commands. 
In conjunction with the topics you find in the specialized chapters in the 
remainder of this book, the topics here will equip you to use Maple to its 
fullest.
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3.1 Procedures Which Return Procedures
Of all the types of procedures you may want to write, procedures which 
return procedures are likely to cause the most trouble. Creating these 
procedures builds upon the material presented in chapter 2 , which cov­
ered procedures within procedures, how Maple evaluates parameters, and 
how Maple assigns and evaluates both local and global variables. You 
also learned, for example, that an inner procedure recognizes the variable 
declarations of an outer procedure.

Some of the standard Maple commands return procedures. For exam­
ple, rand returns a procedure which in turn produces randomly chosen 
integers from a specified range. If you use the type=numeric option with 
dsolve, it returns a procedure which supplies a numeric estimate of the 
solution to a differential equation.

You may wish to incorporate such features into your own programs. 
The areas which require your particular attention are those of conveying 
values from the outer procedure to the inner procedure, and the use of 
local variables to store information unique to a returned procedure. This 
section discusses the former. The latter is the topic of the next section, 
section 3.2.

Creating a Newton Iteration
Newton’s method is one way of locating the roots of a function. First, you 
pick a point on the ж-axis that you think might be close to a root. Next, 
you find the slope of the curve at the point you picked. Draw the tangent 
to the curve at that point and observe where the tangent intersects the 
ж-axis. For most functions, this second point is closer to the real root than 
your initial guess. Thus, to find the root, all you need to do is use the new 
point as a new guess and keep drawing tangents and finding new points.
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To find a numerical solution to the equation f ( x ) =  0, you may use 
Newton’s method: guess an approximate solution, xq; then use the follow-
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ing formula, which is the mathematical description of the above process, 
to generate better approximations.

f(xk)  
х „+ 1 - х „ f(Xk)

You can implement this algorithm in Maple in a number of ways. The 
program below takes a function and creates a new procedure, which takes 
an initial guess and, for that particular function, generates the next guess. 
Of course, the new procedure will not work for other functions. To find 
the roots of a new function, use Make Iteration to generate a new guess- 
generating procedure. The unapply command turns an expression into a 
procedure.

> Makelteration := proc( expr::algebraic, x::name )
> local iteration;
> iteration := x - expr/diff(expr, x);
> unapply(iteration, x);
> end proc:

Test the procedure on the expression x — 2л/х.

> expr := x - 2*sqrt(x);

expr :=  x — 2 л/х

> Newton := MakeIteration( expr, x);

x — 2 л/х
1

1 -

'x

Newton  :=  x —>• x —

It only takes Newton a few iterations to find the solution, x =  4.
> xO := 2.0;

xO :=  2.0

> to 4 do xO := Newton(xO); end do;
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xO :=  4.828427124

xO :=  4.032533198 

xO :=  4.000065353 

xO :=  4.000000000

The Make Iteration procedure above expects its first argument to be 
an algebraic expression. You can also write a version of Make Iteration 
that works on functions. Since Makelteration below knows that the pa­
rameter /  is a procedure, you must use the eval command to evaluate it 
fully.

> Makelteration := proc( f::procedure )
> (x->x) - eval(f) / D(eval(f));
> end proc:
> g := x -> x - cos(x);

g :=  x —>• x — cos(x)

> Sirlsaac := MakeIteration( g );

Note that S ir lsa a c  does not contain references to the name g; thus, 
you can change g without breaking S irlsaac. You can find a good ap­
proximate solution to x — cos(x) =  0 in a few iterations.

> xO := 1.0;

xO :=  1.0

> to 4 do xO := Sirlsaac(xO) end do;

x0  :=  .7503638679

xO :=  .7391128909 

xO :=  .7390851334

xO :=  .7390851332
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A Shift Operator
Consider the problem of writing a procedure that takes a function, / ,  as 
input and returns a function, g, such that g(x) =  f ( x  +  l). You can write 
such a procedure in the following manner.

> shift := (f::procedure) -> ( x->f(x+l) ):
Try performing a shift on sin (ж).

> shift(sin);

x —>• sin(x +  1 )

Maple’s lexical scoping rules declare the f within the inner procedure 
to be the same f as the parameter within the outer procedure. Therefore, 
the command shift works as written.

The version of shift above works with univariate functions but it 
does not work with functions of two or more variables.

> h := (x,y) -> x*y;

h := (ж, у) ->• x y

> hh := shift(h);

hh :=  x —> h(x +  1 )

> hh(x,y);
Error, (in h) h uses a 2nd argument, y, which is 
missing

If you want shift to work with multivariate functions, you must 
rewrite it to deal with the additional parameters. In a procedure, args is 
the sequence of actual parameters, and args [2 . . - 1 ] is the sequence of 
actual parameters except the first one; see section 4.4. It follows that the 
procedure x->f (x+l,args [2. . - 1 ] )  passes all its arguments except the 
first directly to / .

> shift := (f::procedure) -> ( x->f(x+l, args[2..-1]) ):

> hh := s h i f t ( h ) ;



hh :=  x —>• h(x +  1 , args2. _ i)

> hh(x,y);

(x +  I)?/

The function hh depends on h; if you change h, you implicitly change
hh;

> h := (x,y,z) -> y*z~2/x;

/г :=  (x, у , г) -»• —  
x

> hh(x,y,z);

У z 2 
x +  1
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3.2 When Local Variables Leave Home
Section 2.2 states that local variables are not only local to a procedure but 
also to an invocation of that procedure. Very simply, calling a procedure 
creates and uses new local variables each time. If you invoke the same 
procedure twice, the local variables it uses the second time are distinct 
from those it used the first time.

What may surprise you is that the local variables do not necessar­
ily disappear when the procedure exits. You can write procedures which 
return a local variable, either explicitly or implicitly, to the interactive 
session, where it may survive indefinitely. You may find these renegade 
local variables confusing, particularly since they may have the same name 
as some global variables, or even other local variables which another pro­
cedure or a different call to the same procedure created. In fact, you can 
create as many distinct variables as you want, all with the same name.

The procedure below creates a new local variable, a, and then returns 
this new variable.
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> make_a := proc()
> local a;
> a;
> end proc;

m a k e _ a  :=  proc() local a; a end proc

Since a set in Maple contains unique elements, you can easily verify 
that each a that make_a returns is unique.

> test := { a, a, a };

test :=  {a }

> test := test union { make_a() };

test :=  { a, a}

> test := test union { ,make_a,()$5 };

test :=  {a, a, a, a, a, a, a}

Obviously, Maple identifies variables by more than their names.
Remember that no matter how many variables you create with the 

same name, when you type a name in an interactive session, Maple in­
terprets that name to be of a global variable. Indeed, you can easily find 
the global a in the above set test .

> seq( evalb(i=a), i=test);

true , false , false , false , false , false , false

You can use local variables to make Maple print things it would not 
ordinarily be able to display. The above set test is an example. Another 
example is expressions which Maple would ordinarily simplify automat­
ically. For example, Maple automatically simplifies the expression a +  a 
to 2a, so displaying the equation a +  a =  2a is not easy. You can create the 
illusion that Maple is showing you these steps using procedure make_a, 
above.

> a + make_a() = 2*a;
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a + a = 2 a

To Maple, these two variables are distinct, even though they share the 
same name.

You cannot easily assign a value to such escapees. Whenever you type 
a name in an interactive session, Maple thinks you mean the global vari­
able of that name. While this prevents you from using the assignment 
statement, it does not prevent you from using the assignment command.  
The trick is to write a Maple expression which extracts the variable you 
want. For example, in the equation above, you may extract the local a by 
removing the global a from the left-hand side of the equation.

> eqn := °/0;

eqn :=  a +  a =  2 a

> another_a := remove( x->evalb(x=a), lhs(eqn) );

another_a  :=  a

You may then assign the global name a to this extracted variable and 
so verify the equation.

> assign(another_a = a);
> eqn;

2 a =  2 a

> evalb(°/0);

true

Should your expression be complicated, you may need a fancier com­
mand to extract the desired variable.

You may have encountered this situation before without realizing it, 
when you were using the assume facility and wished to remove an as­
sumption. The assume facility attaches various definitions to the variable 
you specify, with one result being that the name subsequently appears 
as a local name with an appended tilde. Maple does not understand if 
you type the tilde name because no relationship exists with the global 
variable name containing a tilde.



> assume(b>0) ;
> x : = b + 1 ;

x :=  b~ +  1

> subs( <b~<=c, x ) ;

b~ +  1

When you clear the definition of the named variable the association 
between the name and the local name with the tilde is lost, but expressions 
created with the local name still contain it.

> b := evaln(b) ;

b : = b

> x;

b~ + 1

If you later wish to reuse your expression, you must either perform a 
substitution before removing the assumption or perform some manipula­
tions of your expressions similar to the equation eqn.

Creating the Cartesian Product of a Sequence of Sets
An important use for returning local objects arises when the returned 
object is a procedure. When you write a procedure which returns a pro­
cedure, you will often find it useful to have the procedure create a variable 
which holds information pertinent only to the returned procedure. This al­
lows different procedures (or different invocations of the same procedure) 
to pass information between themselves.

The program introduced in this section uses this idea. When you pass 
a sequence of sets to the procedure it constructs a new procedure. The 
new procedure returns the next term in the Cartesian product each time 
you invoke it. Local variables from the outer procedure are used to keep 
track of which term to return next.

The Cartesian product of a sequence of sets is the set of all lists 
whose ith entry is an element of the ith set. Thus, the Cartesian product 
of 7 }  and { x , y }  is

{ a , f3, 7 }  x {x,  y }  =  { [ct, ж], [f3, x ], [7 , ж], [a, y\, [/3, y ], [7 , y}}.
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The number of elements in the Cartesian product of a sequence of sets 
grows very rapidly as the sequence gets longer or the sets get larger. It 
therefore requires a large amount of memory to store all the elements of 
the Cartesian product. One way around this is to write a procedure that 
returns a new element of the Cartesian product each time you call it. By 
calling such a procedure repeatedly you can process every element in the 
Cartesian product without ever storing all its elements at once.

The procedure below returns the next element of the Cartesian prod­
uct of the list s of sets. It uses an array, c, of counters to keep track of 
which element comes next. For example, c[l]=3 and c[2]=l correspond 
to the third element of the first set and the first element of the second 
set.

> s := [ {alpha, beta, gamma}, {x, y} ];

s :=  [{a, f3, 7 }, {x,  y}\

> с := array( 1..2, [3, 1] );

с := [3, 1]

> [ seq( s[j] [c [j] ] , j=l. .2 ) ];

[7, x]

Before you call the element procedure you must initialize all the coun­
ters to 1 , except the first one, which should be 0.

> с := array( [0, 1] );

с :=  [0, 1 ]

In element below, nops(s) is the number of sets and nops(s[i])
is the number of elements in the ith. set. When you have seen all the 
elements, the procedure re-initializes the array of counters and returns 
FAIL. Therefore, you can trace through the Cartesian product again by 
calling element again.

90 •  Chapter 3: Advanced Programming



3.2 When Local Variables Leave Home •  91

> element := proc(s::list(set), c::array(l, nonnegint))
> local i , j ;
> for i to nops(s) do
> с [i] := с [i] + 1;
> if с [i] <= nops( s[i] ) then
> return [ seq(s [j] [c [j] ] , j=l. .nops(s) ) ] ;
> end if;
> с [i] := 1;
> end do;
> c[l] := 0;
> FAIL;
> end proc:

> element(s, c); element(s, c); element(s, c);

[a, x\

[f3, x]

[7, x]

> element(s, c); element(s, c); element(s, c);

[a5 У\

[& y\

[7 , y\

> element(s, c);

FAIL

Instead of writing a new procedure for each Cartesian product you 
want to study, you can write a procedure, CartesianProduct, that re­
turns such a procedure. CartesianProduct below first creates a list, s, 
of its arguments, which should all be sets. Then it initializes the array, c, 
of counters and defines the subprocedure element. Finally, the element 
subprocedure is invoked inside a proc structure.

> CartesianProduct := procO
> local s, c, element;
> global S, C;
> s := [args];
> if not type(s, list(set)) then
> error "expected a sequence of sets, but received",
> args ;
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> end if;
> с := array( [0, l$(nops(s)-l)] );
>
> element := proc(s::list(set), c::array(l, nonnegint))
> local i , j ;
> for i to nops(s) do
> с [i] := с [i] + 1;
> if c[i] <= nops( s [i] ) then
> return [ seq(s [j] [c [j] ] , j=l. .nops(s) ) ] ;
> end if;
> с [i] := 1;
> end do;
> c[l] := 0;
> FAIL;
> end proc;
>
> procO
> element(s, c);
> end proc;
> end proc:

Again, you can find all six elements of { a , [3, 7 }  x { x , y}.

> f := CartesianProduct( {alpha, beta, gamma}, {x,y} );

/  := proc() element(s , c) end proc

> to 7 do f() end do;

[a, x]

%  x\

[7 , x]

[a5 У\

[/?, У\

[7 , y\

FAIL

You can use CartesianProduct to study several products simultane­
ously.

> g := CartesianProduct( {x, y}, {N, Z, R},
> {56, 23, 68, 92} );
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g :=  proc() element(s , c) end proc

The following are the first few elements of { x , у }  x { N , Z, R }  x 
{56,23,68,92}.

> to 5 do g() end do;

[ж, N,  23]

[■V, N,  23]

[x, Z, 23]

[y, Z , 23]

[ж, R : 23]

Because the variables s in f and g are local variables to CartesianProduct, 
they are not shared by different invocations of CartesianProduct. Sim­
ilarly, the variable с in f and g is also not shared. You can see that the 
two arrays of counters are different by invoking f and g a few more times.

> to 5 do f(), g O  end do;

[а, ж], [у, R, 23]

[0 , x], [x, N , 56]

[7 , x], [y, N,  56]

[a, y], [x , Z, 56]

[A y], [y, Z,  56]

The element procedure in g is also local to CartesianProduct. There­
fore, you can change the value of the global variable element without 
breaking g.

> element := 45;

element  :=  45

> g() ;

[ж, R , 56]



These examples demonstrate not only that local variables can escape 
the bounds of the procedures which create them, but that this mechanism 
allows you to write procedures which create specialized procedures.

Exercises
1. The procedure that CartesianProduct generates does not work if one 

of the sets is empty.
> f := CartesianProduct( O ,  {x,y} );

/  := proc() element(s , c) end proc

> f();

Error, (in element) invalid subscript selector
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Improve the type-checking in CartesianProduct so that it generates 
an informative error message in each such case.

2. A partition of a positive integer, n, is a list of positive integers whose 
sum is n. The same integer can appear several times in the partition 
but the order of the integers in the partition is irrelevant. Thus, the 
following are all the partitions of 5:

[1,1,1,1,1], [1,1,1,2], [1,1, 3], [1, 2, 2], [1,4], [2, 3], [5].

Write a procedure that generates a procedure that returns a new 
partition of n each time you call it.

3.3 Interactive Input
Normally you pass input to Maple procedures as parameters. Sometimes, 
however, you may want to write a procedure that asks the user directly 
for input. For example, you could write a procedure that drills students 
on some topic; the procedure could generate random problems and verify 
the students’ answers. The input may be the value of a certain parameter, 
or the answer to a question such as whether a parameter is positive or 
not. The two commands in Maple for reading input from the terminal are 
the readline command and the readstat command.
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Reading Strings from the Terminal
The readline command reads one line of text from a file or the keyboard. 
You may use the readline command as follows.

readline( filename )

If filename is the special name terminal, then readline reads a line of 
text from the keyboard, readline returns the text as a string.

Here is a simple application, prompting the user for an answer to a 
question.

> DetermineSign := proc(a::algebraic) local s;
> printfO'Is the sign of %a positive? "
> "Answer yes or no:\n",a);
> s := readline(terminal);
> evalb( s="yes" or s = "y" );
> end proc:

> DetermineSign(u-1);

Is the sign of u-1 positive? Answer yes or no:

> У

true

Section 10.5 gives more details on the readline command.

Reading Expressions from the Terminal
You may want to write procedures that require the user to input an 
expression rather than a string. The readstat command reads one ex­
pression from the keyboard.

readstat( prompt )

The prompt is an optional string.
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> readstat("Enter degree: ");

Enter degree: n-1;

n — 1

Notice that the readstat command insists on a terminating semicolon 
(or colon). Unlike the readline command, which only reads one line, the 
readstat command works like the rest of Maple: it allows you to break 
a large expression across multiple lines. Another advantage of using the 
readstat command is that if the user makes a mistake in the input, 
the readstat command will automatically re-prompt the user for input, 
giving the user an opportunity to correct the error.

> readstat("Enter a number: ");

Enter a number: 5Л"8; 
syntax error, c~ c unexpected: 
5~~8; 

Enter a number: 5~8;

390625

Here is an application of the readstat command for implementing an 
interface to the limit command. The procedure does the following: given 
the function f ( x ), assume x is the variable if only one variable is present; 
otherwise, ask the user what the variable is, and also ask the user for the 
limit point.

> GetLimitInput := proc(f::algebraic)
> local x, a, K;
> # choose all variables in f
> К := select(type, indets(f), name);
>
> if nops(K) = 1 then
> x := K[l] ;
> else
> x := readstat("Input limit variable: ");
> while not type(x, name) do
> printf("A variable is required: received °/0a\n" , x) ;
> x := readstat("Please re-input limit variable: ");
> end do;
> end if;
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> a := readstat("Input limit point: ");
> x = a;
> end proc:

The expression sm.(x)/x depends only on one variable, so Get Limit Input 
does not ask for any limit variable.

> GetLimitInput( sin(x)/x );

Input limit point: 0;

x =  0

Below, the user first tries to use the number 1 as the limit variable. 
Since 1 is not a name, GetLimit Input asks for another limit variable.

> GetLimitInput( exp(u*x) );

Input limit variable: 1;
A variable is required: received 1

Please re-input limit variable: x;

Input limit point: infinity;

x =  oo

You can specify a number of options to readstat; see section 10.5. 

Converting Strings to Expressions
Occasionally, you may need more control over how and when Maple eval­
uates user input to your procedure than the readstat command allows.
In such cases, you can use the readline command to read the input as 
a string, and the parse command to convert the string to an expression. 
The string must represent a complete expression.

> s := "a*x~2 + 1";

s :=  “a*x~2 +  1”

> у := parse( s ) ;



у :=  a x 2 +  1

When you parse the string s you get an expression. In this case, you 
get a sum.

> type(s, string), type(y, '+');

true , true

The parse command does not evaluate the expression it returns. You 
must use eval to evaluate the expression explicitly. Below, Maple does 
not evaluate the variable a to its value, 2 , until you explicitly use the eval 
command.

> a := 2;

a :=  2

> z := parse( s );

z : =  a x 2 +  1

> eval(z);

2 x 2 +  1

See section 10.7 for more details about the parse command.
The techniques you have seen in this section are all very simple, but 

you can use them to create powerful applications such as Maple tutorials, 
procedures that drill students, or interactive lessons.
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3.4 Extending Maple
Even though you may find it useful to write your own procedures to per­
form new tasks, sometimes extending the abilities of Maple’s own com­
mands is most beneficial. Many of Maple’s existing commands provide 
this service. This section familiarizes you with the most helpful methods, 
including making your own types and operators, modifying how Maple
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displays expressions, and extending the abilities of such useful commands 
as simplify and expand.

Defining New Types
If you use a complicated structured type you may find it easier to assign 
the structured type to a variable of the form ‘ t y p e /паше c. That way you 
only have to write the structure once, thus reducing the risk of errors. 
When you have defined the variable c type/name c, you can use name as 
a type.

> ‘type/Variables‘ := {name, list(name), set(name)}:
> type( x, Variables );

true

> type( { x[l] , x[2] }, Variables );

true

When the structured type mechanism is not powerful enough, you 
can define a new type by assigning a procedure to a variable of the form 
c type/name c. When you test whether an expression is of type name, 
Maple invokes the procedure c type/name c on the expression if such 
a procedure exists. Your procedure should return true or false. The 
ctype/permutationc procedure below determines if p is a permutation 
of the first n positive integers. That is, p should contain exactly one copy 
of each integer from 1 through n.

> (type/permutation' := proc(p)
> local i;
> type(p,list) and { op(p) } = { seq(i, i=l..nops(p)) };
> end proc:
> type( [1,5,2,3], permutation );

false

> type( [1,4,2,3], permutation );

true

Your type-testing procedure may have more than one parameter. 
When you test if an expression, expr, has type name (parameters ), then 
Maple invokes
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ctype/namec ( expr, parameters )

if such a procedure exists. The ‘type/LINEAR/ procedure below deter­
mines if /  is a polynomial in V  of degree 1.

> ‘type/LINEAR/ := proc(f, V::name)
> type( f, polynom(anything, V) ) and degree(f, V) = 1;
> end proc:

> type( a*x+b, LINEAR(x) );

true

> type( x~2, LINEAR(x) );

false

> type( a, LINEAR(x) );

false

Exercises
1. Modify the ‘ type/LINEAR/ procedure so that you can use it to test 

if an expression is linear in a set of variables. For example, x +  ay +  1 
is linear in both x and y, but xy  +  a +  1 is not.

2. Define the type POLYNOM(X) which tests if an algebraic expression is 
a polynomial in X  where X  may be a name, a list of names, or a set 
of names.

Neutral Operators
Maple understands a number of operators, for example +, *, and, not, 
and union. All of these operators have special meaning to Maple: some 
represent algebraic operations, such as addition or multiplication; some 
represent logical operations; and some represent operations performed on 
sets. Maple also has a special class of operators, the neutral operators , 
on which it does not impose any meaning. Instead, Maple allows you 
to define the meaning of any neutral operator. The name of a neutral 
operator begins with the ampersand character, &. Section 4.4 describes 
the naming conventions for neutral operators.
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> 7 8 9;

(7& ~8)& ~9

> evalb( 7 8 = 8 7 );

false

> evalb( (7&~8)&~9 = 7&~(8&~9) );

false

Internally, Maple represents neutral operators as procedure calls. 
Thus, 7&~8 is just a convenient way of writing &~(7, 8).

> &~(7, 8);

7&~8

Maple uses the infix notation only if your neutral operator has exactly 
two arguments.

> &~(4), &~(5, 6), &~(7, 8, 9);

&~(4), 5&~6, & л(7, 8, 9)

You can define the actions of a neutral operator by assigning a pro­
cedure to its name. The example below implements the Hamiltonians by 
assigning a neutral operator to a procedure that multiplies two Hamil­
tonians. The next paragraph explains all you need to know about the 
Hamiltonians to understand the example.

The Hamiltonians or Quaternions extend the complex numbers in 
the same way the complex numbers extend the real numbers. Each Hamil­
tonian has the form a +  Ы +  cj +  dk where a, b, c, and d are real numbers. 
The special symbols i, j , and к satisfy the following multiplication rules: 
i2 =  - 1 , j 2 =  - 1 , k2 =  - 1 , ij =  k, j i  =  - к, ik =  - j , ki =  j , jk  =  i, 
and kj =  — i.

The ‘ ‘ procedure below uses / ,  J, and К  as the three special sym­
bols. However, I  is implemented as the complex imaginary unit in Maple. 
Therefore, you should assign another letter to represent the imaginary
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unit by using the interface function. See ?interface for more informa­
tion.

> interface(imaginaryunit=j);

You can multiply many types of expressions by using c c , making it 
convenient to define a new type, Hamiltonian, by assigning a structured 
type to the name c type/Hamiltonianc.

> (type/Hamiltonian‘ := { <+<, ‘ , name, realcons,
> specfunc(anything, ‘&~‘) };

The ‘ ‘ procedure multiplies the two Hamiltonians, x and y. If either 
x or у is a real number or variable, then their product is the usual product 
denoted by * in Maple. If x or у is a sum, ck ~ ‘ maps the product onto 
the sum; that is, ‘ ‘ applies the distributive laws: x(u +  v) =  xu +  xv  
and (u +  v)x  =  их +  vx. If x or у is a product, ‘ ‘ extracts any real 
factors. You must take special care to avoid infinite recursion when x 
or у is a product that does not contain any real factors. If none of the 
multiplication rules apply, ‘ k~ ‘ returns the product unevaluated.

> := proc( x::Hamiltonian, y::Hamiltonian )
> local Real, unReal, isReal;
> isReal := z -> evalb( is(z, real) = true );

type/ Hamiltonian :=
{nam e,  *, + , realcons, specfunc (anything, & ")}

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

elif type(x, (* ‘) then
# Pick out the real factors of x.
Real, unReal := selectremove(isReal, x);
# Now x&~y = Real * (unReal&~y) 
if Real=l then

elif type(x, (+ ‘) then
# x is a sum, u+v, so x&~у = u&~y + v&~y. 
тар((&л<, x, у);

elif type(у, (+ ‘) then
# у is a sum, u+v, so x&~у = x&'u + x&~v. 
m a p 2 ( ‘, x, y);

if isReal(x) or isReal(y) then 
x * y;

else

if type(y, (* ‘) then

Real * }<&л<,(х, unReal);
Real, unReal := selectremove(isReal, x);

,(Г (,(х, y);
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> end if;
> else
> Real * (unReal, y) ;
> end if;
>
> elif type(y, (* () then
> # Similar to the x-case but easier since
> # x cannot be a product here.
> Real, unReal := selectremove(isReal, y);
> if Real=l then
> ’‘Г ' Ч х ,  у);
> else
> Real * (&л<(х, unReal);
> end if;
>
> else
> }<&~<}(x,y);
> end if;
> end proc:

You can place all the special multiplication rules for the symbols / ,  
J, and К  in the remember table of See section 2.5.

> ‘&~‘(I,I) := -1: (r ((J,J) := -1: (&~4K,K) := -1:
> ‘&~‘(I,J) := K: ‘&~‘(J,I) := -K:
> ‘&~‘(I,K) := -J: ‘&~‘(K,I) := J:
> ‘&~‘(J,K) := I: ‘&~‘(K,J) := -I;

Since ‘ ‘ is a neutral operator, you can write products of Hamilto­
nians using as the multiplication symbol.

> (1 + 2*1 + 3*J + 4*K) (5 + 3*1 - 7*J);

2 0 +  41 /  +  20 J - 3 K

> (5 + 3*1 - 7*J) k~ (1 + 2*1 + 3*J + 4*K);

20 — 15 /  — 4 J  +  43 /Г

> 56 k~ I;

5 6 /

Below, a is an unknown Hamiltonian until you tell Maple that a is an 
unknown real number.

> a J;



a J
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> assume(a, real);
> a J;

a~ J

Exercise
1. The inverse of a general Hamiltonian, a +  Ы +  cj +  dk, is (a — bi — cj — 

dk)/(a2 +  b2 +  c2 +  d2). You can demonstrate this fact by assuming 
that a, b, c, and d are real and define a general Hamiltonian, h.

> assume(a, real); assume(b, real);

> assume(c, real); assume(d, real);

> h := a + b*I + c*J + d*K;

h \= a~ +  b~ I  +  c~ J +  d~ К

By the formula above, the following should be the inverse of h.

> hinv := (a-b*I-c*J-d*K) / (a~2+b~2+c~2+d~2);

a~ — b~ I  — c~ J — d~ К  
hinv : = -----^ ^ ^ -------- 7Г-

a +  b -j- с +  d

Now all you have to check is that h hinv and hinv h both 
simplify to 1.

> h hinv;
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a~ (a~ — b~ I  — c~ J — d~ K )
%1

b~ (I a~ +  b~ — c~ К  +  d~ J)
+  % i

c~ (J a~ +  Ъ~ К  +  c~ — d~ I)
+  % i

d ~ ( K  a~ — b ~ J +  с ~ /  +  d ~)

+  % i
%1 :=  a~2 +  b~2 +  c~2 +  d~2

> simplify(%);

1

> hinv h;

a~ (a~ — b~ I  — c~ J — d~ K )
%1

a~ b~ I  +  b~2 +  b~ c~ К  — b~ d~ J 
+  % i

a~ c~ J — Ъ~ c~ К  +  c~2 +  c~ d~ I  
+  % i

a~ d~ К  +  b~ d~ J — c~ d~ I  +  d~2 
+  % i 

%1 :=  a~2 +  b~2 +  c~2 +  d~2

> simplify(%);

1

Write a procedure, , that computes the inverse of a Hamiltonian. 
You may want to implement the following rules.

&/( &/x ) = x, &/(x&~y) = (&/y) (&/x), 
x (&/x) = 1 = (&/x) x.
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Extending Certain Commands
If you introduce your own data structures, Maple cannot know how to ma­
nipulate them. In most cases, you design new data structures because you 
want to write special-purpose procedures that manipulate them. However, 
sometimes extending the capabilities of one or more of Maple’s built-in 
commands is more intuitive. You can extend several Maple commands, 
among them expand, sim p lify , d i f f ,  s e r ie s , and eva lf.

Suppose you choose to represent a polynomial annn +  an_ in n_1 +  • • • +  
aiu +  ao by using the data structure

POLYNOMC u, a_0, a _ l , a_n )

You can then extend the d i f f  command so that you can differentiate 
polynomials represented in that way. If you write a procedure with a 
name of the form ‘ d i f f / F ‘ then d i f f  invokes it on any unevaluated 
calls to F. Specifically, if you use d i f f  to differentiate F (arguments) 
with respect to x, then d i f f  invokes ‘ d i f f / F ‘ as follows.

‘ d i f f / F ‘ ( arguments, x )

The procedure below differentiates a polynomial in и with constant coef­
ficients with respect to x.

> <diff/P0LYN0M< := proc(u)
> local i, s, x;
> x : = args [-1] ;
> s := seq( i*args[i+2], i=l..nargs-3 );
> ’POLYNOM’(u, s) * diff(u, x);
> end proc:

> diff( P0LYN0M(x, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), x ) ;

POLYNOM(z, 1, 2, 3, 4, 5, 6, 7, 8, 9)

> diff( P0LYN0M(x*y, 34, 12, 876, 11, 76), x );

POLYNOM (xy,  12, 1752, 33, 304) y

The implementation of the Hamiltonians that section 3.4 describes 
does not know that multiplication of Hamiltonians is associative, that 
is (xy)z =  x(yz).  Sometimes, using associativity simplifies a result. Re­
call that I here is not the complex imaginary unit, but rather, one of
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the special symbols / ,  J, and К  that are part of the definition of the 
Hamiltonians.

> x I J;

(x I) J

> x ( I J );

x " К

You can extend the simplify command so that it applies the as­
sociative law to unevaluated products of Hamiltonians. If you write a 
procedure with a name of the form ‘ simplify/F‘, then simplify in­
vokes it on any unevaluated function calls to F. Thus, you must write a 
procedure ‘ simplify/^ ‘ that applies the associative law to Hamiltoni­
ans.

The procedure below uses the typematch command to determine if 
its argument is of the form (a&~b)&~c and, if so, it picks out the a, b, 
and c.

> s := x у z;

s :=  (x y) z

> typematch( s, a::anything, b::anything ),
> с::anything ) );

true

> a, b, c;

x, У, z

You can give the user details about the simplifications your procedure 
makes through the userinfo command. The c simplif y/&~c procedure 
prints out an informative message if you set inf olevel [simplify] or 
inf olevel [all] to at least 2 .
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> local a, b, c;
> if typematch( x,
> ’ ‘ ‘’( a::anything, b::anything ),
> с::anything ) ) then
> userinfo(2, simplify, "applying the associative law");
> a ( b с );
> else
> x;
> end if;
> end proc:

Applying the associative law does make some products of Hamiltoni­
ans simpler.

> x I J K;

{{x&~ I ) J ) & ~  К

> simplify(%);

—x

If you set inf olevel [simplify] large enough, Maple prints out infor­
mation on what simplify tries in order to make your expression simpler.

> infolevel[simplify] := 5;

info lev el simplify • ^

> w x у z;

( (w & л x) & л y) & л z

> simplify(%);
simplify/&~: "applying the associative law" 
simplify/&~: "applying the associative law"

w ((x y) z)

The help pages for expand, series, and evalf provide details on how 
you may extend those commands. See also section 8.4.
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You may employ any or all of the above methods, as you see fit. 
Maple’s design affords you the opportunity to customize it to suit your 
needs, allowing you great flexibility.

3.5 Conclusion
The topics in this chapter and chapters 1 and 2 form the building blocks 
of the programming features in Maple. Although the topics in this chapter 
are more specialized than those of earlier chapters, they are still very im­
portant and are among the most useful. In particular, the first two sections 
which delve into the workings of procedures which return procedures and 
local variables are fundamental as you move on to more advanced pro­
gramming. The later topics, including interactive input and extending 
Maple, while not as fundamental, are also extremely beneficial.

The remaining chapters in this book fall into two categories. Chapters
4 and 5 present in a formal manner the structure of the Maple language 
and the details of procedures. The other chapters address specific topics, 
such as plotting, numerical programming, and the Maple debugger.
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4 The Maple Language

This chapter describes the Maple language in detail. The language 
definition breaks down into four parts: characters, tokens, syntax (how 
you enter commands), and semantics (the meaning Maple gives to the 
language). The syntax and semantics are what define a language. Syntax 
consists of rules to combine words into sentences; syntax is grammar, and 
is purely mechanical. Semantics is the extra information or meaning that 
syntax cannot capture, and determines what Maple does when it receives 
a command.

Syntax The syntax defines what input constitutes a valid Maple expres­
sion, statement, or procedure. It answers such questions as:

• Do I need the parentheses in x~(y~z)?

• How do I input a string which is longer than a line?

• How can I input the floating-point number 2.3 x 10-3 ?

These are all questions about language syntax. They are concerned 
solely with the input of expressions and programs to Maple, not what 
Maple does with them.

If the input is not syntactically correct, Maple reports a syntax error. 
Consider some interactive examples.

Two adjacent minus signs are not valid.

> — 1 ;

syntax error, c- c unexpected:
- - 1 ;
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Maple accepts many kinds of floating-point formats,
> 2.3e-3, 2.3E-03, +0.0023;

.0023, .0023, .0023

but you must place at least one digit between the decimal point and the 
exponent suffix.

> 2.e-3;

syntax error, missing operator or 
2.e-3

The correct way to write this is 2.0e-3.

Semantics The semantics of the language specifies how expressions, 
statements, and programs execute, that is, what Maple does with them. 
This answers questions such as:

• Does x/2*z equal x/(2*z) or (x/2)*z? What about х/2/z?

• If x has the value 0, what will happen if I compute sin(x)/x?

• Why does computing sin(0)/sin(0) result in 1 and not in an error?

• What is the value of i after executing the following loop?
> for i from 1 to 5 do print(i~2) end do;

The following is a common mistake. Many users think that x/2*z is 
equal to x/(2*z).

> x/2*z, x/(2*z);

1 1 x
- x z ,  — —
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Syntax Errors in Files Maple reports syntax errors which occur when 
reading in files and indicates the line number. Write the following program 
in a file called integrand.

f := proc(x)
t := 1 - x~2 
t*sqrt(t) 

end proc:

Then read it in to your Maple session by using the read command.
> read integrand;

syntax error, missing operator or 
t*sqrt(t)

Maple reports an error at the beginning of line 3. There should be a 
separating the two calculations, t := 1 - x~2 and t*sqrt(t).

4.1 Language Elements
To simplify the presentation of Maple syntax, consider it in two parts: 
first, the language elements and second, the language grammar which 
explains how to combine the language elements.

The Character Set
The Maple character set consists of letters, digits, and special characters. 
The letters are the 26 lower-case letters

a, b, c, d, e, f, g, h, i, j, к, 1, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

and the 26 upper-case letters

А, В, C, D, E, F, G, H, I, J, K, L, M, N, О, P, Q, R, S, T, U, V,
W, X, Y, Z.

The 10 digits are

0, 1, 2, 3, 4, 5, 6 , 7, 8 , 9.

There are also 32 special characters, as shown in Table 4.1. Sections 
later in this chapter state the uses of each.
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Table 4.1 Special Characters

blank ( left parenthesis
; semicolon ) right parenthesis
: colon [ left bracket
+ plus ] right bracket

minus {  left brace
* asterisk }  right brace
/  slash ‘ back quote

caret ’ single quote (apostrophe)
! exclamation " double quote

equal 1 vertical bar
< less than & ampersand
> greater than underscore
0  at sign °/0 percent
$ dollar \ backslash

period # sharp
, comma ? question mark

Tokens
Maple’s language definition combines characters into tokens. Tokens 
consist of keywords (reserved words), programming-language operators, 
names, strings, natural integers, and punctuation marks.

Reserved Words Table 4.2 lists the reserved words in Maple. They have 
special meanings, and thus you cannot use them as variables in programs.

Many other symbols in Maple have predefined meanings. For example, 
mathematical functions such as sin and cos, Maple commands such as 
expand and simplify, and type names such as integer and list. How­
ever, you can safely use these commands in Maple programs in certain 
contexts. But the reserved words in table 4.2 have a special meanings, 
and thus you cannot change them.

Programming-Language Operators Three types of Maple language 
operators exist, namely binary, unary, and nullary operators. Tables 
4.3 and 4.4 list these operators and their uses. The three nullary oper­
ators, °/0, ° /o ° /o , and Ш  are special Maple names which refer to the three 
previously computed expressions.

The ?precedence help page gives the order of precedence of all 
programming-language operators.
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Table 4.2 Reserved Words

K eyw ord s P u rpose
break, next loop control
if, then, elif, else if statement
for, from, in, by, to, for and while loops
while, do
proc, local, global, option, procedures
error, return options, description
export, module, use modules
end ends structure
assuming assume facility
try, catch, finally exception handling
read, save read and save statements
quit, done, stop ending Maple
union, minus, intersect, subset set operators
and, or, not, xor, implies Boolean operators
mod modulus operator

Table 4.3 Programming Binary Operators

O perator M eaning O perator M eaning
+ addition < less than
- subtraction <= less or equal
* multiplication > greater than
/ division >= greater or equal

exponentiation <> not equal
$ sequence operator -> arrow operator
@ composition union set union
m repeated composition minus set difference
kstring neutral operator intersect set intersection
9 expression separator type declaration,
1 1 concatenation pattern binding

decimal point and logical and
ellipsis or logical or

mod modulo non-commutative
: = assignment multiplication
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Table 4.4 Programming Unary Operators

O perator M eaning
+ unary plus (prefix)
- unary minus (prefix)
! factorial (postfix)
$ sequence operator (prefix)
not logical not (prefix)
kstring neutral operator (prefix)

decimal point (prefix or postfix)
e/>integer label (prefix)

Names Maple’s language definition predefines many other tokens, in­
cluding names. For example, mathematical functions like sin and cos, or 
commands like expand or simplify, or type names like integer or list 
are all examples of names.

The simplest instance of a name consists of letters, digits, and under­
scores, and does not begin with a number. Maple reserves names beginning 
with an underscore for internal use only.

Names of the form ~name are allowed for spreadsheet references.

Strings Maple’s language definition also predefines strings. Some simple 
strings are "h", "hi", "result" and "Input valuel". Generally, enclos­
ing any sequence of characters in double quotes forms a string.

> "The modulus should be prime";

“The modulus should be prime”

> "There were %d values";

“There were %d values”

You should not confuse the double quote character, ", which delimits 
a string, with the back quote character, ‘ , which forms a symbol or the 
single quote, ’ , which delays evaluation. A string’s length has no practical 
limit in Maple. On most Maple implementations, this means that a string 
can contain more than half a million characters.

To make the double quote character appear in a string, type a back­
slash character and a double quote (") where you want the double quote 
character to appear.
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‘a\ “b’:

Similarly, to allow a backslash (escape character) to appear as one of 
the characters in a string, type two consecutive backslashes \\.

> "a\\b";

“a\\b”

The special backslash characters mentioned above only count as one 
character, as is demonstrated by using the length command.

> length(°/0);

A reserved word enclosed in double quotes also becomes a valid Maple 
string, distinct from its usage as a token.

> "while";

“while”

The enclosing double quotes themselves do not form part of the string.
> length("abcde");

To access individual characters or substrings, strings can be sub­
scripted in much the same way as lists. An integer range provides access.

> S := "This is a string";

S :=  “This is a string”

> S[6. .9] ;
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> S [-6 . . - 1 ] ;

“string”

As well, iterations can be performed over the characters in a string.
> seq(i,i="over a string");

U  5 5  “ - Г 7- 5 5  “ ^ 5 5  U  5 5  U  5 5  “ Q 5 5  U  5 5  U  5 5  U j _ 5 5  U  5 5  U ' 5 5  “ - n ”  U  55(_) 5 V 5 t; 5 I 5 , d ,

Integers A natural integer is any sequence of one or more digits. Maple 
ignores any leading zeroes.

> 03141592653589793238462643;

3141592653589793238462643

The length limit for integers is system-dependent, but is generally 
much larger than users require.

An integer is either a natural integer or a signed integer. Either 
+natural or -natural indicates a signed integer.

> -12345678901234567890;

-12345678901234567890

> +12345678901234567890;

12345678901234567890

Token Separators
You can separate tokens by using either white space or punctuation 
marks. This tells Maple where one token ends and the next begins.

Blanks, Lines, Comments, and Continuation The white space charac­
ters are space, tab, return, and line-feed. This book uses the terminology 
newline to refer to either return or line-feed since the Maple system does 
not distinguish between these characters. The terminology blank refers 
to either space or tab. The white space characters separate tokens, but 
are not themselves tokens.

White space characters cannot normally occur within a token.
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> a: = b;

syntax error, t = t unexpected: 
a: = b ;

You can use white space characters freely between tokens.
> a * x + x*y;

a x  +  x y

The only instances in which white space can become part of a token 
are names and strings, formed by enclosing a sequence of characters in 
back quotes and double quotes, respectively. In these cases, the white 
space characters are as significant as any other character.

On a line, unless you are in the middle of a string, Maple considers all 
characters which follow a sharp character “#” to be part of a comment.

Since white space and newline characters are functionally the same, 
you can continue statements from line to line.

> a: = 1 + x +
> x~2;

a :=  1 +  x +  x 2

The problem of continuation from one line to the next is less trivial 
when long numbers or long strings are involved since these two classes of 
tokens are not restricted to a few characters in length. The general mech­
anism in Maple to specify continuation of one line onto the next is as 
follows: if the special character backslash, \, immediately precedes a new- 
line character, then the parser ignores both the backslash and the newline. 
If a backslash occurs in the middle of a line, Maple usually ignores it; see 
?backslash for exceptions. You can use this to break up a long sequence 
of digits into groups of smaller sequences, to enhance readability.

> "The input should be either a list of\
> variables or a set of variables";

“The input should be either a list of variables or \ 
a set of variables”
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; semicolon ( left parenthesis
: colon ) right parenthesis
’ single quote [ left bracket
‘ back quote ] right bracket
1 vertical bar ■C left brace
< left angle bracket > right brace
> right angle bracket comma

> G:= 0.5772156649\0153286060\
> 6512090082\4024310421\5933593992;

G : =  ,5772156649015328606065120900824024\ 
3104215933593992

Punctuation Marks Table 4.5 lists the punctuation marks.

; and : Use the semicolon and the colon to separate statements. The 
distinction between these marks is that a colon during an interactive 
session prevents the result of the statement from printing.

> f:=x->x~2;

/  :=  x —>• x 2

> p:=plot(f(x), x=0..10):

’ Enclosing an expression, or part of an expression, in a pair of single 
quotes delays evaluation of the expression (subexpression) by one 
level. See section 4.4.

> ’’sin’’(Pi);

’sin’ (7r)

> 7»;

sin(7r)
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> 7»;

0

‘ To form symbols, use the back quote character.
> limit(f(x), x=0, ‘right():

() The left and right parentheses group terms in an expression and group 
parameters in a function call.

> (a+b)*c; cos(Pi):

[] Use the left and right square brackets to form indexed (subscripted) 
names and to select components from aggregate objects such as arrays, 
rtables, tables, and lists. See section 4.4.

> a[l] : L: = [2,3,5,7] : L [3] :

[] and О  Use the left and right square brackets also to form lists, and 
the left and right braces to form sets. See section 4.4.

> L: = [2 ,3 ,5 ,2 ] :  S:= {2 ,3 ,5 ,2 } :

<> and I The left and right angle brackets in conjunction with the ver­
tical bar are used to construct rtable-based Matrices and Vectors.

> <<1,2,3> | <4,5,6»:

, Use the comma to form a sequence, to separate the arguments of a func­
tion call, and to separate the elements of a list or set. See section 4.4.

> sin(Pi), 0, limit(cos(xi)/xi, xi=infinity):



4.2 Escape Characters
The escape characters are ?, !, #, and \. Their special meanings are
outlined below.

? The question mark character, if it appears as the first non-blank char­
acter on a line, invokes Maple’s help facility. The words following ? 
on the same line determine the arguments to the help procedure. Use 
either or “/ ” to separate the words.

! The exclamation mark character, if it appears as the first non-blank 
character on a line, passes the remainder of the line as a command 
to the host operating system. This facility is not available on all plat­
forms.

# The hash mark character indicates that Maple is to treat the characters 
following it on the line as a comment. In other words, Maple ignores 
them. They have no effect on any calculation that Maple does.

\ Use the backslash character for continuation  of lines and for grouping 
of characters within a token. See section 4.1.

4.3 Statements
There are eight types of statements in Maple. They are the

1 . assignment statement

2 . selection statement

3. repetition statement

4. read statement

5. save statement

6 . empty statement

7. quit statement

8 . expressions

Section 4.4 discusses expressions at length.
Throughout the remainder of this section, expr stands for any expres­

sion, statseq stands for a sequence of statements separated by semicolons.
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The Assignment Statement
The syntax of the assignment statement is

name := expr;
name_l, name_n := expr_l, .., expr_n ;

This assigns, or sets, the value of the variable name to be the re­
sult of executing the expression expr. Multiple assignments can also be 
performed.

Names A name in Maple may be a symbol or an indexed name (sub­
script). Names stand for unknowns in formulae. They also serve as pro­
gramming variables. A name only becomes a programming variable when 
Maple assigns it a value. Otherwise, if Maple does not assign the name a 
value, then it remains an unknown.

> 2*y - 1;

2 y - l

> x := 3; x~2 + 1;

x '.= 3 

10

> a[l] л2; a[l] := 3; а[1]л2;

a\2

a\ :=  3 

9

> f[Cu] := 1.512;

feu  :=  1-512

To define a function, use the arrow notation , ->.
> phi := t -> t~2;

ф := t —>• t2



Note that the following does not define a function; instead an entry 
is created in the remember table for phi. See section 2.5.

> phi(t) := t~2;

0 ( t )  : =  t 2

Section 5.1 contains more on how to define functions.

Indexed Names Another form of a name in Maple is the indexed name 
or subscripted name, which has the form

паше [ sequence ]

Note that since an indexed name is itself a valid name, you can add 
a succession of subscripts.

> A[1 , 2 ] ;

^1,2

> A [i, 3* j -1] ;

A i , 3 j - 1

> b[l] [1] , data[Cu,gold] [1] ;

&H, datacu, goldi

The use of the indexed name A [1,2] does not imply that A is an array, 
as in some languages. The statement

> a := A [1,2] + A [2,1] - A [1,1] *A [2,2] ;

& :=  A-l, 2 +  4̂-2,1 — -̂1,1 Л-2, 2

forms a formula in the four indexed names. (However, if A does evaluate 
to an array or table, then A [1,1] refers to the (1,1) element of the array 
or table.)
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Table 4.6 Maple Concatenation Operator

V I I 5 p  || " n " a  I I ( 2 * i ) V  || ( 1 . . n ) r  I I i  I I j

The Concatenation Operator Generally, you can form a name by using 
the concatenation  operator in one of the following three forms.

name 1 1 natural
name 1 1 string
name 1 1 ( expression )

Since a name can appear on the left-hand side, Maple allows a suc­
cession of concatenations. Some examples of the use of the concatenation 
operator for name formation are given in Table 4.6.

The concatenation operator is a binary operator which requires a 
name or a string as its left operand. Although Maple usually evaluates 
expressions from left to right, it evaluates concatenations from right to 
left. Maple evaluates the right-most operand, then concatenates to the left 
operand. If it evaluates the right operand to an integer, string or name, 
then the result of the concatenation is a string or name (depending on the 
type of the left-most operand). If it evaluates the right operand to some 
other type of object, say a formula, then the result of the operation is an 
unevaluated concatenated object.

>  p  II n ;

pn

> " p "  I I n ;

“pn”

>  n  : =  4 :  p  || n ;

p4

>  p  I I ( 2 * n + l ) ;

p9



> p I I (2*m+l);

p\\(2m +  1 )

If the right hand expression is a sequence or a range and the operands 
of the range are integers or character strings, then Maple creates a se­
quence of names.

> x || (a, b, 4, 67);

xa, xb, x4 , x67

> x || (1..5);

rp 7 Гр v) rp V  rp J  rp К 
tv  -L  ̂ t i/ / v   ̂ t i/ L/  ̂ t i/  ̂ t i/ L/

> X || ("a".."g");

Ха, X6,  Xc,  Xd,  Xe,  X / ,  X#

If more than one range appears, it composes the extended sequence 
of names.

> x || (1..2) || (1..3);

x l l ,  x l 2, xl3, x21, x23

Maple never fully evaluates the left-most object, but rather evaluates 
it to a name. Concatenations can also be formed with the cat command.

c a t ( sequence )

Note that all the arguments of the cat command are evaluated nor­
mally (as for any other function call); therefore

> cat( "a", "b", "c" );

“abc”
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is equivalent to
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> "" I I a I I b I I с;

“abc”

Protected Names Many names in Maple have a predefined meaning, 
and you cannot directly assign a value to them. For example, the names 
of built-in functions such as sin, the sine function, utility operations such 
as degree, which computes the degree of a polynomial, commands such 
as diff for differentiation, and type names like integer and list, are 
all protected names. When the user attempts to assign to any of these 
names, an error occurs.

> list : = [1,2];
Error, attempting to assign to ‘list' which is
protected

The system protects these names from accidental assignment. It is 
possible to assign to these names by first unprotecting them as follows.

> unprotect(sin);
> sin := "a sin indeed";

sin :=  “a sin indeed”

However, now the areas of Maple that rely on the sine function will 
not work properly.

> plot( 1, 0..2*Pi, coords=polar );

Plotting error, empty plot

On the other hand, to write programs in which you want to prevent 
a user from assigning to certain names, use the protect command.

> mysqr := x -> x~2;

mysqr :=  x x 2

> protect( mysqr );
> mysqr := 9;
Error, attempting to assign to ‘mysqr‘ which is
protected
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Unassignment: Clearing a Name
When names do not carry assigned values they act as unknowns. When 
assigned values, they act as variables. It is often desirable to unassign 
(or clear) a name which previously carried an assigned value, so that you 
can use the name as an unknown again. The way to do this in Maple is 
to assign the name to be itself. Maple understands this to mean clear 
the name. The command

evaln(name)

evaluates name to a name (as opposed to evaluating name to its value as 
in other function calls). You can thus unassign a name as follows.

> a := evaln(a);

> i := 4;

а :=  а

i :=  4

> a[i] := evaln(a[i]);

(24 :=  a4

> a || i := evaln(a I I i);

a4 :=  a4

In the special case where name is a string you may also unassign a vari­
able by delaying evaluation of the right-hand side with single quotes ( ’ ). 
See section 4.4.

> a : = ’a ’ :

а :=  а
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Related Functions You can use the assigned command to test if a name 
has an assigned value.

> assigned(a);

false

The assign command assigns a variable.
> assign( a=b );
> assigned(a);

true

> a;

Maple normally evaluates all the arguments of assign. Therefore, 
because there was the previous assignment, assign(a=b), Maple assigns 
b the value 2  here.

> assign( a=2 );
> b;

One level evaluation of a reveals that a still has the value b.
> eval( a, 1 );

Changing the value of a does not affect the value of b.
> a := 3;

a :=  3

> b;

2



Often, applications of the assign command are to a set or list of 
equations.

> eqnl := x + у = 2:
> eqn.2 := x - у = 3:
> sol := solve( {eqnl, eqn2}, {x, у} );

sol  : = { y  =  ^ , x =  5 }

Maple assigns the variables x and у according to the set sol of equa­
tions.

> assign(sol);
> x;

5
2

> assigned(x);

true

It is recommended that you not assign values to expressions like f (x). 
See section 2.5 for details.

The Selection Statement
The selection or conditional statement has four forms. The syntax of the 
first two forms is

if expr then statseq 
end if; 

if expr then statseql 
else statseq2 

end if;
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Maple executes the selection statement as follows. It evaluates the ex­
pression in the if clause (expr). If the result is the Boolean value true, 
then Maple executes the statement sequence in the then clause. If the 
result is the Boolean value false or FAIL, then Maple executes the state­
ments in the else clause.
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> x := -2:
> if x<0 then 0 else 1 end if;

0

The expr must evaluate to one of the Boolean values true, false, or 
FAIL; see section 4.4.

> if x then 0 else 1 end if;
Error, invalid boolean expression

Omit the else clause if you do not want to include an alternative 
course of action when the condition is false.

> if x>0 then x := x-1 end if;
> x;

-2

The selection statement may be nested, that is, the statement se­
quence in the then clause or else clause may be any statement, including 
an if statement.

Compute the sign of a number.
> if x > 1 then 1
> else if x=0 then 0 else -1 end if
> end if;

The following example demonstrates a use of FAIL.
> r := FAIL:
> if r then
> print(1)
> else
> if not r then
> print(0)
> else
> print(-1)
> end if
> end if;

-1



If Maple has many cases to consider, the use of nested if statements 
becomes messy and unreadable. Maple provides the following two alter­
natives.

if expr  then statseq
elif expr then statseq 

end if;

if expr  then statseq
elif expr  then statseq 
else statseq 

end if;
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The elif expr  then statseq construct may appear more than 
once.

Here you can implement the sign function by using an elif clause.
> x := -2;

x  :=  — 2

> if x<0 then -1
> elif x=0 then 0
> else 1
> end if;

- 1

In this form, you can view the selection statement as a case statement 
with the optional else clause as the default case. For example, if you are 
writing a program that accepts a parameter n with four possible values,
0,1, 2, 3, then you might write

> n := 5;

n :=  5

> if n=0 then 0
> elif n=l then 1/2
> elif n=2 then sqrt(2)/2
> elif n=3 then sqrt(3)/2
> else error "bad argument: °/0l", n;
> end if;
Error, bad argument: 5
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The Repetition Statement
The most general repetition statement in Maple is the for loop. However, 
you can replace many loops with more efficient and concise special forms. 
See section 4.5.

The for loop has two forms: the for-from loop and the for-in loop.

The for-from Loop A  typical for-from loop has the following form.
> for i from 2 to 5 do i~2 end do;

4

9

16

25

This sequence of results arose as follows. First, Maple assigns i the 
value 2 . Since 2  is less than 5, Maple executes the statement between the 
do and the end do. Then it increments i by 1 to 3, tests again, the loop 
executes, and so on until i is (strictly) larger than 5. In this case the final 
value of i is

> i;

6

The syntax of the for-from loop is

for name from expr  by expr  to expr  
while expr  do statseq 
end do;

You may omit any of the clauses for name, from ex p r , by ex p r , to
ex p r , or while expr. You may omit the sequence of statements statseq. 
Except for the for clause, which must always appear first, the other 
clauses may appear in any order. If you omit a clause, it has a default 
value, which is shown in Table 4.7.

You could also write the previous example as the following.



Table 4.7 Clauses and Their Default Values
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Clause D efau lt Value
fo r
from
by
to
while

dummy variable 
1 

1

in f in it y
true

> for i from 2 by 1 to 5 while true do i~2 end do:

If the by clause is negative, the fo r  loop counts downward.
> for i from 5 to 2 by -1 do i~2 end do;

25

16

9

4

To find the first prime number greater than 107 you could write
> for i from 1СГ7 while not isprime(i) do end do;

Now i  is the first prime larger than 107.

> i;

10000019

Notice that the body of the loop is empty. Maple allows for the empty 
statement. Try improving the program by considering only the odd num­
bers.

> for i from 1СГ7+1 by 2 while not isprime(i) do end do;
> i;

10000019

Here is an example of repeating an action n times. Throw a die five 
times.
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> die := rand(1..6):
> to 5 do dieO; end do;

4

3

4

6

5

Omitting all clauses produces an infinite loop, 

do statseq end do;

This is equivalent to

for name from 1 by 1 to infinity 
while true do statseq 
end do;

Such a loop statement will loop forever unless the break construct 
(see section 4.3) or a return statement (see section 5.5) terminates it, or 
if Maple encounters the quit statement, or if an error occurs.

The while Loop The while loop is a for loop with all its clauses omit­
ted except the while clause, that is

while expr do statseq end do;

The expression expr is called the while condition. It must be a 
Boolean valued expression, that is, it must evaluate to true, false, or 
FAIL. For example,

> x := 256;

ж :=  256

> while x>l do x := x/4 end do;



x :=  64

x  :=  16 

x  :=  4 

ж :=  1

The while loop works as follows. First, Maple evaluates the while 
condition. If it evaluates to true, Maple executes the body of the loop. 
This loop repeats until the while condition evaluates to false or FAIL. 
Note that Maple evaluates the while condition before it executes the 
body of the loop. An error occurs if the while condition does not evaluate 
to one of true, false, or FAIL.

> x := 1/2:
> while x>l do x := x/2 end do;
> x;

1

2

> while x do x := x/2 end do;
Error, invalid boolean expression

The f or-in Loop Suppose you have a list of integers L and want to find 
the integers in the list that are at most 7. You could write

> L := [7,2,5,8,7,9];

L : =  [7, 2, 5, 8, 7, 9]

> for i in L do
> if i <= 7 then print(i) end if;
> end do;

7

2

5
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This example cycles through the components of an object. The object, 
this time, is a list. But in other examples, the object might be a set, a sum 
of terms, a product of factors, or the characters of a string. The syntax 
for the for-in loop is

for name in expr 
while expr do statseq 
end do;

The loop index (the name specified in the for clause of the statement) 
takes on the operands of the first expr. See section 4.4 for a description 
of the operands associated with each data type. You can test the value 
of the index in the optional while clause, and, of course, the value of the 
index is available when you execute the statseq. Note that the value of 
the index variable name remains assigned at the end of the loop if the 
object contains at least one operand.

The break and next Commands Within the Maple language reside 
two additional loop control constructs: break and next. When Maple 
evaluates the special name break, the result is to exit from the innermost 
repetition statement within which it occurs. Execution then proceeds with 
the first statement following this repetition statement.

> L := [2, 5, 7, 8, 9] ;

L :=  [2, 5, 7, 8 , 9]

> for i in L do
> print(i);
> if i=7 then break end if;
> end do;

2

5

7

When Maple evaluates the special name next, it then proceeds im­
mediately to the next iteration. For example, suppose you want to skip 
over the elements in a list that are equal to 7.

> L := [7,2,5,8,7,9];
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L :=  [7, 2, 5, 8 , 7, 9]

>
>
>
>

for i in L do
if i=7 then next end if; 
print(i); 

end do;

2

5

8
9

An error occurs if Maple evaluates the names break or next in a 
context other than within a repetition statement.

> next;
Error, break or next not in loop

The read and save Statements
The file system is an important part of Maple. The user may interact with 
the file system either explicitly by using the read and save statements, or 
implicitly by executing a command that automatically loads information 
from a file. For example, the computation of an integral may load many 
commands from the Maple library. The read and save statements read 
and save Maple data and programs to and from files. See also Chapter 10.

Saving a Maple Session The save statement allows you to save the 
values of a sequence of variables. It takes the general form

save nameseq, filename;

Here nameseq must be a sequence of names of assigned variables. 
Maple saves each variable name and its value in an assignment statement 
in the file filename. Maple evaluates each argument, except the last one, 
to a name. It evaluates the last argument normally.

Clear Maple by using the restart command and assign three new 
values.
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> restart:
> rO := x~3:
> rl := diff(rO,x):
> r2 := diff(rl,x):

The next statement saves rO, r l  and r 2  in the ASCII file my_f i le :
> save rO, rl, r2, "my_file":

This is now the contents of the file my_f i le .

rO := x~3; 
r l  := 3*x~2; 
r 2  := 6 *x;

The expression filename must evaluate to a name which specifies the 
name of a file. You can read it back into Maple later using the read 
command.

The read Statement The read statement 

read filenam e  ;

reads a file into the Maple session. The filename must evaluate to the 
name of the file. The file must be either a Maple internal format file (a 
.m file), or a text file.

If the file is a plain text file, then it must contain a sequence of valid 
Maple statements, separated by semicolons or colons. The effect of reading 
the file is identical to entering the same sequence of statements interac­
tively. The system displays the result of executing each statement that it 
reads in from the file.

4.4 Expressions
Expressions are the fundamental entities in the Maple language. The var­
ious types of expressions include constants, names of variables and un­
knowns, formulae, Boolean expressions, series, and other data structures. 
Technically speaking, procedures are also valid expressions since you may 
use them wherever an expression is legal. Chapter 5 describes them sep­
arately.
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Table 4.8 Primitive Functions

type ( f ,  t )  
nops(f ) 
o p ( i , f )  
subsop(i=g, f )

tests if f  is of type t 
returns the number of operands of f  
selects the ith operand of f  
replaces the ith operand of f  with g

Expression Trees: Internal Representation
Consider the following formula.

> f := sin(x) + 2*cos(x)~2*sin(x) + 3;

/  :=  sin(x) +  2 cos(x ) 2 sin(x) +  3

To represent this formula, Maple builds an expression tree.

+

sin л 2

x /  \ 
cos 2

x

The first node of the expression tree labeled “+ ” is a sum. This in­
dicates the expression’s type. This expression has three branches corre­
sponding to the three terms in the sum. The nodes of each branch tell 
you each term’s type in the sum. And so on down the tree until you get 
to the leaves of the tree, which are names and integers in this example.

When programming with expressions, you need a way to determine 
what type of expression you have, how many operands or branches an 
expression has, and a way of selecting those operands. You also need a 
way of building new expressions, for example, by replacing one operand 
of an expression with a new value. Table 4.8 lists the primitive functions 
for doing this.

> type(f, ‘ + ‘ ) ;
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> type(f, ‘О ;

> nops(f);

> op(1, f) ;

> subsop(2=0, f) ;

true

false

sin (ж)

sin(x) +  3

By determining the type of an expression, the number of operands it 
has, and selecting each operand of the expression, you can systematically 
work all the way through an expression.

> t := op(2, f);

t :=  2  cos(x ) 2 sin(x)

> type(t, '*');

true

> nops(t);

> type(op(l,t), integer);

true

> type(op(2,t), ‘~‘) ;



true

> type(op(3,t), function);

true

The op command has several other useful forms. The first is

o p ( i  . . j ,  f )

which returns the sequence

o p ( i , f ) ,  o p ( i + l ,  f ) ,  op (j  —1 , f ) ,  o p ( j ,  f )

of operands of / .  Another short-form notation is,

op( [ i ,  j ,  k ] , f )

which gives the same result as

op(k,  o p ( j ,  o p ( i , f ) ) )

The last object in the list may also be a range

op( [ i ,  j , k l . .k 2 ] , f )

which returns the sequence

op (k l ,  o p ( i , f ) ) ,  op (k l+1, o p ( i , f ) ) ,  
op(k2 , o p ( i , f ) )

You may want to see the whole sequence of operands of an expression. 
You can do this with

o p ( f )

which is equivalent to o p ( l .  . n o p s ( f ) , f ) .  The special operand op (0 , f )  
generally returns the type of an expression. An exception occurs when f  
is a function, in which case it returns the name of the function.

> op(0, f);
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> op(1..3, f);

sin(x), 2 cos(x)2 sin(x), 3

> op(0, op(l,f)) ;

> op(0, op(2,f));

> op(0, op(3,f));

sm

Integer

Evaluation and Simplification Consider this example in detail.
> x := Pi/6:
> sin(x) + 2*cos(x)~2*sin(x) + 3;

17
T

What does Maple do when it executes the second command? Maple 
first reads and parses the input line. As it is parsing the input line it 
builds an expression tree to represent the value

sin(x) +  2 cos(x ) 2 sin(x) +  3.

Next it evaluates the expression tree, then simplifies the result. Evalu­
ation means substituting values for variables and invoking any functions. 
Here x  evaluates to 7r /6 . Hence, with these substitutions the expression 
is as follows.

sin(7r / 6 ) +  2 cos(7r / 6 ) 2 sin(7r / 6 ) +  3

Invoking the sin and cos functions, Maple obtains a new expression 
tree,

1/2 +  2 x ( 1  /2л/з)2 x 1/2 +  3.
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Table 4.9 Subtypes of Integers

negint negative integer
posint positive integer
nonnegint non-negative integer
nonposint non-positive integer
even even integer
odd odd integer
prime prime integer

Finally, Maple does the arithmetic in this expression tree to obtain 
the fraction 17/4. In the following example, evaluation occurs, but no 
simplification is possible.

> x : = 1;

x  :=  1

> sin(x) + 2*cos(x)~2*sin(x) + 3;

sin(l) +  2 cos(l ) 2 sin(l) +  3

We now present in detail every kind of expression, beginning with 
the constants. The presentation states how to input the expression, gives 
examples of how and where to use the expression, and the action of the 
type, nops, op, and subsop commands on the expression.

The numeric constants in Maple are integers, fractions, floating­
point (decimal) numbers, infinity, and undefined. The complex nu­
meric constants are the complex integers (Gaussian integers), complex 
rationale, and complex floating-point numbers. The full set of real and 
complex numeric constants is exactly what is recognized by type (. . . , 
complex(extended_numeric)).

The Types and Operands of Integers, Strings, Indexed Names, 
and Concatenations
The type of an integer is integer. The type command also understands 
the subtypes of integers listed in Table 4.9. The op and nops commands 
consider an integer to have only one operand, namely, the integer itself.

> x := 23;
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x :=  23

> op(0, x);

Integer

> op(x);

23

> type(x, prime);

true

The type of a string is string. A string also has only one operand; 
the string itself.

> s := "Is this a string?";

s :=  “Is this a string?”

> type(s, string);

true

> nops(s);

1

> op(s);

“Is this a string?”

The type of an indexed name is indexed. The operands of an indexed 
name are the indices or subscripts and the zeroth operand is the base 
name. The type command also understands the composite type name 
which Maple defines as either a string or an indexed name.

> x := A [1] [2,3] ;



x  :=  Ai.2 ,3
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> type(x, indexed);

true

> nops(x);

> op(x);

> op(0,x) ;

2, 3

Ал

> у: =7»;

У ■= M

> type(у, indexed);

true

> nops(у), op(0,у), op(у);

1 , A, 1

The type of an unevaluated concatenation is “ I I” . This type has two 
operands, the left-hand side expression and the right-hand side expres­
sion.

> с := p || (2*m + 1);

с :=  p\\(2m +  1 )

> type(c, ‘| Г ) ;
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true

> op(0, c);

> nops(c);

2

> op(c);

p, 2  m +  1

Fractions and Rational Numbers
A fraction  is input as

integer/natural

Maple does arithmetic with fractions and integers exactly. Maple al­
ways immediately simplifies a fraction so that the denominator is positive, 
and reduces the fraction to lowest terms by canceling out the greatest com­
mon divisor of the numerator and denominator.

> -30/12;

- 5

If the denominator is 1 after simplification of a fraction, Maple auto­
matically converts it to an integer. The type of a fraction is fraction. 
The type command also understands the composite type name rational, 
which is an integer or a fraction, that is, a rational number.

> x := 4/6;

2

> type(x,rational);
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true

A fraction has two operands, the numerator and denominator. In ad­
dition to the op command, you may use the commands numer and denom 
to extract the numerator and denominator of a fraction, respectively.

> op(1, x), op(2,x);

2, 3

> numer(x), denom(x);

2, 3

Floating-Point (Decimal) Numbers
An unsigned float has one of the following six forms:

natural.natural 
natural .
.natural
natural exponent 
natural.natural exponent 
.natural exponent

where the exponent suffix is the letter “e” or “E” followed by a signed 
integer with no spaces in the middle. A floating-point number is an 
unsigned_ float or a signed float (+unsigned_float or -unsigned_float 
indicates a signed float).

> 1 . 2 , - 2 .,  + .2 ;

1.2, - 2., .2

> 2e2, 1.2E+2, -.2e-2;

2 0 0 ., 1 2 0 ., - . 0 0 2

Note that
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> 1 . e2 ;

syntax error, missing operator or c;c:
l.e2;

is not valid, and that spaces are significant.
> .2e -1 <> .2e-l;

- .8  ф .02

The type of a floating-point number is float. The type command 
also understands the composite types numeric, which recognizes integer, 
fraction and float, and extended_numeric, which recognizes integer, 
fraction, float, infinity, and undefined. For information about the 
full suite of numeric types and subtypes, see ?numeric_type.

A floating-point number has two parts, the mantissa (or significand) m 
and the exponent e, representing the number m x 10e. The decimal point 
is taken to be after the rightmost digit of m. To get access to the parts 
of a floating-point number, use the Maple commmands SFloatMantissa 
and SFloatExponent.

> x := 231.3;

ж :=  231.3

> SFloatMantissa(x);

2313

> SFloatExponent(x);

- 1

The Float command can also be used to construct floating-point num­
bers in Maple:
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Float(m, e)

This constructs the floating-point number m x 10e. Again, the mantissa 
(or significant!) is m, the exponent is e, and the decimal point is to the 
right of m.

The mantissa, m, is a Maple integer, and hence it is subject to the 
same restrictions in terms of number of digits as any Maple integer, which 
is machine dependent, but is always at least 268 435 448. The exponent, 
e, is subject to a smaller restriction, which is again machine dependent 
but is always at least 2 147 483 646. The exact values of these limits can 
be obtained from the Maple_f loats command.

You can also input a floating-point number m x 10e by simply forming 
the literal expression m * 1 0 ~e. However this is less efficient, particularly 
for large exponents.

Arithmetic with Floating-Point Numbers For arithmetic operations 
and the standard mathematical functions, if one of the operands (or argu­
ments) is a floating-point number or evaluates to a floating-point number, 
then floating-point arithmetic takes place automatically. The global name 
Digits, which has 1 0  as its default, determines the number of digits which 
Maple uses when calculating with floating-point numbers (the number of 
digits in the significand).

> x : = 2 . 3 :  y : = 3 . 7 :
> 1 - x/y;

.3783783784

In general, you may use the evalf command to force the evaluation 
of a non-floating-point expression to a floating-point expression where 
possible.

> x := ln(2);

x  :=  ln(2 )

> evalf(x);

.6931471806

An optional second argument to the evalf command specifies the 
precision at which Maple is to do this evaluation.
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Table 4.10 Types of Complex Numbers

complex(integer) 
complex(rational) 
complex(float) 
complex(numeric)

both a and b are integers, possibly 0  

both a and b are rationale 
both a and b are floating-point constants 
any of the above

> evalf[15](x);

.693147180559945

Complex Numerical Constants
By default, I denotes the complex unit y/—l in Maple. In fact, all of the 
following are equivalent.

> sqrt(-l), I, (-1)~(1/2);

/ ,  / ,  I

A complex number a +  bi is input as the sum a + b*I or as 
Complex (a, b) in Maple. Maple uses a special representation for complex 
numeric constants, such as 1 .3 + 4.2*1. Note that in an expression such 
as x + y*i, where x and у are symbols, Maple does not assume that x is 
the real part and у is the imaginary part. Use the commands Re and Im 
to select the real and imaginary parts, respectively.

> x := 2+3*1;

x :=  2 +  3 1

> Re(x), Im(x);

2, 3

The type of a complex number is complex (numeric). This means 
that the real and imaginary parts are of type numeric, that is, integers, 
fractions, or floating-point numbers. Other useful type names are listed 
in Table 4.10.

Arithmetic with complex numbers is done automatically.



> x := (1 + I); у := 2.0 - I;

x  :=  1 +  I  

у :=  2 . 0  — 1.1

> x+y;

3.0 +  0 .1

Maple also knows how to evaluate elementary functions and many 
special functions over the complex numbers. It does this automatically if 
a and b are numeric constants and one of a or b is a decimal number.

> exp(2+3*I), exp(2+3.0*1);

е(2+з / ) 5 _7 .3 i5ii0095 +  1.042743656/

If the arguments are not complex floating-point constants, you can 
expand the expression in some cases into the form a +  bi, where a and b 
are real, using the eva lc command.

Here the result is not in the form a +  6 i since a is not of type numeric.
> 1/(a - I);

1

a — I

> evalc(%);

a I
a2 +  1 a2 +  1

If you prefer to use another letter, say j ,  for the imaginary unit, use 
the in te r fa ce  command as follows.

> interface(imaginaryunit = j);
> solve( {z~2=-l}, {z} );

{z  =  j } ,  {z  =  - j }

The following command reinstates I as the imaginary unit.
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> interface(imaginaryunit = I);
> solve( {z~2=-l}, {z} );

{z  =  / } ,  {z  =  - 1 }

Labels
A label in Maple has the form 

"/natural

that is, the unary operator °/0 followed by a natural integer. The per­
centage sign takes on double duty, as a label and as the ditto operator, 
which represents the result of the last one, two, or three commands.

A label is only valid after Maple’s pretty-printer introduces it. The 
purpose is to allow the naming (labeling) of common subexpressions, 
which serves to decrease the size of the printed output, making it more 
comprehensible. After the pretty-printer introduces it, you may use a label 
just like an assigned name in Maple.

> solve( {x~3-y~3=2, x~2+y~2=l}, {x, y} );

{y  =  %1, x =  - \  %1 (—4%13 -  3 -  %12 +  6%1 +  2%14)}

%1 :=  RootOf(3 _ Z 2 +  3 -  3 _ Z 4 +  2  _ Z 6 +  4 _ Z 3)

After you obtain the above printout, the label °/01 is an assigned name 
and its value is the RootOf expression shown.

> 7.1;

RootOf(3 _ Z 2 +  3 - 3  _ Z 4 +  2 _ Z 6 +  4 _ Z 3)

Two options are available for adjusting this facility. The option 

in te r fa ce (la b e lw id th = n )

specifies that Maple should not display expressions less than n characters 
wide (approximately) as labels. The default is 20 characters. You may 
turn off this facility entirely using

> interface(labelling=false);
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Sequences
A sequence is an expression of the form

expression_1, expression_2, expression_n

The comma operator joins expressions into a sequence. It has the 
lowest precedence of all operators except assignment. A key property of 
sequences is that if any of expression_i themselves are sequences, this 
flattens out the result into a single unnested sequence.

> a := А, В, C;

a :=  А, В , С

> a,b,a;

А, В, C, 6 , А, В, С

A zero-length sequence is syntactically valid. It arises, for example, in 
the context of forming an empty list, an empty set, a function call with 
no parameters, or an indexed name with no subscripts. Maple initially 
assigns the special name NULL to the zero-length sequence, and you may 
use it whenever necessary.

You cannot use the type command to test the type of a sequence, nor 
can you use the nops or op commands to count the number of operands 
in a sequence or select them. Their use is not possible because a sequence 
becomes the arguments to these commands.

> s := x,y,z;

s :=  x, y, z

The command
> nops(s);
Error, wrong number (or type) of parameters in function 
nops

is the same as the command
> nops(x,у,z);



4.4 Expressions • 155

Error, wrong number (or type) of parameters in function
nops

Here the arguments to the nops command are x , y, z, which constitute 
too many arguments. If you desire to count the number of operands in a 
sequence or select an operand from a sequence, you should first put the 
sequence in a list as follows

> nops ([s]);

3

Alternatively, you can use the selection operation discussed in sec­
tion 4.4 to select the operands of a sequence.

Please note that many Maple commands return sequences. You may 
wish to put sequences into a list or set data structure. For example, when 
the arguments to the solve command are not sets, it returns a sequence 
of values if it finds multiple solutions.

> s := solve(x~4-2*x~3-x~2+4*x-2, x);

s :=  1, 1, V2, -л/2

The elements of the above sequence are values, not equations, because 
you did not use sets in the call to solve. Putting the solutions in a set 
removes duplicates.

> s := {s>;

s := {1, V2, - V 2 }

The seq Command The seq command creates sequences, a key tool for 
programming. Section 4.5 describes it in detail. The syntax takes either 
of the following general forms.

seq(f, i = a .. b) 
seq(f, i = X)

Here f, a, b, and X  are expressions and i is a name. In the first form, 
the expressions a and b must evaluate to two numerical constants or two 
single character strings. The result is the sequence produced by evaluating



f  after successively assigning the index i the values a, a + 1 , . . . ,  b, (or up 
to the last value not exceeding b). If the value a is greater than b then 
the result is the NULL sequence.

> seq(i~2,i=l..4);

1, 4, 9, 16

> seq(i,i="d".."g");

U  5 5  U . C 5 5  «  55CL 5 5 1 5 g

In the second form, seq(f, i = X ) , the result is the sequence produced 
by evaluating f  after successively assigning the index i the operands of the 
expression X  (or the individual characters, if X  is a string). Section 4.4 
states the operands of a general expression.

> a := x~3+3*x~2+3*x+l;

а := x 3 +  3 x 2 +  3 x +  1

> seq(i,i=a);

x 3, 3 x 2, 3 x , 1

> seq(degree(i,x), i=a);

3, 2, 1, 0

> seq(i,i="maple");

U  5 5  “ o 5 5  “ r \ 5 5  “ l 55111 , Сл , , 1 , \J

The $ Operator The sequence operator, $, also forms sequences. The 
primary purpose of $ is to represent a symbolic sequence such as x$n as 
in the following examples.

> diff(ln(x), x$n);
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diff(ln(x), x $ n)
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> seq( diff(ln(x), x$n), n=1..5);

1 1 2 6  24
5 9 * Q * ~X') Frv> ry> О /у»4: /y»U

tv IV IV IV IV

The general syntax of the $ operator is

f  $ i = a . . b 
f  $ n 
$ a . . b

where f, a, b, and n are expressions and i must evaluate to a name. In 
general, this operator is less efficient than seq and hence the seq command 
is preferred for programming.

In the first form, Maple creates a sequence by substituting the values 
a, a + 1 , . . . ,  b for i in f.

The second form f  $n is a shorthand notation for

f  $ dummy = 1 . .  n

where dummy is a dummy index variable. If the value of n is an integer, 
the result of the second form is the sequence consisting of the value of f  
repeated n times.

> x$3;

rv> rv> rv> 
tv ̂ tv ̂ tv

The third form $a. . b is a shorthand notation for

dummy $ dummy = a . . b

If the values of a and b are numerical constants, this form is short for 
creating a numerical sequence a, a + 1 , . . . ,  b (or up to the last value not 
exceeding b).

> $0..4;

0, 1, 2, 3, 4

The $ command differs from the seq command in that a and b do 
not need to evaluate to numbers. However, when a and b do evaluate to 
specific values, seq is more efficient than $. See section 4.5.
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Sets and Lists
A set is an expression of the form 

{. sequence У

and a list is an expression of the form

[ sequence ]

Note that a sequence may be empty, so О  represents the empty set 
and [] the empty list. A set is an unordered sequence of unique ex­
pressions. Maple removes duplicates and reorders the terms in a manner 
convenient for internal storage. A list is an ordered sequence of expres­
sions with the order of the expressions specified by the user. Maple retains 
duplicate entries in a list.

> {y[l] ,x,x[l] ,y[1]};

{ x , 2/i, x\}

> [у[1] ,x,x[l] ,y[l]] ;

[2/1, z i, У1]

A set is an expression of type set. Similarly, a list is an expression 
of type list. The operands in a list or set are the elements in the set or 
list. Select the elements of a list or set using either the op command or a 
subscript.

> t := [1, x, y, x-y] ;

t :=  [1 , x , y , x -  y]

> op(2,t);

x

> t [2] ;

x
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Maple’s ordering for sets is the order in which it stores the expressions 
in memory. The user should not make assumptions about this ordering. 
For example, in a different Maple session, the set above might appear in 
the ordering { y [ l ]  , x, x [ l ]> .  You can sort elements of a list by using 
the sort command.

Selection Operation The selection operation, [] , selects components 
from an aggregate object. The aggregate objects include tables, arrays, 
sequences, lists, and sets. The syntax for the selection operation is

name [ sequence ]

If name evaluates to a table or array, Maple returns the table (array) 
entry.

> A := array([w,x,у,z]);

A :=  [w, x, y, z}

> A [2] ;

x

If name evaluates to a list, set, or sequence, and sequence evaluates 
to an integer, a range, or NULL, Maple performs a selection operation.

If sequence evaluates to an integer i, then Maple returns the ith 
operand of the set, list, or sequence. If sequence evaluates to a range, 
then Maple returns a set, list, or sequence containing the operands of the 
aggregate object as the range specifies. If sequence evaluates to NULL, then 
Maple returns a sequence containing all of the operands of the aggregate 
object.

> s := x,y,z:
> L := [s,s] ;

L :=  [ж, у, z, x , у, z]

> S := {s,s>;

S := {z, x, y j
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> S [2] ;

x

> L [2. .3] ;

[y, A

> S [] ;

2, X, У

Negative integers count operands from the right.
> L := [t,u,v,w,x,y,z] ;

L :=  [t, u, v , w, x , y, z]

> L[-3] ;

x

> L [-3..-2];

[x, У]

You can also use se lec t ,  remove, and selectrem ove to select ele­
ments from a list or set. See section 4.5.

Functions
A function call in Maple takes the form

f ( sequence )

Often f  will be a name, that is, the name of the function.
> s in (x ) ;

sin(x)
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> min(2,3,1);

1

> g();

> a[l] (x) ;

g()

a\(x)

Maple executes a function call as follows. First, it evaluates f  (typically 
yielding a procedure). Next, Maple evaluates the operands of sequence 
(the arguments) from left to right. (If any of the arguments evaluate to 
a sequence, Maple flattens the sequence of evaluated arguments into one 
sequence.) If f  evaluated to a procedure, Maple invokes it on the argument 
sequence. Chapter 5 discusses this in detail.

> x := 1:
> f(x);

f(i)

> s := 2,3;

s :=  2, 3

> f(s, x) ;

> f := g;

f(2, 3, 1)

/  :=  9

> f (s , x) ;

g(2, 3, 1)
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> g := (a,b,c) -> a+b+c;

g :=  (a, b, c) —>• a +  b +  с

> f(s,x);

6

A function object’s type is function . The operands are the argu­
ments. The zeroth operand is the name of the function.

> m := min(x,y,x,z);

m :=  min(l, y, z)

> op(0,m);

min

> op(m);

1, У, z

> type(m,function);

true

> f := n!;

/  :=  n\

> type(f, function);

true

> op(0, f);

factorial

> op(f);



4.4 Expressions • 163

In general, the function name f  may be one of the following.

• name

• procedure definition

• integer

• float

• parenthesized algebraic expression

• function

Allowing f  to be a procedure definition allows you to write, for exam­
ple

> proc(t) t*(l-t) end proc (t~2);

t2 ( 1  -  t2)

instead of
> h := proc(t) t*(l-t) end proc;

h := proc(t) t * (1 — t) end proc

> h(t~2);

t2 ( 1  -  t2)

If f  is an integer or a float, Maple treats f  as a constant operator. 
That is f  (x) returns f.

> 2(x);

2

The following rules define the meaning of a parenthesized algebraic 
expression.

> (f + g)(x), (f - g)(x), (-f)(x), (f@g)(x);

n



f(V) +  g(x), f(x) -  g(x), - f ( x ) ,  f(g(x))
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@ denotes functional composition; that is, f  @g denotes f o g .  These 
rules together with the previous rule mean that

> (f@g + f~2*g + 1)(x);

f(g(z)) +  i(x )2 g{x) +  1

Notice that @@ denotes the corresponding exponentiation. That is, 
f  @@n denotes which means /  composed with itself n times.

> (fQQ3)(x);

> expand(%);

f(f(f(z)))

Finally, f  may be a function, as in
> cos(O);

1

> f (g) (0) ;

% ) ( o)

> D(cos)(0);

For more information on how to define a function, see chapter 5.
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Table 4.11 The Arithmetic Operators

+ addition
- subtraction
* multiplication

non-commutative multiplication
/ division

exponentiation

The Arithmetic Operators
Table 4.11 contains Maple’s six arithmetic operators. You may use all 
these items as binary operators. You may also use the operators + and -  
as prefix operators representing unary plus and unary minus.

You can find the types and operands of the arithmetic operations 
listed below.

• The type of a sum or difference is +.

• The type of a product or quotient is * and the type of a power is

• The operands of the sum x — у are the terms x  and —y.

• The operands of the product xy2 / z are factors x , y2, and z_1.

• The operands of the power x a are the base x  and the exponent a.

> whattype(x-y);

+

> whattype(x~y);

Arithmetic Maple always computes the five arithmetic operations x +  y, 
x — y, x x y ,  x/y , and x n, where n is an integer, if x  and у are numbers. If 
the operands are floating-point numbers, Maple performs the arithmetic 
computation in the floating-point environment.

> 2 + 3 ,  6/4, 1.2/7, (2 + I)/(2 - 2*1);

5, |  .1714285714, \  +  \ l



> 3~(1.2), I~(1.0 - I);

3.737192819, 0. +  4.8104773811

The only other simplification done for numerical constants is reduc­
tion of fractional powers of integers and fractions. For integers n, m  and 
fraction b,

(n /m )b —>• (nb) /{ m b).

For integers n, q, r, d and fraction b =  q +  r /d  with 0 < r <  d,

n b =  n q + r /d  n q x  n r/d_

> 2"(3/2), (-2)~(7/3);

2 л/2, 4 ( -2 ) ( 1/ 3)

Automatic Simplifications Maple automatically does these simplifica­
tions

> x - x, x + x, x + 0, x*x, х/х, x*l, хл0, хл1;

0, 2 x : x : x 2: 1, x, 1, ж

for a symbol ж, or an arbitrary expression. But these simplifications are 
not valid for all x. Some exceptions which Maple catches are

> infinity - infinity;

undefined

> infinity/infinity;

undefined
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> 0/0 ;

Error, numeric exception: division by zero
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In the following, a, 6, с denote numerical constants and x, y, z denote 
general symbolic expressions. Maple understands that addition and multi­
plication are associative and commutative, and so simplifies the following.

ax +  bx —>• (a +  b)x

a v b _ r̂ a+b
IV Л  IV  * IV

а(ж +  у) —>• аж +  а?/

The first two simplifications mean that Maple adds like terms in poly­
nomials automatically. The third means that Maple distributes numerical 
constants (integers, fractions, and floats) over sums, but does not do the 
same for non-numerical constants.

> 2*x + 3*x, x*y*x~2, 2*(x + y), z*(x + y);

5 x , x 3 y, 2 x +  2 y, z (x +  y)

The most difficult and controversial simplifications have to do with 
simplying powers xy for non-integer exponents y.

Simplification of Repeated Exponentiation In general, Maple does not 
do the simplification (xy)z —>• x^yz  ̂ automatically because this procedure 
does not always provide an accurate answer. For example, letting у =  2 
and z =  1/ 2, the first simplification would imply that \ [х *  = x, which 
is not necessarily true. Maple only does the first transformation above if 
it is provably correct for all complex x with the possible exception of a 
finite number of values, such as, 0 and oc. Maple does (x a)b —>• x ab if b is 
an integer, — 1 < а < 1, or ж is a positive real constant.

> (х~(3/5)Г(1/2), (х~(5/3)Г(1/2);

*(3/Ю),

> (2~(5/3)Г(1/2), (х~(-1)Г(1/2);

2(5/8), Д  
V х

Maple does not simplify аъсъ —>• (ac)b automatically, even if the answer 
is correct.
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> 2~(l/2)+3~(l/2)+2~(l/2)*3~(l/2);

V2 + V3 + V2V3

The reason is that combining \[2\[b to \/б would introduce a third 
unique square root. Calculating with roots is, in general, difficult and 
expensive, so Maple is careful not to create new roots. You may use the 
combine command to combine roots if you desire.

Non-Commutative Multiplication
The non-commutative multiplication operator &* acts as an inert operator 
(for example, the neutral operators described in section 4.4), but the 
parser understands its binding strength to be equivalent to the binding 
strength of * and /.

The evalm command in the Maple Library interprets &* as the table- 
based matrix multiplication operator.1 The evalm command also under­
stands the form &*() as a generic matrix identity.

> with(LinearAlgebra):
> A := matrix(2,2,[a,b,c,d] );

> evalm( A &* &*() ) ;

a b
с d

> В := matrix( 2 , 2 , [e , f ,g ,h ] );

В  : = e /  
9 h

> evalm( A &* В -  В &* A ) ;

bg — c f  a f  +  bh — eb — f d
ce +  dg — ga — hc c f  — bg

1The Maple library interprets . (dot) as the rtable-based Matrix multiplication 
operator.
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The Composition Operators
The composition operators are 0 and @0. The 0 operator represents func­
tion composition, that is, f  @g in Maple denotes f o g .

> (f@g)(x) ;

f(g(z))

> (sin@cos)(Pi/2);

0

The @0 operator is the corresponding exponentiation operator repre­
senting repeated functional composition, that is, f ^  is denoted f@@n in 
Maple.

