WRITTEN BY

Linux’ Command Line
and Shell Scripting

SIBLE

THE COMPREHENSIVE, TUTORIAL RESOURCE

CREATE PROFESSIONAL I USE THE COMMAND LINE AUTOMATE
REAL-WORLD SCRIPTS

AND BYPASS THE GUI COMMON TASKS

WILEY

Linux’
Command Line
and Shell Scripting

Bible

Third Edtion

Linux’
Command Line
and Shell Scripting

BIBLE

Third Edition

Richard Blum
Christine Bresnahan

WILEY

Linux® Command Line and Shell Scripting Bible, Third Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-98384-3
ISBN: 978-1-118-98385-0 (ebk)
ISBN: 978-1-118-98419-2 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of
a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/
or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers should
be aware that Internet websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014954688

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is
a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

About the Authors

Richard Blum has worked in the IT industry for more than 20 years as both a systems

and network administrator and has published numerous Linux and open-source books. He
has administered UNIX, Linux, Novell, and Microsoft servers, as well as helped design and
maintain a 3,500-user network utilizing Cisco switches and routers. He has used Linux
servers and shell scripts to perform automated network monitoring and has written shell
scripts in most of the common Linux shell environments. Rich is an online instructor for
an Introduction to Linux course that is used by colleges and universities across the United
States. When he isn't being a computer nerd, Rich plays electric bass in a couple of dif-
ferent church worship bands, and enjoys spending time with his wife, Barbara, and two
daughters, Katie Jane and Jessica.

Christine Bresnahan starting working with computers more than 25 years ago in the IT
industry as a system administrator. Christine is currently an Adjunct Professor at Ivy Tech
Community College in Indianapolis, Indiana. She teaches classes on Linux system adminis-
tration, Linux security, and Windows security.

About the Technical Editor

Kevin E. Ryan holds a bachelor’s degree in electrical engineering technology from Purdue
University and has served as system administrator for a number of computing platforms
including HP-UX, Solaris, and Red Hat Linux. He's also been involved with system plan-
ning, database management and application programming. When not pursuing his techni-
cal endeavors, Kevin enjoys reading, baseball, and camping with his wife and their fearless
Papillon.

vii

Credits

Associate Publisher
Jim Minatel

Project Editor
Martin V. Minner

Technical Editor
Kevin E. Ryan

Production Manager
Kathleen Wisor

Copy Editor
Gwenette Gaddis

Manager of Content Development and
Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology and Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Project Coordinator, Cover
Patrick Redmond

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Designer
Wiley

Cover Image
iStockphoto.com / Aleksandar Velasevic

Acknowledgments

irst, all glory and praise go to God, Who through His Son, Jesus Christ, makes all
things possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for their out-
standing work on this project. Thanks to Mary James, the former acquisitions editor, for
offering us the opportunity to work on this book. Also thanks to Marty Minner, the project
editor, for keeping things on track and making this book more presentable. Thanks, Marty,
for all your hard work and diligence. The technical editor, Kevin E. Ryan, did a wonderful
job of double-checking all the work in the book, plus making suggestions to improve the
content. Thanks to Gwenette Gaddis, the copy editor, for her endless patience and diligence
to make our work readable. We would also like to thank Carole McClendon at Waterside
Productions, Inc., for arranging this opportunity for us, and for helping us out in our
writing careers. In addition, we would like to give a special thank you to H.L. Craft, who
produced several diagrams for our chapters.

Christine would like to thank her husband, Timothy, for his encouragement, patience, and
willingness to listen, even when he has no idea what she is talking about.

Xi

Contents at a Glance

Introduction. ot i XXXi
Part| The Linux CommandLine................ ... 1
Chapter 1 Starting with LInux SHEllS ..eieiuueriiiiiieiieiiien ettt eevvee e ee e e e eeeaa e 3
Chapter 2 Getting to the Shell ... e e e e eeeaes 23
Chapter 3 Basic bash Shell COmmMAandsccuuuuerieruuierieiiieeeiiiee e eeriee e eerae e e eeraeeeeaeaees 47
Chapter 4 More bash Shell COmMMAandS.....ceuuuuerieruuereeiiiieeretiiieeretieeeereieeeeraneeeeranneeeeenns 85
Chapter 5 Understanding the Shell......couiiuuerriiiiierieiieee e eeea e eeeeaas 113
Chapter 6 Using Linux Environment Variables......coieeuuueriiiiiiiiriiiiieniiiieneeriieeeeeeiee e 135
Chapter 7 Understanding Linux File PermisSions.....ccuueereeruuniereiiuerrerinereerineneeenieeeeennns 161
Chapter 8 Managing FileSYStOMS ..vveiuuuriiiiieeriiiieeeeiie et e et e e eeeeseeraaeseeenneeeeennnes 187
Chapter 9 Installing SOFEWATE uuuuiiiiiiiei ettt ee e e e erae e e e et e e e e eaa e e eeseaes 211
Chapter 10 Working with EdItOrS....ccuuuiiiiiuiiiiiiiieiieiieeceeieee et 233
Part Il Shell Scripting Basics.t 267
Chapter 11 Basic Script BUildingccueueeeeeemerriiinierreiiiereeiieeeeeiieeeeeeeseernaeeseeenneeenennes 269
Chapter 12 Using Structured COmmandscuuureiueeiieeeuieieieeeieeeteeerieeerneeeeneesnesersnneanes 297
Chapter 13 More Structured COMMANAS .vuueirrureiueeririeeeriererieeerneeeenererteeeneeeeeeeensennseenns 331
Chapter 14 Handling User INPUL.....ccuuuiiiiiuiireiiieee ettt eeee e et e e eeeae e e eeenas 365
Chapter 15 Presenting Data ...cceeeeueuuieeeeeeeeiiiiiieeeee e eeeteeiieee e e e e eeeerennaeseeeeeeeenennaaannns 395
Chapter 16 SCIipt COMEIOL cuuuiiiiuieeiiiiiiieieiiiieeeettiieeeetiteeeertaeeeeeeaeeeereneseerennseeeensnneesennes 419
Part Il Advanced Shell Scripting., 447
Chapter 17 Creating FUNCTIONS ..iiuuiiieeeeiiieceiie ettt ettt eete e et e erteeeneeennseannssennneenes 449
Chapter 18 Writing Scripts for Graphical DesKLopS.....uuuerieiuuuerieiiiieiierieeeeerieeeeeeieeeenenen 477
Chapter 19 Introducing sed and gawk.......cceeuuuuuuieeerreeeiiiiiiiiree e eeeeeeeeniee e e e eeeeeerennaaaeens 505
Chapter 20 Regular EXPIESSIONIS .uuvierrrureerruieeeeiiiereeruieeeettuneeesenseessennsseessnseesennseesennns 535
Chapter 21 AAVanced SEA ...iieiuuueiieiiiiee et eetiee ettt eerte e e eeaaeeeeeaaaeeeesaaseesenaseeenennns 561
Chapter 22 Advanced gamKcuuueiieiuierieiiiiee et eeriee ettt e e eeeaieeeeeeaaeseeraaseeeenneseenennns 591
Chapter 23 Working with Alternative ShellS.....cuueviiiiiiiriiiiiiiiiiiiie e 623

Xiii

Contents at a Glance

Xiv

Part IV Creating Practical Scripts 643
Chapter 24 Writing Simple Script Utilities vuuueeieeeuerieeeiierieiiiiee et et eeeeee e eereeeeeeeans 645
Chapter 25 Producing Scripts for Database, Web, and E-Mail......cccceeveeeinerreeennreennnnnnennnn. 681
Chapter 26 Creating Fun Little Shell SCriptS...ciiiuueeiiiimirriiiiieriiiiee e eeeeeee e 709
Appendix A: Quick Guide to bash Commandscceuuuummeieeriieiiiiiireee et eeeeeee 739
Appendix B: Quick Guide to sed and gawkcceeeiimmiiiiiiiiiiiii e 751
TIAOK ettt e ettt e e e e e et e bbb e e e e e e et e bennn s 763