> (fQQ2)(x);

( / (2})(*)

> expand(%);

f(f(z))

> (DQQn)(f);

(D(n}) ( / )

Usually f n(x) denotes composition; for example, D n denotes the dif­
ferential operator composed n times. Also sin-1 (x) denotes the inverse 
of the sine function, that is, composition to the power —1. But, some­
times mathematicians use f n(x) to denote ordinary powering, for exam­
ple, sin2 (x) is the square of sine of x. Maple always uses f n(x) to denote 
repeated composition, and f ( x ) n to denote powering.

> sin(x)~2, (sin@@2)(x), sin(x)~(-l), (sin@@(-l))(x);

sin(x)2, (s in ^ fx ), ----— , arcsin(x)
sin(x)
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The Ditto Operators
The value of the nullary operator, % is the most recent expression. The 
first and second expressions preceding the most recent are the values of 
the nullary operators 0/00/0 and %%%, respectively. The most common use of 
these operators is in an interactive Maple session where they refer to the 
previously computed results. The sequence of expressions defining these 
three nullary operators is the last three non-NULL values generated in the 
Maple session.

The Factorial Operator
Maple uses the unary operator ! as a postfix operator which denotes the 
factorial function of its operand n. The input n ! is shorthand for the 
functional form factorial(n ).

> 0!, 5!;

1, 120

For negative integers, the factorial returns an error.
> ( -2) ! ;
Error, numeric exception: division by zero

For floating-point n, generalized factorial function values n ! are cal­
culated by using GAMMA(n+1).

> 2.5!;

3.323350970

The type of an unevaluated factorial is !. Note that in Maple, nil does 
not denote the double factorial function. It denotes repeated factorial, 
тт.!! =  (n!)!.

> 3! ! ;

720



The mod Operator
The mod operator evaluates an expression modulo m, for a non-zero integer 
m. That is, Maple writes a mod m  as a mod m. Maple uses one of two 
representations for an integer modulo m.

• In the positive representation, integer mod m is an integer between 
zero and m-1, inclusive. The following assignment selects the positive 
representation explicitly.
> ‘mod' := modp;

This is the default representation.

• In the sym m etric representation, integer mod m is an integer be­
tween -floor((abs(m)-l)/2) and floor (abs (m) /2). The following 
assignment selects the symmetric representation.
> ‘mod' := mods;

Notice that you need back quotes around mod since it is a reserved word.
You may invoke the commands modp and mods directly if you desire. 

For example
> modp(9,5), mods(9,5);

4, -1

The mod operator understands the inert operator for powering. 
That is, i&~ j mod m calculates V mod m. Instead of first computing the 
integer V , which may be too large to compute, and then reducing modulo 
m, Maple computes the power using binary powering with remainder.

> 2~(2~100) mod 5;
Error, numeric exception: overflow

> 2  (2~100) mod 5;

1

The first operand of the mod operator may be a general expression. 
Maple evaluates the expression over the ring of integers modulo m. For 
polynomials, this means that it reduces rational coefficients modulo m.
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The mod operator knows many functions for polynomial and matrix arith­
metic over finite rings and fields. For example, Factor for polynomial 
factorization, and Nullspace for matrix null-space.

> 1/2 mod 5;

3

> 9*x~2 + x/2 + 13 mod 5;

4 x ~\~ 3 x ~\~ 3

> Factor(4*x~2 + 3*x + 3) mod 5;

4 (x +  4) (x +  3)

Do not confuse, for example, the commands factor and Factor. The 
former evaluates immediately; the latter is an inert command which Maple 
does not evaluate until you make the call to mod.

The mod command also knows how to compute over a Galois field 
G F (pk), that is, the finite field with pk elements. See the ?mod online 
documentation for a list of the commands that mod knows, and for further 
examples.

The Neutral Operators
Maple possesses a user-defined or neutral operators facility. Form a 
neutral operator symbol by using the ampersand character followed by 
one or more characters. The two varieties of &-names depend on whether 
the sequence of characters is alphanumeric or non-alphanumeric:

• Any Maple name not requiring back quotes, preceded by the & char­
acter; for example, &wedge.

• The & character followed by one or more non-alphanumeric characters; 
for example, &+ or &++.

The following characters cannot appear in an &-name after the initial &:

& I ( ) [ ] {  > ; : ’ ‘ # \ '/.

as well as newline and blank characters.
Maple singles out the particular neutral operator symbol &* as a spe­

cial token representing the non-commutative multiplication operator. The
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special property of &* is that the parser understands its binding strength 
to be equivalent to Maple’s other multiplication operators. All other 
neutral operators have binding strength greater than the standard al­
gebraic operators. See ?precedence for the order of precedence of all 
programming-language operators. See section 4.4 which describes where 
to use &* in Maple.

You can use neutral operators as unary prefix operators, infix binary 
operators, or function calls. In any of these cases, they generate function 
calls with the name of the function being that of the neutral operator. 
(In the usual pretty-printing mode, these particular function calls are 
printed in binary operator format when exactly two operands exist and in 
unary operator format when exactly one operand exists, but the internal 
representation is an unevaluated function.) For example,

> a b c;

(a b) с

> op(°/o);

a b, с

> op(0 Д/0 ;

&~

Maple imposes no semantics on the neutral operators. The user may 
define the operator to have a meaning by assigning the name to a Maple 
procedure. You can define manipulations on expressions containing such 
operators via Maple’s interface to user-defined procedures for various 
standard library functions, including simplify, diff, combine, series, 
evalf, and many others. See section 3.4.

Relations and Logical Operators
You can form new types of expressions from ordinary algebraic expressions 
by using the relational operators <, >, <=, >=, =, and <>. The semantics 
of these operators is dependent on whether they occur in an algebraic 
context or in a Boolean context.

In an algebraic context, the relational operators are simply place hold­
ers for forming equations or inequalities. Maple fully supports addition



of equations or inequalities and multiplication of an equation or inequal­
ity by an algebraic expression. In the case of adding or subtracting two 
equations, for example, Maple applies the addition or subtraction to each 
side of the equations, thus yielding a new equation. In the case of multi­
plying an equation by an expression, Maple distributes the multiplication 
to each side of the equation. You may perform similar operations with 
inequalities.

> e := x + 3*y = z;

е : = ж  +  3 у =  z

> 2*e;

2 x +  Qy =  2 z

The type of an equation is = or equation. An equation has two 
operands, the left-hand side, and the right-hand side. You can use the 
commands lhs and rhs to select the operands of an equation instead of 
op.

> op(0,e);
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> lhs(e);

x +  3 y

The type command also understands the types <>, <, and <=. Maple 
automatically converts inequalities involving > or >= to < and <=, respec­
tively. All the relational types have two operands.

> e := a > b;

e := b <  a

> op(e);

b, a
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In a Boolean context, Maple evaluates a relation to the value true 
or the value false. A Boolean context includes the condition in an if 
statement and the condition in the while clause of a loop. You may also 
use the evalb command to evaluate a relation in a Boolean context.

In the case of the operators <, <=, >, and >=, the difference of the 
operands must evaluate to a numeric constant and Maple compares this 
constant with zero.

> if 2<3 then "less" else "not less" end if;

“less”

In the case of the relations = and <>, the operands may be arbitrary 
expressions (algebraic or non-algebraic). This equality test for expressions 
deals only with syntactic equality of the Maple representations of the 
expressions, which is not the same as mathematical equivalence.

> evalb( x + y = y + x  );

true

> evalb( x~2 - y~2 = (x - y)*(x + y) );

false

In the latter example, applying the expand command results in an 
equation which evaluates to true.

> evalb( x~2 - y~2 = expand( (x - y)*(x + y) ) );

true

You may use the is command instead of evalb to evaluate relations 
in a Boolean context. The is command tries much harder than evalb to 
determine whether relations are true.

> is( x~2 - y~2 = (x - y)*(x + y) );

true

> is( 3<Pi ) ;
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true

The Logical Operators Generally, you can form an expression by using 
the logical operators and, or, and not, where the first two are binary op­
erators and the third is a unary (prefix) operator. An expression contain­
ing one or more logical operators is automatically evaluated in a Boolean 
context.

> 2>3 or not 5>1;

false

The precedence of the logical operators and, or, and not is analo­
gous to multiplication, addition, and exponentiation, respectively. Here 
no parentheses are necessary.

> (a and b) or ((not c) and d);

a and b or not с and d

The type names for the logical operators and, or, and not are and, 
or, and not, respectively. The first two have two operands, the latter one 
operand.

> b := x and у or z;

b := x and у or  z

> whattype(b);

or

> op(b);

x and y, z

Among operators of the same precedence, the evaluation of Boolean 
expressions involving the logical operators and and or proceeds from left 
to right and terminates as soon as Maple can determine the truth of the 
whole expression. Consider the evaluation of the following.
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a and b and с

If the result of evaluating a is false, you know that the result of the 
whole Boolean expression will be false, regardless of what b and с evaluate 
to. These evaluation rules are commonly known as M cCarthy evaluation 
rules. They are quite crucial for programming. Consider the following 
statement

if x <> 0 and f(x)/x > 1 then ... end if;

If Maple always evaluated both operands of the and clause, then when 
x is 0, evaluation would result in a division by zero error. The advantage 
of the above code is that Maple will attempt to check the second condition 
only when x ф 0.

Boolean Expressions In general, a Boolean context requires a Boolean 
expression. Use the Boolean constants true, false, and FAIL, the rela­
tional operators and the logical operators for forming Boolean expres­
sions. The type command understands the name boolean to include all 
of these.

The evaluation of Boolean expressions in Maple uses the following 
three-valued, logic. In addition to the special names true and false, 
Maple also understands the special name FAIL. Maple sometimes uses 
the value FAIL as the value that a procedure returns when it is unable to 
completely solve a problem. In other words, you can view it as the value 
don’t know.

> is(sin(l),positive);

true

> is(a-l,positive);

FAIL

In the context of the Boolean clause in an if statement or a while 
statement, Maple determines the branching of the program by treating 
the value FAIL the same as the value false. Without three valued logic, 
whenever you use the is command you would have to test for FAIL sep­
arately. You would write



Table 4.12 Truth Tables
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and false true FAIL
false
true
FAIL

false
false
false

false
true
FAIL

false
FAIL
FAIL

or false true FAIL
false
true
FAIL

false
true
FAIL

true
true
true

FAIL
true
FAIL

not false true FAIL
true false FAIL

if is(a - 1, positive) = true then ...

The three valued logic allows you to write

if is(a - 1, positive) then ...

The evaluation of a Boolean expression yields true, false, or FAIL 
according to table 4.12.

Note that three-valued logic leads to asymmetry in the use of if state­
ments and while statements. For example, the following two statements 
are not equivalent.

if condition then statseq_l else statseq_2 end if; 
if not condition then statseq_2 else statseq_l end if;

Depending on the desired action in the case where condition has the value 
FAIL, either the first or the second of these two if statements may be 
correct for a particular context.

Tables
The table data type in Maple is a special data type for representing data 
in tables. Create a table either explicitly via the table command or im­
plicitly by assignment to an indexed name. For example, the statements

> a := table([(Cu,1) = 64]);

а := table([(Cw, 1) =  64])

> a[Cu, 1] := 64;
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acu, l :=  64

have the same effect. They both create a table object with one compo­
nent. The purpose of a table is to allow fast access to data with

> a[Cu, 1] ;

64

The type of a table object is table. The first operand is the indexing 
function. The second operand is a list of the components. Note that tables 
(and arrays, which are a special case of a table) have special evaluation 
rules; in order to access the table (or array) object, you must first apply 
the eval command.

> op(0,eval(a));

table

Table a has no indexing function and only one entry.
> op(1,eval(a));
> op(2,eval(a));

[(С и , 1) =  64]

The array data type in Maple is a specialization of the table data 
type. An array is a table with specified dimensions, with each dimension 
an integer range. Create an array via the array command call.

> A := array(symmetric, 1..2, 1..2, [(1,1) = 3]);

A :  =
3 A i }2

a  1,2 A 2 2

> A [1,2] := 4;

2 := 4

> print(A);



'3  4
4 4̂.2,2

The ranges 1 . . 2 , 1 . . 2 specify two dimensions and bounds for the 
integers. You may include entries in the array command or insert them 
explicitly as shown. You may leave entries unassigned. In this example, 
the (2, 2) entry is unassigned.

> op(0,eval(A));

array

As for tables, the first operand is the indexing function (if any).
> op(1,eval(A));

sym m etric

The second operand is the sequence of ranges.
> op(2,eval(A));

1..2, 1..2

The third operand is a list of entries.
> op(3, eval(A));

[(1, 1) =  3, (1,2) =  4]

The example above displays only two entries in the array A  since 
Maple knows the (2,1) entry implicitly through the indexing function.

Series
The series data type in Maple represents an expression as a truncated 
power series with respect to a specified indeterminate, expanded about a 
particular point. Although you cannot input a series directly into Maple 
as an expression, you can create a series data type with the taylor or 
series commands which have the following syntax
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taylor( f, x=a, 21 )
taylor( f, x )
series( f, x=a, 21 )
series( f, x )

If you do not specify the expansion point, it is by default x =  0. If you 
do not specify the order n, it is the value of the global variable Order, 
which by default is 6.

> s := series( exp(x), x=0, 4 );

s := 1 +£ + ^ £ 2 + -^£3 + 0 (xa)
2 о

The type name for the series data type is series.
> type(s, series);

true

The zeroth operand is the expression x — a where x denotes the spec­
ified indeterminate and a denotes the particular point of expansion.

> op(0, s);

x

The odd (first, third, . . . )  operands are the coefficients of the series 
and the even operands are the corresponding integer exponents.

> op(s);

1,0,1,  1, i  2, 3, 0(1), 4
2 о

The coefficients may be general expressions but Maple restricts the 
exponents to word-size integers on the host computer, with a typical 
limit of nine or ten digits, ordered from least to greatest. Usually, the 
final pair of operands in the series data type are the special order symbol 
0 (1) and the integer n which indicates the order of truncation.

The print routine displays the final pair of operands by using the 
notation 0 ( x n) rather than more directly as 0 ( l ) x n, where x is op(0,s).



If Maple knows that the series is exact then it will not contain an order 
term. An example of this occurs when you apply the series command 
to a polynomial whose degree is less than the truncation degree for the 
series. A very special case is the zero series, which Maple immediately 
simplifies to the integer zero.

The series data structure represents generalized power series, which 
include Laurent series with finite principal parts. More generally, Maple 
allows the series coefficients to depend on x provided their growth is less 
than polynomial in x. 0 (1) represents such a coefficient, rather than an 
arbitrary constant. An example of a non-standard generalized power series 
is

> series( x~x, x=0, 3 );

1 +  1п(ж) x +  -  \n(x)2 x 2 +  0 ( x 3)

Maple can compute more general series expansions than the series 
data type supports. The Puisseux series is such an example. In these 
cases, the series command does not return a series data type, it returns 
a general algebraic expression.

> s := series( sqrt(sin(x)), x );

e := ^ -  1  *(5/2) + J _ *(9/2) + o(*(13/2))
v 12 1440 v 7

> type(s, series);

false

> type(s, );

true

Ranges
You often need to specify a range of numbers. For example, when you 
want to integrate a function over a range. In Maple, use the ellipsis oper­
ation to form ranges.
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expression_l .. expression_2

Specify the operator “ . . ” using two consecutive periods. The ellipsis 
operator simply acts as a place holder in the same manner as using the 
relational operators in an algebraic context, primarily as a notational 
tool. A range has type or range. A range has two operands, the
left-limit and the right-limit, which you can access with the lhs and rhs 
commands.

> r :=3..7;

A typical application of ranges occurs in Maple’s int, sum, and 
product commands. Interpret the operands of the ellipsis to mean the 
lower and upper limits of integration, summation, or products, respec­
tively.

> int( f(x), x=a..b );

You can use the range construct, with Maple’s built-in command op, 
to extract a sequence of operands from an expression. The notation

op(a..b, c)

r := 3..7

> op(0,r);

> lhs(r);

3

■b

is equivalent to
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seq(op(i,c),i=a..b)

For example,
> a := [ u, v, w, x, y, z ] ;

a := [u, v , w, x , y, z]

> op(2. . 5, a) ;

V, W, X, у

You can also use the range construct in combination with the con­
catenation operator to form a sequence as follows.

> x || (1..5);

rp 7 rp v) rp V  rp J rp К
t v  -L  ̂ t i /  / v   ̂ tAJ L/  ̂ tAJ  ̂ tAJ L/

See section 4.3.

Unevaluated Expressions
Maple normally evaluates all expressions, but sometimes you need to tell 
Maple to delay evaluating an expression.

An expression enclosed in a pair of single quotes 

’expression ’

is called an unevaluated expression. For example, the statements
> a := 1; x := a + b;

a := 1

x := 1 +  b

assign the value 1 +  b to the name x , while the statements
> a := 1; x := ’a ’ + b;
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x := a +  b

assign the value a +  b to the name ж if b has no value.
The effect of evaluating a quoted expression is to strip off one level of 

quotes, so in some cases nested levels of quotes are very useful. Note the 
distinction between evaluation and simplification in the statement

> x := ’2 + 3 ’;

x := 5

which assigns the value 5 to the name x even though this expression con­
tains quotes. The evaluator simply strips off the quotes, but the simplifier 
transforms the expression 2 +  3 into the constant 5.

The result of evaluating an expression with two levels of quotes is an 
expression of type uneval. This expression has only one operand, namely 
the expression inside the outermost pair of quotes.

> op(’»x - 2’’);

x — 2

> whattype(’’x - 2’ ;

uneval

A special case of unevaluation arises when a name, which Maple may 
have assigned a value, needs unassigning so that in the future the name 
simply stands for itself. You can accomplish this by assigning the quoted 
name to itself.

> x := ’x’;

Now x stands for itself as if Maple had never assigned it a value.
Another special case of unevaluation arises in the function call

a :=  1
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’f ’(sequence)

Suppose the arguments evaluate to the sequence a. Since the result of 
evaluating ' f  is not a procedure, Maple returns the unevaluated function 
call f(a ).

> ’’sin’’(Pi);

’sin’^ )

> 7»;

sin(7r)

> 7»;

0

You will find this facility useful when writing procedures which im­
plement simplification rules. See section 3.4.

Constants
Maple has a general concept of symbolic constants, and initially assigns 
the global variable constants the following expression sequence of names

> constants;

fa lse , 7 , oc, tru e, Catalan, F A IL , 7г

implying that Maple understands these particular names to be of type 
constant. The user may define additional names (specifically, they must 
be the simplest type of names called strings— see section 4.3) to be con­
stants by redefining the value of this global variable.

> type(g,constant);

false

> constants := constants, g;

constants := false, 7 , 00, true, Catalan, FAIL, n, g
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> type(g,constant);

true

Generally, a Maple expression is of type constant if it is of type 
complex (numeric), or one of the initially-known constants, or an uneval­
uated function with all arguments of type constant, or a sum, product, 
or power with all operands of type constant. For example, the following 
expressions are of type constant: 2, sin(l), f (2,3), exp(gamma), 4+Pi, 
3+1, 2*gamma/Pi~(1/2)

Structured Types
Sometimes a simple type check does not give enough information. For 
example, the command

> type( x~2, ‘~ ‘ ) ;

true

tells you that x~2 is an exponentiation but it does not tell you whether 
or not the exponent is, say, an integer. In such cases, you need structured 
types.

> type( x~2, name~integer );

true

Since x is a name and 2 is an integer, the command returns true. 
The square root of x does not have this type.

> type( x~(l/2), name~integer );

false

The expression (x+l)~2 does not have type name~integer, because 
x+1 is not a name.

> type( (x+l)~2, name~integer );

false

The type anything matches any expression.



> type( (x+l)~2, anything"integer );
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true

An expression matches a set of types if the expression matches one of 
the types in the set.

> type( 1, {integer, name} );

true

> type( x, {integer, name} );

true

The type set (type) matches a set of elements of type type.

> type( {1,2,3,4}, set(integer) );

true

> type( {x,2,3,y}, set( {integer, name} ) );

true

Similarly, the type list (type) matches a list of elements of type 
type.

> type( [ 2..3, 5..7 ], list(range) );

true

Note that e2 is not of type anything~2.
> exp(2);

e2

> type( 7., anything~2 );

false



The reason is that e2 is simply the pretty-printed version of exp (2).
> type( exp(2), ’exp’(integer) );

true

You should use single quotes ( ’ ) around Maple commands in type 
expressions to delay evaluation.

> type( int(f(x), x), int(anything, anything) );
Error, testing against an invalid type

Here Maple evaluated int (anything, anything) and got
> int(anything, anything);

-  anything2

which is not a valid type. If you put single quotes around the int com­
mand, the type checking works as intended.

> type( int(f(x), x), ’int’(anything, anything) );

true

The type specfunc (type, f) matches the function f with zero or 
more arguments of type type.

> type( exp(x), specfunc(name, exp) );

true

> type( f(), specfunc(name, f) );

true

The type function (type) matches any function with zero or more 
arguments of type type.

> type( f(1,2,3), function(integer) );
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true



> type( f(l,x,Pi), function( {integer, name} ) );

true

You can also test the number (and types) of arguments. The type 
anyfunc(tl, . . . , tn) matches any function with n arguments of the 
listed types.

> type( f(l,x), anyfunc(integer, name) );

true

> type( f(x,l), anyfunc(integer, name) );

false

Another useful variation is to use the And, Or, and Not type construc­
tors to create Boolean combinations of types.

> type(Pi, ’And( constant, numeric)’);

false

> type(Pi, ’And( constant, Not(numeric))’);

true

See ?type,structured for more information on structured types or 
?type,definition on how to define your own types.
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4.5 Useful Looping Constructs

Section 4.3 describes the for loop and while loop. Many common kinds 
of loops appear so often that Maple provides special purpose commands 
for them. These commands help to make writing programs simpler and 
more efficient. They are the “bread and butter” commands in the Maple 
language. You can group the eight loop-like commands in Maple into three 
categories
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1. map, select, remove, selectremove

2. zip

3. seq, add, mul

The map, select, remove, and selectremove Commands
The map command applies a function to every element of an aggregate 
object. The simplest form of the map command is

map( f ,  x )

where f  is a function and x is an expression. The map command re­
places each operand x _ i of the expression x with f  ( x _ i ) .2

> map ( f , [a, b , c] ) ;

[f(a), f(b), f(c)]

For example, if you have a list of integers, create a list of their absolute 
values and of their squares by using the map command.

> L := [ -1, 2, -3, -4, 5 ] ;

L := [-1, 2, -3, -4, 5]

> map(abs,L);

[1, 2, 3, 4, 5]

> map(x->x~2,L);

[1, 4, 9, 16, 25]

The general syntax of the map command is

2Exception: for an rtable, table or array, Maple applies the function to the entries 
of the table or array, and not to the operands or indices.
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where f  is a function, x is any expression, and y l , . . . ,  yn  are expressions. 
The action of map is to replace each operand x_i of x by f (x_i, y l ,
. . . , yn ).

> map ( f , [a, b , с] , x , у );

[f(a, x, у ), f(b, x, y), f(c, x, y)\

> L := [ seq(x~i, i=0..5) ];

L := [1, x, x 2, x 3, x4, x 5\

> map( (x,y)->x~2+y, L, 1);

[2, x 2 +  1, xA +  1, x 6 +  1, x 8 +  1, ж10 +  1]

The select, remove, and selectremove commands have the same 
syntax as the map command and they work in a similar way. The simplest 
forms are

select( f, x ) 
remove( f , x )  
selectremove( f , x )

where f  is a Boolean-valued function and x is an expression which must 
be one of a sum, product, list, set, function, or indexed name.

The select command selects the operands of x which satisfy the 
Boolean-valued function f, creating a new object of the same type as x. 
Maple discards those operands for which f  does not return true.

The remove command does the opposite of select. It removes the 
operands of x that satisfy f.

> X := [seq(i,i=l..10)];

X  :=  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

> select(isprime,X);
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[2, 3, 5, 7]

> remove(isprime,X);

[1, 4, 6, 8, 9, 10]

> selectremove(isprimeД ) ;

[2, 3, 5, 7], [1, 4, 6, 8, 9, 10]

The general forms of the select and remove commands are

select( f, x, yl, ..., yn ) 
remove( f, x, yl, ..., yn ) 
selectremove( f, x, yl, ..., yn )

where f  is a function, x is a sum, product, list, set, function or indexed 
name, and y l ,  . . . ,  yn  are expressions. As with the general form of the 
map command the expressions y l , . . . ,  yn  are passed to the function f.

> X := {2, sin(l), exp(2*x), x~(l/2)};

X  := {2, sin(l), e(2x\ \/i}

> select(type, X, function);

(sin(l), e(2l)}

> remove(type, X, constant);

{e(2x), \/S}

> X := 2*x*y~2 - 3*y~4*z + 3*z*w + 2*y~3 - z~2*w*y;

X  :=  2 x y 2 — 3 y 4:z +  3 z w  +  2 y 3 — z2 w у

> select(has, X, z);

—3 y4 z +  3 z w — z2 w у
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> remove( x -> degree(x)>3, X );

2 x y 2 j r 3 z w jr 2 y 3

The z ip  Command
Use the zip  command to merge two lists or vectors. The zip  command 
has two forms

z ip ( f , u, v) 
z ip ( f , u, v,  d)

where f  is a binary function, и and v are both lists or vectors, and d is a 
value. The action of zip  is for each pair of operands u_i, v_i ,  to create 
a new list or vector out of f  ( u_ i , v_ i ) .  The following is an example of 
the action of zip.

> zip( (x,y)->x || y, [a,b,c,d,e,f], [1,2,3,4,5,6] );

[ a l , Ь2, c 3 , d4 , e5, f6]

If the lists or vectors are not the same length, the length of the result 
depends on whether you provide d. If you do not specify d, the length will 
be the length of the smaller of и and v.

> zip( (x,у)—>x+y, [a,b,c,d,e,f], [1,2,3] );

[a +  1, b +  2, с +  3]

If you do specify d, the length of the result of the zip  command will be 
the length of the longer list (or vector) and Maple uses d for the missing 
value (s).

> zip( (x,у)—>x+y, [a,b,c,d,e,f], [1,2,3], xi );

[a +  1, 6 +  2, с +  3, d +  £, e +  £, /  +  £]

Note that Maple does not  pass the extra argument, xi, to the function 
f  as it does with the map command.
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The seq, add, and mul Commands
The seq, add, and mul commands form sequences, sums, and products, 
respectively. Use the following syntax with these commands.

seq(f, i = a. • b)
add(f, i = a. • b)
mul(f, i = a. • b)

where f, a, and b are expressions and i is a name. The expressions a and 
b must evaluate to numerical constants (except in the case of seq, where 
they may be single character strings).

The result of seq is the sequence that Maple produces by evaluating 
f  after successively assigning the index name i the values a, a+1, . . . ,  b, 
(or up to the last value not exceeding b). The result of add is the sum of 
the same sequence, and the result of mul is the product of the sequence. 
If the value a is greater than b, the result is the NULL sequence, 0, and 1, 
respectively.

> seq( i~2, i=l . .4);

1, 4, 9, 16

> mul(i~2,i=l. .4);

576

> add(x[i], i=1. .4);

X \  +  X 2  +  Х з  +  X 4

> mul(i~2, i = 4. .1) ;

1

> seq(i, i = 4.123 .. 6.1);

4.123, 5.123

You can also use the commands seq, add, and mul with the following 
syntax.
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seq(f, i = X) 
add(f, i = X) 
mul(f, i = X)

where f  is an expression, X  is an expression (or string for seq), and i is 
a name.

The result of seq in this form is the sequence that Maple produces by 
evaluating f  after successively assigning the operands of the expression X  
(or the characters of string X ) to the index i. The result of add is the sum 
of the same sequence, and the result of mul is the product of the same 
sequence.

> a := x~3 + 3*x~2 + 3*x + 1;

a : = x 3 +  3 i 2 + 3 i  +  l

> seq(degree(i,x), i=a);

3, 2, 1, 0

> seq(i, i="square");

«  55 «  55 U  55 U  55 U  55 U  55 o , , Li , ex , 1.  ̂ U

> add(degree(i,x), i=a);

6

> a := [23,-42,11,-3];

a := [23, -42, 11, -3]

> mul(abs(i),i=a);

31878

> add(i~2,i=a);

2423
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seq, add, and mul Versus $, sum, and product Note that the dollar 
operator, $, and the sum and product commands are very similar to the 
seq, mul, and add commands. However, they differ in an important way. 
The index variable i and the end points a and b do not need to be integers. 
For example

> x [k] $ k=l. .n;

Xk $ (k =  l . .n )

The design of these commands is for symbolic sequences, sums, and 
products. As with the int (integration) command, the index variable к 
is a global variable to which you must not assign a value.

When should you use $, sum, and product? versus seq, add, mul?
When you are computing a symbolic sum or product. For example, 

if the end points are unknowns, then clearly you must use $, sum, and 
product. When you are computing an explicit finite sequence, sum, or 
product, that is, you know that the range points a and b are integers, 
then use seq, add, or mul. These latter commands are more efficient than 
their symbolic counterparts $, sum, and product.

4.6 Substitution
The subs command does a syntactic substitution. It replaces subex­
pressions in an expression with a new value; the subexpressions must be 
operands in the sense of the op command.

> expr := x~3 + 3*x + 1;

expr := x 3 +  3 x +  1

> subs(x=y, expr);

у3 +  3 у  +  1

> subs(x=2, expr);

15



The syntax of the subs command is
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subs( s, expr )

where s is either an equation, a list, or set of equations. Maple traverses 
the expression expr and compares each operand in expr with the left-hand 
side(s) of the equation(s) s. If an operand is equal to a left-hand side of 
an equation in s, then subs replaces the operand with the right-hand side 
of the equation. If s is a list or set of equations, then Maple makes the 
substitutions indicated by the equations simultaneously.

> f := x*y~2;

/  : = x y 2

> subs( {y=z, x=y, z=w}, f );

The general syntax of the subs command is

where si, s2, . . . ,  sn are equations or sets or lists of equations, n >  0, 
and expr is an expression. This is equivalent to the following sequence of 
substitutions.

subs( sn, ..., subs( s2, subs( si, expr ) ) )

Thus, subs substitutes according to the given equations from left to right. 
Notice the difference between the previous example and the following one.

> subs( y=z, x=y, z=w, f );

y w 2

Maple does not evaluate the result of a substitution.
> subs( x=0, sin(x) + x~2 );

sin(0)
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If you want to combine the acts of substitution and evaluation, use 
the two-parameter version of the eval command instead of subs.

> eval(sin(x) + x~2, x=0);

0

Substitution only compares operands in the expression tree of expr 
with the left-hand side of an equation.

> subs(a*b=d, a*b*c);

abc

The substitution did not result in d*c as intended because the 
operands of the product a*b*c are a, b, c. That is, the products a*b, 
b*c, and a*c do not appear explicitly as operands in the expression a*b*c; 
consequently, subs does not see them.

The easiest way to make such substitutions is to solve the equation 
for one unknown and substitute for that unknown, that is

> subs(a=d/b, a*b*c);

d с

You cannot always do this, and you may find that it does not always 
produce the results you expect. The algsubs routine provides a more 
powerful substitution facility.

> algsubs(a*b=d, a*b*c);

d с

Note also that operands of a rational power x n are x and n/d.  
Although in the following example

> subs( x~(l/2)=y, a/x~(l/2) );
a

y/x

it looks as though the output has а л/х in it, the operands of this ex­
pression are a and x ~  Think of the division as a negative power in



a product, that is, a x x ~  Because the operands of x~- 1 /2 are x and
— 1/ 2, subs does not see x in ж- 1 /2

. The solution is to substitute for
the negative power x ~

> subs( x~(-l/2)=l/y, a/x~(l/2) );
a

У

The reader should refer to the online help information under ?algsubs 
for more details. Note that the algsubs command, as powerful as it is, is 
also much more computationally expensive than the subs command.
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4.7 Conclusion
This chapter discusses the elements of Maple’s language. Maple breaks 
your input into its smallest meaningful parts, called tokens. Its language 
statements include assignments, conditional, looping, and reading from 
and saving to files. Many types of expressions exist within Maple, and 
using its expression trees tells you of the type and operands in an expres­
sion. You have seen the efficient looping constructs map, zip, and seq, 
and how to make substitutions.



5 Procedures

The proc command defines procedures in Maple. This chapter de­
scribes the syntax and semantics of the proc command in the same man­
ner as chapter 4 describes the rest of the Maple programming language. 
This chapter explains the concepts of local and global variables and how 
Maple passes arguments to procedures. The chapter also provides exer­
cises to help extend your understanding of Maple procedures.

5.1 Procedure Definitions
A Maple procedure definition has the following general syntax.

proc( P )
local L ; 
global G; 
options 0 ; 
description D ;
В

end proc

Here, В is a sequence of statements forming the body of the procedure. 
The formal parameters, P, along with the local, global, options, and 
description clauses are all optional.

The following is a simple Maple procedure definition. It has two fo r ­
mal param eters, x and y, no local, global, options, or description 
clauses, and only one statement in the body of the procedure.

201
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> proc(x.y)
> x~2 + y~2
> end proc;

ргос(ж, у) x 2 +  у 2 end proc

You can give a name to a procedure as to any other Maple object.
> F := proc(x,y) x~2 + y~2 end proc;

F  := ргос(ж, у) x 2 +  у 2 end proc

You can then execute (invoke) it by using the function call,

F  ( A )

When Maple executes the statements of the body of a procedure, it re­
places the formal parameters, P, with the actual parameters, A, from the 
function call. Note that Maple evaluates the actual parameters, A, before 
substituting them for the formal parameters, P.

Normally, the result a procedure returns after executing is the value 
of the last executed statement from the body of the procedure.

> F(2,3);

13

Mapping Notation
You can also define simple one-line procedures by using an alternate syn­
tax borrowed from algebra.

( P ) -> В

The sequence, P, of formal parameters may be empty and the body, В , 
of the procedure must be a single expression or an if statement.

> F := (x,y) -> x~2 + y~2;

F  :=  (x, y) - > x 2 + y 2

If your procedure involves only one parameter, then you may omit the 
parentheses around the formal parameter.
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> G := n -> if n<0 then 0 else 1 end if;

G  := proc(n)
option operator, arrow ;

if n < 0 then 0 else 1 end if 
end proc

> G(9), G(-2);

1,0

The intended use for the arrow notation is solely for simple one-line 
function definitions. It does not provide a mechanism for specifying local 
or global variables, or options.

Unnamed Procedures and Their Combinations
Procedure definitions are valid Maple expressions. You can create, ma­
nipulate, and invoke all of them without assigning to a name.

> (x) -> x~2;

You invoke an unnamed procedure in the following manner.
> ( x -> x~2 )( t );

i 2

> proc(x,y) x~2 + y~2 end proc(u,v);

2 , 2 U +  V

A common use of unnamed procedures occurs in conjunction with the 
map command.

> map( x -> x~2, [1,2,3,4] );

[1, 4, 9, 16]

You can add procedures together, or, if appropriate, you can process 
them by using commands, such as the differential operator , D.
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> D(x -> x~2);

x —>• 2 x

> F : = D(exp + 2*ln);

F  := exp +  2 (a —>• - )  
a

You can apply the result, F, directly to arguments.

Procedure Simplification
When you create a procedure, Maple does not evaluate the procedure but 
it does simplify the body of the procedure.

> proc(x) local t;
> t := x*x*x + 0*2;
> if true then sqrt(t); else t~2 end if;
> end proc;

ргос(ж) localt; t := x3 ; sqrt(t) end proc

Maple simplifies procedures with the operator option even further.
> x -> 3/4;

3
4

> (x,y,z) -> h(x,y,z);

h

Procedure simplification is a simple form of program optimization.

5.2 Parameter Passing
Consider what happens when Maple evaluates a function or procedure.
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F ( ArgumentSequence )

First, Maple evaluates F. Then it evaluates the ArgumentSequence. If 
any of the arguments evaluate to a sequence, Maple flattens the result­
ing sequence of sequences into a single sequence, the sequence of actual 
param eters. Suppose F  evaluates to a procedure.

proc( FormalParameters ) 
body 

end proc

Maple then executes the statements in the body of the procedure, sub­
stituting the actual parameters for the formal parameters.

Consider the following example.
> s := a,b: t := c:
> F := proc(x,y,z) x + у + z end proc:
> F(s,t);

a +  6 +  c

Here, s,t is the argument sequence, a,b,c is the actual parameter 
sequence and x , y , z  is the formal parameter sequence.

The number of actual parameters, n, may differ from the number of 
formal parameters. If too few actual parameters exist, then an error occurs 
if (and only if) a missing parameter is actually used during the execution 
of the procedure body. Maple ignores extra parameters.

> f := proc(x,y,z) if x>y then x else z end if end proc:
> f ( 1,2 ,3,4);

3

> f (1 ,2);
Error, (in f) f uses a 3rd argument, z, which is
missing

> f (2,1) ;

2
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Declared Parameters
You may write procedures that only work for certain types of input. Use 
declared formal parameters so that when you use the procedure with the 
wrong types of input Maple issues an informative standard error message. 
A type declaration has the following syntax.

parameter :: type

Maple knows many types of expressions; see ?type.
When invoking the procedure, before executing the body of the pro­

cedure, Maple tests the types of the actual parameters from left to right. 
Any of these tests may generate an error message. If no type error occurs, 
the procedure executes.

> MAX := proc(x::numeric, y::numeric)
> if x>y then x else у end if
> end proc:
> MAX(Pi,3);
Error, invalid input: MAX expects its 1st argument, x, 
to be of type numeric, but received Pi

You can also use declared parameters with the operator option.
> G := (n::even) -> n! * (n/2)!;

G  := n::even  —>• n! ( -  n)\
2 7

> G(6);

4320

> G(5);
Error, invalid input: G expects its 1st argument, n, to 
be of type even, but received 5

If you do not declare the type of a parameter, it can have any type. 
Thus, proc(x)  is equivalent to proc(x : : anything). If that is what you 
intend, you should use the latter form to inform other users that you 
intend your procedure to work for any input.



5.2 Parameter Passing •  207

The Sequence of Arguments
You do not need to supply names for the formal parameters. You can 
access the entire sequence of actual arguments from within the procedure, 
by using the name args . The following procedure simply builds a list of 
its arguments.

> f := procO [args] end proc;

/  := proc() [args] end proc

> f(a,b,c);

[a, b, c]

> f(c) ;

> f();

[]

The ith argument is simply args [ i ] . Thus, the following two pro­
cedures are equivalent, provided you call them with at least two actual 
parameters of type numeric.

> MAX := proc(x::numeric,у ::numeric)
> if x > у then x else у end if;
> end proc;

M A X  := proc(x::num eric, y:\numeric) 
if У <  x thenx else?/end if 

end proc
> MAX := procO
> if args[l] > args[2] then args[l] else args[2] end if;
> end proc;

M A X  := proc()
if args2 < args-L then args-L else args2 end if 

end proc
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The nargs command provides the total number of actual parameters. 
This allows you to easily write a procedure, MAX, which finds the maximum 
of any number of arguments.

> MAX := procO
> local i,m;
> if nargs = 0 then return -infinity end if;
> m := args [1];
> for i from 2 to nargs do
> if args[i] > m then m := args [i] end if;
> end do;
> m;
> end proc:

The maximum of the three values 2/3, 1/2, and 4/7 is
> MAX(2/3, 1/2, 4/7);

2
3

5.3 Local and Global Variables
Variables inside a procedure are either local to that procedure or global. 
Variables outside procedures are global. Maple considers local variables 
in different procedure invocations to be different variables, even if they 
have the same name. Thus, a procedure can change the value of a local 
variable without affecting variables of the same name in other procedures 
or a global variable of the same name. You should always declare which 
variables are local and which are global in the following manner.

lo ca l L I , L2, .. . , Ln;
global Gl, G2, .. . , Gm;

In the procedure below, i and m  are local variables.
> MAX := procO
> local i,m;
> if nargs = 0 then return -infinity end if;
> m := args [1];
> for i from 2 to nargs do
> if args[i] > m then m := args[i] end if;
> end do;
> m;
> end proc:
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In the case of nested procedures, where one procedure is defined within 
the body of another, variables can also acquire local or global declaration 
from procedures which enclose them. See Section 2.2 for details and ex­
amples of nested procedures.

If no declaration is made of whether a variable is local or global, Maple 
decides. A variable is automatically made local in both of these cases:

• It appears on the left-hand side of an assignment statement. For ex­
ample, A in A := у or A[l]  := y.

• It appears as the index variable in a fo r  loop, or in a seq, add, or
mul command.

If neither of these two rules applies, the variable is a global variable.
> MAX := procO
> if nargs = 0 then return -infinity end if;
> m := args [1];
> for i from 2 to nargs do
> if args [i] > m then m := args [i] end if;
> end do;
> m;
> end proc:
Warning, ‘m* is implicitly declared local to procedure
‘MAX'
Warning, (i( is implicitly declared local to procedure
‘MAX'

Maple declares m  local because it appears on the left-hand side of the 
assignment m:=args [1], and г local because it is the index variable of a 
fo r  loop.

Do not rely on this facility to declare local variables. Declare all 
your local variables explicitly. Rely instead on the warning messages to 
help you identify variables that you have misspelled or have forgotten to 
declare.

The newname procedure below creates the next unused name in the 
sequence C l, С 2, . . . .  The name that newname creates is a global variable 
since neither of the two rules above apply to cat(C,N).

> newname := procO
> global N;
> N := N+l;
> while not assigned(cat(C,N)) do
> N := N+l;
> end do;
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> cat(C,N);
> end proc:
> N := 0;

N  : =  0

The newname procedure does not take any arguments.
> newnameO * sin(x) + newnameO * cos(x);

C l sin(x) +  C2 cos(x)

Assigning values to global variables inside procedures is generally a 
poor idea. Any change of the value of a global variable affects all uses of 
the variable, even any of which you were unaware. Thus, you should only 
use this technique judiciously.

Evaluation of Local Variables
Local variables are special in another very important way. During the 
execution of a procedure body, they evaluate exactly one level. Maple 
evaluates global variables fully, even inside a procedure.

This section should help to clarify this concept. Consider the following 
examples.

> f := x + y;

f  : = x  +  y

> x := z~2/ y;

x := —
У

> z := y~3 + 3;

z : = y 3 +  3

The normal full recursive evaluation yields
> f;
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(y3 +  3)2 ,
---------------\-y

У

You can control the actual level of evaluation by using eval . Using 
the following sequence of commands, you can evaluate to one level, two 
levels, and three levels.

> eval(f,1);

x +  у

> eval(f,2) ;

> eval(f,3);

(y3 +  3)2 ,
---------------\-y

У

The notion of the use of one-level evaluation1 is important for effi­
ciency. It has very little effect on the behavior of programs because you 
tend to write code in an organized sequential fashion. In the rare case 
where a procedure body requires a full-recursive evaluation of a local 
variable, you may use the eval command.

> F := procO
> local x, y, z;
> x := y~2; у := z; z := 3;
> eval(x)
> end proc:
> F() ;

9

Without the call to eval, the answer would be y 2.
You can still use local variables as unknowns just like global variables. 

For example, in the following procedure, the local variable x does not have

1Such a concept of evaluation does not occur in traditional programming languages. 
However, here, you may assign to a variable a formula involving other variables, which 
in turn you may assign values and so on.



an assigned value. The procedure uses it as the variable in the polynomial 
x n — 1.

> RootsOfUnity := proc(n)
> local x;
> [solve( x~n - 1=0, x )];
> end proc:
> RootsOfUnity(5);

[1, - \  +  \ V 5  +  \ l V 2 V 5 +  7 5 ,

- \ - \ V 5  + \ l x / 2 ^ 5 - V5 ,  - i - l % / 5 - ^ / ч / 2 ^ 5 - A  

- -  +  ^ s / 5 - - I \ / 2 \ / 5  +  s/5}
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5.4 Procedure Options and the Description Field 
Options
A procedure may have one or more options. You may specify options by 
using the options clause of a procedure definition.

options 01, 02, ..., От;

You may use any symbol as an option but the following options have 
special meanings.

The remember and system Options When you invoke a procedure with 
the remember option, Maple stores the result of the invocation in the 
rem em ber table associated with the procedure. Whenever you invoke 
the procedure, Maple checks whether you have previously called the pro­
cedure with the same parameters. If so, Maple retrieves the previously 
calculated result from the remember table rather than executing the pro­
cedure again.

> fib := proc(n::nonnegint)
> option remember;
> fib(n-l) + fib(n-2);
> end proc;
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fib := p roc (n::nonnegint) 
option rem em ber;

fib (n — 1) +  fib(n — 2) 
end proc

You may place entries in the remember table of a procedure by direct 
assignment; this method also works for procedures without the remember 
option.

> fib(O) := 0;

fib(0) := 0

> fib(l) := 1;

fib(l) := 1

The following is the fib procedure’s remember table.

table([0 =  0, 1 =  1])

Since fib has the remember option, invoking it places new values in 
its remember table.

> fib(9);

34

Below is the new remember table.

table([0 =  0, 1 =  1, 2 =  1, 3 =  2, 4 =  3, 5 =  5, 6 =  8, 7 =  13,
8 =  2 1 ,

9 =  34 
])

The use of remember tables can drastically improve the efficiency of 
recursively defined procedures.

The system option allows Maple to remove entries from a proce­
dure’s remember table. Such selective amnesia occurs during garbage 
collection, an important part of Maple’s memory management scheme. 
See section 2.5 for more details and examples of remember tables.
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The operator and arrow Options The operator option allows Maple 
to make additional simplifications to the procedure, and the arrow option 
indicates that the pretty-printer should display the procedure by using the 
arrow notation.

> proc(x)
> option operator, arrow;
> x~2;
> end proc;

Section 5.1 describes procedures by using the arrow notation.

The Copyright Option Maple considers any option that begins with 
the word Copyright to be a Copyright option. Maple does not print 
the body of a procedure with a Copyright option unless the interface 
variable verboseproc is at least 2.

> f := proc(expr::anything, x::name)
> option ‘Copyright (c) 1684 by G. W. Leibnitz. All rights reserved';
> Diff(expr, x);
> end proc;

/  := proc (expr:: anything, x:\name) . . . end proc

The built in Option Maple has two main classes of procedures: those 
which are part of the Maple kernel, and those which the Maple language 
itself defines. The built in option indicates the kernel procedures. You 
can see this when you fully evaluate a built-in procedure.

> eval(type);

proc() option builtin; 268 end proc

Each built-in procedure is uniquely identified by a number. Of course, 
you cannot create built-in procedures of your own.

The Description Field
The last part of the procedure header is the description field. It must 
appear after any local clause, global clause, or options clause, and 
before the body of the procedure. It takes the following form.
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description  symbol ;

The description field has no effect on the execution of the procedure. 
Its use is for documentation purposes. Unlike a comment, which Maple 
discards when you read in a procedure, the description field provides a 
way to attach a one line comment to a procedure.

> f := proc(x)
> description 'computes the square of x';
> x~2; # compute x~2
> end proc:
> print(f);

ргос(ж)
description c computes the square of ж‘ ; 

x 2
end proc

Also, Maple prints the description field even if it does not print the 
body of a procedure due to a Copyright option.

> f := proc(x)
> option 'Copyrighted ?';
> description 'computes the square of x';
> x~2; # compute x~2
> end proc:
> print(f);

ргос(ж)
description Lcomputes the square of x L 

end proc

5.5 The Value Returned by a Procedure
When you invoke a procedure, the value that Maple returns is normally 
the value of the last statement in the statement sequence of the body of 
the procedure. Three other types of returns from procedures are a return 
through a parameter, an explicit return, and an error return.

Assigning Values to Parameters
Sometimes you may want to write a procedure that returns a value 
through a parameter. Consider writing a Boolean procedure, MEMBER,
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which determines whether a list L contains an expression x. Moreover, 
if you call MEMBER with a third argument, p, then MEMBER should assign 
the position of x in L to p.

> MEMBER := proc(x::anything, L::list, p::evaln) local i;
> for i to nops(L) do
> if x=L [i] then
> if nargs>2 then p := i end if;
> return true
> end if;
> end do;
> false
> end proc:

If you call MEMBER with two arguments, then nargs is two, so the body of 
MEMBER does not refer to the formal parameter, p. Therefore, Maple does 
not complain about a missing parameter.

> MEMBER( x, [a,b,c,d] );

false

If you call MEMBER with three arguments, then the type declaration 
p : : evaln ensures that Maple evaluates the third actual parameter to a 
name2 rather than by using full evaluation.

> q := 78;

q := 78

> MEMBER( c, [a,b,c,d], q );

true

> q;

з

Maple evaluates parameters only once. This means that you cannot 
use formal parameters freely like local variables within a procedure body. 
Once you have made an assignment to a parameter you should not

2 If the third parameter has not been declared as evaln, then you should enclose the 
name q in single quotes ( ’ q ’ ) to ensure that the name and not the value of q is passed 
to the procedure.
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refer to that parameter again. The only legitimate purpose for assigning 
to a parameter is so that on return from the procedure the corresponding 
actual parameter has an assigned value. The following procedure assigns 
the value —13 to its parameter, then returns the name of that parameter.

> f := proc(x::evaln)
> x := -13;
> x;
> end proc:
> f(q);

Q

The value of q is now —13.

> q;

-13

The count procedure below is a more complicated illustration of this 
phenomenon, count should determine whether a product of factors, p, 
contains an expression, x. If p contains x , then count should return the 
number of factors that contain x in the third parameter, n.

> count := procCp::'*', x::name, n::evaln)
> local f ;
> n := 0;
> for f in p do
> if has(f,x) then n := n+1 end if;
> end do;
> evalb( n>0 );
> end proc:

The count procedure does not work as intended.
> count(2*x~2*exp(x)*y, x, m);

—m  < 0

The value of the formal parameter n inside the procedure is always m, 
the actual parameter that Maple determines once and for all when you 
invoke the procedure. Thus, when execution reaches the evalb statement, 
the value of n is the name m, and not the value of m. Worse yet, the n : =n+l 
statement assigns to m the name m+1, as you can see if you evaluate m 
one level.



> eval(m, 1);

m  +  1

The m in the above result also has the value m+1.
> eval(m, 2);

m  +  2

Thus, if you were to evaluate m fully, Maple would enter an infinite 
loop.

A general solution to this type of problem is to use local variables and 
to view the assignment to a parameter as an operation which takes place 
just before returning from the procedure.

> count := procCp::'*', x::name, n::evaln)
> local f, m;
> m := 0;
> for f in p do
> if has(f,x) then m := m + 1 fi;
> od;
> n := m;
> evalb( m>0 );
> end:

The new version of count works as intended.
> count(2*x~2*exp(x)*y, x, m);

true
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> m;

Explicit Returns
An explicit return occurs when you invoke the return statement, which 
has the following syntax.
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return sequence

The return statement causes an immediate return from the procedure 
and the value of the sequence becomes the value of the procedure invo­
cation.

For example, the following procedure computes the first position г of 
a value x in a list of values L. If x is not in the list L , the procedure 
returns 0.

> POSITION := proc(x::anything, L::list)
> local i;
> for i to nops(L) do
> if x=L [i] then return i end if;
> end do;
> 0 ;
> end proc:

In most applications of the return statement, it returns only a single 
expression. Returning a sequence, however, including the empty sequence, 
is quite legitimate. For example, the GCD procedure below computes the 
greatest common divisor g of two integers a and b. It returns the sequence 
g, a/g,b /g .  GCD must treat the case a =  b =  0 separately because that 
makes g zero.

> GCD := proc(a::integer, b::integer)
> local g;
> if a=0 and b=0 then return 0,0,0 end if;
> g := igcd(a,b);
> g, iquo(a,g), iquo(b,g);
> end proc:
> GCD(0,0);

0, 0, 0

> GCD(12,8);

4, 3, 2

Of course, instead of returning a sequence, you may also return a list 
or a set of values.

Error Returns
An error return occurs when you raise an exception by invoking the 
error statement, which has the following syntax:
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error msgString
error msgString, msgParams

The msgString is a string value which is independent of any parame­
ters that are to be part of the message (for instance, the string complaining 
about an unassigned variable should not mention the variable by name).

In the msgString, numbered parameters are used as placeholders 
for actual values. For example, the error "f has a 2nd argument, 
x, which is missing" is specified by the msgString "°/01 has a °/0-2 
argument, °/03, which is missing", and the msgParams f, 2, and x.

Each numbered parameter consists of the percent symbol, "°/0", option­
ally followed by a minus sign, followed by one or more digits, making 
up a single-digit integer n. At message display time, the nth msgParam 
will be substituted for the numbered parameter. A numbered parameter 
of the form °/0n will display the nth msgParam in lineprinted notation (i.e., 
as lprint would display it). A numbered parameter of the form °/0-n will 
display the nth msgParam, assumed to be an integer, in ordinal form. For 
example, the value 2 is displayed as "2nd". The special parameter, °/0O, 
will display all the msgParams, separated by a comma and space.

The msgParams are one or more arbitrary Maple objects that will be 
substituted into numbered parameter locations in the msgString in the 
event that the exception is ever printed as an error message.

The error statement will evaluate its arguments, and then create 
an exception object, which is an expression sequence with the following 
elements:

• The name of the procedure in which the exception was raised, or the
constant 0 if the exception was raised at the top-level.

• The msgString.

• The msgParams, if any.

The created exception object is assigned to the global variable 
lastexception as an expression sequence. The actual arguments to the 
error statement are also assigned to last error for compatibility with 
older versions of Maple.

The error statement normally causes an immediate exit from the 
current procedure to the Maple session. Maple prints an error message of 
the form:



5.5 The Value Returned by a Procedure •  221

Error, (in procName) msgText

Here msgText is the text of the error message, which is constructed 
from the msgString and optional msgParams of the error statement. The 
procedure in which the error occurred is given by procName. If the pro­
cedure does not have a name, procName is "unknown". If the error occurs 
at the top-level, outside of any procedure, the entire " (in procName)" 
part is omitted from the message.

A common use of the error statement is to check that the actual 
parameters to a procedure are of the correct type, but parameter decla­
rations are not sufficient for the job. The pairup procedure below takes 
a list L of the form [x\, yi, X2 , У2 , ■ ■ ■, xn, yn] as input, and creates from it 
a listlist of the form [[x\, yi], [x2 , У2 }, ■ ■ ■, [xn, Уп]]• A simple type check 
cannot determine if the list L has an even number of elements, so you 
need to check that explicitly.

> pairup := proc(L::list)
> local i, n;
> n := nops(L);
> if irem(n,2) = 1 then
> error "list must have an even number of entries, but had °/0l"
> end if;
> [seq( [L[2*i-1] ,L[2*i]] , i=l..n/2 )]
> end proc:
> pairup([1, 2, 3, 4, 5]);
Error, (in pairup) list must have an even number of
entries, but had 5

> pairup([1, 2, 3, 4, 5, 6]);

[[1, 2], [3, 4], [5, 6]]

Trapping Exceptions
You can trap exceptions using the try statement. The syntax for the try 
statement is:
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try tryStatSeq
catch catchStrings : catchStatSeq
end try
try tryStatSeq
catch catchStrings : catchStatSeq
finally finalStatSeq
end try

When execution enters a try statement, the tryStatSeq is executed. If 
no exceptions occur during the execution of tryStatSeq, execution contin­
ues with EnalStatSeq if a finally clause was provided. After that, or if 
no finally clause was provided, execution continues with the statement 
after the end try.

If an exception does occur during the execution of tryStatSeq, execu­
tion of tryStatSeq terminates immediately. The exception object corre­
sponding to the exception is compared against each catchString in turn 
until a match is found. Any number of catch clauses can be provided, 
and each can have any number of catchStrings, separated by commas. A 
catch clause can also have no catch string.

If a matching catch clause is found, or the catch clause contains no 
catchStrings, the catchStatSeq of that catch clause is executed, and the 
exception is considered to have been caught. If no matching catch clause 
is found, the exception is considered not-caught, and is re-raised outside 
the try construct.

A catchStatSeq can contain an error statement with no arguments, 
which also re-raises the exception. When an exception is re-raised, a new 
exception object is created that records the current procedure name, and 
the message and parameters from the original exception.

Under normal circumstances, the EnalStatSeq of the finally clause, 
if there is one, is always executed before control leaves the try statement.3 
This is true even if a catchStatSeq re-raises the exception, raises a new 
one, or executes a return, break, or next statement.

Under certain abnormal circumstances, the EnalStatSeq is not exe­
cuted:

• If an exception is raised in a catch clause and this exception is caught 
by the debugger and the user exits the debugger, the user’s command 
to stop execution overrides everything.

3This is true whether or not an exception occurs, and if one does occur, whether 
or not it is caught, and if it is caught, whether or not another exception occurs in the 
catch clause.
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• If one of the following untrappable exceptions occurs, the exception 
is not caught, and the finalStatSeq is not executed:

1. Computation timed out (this can only be caught by tim elim it, 
which raises a "time expired" exception, which can be caught).

2. Computation interrupted (i.e., user pressed Ctrl-C, Break, or equiv­
alent).

3. Internal system error (i.e., which indicates a bug in Maple itself).
4. ASSERT or local variable type assertion failure (assertion failures are 

not trappable because they indicate a coding error, not an algorith­
mic failure).

5. Stack overflow (when that happens, there’s generally not enough 
stack space to do anything like run cleanup code).

If an exception occurs during the execution of a catchStatSeq or the 
finalStatSeq, it is treated in the same way as if it occurred outside the 
try.  . .end statement entirely.

When looking for a matching catch clause, the following definition of 
"matching" is used:

• Neither the exception object nor the catchStrings are evaluated (the 
exception object will already have been evaluated by the error state­
ment that produced it).

• The catchStrings are considered to be prefixes of the exception ob­
ject’s synmsgString. If a catchString has n characters, only the first n 
characters of the msgString need match the catchString. This allows 
one to define classes of exceptions.

• A missing catchString will match any exception.

• The "result" of a try  statement (i.e., the value that °/0 would return 
if evaluated immediately after execution of the try  statement) is the 
result of the last statement executed within the try  statement.

A given catchString (or a catch clause without one) can appear only 
once in a try.  . .end construct.

A very useful application of the try  and error statements is to abort 
an expensive computation as quickly and cleanly as possible. For example, 
suppose you are trying to compute an integral by using one of several 
methods, and in the middle of the first method, you determine that it 
will not succeed. You would like to abort that method and go on to try
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another method. The code that tries the different methods might look 
like this:

> try
> result := MethodA (f,x)
> catch "FAIL":
> result := MethodB(f,x)
> end try;

MethodA can abort its computation at any time by executing the state­
ment error "FAIL". The catch clause will catch that exception, and pro­
ceed to try MethodB. If any other error occurs during the execution of 
MethodA, or if an error occurs during the execution of MethodB, it will not 
be caught.

Another useful application of the try statement is to make sure certain 
resources are freed when you are done with them, regardless of whether 
or not anything went wrong while you were using them. For example, you 
may wish to use the facilities of the I/O  library (see Chapter 1) to read 
the lines of a file and process them in some way:

> f := fopenC'myfile",TEXT,READ) :
> try
> line := readline(f);
> while line < 0 do
> ProcessContentsOfLine(line);
> line := readline(f)
> end do
> finally
> fclose(f)
> end try;

In this example, if any exception occurs while reading or processing 
the lines of the file, it will not be caught, because there is no catch clause. 
However, the f close (f) will be executed before execution leaves the try 
statement, regardless of whether or not there was an exception.

The final example makes use of both catch and finally clauses. In 
this example, we are writing to a file instead of reading from one.

> f := fopenC'myfile",TEXT,WRITE) :
> try
> for i to 100 do
> fprintf (f , "Result %d is °/0q\n" , i ,ComputeSomething(i) )
> end do
> catch:
> fprintf (f , "Something went wrong: °/0q\n" , last except ion) ;
> error
> finally
> fclose(f)
> end try;
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If any exception occurs, we catch it with a catch clause with no 
catchString, and write the exception object into the file. We then re-raise 
the exception, by executing an error statement with no msgString. In all 
cases, we close the file by executing fclose(f) in the finally clause.

Returning Unevaluated
Maple often uses a particular form of return as a fail return , in the sense 
that it cannot carry out the computation and so returns the unevaluated 
function invocation as the result. The procedure MAX, below, calculates 
the maximum of two numbers, x  and y.

> MAX := proc(x,y) if x>y then x else у end if end proc:

The above version of MAX is unacceptable for a symbolic computation 
system because it insists on its arguments being numerical values so that 
Maple can determine if x > y.

> MAX(3.2, 2);

3.2

> MAX(x, 2*y);
Error, (in MAX) cannot evaluate boolean: 2*y-x < 0

The absence of symbolic capabilities in MAX causes problems when you 
try to plot expressions involving MAX.

> plot( MAX(x, 1/x), x=l/2..2 );
Error, (in MAX) cannot evaluate boolean: 1/x-x < 0

The error occurs because Maple evaluates MAX(x, 1/x) before invok­
ing the plot command.

The solution is to make MAX return unevaluated when its parame­
ters, x  and у , are not numeric. That is, in such cases MAX should return 
’MAX’(x > y ) .

> MAX := proc(x, y)
> if type(x, numeric) and type(y, numeric) then
> if x>y then x else у end if;
> else
> ’MAX’(x,y);
> end if;
> end proc:



The new version of MAX handles both numeric and non-numeric input.
> MAX(3.2, 2);

3.2

> MAX(x, 2*y);

MAX(z, 2 y)

> plot( MAX(x, 1/x), x=l/2..2 );
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You can improve MAX so that it can find the maximum of any number 
of arguments. Inside a procedure, args is the sequence of actual parame­
ters, nargs is the number of actual parameters, and procname is the name 
of the procedure.

> MAX := procO
> local m, i;
> m := -infinity;
> for i in (args) do
> if not typed, numeric) then
> return ’procname’(args);
> end if;
> if i>m then m := i end if;
> end do;
> m;
> end proc:
> MAX(3,1,4);

4

> MAX(3,x,1,4);
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The sin function and the int integration command follow the same 
model as the MAX procedure above. If Maple can compute the result, it 
returns it; otherwise, sin and int return unevaluated.

Exercise
1. Improve the MAX procedure above so that MAX(3,x,l,4) returns 

MAX(x,4); that is, the procedure returns the maximum numerical 
value along with all non-numerical values.

MAX(3, x, 1, 4)

5.6 The Procedure Object
This section describes the procedure object, its type and operands, its 
special evaluation rule, and how to save it to a file and retrieve it again.

Last Name Evaluation
Maple evaluates ordinary expressions in a full recursive evaluation 
mode. All future references to a name that you assign a value return 
the computed value instead of the name.

> f := g;

f  ■= 9

> g := h;

g := h

> h := x~2;

h := x 2

Now f evaluates to x 2.

> f;
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Names of procedures, modules, arrays, and tables are exceptions. For 
such names, Maple uses a last name evaluation model. This model avoids 
printing all the details forming the procedure definition.

> F := G;

F : = G

> G := H;

G : = H

> H := proc(x) x~2 end proc;

H  := ргос(ж) x2 end proc

Now F evaluates to H because H is the last name before the actual 
procedure.

> F;

H

You can use the eval command to evaluate a procedure fully.
> eval(F);

ргос(ж) x 2 end proc

See also section 2.1.

The Type and Operands of a Procedure
Maple recognizes all procedures (including those created by using the 
mapping notation) as being of type procedure, as are any names that 
you give to procedures.

> type(F,name);

true

> type(F,procedure);
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true

> type(F,name(procedure));

true

> type(eval(F),procedure);

true

Thus, you can use the following test to ensure that F  is the name of 
a procedure.

> if type(F, name(procedure)) then ... end if

A procedure has seven operands:

1. The sequence of formal parameters.

2. The sequence of local variables.

3. The sequence of options.

4. The remember table.

5. The description string.

6. The sequence of global variables.

7. The lexical table.

As an example of the structure of a procedure, consider the following.
> f := proc(x::name, n::posint)
> local i;
> global y;
> option Copyright;
> description "a summation";
> sum( x[i] + y[i] , i=l..n );
> end proc:

Place an entry in the procedure’s remember table.
> f(t,3) := 12;

f(t, 3) :=  12
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You can see the various parts of /  below. 
The name of the procedure:
> f;

The procedure itself:
> eval(f);

proc(x:\name, nwposint) 
description “a summation”

end proc
The formal parameters:
> op(l, eval(f));

x::name, nwposint

The local variables:
> op(2, eval(f));

The options:
> op(3, eval(f));

The remember table:
> op(4, eval(f));

The description:
> op(5, eval(f));

г

Copyright

table([(£, 3) =  12])
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The global variables:
> op(6, eval(f));

У

The body of a procedure is not one of its operands, so you cannot 
gain access to the body with the op command. If you need to manipulate 
the body of a procedure, see ?codegen.

Saving and Retrieving Procedures
While you develop a new procedure, you can save your work by saving 
the whole worksheet. When you have finished, save the procedure.

> CMAX := proc(x::complex(numeric), у ::complex(numeric))
> if abs(x)>abs(y) then
> x;
> else
> y;
> end if;
> end proc:

Use the save command to save procedures in the same manner you save 
any other Maple object.

> save CMAX, "CMAX.mws":

The read command retrieves the objects stored in a .m file.
> read "CMAX.mws":

Some Maple users prefer to write Maple procedures with their favorite 
text editor. You can also use the read command to read in data from such 
files. Maple executes each line in the file as if you had typed it directly 
into your session.

If you make a number of related procedures, you may want to save 
them as a Maple package. Making a package allows you to load the pro­
cedures using the with command. See section 6.3.

“a summation”
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5.7 Explorations
The purpose of the exercises in this section is to deepen your understand­
ing of how Maple procedures work. In some cases you may wish to study 
the on-line help pages for the various Maple commands that you will need.

Exercises
1. Implement the function f ( x ) =  (\/l — x2)3 — 1, first as a procedure, 

then by using the mapping notation. Compute / ( 1/ 2) and /(0.5) and 
comment on the different results. Use the D operator to compute / ',  
and then compute / ' ( 0).

2. Write a procedure, SPLIT, which on input of a product /  and a variable 
x  returns a list of two values. The first item in the list should be 
the product of the factors in /  that are independent of x , and the 
second item should be the product of the factors that have an x in 
them. Hint: You may want to use the has, select, remove, and 
selectremove commands.

3. The following program tries to compute 1 — x\aV

> f : = proc(a::integer, x::anything)
> if a<0 then a := -a end if;
> l-x~a;
> end proc:

What is wrong with this procedure? You may want to use the Maple 
debugger to isolate the error. See chapter 7.

4. ab/g gives the least common multiple of two integers, a and b, where 
g is the greatest common divisor of a and b. For example, the least 
common multiple of 4 and 6 is 12. Write a Maple procedure, LCM, 
which takes as input n >  0 integers a\, a2 , ■ ■ •, an and computes their 
least common multiple. By convention, the least common multiple of 
zero and any other number is zero.

5. The following recurrence relation defines the Chebyshev polynomials 
of the first kind, Tn(x).

T0(x) =  l, T1(x) =  x, Tn(x) =  2xTn_ 1(x) -  Tn- 2{x)

The following procedure computes Tn(x) in a loop for any given inte­
ger n.
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> T := proc(n::integer, x)
> local tl, tn, t;
> tl := 1; tn := x;
> for i from 2 to n do
> t := expand(2*x*tn - tl);
> tl := tn; tn := t;
> end do;
> tn;
> end proc:

The procedure has several errors. Which variables should have been 
declared local? What happens if n is zero or negative? Identify and 
correct all errors, using the Maple debugger where appropriate. Mod­
ify the procedure so that it returns unevaluated if n is a symbolic 
value.

5.8 Conclusion
In this chapter, you have seen the details of the proc command. You 
have learned the finer points of the options at your disposal when defin­
ing procedures. You have learned about functional operators, unnamed 
procedures, and procedure simplification.

In addition, you have reviewed Maple’s evaluation rules which chap­
ter 2 introduced. For example, Maple generally evaluates local variables 
to one level and global variables fully. Maple evaluates the arguments to a 
procedure at the time you invoke it. How they are evaluated depends upon 
the environment in which the call occurs, and in some cases, the types 
specified within the procedure definition. Once evaluated, Maple substi­
tutes the values into the procedure and then executes it. Maple does no 
further evaluation on the values which it substituted, unless you specifi­
cally use a command such as eval. This rule makes it impractical to use 
parameters to store temporary results, as you would use local variables.

This chapter extended the discussion of type declarations, which were 
introduced in chapters 1 and 2. Type declarations are particularly useful 
as a means of stating the intended purpose of your procedures and as a 
convenient means of supplying error messages to any user who might call 
them with inappropriate values.

This chapter concludes the formal review of the Maple language which 
began in chapter 4. The remaining chapters deal with specific areas of 
Maple programming. For example, chapter 7 discusses the Maple debug­
ger, chapter 8 introduces you to the details of numerical programming
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in Maple, and chapter 9 shows how to extend Maple’s extensive plotting 
facilities to suit your needs.



6 Programming with 
Modules

In the same way that procedures allow you to abstract a sequence 
of commands typed to the Maple interpreter, “modules” allow you to 
abstract collections of related procedures and data.

This chapter describes Maple’s module system. Modules are a type of 
Maple expression, like numbers, equations, and procedures, that enable 
you to write generic algorithms, create packages, or simply use Pascal- 
style records in your programs.

Modules can be used a number of ways. In this chapter, we describe 
four broad categories of application for them.

1. Encapsulation

2. Packages

3. Modeling Objects

4. Generic Programming

Encapsulation refers to the provision of a guarantee that an ab­
straction is used only according to its specified interface. This pro­
vides the developer with the ability to write significant software systems 
that are transportable and reusable and that offer clean, well-defined 
user interfaces. This makes your code more maintainable and easier to 
understand—important properties for large software systems.

Packages are a vehicle for bundling together collections of related 
Maple procedures to address computations in some well-defined problem 
domain. Much of the functionality of the standard Maple library resides 
in packages.

Objects are easily represented using modules. An object is a repre­
sentation, in software, of something that has both state and behavior.
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You compute with objects by sending them “messages” , to which they 
respond by performing services.

Generic programs are written without knowledge of how the objects 
upon which they operate are represented. A generic program will work 
with any object that honors the “contract” against which the program is 
written, regardless of how the object satisfes that contract.

These are four very practical software engineering concepts, but they 
are all just different facets of the same underlying, abstract Maple lan­
guage technology. We have devoted less space to the abstract language 
feature than to its practical implications.

Before we go into too many details about modules, it is helpful to 
examine a small example module to get an idea what they are all about.

A First Example Here is an example of a simple, but nontrivial mod­
ule. When Maple evaluates the right-hand side of the assignment to 
TempGenerator, it creates a module using the module definition that 
begins with module () . . . and ends with end module.

> TempGenerator := module()
> description "generator for temporary symbols";
> export gentemp;
> local count;
>
> count := 0;
> gentemp := procO
> count : = 1 + count;
> ‘tools/gensym*( T || count )
> end proc;
> end module;

TempGenerator := module() 
local count; 
export gentem p ;
description “generator for temporary symbols” ; 

end module
The module definition that appears above resembles a procedure defi­

nition. The main differences visible here are the use of the keyword mod­
ule instead of proc (and the corresponding terminator), and the export 
declaration following the description string.

We could do something quite similar using only procedures.
> TempGeneratorProc := procO
> description "generator for temporary symbols";
> local count, gentemp;
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> count := 0;
> gentemp := procO
> count : = 1 + count;
> ‘tools/gensym*( T || count )
> end proc;
> eval( gentemp, 1 )
> end proc:

We can assign the procedure returned by TempGeneratorProc, and then 
use it to generate temporary symbols.

> f := TempGeneratorProc();

/  := proc()
count := 1 +  cou n t ; ‘tools/gensym‘(T| | count) 

end proc
> f();

Tl

> f();

T2

The module TempGenerator and the procedure TempGeneratorProc 
are similar. Understanding this similarity will take you a long way towards 
understanding how modules work.

In the procedure version, the local variable gentemp is assigned a 
little procedure that references another local variable count; the value of 
gentemp is returned by the procedure to its caller. The module version of 
the generator does much the same thing, except that its gentemp variable 
is declared as an export, not a local, and there is no explicit return. In 
fact, in both versions of the generator, the variables count and gentemp 
are local variables. The significant difference here is that, in the module 
version, one of those local variables is exported. This means that it is 
made available outside the scope in which it was created. Special syntax 
is used for accessing exported local variables. For example, to call the 
exported variable gentemp of the module, you can type

> TempGenerator:-gentemp();

Tl
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using the member selection operator : -  . In a sense, a module definition 
“returns” a data structure (a module) that contains all of its exported 
local variables.

A second mechanism exists for conveniently accessing module exports 
— the use statement.

> use TempGenerator in
> gentemp();
> gentemp();
> gentemp();
> end use;

T2 

T3

T4

Within the body of a use statement, the exported local variables of 
the module that appears after the use keyword can be accessed directly, 
without the need for the member selection operator

About This Chapter
This chapter provides many examples of the use of modules to help you 
understand the ideas presented. Some examples are very simple, designed 
to illustrate a very specific point. Others are more substantial, and can be 
used in your own programs. Many of the nontrivial examples are available 
as Maple source code in the samples directory of your Maple installation. 
You can load any of these into your private Maple library and experiment 
with them. You are encouraged to modify, extend, and improve on these 
code samples, and to use them in your own work.

6.1 Syntax and Semantics
The syntax of module definitions is very similar to that of procedures, 
given in Chapter 5. Here is an example of a very simple module definition.

> module()
> export el;
> local a, b;
>
> a := 2;
> b := 3;
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> el := x -> a~x/b~x;
> end module:

Evaluating this expression results in a module with one “export” , el, and 
two local variables, a and b.

A template for a module definition looks like:

module()
local L ; 
export E ; 
global G; 
options 0 ; 
description D; 
В

end module

The simplest valid module definition is
> module() end;

module() end module

This module definition has no exported variables, no locals, no refer­
ences, and no global variables. It does not even have a body of statements. 
The module to which this evaluates is not very useful.

Every module definition begins with the keyword module, followed 
by an empty pair of parentheses. Following that is an optional declaration 
section and the module body. The keyword combination end module (or 
just end) terminates a module definition.

The Module Body
The body of a module definition consists of zero or more Maple state­
ments. The body is executed when the module definition is evaluated, 
producing a module as a result. Typically, a module body consists of a 
number of assignment statements that give values to the exported names 
of the module. It may also include assignments to local variables, and 
may, in fact, perform arbitrary computations. The body of a module may 
not contain a break or next statement outside a loop, but may contain 
a return statement. The effect of executing a return statement is to ter­
minate the execution of the body of the module definition at the point at 
which the return statement occurs.
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Module Parameters
Module definitions begin with the Maple keyword module, followed by an 
(empty) pair of parentheses. This is similar to the parentheses that follow 
the proc keyword in a procedure definition. Unlike procedures, however, 
module definitions do not have explicit parameters. This is because, unlike 
procedures (which result from the evaluation of procedure definitions), 
modules are not “called” (or “invoked” ) with arguments.

Instead, every module definition has an implicit parameter called 
thismodule. Within the body of a module definition, this special name 
evaluates to the module in which it occurs. This allows you to refer to 
a module within its own definition (before the result of evaluating it has 
been assigned to any name).

You have seen implicit parameters before; all procedure definitions 
may reference the implicit parameters procname, args, and nargs. The 
args and nargs currently have no meaning for modules, and the difference 
between thismodule and procname is that procname evaluates to a 
name, while thismodule evaluates to the module expression itself. This 
is because the “invocation” phase of evaluating a module definition is 
part of its normal evaluation, and it occurs immediately. Procedures, on 
the other hand, are not invoked until called with arguments. Normally, 
at least one name for a procedure is known by the time it is called; this 
is not the case for modules.

Named Modules
An optional symbol may appear after the module keyword in a module 
definition. Modules created with this variant on the syntax are called 
named modules. Semantically, named modules are nearly identical to 
normal modules, but the exported members of named modules are printed 
differently, in a way that allows the module from which it was exported 
to be identified visually.

> NormalModule := module() export e; end;

NormalModule := module() export e; end module

> NormalModule:-e;

e

> module NamedModuleO export e; end module;
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module NamedModule () export e; end module

> NamedModule:-e;

NamedModule : —e

When the definition of a named module is evaluated, the name (which 
appears immediately after the module keyword) is assigned the module 
as its value, and the name is protected. Therefore, a named module can, 
ordinarily, be created only once. For example, an attempt to execute the 
named module definition yields an error.

> module NamedModuleO export e; end module;
Error, (in NamedModule) attempting to assign to
‘NamedModule‘ which is protected

Executing the normal module definition again creates a new in­
stance of the module, but does not result in an error. (It simply reassigns 
the variable NormalModule to the new module instance.)

> NormalModule := module() export e; end;

NormalModule := module() export e; end module

It is also important (if you expect sensible results) that you never assign 
a named module to another variable.

> SomeName := eval( NamedModule );

SomeName  : =
module NamedModule () export e; end module

> SomeName:-e;

NamedModule : —e

Exports of named modules are printed using the distinguished name 
that was given the module when it was created, regardless of any other 
names that you may refer to it by.

Whether a module has a name also affects the reporting of errors 
that occur during its evaluation. When the second attempt to evaluate 
the named module definition above failed, the error message reported the



location of the error by name. By contrast, when an error occurs during 
the evaluation of a normal module definition, the name unknown is used 
instead.

> NormalModule := module() export e; error "oops"; end;
Error, (in unknown) oops

This differs from the way error reporting works with procedures. 
You cannot report the name of a normal module (where, by “the name” , 
we mean the name of the variable to which the module is assigned), be­
cause the evaluation of the right side of an assignment occurs before the 
assignment to the name takes place. So the error occurs before any asso­
ciation between a variable and the module has occurred.

Declarations
The declarations section of the module must appear immediately after 
the parentheses. All statements in the declarations section are optional, 
but at most one of each kind may appear. Most module declarations are 
the same as those for procedures.

Description Strings Many modules constitute a nontrivial body of soft­
ware. When you write a module, you should provide a brief description 
so that users who encounter it will be able to recognize what it is or what 
it does. Use the description keyword to do this, just as you would in a 
procedure definition.

> Hello := module()
> description "my first module";
> export say;
> say := procO
> print( "HELLO WORLD" )
> end proc;
> end module:

When the module is printed, its description string is displayed.
> eval( Hello );

module() 
export say ;
description “my first module” ; 

end module
The export declaration that appears in this example is explained 

later in this chapter.
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Global Variables Global variables referenced within a module definition 
should be declared with the global declaration. Following the keyword 
global is a sequence of one or more symbols. These symbols are bound 
to their global instances. In certain cases you must declare a name as a 
global to prevent implicit scoping rules from making it a local variable.

> Hello := module()
> export say;
> global message;
> say := procO
> message := "HELLO WORLD!"
> end proc;
> end module:
> message;

message

> Hello:-say();

“HELLO WORLD!”

> message;

“HELLO WORLD!”

Local Variables You can refer to variables that are local to the module 
definition by using the local declaration. Its format is exactly the same 
as for procedures. Here is a variant on our Hello module above which 
makes (gratuitous) use of a local variable.

> Hello := module()
> local loc;
> export say;
> loc := "HELLO WORLD!";
> say := procO
> print( loc )
> end proc;
> end module:

Local variables are not visible outside the definition of the module 
in which they occur. They are “private” to the module, and are exactly 
analogous to local variables of procedures.

A local variable foo in a module (or procedure) is a distinct object 
from a global variable with the same name foo. Local variables are nor­
mally “short-lived” variables; the normal lifetime of a local variable is



the execution time of the body of code (a module or procedure body) to 
which it is local. (Local variables may persist once execution of the scope 
in which they occur has completed, but they are normally inaccessable 
and will eventually be recycled by Maple’s automatic storage management 
system.)

Exported Local Variables
Procedures and modules both support local variables. Only modules sup­
port exported local variables, often referred to simply as “exports” .

Module exports are declared using the export declaration. It begins 
with the keyword export, after which follows a (nonempty) sequence of 
symbols. A name is never exported “implicitly” ; exports must be de­
clared.

The result of evaluating a module definition is a module. You can 
view a module as a collection of its exports, which are also referred to as 
“members” of the module. These are simply names that may (but need 
not) be assigned values. You can establish initial values for the exports 
by assigning to them in the body of the module definition.

The word “export” is short for “exported local variable” . In most 
respects, a module export is a local variable (such as those declared via 
the local declaration.) The crucial difference is that you can access the 
exported local variables of a module after it has been created.

To access an export of a module, use the : -  member selection opera­
tor. Its general syntax is:
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modexpr :- membername

Here, modexpr must be an expression that evaluates to a module, and 
membername must be the name of an export of the module to which 
modexpr evaluates. Anything else signals an exception. You cannot ac­
cess local variables of an instantiated module by using this syntax.

Local variables of a procedure are created when the procedure is called 
(or invoked). Normally, the locals persist only during the execution of the 
statements that form the body of the procedure. Sometimes, however, 
local variables persist beyond the procedure activation that instantiated 
them. For example:

> gen := procO
> local s, p;
> s := 2;
> p : = x - > s * x ;
> P> end proc:
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> g := g e n ( ) ;

g : = p

> g( 3 );

The local variable s of gen persists after gen has returned. It is “cap­
tured” in the closure of the procedure p, whose name is returned by gen. 
Thus, both local variables p and s of gen “escape” , but in different ways. 
The local name p is accessible because it is the assigned value of the global 
variable g. However, there is no way to refer to s once gen has returned. 
No Maple syntax exists for that purpose. What the member selection op­
erator does is provide a syntax for referencing certain local variables 
of modules-those declared as exports.

Our most recent Hello example has one export, named say. In this 
case, say is assigned a procedure. To call it, you can type

> Hello:-say();

“HELLO WORLD!”

Whereas the following expression raises an exception, because the 
name noSuchModule is not assigned a module expression.

> noSuchModule:-e;
Error, ‘noSuchModule‘ does not evaluate to a module

Here, a module expression is assigned to the name m, and the 
member selection expression m:-e evaluates to the value of the exported 
variable e of m.

> m := module() export e; e := 2 end module:
> m:-e;

2

Since m does not export a variable named noSuchExport, the following 
expression raises an exception.

> m :-noSuchExport;
Error, module does not export ‘noSuchExport‘
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Important! Suppose that we construct a module that exports an unas­
signed name.

> m := module() export e; end:
References to the exported name e in m evaluate to the name e.

> m:-e;

e

Note, however, that this is a local name e, not the global instance of 
the name.

> evalb( e = m:-e );

false

The first e in the expression above refers to the global e, while the 
expression m:-e evaluates to the e that is local to the module m. This 
means that you can have a special version of sin, for instance, that is 
private to your module, and that assigning to it will not affect the value 
of the global name sin.

The Procedure exports You can determine the names of the exports 
of a module by using the procedure exports.

> exports( Hello );

say

> exports( Verifylmplementation );
Error, wrong number (or type) of parameters in function 
exports

This returns the global instances of the export names.
> exports( m );

e

> evalb( % = e ) ;



6.1 Syntax and Semantics • 247

true

You can also obtain the local instances of those names by passing the 
option instance.

> exports( m, ’instance’ );

> evalb( % = e );

false

> evalb ( 7o7o = m:-e );

true

For this reason, you cannot have the same name declared both as a 
local and an export.

> module() export e; local e; end;
Error, export and local ‘ e ‘ have the same name

(The declared exports and locals really form a partition of the 
names that are local to a module.)

The Procedure member You have already seen the built-in procedure 
member that is used to test for membership in a set or list.

> member(4, {1, 2, 3 } ) ;

false

This procedure can be used for membership tests in modules as well.
> member( say, Hello );

true

> member( cry, Hello );

false



The first argument is a (global) name whose membership is to be 
tested, and the second argument is a module. It returns the value true if 
the module has an export whose name is the same as the first argument.

The procedure member also has a three argument form that can be 
used with lists to determine the (first) position at which an item occurs.

> member( b, [ a, b, с ], ’pos’ );

true

The name pos is now assigned the value 2 because b occurs at the 
second position of the list [ a, b, с].

> pos;

2

When used with modules, the third argument is assigned the local 
instance of the name whose membership is being tested, provided that 
the return value is true.

> member( say, Hello, ’which’ );

true

> which;

say

> eval( which );

proc() print(/ос) end proc

If the return value from member is false, then the name remains 
unassigned (or maintains its previously assigned value).

> unassign( ’which’ ):
> member( cry, Hello, ’which’ );

false
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> eval( which );
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which

Module Options
As with procedures, a module definition may declare options. The op­
tions that Maple recognizes as being meaningful for modules are differ­
ent from those for procedures. Only the options trace, package, and 
‘Copyright. . . ‘ are meaningful (and have the same meaning) for both 
procedures and modules.

A special module option load takes the form load = thunk, where 
thunk is the name of an exported or local module member, thunk must 
be a procedure that is invoked when the (instantiated) module is first 
created or read from a Maple repository. This option may be used for any 
per-session initialization required.

Implicit Scoping Rules
The bindings of names that appear within a module definition are deter­
mined when the module definition is simplified. Module definitions are 
subject to the same implicit scoping rules that procedure definitions are. 
Under no circumstances is a name ever “implicitly” determined to be ex­
ported by a module; implicitly scoped names can resolve only to locals or 
globals.

Lexical Scoping Rules
Module definitions, along with procedure definitions, obey standard lex­
ical scoping rules. Modules may be nested, in the sense that a module 
may have any of its exports assigned to a module whose definition occurs 
within the body of the outer module.

Here is a simple example of a submodule.
> m := module()
> export s;
> s := module()
> export e;
> e := procO
> print( "HELLO WORLD!" )
> end proc;
> end module
> end module:

The global name m is assigned a module that exports the name s. Within 
the body of m, the export s is assigned a module that exports the name 
e. We call s a submodule of m. The Shapes package, described later, 
illustrates a nontrivial use of submodules.



Modules and procedures can be mutually nested to an arbitrary depth. 
The rules for the “visibility” of local variables (including exported locals 
of modules) and procedure parameters are exactly the same as the rules 
for nested procedures.

Parameterized Modules We have already remarked that modules do 
not take explicit parameters. It could be useful, however, to be able to 
write a “generic” module that could then be specialized by providing one 
or more parameters.

For example, here is a module for arithmetic modulo 6.
> z6 := module()
> export add, mul;
> add :=(a, b ) - > a + b  mod 6;
> mul := (a, b )  - > a * b  mod 6;
> end module:
> z6:-add( 5, 4 );

3

> z6:-mul( 2 , 3 ) ;

0

It would be nice to write a generic module for arithmetic modulo any 
positive integer n, and then specialize it for each integer that you want 
to use. This is already possible because of the standard lexical scoping 
rules. So to do this, write a constructor procedure for the module that 
accepts the value of n as an argument. Here is a generic version of the z6 
example above.

> MakeZn := proc( n::posint )
> module()
> export add, mul;
> add := (a, b ) - > a + b  mod n;
> mul := (a, b ) - > a * b  mod n;
> end module
> end proc:

To generate a module that does arithmetic modulo 7, simply call the 
constructor MakeZn with the number 7 as its argument.

> z7 := MakeZn( 7 );

z7 := module() export add, mul; end module

250 • Chapter 6: Programming with Modules



6.1 Syntax and Semantics • 251

> z7:-add( 3, 4 );

0

Modules and Types
Two Maple types are associated with modules. First, the name module 
is a type name. Naturally, an expression is of type module only if it is a 
module. When used as a type name, the name module must be enclosed 
in name quotes ( ‘ ).

> type( module() end, ’‘module*’ );

true

> type( LinearAlgebra, ’‘module0  );

true

Secondly, a type called moduledef inition identifies expressions that 
are module definitions. In the first example above, the module definition

> module() end:

was evaluated before being passed to type, so the expression that was 
tested was not the definition, but the module to which it evaluates. We 
must use unevaluation quotes ( ’ ) to delay the evaluation of a module 
definition.

> type( ’moduleO end’, ’moduledefinition’ );

true

Other important type tests satisfied by modules are the types atomic 
and last_name_eval.

> type( moduleO end, ’atomic’ );

true

The procedure map has no effect on modules; they pass through un­
changed.
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> map( print, module() export a, b, c; end );

module() export a, b, c; end module

Modules also suffer last name evaluation rules.
> m := module() end:
> m;

m

> type( m, ’last_name_eval’ );

true

Although type module is a surface type, it acts also as a structured 
type. Parameters passed as arguments to the unevaluated name module 
are taken to be the names of exports. For example, the module

> m := module() export a, b; end:

has type structured module type ‘module‘ ( a, b ):
> type( m, ’‘module'( a, b ) ’  ) ;

true

It also has type type ‘module ‘ ( a )
> type( m, ’‘module‘( a )’ );

true

because any module that exports symbols a and b is a module that 
exports the symbol a.