Contents

Introduction. ot i XXXi
Part I: The Linux Command Line 1
Chapter 1: Starting with Linux Shells i e e 3
WHaAt IS LINUX? ceeuieeeiiiieieeiiieeeetiieeeettieeeetenieeeettuaeseetneneesetrnneeseetnnessernnnnssseennneseenen 3
Looking into the Linux kernel......cooceuuiiiiiiiiiiiiiiiiieiiieeeceec e 4

System mMemory Management.....coeeeeuereeeeueereiiieereetieeeereeeeeetraeeeeeenaenee 5

Software program Management....cccceeeeeeuuueeeeiuueeeeeruereernneneeereneeeenennenens 6

Hardware management ... eceueereeeeeieeeeteieeeeteieeeeeeieeeerrneeeeraneeeesnnnnees 7

Filesystem Management ...ceieeeuueeeeerrueeeeeeneeeeteieeeeeenereerrnneeereneeeeeennees 8

The GNU UEIlIEIES cettreenieeee ettt ettt e eee e s eeeee 9

The core GNU Utilities coeeerrummmniiiiiieiiiiiiie ettt 9

The SHEll.eeeeee et e e e rrae e e e eaee e s eenaaeeseeennanns 10

The Linux desktop environmentceiiuueiiiiiriiiiriiireeiieeerieeerieeeeieeeseeeeraneenes 11

The X Window SYSTeIMeceu.eitiiueereiiieeretiieeeeetieeeeteee s eerieeseetnaeeeeennaenae 11

The KDE deSKEOD cevuniirieiiiiieiiieriiiie ettt eeeie st e et e ena e esaeeenaeeennnennnnans 12

The GNOME deSKtOP . cuueiiiueeitieriiiieiiiieetiieeeiieeeiieeetneeeeneerneeerneeennnesnnnnes 13

The Unity deSKEOP «.oveeeeueieiiiieeiiiee ettt eeree e e eeenaee 13

Other deSKEOPS cevveruuueeeeeeeeitiiiieeee e e e ettt e e e e e eetebenaee e e e eeeeeerennanaes 14

Linux DistribULIONS . .ceeeeeeeiiiiiiieee ettt ettt e e e e et e e e e e eerenennaaaes 17

Core Linux distributionscceeeeeeiiimeimiiieiee e 17
Specialized Linux distributions.....ccceeueeereeiiiiiiiiiiiniieiiiee e 18

The Linux LIVECD eeeeuuiiiieiiiiiiiiieeee ettt ettt e e et e e 19

B (b1 B AP P PP PPPRPPPPTPPION 21
Chapter 2: Gettingtothe Shell i e 23
Reaching the Command LiNe....ciiciuuerieiiiierieiiiiee et eeeee e eetrie e eeeeaeeeeenaaeeeenenannas 23
Console terMINAlS..cciiiuuruuieee ettt ettt e e e ettt e e e e eeeenenenaaas 24

Graphical teITINALS tivuuuerieteueereiiiiereetiee e eetieeeeereaeeeeeeaeeeereneeeeraneeeeeennnaeees 24

Accessing CLI via a Linux Console Terminal.......cevuueereeeeuerrerenerrerenereernneeeeennneeeens 25
Accessing CLI via Graphical Terminal Emulation ..c...ceeeeeeueereeinenreeinenrerieenreenieenees 28

XV

Contents

Using the GNOME Terminal EMUlator......cceeeeeeriremmuiieeeereeeeiiiiiiieeeeeeeeeeenenaneeeeeeeene 29
Accessing the GNOME terminalccuuuueeeeeuuuereeeuuiereereneeeerunneeeseuneseesenneseesennns 30

The MENU DAY it e e e ettt e e e e e eeeenennaees 31
Using the Konsole Terminal EMUlatoreeeeeeuerieiiiierieiiiie et eeriieeeeeenieeeeeeneeeenes 35
Accessing the Konsole terminal....ccu.eeeeiuueereeiniereeiiiiereeriiiee et eeeeneeeernnans 35

The MeNU DAY oottt e et 37
Using the xterm Terminal EMULAtor .ccuuueerieinniriiiiiirieiiiiee et eeeeieeeecnee e e eeenns 41
ACCESSING XEOITIL ceetruueriiiieeeeiiiereetie e e ettt e eeeeaieeeerraneseeraaneseernnessenennesernnnes 42
Command line PATamEteIS .iuuuiiuunrerurerieeetteetteeereeereeereeeerneeesneesneesennsessnees 43
SUIITIAT Y ettt e eettuieeeetunieeeettuieseetuaeeeeetanaeeseteaneeserennessersanesserssnessersmnesserennssersnnnnnes 44
Chapter 3: Basic bash Shell Commands. 47
Starting the SHEll ...t e e e e s e eeae e e aee 47
Using the Shell PrOmpPt....couueriiiiieiiiiie ettt ee e e e et e e eeeaaeseenes 48
Interacting with the bash Manual......ccuueiiiiiiiiiiiiiiie e 49
Navigating the FileSYStem cu.uiiiiuueriiiiiiriiiiee ettt etee e eeeea e e eeees 52
Looking at the Linux fileSYStemM ...cievuuuerieriieieeiiieeeeeiieeeeeeieeeeeerieeeeereieeeenes 52
TraverSing direCtOTIOS cuvuutirueiiueeeteeereeeteeete ettt eerueeeeneeeaeeeraeeenneeennseennneees 55
Using absolute directory references. ... e rreererereuuieeeeeeeeeieeiieeeeeeeeeee 56

Using relative directory references...ccuuuerieiiuieeieiiiieieeiiiereeeeie e eeeaieees 57

Listing Files and Dir€CtOTIES vuueiieruuuerieiureeietriereettieeeetrueeeeereieeeeenrnseeeesnseessnnnnees 59
Displaying @ basic TiStITg .uuuuereeruuerierruierreetiiieeeettieereereieeeeeraeeeeeeneeeerenneeeenes 59
Displaying a 1ong LIStINg .euuueeeeeeuuerreruuereerriiereetruieeeeenneeeereneseersneseersnseerennes 61
Filtering listing OUtPUL..cceuuueriiiiiie ittt eee e e eeeee e eeees 62
Handling FIles ceeeuueeriieieerieiee et eetiee et e e eetae e e eeaae s s eeraaeseenaneseeennenssennnnnnns 64
Creating fIlES. eeeeeneereeiiee ettt et e e e et e e e erae e e eera e e e eana e 64
COPYING FIlES ceretrnieieiiiee ettt ettt e et e s eerae e s erean e e eeanaa s 65
Using tab auto-COmpPLeteciiiuueiieiiee ettt 68
LiNKINgG fileS tevuuueiieiiieiieiiiiee et eetie et eeert e e e et e e e e arae e e e eaaa e e eeaaaeeeanes 68
ReNAIMING fIlES tuunieiiieiiiiiiiee ettt e e e e ee e e e e e eaa e e eeaaaeeeanes 70
DEleting fIleS. ceeeeeeiiiiiiiieeeeeee ettt e eee ettt e e e e e e e ettt e e e e e e e e eenennaees 72
Managing DirECTOTIES cuuuueeiiruuuereetiiieeeetiieeeettieeeettueeeeteneeeereaaeeeeresneeeasennsseessnnneees 73
Creating direCtOrIES ciiuuueiiiiuiiereeiiie e ettt e e ertee e eetaee e eetaaeeeeetaeeeeseaneeeerananaees 73
Deleting QIreCtOTiOS uuurieireeeeeiiiiee ittt e ettt e eettee e eeeaeeeeeeaieeeeeraaeeeeenneeeaeennes 74
VieWiIng File COMTOMES..eiiiiiiieeiiiiiieeieiiie et eeteie e eeeee e e eeeae e eeraaeeeeesaneeeeennneeenes 77
Viewing the file tYPe coveeuuiiiiiiieeieiiee et s e e e ee e e e eeeaas 77
Viewing the Whole file ceeeuueiiiiiniiriiiiee et eeeaaes 78
Using the cat cOmMMandcuuueereeeuuerreiiuenreeiiieretieereerieeeetnaeeeereaaenes 78

Using the more cOmMMANA .evvuurriiiiuerieiiiieeeeiie et eerieeeernneeeeeeaaees 79

Using the 1ess COMmMAandcuuuurreeruueererimieiretiiiiereteeiereerieeeeenneeeerennenes 80

Viewing parts of @ file. e iiiiieei e e e e 81
Using the tail commandc.oveeueiiieriiireiereiee e eeeeeeee e eea e 81

Using the head command........ccoeeeeimimiiiieierireeiiiiiiee et 82

U ITIAT Y ttueetueeerunrernneeeeneeenneeenneeenneeennesersesernsssnenssennssessssennssensssensssennssessnnsnnnnsenns 83

XVi

Contents

Chapter 4: More bash Shell Commands.c. ittt 85
MONItOTING PrOGIaIS . cevuuuriieriierrettiereetiuieerettuieereeeuaeeeertnneeeerrenneeeerenssseennnnsseeennnnns 85
Peeking at the ProCeSSES.ccuuueiiiiiieiieiiiee et 85
Unix-style Parameters ..o reeiiee et et eeeeie e eereeseeraaeeeernaaees 86

BSD-Style PArametersS cuueiiuueieuueeeiieeeiiereiieeeeieeeteeeueeeaeeereeereeenaeennnes 89

The GNU 100G PArameterS..iiuurerueerreeeeneeeuuererneeeeneeeeneeersseesneeennseennnees 91

Real-time process MONITOTING civuuierureruerernreiiereinererieeerueeeeeeereeenneeeenseenneens 92
STOPDPIIIG PIOCESSES evvruereituniieeiieieretteieeteetniee e e et e e etreneseeraneeseernneeseeenneaenes 95

The Kill COMIMANG ..uuiirriiereiiiiieeeeiiiiee et eetieeeeereieeeereneseeraneseeeeananns 95

The killall commMand...ccuueeieereuiereeiiiiereetiiieeeetiieeeeeeaeeeeeraneeeereeneeeeesennns 96

MONItOring DiSK SPaCe .cuuueieiruueriiitiereeiiiietetiueeeeeeieeeeetnieeeeteanseeernnsseessnssesennnes 96
MOUNTING TNEAIA ..ueteerrieereiiieee ettt eertee e eereaeeeereaeeeerenaeseernnneeeeennnnnsens 97

The Mount COMMANG..eeuuuerierirerrerinereetiueeeeeteieeeeereeeeeeenneeseernneeeeennnnns 97

The unmount COMMANA ...ceevurueerriiierreiiieereerieereeraeeeereaeeeerrnaeeeeeennenns 99

Using the df commandceveeeeiieriiiiieieiie et eeeae e 100
Using the du commMandeveeeueiereiiiiee et eerre e e e eeea e eees 101
Working With Data Files...cieuueiiuuiiiiiiiiiiiieiiie ettt cee s erie e era e e ea e eeaaeeeaeeens 102
SOTEING AaTAtuuiiiriiiiriiiir ittt e ete e eete e et e et e era e et e eaaeeaann e 102
Searching for data...uuueeiieeueeriiiiie e e eere e e rrr e e et e e e e e e eeees 107
COmMPIeSSING AAta ceevvvunererruuerieriuiereettiieeeeetueeeeetuneaeereaneeesssnseeersnseeessnneeees 108
ATChIVING QLA . etieiieierieiiiiee et eeeree e ee it e e eetaa e e e eeeaeeeesenaeeenes 110
UL I AT Y ettt eetueetnretneetueeeeueeeeueeenneeeenerenneseranseennseennssesnssennssennsrennesennsnennnnennnnees 1
Chapter 5: Understandingthe Shell. i i i 113
EXPLOTING SHEll TYPES tuuntrrueeitneitieiiiieeetieeetieretieeetieeeuieeesaeeenneeennsesnssesnseeennsernnnees 113
Exploring Parent and Child Shell Relationshipscceuuuueeeeerrreiiiiiiiiiiieeereeeiieiieeen. 115
LoOKINgG at Process LISTS vivvuuriieruuieeiitiiieeettieeeeetiieeeeertneeeeeeeneeeeereneeesennesaeees 119
Creatively uSing SUDSHELIS vuuuieeruueeeiiiiie it eeriee e eeree e ecreee e eeeae e e eeenaeeeeees 121
Investigating background modeceeeeveuirriiiiiiriiiiiienieeiee e, 121

Putting process lists into the background.....cccccevveviuieriiiiiinricinicnnnnnnn. 123

LoOKINg at CO-PIrOCESSING ..uvrerruuerrerruiereetiieeeeteiieererenereernaeseeranneerennns 124
Understanding Shell Built-In COmMmMAandsccuuueererruuerrerenereeiieereeriieeeeeeeneeeenennenes 125
Looking at external COMMAandS.....ceveeeuuereereuereeruiiereereieeeteeieereereneererenneeenes 125
Looking at built-in comMmandsceeeeeuerreimeereeiienreeiieeetieee e eereeeeeeenaeeeees 127
Using the history command.......ceceuueieuiereiiiieinniiireeie e eeieeeeieeeneees 128

Using cOmMmMANd ali@SES cevuureruererureruuerernereeueeeenerernereenrernesersneeennsesnnees 131

UL ITL AT Ve ettt eerueeuunrerneerueeeenneeenaeensseennssensesesssssessseessssessneesnssensssesnsssnnssssnnsssnnnees 132
Chapter 6: Using Linux Environment Variableso e, 135
Exploring Environment Variables.....coiieeueerriiiuiiriiiienieiiiene ettt e seeenienne 135
Looking at global environment variables.......cceceuuerriiinierriiieereeiieeneeeieeeees 136
Looking at local environment variables.....c.cvereuueriiieriinieeiiireiiereiiee e eennns 138
Setting User-Defined Variablesuueeiiiiueeiiiiiiieiieiiiien e et eeteiee e eeeeie e e eeanns 138
Setting local user-defined variablescooeeeeeeeiiiiiienirreeiiiiireee e eeeeeeneeens 139

Xvii

Contents

Setting global environment variables.......cceeuuvuuiierrrieiiiiiiiiieiee e, 140
Removing Environment Variableseiiiuueeeiiiiiiiiiiiiiiee et eevee e eeeaas 142
Uncovering Default Shell Environment Variablesc.cevvueerieiiiiiiiiiiiiniiiiiiieneeniinees 143
Setting the PATH Environment Variable......ccoeeeiiiuieriiiiiieniiiiiien e ceeeieeeeeeiieees 148
Locating System Environment Variables.....ccuueeieiuuieiiiiiierieiiieneeiiiieeeeeeieeeeeeneees 150

Understanding the 1ogin shell ProCesS....ccuueerieiuuiereeiiiieeeeeiieereeeiieeeeeeneeeeenns 150

Viewing the /etc/profile file ..covverreieriiiiiiiiiiiiee e, 151
Viewing the $HOME startup filesceveerruerieiineeieiiiienrereiee e eeeeeaen, 154