Example: A Symbolic Differentiator

In this section we will illustrate the various module concepts discussed 
so far by writing a simple symbolic differentiator. Maple already pro­
vides a built-in differentiator diff, so we will call our differentia­
tor differentiate. Its (final) implementation is hidden in a module 
Difflmpl, which holds all the local states for the program. Much of
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the code for the differentiator is designed to implement either a stan­
dard “rule” (such as the rule that the derivative of a sum is the sum of 
the derivatives of the summands), or special case rules for mathematical 
functions such as sin and exp. Our simple differentiator will handle only 
real valued functions of a single real variable.

We will show several steps in the development of the module, from 
a very simple “first try” to the final, fully functional program. The final 
form of the differentiator is a good illustration of a very common Maple 
“design pattern” . This pattern arises when you have a single top-level 
routine that has to dispatch to a number of subroutines to handle special 
cases using special purpose algorithms.

The First Attempt Initially, we will present the differentiator as an 
ordinary procedure, not yet involving modules. The first version of the 
differentiator is shown below.

> differentiate := proc( expr, var )
> local a, b;
>
> if type( expr, ’constant’ ) then
> 0
> elif expr = var then
> 1
> elif type( expr, ,<+ <} ) then
> map( procname, args )
> elif type( expr, ) then
> a , b := op( expr );
> if a = var and not has( b, var ) then
> b * a ~ ( b - l )
> else
> ’procname( args )’
> end if
> elif type( expr, ’<* <’ ) then
> a, b := op( 1, expr ), subsop( 1 = 1 ,  expr );
> procname( a, var ) * b + a * procname( b, var )
> else
> ’procname( args )’
> end if
> end proc:

Trivial cases are handled first: The derivative of a constant expression is 
equal to 0, and the derivative of the variable with respect to which we are 
differentiating is equal to 1. The additivity of the derivative operator is 
expressed by mapping the procedure over sums, using the idiom

> map( procname, args );

This is commonly used to map a procedure over its first argument, 
passing along all the remaining arguments. Only the simple case of powers



of the differentiation variable is handled so far, provided also that the 
power is independent of the differentiation variable. The product rule for 
derivatives is expressed by splitting expressions of type product into two 
“pieces” :

• the first factor in the product, and

• the product of all the remaining factors.

This is achieved by the double assignment of
> a, b := op( 1, expr ), subsop( 1 = 1 ,  expr );

so the input expression expr is expressed as expr = a * b. The stan­
dard technique of returning “unevaluated” is used so that computation 
may proceed symbolically on expressions that the differentiator is unable 
to do anything meaningful with.

This first version is quite simple, but it is already able to handle 
polynomials with numeric coefficients.

> differentiate( 2 - x + x~2 + 3*x~9, x );

-1  +  2z  +  27z8

However, it fails on expressions containing calls to standard mathe­
matical functions.

> differentiate( sin( x ), x );

differentiate (sin (ж), x)

It is also unable to deal successfully with symbolic coefficients.
> differentiate( a*x~2 + b*x + c, x );

differentiate^, x) x2 +  2 a x  +  differentiate(b, x) x  +  b 
+  differentiate^, x)

Adding Missing Functionality To add the missing functionality, we 
can add a case for expressions of type function.
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> differentiate := proc( expr, var )
>N, local a, b;
> if not has( expr, var ) then
> 0
> elif expr = var then
> 1
> elif type( expr, ,<+ <} ) then
> map( procname, args )
> elif type( expr, ) then
> a, b := op( expr );
> if not has( b, var ) then
> b * a ~ ( b - 1 ) * procname( a, var )
> else
> ’procname( args )’
> end if
> elif type( expr, ) then
> a, b := op( 1, expr ), subsop( 1 = 1 ,  expr );
> procname( a, var ) * b + a * procname( b, var i
> elif type( expr, ’function’ ) and nops( expr ) = 1
> # functions of a single variable; chain rule
> b := op( 0, expr ); # the name of the function
> a := op( 1, expr ); # the argument
> if b = ’sin’ then
> cos( a ) * procname( a, var )
> elif b = ’cos’ then
> -sin( a ) * procname( a, var )
> elif b = ’exp’ then
> exp( a ) * procname( a, var )
> elif b = ’In’ then
> ( 1 / a ) * procname( a, var )
> else
> ’procname( args )’
> end if
> else
> ’procname( args )’
> end if
> end proc:

This uses the chain rule to compute the derivatives of calls to “known” 
functions.

> differentiate( sin( x ) + cos( exp( x ) ), x );

cos(x) — sin(ex) ex

> differentiate( sin( x~2 ) + cos( x~2 ), x );

2 cos(x2) x — 2 sin(x2) x

> differentiate( sin( x )~2 + cos( x )"3, x );
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2 sin(x) cos(x) — 3 cos(x)2 sin(x)

At the same time, we have also improved the handling of expressions 
independent of the variable of differentiation.

> differentiate( a*x~2 + b*x + c, x );

2 a x  +  b

This is effected by using the expression has( expr, var ) instead 
of the weaker test type( expr, ’ constant’ ). The “power rule” now 
handles more than just powers of var.

> differentiate( sin( x )~2, x );

2 sin(x) cos(x)

However, adding new functions to our differentiator is tedious and 
error-prone, and the job of handling the chain rule has to be repeated for 
each function “known” to it.

Introducing a Function Table A better way to deal with the many 
functions that we should eventually want to add is to store them, and the 
rules used for their differentiation, in a table.

> differentiate := proc( expr, var )
> local a, b, functab;
>
> functab := tableO;
> functab[ ’sin’ ] := ’cos’;
> functab[ ’cos’ ] := x -> -sin( x );
> functab[ ’exp’ ] := exp;
> functab[ ’In’ ] := x -> 1 / x;
>
> if not has( expr, var ) then
> 0
> elif expr = var then
> 1
> elif type( expr, ,<+ <} ) then
> map( procname, args )
> elif type( expr, ) then
> a, b := op( expr );
> if a = var and not has( b, var ) then
> b * a ~ ( b - l ) *  procname( a, var )
> else
> ’procname( args )’
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> end if
> elif type( expr, ’ ) then
> a, b := op( 1, expr ), subsop( 1 = 1 ,  expr );
> procname( a, var ) * b + a * procname( b, var )
> elif type( expr, ’function’ ) and nops( expr ) = 1 then
> # functions of a single variable; chain rule
> b := op( 0, expr ); # the name of the function
> a := op( 1, expr ); # the argument
> if assigned( functab[ b ] ) then
> # This is a ‘‘known’’ function
> functab[ b ]( a ) * procname( a, var )
> else
> # This function is not known; return unevaluated
> ’procname( args )’
> end if
> else
> ’procname( args )’
> end if
> end proc:

This not only simplifies the code used for the function case, but also 
makes it very easy to add new functions.

Unfortunately, this implementation suffers from a serious drawback. 
It is not extensible. The known functions are hardcoded as part of the 
procedure definition for differentiate.

New functions cannot be added without editing this source code.
A second problem relates to performance. A complete implementation 

would require a table of dozens or hundreds of functions. That large table 
would have to be created and initialized each time differentiate was 
invoked.

Encapsulation and Extensibility One way to fix both problems is 
to make the table of functions a global variable. However, using global 
variables can be dangerous, because they pollute the user namespace and 
are subject to unwanted inspection and tampering.

A better solution is to put the differentiate procedure, along with 
its table of functions, into a module. The table is then initialized only 
once-when the module is created-and can be saved to a Maple repository 
along with the rest of the module by using a savelib call. By making the 
table a local variable of the module, we prevent users from modifying the 
table, or otherwise inspecting it in unwanted ways.

This does not prevent us from making the differentiator user-extensible, 
however. We can add an access procedure addFunc that allows users to 
add their own rules for differentiating new functions. For instance, we can 
use the call

> addFunc( ’cos’, x -> -sin(x) );



258 • Chapter 6: Programming with Modules

to add the derivative of the sin function. The export addFunc of the 
DiffImpl module is a procedure that requires two arguments. The first 
is the name of a function whose derivative is to be made known to the 
differentiator. The second is a Maple procedure of one argument that 
expresses the derivative of the function being added.

With this strategy in mind, we will create a module Diff Impl, with 
principal export differentiate. At the same time, we will also take the 
opportunity to make the basic differentiation rules extensible.

Here is the complete source code for the differentiator with these im­
provements.

> DiffImpl := module()
> description "a symbolic differentiator";
> local functab, ruletab, diffPower;
> export differentiate, addFunc, addRule, rule;
>
> addFunc := proc( fname::symbol, impl )
> functab[ fname ] := impl
> end proc;
>
> addRule := proc( T, impl )
> if type( T, ’{ set, list }’ ) then
> map( procname, args )
> elif type( T, ’And( name, type )’ ) then
> ruletab[ T ] := impl
> else
> error "expecting a type name, but got °/0l", T
> end if
> end proc;
>
> rule := proc( T )
> if type( T, ’And( name, type )’ ) then
> if assigned( ruletab[ T ] ) then
> eval( ruletab[ T ], 1 )
> else
> error "no rule for expressions of type °/0l", T
> end if
> else
> error "expecting a type symbol, but got °/0l", T
> end if
> end proc;
>
> differentiate := proc( expr, var )
> local a, b, e;
> if not has( expr, var ) then
> 0
> elif expr = var then
> 1
> elif type( expr, ’function’ ) and nops( expr ) = 1 then
> e := op( 0, expr );
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> a := op( expr );
> if assigned( functab[ e ] ) then
> functab[ e ]( a ) * procname( a, var )
> else
> ’procname( args )’
> end if
> else
> b := whattype( expr );
> if assigned( ruletab[ b ] ) then
> ruletab[ b ]( expr, var )
> else
> ’procname( args )’
> end if
> end if
> end proc;
>
> addRule( ’{list,set,tabular}’,
> () -> map( differentiate, args ) );
> addRule(
> () -> map( differentiate, args ) );
> addRule( »‘* ‘»,
> (expr,var) ->
> op(1,expr)*differentiate(subsop(1=1,expr),var)
> + differentiate(op(1,expr),var)*subsop(1=1,expr) );
> diffPower := proc( expr, var )
> local b, e;
> Assert( type( expr, ) );
> b , e := op( expr );
> if has( e, var ) then
> expr * ( differentiate( e, var ) * ln( b )
> + e * differentiate( b, var ) / b )
> else # simpler formula
> e * b~(e - 1) * differentiate( b, var )
> end if;
> end proc;
> addRule( eval( diffPower ) );
>
> addFunc( ’sin’, cos );
> addFunc( ’cos’, x -> -sin(x) );
> addFunc( ’exp’, exp );
> addFunc( ’In’, x -> 1/x );
> # ... etc.
>
> end module:
> differentiate := Difflmpl:-differentiate:

To give our set of rules for nonfunctional expressions a similar kind of 
extensibility, we will store those rules in a table as well. The table will be 
indexed by the primary (or basic) type name for the expression type, as 
given by the Maple procedure whattype.

> whattype( a + 2 );
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> whattype( a / b );

> whattype( a~sqrt(2) );

> whattype( [ f ( x ) , g ( x ) ]  );

list

A “rule” is expressed by a procedure of two arguments, expr and 
var, in which expr is the expression to be differentiated, and var is the 
variable of differentiation. For instance, we would like the differentiator 
to handle items such as sets and lists by differentiating their individual 
components. So we add the rule

> addRule( list, set, tabular () -> map( differentiate,
> args ) );

The first version of our differentiator dealt with sums by mapping 
itself over the sum expression. In the new scheme, this is expressed by the 
statement

> addRule( ’‘ + 0 , () -> map( differentiate, args ) );

in the module body. Now, the advantage of using this scheme is that, 
not only can the author of the differentiator extend the system, but so 
can users of the system. Having instantiated the module Diff Impl, any 
user can add rules or new functions, simply by issuing appropriate calls 
to addRule and addFunc.

The differentiator cannot handle the procedure tan
> differentiate( tan( x )/exp( x ), x );

tan(x) differentiate(tan(x), x)

so we will add it to the database of known functions.



> DiffImpl:-addFunc( ’tan’, x -> 1 + tan(x)~2 );

x  —>• 1 +  tan(x)2

> differentiate( tan( x )/exp( x ), x );

tan(x) ^  1 + tan (x )2

Similarly, there is not yet any rule for handling equations and other 
relations.

> differentiate( y( x ) = sin( x~2 ) - cos( x~3 ), x );

differentiate(y(x) =  sin(x2) — cos(x3), x)

> DiffImpl:-addRule( 4  ‘ = ‘, ‘<=‘ }>,
> () -> map( differentiate, args ) );

{ ( ) —>• map (differentiate, args)}

> differentiate( y( x ) = sin( x~2 ) - cos( x~3 ), x );

differentiate(y(x), x) =  2 cos(x2) x  +  3 sin(x3) x 2

The Extension Mechanism is “Module Aware” Take care not 
to confuse the extension mechanism proposed above for our differentia­
tor with the extension mechanism used by the built-in Maple command 
diff. diff uses a traditional string concatenation mechanism for adding 
knowledge of the derivatives of functions, and all its rules are built-in, 
so they cannot be extended. For instance, to add a new function F to 
Maple’s built-in diff command, you can define a procedure ‘diff/F‘ 
that computes the derivative of F.

By contrast, the extension mechanism used in our differentiate 
example is “module aware” . Suppose that you want to add knowledge 
of the derivative of some top-level function F. You can simply issue a 
command, such as

> DiffImpl:-addFunc( ’F ’, x -> sin( x ) + cos( x ) );
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x —>• sin(x) +  cos(x)
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(We are supposing that, in fact, the derivative of F( x ) is sin( x 
) + cos( x ).) Now suppose that you have defined a module with some 
special functions, one of which is also called F.

> SpecFuncs := module()
> export F; # etc.
> # definition of F() and others
> end module:

You can now add this new F to the known functions.
> DiffImpl:-addFunc( SpecFuncs:-F, x -> exp( 2 * x ) );

ж ^ е (2ж)

> differentiate( F( x ), x );

sin(x) +  cos(x)

> use SpecFuncs in
> differentiate( F( x ), x );
> end use;

е(2ж)

With the traditional mechanism, this does not work.
> ‘diff/' || F := x -> sin( x ) + cos( x );

diff /  F  := x  —>• sin (ж) +  cos(x)

> diff( F( x ), x );

sin(x) +  cos(x)

> use SpecFuncs in
> ‘diff/' || F := x -> exp( 2 * x );
> diff( F( x ), x );
> end use;
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diff/F : = x ^ e (2x) 

е(2ж)

The definition for the global F has been lost.
> diff( F( 2 * x ), x );

e(4*)

(We use a different argument to d i f f  to avoid recalling the answer 
from its remember table.) The traditional mechanism fails because it relies 
on the external representation of names, and not upon their bindings, 
so each attempt to define an extension to d i f f  in fact added a definition 
for the derivative of all functions whose names are spelled "F".

A commented version of the differentiator module is available in the 
sample source code of your Maple installation. The implementation shown 
in the text has been somewhat simplified.

6.2 Records
The simplest way in which to use modules is as Pascal-style records (or 
“structures” , as in С and C ++). A record is a data structure that has 
some number of named “slots” or “fields” . In Maple, these slots can be 
assigned arbitrary values.

Instantiating Records To create a record, use the Record constructor. 
It takes the slot names as arguments.

> rec := Record( ’a’, ’b ’, ’ c ’ );

rec : =
module() export a, b, c; option record ; end module

The name rec is now assigned a record with slots named a, b, and c. 
These are the slot names for the record rec. You can access, and assign, 
these slots by using the expressions rec:-a, rec:-b, and rec:-c.

> rec:-a := 2;
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a := 2

> rec:-a;

2

If not assigned, the record slot evaluates to the local instance of the 
slot name.

> rec:-b;

b

> evalb( % = b );

false

The usefulness of this is that the entire record may be passed around 
as an aggregate data structure.

The record constructor accepts initializers for record slots. That is, 
you may specify an initial value for any among the slots of a newly created 
record by passing an equation with the slot name on the left side and the 
initial value on the right.

> r := Record( ’a ’ = 2, ’b ’ = sqrt( 3 ) );

r := module() export a, b; option record ; end module

> r :-b ;

Record Types Expressions created with the Record constructor are of 
type record.

> type( rec, ’record’ );

true

This is a structured type that works the same way that type ‘ module ‘ 
does but recognizes records specifically.
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Using Records to Represent Quaternions Records are useful for 
implementing simple aggregate data structures for which named access 
to slots is wanted. For example, four real numbers can be combined to 
form a quaternion, and we can represent this using a record structure, as 
follows.

> MakeQuaternion := proc( a, b, c, d )
> Record( ’re’ = a, ’i’ = b, ’j’ = c, ’k ’ = d )
> end proc:
> z := MakeQuaternion( 2, 3, 2, sqrt( 5 ) );

z := module() 
export re, i, j , k; 
option record ;

end module
In this example, z represents the quaternion 2 +  3i +  2j +  л/Ек (where 

i, j ,  and к are the nonreal quaternion basis units). The quaternion records 
can now be manipulated as single quantities. The following procedure ac­
cepts a quaternion record as its sole argument and computes the Euclidean 
length of the quaternion that the record represents.

> qnorm := proc( q )
> use re = q:-re, i = q:-i, j = q:-j, к = q:-k in
> sqrt( r e * r e + i * i + j  * j + k * k )
> end use
> end proc:
> qnorm( z );

V22

A Maple type for quaternions can be introduced as a structured record 
type.

> 'type/quaternion' := ’record( re, i, j, к )’:
> type( z, ’quaternion’ );

true



6.3 Packages
Modules are ideal for writing Maple packages. They provide facilities that 
are better equipped for large software projects than are the older table- 
and procedure-based methods.

W hat Is a Package?
A package is a collection of procedures, and other data, that can be treated 
as a whole. Packages typically gather a number of procedures that enable 
you to perform computations in some well-defined problem domain. Pack­
ages may contain data other than procedures, and may even contain other 
packages ( “subpackages” ).

Packages in the Standard Library A number of packages are 
shipped with the standard Maple library. For example, the group, 
numtheory, codegen, and LinearAlgebra packages are all provided with 
Maple, along with several dozen others. The group package provides pro­
cedures that allow you to compute with groups that have a finite represen­
tation in terms of permutations, or of generators and defining relations. 
The LinearAlgebra package has a large number of procedures available 
for computational linear algebra.

Table-Based Packages Many packages are implemented as tables. 
The essential idea underlying this implementation scheme is that the 
name of a package routine is used as the index into a table of proce­
dures. The table itself is the concrete representation of the package.

Use Modules for New Packages Modules are the new implementa­
tion vehicle for packages. A module represents a package by its exported 
names. The exported names can be assigned arbitrary Maple expressions, 
typically procedures, and these names form the package.

Package Exports Some of the data in a package is normally made 
accessible to the user as an “export” of the package. For packages imple­
mented as modules, the package exports are the same as the exports of 
the underlying module. For packages implemented as tables, the package 
exports are the names used to index the underlying table.

Accessing the exports of a package is a fundamental operation that is 
supported by all packages. If P is a Maple package, and e is one among 
its exports, you can access e by using the fully qualified reference P [ e ]. 
If it happens that P is a module, then you can also use the syntax P:-e.

266 • Chapter 6: Programming with Modules



6.3 Packages • 267

These methods of accessing the exports of a module are normally used 
when programming with a package.

Note that is a left-associative operator. If S is a submodule of a 
module P, and the name e is exported by S, then the notation P:-S:-e is 
parsed as (P:-S) :-e, and so it refers to the instance of e local to S. This 
fact is important to reference members of subpackages. For example,

> m := Matrix(2,2,[[l-x,2-x],[3-x,4-x]],
> ’datatype’ = ’polynom(integer)’ );

1 — x 2 — x

> LinearAlgebra:-LA_Main:-Norm( m, 1, conjugate = false );

max(|x — 1| +  \x — 3| , \x — 2| +  \x — 4|)

calls the procedure Norm in the subpackage LA_Main of the LinearAlgebra 
package. (You cannot use indexed notation for this.)

Using Packages Interactively For interactive use, it is inconvenient 
to have to type fully qualified references to all the exports of a package. To 
ease this burden, the Maple procedure with is provided for the interactive 
management of package namespaces. Using with, you can globally impose 
the exported names of a package. This allows you to access the package 
exports, without typing the package prefix, by making the names of the 
exports visible at the top-level of your Maple session. For example, to use 
the numtheory package, you can issue the command

> with( numtheory );
Warning, the protected name order has been redefined 
and unprotected
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[GIgcd, bigomega, cfrac, cfracpol, cyclotom ic, divisors, 
fa c torE Q , factorset , ferm at, imagunit, index, 
integral_basis, invcfrac, invphi, issqrfree, jacobi, 
kronecker, Л, legendre, m combine, m ersenne, 
minkowski, mipolys, mlog, mobius, m root, msqrt, 
nearestp, nthconver, nthdenom, nthnumer, nthpow, 
order, pdexpand, 0 ,  7Г, pprimroot, prim root , quadres, 
rootsunity , safeprime , cr, sq2factor, sum2sqr, t, thue]

The effect of this command is to make the names exported by tne 
numtheory package (a list of which is returned by the call to with) avail­
able temporarily as top-level Maple commands.

> cfrac( ( 1 + x )~k, x, 5, ’subdiagonal’, ’simregular’ );
1
/с ж

1 | 1 (fc +  l)s 
2 1 (/с — 1) ж 

“ б “ 1 (fc +  2)z 
+  6 1 +  ...

In this section, we are concerned primarily with how to write Maple 
packages by using modules. The following subsections present several ex­
amples that illustrate how to do this.

Example: The LinkedList Package
The first example package is a small package called LinkedList. This 
example illustrates the basic structure of a package implemented by using 
modules.

Background Linked lists are a basic data structure used in programs 
for many different purposes. There are many different kinds of linked lists, 
with variations on the basic idea intended to deal with various issues 
involving performance and functionality. The example package shown in 
this subsection provides a few operations on the simplest possible form of 
linked lists.

The “links” in a linked list are formed from a very simple data struc­
tured called a “pair” . A pair is essentially a container with space for 
exactly two elements. Pairs can be modeled by fixed length records with
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two slots. When used to implement linked lists, the first slot holds the 
data for the list entry, and the second slot stores a pointer to the next 
pair in the list.

The LinkedList package implements an abstract data definition for 
the pair data structure, and adds some higher level operations on pairs 
to effect the list abstraction. A linked list is effectively represented by its 
first pair.

The “pair” abstract data structure is very simple. It consists of a 
constructor “pair” , and two accessors called “head” and “tail” that satisfy 
the algebraic specification

p =  pair(head(p), tail(p))

for each pair p. In addition, there is a distinguished “pair” nil, satisfying 
this algebraic relation, that is unequal to any other pair, and satisfies

head(nil) =  nil, tail(nil) =  nil.

Note that linked lists are quite different from Maple’s builtin list struc­
tures, which are really immutable arrays. Linked lists are best suited for 
applications in which you want to incrementally build up the list from its 
members.1

Package Implementation The LinkedList package is implemented 
as a module containing the primitive operations on pairs, and higher level 
operations that implement the list abstraction.

> macro( _PAIR = ‘ ‘ ): # for nice printing
> LinkedList := module()
> description "routines for simple linked lists";
> export
> nil,
> nullp,
> pair,
> head,
> tail,
> list,
> length,
> member,
> reverse,
> append,
> map;
> local

1Lisp programmers will recognise the pair, head and tail operations as the more 
traditional operations known as “cons” , “car” and “cdr” .
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> setup,
> cleanup,
> mapl,
> reversel,
> _PAIR;
> option
> package,
> load = setup,
> unload = cleanup;
>
> setup := procO
> global 'type/Pair', 'type/LinkedList';
> 'type/Pair' := ’{ _PAIR( anything, anything ),
> identical( nil ) }’;
> 'type/LinkedList' := proc( expr )
> if expr = nil then
> true
> elif type( expr, Pair ) then
> type( tail( expr ), ’LinkedList’ )
> else
> false
> end if
> end proc;
> userinfo( 1, ’LinkedList’,
> "new types ‘Pair’ and ‘LinkedList’ defined" );
> NULL
> end proc;
>
> cleanup := procO
> global 'type/Pair', 'type/LinkedList';
> userinfo( 1, ’LinkedList’,
> "cleaning up global types" );
> 'type/Pair' := evaln( 'type/Pair' );
> 'type/LinkedList' := evaln( 'type/LinkedList' );
> NULL
> end proc;
>
> pair := ( a, b )
> -> setattribute( ’_PAIR’( a, b ), ’inert’ );
> head := ( c::Pair )
> -> 'if' ( с = nil, nil, op( 1, с ) );
> tail := ( c::Pair )
> -> 'if' ( с = nil, nil, op( 2, с ) );
> nullp := ( pair )
> -> evalb( pair = nil );
>
> list := procO
> local a, L;
> L := nil;
> for a in args do
> L := pair( a, L )
> end do
> end proc;
>
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> length := proc( 1st )
> if nullp( 1st ) then
> 0
> else
> 1 + length( tail( 1st ) )
> end if
> end proc;
>
> member := proc( item, 1st )
> if nullp( 1st ) then
> false
> elif item = head( 1st ) then
> true
> else
> procname( item, tail( 1st ) )
> end if
> end proc;
>
> map := proc( p, 1st )
> if nullp( 1st ) then
> nil
> else
> pair( p( head( 1st ) ),
> procname( p, tail( 1st ) ) )
> end if
> end proc;
>
> append := proc( lstl, 1st2 )
> if nullp( lstl ) then
> lst2
> else
> pair( head( lstl ),
> procname( tail( lstl ), lst2 ) )
> end if
> end proc;
>
> reversel := proc( sofar, todo )
> if nullp( todo ) then
> sofar
> else
> procname( pair( head( todo ), sofar ),
> tail( todo ) )
> end if
> end proc;
>
> reverse := 1st -> reversel( nil, 1st );
>
> setup();
>
> end module:

Normally, a package definition like this would be entered into a Maple 
source file using a text editor, or in a worksheet using Maple’s GUI inter­
face. In either case, the definition would then be followed by a call to the



savelib procedure using the name of the module as its sole argument:
> savelib( ’LinkedList’ );

Evaluating the savelib call saves the module to the first repository 
found in the global variable libname, or the repository named with the 
global variable save libname, if it is defined. (At least one of these must 
be defined.) You should always ensure that your standard Maple 
library is write-protected to avoid saving your own expressions 
in it. If you accidentally save something to the standard Maple library, 
you may need to restore the original from the media on which you obtained 
your copy of Maple.

The package exports are listed as the exports of the module. A few 
local variables are used to implement the package. The local procedures 
mapl and reversel are part of the package implementation that is not 
available to users of the package. They are visible only within the module 
definition. This allows the package author to make improvements to the 
package without disturbing any code that uses it. If the local procedures 
reversel and mapl were exported (thus, available to users), it would be 
difficult for the author to replace these routines without breaking existing 
code that relies upon them.

The package includes two special (local) procedures, setup and 
cleanup. These are executed, respectively, when the module is first read 
from a repository, and when the package is either garbage collected or 
when Maple is about to exit.

Using the Package The package exports can always be accessed by 
using the long form of their names.

> LinkedList:-pair( a, b );

(a, b)

For consistency with the older table-based package implementations, 
an indexed notation may also be used.

> LinkedList[ ’pair’ ]( a, b );

(a, b)
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This form requires that the index (in this case, the symbol pair) be 
protected from evaluation, and the notation does not extend to packages 
with nested subpackages.

To access the package exports interactively, use the with command.
> with( LinkedList );
Warning, the protected names length, map and member 
have been redefined and unprotected

[append,, head, length, list, map, member, nil, nullp, pair, 
reverse, tail}

Note that, since some of the package exports shadow global procedures 
with the same name, with issues warnings. These warnings are normal and 
merely serve to remind you that these names will now refer to expressions 
other than the expressions to which they referred prior to issuing the 
command. Once the exports of the package LinkedList have been bound, 
you can call them as you would global Maple routines with those names. 
Note that you can still access the global version of member, for example, 
by using the syntax : -member.

> use LinkedList in
> member( a, TL );
> :-member( a, [a, b, c, d ]  )
> end use;

true

true

This is one of the principal advantages of using modules and binding, 
rather than assignment, to implement packages.

Lists are either built up incrementally using the pair export of the 
package, or by calling the list export.

> L := nil:
> for i from 1 to 10 do
> L := pair( i, L )
> end do;



L := (1, nil)

L : =  (2, (1, nil))

L '= (3. (2, (1, mi)))

L : =  (4, (3, (2, (1, nil))))

L := (5, (4, (3, (2, (1, nil)))))

L : =  (6, (5, (4, (3, (2, (1, mi))))))

L : =  (7, (6, (5, (4, (3, (2, (1, mi)))))))

L := (8, (7, (6, (5, (4, (3, (2, (1, nil))))))))

L : =  (9, (8, (7, (6, (5, (4, (3, (2, (1, ш()))))))))

L := (10, (9, (8, (7, (6, (5, (4, (3, (2, (1, nil))))))))))

> length( L ) ;

10

> member( 3, L ) ;

true

> member( 100, L );

false

> reverse( L );

(1, (2, (3, (4, (5, (6, (7, (8, (9, (10, nil))))))))))

> map( x -> x~2, L );

(100, (81, (64, (49, (36, (25, (16, (9, (4, (1, nil))))))))))

> member( 100, % );

true
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> L2 := list( a, b, c, d );

L2 := (d, (c, (6, (a, nil))))

> map( sin, L2 );

(sin(d), (sin(c), (sin(6), (sin(a), nil))))

> eval( L2, { a = 1, b = 2, с = 3, d = 4 } );

(4, (3, (2, (1, nil))))

> map( evalf[ 10 ], % );

(4 , (3 , (2 , (1, nil))))

The Maple source code for this package is available in the c samples ’ 
directory of your Maple installation as the file c samples/ch06/ll .mpl’. 
The source code in the c samples ’ directory may differ slightly from that 
shown in this book.

Example: A Code Coverage Profiling Package
Our next example is a package called coverage. It instruments procedures 
and modules for coverage profiling. Besides serving as an example of a 
small package, it also illustrates some of the ways in which modules can 
be manipulated.

Design When you have written some Maple code, you will want to 
write tests that exercise each part of the program to ensure that it works 
correctly, and that it continues to work when it, or other programs on 
which it depends, change over time. It is important to be able to determine 
whether each statement in a procedure is executed by some test case. 
The traceproc option of the Maple command debugopts provides that 
capability. It takes the name p of a procedure, using the syntax
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debugopts( ’ traceproc ’ = p ) ;

and instruments the procedure assigned to p for coverage profiling. Here 
is an example.

> p := proc( x )
> if x < 0 then
> 2 * x
> else
> 1 + 2 * x
> end if
> end proc:
> debugopts( ’traceproc’ = p ):

Once the procedure has been instrumented, then each time it is executed, 
profiling information at the statement level is stored. To view the profiling 
information, use the procedure showstat.

> p ( 2 ) ;

5

> showstat( p ); 

p := proc(x)
I Calls Seconds Words|

PROC 1 1 0.000 12|
1 1 1 0.000 12| if x < 0
2 1 o 0.000 01 2*x

else
3 1 1 0.000 01 l+2*x

end if
end proc

The display shows that only one branch of the if statement that 
forms the body of p was taken so far. This is because only a non-negative 
argument has been supplied as an argument to p. To get complete cover­
age, a negative argument must also be supplied.

> p( -1 );

- 2

> showstat( p );
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р := proc(x)
I Calls Seconds Words|

PROC | 2 0.000 24|
1| 2 0.000 24| if x < 0 then

2| 1 0.000 0| 2*x
else

Now the display shows that each statement in the body of p has 
been reached.

The profiling information is stored in an rtable assigned to a name 
that is formed by concatenating the name TRACE with the name of the 
procedure (the one used in the call to debugopts), separated by a /  
character.

> eval( ‘TRACE/p‘ );

The little package illustrated in this section helps to extend this func­
tionality to modules, and acts as a front end to the debugopts with the 
traceproc option.

The coverage package has two exports: profile and covered. Two 
private procedures, rprof ile and traced, are used as subroutines. They 
are stored in local variables of the underlying module of the package.

The Package Source Here is the source code for the package.
> coverage := module()
> description "a package of utilities for "
> "code coverage profiling";
> option package;
> export profile, covered;
> local rprofile, traced;

2 0 24
2 0 24 
1 0 0
1 0 0

>
>
>
>
>
>

# Instrument a procedure or module
# for coverage profiling. Return the
# number of procedures instrumented, 
profile := procO

local arg;
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> add( rprofile( arg ), arg = [ args ] )
> end proc;
>
> rprofile := proc( s::name )
> local e;
> if type( s, ’procedure’ ) then
> debugopts( ’traceproc’ = s );
> 1
> elif type( s, ’‘module0  ) then
> add( procname( e ),
> e = select( type,
> [ exports( s, ’instance’ ) ],
> ’{ ‘module', procedure }’ ) )
> else
> error "only procedures and modules can be profiled"
> end if
> end proc;
>
> # Subroutine to recognize an rtable that
> # is used to store profiling information,
> # based on its name.
> traced := proc( s )
> evalb( substring( convert( s, ’string’ ),
> 1 .. 6 ) = "TRACE/" )
> end proc;
>
> # Determine which procedures have
> # coverage information.
> covered := procO
> local S;
> S := [ anames( ’rtable’ ) ];
> S := select( traced, S );
> if nargs > 0 and args[ 1 ] = ’nonzero’ then
> S := select( s -> evalb( s[l,l] <> 0 ), S )
> elif nargs > 0 then
> error "optional argument is the name nonzero"
> end if;
> map( parse, map( substring,
> map( convert, S, ’string’ ), 7 .. -1 ) )
> end proc;
> end module:

H o w  the Package Works The export profile is an interface to the 
package’s principal facility: instrumenting procedures and modules for 
coverage profiling. It returns the number of procedures instrumented, and 
calls the private subroutine rprofile to do most of the work.

The procedure rprofile accepts a name s as an argument. If s is the 
name of a procedure, rprofile simply calls debugopts to instrument the 
procedure assigned to that name. Otherwise, if s is the name of a module, 
rprofile picks out any exports of the module that are procedures or
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modules and calls itself recursively to instrument them. If the parameter 
s is assigned a value of any other type, then an exception is raised.

The expression [ exports( s, ’instance’ ) ] evaluates to a list 
of all the exported variables of the module that are assigned to s. It is 
important to pass the instance option to exports, because when those 
names are passed to rprof ile in a recursive call, rprof ile must test the 
type of their assigned values. This list contains all the module exports, 
so those that are of type procedure, or of type module, are picked out by 
using a call to select. The recursion is effected in the call to add, which 
sums the return values of all the recursive calls to rprof ile.

The exported procedure covered is used to determine which pro­
cedures have been instrumented and called, with profiling information 
stored. One possible design would store this information in a private ta­
ble in the coverage package. With this design, covered could simply 
query that internal table for the names of the procedures that have been 
instrumented and that have profiling information stored. However, a user 
may have instrumented the procedure “manually” by calling debugopts 
directly, or historical profiling data may have been read from a Maple 
repository. Therefore, we have adopted a design that queries the system 
directly, without regard to how a procedure came to be instrumented 
initially.

The procedure covered queries Maple for all the names currently 
assigned values of type rtable, using the Maple command anames ( “as­
signed names” ). Names beginning with the character string "TRACE/" are 
selected, by using the subroutine traced, as there may be other rtables in 
the system. If the nonzero option is passed to covered, then only those 
which have actually been called are chosen. The final statement

> map( parse, map( substring,
> map( convert, S, ’string’ ),
> 7 .. -1 ) )

first converts the names to strings, then removes the "TRACE/" prefix 
by forming the substring from the seventh position to the end of the string, 
and finally calls parse on each string to convert it to the procedure for 
which profiling data is stored.

Using the Package As with all packages, you can access the coverage 
package interactively by using the with command.

> with( coverage );
Warning, the protected name profile has been redefined
and unprotected
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[covered, profile}

A list of the package exports is returned. Alternatively, the package ex­
ports can always be accessed by using the long forms coverage:-profile 
and coverage:-covered.

Suppose that we want to test the procedure copy (chosen because it 
is short). This procedure produces a new copy of a table, array, or rtable. 
Now that the coverage package has been globally imposed by using with, 
we can simply call

> profile( copy );

1

The return value of 1 indicates that, as expected, one procedure was 
instrumented. Next we call copy with a few arguments (output sup­
pressed):

> copy( table() ):
> copy( array( 1 .. 3 ) ) :

Using covered, we see that copy has indeed had its profiling information 
stored.

> covered( ’nonzero’ );

[copy]

From the output of showstat,
> showstat( copy );

copy := proc(A)
I Calls Seconds 

PROC | 2 0.000 
1 | 2 0.000 
2 | 0 0.000

3 | 2 0.000 
4 | 0 0.000

5| 2 0.000

Words|
640|
640| if type(A,rtable) then

0| return rtable(rtable_indfns(A),
rtable_dims(A),A,rtable_options(A), 
readonly = false) 

elif type(A,{array, table}) then 
582| if type(A,name) then

0| return map(proc () args end proc,
eval(A)) 

else
574| return map(proc () args end proc,A)

end if
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else
6 | 0 0.ООО О I return

end if
end proc

we see that we have missed the rtable case (statement 2), so we 
add a test for that.

> copy( rtable() ):
> showstat( copy );

copy
PROC

1
2

:= proc(A)
I Calls Seconds Words|

5 I

6 I

3 0,.000 828|
3 0,.000 828|
1 0,.000 1761

2 0,.000 582|
0 0,.000 01

2 0,.000 5741

0 0,.000 01

if type(A,rtable) then
return rtable(rtable_indfns(A), 
rtable_dims(A),A,rtable_options(A), 
readonly = false) 

elif type(A,{array, table}) then 
if type(A,name) then
return map(proc () args end proc, 
eval(A)) 

else
return map(proc () args end proc,A) 

end if 
else
return A 

end if
end proc

Statement 4 is still missing. This statement can be reached by 
assigning an array or table to a name and by calling copy with that name 
as argument.

> t := table():
> copy( t ):
> showstat( copy );

copy := proc(A)
I Calls Seconds Words|

PROC 1 4 0.000 11271
1 1 4 0.000 11271 if type(A,rtable) then
2 1 1 0.000 1761 return rtable (rtable.

rtable_dims(A),A,rtable_options(A), 
readonly = false) 

elif type(A,{array, table}) then
3 | 3 0.000 873| if type(A,name) then
4 | 1 0.000 287| return map(proc () args end proc,

eval(A)) 
else



5 | 2 0.000 574| return map(proc () args end proc,A)
end if 

else
6 | 0 0.000 0 | return A

end if
end proc
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The only missing case now is the one in which the argument to 
copy is something other than an rtable, array, or table.

> copy( 2 ):
> showstat( copy );

copy := proc(A)
I Calls Seconds Words|

PROC 1 5 0.000 11531
1 1 5 0.000 11531 if type(A,rtable) then
2 1 1 0.000 1761 return rtable(rtable_indfns(A), 

rtable_dims(A),A,rtable_options(A), 
readonly = false) 

elif type(A,{array, table}) then
3 1 3 0.000 873| if type(A,name) then
4 1 1 0.000 2871 return map(proc () args end proc, 

eval(A)) 
else

5 1 2 0.000 5741 return map(proc () args end proc,A) 
end if 

else
6 1 1 0.000 10| return A

end if
end proc

The final output shows that every statement has been reached by 
our test cases. This functionality is very useful for interactively developing 
unit tests for Maple programs.

The source presented here for the coverage package has been simpli­
fied for presentation in printed form. The full source code is available in 
the samples directory of your Maple installation.

Example: The Shapes Package
Modules permit the construction of packages with hierarchical structure. 
This cannot be done with table-based implementations of packages.

This section presents a detailed look at how you can organize your 
source code for a (potentially) large package that has nontrivial substruc­
ture. A package Shapes is described, and the details of its design and
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implementation are provided. We also give some “hints” related to source 
code organization.

The mathematical functionality of this package is trivial. It provides 
the means to compute areas and circumferences of various planar figures, 
which are called “shapes” .

Only portions of the source code for this package are shown here. The 
fully commented source code can be found in the samples directory of 
your Maple installation.

Source Code Organization The Shapes package is organized into sev­
eral source files:

shapes.mpl

point.mpl 
segment.mpl 
circle.mpl 
square.mpl 
triangle.mpl

To avoid platform-specific differences, a flat directory structure is used. 
(All the source files reside in the same directory or folder.)
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To define the module tha t implements this package, we use the Maple 
preprocessor to include the remaining source files at the appropriate point 
in the “master” source file shapes.mpl. A number of $include directives 
are included in shapes.mpl, such as

$include "point.mpl"
$include "segment.mpl"

Splitting a large project into a number of source files makes it easier 
to manage, and allows several developers to work on a project simultane­
ously. The source file is divided into shape-specific functionality. Most of 
the functionality for points, for instance, is implemented by source code 
stored in the file point .mpl.

Package Architecture The Shapes package is structured as a module 
with a number of exported procedures. Individual submodules provide 
shape-specific functionality for each shape type supported by the package.
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Each of these shape-specific submodules is stored in its own source file; 
these are the files included into the main package source file, shapes .mpl.

The shape-specific submodules are submodules of another submod­
ule, called Shapes. That is, the package module is called Shapes; it has 
a submodule, also called Shapes; and the module Shapes:-Shapes con­
tains one submodule for each kind of shape supported. This submodule 
hierarchy is illustrated below.

The result of preprocessing the main file shapes.mpl produces a module 
whose source has the following general outline.
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Shapes := module()
export make, area, circumference;
local Shapes, circum_table;
Shapes := module()

export point, segment, circle, square, triangle;
point := module() ... end;
segment := moduleO .. . end;

end module;
make := procO ... end;
area := procO ... end;
circum_table := table(); .
circumference := procO .. . end;

end module:

The Package A P I The S h ap es package exports the following routines:

1. make

2. area

3. circumference

The exported procedure make is a constructor for shapes. It is used 
to create a shape expression from the input data. For example, points are 
constructed from their x  and у coordinates.

> org := make( ’point’, 0, 0 );

org := make(point, 0 , 0)

A circle is constructed from its center and radius.
> circ := make( ’circle’, org, 2 );

circ := make(circle, make(point,  0, 0), 2)

In each case, the name of the shape is passed as the first argument, 
to tell make what kind of shape to return.

To compute the area of a shape, call the exported procedure area 
with the shape as its argument.

> area( circ ) ;
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Similarly, the exported procedure circumference computes the cir­
cumference of a given shape.

> circumference( circ );

circumference (make (circle, mak e(point, 0, 0), 2))

Shape Representation Shapes are represented as unevaluated func­
tion calls. The arguments to the call are the instance-specific data for 
the shape. For example, a point with coordinates (2, 3) is represented 
by the unevaluated function call POINT( 2, 3 ). Some instance data 
may be shapes themselves. For instance, a segment is represented, us­
ing its endpoints, as an unevaluated function call of the form SEGMENT ( 
start_point, end_point ). The start and end points of the segment 
can be obtained by calls to the point constructor.

Procedure Dispatch The Shapes package illustrates three types of pro­
cedure dispatching:

1. dispatching on submodule exports

2. conditional dispatching

3. table-based dispatching

1. Dispatching on S u b m o d u l e  Exports The procedure makei, which 
is exported from the Shapes package, uses its submodule Shapes: -Shapes 
to effect procedure dispatching. To test whether a method for a given 
shape is available, the procedure make tests whether there is a submodule 
by tha t name in the Shapes:-Shapes submodule. If no such submod­
ule is found, an exception is raised. Otherwise, the export make from  
the submodule is passed the arguments tha t were given to the top-level 
Shapes:-make procedure. Here is the make source code.

area(make(circle, make(point, 0, 0), 2))

> make := proc( what::symbol )
> description "constructor for shapes";
> local ctor, # the shape constructor,
> # if found
> theShape; # the submodule for the
> # kind of shape requested
>
> if not member( what, Shapes, ’theShape’ ) then
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> error "shape ‘7ol’ not available", what
> end if;
> if member( ’:-make’, theShape, ’ctor’ ) then
> ctor( args[ 2 .. nargs ] )
> else
> error "no constructor provided for "
> "shape 7.1", what
> end if
> end proc:

The first argument to make is a symbol tha t denotes the kind of 
shape to construct (point, circle, triangle). This symbol is used as 
an “index” into the Shapes:-Shapes submodule. The first statement 
uses member to test whether the symbol passed in the parameter what 
is exported by the submodule Shapes:-Shapes. If it is not found, an ap­
propriate diagnostic is issued, and an exception raised. If member returns 
the value true, then its third argument, the local variable theShape, is 
assigned the export found in the submodule.

For example, if what is the symbol circle, then the local variable 
theShape is assigned the submodule Shapes:-Shapes:-circle that im­
plements operations on circles. The same idea is used to pick out the 
shape-specific constructor; it is the value assigned to the local variable 
ctor upon a true value being returned from the second call to member. 
Any remaining arguments are taken to be data used to construct the 
shape. These are passed on to the make export in a shape-specific sub- 
module, if found, and are not checked further at this level. This design 
keeps the knowledge of each kind of shape localized to the submodule 
responsible for it.

2. C on d ition a l D isp a tch in g  The procedure area uses a simple condi­
tional dispatching mechanism. The “tag” of the input shape is extracted 
and is used in direct comparisons with hard-coded values to determine 
which shape-specific area subroutine to call to perform the area compu­
tation.

> area := proc( shape )
> description "compute the area of a shape";
> local tag;
>
> if not type( shape, ’function’ ) then
> error "expecting a shape expression, "
> "but got 7ol" , shape
> end if;
>
> # Extract the "tag" information from the shape
> tag := op( 0, shape );
>
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> # Dispatch on the "tag" value
> if tag = ’:-POINT’ then
> Shapes:-point:-area( shape )
> elif tag = ’:-SEGMENT’ then
> Shapes:-segment:-area( shape )
> elif tag = ’:-CIRCLE’ then
> Shapes:-circle:-area( shape )
> elif tag = ’:-SQUARE’ then
> Shapes:-square:-area( shape )
> elif tag = ’:-TRIANGLE’ then
> Shapes:-triangle:-area( shape )
> else
> error "not a recognized shape: °/0l", tag
> end if
> end proc:

3. T ab le-based  D isp a tch in g  The third dispatch method illustrated in 
the Shapes package is table-based. This technique is used by the exported 
procedure circumference, which references the table circum_table to 
look up the appropriate routine to call. This table is built simply by 
assigning its entries in the body of the Shapes package.

> circum_table := tableO;
> circum_table[ ’POINT’ ] := Shapes:-point:-circumference;
> circum_table[ ’SEGMENT’ ] := Shapes:-segment:-circumference;
> circum_table[ ’CIRCLE’ ] := Shapes:-circle:-circumference;
> circum_table[ ’SQUARE’ ] := Shapes:-square:-circumference;
> circum_table[ ’TRIANGLE’ ] := Shapes:-triangle:-circumference

The source code for the procedure circumference follows.
> circumference := proc( shape )
> description "compute the circumference of a "
> "shape expression";
> if not type( shape, ’function’ ) then
> error "expecting a shape, but got °/0l", shape
> end if;
> if assigned( circum_table[ op( 0, shape ) ] ) then
> circum_table[ op( 0, shape ) ]( shape )
> else
> error "no circumference method available "
> "for shape %1. Supported shapes "
> "are: °/02", tag,
> sprintf ( "°/„q", op( ALL_SHAPES ) )
> end if
> end proc:

Minimal checking is done to ensure tha t the input has the right struc­
ture. If an entry is found in the table circum_table for the shape “tag” 
(as with the area routine), then the corresponding procedure is called



with the given shape as argument. (The shape must be passed as an ar­
gument, so tha t the shape-specific subroutine can extract the instance 
data from it.) Otherwise, a diagnostic is issued, and an exception raised.

Shape-specific Submodules As already noted, each shape is imple­
mented in a shape-specific submodule. The set of exports of each module 
varies, but each supports at least the “required” exports make, area, and 
circumference. Particular shapes may support other operations. Only 
two of these submodules are described here. You can see the source for 
the other submodules in the sample source code.

T h e point S u b m od u le  The submodule that implements points is 
fairly simple. In fact, it makes no reference to any lexically scoped vari­
ables in any of its parent modules (either Shapes or Shapes :-Shapes).

> point := module()
> description "support routines for points";
> export make, area, circumference, xcoord, ycoord;
> option package;
>
> make := ( x, у ) -> ’POINT’( x, у );
> area := () -> 0;
> circumference := () -> 0;
> xcoord := p -> op( 1, p );
> ycoord := p -> op( 2, p );
> end module:

Since the area and circumference of a point are both 0, these proce­
dures are trivial to implement. In addition to the “required” exports, the 
point submodule also exports two utility routines, xcoord and ycoord 
for retrieving the x  and у coordinates of a point. Providing these makes 
it possible for clients of this submodule to use it without knowing any­
thing about the concrete representation of points. This makes it easier to 
change the representation later should that be required.

W ithin this submodule, the names make, area, and circumference 
shadow the names with the same external representation at the top-level 
Shapes module.

T h e circle S u b m od u le  circle submodule provides the circle-specific 
subroutines for the Shapes package.

> circle := module()
> export make, center, radius, diameter,
> area, circumference;
> option package;
>
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> make := proc( cntrPt, radius )
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> ’CIRCLE’( cntrPt, radius )
> end proc;
>
> center := circ -> op( 1, circ );
> radius := circ -> op( 2, circ );
> diameter := circ -> 2 * radius( circ );
> circumference := circ -> Pi * diameter( circ );
> area := circ -> Pi * radius( circ )~2;
> end module:

Again, a few “extra” routines are provided beyond those required at 
the top-level of the Shapes package. The exported procedure radius is 
used to define some of the other routines. It could have been made local 
to this submodule.

6.4 The use Statement
The use statement is formally unrelated to modules, but is expressly 
designed to complement them and to make programming with modules 
easier in some circumstances.

S yn tax  and S em an tics The keyword use introduces the use state­
ment, which has the following syntax template:

use env in 
body 

end use;

Here, env is an expression sequence of binding equations, each of 
which is either a module or an equation whose left-hand side is a symbol; 
and body is a sequence of Maple statements. The right-hand side of a 
binding equation may be any Maple expression.

Executing a u se statement executes the body of the statement. Each 
occurrence of a name tha t appears on the left-hand side of any of the 
binding equations is replaced by the right-hand side of the corresponding 
equation.

For example,
> use f = sin, g = cos in
> f( x Г 2  + g( x Г 2
> end use;



sin(x)2 +  cos(x)2
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C h aracteristics  o f  u se The use statement can be nested.

> use f = sin in
> use g = cos in
> simplify( f(x)~2 + g(x)~2 )
> end use
> end use;

1

When nested u se statements are encountered, the name bindings es­
tablished by the inner use statement take precedence over those of the 
outer one.

> use a = 2, b = 3 in
> use a = 3 in a + b end
> end use;

6

In this example, the inner binding of the name a to the value 3 takes 
precedence, so the value of the expression a + b (and hence of the entire 
statement) is the number 6. The inner binding of a to 3 has an effect 
only within the body of the inner use statement. Once the execution has 
exited the inner use statement, the binding of a to 2 is restored.

> use a = 2, b = 3 in
> # here a is bound to 2 and b to 3
> use a = 3 in
> # here, b is still bound to 3, but a is bound to 3
> a + b
> end use;
> # binding of a to 2 is restored
> a + b
> end use;

6 

5

The use statement is unique in the Maple language because it is fully 
resolved during automatic simplification. It is not possible to evaluate 
a u se statement. (Recall tha t Maple uses a modified “read-eval-print”
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loop, which actually involves the four stages: parsing (reading), automatic 
simplification, evaluation and printing.)

To see how this works, consider an example in which the use statement 
appears inside a procedure.

> f := proc( a, b )
> use x = a + b, у = a - b in
> x * у
> end use
> end proc;

/  := proc(a, b) (a +  b) * (a — b) end proc

Note tha t the body of the procedure f  contains no use statement. Dur­
ing automatic simplification, the use statement tha t formed the body of f  
was “expanded” , yielding the expression that involves only the parameters 
a and b.

M odules and use S tatem ents As a special case, a module m may ap­
pear in the binding sequence of a use statement. The module is regarded 
as an abbreviation for the sequence of equations a = m:-a, b = m:-b, 
. . . ,  where a ,b , . . . are the exports of the module m.

For example,
> m := module() export a, b; a := 2; b :=3; end:
> use m in a + b end;

5

This is useful for programming with packages.
> m := Matrix( 4,4, [[26, 0, 0, 30],
> [ 0, -41, -90, 0] ,
> [ 0, -7, -56, 0 ],

[ 0 , 0 , 0 , 0]]

"26 0 0 CO о

0 -4 1 -9 0 0
0 - 7 -5 6 0
0 0 0 0
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> use LinearAlgebra in
> Determinant( m );
> Rank( m );
> CharacteristicPolynomiaK m, ’lambda’ )
> end use;

0 

3 

(26 -  Л) (-1666 Л -  97 A2 -  A3)

Please note that a name that appears in a binding list for a use 
statement that is intended to be a module must evaluate to a module at 
the t ime the use s ta te m e n t  is simplified. This is necessary because the 
simplification of the use statement must be able to determine the exports 
of the module. In particular, the following attem pt to pass a module as a 
parameter to a procedure does not  work, and yields an error during the 
simplification of the procedure.

> proc( m, a, b )
> use m in e( a, b ) end
> end proc;
Error, no bindings were specified or implied

The correct way to use a module as a parameter is to specify the 
names to be bound explicitly, such as in this example:

> proc( m, a, b )
> use e = m:-e in a + b end
> end proc;

proc(m, a , b) a +  b end proc

This is necessary because, until the procedure is called with a module 
expression as first argument, Maple does not know whether the e refers 
to a module export or to something else (such as a global name). To 
expand the use statement, this must be known at the time the procedure 
is simplified.

Operator Rebinding
An additional feature of the use statement is tha t it allows most infix and 
prefix operators in the Maple language to be rebound. This is not really 
the same thing as the “operator overloading” found in some programming
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languages (such as C + + ), because the rebinding occurs during automatic 
simplification in Maple.

If an operator name appears on the left-hand side of a binding equa­
tion for a use statement (consequently, if it is an exported name of a 
module that is bound via use), then the corresponding operator expres­
sions in the body of the use statement are transformed into function calls. 
For example:

> use = F in a + b end;

F(a, b)

> m := module()
> export ‘* ‘, ‘+ ‘;
> := ( a, b ) -> a + b - 1;
> '*< := ( a, b ) -> a / b;
> end module:
> s *  ( s  + t ) ;

s (s + 1)

> use m i n s *  ( s + t )  end;
s

s +  t — 1

The operators tha t can be rebound are summarized in the following 
table.
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O pera tor A r i t y Pos it ion Descr ip t ion
Arithmetic Operators

+ binary infix addition
* binary infix multiplication

binary infix multiplication
binary infix exponentiation

- unary prefix negation
/ unary prefix inversion (reciprocal)

Logical Operators
and binary infix logical and
or binary infix logical or

not unary prefix logical negation
Relational Operators

< binary infix less than
<= binary infix less than or equal
> binary infix greater than

>= binary infix greater than or equal
= binary infix equality

<> binary infix not equal
Other Operators

binary infix composition
m binary infix power composition
! unary postfix factorial

Please note that the operators -  and /  are treated as unary  opera­
tors (that represent negation and inversion, respectively). Subtraction is 
represented internally in Maple by composing addition and negation: a
-  b = a + (~b). Similarly for division. Therefore, it is not necessary to 
override the binary  infix operators -  and /.

Note also that an expression such a s a  + b + c + d i s  treated as 
though it were parenthesized a s ( ( a  + b) + c) + d, so that each + op­
erator is binary. For example,

> use = F in
> a + b + c + d ;
> a + ( ( b  + c ) + d )
> end use;

F(F(F(a, b), c), d)

F(a, F (F (6, c), d))
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6.5 Modeling Objects
A principle application of modules is modeling objects. An object is some­
thing tha t has both state and behavior. Many programming languages 
provide support for programming with objects. Some of these are called 
"object-oriented"; popular examples include Smalltalk, CLOS, Java, and
Си—K

Maple is not an object-oriented programming language, but it does 
support programming with objects. In Maple, an object can be repre­
sented by a module. The state of the object (module) is stored in the 
local and exported data variables. The behavior of the object is repre­
sented by procedures assigned to the exported variables. Since, in Maple, 
procedures stand on an equal footing with all other values in the lan­
guage, this distinction between state and behavior is somewhat artificial 
and exists only as a convention.

The essential idea behind programming with objects is that the “ob­
jects” carry their behavior around with them. Clients of an object can 
elicit behavior by sending the object “messages” . Objects respond to these 
messages by performing some prescribed computation tha t is determined 
by both the recipient of the message (the object) and the message itself 
(which may be parameterized by other arguments). This is in contrast to 
non-object-oriented approaches to programming, in which the objects in 
a software system merely contain static data and serve as inputs and out­
puts of the algorithms, which are represented separately from the objects 
by procedures or other routines.

Objects and Constructors Objects are usually created by invoking a 
“constructor” . A constructor is a procedure tha t builds the object expres­
sion from some (possibly empty) set of inputs. Maple uses constructors 
for a number of its native expression types. For example, the procedure 
table is a constructor for Maple tables, and series is a constructor for 
Maple series expressions. Here we are interested in constructors for objects 
represented by modules.

A constructor must  be used to create objects that have no input 
syntax (such as series and tables, in Maple), but may also be used for 
expressions that do have an input syntax (the Float constructor is an 
example of the latter case). Therefore, most user-defined objects must be 
created by using a constructor. So most of our object examples will be 
defined by specifying a constructor for the object.



E xam ple: a C om p lex  N u m b er  C o n stru ctor  A simple example of 
an object is the following representation of a complex number.

> MakeComplex := proc( real, imag )

298 • Chapter 6: Programming with Modules

> if nargs <> 2 then
> error "real and imaginary parts are required"
> end if;
> module()
> description "a complex number";
> local real_part, imag_part;
> export re, im, abs, arg;
>
> real_part, imag_part := real, imag;
> re := () -> real_part;
> im := () -> imag_part;
> abs := () -> sqrt( re()~2 + im()~2 );
> arg := () -> arctan( im(), re() );
> end module
> end proc:

To create the complex number 1 +  i, we call the constructor as follows.
> z := MakeComplex( 1, 1 );

z := m odule()
loca l real _part ,  imag_par t ,  
ex p o rt re, i m , abs, arg; 
d escrip tio n  “a complex number” ;

end  m od u le
The procedure MakeComplex is a constructor for complex number ob­

jects. The value returned by the procedure is the instantiation of the 
module whose definition appears in the body of MakeComplex.

The local state of the complex number is represented by the local 
variables of the module, real_part and imag_part. The behavior is rep­
resented by the exported procedures re, im, abs, and arg.

The exports of a module tha t represents an object are sometimes 
viewed also as messages.  Objects respond to these messages by exhibiting 
the behavior tha t the messages elicit.

> z :-re(), z :-im();

1, 1

> z :-absО ;
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> z : -argO ;

V2

7Г

For instance, the expression z:-abs() is viewed as sending the abs 
“message” to the complex number object z. The object responds by com­
puting its absolute value.

Note that each time the procedure MakeComplex is invoked, a new 
module is created using the module definition tha t is visible within the 
procedure body. Thus, complex numbers created by different calls to the 
constructor are distinct, even if the arguments real and imag are the 
same. W hether a constructor should produce distinct objects for the same 
input (instance) data depends on the nature of the objects being modeled. 
For complex number objects, we would likely want to have the same 
object produced for multiple calls with the same inputs. This can be 
easily achieved by using the remember option in the constructor.

Effect of Immutable Local States The MakeComplex constructor 
above represented the local state of complex number objects by using two 
local variables real_part and imag_part. For many object constructors, 
some or all of the local state of the object is expected to be immutable. In 
these cases, local variables do not have to be allocated in the module to 
store the local state of the object. The state can instead be represented 
by the parameters to the constructor, which are visible within the module 
because of Maple’s lexical scoping rules. Using this idea, the constructor 
above can be simplified as follows.

> MakeComplex := proc( real, imag )
> if nargs <> 2 then
> error "real and imaginary parts are required"
> end if;
> module()
> description "a complex number";
> export re, im, abs, arg;
>
> re := () -> real;
> im := () -> imag;
> abs := () -> sqrt( real~2 + imag~2 );
> arg := () -> arctan( imag, real );
> end module
> end proc:
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Example: Priority Queues
A very useful data structure tha t can be implemented in an object- 
oriented way with modules is the priority queue. A priority queue is 
a container data structure that admits the following operations:

• test for an empty priority queue

• insert a prioritized item into a priority queue

• return (non-destructively) the highest-priority item on the priority 
queue

• delete the highest priority item from a priority queue

D esig n  An object representation of priority queues will have the fol­
lowing methods.

empty test for an empty priority queue
top return the highest-priority item

insert insert a prioritized item
delete remove (and return) the highest priority item

This representation leads directly to the following Maple type, which 
can be used to identify priority queues.

> ‘type/PriorityQueue‘ := ’‘module*( empty, top, insert,
> delete )’:

C o n stru ctor  Im p lem en ta tio n  We can implement priority queues as 
Maple objects satisfying this interface by writing a constructor for the 
objects.

> PriorityQueue := proc( priority::procedure )
> description "priority queue constructor";
> local largs, lnargs;
>
> lnargs := nargs;
> if lnargs > 1 then
> largs := [ args[ 2 .. -1 ] ]
> else
> largs := []
> end if;
>
> module()
> description "a priority queue";
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export empty, top, insert, 
size, delete, init; 

local heap, nitems,
bubbleup, bubbledown;

nitems := 0; 
heap := tableO;
bubbleup := proc( child::posint ) 

local parent;
parent := iquo( child, 2 ); 
if child > 1

and priority( heap[ child ] ) > priority( heap[ 
parent ] ) then

heap[ parent ], heap[ child ] := heap[ child ] 
heap[ parent ]; 

procname( parent ) # recurse 
end if 

end proc;
bubbledown := proc( parent::posint ) 

local child; 
child := 2 * parent; 
if child < nitems

and priority( heap[ 1 + child ] ) > priority( 
heap[ child ] ) then 

child := 1 + child 
end if;
if child <= nitems

and priority( heap[ parent ] ) < priority( heap[ 
child ] ) then
heap[ parent ], heap[ child ] := heap[ child ] 

heap[ parent ]; 
procname( child ) # recurse (new parent) 

end if 
end proc;
# Initialize the priority queue, 
init := procO

heap := tableO; 
nitems := 0 

end proc;
# Test whether the priority queue is empty, 
empty := () -> evalb( nitems < 1 );
# Return the number of items on the priority queue. 
size := () -> nitems;
# Query the highest priority item, 
top := procO

if empty() then
error "priority queue is empty"

else
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> heap[ 1 ]
> end if
> end proc;
>
> # Delete the highest priority item from the
> # priority queue.
> delete := procO
> local val;
> val := heap[ 1 ]; # val := topO
> # move bottom to the top
> heap[ 1 ] := heap[ nitems ];
> # allow expression to be collected
> heap[ nitems ] := evaln( heap[ nitems ] );
> # decrement the bottom of heap counter
> nitems := nitems - 1;
> # heapify the array
> bubbledown( 1 );
> # return the value
> val
> end proc;
>
> # Insert an item into the priority queue.
> insert := proc( v )
> if nargs > 1 then
> op( map( procname, [ args ] ) )
> else
> nitems := 1 + nitems;
> heap[ nitems ] := v;
> bubbleup( nitems )
> end if
> end proc;
>
> # Insert any intially specified items.
> if lnargs > 1 then
> insert( op( largs ) )
> end if
> end module
> end proc:

The constructor takes a Maple procedure priority as its argument. For 
each expression that may be placed on the queue, this procedure should 
return a numeric measure of its “priority” . Items on the queue are main­
tained in a prioritized order so that the highest priority items are removed 
first.

In this sample computation with a priority queue, we use the Maple 
built-in procedure length as the “priority” of an expression. Here, the 
randomly generated expressions are all polynomials.

> pq := PriorityQueue( x -> length( x ) );
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pq := m odule()
local heap, ni tems,  bubbleup, bubbledown; 
e x p o r t empty, top, insert,  size, delete, init; 
d e sc rip tio n  “a priority queue” ;

en d  m odu le
> for i from 1 to 10 do
> pq:-insert( randpoly( x ) );
> end do:
> while not pq:-empty() do
> pq:-delete()
> end do;

-8 5  z 5 -  55 ж4 -  37 ж3 -  35 ж2 +  97 ж +  50

—99 х 5 — 85 ж4 -  86 ж3 +  30 ж2 +  80 ж +  72 

—53 х 5 +  85 х 4 + 49х 3 + 78х2 +  17ж +  72 

79х 5 +  56ж4 +  49ж3 +  63х2 +  Ъ7х -  59 

-8 6  ж5 +  23 ж4 — 84 ж3 +  19 ж2 — 50 ж +  88 

—50 ж5 -  12 ж4 -  18 ж3 +  31 ж2 -  26 ж -  62 

—58 х 5 — 90 х А +  53 х 3 — х 2 +  94 х  +  83 

77 х 5 +  66 ж4 +  54 ж3 — 5 х 2 +  99 ж — 61 

45 ж5 — 8 ж4 — 93 ж3 +  92 ж2 +  43 ж -  62 

х 5 — 47 ж4 — 91 ж3 — 47 х 2 — 61 х  +  41

P r io r ity  Q ueue U sage Priority queues can be used to implement a 
heapsort algorithm.

> HeapSort := proc( L ::list(numeric) )
> local pq, t, count;
> pq := PriorityQueue( x -> -x, op( L ) );
> t := array( 1 .. nops( L ) );
> count := 0;
> while not pq:-empty() do
> count : = 1 + count;
> t[ count ] := pq:-delete()
> end do;
> ASSERT( count = nops( L ) );
> [ seq( t[ count ], count = 1 .. nops( L ) ) ]
> end proc:
> r := rand(100):
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> L := [ seq( r(), i = 1 .. 20 ) ]:
> HeapSort( L );

[7, 7, 15, 25, 27, 27, 28, 29, 42, 51, 52, 55, 62, 74, 82, 
88, 94, 97, 97, 98]

The fully commented source code for the Priority Queue constructor 
is available in the sample source code of your Maple installation.

An Object-oriented Shapes Package
In this subsection, we will demonstrate an object-oriented approach to the 
Shapes package described earlier. The earlier revision of the package used 
unevaluated function calls as the concrete representation of shapes. In this 
section we will demonstrate how to put together a package tha t offers the 
same functionality, but which represents shapes as “objects” . Each shape 
will use a module as its concrete representation. The “package” itself does 
not export the area and circumference features of the traditional style 
package, because these features are available as part of each shape object. 
Instead, the package is merely a collection of constructors for the various 
kinds of shapes. You could use the object representation at a lower level, 
and present exactly the same interface as the first Shapes package, but 
we have not done so here, choosing instead to make the object-oriented 
nature of shape expressions more apparent to the user.

T h e  point Constructor Points are quite simple shapes, so the corre­
sponding constructor is similarly simple.

> point := proc( x, у )
> module()
> export area, circumference, xcoord, ycoord;
> xcoord := () -> x;
> ycoord := () -> y;
> area := () -> 0;
> circumference := () -> 0;
> end module
> end proc:

The module returned by this constructor uses the lexically scoped 
parameters x  and y, representing the abscissa and ordinate of the point. 
These values are part of the local state, or instance data, of each point 
constructed. These points are captured in the closures of the exported 
methods, so that variables local to the module in which to store these 
values are not necessary.
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T h e  segment Constructor Segments are represented using the start 
and end points of the segment. These are the points returned by the point 
constructor.

> segment := proc( ptl, pt2 )
> module()
> export area,
> circumference,
> length,
> start_point,
> end_point;
> local mymidpoint;
>
> start_point := () -> ptl;
> end_point := () -> pt2;
> area := () -> 0;
> circumference := () -> 0;
> length := procO
> local x, y;
> x := ptl:-xcoordO - pt2:-xcoordO ;
> у := ptl: -ycoordO - pt2: -ycoordO ;
> sqrt( x~2 + y~2 )
> end proc;
> midpoint := procO
> local x, y;
> if assigned( mymidpoint ) then
> mymidpoint
> else
> у := (ptl:-ycoordO + pt2:-ycoordO )/2;
> x := (ptl:-xcoordO + pt2:-xcoordO )/2;
> point( x, у )
> end if
> end proc;
> end module
> end proc:

The segment objects implement methods in addition to the required 
area and circumference methods. Apart from the trivial syntax methods 
start_point and end_point, there are methods for computing the length 
of a segment and its midpoint.

T h e  circle Constructor Circles are represented by using the center 
and radius of the circle as instance data.

> circle := proc( ctr, rad )
> module()
> export area, circumference, diameter,
> center, centre, radius;
> radius := () -> rad;
> center := () -> ctr;
> centre := eval( center ); # UK spelling
> diameter :=()-> 2 * radiusQ;
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> circumference := () -> Pi * diameter();
> area := () -> Pi * rad * rad;
> end module
> end proc:

Again, the lexically scoped parameters c t r  and rad  encode the in­
stance data of the circle object.

The remainder of the object oriented version of the Shapes package 
can be read in the sample source code file ShapeObj .mpl.

6.6 Interfaces and Implementations
Generic programming  is a programming style and a software engineering 
methodology for software reuse. In this sense, many Maple builtin oper­
ations are generic. The addition operator + is able to compute sums of 
integers, rational numbers, complex numbers, polynomials, special func­
tions, and so on. It is not necessary for + to know how an expression is 
represented to do its job. (The automatic simplifier, on the other hand, 
knows a very great deal about how Maple expressions are represented.) 
As with any dynamically typed language, Maple provides much genericity 
without you having to do anything special. Most built-in Maple operations 
(including many standard library routines) are naturally polymorphic in 
that they are able to perform successfully with a large variety of data 
formats.

G en eric ity  as G ood  Softw are E n g in eer in g  P ra c tice  On any large 
project, it is im portant to write reusable code; tha t is, code tha t can 
perform a well-defined function in a wide variety of situations. Generic 
programs do not rely on the details of how their inputs are represented. 
They are able to perform their function on any inputs that satisfy a 
specified set of constraints. Normally, these constraints are described in 
terms of the behavior of the inputs in response to various “messages” 
rather than on their physical representation or the storage layout of their 
concrete representation. This behavior is sometimes called a “contract” . 
The idea is tha t an object makes a “promise” to behave a certain way, 
and anything which uses that object knows that the “promised” behavior 
can be relied upon. Generic programs rely only on the “promises” made 
by an object’s “contract” . They do not  rely on knowledge of how an 
object is implemented. So, generic software separates “interfaces” from 
implement at ions.
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W ith this discussion, we are finally able to see the real meaning be­
hind the distinction between local and exported variables in a module. 
A module’s exports are part of its “promise” to those who would use it. 
Whatever is expressed through its local variables is the business only of 
the module, and is not to be relied upon, or even known, by clients of the 
module. (Client access is, in fact, the only technical difference between 
module locals and exports.)

Before the introduction of the module system, Maple’s “design by 
contract” was enforced only by convention. Maple routines whose names 
had to be enclosed in name quotes ( ‘) were considered “private” , and not 
for client use. But this was only a convention. Moreover, it was necessary 
to use global variables to communicate information and state between the 
various routines tha t made up a subsystem (such as solve or assume). 
Now, using modules, it is possible to design software systems that enforce 
their contracts by a mechanism embedded in the Maple language itself.

Interfaces
The “contracts” discussed above are represented formally in Maple by an 
interface.  An interface is a special kind of structured type. It has the 
form

‘module*( symseq );

in which symseq is a sequence of symbols or of typed symbols (ex­
pressions of the form symbol: :type). For example, an interface for a ring 
might be written as

> ‘type/ring* := ’‘module*( ( + ‘, zero, one )’:
while tha t for an (additive) abelian group could take the form

> ‘type/abgroup* := ’‘module*( (+ ‘, zero ) ’ :

These symbols are the ones tha t clients are “allowed” to access as 
module exports.

A module is said to satisfy, or to implement , an interface if it is of 
the type defined by the interface.

> z5 := module()
> description "the integers modulo 5";
> export (+ ‘, zero, one;
> := (a,b) -> a+b mod 5;
> := (a,b) -> a*b mod 5;
> (-( := s -> 5-s mod 5;
> zero := 0;
> one := 1;
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> end module:
> type( z5, ’ring’ );

true

A module may satisfy more than one interface.
> type( z5, ’abgroup’ );

true

Interfaces are an abstraction tha t form part of Maple’s type system. 
They provide a form of constrained polymorphism. Not every Maple type 
is an interface; only those tha t have the form just described are. We can 
define a Maple type (that, as it happens, is not itself an interface) to 
describe interfaces.

> ‘type/interface‘ := ’specfunc( {symbol,symbol::type},
> ‘module‘ )’:

This is a structured type tha t describes expressions that are themselves 
structured types tha t have the form of an unevaluated function call with 
operator the symbol cmodulec and all arguments of type symbol, or of 
type symbol: :type. In the two examples at the start of this section, the 
types type/ring and type/abgroup are the interface expressions, and the 
names ring and abgroup are the respective names of those interfaces.

A Package for Manipulating Interfaces Interfaces are sufficiently im­
portant tha t it is worthwhile to develop a package for manipulating them. 
The package is small enough that it can be reproduced here, in full, but 
it is also available in the samples/ directory of your Maple installation.

> Interface := module()
> description "a package for manipulating interfaces";
> global ‘type/interface‘;
> export define, # define an interface
> extend, # extend an interface
> extends, # test for an extension
> equivalent,# test equivalence
> savelib, # save an interface
> satisfies; # test whether a module satisfies
> # an interface
> local gassign, # assign to a global variable
> totype, # convert from interface name to type
> toset, # convert from interface name to a set
> setup; # install ‘type/interface‘ globally
> option load = setup;
>
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# Define a global type for interfaces.
# This assignment takes care of installing the type
# in the Maple session in which this module definition
# is evaluated. Calling 'setupO’ ensures that this also
# happens when the instantiated module is read from a
# repository.
'type/interf ace'

:= ’specfunc( {symbol, '::'}, 'module' )’;
# Ensure that 'type/interface' is defined. This thunk is
# called when the instantiated ‘Interface’ module is read
# from a Maple repository, 
setup := procO

global ‘type/interface';
‘type/interface'

:= ’specfunc( {symbol, '::'}, 'module' )’;
NULL # quiet return 

end proc;
# Assign to the global instance of a name 
gassign := proc( nom::symbol, val )

option inline; 
eval( subs( _X = nom, 

procO
global _X;
_X := val 

end ) )()
end proc;
# Convert an interface name to the corresponding type, 
totype := ( ifc::symbol ) -> ( 'type/' || ifc );
# Convert an interface name to a set of symbols.
toset := ( ifc::symbol ) -> { op( ( 'type/' || ifc ) ) };
# Install a new interface into the type system, 
define := proc( ifc )

description "define an interface"; 
if map( type, {args}, ’symbol’ ) <> { true } then 

error "arguments must all be symbols" 
end if;
gassign( 'type/' || ifc,

’'module'’( args[ 2 .. nargs ] ) ); 
ifc # return the interface name 

end proc;
# Implement subtyping, 
extend := proc( new, old )

description "extend an existing inteface"; 
if map( type, {args}, ’symbol’ ) <> { true } then 

error "arguments must all be symbols" 
end if;
if not type( totype( old ), ’interface’ ) then

error "cannot find an interface named °/0l", old
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> end if;
> define( new, op( totype( old ) ), args[3..nargs] )
> end proc;
>
> # Test whether ifc2 is an extension of ifcl.
> extends := proc( ifcl, ifc2 )
> description "test whether the second interface "
> "extends the first";
> local tl, t2;
> tl, t2 := op( map( totype, [ ifcl, ifc2 ] ) );
> if not type( [tl,t2], ’[interface,interface]’ ) then
> if not type( tl, ’interface’ ) then
> error "arguments must be interface names, "
> "but got 11" , ifcl
> else
> error "arguments must be interface names, "
> "but got °/0l", if cl
> end if
> end if;
> toset( ifcl ) subset toset( ifc2 )
> end proc;
>
> # Save an interface to the repository.
> savelib := procO
> description "save a named interface to a "
> "repository";
> local ifc;
> for ifc in map( totype, [ args ] ) do
> if not type( ifc, ’interface’ ) then
> error "arguments must be interfaces, "
> "but got °/0l", ifc
> end if;
> :-savelib( totype( ifc ) )
> end do
> end proc;
>
> # Test whether a module satisfies an interface.
> # This is simply an alternative to a call
> # to (type()’.
> satisfies := proc( m, ifc )
> description "test whether a module satisfies an interface";
> if not type( totype( ifc ), ’interface’ ) then
> error "second argument must be an interface name, "
> "but got 11" , ifc
> end if;
> type( m, ifc )
> end proc;
>
> # Test whether two interfaces are equivalent.
> # Since unevaluated function calls compare
> # differently if their arguments are in a
> # different order, we convert them to sets first,
> # and then test for equality.
> equivalent := proc( ifcl, ifc2 )
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> description "test whether two interfaces "
> "are equivalent";
> local tl, t2;
> tl, t2 := totype( ifcl ), totype( ifc2 );
> if not type( tl, ’interface’ ) then
> error "expecting an interface name, "
> "but got 7.1", ifcl
> elif not type( t2, ’interface’ ) then
> error "expecting an interface name, "
> "but got 7.1", ifc2
> end if;
> evalb( { op( tl ) } = { o p ( t 2 )  } )
> end proc;
> end module:

This little package implements the interface abstraction. It allows you 
to manipulate interfaces without having to worry about how they fit into 
Maple’s type system.

> with( Interface );
Warning, the protected names define and savelib have 
been redefined and unprotected

[define , equivalent , ex tend , extends , satisfies , savelib]

> def ine( ’abgroup’, ’‘ ‘ ‘ ‘’, ’zero’ );

abgroup

> type( ‘type/abgroup‘, ’interface’ );

true

> type( z5, ’abgroup’ );

true

> satisfies( z5, ’abgroup’ );

true

> extend( ’ring’, ’abgroup’, ’one’ );



ring

> type( ‘type/ring‘, ’interface’ );

true

> extends( abgroup, ring );

true

> satisfies( z5, ’ring’ );

true

> type( z5, ’ring’ );

true

T h e  load= Option Besides providing a nice abstraction of the inter­
face concept in Maple, this package also serves to illustrate a module 
feature not demonstrated earlier. This is the load=thunk option. In the 
Interface package, this option is used in a fairly typical way. The dec­
laration

option load = setup;
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that appears in the module definition instructs Maple that, when the 
instantiated module is read from a repository, it is to call the procedure 
setup. The procedure named must be a local or an exported local of the 
module. The local procedure setup in this module simply ensures that 
the global variable type/interface is assigned an appropriate value. This 
assignment is also made in the body of the module so tha t the assignment 
is also executed in the session in which the module is instantiated. This 
was done for illustrative purposes. A better scheme would simply have 
invoked setup at some point in the body of the module definition.

Example: Generic Graph Algorithms
We use (simple) graph algorithms as an example of generic programming 
with a computer science orientation.
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M a th em a tica l D escr ip tio n  A directed graph may be thought of as 
an object tha t consists of a set V  of vertices and a set E  С V  x V  of 
ordered pairs of vertices, called “edges” . Graphs may be visualized by 
diagrams like the following.

This diagram represents a graph with vertex set V  =  {a , b, c, d, e, /} , and 
edge set E  = {(a, b), (a, c), (b, d), (c, / ) ,  ( /, d), (6, e), (d, e), (c, 6), (c, d)}.

Softw are M od els  Graphs may be represented in software in a vari­
ety of ways. The choice of storage mechanism depends on the expected 
applications of the graph. Three possibilities for representing graphs in 
software are:

1. store the set V  of vertices and the set E  of edges explicitly;

2. store the “adjacency m atrix” of the graph;

3. store, for each vertex of the graph, the set of all its neighbours.

(The adjacency matrix  is a square matrix whose rows are columns are 
indexed by the vertices of the graph; the (i,j)-en try  is equal to 1 if there 
is an edge from i to j ,  and is equal to 0 otherwise.) We would like to be 
able to write software tha t can manipulate a graph regardless of which of 
the above (or other) representations is chosen.

D esig n in g  a G raph In terface  To demonstrate how this can be 
achieved, let us consider graphs as objects tha t implement the follow­
ing methods:

vertices returns the set of vertices of the graph
edges returns the set of edges of the graph

addedge allows one to add a new edge to a graph
order returns the number of vertices of the graph
size returns the number of edges of the graph



Then, we can represent the abstract interface of a graph by a Maple 
type.

> 'type/Graph' := ’'module'( vertices, edges, addedge, order,
> size ) ’ :

We say that an object implements  the Graph interface if it is of type 
Graph.

C o m p u tin g  V ertex  D eg rees  G en erica lly  If we have an object that 
implements this interface, then we can write generic code based on that 
interface. For example, we can write the following procedure to compute 
the in-degree and out-degree of a vertex of a given graph.

> vdeg := proc( G::Graph, v )
> local vs, vt;
> description "compute the in- and out-degrees "
> "of a vertex in a graph";
> if member( v, G:-vertices() ) then
> vs := select( e -> evalb( v = e:-source() ),
> G:-edges() );
> vt := select( e -> evalb( v = e:-target() ),
> G:-edges() );
> nops( vs ), nops( vt )
> else
> 0 , 0
> end if
> end proc:

We could write this procedure even though we have, as yet, no idea how 
graphs are going to be implemented. Although this is but a tiny example, 
this capability is very important when you are designing a large software 
system.

E d ge O b ject R ep resen ta tio n  We are tacitly assuming that edges 
will also be represented as objects tha t implement, at least, the interface 
'm o d u le '( sou rce , ta r g e t  ), which provides methods for extracting 
the source and target vertices from an edge. Writing a constructor Edge 
for edges is easy.

> Edge := proc( src, targ )
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> module()
> local the_source, the_target;
> export source, target, setsource, settarget;
> the_source := src;
> the_target := targ;
> source := () -> the_source;
> target := () -> the_target;
> setsource := proc( v )
> the_source := v
> end proc;
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> settarget := proc( v )
> the_target := v
> end proc;
> end module
> end proc:

F irst G raph C on stru ctor  At first, we might choose to adopt a graph 
representation that is simple to implement. Here is a graph constructor 
that produces graphs represented by storing the vertex and edge sets 
explicitly as part of the state of a module.

> Graphl := procO
> local vertex_set, edge_set;
> description "graph constructor";
>
> edge_set := { args };
> if map( type, edge_set, ’[ anything, anything ] ’ )
> <> { true } then
> error "graph must be specified by a sequence of edges"
> end if;
> if map( nops, edge_set ) <> { 2 } then
> error "each edge must be specified "
> "as a [ source, target ] pair"
> end if;
> vertex_set := map( op, edge_set );
> edge_set := map( Edge@op, edge_set );
> module()
> export order, size,
> vertices, edges,
> addedge; # required exports
> vertices := () -> vertex_set;
> edges := () -> edge_set;
> addedge := proc( src, targ )
> edge_set := { Edge( src, targ ) }
> union edge_set;
> vertex_set := { src, targ }
> union vertex_set;
> NULL
> end proc;
> order := () -> nops( verticesO );
> size := () -> nops( edges() );
> end module
> end proc:

If we now create a small graph using this constructor
> gl := Graphl( [a, b], [a, с ], [b, с ] ) :
> type( gl, ’Graph’ );

true



we can use the routine vdeg with the graph gl, since graphs produced 
by Graphl implement the Graph interface.

> vdeg( gl, a );

2 ,0

> vdeg( gl, b );

1, 1

> vdeg( gl, с );

0, 2

The im portant feature of the procedure vdeg is its genericity. It can 
be used with any  implementation of graphs tha t implements the Graph 
interface specified above.

Second  G raph C o n stru ctor  Here is another, different implementa­
tion of the Graph interface. The graph is represented by using a table N 
in which the neighbors of each vertex are stored.
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> Graph2 := procO
> local vertex_set, edge_set;
> description "graph constructor";
>
> edge_set := { args };
> vertex_set := map( op, edge_set );
> if map( type, edge_set, ’list’ ) <> { true } then
> error "graph must be specified by a sequence of edges"
> end if;
> if map( nops, edge_set ) <> { 2 } then
> error "each edge must be specified "
> "as a [ source, target ] pair"
> end if;
> module()
> export order, size,
> vertices, edges,
> addedge;
> local N, e, v, n, edge_pairs;
> N := tableO;
> edge_pairs := () -> { seq(
> seq( [v, n ], n = N[ v ] ),
> v = map( op, { indices( N ) } )
> ) >;
> vertices := () -> map( op, edge_pairs() );
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> edges := () -> map( Edge@op, edge_pairs() );
> addedge := proc( src, targ )
> if assigned( N[ src ] )
> and not member( targ, N[ src ] ) then
> N[ src ] := { op( N[ src ] ), targ }
> else
> N[ src ] := { targ };
> end if;
> NULL
> end proc;
> order := () -> nops( verticesO );
> size := () -> nops( edges() );
> for e in edge_set do
> addedge( op( 1, e ), op( 2, e ) )
> end do
> end module
> end proc:

A graph returned by the constructor Graph2 also satisfies the Graph in­
terface.

> g2 : = Graph2 ( [ a ,  b], [a, c], [ b , с ] ) :
> type( g2, ’Graph’ );

true

Because of this, the generic procedure vdeg works equally well with
it.

> vdeg( g2, a );

2, 0

> vdeg( g2, b );

1, 1

> vdeg( g2, с );

0, 2

G en eric  C o m p u ta tio n  o f  A d jacen cy  M atr ices Another example of 
a procedure generic over the Graph interface is the following routine for 
computing the adjacency matrix of a graph.
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> AdjacencyMatrix := proc( g::Graph )
> local a, # the adjacency matrix; returned
> n, # the order of the graph g
> V, # the vertex set of the graph
> E, # the edge set of the graph
> row, # row index for matrix
> col, # column index for matrix
> e; # induction variable for loop
>
> n := g:-order();
> a := Matrix( n, n, ’storage’ = ’sparse’ );
> V := sort( convert( g:-vertices(), ’list’ ) );
> E := g:-edges();
> for e in E do
> if not member( e:-sourceО, V, ’row’ )
> or not member( e:-targetО, V, ’col’ ) then
> error "inconsistent graph structure detected"
> end if;
> a[ row, col ] := 1
> end do;
> a
> end proc:
> AdjacencyMatrix( gl );

0 1 1
0 0 1
0 0 0

> Adj acencyMatrix( g2 );

0 1 1
0 0 1
0 0 0

Example: Quotient Fields
As an example of generic programming, we will discuss a generic quotient 
field (or “field of fractions”) construction algorithm.

M a th em a tica l D escr ip tio n  Given an integral domain D , its quotient 
field is (up to isomorphism) the unique field k, paired with a nonzero 
ring homomorphism 77 : D  — >• k, with the property that, for any nonzero 
ring homomorphism ip : D  — >• F,  in which F  is a field, is a unique ring 
homomorphism a for which the diagram
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к

commutes. Because a nonzero ring homomorphism into a field must be 
injective, this says that every field F  tha t contains D  as a subring must 
also contain an isomorphic copy of k.

Concretely, the quotient field of an integral domain D  can be thought 
of as the set of “reduced fractions” n/d,  with n, d G D. A formal con­
struction can be produced by defining an equivalence relation on the set 
D  x (D \  {0}), according to which two pairs (n l ,d l )  and (n2,d2) are 
equivalent only if,

n l  • d2  =  n 2  ■ dl.

A representative from each equivalence class is chosen to represent the 
field element defined by that class. This understanding guides the com­
puter representation of the quotient field.

U n it N orm al R ep resen ta tiv es  If R  is a commutative ring with mul­
tiplicative identity, then

U(R)  x R  — >• R  : (u,r) и ■ r

is a natural action of the group U(R)  of units of R  on R. Each orbit of this 
action has a representative called the unit  normal  representative of the 
class, and we will suppose the existence of an effective mapping R  — >• R  
tha t selects the unit normal representative of each class. For instance, for 
the ring Z of integers, the group U (Z) of units is the set {1 ,-1} , the orbits 
are the sets {n, —n} for n  G Z \  {0} together with {0}, and we take the 
unit normal representative to be the positive member of each orbit, or 0 
for the orbit {0}. (Thus, the unit normal mapping simply computes the 
sign and absolute value of an integer.) The unit normal mapping on the 
ring k[T] of polynomials in an indeterminate T  over a field к is

Р ( Т Н Ш ' ? (Т )’

in which lc(p(T)) denotes the leading coefficient of the polynomial p(T). 
(The group of units in k[T] is the set k* =  k \  {0}, of nonzero members of 
k, and each orbit of k[T] under the action of к* contains an unique monic 
polynomial that is its representative.)



D esig n in g  th e  R in g  In terfaces The first step in representing these 
ideas in software is to devise an interface tha t describes the rings we are 
to work with. We will suppose that our rings are equipped with the basic 
ring operations, as well as several methods tha t implement the kind of 
computations we want to do.

> 'type/Ring' := ’'module'(
> '+'::procedure,
> '*'::procedure,
> '-'::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one
> ) ’ :

This interface corresponds quite naturally with a formal mathematical 
characterization of the ring as a tuple

(S, +, *, 0, 1)

that satisfies a number of properties, and to which we have added some 
computational capabilities. We have added unary negation (-) because of 
the way operator overrides work in Maple. (In a more tightly integrated 
system, we might also specify the number and types of arguments to each 
of the procedures.)

For the kind of computations that we want to do, we will need a 
slightly richer structure.

> 'type/GcdRing' := ’'module'(
> '+'::procedure,
> '*'::procedure,
> '-'::procedure,
> quo::procedure,
> rem::procedure,
> gcd::procedure,
> unormal::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one
> ) ’ :

This interface extends the Ring interface defined previously. Note that 
nothing in the signature enforces any ring-theoretic properties (such as 
being an integral domain, or having unique factorization). It merely spec­
ifies the admissible operations. Since we want to be able to compute with 
infinite rings (and even large finite ones), we avoid requiring an enumer­
ation of the elements of the ring, but focus entirely on the effectively 
computable operations that the ring must support.
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R ep resen tin g  th e  ring Z o f  In tegers One of the simplest examples of 
a ring tha t supports the computations we require is the ring Z of integers 
in its native Maple representation.

> Maplelntegers := module()
> description "the ring of integers"
> export ‘+ ‘, ‘*‘, ‘-‘>> gcd, unormal, iszero,
> isone, zero, one, rem, quo;
> = ( a, b ) -> a + b;
> <*< = ( a, b ) -> a * b;
> с _ с = i -> -i;
> quo = ( a, b ) -> :-iquo( a, b );
> rem = ( a, b ) -> :-irem( a, b );
> gcd = ( a, b ) -> :-igcd( a, b );
> unormal := proc( i:: integer )
> if i < 0 then
> -1, -i
> else
> 1, i # includes 0
> end if
> end proc;
> iszero := i -> evalb( i = 0 ) i> isone := i -> evalb( i = 1 );
> zero := 0;
> one = i;
> end module:

This is a software representation of the ring of integers. The unit normal 
mapping is represented by the exported procedure unormal. It returns an 
expression sequence of length two, whose first member is a unit, and whose 
second member is the unit normal form of its argument. The product of 
the output values yields the input ring element. The other methods just 
invoke the corresponding, built-in Maple operations.

> type( Maplelntegers, ’Ring’ );

true

> type( Maplelntegers, ’GcdRing’ );

true

A n  In terface  for F ie ld s Our quotient field constructor produces a 
field. An interface tha t describes fields differs from the one for integral 
domains by the absence of a gcd method (since they are trivial) and the 
addition of the (unary) /  operator that computes inverses. The methods 
rem and quo are also not included in the signature for fields, because



those too are trivial in a field. We do include two new methods: make for 
constructing field elements from their numerators and denominators, and 
embed, the natural embedding of the integral domain D  into its field к of 
fractions. Additionally, the two methods numer and denom allow the user 
to extract the components of a fraction.

> ‘type/Field' := ’‘module*(
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> ::procedure,
> ‘ ‘::procedure,
> ‘ ‘::procedure,
> ‘ ‘::procedure,
> normal::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one,
> make::procedure,
> embed::procedure
> ) ’ :

Naturally, the ring Z of integers is not a field.
> type( Maplelntegers, ’Field’ );

false

Fields produced by the quotient field constructor will satisfy this in­
terface.

T h e  Q u o tie n t F ie ld  F u n c to r  Here is the generic constructor for quo­
tient fields.

> QuotientField := proc( R::GcdRing )
> description "quotient field functor
> module()
> description "a quotient field";
> export
> zero, one,
> iszero, isone,
> make,
> numer, denom,
> normal, embed;
> make := proc( n, d )
> local u, nd;
> if R:-iszero( d ) then
> error "division by zero
> end if;
> u , nd := R :-unormal( d );
> ’FRACTION’( u*n, nd )
> end proc;
> embed := d -> make( d, R:-one )
> numer := f -> op( 1, f );
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> denom := f -> о?( 2, f );
> zero := embed( H:-zero );
> one := embed( R :-one );
> iszero := f -> evalb( normal( f ) = zero );
> isone := f -> evalb( normal( f ) = one ) ;
> normal := proc( f )
> local g, a, b;
> g := R:-gcd( numer( f ), denom( f ) )>
> if R:-isone ( g ) then
> f
> else
> a : = R: -quo( numer( f ), g );
> b := R: -quo( denom( f ), g );
> make( a, b )
> end if
> end proc;
> ( _ ( := f -> normal( R:-‘-‘( numer( f ) ), denom(
> W ‘ := f -> normal( make( denom( f ), numer( f )
> < + < := proc( a, b )
> use = R = R:-(( in
> normal( make( numer( a ) * denom( b )
> + denom( ) * numer( b
> denom( a ) * denom( b ) )
> end use
> end proc;
> <*< := proc( a, b )
> use = R :-‘ ‘ in
> normal( make( numer( a ) * numer( b ) ,
> denom( a ) * denom( b ) )
> end use
> end proc;
> end module
> end proc:

Most of the exported routines are quite straightforward. The fraction 
constructor make accepts two members of the ring R  as arguments and 
returns the constructed fraction, which we represent by an unevaluated 
function call of the form

FRACTION( numerator, denominator )

The exported procedure embed is the canonical embedding 77 of the inte­
gral domain into its quotient field, described previously. This makes the 
constructor functorial. The arithmetic operators are simple implementa­
tions of the familiar rules for fraction arithmetic:

a с ad +  be
b ^ d  bd 

а с ас
b d bd 

а л - 1 b
b) a
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After applying these simple formulae, the result is normalized by using 
a call to the local routine normal (not :-normal), normal does most of 
the interesting work in the ring generated by this constructor. It uses the 
manifestation of the division algorithm in the ring R  via the exported 
procedures quo and gcd to reduce each fraction to the “lowest term s” . 
Together, the fraction constructor make and the method normal ensure 
that field elements are represented by the normal form representative of 
the equivalence class tha t is the field element. Preventing division by zero, 
and forcing denominators to be unit normal representatives, is performed 
by make. Ensuring tha t fractions are reduced to “lowest terms” is handled 
by normal.

The most im portant property of the QuotientField functor is that 
it is generic. It relies solely on the GcdRing interface to do its job. No 
knowledge of the concrete representation of the input integral domain R 
(other than tha t it is a module tha t satisfies the required interface) is used 
anywhere in the construction. Therefore, it will work with any implemen­
tation of the GcdRing interface that implements the correct semantics for 
its public operations and tha t satisfies the abstract constraint that it be 
a software representation of an integral domain. (The latter constraint is 
required to ensure that the arithmetic operations are well defined.)

C o n stru ctin g  th e  R ation a le  as th e  Q u otien t F ie ld  o f  Z To con­
struct the quotient ring of the ring Maplelntegers defined previously, we 
will proceed as follows.

> FF := QuotientField( Maplelntegers );

FF  := m odule()
e x p o r t6 +  ‘ ‘ ‘/ ‘, zero , one , iszero, i sone , m a k e , 
n u m e r , denom , n orm a l , embed ; 
d escr ip tio n  “a quotient field” ;

end  m od u le
> type( FF, ’Field’ );

true

> a := FF:-make( 2 , 3 ) ;



a := FRACTIONS, 3)
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> b := FF:-make( 2 , 4 ) ;

b : =  FRACTION(2, 4)

> use FF in
> a + b;
> a * b;
> a / b
> end use;

FRACTION(7, 6) 

FRACTIONS, 3) 

FRACTION(4, 3)

T h e Q u otien t F ie ld  o f  th e  P o ly n o m ia l R in g  Q [T] To illustrate the 
genericity of this constructor, we will construct the field Q [T] of rational 
functions in a single indeterminate T  from a concrete representation of 
Maple rational polynomials.

> MaplePoly := module()
> description "the ring of rational polynomials";
> export ‘ ‘ ,
> zero, one,
> iszero, isone,
> gcd, unormal,
> quo, rem;
> <+ < : = ( a , b ) - >  expand( a + b );

( a, b ) -> expand( a * b ); 
p -> -p;( a, b ) -> :-gcd( a, b );

> unormal := proc( p )
> local lc;
> if iszero( p ) then
> one, zero
> else
> use lc = lcoeff( p ) in
> lc, :-normal( p / lc )
> end use
> end if
> end proc;
> iszero := p -> Testzero( p );
> isone := p -> Testzero( p - 1 );
> zero := 0;
> one := 1;

> ‘ *
>
> gcd
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> rem := ( a, b ) -> :-rem( a, b );
> quo := ( a, b ) -> :-quo( a, b );
> end module:

The unormal method produces the leading coefficient and monic associate 
of a given polynomial in Q [Т]. The remaining exports simply capture 
built-in Maple operations on univariate rational polynomials.

> RR := QuotientField( MaplePoly );

R R  := m odule()
e x p o r t6 +  ‘ ‘ ‘/ ‘, zero , one , iszero, isone , m a k e , 
n u m e r , denom , n orm a l , embed ; 
d e sc rip tio n  “a quotient field” ;

en d  m odu le
> type( RR, ’Field’ );

true

To make printed fractions more readable, we introduce the following 
extension to the p r in t  command.

> ‘print/FRACTION' := ( n, d ) -> sort( n ) / sort( d ):
Finally, we will construct a few examples, and test the arithmetic.

> a := RR:-make( randpoly( ’T ’, ’degree’ = 4, ’terms’ = 3 ),
> randpoly( ’T ’, ’degree’ = 4, ’terms’ = 3 ) );

-2072 T 2 -  1960 T  +  5432
a : =

T 3 +  -  T 2
9

> b := RR:-make( randpoly( ’T 3
> randpoly( ’T 3

’degree’ = 4, ’terms’ = 3 ), 
’degree’ = 4, ’terms’ = 3 ) );

b : =
-2790 T 3 +  496 T 2 +  5766 

^  T7T 33____ у _____
62 31

> use RR in
> a + b,
> a * b,
> a / b
> end use;
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(-2790 Г 6 -  Г 5 -  1638 Г 4 +  401827 Г 3 
v 4 124

1943715 ,  144452 87333ч / ,
+ -----------т ------------- т  + -------- ) / (

124 31 124 7/
, 91 , 1067 ~ 6 ~ 693 _  297 ч ,

г п Ъ  ___  ________  г р 4  ___  ___________  r p S  I _____  r p l  ___  ________  г р  ___  ________ \  /

248 496 31 496 248 
5780880 Г 5 +  4440688 Г 4 -  16127440 Г 3 -  9252880 Г 2
-  11301360 Т  +  31320912)/(

, 91 , 1067 ~ 6 ~ 693 _  297 ч ,
Г П Э  ___  ________  Г р 4 :  ___  ___________  Г р З  | _____  Г р £  ___  ________  ГТ1  ___  ________  \  /

248 496 31 496 248 
5780880 Г 4 -  1711080 Г 3 -  28100520 Г 2 +  13000680 Г  
+  16133040)/(

251 , 7 . 113 , 241 9 93 ч
Г р Ь  I ________  Г р Ь  ___  _____  Г р 4 :  ___  ________  Г р З  ___  ________  Г р 2  ___  _____  \

360 45 120 120 40 

Example: A Generic Group Implementation
In this section, we illustrate how to develop a moderately complex software 
system based on the use of features of Maple’s module system. Generic 
programming is at the heart of the design. Only a fraction of the complete 
system from which the examples are taken is shown. The examples that 
follow comprise a system for computing with finite groups. Recall tha t a 
group is a set of objects together with an associative binary operation, 
for which there is an unique two-sided identity element, and with respect 
to which each member of the underlying set possesses an unique inverse. 
Examples of groups include systems of numbers, using addition, closed 
sets of invertible matrices (all of the same size, with a common ground 
field) using multiplication ( “linear groups”), closed sets of permutations 
(bijective mappings on a set) using composition ( “permutation groups”), 
and groups of points on elliptic curves. We are concerned here only with 
finite groups.

An Interface for Finite Groups First, we must decide how to represent 
the generic group interface. This is, in large measure, determined by the 
use to which the group objects will be put. Once again, our design takes a 
group to be a repository of data and computational services that we may 
query or invoke.

The Group signature tha t we will use in our examples describes a com­
putational model of abstract groups tha t supports the following methods.
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id the group identity
С С the binary operation on the group
mul n-ary version of c . c
inv unary inversion operation
pow computes integral powers of group elements
eq tests whether two group elements are equal

member tests membership in the group and in sets
gens a generating set for the group
order returns the order of the group

elements returns an enumeration of the group’s members

> ‘type/Group* := ’‘module*(
> id, ‘ ‘, mul, inv,
> eq, member,
> gens,
> order, elements
> ) ’ :

A corresponding constructor for groups is easily written using the Record 
constructor introduced earlier. For the examples in this section, we will 
not need to introduce any default methods.

> Group := procO
> Record( op( ‘type/Group* ) );
> end proc:

This constructor does very little work on its own. It relies on more spe­
cialized constructors to establish useful values or defaults for the methods 
exported.

We can begin to write generic algorithms using this interface immedi­
ately. A few simple examples are these routines for computing conjugates 
and commutators of group elements. The conjugate of a group member 
a by a group member b is Ь~гаЬ. This routine computes the conjugate of 
an element a by an element b in a group G.

> Conjugate := proc( G, a, b )
> description "compute the conjugate of a "
> "group element by another";
> use = G:-inv, = G:-<.< in
> b~(-l) . a . b
> end use
> end proc:

Since the group operations c . c and inv in a generic group remain unas­
signed, the following computation is done symbolically.

> Conjugate( GroupO, ’x ’, ’y ’ );

(mv(y)) . x  . у
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Similarly, we can compute the commutator [a, b] =  a( ^ b( ^ab, 
generically, as follows.

> Commutator := proc( G, a, b )
> description "compute the commutator of "
> "two group elements";
> use </‘ = G:-inv, mul = G:-mul in
> mul ( inv ( a ) , inv ( b ) , a, b )
> end use
> end proc:

Again, this computation is done symbolically, so the group operations 
return unevaluated.

> Commutator( GroupO, ’x ’, ’y ’ );

mul(inv(x), inv(y), x , y)

The ability to write algorithms generic over a given interface is im­
portant for the management of large software projects involving many 
developers. Here, one developer can be assigned the task of implementing- 
particular group constructors along with the attendant arithmetic, while 
another developer can begin coding generic routines like those above. The 
two developers can work independently, provided each ensures tha t their 
work conforms to some agreed-upon interface and semantics.

Permutation Groups Before attem pting to develop any complicated al­
gorithms, it is helpful to have available a few constructors for specific 
kinds of groups. These can then be used to validate generic algorithms in 
specific instances. For this reason, we develop a straight-forward imple­
mentation of permutation groups.

Permutations are represented using Maple lists. For example, the list 
[2 ,1 ,3 ] represents the permutation tha t maps 1 —>• 2, maps 2 —>• 1, 
and leaves 3 fixed. (In cycle notation, this is written as the transposition 
(12).) The constructor takes a positive integer as its first argument, indi­
cating the degree of the permutation group. The remaining arguments are 
expected to be permutations (represented as lists) of the stated degree. 
These are used to form the generating set of the group returned by the 
constructor.

> PermutationGroup := proc( deg::posint )
> description "permutation group constructor";
> local G, gens;
> gens := { args[ 2 .. -1 ] };
> G := Group();
> G:-id := [ $ 1 .. deg ];
> G:-‘.‘ := proc( a, b )
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> local i;
> [ seq( b [ i ], i = a )  ]
> end proc;
> G :-mul := () -> foldl( G:-‘.‘, G:-id
> G:-inv := proc( g )
> local i, a;
> a := array( 1 .. deg );
> for i from 1 to deg do
> •HII1—1 1—1 •HhOcd

> end do;
> [ seq( a[ i ] , i = 1 deg ) ]
> end proc;
> G:-member := proc( g, S, pos ::name )
> if nargs = 1 then
> type( g, ’list( posint )’ )
> and { op( g ) > = { $ 1 ..
> else
> :-member( args )
> end if
> end proc;
> G:-eq := ( a, b ) -> evalb( a = b );
> G :-gens := gens;
> eval( G, 1 )
> end proc:

For example, to construct the group ((12), (123)) in the symmetric group 
S4, we use the PermutationGroup constructor as follows.

> G := PermutationGroup( 4, { [2,1,3,4], [2,3,1,4] } );

G := m odule() 
e x p o rt
i d , m u l , inv, eq, member,  gens, order, elements ; 
o p tio n  record;

en d  m odu le
We can now call upon the “services” provided by the methods ex­

ported by the instantiated group G to compute with its elements.
> use G in
> inv( [ 2,1,3,4 ] ) . [2,3,1,4];
> end use;

[3, 2, 1, 4]

It is useful to provide more specialized permutation group con­
structors for special kinds of groups. Using the general constructor 
PermutationGroup, and over-riding some of the exported methods, we 
can define several of these specialized constructors as follows.
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The full symmetric group Sn on the n  points {1, 2 , 3 , . . . ,  гг} is pro­
duced by specifying a particular set of generators for a given degree (which 
must be specified as an argument to the constructor).

> Symmetric := proc( n::posint )
> description "symmetric group constructor";
> if n < 2 then
> error "argument must be an integer larger than 1"
> elif n = 2 then
> PermutationGroup( 2, [2,1] );
> else
> PermutationGroup( n, [2,l,$3..n], [$2..n,l] );
> end if
> end proc:

This uses the fact that Sn is the two-generator group

S„ =  <(12), (123-••«.)),

for any integers n > 3.
A second special case worth considering is the class of dihedral groups. 

We can think of these as the groups of symmetries of regular plane poly­
gons. The symmetry group of the regular n -gon is the dihedral group of 
degree n  and order 2n; it is denoted by Dn.

(123456)

We’ll use the following little utility for reversing a list.
> lreverse := proc( L::list )
> description "reverse a list";
> option inline;
> [ seq( L[ -i ], i = 1 .. nops( L ) ) ]
> end proc:
> Dihedral := proc( n::posint )
> description "dihedral group constructor";
> local a, b, D;
> if n = 2 or n = 3 then
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> return Symmetric( n )
> end if;
> a := [ $ 2 .. n, 1 ];
> b := [ 1, op( lreverse( [ $ 2 . . n ] ) ) ] ;
> D := PermutationGroup( n, {a, b } );
> D:-order := () -> 2*n;
> eval( D, 1 )
> end proc:

1. Use the fact that the alternating group A n of degree n  > =  3 is 
generated by the set {(123), (234), (345), . . . ,  (n — 2, n — 1, n)} of  3- 
cycles to write a constructor A l t e r n a t in g  for this class of groups.

Dimino’s Algorithm Dimino’s algorithm is used to compute a complete 
enumeration of the elements of a finite group, given a generating set for 
the group. Suppose that we are given a generating set {g\, g2 , ■ ■ ■, gn} for 
a finite group G. The idea behind Dimino’s algorithm is to enumerate, 
successively, the elements of each of the subgroups

G k  =  (<?i, 92, • • •, 9k)

of G, which form a chain

Ы =  G\ < G-2 < ■ ■ ■ < Gk < ■ ■ ■ < G„ = G.

These elements can be enumerated by forming products of the genera­
tors gi, g2 , . . . ,  gn in all possible ways, until all the elements of G have 
been found. Dimino’s algorithm does this in a careful way, so as to avoid 
computing unnecessary products.

We’ll use the following utility routine to determine the entries assigned 
to a table. It can be used when we are certain no entry is a non-NULL ex­
pression sequence. Since it is sufficiently simple, it is defined with op tion  
i n l i n e ;.

> Entries := proc( T )
> description "return a set of simple table entries";
> option inline;
> map( op, { entries( T ) } )
> end proc:

Here is the code for Dimino’s algorithm.
> Dimino := proc( G::Group )
> description "enumerate the elements of a finite group";
> local s, g, ord, elements, i, j, prev_ord, rep_pos,
> elt, addElt, gens;
>
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> if nargs > 1 then
> gens := args[ 2 ]
> else
> gens := G :-gens
> end if;
>
> if not type( gens, set, list }’ ) then
> error "no generating set specified"
> end if;
>
> if nops( gens ) = 0 then
> # trivial group
> return { G:-id }
> end if;
>
> addElt := proc( h )
> ord := 1 + ord;
> elements[ ord ] := h
> end proc;
>
> elements := tableO;
> ord := 0;
> addElt( G:-id );
>
> # Handle the first cyclic subgroup
> s := gens[ 1 ];
> g := s;
> while not G:-eq( g, G:-id ) do
> addElt( g );
> g := G:-‘.‘( g, s )
> end do;
> userinfo( 1, ’Dimino’, "finished first cycle; order is:", ord );
>
> for i from 2 to nops( gens ) do
> userinfo( 1, ’Dimino’, "Adding generator number:", i );
> s := gens[ i ] ;
> if not G:-member( s, Entries( elements ) ) then
> prev_ord := ord;
> addElt( s );
> for j from 2 to prev_ord do
> addElt ( G:-'.^ elements [ j ], s ) )
> end do;
> rep_pos := 1 + prev_ord;
> do
> for s in gens[ 1 .. i ] do
> elt := G:-mul( elements[ rep_pos ], s );
> if not G:-member( elt, Entries( elements ) ) then
> addElt( elt );
> for j from 2 to prev_ord do
> addElt ( G:-'.^ elements [ j ], elt ) )
> end do
> end if
> end do;
> rep_pos := rep_pos + prev_ord;
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> if rep_pos > ord then
> break
> end if
> end do
> end if
> end do;
> Entries( elements )
> end proc:

The coding of this algorithm is generic. The exported members of the 
group object G are used to effect computations within the procedure. 
Even comparisons of equality use the export eq instead of Maple’s builtin 
comparison operator t = t . (The need for this will be seen below.)

Using the Symmetric constructor defined above, we can compute the 
elements of the symmetric group S4 , using Dimino’s algorithm, as follows.

> G := Symmetric( 4 );

G := m od u le()  
ex p o rt
i d , m u l , inv, eq, member,  gens, order, elements ; 
o p tio n  record;

end  m od u le
> Dimino( G );

{[2, 1, 3, 4], [2, 3, 1, 4], [1, 2, 3, 4], [3, 2, 1, 4],
[2, 3, 4, 1], [3, 2, 4, 1], [1, 3, 4, 2], [3, 1, 4, 2],
[3, 4, 1, 2], [4, 3, 1, 2], [2, 4, 1, 3], [4, 2, 1, 3],
[3, 4, 2, 1], [4, 3, 2, 1], [4, 1, 2, 3], [1, 4, 2, 3],
[3, 1, 2, 4], [1, 3, 2, 4], [4, 1, 3, 2], [1, 4, 3, 2],
[4, 2, 3, 1], [2, 4, 3, 1], [1, 2, 4, 3], [2, 1, 4, 3]}

Anticipating later developments, we have coded the procedure Dimino 
to accept a second, optional argument that specifies an alternate set of 
generators to use. Thus, we could compute the same set using the set 
{(12), (23) , . . . ,  (n — 1, n)} of transpositions instead.

> Dimino( G, { [2,1,3,4], [1,3,2,4], [1,2,4,3] > );
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{[2, 1, 3, 4], [2, 3, 1, 4], [1, 2, 3, 4], [3, 2, 1, 4],
[2, 3, 4, 1], [3, 2, 4, 1], [1, 3, 4, 2], [3, 1, 4, 2],
[3, 4, 1, 2], [4, 3, 1, 2], [2, 4, 1, 3], [4, 2, 1, 3],
[3, 4, 2, 1], [4, 3, 2, 1], [4, 1, 2, 3], [1, 4, 2, 3],
[3, 1, 2, 4], [1, 3, 2, 4], [4, 1, 3, 2], [1, 4, 3, 2],
[4, 2, 3, 1], [2, 4, 3, 1], [1, 2, 4, 3], [2, 1, 4, 3]}

We still need to pass the group object G for Dimino to access its 
operations.

Dimino’s algorithm is a useful “fallback” algorithm, but many fi­
nite groups of interest can be enumerated more efficiently using specific 
knowledge of their structure. For “small” examples, the implementation 
presented here suffices, but a well-optimized implementation tha t takes 
advantage of fast arithmetic for group elements would be required for 
serious use.

Representing Subgroups A subset of a group that forms a group in its 
own right (using the operations inherited from the group, by restriction) 
is called a subgroup. For example, the 3-member set {(123), (132), (1)} 
is a subgroup of the full symmetric group S3 of degree 3 (which has
6 members). There are a number of approaches we could take to the 
representation of subgroups. One way is to represent a subgroup H  of a 
“known” group G by specifying a generating set for H  and copying the 
computational services from the representation of G to the representation 
of H.  Thus, the Maple representations G and H of G and H  would both 
be of type Group.

Instead, we shall adopt a different approach tha t is better suited to im­
plicit representations of subgroups. This design can be extended to allow 
implicit representations of subgroups that we need not be able to compute 
with directly. The idea is to represent a subgroup by a simpler structure 
tha t maintains a link to its parent group and an indication of how it is 
defined in terms of its parent group. Thus, a subgroup will be represented 
by a module with an export p a ren t that is assigned the group in which 
the subgroup is contained. A second export has a name depending upon 
the way in which the subgroup is defined. One way to define a subgroup 
in terms of its parent is to specify a generating set. Subgroups defined in 
this way will be represented by a module having the export gens of type 
se t. A second way to define a subgroup is by a “property” . For example, 
the center of a group is defined by the property tha t all its members com­
mute with every element of the group (or, equivalently, tha t each among



its members commutes with all the generators of the parent group). We 
can ask tha t properties be specified by requiring a procedure that tests 
for membership in the subgroup. Thus, subgroups can be described by 
either the following interfaces.
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parent the parent group
test
gens

a membership test (a procedure) 
a set of generators

Only one of the methods t e s t  and gens need be present. A Maple im­
plementation of this interface is as follows.

> ‘type/SubGroup‘ := ’{
> ‘module(( parent::Group, gens::set ),
> ‘module'( parent::Group, test::procedure )
> У ’ :

The SubGroup constructor must dispatch on the type of its second argu­
ment to determine which kind of record to create to model the subgroup.

> SubGroup := proc( G ::{Group,SubGroup}, how::{set,procedure} )
> description "subgroup constructor";
> local S;
> if type( how, ’procedure’ ) then
> S:= Record( ’parent’, ’test’ = eval( how, 1 ) )
> else
> S := Record( ’parent’, ’gens’ = how )
> end if;
> S :-parent := G ;
> eval( S, 1 )
> end proc:

For example, the center of the symmetric group S 3 can be defined as 
follows.

> S3 := Symmetric( 3 ):
> Z := SubGroup( S3, proc( z )
> local g;
> use S3 in
> for g in gens do
> if not eq( mul( inv( g ), inv( z ), g ), z ) then
> return false
> end if
> end do;
> end use;
> true
> end proc );

Z  := m odule() 
e x p o r t parent, te s t ; 
o p tio n  record;

end  m od u le
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> Z:-test( [2,1,3] );

false

> Z:-test( [2,3,1] );

false

> Z:-test( [1,2,3] );

true

Similarly, we can write a constructor for the centralizer of an element 
in a group.

> Centralizer := proc( G, g )
> SubGroup( G, proc( s )
> use = G:-‘.‘, <=< = G:-eq in
> s . g = g . s
> end use end proc )
> end proc:

Generic Interfaces Dimino’s algorithm is fairly expensive. For many 
classes of groups, better alternatives to enumerating group elements ex­
ist. We will take advantage of the opportunity to use them, relying on 
Dimino’s algorithm only as a “last resort” . The advantage of Dimino’s 
algorithm is tha t it works for any finite group. To provide a clean and 
uniform interface to the enumeration functionality, we develop a fron- 
tend procedure tha t takes care of hiding the details of how we go about 
choosing the best available algorithm.

> GroupElements := proc( G )
> description "enumerate the elements of a finite group";
> if type( G, ’Group’ ) then
> if type( G:-elements, ’set’ ) then
> G:-elements
> elif type( G:-elements, ’procedure’ ) then
> G:-procedure()
> else
> G:-elements := Dimino( G )
> end if
> else
> ’procname’( args )
> end if
> end proc:



Several elements of the design allow us to take advantage of structural 
knowledge to improve efficiency. This routine first checks whether the 
export elements of its input group is of type set. If it is, then it is 
taken to be a stored enumeration of the group elements and is simply 
returned. Otherwise, if the export elements is a procedure, then it is 
taken to be a (perhaps specialized) routine for computing the requested 
enumeration. Finally, Dimino’s algorithm is used as a “last resort” if no 
better alternative is provided. As a simple optimisation, the result of 
Dimino’s algorithm is stored as a new value for the elements export so 
that it need only be computed once.

Providing the GroupElements interface shields the user from having 
to know what the available alternatives are and how to use them. An ad­
ditional benefit of the design is tha t it allows us to change the algorithm 
selection criteria at any time (to correct software faults, or make func­
tional or performance improvements). Code using this interface need not 
be modified, provided tha t the routine continues to honor its “contract” .

Enumerating Elements in Subgroups Once the elements of the parent 
group are known, the members of the subgroup can be computed using a 
call to the builtin Maple command select.

> select( С :-test, Dimino( G ) );

How best to enumerate the elements of a subgroup depends upon how 
it is defined and what is known about the parent group. The procedure 
SubGroupElements that follows takes a subgroup as argument and a t­
tempts to find the “best” way to compute the elements of the subgroup 
from among the available methods.

> SubGroupElements := proc( S )
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> description "enumerate the elements of "
> "a subgroup of a group";
> local P;
> P := S;
> while type( P, ’SubGroup’ ) do
> P := P :-parent
> end do;
> if type( P, ’Group’ ) then
> if member( :-test, S ) then
> select( S:-test, GroupElements( P ) )
> else
> ASSERT( member( :-gens, S ) );
> Dimino( P, S:-gens )
> end if
> else
> ’procname’( args )
> end if



б.6 Interfaces and Implementations • 339

> end proc:
> G := Symmetric( 4 );

G := m odule() 
e x p o rt
i d , m u l , inv, eq, m em ber , gens , order , elements ; 
o p tio n  record;

en d  m odu le
> SubGroupElements( Centralizer( G, [ 1, 3, 2, 4 ] ) );

{[1, 2, 3, 4], [4, 3, 2, 1], [1, 3, 2, 4], [4, 2, 3, 1]}

W ith SubGroupElements implemented, it is a good idea to extend 
GroupElements to accept subgroups also, thus providing a common in­
terface.

> GroupElements := proc( G )
> description "enumerate the elements of a "
> "group or subgroup";
> if type( G, ’SubGroup’ ) then
> SubGroupElements( G )
> elif type( G, ’Group’ ) then
> if type( G:-elements, ’set’ ) then
> G:-elements
> elif type( G:-elements, ’procedure’ ) then
> G:-elements()
> else
> G:-elements := Dimino( G )
> end if
> else
> ’procname’( args )
> end if
> end proc:

Computing the Order of a Group Since we have the capability of enu­
merating all of a group’s elements, it is always possible to determine its 
order. (Note tha t this is rarely the best way to do this, however.) In many 
cases, it is possible to provide much better ways to compute the order of 
a group. For instance, the symmetric group of degree n  has order equal 
to n!, so its order export could be redefined to compute this number 
instead.

A generic interface to computing group orders, in the same spirit as 
GroupElements may be written as follows.
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> GroupOrder := proc( G )
> description "compute the order of a finite j
> if type( G, ’SubGroup’ ) then
> nops( GroupElements( G ) )
> elif type( G, ’Group’ ) then
> if type( G:-order, ’posint’ ) then
> G:-order
> elif type( G:-elements, ’set’ ) then
> G:-order := nops( G:-elements )
> elif type( G:-order, ’procedure’ ) then
> G:-order()
> else
> nops( GroupElements( G ) )
> end if
> else
> ’procname’( args )
> end if
> end proc:

As with GroupElements, this routine checks the possible “shortcuts” 
that might be available for a group, beginning with those that are 
likely to involve the least computation and progressing through more 
and more costly alternatives. Only as a last resort does the procedure 
call GroupElements to compute a full enumeration of the group elements 
only to return their number.

> G := Symmetric( 4 );

G := m odule()  
ex p o rt
i d , m ul, inv, eq, member, gens, order, elements; 
o p tio n  record;

end  m od u le
> С := Centralizer( G, [1, 3, 2, 4 ]  );

С  := m odule()  
ex p o rt parent, te s t ; 
o p tio n  record;

end  m od u le
> GroupOrder( G );

24
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> GroupOrder( С );

4

Note that, when the argument G is neither a group nor a subgroup, the 
procedure GroupElements returns unevaluated. This allows us to extend 
other Maple operations, such as expand, combine or simplify to be effec­
tive on algebraic expressions involving unevaluated calls to GroupOrder.

Matrix Groups So far, all our groups have been permutation groups 
returned by one of the constructors presented above. If we are to have 
any confidence in the genericity of the code we have developed, we must 
test it on some other kinds of groups. A good source for examples of finite 
groups are the finite groups of exact matrices.

E q u ality  and M em b ersh ip  T ests for M atr ices  Because distinct 
matrices with equal entries compare differently using Maple’s equality 
comparison operator ‘ ‘ , it is necessary to implement a specialized test 
for membership in a set. For example, consider the matrices

> A := Matrix( [[1,0] , [0,1]] );

> В := Matrix( [[2,3], [3,4]] );

В  : =
2 3
3 4

> С := Matrix( [[1,0], [0,1]] );

С  :=
1 0 
0 1

Both A and С have the same entries, and represent mathematically  
identical objects. However, because matrices are mutable data structures 
(necessary for efficiency in matrix computations), they are distinct as 
Maple objects. Thus, for instance, we see that:

> member( A , { В , С } );
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false

To deal with this property of the data structures we are using, we 
need to implement a generic version of the Maple command member. 
This routine, gmember accepts arguments after its first tha t are like those 
required by member, but must be passed an additional, first argument test 
that is an equality test to use. We’ll use this utility in our implementation 
of the matrix group constructor below.

> gmember := proc( test, g ::anything, S ::{set,list}, pos::name )
> description "a generic membership predicate";
> local i;
> if type( test, ’procedure’ ) then
> for i from 1 to nops( S ) do
> if test( g, S[ i ] ) then
> if nargs > 3 then
> pos := i
> end if;
> return true
> end if
> end do;
> false
> elif test = }<=<} then
> # use the standard membership test
> :-member( args[ 2 .. -1 ] )
> else
> ’procname’( args )
> end if
> end proc:

The builtin procedure Equal package provides an equality predicate that 
is suitable for use with matrices.

> gmember( LinearAlgebra:-Equal, A, { В, С } );

true

T h e  MatrixGroup C o n s tru c to r  Except for the member export, most 
the the exported methods for matrix groups simply delegate to the ap­
propriate routine in the LinearAlgebra package. The MatrixGroup con­
structor takes the degree n  of the matrix group as its first argument and, 
if given more than one argument, takes the remaining ones to be matrices 
tha t form a set of generators for the group.

> MatrixGroup := proc( n::posint )
> description "matrix group constructor";
> local matgens, G;
> use LinearAlgebra in
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> matgens := { args[ 2 .. -1 ] };
> G := Record(
> ’ i d ’ = M atrix( n, n, ( i ,  j ) -> f i f f ( i  = j ,  1, 0 ) ) ,
> ’ <. <’ = ( ( a ,  b ) - >  MatrixMatrixMu.lt i p l y  ( a, b ) ) ,
> ’mul’ = ( ( ) - >  f o l d l (  G : - ‘ . ‘ , G :- id ,  args ) ) ,
> ’inv’ = ( m -> Matrixlnverse( m ) ),
> ’g e n s ’ = matgens,
> ’e q ’ = ( ( a , b ) - >  Equal( a, b ) ) ,
> ’member’ = proc( g ,  S, pos::name )
> l o c a l  i ,  s;
> i f  nargs = 1 then
> i f  ty p e (  g ,  ’M atrix( square ) ’ ) then
> e v a lb ( Determ inant( g ) <> 0 )
> e l s e
> f a l s e
> end i f
> e l s e
> gmember( G:-eq, args )
> end i f
> end proc,
> ’o r d e r ’ , ’e le m e n ts ’ );
>
> i f  nargs = 1 then
> G:-order := 1;
> G :-elem ents  := { G :- id  }
> end i f
> end u s e ;
> e v a l (  G, 1 )
> end p r o c :

Here, we use the matrix group constructor to generate a dihedral matrix 
group of order 12.

> th e t a  := Pi /  3;

> a := Matrix( 2, 2, [[ 0, 1 ], [ 1, 0 ]] );

'0  Г

> b := Matrix( 2, 2,
> [ [cos(theta),sin(theta)] ,
> [-sin(theta),cos(theta)]] );
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b : =

1 1 г- \ Д
2 2

1 г- 1----\ Д  -
2 2

> В := MatrixGroup( 2, а, Ъ );

В  := m odule()  
ex p o rt
i d , m u l , inv, gens , eg, m em ber , order , elements ; 
o p tio n  record;

end  m od u le
> GroupElements( В );
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Direct Products To enrich the supply of example groups tha t we can 
work with, we’ll develop a constructor for the direct product of (two) 
groups. (Extending the constructor to handle any finite number of groups 
is straight-forward, but complicates the exposition unnecessarily.) Direct 
products are very im portant in the study of finite groups because all 
finitely generated abelian groups possess an unique “factorisation” as a 
direct product of cyclic groups. (In the abelian theory, direct products are 
often referred to as direct sums.)

The direct product of two groups A  and В  is the group G whose 
elements are all pairs (a, b), with a G A  and b G B.  The group product in 
G is defined by (a\, b\) • (a-2, ^2) =  (&i -02, b\ -62)- The inverse of an element 
(a, b) is the pair (a-1 , b~x). All the operations are defined component-wise.
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We can represent the elements (a, b) of the direct product by two-element 
lists. Here is the constructor DirectProduct.

> DirectProduct := proc( A ::Group, B ::Group )
> d e s c r ip t io n  " d irec t  product constructor";
> l o c a l  G, a, b;
> i f  ty p e (  A, ’Group’ ) and ty p e (  B, ’Group’ ) then
> G := GroupO;
> G :- id  := [ A : - id ,  B : - id  ] ;
> G : - ‘ . ‘ := ( u, v ) -> [ A : - ‘ . ‘ ( u [ l ]  , v [ l ]  ) ,
> B : - ‘ . ‘ ( u[2] , v [2] ) ] ;
> G:-mul := () -> f o l d l (  G : - ‘ . ‘ , G :- id ,  args );
> G :-inv  := v -> [ A :- in v (  v [  1 ] ) ,
> В:- i n v (  v [ 2 ] ) ] ;
> G:-gens := [ seq (  seq(  [ a ,  b ] ,
> a = A:-gen s  ) ,  b = В:-gen s  ) ] ;
> G:-eq := ( u, v ) -> A :-eq(  u [  1 ] ,  v [  1 ] )
> and B :-eq (  u [ 2 ] ,  v [ 2 ]  ) ;
> G:-order := () -> GroupOrder( A ) * GroupOrder( В );
> G:-member := proc( g ,  S, pos::name )
> i f  nargs = 1 then
> A:-member( g [ 1 ] )
> and В:-member( g [ 2 ] )
> e l s e
> gmember( G :-eq, args )
> end i f
> end proc;
> G :-elem ents := () -> [ seq (  seq(  [ a ,  b ] ,
> a = GroupElements( A ) ) ,  b = GroupElements( В ) ) ] ;
> e v a l ( G, 1 )
> e l s e
> ’procname’ ( args )
> end i f
> end proc:

Most of the group methods are quite straightforward, but note tha t we 
take the opportunity to use the known group structure to reduce the com­
plexity of some computations such as those for the order and elements 
exports.

> A := Symmetric( 3 ):
> G := DirectProduct( A, В ):
> GroupOrder( G );

72

> nops( GroupElements( G ) );

72



Homomorphisms In all algebraic theories, homomorphisms  play a key 
role. A group homomorphism is a mapping from a group to another 
(possibly the same) group which commutes with the group operations. 
That is, a map if : A  — >• В  of groups A  and В is a homomorphism if 
if(ab) =  if (a) if (b), for all a and b in A. A homomorphism is determined 
uniquely by its effect on a generating set for its domain, so to define a 
homomorphism, it is enough to specify the images of each among a set of 
generators for the domain.

We’ll use the following interface for homomorphisms.
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domain the domain of the homomorphism 
codomain the codomain of the homomorphism 
genmap the mapping of the generators of the domain into the codomain

This lead directly to a fairly simple constructor for homomorphism ob­
jects.

> ‘type/Homomorphism* := ’ ‘module*( domain, codomain, genmap ) ’ :
> Homomorphism := proc( A : :Group, B : :Group, p : :procedure )
> d e s c r ip t io n  "homomorphism constructor";
> Record( ’domain’ = A, ’ codomain’ = B, ’genmap’ = p )
> end p r o c :

The image of a group homomorphism if : A  — >• В  is the subset <f(A) of 
В  consisting of all elements of В  having the form ip (a), for some element 
a in A. It is a subgroup of B.  The various design choices we’ve made along 
the way lead to a very simple formulation for computing or representing 
images of homomorphisms.

> Homlmage := proc(  hom::Homomorphism )
> d e s c r ip t io n  "compute th e  image of a homomorphism";
> SubGroup( hom:-codomain,
> map( hom:-genmap, hom:-domain:-gen s  ) )
> end p r o c :

As an example computation, we compute the image of a homomorphism 
from the symmetric group S4 onto a two-element matrix group generated 
by the reflection

> M atrix( [ [ 0 ,  1 ] ,  [ 1 ,  0 ]  ] );

' 0 Г
1 0

First, define the groups.
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> A := Symmetric( 4 ):
> В := MatrixGroup( 2, M atrix( [ [0 ,1 ]  , [ 1 , 0 ] ]  ) ):

We can define a mapping from the generators of A to the group В by 
inserting the images of the generators into a procedure’s remember table.

> h( [ 2 ,1 ,3 ,4 ]  ) := M atrix( [ [0 ,1 ]  , [ 1 ,0 ] ]  ):
> h( [ 2 ,3 ,4 ,1 ]  ) := M atrix( [ [1 ,0 ]  , [ 0 ,1 ] ]  ):

This defines a Maple procedure h tha t performs the indicated mapping 
and returns unevaluated for any other arguments.

> e v a l ( h );

proc() option  remember;  ’procname(args)’end proc

Now we use A, В and h to construct the homomorphism object.
> hom := Homomorphism( A, B, h );

hom  := m odule()
export dom ain, codomain , genmap;  
option  record;

end m odule
> ty p e (  hom, ’Homomorphism’ );

true

We can now use the machinery developed earlier in this example to 
compute the order of the image of this homomorphism.

> GroupOrder( Homlmage( hom ) );

2

Thus, we see tha t the homomorphism is surjective (as expected). We 
can compute the elements explicitly.

> GroupElements( В );

' 0  1 ' ' 1  o '
1 0 ? 0 1

> GroupElements( Homlmage( hom ) );
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' 1  o ' ' 0  1 '
0 1 ? 1 0

1 . An  automorphism a of a group G is called inner i f  there is an 
element a in G for which a(g) =  a~xga, for all g in G. Write a 
constructor for  inner automorphisms of groups.

S u m m ary  The power of generic programming is tha t we need only im­
plement computation in quotient fields or groups once — in the construc­
tors and generic procedures. The functor Q u o t i e n t F i e l d  and the various 
generic group constructors and procedures are parameterized by the com­
putational domains upon which their computed values depend. We view 
rings, fields, groups and subgroups as collections of computational capabil­
ities, which we use to construct new instances with derived computational 
capabilities. The ability to override default methods (which may not be 
efficient, but at least, are always present) with better methods that take 
advantage of specific structural information allows for efficient computa­
tion without sacrificing generality. This leads to a powerful paradigm for 
software reuse, and is the principal motivation underlying Maple’s module 
system.

6.7 Conclusion
This chapter introduced the concept of Maple modules. It described the 
structure and flexibility of modules.

Encapsulation and generic programming with modules allow you to 
write code tha t can be reused, transported, and easily maintained. By 
collecting procedures into a module called a package, you can organize 
your procedures into distinct sets of related functions. You can also use 
modules to implement objects in Maple.

The descriptions in this chapter are complemented by numerous ex­
amples to help you learn the syntax and semantics of modules and provide 
you with modules tha t can be customized and used in your own work.



7 Debugging Maple 
Programs

New programs, whether developed in Maple or any other language, often 
work incorrectly. Problems that occur in the execution of a program are 
usually due to syntax errors introduced during implementation, or logic 
errors in the design of the algorithm. Most errors are subtle and hard 
to find by visual inspection of the program alone. Maple provides error 
detection commands and a debugger to help you find these errors.

The Maple debugger lets you stop execution within a Maple proce­
dure, inspect and modify the values of local and global variables, and 
continue execution, either to completion, or one statement or block at a 
time. You can stop execution when Maple reaches a particular statement, 
when it assigns some value to a particular local or global variable, or 
when a particular error occurs. This facility lets you investigate the inner 
workings of a program to determine why it is not doing what you expect.

Alternatively, Maple provides a variety of commands to help you find 
errors in procedures. Among these are commands to trace procedure exe­
cution, check assertions, raise exceptions and trap  errors, and verify pro­
cedure semantics and syntax.

Even when a program is working correctly, you may want to ana­
lyze its performance to try  to improve its efficiency. Maple commands 
are available to analyze the time and memory consumption involved in 
running the program.

7.1 A Tutorial Example
The Maple debugger is a tool tha t you can use to detect errors in your 
procedures. Using this facility, you can follow the step-by-step execution
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of your program to determine why it is not returning the results tha t you 
expect.

This section illustrates how to use the Maple debugger as a tool for 
debugging a Maple procedure. The debugger commands are introduced 
and described as they are applied. Additional information about the com­
mands is provided in Section 7.2.

The following procedure, s i e v e ,  is used as a case study. It implements 
the Sieve of Eratosthenes : given a parameter n, return a count of the 
prime numbers less than n, inclusive. To debug the s i e v e  procedure, we 
use breakpoints and watchpoints, which cause Maple to stop the execution 
of the procedure.
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> s ie v e  := p r o c (n : : in te g e r )
> l o c a l  i ,  k, f l a g s ,  c o u n t , t w i c e i ;
> count := 0;
> fo r  i  from 2 to  n do
> f l a g s [ i ]  := tru e
> end d o ;
> fo r  i  from 2 to  n do
> i f  f l a g s [ i ]  then
> t w ic e i  := 2 * i;
> fo r  к from t w ic e i  by i  t o  n do
> f la g s [ k ]  = f a l s e ;
> end d o ;
> count := count+1
> end i f ;
> end d o ;
> c o u n t;
> end p r o c :

Numbering the Procedure Statements I
To use the Maple debugger, you must enter a variety of debugger com­
mands. Many of these debugger commands must refer to statements 
within the procedures tha t you are debugging. Statement numbers al­
low such references. The s h o w s t a t  command displays a Maple procedure 
along with numbers preceeding each line that begins a new statement.

> s h o w s t a t ( s i e v e ) ;

s i e v e  := p r o c (n : : in te g e r )  
l o c a l  i ,  k, f l a g s ,  count, t w ic e i ;

1 count := 0;
2 fo r  i  from 2 to  n do
3 f l a g s [ i ]  := tru e  

end do;
4 fo r  i  from 2 to  n do
5 i f  f l a g s [ i ]  then
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6
7

t w ic e i  := 2 * i;
fo r  к from t w ic e i  by i  t o  n do

8

9

f l a g s [ k ]  = f a l s e  
end do;
count := count+1

end i f  
end do; 

10 count 
end proc

Note that the numbers preceeding each line differ from line numbers 
that may display in a text editor. For example, keywords tha t end a state­
ment (such as end do and end i f )  are not considered separate commands 
and are therefore not numbered.

Invoking the Debugger I
To invoke the Maple debugger you must start the execution of a procedure, 
and the execution must be made to stop within the procedure. To execute 
a Maple procedure, call it by using a Maple command at the top-level, 
or call it from another procedure. The simplest way to cause execution to 
stop within the procedure, is to set a breakpoint in the procedure.

Setting a breakpoint Use the s t o p a t  command to set a breakpoint in 
procedure s i e v e .

> s t o p a t ( s i e v e ) ;

This command sets a breakpoint before the first statement in proce­
dure s i e v e .  When you subsequently execute s i e v e ,  Maple stops before 
executing the first statement. When execution does stop, the debugger 
prompt appears (DBO) .1

The following example demonstrates an initial execution of s i e v e .

> s i e v e ( l O ) ;

sieve

s i e v e :
1* count := 0;

1If a procedure has a remember table, you may have to  execute a restart command 
before issuing a second or subsequent stopat command. For more inform ation about 
remember tables, see ?remember.
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Preceding the debugger prompt are several pieces of information.

• The previously computed result. (This particular execution stopped 
at the first statement before making any computations, so no result 
appears.)

• The name of the procedure in which execution has stopped is s i e v e .

• Execution is stopped before statement number 1. An asterisk (*) fol­
lows this statement number to indicate that a breakpoint was set 
before the statement.

At the debugger prompt, you can evaluate Maple expressions, and 
invoke debugger commands. Maple evaluates expressions in the context 
of the stopped procedure. You have access to exactly the same procedure 
parameters, and local, global, and environment variables, as the stopped 
procedure. For example, since s i e v e  was called with parameter value 10, 
the formal parameter n has the value 10.

D B G > n

10
s i e v e :

1* count := 0;

Notice that for each expression tha t Maple evaluates, it displays:

• the result of the expression,

• the name of the stopped procedure,

• the statement number where the procedure stopped followed by the 
statement, and

• a new debugger prompt.

N o te : To remove a breakpoint from a procedure, use the u n s t o p a t  
command.
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Controlling Execution of a Procedure during Debugging I
Debugger commands control the execution of the procedure once the de­
bugger is active. Some commonly used debugger commands are n e x t ,  
s t e p ,  l i s t ,  i n t o ,  ou tfrom , and co n t .

The n e x t  command executes the next statement at the current nesting 
level. After the statement is executed, control is returned to the debugger 
as though a breakpoint had been set. If the statement is a control struc­
ture (an i f  statement or a loop), the debugger executes any statements 
within the control structure tha t it would normally execute. It stops ex­
ecution before the next statement after the control structure. Similarly, 
if the statement contains calls to procedures, the debugger executes these 
procedure calls in their entirety before execution stops.

d b g > next

0
s i e v e :

2 fo r  i  from 2 to  n do 

end do;

The 0 in the first line of the output represents the result of the exe­
cuted statem ent—that is, the result of co u n t  := 0. A “*” does not appear 
next to the statement number because there is no breakpoint set immedi­
ately before statement 2. The debugger does not show the body of the f o r  
loop, which itself consists of statements with their own statement num­
bers, unless execution actually stops within its body. Maple represents 
the body of compound statements by ellipses (. . .).

Executing the n e x t  command again results in the following output.
d b g > next

tru e  
s i e v e :

4 fo r  i  from 2 to  n do 

end do;

Execution now stops before statement 4. Statement 3 (the body of 
the previous f o r  loop) is at a deeper nesting level. Therefore, the loop



is executed n -1  times. The debugger displays the last result computed in 
the loop (the assignment of the value t r u e  to f l a g s  [1 0 ] ) .

If you want to step into a nested control structure (such as an i f  
statement or f o r  loop) or a procedure call, use the s t e p  debugger com­
mand.

d b g > s tep

tru e  
s i e v e :

5 i f  f l a g s [ i ]  then

end i f
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d b g > s tep

tru e  
s i e v e :

6 t w ic e i  := 2 * i;

If you use the s t e p  debugger command when the next statement to 
execute is not  a deeper structured statement, it has the same effect as 
the n e x t  debugger command.

D B G > s tep

4
s i e v e :

7 fo r  к from t w ic e i  by i  t o  n do

end do;

At any time during the debugging process, you can use the s h o w s ta t  
debugger command to display the current status of the debugging process.

d b g > showstat
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s i e v e  := p r o c (n : : in te g e r )  
l o c a l  i ,  k, f l a g s ,  count, t w ic e i ;

1* count := 0;
2 fo r  i  from 2 to  n do
3 f l a g s [ i ]  := tru e  

end do;
4 fo r  i  from 2 to  n do
5 i f  f l a g s [ i ]  then
6 t w ic e i  := 2 * i;
7 ! fo r  к from t w ic e i  by i  t o  n do
8 f la g s [ k ]  = f a l s e  

end do;
9 count := count+1 

end i f
end do;

10 count 
end proc

Notice that the debugger prompt is displayed to indicate that you 
are still working inside the Maple debugger. The asterisk (*) marks the 
unconditional  breakpoint. An exclamation point (!) tha t follows a state­
ment number (see line 7) indicates the statement at which the procedure 
is stopped.

To continue the debugging process, issue another debugger command. 
For example, you can use i n t o  or s t e p  to enter the innermost loop. The 
i n t o  debugger command is a compromise between the n e x t  and s t e p  
commands. Execution stops at the next statement within the current 
procedure regardless of whether it is at the current nesting level or within 
the body of a control structure (an i f  statement or a loop). In other words, 
the i n t o  command steps into nested statements, but not into procedure 
calls.

d b g > in to

4
s i e v e :

8 f l a g s  [k] = f a l s e
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A  debugger command tha t is related to s h o w s t a t  is the l i s t  com­
mand. It displays the previous five statements, the current statement, and 
the next statement, to quickly provide some idea of where the procedure 
has stopped.

D B G >  l i s t

s i e v e  := p r o c (n : : in te g e r )  
l o c a l  i ,  k, f l a g s ,  count, t w ic e i ;

3 f l a g s [ i ]  := tru e  
end do;

4 fo r  i  from 2 to  n do
5 i f  f l a g s [ i ]  then
6 t w ic e i  := 2 * i;
7 fo r  к from t w ic e i  by i  t o  n do
8 ! f l a g s [ k ]  = f a l s e

end do;
9 count := count+1 

end i f
end do;

end proc

You can use the o u t  from debugger command to finish execution at 
the current nesting level or deeper. Execution of the procedure is stopped 
once a statement at a shallower nesting level is reached, tha t is, after a 
loop terminates, a branch of an i f  statement executes, or the current 
procedure call returns.

d b g > outfrom

tru e  = f a l s e  
s i e v e :

9 count := count+1

d b g > outfrom

1
s i e v e :

5 i f  f l a g s [ i ]  then

end if
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The c o n t  debugger command continues execution, until either the 
procedure terminates normally or it encounters another breakpoint.

d b g > cont

9 1

You can now see that the procedure does not give the expected output. 
Although you may find the reason obvious from the previous debugger 
command examples, in most cases it is not easy to find procedure errors. 
Therefore, pretend not to recognize the problem, and continue to use the 
debugger. First, use the u n s t o p a t  command to remove the breakpoint 
from s i e v e .

> u n s t o p a t ( s i e v e ) ;

[]

Invoking the Debugger II
The procedure s i e v e  keeps track of the changing result in the variable 
cou n t. Therefore, a logical place to look during debugging is wherever 
Maple modifies cou n t. The easiest way to do this is by using a watchpoint, 
which invokes the debugger whenever Maple modifies a watched variable.

Setting a watchpoint Use the stop w h en  command to set watchpoints. 
In this case, you want to stop execution whenever Maple modifies the 
variable c o u n t  in the procedure s i e v e .

> stopwhen( [ s i e v e , c o u n t] );

[[sieve, count}}

The stop w h en  command returns a list of all the variables currently 
being watched.

Execute the s i e v e  procedure again.
> s i e v e ( l O ) ;
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count := 0 
s i e v e :

2 fo r  i  from 2 to  n do 

end do;

Execution stops because Maple has modified co u n t ,  and the debugger 
displays the assignment statement c o u n t  := 0. As in the case of break­
points, the debugger then displays the name of the procedure and the next 
statement to be executed in the procedure. Note tha t execution stops af­
ter Maple has assigned a value to count.

This first assignment to co u n t  is correct. Use the c o n t  debugger com­
mand to continue execution of the procedure.

D B G > cont

count := 1 
s i e v e :

5 i f  f l a g s  [ i ]  then

end i f

If you do not look carefully, this also looks correct. Assume tha t noth­
ing is wrong and continue execution.

d b g > cont

count := 2*1 
s i e v e :

5 i f  f l a g s  [ i ]  then

end i f

This output is suspicious because Maple should have simplified 2*1. 
Notice tha t it has printed 2*1 (two times the letter 1) instead. By studying 
the source text for the procedure, you can see that the letter “1” was 
typed instead of the number “1” . Since the source of the error has been
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discovered, there is no reason to continue the execution of the procedure. 
Use the q u i t  debugger command to exit the debugger and then use the 
unstopw hen  command to remove the watchpoint from the procedure.

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

> unstopwhen( ) ;

[]

After correcting the source text for s i e v e ,  issue a r e s t a r t  command, 
read the corrected version of s i e v e  back into Maple, and execute the 
procedure again.

> s i e v e ( l O ) ;

9 1

This result is still incorrect. There are four primes less than 10, namely
2, 3, 5, and 7. Therefore, invoke the debugger once more, stepping into the 
innermost parts of the procedure to investigate. Since you do not want to 
start at the beginning of the procedure, set the breakpoint at statement
6 .

> s t o p a t ( s i e v e ,6 ) ;

[sieve]

> s i e v e ( l O ) ;

tru e
s i e v e :

6* t w ic e i  := 2 * i;

d b g > s tep
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4
s i e v e :

7 fo r  к from t w ic e i  by i  t o  n do

end do;

d b g > s tep

4
s i e v e :

8 f l a g s [ k ]  = f a l s e

d b g > s tep

tru e  = f a l s e  
s i e v e :

8 f l a g s [ k ]  = f a l s e

The last step reveals the error. The previously computed result should 
have been f a l s e  (from the assignment of f l a g s  [k] to the value f a l s e ) ,  
but instead t r u e  = f a l s e  was returned. An equation was used instead 
of an assignment. Therefore, Maple did not set f l a g s  [k] to f a l s e .

Once again, exit the debugger and correct the source text.
d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

The following code represents the corrected procedure. 
> s ie v e  := p r o c (n : : in te g e r )
> l o c a l  i ,  k, f l a g s ,  c o u n t , tw ic e i
> count := 0;
> fo r  i  from 2 to  n do
> f l a g s [ i ]  := tru e
> end do;
> fo r  i  from 2 to  n do
> i f  f l a g s [ i ]  then
> t w ic e i  := 2 * i;
> fo r  к from t w ic e i  by i  to
> f la g s [ k ]  := f a l s e ;
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>
>
>
>
>

end do;
count := count+1 

end i f ; 
end do; 
co u n t;

> end p r o c :

Execute procedure s i e v e  again to test the corrections.
> s i e v e ( l O ) ;

4

The s i e v e  procedure now returns the correct result.

7.2 Maple Debugger Commands
This section provides additional details about the commands used in the 
tutorial in Section 7.1 and a description of other debugger commands.

Numbering the Procedure Statements II
The s h o w s t a t  command is called by using the following syntax. The 
procedureName parameter is optional.

s h o w s t a t ( procedureName ) ;

If s h o w s t a t  is called with no arguments, all procedures that contain 
breakpoints are displayed.

You can also use the s h o w s t a t  command to display a single statement 
or a range of statements by using the following syntax.

s h o w s t a t ( procedureName, number ) ;  
s h o w s t a t ( procedureName, range ) ;

In these cases, the statements that are not displayed are represented 
by ellipses (. . .). The procedure name, its parameters, and its local and 
global variables are always displayed.

> f  := proc(x)
> i f  x <= 2 then
> p r i n t ( x ) ;
> end i f ;
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> p r i n t ( - x )
> end p r o c :

> sh o w s ta t ( f ,  2 . . 3 ) ;

f  := p roc(x)

2 p r in t ( x )  
end i f ;

3 p r i n t ( - x )  
end proc

Invoking the Debugger III
This section provides additional information about breakpoints and 
watchpoints.

Setting breakpoints The s t o p a t  command is called by using the follow­
ing syntax where procedureName is the name of the procedure in which 
to set the breakpoint, s tatem entN um ber is the line number of the state­
ment in the procedure before which the breakpoint is set, and c o n d i t i o n  
is a Boolean expression which must be true for execution to stop. The 
s tatem entN um ber and c o n d i t i o n  arguments are optional.

s t o p a t (  procedureName, statementNumber, condition ) ;

This c o n d i t i o n  argument can refer to any global variable, local vari­
able, or parameter of the procedure. These conditional breakpoints are 
marked by a question mark (?) if s h o w s t a t  is used to display the proce­
dure.

Since the s t o p a t  command sets the breakpoint before the specified 
statement, when Maple encounters a breakpoint, execution stops and 
Maple engages the debugger before the statement. This means that 
it is n o t  possible to set a breakpoint after the last s tatement in a 
statement sequence— that is, at the end of a loop body, an i f  s tate­
ment  body, or a procedure.

If two identical procedures exist, depending on how you created them, 
they may share breakpoints. If you entered the procedures individually, 
with identical procedure bodies, then they do not share breakpoints. If 
you created a procedure by assigning it to the body of another procedure, 
then their breakpoints are shared.
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> f  := p roc(x)  x~2 end proc:
> g := p roc(x)  x~2 end proc:
> h := o p ( g ) :
> s t o p a t ( g ) ;

\g, h]

> sh o w sta t ( ) ;

g := p roc(x)
1* x~2 

end proc

h := p roc(x )
1* x~2 

end proc

Removing breakpoints The u n s t o p a t  command is called by using the 
following syntax where procedureName is the name of the procedure that 
contains the breakpoint, and statem entN um ber is the line number of the 
statement where the breakpoint is set. The sta tem entN um ber parameter 
is optional.

u n s t o p a t ( procedureName, statementNumber ) ;

If sta tem entN um ber is omitted in the call to u n s t o p a t ,  then all 
breakpoints in procedure procedureName are cleared.

Setting explicit breakpoints You can set an explicit breakpoint by in­
serting a call to the DEBUG command in the source text of a procedure. The 
DEBUG command is called by using the following syntax. The argument  
parameter is optional.

DEBUG( argument );

If no argument is included in the DEBUG command, execution in the 
procedure stops at the statement following the location of the DEBUG 
command and the debugger is invoked.2

2The show sta t command does not m ark explicit breakpoints w ith a or a
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> f  := p r o c (x ,y )  l o c a l  a;
> a :=x~2;
> DEBUGO;
> a:=y~2;
> end p r o c :

> sh o w s ta t ( f ) ;

f  := p r o c (x ,  y) 
l o c a l  a;

1 a := x~2;
2 DEBUGO;
3 a := y~2 

end proc

> f ( 2 ,3 ) ;

4 
f :

3 a := y~2

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

If the argument of the DEBUG command is a Boolean expression, then 
execution stops only if the Boolean expression evaluates to t r u e .  If the 
Boolean expression evaluates to f a l s e  or FAIL, then the DEBUG command 
is ignored.

> f  := p r o c (x ,y )  l o c a l  a;
> a := x '2 ;
> DEBUG(a<l);
> a:=y~2;
> DEBUG(a>l);
> p r i n t ( a ) ;
> end p r o c :

> f (2,3);
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9 
f :

5 print(a)

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

If the argument of the DEBUG command is anything but a Boolean 
expression, then the debugger prints the value of the argument instead of 
the last result when execution stops at the following statement.

> f  := proc(x)
> x ~ 2 ;
> DEBUGO'This i s  my breakpoin t .  The current va lue  of x i s : " ,  x ) ;
> x~3
> end p r o c :

> f (2) ;

"This i s  my breakpoin t .  The current va lue  of x i s : "
2 
f :

3 x~3

Removing explicit breakpoints The u n s t o p a t  command cannot remove 
explicit breakpoints. You must remove breakpoints that were set using 
DEBUG by editing the source text for the procedure.

d b g > unstopat

[ f ,  g ,  h] 
f :

3 x~3
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d b g > showstat

f  := p roc(x)
1 x~2;
2 DEBUGO'This i s  my breakpoin t .  The current va lue  of x i s : " , x ) ;
3 ! x~3 

end proc

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

N o te : If you display the contents of a procedure by using p r i n t  (or 
l p r i n t )  and the procedure contains a breakpoint that was set by using 
s t o p a t ,  the breakpoint appears as a call to DEBUG.

> f  := p roc(x)  x~2 end proc:
> s t o p a t ( f );

[f, 9 , h]

> p r i n t ( f );

ргос(ж) DEBUG0 ; x 2 end proc

Setting watchpoints The stop w h en  command is called by using one of 
the following.

s to p w h en (  globalVariableName ) ;  
s to p w h e n (  [procedureName, variableName] ) ;

The first form specifies tha t the debugger should be invoked whenever 
the global variable g lo b a lV a r ia b le N a m e  is changed. Maple environment 
variables, such as D i g i t s ,  can also be monitored by using this method.

> stopwhen(Digits);



[Digits]

The second form invokes the debugger whenever the (local or global) 
variable v a r ia b leN a m e  is changed in the procedure procedureName.

When stop w h en  is called in either form or with no arguments, Maple 
returns a list of the watchpoints that are currently set.

Execution stops after Maple has already assigned a value to the 
watched variable. The debugger displays an assignment statement in­
stead of the last computed result (which would be the right-hand side 
of the assignment statement).

Clearing watchpoints The syntax to call unstopw hen  is the same as 
that for stopw hen. Similar to stopw hen, unstopw hen  returns a list of all 
(remaining) watchpoints.

If no arguments are entered in the call to unstopw hen, then all watch­
points are cleared.

Setting watchpoints on specified errors You can use an error watch- 
point to invoke the debugger whenever Maple returns a specified error 
message. When a watched error occurs, execution of the procedure stops 
and the debugger displays the statement in which the error occurred.

Error watchpoints are set by using the s t o p e r r o r  command. The 
s t o p e r r o r  command is called by using the following syntax

s t o p e r r o r (  "errorM essage"  ) ;
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where err o r M e ssa g e  is a string or a symbol  tha t represents the er­
ror message returned from a procedure. A list of the currently set error 
watchpoints is returned.

If no argument is entered in the call to s t o p e r r o r ,  the current list of 
watchpoints is returned.

> s to p e r r o r O ;

[]

> s to p e r r o r (  "numeric excep tion :  d i v i s i o n  by zero" );

[“numeric exception: division by zero”]
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> s to p e r r o r O ;

[“numeric exception: division by zero”]

If the special name ‘ a . l l c is used instead of a specific error message 
as the parameter to the s t o p e r r o r  command, execution of a procedure 
stops whenever any error tha t would not  be trapped occurs.

Errors trapped by a traperror construct ( t r y . . .  c a t c h  statement) 
do not generate an error message and so s t o p e r r o r  cannot be used to 
catch them. For more information about the t r y .  . . c a t c h  structure, see 
Trapping errors on page 390. If the special name ‘ t r a p e r r o r  ‘ is used 
instead of a specific error message as the parameter to the s t o p e r r o r  
command, execution of a procedure stops whenever any error tha t is 
trapped occurs. If the err o r M e ssa g e  parameter is entered in the form 
t r a p e r r o r  ["m essage"] to s t o p e r r o r ,  the debugger is invoked only if 
the error specified by "message" is trapped.

When execution of a procedure stops due to an error which causes 
an exception, continued execution is not possible. Any of the execution 
control commands, such as n e x t  or s t e p  (see Controlling Execution of 
a Procedure during Debugging I  and I I  in Section 7.1 and this section, 
respectively), process the error as if the debugger had not intervened. For 
example, consider the following two procedures. The first procedure, f, 
calculates 1 /x .  The other procedure, g, calls f  but traps the " d i v i s i o n  
by zero "  error tha t occurs when x = 0.

> f  := p roc(x)  1 /x  end:
> g := p roc(x)  l o c a l  r;
> t r y
>
>
>
>

f  (x) ;
catch:

i n f i n i t y ;  
end tr y ;

> end p r o c :

If procedure g is executed at x=9, the reciprocal is returned.

> g ( 9 ) ;

1
9

At x=0, as expected, infinity is returned.
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> g ( 0 ) ;

oo

The s t o p e r r o r  command stops execution when you call f  directly.
> stoperror("num eric  ex cep tion :  d i v i s i o n  by zero");

[“numeric exception: division by zero”]

> f (0);

Error, numeric ex cep tion :  d i v i s i o n  by zero  
f :

1 1 /x

D B G > cont

Error, ( in  f )  numeric excep t ion :  d i v i s i o n  by zero

The call to f  from g is inside a traperror ( t r y .  . . c a t c h  statement), 
so the " d i v i s i o n  by zero "  error does not  invoke the debugger.

> g ( 0 ) ;

oo

Instead, try  to use s t o p e r r o r  ( t r a p e r r o r ) .

> u n stop error(  "numeric excep tion :  d i v i s i o n  by zero" );

[]

> s to p e r r o r ( ‘t r a p e r r o r ‘ );

[traperror]

This time Maple will not stop at the error in f .
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> f (0);

Error, ( in  f )  numeric excep t ion :  d i v i s i o n  by zero

However, Maple invokes the debugger when the trapped error occurs.

> g ( 0 ) ;

Error, numeric ex cep tion :  d i v i s i o n  by zero  
f :

1 1 /x

d b g > s tep

Error, numeric ex cep tion :  d i v i s i o n  by zero  
g:

3 i n f i n i t y

d b g > s tep

OO

In the case that a particular error message is specified in the form 
t r a p e r r o r  [" m e s s a g e " ] , the debugger is invoked only if the error specified 
by "message" is trapped.

Clearing watchpoints on specified errors Error watchpoints are cleared 
by using the top-level u n s t o p e r r o r  command. The syntax to call u n s t o p e r r o r  
is the same as for s t o p e r r o r .  Like s t o p e r r o r ,  u n s t o p e r r o r  returns a list 
of all (remaining) error watchpoints.

If no argument is entered in the call to u n s t o p e r r o r ,  then all error 
watchpoints are cleared.

> u n sto p erro r ( ) ;

[ ]
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Controlling Execution of a Procedure during Debugging II
Once the execution of a procedure is stopped and the debugger is invoked, 
you can examine the values of variables or perform other experiments (see 
Changing the State of a Procedure during Debugging). After you have 
examined the state of the procedure, you can cause execution to continue 
by using a number of different debugger commands.

The most commonly used debugger commands are c o n t ,  n e x t ,  s t e p ,  
i n t o ,  ou tfrom , r e t u r n ,  and q u i t .

The r e t u r n  debugger command causes execution of the currently ac­
tive procedure call to complete. Execution stops at the first statement 
after the current procedure.

The other commands were described in the tutorial in Section 7.1. 
For more information about these and other debugger commands, see 
?debugger.

Changing the State of a Procedure during Debugging
When a breakpoint or watchpoint stops the execution of a procedure, the 
Maple debugger is invoked. In the debugger mode, you can examine the 
state of the global variables, local variables, and parameters of the stopped 
procedure. You can also determine where execution stopped, evaluate 
expressions, and examine procedures.

While in the debugger mode, you can evaluate any Maple expres­
sion and perform assignments to local and global variables. To evaluate 
an expression, type the expression at the debugger prompt. To perform 
assignments to variables, use the standard Maple assignment statement.

> f  := p roc(x)  x~2 end proc:
> s t o p a t ( f );

if]

> f (10) ; 

f :
1* x~2

d b g > sin(3.0)
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.1411200081 
f :

1* x~2

D B G > cont

100

The debugger evaluates any variable names tha t you use in the ex­
pression in the context of the stopped procedure. Names of parameters 
or local variables evaluate to their current values within the procedure. 
Names of global variables evaluate to their current values. Environment 
variables, such as D ig its , evaluate to their values in the stopped proce­
dure’s environment.

If an expression corresponds to a debugger command (for example, 
your procedure has a local variable named s tep ), you can still evaluate 
it by enclosing it in parentheses.

> f := proc(step) local i;
> for i to 10 by step do
> i~2
> end d o ;
> end proc:

> stopat(f,2);

if]

> f(3) ;
f :

2* i~2

d b g > step

1 
f :

2* i~2
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d b g > ( s te p )

3 
f :

2* i~2

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

While execution is stopped, you can modify local and global vari­
ables by using the assignment operator (:=). The following example sets 
a breakpoint in the loop only when the index variable is equal to 5.

> sumn := proc(n) l o c a l  i ,  sum;
> sum := 0;
> fo r  i  t o  n do
> sum := sum + i
> end d o ;
> end p r o c :

> show stat(sum n);

sumn := proc(n)  
l o c a l  i ,  sum;

1 sum := 0;
2 fo r  i  t o  n do
3 sum := sum+i 

end do
end proc

> s t o p a t ( s u m n ,3 , i= 5 ) ;

[sumn]

> sumn(10);

10
sumn:

3? sum := sum+i



374 • Chapter 7: Debugging Maple Programs

Reset the index to 3 so that the breakpoint is encountered again. 
d b g > i  := 3

su m :
3? sum := sum+i

d b g > cont 

17
sumn:

3? sum := sum+i

Maple has added the numbers 1, 2 , 3, 4, 3, and 4 and returned 17 as 
the result. Continuing the execution of the procedure, the numbers 5, 6 ,
7, 8 , 9, and 10 are added and 62 is returned as the result.

d b g > cont

62

Examining the State of a Procedure during Debugging
There are two debugger commands available that return information 
about the state of the procedure execution. The l i s t  debugger command 
shows you the location within a procedure where execution stopped, and 
the where debugger command shows you the stack of procedure activa­
tions.

The l i s t  debugger command has the following syntax.

l i s t  procedureName statementNumber [.. statNumber]

The l i s t  debugger command is similar to s h o w s ta t ,  except in the 
case where you do not specify any arguments. If no arguments are in­
cluded in the call to l i s t ,  only the five previous statements, the current 
statement, and the next statement to be executed are displayed. This pro­
vides some context in the stopped procedure. In other words, it indicates 
the static position where execution stopped.
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The where debugger command shows you the stack of procedure ac­
tivations. Starting from the top-level, it shows you the statement that 
is executing and the parameters it passed to the called procedure. The 
where debugger command repeats this for each level of procedure call 
until it reaches the current statement in the current procedure. In other 
words, it indicates the dynamic  position where execution stopped. The 
where command has the following syntax.

where numLevels

To illustrate these commands, consider the following example. The 
procedure c h eck  calls the sumn procedure from the previous example.

> check := p r o c ( i )  l o c a l  p, a, b;
> p := i th p r im e ( i ) ;
> a := sumn(p);
> b := p * (p + l ) /2 ;
> e v a lb ( a=b );
> end p r o c :

There is a (conditional) breakpoint in sumn.

> show stat(sum n);

sumn := proc(n)  
l o c a l  i ,  sum;

1 sum := 0;
2 fo r  i  t o  n do 
3? sum := sum+i

end do 
end proc

When c h eck  calls sumn, the breakpoint invokes the debugger.
> c h e c k (9 ) ;

10
sumn:

3? sum := sum+i

The where debugger command reveals that:

•  ch eck  was invoked from the top-level with argument 9,



•  ch eck  called sumn with argument 23, and

• execution stopped at statement number 3 in sumn.

d b g > where 

TopLevel: check(9)
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The next example illustrates the use of where in a recursive function.
> f a c t  := proc(x)

[9]
check: a := sumn(p) 

[23]
sumn:

3? sum := sum+i

d b g > cont

true

>
>
>
>
>

i f  x <= 1 then
1

e l s e
x * f a c t ( x - l )  

end i f ;
> end p r o c :

> s h o w s ta t ( fa c t )  ;

f a c t  := proc(x)
1 i f  x <= 1 then
2 1

e l s e
3 x * f a c t ( x - l )

end i f
end proc

> s t o p a t ( f a c t ,2 ) ;

\fact\

> fact(5);
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f a c t :
2 * 1

d b g > where

TopLevel: f a c t (5) 
[5]

fa c t :  x * f a c t ( x - l )  
[4]

fa c t :  x * f a c t ( x - l )  
[3]

fa c t :  x * f a c t ( x - l )  [2]
fa c t :  x * f a c t ( x - l )
[1] 

f a c t :
2 * 1

If you are not interested in the entire history of the nested procedure 
calls, then use the num Levels  parameter in the call to where to print out 
only a certain number of levels.

d b g > where 3

f a c t :  x * f a c t ( x - l )
[2]

f a c t :  x * f a c t ( x - l )
[1] 

f a c t :
2 * 1

d b g > q u it

W arning, c o m p u ta t io n  i n t e r r u p t e d

The sh o w sto p  command (and the sh o w sto p  debugger command) dis­
plays a report of all currently set breakpoints, watchpoints, and error 
watchpoints. Outside the debugger at the top-level, the sh o w sto p  com­
mand has the following syntax.
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s h o w s t o p ( ) ;

The next example illustrates the use of sh ow stop .

> f  := p roc(x)  l o c a l  y;
> i f  x < 2 then
> У := x ;
> p r i n t ( y ~ 2 ) ;
> end i f ;
> p r i n t ( - x ) ;
> x~3;
> end p r o c :

Set some breakpoints.
> s t o p a t ( f ):
> s t o p a t ( f , 2):
> s t o p a t ( i n t ) ;

[/, int]

Set some watchpoints.
> s to p w h e n ( f ,y ) :
> s to p w h e n (D ig i t s ) ;

[[/, y], Digits]

Set an error watchpoint.
> s to p e r r o r (  "numeric excep tion :  d i v i s i o n  by zero" );

[“numeric exception: division by zero”]

The sh o w sto p  command reports all the breakpoints and watchpoints.
> showstopO ;

Breakpoints in:  
f
in t

Watched v a r ia b le s :  
у in  procedure f  
D ig i t s

Watched errors:
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"numeric excep tion :  d i v i s i o n  by zero"

Using Top-Level Commands at the Debugger Prompt
The s h o w s t a t ,  s t o p a t ,  u n s t o p a t ,  stopw hen, unstopw hen, s t o p e r r o r ,  
and shows t o p  commands can be used at the debugger prompt. The fol­
lowing list describes the syntax rules for top-level commands used at the 
debugger prompt.

• Do not  enclose the arguments of the command in parentheses.

• Do not  separate the arguments of the command with commas. The 
arguments must be separated by a space character.

• Do not  use colons or semicolons to end statements.

• The procedure name is not  required by any command. Commands 
that use a procedure name assume the currently stopped procedure if 
one is not specified.

• For the s t o p e r r o r  command, the quotation marks ("") are not  re­
quired.

Except for these rules, the debugger prompt call for each command 
is of the same form and takes the same arguments as the corresponding 
top-level command call.

Restrictions
At the debugger prompt, the only permissible Maple statements are de­
bugger commands, expressions, and assignments. The debugger does not 
permit statements such as i f ,  w h i l e ,  f o r ,  read , and s a v e .  However, you 
can use ‘ i f  c to simulate an i f  statement, and s e q  to simulate a loop.

The debugger cannot set breakpoints in, or step into, built-in kernel 
routines, such as d i f f  and h as. These routines are implemented in С 
and compiled into the Maple kernel. Debugging information about these 
routines is not accessible to Maple since the routines deal with objects at 
a level lower than the debugger can access.

Finally, if a procedure contains two identical statements tha t are ex­
pressions, the debugger cannot determine with certainty the statement at



which execution stopped. If this situation occurs, you can still use the de­
bugger and execution can continue. The debugger merely issues a warning 
that the displayed statement number may be incorrect.3

380 • Chapter 7: Debugging Maple Programs

7.3 Detecting Errors
This section describes some simple commands that you can use for de­
tecting errors in procedures that are written in Maple. If you are not 
successful in finding the error by using these commands, you can use the 
Maple debugger, which is discussed in Sections 7.1 and 7.2, to display the 
stepwise execution of a procedure.

Tracing a Procedure
The simplest tools available for error detection in Maple are the p r i n t l e v e l  
global variable, and the t r a c e  and t r a c e l a s t  commands. These facili­
ties enable you to trace the execution of both user-defined and Maple 
library procedures. However, they differ in the type of information that 
is returned about a procedure.

The p r i n t l e v e l  variable is used to control how much information is 
displayed when a program is executed. By assigning a large integer value 
to p r i n t l e v e l ,  you can monitor the execution of statements to selected 
levels of nesting within procedures. The default value of p r i n t l e v e l  is
1. Larger, positive integer values cause the display of more intermediate 
steps in a computation. Negative integer values suppress the display of 
information.

The p r i n t l e v e l  global variable is set by using the following syntax, 
where n is the level to which Maple commands are evaluated.

p r i n t l e v e l  := n;

To determine what value of n to use, remember that statements within 
a particular procedure are recognized in levels that are determined by the 
nesting of conditional or repetition statements, and by the nesting of pro­
cedures. Each loop or i f  condition increases the evaluation level by 1, and 
each procedure call increases the evaluation level by 5. Alternatively, you 
can use a sufficiently large value of n to ensure tha t all levels are traced.

3This problem occurs because Maple stores all identical expressions as a single 
occurrence of the expression, and the  debugger has no way to  determ ine at which 
invocation execution stopped.



For example, p r in t le v e l  := 1000 displays information in procedures 
to 200 levels deep.

> f  := p roc(x)  l o c a l  у; у := x~2; g (y )  /  4; end proc;

/  := ргос(ж) local?/; у := x 2 ; 1/4 * g (y) end  p ro c

> g := p roc(x)  l o c a l  z; z := x~2; z * 2; end proc;

g := ргос(ж) lo ca ls ; z := x 2 ; 2 * z e n d  p ro c

> f (3 );

81
~2~

> p r i n t l e v e l  := 5;

printlevel  := 5

> f (3) ;

{.—> e n te r  f , a rg s  = 3

У := 9
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81
~2~

<—  e x i t  f  (now a t  t o p  l e v e l )  = 8 1 / 2 }

> p r i n t l e v e l  := 10;

print level  := 10
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> f (3 );

{.— > e n t e r  f , a r g s  = 3

У := 9

{.— > e n t e r  g ,  a r g s  = 9

2 :=  81 

162

<—  e x i t  g  (now i n  f )  = 1 62}

81
T

<—  e x i t  f  (now a t  t o p  l e v e l )  = 8 1 / 2 }

81
T

The amount of information tha t is displayed depends on whether the 
call to the procedure was terminated with a colon or a semicolon. If a 
colon is used, only entry and exit points of the procedure are printed. If 
a semicolon is used, the results of the statements are also printed.

To reset the value of the p r i n t l e v e l  variable, reassign its value to 1.
> p r i n t l e v e l  := 1;

printlevel := 1

By assigning a large value to p r i n t l e v e l ,  the trace of all subsequent 
Maple procedure calls is displayed. To display the trace of specific pro­
cedures, you can use the t r a c e  command. The t r a c e  command has the 
following syntax, where argum ents  is one or more procedure names.
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trace(arguments) ;

The trace command returns an expression sequence containing the 
names of the traced procedures. To begin tracing, you must call the pro­
cedure.

> trace(f,g);

/ ,  9

> f (3) :

{.— > enter f , args = 3 
{.— > enter g, args = 9 
<—  exit g (now in f) = 162}
<—  exit f (now at top level) = 81/2}

> f (3);

{.— > enter f , args = 3

У := 9

{.— > enter g, args = 9

2 := 81 

162

<—  exit g (now in f) = 162}

81
T

<—  exit f (now at top level) = 81/2}
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81
T

Like printlevel, the amount of information tha t is displayed during 
tracing when trace is used depends on whether the call to the procedure 
was terminated with a colon or a semicolon. If a colon is used, only entry 
and exit points of the procedure are printed. If a semicolon is used, the 
results of the statements are also printed.

To turn off the tracing of specific procedures, use the untrace com­
m and .4

> untrace(f,g);

/ ,  9

> f (3);

81
T

If a procedure returns an error message, you can use the tracelast 
command to determine the last statement executed and the values of vari­
ables at the time of the error. The tracelast command has the following 
syntax.

tracelast;

When a procedure returns an error message, the following information 
is returned from a call to tracelast.

• The first line displays which procedure was called and what parameter 
was used.

• The second line displays the # symbol, the procedure name with the 
line number of the statement tha t was executed, and the statement 
that was executed.

• Finally, if there are any local variables in the procedure, they are 
displayed with their corresponding values.

4You can use debug and undebug as alternate names for tr a c e  and u n trace.
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> f : = proc(x) local i,j,k;
>
>
>

i  := x;
j = x~2;
seq (k ,  k = i . . j ) ;

> end proc;

/  := ргос(ж) 
locaH, j ,  k;

i := x  ; j  =  x 2 ; seq(/c, к =  i..j) 
en d  p ro c

> f ( 2 ,3 ) ;

Error, ( in  f )  unable to  execu te  seq

> t r a c e l a s t ;

f  c a l l e d  w i t h  a rgu m en ts:  2 ,  3 
# ( f 2 , 3 ) : s e q ( k , k  = i  . .  j )

Error, ( in  f )  unable to  execu te  seq

l o c a l s  d e f i n e d  a s :  i = 2 ,  j = j ,  k = k

You can find the error in this procedure by studying the results of the 
t r a c e l a s t  command—the assignment to the local variable j incorrectly 
used an equal sign (=) instead of an assignment operator (:=).

The information provided by t r a c e l a s t  can become unavailable 
whenever Maple does a garbage collection. Therefore, it is advisable to 
use t r a c e l a s t  immediately after an error occurs. 5

Using Assertions
An assertion is a statement about a procedure tha t you “assert” to be 
true. You can include assertions in your procedure to guarantee pre- and 
post-conditions, and loop invariants during execution by using the ASSERT 
command. You can also use assertions to guarantee the value returned by 
a procedure or the value of local variables inside a procedure. The ASSERT 
command has the following syntax.

5For more information about garbage collection in Maple, see ?gc.
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A S S E R T (con d it ion ,  message) ;

If c o n d i t i o n  evaluates to f a l s e ,  an error is generated and m essa g e  
is printed. If the first argument evaluates to t r u e ,  ASSERT returns NULL.

To check assertions, you must turn assertion checking on prior to 
executing a procedure tha t contains an ASSERT command. To query the 
current state of assertion checking, and to turn assertion checking on and 
off, you must use the k e r n e l o p t s  command.6

The default state for assertion checking is f a l s e .

> kernelopts(ASSERT); #query th e  current s t a t e

false

If you enter a k e r n e l o p t s  command to turn assertion checking on, 
k e r n e l o p t s  returns its previous value.

> kernelopts(ASSERT=true);

false

At any time during the Maple session, you can confirm whether as­
sertion checking is on by entering the following command.

> kernelopts(ASSERT);

true

If assertion checking is on and a procedure that contains an ASSERT 
statement is executed , the condition represented by the ASSERT statement 
is checked.

> f  := p r o c (x ,y )  l o c a l  i , j ;
> i :=0 ;
> j := 0 ;
> w hile  ( i  <> x) do
> ASSERT(i > 0 , ‘ in v a l id  in d e x ' ) ;
> j := j + y;
> i  : = i  + 1;
> end d o ;
> J ;
> end proc;

6For more inform ation about k e rn e lo p ts , see ?k e rn e lo p ts .
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/  := p roc(z , y) 
locaH , j;

i := 0 ;
3 := 0 ;
w h ile  i ^  x do

ASSERT(0 < i, ‘invalid indexL) ; j  := j  + у ; i := i + 1 
end  do; 
j

end  proc

> f ( 2 ,3 ) ;

Error, ( in  f )  a s s e r t io n  f a i l e d ,  in v a l id  index

Use the k e r n e l o p t s  command again to turn assertion checking off. 
(Again, k e r n e l o p t s  returns its previous value.) When assertion checking 
is off, the overhead of processing an ASSERT statement within a procedure 
is negligible.

> kernelopts(A SSER T=false);

true

Related to assertions are Maple warning messages. The WARNING com­
mand causes a specified warning, preceded by the string " W arn in g ,", to 
display. The WARNING command has the following syntax.

WARNING( msgString, msgParaml, msgParam2, . . . ) ;

The m s g S tr in g  parameter is the text of the warning message and 
msgParami are optional parameters to substitute into m sg S tr in g ,  if any.

> f  := proc(x)
> i f  x < 0 then
> WARNINGO'the r e s u l t  i s  complex")
> end i f ;
> s q r t (x )
> end proc;
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/  := ргос(ж)
i f x  < 0 th e n  WARNING ( “the result is complex”) en d  if; 
sqrt(x) 

end  p ro c

> f ( -2);

Warning, th e  r e s u l t  i s  complex

I  \/2

You can turn the WARNING command off by using i n t e r f a c e  ( w a r n l e v e l = 0 ) .
In this case, the warning is not displayed and the call to WARNING has no 
effect.

> in t e r f a c e ( w a r n le v e l= 0 ) ;
> f ( -2);

l V 2

Handling Exceptions
An exception is an event tha t occurs during the execution of a procedure 
that disrupts the normal flow of instructions. Many kinds of errors can 
cause exceptions—for example, attem pting to read from a file that doesn’t 
exist. Maple has two mechanisms available when such situations arise:

• the e r r o r  statement to raise an exception, and

• the t r y .  . . c a t c h .  . . f i n a l l y  block to handle exceptions.