Understanding the interactive shell Processeeeeeivueeriiiiieereeiiienreiiieeeeees 156

Understanding the non-interactive shell process.....cccceeeeeevueeriiinieireennennenens 156

Making environment variables persistent....cccccceeeeuiiiiiiriiiirieiieiiiieeeiie e 157
Learning about Variable ATTaysS...cccueeceeeeeeueeeueeeruereunerenneeeeneeeenerersseesseesseennneees 158
SUIMITIATY e tttueeettiie ettt e e et e eetaeeeettuaeeetaaaeseeanaeesenenneseetannessetnnnesseennnensernnnnnees 159

Chapter 7: Understanding Linux File Permissions.o oo, 161
LINUX SOCUITEY e ettuuuteeriuerreiiiee ittt e e ettie e e ettt e eeteteeeeeraneseeraaneseetnnnessersnnessersnnnnens 161

The /etc/PassSWd file ...iiiiuueiiiiiiie e eeree e ee et e e e eaaeeeeeaes 162

The /etc/shadow file...ciiiuuueeiiiiiee et ee e e e e eaae e e eeaes 164

AQQING @ NEW USEY tevruuuieereeeeriiirtuiieeeeeeeeeterernnaaeaaeeeeererennannnaeeeseeeeresssnnsnnnns 164

REMOVINIG @ TSI uuuiiiruieieiuuieeeetiiereettueeeetuuseeetunseeesenseesssnseessssesessesnsseesees 168

MOQIfYING @ TSI creerrueieiiiiieeeriiiieeetttieeeeetuieeeeetneeeeeerenseernanssesesseseesesneseesees 168

USEITOM . eeeeeeierenniieeeeeeeeenereuaeeeeeeeetenennnaneaeeeeeeeeassnnnneseseeeeeenennnnnns 169
Passwd and chpassWd...u..eeeeeeeereeiiiier et eeree e eeeee e eeeaens 169
chsh, chfn, and chageueeriiiiiiiiie e 170
USING LINUX GIOUDS tevvvuurerruunereeruuneerruneeeereneeeemsnssreerssssseessssnsessssnsssessnssseersnsesees 172

The /etc/group file ceuueiiiieee et eera e e eeees 173

Creating NEW GIOUDPS teeuueererruunreermunererruneererenneeeerenneseermnnseeesnneseessnneseenennesees 174

MOQIfYING GIOUPS tevrrrrruunareerererrriruiiieaeeeeeeerenenanesaeeeeeeeerrmennnsnssseeeessesssnnsnnnss 175
Decoding File PermiSSions. cuuuiiuuereuueeeeuiretueetueeereeennererneeeeneesnesessnssesnseesnssennseees 175

Using file permission SYMDOLSccciuuuerieiiuierieiiiieeeeriieeeeerieeeeeeteeeeeanieeeeeenes 176

Default file PEITIISSIONS ..ueerrrerrriiiiiiieeeeeeeeeitiiieeeeeeeeeeerrraieeeeeeeeeenennnnaeennns 177
Changing Security SEtTings ciuuueeiiiiuuieiiiiieeieeiiiee et et eeraee e eeeaaeeeeraneeeenenens 179

Changing PermiSSIONS . .euiiiuuuerieiuieetetuueeeeeeieeeettiereetraeeeeereeeeesenaeeeesannneees 179

Changing OWNETISHIP cuuuueiiiiiier it e eere e e e e e erea e 181
SRATING FilES coreiriieiiiiiee ittt etre e ettt e e eette e e eeeaeeeeraneseeeanaeseennnnseannnnnnees 182
ST ITIAT Y ettt ettt ettt et e et e et e et e eea e etaaseansenaesenaasennesaannannnsssnnssennssennnens 184

Chapter 8: Managing Filesystemsco it i e 187
Exploring LinUX FileSYSTOIMS .uuuieiuuuerieiiiierieiiiieeeetiieeeeteieeeeteneeeetanieeeeeenneeesennnaans 187
Understanding the basic Linux filesystems.....ccueereeiuiiiieeiinienieiiiieneeenieeeeens 188

Looking at the ext fileSyStem ..ovevruueeriiiiiieieeiiee e, 188

Looking at the ext2 filesystem...cuuuuerieiiiieiriiiieeeeiiee e, 188

Understanding journaling fileSyStems ...ccuuuereeruuereiiiiieeeeeiieeeeeeeeeeeeneeeeeenes 189

Looking at the ext3 filesystem....ccuueriiiiuierriiiieieiiier e, 190

Looking at the ext4 filesystem....cuuueriiiiiieiriiiieieiiiee e, 190

Looking at the Reiser fileSystemceeeerirveruiiiererieeieiriiiiireeeeeeeeeeeeennns 190

Xviii

Contents

Looking at the journaled filesystemcceevueuuuieerereeeeririiiiieeeeeeeeeeenes 191
Looking at the XFS fileSyStem...ciiiuuuiriiiiuiiiiiiiiiiee it eeeiee e eeriieeeeeeeaes 191
Understanding the copy-on-write filesystemsoeveervuierieiiiierieiiiienieeiieneees 192
Looking at the ZFS fileSystem ...euiiiuuriiiiiiiinieiiiee et eeree e eeeeaes 192
Looking at the Btrfs filesystem ...ccuuuuereeiiiierieiiiieiieiiee e e 192
Working With FileSyStemS cuuuuueiiiiiiieeieiiiee it ettt eeraee e eereae e e eeeeaaeeeeeenaenes
Creating Partitions .cuuuueeieeeeereeiiiiee e e et eerieeeeeraieeerrneseeraaeeeeennneeeenes
Creating a filesystem
Checking and repairing a fileSYStem cu...eveeeuueriiiuiiireiiiie e 198
Managing Logical VOLUIMES «.ceeuuereeiuuereeiiieeetiiieeettiieeeeeeaieeeettneseeraaneeeernnnesenennenns 200
Exploring logical volume management layoutcceeuereereeenrernirenneeeenrennnnens 200
Using the LVM in LINUX...ceuueiieeeeiereiiereiieeeeieeeeueeeneeesneeesnesenneseenssesnsssssnnees 201
Taking @ SNapShot...ccceeieeiiiiiiiiiee et ee e 202
R 40154« PP PRPPUPPR 202
MITTOTITIG toveetuieeeeituieeteeteeeeettueeeettueeeetaaaeeeeeenaeeerennsseenesnnseersnnsssesnnns 202
Using the LINUX LVM....oiiiiiiiiiiiee et ceeee s eeeeee e eetaaeeeeeeaeesenenaseeees 203
Defining physical VOIUINES .veevvuerreiriiereeiiiee et eeeiiee e eeeeieeeeeraeeeeeennes 203
Creating VOLUINE GIOUDS cevuueeerruureerruneeeerrenaeeerenieererennsseemnnnsseersnseensnnes 205
Creating 10gical VOIUIMESeieeruuerreiiiereeiiieeeetiieeeeeeieeeernieeseeenaeeeerennes 206
Creating the fileSYStem wuuuvriiiuerriiiiei et 208
Modifying the LVM....cccieuiiriiiieereiie ettt s eeee s eee e e eeeeaas 209
SUTTLITLAY Y u ettt ettt eetueetueetueeeaueeeeuuneesnneasnseesnnsessnesesnsessnnsessseesnseensssesnsessnnesesnsesnnnses 210
Chapter 9: Installing Software e e
Package Management Primer
The Debian-Based SYSteIMS ...t iiiuueeiiiiieeretiieeretitee e ettt eetaeseeraneeeeranaeeeeennnenes
Managing packages with aptitude.....cccceveiiiieiriiiiiiiiiiiiieiee e 212
Installing software packages with aptitude.......cceeeeereeeeiiiiiiiiienerreeeeeiiiiinnnnn. 215
Updating software with aptitude......ceeeieiiiieiiiiiiierieiieee e 217
Uninstalling software with aptitudeccuuueeiiiiiiiiiiiiiiieicieee e, 218
The aptitude YEPOSITOTIES vveeeeiiiiiiiiieeeeeeeeetitieee e e e eeeeeeree e e e e e eeeereneanaeees 219
The Red Hat-Based SYSTOINS ...iiiiuuueeieiiiieeieitiieeeetiieeeetrteeeeetaieeeeenaneseeesanaeeeesnnannns 221
Listing installed Packages...ccieeuuueeeeeieuieiiiiiee et eeriee e eereee e eerae e e eeeneeeeees 221
Installing software With YU .ce.ueiiiiiiiiiiiiiie e 223
Updating software with YU ..ccuueiiiiiiieiiiiiie e 224
Uninstalling software with YUm ...ccevuuieriiiiiiiiiee e 225
Dealing with broken dependencies......ceeieeeeueereeiuuiereiiuiieeeeiieereeeeeeeeeeneeeenns 225
YUIN TEPOSIEOTIES tevuniiriiiriiieiieeetieeetieeeeieeeeteeetae e et eetenseseneersnseasassssnnsssnneenes 227
Installing from SOUYCE COQ ..uuiiiinnaireiiiiereiiiee et e et e eetae s eetaaeeeeenaaeeeerenaenas 228
SUTTLITLAY Ve ettt eetueeeuuneerueetueeeaueeeesuneesnneasnseesnnsessseeesnsessessessneessseesnssesnsessnseessnsssnnnses 232
Chapter 10: Working with Editors.o e 233
Visiting the vim EdITor...ccuueeriiinieriiiiiireiiieee et e eeeae e e eenee e e eenes 233
Checking your vim package.....ccuueeeieieuiereiiuieeieiiiieereeiieeeeriieeeeeeneeeeeenaeeeenes 234
ExXploring vim DasiCS...ueeuuveriiiiiiiimiiiiiiiiiiiiiiiiiiiin et 235
EdIting data...ceeeueereemmereeiiereeiie ettt eere e et e e e erae e e eeeae e eeee 238