Raising exceptions The e r r o r  statement raises an exception. Execution 
of the current statement sequence is interrupted, and the block and proce­
dure call stack is popped until either an exception handler is encountered, 
or execution returns to the top-level (in which case the exception becomes 
an error). The e r r o r  statement has the following syntax.
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e r r o r  msgString, msgParaml, msgParam2, ...

The m s g S tr in g  parameter is a string tha t gives the text of the error 
message. It can contain numbered parameters of the form °/0n or °/0-n ,  where 
n is an integer. These numbered parameters are used as placeholders for 
actual values. In the event tha t the exception is ever printed as an error 
message, the actual values are specified by the msgParams.

For example, the error message "f h a s  a 2nd argu m en t, x ,  w h ich  
i s  m is s in g "  is specified by the following e r r o r  statement.

e r r o r  "°/0l  h a s  a  °/0- 2 argum ent, °/03 ,  w h ich  i s  m i s s i n g " ,  f ,  2 ,  x

A numbered parameter of the form °/0n displays the nth msgParam 
in line-printed notation (i.e., as l p r i n t  would display it). A numbered 
parameter of the form °/0- n  displays the nth msgParam, assumed to be 
an integer, in ordinal form. For example, the °/0- 2 in the error statement 
above is displayed as “2nd” . The special parameter °/0O displays all the 
msgParams, separated by a comma and a space.

The e r r o r  statement evaluates its arguments, and then creates an 
exception object which is an expression sequence with the following ele­
ments.

• The name of the procedure in which the exception was raised, or the
constant 0 if the exception was raised at the top-level.

• The m sg S tr in g .

• The msgParams, if any.

The created exception object is assigned to the global variable 
l a s t e x c e p t i o n  as an expression sequence.7

The e r r o r  statement normally causes an immediate exit from the 
current procedure to the Maple session. Maple prints an error message of 
the following form.

E r r o r ,  ( i n  procName) msgText

In this case, m sgText is the text of the error message (which is con­
structed from the m s g S tr in g  and optional msgParams of the e r r o r  state­
ment), and procName is the procedure in which the error occurred. If

7The actual argum ents to  the  e r r o r  statem ent are also assigned to  l a s t e r r o r  for 
com patibility w ith older versions of Maple. For more information, see ? t ra p e r ro r .



the procedure does not have a name, procName is displayed as unknown. 
If the error occurs at the top-level, outside of any procedure, the ( i n  
procName) part of the message is omitted.

The e r r o r  statement is commonly used when parameter declarations 
are not sufficient to check tha t the actual parameters to a procedure are of 
the correct type. The following p a ir u p  procedure takes a list L of the form 
[x\, г/i, X2 , У2 , ■ ■ ■, x n, yn] as input, and creates from it a list of the form 
[[^l, yi], [x2 i У2], ■ ■ ■ , [xn-> Уп]]• A simple type check cannot determine if list 
L has an even number of elements, so you need to check this explicitly by 
using an e r r o r  statement.

> pairup := p ro c (L : : l i s t )
> l o c a l  i ,  n;
> n := n o p s (L );
> i f  irem (n ,2 )  = 1 then
> error  " l i s t  must have an even number of "
> " e n tr ie s ,  but had °/0l" ,  n
> end i f ;
> [seq (  [L [2* i-1 ]  ,L [2 * i ] ]  , i = l . . n / 2  )]
> end p r o c :

> p a iru p ( [ 1 ,  2, 3 , 4 ,  5 ] ) ;

Error, ( in  pairup) l i s t  must have an even number of
e n t r i e s ,  but had 5

> p a iru p ( [ 1 ,  2, 3 , 4 ,  5, 6 ] ) ;

[[1, 2], [3, 4], [5, 6]]

Trapping errors The t r y  statement is a mechanism for executing pro­
cedure statements in a controlled environment so tha t if an error occurs, 
it does not immediately terminate the procedure. The t r y  statement has 
the following syntax (the f i n a l l y  clause is optional).
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t r y  tryStatSeq
c a t c h  catchStrings : catchStatSeq 
f i n a l l y  finalStatSeq 

end t r y

If procedure execution enters a t r y .  . . c a t c h  block, the t r y S t a t S e q  
is executed. If no exceptions occur during the execution of t r y S t a t S e q ,  
procedure execution continues with the statement after end t r y .
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If procedure execution enters a t r y .  . . c a t c h .  . . f i n a l l y  block, the 
t r y S t a t S e q  is executed. If no exceptions occur during the execution of 
t r y S t a t S e q ,  the f i n a l S t a t S e q  in the f i n a l l y  clause is executed. Exe­
cution then continues with the statement after end t r y .

If an exception does occur during the execution of t r y S t a t S e q ,  exe­
cution of t r y S t a t S e q  terminates immediately. The exception object cor­
responding to the exception is compared against each c a t c h S t r i n g .  Any 
number of catch clauses can be provided, and each can have any num­
ber of c a t c h S t r i n g s ,  separated by commas. Alternatively, a catch clause 
need not have a catch string. Any given c a t c h S t r i n g  (or a catch clause 
without one) can appear only once in a t r y .  . .e n d  t r y  construct.

If a matching catch clause is found, or the catch clause contains no 
c a t c h S t r i n g s ,  the c a t c h S t a t S e q  of tha t catch clause is executed, and 
the exception is considered to have been caught. If no matching catch 
clause is found, the exception is considered not caught, and is re-raised 
outside the t r y  block.

When Maple is looking for a matching catch clause, the following 
definition of “matching” is used.

• Neither the exception object nor the c a t c h S t r i n g s  are evaluated (the 
exception object has already been evaluated by the error statement 
that produced it).

• The c a t c h S t r i n g s  are considered to be prefixes of the exception ob­
ject’s m sg S tr in g .  If a c a t c h S t r i n g  has n characters, only the first 
n characters of the m s g S tr in g  need match the c a t c h S t r i n g .  This 
permits the definition of classes of exceptions.

• A missing c a t c h S t r i n g  will match any exception.

• The “result” of a t r y  statement (the value that °/0 returns if it is 
evaluated immediately after execution of the t r y  statement) is the 
result of the last statement executed within the t r y  statement.

A c a t c h S t a t S e q  can contain an e r r o r  statement with no arguments, 
which also re-raises the exception. When an exception is re-raised, a new 
exception object is created tha t records the current procedure name, and 
the message and parameters from the original exception.

Under normal circumstances, the f i n a l S t a t S e q  of the f i n a l l y  
clause, if there is one, is always executed before control leaves the t r y  
statement. This is true in the case tha t an exception occurs, independent 
of whether it is caught or whether another exception occurs in the c a t c h  
clause.



This is true even if a c a t c h S t a t S e q  re-raises the exception, raises a 
new one, or executes a r e t u r n ,  break , or n e x t  statement.

Under certain abnormal circumstances, the f i n a l S t a t S e q  is not ex­
ecuted:

• If an exception is raised in a catch clause and this exception is caught
by the debugger and the user exits the debugger, the user’s command
to stop execution overrides everything.

• If one of the following untrappable exceptions occurs, the exception
is not caught, and f i n a l S t a t S e q  is not executed:

1. Computation timed out. (This can only be caught by t i m e l i m i t ,  
which raises a “time expired” exception tha t can be caught.)

2. Computation interrupted. (In other words, the user pressed Ctrl+ C , 
B reak , or equivalent.)

3. Internal system error. (This indicates a bug in Maple itself.)

4. ASSERT or local variable type assertion failure. (Assertion failures 
are not trappable because they indicate a coding error, not an al­
gorithmic failure.)

5. Stack overflow. (If a stack overflow occurs, there is generally not 
enough stack space to do anything such as running cleanup code.)

If an exception occurs during the execution of a c a t c h S t a t S e q  or the 
f i n a l S t a t S e q ,  it is treated in the same way as if it occurred outside the 
t r y .  . .e n d  t r y  statement.

A useful application of the t r y  and e r r o r  statements is to abort an 
expensive computation as quickly and cleanly as possible. For example, 
suppose that you are trying to compute an integral by using one of several 
methods, and in the middle of the first method, you determine that it will 
not succeed. You would like to abort that method and go on to try  another 
method. The following code implements this example.

> t r y
> r e s u l t  := MethodA(f,x)
> catch  "FAIL":
> r e s u l t  := MethodB(f,x)
> end t r y :

MethodA can abort its computation at any time by executing the state­
ment e r r o r  "FAIL". The catch clause will catch that exception, and pro­
ceed to try  MethodB. If any other error occurs during the execution of
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MethodA, or if an error occurs during the execution of MethodB, it is not 
caught.

Another useful application of the t r y  statement is to ensure that 
certain resources are freed when you are done with them, regardless of 
whether or not anything went wrong while you were using them. For 
example, you can use the following code to access Maple’s I/O  facilities 
to read the lines of a file and process them in some way.

> f  := fopenC'myfile",TEXT,READ) :
> t r y
> l i n e  := r e a d l i n e ( f ) ;
> w hile  l i n e  < 0 do
> P r o c e ssC o n te n tsO fL in e ( l in e ) ;
> l i n e  := r e a d l i n e ( f )
> end do
> f i n a l l y
> f c l o s e ( f )
> end t r y :

In this example, if any exception occurs while reading or processing 
the lines of the file, it is not caught because there is no catch clause. How­
ever, f  c l o s e  ( f )  is executed before execution leaves the t r y  statement, 
regardless of whether or not there was an exception.

The next example uses both c a t c h  and f i n a l l y  clauses to write to a 
file instead of reading from one.

> f  := fopenC'myfile",TEXT,WRITE) :
> t r y
> fo r  i  t o  100 do
> f p r i n t f  ( f  , "Result %d i s  °/0q\n" , i  ,ComputeSomething(i) )
> end do
> catch:
> f p r i n t f  ( f  , "Something went wrong: °/0q\n" , l a s t  except ion )  ;
> error
> f i n a l l y
> f c l o s e ( f )
> end t r y :

If any exception occurs, it is caught with the catch clause that has no 
c a t c h S t r i n g ,  and the exception object is written into the file. The excep­
tion is re-raised by executing the e r r o r  statement with no m sg S tr in g .  In 
all cases, the file is closed by executing f c l o s e  ( f )  in the f i n a l l y  clause.

Checking Syntax
Maple’s m aplem int  command generates a list of semantic errors for a spec­
ified procedure, if any. The semantic errors for which m aplem int checks 
include parameter name conflicts, local and global variable name conflicts,



unused variable declarations, and unreachable code. The maplemint com­
mand has the following syntax.
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m aplem int( procedureName ) ;

In the case where the specified procedure is free of semantic errors, 
maplemint returns NULL.

> f  := procO  l o c a l  a , i ;  g lo b a l  c;
> fo r  i  from 1 to  10 do
> p r i n t ( i ) ;
> fo r  i  from 1 to  5 do
> i f  (a=5) then
> a :=6 ;
> re tu rn  t r u e ;
> p r i n t ( ‘t e s t ‘ );
> end i f ;
> end d o ;
> end d o ;
> end proc;

> maplemint ( f )  ;

This code i s  unreachable:  
p r i n t ( t e s t )

These g lo b a l  v a r ia b le s  were d ec la red ,  but never used: 
с

These l o c a l  v a r ia b le s  were used b efo re  th ey  were a ss ig n ed  
a v a l u e : 

a
These v a r ia b le s  were used as th e  same loop v a r ia b le  fo r  
n e s te d  loops:

Similar to maplemint, Maple also has an external program utility 
called mint. The mint program is called from outside Maple and it is used 
to check both semantic and syntax errors in an external Maple source file. 
For more information about mint, see ?mint.

7.4 Conclusion
This chapter surveyed a variety of Maple commands that are available to 
help you find errors in procedures. In particular, the Maple debugger was 
presented as a tool tha t you can use to find and correct errors.



8 Numerical Programming 
in Maple

Representation and manipulation of expressions in symbolic mode, that 
is, in terms of variables, functions, and exact constants, is a powerful 
feature of the Maple system. However, practical scientific computation 
also demands floating-point  calculations which represent quantities by 
approximate numerical  values. Typically, numerical computations are 
used for one of three reasons.

First, not all problems have analytical or symbolic solutions. For ex­
ample, of the many partial differential equations known, only a small 
subset have known closed-form solutions. But, you can usually find nu­
merical solutions.

Second, the analytic answer that Maple returns to your problem may 
be very large or complex. You are not likely to do calculations by hand 
which involve rational numbers containing many digits or equations with 
hundreds of terms, but Maple does not mind such expressions. To un­
derstand big expressions, sometimes it helps to compute a floating-point 
approximation.

Third, you may not always need an exact answer. Computing an ana­
lytic answer of infinite precision is not necessary when your only interest 
is in an approximation. This situation typically arises in plotting. Calcu­
lating the points in the graph too accurately is wasteful because normal 
plotting devices are not capable of displaying ten digits of resolution.

While the rest of this book primarily shows Maple’s powerful sym­
bolic methods, the focus of this chapter is on how to perform floating­
point calculations in Maple. You will quickly discover tha t Maple has 
some extraordinary capabilities in this regard. You have your choice of 
software floating-point calculations of arbitrary precision or hardware 
floating-point arithmetic. The former is unaffected, save for speed, by
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the machine you are using. The latter is determined by the architecture 
of your computer, but offers the advantage of exceptional speed.
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8.1 The Basics of e v a lf
The e v a l f  command is the primary tool in Maple for performing floating­
point calculations. It causes Maple to evaluate in software floating-point 
mode. Maple’s software floating-point arithmetic (see section 8.3) has an 
n-digit machine floating-point model as its basis, but allows computations 
at arbitrary precision. The environment variable D i g i t s  , which has an 
initial setting of 10, determines the default number of digits for calcula­
tions.

> e v a l f ( P i ) ;

3.141592654

You may alter the number of digits either by changing the value of 
D i g i t s ,  or by specifying the number as an index to e v a l f .  Note that 
when you specify the number of digits as an index to e v a l f ,  the default, 
D i g i t s ,  remains unchanged.

> D ig i t s  := 20:
> e v a l f ( P i ) ;

3.1415926535897932385

> e v a l f  [2 0 0 ] ( P i ) ;

3.1415926535897932384626433832795028841\ 
97169399375105820974944592307816406286\ 
20899862803482534211706798214808651328\ 
23066470938446095505822317253594081284\
81117450284102701938521105559644622948\
9549303820

> e v a l f ( s q r t ( 2 ) ) ;

1.4142135623730950488
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> D ig i t s  := 10:

The number of digits you specify is the number of decimal digits 
that Maple uses during calculations. Specifying a larger number of digits 
is likely to give you a more accurate answer, and the maximum value of 
D i g i t s  is sufficiently large enough to be considered infinite for practical 
purposes. Unlike most hardware implementations of floating-point arith­
metic, Maple stores and performs software operations on floating-point 
numbers in base 10.

Because all floating-point computations are carried out in f inite pre­
cision , with intermediate results generally being rounded to D i g i t s  
precision, it is possible for such round-off errors to accumulate in long 
computations. Maple ensures that the results of any single floating-point 
arithmetic operation (+, —, *, or /)  are fully accurate. Further, many 
of the basic functions in Maple, such as the trigonometric functions and 
their inverses, the exponential and logarithm functions, and some of the 
other standards special functions for mathematics, are accurate to within 
.6  units of last place (ulps), meaning that if the D i g i t s  + 1 s t  digit 
of the true result is a 4, Maple may round it up, or if it is a 6, Maple 
may round it down. Most mathematical functions in Maple, including 
numerical integration, achieve this accuracy on nearly all inputs.

Sometimes a definite integral has no closed form solution in terms of 
standard mathematical functions. You can use e v a l f  to obtain an answer 
via numerical integration.

> r := I n t ( e x p ( x ~ 3 ) , x = 0 . .1 ) ;

> v a l u e ( r ) ;

> e v a l f ( r ) ;

1.341904418



In other cases, Maple can find an exact solution, but the form of the 
exact solution is almost incomprehensible. The function B e t a  below is one 
of the special functions tha t appear in mathematical literature.

> q := I n t ( x~99 * ( l -x )~ 1 9 9  /  B eta(100 , 20 0 ) ,  x = 0 . .1 /5  ) ;

/•1/5 x 99 ^  _  x ) l m

q '= Jo 5(100, 200) Ж

> v a l u e ( q ) ;

278522905457805211792552486504343059984\
03849800909690342170417622052715523897\
76190682816696442051841690247452471818\
79720294596176638677971757463413490644\
25727501861101435750157352018112989492\

972548449 /217741280910371516468873\

84971552115934384961767251671031013243\
12241148610308262514475552524051323083\ 
13238717840332750249360603782630341376\ 
82537367383346083183346165228661133571\ 
76260162148352832620593365691185012466\ 
14718189600663973041983050027165652595\ 
68426426994847133755683898925781250000\

1
Б(100, 200)

> e v a l f ( q ) ;

.3546007367 10“ 7

Note tha t the two examples above use the I n t  command rather than 
i n t  for the integration. If you use i n t ,  Maple first tries to integrate your 
expression symbolically. Thus, when evaluating the commands below, 
Maple spends time finding a symbolic answer and then converts it to 
a floating-point approximation, rather than performing straight numeri­
cal integration.
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> e v a l f ( in t (x ~ 9 9  * ( l -x )~ 1 9 9  /  B eta (100 , 20 0 ) ,  x = 0 . .1 /5 )  );

.354600736710“ 7

When you want Maple to perform numerical calculations, you should 
not use commands like i n t ,  l i m i t ,  and sum tha t evaluate their arguments 
symbolically.

In general, results from e v a l f  ( I n t  (. . . ) )  , e v a l f  (Sum(. . . ) )  , and 
e v a l f  ( L im it  ( . . . ) ) ,  will be more accurate than results obtained from the 
corresponding e v a l f  ( i n t  ( . . . ) ) ,  e v a l f  ( s u m ( . . . ) ) ,  and e v a l f  ( l i m i t  ( . . . ) )  
operations. More generally, symbolic evaluation can be suppressed by us­
ing unevaluation quotes. For example, e v a l f  ( s i n ( P i / 3 ) ) = e v a l f  ( 1 / 2
* 3 ~ ( l / 2 ) )  while e v a l f  ( ’ s i n ’ ( P i / 3 ) ) computes a floating-point ap­
proximation to s i n ( e v a l f ( P i / 3 ) ) .

8.2 Hardware Floating-Point Numbers
Maple offers an alternative to software floating-point numbers: your com­
puter’s hardware floating-point arithmetic. Hardware floating-point calcu­
lations are typically much faster than software floating-point calculations. 
However, hardware floating-point arithmetic depends on your particular 
type of computer, and you cannot increase the precision.

The e v a l h f  command evaluates an expression using hardware floating­
point arithmetic.

> e v a l h f ( 1 /3  );

.333333333333333314

> e v a l h f ( Pi );

3.14159265358979312

Your computer most likely does hardware floating-point arithmetic us­
ing a certain number of binary digits. The special construct, e v a l h f  ( D i g i t s ) , 
approximates the corresponding number of decimal digits.

> d := e v a l h f ( D i g i t s ) ;
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d : =  15.

Therefore, e v a l h f  and e v a l f  return similar results if e v a l f  uses a 
setting of D i g i t s  tha t is close to e v a l h f  ( D i g i t s ) . Maple usually shows 
you two or three digits more than the value of e v a l h f  ( D i g i t s )  specifies. 
When you perform hardware floating-point calculations, Maple must con­
vert all the base-10 software floating-point numbers to base-2 hardware 
floating-point numbers, and then convert the result back to base 10. The 
extra decimal digits allow Maple to reproduce the binary number precisely 
if you use it again in a subsequent hardware floating-point calculation.

> expr := I n ( 2 /  Pi * ( e x p ( 2 ) - l  ) );

e2 — 1 
expr := m ( 2 --------)

7Г

> e v a l h f ( expr );

1.40300383684168617

> e v a l f [ r o u n d ( d ) ] ( expr );

1.40300383684169

The results tha t e v a l h f  returns, even including for e v a l h f  ( D i g i t s ) ,  
are not affected by the value of D i g i t s .

> D ig i t s  := 4658;

Digits := 4658

> e v a l h f ( expr );

1.40300383684168617

> e v a l h f ( D i g i t s ) ;

15.

> Digits := 10;
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Digits := 10

You can use the e v a l h f  ( D i g i t s )  construct to tell whether hardware 
floating-point arithmetic provides sufficient precision in a particular ap­
plication. If D i g i t s  is less than e v a l h f  ( D i g i t s ) , then you may be able 
to take advantage of the faster hardware floating-point calculations; oth­
erwise, you should use software floating-point arithmetic to perform the 
calculation, with sufficient digits. The e v a l u a t e  procedure below takes an 
unevaluated parameter, expr. W ithout the u n e v a l  declaration, Maple 
would evaluate ex p r  symbolically before invoking e v a l u a t e .

> e v a lu a te  := p r o c ( e x p r : :uneval)
> i f  D ig i t s  < e v a lh f ( D ig i t s )  then
> e v a l f ( e v a l h f ( e x p r ) );
> e l s e
> e v a l f ( e x p r ) ;
> end i f ;
> end p r o c :

The e v a l h f  command knows how to evaluate many of Maple’s func­
tions, but not all. For example, you cannot evaluate an integral using 
hardware floating-point arithmetic.

> e v a lu a t e ( I n t ( e x p ( x ~ 3 ) , x = 0 . .1 )  );

Error, ( in  ev a lu a te )  unable to  ev a lu a te  fu n c t io n  ' I n t '  
in  e v a lh f

You can improve the e v a l u a t e  procedure so tha t it traps such 
errors and tries to evaluate the expression using software floating-point 
numbers instead.

> e v a lu a te  := p r o c ( e x p r : :uneval)
> l o c a l  r e s u l t ;
> i f  D ig i t s  < e v a lh f ( D ig i t s )  then
> t r y
> e v a l f ( e v a l h f ( e x p r ) );
> catch:
> e v a l f ( e x p r ) ;
> end t r y ;
> e l s e
> e v a l f ( e x p r ) ;
> end i f ;
> end p r o c :

> e v a lu a t e ( I n t ( e x p ( x ~ 3 ) , x = 0 . .1 )  );
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1.341904418

The evaluate procedure provides a model of how to write procedures 
that take advantage of hardware floating-point arithmetic whenever pos­
sible.

Newton Iterations
You can use Newton’s method to find numerical solutions to equations. 
As section 3.1 describes, if xn is an approximate solution to the equation 
f ( x )  =  0 , then xn+\, given by the following formula, is typically a better 
approximation.

f ( xn)
% n + 1 — X n .

f ( x n)
This section illustrates how to take advantage of hardware floating-point 
arithmetic to calculate Newton iterations.

The iterate procedure below takes a function, f , its derivative, d f , 
and an initial approximate solution, xO, as input to the equation f ( x ) =  0. 
iteration calculates at most N successive Newton iterations until the 
difference between the new approximation and the previous one is small. 
The iterate procedure prints out the sequence of approximations so you 
can follow the workings of the procedure.

> iterate := proc( f ::procedure, df::procedure,
> xO::numeric, N::posint )
> local xold, xnew;
> xold := xO;
> xnew := evalf( xold - f(xold)/df(xold) );
> to N-l while abs(xnew-xold) > 10"(1-Digits) do
> xold := xnew;
> print(xold);
> xnew := evalf( xold - f(xold)/df(xold) );
> end do;
> xnew;
> end proc:

The procedure below calculates the derivative of /  and passes all the 
necessary information to iterate.

> Newton := proc( f ::procedure, x0::numeric, N::posint )
> local df;
> df := D(f);
> print(xO);
> iterate(f, df, xO, N);
> end proc:

Now you can use Newton to solve the equation x 2 — 2 =  0.
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> f := x -> x~2 - 2;

/  := x  —>• x 2 — 2

> Newton(f, 1.5, 15);

1.5

1.416666667

1.414215686

1.414213562

1.414213562

The version of Newton below uses hardware floating-point arithmetic 
if possible. Since iterate only tries to find a solution to an accuracy of 
10" (1-Digits), Newton uses evalf to round the result of the hardware 
floating-point computation to an appropriate number of digits.

> Newton := proc( f ::procedure, xO::numeric, N::posint )
> local df, result;
> df := D(f);
> print(xO);
> if Digits < evalhf(Digits) then
> try
> evalf(evalhf(iterate(f, df, xO, N)));
> catch:
> iterate(f, df, xO, N);
> end try;
> else
> iterate(f, df, xO, N);
> end if;
> end proc:

Below, Newton uses hardware floating-point arithmetic for the iter­
ations and rounds the result to software precision. You can tell which 
numbers are hardware floating-point numbers because they have more 
digits than the software floating-point numbers, given the present setting 
of Digits.

> Newton(f, 1.5, 15);
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1.5

1.41666666666666674

1.41421568627450988

1.41421356237468987

1.41421356237309514

1.414213562

You may find it surprising tha t Newton must use software floating­
point arithmetic to find a root of the Bessel function below.

> F := z -> BesselJ(l, z);

F  := z —>• BesselJ(l, z)

> Newton(F, 4, 15);

4

3.826493523

3.831702467

3.831705970

3.831705970

The reason is tha t evalhf does not know about BesselJ and the 
symbolic code for BesselJ uses the type command and remember tables, 
which evalhf does not allow.

> evalhf( BesselJ(l, 4) );
Error, remember tables are not supported in evalhf

Using a try-catch block as in the Newton procedure above, allows 
your procedure to work even when evalhf fails.

You may wonder why the Newton procedure above prints out so many 
digits when it is trying to find a ten-digit approximation. The reason is 
that the print command is located inside the iterate procedure which 
is inside a call to evalhf, where all numbers are hardware floating-point 
numbers, and print as such.



8.2 Hardware Floating-Point Numbers • 405

Computing with Arrays of Numbers
Use the evalhf command for calculations with numbers. The only struc­
tured Maple objects allowed in a call to evalhf are arrays of numbers, 
either table-based arrays or rtable-based Arrays. If an array has undefined 
entries, evalhf initializes them to zero. The procedure below calculates 
the polynomial 2 +  Ьх +  4ж2.

> p := proc(x)
> local a, i;
> a := array(0..2);
> a [0] := 2 ;
> a[l] := 5;
> a [2] := 4;
> sum( a[i]*x~i, i=0..2 );
> end proc:

> p(x) ;

2 +  5 x  +  4 ж2

If you intend to enclose p in a call to evalhf, you cannot define the 
local array a using array(1..3, [2 ,5 ,4 ] ) ,  since lists are not allowed 
inside evalhf. You can, however, enclose p in a call to evalhf if the 
parameter x is a number.

> evalhf(p(5.6) ) ;

155.439999999999997

You can also pass an array of numbers as a parameter inside a call 
to evalhf. The procedure below calculates the determinant of a 2 x 2 
matrix. The (2,2) entry in the array a below is undefined.

> det := proc(a::array(2))
> a[l, 1] * a [2,2] - a[l,2] * a[2,l];
> end proc:

> a := array( [[2/3, 3/4], [4/9]] );
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> det(a);
2 1 
3 «2,2 - 3

If you call det from inside a call to evalhf, Maple uses the value 0 
for the undefined entry, a [2,2].

> evalhf( det(a) );

-.333333333333333314

evalhf passes arrays by value, so the (2,2) entry of a is still unde­
fined.

> a [2 ,2] ;

^2,2

If you want evalhf to modify an array tha t you pass as a parameter 
to a procedure, you must enclose the name of the array in a var construct. 
The var construct is special to evalhf and is necessary only if you want 
evalhf to modify an array of numbers tha t is accessible at the session 
level.

> evalhf( det( var(a) ) );

-.333333333333333314

Now a is an array of floating-point numbers.
> eval(a);

[.666666666666666629, .750000000000000000] 
[.444444444444444420, 0.]

The evalhf command always returns a single floating-point number, 
but the var construct allows you to calculate a whole array of numbers 
with one call to evalhf. Section 9.7 illustrates the use of var to calculate 
a grid of function values tha t you can use for plotting.

You can also create arrays of hardware floating-point values directly 
with the Array command. Proper use of this command can save significant
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amounts of time, especially in plotting routines, which rely heavily on 
arrays of floating-point values. See the help pages for Array, Matrix, and 
Vector for more details and examples.

8.3 Floating-Point Models in Maple
In addition to being able to represent symbolic constants, such as 7Г and 
7 , and exact integers and rational numbers, such as 37 and 3/4, Maple 
has the ability to represent approximations to numeric values, using its 
f loat ing-point system. Numbers in this system are represented by pairs of 
integers, (m,e). The first integer is called the significant! or mantissa. 
The second integer is called the exponent. The number represented is

m x 10e.

Examples of floating-point numbers in Maple are 3.1415, 1.0, —0.0007, 
l.OeO, and 2el234567. The last two are examples of floating-point num­
bers entered in scientific no ta t ion : the "e" separates the mantissa and 
exponent parts of the number. Such numbers can also be used to repre­
sent complex numbers (as can exact integers and rationals): 1.0 +  2.7 * / ,  
etc.

In some contexts, Maple distinguishes between software floats and 
hardware floats. The evalhf evaluator (discussed in section 8.2), for ex­
ample, works with hardware floats, and Maple can construct certain kinds 
of matrices and vectors with hardware float entries. Generally, however, 
Maple works with software floats to carry out approximate (but usually 
very accurate) numerical calculations.

Floating-point number systems are approximations to the mathe­
matical set of real (and complex) numbers, and hence necessarily have 
some limitations. Most importantly, such systems have limited range 
(there are largest and smallest representable numbers) and limited preci­
sion (the entire set of representable floating-point numbers is finite). One 
very im portant feature of Maple’s software floating-point system is that 
you have control over at least the latter of these: you can specify the pre­
cision at which Maple is to work when doing floating-point computation.

Some of the specific details of these computation systems are provided 
in the next few sections.
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Software Floats
Maple’s software floating-point computations are carried out in base 10. 
The precision of a computation is determined by the setting of Digits. 
The maximum exponent, minimum exponent, and maximum value for 
Digits are machine wordsize dependent. You can obtain the values for 
these limits from the Maple_f loats command.

This software floating-point system is designed as a natural extension 
of the industry standard for hardware floating-point computation, known 
as IEEE 754. Thus, there are representations for infinity and undefined 
(what IEEE 754 calls a "NaN", meaning "Not a Number"). Complex num­
bers are represented by using the standard x + I*y format.

One important feature of this system is tha t the floating-point rep­
resentation of zero, 0 ., retains its arithmetic sign in computations. That 
is, Maple distinguishes between +0 . and - 0 . when necessary. In most 
situations, this difference is irrelevant, but when dealing with functions 
such as ln(x), which have a discontinuity across the negative real axis, 
preserving the sign of the imaginary part of a number on the negative 
real axis is important.

For more intricate applications, Maple implements extensions of the 
IEEE 754 notion of a numeric event, and provides facilities for mon­
itoring events and their associated status flags. The "Maple Numerics 
Overview" help page is a good starting place to learn more about this 
system. See ?numerics.

Roundoff Error
When you perform floating-point arithmetic, whether using software or 
hardware floats, you are using approximate  numbers rather than pre­
cise real numbers or expressions. Maple can work with exact (symbolic) 
expressions. The difference between an exact real number and its floating­
point approximation is called the roundoff  error. For example, suppose 
you request a floating-point representation of тт.

> pi := evalf(Pi);

7г := 3.141592654

Maple rounds the precise value 7г to ten significant digits because 
D ig its  is set to its default value of 10. You can approximate the roundoff 
error above by temporarily increasing the value of D ig its  to 15.

> evalf[15](Pi - pi);
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Roundoff errors arise not only from the representation of input data, 
but also as a result of performing arithmetic operations. Each time 
you perform an arithmetic operation on two floating-point numbers, the 
infinitely-precise result usually will not be representable in the floating­
point number system and therefore the computed result will also have an 
associated roundoff error.

For example, suppose you multiply two ten-digit numbers with Digits 
= 10. The result can easily have nineteen or twenty digits, but Maple will 
only store the first ten digits.

> 1234567890 * 1937128552;

2391516709101395280

> evalf(1234567890) * evalf(1937128552);

.23915167091019

Whenever you apply one of the four basic arithmetic operations (ad­
dition, subtraction, multiplication, or division) to two floating-point num­
bers, the result is the correctly rounded representation of the infinitely 
precise result, unless overflow or underflow occurs. Of course, Maple may 
need to compute an extra digit or two behind the scenes to ensure that 
the answer is correct.

Even so, sometimes a surprising amount of error can accumulate, par­
ticularly when subtracting two numbers which are of similar magnitude. In 
the calculation below, the accurate sum of x , y, and z is у = 3.141592654.

> x := evalf(987654321);

x  := .987654321 109

> у := evalf(Pi);

у : =  3.141592654

> z := -x;

2 := -.987654321109
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> x + у + z;

3.1

Catastrophic cancellation is the name of this phenomenon. During 
the subtraction the eight leading digits cancel out, leaving only two sig­
nificant digits in the result.

One advantage of Maple’s software floats, in contrast to fixed-precision 
floating-point numbers systems, is tha t the user can increase the precision 
to alleviate some of the consequences of roundoff errors. For example, 
increasing Digits to 20 dramatically improves the result.

> Digits := 20;

Digits := 20

> x + у + z;

3.141592654

You should employ standard numerical analysis techniques to avoid 
large errors accumulating in your calculations. Often, reordering the oper­
ations leads to a more accurate final result. For example, when computing 
a sum, add the numbers with the smallest magnitude first.

8.4 Extending the e v a lf Command
The evalf command knows how to evaluate many functions and con­
stants, such as sin and Pi. You can also define your own functions or 
constants, and extend evalf by adding information about how to com­
pute such functions or constants.

Defining Your Own Constants
You may define a new constant and write procedures tha t manipulate this 
constant symbolically. You could then write a procedure tha t can calculate 
a floating-point approximation of your constant to any number of digits. If 
you assign the procedure a name of the form ‘ evalf/constant/name ‘, 
then Maple invokes the procedure when you use evalf to evaluate an 
expression containing your constant, name.
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Suppose you want the name MyConst to represent the following infinite 
series:

You can calculate approximations to the above series in many ways; the 
procedure below is one implementation. Note that if a{ is the i th term  in 
the sum, then a^+i =  —ai(i:/2)/i gives the next term. You can calculate 
an approximation to the series by adding terms until Maple’s model for 
software floating-point numbers cannot distinguish the new partial sum 
from the previous one. Using numerical analysis, you can prove tha t this 
algorithm calculates Digits accurate digits of MyConst if you use two ex­
tra  digits inside the algorithm. Therefore, the procedure below increments 
Digits by two and uses evalf to round the result to the proper number 
of digits before returning. The procedure does not have to reset the value 
of Digits because Digits is an environment variable.

> ‘evalf/constant/MyConst‘ := procO
> local i, term, halfpi, s, old_s;
> Digits := Digits + 2;
> halfpi := evalf(Pi/2);
> old_s := 1;
> term := 1.0;
> s := 0;
> for i from 1 while s <> old_s do
> term := -term * halfpi / i;
> old_s := s;
> s := s + term;
> end do;
> evalf[Digits-2](s);
> end proc:

When you invoke evalf on an expression containing MyConst, Maple 
invokes c evalf/constants/MyConst ‘ to calculate an approximate value.

> evalf(MyConst);

i = 1

.7921204237

> evalf[40](MyConst);

.7921204236492380914530443801650212299661

You can express the particular constant, MyConst, in closed form and, 
in this case, you can use the closed-form formula to calculate approxima­
tions to MyConst more efficiently.
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> Sum( (-1)*i * Pi~i / 2~i / i!, i=l..infinity );

y .  ( - 1  ) V
^  24!
i = 1

> value(%);

e(-V2vr) ( 1 _ e(l/2Tr)j

> expand(%);

> evalf( %) ;

-.7921204237

Defining Your Own Functions
If you define your own functions, you may want to write your own pro­
cedure for calculating numerical approximations to the function values. 
When you invoke ev a lf  on an expression containing an unevaluated call 
to a function F, then Maple calls the procedure ‘e v a l f /F ‘ if such a 
procedure exists.

Suppose you want to study the function x  i—>• (x — sm(x ) ) / x3.
> MyFcn := x -> (x - sin(x)) / x~3;

„, „ x — sin(x)
MyFcn  := x  —>•-------5-----

This function is not defined at x  =  0, but you can extend it as a 
continuous function by placing the limiting value in MyFcn’s remember 
table.

> MyFcn(O) := limit( MyFcn(x), x=0 );

MyFcn(O) := -  
6
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For small values of x , sin(x) is almost equal to x , so the subtraction 
x — sin(x) in the definition of MyFcn can lead to inaccuracies due to catas­
trophic cancellation. When you evaluate v below to ten digits, only the 
first two are correct.

> v := ’MyFcn’( 0.000195 );

v := MyFcn(.000195)

> evalf(v);

.1618368482

> evalf(v, 2*Digits);

.16666666634973617222

If you depend on accurate numerical approximations of MyFcn, you 
must write your own procedure to provide them. You could write such a 
procedure by exploiting the series expansion of MyFcn.

> series( MyFcn(x), x=0, 11 );

---------- x 2 H--------- x 4 ------------- x 6 +  0 (x8)
6 120 5040 362880 v J

The general term in the series is

(H =  ( - 1  )\  X21 xp i > 0 .v 7 (2i +  3)!’

Note tha t ai =  — a i - \ x 2 / ([2i +  2)(2i +  3)). For small values of x , you 
can then calculate an approximation to MyFcn (x) by adding terms un­
til Maple’s model for software floating-point numbers cannot distinguish 
the new partial sum from the previous one. For larger values of x , catas­
trophic cancellation is not a problem, so you can use evalf to evaluate 
the expression. Using numerical analysis, you can prove tha t this algo­
rithm calculates Digits accurate digits of the function value if you use 
three extra digits inside the algorithm. Therefore, the procedure below 
increments Digits by three and uses evalf to round the result to the 
proper number of digits before returning.
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> ‘evalf/MyFcn‘ := proc(xx::algebraic)
> local x, term, s, old_s, xsqr, i;
> x := evalf(xx);
> Digits := Digits+3;
> if type(x, numeric) and abs(x)<0.1 then
> xsqr := x~2;
> term := evalf(1/6);
> s := term;
> old_s := 0;
> for i from 1 while s <> old_s do
> term := -term * xsqr / ((2*i+2)*(2*i+3));
> old_s := s;
> s := s + term;
> end do;
> else
> s := evalf( (x-sin(x))/x~3 );
> end if;
> eval[Digits-3](s);
> end proc:

When you invoke evalf on an expression containing an unevaluated 
call to MyFcn, Maple invokes ‘ evalf /MyFcn ‘.

> evalf( ’MyFcn’(0.000195) );

.1666666663498

You should now recode the symbolic version of MyFcn so tha t it takes 
advantage of c evalf /MyFcnc if the argument is a floating-point number.

> MyFcn := proc(x::algebraic)
> if type(x, float) then
> evalf(’MyFcn’(x));
> else
> (x - sin(x)) / x~3;
> end if;
> end proc:

The evalf command automatically looks for ‘ evalf /MyFcn ‘ when 
used in the evalf (c MyFcnc) syntax.

> MyFcn(O) := limit( MyFcn(x), x=0 );

MyFcn(O) := i

Now you can properly evaluate MyFcn with numeric as well as symbolic 
arguments.
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> MyFcn(x);

x — sin(x)

> MyFcn(0.099999999);

.1665833531735

> MyFcn(0.1);

.1665833531700

Section 3.4 describes how to extend many other Maple commands.

8.5 Using the Matlab Package
Another way to accomplish numerical computations in Maple is to use 
the Matlab package, which provides a way to access several of the MAT­
LAB built-in functions (assuming you have a copy of MATLAB properly 
installed on your computer). The mathematical functions provided are:

• chol: Cholesky factorization

• defined: test whether varaible exists

• det: determinant

• dimensions: compute dimensions of matrix

• eig: eigenvalues and eigenvectors

• evalM: evaluate expression

• fft: discrete Fourier transforms

• getvar: get numeric array or matrix

• inv: matrix inverse

• lu: LU decomposition

• ode45: solve ordinary differential equation



• qr: QR orthogonal-triangular decomposition

• size: compute size of matrix

• square: determine whether matrix is square

• transpose: matrix transposition

There are also a handful of support and utility commands provided.
Matlab converts all Maple structures to hf arrays — arrays of hard­

ware floating-point values — before it performs any computations. The 
results you get will usually be in terms of hfarrays, not standard Maple 
matrices. The convert ( , array) command has been extended to handle 
any conversions between the two.

For more information on all these commands and the Matlab package 
in general, please refer to the online help for Matlab. To learn how to 
start the MATLAB application from your Maple session, see the online 
help for Matlab [openlink].
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8.6 Conclusion
The various techniques described in this chapter afford an im portant ex­
tension to Maple’s programming language and its ability to perform sym­
bolic manipulations. W ith numerical techniques at your disposal, you can 
solve equations which are otherwise unsolvable, investigate the properties 
of complicated solutions, and quickly obtain numerical estimates.

Symbolic calculations give precise representations, but in some cases 
can be expensive to compute even with such a powerful tool as Maple. 
At the other extreme, hardware floating-point arithmetic allows you fast 
computation directly from Maple. This involves, however, limited accu­
racy. Software floating-point offers a balance. As well as sometimes being- 
much faster than symbolic calculations, you also have the option to con­
trol the precision of your calculations, thus exerting control over errors.

Software floating-point calculations and representations mimic the 
IEEE 754 standard representation closely, except for the great advan­
tage of arbitrary precision. Because of the similarity with this popular 
standard, you can readily apply the knowledge of accumulation of error 
and numerical analysis principles tha t numerous texts and papers contain. 
When you need to know tha t your calculations are precise, this wealth of 
information at your disposal should provide you with confidence in your 
results.



9 Programming with Maple 
Graphics

Maple has a wide range of commands for generating both two- and 
three-dimensional plots. For mathematical expressions, you can use li­
brary procedures, such as plot and plot3d, or one of the many spe­
cialized graphics routines found in the plots and plottools packages, 
the DEtools package (for working with differential equations), and the 
stats package (for statistical data). The input to these commands is typ­
ically one or more Maple formulae, operators, or functions, along with 
information about domains and possibly ranges. In all cases, the graphic 
commands allow for the setting of options, specifying such attributes as 
coloring, shading, or axes style.

The purpose of this chapter is to reveal the structure of the procedures 
that Maple uses to generate graphical output, and allow you to generate 
your own graphics procedures. This chapter includes basic information 
about argument conventions, setting defaults, and processing of plotting 
options. A major part of the material describes the data structures that 
Maple uses for plotting, along with various techniques to build such data 
structures in order to produce graphics in Maple. In addition, you will see 
how some of the existing functions in the plots and plottools packages 
produce specific plotting data structures.

9.1 Basic Plot Functions
This section illustrates some of the basic workings of the graphics pro­
cedures in Maple, as well as some of the properties that are common to
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all Maple plotting commands. Also, it discusses plotting Maple opera­
tors or functions versus formula expressions and the setting of optional 
information.

Several of Maple’s graphics procedures take mathematical expres­
sions as their input. Examples of such commands include plot, plot 3d, 
animate, animate3d, and complexplot. All these commands allow the 
input to be in one of two forms: formulae or functions. The former con­
sists of expressions such as x 2y - y 3-\-1 or 3sin(x) sin(y) + x,  both formulae 
in the variables x  and y. If p and q are functions with two arguments, then 
p +  q is an example of a function expression. The graphics procedures use 
the way you specify the domain information to determine if the input 
is a function expression or a formula in a specified set of variables. For 
example, the command below generates a three-dimensional plot of the 
surface which sin (ж) sm(y)  defines. This formula is in terms of x  and y.

>  plot3d( sin(x) * sin(y), x=0..4*Pi, y=-2*Pi..2*Pi );
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If instead, you define two functions, each with two arguments,
> p := (x, y) -> sin(x): q := (x, y) -> sin(y):

then you can plot the surface that p * q determines in the following 
manner.

> plot3d( p * q, 0..4*Pi, -2*Pi..2*Pi );

Both cases produce the same three-dimensional plot. In the first ex­
ample, you supply the information that the input is an expression in x  
and у by giving the second and third arguments in the form x = range 
and у = range , while in the second example, there are no variable names.

Working with formula expressions is simple, but in many cases, func­
tions provide a better mechanism for constructing mathematical func­
tions. The following constructs a mathematical function which, for a given
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input, computes the required number of iterations (to a maximum of 10) 
for the sequence zn+\ =  z 2 +  с to exit the disk of radius 2 for various 
complex starting points с =  x  +  iy.

> mandelbrotSet := proc(x, y)
> local z, m;
> z := evalf( x + y*I );
> m := 0;
> to 10 while abs(z) < 2 do
> z := z~2 + (x+y*I);
> m : = m + 1;
> end do:
> m;
> end proc:

You now have a convenient method for computing a three-dimensional 
Mandelbrot set on a 50 x 50 grid.

> plot3d( mandelbrotSet, -3/2..3/2, -3/2..3/2, grid=[50,50] );

Creating a Maple graphic at the command level displays it on the 
plotting device (that is, your terminal). In many cases, you can then 
interactively alter the graph using the tools available with these plotting 
devices. Examples of such alterations include changing the drawing style, 
the axes style, and the view point. You can include this information by 
using optional arguments to plot3d.

> plot3d( sin(x)*sin(y), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi,
> style=patchnogrid, axes=frame );
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> plot3d( mandelbrotSet, -1.5..1.5, -1.5..1.5, grid=[50,50] ,
> style=wireframe, orientation=[143,31] );

Every plotting procedure allows for optional arguments. You give the 
optional information in the form name=option. Some of these options 
affect the amount of information concerning the function tha t you give 
to the plotting procedures. The grid option that the Mandelbrot set ex­
ample uses is an instance of using an optional argument. You can use 
other options for specifying visual information once you have determined 
the graphical points. The type of axes, shading, surface style, line styles, 
and coloring are but a few of the options available in this category. Ob­
tain information about all the allowable options for the two-dimensional 
and three-dimensional cases using the help pages ?plot, options and 
?plot3d,options.

Any graphics routine you create should allow users a similar set of op­
tions. When writing programs tha t call existing Maple graphics routines, 
simply pass the potential optional arguments directly to these routines.



9.2 Programming with Plotting Library Functions
This section gives examples of programming with the graphics procedures 
in Maple.

Plotting a Loop
Consider the first problem of plotting a loop from a list of data.

> LI := [ [5,29], [11,23], [11,36], [9,35] ];

L l  := [[5, 29], [11, 23], [11, 36], [9, 35]]

The plot command draws lines between the listed points.
> plot( Ll );
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You may want to write a procedure that also draws a line from the 
last to the first point. All you need to do is append the first point in Ll 
to the end of Ll.

> L2 := [ op(Ll), Ll [1] ] ;

L2  := [[5, 29], [11, 23], [11, 36], [9, 35], [5, 29]]

> plot( L2 );
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The procedure loopplot automates this technique.
> loopplot := proc( L )
> plot( [ op(L), L [1] ] );
> end proc;

loopplot := p roc(L ) plot([op(L), L i])e n d  p ro c

This procedure has a number of shortcomings. You should always 
verify the input, L, to loopplot to be a list of points, where a point 
is a list of two constants. That is, L should be of type list ([constant, 
constant]). The loopplot command should also allow a number of plot­
ting options. All loopplot has to do is pass on the options to plot. Inside 
a procedure, args is the sequence of arguments in the call to the proce­
dure, and nargs is the number of arguments. Thus args [2. .nargs] is the 
sequence of options passed to loopplot. The loopplot procedure should 
pass all but its first argument, L, directly to plots.

> loopplot := proc( L::list( [constant, constant] ) )
> plot ( [ op(L) , L [1] ], args [2. .nargs] );
> end proc:

The above version of loopplot gives an informative error message if 
you try  to use it with improper arguments, and it also allows plotting 
options.

> loopplot( [[1, 2], [a, b]] );
Error, invalid input: loopplot expects its 1st
argument, L, to be of type list([constant, constant]),
but received [[1, 2], [a, b]]



9.2 Programming with Plotting Library Functions • 423

> loopplot( Ll, linestyle=3 );

Exercise
1. Improve loopplot so tha t it can handle the empty list as input.

A Ribbon Plot Procedure
This section ends with the creation of a ribbonplot procedure, a three- 
dimensional plot of a list of two-dimensional formulae or functions.

The ribbonplot procedure uses the the display procedure from the 
plots package to display the plots. This procedure is called explicitly 
using its full name so tha t ribbonplot will work even when the short 
names for the functions in the plots package have not been loaded.

The hasoption command helps you handle options. In the ribbonplot 
procedure, hasoption returns false if numpoints is not among the op­
tions listed in opts. If opts contains a numpoints option, then hasoption 
assigns the value of the numpoints option to n, and returns the remaining 
options in the fourth argument (in this case, modifying the value of the 
list opts).

> ribbonplot := proc( Flist, rl::name=range )
> local i, m, p, y, n, opts;
> opts := [ args [3..nargs] ];
> if not hasoption( opts, ’numpoints’, ’n ’, ’opts’ )
> then n := 25 # default numpoints
> end if;
>
> m := nops( Flist );
> # op(opts) is any additional options
> p := seq( plot3d( Flist[i], rl, y=(i-l)..i,
> grid= [n, 2], op(opts) ),
> i=l..m );
> plots[display]( p );
> end proc:

Now ribbonplot uses the number of grid points you ask it to.



> ribbonplot( [cos(x), cos(2*x), sin(x), sin(2*x)],
> x=-Pi..Pi, numpoints=16 );
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The input to ribbonplot above must be a list of expressions. You 
should extend ribbonplot so tha t it also accepts a list of functions. One 
difficulty with this extension is tha t you need to create two-dimensional 
functions from one-dimensional functions, something tha t was not a prob­
lem in the initial examples of ribbonplot. For this you can create an 
auxiliary procedure, extend, which makes use of the unapply command.

> extend := proc(f)
> local x,y;
> unapply(f(x), x, y) ;
> end proc:

For example, the extend procedure converts the R  —>• R  function 
x  i—>• cos(2x) to a R 2 —>■ R  function.

> p := x -> cos(2*x):
> q := extend(p);

q := (x, у ) —>• cos(2 x)

The following gives the new ribbonplot code.
> ribbonplot := proc( Flist, rl::{range, name=range} )
> local i, m, p, n, opts, newFlist;
> opts := [ args [3. .nargs] ];
> if type(rl, range) then
> # Functional input.
> if not hasoption( opts, ’numpoints’, ’n ’, ’opts’ )
> then n := 25 # default numpoints
> end if;
> m := nops( Flist );
> # change plot3d for functional input
> p := seq( plot3d( extend( Flist [i] ), rl, (i-l)..i,
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> grid=[n, 2], op(opts) ),
> i=l..m );
> plots[display]( p );
> else
> # Expressions. Convert each to a function of lhs(rl).
> newFlist := map( unapply, Flist, lhs(rl) );
> # Use lhs(rl) as the default x-axis label.
> opts := [ ’labels’= [lhs(rl), "" ],
> args[3..nargs] ] ;
> ribbonplot( newFlist, rhs(rl), op(opts) )
> end if
> end proc:

Here is a ribbon plot of three functions.
> ribbonplot( [cos, sin, cos + sin], -Pi..Pi );

9.3 Maple's Plotting Data Structures

Maple generates plots by sending the user interface an unevaluated PLOT 
or PL0T3D function call. The information included inside these functions 
determines the objects they will graph. Every command in the plots 
package creates such a function. View this flow of information in the fol­
lowing manner. A Maple command produces a PLOT structure and passes 
it to the user interface. In the user interface, Maple constructs primitive 
graphic objects based on the PLOT structure. It then passes these objects 
to the chosen device driver for display. This process is shown schematically 
in figure 9.1.

You can assign the plotting data structures to variables, transform 
them into other structures, save them, or even print them out.

You can see examples of a plot structure in either two- or three- 
dimensions by line printing such a structure.
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Figure 9.1 How plots are displayed

> lprint( plot(2*x+3, x=0..5, numpoints=3, adaptive=false) );
PLOT(CURVES( [[0 . , 3.], [2.61565849999999989, 8.2313170\ 
0000000066], [5., 13.]],C0L0UR(RGB,1.0,0.,0.)),
AXESLABELS("x V I E W (0. .. 5.,DEFAULT))

Here, plot generates a PLOT data structure tha t includes the 
information for a single curve defined by three points, with the curve 
colored with the red-green-blue (RGB) values (1.0, 0, 0), which corresponds 
to red. The plot has a horizontal axis running from 0 to 5. Maple, by 
default, determines the scale along the vertical axes using the information 
that you provide in the vertical components of the curve. The numpoints 
= 3 and adaptive = false settings ensure tha t the curve consists of only 
three points.

The second example is the graph of z = xy  over a 3 x 4 grid. The 
PL0T3D structure contains a grid of z values over the rectangular region 
[0 , 1] x [0 , 2].

> lprint( plot3d(x*y, x=0..1, y=0..2, grid=[3,4]) );
PL0T3D(GRID(0. .. l.,0. .. 2.,Array(l .. 3,1 .. 4,{(2,
2) = .333333333333333314, (2, 3) = .666666666666666629 
, (2, 4) =1., (3, 2) = .666666666666666629, (3, 3) = 
1.33333333333333326, (3, 4) = 2.},datatype = float [8], 
storage = rectangular,order = C_order)),AXESLABELS(x,у 
,""))

The structure includes labels x  and у for the plane but no label 
for the z-axis.

The third example is again the graph of z =  xy  but this time in 
cylindrical coordinates. The PL0T3D structure now contains a mesh of 
points tha t make up the surface, along with the information that the 
plotting device should display the surface in a point style.
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> lprint( plot3d( x*y, x=0..1, y=0..2, grid=[3,2],
> coords=cylindrical, style=point ) );
PL0T3D(MESH(Array(1 .. 3,1 .. 2,1 .. 3,{(1, 2, 3) = 2.
, (2, 2, 1) = .877582561890372758, (2, 2, 2) = .479425\ 
538604203006, (2, 2, 3) =2., (3, 2, 1) = 1.0806046117\ 
3627952, (3, 2, 2) = 1.68294196961579300, (3, 2, 3) =
2.},datatype = float[8],storage = rectangular,order =
C_order)),STYLE(POINT))

Since the plot is not in cartesian coordinates there are no de­
fault labels, it follows tha t the PL0T3D structure does not contain any 
AXESLABELS.

The PLOT Data Structure
You can construct and manipulate a plotting data structure directly to 
create two- and three-dimensional plots. All you need is a correct arrange­
ment of the geometric information inside a PLOT or PL0T3D function. The 
information inside this function determines the objects tha t the plotting 
device displays. Here Maple evaluates the expression

> PL0T( CURVES( [ [0,0], [2,1] ] ) );

and passes it to the Maple interface which determines that this is a plot 
data structure. The Maple interface then dismantles the contents and 
passes the information to a plot driver which then determines the graph­
ical information tha t it will render onto the plotting device. In the latest 
example, the result is a single line from the origin to the point (2,1). The 
CURVES data structure consists of one or more lists of points each generat­
ing a curve, along with some optional arguments (for example, line style 
or line thickness information). Thus, the expression

> n := 200:
> points := [ seq( [2*cos(i*Pi/n), sin(i*Pi/n) ], i=0..n) ]:
> PL0T( CURVES( evalf(points) ) );
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generates the plot of a sequence of n +  1 points in the plane. The points 
found inside the PLOT data structure must be numeric. If you omit the 
e v a lf  statement, then non-numeric objects within the PLOT structure, 
such as sin(7r/200), cause an error.

> PL0T( CURVES( points ) );

Plotting error, non-numeric vertex definition

> type( sin(Pi/n), numeric );

false

Hence, no plot is generated.
In general, the arguments inside a PLOT structure are all of the form

ObjectName ( O b jec t ln fo rm a t ion ,  Loca l ln format ion )

where ObjectName is a function name; for example, one of CURVES, 
POLYGONS, POINTS, or TEXT; Objectlnformation contains the basic geomet­
ric point information that describes the particular object; and the optional 
Locallnformation contains information about options that apply only to 
this particular object. Objectlnformation depends on the ObjectName. 
In the case where the ObjectName is CURVES or POINTS, the Objectlnfor­
mation consists of one or more lists of two-dimensional points. Each list 
supplies the set of points making up a single curve in the plane. Similarly, 
when ObjectName is POLYGONS, then the object information consists of 
one or more lists of points where each list describes the vertices of a 
single polygon in the plane. When ObjectName is TEXT, the object infor­
mation consists of a point location along with a text string. The optional
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information is also in the form of an unevaluated function call. In the 
two-dimensional case, the options include AXESSTYLE, STYLE, LINESTYLE, 
THICKNESS, SYMBOL, FONT, AXESTICKS, AXESLABELS, VIEW, and SCALING.

You can also place some of these as L o ca lln fo rm atio n  inside a POINTS, 
CURVES, TEXT, or POLYGONS object; L o ca lln fo rm atio n  overrides the global 
option for the rendering of that object. The COLOR option allows for a fur­
ther format when you place it on an object. In the case of an object having 
multiple subobjects (for example multiple points, lines, or polygons), you 
can supply one color value for each object.

Here is a simple way to generate a filled histogram of sixty-three values 
of the function у =  sin (ж) from 0 to 6.3. Maple colors each trapezoid 
individually by the HUE value corresponding to у =  | cos(x)|.

> p := i -> [ [(i-l)/10, 0], [(i—1)/10, sin((i-l)/10)] ,
> [i/Ю, sin(i/10)] , [i/10, 0] ]:

Now p ( i )  is the list of corners of the ith  trapezoid. For example, p(2)  
contains the corners of the second trapezoid.

> p(2);

— , 01, [— , s in (— )], [ - ,  s in (—)], [ i ,  Oil 
10 ’ J’ 4 0 ’ V10 ' J 5 5 5 JJ

Define the function h to give the color of each trapezoid.

> h := i -> abs( cos(i/10) ):
> PL0T( seq( P0LYG0NS( evalf( p(i) ),
> C0L0R(HUE, evalf( h(i) )) ),
> i = 1..63) );

1

0.5

СГ 

-0.5

-1

A Sum Plot
You can create procedures that directly build PLOT data structures. For 
example, given an unevaluated sum you can compute the partial sums, 
and place the values in a CURVES structure.



> s := Sum( l/k~2, k=1..10 );

10 1
s : = ^ ¥

k = 1

You can use the typematch command to pick the unevaluated sum 
apart into its components.

> typematch( s, ’Sum’C term::algebraic,
> n::name=a::integer..b::integer ) );

true

The typematch command assigns the parts of the sum to the given 
names.

> term, n, a, b;

i  k, 1, 10

You can now calculate the partial sums.
> sum( term, n=a..a+2 );

49 
36

The following defines a procedure, psum, which calculates a floating­
point value of the m th partial sum.

> psum := evalf @ unapply( Sum(term, n=a..(a+m)), m );
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/  1+m  ̂\
psum  := evalf@ i m  —>• ^j

V k= l  /

You can now create the necessary list of points.
> points := [ seq( [[i,psum(i)], [i+1,psum(i)]],
> i=l..(b-a+1) ) ];
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points : =  [[[1, 1.250000000], [2, 1.250000000]], 
[[2, 1.361111111], [3, 1.361111111]],
[[3, 1.423611111], [4, 1.423611111]],
[[4, 1.463611111], [5, 1.463611111]],
[[5, 1.491388889], [6 , 1.491388889]],
[[6 , 1.511797052], [7, 1.511797052]],
[[7, 1.527422052], [8 , 1.527422052]],
[[8 , 1.539767731], [9, 1.539767731]],
[[9, 1.549767731], [10, 1.549767731]],
[[10, 1.558032194], [11, 1.558032194]]]

> points := map( op, points );

points : =  [[1, 1.250000000], [2, 1.250000000],
[2, 1.361111111], [3, 1.361111111], [3, 1.423611111],
[4, 1.423611111], [4, 1.463611111], [5, 1.463611111],
[5, 1.491388889], [6 , 1.491388889], [6 , 1.511797052],
[7, 1.511797052], [7, 1.527422052], [8 , 1.527422052],
[8 , 1.539767731], [9, 1.539767731], [9, 1.549767731],
[10, 1.549767731], [10, 1.558032194], [11, 1.558032194]] 

This list has the right form.
> PL0T( CURVES( points ) );

The sumplot procedure automates this technique.
> sumplot := proc( s )
> local term, n, a, b, psum, m, points, i;
> if typematch( s, ’Sum’C term::algebraic,
> n::name=a::integer..b::integer ) ) then
> psum := evalf @ unapply( Sum(term, n=a..(a+m)), m );
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> points := [ seq( [[i,psum(i)], [i+1,psum(i)]],
> i=l..(b-a+1) ) ];
> points := map(op, points);
> PL0T( CURVES( points ) );
> else
> error "expecting a Sum structure as input"
> end if
> end proc:

Here is a sumplot of an alternating series.
> sumplot( Sum((-1)~k/k, k=1..25 ));

-0 .5

-0.55

- 0.6

-0.65

-0 .7

-0.75

- 0.8

[1ЛЛЛЛГ

10 15 20 25

The limit of this sum is — In 2.
> Sum((-1)~k/k, k=l..infinity):

J -  ( - l ) fc 

k = 1

1 = value(%);

к
=  —4 2 )

See ? p lo t , s t r u c tu re  for more details on the PLOT data structure. 

The PL0T3D Data Structure
The three-dimensional plotting data structure has a form similar to the 
PLOT data structure. Thus, for example, the Maple expression below gen­
erates a three-dimensional plot of three lines and axes of type frame.

> PL0T3D( CURVES( [ [3, 3, 0], [0, 3, 1],
> [3, 0, 1] , [3, 3, 0] ] ),
> AXESSTYLE(FRAME) );
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The following procedure creates the sides of a box and colors them 
yellow.

> yellowsides := proc(x, y, z, u)
> # (x,y,0) = coordinates of a corner.
> # z = height of box
> # u = side length of box
> POLYGONS(
> [ [x,y,0], [x+u,y,0], [x+u,y,z], [x,y,z] ],
> [ [x,y,0], [x,y+u,0], [x,y+u,z], [x,y,z] ],
> [ [x+u, y,0], [x+u,y+u,0], [x+u,y+u,z] , [x+u,y,z] ],
> [ [x+u, y+u, 0] , [x, y+u, 0] , [x, y+u, z] , [x+u, y+u, z] ] ,
> C0L0R(RGB,1,1,0) );
> end proc:

The redtop procedure generates a red lid for the box.
> redtop := proc(x, y, z, u)
> # (x,y,z) = coordinates of a corner.
> # u = side length of square
> POLYGONS( [ [x,y,z], [x+u,y,z], [x+u,y+u,z], [x,y+u,z] ],
> COLOR(RGB, 1, 0, 0) );
> end proc:

You can now put the sides and the top inside a PL0T3D structure to 
display them.

> PL0T3D( yellowsides(1, 2, 3, 0.5),
> redtop(l, 2, 3, 0.5),
> STYLE(PATCH) );
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Using yellowsides and redtop you can create a three-dimensional 
histogram plot. Here is the histogram corresponding to z = l / ( x +  y + A), 
for 0 < x  < 4 and 0 < у < 4.

> sides := seq( seq( yellowsides(i, j, l/(i+j+4), 0.75),
> j=0..4), i=0..4):
> tops := seq( seq( redtop( i, j, l/(i+j+4), 0.75),
> j=0..4 ), i=0..4 ):

Histograms look nice when you enclose them in a box of axes. Axes 
are generated using AXESSTYLE.

> PL0T3D( sides, tops, STYLE(PATCH), AXESSTYLE(BOXED) );

You can modify the above construction to create a listbarchart3d 
procedure which, for a given list of lists of heights, gives a three- 
dimensional bar chart as above for its output.

The names of the objects that can appear inside a PL0T3D data struc­
ture include all those tha t you can use in the PLOT data structure. Thus 
POINTS, CURVES, POLYGONS, and TEXT are also available for use inside 
an unevaluated PL0T3D call. As in the two-dimensional case, when the 
object name is CURVES or POINTS, the point information consists of one 
or more lists of three-dimensional points, each list supplying the set of
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points making up a single curve in three-dimensional space. In the case of 
a POLYGONS structure, the point information consists of one or more lists 
of points. In this case, each list describes the vertices of a single polygon 
in three-dimensional space. There are two extra objects for PL0T3D struc­
tures. GRID is a structure tha t describes a functional grid. It consists of 
two ranges defining a grid in the x - y  plane and a list of lists of z values 
over this grid. In the following example LL contains 4 lists each of length 
3. Therefore the grid is 4 x 3, and x  runs from 1 to 3 in increments of 2/3, 
whereas у runs from 1 to 2 in increments of 1/ 2 .

> LL := [ [0,1,0], [1,1,1], [2,1,2], [3,0,1] ]:

> PL0T3D( GRID( 1..3, 1..2, LL ), AXESLABELS(x,у ,z),
> ORIENTATION(135, 45), AXES(BOXED) );

The MESH structure contains a list of lists of three-dimensional points 
describing a surface in three dimensions.1

> LL := [ [ [0,0,0], [1,0,0], [2,0,0], [3,0,0] ],
> [ [0,1,0] , [1,1,0], [2.1, 0.9, 0] ,
> [3.2, 0.7, 0] ],
> [ [0 , 1 , 1] , [1 , 1 , 1] , [2 . 2 , 0 . 6 , 1] ,
> [3.5, 0.5, 1.1] ] ];

LL  := [[[0, 0, 0], [1, 0, 0], [2, 0, 0], [3, 0, 0]], 
[[0, 1, 0], [1, 1, 0], [2.1, .9, 0], [3.2, .7, 0]], 
[[0, 1, 1], [1, 1, 1], [2.2, .6, 1], [3.5, .5, 1.1]]]

The MESH structure represents the quadrilaterals spanned by

LLi,ji LLij-\-15 LLi-\-i j ,  j'+ i

1An n x m x 3 h fa r ra y  is also allowed as input to  MESH.



for all meaningful values of i and j .
> PL0T3D( MESH( LL ), AXESLABELS(x,у ,z), AXES(BOXED),
> 0RIENTATI0N(-140, 45) );
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All the options available for PLOT are also available for PL0T3D. In ad­
dition, you can also use the GRIDSTYLE, LIGHTMODEL, and AMBIENTLIGHT 
options. See ?plot3d, structure for details on the various options to the 
PL0T3D structure.

9.4 Programming with Plot Data Structures
This section describes some of the tools tha t are available for programming 
at the PLOT and PL0T3D data structure level. Plotting data structures 
have the advantage of allowing direct access to all the functionality that 
Maple’s plotting facilities provide. The examples in section 9.3 show the 
extent of the facilities’ power. You could easily thicken the lines in the 
sum plot by adding local information to the objects in tha t example. This 
section provides a simple set of examples that describe how to program 
at this lower level.

W riting Graphic Primitives
You can write procedures that allow you to work with plot objects at a 
more conceptual level. For example, the line and disk commands in the 
plottools package provide a model for programming primitives such as 
points, lines, curves, circles, rectangles, and arbitrary polygons in both 
two and three dimensions. In all cases, you can specify options, such as 
line or patch style and color, in the same format as in other plotting 
procedures in Maple.



9.4 Programming with Plot Data Structures • 437

> line := proc(x::list, y::list)
> # x and у represent points in either 2-D or 3-D
> local opts;
> opts := [ args [3. .nargs] ];
> opts := convert( opts, PLOToptions );
> CURVES( evalf( [x, y] ), op(opts) );
> end proc:

Inside a procedure, nargs is the number of arguments and args 
is the actual argument sequence. Thus, in line, args [3.. nargs] is 
the sequence of arguments that follow x and y. The convert (. . . , 
PLOToptions) command converts user-level options to the format that 
PLOT requires.

> convert( [axes=boxed, color=red], PLOToptions ); 

[AXESSTYLE( 5 OX), COLOUR{R G B ,  1.00000000, 0., 0.)]

The disk procedure below is similar to line except tha t you can spec­
ify the number of points tha t disk should use to generate the disk. There­
fore disk must handle tha t option, numpoints, separately. The hasoption 
command determines whether a certain option is present.

> disk := proc(x::list, r ::algebraic)
> # draw a disk of radius r centered at x in 2-D.
> local i, n, opts, vertices;
> opts := [ args [3..nargs] ] ;
> if not hasoption( opts, numpoints, n, ’opts’ )
> then n := 50;
> end if;
> opts := convert(opts, PLOToptions);
> vertices := seq( evalf( [ x[l] + r*cos(2*Pi*i/n),
> x [2] + r*sin(2*Pi*i/n) ] ),
> i = 0..n );
> POLYGONS( [vertices], op(opts) );
> end proc:

You can now display two disks connected by a line as follows.
> with(plots):
Warning, the name changecoords has been redefined

> display( disk([-l, 0], 1/2, color=plum),
> line( [-1, 1/2], [1, 1/2]),
> disk([l, 0], 1/2, thickness=3),
> scaling=constrained );
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Note how the options to the individual objects apply only to those 
objects.

Plotting Gears
This example shows how you can manipulate plotting data structures to 
embed two-dimensional plots into a three-dimensional setting. The pro­
cedure below creates a little piece of the boundary of a two-dimensional 
graph of a gear-like structure.

> outside := proc(a, r, n)
> local pi, p2;
> pi := evalf( [ cos(a*Pi/n), sin(a*Pi/n) ] );
> p2 := evalf( [ cos((a+l)*Pi/n), sin((a+1)*Pi/n) ] );
> if r = 1 then pi, p2;
> else pi, r*pl, r*p2, p2;
> end if
> end proc:

For example
> outside( Pi/4, 1.1, 16 );

[.9881327882, .1536020604], [1.086946067, .1689622664], 
[1.033097800, .3777683623],
[.9391798182, .3434257839]

> PL0T( CURVES ( [•/,] ), SCALING (CONSTRAINED) );
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When you put the pieces together, you get a gear. SCALING (CONSTRAINED), 
which corresponds to the option scaling=constrained, is used to ensure 
that the gear appears round.

> points := [ seq( outside(2*a, 1.1, 16), a=0..16 ) ]:
> PL0T( CURVES(points), AXESSTYLE(NONE), SCALING(CONSTRAINED) );

You can fill this object using the POLYGONS object. However, you must 
be careful, as Maple assumes that the polygons are convex. Hence, you 
should draw each wedge-shaped section of the gear as a triangular poly­
gon.

> a := seq( [ [0, 0], outside(2*j, 1.1, 16) ], j=0..15 ):
> b := seq( [ [0, 0], outside(2*j+l, 1, 16) ], j=0..15 ):
> PL0T( POLYGONS(a,b), AXESSTYLE(NONE), SCALING(CONSTRAINED) );
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Adding STYLE (PATCHNOGRID) to the above structure and combining it 
with the curve from the first picture gives you a filled gear-like structure. 
To embed this in three dimensions, say at a thickness of t units, you can 
use the utility procedures

> double := proc( L, t )
> local u;
> [ seq( [u[l] , u[2] , 0] , u=L ) ] ,
> [ seq( [u[l] , u[2] , t] , u=L ) ] ;
> end proc:

which take a list of vertices and create two copies in three-dimensional 
space, one at height 0 and the second at height t, and

> border := proc( Ll, L2 )
> local i, n;
> n := nops(Ll);
> seq( [ Ll [i] , L2 [i] , L2[i+1], Ll[i+1] ], i = 1..П-1 ),
> [ Ll [n] , L2[n] , L2 [1] , Ll [1] ] ;
> end proc:

which input two lists of vertices and join the corresponding vertices from 
each list into vertices that make up quadrilaterals. You can create the top 
and bottom vertices of the gear embedded into three-dimensional space 
as follows.

> faces :=
> seq( double(p,1/2),
> p=[ seq( [ outside(2*a+l, 1.1, 16), [0,0] ],
> a=0..16 ),
> seq( [ outside(2*a, 1,16), [0,0] ], a=0..16 )
> ] ):

Now faces is a sequence of doubled outside values.
> PL0T3D( POLYGONS( faces ) );
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As above, the following are the points on the outline of a gear.
> points := [ seq( outside(2*a, 1.1, 16), a=0..16 ) ]:
> PL0T( CURVES(points), AXESSTYLE(NONE), SCALING(CONSTRAINED) );

If you double these points, you get vertices of the polygons making 
the border of the three-dimensional gear.
> bord := border( double( [ seq( outside(2*a+l, 1.1, 16),
> a=0..15 ) ], 1/2) ):
> PL0T3D( seq( POLYGONS(b), b=bord ) );



To display the gear you need to put these together in a single PL0T3D 
structure. Use STYLE (PATCHNOGRID) as a local option to the top and 
bottom of the gear so that they do not appear as several triangles.

> PL0T3D( POLYGONS(faces, STYLE(PATCHNOGRID) ),
> seq( POLYGONS(b), b=bord ),
> STYLE(PATCH), SCALING(CONSTRAINED) );
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Note that the global STYLE (PATCH) and SCALING (CONSTRAINED) op­
tions apply to the whole PL0T3D structure, except where the local 
STYLE (PATCHNOGRID) option to the top and bottom of the gear over­
rides the global STYLE (PATCH) option.

Polygon Meshes
Section 9.3 describes the MESH data structure which you generate when 
you use plot3d to draw a parametrized surface. This simple m atter in­
volves converting a mesh of points into a set of vertices for correspond­
ing polygons. Using polygons rather than a MESH structure allows you to 
modify the individual polygons. The procedure polygongrid creates the 
vertices of a quadrangle at the ( i , j )th grid value.

> polygongrid := proc(gridlist, i, j)
> gridlist [j] [i] , gridlist [j] [i+1] ,
> gridlist [j + 1] [i+1] , gridlist [j + 1] [i] ;
> end proc:

You can then use makePolygongrid to construct the appropriate poly­
gons.

> makePolygongrid := proc(gridlist)
> local m,n,i,j ;
> n := nops(gridlist);
> m := nops(gridlist[1] );
> POLYGONS( seq( seq( [ polygongrid(gridlist, i, j) ],
> i=l..m-l), j=l..n-l) );
> end proc:



9.4 Programming with Plot Data Structures • 443

The following is a mesh of points in two-dimensional space.
> L := [ seq( [ seq( [i-1, j —1] , i=1..3 ) ], j=1..4 ) ];

L  := [[[0, 0], [1, 0], [2, 0]], [[0, 1], [1, 1], [2, 1]], 
[[0, 2], [1, 2], [2, 2]], [[0, 3], [1, 3], [2, 3]]]

The makePolygongrid procedure creates the POLYGONS structure cor­
responding to L.

> gridl := makePolygongrid( L );

gridl  := POLYGONSQfO, 0], [1, 0], [1, 1], [0, 1]],
[[1, 0], [2, 0], [2, 1], [1, 1]], [[0 , 1], [1, 1], [1, 2], [0 , 2]],
[[1, 1], [2, 1], [2, 2], [1, 2]], [[0, 2], [1, 2], [1, 3], [0, 3]], 
[[1, 2], [2, 2], [2, 3], [1, 3]])

Put the polygons inside a PLOT structure to display them.

> PL0T( gridl ) ;

31--------------------------------------
2.5

2-------------------------------------------------------
1.5

1-----------------------------------------------------------
0.5
0 0.5 1 1.5 2

You can also use the convert ( . . . , POLYGONS) command to con­
vert GRID or MESH structures to polygons; see ?convert,POLYGONS, 
convert ( . . . , POLYGONS) calls the procedure ‘ convert/POLYGONS ‘ which, 
in the case of a MESH structure, works as the makePolygongrid procedure 
above.



9.5 Programming with the plottools Package
While the plotting data structure has the advantage of allowing direct 
access to all the functionality that Maple’s plotting facilities provide, it 
does not allow you to specify colors (such as red or blue) in an intuitive 
way, nor does it allow you to use all the representations of numeric data, 
such as 7Г or \/2, tha t you find in Maple.

This section shows you how to work with basic graphic objects at a 
level higher than tha t of the plotting data structures. The plottools 
package provides commands for creating lines, disks, and other two- 
dimensional objects, along with commands to generate shapes such as 
spheres, tori, and polyhedra. For example, one can draw a sphere of unit 
radius and a torus at specified center using a patch style of rendering and 
a frame style of axis

> with(plots): with(plottools):
Warning, the name changecoords has been redefined 
Warning, the name arrow has been redefined

> display( sphere( [0, 0, 2] ), torus( [0, 0, 0] ),
> style=patch, axes=frame, scaling=constrained );

444 • Chapter 9: Programming with Maple Graphics

and rotate it at various angles via the functions in the plottools package. 
> rotate( 7., Pi/4, -Pi/4, Pi/4 );
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A Pie Chart
You can write a plotting procedure to build a pie chart of a list of inte­
ger data. The piechart procedure below uses the following partialsum 
procedure which calculates the partial sums of a list of numbers up to a 
given term.

> partialsum := proc(d, i)
> local j;
> evalf ( Sum( d[j] , j=l..i ) )
> end proc:

For example
> partialsum( [1, 2, 3, -6], 3 );

6.

The piechart procedure first computes the relative weights of the 
data along with the centers of each pie slice, piechart uses a TEXT struc­
ture to place the data information at the center of each pie slice and 
the pieslice command from the plottools package to generate the pie 
slices. Finally, piechart also varies the colors of each slice by defining a 
color function based on hue coloring.

> piechart := proc( data::list(integer) )
> local b, c, i, n, x, y, total;
>
> n := nops(data);
> total := partialsum(data, n);
> b := 0, seq( evalf( 2*Pi*partialsum(data, i)/total ),
> i =1..n );
> x := seq( ( cos(b[i])+cos(b[i+1]) ) / 3, i=l..n ):
> у := seq( ( sin(b[i])+sin(b[i+1]) ) / 3, i=l..n ):
> с := (i, n) -> COLOR(HUE, i/(n + 1)):
> PL0T( seq( plottools [pieslice]( [0, 0], 1,
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> b[i]..b[i+l], color=c(i, n) ),
> i=l..n),
> seq( TEXT( [x [i] , y[i]],
> convert(data [i], name) ),
> i = 1..n ),
> AXESSTYLE(NONE), SCALING(CONSTRAINED) );
> end proc:

Here is a piechart with six slices.
> piechart( [8, 10, 15, 10, 12, 16 ] );

The AXESSTYLE(NONE) option ensures that Maple does not draw any 
axes with the pie chart.

A Dropshadow Procedure
You can use the existing procedures to create other types of plots that 
are not part of the available Maple graphics library. For example, the 
following procedure computes the three-dimensional plot of a surface, 
z =  f ( x , y ) ,  tha t has a dropshadow projection onto a plane located below 
the surface. The procedure makes use of the commands contourplot, 
contourplot3d, display from the plots package, and transform from 
the plottools package.

> dropshadowplot := proc(F::algebraic, rl::name=range,
> r2::name=range, r3::name=range)
> local minz, p2, p3, coption, opts, f, g, x, y;
>
> # set the number of contours (default 8)
> opts := [args[5..nargs]] ;
> if not hasoption( opts, ’contours’, coption, ’opts’ )
> then coption := 8;
> end if;
> # determine the base of the plot axes
> # from the third argument
> minz := lhs(‘if‘(r3::range, r3, rhs(r3)));
> minz := evalf(minz);
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> # create 2d and 3d contour plots for F.
> p3 := plots[contourplot3d]( F, rl, r2,
> ’contours’=coption, op(opts) );
> p2 := plots[contourplot]( F, rl, r2,
> ’contours’=coption, op(opts) );
>
> # embed contour plot into R~3 via plottools[transform]
> g := unapply( [x,y,minz], x, у );
> f := plottools [transform]( g );
> plots[display]([ f(p2), p3 ]);
> end proc:

The f illed=true option to contourplot and contourplot3d causes 
these two commands to fill the regions between the level curves with a 
color tha t indicates the level.

> expr := -5 * x / (x~2+y~2+l);

к X expr := —5 -
У 2

> dropshadowplot( expr, x=-3..3, y=-3..3, z=-4..3,
> filled=true, contours=3, axes=frame );

The first section of the dropshadow procedure determines if you have 
specified a contours option in the optional arguments (those after the 
fourth argument), making use of the hasoption procedure. The next sec­
tion of dropshadowplot determines the z value of the base. Note that 
you must take care since you specify ranges differently for formula that 
for function input. The remaining sections create the correct plotting ob­
jects which represent the two types of contour plots, dropshadowplot 
embeds the two-dimensional contour plot into three-dimensional space



using the transformation

(x, у ) i—>• [;x , y, minz\

going from R 2 —>• R 3. Finally, it displays the two plots together in one 
three-dimensional plotting object.

Note that you can either provide an alternate number of levels or even 
specify the precise contour locations via the contours option. Thus,

> dropshadowplot( expr, x=-3..3, y=-3..3, z=-4..3,
> filled=true, contours= [-2,-1,0,1,2] );
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produces a plot similar to that shown above, except now it produces
5 contours at levels —2, —1, 0,1, and 2.

Creating a Tiling
The plottools package provides a convenient environment for program­
ming graphical procedures. For example, you can draw circular arcs in a 
unit square.

> with(plots): with(plottools):
Warning, the name changecoords has been redefined 
Warning, the name arrow has been redefined

> a := rectangle( [0,0], [1,1] ),
> arc( [0,0], 0.5, 0..Pi/2 ),
> arc( [1,1], 0.5, Pi..3*Pi/2 ):
> b := rectangle( [1.5,0], [2.5,1] ),
> arc( [1.5,1], 0.5, -Pi/2..0 ),
> arc( [2.5,0], 0.5, Pi/2..Pi ):

You must use display from plots to show the objects that rectangle 
and arc create.

> display( a, b, axes=none, scaling=constrained );
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You can tile the plane with a and b type rectangles. The following 
procedure creates such a m x n tiling using a function, g, to determine 
when to use an a-tile and when to use a b-tile. The function g should 
return either 0 , to use an a-tile, or 1, to use a b-tile.

> tiling := proc(g, m, n)
> local i, j, r, h, boundary, tiles;
>
> # define an a-tile
> r[0] := plottools [arc] ( [0,0], 0.5, O..Pi/2 ),
> plottools[arc]( [1,1], 0.5, Pi..3*Pi/2 );
> # define a b-tile
> r[l] := plottools [arc] ( [0,1], 0.5, -Pi/2..0 ),
> plottools[arc]( [1,0], 0.5, Pi/2..Pi );
> boundary := plottools[curve]( [ [0,0], [0,n],
> [m,n], [m,0], [0,0]] ) ;
> tiles := seq( seq( seq( plottools[translate](h, i, j),
> h=r[g(i, j)] ), i=0..m-l ), j=0..n-l );
> plots[display]( tiles, boundary, args[4..nargs] );
> end proc:

As an example, define the following procedure which randomly returns
either 0 or 1.

> oddeven := procO randO mod 2 end proc:

Create a 20 x 10 tiling (called a Truchet tiling) with no axes and 
constrained scaling.

> tiling( oddeven, 20, 10, scaling=constrained, axes=none);
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When you use the same procedure again, the random tiling is differ­
ent.

> tiling( oddeven, 20, 10, scaling=constrained, axes=none);

A Smith Chart
The commands in the p lo t to o ls  package allow for easy creation of such 
useful graphs as a Smith Chart, used in microwave circuit analysis.

> smithChart := proc(r)
> local i, a, b, с ;
> a := PL0T( seq( plottools[arc]( [-i*r/4,0],
> i*r/4, 0..Pi ),
> i = 1..4 ),
> plottools[arc]( [0,r/2], r/2,
> Pi-arcsin(3/5)..3*Pi/2 ),
> plottools[arc]( [0,r], r, Pi..Pi+arcsin(15/17) ),
> plottools[arc]( [0,2*r], 2*r,
> Pi+arcsin(3/5)..Pi+arcsin(63/65) ),
> plottools[arc]( [0,4*r], 4*r,
> Pi+arcsin(15/17)..Pi+arcsin(63/65) )
> );
> b := plottools[transform]( (x, y) -> [x,-y] )(a);
> с := plottools [line]( [ 0, 0], [ -2*r, 0] ):
> plots[display]( a, b, c, axes = none,
> scaling = constrained,



> args[2..nargs] );
> end proc:

Here is a Smith Chart of radius 1.
> smithChart( 1 );
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Exercise
1. Make a Smith Chart by building appropriate circular arcs above the 

axes, creating a copy reflected on the axis (using the transform pro­
cedure), and then adding a final horizontal line. The parameter r  
denotes the radius of the largest circle. Modifying the smithChart 
procedure to add text to mark appropriate grid markers is a simple 
operation.

Modifying Polygon Meshes
You can easily construct a new plot tool tha t works like those in the 
plottools package. For example, you can cut out or modify polygon 
structures by first working with individual faces and then mapping the 
results onto entire polygons. Thus, you can have a procedure tha t cuts 
out the inside of a single face of a polygon.

> cutoutPolygon := proc( vlist_in::{list, hfarray},
> scale::numeric )
> local vlist, i, center, outside, inside, n, edges, polys;
>
> vlist := ‘if‘(vlist_in::hfarray, op(3, eval(vlist_in)),
> vlist_in);
> n := nops(vlist);
> center := add( i, i=vlist ) / n;
> inside := seq( scale*(vlist[i]-center) + center,
> i=l..n);
> outside := seq( [ inside [i], vlist [i],
> vlist [i+1], inside [i+1] ],
> i=l..n-1 ):
> polys := POLYGONS( outside,
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> [ inside [n] , vlist [n],
> vlist [1] , inside [1] ],
> STYLE(PATCHNOGRID) );
> edges := CURVES( [ op(vlist), vlist[1] ],
> [ inside, inside[1] ] );
> polys, edges;
> end proc:

Note tha t cutoutPolygon was written to handle input in either list 
form or hfarray form.

The following are the corners of a triangle.
> triangle := [ [0,2], [2,2], [1,0] ];

triangle := [[0 , 2], [2, 2], [1, 0]]

The cutoutPolygon procedure converts triangle to three polygons 
(one for each side) and two curves.

> cutoutPolygon( triangle, 1/2 );

POLYGONS([[i |], [0, 2], [2, 2], [| |]],

[[§, |] ,  [2, 2], [1, 0], [1, |] ] ,  [[1, |] ,  [1, 0], [0, 2], [i |] ] ,

ST Y LE (P A T C H N O G R ID )) ,  CURVES(

[[0, 2], [2, 2], [1, 0], [0, 2]], [ [ |, | ] ,  [ | ,  | ] ,  [1, | ] ,  [ i  |] ])

Use the display command from the plots package to show the tri­
angle.

> plots [display]( %, color=red );



The cutout procedure below applies cutoutPolygon to every face of 
a polyhedron.

> cutout := proc(polyhedron, scale)
> local v;
> seq( cutoutPolygon( v, evalf(scale) ), v=polyhedron);
> end proc:

You can now cut out 3/4 of each face of a dodecahedron.
> display( cutout( dodecahedron([1, 2, 3]), 3/4 ),
> scaling=constrained);
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As a second example, you can take a polygon and raise or lower its 
barycenter.

> stellateFace := proc( vlist::list, aspectRatio::numeric )
> local apex, i, n;
>
> n := nops(vlist);
> apex := add( i, i = vlist ) * aspectRatio / n;
> POLYGONS( seq( [ apex, vlist[i],
> vlist [modp(i, n) + 1] ] ,
> i=l..n) );
> end proc:

The following are the corners of a triangle in three-dimensional space.
> triangle := [ [1,0,0], [0,1,0], [0,0,1] ];

triangle := [[1, 0 , 0], [0 , 1, 0], [0 , 0 , 1]]

The stellateFace procedure creates three polygons, one for each side 
of the triangle.

> stellateFace( triangle, 1 );
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POLYGONS([[^, i  i] , [1, 0, 0], [0, 1, 0]],

[[i i  i], [o, l, o], [o, o, i]], [[i I  I], [o, o, i], [i, o, o]])
Since these POLYGONS belong in three-dimensional space, you must 

put them inside a PL0T3D structure to display them.
> PL0T3D( 7. );

Again, you can extend s te l la te F a c e  to work for arbitrary polyhedra 
having more than one face.

> stellate := proc( polyhedron, aspectRatio)
> local v;
> seq( stellateFace( v, evalf(aspectRatio) ),
> v=polyhedron );
> end proc:

This allows for the construction of stellated polyhedra.
> stellated := display( stellate( dodecahedron(), 3),
> scaling= constrained ):
> display( array( [dodecahedron(), stellated] ) );
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You can use convert ( . . . , POLYGONS) to convert a GRID or MESH
structure to the equivalent set of POLYGONS. Here is a POLYGONS version 
of the Klein bottle.