Xix

Contents

CopYINg and Pasting.eeeeeeuuueeeeeeeeeeeermuuueeeereeeeererieneeeeeeeeeterennnneseeeeeeeesennnnnns 238
Searching and SUbStItULING cooveevvueieiiiee et eeeee e 239
Navigating the nano EQItor.....cceuuueeiiiiiiriiiiiie e e e e e v e 240
Exploring the emacs EdItor .uuuueieiiuueriiiiiiie ittt eeeeie e ceeeee e seeeae e e eneae e e 242
Checking your emacs PACKAGE «.evvuuerieeruierieiiiieeeetiiieeeeriieeeeeeaeeeeeeneeeennnaeees 243
Using emacs 0N the CONSOLE...uuuuiiiiiiieieiiiiee et eete e eeereeeeeeeneeeeennaeeeeeenns 245
Exploring the basics of €mMacs ...eeveeeueeeriiiiieniiiiee et 245

EdIting data ceeeeeeeeeneerieiiiereeiiiiee e et r et e et e s e erae e s e e e s eeenas 247

Copying and Pasting ..ccceeeueereeeeueereeiueereiiieeeetiieereeeeeerereneeeerrnaeeeeees 247

Searching and r1eplacingcceeueereereuereeimuieereiiereereiereernaeeeeeeaeeeerenens 248

Using buffers in emMacseevueeieeiiiie e erre e e raeee e e eaaaans 248

Using windows in console mode eIMACS ...cevueeerureirneeeenreerneeennneeeneeennnens 249

Using emacs in @ GUL . .cceuueiiiiiiiiiieiiie ettt e e e e e 250
Exploring the KDE Family of EdItOrS ..ccuuuerieirunerieiiierieiiiieeeetiieeeceeiieeeeenieeeenene e 251
Looking at the KWrite editor.....ceiiiieuieiiiiiiieiieiiie et eeeae e e e e 251
Looking at the Kate editor ...ciceuuuerieiiiieiiiiiiiee et eeriee e eevie e e eeeaeeeeeees 256
Exploring the GNOME EdItOT....cieeeuuieieiiiiieriiiiiieieetiieereeeieeeeeneeeeeennaeeseeenneeensnnnnens 260
STATtING GEAIL teuuerieiiierieiiiee ettt e e e s e e e e e eeaae e eeenas 260
Understanding basic gedit features....eeieeeeueereeiueiriiiiineeiiiee e e 262
Setting PrefereNCES wuuue ittt er e e e raae e e eeaes 262
Setting View PreferenCes ..oocuuuerrerieiereeiiiee et eet e eeee e eeeaaes 262

Setting editor PrEfEYENCES «ivvirrruuiieereeeieeiiiiiree e e e eeeeaeaaes 263

Setting font & color Preferences..cccveeiiviuuieeiiiiiie et eeeeaen, 264

Managing PLUG-ITIS .uveeueeeeunreruueeeuneeerueeennererueeeenerernsernsernseesnesesnsesnnnns 264

SUIMITIATY et ttuetettiie ettt e etteiee e eetnieeeettuaeeetaaaesetnnaeeseeenneseetannessersnnessesnnnessersnnnnees 265
Part Il: Shell Scripting Basics 267
Chapter 11: Basic Script Building it i i i 269
Using Multiple COMIMANAS .euuuurterruueeretruereetiuereetrieereeeneeeeeeneeseerrnnseerssnsseensnneeees 269
Creating @ SCIIPt File. et ettt e et s e et e e e eaaa e e eeeane e eennnnes 270
DiSPlaYing MeSSATES ceuuuurerruueererrnurrerrnnererraneererrnneeserrsseseermsnssserssnessessnnssersnnenees 272
USING Variables ceuueieeeueereeiiiee ettt ettt e e e teaee s eeraaeeseetnaeeeeennaeeeeennneseernnnnns 274
Environment variables......c.ooiiiiiiiiiiiiiiiiiiiiiiiii 274

User variables ..ocouiueeeiiiiiiiiiiiiiiii e 275
Command subStItUtion......ccviviiiiiiiiiiiiiii 2717
Redirecting INput and OULPUL ..ceeeeeeeeieruiieeee ettt e e eeetreere e e e e e e eerennan e 279
OULPUL TEAITECTION .t etttuuerieitueteeiiieeeetieeeeeete e eettee e e e taaeeeeeeneeeesenaeeesennnaaes 279
INPUL TEAITECTION. 1 ettt i eeitiie e eitiee ettt eete e e eeree e e e eraee e eeeaaeseeeanaeeeeees 280

P DS ettt ettt ettt ettt et e et e e ettt e e ettt et etea e eetaa e e etaaeeaaaneeanannaaes 281
Performing Math ... oot e e e s e e e e e e 285
The eXPr COMMAINA tvvuuriiiiuiereiiiieeeiteieereetteeeeetaieeeeereaeeeeraneseernneseernsnseeeees 285
USING DIACKELS veeiiiieeiiiiiee ettt ettt eeree e eetee e e eenaeeeeeeaneseennnneeeenes 287

A floating-point SOMULIONvreieueirriiiiereiiie et eeee s e eraae e e eeees 288

XX

Contents

The Dasics Of DC eeuuuereeieeiiiiiiee ettt eeeeeeenaaees 288

USING DC M SCIIPES uveirrieerieiiiieeeeiiiie e eetie e e ettt e e eeeiee e eeeaieseeeeaneeeeesenns 289

EXItING the SCIIPt vuueiiiiiie it eeee s e e raa e s eeeaa s e e eaan s 292
Checking the exXit StatUs .ccuuueiiiiuuieriiiiie it eeerae e eeeaeeeeees 292