> kleinpoints := procO
> local bottom, middle, handle, top, p, q;
>
> top := [ (2.5 + 1.5*cos(v)) * cos(u),
> (2.5 + 1.5*cos(v)) * sin(u), -2.5 * sin(v) ]:
> middle := [ (2.5 + 1.5*cos(v)) * cos(u),
> (2.5 + 1.5*cos(v)) * sin(u), 3*v - 6*Pi ]:
> handle := [ 2 - 2*cos(v) + sin(u), cos(u),
> 3*v - 6*Pi ]:
> bottom := [ 2 + (2+cos(u))*cos(v), sin(u),
> -3*Pi + (2+cos(u)) * sin(v) ]:
> p := plot3d( {bottom, middle, handle, top},
> u=0..2*Pi, v=Pi..2*Pi, grid=[9,9] ):
> p := select( x -> op(0,x)=MESH, [op(p)] );
> seq( convert(q , POLYGONS), q=p );
> end proc:
> display( kleinpoints(), style=patch,
> scaling=constrained, orientation=[-110,71] );

You can then use the commands for manipulation of polygons to alter 
the view of the Klein bottle.

> display( seq( cutout(k, 3/4), k=kleinpoints() ),
> scaling=constrained );



456 • Chapter 9: Programming with Maple Graphics

9.6 Example: Vector Field Plots
This section describes the problem of plotting a vector field of two dimen­
sional vectors in the plane. The example herein serves to pinpoint some of 
the tools available for plot objects on grids in two- and three-dimensional 
space.

The command to plot a vector field should have the following syntax.

v e c to r f ie ld p lo t ( F, r l ,  r2  , op tions  )

The input, F, is a list of size two, giving the functions that make up the 
horizontal and vertical components of the vector field. The arguments rl  
and r2 describe the domain grid of the vectors. The three arguments F, 
rl, and r2 are similar in form to the input you need to use for p lo t  3d. 
Similarly, the optional information includes any sensible specification that 
p lo t  or p lo t3 d  allows. Thus, options of the form g r id  = [ m ,n l , s ty le  
= patch, and co lo r = c o lo r f u n c t io n are valid options.

The first problem is to draw a vector. Let [x, y\ represent a point, the 
starting point of the arrow, and [a, b], the components of the vector. You 
can determine the shape of an arrow by three independent parameters, 
t l ,  t2, and £3. Here t l  denotes the thickness of the arrow, t2 the thickness 
of the arrow head, and £3 the ratio of the length of the arrow head in 
comparison to the length of the arrow itself.

The procedure arrow below from the p lo t to o ls  package constructs 
seven vertices of an arrow. It then builds the arrow by constructing two 
polygons: a triangle (spanned by v$, vq, and v j )  for the head of the arrow 
and a rectangle (spanned by v\, V2 , V3 , and V4 ) for the tail; it then removes
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boundary lines by setting the s ty le  option inside the polygon structure. 
It also constructs the boundary of the entire arrow via a closed curve 
through the vertices.

> myarrow := proc( point::list, vect::list, tl, t2, t3)
> local a, b, i, x, y, L, Cos, Sin, v, locopts;
>
> a := vect[l]; b := vect [2] ;
> if has( vect, ’undefined’) or (a=0 and b=0) then
> RETURN( POLYGONS( [ ] ) );
> end if;
> x := point [1]; у := point [2] ;
> # L = length of arrow
> L := evalf( sqrt(a~2 + b~2) );
> Cos := evalf( a / L );
> Sin := evalf( b / L);
> v[l] := [x + tl*Sin/2, у - tl*Cos/2] ;
> v [2] := [x - tl*Sin/2, у + tl*Cos/2] ;
> v[3] := [x - tl*Sin/2 - t3*Cos*L + a,
> у + tl*Cos/2 - t3*Sin*L + b];
> v [4] := [x + tl*Sin/2 - t3*Cos*L + a,
> у - tl*Cos/2 - t3*Sin*L + b];
> v[5] := [x - t2*Sin/2 - t3*Cos*L + a,
> у + t2*Cos/2 - t3*Sin*L + b];
> v[6] := [x + a, у + b] ;
> v[7] := [x + t2*Sin/2 - t3*Cos*L + a,
> у - t2*Cos/2 - t3*Sin*L + b];
> v := seq( evalf(v[i]), i= 1..7 );
>
> # convert optional arguments to PLOT data structure form
> locopts := convert( [style=patchnogrid,
> args[ 6..nargs ] ] ,
> PLOToptions );
> POLYGONS ( [v[l] , v [2] , v [3] , v [4] ] ,
> [v [5] , v[6], v [7] ] , op (locopts) ),
> CURVES ( [v[l] , v [2] , v [3] , v [5] , v [6] ,
> v [7] , v [4] , v [1] ] ) ;
> end proc:

Note tha t you must build the polygon structure for the arrow in two 
parts, because each polygon must be convex. In the special case where the 
vector has both components equal to zero or an undefined  component, 
such as a value resulting from a non-numeric value (for example, a complex 
value or a singularity point), the myarrow procedure returns a trivial 
polygon. Here are four arrows.

> arrowl := PLOT(myarrow( [0,0], [1,1], 0.2, 0.4, 1/3,
> color=red) ):
> arrow2 := PLOT(myarrow( [0,0], [1,1], 0.1, 0.2, 1/3,
> color=yellow) ):
> arrow3 := PLOT(myarrow( [0,0], [1,1], 0.2, 0.3, 1/2,
> color=blue) ):
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> arrow4 := PLOT(myarrow( [0,0], [1,1], 0.1, 0.5, 1/4,
> color=green) ):

The d isp la y  command from the p lo ts  package can show an array of 
plots.

> with(plots):
Warning, the name changecoords has been redefined

> display( array( [[arrowl, arrow2], [arrow3, arrow4 ]] ),
> scaling=constrained );

The remainder of this section presents a number of solutions to the 
programming problem of generating a vector field plot, each a bit more 
powerful than its predecessors. The first and simplest solution requires 
the input to be in functional (rather than expression) form. You first need 
three utility procedures tha t process the domain information, generate a 
grid of function values, and place the information in a PL0T3D structure.

The procedure dom aininf о determines the endpoints and increments 
for the grid, dom aininf о takes as input the two ranges r l  and r 2 and the 
two grid sizes m  and n, and returns the grid information as an expression 
sequence of four elements.

> domaininfо := proc(rl, r2, m, n)
> lhs(rl), lhs(r2),
> evalf( (rhs(rl) - lhs(rl))/(m-l) ),
> evalf( (rhs(r2) - lhs(r2))/(n-l) );
> end proc:

Here is an example using multiple assignments to assign the four val­
ues returned to separate variables.

> a, b, dx, dy := domaininfо( 0..12, 20..100, 7, 9);
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a, b, dx, dy := 0 , 20, 2., 10.

Now a, b, dx, and dy have the following values.

> a, b, dx, dy;

0 , 20 , 2 ., 10 .

For the conversion to a grid of numerical points, you can take advan­
tage of the extendibility of Maple’s convert command. The procedure 
‘ convert/grid ‘ below takes a function /  as input and evaluates it over 
the grid which rl, r2, m, and n specify.

> ‘convert/grid‘ := proc(f, rl, r2, m, n)
> local a, b, i, j, dx, dy;
> # obtain information about domain
> a,b,dx,dy := domaininfо( rl, r2, m, n );
> # output grid of function values
> [ seq( [ seq( evalf( f( a + i*dx, b + j*dy ) ),
> i=0..(m-1) ) ], j=0..(n-1) ) ];
> end proc:

Now you can evaluate the undefined function, / ,  on a grid as follows.
> convert( f, grid, 1..2, 4..6, 3, 2 );

[[f(l., 4.), f ( l.500000000, 4.), f(2.000000000, 4.)],
[f(l., 6 .), f ( l.500000000, 6 .), f(2 .000000000, 6.)]]

The final utility procedure determines the scalings which ensure that 
the arrows do not overlap. Then generateplot calls upon the myarrow 
procedure to draw the vectors. Note that generateplot moves the origin 
of each arrow to center it over its grid-point.

> generateplot := proc(vectl, vect2, m, n, a, b, dx, dy)
> local i, j, L, xscale, yscale, mscale;
>
> # Determine scaling factors.
> L := max( seq( seq( vectl [j] [i] "2 + vect2 [j] [i] "2,
> i=l..m ), j=l..n ) );
> xscale := evalf( dx/2/L~(l/2) );
> yscale := evalf( dy/2/L~(l/2) );
> mscale := max(xscale, yscale);
>
> # Generate plot data structure.
> # Each arrow is centered over its point.
> PL0T( seq( seq( myarrow(
> [ a + (i-l)*dx - vectl[j][i]*xscale/2,
> b + (j-l)*dy - vect2 [j] [i] *yscale/2 ],
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> [ vectl [j] [i] *xscale, vect2 [j] [i] *yscale ],
> mscale/4, mscale/2, 1/3 ), i=l..m), j=l..n) );
> # Thickness of tail = mscale/4
> # Thickness of head = mscale/2
> end proc:

W ith these utility functions in place, you are ready to make the first 
vectorf ieldplot command by putting them all together.

> vectorfieldplot := proc(F, rl, r2, m, n)
> local vectl, vect2, a, b, dx, dy;
>
> # Generate each component over the grid of points.
> vectl := convert( F[l], grid, rl, r2 ,m, n );
> vect2 := convert( F[2], grid, rl, r2 ,m, n );
>
> # Obtain the domain grid information from rl and r2.
> a,b,dx,dy := domaininfо(rl, r2, m, n);
>
> # Generate the final plot structure.
> generateplot(vectl, vect2, m, n, a, b, dx, dy)
> end proc:

Try the procedure on the vector field (cos(xy), sm(xy)).
> p := (x,y) -> cos(x*y): q := (x,y) -> sin(x*y):
> vectorfieldplot( [p, q] , O..Pi, O..Pi, 15, 20 );

3=» *
2.5=»

1.5=>

0.5=»

0.5 1 1.5 2.5

The vectorf ieldplot code shows how to write a procedure that gen­
erates vector field plots based on alternative descriptions of the input. For 
example, you could create a procedure listvectorf ieldplot, with the 
input consisting of a list of m  lists, each of which consists of n  pairs of 
points. Each pair of points represents the components of a vector. The 
domain grid would be 1, . . . ,  m  in the horizontal direction and 1, . . . ,  n  in 
the vertical direction (as for listplot3d from the plots package).

> listvectorfieldplot := proc(F)
> local m, n, vectl, vect2;
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n := nops( F ); m := nops( F[l] );
# Generate the 1st and 2nd components of F. 
vectl := map( u -> map( v -> evalf (v[l]) , u) , F) ; 
vect2 := map( u -> map( v -> evalf(v[2]) , u) , F);

# Generate the final plot structure, 
generateplot(vectl, vect2, m, n, 1, 1, m-1, n-1)

> end proc:

For example, the list
> 1 := [ [ [1,1]  , [2,2]  , [3 ,3]  ] ,
> [ [1 ,6]  , [2,0]  , [5 ,1]  ] ]

plots
> listvectorfieldplot( 1 );

2.2

2

1.8

1.6

1.4

1.2

1 /

At this stage, the vectorf ieldplot procedure still has problems. The 
first is tha t the procedure only works with function input, rather than 
with both function and formula input. You can solve this by converting 
formula expressions to procedures, and then having vectorf ieldplot call 
itself recursively with the new output as in the ribbonplot procedure in 
section 9.2.

A second problem is tha t vectorf ieldplot only works with lists as 
input, not hfarrays.

To overcome such problems, ensure tha t you first convert all input 
functions to functions tha t only output a numeric real value or the value 
undefined, the only type of data the Maple plotting data structure ac­
cepts. You may also want to use the more efficient hardware floating­
point calculations rather than software floating-point operations, when­
ever possible. Section 9.7 describes how to do this. Instead of writing your 
own procedure for computing the grid, you can use the library function 
convert (. . . , gridpoints) which, in the case of a single input, gener­
ates a structure of the following form.
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[ a., b, c.. d, [ Izll, ... , zln] , ... , 
[ zml , ... , zmn ] ] ]

The third argument may also be an hfarray.
It uses either expressions or procedures as input. The output gives the 

domain information a. . b and c. .d  along with the z values of the input 
that it evaluates over the grid.

> convert( sin(x*y), ’gridpoints’,
> x=0..Pi, y=0..Pi, grid=[2, 3] );

[0...3.14159265358979, 0...3.14159265358979, [
[0 ., 0 ., 0 .],
[0., -.975367972083633571, -.430301217000074065]]]

When xy > 0 and In (—xy) is complex, the grid contains the value 
undefined.

> convert( (x,y) -> log(-x*y), ’gridpoints’,
> 1..2, -2..1, grid=[2,3] );

[1...2., —2...1., [[.693147180559945286, 
-.693147180559945286, undefined],
[1.386294361, 0., undefined]]]

The version of vectorf ieldplot below makes use of the convert (. . . , 
gridpoints) procedure. The vectorf ieldplot command should allow a 
number of options. In particular, it should allow a grid = [ш,п] op­
tion. You can accomplish this by passing the options to convert (. . . , 
gridpoints). The utility procedure makevectors handles the interface 
to convert( . . . , gridpoints) .

> makevectors := proc( F, rl, r2 )
>
>
>

local vl, v2;
# Generate the numerical grid

> # of components of the vectors.
> vl := convert( F[l], ’gridpoints’, rl, r2,
> args[4 .. nargs] );
> v2 := convert( F[2], ’gridpoints’, rl, r2,
>
> args[4 .. nargs] );
> # The domain information is contained in first
> # two operands of vl. The function values in
> # the 3rd components of vl and v2.
> [ vl[l] , vl [2] , vl [3] , v2[3] ]
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> end proc:

Here is the new version of vectorf ieldplot.
> vectorfieldplot := proc(F, rl, r2)
> local Rl, R2, m, n, a, b, vl, v2, dx, dy, v;

v := makevectors( F, rl, r2, args [4..nargs] );
Rl : = v [1] ; R2 : = v [2] ; vl := v [3] ; v2 := v[4];
n := nops(vl); m := nops(vl[l]); 
a,b,dx,dy := domaininfо(Rl, R2, m, n);
generateplot(vl, v2, m, n, a, b, dx, dy);

> end proc:

Test this procedure.
> p := (x,y) -> cos(x*y):
> q := (x,y) -> sin(x*y):
> vectorfieldplot( [p, q], O..Pi, O..Pi,
> grid=[3, 4] );

2.5

2

1'
1

0.5

f t

3.5

All the versions of vectorf ieldplot so far have scaled each arrow 
so tha t each vector fits into a single grid box. No overlapping of arrows 
occurs. However, the arrows still vary in length. Often this results in 
graphs tha t have a large number of very small, almost invisible vectors. 
For example, a plot of the gradient field of F  = cos(xy) exhibits this 
behavior.

> vectorfieldplot( [y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi, grid=[15,20]);
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The final version of vectorf ieldplot differs in tha t all the arrows 
have the same length—the color of each vector provides the information 
about the magnitudes of the arrows. You must add a utility procedure 
that generates a grid of colors from the function values.

> ‘convert/colorgrid‘ := proc( colorFunction )
> local colorinfo, i, j, m, n;
>
> colorinfo := op( 3, convert(colorFunction,
> ’gridpoints’, args[2..nargs] ) );
> map( x -> map( у -> C0L0R(HUE, y), x) , colorinfo );
> end proc:

The above procedure uses the convert ( ... , gridpoints) to gen­
erate a list of lists of function values that specify the colors (using hue 
coloring).

> convert( sin(x*y), ’colorgrid’,
> x=0..1, y=0..1, grid=[2,3] );

[[COLO R(H U E ,  0.), COLOR (HUE, 0.), COLOR (HUE,  0.) 
], [COLOR(HUE,  0.),
COLOR (HUE,  .479425538604203006),
COLOR (H U E , .841470984807896505)]]

Here is the final version of vectorf ieldplot.
> vectorfieldplot := proc( F, rl, r2 )
> local v, m, n, a, b, dx, dy, opts, p, vl, v2,
> L, i, j, norms, colorinfo,
> xscale, yscale, mscale;
>
> v := makevectors( F, rl, r2, args[4..nargs] );
> vl := v[3]; v2 := v[4];
> n := nops(vl); m := nops( vl[l] );
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>
> a,b,dx,dy := domaininf o(v [1] , v[2], m, n) ;
>
> # Determine the function used for coloring the arrows.
> opts := [ args[ 4..nargs] ];
> if not hasoption( opts, color, colorinfo, ’opts’ ) then
> # Default coloring will be via
> # the scaled magnitude of the vectors.
> L := max( seq( seq( vl[j][i]~2 + v2[j][i]~2,
> i=l..m ), j=l..n ) );
> colorinfo := ( F[l]~2 + F[2]~2 )/L;
> end if;
>
> # Generate the information needed to color the arrows.
> colorinfo := convert( colorinfo, ’colorgrid’,
> rl, r2, op(opts) );
>
> # Get all the norms of the vectors using zip.
> norms := zip( (x,y) -> zip( (u,v)->
> if u=0 and v=0 then 1 else sqrt(u~2 + v~2) end if,
> x, y), vl, v2);
> # Normalize vl and v2 (again using zip ).
> vl := zip( (x,у) -> zip( (u,v)-> u/v, x, y),
> vl, norms );
>
> v2 := zip( (x,у) -> zip( (u,v)-> u/v, x, y),
> v2, norms );
>
> # Generate scaling information and plot data structure.
> xscale := dx/2.0; yscale := dy/2.0;
> mscale := max(xscale, yscale);
>
> PL0T( seq( seq( myarrow(
> [ a + (i-l)*dx - vl [j] [i] *xscale/2,
> b + (j-1)*dy - v2[j] [i]*yscale/2 ],
> [ vl [j] [i] *xscale, v2 [j] [i] *yscale ],
> mscale/4, mscale/2, 1/3,
> ’color,=colorinfо [j] [i]
> ), i=l..m ), j=l..n ) );
> end proc:

W ith this new version you can obtain the following plots.

> vectorfieldplot( [y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi,grid=[15,20] );
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You can color the vectors via a function, such as sin(xy).
> vectorfieldplot( [y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi, grid=[15,20], color=sin(x*y) );
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Other vector field routines can be derived from the routines above. 
For example, you can also write a complex vector field plot tha t takes 
complex number locations and complex number descriptions of vectors 
as input. You simply need to generate the grid of points in an alternate 
manner.

In the p lo t to o ls  package, there is the arrow function, which gener­
ates arrows and vectors. This function is more versatile than the proce­
dures described in this section.

9.7 Generating Grids of Points
Section 9.6 points out tha t the simple operation of obtaining an array 
of grid values for a given procedure, that is, the problem of computing 
the values of a function you wish to plot over a grid of points, is not an
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obvious task. You must deal with efficiency, error conditions, and non­
numeric output. You can handle the case where the input is a formula 
in two variables in the same way as in the rib b o n p lo t procedure from 
section 9.2. Thus, for simplicity of presentation, this section avoids this 
particular case.

The goal is to compute an array of values for /  at each point on a 
m  x n  rectangular grid. That is, at the locations

Xi = a +  (i -  1 )6X and yj = с +  (j  -  1 )6y

where 5X =  (b — a)/(m  — 1) and 5y =  (d — c)/(n  — 1). Here i and j  vary 
from 1 to m  and 1 to n, respectively.

Consider the function / :  (x , y ) i—̂ 1 /  sin(:n/). You need to evaluate /  
over the m  x n  grid with the ranges a , . . .  ,b and c , . . . ,  d.

> f := (x,y) -> 1 / sin(x*y);

/  := (x, y) -► . jsm(x y)

The first step is to convert the function /  to a numeric procedure. 
Since Maple requires numeric values (rather than symbolic) for plots, ask 
Maple to convert /  to a form which returns numerical answers or the 
special value undefined.

> fnum := convert( f , numericproc );

fn u m  := p r o c (_ X , _ Y )  
loca l err;

e rr  := traperror(evalhf(f(_X , _ Y ) ) ) ;  
iftype([err], [numeric]) th e n  err 
else

err := traperror(evalf(f(_X , _ Y ) ) ) ;  
iftype([err], [numeric]) th e n  e rr e lse  undefined  end  if 

end  if 
end  proc

The above procedure, which is the result of this conversion, attem pts 
to calculate the numerical values as efficiently as possible. Hardware 
floating-point arithmetic, although of limited precision, is more efficient 
than software floating-point and is frequently sufficient for plotting. Thus, 
fnum tries evalh f first. If eva lh f is successful, it returns a numeric result;



otherwise, it generates an error message. If this happens, fnum attem pts 
the calculation again by using software floating-point arithmetic by call­
ing evalf. Even this calculation is not always possible. In the case of / ,  
the function is undefined whenever x  =  0 or у =  0. In such cases, the pro­
cedure fnum returns the name undefined. Maple’s plot display routines 
recognize this special name.

At the point (1,1), the function /  has the value 1/  sin(l) and so fnum 
returns a numerical estimate.

> fnum(l,1);

1.18839510577812123

However, if you instead try  to evaluate this same function at (0,0), 
Maple informs you that the function is undefined at these coordinates.

> fnum(0,0);

undefined

Creating such a procedure is the first step in creating the grid of 
values.

For reasons of efficiency, you should, whenever you can, compute not 
only the function values but also the grid points by using hardware 
floating-point arithmetic. In addition, you should do as much compu­
tation as possible in a single call to evalhf. Whenever you use hardware 
floating-point arithmetic, Maple must first convert the expression to a 
series of commands of hardware floating-point numbers, and then convert 
the result of these back to Maple’s format for numbers.

Write a procedure tha t generates the coordinates of the grid in the 
form of an array. Since the procedure is to plot surfaces, the array is 
two-dimensional. The following procedure returns an array z of function 
values.

> evalgrid := proc( F, z, a, b, c, d, m, n )
> local i, j, dx, dy;
>
> dx := (b-a)/m; dy := (d-c)/n;
> for i to m do
> for j to n do
> z [i, j] := F( a + (i-l)*dx, с + (j-l)*dy );
> end do;
> end do;
> end proc:

468 • Chapter 9: Programming with Maple Graphics



9.7 Generating Grids of Points • 469

This evalgrid procedure is purely symbolic and does not handle error 
conditions.

> A := array(1..2, 1..2):
> evalgrid( f, ’A ’, 1, 2, 1, 2, 2, 2 ):
> eval(A);

-  1 1 -

i  i 2

s in (-) s in (-)
2 4 -1

> evalgrid( f, ’A ’, 0, Pi, 0, Pi, 15, 15 ):
Error, (in f) numeric exception: division by zero

Write a second procedure, gridpoints, which makes use of evalgrid. 
The procedure should accept a function, two ranges, and the number of 
grid points to generate in each dimension. Like the procedure fnum which 
Maple generated from your function /  above, this routine should attem pt 
to create the grid using hardware floating-point arithmetic. Only if this 
fails, should gridpoints resort to software floating-point arithmetic.

> gridpoints := proc( f, rl, r2, m, n )
> local u, x, y, z, a, b, c, d;
>
> # Domain information:
> a := lhs(rl); b := rhs(rl);
> с := lhs(r2); d := rhs(r2);
>
> z := hfarray(1..m, l..n);
> if Digits <= evalhf(Digits) then
> # Try to use hardware floats
> # - notice the need for var in this case.
> u := traperror( evalhf( evalgrid(f, var(z),
> a, b, c, d, m, n ) ) ) ;
> if lasterror = u then
> # Use software floats, first converting f to
> # a software float function.
> z := array( l..m, l..n );
> evalgrid( convert( f, numericproc ),
> z, a, b, c, d, m, n );
> end if;
> else
> # Use software floats, first converting f to
> # a software float function.
> z := array( l..m, l..n );
> evalgrid( convert(f, numericproc), z,



470 • Chapter 9: Programming with Maple Graphics

> a, b, c, d, m, n );
> end if;
> eval(z);
> end proc:

The second argument to evalgrid must be the array (or hfarray) 
which receives the results; Maple must not convert it to a number before 
it calls evalhf. Indicate this special status to Maple using the special 
function var whenever you call evalgrid from within evalhf. Chapter 8 
discusses numerical calculations in detail.

Test the procedures. Here gridpoints can use hardware floating-point 
arithmetic to calculate two of the numbers, but it must resort to software 
calculations in four cases where the function turns out to be undefined.

> gridpoints( (x,y) -> l/sin(x*y) , 0..3, 0..3, 2, 3 );

[undefined , undefined , undefined]
[undefined , 1.00251130424672485, 
7.08616739573718667]

In the following example, gridpoints can use hardware floating-point 
for all the calculations. Therefore, this calculation is faster, although the 
difference will not be apparent unless you try  a much larger example.

> gridpoints( (x,y) -> sin(x*y) , 0..3, 0..3, 2, 3 );

[0 ., 0 ., 0 .]
[0., .997494986604054445, .141120008059867213]

If you ask for more digits than hardware floating-point arithmetic 
can provide, then gridpoints must always use software floating-point 
operations.

> Digits := 22:
> gridpoints( (x,y) -> sin(x*y) , 0..3, 0..3, 2, 3 );

[0 ., 0 ., 0 .]
[0., .9974949866040544309417, 
.1411200080598672221007]

> Digits := 10:
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The gridpoints procedure is remarkably similar to the convert (. . . , 
gridpoints) procedure which is part of the standard Maple library. The 
library command includes more checking of the arguments and, therefore, 
will likely suffice for many of your needs.

9.8 Animation
Maple has the ability to generate animations in either two or three dimen­
sions. As with all of Maple’s plotting facilities, such animations produce 
user-accessible data structures. D ata structures of the following type rep­
resent animations.

PLOT( ANIMATE( . . .  ) )

or

PL0T3D( ANIMATE( . . .  ) )

Inside the ANIMATE function is a sequence of frames; each frame is 
a list of the same plotting objects that can appear in a single plotting 
structure. Every procedure tha t creates an animation builds such a se­
quence of frames. You can see an example by printing the output of such 
a procedure.

> lprint( plots[animate]( x*t, x=-l..l, t = 1..3,
> numpoints=3, frames = 3 ) );
PLOT(ANIMATE( [CURVES([[-1., -1.], [0., 0.], [1.0000000\
00, 1.]],C0L0UR(RGB,1.00000000,0.,0.))],[CURVES([[-1.,
-2.], [0., 0.], [1.000000000, 2.]],C0L0UR(RGB,1.000000\
00,0.,0.))],[CURVES([[-1., -3.], [0., 0.], [1.00000000\
0, 3.]] ,C0L0UR(RGB,1.00000000,0.,0.))]),AXESLABELS(x, 
“ ),VIEW(-1. .. 1.,DEFAULT))

The function points below is a parametrization of the curve (x , y) =  
(1 +  cos(t7r/180)2, 1 +  cos(t7r/180) sin(t7r/180)).

> points := t -> evalf(
> [ (1 + cos(t/180*Pi)) * cos(t/180*Pi ),
> (1 + cos(t/180*Pi)) * sin(t/180*Pi ) ] ):

For example,
> points(2);



[1.998172852, .06977773357]

You can plot a sequence of points.
> PL0T( POINTS( seq( points(t), t=0..90 ) ) );
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You can now make an animation. Make each frame consist of the 
polygon spanned by the origin, (0 , 0), and the sequence of points on the 
curve.

> frame := n -> [ POLYGONS([ [0, 0 ],
> seq( points(t), t = 0..60*n) ],
> COLOR(RGB, 1.0/n, 1.0/n, 1.0/n) ) ]:

The animation consists of six frames.
> PL0T( ANIMATE( seq( frame(n), n = 1..6 ) ) );

The display command from the plots package can show an anima­
tion in static form.

> with(plots):
Warning, the name changecoords has been redefined
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> display( PL0T(ANIMATE(seq(frame(n), n = 1..6))) );
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The varyA spect procedure below illustrates how a stellated surface 
varies with the aspect ratio. The procedure takes a graphical object as 
input and creates an animation in which each frame is a stellated version 
of the object with a different aspect ratio.

> with(plottools):
Warning, the name arrow has been redefined

> varyAspect := proc( p )
> local n, opts;
> opts := convert( [ args[2..nargs] ], PL0T3Doptions );
> PL0T3D( ANIMATE( seq( [ stellate( p, n/sqrt(2)) ],
> n=l..4 ) ),
> op( opts ));
> end proc:

Try the procedure on a dodecahedron.

> varyAspect( dodecahedron(), scaling=constrained );

Here is the static version.
> display( varyAspect( dodecahedron(),
> scaling=constrained ) );
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The Maple library provides three methods for creating animations: the 
animate and animate3d commands in the plots package, or the display 
command with the insequence = true option set. For example, you can 
show how a Fourier series approximates a function, / ,  on an interval 
[a, b} by visualizing the function and successive approximations as the 
number of terms increase with each frame. You can derive the n th  partial

n 2tt
sum of the Fourier series by using f n (x) =  co/2 +  C& cos(-------kx)

b — a

C-k b — a
f ( x )  cos

27г 
b — a

kx  dx

and

Sk = b — a
f ( x )  sin

27г 
b — a

kx dx.

The f ourierPicture procedure below first calculates and plots the kth  
Fourier approximation for к up to n. Then f ourierPicture generates an 
animation of these plots, and finally it adds a plot of the function itself 
as a backdrop.

> fourierPicture :=
> proc( func, xrange::name=range, n::posint)

local x, a, b, 1, k, j, p, q, partsum;
= lhs( rhs(xrange) );
= rhs( rhs(xrange) );
= b - a;
= 2 * Pi * lhs(xrange) / 1;

partsum := 1/1 * evalf( Int( func, xrange) ); 
for к from 1 to n do

# Generate the terms of the Fourier series of func.
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> partsum := partsum
> + 2/1 * evalf( Int(func*sin(k*x), xrange) )
> * sin(k*x)
> + 2/1 * evalf( Int(func*cos(k*x), xrange) )
> * cos(k*x);
> # Plot k-th Fourier approximation.
> q[k] := plot( partsum, xrange, color=blue,
> args[4..nargs] );
> end do;
> # Generate sequence of frames.
> q := plots[display]( [ seq( q[k], k=l..n ) ],
> insequence=true );
> # Add the function plot, p, to each frame.
> p := plot( func, xrange, color = red, args[4..nargs] );
> plots[display]( [ q, p ] );
> end proc:

You can now use fo u r ie rP ic tu re  to see, for example, the first six 
Fourier approximations of ex.

> f ourierPicture( exp(x), x=0..10, 6 ):

This is the static version.
> display( fourierPicture( exp(x), x=0..10, 6 ) );

.200e5

.150e5

.100e5
.50e4

C6/810.

.200e5

.150e5

.100e5
.50e4

Below are the first six Fourier approximations of x -> s ig n u m (x -l) . 
The signum function is discontinuous, so the d isc o n t= tru e  option is 
called for.

> fourierPicture( 2*signum(x-l), x=-2..3, 6,
> discont=true );

Again, these pages require a static version.
> display( fourierPicture( 2*signum(x-l), x=-2..3, 6,
> discont=true ) );
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You can also create similar animations with other series approxima­
tions, such as Taylor, Pade, and Chebyshev-Pade, with the generalized 
series structures tha t Maple uses.

Animation sequences exist in both two and three dimensions. The 
procedure below ties a trefoil knot by using the tu b e p lo t function in the 
p lo ts  package.

> TieKnot := proc( n:: posint )
> local i, t, curve, picts;
> curve := [ -10*cos(t) - 2*cos(5*t) + 15*sin(2*t),
> -15*cos(2*t) + 10*sin(t) - 2*sin(5*t),
> 10*cos(3*t) ]:
> picts := [ seq( plots [tubeplot]( curve,
> t=0..2*Pi*i/n, radius=3),
> i=l..n ) ];
> plots[display]( picts, insequence=true, style=patch);
> end proc:

You can tie the knot in, say, six stages.
> TieKnot(6);

Here is the static version.
> display( TieKnot(6) );
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You can combine the graphical objects from the plottools pack­
age with the display in-sequence option to animate physical objects in 
motion. The springPlot procedure below creates a spring from a three- 
dimensional plot of a helix. springPlot also creates a box and a copy of 
this box and moves one of the boxes to various locations depending on a 
value of u. For every u, you can locate these boxes above and below the 
spring. Finally springPlot makes a sphere and translates it to locations 
above the top of the top box with the height again varying with a param­
eter. Finally, it produces the entire animation by organizing a sequence 
of positions and showing them in sequence by using display.

> springPlot := proc( n )
> local u, curve, springs, box, tops, bottoms,
> helix, ball, balls;
> curve := (u,v) -> spacecurve(
> [cos(t), sin(t), 8*sin(u/v*Pi)*t/200],
> t=0..20*Pi,
> color=black, numpoints=200, thickness=3 ):
> springs := display( [ seq(curve(u,n), u=l..n) ],
> insequence=true ):
> box := cuboid( [-1,-1,0], [1,1,1], color=red ):
> ball := sphere( [0,0,2], grid=[15, 15], color=blue ):
> tops := display( [ seq(
> translate( box, 0, 0, sin(u/n*Pi)*4*Pi/5 ),
> u=l..n ) ], insequence=true ):
> bottoms := display( [ seq( translate(box, 0, 0, -1),
> u=l..n ) ], insequence=true ):
> balls := display( [ seq( translate( ball, 0, 0,
> 4*sin( (u-1)/(n-l)*Pi ) + 8*sin(u/n*Pi)*Pi/10 ),
> u=l..n ) ], insequence=true ):
> display( springs, tops, bottoms, balls,
> style=patch, orientation=[45,76],
> scaling=constrained );
> end proc:

The code above uses the short names of the commands from the plots 
and plottools packages in order to improve readability. You must either 
use long names or remember to load these two packages before using 
springPlot.

> with(plots): with(plottools):
> springPlot(6);
> display( springPlot(6) );
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Section 9.5 describes how the commands in the p lo t to o ls  package 
can help you with graphics procedures.

9.9 Programming with Color
As well as coloring each type of object in the plot data structures, you 
can also add colors to plotting routines. The co lo r option allows you to 
specify colors in the form of a solid color, by name, by RGB or HUE values, 
or via a color function in the form of a Maple formula or function. Try 
each of the following commands for yourself.

> plot3d( sin(x*y), x=-3..3, y=-3..3, color=red );
> plot3d( sin(x*y), x=-3..3, y=-3..3,
> color=C0L0UR(RGB, 0.3, 0.42, 0.1) );

> p := (x,y) -> sin(x*y):
> q := (x,y) -> if x < у then 1 else x - у end if:

> plot3d( p, -3..3, -3..3, color=q );

Although usually less convenient, you may also specify the color a t­
tributes at the lower level of graphics primitives. At the lowest level, you 
can accomplish a coloring of a graphical object by including a COLOUR 
function as one of the options inside the object.

> PL0T( POLYGONS( [ [0,0], [1,0], [1,1] ],
> [ [1 , 0] , [1 , 1] , [2 , 1] , [2 , 0] ] ,
> COLOUR(RGB, 1/2, 1/3, 1/4 ) ) );
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You can use different colors for each polygon via either

PLOT( POLYGONS( PI, ... , Pn ,
COLOUR(RGB, pi, ..., pn)) )

or

PLOT( POLYGONS( PI, COLOUR(RGB, pi) ), 
POLYGONS( Pn, COLOUR(RGB, pn)) )

Thus, the following two PLOT structures represent the same picture of 
a red and a green triangle.

> PL0T( POLYGONS( [ [0,0], [1,1], [2,0] ],
> COLOUR( RGB, 1, 0, 0 ) ),
> POLYGONS( [ [0,0], [1,1], [0,1] ],
> COLOUR( RGB, 0, 1, 0 ) ) );

> PL0T( POLYGONS( [ [0,0], [1,1], [2,0] ],
> [ [0 , 0] , [1 , 1] , [0 , 1] ] ,
> COLOUR( RGB, 1, 0, 0, 0, 1, 0 ) ) );

0.5 1 1.5 2

The three RGB values must be numbers between 0 and 1.
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Generating Color Tables
The following procedure generates an m  x n  color table of RGB values. 
Specifically, colormap returns a sequence of two elements: a POLYGONS 
structure and a TITLE.

> colormap := proc(m, n, B)
> local i, j, points, colors, flatten;
> # points = sequence of corners for rectangles
> points := seq( seq( evalf(
> [ [i/m, j/n], [(i+l)/m, j/n],
> [(i+l)/m, (j+l)/n] , [i/m, (j+l)/n] ]
> ), i=0..m-l ), j=0..n-l ):
> # colors = listlist of RGB color values
> colors := [seq( seq( [i/(m-l), j/(n-l), B],
> i=0..m-l ), j=0..n-l )] ;
> # flatten turns the colors listlist into a sequence
> flatten := a -> op( map(op, a) );
> POLYGONS( points,
> C0L0UR(RGB, flatten(colors) ) ),
> TITLE( cat( "Blue=", convert(B, string) ) );
> end proc:

Here is a 10 x 10 table of colors; the blue component is 0.
> PL0T( colormapdO, 10, 0) );

You can use animation to vary the blue component as well. The 
colormaps procedure below uses animation to generate an m  x n  x /  
color table.

> colormaps := proc(m, n, f)
> local t;
> PL0T( ANIMATE( seq( [ colormap(m, n, t/(f-l)) ],
> t=0..f-1 ) ),
> AXESLABELS("Red", "Green") );
> end proc:

The following gives you a l O x l O x l O  color table.
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> colormapsdO, 10, 10);

You can visualize the color scale for HUE coloring as follows.
> points := evalf ( seq( [ [i/50, 0], [i/50, 1],
> [(i+l)/50, 1], [(i+l)/50, 0] ],
> i=0..49)):

> PL0T( POLYGONS(points, C0L0UR(HUE, seq(i/50, i=0..49)) ),
> AXESTICKS(DEFAULT, 0), STYLE(PATCHNOGRID) );

0.2 0.4 0.6 0.8 1

The AXESTICKS (DEFAULT, 0) specification eliminates the axes label­
ing along the vertical axis but leaves the default labeling along the hori­
zontal axis.

You can easily see how to create a colormapHue procedure which 
creates the color scale for any color function based on HUE coloring.

> colormapHue := proc(F, n)
> local i, points;
> points := seq( evalf( [ [i/n, 0], [i/n, 1],
> [(i+l)/n, 1], [(i+l)/n, 0] ]
> ), i=0..n-1 ):
> PL0T( POLYGONS( points,
> COLOUR(HUE, seq( evalf(F(i/n)), i=0.. n-1) )),
> AXESTICKS(DEFAULT, 0), STYLE(PATCHNOGRID) );
> end proc:

The basis of this color scale is y(x) =  sin(7rx)/3  for 0 < x  < 40.
> colormapHue( x -> sin(Pi*x)/3, 40);
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Visualizing the grayscale coloring is a simple m atter of using an ar­
bitrary procedure, F, since gray levels are simply those levels that have 
equal parts of red, green, and blue.

> colormapGraylevel := proc(F, n)
> local i, flatten, points, grays;
> points := seq( evalf ([ [i/n, 0], [i/n, 1],
> [(i+l)/n, 1], [(i+l)/n, 0] ]),
> i=0..n-1):
> flatten := a -> op( map(op, a) );
> grays := C0L0UR(RGB, flatten(
> [ seq( evalf([ F(i/n), F(i/n), F(i/n) ]),
> i=l.. n)]));
> PL0T( POLYGONS(points, grays),
> AXESTICKS(DEFAULT, 0) );
> end proc:

The identity function, x ^  x, yields the basic gray scale.
> colormapGraylevel( x->x, 20);

■
0.2 0.4 0.6 0.8 1

Adding Color Information to Plots
You can add color information to an existing plot data structure. The 
procedure addCurvecolor colors each curve in a CURVES function via the 
scaled у coordinates.
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> addCurvecolor := proc(curve)
> local i, j, N, n , M, m, curves, curveopts, p, q;
>
> # Get existing point information.
> curves := select( type, [ op(curve) ],
> list(list(numeric)) );
> # Get all options but color options.
> curveopts := remove( type, [ op(curve) ],
> { list(list(numeric)),
> specfunc(anything, COLOR),
> specfunc(anything, COLOUR) } );
>
> # Determine the scaling.
> # M and m are the max and min of the y-coords.
> n := nops( curves );
> N := map( nops, curves );
> M := [ seq( max( seq( curves [j] [i] [2] ,
> i=l.- N [j] ) ), j=l..n ) ];
> m := [ seq( min( seq( curves [j] [i] [2] ,
> i=l.- N [j] ) ), j=l..n ) ];
> # Build new curves adding HUE color.
> seq( CURVES( seq( [curves [j] [i] , curves [j] [i+1] ] ,
> i=l. .N[j]-1 ) ,
> COLOUR(HUE, seq((curves [j] [i] [2]
> - m[j] )/(M[j] - m[j] ) ,
> i=l. .N[j]-1)),
> op(curveopts) ), j=l..n );
> end proc:

For example
> с := CURVES( [ [0,0], [1,1], [2,2], [3,3] ],
> [ [2,0], [2,1], [3,1] ] );

с := CURVES([[0, 0], [1, 1], [2, 2], [3, 3]], 
[[2, 0], [2, 1], [3, 1]])

> addCurvecolor( с );

CURVES([[0, 0], [1, 1]], [[1, 1], [2, 2]], [[2, 2], [3, 3]], 

COLOUR(ff[/£, 0, i  |)),CURVES([[2, 0], [2, 1]],

[[2, 1], [3, 1]], COLOUR (H U E,  0, 1))

You can then map such a procedure over all CURVES structures of an 
existing plot structure to provide the desired coloring for each curve.

> addcolor := proc( aplot )
> local recolor;
> recolor := x -> if op(0,x)=CURVES then
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> addCurvecolor(x)
> else x end if;
> map( recolor, aplot );
> end proc:

Try addco lor on a plot of sin (ж) +  cos(x).
> p := plot( sin(x) + cos(x), x=0..2*Pi,
> linestyle=2, thickness=3 ):
> addcolor( p );

If you add color to two curves simultaneously, the two colorings are 
independent.

> q := plot( cos(2*x) + sin(x), x=0..2*Pi ):
> addcolor( plots[display](p, q) );

The addcolor procedure also works on three-dimensional space 
curves.

> spc := plots[spacecurve]( [ cos(t), sin(t), t ], t=0..8*Pi,
> numpoints=100, thickness=2, color=black ):
> addcolor( spc );
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You can easily alter the coloring of an existing plot by using coloring 
functions. Such coloring functions should either be of the form С Hue'- R 2 —*• 
[0 , 1] (for Hue coloring) or of the form Crgb'- R 2 —> [0,1] x [0 , 1] x [0 , 1]. 

The example above uses the color function Сние(х ,у) =  у /  m ax(^)-

Creating A Chess Board Plot
The final example of programming with color shows how to make a chess 
board type grid with red and white squares in a three-dimensional plot. 
You do not simply assign a coloring function as an argument to p lo t3d . 
A coloring function, in such a case, provides colors for vertices of a grid, 
which does not yield color patches. You must first convert the grid or 
mesh into polygonal form. The rest of the procedure assigns either a red 
or white color to a polygon, depending on which grid area it represents.

> chessplot3d := proc(f, rl, r2)
> local m, n, i, j, plotgrid, p, opts, coloring, size;
>
> # obtain grid size
> # and generate the plotting data structure
> if hasoption( [ args[4..nargs] ], grid, size) then
> m := size [1];
> n := size [2];
> else # defaults
> m := 25;
> n := 25;
> end if;
>
> p := plot3d( f, rl, r2, args[4..nargs] );
>
> # convert grid data (first operand of p)
> # into polygon data
> plotgrid := op( convert( op(l, p), POLYGONS ) );
> # make coloring function - alternating red and white
> coloring := (i, j) -> if modp(i-j, 2)=0 then
> convert(red, colorRGB)
> else
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> convert(white, colorRGB)
> end if;
> # op(2..-l, p) is all the operands of p but the first
> PL0T3D( seq( seq( P0LYG0NS( plotgrid[j + (i-l)*(n-l)],
> coloring(i, j) ),
> i= l..m -l ) , j= l . .n - l  ) ,
> op(2..-1, p) );
> end proc:

Here is a chess board plot of sin (ж) sin(?/).

> chessplot3d( sin(x)*sin(y), x=-Pi..Pi, y=-Pi..Pi,
> style=patch, axes=frame );

3 3

Note tha t ch essp lo t3d  works when the plotting structure from 
p lo t3 d  is either a GRID or MESH output type. The latter is the type of 
output tha t comes from parametric surfaces or from surfaces that use 
alternate coordinate systems.

> chessplot3d( (4/3)~x*sin(y), x=-1..2*Pi, y=0..Pi,
> coords=spherical, style=patch,
> lightmodel=light4 );
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9.10 Conclusion
In this chapter, you have seen how you can make graphics procedures 
based on the commands plot and plot3d, as well as the commands found 
in the plots and plottools packages. However, for ultimate control, you 
must create PLOT and PL0T3D data structures directly; these are the prim­
itive specifications of all Maple plots. Inside the PLOT and PL0T3D data 
structures you can specify points, curves, and polygons, as well as grids 
of values and meshes of points. You have also seen how to handle plot op­
tions, create numerical plotting procedures, work with grids and meshes, 
manipulate plots and animations, and apply non-standard coloring to 
your graphics.
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10 Input and Output

Although Maple is primarily a system and language for performing 
mathematical manipulations, many situations arise where such manipu­
lations require the use of data from outside of Maple, or the production of 
data in a form suitable for use by other applications. You may also need 
Maple programs to request input directly from the user and/or present 
output directly to the user. To meet these needs, Maple provides a com­
prehensive collection of input and output (I/O) commands. The Maple 
I /O  library is the term which refers to these commands as a group.

10.1 A Tutorial Example
This section illustrates some of the ways you can use the Maple I/O  
library in your work. Specifically, the examples show how to write a table 
of numerical data to a file, and how to read such a table from a file. The 
examples refer to the following data set, given in the form of a list of lists 
and assumed to represent a list of (x , y) pairs, where each x  is an integer 
and each у is a real number.

> A := [[0, 0],
> [1, .8427007929],
> [2, .9953222650],
> [3, .9999779095],
> [4, .9999999846],
> [5, 1.000000000]]

In a real application, this list would have been generated by a Maple com­
mand you executed or by a Maple procedure you wrote. In this example, 
the list was simply typed in as you see it above.

If you want to use some other program (like a presentation graphics 
program, or perhaps a custom С program) to process data tha t Maple

489
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has generated, then you often need to save the data to a file in a format 
that the other program recognizes. Using the I/O  library, you will find it 
easy to write such data to a file.

> for xy in A do fprintf ("myfile", "°/0d °/0e\n", xy[l] , xy[2]) end do

> fcloseO'myfile") ;

If you print the file myf ile, or view it with a text editor, it looks like this:

0 0.000000e-01
1 8.427008e-01
2 9.953223e-01
3 9.999779e-01
4 1.000000e+00
5 1.000000e+00

The fprintf command wrote each pair of numbers to the file. This com­
mand takes two or more arguments, the first of which specifies the file 
that Maple is to write, and the second of which specifies the format for 
the data items. The remaining arguments are the actual data items that 
Maple is to write.

In the example above, the file name is myf ile. The first time a given 
file name appears as an argument to fprintf (or any of the other output 
commands described later), the command creates the file if it does not 
already exist, and prepares (opens) it for writing. If the file exists, the 
new version overwrites the old one. You can override this behavior (for 
example, if you want to append to an already existing file) by using the 
f open command, described later.

The format string, "°/0d °/0e\n", specifies that Maple should write the 
first data item as a decimal integer (°/0d), and the second data item in 
Fortran-like scientific notation (°/0e). A single space should separate the 
first and second data items, and a line break (\n) should follow the second 
data item (to write each pair of numbers on a new line). By default, as 
in our example, Maple rounds floating-point numbers to six significant 
digits for output. You can specify more or fewer digits by using options 
to the °/0e format. The section on fprintf describes these options in more 
detail.

When you are finished writing to a file, you must close it. Until you 
close a file, the data may or may not actually be in the file, because output 
is buffered under most operating systems. The f close command closes a 
file. If you forget to close a file, Maple automatically closes it when you 
exit.
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For a simple case like the one presented here, writing the data to a 
file by using the writedata command is easier.

> writedataO'myfile2" , A, [integer,float] ) :

The writedata command performs all the operations of opening the file, 
writing the data in the specified format, an integer and a floating-point 
number, and closing the file. However, writedata does not provide the 
precise formatting control tha t you may need in some cases. For this, use 
fprintf directly.

In some applications, you may want to read data from a file. For 
example, some data acquisition software may supply data tha t you may 
want to analyze. Reading data from a file is almost as easy as writing to 
it.

> A := [];

A  := []

> do
> xy := f scanf ("myf ile2" , "°/0d °/0e");
> if xy = 0 then break end if;
> A := [op(A),xy];
> end do;
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xy := [0 , 0 .]

A := [[0 , 0 .]] 

xy := [1, .8427007929]

A  : =  [[0 , 0 .], [1, .8427007929]] 

xy := [2, .995322265]

A  : =  [[0 , 0 .], [1, .8427007929], [2, .995322265]] 

xy := [3, .9999779095]

A  := [[0 , 0 .], [1, .8427007929], [2 , .995322265],
[3, .9999779095]]

xy := [4, .9999999846]

A  := [[0 , 0 .], [1, .8427007929], [2 , .995322265],
[3, .9999779095], [4, .9999999846]]

xy := [5, 1.000000000]

A  := [[0 , 0 .], [1, .8427007929], [2 , .995322265],
[3, .9999779095], [4, .9999999846], [5, 1.000000000]]

xy := []

A  : =  [[0 , 0 .], [1, .8427007929], [2 , .995322265],
[3, .9999779095], [4, .9999999846], [5, 1.000000000],

0 ]

xy := 0

> fcloseO'myfile2") ;

This example starts by initializing A to be the empty list. Upon entering 
the loop, Maple reads a pair of numbers at a time from the file.

The f  scanf command reads characters from a specified file, and parses 
them according to the specified format (in this case, "°/0d °/0e", indicating a 
decimal integer and a real number). It either returns a list of the resulting 
values or the integer 0 to indicate that it has reached the end of the file.
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The first time you call fscanf with a given file name, Maple prepares 
(opens) the file for reading. If it does not exist, Maple generates an error.

The second line of the loop checks if fscanf returned 0 to indicate 
the end of the file, and breaks out of the loop if it has. Otherwise, Maple 
appends the pair of numbers to the list of pairs in A. (The syntax A : = 
[op (A) ,xy] tells Maple to assign to A a list consisting of the existing 
elements of A, and the new element xy.)

As when you wrote to a file, you can read from a file more easily by 
using the readdata command.

> A := readdata("myfile2", [integer,float]);

A  : =  [[0, 0.], [1, .8427007929], [2, .995322265],
[3, .9999779095], [4, .9999999846], [5, 1.000000000]]

The readdata command performs all the operations of opening the file, 
reading the data and parsing the specified format (an integer and a 
floating-point number), and closing the file. However, readdata does not 
provide the precise parsing control tha t you may need in some cases. For 
this, use fscanf directly.

These examples illustrate some of the basic concepts of Maple’s I/O  li­
brary, and you can do a great deal by using only the information presented 
in this section. However, to make more effective and efficient use of the 
I/O  library, an understanding of a few more concepts and commands is 
useful. The remainder of this chapter describes the concepts of file types, 
modes, descriptors, and names, and presents a variety of commands for 
performing both formatted and unformatted file I/O .

10.2 File Types and Modes
Most of the Maple I/O  library commands operate on files. This chapter 
uses the term file to denote not just files on a disk, but also Maple’s user 
interface. In most cases, you cannot distinguish between the two from the 
point of view of the I/O  commands. Almost any operation tha t you can 
perform on a real file you can perform on the user interface, if appropriate.

Buffered Files versus Unbuffered Files
The Maple I/O  library can deal with two different kinds of files: buffered 
(STREAM) and unbuffered (RAW). No difference exists in how Maple uses
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them, but buffered files are usually faster. In buffered files, Maple collects 
characters in a buffer and writes them to a file all at once when the buffer 
is full or the file is closed. Raw files are useful when you wish to explicitly 
take advantage of knowledge about the underlying operating system, such 
as the block size on the disk. For general use, you should use buffered files, 
and they are used by default by most of the I/O  library commands.

Commands tha t provide information about I/O  status use the identi­
fiers STREAM and RAW to indicate buffered and unbuffered files, respectively.

Text Files versus Binary Files
Many operating systems, including DOS/Windows and the Macintosh 
operating system, distinguish between files containing sequences of char­
acters (text files) and files containing sequences of bytes (binary files). 
The distinction lies primarily in the treatm ent of the newline character. 
Other distinctions may exist on some platforms, but they are not visible 
when using the Maple I/O  library.

W ithin Maple, the newline character, which represents the concept of 
ending one line and beginning a new one, is a single character (although 
you can type it as the two characters “\n ” within Maple strings). The 
internal representation of this character is the byte whose value is 10, the 
ASCII linefeed character. Many operating systems, however, represent the 
concept of newline within a file using a different character, or a sequence 
of two characters. For example, DOS/Windows represents a newline with 
two consecutive bytes whose values are 13 and 10 (carriage return and 
line feed). The Macintosh represents a newline with the single byte with 
value 13 (carriage return).

The Maple I/O  library can deal with files as either text files or bi­
nary files. When Maple writes to a text file, any newline characters that 
it writes to the file are translated into the appropriate character or char­
acter sequence that the underlying operating system uses. When Maple 
reads this character or character sequence from a file, it translates back 
into the single newline character. When Maple writes to a binary file, no 
translation takes place; it reads newline characters and writes them as 
the single byte with value 10.

When running Maple under the UNIX operating system or one of its 
many variants, Maple makes no distinction between text and binary files. 
It treats both in the same way, and no translation takes place.

Commands which can specify or query whether a file is a text file or 
a binary file use the identifiers TEXT and BINARY, respectively.
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Read Mode versus Write Mode
At any given time, a file may be open either for reading or for writing. 
You cannot write to a file tha t is open only for reading, but you can write 
to and read from a file that is open for writing. If you attem pt, using 
the Maple I/O  library, to write to a file which is open only for reading, 
Maple closes and reopens the file for writing. If the user does not have 
the necessary permissions to write to the file (if the file is read-only, or 
resides on a read-only file system), errors occur at that point.

Commands where you can specify or query whether a file is open for 
reading or writing use the identifiers READ and WRITE, respectively.

The default and terminal Files
The Maple I/O  library treats the Maple user interface as a file. The iden­
tifiers default and terminal refer to this file. The default identifier 
refers to the current input stream, the one from which Maple reads and 
processes commands. The terminal identifier refers to the top-level input 
stream, the one which was the current input stream when you first started 
Maple.

When Maple is run interactively, default and terminal are equiv­
alent. Only when reading commands from a source file using the read 
statement does a distinction arise. In tha t case, default refers to the file 
being read; whereas, terminal refers to the session. Under UNIX, if input 
is redirected from a file or pipe, terminal refers to tha t file or pipe.

Note tha t only the symbols default and terminal are special; 
the strings "default" and "terminal" simply refer to files with those 
names.

10.3 File Descriptors versus File Names
The commands of the Maple I/O  library refer to files in one of two ways: 
by name or by descriptor.

Referring to a file by name is the simpler of the two methods. The 
first time Maple performs an operation on the file, it opens the file, either 
in READ mode or in WRITE mode and as a TEXT file or a BINARY file, as 
appropriate to the operation tha t it is performing. The primary advantage 
of referring to files by name is simplicity. However, you will experience a 
slight performance penalty for using this method, especially if performing 
many small operations on a file (such as writing individual characters).
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Referring to a file by descriptor is only slightly more complex and 
is a familiar concept to those who have programmed in more traditional 
environments. A descriptor simply identifies a file after you have opened 
it. Use the name of the file once to open it and create a descriptor. When 
you subsequently manipulate the file, use the descriptor instead of the file 
name. An example in section 10.4 illustrates the use of a file descriptor.

The advantages of the descriptor method include more flexibility when 
opening the file (you can specify whether the file is TEXT or BINARY, and 
if Maple should open the file in READ mode or in WRITE mode), improved 
performance when performing many operations on a file, and the ability 
to work with unbuffered files. The disadvantage is a slight increase in the 
amount of programming that you must do.

Which approach is best depends on the task at hand. You can perform 
simple file I/O  tasks most easily by using names; whereas, more complex 
tasks can benefit from the use of descriptors.

In subsequent sections, the term fileldentifier refers to either a file 
name or a file descriptor.

10.4 File Manipulation Commands 
Opening and Closing Files
Before you can read from or write to a file, you must open it. When refer­
ring to files by name, this happens automatically with the first attem pt at 
any operation on the file. When you use descriptors, however, you must 
explicitly open the file first in order to create the descriptor.

The two commands for opening files are f open and open. The f open 
command opens buffered (STREAM) files; whereas, the open command 
opens unbuffered (RAW) files.

Use the f open command as follows.

fopen( fileName, accessMode, fileType )

The fileName specifies the name of the file to open. This name is specified 
as a string, and follows the conventions tha t the underlying operating 
system uses. The accessMode must be one of READ, WRITE, or APPEND, 
indicating whether you should initially open the file for reading, writing, 
or appending. The optional fileType is either TEXT or BINARY.

If you try  to open the file for reading and it does not exist, fopen 
generates an error.



If you try  to open the file for writing and it does not exist, Maple 
first creates it. If it does exist and you specify WRITE, Maple truncates the 
file to zero length; if you specified APPEND, subsequent calls to commands 
tha t write to the file append to it.

Call the open command as follows.
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open( fileName, accessMode )

The arguments to open are the same as those to f open, except that you 
cannot specify a fileType (TEXT or BINARY). Maple opens an unbuffered 
file with type BINARY.

Both fopen and open return a file descriptor. Use this descriptor to 
refer to the file for subsequent operations. You can still use the file’s name, 
if you desire.

When you have finished with a file, you should tell Maple to close 
it. This ensures that Maple actually writes all information to the disk. It 
also frees up resources of the underlying operating system, which often 
imposes a limit on the number of files that you can open simultaneously.

Close files by using the f close or close commands. These two com­
mands are equivalent, and you can call them as follows.

fclose( fileldentifier ) 
close( fileldentifier )

The fileldentifier is the name or descriptor of the file you wish to close. 
Once you close a file, any descriptors referring to the file are no longer 
valid.

> f := fopenO'testFile.txt" ,WRITE) :

> writeline(f,"This is a test"):

> fclose(f);

> writeline(f,"This is another test"):

Error, (in fprintf) file descriptor not in use

When you exit Maple or issue a restart command, Maple automatically 
closes any open files, whether you opened them explicitly by using fopen 
or open, or implicitly through a file I/O  command.
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Position Determination and Adjustment
Associated with each open file is the concept of its current position. This 
is the location within the file to which a subsequent write takes place, 
or from which a subsequent read takes place. Any reading or writing 
operation advances the position by the number of bytes read or written.

You can determine the current position within a file by using the 
f ilepos command. Use this command in the following manner.

filepos( fileldentifier, position )

The fileldentifier is the name or descriptor of the file whose position 
you wish to determine or adjust. If you give a file name, and tha t file is 
not yet open, Maple opens it in READ mode with type BINARY.

The position is optional. If you do not specify the position, Maple 
returns the current position. If you supply the position, Maple sets the 
current position to your specifications and returns the resulting position. 
In tha t case, the returned position is the same as the specified position 
unless the file is shorter than the specified position, in which case the 
returned position is tha t of the end of the file (that is, its length). You 
can specify the position either as an integer, or as the name infinity, 
which specifies the end of the file.

The following command returns the length of the file myfile.txt.

> filepos("myfile.txt", infinity);

36

Detecting the End of a File
The f eof command determines whether you have reached the end of a file. 
Only use the feof command on files tha t you have opened as STREAMS, 
either implicitly or explicitly via f open. Call feof in the following manner.

feof( fileldentifier )

The fileldentifier is the name or descriptor of the file that you wish to 
query. If you give a file name, and that file is not yet open, Maple opens 
it in READ mode with type BINARY.

The feof command returns true if and only if you have reached the 
end of the file during the most recent readline, readbytes, or fscanf 
operation. Otherwise, feof returns false. This means tha t if 20 bytes 
remain in a file and you use readbytes to read these 20 bytes, then feof
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still returns false. You only encounter the end-of-file when you attem pt 
another read.

Determining File Status
The iostatus command returns detailed information about all the files 
currently in use. Call the iostatus command with the following syntax.

iostatus()

The iostatus command returns a list. The list contains the following 
elements:

iostatus() [1] The number of files tha t the Maple I/O  library is cur­
rently using.

iostatus () [2] The number of active nested read commands (when read 
reads a file which itself contains a read statement).

iostatus () [3] The upper bound on iostatus () [1] + iostatus () [2]
that the underlying operating system imposes.

io s ta tu s  () [n] for n > 3. A list giving information about a file currently 
in use by the Maple I/O  library.

When n > 3, the lists tha t iostatus () [n] return each contain the 
following elements:

iostatus() [n] [1] The file descriptor which fopen or open returned, 

iostatus () [n] [2] The name of the file.

iostatus() [n] [3] The kind of file (STREAM, RAW, or DIRECT).

iostatus() [n] [4] The file pointer or file descriptor that the underlying 
operating system uses. The pointer is in the form F P ^ n te g e r  or 
FD=integer.

iostatus() [n] [5] The file mode (READ or WRITE), 

iostatus() [n] [6] The file type (TEXT or BINARY).

Removing Files
Many files are solely for temporary use. Often, you no longer need such 
files when you complete your Maple session and thus, you should remove 
them. Use the fremove command to do this.
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fremove( fileldentifier )

The fileldentifier is the name or descriptor of the file you wish to remove. 
If the file is currently open, Maple closes it before removing it. If the file 
does not exist, Maple generates an error.

To remove a file without knowing whether it exists or not, use a 
try/catch statement to trap  the error that fremove might create.

> try fremoveO'myfile.txt") catch: end try:

10.5 Input Commands
Reading Text Lines from a File
The readline command reads a single line of text from a file. Characters 
are read up to and including a new line. The readline command then 
discards the new line character, and returns the line of characters as a 
Maple string. If readline cannot read a whole line from the file, then it 
returns 0 instead of a string.

Call the readline command by using the following syntax.

readline( fileldentifier )

The fileldentifier is the name or descriptor of the file that you wish to 
read. For compatibility with earlier versions of Maple, you can omit the 
fileldentifier, in which case Maple uses default. Thus readline () and 
readline (default) are equivalent.

If you use -1  as the fileldentifier, Maple also takes input from the 
default stream, except that Maple’s command line preprocessor runs 
on all input lines. This means that lines beginning with “ !” pass to the 
operating system instead of returning through readline, and tha t lines 
beginning with “?” translate to calls to the help command.

If you call readline with a file name, and that file is not yet open, 
Maple opens it in READ mode as a TEXT file. If readline returns 0 (indi­
cating the end of the file) when called with a file name, it automatically 
closes the file.

The following example defines a Maple procedure which reads a text 
file and displays it on the default output stream.
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> ShowFile := proc( fileName::string )
> local line;
> do
> line := readline(fileName);
> if line = 0 then break end if;
> printf ("°/0s\n" ,line) ;
> end do;
> end proc:

Reading Arbitrary Bytes from a File
The readbytes command reads one or more individual characters or bytes 
from a file, returning either a string or a list of integers. If there are 
no more characters remaining in the file when you call readbytes, the 
command returns 0 , indicating that you have reached the end of the file. 

Use the following syntax to call the readbytes command.

readbytes( fileldentifier, length, TEXT )

The fileldentifier is the name or descriptor of the file tha t Maple is to 
read. The length, which you may omit, specifies how many bytes Maple 
needs to read. If you omit length, Maple reads one byte. The optional 
parameter TEXT indicates that the result is to be returned as a string 
rather than a list of integers.

You can specify the length as infinity, in which case Maple reads 
the remainder of the file.

If you specify TEXT when a byte with value 0 resides among the bytes 
being read, the resulting string contains only those characters preceding 
the 0 byte.

If you call readbytes with a file name, and tha t file is not yet open, 
Maple opens it in READ mode. If you specify TEXT, Maple opens it as 
a TEXT file; otherwise, Maple opens it as a BINARY file. If readbytes 
returns 0 (indicating the end of the file) when you call it with a file name, 
it automatically closes the file.

The following example defines a Maple procedure which reads an en­
tire file, by using readbytes, and copies it to a new file.

> CopyFile := proc( sourceFile::string, destFile::string )
> writebytes(destFile, readbytes(sourceFile, infinity))
> end proc:
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Formatted Input
The f scanf and scanf commands read from a file, parsing numbers and 
substrings according to a specified format. The commands return a list of 
these parsed objects. If no more characters remain in the file when you 
call fscanf or scanf, they return 0 instead of a list, indicating tha t it 
has reached the end of the file.

Call the f scanf and scanf commands as follows.

f s c a n f( fileldentifier, format ) 
s c a n f( format )

The fileldentifier is the name or descriptor of the file you wish to read. 
A call to scanf is equivalent to a call to fscanf with default as the 
fileldentifier.

If you call f scanf with a file name, and tha t file is not yet open, Maple 
opens it in READ mode as a TEXT file. If f scanf returns 0 (indicating the 
end of the file) when you call it with a file name, Maple automatically 
closes the file.

The format specifies how Maple is to parse the input. The format is 
a Maple string made up of a sequence of conversion specifications, that 
may be separated by other characters. Each conversion specification has 
the following format, where the brackets indicate optional components.

•/.[*] [width] [modifiers] code

The “°/0” symbol begins the conversion specification. The optional 
indicates tha t Maple is to scan the object, but not return it as part of the 
result. It is discarded.

The optional width indicates the maximum number of characters to 
scan for this object. You can use this to scan one larger object as two 
smaller objects.

The optional modifiers are used to indicate the type of the value to 
be returned:

1 o r L The letters 1 and L are supported for compatibility with the С 
scanf function, and indicate that a “long int” or “long long” is to be 
returned. In Maple, these flags have no effect.

zc  o r Z One of these flags can precede any of the numeric formats, 
namely d, o, x, e, f, or g, indicating tha t a complex value is to 
be scanned. Each of the real and imaginary parts of the complex 
value are scanned by using the specified format with the z or Z elided.



10.5 Input Commands • 503

The z format scans the real part, followed by a the character specified 
by c, followed by the imaginary part. The Z format scans the real 
part, followed by a “+ ” or sign, followed by the imaginary part, 
followed by a string of character corresponding to the current setting 
of interface(imaginaryunit).
The z and Z options can result in one of the few conditions in which 
scanf will raise an exception. If scanf is part way through scanning a 
complex value (for example, the real part has already been successfully 
scanned), and is unable to finish scanning the remainder (for exam­
ple, there is no imaginary part after the real part), scanf will raise 
an exception of the form " co/0Iе expected in input for complex 
format ", where °/01 will be replaced by the expected character (for 
example, a comma).

The code indicates the type of object you wish to scan. It determines
the type of object tha t Maple returns in the resulting list. The code can
be one of the following:

d The next non-blank characters in the input must make up a signed or 
unsigned decimal integer. A Maple integer is returned.

о The next non-blank characters in the input must make up an unsigned 
octal (base 8) integer. The integer is converted to decimal and returned 
as a Maple integer.

x The next non-blank characters in the input must make up an unsigned 
hexadecimal (base 16) integer. The letters A through F (either capital 
or lower case) represent the digits corresponding to the decimal num­
bers 10 through 15. The integer is converted to decimal and returned 
as a Maple integer.

у The next non-blank characters in the input must make up an IEEE hex- 
dump format floating-point value. This value must consist of sixteen 
hexadecimal characters. The value is converted to and returned as a 
Maple float.

e, f, or g The next non-blank characters in the input must make up 
a signed or unsigned decimal number, possibly including a decimal 
point, and possibly followed by E or e, an optional sign, and a decimal 
integer indicating a power of ten. The number is returned as a Maple 
floating-point value.

In addition to numeric values, the e, f , and g formats also recognize 
the special values “inf” and “NaN” . If an i or N is encountered when
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scanf is looking for the first digit of a number, it assumes tha t one 
of these special values has been found, and proceeds to look for the 
subsequent nf or aN. If the rest of the special value is not found, an 
exception is raised.

he, hf, or hg These are special formats for reading one or two-dimensional 
numeric arrays. In general, such arrays should be read by using the 
more sophisticated functionality provided by the О  format, but the 
he, hf , and hg formats are provided for backward compatibility with 
hf arrays, and provide some intelligence in automatically dealing with 
a variety of textual layouts of such arrays.

The following input must make up a one or two-dimensional array 
of floating-point (or integer) values. Characters encountered during 
scanning are categorized into three classes: numeric, separator, and 
terminator. All the characters tha t can appear within a number (the 
digits, decimal point, signs, E, e, D, and d) are numeric. Any white 
space, commas, or square brackets are separators. A square bracket 
not immediately followed by a comma, and any other character, are 
terminators. If a backslash is encountered, it and the following char­
acter are ignored completely.

The dimensions of the array are determined by the number of lines 
read, and the number of values in the first line. If either of these is 1, 
or if the number of rows multiplied by the number of columns does 
not equal the total number of values read, a one-dimensional array is 
produced.

The definition of “the first line” is “everything read up to the first 
line break that does not immediately follow a comma or a backslash, 
or up to the first closing square bracket tha t is immediately followed 
by a comma” .

The kinds of things tha t can be read this way include anything that 
was written by the corresponding printf, “typical” tables of numbers, 
and lprinted or saved (in text form) Maple lists and lists of lists.

The result is returned as an hfarray of one or two dimensions.

hx The following input must make up a one or two dimensional array of 
floating-point numbers in IEEE hex-dump format (16 characters per 
number). The dimensions of the array are determined as described for 
the "°/ohe", "°/0h f ", and "°/0hg" formats above.
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s The next non-blank characters, up to but not including the following 
blank characters (or the end of the string), are returned as a Maple 
string.

a Maple collects and parses the next non-blank characters, up to but not 
including the following blank characters (or the end of the string). An 
unevaluated Maple expression is returned.

m The next characters must be a Maple expression encoded in Maple’s .m 
file format. Maple reads enough characters to parse a single complete 
expression; it ignores the width specification. The Maple expression 
is returned.

с This code returns the next character (blank or otherwise) as a Maple 
string. If a width is specified, tha t many characters (blank or other­
wise) are returned as a single Maple string.

[ ...]  The characters between “ [” and “] ” become a list of characters that 
are acceptable as a character string. Maple scans characters from the 
input until it encounters one that is not in the list. The scanned 
characters are then returned as a Maple string.

If the list begins with a character, the list represents all those 
characters not in the list.

If a “] ” is to appear in the list, it must immediately follow the opening 
“ [” or the if one exists.

You can use a in the list to represent a range of characters. For 
example, “A-Z” represents any capital letter. If a is to appear as 
a character instead of representing a range, it must appear either at 
the beginning or the end of the list.

{ .. .}wft The characters between the left brace, and the right brace, 
are options for scanning Arrays, Matrices, or Vectors (i.e., the 

various classes of rtable). The optional w is an integer specifying the 
width to scan for each element (any width specified before the opening 

would apply to the entire rtable being scanned, but is ignored). 
The character f specifies the format code, and can be any format code 
supported by scanf except [. . .] or {. . .}. The character t, which 
must be one of a, m, c, or r, specifies the type of object to be created 
(Array, Matrix, Vector [column], or Vector [row] respectively).

Details on rtable formatting options are described in the help page 
?rtable_scanf.
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M The next sequence of characters must correspond to a well formed XML 
element. The result is a Maple function call whose name is constructed 
from the XML element, whose arguments are either function calls for 
the child elements or the CDATA as strings, and whose attributes are 
equations defining the XML attributes of the object.

n The total number of characters scanned up to the “°/0n” is returned as 
a Maple integer.

Maple skips non-blank characters in the format but not within a con­
version specification (where they must match the corresponding charac­
ters in the input). It ignores white space in the format, except that a space 
immediately preceding a “°/0c” specification causes the “°/0c” specification 
to skip any blanks in the input.

If it does not successfully scan any objects, Maple returns an empty
list.

The f  scanf and scanf commands use the underlying implementation 
that the hardware vendor provides for the “°/0o” and “°/0x” formats. As a 
result, input of octal and hexadecimal integers is subject to the restrictions 
of the machine architecture.

The following example defines a Maple procedure tha t reads a file 
containing a table of numbers, in which each row can have a different 
width. The first number in each row is an integer specifying how many 
real numbers follow it in that row, and commas separate all the numbers 
in each row.

> ReadRows := proc( fileName::string )
> local A, count, row, num;
> A := [];
> do
> # Determine how many numbers are in this row.
> count := f scanf (fileName, "°/0d") ;
> if count = 0 then break end if;
> if count = [] then
> error "integer expected in file"
> end if;
> count := count[1];
>
> # Read the numbers in the row.
> row := [] ;
> while count > 0 do
> num := f scanf (fileName, " Де") ;
> if num = 0 then
> error "unexpected end of file"
> end if;
> if num = [] then
> error "number expected in file"
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>
>
>
>
>
>
>
>

end if;
row := [op(row) ,num[l] ] ; 
count := count - 1

end do;
# Append the row to the accumulated result. 
A := [op(A),row]

end do
> A
> end proc:

Reading Maple Statements
The readstat command reads a single Maple statement from the 
terminal input stream. Maple parses and evaluates the statement, and 
returns the result. Call the readstat command as follows.

readstat( prompt, ditto3, ditto2, dittol )

The prompt argument specifies the prompt tha t readstat is to use. If you 
omit the prompt argument, Maple uses a blank prompt. You can either 
supply or omit all of the three arguments ditto3, ditto2, and dittol. If you 
supply them, they specify the values which Maple uses for %%%, 0/o% and 
°/0 in the statement that readstat reads. Specify each of these arguments 
as a Maple list containing the actual value for substitution. This allows 
for values tha t are expression sequences. For example, if °/0 is to have the 
value 2*n+3 and 0/00/0 is to have the value a,b, then use [2*n+3] for dittol 
and [a,b] for ditto2 .

The response to readstat must be a single Maple expression. The 
expression may span more than one input line, but readstat does not 
permit multiple expressions on one line. If the input contains a syntax 
error, readstat returns an error describing the nature of the error, and 
its position in the input.

The following example shows a trivial use of readstat within a pro­
cedure.

> InteractiveDiff := proc( )
> local a, b;
> a := readstat("Please enter an expression: ");
> b := readstat("Differentiate with respect to: ");
> printf("The derivative of %a with respect to %a is °/0a\n" ,
> a,b,diff(a,b))
> end proc:
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Reading Tabular Data
The readdata command reads TEXT files containing tables of data. For 
simple tables, you will find this more convenient than writing your own 
procedure by using a loop and the fscanf command.

Use the following syntax to call the readdata command.

readdata( fileldentifier, da.ta.Type, numColumns )

The fileldentifier is the name or descriptor of the file from which readdata 
reads the data. The dataType  must be one of integer or float, or you 
can omit it, in which case readdata assumes float. If readdata needs 
to read more than one column, you can specify the type of each column 
by using a list of data types.

The numColumns argument indicates how many columns of data are 
to be read from the file. If you omit numColumns, readdata reads the 
number of columns specified by the number of data types tha t you spec­
ified (one column if you did not specify any dataType).

If Maple reads only one column, readdata returns a list of the values 
read. If Maple reads more than one column, readdata returns a list of 
lists, each sublist of which contains the data read from one line of the file.

If you call readdata with a file name, and that file is not yet open, 
Maple opens it in READ mode as a TEXT file. Furthermore, if you call 
readdata with a file name, it automatically closes the file when readdata 
returns.

The following two examples are equivalent uses of readdata to read 
a table of (x , y, z)-triples of real numbers from a file.

> A1 := readdata("my_xyz_file.text",3);

A 1 : =  [[1.5, 2 .2 , 3.4], [2.7, 3.4, 5.6], [1.8 , 3.1, 6.7]]

> A2 := readdata("my_xyz_file.text",[float,float,float]);

A2 := [[1.5, 2.2, 3.4], [2.7, 3.4, 5.6], [1.8, 3.1, 6.7]]
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10.6 Output Commands
Configuring Output Parameters by using the interface 
Command
The interface command is not an output command. It is a mechanism 
to provide communication between Maple and the user interface (called 
Iris). You can use it to configure several parameters affecting the output 
produced by various commands within Maple.

To set a parameter, call the interface command as follows.

interface( va r ia b le  = express ion  )

The variable argument specifies which parameter you wish to change, and 
the expression argument specifies the value that the parameter is to have. 
See the following sections or ? int erf ace for which parameters you can 
set. You may set multiple parameters by giving several arguments of the 
form va r ia b le  = e x p r e s s io n , with commas separating them.

To query the setting of a parameter, use the following syntax.

interface( va r ia b le  )

The variable argument specifies the parameter to query. The interface 
command returns the current setting of the parameter. You can query 
only one parameter at a time.

One-Dimensional Expression Output
The lprint command prints Maple expressions in a one-dimensional no­
tation very similar to the format Maple uses for input. In most cases, 
you could return this output to Maple as input, and the same expression 
would result. The single exception is if the expression contains Maple 
names containing non-alphanumeric characters.

The lprint command is called as follows.

lprint( expressionSequence  )

The expressionSequence consists of one or more Maple expressions. Each 
of the expressions is printed in turn, with three spaces separating each of 
them. Maple prints a new line character after the last expression.

Maple always sends the output tha t lprint produces to the default 
output stream. You can use the writeto and appendto commands, de­
scribed later, to temporarily redirect the default output stream to a 
file.
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The interface parameter screenwidth affects the output of lprint.
If possible, Maple wraps the output between tokens. If a single token is 
too long to display (for example, a very long name or number), Maple 
breaks it across lines, and prints a backslash, “\ ” , before each such break.

The following example illustrates lprint output, and how screenwidth 
affects it.

> lprint(expand((x+y)~5));
x~5+5*x~4*y+10*x~3*y~2+10*x~2*y~3+5*x*y~4+y~5

> interface(screenwidth=30);

> lprint(expand((x+y)~5));
x~5+5*x~4*y+10*x~3*y~2+10*x~2
*y~3+5*x*y~4+y~5

Two-Dimensional Expression Output
The print command prints Maple expressions in a two-dimensional no­
tation. Depending on the version of Maple you are running, and the user 
interface you are using, this notation is either the standard math notation 
tha t appears in text books and other typeset mathematical documents, or 
an approximation of standard math notation using only text characters. 

Use the following method to call the print command.

print ( expression.Sequen.ee )

The expressionSequen.ee consists of one or more Maple expressions. Maple 
prints each expression, in turn, with commas separating them.

The output produced by print is always sent to the default output 
stream. You can use the writeto and appendto commands, described 
later, to temporarily redirect the default output stream to a file.

Several interface parameters affect the output of print. They are 
set using the syntax
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interface( parameter = value )

They include:

prettyprint This selects the type of output tha t print is to produce. 
If you set prettyprint to 0, print produces the same output as 
lprint. If you set prettyprint to 1, print produces a simulated 
math notation using only text characters. If you set prettyprint to
2, and the version of Maple you are running is capable of it, print 
produces output using standard math notation. The default setting 
of prettyprint is 2.

indent amount This specifies the number of spaces that Maple uses to in­
dent the continuation of expressions tha t are too large to fit on a single 
line. This parameter takes effect only when you set prettyprint (see 
above) to 1, and/or when Maple is printing procedures. The default 
setting of indentamount is 4.

labelling or labeling You can set this to true or false, indicating 
whether or not Maple should use labels to represent common subex­
pressions in large expressions. The use of labels can make large expres­
sions easier to read and comprehend. The default setting of labelling 
is true.

labelwidth This indicates the size tha t a subexpression must have in 
order for Maple to consider it for labeling (if labelling is true). The 
size is the approximate width, in characters, of the expression when 
printed with print and prettyprint = 1.

screenwidth This indicates the width of the screen in characters. When 
prettyprint is 0 or 1, Maple uses this width to decide when to wrap 
long expressions. When prettyprint is 2, the user interface must deal 
with pixels instead of characters, and determines the width autom at­
ically.

verboseproc Use this parameter when printing Maple procedures. If you 
set verboseproc to 1, Maple only prints user defined procedures; 
Maple shows system defined procedures in a simplified form giving- 
only the arguments, and possibly a brief description of the procedure. 
If you set verboseproc to 2, Maple prints all procedures in full. Set­
ting verboseproc to 3 prints all procedures in full, and prints the 
contents of a procedure’s remember table in the form of Maple com­
ments after the procedure.



512 • Chapter 10: Input and Output

When you use Maple interactively, it automatically displays each com­
puted result. The format of this display is the same as if you used the 
print command. Therefore, all the interface parameters that affect the 
print command also affect the display of results.

The following example illustrates print output, and how prettyprint, 
indent amount, and screenwidth affect it.

> print(expand((x+y)~6));

x 6 +  6 x 5 у +  15 x A y2 +  20 x 3 y3 +  15 x 2 yA +  6 x y5 +  y6

> interface(prettyprint=l);
> print(expand((x+y)~6));
6 5 4 2  3 3  2 4  5

x + 6 x  у + 15 x у + 20 x у + 15 x у + 6 х у
6

+ У

> interfасе(screenwidth=35);
> print(expand((x+y)~6));
6 5 4 2 3 3

x + 6 x  у + 15 x у + 20 x у
2 4 5 6

+ 15 x у + 6 х у + у

> interfасе(indentamount=l);
> print(expand((x+y)~6));
6 5 4 2 3 3

x + 6 x  у + 15 x у + 20 x у
2 4 5 6

+ 15 x у + 6 х у + у
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> interface(prettyprint=0);
> print(expand((x+y)~6));
x~6+6*x~5*y+15*x~4*y~2+20*x~3*y~3+
15*x~2*y~4+6*x*y~5+y~6

W riting Maple Strings to a File
The writeline command writes one or more Maple strings to a file. Each 
string appears on a separate line. Call the writeline command as follows.

writeline( fileldentifier, stringSequence )

The fileldentifier is the name or description of the file to which you want 
to write, and stringSequence is the sequence of strings that writeline 
should write. If you omit the stringSequence, then writeline writes a 
blank line to the file.

W riting Arbitrary Bytes to a File
The writebytes command writes one or more individual characters or 
bytes to a file. You may specify the bytes either as a string or a list of 
integers.

The following syntax calls the writebytes command.

writebytes( fileldentifier, bytes )

The fileldentifier is the name or descriptor of the file to which writebytes 
is writing. The bytes argument specifies the bytes tha t writebytes writes. 
This can be either a string or a list of integers. If you call writebytes 
with a file name, and that file is not yet open, Maple opens it in WRITE 
mode. If you specify the bytes as a string, Maple opens the file as a TEXT 
file; if you specify the bytes as a list of integers, Maple opens the file as a 
BINARY file.

The following example defines a Maple procedure which reads an en­
tire file and copies it to a new file using writebytes.

> CopyFile := proc( sourceFile::string, destFile::string )
> writebytes(destFile, readbytes(sourceFile, infinity));
> end proc:
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Formatted Output
The fprintf and printf commands write objects to a file, using a spec­
ified format.

Call the fprintf and printf commands as follows.

fprintf( fileldentifier, format, expressionSequence ) 
printf( format, expressionSequence )

The fileldentifier is the name or descriptor of the file to which Maple is to 
write. A call to printf is equivalent to a call to fprintf with default 
as the fileldentifier. If you call fprintf with a file name, and that file is 
not yet open, Maples opens it in WRITE mode as a TEXT file.

The format specifies how Maple is to write the elements of the expres­
sionSequence. This Maple string is made up of a sequence of formatting 
specifications, possibly separated by other characters. Each format spec­
ification has the following syntax, where the brackets indicate optional 
components.

"/[flag’s] [width] [.precision] [modifiers] code

The symbol begins the format specification. One or more of the fol­
lowing flags can optionally follow the “°/0” symbol:

+ A signed numeric value is output with a leading “+” or sign, as 
appropriate.

-  The output is left justified instead of right justified.

blank  A signed numeric value is output with either a leading or a 
leading blank, depending on whether the value is negative or non­
negative.

0 The output is padded on the left (between the sign and the first digit) 
with zeroes. If you also specify a , the “0” is ignored.

{} The braces enclose a set of detailed formatting options for printing 
an rtable. These are described in more detail in the help page 
?rtable_printf.

The optional width indicates the minimum number of characters to 
output for this field. If the formatted value has fewer characters, Maple 
pads it with blanks on the left (or on the right, if you specify “- ”).
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The optional precision specifies the number of digits tha t appear after 
the decimal point for floating-point formats, or the maximum field width 
for string formats.

You may specify both width and/or precision as in which case 
Maple takes the width and/or precision from the argument list. The width 
and/or precision arguments must appear, in tha t order, before the argu­
ment that is being output. A negative width argument is equivalent to 
the appearance of the flag.

The optional modifiers are used to indicate the type of the value to 
be printed:

1 or L The letters 1 and L are supported for compatibility with the С 
printf function, and indicate that a "long int" or "long long" is to 
be formatted. In Maple, these flags have no effect.

zc or Z One of these flags can precede any of the numeric formats, 
namely d, o, x, e, f , or g, indicating tha t a complex value is to be 
formatted. Each of the real and imaginary parts of the complex value 
are formatted using the specified format, with the z or Z elided. The 
z format prints the real part, followed by a the character specified by 
c, followed by the imaginary part. The Z format prints the value in 
the form x+yi, where x is the real part, у is the imaginary part, and i 
is the current setting of interface (imaginaryunit). If у is negative, 
a "-" is output instead of a " +  ". If a supplied value is not complex, 
it is treated as a complex value with a zero imaginary part.

The code indicates the type of object tha t Maple is to write. The code 
can be one of the following.

d Formats the object as a signed decimal integer.

о Formats the object as an unsigned octal (base 8) integer.

x or X Formats the object as an unsigned hexadecimal (base 16) integer. 
Maple represents the digits corresponding to the decimal numbers 10 
through 15 by the letters “A” through “F” if you use “X”, or “a” 
through “f” if you use “x”.

e or E Formats the object as a floating-point number in scientific nota­
tion. One digit will appear before the decimal point, and precision 
digits will appear after the decimal point (six digits if you do not 
specify a precision). This is followed by the letter “e” or “E”, and a 
signed integer specifying a power of 10. The power of 10 will have a 
sign and at least three digits, with leading zeroes added if necessary.
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If the value being formatted is infinity, -infinity, or undefined, the 
output is "Inf", "-Inf", or "NaN" respectively.

f Formats the object as a fixed-point number. The number of digits spec­
ified by the precision will appear after the decimal point.

If the value being formatted is infinity, -infinity, or undefined, the 
output is "Inf", "-Inf", or "NaN" respectively.

g or G Formats the object using “d”, “e” (or “E” if you specified “G”), or 
“f” format, depending on its value. If the formatted value does not 
contain a decimal point, Maple uses “d” format. If the value is less 
than 10-4  or greater than 10Precislon  ̂ Maple uses “e” (or “E”) format. 
Otherwise, Maple uses “f” format.

If the value being formatted is infinity, -infinity, or undefined, the 
output is "Inf", "-Inf", or "NaN" respectively.

у or Y The floating-point object is formatted in byte-order-independent 
IEEE hex dump format (16 characters wide). At least 16 characters 
will always be output, regardless of the specified width. The preci­
sion is ignored. The digits corresponding to the decimal numbers 10 
through 15 are represented by the letters "A" through "F" if uppercase 
Y was specified, or "a" through "f" if lowercase у was specified.

с Outputs the object, which must be a Maple string containing exactly 
one character, as a single character.

s Outputs the object, which must be a Maple string of at least width 
characters (if specified) and at most precision characters (if specified).

a or A Outputs the object, which can be any Maple object, in correct 
Maple syntax. Maple outputs at least width characters (if specified) 
and at most precision characters (if specified). Note: truncating a 
Maple expression by specifying a precision can result in an incomplete 
or syntactically incorrect Maple expression in the output.

The "°/0a" and "°/0A" formats are identical, except that "°/0A" will omit 
any quotes that would normally appear around Maple symbols that 
require them.

q or Q These are similar to "°/0a" or "°/0A", except that "°/0q" or "°/0Q" will 
consume all remaining arguments and print them as an expression 
sequence, with each element formatted in "°/0a" or "°/0A" format re­
spectively. No additional format specifiers can appear after "°/0q" or 

since there will be no arguments left to format.
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m The object, which can be any Maple object, is output in Maple’s “.m” 
file format. Maple outputs at least width characters (if specified), 
and at most precision characters (if specified). Note: truncating a 
Maple “ . m” format expression by specifying a precision can result in 
an incomplete or incorrect Maple expression in the output.

°/0 A percent symbol is output verbatim.

Maple outputs characters tha t are in format but not within a format 
specification verbatim.

All of the formats apply to Arrays (type Array), Matrices (type 
Matrix), Vectors (type Vector), and hfarrays (type hfarray), all of which 
are objects of type rtable.

If no rtable-specific formatting options are specified (via the {...} op­
tion, see ?rtable_printf), the °/0a, °/0A, °/0m, and °/0M format codes will print 
a representation of the rtable structure itself. For example, °/0a would print 
a Matrix, Vector, or Array call.

If no additional rtable-specific formatting options are specified for a 
format code other than °/0a, °/0A, °/0m, and °/0M, or if an empty rtable option 
sequence (i.e., just {}) is specified for any format code, the following- 
default formatting is applied:

One-dimensional objects are formatted as one long line, with the ele­
ments separated by at least one space.

Objects of N dimensions, where N  > 1, are formatted as a sequence of 
( N —l)-dimensional objects separated by N —2 blank lines. Therefore, two- 
dimensional objects are formatted in the obvious way, three-dimensional 
objects are formatted as a series of two-dimensional objects separated by 
blank lines, and so on.

Any of the floating-point formats can accept integer, rational, or 
floating-point objects; Maple converts the objects to floating-point val­
ues and outputs them appropriately.

The fprintf and printf commands do not automatically start a 
new line at the end of the output. If you require a new line, the format 
string must contain a new line character, “\n”. Output from fprintf 
and printf is not subject to line wrapping at interface (screenwidth) 
characters.

The “°/0o” , “°/0x” , and “°/0X” formats use the underlying implementation 
that the hardware vendor provides. As a result, output of octal and hex­
adecimal values is subject to the restrictions of the machine architecture.
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W riting Tabular Data
The writedata command writes tabular data to TEXT files. In many cases, 
this is more convenient than writing your own output procedure by using 
a loop and the fprintf command.

Call the writedata command in the following manner.

writedata( fileldentifier, data, dataType, defaultProc )

The fileldentifier is the name or descriptor of the file to which writedata 
writes the data.

If you call writedata with a filename, and tha t file is not yet open, 
Maple opens it in WRITE mode as a TEXT file. Furthermore, if you call 
writedata with a file name, the file automatically closes when writedata 
returns.

The data must be a vector, matrix, list, or list of lists.1 If the data 
is a vector or list of values, writedata writes each value to the file on a 
separate line. If the data is a matrix or a list of lists of values, writedata 
writes each row or sublist to the file on a separate line, with tab  characters 
separating the individual values.

The dataType is optional, and specifies whether writedata is to write 
the values as integers, floating-point values (the default), or strings. If you 
specify integer, the values must be numeric, and writedata writes them 
as integers (Maple truncates rational and floating-point values to inte­
gers). If you specify float, the values must be numeric, and writedata 
writes them as floating-point values (Maple converts integer and rational 
values to floating-point). If you specify string, the values must be strings. 
When writing matrices or lists of lists, you can specify the dataType  as 
a list of data types, one corresponding to each column in the output.

The optional defaultProc argument specifies a procedure tha t writedata 
calls if a data value does not conform to the dataType you specified 
(for example, if writedata encounters a non-numeric value when the 
dataType is float). Maple passes the file descriptor corresponding to 
the fileldentifier, along with the non-conforming value, as an argument to 
the defaultProc. The default defaultProc simply generates the error, Bad 
data found. A more useful defaultProc might be the following.

> UsefulDef aultProc := proc(f,x) fprintf (f , "°/0a" ,x) end proc:

1For inform ation about how to read and write rtable-based M atrices and Vectors, 
see the help pages ? Im port M atrix  and ?Im portV ector.
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This procedure is a sort of “catch-all” ; it is capable of writing any kind 
of value to the file.

The following example computes a 5 by 5 Hilbert matrix, and writes 
its floating-point representation to a file.

> writedataC'hilbertFile.txt",linalg[hilbert](5)):

Examining the file shows:

1 .5 .3333333333 .25 .2
.5 .3333333333 .25 .2 .1666666667
.3333333333 .25 .2 .1666666667 .1428571429
.25 .2 .1666666667 .1428571429 .125
.2 .1666666667 .1428571429 .125 .1111111111

Flushing a Buffered File
I/O  buffering may result in a delay between when you request a write 
operation and when Maple physically writes the data to the file. This is 
to capitalize on the greater efficiency of performing one large write instead 
of several smaller ones.

Normally, the I/O  library chooses when to write to a file automatically. 
In some situations, however, you may desire to ensure tha t the data you 
write has actually made it into the file. For example, under UNIX, a 
common procedure is to run a command, such as “t a i l  - f  fileName” , in 
another window in order to monitor the information as Maple is writing 
it. For cases such as these, the Maple I/O  library provides the f f lu s h  
command.

Call the f f lu s h  command using the following syntax.

f f lu s h (  fileldentifier )

The fileldentifier is the name or descriptor of the file whose buffer Maple 
is to flush. When you call f f lu s h , Maple writes all information tha t is in 
the buffer but not yet in the physical file to the file. Typically, a program 
would call f f lu s h  whenever something significant is written (for example, 
a complete intermediate result or a few lines of output).

Note tha t you do not need to use f f lu sh ; anything you write to a 
file will physically be written no later than when you close the file. The 
f f lu s h  command simply forces Maple to write data on demand, so that 
you can monitor the progress of a file.
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Redirecting the d e f a u l t  Output Stream
The writeto and appendto commands redirect the default output 
stream  to  a file. This means th a t any operations th a t write to  the  default 
stream  write to  the file you specify instead.

You can call the writeto and appendto commands as follows.

w r i t e t o ( fileName ) 

a p p e n d t o ( fileName )

The fileName argum ent specifies the  name of the file to  which Maple is 
to  redirect the output. If you call writeto, Maple truncates the  file if it 
already exists, and writes subsequent ou tput to  the  file. The appendto 
command appends to  the end of the file if the  file already exists. If the 
file you specify is already open (for example, it is in use by other file I /O  
operations), Maple generates an error.

The special fileName terminal (specified as a name, not a string) 
causes Maple to  send subsequent default output to  the original default 
output stream  (the one th a t was in effect when you started  Maple). The 
calls writeto (terminal) and appendto (terminal) are equivalent.

Issuing a writeto or appendto call directly from the Maple prom pt 
is not the  best choice of action. W hen writeto or appendto are in effect, 
Maple also writes any error messages th a t may result from subsequent 
operations to  the  file. Therefore, you cannot see w hat is happening. You 
should generally use the writeto and appendto commands within proce­
dures or files of Maple commands th a t the read comm and is reading.

10.7 Conversion Commands 
С or Fortran Generation
Maple provides commands to  transla te  Maple expressions into two other 
program ming languages, С and Fortran. Conversion to  other program ­
ming languages is useful if you have used M aple’s symbolic techniques to  
develop a numeric algorithm, which then  may run faster as a С or Fortran 
program  than  as a Maple procedure.

Perform  a conversion to  Fortran or С by using the fort ran or С com­
m ands in the  codegen package, respectively. There are also several sup­
port commands for code generation, which can be found in the  codegen 
package.

Call the  f ortran and С commands using the following syntax.
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codegen[fortran]( express ion ,  op tions  ) 
codegen[C]( express ion ,  op tions  )

The expression can take one of the following forms:

1. A single algebraic expression: Maple generates a sequence of С or 
Fortran  statem ents to  com pute the value of this expression.

2. A list of expressions of the form name= e x p r e s s io n : Maple generates 
a sequence of statem ents to  compute each expression and assigns it 
to  the corresponding name.

3. A nam ed array of expressions: Maple generates a sequence of С or 
Fortran statem ents to  com pute each expression and assigns it to  the 
corresponding element of the array.

4. A Maple procedure: Maple generates a С function or Fortran subrou­
tine.

The fortran comm and uses the  c±ortran/function_name‘ com­
m and when translating  function names to  their Fortran  equivalents. This 
command takes three arguments: the Maple function name, the  num ber 
of argum ents, and the precision, and returns a single Fortran  function 
name. You can override the default translations by assigning values to  
the remember table of c f ortran/function_namec.

> ‘fortran/functi оплате*(arctan,1,double) := datan;

fo rtran /function_nam e(arc tan , 1, double) :=  datan

> ‘fortran/function^name'(arctan,2,single) := atan2;

fo rtran /function_nam e(arc tan , 2, single) :=  atan2

W hen translating  arrays, the С comm and re-indexes all array indices 
to  begin w ith 0, since the base of С arrays is 0. The fortran command 
re-indexes arrays to  begin w ith 1, bu t only when Maple is transla ting  a 
procedure.

Here Maple symbolically calculates the anti-derivative.

> f := unapply( int( l/(l+x~4), x ) , x );
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/ : = £ - > • -  л /2  \n(X X ) Л—  л /2  arctan(x  л /2  +  1)
J 8 V V - x x /2  +  Г  4 V v 7

+  -  л /2  arctan(x  л /2  — 1)

The f ortran comm and generates a Fortran  routine.

> codegen[fortran](f, optimized);

с The options were : operatorarrow 
doubleprecision function f(x) 
doubleprecision x

doubleprecision tl 
doubleprecision tl2 
doubleprecision tl6 
doubleprecision t2 
doubleprecision t3 
doubleprecision t8

tl = sqrt(2.D0) 
t2 = x**2 
t3 = x*tl
t8 = log((t2+t3+l)/(t2-t3+l)) 
tl2 = atan(t3+l) 
tl6 = atan(t3-l) 
f = tl*t8/8+tl*t12/4+tl*t16/4 
return 

end

Now translate  the same expression to  C.

> codegen[C] (f, optimized);

/* The options were : operatorarrow */ 
double f(x) 
double x;
{

double tl; 
double tl2; 
double tl6; 
double t2; 
double t3; 
double t8;
{

tl = sqrt(2.0); 
t2 = x*x; 
t3 = x*tl;
t8 = log((t2+t3+l.0)/ (t2-t3+l.0)); 
tl2 = atan(t3+l.0); 
tl6 = atan(t3-l.0);
return(tl*t8/8.0+tl*t12/4.0+tl*t16/4.0);
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>
>

Generation
Maple supports conversion of Maple expressions to  the  MTgX typesetting 
language. Conversion to  typesetting  languages is useful when you need to  
insert a result in a scientific paper.

You can perform conversion to  MTgX by using the latex command. 
Call the  latex command as follows.

l a t e x ( expression, fileName )

The expression can be any m athem atical expression. Maple-specific ex­
pressions, such as procedures, are not translatable. The fileName is op­
tional, and specifies th a t Maple writes the transla ted  ou tput to  the file 
you specified. If you do not specify a fileName, Maple writes the output 
to  the default output stream  (your session).

The latex command knows how to transla te  most types of m athem at­
ical expressions, including integrals, limits, sums, products, and matrices. 
You can expand the capabilities of latex by defining procedures with 
names of the form ‘ la tex /functionN am e c. Such a procedure is respon­
sible for form atting calls to  the  function called functionName. You should 
produce the ou tput of such form atting functions w ith printf. latex uses 
writeto to  redirect the  ou tput when you specify a fileName.

The latex command does not generate the  commands th a t 
requires to  put the typesetting  system into m athem atics mode ($...$, for 
exam ple).

The following example shows the generation of MTgX for an equation 
for an integral and its value. Notice the use of Int, the inert form of int, 
to  prevent evaluation of the left hand side of the equation th a t Maple is 
form atting.

> Int(l/(x~4+l),x) = int(l/(x~4+l),x);

dx =  -  V2ln(x2 +  xVl  +  1)
x  +  1 8 x 2 — x \/2  +  1

-  \/2  arctan(x  \/2  +  1) +  -  \/2  arctan(x  \/2  — 1)
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> latex(Z);

\int \! \left( {х}~{4}+1 \right) ~{-l}{dx}=l/8 
\,\sqrt {2}\ln \left( {\frac {{x}~{2}+x\sqrt 
{2}+lH{x}~{2}-x\sqrt {2>+l>> \right) +l/4\,
\sqrt {2}\arctan \left( x\sqrt {2}+l \right) + 
l/4\,\sqrt {2}\arctan \left( x\sqrt {2}-l 
\right)

You can also export a whole Maple worksheet in M /gX form at by 
choosing E x p o rt A s from the F ile  menu, then  LaTeX . For more infor­
m ation, see Section 7.3 of the Learning Guide.

Conversion between Strings and Lists of Integers
The readbytes and writebytes commands described in sections 10.5 
and 10.6 can work w ith either Maple strings or lists of integers. You 
can use the convert command to  convert between these two form ats as 
follows.

convert( string, bytes ) 

convert( integerList, bytes )

If you pass convert (. . . ,bytes) a string, it returns a list of integers; if 
you pass it a list of integers, it returns a string.

Due to  the way strings are implem ented in Maple, the character cor­
responding to  the byte-value 0 cannot appear in a string. Therefore, if 
integerList contains a zero, convert returns a string of only those char­
acters corresponding to  the  integers preceding the occurrence of 0 in the 
list.

Conversion between strings and lists of integers is useful when Maple 
must in terpret parts of a stream  of bytes as a character string, while it 
must interpret other parts as individual bytes.

In the  following example, Maple converts a string to  a list of integers. 
Then, it converts the same list, but w ith one entry changed to  0, back to  
a string. Notice th a t the string is truncated  at the location of the 0.

> convert("Test String",bytes);

[84, 101, 115, 116, 32, 83, 116, 114, 105, 110, 103]

> convert([84,101,115,116,0,83,116,114,105,110,103],bytes);

“Test”



10.7 Conversion Commands • 525

The parse command converts a string of valid Maple input into the cor­
responding Maple expression. The expression is simplified, but not eval­
uated.

Use the parse command as follows.

Parsing Maple Expressions and Statements

p a r s e ( string, options )

The string argum ent is the string th a t needs parsing. It must describe a 
Maple expression (or statem ent, see below) by using the Maple language 
syntax.

You may supply one or more options to  the parse command:

statement This indicates th a t parse is to  accept statem ents in addition 
to  expressions. However, since Maple does not allow the existence of 
unevaluated statem ents, parse does evaluate the string if you specify 
statement.

nosemicolon Normally, parse supplies a term inating semicolon, if 
the  string does not end in a semicolon or a colon, If you
specify nosemicolon, this does not happen, and Maple generates 
an unexpected end of input error if the  string is incomplete. The 
readstat command, which uses readline and parse, makes use of 
th is facility to  allow multi-line inputs.

If the string passed to  parse contains a syntax error, parse generates 
an error (which you can trap  w ith traperror) of the following form.

incorrect syntax in parse:

errorDescription (errorLocation)

The errorDescription describes the nature of the error (for example, ‘ + ‘ 
unexpected, or unexpected end of input). The errorLocation gives the 
approxim ate character position within the string at which Maple detected 
the error.

W hen you call parse from the Maple prom pt, Maple displays the 
parsed result depending on whether the call to  parse ends in a semicolon 
or a colon. W hether the string passed to  parse ends in a semicolon or a 
colon does not m atter.

> parse("a+2+b+3");



> parse("sin(3.0)"):
> 7»;

.1411200081

Formatted Conversion to and from Strings
The sprintf and sscanf commands are similar to  fprintf/printf and 
fscanf/scanf , except th a t they read from or write to  Maple strings in­
stead of files.

Call the sprintf command using the following syntax.
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a +  5 +  b

sprintf ( format, expression.Sequen.ee )

The format specifies how Maple is to  form at the  elements of the expres- 
sionSequence. This Maple string is made up of a sequence of form atting 
specifications, possibly separated by other characters. See 10.6.

The sprintf command returns a string containing the form atted re­
sult.

Call the  sscanf command as follows, 

s s c a n f ( sourceString, format )

The sourceString provides the input for scanning. The format specifies 
how Maple is to  parse the input. A sequence of conversion specifications 
(and possibly other anticipated characters) make up this Maple string. 
See 10.5. The sscanf comm and returns a list of the scanned objects, ju st 
as fscanf and scanf do.

The following example illustrates sprintf and sscanf by converting a 
floating-point num ber and two algebraic expressions into a floating-point 
form at, Maple syntax, and Maple .m form at, respectively. This string is 
then  parsed back into the corresponding objects using sscanf.

> s := sprintf ("°/04.2f %a °/0m" ,evalf (Pi) , sin(3) , cos(3)) ; 

s :=  “3.14 sin(3) -%$cosG6# \ “\  “$”

> ssca n f ( s , "°/0f  %a °/0m");
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[3.14, sin(3), cos(3)]

10.8 A Detailed Example
This section provides an example th a t uses several of the  I /O  facilities 
described in this chapter to  generate a Fortran  subroutine in a tex t file. In 
this example, you can find all of the required Maple commands typed on 
the command line. In general, for such a task  you would write a procedure 
or, at the very least, a file of Maple commands.

Suppose you wish to  com pute values of the function 1 — erf(x) +  
exp(—x) for many points on the interval [0,2], accurate to  five decimal 
places. By using the numapprox package from the Maple library, you can 
obtain a rational approxim ation for this function as follows.

> f := 1 - erf(x) + exp(-x):
> approx := numapprox[minimax](f, x=0..2, [5,5]);

approx :=  (1.872569003 +  (—2.480756984+
(1.455338215 +  (-.4103981070 +  .04512734455 x) x) x 
)ж )/(.9362855506 +  (-.2440826049+
(.2351099626 +  (.00115111416 -  .01091329716 x) x) x 
)x)

You can now create the  file and write the subroutine header to  the
file.

> file := "approx.f77":

> fprintf(file, "real function f(x)\nreal x\n"):

Before you can write the actual Fortran  ou tput to  the file, you m ust close 
the file. Otherwise, the fortran comm and attem pts to  open the file in 
APPEND mode, which results in an error if the file is already open.

> fclose(file):

Now you can write the actual Fortran  statem ents to  the file.
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> codegen[fortran]( [ ’f ,=approx], f i len am e= file ):

Finally, you add the rem ainder of the  Fortran subroutine syntax.

> fo p en (f i le ,  APPEND):
> f p r i n t f ( f i l e , "return\nend\n"):
> f c l o s e ( f i l e ) :

If you now examine the file, it looks like this:

real function f(x) 

real x

f = (0.187258Е1+(-0.2480777Е1+(0.1455351E1+

#(-0.4104024E0+0.4512788E-l*x)*x)*x)*x)/(0.9 

#362913E0+(-0.2440864E0+(0.235111E0+(0.11504 

#53E-2-0.1091373E-l*x)*x)*x)*x) 

return 

end

This subroutine is now ready for you to  compile and link into a Fortran 
program.

10.9 Notes to С Programmers
If you have experience program ming in the С or C + +  program ming lan­
guages, m any of the I /O  commands described in this chapter will seem 
familiar. This is not coincidental, as the Maple I /O  library design pur­
posely emulates the С standard  I /O  library.

In general, the Maple I /O  commands work in a similar m anner to  
their С counterparts. The differences th a t arise are the result of differences 
between the Maple and С languages, and how you use them . For example, 
in the  С library, you m ust pass the sprintf function a buffer into which 
it writes the  result. In Maple, strings are objects th a t you can pass around 
as easily as numbers, so the sprintf command simply returns a string 
th a t is sufficiently long to  hold the result. This m ethod is both  easier to  
work w ith and less error prone, as it removes the danger of writing past 
the end of a fixed length buffer.

Similarly, the  fscanf, scanf, and sscanf commands return  a list of 
the parsed results instead of requiring you to  pass references to  variables. 
This m ethod is also less error prone, as it removes any danger of passing 
the wrong type of variable or one of insufficient size.
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O ther differences include the use of a single command, filepos, to  
perform the work of two С functions, ft ell and f seek. You can do this 
in Maple, since functions can take a variable num ber of arguments.

In general, if you have С or C + +  program ming experience, you should 
have very little trouble using the Maple I /O  library.

10.10 Conclusion
This chapter has revealed the details of im porting and exporting da ta  and 
code into and out of Maple. Most commands discussed in this chapter are 
more prim itive than  those commands which you are likely to  use, such 
as save and writeto. The aforementioned Maple commands ensure th a t 
you are properly equipped to  write specialized exporting and im porting 
procedures. Their basis is similar to  the commands found in the popular 
С program ming language, although they have been extended to  allow easy 
printing of algebraic expressions.

Overall, this book provides an essential framework for understanding 
M aple’s program ming language. Each chapter is designed to  teach you to  
use a particular area of Maple effectively. However, a complete discussion 
of Maple can not fit into a single book. The Maple help system is an 
excellent resource and complements this volume. W hile this book teaches 
fundam ental concepts and provides a pedagogical introduction to  topics, 
the help system provides the  details on each command and feature. It 
explains such things as the options and syntax of Maple commands and 
serves as a resource for use of the  Maple interface.

Also, numerous authors have published m any books about Maple. 
These include not only books, such as this one, on the general use of 
Maple, but also books directed toward the use of Maple in a particular 
field or application. Should you wish to  consult books th a t parallel your 
own area of interest, th is book will still serve as a handy reference and 
guide to  Maple programming.
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11 Using Compiled Code in 
Maple

It is possible to  call routines w ritten  in С or Fortran by using M aple’s 
external calling facility. Maple makes extensive use of this facility to  call 
NAG and other numerical libraries. You can augment the rich suite of 
functions in Maple by writing your own libraries. There are also th ird  
party  external libraries available to  extend the power of Maple. External 
functions can be used to  improve performance because compiled code is 
usually much faster th an  interpreted code.

M aple’s external calling facility is very extensive, allowing a user to  
transla te  most da ta  from a Maple form at to  a hardw are form at for use 
in an external program. To balance power and flexibility w ith ease of 
use, the external calling application program  interface (API) is divided 
into three methods. All use the same basic interface, but each has very 
different back-end support routines.

Using any of the m ethods, a user can call a С routine. Using M ethods 
1 and 3, a user can call a Fortran  routine. M ethod 2 is not applicable 
to  Fortran routines (as discussed below). The structure of the procedure 
th a t defines the external call depends on the routine, and thus whether 
it was w ritten  in С or Fortran. However, the choice to  use С or Fortran 
routines is dependent on only the availability of routines th a t perform the 
desired function or, in the case of custom  routines, the preference of the 
developer writing the external library.

Method 1: Calling External Functions In most cases, compiled func­
tions use only standard  hardware types like integers, floating-point num ­
bers, strings, pointers (to strings, integers, and floating-point numbers), 
matrices, and vectors. In these cases, Maple can autom atically transla te  
between its internal representation and the hardware representation. Be­
cause th is m ethod does not require the use of a compiler, it is efficient

531



and easy to  use. This m ethod of directly calling the external code allows 
the use of an external library w ithout modification.

Method 2: Wrapper Generation M ethod 1 is lim ited by its use of only 
standard  d a ta  types. W hen dealing w ith more complicated compound 
types or passing functions or records as param eters, a compiled wrap­
per is needed. Because Fortran  does not use these da ta  structures, this 
m ethod applies only to  С routines. The w rapper performs the conversion 
between M aple’s internal representation and the hardw are representation. 
Maple autom atically generates and compiles wrappers, which are based 
on your specifications, to  interface w ith libraries of compiled code. This 
allows you to  use a greater diversity of external libraries th an  you can by 
simply directly calling the external function. External calls th a t use these 
w rappers require th a t a С compiler is installed.

Method 3: Custom izing Wrappers For flexibility beyond th a t available 
by either of the  other m ethods, an external A PI is provided for users who 
want to  augment existing wrappers or write custom wrappers. The user 
can write the w rapper in С or Fortran  as desired. This powerful m ethod 
also allows direct access to  Maple da ta  structures from the wrapper.

This chapter provides a technical overview of M aple’s external calling 
mechanism, and provides a context in which to  explain the external calling 
facilities.
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11.1 Method 1: Calling External Functions
To illustrate how M aple’s external calling facility is used, s ta rt by looking 
at a trivial example of a function w ritten  in C. Consider the  following code 
th a t adds two numbers and returns the result. Obviously, such a function 
would never be used since M aple’s + operator exists, bu t working through 
this example will dem onstrate the steps th a t are required to  use compiled 
code in Maple.

int add( int numl, int num2 )

■C
return numl+num2;

>

There are 3 basic steps required to  call an external function.



11.1 Method 1: Calling External Functions • 533

Step 1: D L L  Creation First, th is function needs to  be compiled into a 
Dynamic Link Library (Windows XXX.DLL), or Shared Library (Unix 
libXXX.so or M acintosh XXX.ShLib). For the rest of this chapter, the 
compiled library will be referred to  as a DLL. If the sources are down­
loaded from the internet or purchased, a DLL may already have been 
built. Otherwise, consult the compiler’s docum entation for help on how 
to build a DLL. W hen building the DLL ensure th a t you export the func­
tion th a t Maple is intended to  be able to  call. In this case, the  function 
name is add.

This is the only step th a t requires the  user to  have knowledge of 
a specific compiler. For the rem aining steps, it does not m atter if the 
function was w ritten  in С or Fortran.

Maple expects th a t the external library functions are compiled by 
using the _ s td c a l l  calling convention, which is the default under UNIX 
but must be specified explicitly on Windows.

Step 2: Function Specification To make the appropriate argum ent con­
versions, Maple requires some details about the  function th a t it is going 
to  call. At a minimum, Maple needs to  know the following:

• name of the function,

• type of param eters the function passes and returns, and

• name of the DLL containing the function.

The specification of the param eter types are independent of the  com­
piler. The same specification can be used regardless of the  language th a t 
was used to  compile the DLL. The example uses the С type int. In Maple, 
this is specified as in te g e r  [4 ] . The 4 in the  square brackets denotes the 
num ber of bytes used to  represent the  integer. Most С compilers use 4- 
byte in ts , bu t some older compilers may use 2-byte ints. M aple’s type 
specification is flexible enough to  support both  types of compiler integer 
sizes. See Table 11.1 for a m ap of the most common type relations.

Since numl and num2 are both  in ts , they can be specified as the fol­
lowing in Maple.

num l: : i n t e g e r [4] 
num2: : i n t e g e r [4]

The retu rn  type does not have a name so the keyword RETURN is used.

RETURN: : i n t e g e r [4]



Using all of this information, the complete function can be defined by 
calling the Maple function def ine_external.

> myAdd := define_external(
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> ’add’,
> ’numl’::integer[4] ,
> ’num2’ : : integer [4] ,
> ’RETURN’::integer[4]
> ’LIB’="mylib.dll"
> ;

It is im portant to  specify the function exactly, and to  ensure th a t the 
argum ents are in the correct order. Failure to  do this may result in strange 
behavior or program  crashes when executing step 3.

Step 3: Function Invocation Executing the def ine_external call for 
myAdd returns a Maple procedure th a t translates Maple types to  hardware 
types th a t can work w ith an external function. This procedure can be used 
the same way as any other procedure in Maple.

> myAdd(l,2);

3

> a := 33:
> b := 22:
> myAdd(a,b);

55

> r:= myAdd(a,11);

r :=  44

Procedures generated in this m anner contain run-tim e information 
and thus cannot be saved. The def ine_external command must be reis­
sued after exiting or restarting  Maple.

The following subsections provide additional inform ation for Step 2, 
the function specification.
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External Definition
The def in e_ ex te rn a l function constructs and returns another function 
which can be used to  make the actual call. The def in e_ ex te rn a l function 
is called as follows.

define_external( functionName, argl::typel, ...,

a r g N : : t yp eN ,  o p t i o n s , ‘L I B ‘=dl lName) 
define_external( f u n c t i o n N a m e , ‘MAPLE‘ ,

options, cL I B‘=dllName )

The functionName param eter specifies the name of the  actual external 
function to  be called. This name can be specified as a Maple string or 
name.

The param eters argl through a rgN  describe the argum ents of the 
function to  be called. These should be specified in the order they ap­
pear in the  docum entation or source code for the external function, 
w ithout regard to  issues such as actual passing order (left to  right ver­
sus right to  left). The intent is th a t the Maple procedure returned by 
def in e_ ex te rn a l will have the same calling sequence as the actual ex­
ternal function when used in the language for which it was w ritten. The 
only exception is th a t one argum ent may be given the name RETURN. This 
specifies the  type returned by the function rather th an  a param eter passed 
to  the  function. For more inform ation about how each argi is specified, 
see the section on type specification.

The options are used to  specify argum ent passing conventions, li­
braries, calling m ethods, etc. See the appropriate sections of this chapter 
for details.

If instead of the arg param eters, the single word MAPLE is specified, 
the external function is assumed to  accept the  raw Maple da ta  struc­
tures passed w ithout conversion. This assumes th a t the w rapper has been 
m anually generated and compiled into a shared library. Various support 
functions for writing such external functions are described in Section 11.3. 
Using MAPLE instead of specifying argum ents is the  basis of m ethod 3.

The location of the DLL containing the function to  be called is spec­
ified by using the LIB  option to  def in e_ ex tern a l. The dllName is a 
string th a t specifies the filename of the library in which the function is to  
be found. The form at of this name is highly system dependent. Likewise, 
whether a full pathnam e is required depends on the system. In general, 
the name should be in the  same form at as would be specified to  a compiler 
on the same system.
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Type Specification
Step two of the  in troductory example indicated how to  specify types using 
Maple notation. Maple uses its own notation to  provide a generic well- 
defined interface for calling compiled code in any language.

The form at of each arg param eter is as follows.

argumentIdentifier :: dataDescriptor

The retu rn  value description is also described by using a da ta  de­
scriptor, w ith the name RETURN as the argumentldentifier. If the function 
returns no value, no RETURN param eter is specified. Also, if no param eters 
are passed, no argum ent identifiers are required.

Scalar Data Formats
External libraries generally deal w ith scalar d a ta  supported directly by the 
underlying machine. All array, string, and structured  form ats are built up 
from these. The da ta  descriptors used to  represent scalar form ats usually 
contain a type name and size. The size represents the num ber of bytes 
needed to  represent the given hardware type. Table 11.1 lists the  basic 
type translations for standard  С and Fortran compilers.

Structured Data Formats
In addition to  the basic types listed in Table 11.1, Maple also recognizes 
some compound types th a t can be derived from the basic types, such as 
arrays and pointers. These compound types are listed in Table 11.2.

Character String Data Formats Strings are similar to  both  scalar and 
array data. A string in С is an array of characters, bu t it is often m anip­
ulated as if it were an object. A string in Maple is an atomic object, but 
it can be m anipulated as if it were an array of characters.

Param eter n in string[n] indicates th a t the called function is expecting 
a fixed size string. Otherwise, a pointer to  a character buffer (char*) will 
be used.

Strings are implicitly passed by reference (only a pointer to  the  string 
is passed), but any changes made to  the string are not copied back to  
Maple unless the  string is declared w ith a size.
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Table 11.1 Basic Type Translations

M aple D ata  
D escriptor

С T ype Fortran T ype

integer [1] char BYTE

integer [2] short INTEGER*2

integer [4] int INTEGER

long1 INTEGER*4

integer [8] long1 INTEGER*8

long long INTEGER*8

float [4] float REAL

REAL*4

float [8] double DOUBLE PRECISION

REAL*8

char [1] char CHARACTER

boolean[1] char L0GICAL*1

boolean[2] short L0GICAL*2

boolean[4] int LOGICAL

long L0GICAL*4

boolean[8] long L0GICAL*8

long long L0GICAL*8

1 Type long is typically (but not necessarily) 4-bytes on 
32-bit machines and 8-bytes on 64-bit machines. Use the 
s izeo f  operator or consult your compiler m anual to 
verify sizeo f  (long).

Table 11.2 Compound Types

M ap le  D a ta  D escr ip to r С T yp e Fortran  T yp e
ARRAY (datatype=typenam e, 

order=. . . ,  e t c . ) 
s tr in g  [n] 
com plex[4]

com plex[8]

REF (typename)

char

char x [n] 
s tr u c t
{. f lo a t  r ,  i ;  }  
s tr u c t
-[ double r ,  i ;  }  

TYPENAME*

BYTE

CHARACTER*2
COMPLEX

C0MPLEX*8

DOUBLE

COMPLEX

COMPLEX*16
N A



Array Data Formats An array of d a ta  is a homogeneous, n-rectangular 
structure m atching the Maple rtable formats. Any datatype th a t is ac­
cepted by M aple’s Array, Matrix, or Vector constructor will be accepted.

The options are used to  specify array conventions. They are the same 
optional argum ents th a t can be passed to  the Array constructor in Maple. 
The only significant difference is th a t indexing functions m ust be specified 
w ith indf n= (and are not allowed when using w rapper-generated external 
calling). These options override any defaults normally assumed by the 
Array constructor.

d a t a t y p e s . . .  Only hardw are datatypes are allowed. This field is re­
quired, bu t the equation form of entry is not necessary. For example, 
simply specifying integer [4] is sufficient.

o r d e r = . . .  This may be left unspecified for vectors since Fortran and С 
representation is the  same. Otherwise, this will default to  Fortran_order 
when calling a Fortran library and C_order when calling a С library.

s to r a g e = . . .  If this is not specified, the default is full rectangular storage

subtype=... This is optional and restricts the  subtype to  Array, Matrix, 
Vector[row] , or Vector [column] .

i n d f n = ( . . . ,  ...)  This specifies the  indexing functions th a t the Array, 
Matrix, or Vector must have.

Other Compound Types There are other types, including records 
(structs), and procedures th a t are supported when using w rapper gen­
erated external linking. These da ta  descriptors are described in section 
11.2 .

Specifying Argument Passing Conventions
Different program ming languages have different conventions for param eter 
passing. С always uses pass-by-value ; pass-by-reference must be done 
explicitly by passing an address. Fortran uses pass-by-reference. Pascal 
uses either, depending on how the param eter was declared.

M aple’s external calling mechanism currently supports both  С and 
Fortran calling conventions. A utom atic w rapper generation is only sup­
ported for C, but an external A PI exists for both  С and Fortran. The 
default convention used is C. To use Fortran calling, specify the name 
Fortran as a param eter to  def ine_external.
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> f := define_external(<my_func<,(FORTRAN(, ...);

Some other compiler im plem entations (such as Pascal, C + + , and 
Java) may be made to  work w ith С external calling by using the cor­
rect definitions and order of passed param eters.

11.2 Method 2: Wrapper Generation
There are some types in Maple th a t do not lend well to  autom atic “on 
the fly” conversions. Two of these types are procedures (callbacks), and 
records (structs). Maple provides an alternate mechanism for handling 
this kind of data.

For a description of the steps required to  use compiled code in Maple, 
refer to  Section 11.1. The same three basic steps (DLL creation, function 
specification, and function invocation as described on pages 533-534) are 
used in this m ethod. The information in this section extends the basic 
inform ation by describing the use of wrappers.

Specifying the keyword WRAPPER in the call to  def ine_external will 
cause Maple to  generate code to  do the necessary da ta  translations. 
Maple will compile this code into a shared library and dynamically 
link to  the  new library. Subsequently invoking the procedure returned 
by def ine_external will call the newly generated conversion routine be­
fore calling the external function in the  library you provided.

The С code generated by Maple “wraps” the Maple da ta  structures 
by translating  them  to  hardw are equivalent types. Hence, the code file is 
called the wrapper, and the library generated from this code is called the 
wrapper library.

Additional Types and Options
Generating a w rapper file allows Maple to  transla te  more complicated 
types th a t are difficult to  handle w ithout compilation technology. It also 
allows greater flexibility when dealing w ith pointers and passed d a ta  th a t 
do not exactly fit the required type.

Table 11.3 (located at the end of the chapter) lists additional types 
are supported when the keyword WRAPPER is specified.

Structured Data Formats
A structure  is a non-homogeneous collection of members, corresponding 
to  a struct  in C, or a record in Pascal. A union  is similar, except th a t



all the members s ta rt at the same memory address.
Each member :: descriptor pair describes one member of the structure 

or union. The descriptor is any of the types described in th is chapter.
The options are used to  specify w hat kind of datatype the w rap­

per should expect for conversion purposes. The following two options are 
supported.

T A B L E  Tables will be used as the  corresponding Maple type. Using 
tables is the default behavior, and they are friendlier to  use th an  lists. 
W hen tables are used, the  member names will correspond to  table 
indices.

L IS T  Lists will be used as the corresponding Maple type. Lists are pri­
m arily used in a read-only basis. Lists cannot be modified in-place, so 
m aking updates to  a list structure in external code requires a copy to  
be made. W hen structures m ust be passed back to  Maple, or if they 
contain pointer types, it is be tter to  use tables.

Lists and tables cannot be used interchangeably. Once the w rapper 
has been generated, it will accept only the declared type, not both.

Enumerated Types
M aple’s external calling mechanism does not directly support enum erated 
types (such as enum  in C). Instead, use the integer [n] type with n of an 
appropriate size to  m atch the size of the enum erated type of the compiler 
w ith which the external function was compiled (usually this is the same 
size as the int  type).

Procedure Call Formats
Some languages, like C, support passing functions as argum ents. A Maple 
procedure can be passed to  an external function in the same way. The 
w rapper will set up a С style procedure to  call Maple to  execute the 
passed procedure w ith the given argum ents. This С callback is given to  
the external call to  be used like any other С function.

Each member :: descriptor pair describes one param eter of the proce­
dure. The descriptor is any of the types described in th is chapter.

It is not perm itted  to  declare a procedure th a t itself takes a procedure 
param eter. In other words, a callback cannot itself call back to  the  external 
code.

Call by Reference
Unless modified as described below, each argum ent is passed by value. 
The REF modifier can be used to  override this.
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argumentIdentifer :: REF( dataDescriptor, options )

The REF modifier can take the following options.

A N Y T H IN G  This option must be first in the list of options. Use this 
option to  declare the  equivalent of a С vo id* param eter. The w rapper 
code will a ttem pt to  convert passed argum ents to  simple types, (4- 
byte integer, 8-byte float, complex, or string), when encountered. If 
no conversion to  one of these types is possible, then  NULL is passed to  
the external function.

C A L L _ O N L Y  This option specifies th a t although the object is to  be 
passed by reference, any changes made by the external function will 
not be w ritten  back to  the Maple symbol th a t was passed. This can 
be used both  to  protect the objects being passed (see section on array 
options), and to  reduce overhead (as no translation  back to  Maple 
d a ta  structures need be made).

R E T U R N _ O N L Y  This option specifies th a t no d a ta  is actually passed 
to  the external function. Instead, only a reference to  the allocated 
space is passed, and the external function is expected to  fill the space 
w ith data. The result is converted back into an appropriate Maple 
object.

Array Options
If an ARRAY argum ent is declared as CALL_0NLY and an Array, Matrix, 
or Vector with proper settings is passed to  the external function (so 
th a t no copying is required), then  CALL_0NLY will have no effect and thus 
will not prevent the called function from overwriting the original array. 
To prevent th is from occurring, the  option COPY can be included in the 
ARRAY descriptor.

The ARRAY descriptor accepts ex tra options when used w ith wrapper 
generation. These options can be specified as follows.

A R R A Y ( diml, .. , dimN, datatype=typename,

order=.. , ..., options )

The diml through dimN  param eters are each integer ranges, specify­
ing the range of each dimension of the array. Any of the upper or lower 
bounds may be the name of another argum ent, in which case the value of 
th a t argum ent will specifiy the corresponding array bound at run-tim e.

The options are used to  specify how an array should be passed. The 
following are valid options.



C O P Y  Do not operate in-place on the given array. T ha t is, make a copy 
first, and use the copy for passing to  and from the external function.

N O  _  C O P Y  This ensures th a t a copy of the da ta  is never made. Usually, 
when using a w rapper generated external call, if the Array, Matrix, 
or Vector is of the wrong type, (say the order is wrong), then a copy 
is made w ith the correct properties before passing it to  the external 
function. Also, the “returned” array will have the properties of the 
copy. If N0_C0PY is specified, and an Array, Matrix, or Vector with 
incorrect options is passed, an exception is raised. Arrays are always 
passed by reference. If no options are given (via a REF descriptor), 
they are passed by using the CALL_0NLY behavior of REF with the 
noted exception described at the beginning of this section.

Non-Passed Arguments
Sometimes it will be necessary to  pass additional argum ents to  the Maple 
w rapper th a t should not be passed on to  the external function. For ex­
ample, consider the following hypothetical С function:

int sum( int *vl, int *v2 )

This function takes two integer vectors, vl and v2, and adds the ele­
m ents of v2 to  vl, stopping when it finds an entry th a t is zero. It might 
be nice for the generated w rapper to  make sure the vectors are the same 
size. The Maple definition for this function is as follows.
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> Sum := define_external( ‘sum',
> vl :: ARRAY(1..size,integer[4] ),
> v2 :: ARRAY(1..size,integer[4]),
> size :: N0_PASS(integer [4]),
> RETURN :: integer[4],
> LIB="libsum.dll");

The N0_PASS modifier indicates th a t the size argum ent should not be 
passed to  the external function. The Sum function could then  be called by 
the following statem ent,

> Sum(vl,v2,op(l,vl));

where v l  and v2 are vectors. Maple will pass the vector data, or a copy 
of the vector data, and pass it to  the external sum function. It will not 
pass the size element to  the external function, bu t size will be used for 
argum ent checking (since the N0_CHECK option was not specified).

Note th a t th is option can only be used for top-level argum ents. T hat 
is, it is invalid to  declare a callback procedure’s argum ents as N0_PASS.
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Argument Checking and Efficiency Considerations
It is intended th a t the tim e and space costs of calling an external function 
not be any higher th an  the costs for calling an equivalent built-in function 
w ith the same degree of argum ent type checking. Clearly, the  amount of 
type checking done by a generated M aple-language w rapper exceeds th a t 
done by most internal functions, so there will be some additional overhead.

The def ine_external function has an option N0_CHECK which, if 
used, will disable the type checking done by the M aple-language wrapper. 
For frequently called external functions th a t perform simple operations 
this can significantly improve performance. However, there is a risk asso­
ciated w ith using the N0_CHECK option. If you pass an object of the  wrong- 
type, the generated С-language w rapper might m isinterpret w hat it has 
received, resulting in erroneous translations to  external types, and hence 
unpredictable behavior of the  external function.

Conversions
W hen the procedure returned by def ine_external is actually called, 
the Maple argum ents th a t are passed are converted to  the corresponding 
argum ents of the external function. Likewise, the value returned from the 
external function is converted back to  the corresponding Maple type.

The following table describes each of the external types and the Maple 
types th a t can be converted into th a t type. The first listed Maple type 
is the  one th a t a result of the  corresponding external type would be con­
verted into.

External T y p e A l l o w e d  M a p l e  Ty p e ( s )

boolean[n] boolean

integer [n] integer

float [n] float, rational, integer, numeric

complex[n] complex, numeric, float, rational, integer

char [n] one-character string
string [n] string, symbol, 0

A R R A Y () Array, Vector, Matrix, name, 0

S T R U C T () list, table

U N I O N () table

P R O C O procedure

For STRUCTs, either lists or tables are valid for a particular declaration. 
Once declared, only one of the types- а  list or a table-w ill be acceptable. 
They cannot be used interchangeably unless the w rapper is regenerated. 
For UNIONs, only tables are perm itted, and the table must contain ex­
actly one entry when passed (corresponding to  one of the  members of the
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union).
If an argum ent of an incom patible type is passed, an error occurs, 

and the external function will not be called. Likewise, if a value is passed 
th a t would be out of range for the  specified type (e.g., integer too large), 
an error occurs. W hen passing floating-point values, precision in excess of 
th a t supported by the external type is discarded, provided the m agnitude 
of the value is within the range of the external type.

Argum ents th a t were declared as REFerences may be passed either 
a name, a zero, or the declared kind of Maple expression. If a name is 
passed, it is evaluated, and the value is passed by reference to  the ex­
ternal function. After the external function returns, the revised value is 
converted back to  the type specified for the  argum ent and assigned back 
to  the  name. If the name passed has no value, then  either NULL is passed, 
or a pointer to  newly allocated space for the structure  is passed. This 
behavior is determ ined by the presence or absence of ALLOC in the  REF 
declaration. If a zero is passed, NULL is passed to  the external function.
If any other Maple expression is passed, its value is passed by reference, 
and the revised value is discarded.

Compiler Options
To compile the w rapper library, Maple requires the use of a С compiler 
installed on the same machine th a t is running Maple. Maple will generate 
a system command to  call the compiler. The compiler needs to  be well 
known to  the system. It should be in the system PATH and all associated 
environment variables need to  be set.

The compile and link commands are completely customizable pro­
vided th a t your compiler has a command-line interface available. Default 
configurations are provided, which should make most cases work “out of 
the box.” Maple is preprogram m ed to use the vendor-supplied С compiler 
to  compile wrappers on most platform s.1

All default compile and link options are stored in a module th a t can be 
obtained by using the comm and def ine_ext ernal (c C0MPILE_0PTI0NSc).
W hen the module returned by this command is modified, the modifica­
tion will affect all w rapper generation commands via def ine_external 
for the rem ainder of the session. All of the names exported by the compile 
options module can also be specified as a param eter to  def ine_external.
W hen specified as a param eter, the effect lasts only for the duration of 
th a t call.

The compile and link commands are assembled by calling the COMPILE_COMMAND

1Under Microsoft Windows, Maple uses the  Microsoft С Compiler.
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and LINK_COMMAND procedures defined in the compile options module. 
These procedures make use of the definitions in the compile options m od­
ule to  formulate a comm and string th a t will be executed using ssystem.2

To customize the compile and link commands to  suit your situation, 
any of the following options can be modified. All option values m ust be 
strings or NULL, except for COMPILE_COMMAND and LINK_COMMAND, which 
must be procedures or NULL.

C O M P IL E R  This specifies the name of the compiler executable.

C F L A G S This specifies miscellaneous flags passed to  the compiler.

C O M P IL E  O N LY  FL A G  This is the flag to  indicate th a t the file 
is only to  be compiled. On most platform s it is “-c”, which will tell 
the compiler to  generate an object file, but not link it to  form any 
executable or library. Linking will happen in a separate command.

C O B J _ F L A G  This is the flag used by the compiler to  specify the ob­
ject filename. The compiler command uses C0BJ_FLAG I I FILE I I 

0BJ_EXT to  name the object file. On most platform s it is “-o”.

L O B J F L A G  This is the  flag used by the linker to  specify the ta r ­
get library name. The link command uses L0BJ_FLAG I I FILE I I 

DLL_EXT to  name the shared library.

FIL E  This is the  base name of the file to  be compiled. The file extension 
should not be included in this name. For example, if you want to  
compile “foo.c”, set FILE="foo" and F I L E _ E X T = " . c". W hen FILE is 
set to  NULL the  system  generates a file name based on the function 
name.

FIL E  E X T  This is the  program  file extension. If you want to  compile 
“foo.c”, set F I L E _ E X T = " .c", and FILE="foo".

O B J E X T  This is the object file extension. Common extensions are 
“7o” and “.obj”.

DLL E X T  This is the  dynamic library extension. Common extensions 
are “.dll” and “.so”.

IN C  _  FL A G  This precedes directories in the  INC_PATH. On most p la t­
forms it is “-I”.

2If using the Microsoft С compiler, the  LINK_COMMAND is set to  NULL since the 
COMPILE_COMMAND does bo th  the compiling and linking.



IN C  P A T H  This specifies the  directories to  search for header files.
Use an expression sequence to  specify more than  one directory.
For example, INC_PATH=("/usr/local/maple/extern/include",

" /u s e r s / jd o e / in c l u d e " ) .

C O M P IL E _ C O M M A N D  This is set to  the  procedure th a t generates 
the compiler command. The procedure must retu rn  a string. Un­
less you are using an unusual compiler, it should not be necessary 
to  change the default.

L IN K E R  This specifies the name of the linker executable.

L IN K _ F L A G S This specifies miscellaneous flags passed to  the linker, 
including those th a t tell the linker to  build a dynamic (shared) library.

LIB F L A G  This precedes directories in the LIB_PATH. On most p la t­
forms it is “-L”.

LIB P A T H  This specifies the directories to  search for libraries. Use an 
expression sequence to  specify more than  one directory. For example, 
LIB_PATH=("/usr/local/maple/extern/lib","/users/jdoe/lib").

LIB This names the library which contains the external function you
want to  call. This option must be specified in every call to  def ine_external.

L IB S This specifies other libraries th a t need to  be linked w ith the w rap­
per library to  resolve all external symbols. Use an expression sequence 
to  specify more th an  one library. For example, LIBS=("/usr/local/ 
maple/extern/lib/libtest. s o " ,"/users/jdoe/libdoe.so") .

S Y S _ L IB S  This specifies system libraries th a t need to  be linked with 
the w rapper library to  resolve all external symbols. Use an ex­
pression sequence to  specify more th an  one library. For example, 
LIBS=("-lc","-lm").

E X P O R T _ F L A G  This flag is used in combination with FUNCTION to  
name the function to  be exported from the shared library. This is 
unassigned or set to  NULL on platform s th a t export all symbols by 
default.

F U N C T IO N  This is the name of the external function defined in the 
w rapper library. The system will generate a FUNCTION name if this is 
left unassigned or set to  NULL.
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L IN K _ C O M M A N D  This is set to  the procedure th a t generates the
linker command. The procedure m ust retu rn  a string. Set this to  NULL
if the compile command also does the linking.

A common use of these options as param eters to  def ine_external 
with a standard  compiler would be to  specify the filename. For example, 
the following will generate a w rapper file nam ed “foo.c”.

> f := define_external(‘myfunc‘,‘WRAPPER/ ,‘FILE‘ = "foo",‘LIB‘=
> "mylib.dll"):

To use a non-standard compiler or to  alter compile flags, it may be 
easier to  assign directly to  the compile options module. The following 
example shows how to  setup the GNU compiler on a machine running 
Solaris.

> p := define_external(‘C0MPILE_0PTI0NS‘):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o
> define_external(‘mat_mult‘,‘WRAPPER',‘LIB‘="libcexttest.so"):

The tricky part in the above example is th a t gcc likes to  have a space 
between -o and the object name. Modifying the C0BJ_FLAG allows th is to  
be easily done. All other option default values were acceptable.

The best way see w hat commands are actually being executed is to 
set the inf olevel for def ine_ext ernal to  3 or higher. Repeating the 
above example you might see the following.

> p := define_external(‘C0MPILE_0PTI0NS‘):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o
> infolevel[define_external] := 3:
> define_external(‘mat_mult‘,‘WRAPPER',‘LIB‘="libcexttest.so"):

"COMPILE_COMMAND"

"gcc -g -c -I/user/local/maple/extern/include -o \ 

mwrap_ma t _ m u l t .о mwrap_m a t _ m u l t .с"

"LINK_COMMAND"

"Id -znodefs -G -dy -Bdynamic 

-L/user/local/maple/bin/bin.SUN_SPARC_SOLARIS \ 

-omwrap_mat_mult.so mwra p _ m a t _ m u l t .о -lc -lmaplec"

An alternate way to  see the compile and link commands is to  call the 
comm and-builder procedures directly. Make sure to  set or unassign the 
variables th a t will be filled in, otherwise they will be left blank.
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> p := define_external(<C0MPILE_0PTI0NS<):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o
> p :-COMPILE_COMMAND();

"gcc -g -c -I/u/maple/extern/include -o .o .c"

> unassign(’p :-FILE’);
> p :-COMPILE_COMMAND();

"gcc -g -c -I/u/maple/extern/include -o FILE.о FI L E .с"

The following example shows two calls to  def ine_external separated 
by the restart command. The first call does not use the WRAPLIB option 
and thus generates quad.с and compiles the w rapper library quad.dll. 
The second call uses the WRAPLIB option in order to  reuse the existing 
quad.dll. No compilation or w rapper generation is done in the  second 
call.

> quadruple_it := define_external(’quadruple_it’,
> WRAPPER,FILE="quad",
> x : : float [4] ,
> RETURN::float[4] ,
> LIB="test.dll"):
> quadruple_it(2.2);

8.80000019073486328

> restart;
> quadruple_it := define_external(’quadruple_it’,
> WRAPPER,FILE="quad",
> x : : float [4] ,
> RETURN::float[4] ,
> WRAPLIB="quad.dll",
> LIB="test.dll"):
> quadruple_it(2.2);

8.80000019073486328

W hen DLLs are created and compiled at runtim e it is im portant not 
to  duplicate the  name of a previously generated DLL w ithout restarting  
Maple (either by closing Maple down or issuing the restart command). 
Maple will m aintain an open connection w ith the first DLL opened 
with any given name. A ttem pting to  create a new DLL of the same 
name w ithout restarting  may lead to  unexpected results. The Maple 
command diclose can be used to  avoid restarting, bu t subsequently 
calling any external function in th a t closed DLL w ithout reissuing the 
def ine_external comm and will likely crash Maple.



Evaluation Rules
External functions follow normal Maple evaluation rules in th a t the argu­
m ents are evaluated during a function call. It therefore may be necessary 
to  quote assigned names when passing by-reference. For example, consider 
the following function th a t multiplies a num ber by two in-place.

v o id  d o u b le _ i t(  i n t  * i )
■C

i f ( i  == NULL ) r e tu r n ;  

* i  *= 2 ;
>

In Maple, the wrapperless definition of this function might appear as 
follows.

> double_it := define_external(’double_it’, i ::REF(integer [4]),
> LIB="libtest.dll");

W hen an integer is passed to  this function, a pointer to  the  hardware 
conversion is sent to  the external routine. In this case, the result will be 
lost since there is no way to  refer back to  it from Maple.

> double_it(3);

The solution is to  name the value you want to  pass out. The name 
needs to  be quoted in order to  prevent evaluation and thus have only the 
value passed out.

> double_it(n); # n is evaluated so 3 gets passed
> n;

3

> double_it(’n ’); # used unevaluation quotes to pass the ’n ’
> n;

6

For numeric data, the string "NULL" can be passed as a param eter to  
represent the address 0 (the С NULL). For strings, since "NULL" is a valid 
string, the integer 0 represents address 0 .
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> double_it("NULL");
>
> concat := define_external(’concat’,
> RETURN::string, a::string, b : :string,
> LIB="libtest.dll"):
> concat("NULL","x");

"NULLx"

> concat(0,0);

0

In the concat example above, the С code might look like the following. 
Note th a t this function does not clean up memory as it should.

char * c o n c a t ( char* a, char *b )

■C
char * r ;

i f ( !a II !b ) r e t u r n ( NULL );

r = (char*)malloc((strlen(a)+strlen(b)+l)*sizeof(char));

s t r cpy(r,a ) ; 

strcat(r,b);

r e t u r n ( r );

>

11.3 Method 3: Customizing Wrappers
For complete control over da ta  conversions, Maple allows modification of 
existing wrappers and creation of custom  wrappers. There is an extensive 
A PI of functions available to  external program s called from Maple using 
define_external.

To use this m ethod, you must be familiar w ith the steps required to  
use compiled code in Maple, described in Section 11.1. For this m ethod, 
you do not perform a function specification because Maple passes one 
da ta  structure containing all the passed information. Therefore, there are
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only two basic steps (DLL creation and function invocation as described 
on pages 533-534) in addition to  w rapper generation. W rappers were in­
troduced in Section 11.2.

External Function Entry Point
Maple will look up the symbol name given as the first argum ent to 
def ine_external in the  D L L  specified in the LIB= argum ent. Maple also 
looks up the MWRAP_symbolName in the  w rapper library. This MWRAP_symbolName 
function prototype has the  following format.

ALGEB MWRAP_quadruple_it(

MKernelVector kv,

FL0AT32 Ofn) ( FL0AT32 al ),

ALGEB fn_args

) ;

The prototype above was taken from the w rapper quad, с described in 
the previous section. The first argum ent kv is a handle to  the Maple kernel 
function vector. The second argum ent fn is a function pointer assigned 
the symbol looked up in the external DLL. In this case, f n will be assigned 
the quadruple_it external function. The last argum ent is a Maple ex­
pression sequence d a ta  structure  containing all the argum ents passed to  
the function during any given call to  the  Maple procedure generated by 
the def ine_external command.

The above entry point is the form at used when w rappers are au to­
m atically generated, and when WRAPLIB is specified. An alternate external 
entry point th a t excludes the function pointer is available when the pa­
ram eter MAPLE is specified instead of WRAPPER or WRAPLIB.

ALGEB MWRAP_quadruple_it(

MKernelVector kv,

ALGEB fn_args

) ;

The A PI function prototypes for m anipulating Maple d a ta  structures 
can be found in $MAPLE/extern/include where $MAPLE is the path  of your 
Maple installation. The header file maplec.h should be included when 
writing custom  С wrappers. One of the header files, maplefortran.hf 
or maplef ortran64bit .hf, should be included when writing custom  For­
tran  wrappers. O ther header files, mplshlib.h, and mpltable.h contain 
macros, types, and da ta  structures th a t are needed for direct m anipula­
tion of Maple d a ta  structures.



Maple uses directed acyclic graphs (dags) to  represent all objects such 
as integers, floating point numbers, sums, modules, procedures, etc. (See 
A ppendix A for more details about M aple’s internal representation of 
objects.) These dags have the type ALGEB in С wrappers, and INTEGER 
or INTEGER*8 in Fortran wrappers. Fortran  77 has no user type defi­
nition semantics so ALGEB pointers must be “faked” by using machine 
word-sized integers. If the machine word size is 64-bit (e.g., as on a 
DEC Alpha), then  the header maplef ortran64bit .hf m ust be used and 
INTEGER*8 must be used as the dag datatype. Execute the Maple com­
m and kernelopts (wordsize) to  see if you should be using 32-bit or 
64-bit integer-dag types in Fortran. W hen working with C, the datatype 
is ALGEB regardless of the machine word size.

For the most part, trea t these dags as black boxes. In other words, 
you do not have to  know the internal details of dags to  m anipulate and 
work w ith them . The only exception is the argum ent sequence passed to  
the w rapper entry point. This is an expression seqence (EXPSEQ) dag, and 
can be trea ted  as an array of dags starting  at index 1 (not 0). Thus, 
f n_args [1] is the first param eter passed to  the external function. Use 
MapleNumArgs to  determ ine the num ber of argum ents passed. Note th a t 
the Fortran A PI uses a slightly different naming convention. The equiva­
lent Fortran  call is maple_num_args. The С A PI names will be used for 
the rem ainder of this chapter. Refer to  the A PI listing to  find equivalent 
Fortran names.

The easiest way to  s ta rt writing custom  wrappers is to  inspect au to­
m atically generated wrappers. Consider the add function th a t was intro­
duced at the beginning of this chapter. Use the WRAPPER option to  tell 
def ine_external to  generate a wrapper. Also use the N0_C0MPILE op­
tion to  tell def ine_external not to  compile the generated wrapper. The 
name of the generated file will be returned.

> myAdd := define_external(
> ’add’,
> ’WRAPPER’,
> ’N0_C0MPILE’,
> ’numl’::integer[4],
> ’num2’::integer[4],
> ’RETURN’::integer[4]

> );

myAdd := "mwrap_add.c"

The file mwrap_add.c will look something like the following.

/* MWRAP_add Wrapper
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Generated automatically by Maple 

Do not edit this file. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <mplshlib.h>

#include <maplec.h>

MKernelVector mapleKernelVec; 

typedef void *MaplePointer;

ALGEB *args;

/* main - MWRAP_add */

ALGEB MWRAP_add( MKernelVector kv,

INTEGER32 (*fn) ( INTEGER32 al, INTEGER32 a2 ), 

ALGEB fn_args )

■C
INTEGER32 al;

INTEGER32 a2;

INTEGER32 r;

ALGEB mr; 

int i ;

mapleKernelVec = kv; 

args = (ALGEB*) fn_args;

if( MapleNumArgs(mapleKernelVec,(ALGEB)args) != 2 ) 

MapleRaiseError(mapleKernelVec,"Incorrect number 

of arguments");

/* integer[4] */

al = MapleToInteger32(mapleKernelVec,args[1]);

/* integer[4] */

a2 = MapleToInteger32(mapleKernelVec,args[2]); 

r = (*fn)(al, a2);

mr = ToMaplelnteger(mapleKernelVec,(long) r ) ; 

return( mr );

>



The generated w rapper is hum an readable, and thus a good starting- 
point for creating your own wrapper. There may be some extra variables 
and declarations used since the w rapper generation is generic and may 
be heavy handed at times. For example, the use of args rather than  
f n_args avoids the need for a cast w ith args [1], but it also is a static 
global which is useful when working w ith callbacks which may need access 
to  the argum ent sequence outside the m ain entry point.

Remember th a t the add function simply added the argum ents al and 
a2 and returned the result. This can be done directly in the wrapper. By 
removing the second argum ent fn so the MAPLE option can be used, plus 
inlining the al+a2 functionality and cleaning up the code, the w rapper 
may look like the following.

/* Program to add two numbers from Maple */

#include <stdio.h>

#include <stdlib.h>

#include <maplec.h>

/* main entry point - MWRAP_add */

ALGEB m y A d d ( MKernelVector kv, ALGEB fn_args )

■C
INTEGER32 a l ; /* INTEGER32 => int (defined in mpltable.h)

INTEGER32 a2;

INTEGER32 r;

i f ( MapleNumArgs(kv,fn_args) != 2 )

MapleRaiseError(kv,"Incorrect number of arguments");

/* convert from Maple integer to С int */

al = MapleToInteger32(kv,((ALGEB*)fn_args)[1]);

/* convert from Maple integer to С int */

a2 = MapleToInteger32(kv,((ALGEB*)fn_args)[2]);

r = al + a2;

r e t u r n ( ToMaplelnteger(kv,(long) r) );

>
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This program  first checks to  make sure there were exactly two ar­
guments passed in the  Maple function call. It then  converts the two
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argum ents to  hardware integers and adds them  together. The result is 
converted back to  a Maple integer and returned.

This program  can be compiled into a DLL using your favorite С com­
piler. Ensure th a t you link w ith the Maple API shared library. The DLL 
can be placed into the Maple bin.$SYSTEM directory, or somewhere else 
in the PATH. W hen using DLLs outside of bin.$SYSTEM directory, you 
may have to  specify the full pa th  to  the  DLL in the LIB argum ent to  
def ine_external. Unix developers may need to  set their load-library- 
path.

Table 11.4 (located at the end of the  chapter) lists the Maple API 
Libraries for С and Fortran.

After compiling the DLL, the function can be used from within Maple.
No type desciptors are needed in the def ine_external call since Maple 
does no conversion on argum ents passed to  the custom  wrapper.

> myAdd := define_external(’myAdd’,’MAPLE’,’LIB’=
> "myAdd.dll"):
> myAdd(2,3);

5

> myAdd(2.2,1);

Error, (in myAdd) integer expected for i n t e g e r [4] parameter

> myAdd(2~80,2~70);

Error, (in myAdd) integer too large in context

The equivalent Fortran w rapper would look like the following.

Program to add two numbers from Maple

INTEGER FUNCTION myAdd(kv, args)

INCLUDE "maplefortran.hf"

INTEGER kv

INTEGER args

INTEGER arg
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INTEGER al, a2, r 

CHARACTER ERRMSG*20 

INTEGER ERRMSGLEN

ERRMSGLEN = 20

IF ( maple_num_args(kv, args) .NE. 2 ) THEN 

ERRMSG = ’Incorrect number of argum e n t s’

CALL maple_raise_error( kv, ERRMSG, ERRMSGLEN ) 

myAdd = t o _maple_null( kv )

RETURN 

END IF

arg = maple_extract_arg( kv, args, 1 ) 

al = maple_to_integer32(kv, arg)

arg = maple_extract_arg( kv, args, 2 ) 

a2 = maple_to_integer32(kv, arg)

r = al + a2

myAdd = to_maple_integer( kv, r )

END

Once compiled into a DLL, the same syntax can be used in Maple 
to  access the function. The only difference is the  additional keyword 
’FOR T R A N’ in the def ine_external call.

> myAdd := define_external(’myAdd’,’MAPLE’,’FORTRAN’,’LIB’=
> "myAdd.dll"):
> myAdd(2,3);

5

External A PI
An external A PI is provided for users who want to  augment existing 
wrappers or write their own custom  wrappers. This section describes the 
functions available when linking w ith the Maple A PI library (see Ta­
ble 11.4) and including either maplec.h or maplefortran.hf.
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Argument Checking The following С function can be used to  query 
the num ber of argum ents contained in the argum ent expression sequence 
passed as the last argum ent to  the external function entry point. The ex­
pression sequence passed to  this entry point can be queried directly (e.g.,
((ALGEB*)expr) [1]). If n = MapleNumArgs(kv,expr), then  the last ar­
gument is ( (ALGEB*) expr [n] .

M_INT MapleN u m A r g s ( MKernelVector kv, ALGEB expr );

The argum ents passed to  the  Fortran entry point cannot be queried 
directly. The maple_extract_arg function must be used to  get at the 
argum ent d a ta  (e.g., argl = maple_extract_arg(kv,args,1)). If n = 
maple_num_args (kv, s), then  the last argum ent is maple_extract_arg (kv, a r g s , n ) .

INTEGER m a p le_num_args( kv, s )

INTEGER maple_extract_arg( kv, s, i )

The following functions indicate the  type of the given Maple object.

M_B00L IsMapleAssignedName( MKernelVector kv, ALGEB s );

M_B00L IsMapleComplexNumeric( MKernelVector kv, ALGEB s );

M_B00L IsMapleNumeric( MKernelVector kv, ALGEB s );

M_B00L IsMapleInteger( MKernelVector kv, ALGEB s );

M_B00L IsMapleInteger8( MKernelVector kv, ALGEB s );

M_B00L IsMapleIntegerl6( MKernelVector kv, ALGEB s );

M_B00L IsMapleInteger32( MKernelVector kv, ALGEB s );

M_B00L IsMapleInteger64( MKernelVector kv, ALGEB s );

M_B00L IsMapleName( MKernelVector kv, ALGEB s );

M_B00L IsMapleNULL( MKernelVector kv, ALGEB s );

M_B00L IsMaplePointer( MKernelVector kv, ALGEB s );

M_B00L IsMaplePointerNULL( MKernelVector kv, ALGEB s );

M_B00L IsMapleProcedure( MKernelVector kv, ALGEB s );

M_B00L IsMapleRTable( MKernelVector kv, ALGEB s );

M_B00L IsMapleString( MKernelVector kv, ALGEB s );

M_B00L IsMapleTable( MKernelVector kv, ALGEB s );

M_B00L IsMapleUnassignedName( MKernelVector kv, ALGEB s );

M_B00L IsMapleUnnamedZero( MKernelVector kv, ALGEB s );

Equivalent Fortran functions are as follows. The С functions, IsMaplePointer, 
IsMaplePointerNULL, IsMapleUnassignedName, and IsMapleUnnamedZero
are not available in the  Fortran  API.

INTEGER is_maple_assigned_name( kv, s )



INTEGER is_maple_complex_numeric( kv, s )

INTEGER is_maple_numeric( kv, s )

INTEGER is_maple_integer( kv, s )

INTEGER is_maple_integer8( kv, s )

INTEGER is_maple_integerl6( kv, s )

INTEGER is_maple_integer32( kv, s )

INTEGER is_maple_integer64( kv, s )

INTEGER is_maple_name( kv, s )

INTEGER is_maple_null( kv, s )

INTEGER is_maple_procedure( kv, s )

INTEGER is_maple_rtable( kv, s )

INTEGER is_maple_string( kv, s )

INTEGER is_maple_table( kv, s )

INTEGER is_maple_unassigned_name( kv, s )

These functions all retu rn  TRUE (1) when the Maple dag s fits the 
description given by the function name. If s is not of the correct type,
FALSE (0) is returned. M aple’s NULL is not the  same as a С Pointer- 
NULL.  The former case is the  em pty expression sequence in the  Maple 
language. The la tte r case is a pointer variable set to  the address zero. Since 
there is no concept of real pointers in the Maple Language, the  idea of 
P ointer-NU LL  in this context means the Maple integer zero, or an unas­
signed Maple name. The I s M a p l e . . .Numeric routines use the Maple type 
numeric definition. All other checks use the dag type definition. For ex­
ample, type(t [1] ,name) returns true in Maple, but IsMapleName checks 
for a NAME dag and will retu rn  FALSE since t [1] is internally represented 
as a TABLEREF dag. Integer query routines w ith the bit size specified in the 
name will check to  make sure the given Maple object s is a Maple integer 
and also th a t it could fit into the specified num ber of bits if converted to 
a hardw are integer.

Conversions From Maple Objects The following functions return  the 
specified type when given a dag s th a t can be converted to  th a t type.

C0MPLEXF32 MapleToComplexFloat32( MKernelVector kv, ALGEB s ); 

C0MPLEXF64 MapleToComplexFloat64( MKernelVector kv, ALGEB s ); 

CXDAG MapleToComplexFloatDAG( MKernelVector kv, ALGEB s ); 

FL0AT32 MapleToFloat32( MKernelVector kv, ALGEB s );

FL0AT64 MapleToFloat64( MKernelVector kv, ALGEB s );

INTEGER8 M a pleToInteger8( MKernelVector kv, ALGEB s ); 

INTEGER16 MapleToIntegerl6( MKernelVector kv, ALGEB s ); 

INTEGER32 MapleToInteger32( MKernelVector kv, ALGEB s );
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INTEGER64 MapleToInteger64( MKernelVector kv, ALGEB s ); 

M_B00L M a p l e ToM_B00L( MKernelVector kv, ALGEB s );

M_INT MapleT o M _ I N T ( MKernelVector kv, ALGEB s ); 

void* M a p leToPointer( MKernelVector kv, ALGEB s ); 

char* MapleToString( MKernelVector kv, ALGEB s );

The following are the equivalent Fortran  routines. Note th a t com­
plex and string conversion are done by reference. T ha t is, the th ird  
argum ent passed to  the function will be set to  the converted value 
rather th an  the function returning the value. Equivalent functions for 
MapleToComplexFloatDAG and MapleToPointer are not available.

SUBROUTINE maple_to_complex_float32( kv, s, с )

SUBROUTINE maple_to_complex_float64( kv, s, с )

REAL maple_to_float32( kv, s )

DOUBLEPRECISION maple_to_float64( kv, s )

INTEGER maple_to_integer8( kv, s )

INTEGER maple_to_integerl6( kv, s )

INTEGER maple_to_integer32( kv, s )

INTEGER*8 maple_to_integer64( kv, s )

INTEGER m aple_to_m_bool( kv, s )

INTEGER m a p le_to_m_int( kv, s )

INTEGER maple_to_string( kv, s, string )

Floating Point num bers may lose precision during the conversion to  
hardware size data.

Conversion from a STRING dag to  an integer will retu rn  the ASCII 
value of the first character in th a t string. Conversion from a Maple 
Boolean to  an integer will retu rn  1 for true or 0 for false.

Conversions from a STRING dag to  a string should not be modified 
in-place. A copy should be made if any modifications are necessary.

The MapleToPointer conversion returns the pointer value stored in a 
Maple BINARY dag.

Conversions To Maple Objects The following functions retu rn  a dag 
of the  specified dag type when given a dag the corresponding hardware 
data.

ALGEB ToMapleBoolean( MKernelVector kv, long b );

ALGEB ToMapleChar( MKernelVector kv, long с );

ALGEB ToMapleComplex( MKernelVector kv, double re, 

double im );

ALGEB ToMapleComplexFloat( MKernelVector kv, ALGEB re,
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ALGEB im );

ALGEB ToMapleExpressionSequence( MKernelVector kv, int 

nargs, /* ALGEB a r g l , ALGEB arg2, */ ... );

ALGEB ToMaplelnteger( MKernelVector kv, long i );

ALGEB ToMapleInteger64( MKernelVector kv, INTEGER64 i ); 

ALGEB T o M a pleFloat( MKernelVector kv, double f );

ALGEB ToMapleName( MKernelVector kv, char *n, M_B00L 

is_global );

ALGEB ToMapl e N U L L ( MKernelVector kv );

ALGEB ToMapleNULLPointer( MKernelVector kv );

ALGEB ToMaplePointer( MKernelVector kv, void *v );

ALGEB ToMapleRelation( MKernelVector kv, const char *rel,

ALGEB l h s , ALGEB rhs );

ALGEB ToMapleString( MKernelVector kv, char *s );

ALGEB T o MapleUneval( MKernelVector kv, ALGEB s );

The equivalent Fortran  routines are as follows. The Fortran API 
does not support ToMapleExpressionSequence, ToMapleNULLPointer, 
ToMaplePointer, ToMapleRelation, and ToMapleUneval.

to_maple_boolean( kv, b ) 

to _ m a p le_char( kv, с ) 

to_maple_complex( kv, re, im ) 

to_maple_complex_float( kv, re, im ) 

to_maple_integer( kv, i ) 

to_maple_integer64( kv, i ) 

to _ m aple_float( kv, f ) 

to _ m a p le_name( kv, s, s_len ) 

to _ m a p le_null( kv ) 

to_maple_string( kv, s, s_len )

ToMapleBoolean is three valued. W hen b is zero, it retu rn  M aple’s 
false dag. If n is -1 , M aple’s FAIL dag is returned. If n is non-zero (and 
not -l), M aple’s true dag is returned.

ToMapleChar returns a single character Maple string dag. 
ToMapleComplex converts the pair of doubles, re and im, to  the  Maple 

expression re + I*im, and returns this dag.
ToMapleComplexFloat converts a pair of FLOAT dags to  the same 

structure.
ToMapleExpressionSequence create and returns a Maple expression 

sequence and fills it w ith the N algebraics, argl, arg2, . . . , argN.
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ToMapleName returns a Maple NAME dag with the name n. If is_global 
is set to  TRUE, the  name will be global in M aple’s name space. Otherwise, 
if is_global is FALSE, the name will be a unique exported local.

ToMapleNULL returns M aple’s NULL dag (an em pty EXPSEQ).
ToMapleNULLPointer returns M aple’s zero dag. This is the w rapper 

representation of a NULL pointer passed to  a procedure. This is not to  be 
confused with the value returned by ToMapleNULL.

ToMapleString copies the character string s to  a Maple STRING dag 
and returns it. W hen using the Fortran  API, the length of the given string 
must also be passed.

Rectangular Table (Vector, Matrix, Array) Manipulation Rtables are 
the container class of Vector, Matrix, and Array d ata  structures in 
Maple. The basic access functions are as follows.

ALGEB RTable C r e a t e ( MKernelVector kv, RTableSettings *s, 

void *pdata, M_INT *bounds ); 

void* RTableDataBlock( MKernelVector kv, ALGEB rt );

M_INT RTableNumElements( MKernelVector kv, ALGEB rt ); 

M_INT RTableNumDimensions( MKernelVector kv, ALGEB rt ); 

M_INT RTableLowerBound( MKernelVector kv, ALGEB r t ,

M_INT dim );

M_INT RTableUpperBound( MKernelVector kv, ALGEB r t ,

M_INT dim );

M_B00L RTable l s R e a l ( MKernelVector kv, ALGEB rt );

The Fortran A PI contains the following functions.

SUBROUTINE copy_to_array( kv, rt, a, num_rdims,

rbounds, num_fdims, fbounds, data_type ) 

SUBROUTINE copy_to_rtable( kv, a, r t , num_fdims,

fbounds, num_rdims, rbounds, data_type ) 

INTEGER convert_to_rtable( kv, a, num_rdims,

rbounds, num_fdims, fbounds, data_type ) 

INTEGER rtable_num_elements( kv, s )

INTEGER rtable_num_dimensions( kv, s )

INTEGER rtable_lower_bound( kv, s, dim )

INTEGER rtable_upper_bound( kv, s, dim )

INTEGER rtable_is_real( kv, s )

RtableDataBlock returns a pointer to  the da ta  block of a given 
rtable. The returned value should be casted to  the known da ta  type 
of the rtable. The d a ta  block can be m anipulated directly instead of
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using RtableAssign or RtableSelect. Users who directly m anipulate 
the da ta  block must be aware of the storage type, order, da ta  type, and 
presence of indexing functions to  do this properly.

In Fortran, there is no way to  retu rn  an ARRAY pointer. To work 
w ith an array created in Maple, the data-block m ust be copied to  a pre­
allocated Fortran da ta  block using the copy_to_array function. It copies 
the contents of the rtable rt to  the  ARRAY, a. See maplef ortran. hf for a 
complete explanation of the  param eters th a t are passed. To copy an array 
back to  Maple, the copy_to_rtable function can be used.

RtableCreate returns a newly created RTABLE as specified by:

1. The definitions given in the RtableSettings structure s.

2. A pointer to  an existing block of data. If pdata is NULL, then a da ta  
block is allocated and initialized to  s->fill. W hen providing an al­
ready created block of data, it is im portant th a t s->f oreign is set to  
TRUE. Size, storage, da ta  type, order, and indexing functions should all 
be considered when m anaging your own da ta  block. Usually, let Maple 
create the  data-block, then  use RtableDataBlock to  gain access to  it.

3. The bounds array, bounds. An m x n m atrix  would have bounds = 
l,m,l,n (i.e.,. bo th  the upper and lower bounds must be specified).

The Fortran  equivalent function is convert_to_rtable. It creates an 
rtable from an existing Fortran  array. The d a ta  is not copied in; instead, 
the rtable m aintains a pointer to  the external data.

RtableNumElements returns the num ber of elements in a given 
rtable. This may be different in sparse versus dense rtables.

1. For dense rtables, return  the num ber of elements of storage allocated 
for th is rtable.

2. If rt is in N AG-sparse form at, then th is returns the num ber of ele­
m ents in the d a ta  vector specified for the rtable, (which is the same 
as the length of each index vector). Note th a t the  num ber returned 
here represents the  num ber of da ta  elements th a t are actually filled 
in, not the num ber of elements allocated. Some of the  elements may 
have the value zero.

3. For M aple-sparse rtables, this always returns zero.

RtableNumDimensions returns the num ber of dimensions in a given 
rtable.
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RtableUpperBound and RtableLowerBound give the upper and lower 
bound of the  dimth dimension of the  RTABLE, rt. For a 2 x 3 m atrix, 
RtableLowerBound(rt,1) will retu rn  1 since the first dimension bounds 
are 1 . . 2, and the lower bound is 1.

RtablelsReal checks the elements of the  RTABLE rt to  see if they are 
all real or not. If there are imaginary num bers present this returns FALSE.
If there are only real numbers, this returns TRUE. Note th a t this routine 
will retu rn  im m ediately when given a non-complex hardw are type.

In addition to  the above functions, there is an extensive С A PI for 
working rtable da ta  types.

void RTableAppendAttribute( MKernelVector kv, RTableSettings 

* s , char *name ); 

void RTableAppendIndFn( MKernelVector kv, RTableSettings 

*s, ALGEB indfn ); 

void RTableGetDefaults( MKernelVector kv, RTableSettings 

*s ) ;

void RTableGetSettings( MKernelVector kv, RTableSettings 

* s , ALGEB rt );

M_INT RTableIndFn( MKernelVector kv, ALGEB r t , M_INT num ); 

ALGEB R T ablelndFnArgs( MKernelVector kv, ALGEB rt, M_INT num 

void RTableSetAttribute( MKernelVector kv, RTableSettings 

* s , char *name ); 

void RTableSetIndFn( MKernelVector kv, RTableSettings *s, 

ALGEB indfn );

void R T a b l eSetType( MKernelVector kv, RTableSettings *s, 

M_INT id, char *name );

RTableData RTable S e l e c t ( MKernelVector kv, ALGEB r t , M_INT 

*index );

RTableData RTableAssign( MKernelVector kv, ALGEB r t , M_INT 

*index, RTableData val ); 

void RTableSparseCompact( MKernelVector kv, ALGEB rt ); 

NAG_INT* RTableSparseIndexRow( MKernelVector kv, ALGEB r t , 

M_INT dim );

ALGEB RTableSparselndexSort( MKernelVector kv, ALGEB rt, 

M_INT by_dim ); 

void RTableSparseSetNumElems( MKernelVector kv, ALGEB r t , 

M_INT num );

M_INT RTableSparseSize( MKernelVector kv, ALGEB rt );

ALGEB RTableCopy( MKernelVector kv, RTableSettings *s,
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ALGEB rt );

ALGEB RTableCopylmPart( MKernelVector kv, RTableSettings 

* s , ALGEB rt ) ;

ALGEB RTableCopyRealPart( MKernelVector kv, RTableSettings 

* s , ALGEB rt ) ;

ALGEB RTableZipReIm( MKernelVector kv, RTableSettings *s, 

ALGEB rt_re, ALGEB rt_im );

Most Rtable access functions use the RtableSettings structure de­
fined in mpltable .h. This struct corresponds directly to  the  options avail­
able to  the rtable constructor in M aple.3

RtableAppendAttribute appends the name a ttribu te  to  the  list of 
a ttribu tes in the RtableSettings structure.

RtableAppendlndFn appends the indexing function, infn to  the list 
of indexing functions in the RtableSettings structure. Note th a t infn 
must be a valid Maple name or table-reference. For example,

RTableAppendIndFn(kv,&settings,ToMapleName(kv,"symmetric", 

TRUE));

RTableAppendlndFn(kv,& s e t t i n g s ,EvalMapleStatement(kv, 

"triangular[upper]"));

RtableGetDef aults fills the RtableSettings structure  s with stan ­
dard  default values. These defaults are as follows:

data_type = RTABLE_DAG

maple_type = ’an y t h i n g’ (Maple name ’an y t h i n g’) 

subtype = RTABLE_ARRAY 

storage = RTABLE_RECT 

pi = -1, p2 = -1 

order = RTABLE_FORTRAN 

read_only = FALSE 

foreign = FALSE 

num_dimensions = -1

index_functions = ’N U L L’ (Maple NULL) 

attributes = ’N U L L’ (Maple NULL) 

transpose = FALSE 

fill = 0

RtableGet Sett ings fills the RtableSettings structure s with the 
settings held by the RTABLE, rt.

3For more information, see ? r t a b le .
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RtablelndFn returns the i th  indexing function code. The indexing 
codes are defined in mpltable .h  in the  form RTABLE_INDEX_XXXX. If there 
are no indexing functions, th is will give an error for any value of i. If there 
is one indexing function, then rtable IndFun(rt,1) will retu rn  the code 
for the only indexing function. Use MapleNumArgs to  find out how many 
indexing functions there are.

RtablelndFnArgs returns the argum ent expression sequence for in­
dexing function ’n u m’ in rtable ’rt ’. If no argum ents exist, Maple ’N U L L’ 
is returned. The result can be further converted to  a hardware type using 
the MapleToXXX function(s). The num ber of argum ents returned can be 
determ ined using MapleNumArgs. Note th a t some knowledge about the 
indexing functions is required in order to  convert the retu rn  value to  the 
appropriate hardware type. For example, RTablelndFnArgs(kv,rt, 1) of 
a band[bl,b2] rtable will retu rn  the bl part of the expression sequence 
(bl,b2). The user must know th a t bl and b2 are always integers. Con­
versely, с in constant [c] will always be the same type as the  rtab le ’s 
datatype. Thus for float [8] rtables, MapleToFloat64 should be used to  
do the conversion to  a hardw are type.

RtableSetAttribute sets all the a ttribu tes of the  RtableSettings 
structure s to  the single NAME attribu te , name.

RtableSetlndFn sets all the  indexing functions of the  RtableSettings 
structure s and resets it to  the  single indexing function infn.

RtableSetType sets the data_type field in the given RtableSettings 
structure s to  id, and when id=RTABLE_DAG, sets the maple_type to  name. 
For example, to  set the  d a ta  type to  float [8], RTableSetType(kv,&s, 
RTABLE_FLOAT,NULL) would be called. To set the  type to  numeric, 

RTableSetType(kv,&s,RTABLE_DAG,"numeric") would be called. Ba­
sic type ids are defined in mpltable.h. To set compound types, the 
RtableSettings da ta  structure  can be m anipulated directly as follows:

se t t i n g s .data_type = RTABLE_DAG;

settings.maple_type = EvalMapleStatement(kv,

"complex(numeric)");

RtableSelect returns the value rt [index] , where rt is an RTABLE, 
and index is an integer array.

RtableAssign assigns the value val to  rt [index]. This function 
should be used instead of assigning directly to  the rtable data-block 
whenever the given rtable has an indexing function or unusual storage 
form at (e.g., sparse). The index is an integer array. For example, the 
following code assigns the value 3 .1 4  to  the [2 ,1 ] element of the given 
datatype=f loat [8] rtable.
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RTableData val;

M_INT * index;

i n d e x [0] = 2;

i n d e x [1] = 1;

val.float64 = 3.14;

RTableAssign(kv,r t ,i n d e x ,v a l ) ;

RtableSparseCompact removes any zeros in the sparse rtable da ta  
block. This should be called after an external routine th a t modifies the 
sparse da ta  block directly.

RtableSparselndexRow returns the vector of indices for the  ith. di­
mension of rt. The rt must be a NAG sparse rtable.

RtableSparselndexSort sorts the iVth index vector for the NAG 
sparse rtable rt. This is done in-place, and the other index vectors are 
adjusted accordingly so th a t the index/value m apping is preserved.

RtableSparseSetNumElems sets the num ber of non-zero entries in the 
N A G  sparse rtable rt to  N. This should only be done if the  num ber of 
elements has actually changed.

RtableSparseSize returns the num ber of entries allocated to  store 
d a ta  in the N A G  sparse rtable rt. This is not necessarily the same as 
RtableNumElems.

RtableCopy returns a copy of the rtable rt with new settings as given 
by the RtableSettings structure s.

RtableCopylmPart returns a copy of the  im aginary part of the rtable 
rt w ith new settings as given by the RtableSettings structure s. The 
copy returned is purely real, but contains only the im aginary parts of the 
given rtable.

RtableCopyRealPart returns a copy of the real part of the rtable rt 
with new settings as given by the RtableSettings structure s.

RtableZipRelm combines two real RTABLEs, rt_re and rt_im, into 
a complex rtable of the form rt_re + I*rt_im. The settings of the new 
rtable th a t is returned are determ ined by the RtableSettings structure 
s.

List Manipulation To work w ith Maple lists, the following A PI functions 
can be used. These functions are only available using the С API.

ALGEB M a p leListAlloc( MKernelVector kv, M_INT num_members ); 

void M apleListAssign( MKernelVector kv, ALGEB list,

M_INT i, ALGEB val );
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ALGEB MapleListSelect( MKernelVector kv, ALGEB list,

M_INT i );

MapleListAlloc creates a LIST dag with space for num_members ele­
ments. This list m ust be filled up before it can be passed back to  Maple.

MapleListAssign sets the  ith element of the given list to  the value 
val. T hat is, list [i] := val.

MapleListSelect returns the ith element of the  given list.

Table Manipulation To work w ith Maple tables, the following API func­
tions can be used. These functions are only available using the С API.

ALGEB MapleTableAlloc( MKernelVector kv );

void MapleTableAssign( MKernelVector kv, ALGEB table,

ALGEB ind, ALGEB val );

ALGEB MapleTableSelect( MKernelVector kv, ALGEB table,

ALGEB ind );

void MapleTableDelete( MKernelVector kv, ALGEB table,

ALGEB ind );

M_B00L MapleTableHasEntry( MKernelVector kv, ALGEB table, 

ALGEB ind );

MapleTableAlloc creates a TABLE dag. The table is initially empty. 
MapleTableAssign sets the  ind element of the given table to  the 

value val. T hat is, table [ind] := val, where ind can be a NAME or an
expression sequence of numbers, or any other valid index into a Maple 
table.

MapleTableSelect returns the  ind element of the given table. 
MapleTableDelete removes the ind element from the table. 
MapleTableHasEntry queries the table to  see if it contains an el­

ement a t index ind. If it does, TRUE is returned; otherwise, FALSE is 
returned.

Data Selection The following functions are available when using the 
С A PI only and deal w ith selecting from various kinds of Maple da ta  
structures.

ALGEB MapleSelectlmaginaryPart( MKernelVector kv, ALGEB s ) 

ALGEB MapleSelectRealPart( MKernelVector kv, ALGEB s ); 

ALGEB MapleSelectIndexed( MKernelVector kv, ALGEB s, M_INT 

dim, M_INT *ind );

MapleSelectlmaginaryPart and MapleSelectRealPart return  the 
im aginary and real parts of a complex num ber dag, respectively.



MapleSelectIndexed returns a value from any indexable object in 
Maple (list, array, set, etc.). The index is specified by filling in the ind 
array w ith the desired index. The second param eter dim is the num ber of 
dimensions in the array s (also the num ber of elements in ind).

For example, to  lookup a [1 ,2 ,3 ] ,  the following code could be used 
(assuming argl points to  the  array a).

ALGEB val;

M_INT i n d [ 3 ] ;

ind [0] = 1;

ind [1] = 2;

ind [2] = 3;

val = k->selectIndexed(argl, 3, ind);

Unique Data The following function is available only in the С API.

ALGEB MapleUnique( MKernelVector kv, ALGEB s );

This function processes the  given Maple expression s, and returns 
the unique copy of th a t expression from M aple’s simpl table. For ex­
ample, if you create the num ber num = one-billion, then  you com­
pute the num ber val = 2*500-million. An address comparison of num 
and val will not indicate equality. After calling simplify as in num = 
MapleUnique(kv,num) ;, bo th  num and val will point to  the same mem­
ory.

Error Handling The following functions will raise a Maple-style error 
message.

void M apleRaiseError( MKernelVector kv, char *msg );

void MapleRaiseError1( MKernelVector kv, char *msg,

ALGEB argl );

void MapleRaiseError2( MKernelVector kv, char *msg,

ALGEB a r g l , ALGEB arg2 );

The Fortran equivalent is:

SUBROUTINE maple_raise_error( kv, msg, len )

These functions display the message msg, stop execution, and return  
to  M aple’s input loop. A call to  MapleRaiseError does not return.
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The character string msg may contain wildcards of the form °/0N, where 
N is a non-zero integer. These wildcards will be replaced by the ex tra ar­
gument, argl or arg2, before displaying the message. If °/0-N is specified, 
then  the optional argum ent will be displayed w ith st, nd, rd, or th ap­
pended to  it. For example:

MapleRaiseError2(kv, "the °/0- 1 argument, ’°/02 ’, is not valid", 

ToMaplelnteger(i), args[i]);

This, if invoked, will raise the error, "the 4th argument, ’foo ’, is not 
valid", assuming i=4, and args [i] is set to  the Maple name foo.4

The only option not allowed is °/00 since the function cannot know how 
many optional argum ents are left to  parse.