The exit cOMMAN cevvvrmnieiiieiieiiiiiee ettt e ee e 293
SUTTL I AT Y ettt et ettt et e ettt e et e eae e et s et s etaeetae e eenneesneseanesannesennnsanansennnernnnnes 295
Chapter 12: Using Structured Commandscciiiiriiiiinnnnnnnn 297
Working with the if-then Statement......ccciiiviiiiiiiiiiiiiii e 297
Exploring the if-then-else Statement.......cceiiiiiiiiiiiiiiiiiiiie e 300
L [T W 4o 5 5 J OO OO PPPPPRPPPPPPRRPRt 301
Trying the test COMMANG cevvuueriiiiierieiiiiee ettt et eereee s eeenaeeeeennaeeeeannanees 304
USING NUIMETIC COMPATISOMS cererrrueererruureerruueeeereneereerrnaeeernnneseerenneseerennseeees 307
USINg StIing COMPATISOIS .uuuurerruueererruneeeereeereeernereertneeeeranneeeerenneserennseenes 308
Looking at string equalitV....cceeeeeeeeueerriimeieneeiiiiee e eeree e eeeanns 309

Looking at String ordercieeeeeereiiiniiriiiiee et eeree e eeeaas 310

Looking at STYING SIZE vuuveeureruiiiiiieiiiireiiieeiieeeieeeneeeteeenneeenneeenneeennnns 312

UsSing file COMPATISOMS 1ivvuuunrieiriieeieriiieeeetiiieeeeettieeeetraeeeerauneeeersnnseesssnneeees 313
Checking dir@CtOries ..ueeeeeeeeerereniieeeeeeeeeeteitieeee e e e eeeetereieeeeeeeeeeeenens 314

Checking whether an object eXistScceiiiuuierieiiiierieiiiirieeiien e eeeenen. 315

Checking for @ fileuuuuei ettt ee e e e eaaas 316

Checking for 180 ACCESS..uuiiittuuerieiiieeeetiieeeetiiieeeeeeieeeereaeeeeraneeeeeenns 317

Checking for empty fileS...eeiiiiueriiiiiieieeiiee et e eeeeaes 318

Checking whether you can write to @ file..coveeeeueeriiinciiiiiiierieiicee e, 319

Checking whether you can run a file ...ccevueerriiinieniiiiieiieiiee s 321

Checking OWNeTIShiD ..ciiiueeeiiiiieeeeiiee et et ere e e eeee e e eeenas 321

Checking default group membership.....cccceeeriiiiiiiriiiiiiiiiiiinieee e, 322

Checking file date . uu.uueeeerreeieeiiiiiiiiee et eeee it e e e e eeeeenees 322
Considering Compound TeSTING...uueieuurieuuerereerereeerieretieretieeeueeeneeenneeerneeeenesernaees 324
Working with Advanced if-then FEaturescceiieivuerieiiierieiiieeeeeeieeeeereie e eeeiaeas 325
Using double parentheses.....ccevuuueuuiieerreeeeiiiiiieee et eeeeeereneaees 325
Using double DracketS. . ciuuueeiiiiueeieiiieee ettt eetiee e eereae e eeeeae e e eeeaaeeeeees 326
Considering the case COMMANG . ccuuurieiruuerieiiiiereetiieeeeetieeeeeeieeeerraeeeenenneeeesennnnes 327
SUITL I AT Yttt eetueetnretneetueeeeeeeeuaeenneeeeuesennesannneernnsaennssennssennssennsrennssannssennnnennnnes 329
Chapter 13: More Structured Commands.ttt ii e iie e enn 331
The for COmMMANGceeiiiiiniieeeeeeeeeiiiiiree e e eeeeteteee e e e eeeetereaaaaeeeeeeeeeeenennnnnsnsaaees 331
Reading values in @ liSt..icuuueieiiuiieeiiiiee et eerae e e e e e e eees 332
Reading complex values in a liSt.....ccuuuieiiiiiieniiiiiierieeiee e 333
Reading a list from a variable......ceeieeeeeeiiiiiie e e 335
Reading values from a cOmMmMAnd......ccuuerreruueereerunenreerieeeeeneeneeereeeeeeenneneenes 336
Changing the field SEPATALOT cvvevvuureiiiiiieeeiiiee et e eeeaeeeeees 337
Reading a directory using wildcardsceeeeeeueereeeuneereeinneeeeiiieereeineeeeeeneeeenns 339

The C-Style for COmMMAaNd...cuuuurieiiuueereiiieereiiieeettire e e eeee e eernaeeeerenaeeeearnneseeennenns 341
The C language for COMMAand.......eeeereuueererenerrerinereerineerereeeereeeneererenneeenes 341

XXi

Contents

Using multiple variables......coeuuuuuuieerrreeeiiiiiiiieeee e eeeerereiee e e e eeeeenennae e 342

The while COMMANG ..eeetiiiiiiiieeeeee ettt e ettt e e e e eeeteeenae e e e eeeeeenennnnaeennns 343
Basic While fOrmmat.ceeeeuu et 343
Using multiple test COMMANAS...ccceeuuuerieiruerreiiiieriereiereereieeeeeeeieeeeenneeeerenns 344

The until CommMAaNdccettrimmmiiieieeeeiiiiie ettt eeee e e e e e e e eenennena s 346
NESEITIG LOOPS tevtuuettirrneeeeirieeeetiieereetuereertaneeeeenensreereneseernnssseeesnnnseessnnnseersnsnnees 347
LoOPing 01N File DAt cevuuuereeiuuiereiiieereiiiiieeetitieeseeenieeeeeenieseetennsseennneseeennsssernnnnees 350
ContrOUINgG the LOOD eveeeeueriiiieeriiiieee et eetiee ettt e ettt s e eraae s eeennaeeeernnnneeennnnns 351
The break cOmMmMand.......ceeeiiiiiiiiiiiiiiiiiiieiiiii e 352
Breaking out of a Single loOP weueeeeeeeueereiiiieiieiieieetiee et et 352

Breaking out of an inner 100D v...eieeeueeeeeeiierieiiiiee et eeevicee e eeeie e e eeaaes 353

Breaking out of an outer 100D vu..eieeeueeeeeeiiieneeiiieeeeiiieeeeevieeeeeeaeeeeeanes 354

The continue COMMANG....ceeeieriririiuiieeereeeetiiiiireeeeeeeeeeerreaeeeeeeeeeereneaaaeennns 355
Processing the OUtpuUt 0f @ LOOP .iuuuerieiiiuiriiiiiiee ettt ceevae e s ee e e e eeraae e 358
Practical EXAMPLES coeeiuuueeieiiieeieiiieeeettieeeettteeeettteeeeeeteeeetanaseesasaseeesennssessennnaees 359
Finding executable fileS i iiiiuieiiiiiee et e e 359
Creating multiple USET ACCOUNES . uuutiirrueereeiieerettieeeeerteeeeereeererrneeeerraaeaes 361

UL ITIAT Y ettt ettt ettt et e et ettt e et et ta e eeaa s eaaseeaeseaaesennneetnnssennesennnsennnsennnsennnnnes 362
Chapter 14: Handling UserInput i i et 365
PasSing Parameters cuuuuuueieiueiieieiiiieeeeitieeeettiee e eettieeeeeteaeeeeeateeeeraaeeeeaan e eeaanaaes 365
REAAING PATAIMELEIS uuuiiiirieeeiiiiieeetttieereetuieeeeetuieeeeeeeneeeeeraneeseresneseesesneseeeees 366
Reading the SCIiPt NAME cuuuueieiieueriiiiieeeeeiiee et e eeere e eeraaeeeeeeaeeeeeenaeeenes 368
TeSTiNgG PATAIMETOTS cuvuuerieiiiereeiiiieeeeteeereetieeeeetaaeeeeeeeaeeeenaneserrnneseernnnnseeeees 370
Using Special Parameter Variablesccuueeeeeiieiieriiiiien et et eeeeieeeerea e 371
COUNEING PATAIMETETS teuueeriiiuiereeiieieeretiiee ettt e e ettaeeeeraaaeeeeennneeernnneseernnnnnaes 371
Grabbing all the dataceeeieeeeriiiie e 373
BING SHIftY ceruuiiieeeeiiiiiiiiiiiree ettt e ettt e e e e e e et e b e e e s e e e aerea e s 375
WOrking With OPtiomnS..cuuueieuriiuieiiiieiiiie ettt e etieeeeteeeaeeearaeeeeneennneennseeenns 376
FiNding YOUT OPLIONS cievuniiiieiiieieiieeeiiee et e etiee et e eeteeeaeeeeneeenneeerneeeenseennnnees 376
Processing Simple OPtiONS...cuuuuuuuueeeeererreiriiiieeeeeeeeeeeeereniieeeeeeeeeeereennns 377

Separating options from parameters....ccccceeieeeuereeiiieiereuiineeeeieeeeenennns 378

Processing options with valuesceeveevieriiiiiiirieiiiien e eeenns 379

Using the getopt command........eeieeuuuirieiiiiirieeiieee e eeeee e e e eeaeeeeeees 380
Looking at the command formatceeevueerivinieriiiiiieneeice e, 381

Using getopt in YOUT SCIIPtS.euurerrruuererrruerrerrieereeenienrerrneeeernnneeeeenennns 382

Advancing t0 GeTOPES. . ieuuueeiiiiueeeitiiie ettt e e s e e raa e eeeaas 384
Standardizing OPtiOmS. . eeeueueereeeueeretieeeeetiieereetaeereeranereerranseernnneseennnessernnnenees 387
Getting UsSer INPUL ..uuieiieieeeiiieee ettt ettt ettt e e eet e s eeraaeeseetnne e eeennneseennnnns 388
REAAING DASICS tuuereirrueieiiiiee ettt et e et s e et s e eene e e eenaa e eeeees 388
TiMINIG OUL.tetuiiiieeeiie it et e et e et e et e et e etueeeneeeeaneersneesnseennnsesnneesnssesnneees 389
Reading with 10 diSPlay cieeeeeeeuereruiriiuiriiiiriiiie et ereeeeeeeeneeeraeeeeneennnees 391
Reading from @ file ceeueuueee et 391
SUITITIAT Yttt eetuieernneernieeeneeeeuneennesenueeenesennnssennssesnssesnssessssennssennssennnssnsnsesnssennnsaen 392

XXii

Contents

Chapter 15: PresentingDatacc it i i e iaens 395
Understanding Input and OULPUL v.ueeveeeeeeeriiiier ettt eereae e e eeenaeee 395
Standard file deSCriPtOrS .uiuuuriiuiiiie it et ere e et e et e erieerreeraeeaaanes 395
STDIN ettt ettt ettt ettt e e e et e bbb e s e e e e aaaaes 396

STDOUT .ttt ettt ettt s e e e e e ba bbb s e s e eeesannes 397

STDERR ettt ettt ettt e et eeeeas 398
REAITECTING BITOTS tervunirrueiiiieeetieeeieeetieeeuneretneeetneeenseeneeresnseennssesnseennssennnees 398
Redirecting e1r07S ONLY....ceeeeerireuuiieeeereeeeiiiiiieee e e e eeeererenaeeeeeeeeeeeeens 398
Redirecting errors and dataeeeeeeeeeeeeiuiieneeiiiieneeeieeeeeeiieeeeeraeeeeeennes 399
Redirecting QUtPUL in SCYIPLS ovverrrueriiiiierieiiiiee et et eeeie e e eraae e eeeeaeeeeeenaanas 400
Temporary redireCtiONS cuvuuueiiereieereeiieeeeettieeeeerieeeerraeeeeeraeeeeeeaaeeeeerananaeees 400
Permanent redir@Ctions.....coeieiiieiiimiiiiiieiee et 401
Redirecting INPut in SCIIPLS vuuuereeruueeriiiieniiiiee et et eeete e e eraaeeeeeeaaeeseeenaenes 402
Creating Your OWn RedireCtion...ccuuueereeeueerriiiuieneeiiieeeeeiieeeettieeeereneeeeennieeseennaenne 403
Creating output file desCriPtors cuuueerieeueriiiiee it 403
Redirecting file deSCIIPLOTS .uuvieiuuueeriiiiereiiieer et eerae e e eeea e eees 404
Creating input file desCriptors cuuuueiiiiuueeiiiiiiee et eere e 405
Creating a read/write file deSCIiptor cuvueieiirieeieiiiie it 406
CloSing file AeSCIIPtOTS. iiiuuueieeriiieeiettieeeeetieeeeertieeeeetaneeeerreneeeeeraneeeasnnnnaeees 407
Listing Open File DeSCIIPLOIS ..uueeerreerererunniiaaeeeeeeeertrennieaeeeeeeeeereennaenaeeeeeeeresennnnnns 408
Suppressing Command OULPULeeuuueeieeiuierieiiiereetriiereeeriiereereieeeeeeneeeeeeaaeeeesennnas 410
USING TeIMPOTATY FIlS vuuiiiriiieiieiiiieeieiiiieeeeetie e eettie e eeteeeeseenaaeseeaaneseeeannnseeesnnnnnns 411
Creating a local temporary file.cuu.eeiiieueeiiiiiee et 411
Creating a temporary file in /TMP coeeeeeueereiiieeieeiiee et e e eeraeeeees 413
Creating a temporary direCtOrV .. e e eeeueereereueereeiieeeeeteiieeereeeereereaeereeenneaenes 413

L 0GGING MESSATES . uuurerruuereerrnnereeruueereeruneseerrnnseerraneseesnnssersnssseerssnsserssnsssesennnnes 414
Practical EXAmMPLE vuuiiuuniiiiieiiiie it ere e et e et e eet e e et e et e eaa e eaaeeaaeeaanaeaannaes 416
SUITIITIAT Y. ettt tetn ettt sttt et et e et e taa s et s ettt eba e e tan s eenastaneseanesanaesesnnsenanssennsssnnsnes 418
Chapter 16: Script Control.t e e et s e 419
Handling SIGIals....eeeeuuueeeeeeuueereeiueereeeniereertnieeeetreneeeeernnesserenseseerssnasserssnsssesnnnnes 419
Signaling the bash shell.......oiiiiiiiiiiiiiei e 419
Generating SIgNalS...uuueieeeuueereeiuuiereiitiiereeteeereeteieeeeetaaeeereenereeraneseernnenaenes 420
INterTUPLING @ PIOCESS tuuureitruueeriiruieerertuiereetueieereeranereeenneeseeranneeeennns 420

PaUSINIG @ PIOCESS tuuuuiretiuieerettuerretiiereetiieeeeteaeeeertaeseereneeseernaaeeeeenns 421