The С A PI also provides a mechanism for trapping errors raised by 
Maple.

void* M a p leTrapError( MKernelVector kv, void *(*proc)

P(( void *data )), void *data, M_B00L *errorflag );

MapleTrapError executes the С function proc, passing it the data, 
data. If an error occurs, errorf lag is set to  TRUE and traperror returns 
immediately. If no error occurs, the  result of proc (data) is returned and 
errorf lag is FALSE.

For example, the following code a ttem pts to  execute a Maple proce­
dure. If an error occurs, a separate branch of code is taken.

typedef struct -[

MKernelVector k;

ALGEB fn, argl, arg2;

У CallbackArgs;

void *tryCallback( void *data )

■C
/* calls the maple procedure ’f n’ with arguments ’a r g l’ */ 

/* and ’a r g 2’ */ 

return (void*)

E v a l M apleProc( ((CallbackArgs*)data)->k,

((CallbackArgs*)data)->fn, 2,

((CallbackArgs*)data)->argl,

((CallbackArgs*)data)->arg2);

4For more information, see T erro r.
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>

void MainProc( MKernelVector k, ALGEB fn )

■C
M_B00L errorflag;

ALGEB r e s u l t ;

CallbackArgs a;

а.к = к; 

a.fn = fn;

a.argl = ToMapleFloat(k,3.14); 

a.arg2 = ToMaplelnteger(k,44);

result = (ALGEB)MapleTrapError(k,tryCallback,&a,&errorflag); 

if ( errorflag ) {.

/* do something */

>
else -[

/* do something else */

>
>

Hardware Float Evaluation The following procedures evaluate a Maple 
Procedure or statem ent using hardw are floats.

double Map l e E v a l h f ( MKernelVector kv, ALGEB s ); 

double EvalhfMapleProc( MKernelVector kv, ALGEB fn,

int n a r g s , double *args );

The equivalent Fortran functions are as follows.

DOUBLEPRECISION ma p l e . e v a l h f ( kv, s)

DOUBLEPRECISION evalhf_maple_proc( kv, fn, nargs, args )

MapleEvalhf applies evalhf to  the given dag s. Then evalhf will
either evaluate an expression using hardware floats to  produce a hardware 
float result, or it will retu rn  the handle to  an evalhf able rtable th a t can 
be used as a param eter to  Evalhf MapleProc.

Evalhf MapleProc calls the evalhf com putation engine directly to  
evaluate the  given procedure fn w ithout converting the hardware float 
param eters to  software floats. The procedure fn is a valid Maple PROC 
dag, nargs is the  num ber of param eters to  pass to  f n, and args is the list 
of param eters. Note th a t args s ta rts  at 1; args [1] is the first param eter, 
args [nargs] is the last, and args [0] is not used.
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Setting up a callback may require the use of static  local variables in 
the w rapper module so th a t the callback will have access to  the kernel 
vector (unless it is passed via a data param eter th a t the  callback receives). 
The following is an example of a w rapper th a t uses EvalhfMapleProc to  
evaluate a function th a t takes an hfarray and some numeric values.

#include "maplec.h"

static MKernelVector kv; /* kernel vector */

static ALGEB fn; /* function handle */

static double hfparams[HF_MAX_PARAMS+1]; /* parameters */

void callb a c k ( int N, double X, double Y[] )

■C
h f p a r a m s [1] = (double)N; 

h f p a r a m s [2] = X;

/* h f p a r a m s [3] is already set */

EvalhfMapleProc(kv,f n ,3,h f p a r a m s ) ;

>

/* main wrapper function called from Maple */

ALGEB test( MKernelVector k, ALGEB args )

■C
/* skip arg checking for the sake of brevity */

kv = k; /* save kernel vector */

/* get the hfarray handle */

h f p a r a m s [3] = MapleEvalhf(DAG(args[1]));

fn = D A G ( a r g s [2]); /* save the function handle */

do_stuff(callback); /* start the routine that */

/* calls callback() */ 

return( k->toMapleNULL() );

>

In Maple, the external routine would be accessed ju st like any other, 
except an error will be raised if the given procedure is not able to  use 
evalhf.

> f := proc(n,x,y) y[l] := n*sin(x); end:
> у := Vector([1,2],datatype=float[8]):
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> p := define_external(’test’,MAPLE,LIB="libtest.so"):

> p(y, f) :

General Evaluation The following procedures evaluate a Maple proce­
dures or statem ents. These routines are not available in the Fortran  API.

ALGEB MapleEval( MKernelVector kv, ALGEB s );

ALGEB E v a l M apleProc( MKernelVector kv, ALGEB fn, int nargs,

/* ALGEB argl, ALGEB arg2, */ ... );

ALGEB EvalMapleStatement( MKernelVector kv, char *statement );

EvalMapleProc is a callback to  Maple. The first argum ent fn is a 
Maple PROC or FUNCTION dag, which will be evaluated with the argum ents, 
argl . . argN. For example, consider the following Maple function.

> f := proc(x) x~2; end:

If this function is passed to  the external function as args [1], then 
the following code would execute the given function at x := 3.14.

ALGEB al, MapleResult; 

double CResult;

al = ToMapleFloat(kv,3.14);

MapleResult = EvalMapleProc(kv,args[1],1,al);

CResult = MapleToFloat64(kv,MapleResult);

EvalMapleStatement enables you to  enter a single parsable Maple 
statem ent and have it evaluated. For example, the following call will eval­
uate the integral x 3 in the range x = 0. . 1.

ALGEB Map l e R e s u l t ; 

double CResult;

MapleResult = EvalMapleStatement (kv, "int (x~3,x=0. . 1) ") ; 

CResult = mapleToFloat64(kv,MapleResult);

MapleEval evaluates a Maple expression. It is especially useful for 
getting at the  value of an assigned name.

Assignment to Maple Variables The following assignment functions are 
available only when using the С API.

ALGEB MapleAssign( MKernelVector kv, ALGEB lhs, ALGEB rhs ); 

ALGEB MapleAssignIndexed( MKernelVector kv, ALGEB lhs,

M_INT dim, M_INT *ind, ALGEB rhs );
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MapleAssign sets the value dag rhs to  the  name dag lhs. This is 
equivalent to  the Maple statem ent

> lhs := rhs;

MapleAssignlndexed sets the value rhs to  the  indexed variable lhs. 
The second param eter dim tells the  num ber of dimensions in the  array 
(or 1 if lhs is a table). The th ird  param eter ind is a hardw are array of 
indices.

For example, to  make the assignment a [ l ]  [2] [3] = 3 .14 , the fol­
lowing code could be used (assuming argl points to  the array a).

ALGEB rhs;

M_INT i n d [ 3 ] ;

ind [0] = 1; 

ind [1] = 2; 

ind [3] = 3;

rhs = ToMapleFloat(kv,3.14);

M apleAssignlndexed(kv,a r g l ,3,i n d ,r h s ) ;

User Information The MapleUserlnf о command displays "msg" when 
inf olevel [’n a m e’] is set to  level. This command is only available in 
the С API.

void MapleUserlnfо( MKernelVector kv, int level, char 

* n a m e , char *msg );

Memory Management The following functions are available only when 
using the С API.

void* MapleAlloc( MKernelVector kv, M_INT nbytes ); 

void MapleD i s p o s e ( MKernelVector kv, ALGEB s ); 

void MapleGcAllow( MKernelVector kv, ALGEB a ); 

void M a p leGcProtect( MKernelVector kv, ALGEB a );

MapleAlloc allocates nbytes bytes of memory and returns a pointer 
to  it. Garbage collection of this memory is handled by Maple. Note th a t 
to  allocate this memory, a new BINARY dag structure is created, and a 
pointer to  the da ta  part of the dag is returned.

The following code snapshot might be seen in a w rapper th a t converts 
a integer reference (a name) in Maple to  C.
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ALGEB argl;

INTEGER32 *i; 

i = MapleAlloc(kv,sizeof(INTEGER32)); 

*i = MapleToInteger32(kv,argl);

MapleDispose frees the memory allocated to  the structure s. This 
should only be used on da ta  structures created using MapleAlloc, or 
those th a t were created externally and are guaranteed not to  be pointed 
to  by any other Maple structure. M aple’s garbage collector will reclaim 
any memory not pointed to  by any other da ta  structure, so in typical 
cases it is not necessary to  use MapleDispose.

MapleGcProtect prevents the  algebraic a from being collected by 
M aple’s garbage collector. The memory pointed to  by a will not be freed 
until Maple exits, or a call to  MapleGcAllow is issued. Any dags th a t must 
persist between external function invocations should be protected. This 
includes any external global or static  ALGEB variables th a t will be referred 
to  in a later external call. Failure to  protect such a persistent variable 
will lead to  unexpected results if M aple’s garbage collector cleans it up 
between function calls.

MapleGcAllow allows the algebraic structure  a to  be collected by 
M aple’s garbage collector. Any algebraic structure th a t is not referenced 
by another algebraic structure will autom atically be destroyed and its 
memory reclaimed. Algebraics are protected from garbage collection if 
they are used somewhere (i.e., the value of a global name, part of an 
array’s data, etc). The normal sta te  of an algebraic is to  have garbage 
collection enabled on it.

11.4 System Integrity
The Maple kernel has no control over the quality or reliability of external 
functions. If an external function performs an illegal operation, such as 
accessing memory outside of its address space, th a t operation will most 
likely result in a segm entation fault. The external routine will crash, tak ­
ing Maple along with it.

If an external routine accesses memory outside of its address space but 
inside M aple’s address space, the external routine will likely not crash, 
but Maple will have become corrupted, resulting in inexplicable behavior 
or a crash later in the  Maple session. Similarly, an external routine th a t
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deals directly w ith Maple d a ta  structures can corrupt Maple by misusing 
the da ta  structure m anipulation facilities.

Therefore, external calling is a feature to  use at your own risk. 
W hether an external routine is one th a t you have w ritten, or is one 
supplied by a th ird  party  to  which you have declared an interface (via 
def in e _ e x te rn a l) ,  Maple must rely on the integrity of the  external rou­
tine when it is called.

11.5 Conclusion
This chapter outlined the three m ethods for using compiled С or Fortran 
routines in Maple. You can extend the power of Maple by using your own 
or th ird  party  libraries.
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Table 11.3 Wrapper Compound Types

M ap le  D a ta  D escr ip to r С T y p e Fortran  T y p e
S T R U C T ( m e m b e r 1 :: descriptorl, ..., struct { typel memberl; ..., NA

memberN :: descriptorN, options ) typeN m e m b e r N ; }

U N I O N ( memberl :: descriptorl, ..., union { typel memberl; ..., NA

memberN :: descriptorN, options ) typeN m e m b e r N ; }

PR0C( memberl :: descriptorl, ..., typeR (*proc) (typel memberl, ..., NA

memberN :: descriptorN, 

RETURN :: descriptorR )

t y p e N , memberN );

юr-'-
Ю



Table 11.4 Maple API Libraries for С and Fortran

Operating
System

B inary
D irectory

Load Library 
Environm ent 
Variable

С M aple 
A P I  Library

Fortran M aple 
A P I  Library

Microsoft Windows

MacOS
Solaris
HP-UX
IRIX
AIX
0SF1/T rue64
Linux

bin.wXX1

NA
bin.SUN_SPARC-SOLARIS
bin.HP_RISC_UNIX
bin.SGI-M IPS-UNIX
bin.IBM_RISC_UNIX
bin.DEC_ALPHA_UNIX
bin.IBM_INTEL_LINUX

NA

NA
LD_LIBRARY_PATH
SHLIB_PATH
LD_LIBRARY_PATH
LIBPATH
LD_LIBRARY_PATH
LD_LIBRARY_PATH

maplec.lib
(maplec.dll)
maplec.ShLib
libmaplec.so
libmaplec.sl
libmaplec.so
libmaplec.a
libmaplec.so
libmaplec.so

m aplefortran.lib
(maplefortran.dll)
m aplefortran.ShLib
libm aplefortran.so
libm aplefortran.sl
libm aplefortran.so
libm aplefortran.a
libm aplefortran.so
libm aplefortran.so

1 For Microsoft Windows, the binary directory name depends on the platform. It is one of: bin.w 95, b in .w n t, bin.w2000, and bin.wme.

11.5 
Conclusion 

• 
577
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A Internal Representation 
and Manipulation

The following is a list of the structures currently implemented in
Maple.

A N D A S S I G N B I N A R Y B R E A K C A T E N A T E
C O M P L E X C O N T R O L D C O L O N D E B U G E Q U A T I O N
E R R O R E X P S E Q F L O A T F O R F O R E I G N
F U N C T I O N G A R B A G E H A S H H A S H T A B H F L O A T
I F I N E Q U A T I N T N E G I N T P O S L E S S E Q
L E S S T H A N L E X I C A L L IS T L O C A L M E M B E R
M O D D E F M O D U L E N A M E N E X T N O T
O R P A R A M P O W E R P R O C P R O D
R A N G E R A T I O N A L R E A D R E T U R N R T A B L E
S A V E S E R I E S S E T S T A T S E Q S T O P
S T R I N G S U M T A B L E T A B L E R E F T R Y
U N E V A L U S E Z P P O L Y

Each of these structures, along with the constraints on its length and 
contents, is described in the following sections.

A .l  Internal Organization
Maple appears to the user as an interactive calculator. The user interface 
reads input, parses it, and then calls the math engine for each complete 
statement encountered. Maple will read and evaluate an infinite number 
of statements until a qu it statement is evaluated, or the user interface is 
shut down.

579
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Maple consists of three main components: a kernel, a library, and a 
user interface. The kernel and library together are known as the math 
engine .

The kernel is written in the С language and is responsible for low-level 
operations such as arbitrary precision arithmetic, file I/O , execution of the 
Maple language, and the performance of simple mathematical operations 
such as differentiation of polynomials.

Most of Maple’s mathematical knowledge is represented in the Maple 
library, which is written in the Maple language. The library is stored in 
an archive, and pieces of it are loaded and interpreted by the kernel on 
demand.

The user interface is the part of Maple that the user sees, and is 
conceptually separate from the math engine. The same math engine can 
be used with different user interfaces. Usually, Maple is provided with 
a graphical user interface (GUI) and a text based interface. The GUI 
is more useful for interactive use, especially when working with plots or 
large matrices. The textual interface is practical for batch processing, or 
solving large problems where you wish to devote all the resources of your 
machine to computation.

The internal functions in Maple are divided into four distinct groups:

1. Evaluators The evaluators are the main functions responsible for 
evaluation. There are six types of evaluations: statements, algebraic 
expressions, boolean expressions, name forming, arbitrary precision 
floating-point arithmetic, and hardware floating-point arithmetic. The 
user interface calls only the statement evaluator, but thereafter, there 
are many interactions between evaluators. For example, the statement,

if a > 0 then b I I i : = 3 .14/a end if

is first analyzed by the statement evaluator, which calls the Boolean 
evaluator to resolve the if  condition. Once completed (for example, 
with a true result), the statement evaluator is invoked again to do the 
assignment, for which the name-forming evaluator is invoked with the 
left-hand side of the assignment, and the expression evaluator with 
the right-hand side. Since the right hand side involves floating-point 
values, the expression evaluator calls the arbitrary precision floating­
point evaluator.

Normally, the user will not specifically invoke any of the evaluators, 
but in some circumstances, when a non-default type of evaluation 
is needed, the user can directly call evalb (the Boolean evaluator),
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evaln (the name-forming evaluator), evalf (the arbitrary precision 
floating-point evaluator), or evalhf (the hardware floating-point eval­
uator).

2. Algebraic Functions These are commonly called basic functions. 
Some examples are: taking derivatives (diff), dividing polynomials 
(divide), finding coefficients of polynomials (coeff), series compu­
tation (series), mapping a function (map), expansion of expressions 
(expand), and finding indeterminates (indets).

3. Algebraic Service Functions These functions are algebraic in 
nature, but serve as subordinates of the functions in the above group. 
In most cases, these functions cannot be explicitly called by the user. 
Examples of such functions are the internal arithmetic packages, the 
basic simplifier, and retrieval of library functions.

4. Data Structure Manipulation Functions These are like the 
algebraic functions, but instead of working on mathematical objects 
(polynomials, sets, etc.), they work on data structures (expression 
sequences, sums, products, lists, etc.). Examples of such functions 
are operand selection (op), operand substitution (subsop), searching 
(has), and length determination (length),

5. General Service Functions Functions in this group are at the 
lowest hierarchical level. That is, they may be called by any other 
function in the system. They are general purpose, and not necessar­
ily specific to symbolic or numeric computation. Some examples are: 
storage allocation and garbage collection, table manipulation, internal 
I/O , and exception handling.

The flow of control need not remain internal to the Maple kernel. In 
many cases, where appropriate, a decision is made to call functions written 
in Maple and residing in the library. For example, many uses of the expand 
function will be handled in the kernel. However, if an expansion of a sum 
to a large power is required, then the internal expand will call the external 
Maple library function c expand/bigpow' to resolve it. Functions such as 
diff, evalf, series, and type make extensive use of this feature.

Thus, for example, the basic function diff does not know how to dif­
ferentiate any function. All of that knowledge resides in the Maple library 
in procedures named ‘ d iff / functionName‘ . This is a fundamental fea­
ture of Maple since it permits flexibility (changing the library), personal 
tailoring (by defining your own handling functions), readability (much of
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Maple’s knowledge is visible at the user level), and it allows the kernel to 
remain small by unloading non-essential functions to the library.

A .2 Internal Representations of Data Types
The parser and some internal functions are responsible for building all 
of the data structures used internally by Maple. All of the internal data 
structures have the same general format:

Header Datai Datan

The header field, stored in one or more machine words, encodes the 
length of the structure and its type. Additional bits are used to record 
simplification status, garbage collection information, persistent store sta­
tus, and various information about specific data structures (e.g., whether 
or not a for loop contains a break or next).

The length is encoded in 26 bits on 32-bit architectures, resulting in 
a maximum single object size of 67,108, 863 words (268, 435, 452 bytes, 
or 256 megabytes). On 64-bit architectures, the length is stored in 32 
bits, for a maximum object size of 4, 294, 967, 295 words (34, 359, 738, 360 
bytes, or 32 gigabytes).

Every structure is created with its own length, and that length will not 
change during the existence of the structure. Furthermore, the contents 
of most data structures are never changed during execution, because it is 
unpredictable how many other data structures may be referring to it, and 
relying on it not to change. The normal procedure to modify a structure 
is to copy it, and then to modify the copy. Structures that are no longer 
used will eventually be reclaimed by the garbage collector.

The following figures describe each of the 58 structures currently im­
plemented in Maple, along with the constraints on their length and con­
tents. The 6-bit numeric value identifying the type of structure is of little 
interest, so symbolic names will be used.

Logical A N D

AND Aexpr Aexpr

Maple syntax: expr and expr
Length: 3
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Assignment Statement

ASSIGN name expr

Maple syntax: name := expr 
Length: 3

The n a m e  entry should evaluate to an assignable object: a NAME, 
FUNCTION, or TABLEREF structure.

Binary Object

BINARY data

Maple syntax: none 
Length: arbitrary

The BINARY structure can hold any arbitrary data. It is not used 
directly as a Maple object, but is used as storage for large blocks of data 
inside other Maple objects (currently only RTABLEs). It is also sometimes 
used as temporary storage space during various kernel operations.

Break Statement

BREAK

Maple syntax: break 
Length: 1

Name Concatenation

CATENATE name Aexpr

Maple syntax: name I I expr 
Length: 3

If the n a m e  entry is one of NAME, CATENATE, LOCAL, or PARAM, and if 
the e x p r  entry evaluates to an integer, NAME, or STRING, then the result 
is a NAME. If the n a m e  entry is a STRING or CATENATE that will resolve to 
a STRING, and if the e x p r  entry evaluates to an integer, NAME, or STRING, 
then the result is a STRING. If e x p r  is a RANGE, then the result is to 
generate an EXPSEQ of NAMEs or STRINGS.
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Complex Value

COMPLEX re m

COMPLEX Aim

Maple syntax: Complex ( r e , im) or re + im * I
Length: 2 or 3

The re and im  fields must point to INTPOS, INTNEG, RATIONAL, or 
FLOAT structures, one of the NAMEs in f in it y  or undefined, or a SUM 
structure representing - in f in it y . In the length 3 case, if either re or im  

is a FLOAT, the other must be a FLOAT as well.

Communications Control Structure

CONTROL A;i n te g e r

Maple syntax: none 
Length: 2

This is an internal structure used in kernel to user-interface commu­
nication. Such a structure will never reach the user level, or even the 
mathematical parts of the kernel.

Type Specification or Test

DCOLON e x p r Hype — e x p r

Maple syntax: expr : : typeExpr
Length: 3

This structure has three interpretations depending on the context in 
which it is used. When it appears in the header of a procedure definition, it 
is a typed parameter declaration. When it appears in the local section of a 
procedure or on the left hand side of an assignment, it is a type assertion. 
When it appears elsewhere (specifically in a conditional expression), it is 
a type test.

Debug

DEBUG Ke x p r Ke x p r

Maple syntax: none
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Length: 2 or more

This is another internal-only structure. It is used by the kernel when 
printing error traceback information to transmit that information up the 
call stack.

Equation or Test for Equality

EQUATION expr

Maple syntax: expr = expr 
Length: 3

This structure has two interpretations depending on the context in 
which it is used. It can be either a test for equality, or a statement of 
equality (not to be confused with an assignment).

Error Statement

ERROR

Maple syntax: error "msg", arg, . ..  arg 
Length: 2

This represents the Maple error statement. The expr is either a single 
expression (if only a message was specified in the error statement), or an 
expression sequence (if arguments were also specified). The actual internal 
tag used for the ERROR structure is MERROR, to prevent collision with a 
macro defined by some С compilers.

Expression Sequence

EXPSEQ Kexpr Kexpr

Maple syntax: expr, expr, ...
Length: 1 or more

Expression sequences are available to the user as a data structure, and 
are also used to pass arguments to procedures. Effectively, procedures take 
a single argument that is an expression sequence. An expression sequence 
may be of length 1 (i.e., an empty sequence), which is represented by the 
Maple symbol NULL, or in some contexts (such as parameters to a function 
call) as nothing at all.
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Floating-Point Number

FLOAT i n t e g e r  1 Ain t e g e r 2  Aa t t r i b  — e x p r

Maple syntax: 1.2, 1.2e3, Float (12,34), Float (inf inity)
Length: 2 (or 3 with attributes)

A floating-point number is interpreted as integer 1 * ю ш*е5ег2. A 
floating-point number may optionally have attributes, in which case the 
length of the structure will be 3, and the third word will point to a Maple 
expression. This suggests that several floating-point numbers with the 
same value but different attributes can exist simultaneously.

The integer2 field can optionally be one of the names undefined 
or infinity, in which case the FLOAT structure represents an undefined 
floating-point value (not-а-number, or NaN, in IEEE terminology), or a 
floating-point infinity. When integer2 is undefined, integer 1 can take 
on different small integer values, allowing the existence of different NaNs. 
When integer2 is infinity, integer 1 must be 1 or —1.

For/While Loop Statement

FOR Kn a m e л f r o m — Aby— At o — Aco n d — As t a t —

e x p r e x p r e x p r e x p r seq

FOR Kn a m e Ki n  — e x p r Acond — e x p r As t a t  — seq

Maple syntax:

for name from fromExpr by byExpr to toExpr 

while condExpr do 

statSeq

od

Maple syntax:

for name in inExpr

while condExpr do 

statSeq

od

Length: 7 or 5

The name follows the same rules as in ASSIGN, except that it can 
also be the empty expression sequence (NULL), indicating that there is no 
controlling variable for the loop.



The from-expr , by-expr, to-expr, and cond-expr entries are general 
expressions. All are optional in the syntax of fo r  loops and can thus be 
filled in with default values (1, 1, NULL, and true respectively) by the 
parser.

The stat-seq entry can be a single Maple statement or expression, a 
STATSEQ structure, or NULL indicating an empty loop body. An additional 
bit in the FOR structure’s header is used to indicate whether the stat-seq 
contains any break or next statements.

Foreign Data

А .2 Internal Representations of Data Types • 587

FOREIGN | . . .

Maple syntax: none 
Length: 1 or more

This is similar to the BINARY structure, except that it is for use by 
components of Maple outside the kernel, such as the user interface. A 
FOREIGN structure is exempt from garbage collection, and it is up to the 
external component to free it when it is done with it.

Function Call

FUNCTION Kn a m e Ke x p r  — seq Aa t t r i b  — e x p r

Maple syntax: name ( exprSeq )
Length: 2 (or 3 with attributes)

This structure represents a function invocation (as distinct from a 
procedure definition that is represented by the PROC structure). The name 
entry follows the same rules as in ASSIGN, or it may be a PROC structure. 
The expr-seq entry gives the list of actual parameters, and is always an 
expression sequence (possibly of length 1, indicating no parameters).

Garbage

GARBAGE | . . .

Maple syntax: none 
Length: 1 or more

This structure is used internally by Maple’s garbage collector as a 
temporary object type for free space.
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Hardware Float

HFLOAT f lo a tw o r d

HFLOAT f lo a tw o r d  f lo a tw o r d

Maple syntax: none
Length: 2 on 64-bit architectures, 3 on 32-bit architectures

This structure is used to hold a hardware floating-point value. The 
one or two words (always 8 bytes) after the header hold the actual double­
precision floating-point value. HFLOAT objects are currently not available 
directly to the user, but they are used internally to more efficiently trans­
fer hardware floating-point values between RTABLEs of such values, and 
Maple’s I/O facilities (for example, the printf and scanf families of 
functions).

If Statement

IF Aco n d — As t a t — Aco n d — As t a t — As t a t —

e x p r seq e x p r seq seq

Maple syntax:

if condExpr then 

statSeq 

elif condExpr then 

statSeq

else statSeq 

end if

Length: 3 or more

This structure represents the if ... then ... elif ... else ... end if
statement in Maple. If the length is even, the last entry is the body of an 
else clause. The remaining entries are interpreted in pairs, where each 
pair is a condition of the if or elif clause, followed by the associated 
body.

Not Equal or Test for Inequality

INEQUAT e x p r

Maple syntax: expr < expr
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Length: 3

This structure has two interpretations, depending on the context in 
which it is used. It can be either a test for inequality or a statement of 
inequality (not to be confused with an assignment).

Negative Integer

INTNEG integer integer

Maple syntax: —123 
Length: 2 or more

This data structure represents a negative integer of arbitrary preci­
sion. See the comments below about the representation of integers.

Positive Integer

INTPOS integer integer

Maple syntax: 123 
Length: 2 or more

This data structure represents a positive integer of arbitrary preci­
sion. Integers are represented internally in a base dependent on the host 
machine. On 32-bit architectures, this base is 10, 000. On 64-bit architec­
tures, the base is 1, 000, 000, 000. The base is chosen such that the square 
of the base is still representable in a machine integer. Each integer field 
represents either 4 or 9 digits. The least significant digits are represented 
first. For example, on a 32-bit platform, the integer 123, 456, 789, 638, 747 
is represented as:

INTPOS 8747 8963 4567 123

Small integers are not represented by data structures at all. Instead of a 
pointer to an INTP0S or INTNEG structure, a small integer is represented 
by the bits of what would normally be a pointer. The least significant 
bit is 1, which makes the value an invalid pointer (since pointers must be 
word-aligned). Such an integer is called an immediate integer.

The range of integers representable in this way is —1,073,741,823 
to 1,073,741,823 (i.e., about + /  — 109) on 32-bit architectures, and 
-4 ,  611, 686, 018, 427, 387, 903 to 4, 611, 686, 018,427, 387, 903 (i.e., about 
+ /  — 4 * 1018) on 64-bit architectures. (These numbers may not seem



"small", but consider that Maple’s maximum integer magnitude is about 
2q268,435,448 on 32-bit architectures and ю 38’654’705’646 on 64-bit architec­
tures.)
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Less Than or Equal

LESSEQ Ae x p r l  Ae x p r 2

Maple syntax: exprl <= expr2, expr2 = exprl
Length: 3

This structure has two interpretations, depending on the context. It 
can be interpreted as a relation (i.e., an inequation), or as a comparison 
(e.g., in the condition of an i f  statement, or the argument to a call to 
evalb). Maple does not have a greater-than-or-equal structure. Any input 
of that form is turned around into a LESSEQ structure.

Less Than

LESSTHAN e x p r e x p r

Maple syntax: exprl < expr2 , expr2 exprl
Length: 3

Like the LESSEQ structure above, this structure has two interpreta­
tions, depending on the context. It can be interpreted as a relation (i.e., 
an inequation), or as a comparison (e.g., in the condition of an i f  state­
ment, or the argument to a call to evalb).

Maple does not have a greater-than structure. Any input of that form 
is turned around into a LESS structure.

Lexically Scoped Variable within an Expression

LEXICAL integer

Maple syntax: name 
Length: 2

This represents an identifier within an expression in a procedure that 
is not local to that procedure, but is instead declared in a surrounding 
procedure scope. The integer field identifies which lexically scoped vari­
able of the current procedure is being referred to. The integer, multiplied 
by 2, is an index into the lexical-seq structure referred to by the PROC
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DAG of the procedure. Specifically, I in teger I * 2 -  1 is the index to 
the NAME of the identifier, and I in teger I * 2 is the index to a descrip­
tion (LOCAL, PARAM, or LEXICAL) relative to the surrounding scope. The 
value of integer can be positive or negative. If positive, the original iden­
tifier was a local variable of a surrounding procedure; if negative, it was 
a parameter of a surrounding procedure.

List

LIST Ae x p r  — seq

Maple syntax: [ expr, expr, . . .  ]
Length: 2 (or 3 with attributes)

The elements of the expr-seq are the elements of the list. The list can 
optionally have attributes.

Local Variable within an Expression

LOCAL integer

Maple syntax: name 
Length: 2

This indicates a local variable when it appears within an expression 
in a procedure or module. The integer is an index into the procedure’s 
local-seq. At procedure execution time, it is also an index into the internal 
data structure holding the active locals on the procedure activation stack, 
and holds private copies of the NAMEs of the local variables (private copies 
in the sense that these NAMEs are not the same as the global NAMEs of the 
same name).

Member

MEMBER л m o d u le n a m e

Maple syntax: module name 
Length: 3

This structure represents a module member access in an expression. 
MEMBER objects typically do not persist when a statement is simplified. 
Instead, they are replaced by the actual member that they refer to (an 
instance of a NAME).
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Module Definition

MODDEF p a r a m - local- o p tio n - ex p o rt- s t a t ­ desc -

seq seq seq seq seq seq

global- lexical- m o d -

seq seq n a m e

Maple syntax:

module modName ( )
description descSeq; 
local localSeq; 
export exportSeq; 
global globalSeq; 
option optionSeq; 
statSeq 

end module

Length: 10

The p a r a m - s e q  points to an expression sequence describing the formal 
parameters of the module. Currently, Maple doesn’t support parameter­
ized modules, so this field always points to the sequence containing just 
an instance of the name thismodule.

The local-seq  points to an expression sequence listing the explicitly 
and implicitly declared local variables. Each entry is a NAME. The explicitly 
declared variables appear first. Within the module, locals are referred to 
by LOCAL structures, the local variable number being the index into the 
local-seq.

The ex p o rt-se q  points to an expression sequence listing the exported 
module members. Each entry is a NAME. Within the module, exports are 
referred to by LOCAL structures, the local variable number being the num­
ber of elements in the local-seq , plus the index into the export-seq.

The o p tio n -s e q  points to an expression sequence of options to the 
module (for modules, options are the same thing as attributes). Each 
entry is a NAME or EQUATION specifying an option. Typical options are 
load= . . .  and unload= . . .

The s ta t- s e q  field points to a single statement or a statement sequence 
(STATSEQ). If the module has an empty body, this is a pointer to NULL 
instead.
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The desc -seq  field points to an expression sequence of NAMEs or 
STRINGS. These are meant to provide a brief description of what the mod­
ule does, and are displayed even when interf ace (verboseproc) is less 
than 2 .

The global-seq  field points to a list of the explicitly declared global 
variables in the module (those that appeared in the global statement). 
This information is never used at run-time, but it is used when simplify­
ing nested modules and procedures to determine the binding of lexically 
scoped identifiers (for example, an identifier on the left-hand side of an as­
signment in a nested procedure can be global if it appears in the global 
statement of a surrounding context). This information is also used at 
printing time, so that the global statement will contain exactly the global 
identifiers that were declared in the first place.

The lexical-seq  field points to an expression sequence of links to iden­
tifiers in the surrounding scope, if any. The sequence consists of pairs of 
pointers. The first pointer of each pair is to the globally unique NAME of 
the identifier; this is needed at simplification and printing time. The sec­
ond pointer is a pointer to a LOCAL, PARAM, or LEXICAL structure which is 
understood to be relative to the surrounding scope. When a module def­
inition is evaluated, the lexical-seq  is updated by replacing each of the 
second pointers with a pointer to the actual object represented. The name 
pointers are not touched, so that the actual identifier names are still avail­
able. The lexical-seq  for a module contains entries for any surrounding- 
scope identifiers used by that module or by any procedures or modules 
contained within it.

The m o d - n a m e  field points to the optional name of the module. If 
a module name was specified when the module was declared, the name 
will appear there. If no module name was specified, this field will contain 
NULL.

Module Instance

MODULE лexport — seq Amod — def Alocal — seq

Maple syntax: none 
Length: 4

Executing a module definition (MODDEF) results in a module instance. 
Each local or exported member of the module is instantiated and be­
longs to that instance of the module. The ex p o rt-se q  field points to an 
expression sequence of names of the instantiated exports (as opposed to 
the global names, as stored in the module definition). The m o d - d e f  field
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points back to the original module definition. The local-seq field points 
to an expression sequence of names of the instantiated local variables of 
the module.

Identifier

NAME лa s s i g n e d — Aa t t r i b — c h a r a c te r s c h a r a c te r s

e x p r e x p r

Maple syntax: name 
Length: 4 or more

The assigned-expr field points to the assigned value of the name. If 
the name has no assigned value, this field is a null pointer (not a pointer 
to NULL). The next field points to an expression sequence of attributes 
of the name. If there are no attributes, this field points to the empty 
expression sequence (NULL). The remaining fields contain the characters 
making up the name, stored 4 or 8 per machine word (for 32-bit and 64-bit 
architectures respectively). The last character is followed by a zero-byte. 
Any unused bytes in the last machine word are also zero. The maximum 
length of a name is 268,435,447 characters on 32-bit architectures and 
34,359,738,351 characters on 64-bit architectures.

Next Statement

NEXT

Maple syntax: next 
Length: 1

Logical N O T

NOT e x p r

Maple syntax: not expr 
Length: 2

Logical OR

OR Ae x p r Ae x p r

Maple syntax: expr or expr
Length: 3
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Procedure Parameter within an Expression

PARAM integer

Maple syntax: name 
Length: 2

This indicates a parameter when it appears within a procedure. The 
integer is an index into the procedure’s param-seq. Several special PARAM 
structures exist:

PARAM

This represents the Maple symbol nargs, the number of arguments passed 
when the procedure was called.

PARAM -1

This represents the Maple symbol args, the entire sequence of arguments 
passed when the procedure was called.

PARAM - 2

This represents the Maple symbol procname, referring to the currently 
active procedure.

At procedure execution time, the integer (if positive) is used as an 
index into the internal data structure Actvparams which is part of the 
Maple procedure activation stack, and holds pointers to the values (which 
are also Maple structures, of course) of the actual parameters passed to 
the procedure.

Power

POWER expr expr

Maple syntax: exprлexpr 
Length: 3
This structure is used to represent a power when the exponent is 

not an integer, rational, or floating-point value. When the exponent is 
numeric, the POWER structure is converted to a length 3 PROD structure.
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Procedure Definition

PROC Aparam— Alocal— л option- Krem — Astat— Adesc—
seq seq seq table seq seq

лglobal— лlexical—
seq seq

Maple syntax:

proc ( paramSeq )
description descSeq; 
local localSeq; 
export export Seq; 
global globalSeq; 
option optionSeq; 
statSeq 

end proc

Length: 9

The p a r a m - s e q  points to an expression sequence describing the formal 
parameters of the procedure. Each entry is either a NAME or a DCOLON 
(which in turn contains a NAME and an expression specifying a type). 
Within the procedure, parameters are referred to by PARAM structures, 
the parameter number being the index into the p a r a m - s e q .

The local-seq  points to an expression sequence listing the explicitly 
and implicitly declared local variables. Each entry is a NAME. The explicitly 
declared variables appear first. Within the procedure, locals are referred 
to by LOCAL structures, the local variable number being the index into 
the local-seq.

The o p tio n -s e q  field points to an expression sequence of options to 
the procedure (for procedures, options are the same thing as attributes). 
Each entry is a NAME or EQUATION specifying an option. Typical options 
are remember, operator, and ‘ Copyright . . .

The r e m - ta b le  field points to a hash table containing remembered 
values of the procedure. Entries in the table are indexed by the procedure 
arguments, and contain the resulting value. If there is no remember table, 
this field contains a pointer to NULL, the empty expression sequence.

The s ta t- s e q  field points to a single statement or a statement sequence 
(STATSEQ). If the procedure has an empty body, this is a pointer to NULL 
instead. For each procedure that is built into the kernel, there is a wrapper 
PROC that has the option b u ilt in  in its o p t io n - s e q , and a single Maple
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integer pointed to by its sta t-se q .  The integer gives the built-in function 
number.

The desc -seq  field points to an expression sequence of NAMEs or 
STRINGS. These are meant to provide a brief description of what the pro­
cedure does, and are displayed even when interf ace (verboseproc) is 
less than 2.

The global-seq  field points to a list of the explicitly declared global 
variables in the procedure (those that appeared in the global statement). 
This information is never used at run-time, but it is used when simplifying 
nested procedures to determine the binding of lexically scoped identifiers. 
For example, an identifier on the left-hand side of an assignment in a 
nested procedure can be global if it appears in the global statement of a 
surrounding procedure. This information is also used at procedure print­
ing time, so that the global statement will contain exactly the same 
global identifiers that were declared in the first place.

The lexical-seq  field points to an expression sequence of links to iden­
tifiers in the surrounding scope, if any. The sequence consists of pairs of 
pointers. The first pointer of each pair is to the globally unique NAME of 
the identifier; this is needed at simplification and printing time. The sec­
ond pointer is a pointer to a LOCAL, PARAM, or LEXICAL structure which is 
understood to be relative to the surrounding scope. When a procedure is 
evaluated (not necessarily called), the lexical-seq  is updated by replacing- 
each of the second pointers with a pointer to the actual object repre­
sented. The name pointers are not touched, so that the actual identifier 
names are still available. The lexical-seq  for a procedure contains entries 
for any surrounding-scope identifiers used by that procedure or by any 
procedures contained within it.

Product, Quotient, Power

PROD Ke x p r л expon Ke x p r л expon

Maple syntax: expr ~ expon * expr ~ expon . . .
Length: 2 n  +  1

This structure is interpreted as pairs of factors and their numeric ex­
ponents. Rational or integer expressions to an integer power are expanded. 
If there is a rational constant in the product, this constant will be moved 
to the first entry by the simplifier. A simple power, such as a~2, is repre­
sented as a PROD structure. More complex powers involving non-numeric 
exponents are represented as POWER structures.
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Range

RANGE e x p r e x p r

Maple syntax: expr . . expr 
Length: 3

Rational

RATIONAL i n t e g e r  pos — in t e g e r

Maple syntax: 1/2 
Length: 3

This structure is one of the basic numeric objects in Maple. Note that 
this is not a division operation, but only a representation for rational 
numbers. Both fields must be integers (INTPOS, INTNEG or an immediate 
integer) and the second must be positive.

Read Statement

READ e x p r

Maple syntax: read expr 
Length: 2

The Maple read statement. The expression must evaluate to either a 
string or symbol (STRING or NAME structure), and specifies the name of 
the file to read.

Return Statement

RETURN Ae x p r  — seq

Maple syntax: return "msg" ,  arg , . . .  arg
Length: 2

The Maple return statement. The expression sequence is evaluated, 
giving the value(s) to return.

Rectangular Table

RTABLE Ad a ta > © стГ 1 Ai n d — Aa ttr ib fla g s n u m -

type f n elem s
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Li Ui l n UN Pi P2

Maple syntax: rtable ( . . . )
Length: 2n + p, 2n + p, or 2n + p, where n is the number of di­

mensions (0 to 63), and p is 0, 1, or 2, depending on the number of Pi 
parameters.

The data field points to either a block of memory (for dense and N AG- 
sparse RTABLEs), or to a HASHTAB structure (for Maple-sparse RTABLEs). 
The data block is either an object of type BINARY, or memory allocated 
directly from the operating system’s storage manager when the block 
would be too large to be allocated as a Maple data structure. If the data 
block is a BINARY object, the data pointer points to the first data word, 
not to the object header.

The maple-type field points to a Maple structure specifying the data 
type of the elements of an RTABLE of Maple objects. If the RTABLE con­
tains hardware objects, the maple-type field points to the Maple NAME 
anything.

The ind-fn pointer points to either an empty expression sequence 
(NULL), or an expression sequence containing at least one indexing func­
tion and a pointer to a copy of the RTABLE structure. The copy of the 
RTABLE is identical to the original, except that its ind-fn field refers to 
one less indexing function (either NULL, or another expression sequence 
containing at least one indexing function and a pointer to another copy 
of the RTABLE with one less indexing function again).

The attrib pointer points to an expression sequence of zero or more 
arbitrary attributes, which can be set by the setattribute function, and 
queried by attributes.

The flags field is a bit field containing the following sub-fields:

• data type - 4 bits - indicates one of several hardware datatypes or 
that a Maple data type (as specified by maple-type) is being used.

• sub type - 2 bits - indicates if the RTABLE is an Array, Matrix, or 
Vector.

• storage - 4 bits - describes the storage layout (e.g. sparse, upper tri­
angular, etc.)

• order - 1 bit - indicates С or Fortran ordering of RTABLE elements.

• read only - 1 bit - indicates the RTABLE is to be read-only once created.
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• foreign - 1 bit - indicates that the space pointed to by the data field 
does not belong to Maple, so Maple should not garbage collect it.

• number of dimensions - 6 bits - the number of dimensions of the 
RTABLE, from 0 to 63.

The num-elems  field indicates the total number of elements of stor­
age allocated for the data. For a Maple-sparse RTABLE, num-elems  is 
not used. For a NAG-sparse RTABLE, num-elems  specifies the number of 
elements currently allocated, some of which might not be in use.

The remaining fields specify the upper and lower bounds of each di­
mension, and are stored directly as signed machine integers. The limits 
on bounds are —2,147, 483, 648 to 2,147, 483, 647 for 32-bit architectures 
and -9 ,  223, 372, 036, 854, 775, 808 to 9, 223, 372, 036, 854, 775, 807 for 64- 
bit architectures. The total number of elements cannot exceed the upper 
limit numbers either.

Save Statement
SAVE Aexpr — seq

Maple syntax: save expr, expr, . . .
Length: 2

The Maple save statement. The expression sequence gives a list of 
names of objects to save, and either a file name or repository name in 
which to save them. The file or repository name can be specified as a 
NAME or STRING.

Series
SERIES Kexpr Kexpr integer Kexpr integer

Maple syntax: none 
Length: 2n +  2

This is the internal representation of a series in Maple. There is no 
input syntax for a series; one can only arise from a computation. The first 
expression has the general form x-a, where x denotes the variable of the 
series used to do that expansion, and a denotes the point of expansion. 
The remaining entries are interpreted as pairs of coefficients and expo­
nents. The exponents are integers, not pointers to integers or immediate 
integers. The exponents appear in increasing order. A coefficient 0 ( 1) (a 
function call to the function 0 , with parameter 1) is interpreted specially 
by Maple as an order term.
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SET e x p r  — seq Aa t t r i b  — e x p r

Maple syntax: {expr, e x p r , . . . }
Length: 2 (or 3 with attributes)

The entries in the set’s expression sequence are sorted in order of 
increasing memory address. This is an arbitrary but consistent order, 
necessary for efficiently working with sets.

Statement Sequence

STATSEQ As t a t As t a t

Maple syntax: s t a t ; s t a t ; ...

Length: 3 or more

This structure represents a sequence of two or more statements, and 
can be used wherever a single statement (e.g., ASSIGN, IF, FOR) can ap­
pear. A statement sequence, containing only a single statement, is re­
placed by that statement. A statement sequence containing no statements 
is replaced by the empty expression sequence (NULL). Nested STATSEQ 
structures are flattened. All of the above transformations are made by 
the simplifier.

Stop Maple

STOP

Maple syntax: quit, done, or stop
Length: 1

String

STRING re s e rv e d Aa t t r i b  — e x p r c h a r a c t e r s c h a r a c t e r s

Maple syntax: "This is a string"

Length: 4 or more

A Maple string is structurally similar to a NAME, except that it has 
no a s s ig n e d -v a lu e  field. The a t t r i b - e x p r  field points to an expression 
sequence of attributes of the string. If there are no attributes, this field
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points to the empty expression sequence (NULL). The remaining fields 
contain the characters making up the string, stored 4 or 8 per machine 
word (for 32-bit and 64-bit architectures respectively). The last character 
is followed by a zero-byte. Any unused bytes in the last machine word are 
also zero.

The maximum length of a string is 268, 435, 447 characters on 32-bit 
architectures and 34, 359, 738, 351 characters on 64-bit architectures.

Sum, Difference

SUM Kexpr л factor Kexpr л factor

Maple syntax: expr * factor + expr * factor . . .

Length: 2n +  1

This structure is interpreted as pairs of expressions and their nu­
meric factors. Rational or integer expressions with an integer factor are 
expanded and the factor replaced with 1. If there is a rational constant 
in the sum, this constant will be moved to the first entry by the simpli­
fier. Simple products, such as a*2, are represented as SUMs. More complex 
products involving non-numeric factors are represented as PROD struc­
tures.

Table

TABLE Kindex — func Aarray — bounds Ahash — tab

Maple syntax: N /A  
Length: 4

This is a general table type, as created by the table and array func­
tions in Maple. The index-func will point to either a NAME or a PROC. 
For general tables, the array-bounds field points to the empty expression 
sequence (NULL). For arrays (not to be confused with Arrays, which are 
implemented as RTABLEs), the array-bounds field refers to an expression 
sequence of RANGEs of integers. The hash-tab field points to a HASHTAB 
structure containing the elements.

Table Reference

TABLEREF Kname Kexpr — seq Aattrib — expr

Maple syntax: name [ expr ]
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Length: 3 (or 4 with attributes)

This data structure represents a table reference, or indexed name. 
The name entry follows the same rules as for ASSIGN, or it may be a 
TABLE structure. (The parser will not generate a TABLEREF with a TABLE 
structure for the name entry, but this can arise internally.) The expression 
sequence contains the indices.

Try Statement
TRY Kt r y — Ac a tc h — Ac a tc h — л f i n a l —

s t a t - —s t r s t a t - s t a t -

seq seq seq

Maple syntax:

try tryStat
catch "catchStr": catchStat

finally finalStat; 
end try

Length: 3 or more

This structure represents a tr y  statement, and can have an arbitrary 
length, depending on how many catch blocks there are within it, and 
whether or not it has a f in a l ly  block. The catch-strs point to the catch 
string of the corresponding catch block. If no catch string was specified, 
the catch-str points to NULL. Empty catch-stat-seqs are also represented 
by pointers to NULL, as is an empty (but present) f i n a l ly  block.

The actual internal tag used for the TRY structure is MTRY, to prevent 
collision with a macro defined by some С exception handling libraries.

Unevaluated Expression

UNEVAL Ae x p r

Maple syntax: ’ expr ’ 
Length: 2

Use Statement

USE

Maple Syntax:
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use bindings in 
statseq 

end use

Length: 3

The b in d in g s  component points to an expression sequence of equa­
tions whose left hand sides are symbols, and the s ta ts e q  component points 
to a sequence of statements that form the body of the use statement. The 
right hand sides of the binding equations can be arbitary expressions.

The use statement introduces a new binding contour and binds the 
names that appear on the left hand side of the equations in bin d in g s .  For 
convenience, on input, a module ‘ m’ can appear among the b i n d in g s , 
and is treated as if it were the sequence el = m:-el, e2 = m:-e2, ..., 

where the ei are the exports of ‘m \  Within the sequence s ta ts e q  of 
statements, the symbols appearing on the left hand side of the equations 
in b in d in g s  are bound to the corresponding right hand sides. The previous 
bindings of those symbols are restored upon exit from the use statement. 
Bindings are resolved during automatic simplification.

Polynomials with Integer Coefficients modulo n

ZPPOLY Aindet mod coef 0 coef 1

ZPPOLY Aindet seq mod Azppoly0 Azppolyl

Maple Syntax: modp 1 ( Convert In ( expr, indet ), n );

Maple Syntax: m o d p 2 ( Conve r t I n ( expr, indet1, indet2 ), n );

Length: degree (zppoly) +2 (for the zero polynomial)
Length: degree (zppoly) +3 (otherwise)

This is the internal representation of univariate and bivariate polyno­
mials modulo some integer. The modplO and modp2() front ends provide 
a suite of functions to work on this data structure operating in the domain 
of polynomials in one or two variables with integer coefficients modulo n, 
written Z n[x\  or Z n [ x ,y \ ,  respectively, i n d e t _ s e q  is an expression se­
quence of the indeterminates of the polynomial (x), or (x,y). m o d  is the 
integer modulus of the integer domain. In a univariate polynomial the 
coefficients are stored in the following order.
(coef0*indet~0 + coef 1*indet~1 + . . . + coef i*indet~i) mod n
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A bivariate polynomial contains pointers to univariate ZPPOLY struc­
tures representing the coefficients of the first indeterminate.
(coef0 (indet2)*indet 1^0 + coef 1 (indet2)*indetl'‘l + ...) mod n 

where each coef i is a univariate polynomial in indet 1 mod n.
All coefficients are stored including zero coefficients. The leading co­

efficient is always non-zero.

A.3 The Use of Hashing in Maple
An important factor in achieving Maple’s overall performance is the use 
of hash table based algorithms for critical functions. Tables are used in 
both simplification and evaluation, as well as for less critical functions. 
For simplification, Maple keeps a single copy of each expression, or sub­
expression, during a session. This is done by keeping all objects in a 
table. In procedures, the remember option specifies that the result of each 
computation of the procedure is to be stored in a "remember table" asso­
ciated with the procedure. Finally, tables are available to the user as one 
of Maple’s data types.

All of the table searching is done by hashing. The algorithm used is 
direct chaining, except that the chains are dynamic vectors instead of 
the typical linked lists. The two data structures used to implement hash 
tables are HASHTAB and HASH.

Hash Table

HASHTAB Ahash — chain Ahash — chain

Maple syntax: none 
Length: 2n +  1

This is an internal data structure with no Maple syntax equivalent. It 
is used in the representation of tables within Maple. Each entry points to 
a hash chain (a HASH structure), or is a null pointer if no entry has been 
created in that bucket yet. The size of a HASHTAB structure depends on 
the type of table and the platform, but is always a power of 2 plus one.

Hash Chain

HASH key Kexpr key Kexpr
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Maple syntax: none
Length: 2n +  1

Each table element is stored as a pair of consecutive entries in a hash 
bucket vector. The first entry of this pair is the hash key, and the second 
is a pointer to a stored value. In some cases (e.g., procedure remember 
tables, user defined tables), the key is also a pointer. In other cases, the 
key is a hashed value (e.g., the simplification table, the symbol table). 
The key cannot have the value zero (or the null pointer) since this is used 
to indicate the bottom of the bucket.

The Simplification Table
By far, the most important table maintained by the Maple kernel is the 
simplification table. All simplified expressions and subexpressions are 
stored in the simplification table. The main purpose of this table is to en­
sure that simplified expressions have a unique instance in memory. Every 
expression, which is entered into Maple or generated internally, is checked 
against the simplification table and, if found, the new expression is dis­
carded and the old one is used. This task is done by the simplifier which 
recursively simplifies (applies all the basic simplification rules) and checks 
against the table. Garbage collection deletes the entries in the simplifi­
cation table that cannot be reached from a global name or from a "live" 
local variable.

The task of checking for equivalent expressions within thousands of 
subexpressions would not be feasible if it were not done with the aid of 
hashing. Every expression is entered in the simplification table using its 
signature as a key. The signature of an expression is a hashing function 
itself, with one very important attribute: signatures of trivially equivalent 
expressions are equal. For example, the signatures of the expressions a +  
b +  с and с +  a +  b are identical; the signatures of a * b and b * a are 
also identical. If two expressions’ signatures disagree then the expressions 
cannot be equal at the basic level of simplification.

Searching for an expression in the simplification table is done by:

• simplifying recursively all of its components,

• applying the basic simplification rules, and

• computing its signature and searching for this signature in the table.

If the signature is found then a full comparison is performed (taking 
into account that additions and multiplications are commutative, etc.) to
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verify that it is the same expression. If the expression is found, the one 
in the table is used and the searched one is discarded. A full comparison 
of expressions has to be performed only when there is a "collision" of 
signatures.

Since simplified expressions are guaranteed to have a unique occur­
rence, it is possible to test for equality of simplified expressions using a 
single pointer comparison. Unique representation of identical expressions 
is a crucial ingredient to the efficiency of tables, hence also the remember 
option. Also, since the relative order of objects is preserved during garbage 
collection, this means that sequences of objects can be ordered by machine 
address. For example, sets in Maple are represented this way. The set op­
erations union, intersection, etc. can be done in linear time by merging 
sorted sequences. Sorting by machine address is also available to the user 
with the sort command.

The Name Table
The simplest use of hashing in the Maple kernel is the name table. This 
is a symbol table for all global names. Each key is computed from the 
name’s character string and the entry is a pointer to the data structure 
for the name. The name table is used to locate global names formed by 
the lexical scanner or by name concatenation. It is also used by functions 
that perform operations on all global names. These operations include:

1. marking for garbage collection,

2. the saving of a Maple session environment in a file, and

3. the Maple functions anames and unames which return all assigned and 
unassigned global names, respectively.

Remember Tables
A remember table is a hash table in which the argument(s) to a procedure 
call are stored as the table index, and the result of the procedure call is 
stored as the table value. Because a simplified expression in Maple has a 
unique instance in memory, the address of the arguments can be used as 
the hash function. Hence, searching a remember table is very fast.

There are eight kernel functions which use remember tables: evalf, 
series, divide, normal, expand, diff, readlib, and frontend. The 
internal handling of the latter five is straightforward. There are some 
exceptions with the first three, namely:

• evalf and series need to store some additional environment infor­
mation (’Di g i t s’ for evalf and ’Ord e r’ for series). Consequently, the
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entries for these are extended with the precision information. If a re­
sult is requested with the same or less precision than what is stored in 
the table, it is retrieved anyway and "rounded". If a result is produced 
with more precision than what is stored, it is replaced in the table.

• evalf only remembers function calls (this includes named constants); 
it does not remember the results of arithmetic operations.

• If the division succeeded and the divisor was a non-trivial polyno­
mial, the divide function stores the quotient in its remember table. 
Otherwise nothing is stored in the remember table.

If option remember is specified together with option system, at
garbage collection time the remember table entries which refer to ex­
pressions no longer in use elsewhere in the system are removed. This 
provides a relatively efficient use of remembering that will not waste stor­
age for expressions that have disappeared from the expression space.

Maple Language Arrays and Tables
Arrays and tables are provided as data types in the Maple language via 
the array and table functions. An array is a table for which the compo­
nent indices must be integers lying within specified bounds. Arrays and 
tables are implemented using Maple’s internal hash tables. Because of 
this, sparse arrays are equally as efficient as dense arrays. A table object 
consists of

1. index bounds (for arrays only),

2 . a hash table of components, and

3. an indexing function.

The components of a table T are accessed using a subscript syntax 
(e.g., T [a,b*cos(x)] ). Since a simplified expression is guaranteed to have 
a unique instance in memory, the address of the simplified index is used 
as the hash key for a component. If no component exists for a given index, 
then the indexed expression is returned.

The semantics of indexing into a table are described by its indexing 
function. Aside from the default, general indexing, some indexing func­
tions are provided by the Maple kernel. Other indexing functions are 
loaded from the library or are supplied by the user.
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Rectangular tables (as implemented by the RTABLE structure), can use a 
variety of storage formats. One format, Maple-sparse, is identical to that 
used in tables and arrays, namely a hash table. There is another sparse 
format, NAG-sparse, which uses one vector for each dimension to record 
indices, and a third vector to record the values of the entries. The majority 
of RTABLE storage formats are dense, the simplest being the rectangular. 
Other dense formats include upper-triangular and band, where storage is 
allocated only for the upper triangle or a band of elements respectively. 
To the user, rectangular tables manifest themselves as objects of type 
Array, Matrix, Vector [row] , and Vector [column] . Note that an Array 
is not the same thing as an array.

Maple Language Rectangular Tables

The Maple kernel and the textual user interface are not tied to any one 
operating system or hardware architecture. The Maple kernel was de­
signed to be portable to any system which supports a С compiler, a flat 
address space, and a 32-bit or 64-bit word size. Some platforms on which 
Maple is supported are (refer to the installation instructions for currently 
supported OS versions):

Hardware Operating System
Intel Pentium Based P C  M icrosoft Windows

The majority of the source code comprising the kernel is the same 
across all platforms. Extensive use of macros and conditional compila­
tion take care of platform dependencies, such as word size, byte ordering, 
storage alignment requirements, differences in hardware floating point 
support, and sometimes, С compiler bugs.

The Maple library is interpreted by the Maple kernel. Therefore, other 
than issues such as maximum object size, it is completely independent of

A .4 Portability

Apple Power Macintosh  
Sun S P A R C  
Silicon Graphics Iris  
Hewlett Packard P A  — R I S C  
I B M  RS/Q000 
D E C  Alpha

Linux  
M a c OS
Sun OS/Solaris
I R I X
H P - U X
A I X
Digital U N IX /C o m p a q  True 64
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the underlying architecture.
Maple’s graphical user interface is implemented in С and C +  + , and 

makes use of a platform independent user interface class library to achieve 
portability. There are only very few pieces of platform-specific source code.
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arrow, 214
arrow notation, 202, 203 
ASSERT, 385
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assertions
in procedures, 385 
warnings, 387 

assign, 129 

assigned, 129 

assignment
multiple, 458 

assignment statements, 3, 11, 123, 
583

vs. equation definitions, 11 
assume, 40, 88, 104 
assumptions, 40, 88 

checking, 40 
on variables, 40 

atomic, 251
automatic simplification, 87

backdrops, 474 
BesselJ, 404 
Beta, 398 

binary, 583

binary search, 29 
binding list, 294 
blanks, 118
Boolean expressions, 177 
break, 137, 239, 583 
breakpoints

explicit, 363 
removing, 363 
removing explicit, 365 
setting, 362 

buffered files, 493 
flushing, 519 

builtin, 214 
by, 133

default value, 134

C, 520, 531
and arrays, 521 
generating, 520 
notes, 528

call by reference, 540 
ANYTHING, 540 

CALL_0NLY, 540 

RETURN_0NLY, 540 

Cartesian product, 89 
cases, 130 
cat, 126 

catch, 224 

characters, 113 
special, 114 

Chebyshev polynomials, 36, 232 
checking results, 41 
close, 497 

code, indenting, 16 
coeff, 34, 581 

coeffs, 34, 35 

collect, 39 

COLOR, 478 

HUE, 429 

POLYGONS, 479 

RGB, 433 

color, 426, 478
adding, 482, 485 

color tables, 480 
gray scale, 482 
HUE, 481 

columns
printing, 491, 518 
reading, 508 

commands, 2, 3
long names of, 423 
split lines, 2 

comments, 119, 215 
Complex, 584

complex numbers, 9, 151, 408 
evaluating, 152 
imaginary part, 10, 151 
imaginary unit, 101 
norm, 10 
real part, 10, 151 
types of, 151
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composition, 164, 169 
repeated, 169 

computing 
areas, 283 
circumferences, 283 

computing with formulae, 33 
concatenation, 125, 146, 261, 583 
conditional statements, 15, 130 

nested, 16 
constants

defining numeric, 410 
numeric, 144 
symbolic, 186 

constructors, 297 
cont, 371
continuation character, 119 
continuation of lines, 119 
control, flow of, 581 
conversions, 543 
converting

expressions to C, 520 
expressions to Fortran, 520 
expressions to b^T^X, 523 
expressions to strings, 445, 

480
grids to polygons, 485 
integers to string, 524 
meshes to polygons, 443, 455, 

485
strings to bytes, 524 
strings to expressions, 97, 525 
to formatted strings, 526 
to PLOToptions, 437, 457 

CopyFile, 501, 513 
Copyright, 214, 215, 249 
coverage, 275

data
from other applications, 489 
reading from files, 491 
representing in Maple, 70

saving to file, 490 
data structures, 25, 33, 106 

and program design, 75 
basic, 25 
choosing, 70 
for animations, 471 
for plotting, 425-427, 432 
in graph theory, 70 
length, 582 
manipulation, 581 
matrices as, 73 
sequences, 26 
sets as, 72 
tables as, 73 

data types 
AND, 582 
ASSIGN, 583 
BINARY, 583 
BREAK, 583 
CATENATE, 583 
COMPLEX, 584 
CONTROL, 584 
DCOLON, 584 
DEBUG, 584 
EQUATION, 585 
ERROR, 585 
EXPSEQ, 585 
FLOAT, 586 
FOR, 586 
FOREIGN, 587 
FUNCTION, 587 
GARBAGE, 587 
HASH, 605 
HASHTAB, 605 
HFLOAT, 588 
IF, 588
INEQUAT, 588 
INTNEG, 589 
INTPOS, 589 
LESSEQ, 590 
LESSTHAN, 590
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LEXICAL, 590 
LIST, 591 
LOCAL, 591 
MEMBER, 591 
MODDEF, 592 
MODULE, 593 
NAME, 594 
NEXT, 594 
NOT, 594 
OR, 594 
PARAM, 595 
POWER, 595 
PROC, 596 
PROD, 597 
RANGE, 598 
RATIONAL, 598 
READ, 598 
RETURN, 598 
RTABLE, 599, 609 
SAVE, 600 
SERIES, 600 
SET, 601 
STATSEQ, 601 
STOP, 601 
STRING, 601 
SUM, 602 
TABLE, 602, 608 
TABLEREF, 602 
TRY, 603 
UNEVAL, 603 

DEBUG, 363 
debugger, 349, 361

breakpoints, 362, 363 
clearing watchpoints, 367 
controlling execution, 371 
explicit breakpoints, 363 
invoking, 362
numbering statements, 361 
removing explicit breakpoints, 

365 
tutorial, 349

watchpoints, 366, 367 
debugging

procedures, 349, 361 
debugopts, 275 
decimal numbers, 148 
declared formal parameters, 206 
declaring types, 19, 233 
declaring variables, 209 
define_external, 535 
degree, 34 
description, 242 
description field, 214 
detecting

errors, 380 
diff, 11, 261, 581 

extending, 106 
differential operator, 203 
Digits, 396, 408, 409 

evalhf, 399, 400 
digits, number of, 396 
display

insequence, 474 
ditto operators, 52, 170 
divide, 581 
do, 133, 135, 137 
done, 601 
double quotes, 116

efficiency, 1, 14, 22, 23, 30, 33, 
46, 76, 90, 197, 211, 213, 
396, 401, 407, 411, 467, 
468

elif, 16
embedding 2d graphics in 3d, 438, 

440, 447 
encapsulation, 235, 257 
end, 239
end do, 133, 135, 137 
end module, 239 
end proc, 4
enumerated types, 540
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environment variables, 53 
evaluating, 53 
listing, 54 
naming, 54 

equality, 585 
error, 220, 388, 585 
error checking, 18 
error messages, 18, 206 
error returns, 219 
errors

catastrophic cancellation, 410, 
413

detecting, 380 
roundoff, 408 
trapping, 368, 390 

eval, 6 , 84, 179, 211, 228, 233 
evalb, 38, 87, 175, 217, 580 
evalc, 152
evalf, 3, 396, 399, 581, 607 

extending, 410 
new constants, 410 
new functions, 412 

evalhf, 399, 581 
arrays, 405, 406 
Digits, 399, 400 
structured objects, 405 
var, 406 

evalm, 168 
evaln, 128, 216, 581 
evaluating 

°/o, 52
arrays, 51, 179, 228 
complex numbers, 152 
environment variables, 53 
expressions, 143 
global variables, 52 
local variables, 47, 50, 51 
matrices, 168 
parameters, 49, 50, 216 
parsed strings, 525 
procedures, 51, 228

tables, 51, 179, 228 
unevaluated expressions, 185 

evaluation, 46
and substitution, 198 
Boolean, 175
delayed, 16, 120, 184, 189 
exceptions, 52, 62 
full, 6 , 46, 84, 210, 211, 227 
global variables, 210 
in interactive sessions, 46 
in procedures, 46, 47 
last name, 6 , 51, 227, 228 
levels of, 46, 129, 211 
local variables, 210 
numerical, 150, 396 
of special types, 64, 65 
of variables, 233 
one-level, 47, 51, 210, 211 
to a name, 63, 64, 128, 216 
using hardware floats, 399 
using software floats, 396 

evaluators, 580 
event, numeric, 408 
exception handling, 223 
exceptions, 388

trapping of, 221 
untrappable, 222 

expand, 581
explicit returns, 24, 218 
exponent, 149 
export, 236, 244 
exported local variables, 237, 244 
exported variables

vs. local variables, 307 
exporting

Ш ^Х, 524 
exports, 244 
expression trees, 140 
expressions, 139 

Boolean, 177
converting from strings, 97
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evaluating, 143 
internal structure of, 140 
operands of, 142 
reading from file, 138 
removing parts of, 192 
saving to file, 138 
selecting parts of, 192 
simplifying, 143 
unevaluated, 184 

extending
commands, 106 
convert, 459 
diff, 106 
evalf, 410 
simplify, 107 
type, 99 

extensibility, 257 
extension mechanism, 261 
external calling, 531

argument passing conventions,
538

array data formats, 536 
custom wrapper, 532, 550 
direct calling, 531, 532 
Maple-generated wrapper, 532,

539
methods, 531 
other data formats, 538 
scalar data formats, 536 
string data formats, 536 
structured data formats, 536 
types, 536

Factor, 172 
factorial, 170 
fail returns, 225 
fclose, 224, 497 
feof, 498 
fflush, 519
Fibonacci numbers, 22, 77 
file descriptors, 495, 497

filepos, 498

files, 493
appending to, 497 
binary, 494 
buffered, 493, 519 
closing, 490, 497 
creating, 490, 497 
current position in, 498 
default, 495, 500 

deleting, 499 
descriptors of, 495, 497 
detecting end of, 498 
flushing, 519 
length of, 498 
opening, 490, 496, 497 
printing bytes to, 513 
printing columns to, 491, 518 
printing formatted, 490, 514 
printing strings to, 513 
RAW, 493 

READ, 495 

reading, 138, 139 
reading bytes from, 501 
reading columns from, 493,

508

reading formatted, 492 
reading lines from, 500 
reading remainder of, 501 
redirecting default, 520 
removing, 499 
saving, 138
saving selected values, 138 
scanning, 492, 502 
status of, 499 
STREAM, 493 

terminal, 495 

text, 494 
truncating, 497 
unbuffered, 493 
WRITE, 495
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floating-point numbers, 148, 395, 
586

n-digit machine, 396 
accuracy of, 397 
and new constants, 410 
and new functions, 412 
bases of, 397 
digits of, 396, 397 
evaluating, 150 
hardware, 399, 408, 467 
hardware or software, 401 
limitations, 407 
models of, 407 
parts, 149 
precision, 407, 408 
representation of zero, 408 
roundoff errors, 408 
software, 396, 408, 467 
values, 9 
zero, 408 

flow of control, 581 
fopen, 496 
for, 133, 135, 137 

default value, 134 
from, 133 
in, 137 

for loop, 586 
foreign data, 587 
formal parameters, 201, 205, 206,

230
format strings, 490, 492, 502, 514 
Fortran, 520, 531 

and arrays, 521 
generating, 520, 527 

fprintf, 490, 514 
fractions, 147 
freeing resources, 224 
fremove, 499 
from, 133

default value, 134 
fscanf, 492, 502

full evaluation, 6, 46, 227 
function call, 587 
function table, 256 
functions, 160, 202 

algebraic, 581 
composition of, 164, 169 
defining numeric, 412 
evaluating, 161 
numeric and symbolic, 414 
zeroth operand of, 162

Galois fields, 172 
garbage collection, 213, 582, 587, 

606, 608 
generic programming, 306, 312, 

314, 318 
generic programs, 236 
global, 8 , 243 
global options, 429, 442 
global variables, 7, 87, 88, 208,

231
assigning values to, 210 
evaluating, 52 
in procedures, 51 
referencing, 243 
vs. local, 209 

graph theory, 70
graphics, programming with, 417 
GRID, 426

converting to polygons, 443 
gridpoints, 461, 466 
group, 266

Hamiltonians, 101, 102, 106 
associativity of, 106 
inverse of, 104 

hardware float, 588 
hardware floating-point numbers, 

399, 407, 408, 467 
and arrays, 405 
and structured objects, 405



618 • Index

base of, 399 
digits of, 399, 404 

has, 581
hash tables, 76, 605 
hashing, 607 
hfarray, 517

structured objects, 405 
histograms, 429, 434

I, 9, 101
identity matrix, 168 
IEEE standard, 396, 408 
i f ,  202, 588 
if/then/else/endif, 130 
Im, 10, 31
imaginary part, 10, 151 

sign preservation, 408 
imaginary unit, 9

changing representation of,
152

immediate integer, 589 
immutable state, 299 
implementations

vs. interfaces, 306 
implicit scoping rules, 249 
in, 137 
indets, 581 
index variables, 209 
indexed names, 124 
inequality, 588 
infinite recursion, 102 
in f in ity , 408 
in fo le v e l  

a l l ,  107 
s im plify , 107 

input, 2 , 8
formatted, 502 
from a file, 95 
from the terminal, 95 
interactive, 94 
non-numeric, 15

prompting for, 94 
input data, 4, 5 
inputs, 8 
Int, 398, 399 
int, 227, 398, 399 
integers, 118, 589 

immediate, 589 
natural, 118 
negative, 589 
positive, 589 
prime, 144 
signed, 118 
types of, 144 

integration
by parts, 37 
numerical, 397, 399 

interactive 
input, 94 
session, 87 

interface, 6 , 102, 152, 214, 387,
509

indentamount, 511 
labelling, 511 
labelwidth, 153, 511 
prettyprint, 511 
screenwidth, 510, 511 
verboseproc, 511 

interfaces, 307
manipulation, 308 
vs. implementations, 306 

interfaces and platforms, 2 
internal functions, 580 
internal organization, 579 
internal representations of data 

types, 582 
intersect, 115 
into, 371
invoking the debugger, 362 
iostatus, 499 
iquo, 19 
irem, 19
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is , 40, 175
iterations, number of, 21

kernel, 580
commands in, 214 
supported platforms, 609 

kernelopts, 385 
keywords, 115 
Klein bottle, 455

labeling common subexpressions,
153 

labels, 153
width of, 153 

last name evaluation, 6 , 51, 227, 
228

last_name_eval, 251 
la s te r ro r , 220 
la stexcep tion , 220, 389 
ШЁХ, 524
ЖЩХ, generating code, 523 
Laurent series, 182 
length, 581 
lexical scoping, 55 

rules, 56, 249 
lexically scoped variable, 590 
lexorder, 30 
library, 580 
Limit, 399 
lim it , 399 
limits

numerical, 399 
line continuation, 119 
line-feeds, 118 
LinearAlgebra, 266 
LinkedList, 268 
l i s t ,  374
lists, 25, 121, 158, 591

appending elements to, 421 
empty, 158 
mapping over, 191

merging, 194 
of lists, 31
selecting elements from, 159 

load, 249 
lo c a l , 8, 243
local options, 428, 429, 442, 457 
local variables, 5, 7, 50, 94, 208, 

218, 230, 233, 591 
assertion failures, 222 
evaluating, 210 
exported, 237, 244 
outside their procedure, 86 
referencing, 243 
returning, 89
vs. exported variables, 307 
vs. global, 209 

logical AND, 582 
logical operators

truth tables of, 178 
loop invariants, 385 
looping constructs, 13 

add, 195
breaking out of, 137 
fo r , 13, 133, 137 
map, 191 
mul, 195
remove, 192, 193 
se le c t , 192, 193 
selectrem ove, 192 
seq, 195
skipping iterations of, 137 
while, 19, 135 
zip , 194 

looping statements, 133 
lp r in t , 509

M akelteration, 83 
MakeZn, 250
Mandelbrot set, 419 
mantissa, see significand 
map, 17, 35, 191, 203, 581
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and sequences, 65 
in procedures, 54 

Maple Debugger, 349, 361 
tutorial, 349 

Maple language, 111 
semantics, 112 
syntax, 111 

Maple_floats, 408 
maplemint, 393 
mapping, 191, 202 

over lists, 191 
over sequences, 34, 65 
over terms, 35 

matching, 223 
math engine, 580 
Matlab, 415 
Matrices, 517 

reading, 518 
writing, 518 

matrices
as data structures, 73 
identity, 168 
multiplying, 168 

max, 35
member, 247, 288 
MEMBER objects, 591 
merging

lists, 194 
vectors, 194 

MESH, 426
converting to polygons, 443 

messages, 298
microwave circuit analysis, 450 
mint, 393 
minus, 115
minus signs, adjacent, 111 
missing parameters, 216 
mod, 115, 171 
modeling objects, 296 
module, 236, 239, 251, 592 
moduledefinition, 251

modules, 20, 235 
and types, 251 
declarations, 242 
definition, 236, 239, 243 
definition syntax, 238 
description, 242 
error reporting, 242 
exports, 298
implicit scoping rules, 249 
lexical scoping rules, 249 
manipulation, 275 
members of, 244 
membership tests, 247 
named, 240 
nested, 249 
options, 249 
parameterized, 250 
referencing global variables, 

243
referencing local variables, 243 
referring to, 240 
types of variables in, 307 
use for new packages, 266 

modulo, 171
positive representation, 171 
symmetric representation, 171 

mul, 195
multiple assignments, 458 
multiplication

non-commutative, 115, 168

NAG, 531 
name, 595
name table, 607 
named modules, 240 
names, 116, 123

currently assigned, 129 
indexed, 124 
of procedure, 4 
protected, 127 
protecting, 127
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unassigning, 128 
unprotecting, 127 
value of, 6 
with a tilde, 88 

nargs, 208, 240 
negative integer, 589 
nested conditional statements, 16 
nested modules, 249 
nested procedures, 54, 82, 85, 209 
neutral operators, 172 

defining, 101 
infix, 101
naming conventions for, 172 

newline character, 494 
Newton’s method, 82, 402 
next, 137, 239, 594 
next, 371 
nops, 25, 154 
not, 116, 594 
number of iterations, 21 
numbered parameters, 220 
numbering statements, 361 
numeric, 207 
numeric estimate, 82 
numeric event, 408 
Numerical Algorithms Group, 531 
numerical constants, 144 
numerical integration, 397, 399 
numerical limits, 399 
numerical programming, 395 
numerical sums, 399 
numerics, 408

0 { x n), 181 
objects, 235, 297 

modeling, 296 
one-level evaluation, 51, 210, 211 
op, 142, 162, 231, 581 
open, 496 
operands, 142 

negative, 160

number of, 141 
of arithmetic operators, 165 
of arrays, 180 
of concatenations, 146 
of fractions, 148 
of functions, 162 
of indexed names, 145 
of integers, 144 
of lists, 158
of logical operators, 176 
of procedures, 228 
of ranges, 183 
of relations, 174 
of series, 181 
of sets, 158 
of strings, 145 
of tables, 179
of unevaluated expressions, 

185
zeroth, 142, 145, 162, 181 

operator, 204, 206, 214 
operator rebinding, 294 
operators, 100 

*, 102
arithmetic, 165 
arrow, 202 
binary, 115 
concatenation, 125 
differential, 203 
ditto, 52, 170 
factorial, 170 
logical, 176 
modulus, 171 
neutral, 100, 172 
nullary, 114 
relational, 173 
unary, 116 
your own, 100, 172 

options
converting to PLOToptions, 

437, 457
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displaying of, 230 
global, 429, 442 
local, 428, 429, 442, 457 
passing, 422 
processing, 423, 437 
specifying, 212 

options
arrow, 214 
b u ilt in , 214 
Copyright, 214 
operator, 214 
remember, 76, 212 
system, 78, 212, 213 

or, 115, 594 
order of evaluation, 48 
organization 

internal, 579 
outfrom, 371 
output

controlling, 509 
rounding, 490 
suppressing, 6

package, 249
packages, 231, 235, 266 

exports, 266
in the standard library, 266 
table-based, 266 
use modules for, 266 
using interactively, 267 

parameters, 8, 47
actual, 202, 205, 207 
assigning values to, 215 
checking types of, 18 
declared, 206 
evaluating, 49, 216 
extra, 205
formal, 201, 202, 205, 206, 

230
missing, 205, 216 
number of, 205, 208

numbered, 220 
passing, 205 
sequence of, 85 
symbolic, 39 
type checking, 67 
viewing the assignments, 218 
within procedures, 595 

parentheses, 202 
parse, 97, 525 
partition, 94 
pipes, 495 
placeholders, 220 
platforms

and interfaces, 2 
p lo t, 11, 31, 225 
plot drivers, 427 
plotting, 417, 421 

animations, 471 
AXESSTYLE, 432 
COLOR, 429 
colors, 445
CURVES, 427, 428, 432, 434 
data structures, 425-427, 429, 

432
formulae, 418, 424 
functions, 418, 424, 458 
GRID, 435 
lists of lists, 31 
MESH, 435
non-numeric values, 428, 457, 

461, 467 
numerical approximations, 395 
options, 419, 420 
POINTS, 428, 434 
POLYGONS, 428, 433, 434, 439 
roots of polynomials, 31 
SCALING, 439 
STYLE, 433 
TEXT, 428, 434, 445 
undefined values, 457, 461, 

467
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with plottools, 444
polygon meshes, 442, 451 

cutting faces out of, 451 
stellating, 453 

POLYGONS
COLOR, 479

converting from grids or meshes, 
443

convex, 439, 457 
polynomials, 33 

Chebyshev, 232 
coefficients of, 33 
definition of, 33 
degree of, 34 
expanding, 37 
explicit, 39 
height of, 34 
plotting roots of, 31 
symbolic, 39 

portability, 609 
positive integer, 589 
powers, 595, 597 
precision, 410

floating-point numbers, 407, 
408

print, 404, 510 

printf, 514

printing, 509, 510 
bytes, 513 
columns, 518 
formatted, 490, 514 
library procedures, 6 
of procedures, 214, 215 
strange expressions, 87 
strings, 513 
to files, 490 

printlevel, 380 
priority queue, 300 
proc, 4, 201, 236 
procedures, 3

actual parameters of, 202

adding descriptions to, 214 
and °/0, 52
and environment variables, 53 
and floating-point input, 9 
anonymous, 203 
arguments of, 207 
assertions, 385 
bodies of, 5, 201 
body of, 231 
breakpoints, 362, 363 
call formats, 540 
calling, 5 
classes of, 214 
clearing watchpoints, 367 
controlling execution, 371 
debugging, 349, 361 
defining, 4, 5, 201, 203, 596 
dispatching, 287 
displaying, 6
displaying description, 230 
displaying of, 230 
ditto operators in, 52 
documenting, 215 
ending, 4 
evaluating, 6 , 228 
evaluating in, 46, 47 
exceptions, 388 
executing, 5 
execution details, 107 
explicit breakpoints, 363 
in the kernel, 214 
invoking, 5, 202, 204 
loading, 231 
modular, 20 
name of, 4, 230 
naming, 202
nested, 54, 58, 82, 85, 209 
numbering statements, 361 
operands of, 228, 229 
options of, 212 
parameters of, 201
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parameters within, 595 
passing information, 89 
passing input to, 94 
printing of, 214, 215 
recursive, 22, 213 
reliability of, 45 
remembering values, 76 
removing explicit breakpoints, 

365
returning unevaluated, 15 
saving, 231 
side effects of, 8 
simple, 3
simplifying, 204, 214 
structure of, 229 
syntax, 393
that return unevaluated, 225 
tracing, 380, 382, 384 
type of, 228 
unnamed, 203
values returned by, 5, 14, 24, 

202, 215 
variables in, 208 
watchpoints, 366, 367 
with error returns, 219 
with explicit returns, 218 
writing of, 231 

processing options, 423 
procname, 240 
product, 197 
products, 195, 597 

efficiency, 197 
explicit, 195 
symbolic, 197 

program optimization, 204 
programming

constructs, 11, 15 
efficiency, 213 
efficiently, 22, 23, 30, 33 
generic, 236, 306, 312, 314, 

318

numerical, 395 
with color, 478 
with graphics, 417 
with plot structures, 436 

prompt, 2 
protect,127 
protected names, 127 
Puisseux series, 182 
punctuation marks, 120

Quaternions, 101, 102, 106 
associativity of, 106 
inverse of, 104 

quaternions, 264 
quick-sort algorithm, 56 
quit, 579, 601 
quit, 371 
quotient field, 318 
quotients, 597

raising exceptions, 388 
rand, 82
random distribution, 60 
random numbers 

generating, 59 
randpoly, 32 
range, 598 
ranges, 182 
rational, 598 
Re, 10, 31
read, 139, 231, 598 
readability, 119 

of code, 55 
readbytes, 501 
readdata, 493, 508 
reading

bytes from files, 501 
columns, 508 
data, 491
from default, 500
lines from files, 500
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remainder of file, 501 
statements, 507 

read line, 95, 498, 500 
ReadRows, 506 
readstat, 95, 525 
real part, 10, 151 
records, 263

instantiating, 263 
representing quaternions, 264 
types, 264 

rectangular tables, 609 
recursive programming, 22, 38, 

213
REF, 544 
reference

call by, 540 
remember, 212
remember tables, 23, 103, 212,

229, 412, 607 
adding entries to, 77 
efficiency of, 76, 78 
options, 77 
removing, 78
removing entries from, 78, 213 
viewing entries of, 76 

rem ove,192
repetition statements, 133 

default values, 134 
omitting clauses from, 133 

reserved words, 115, 117 
return, 239, 371 
return statement, 24, 218, 598 
returns, 5, 118 

error, 219 
explicit, 24, 218 
fail, 225 
unevaluated, 15 

RGB, 426 
root finding, 82 
ro o tp lo t , 32 
rotating plots, 444

rounding, 397 
roundoff errors, 408, 409

catastrophic cancellation, 410, 
413

IEEE standard, 409 
increasing precision, 410 
similar magnitudes, 409 

rta b le , 599, 609 
rtables, 121, 191, 405, 514, 517, 

518
and Matrices, 121, 168 
and Vectors, 121

samples directory, 238 
save, 231, 600 
saving procedures, 231 
p ro tect, 502 
scanning

files, 492, 502 
strings, 526 

scoping rules, 55 
searching, 606 
searching lists, 29 
s e l e c t , 192 
selection operation, 159 
selection statements, 130 
selectrem ove, 192 
semantics, 201 
semicolon, 3, 5 
seq, 28, 155, 195 
sequences, 26, 154, 195 

creating, 155, 156, 195 
efficiency, 197 
empty, 154 
flattening of, 27, 154 
mapping over, 65 
number of elements in, 155 
of arguments, 205, 207, 422 
of statements, 601 
symbolic, 156, 197 
type of, 65
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series, 180
creating, 180 
internal structure of, 181 
Laurent, 182 
Puisseux, 182 
zeroth operand of, 181 

se r ie s , 581, 607 
sets, 27, 87, 158

as data structures, 72 
empty, 158
order of elements in, 159 
selecting elements from, 159 

shadows, 446 
Shapes, 249, 282

object-oriented approach, 304 
shift, 85
showstat, 361, 362 
showstop, 377
side effects, 8 
sign

of zero, 408 
significand, 149 
simplification

of expressions, 143 
simplification table, 606 
sim plify , 41

extending, 107 
sin, 227
single quotes, 16, 184 
Smith charts, 450 
software floating-point numbers, 

396, 408, 467 
accuracy of, 397 
base of, 397 
digits of, 396, 397 

software floats, 407 
solutions

analytical, 395 
numerical, 395 

s o lv e ,155 
sort, 607

sorting, 56 
sprintf, 526 
sscanf, 526 
step, 371 
stop, 601 
stopat, 362, 371 
stoperror, 367 
stopwhen, 366 
strings, 145, 601

and double quotes, 116 
converting to expressions, 97 
iterations over, 118 
length of, 116 
parsing, 97 
with backslash, 117 
with double quote, 116 

structured types, 66, 187 
submodules, 249 
subs, 197
subscripts, 124, 159 
subsop, 581 
substitution, 197 

algebraic, 199 
evaluation rules, 198 

subtasks, 20 
Sum, 399 
sum, 197, 399 
sums, 195, 602 

efficiency, 197 
explicit, 195 
numerical, 399 
symbolic, 197 

suppressing
of output, 6
symbolic evaluation, 399 

symbolic computations, 33 
symbolic polynomials, 39 
symbolic programming, 33 
symbolic sequences, 156 
symbolic transformations, 17 
syntax, 201
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checking procedures, 393 
declaring variables, 208 
error statement, 219 
for variables, 11 
mapping, 202 
procedure description, 214 
return statement, 218 
specifying options, 212 
try statement, 221 
type declaration, 206 
while loop, 19 

syntax errors, 111 
in files, 113 

system
integrity, 574 

system, 213

table, 178, 608 
table references, 602 
tables, 121, 178, 191, 602 

as data structures, 73 
creating, 178 
elements of, 179 
evaluating, 179 
indexing function, 179 
selecting elements from, 159 

tabs, 118 
taylor, 180
terminators, 2, 96, 525 

excluding, 5 
text files

reading, 139 
thismodule, 240 
tilde, 41, 88 
tilings, 448

Truchet, 449 
time, 22 

timelimit, 222 

to, 133

default value, 134 
token separators, 118

tokens, 114 
trace, 249, 380, 382 
tracelast, 380, 384 
tracing

procedures, 380, 382, 384 
transforming plots, 451 
traperror, 389 
trapping

errors, 390 
Truchet tilings, 449 
truth tables, 178 
try, 223, 368, 388, 390, 404, 603 
try statement, 221, 223 
type

record, 264 
type, 581

extending, 99 
type checking, automatic, 67 
typematch, 107 
types, 19, 140, 141 

and modules, 251 
checking, 18, 66, 67, 94, 99, 

206, 221, 422 
declaration of, 233 
declaring, 19 
defining new, 99, 102 
enumerated, 540 
matching, 68, 430 
of arithmetic operators, 165 
of arrays, 179 
of complex numbers, 151 
of concatenations, 146 
of constants, 187 
of expression sequences, 65,

154
of factorials, 170 
of floating-point numbers, 148 
of fractions, 147 
of function calls, 160 
of indexed names, 145 
of integers, 144



628 • Index

of lists, 158
of logical operators, 176 
of procedures, 228 
of ranges, 182 
of relations, 173 
of sequences, 65, 154 
of series, 180 
of sets, 158 
of strings, 145 
of tables, 179
of unevaluates expressions, 184 
set of, 67
structured, 66, 99, 187 
with special evaluation, 64, 

65
typesetting, 523

unapply, 83

unassigning, 128 
unbuffered files, 493 
undefined, 408 
underscores, 116
unevaluated expressions, 184, 401, 

603
unevaluated returns, 11, 15 
uniform distribution, 59 
union, 115 
unprotect, 127 
unsigned floats, 148 
unstopat, 363, 365 
unstopwhen, 367 
untrace, 384 
use, 238, 291, 603 
user input, 94, 97 
user interface, 580 
userinfo, 107

value, of name, 6 
variables

classes of, 8 
declaring, 209

environment, 53 
evaluation of, 233 
exported vs. local, 307 
global, 7, 87, 88, 208, 231 
identifying, 87 
interface, 6 

lexically scoped, 590 
local, 5, 7, 86, 94, 208, 218,

230, 233, 591 
scope of, 7, 55 
unassigning, 89, 128 
undeclared, 56 

vector fields, 456 
Vectors, 517, 518 

read, 518 
write, 518 

vectors
merging, 194 

verboseproc, 6 , 214

WARNING, 387 
warnlevel, 387
watchpoints

clearing, 367 
setting, 366, 367 

where, 374 
while, 135

default value, 134 
with, 231 
wrapper, 532

custom, 532, 550 
Maple-generated, 532, 539 

writebytes, 513 
writedata, 491, 518 
writeline, 513 
writeto, 520

zero
floating-point representation, 

408 
sign of, 408
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zip, 194 
ZPPOLY, 604