TIAPPING SIGNALS .. ttuuterneiiuierireeeteeereeetueeetueerueerunseesneeesnseesnseesnseesnnsesnnnsen 422
Trapping @ SCIIPt Xt cevuriiuueririereiiereiiieeiieeeeiieeeiieeereeeteeernererneeeneeeanseennnees 423
Modifying or remMOVING @ tTaD...ceeerrrruuuneeeeeeereireniiieeeeeeeeerennnieaeeeeeeeeeennnnnnnns 424
Running Scripts in Background Modeeieeuuuerieiiiinieiiiiee e et eeeeie e eeeenes 427
Running in the background.........coeieiuiiiiiiiiiiiiiee e 427
Running multiple background jobsS.......eeieiuuieeiiiiiiiiiiiiieeeeeriee e 429
Running Scripts without @ HAang-Up .ccceueeriiiiiiiiiiiiie et cecee e eeeeae 430
CONtIOUING the JOD weeiiiiieiiiiie e eere s e e rra s e e eaae e s enenaenes 432
VIEWING JODS tuuereiiiieeriiiiee ettt e eeiiee s eetae e e eetaaeeeeeeaeeeeraneseernnnsseeennnnsenenns 432
Restarting stopped JobS «oevuuuiiiiiiie e 434

Contents

BOITIG NICO teuueieitiiieeieiee ettt et e e et e s e et e e e taa s eetaaneseeanneseenennanns 436
Using the nice COMMAAiiiiiuuerieiriiireeeiieeieetiiereeeteieeeeeenneeeerenneeeersnneeeeeens 436
Using the renice COMMAandcuuuerieiruuieieiiuiirieeeiieeeeetuieeeeeriaeeeeeeneeeersnneeeeenes 437

Running Like ClOCKWOTK...couuuiiiiiiiriiiiiiee ettt eeeae e s eeeie e e eeeae e 438
Scheduling a job using the at commandcoeveveierriiiieriiiiiieee e, 438

Understanding the at command format.......cccoeeeereeenenririnerneiinceneennnnn. 438

Retrieving job oUtPUL..ccuuueiiiiiee e 439

Listing pending JoDS «.eeeuueereeiunirriiiiee ettt eeree e eeee e eeeaaes 440

REMOVING JODS 1eveiiiieitiiiiie ettt ettt e et e s eeree e s eeeaaeeeeeenns 441

Scheduling regular SCIIPES...cieereuereireueereeiieerettaeeeetteeeeeerieereeeneeeernaneeerens 441

Looking at the cron table ...ccuueiiiiiiiieiiiir e 441

Building the cron table ciuuuvieeeiiieiiiieeie e e 442

Viewing cron direCtories..uuuu e rrieririiiiieeeeeeeeeeeteiieee e e e eeeereneaeees 443

Looking at the anacron programceeeeeeeuueeeeeeeeeeeeeeenuneeeeeeeeeeeeennnns 443

Starting scripts with a new shellcceiii i, 445

B8 1111 F B PP PPPPPPPPRRN 446

Part Ill: Advanced Shell Scripting 447
Chapter 17: Creating Functions i it it et e e 449

Basic SCIipt FUNCLIONS .ciiuuiiie ittt ettt e et e eae e eaa e eaaeeaaeeaaaeeeaanaaes 449
Creating @ fUNCLION tvevveriiiiiieeeri ettt eeeeereree e e e e eeeeeneaaes 450
USING fUNCTIONS. tettttiieiiiiieeeeiiiee e et e eeiiee e eetiee e eeeaieeeeeraaeeeesaaeeeennnnnseesees 450

RetUINING @ VAl tuuiitiiiiiieiie ettt etieecte et e eeaeeeaeeetaseesaseesnseennseensnssennneens 453
The default eXit StAtUS...ceeeerieririiiiiiieeee ettt et eeeereena e 453
Using the return command........eeieeuuueeieiiuierieeiiienreerieeeeeeeieeeeeeneeeerenneeeeenes 454
Using function OULPUL ceevueeeieeiiiiee ittt eeeiee e eeeee e eeeeie e e eeaae e eeeens 455

Using Variables in FUNCEIONS...ieuuuueeiiiriereeiiiieeeetiieeeeeteieeeeeteieeeeeraneeeeennneeennnnneees 456
Passing parameters to a function....cceeeeveeiuueeriiiiiiriiiiiiee e 456
Handling variables in @ fUnCtionceeueerieriiierieiiiineeeiiee e e eeeeeeeeeees 459

Global Variables ...ccuuueueeieiiiiiiiiiiiieeeecccct e 459
Local variablesS. . ..ee i eeeiiiiiiiiiiiiiieiiccciiiti e 460

Array Variables and FUNCEIONS tevvuueriiiuiiriiiiiereiiiee et et eeteie e eeeeae e eernne e 461
Passing arrays to fUNCLIONS....ccvuuuuuuiierereeeiiiiiiiiree e eeeeerriee e e e eeeeeeaaaaees 461
Returning arrays from functionsccceeeeeeeueeeiiiiiiieiiiiiee e 463

Function RECUISIONciiiiiiiiiiiiiiiiiiiiiiiiii e 464

Creating @ LIDTary .uuuueeeeeeeeeiiiiiieee e e ettt eeeettteeee e e e e eeeterenaaee e e e eeeeeenennns 465

Using Functions on the Command Lineceeeieiuuieriiiiiienieeiiinrcetiieeeeeeieeeennneeens 467
Creating functions on the command liNe......ccevviiiiieriiiiiiiririiier s 468
Defining functions in the .bashrc file.....ccuueeiiiiiiriiiiiirie e, 468

Directly defining functions.....ceieeeueeerieiiiieniieiie e e e eeeaeen 469
Sourcing function fileS....ciieeeueeriiiiierieiiiee e 469

Following a Practical EXAmPLe ...ceeuuerreiiuiiereiiieeeetiieereeeieeeeteneeeetnnieeseennnseernnnnnens 470
Downloading and installing ...ceeeeeeeeeneereeiueereriniiereeeieereerieereeenneeeernneeeeeens 471
Building the Tihrary ... e et eeaae e e eeees 471

XXiv

Contents

The shtool library functions.....ceeeuuueeeeeeeeeeiiiiiieeeee et eeeeeereaeees 472
USING the TIDIary .cceueueeieiiiee ettt ee e e et e e et eae e e eeeaeeeeees 473
UL I AT Y ettt eetueetusetaeerneeeeeeeeuaeenneenuereneesenneserseseennssesnssesnssennssennssennssennnnennnnees 474
Chapter 18: Writing Scripts for Graphical Desktops. ot 477
Creating TeXt MEIUS.cuuutiiueeeueeeiieeetieeetieeeruererneeeenseenneresnseesnssennssesnsesensesssesnnnses 477
Create the MenU layoUl ... cceeiiieeiiiiiiieeeee ettt eeeeeeeeeaeees 478
Create the menu fUNCIONS ..oiiveeiiiiiiiieee et 479

Add the MenU L0GIC vuuurieirueriiiiiieeieiiiiee ettt eereee e eeraaeeeeeeaeeeeaenaeaenes 480
Putting it all t0gether. v it ee e 481
Using the select commMand......cuuueeieeiuirriiiiieiriiiie et eerie e eeere e e eeeaaeeeenes 482
DOING WINAOWS teerrueererruieeeiuiieeretiieereetnieeeeeraeeeeeereneeeersnesserennsseerssnessenssnsssesennnes 484
The dialog PACKAGE uuuuiiiiiiee ittt ettt ettt s eerte e e etaaeeeeenaaeeeeeenaesaeees 484

The MSGhOX WIAGEL .uuveeriieieiiiiee et eeeae e eer e e e eeeaas 486

The YeSn0 WIdget ...t iiiuuueereiiieereiiieereiiiee et e etrieeseeeneeeeeeaaeeeerennes 487

The inputbox Widget ..cceuueeriiiiiiiiiiiiieeeiie e e 487

The teXthoX Widget.icuueiiiiiiiiiiiiee e eea e 488

The MenU WIidget cuuierueeeiieiiieriiieeieretee et e et e erieeeeaeeraeerreeennseennnaes 489

The fselect Widget...ooeeirieiiriiiiieeee ettt e e e e eeeereneeees 490

The dialog OPTIOMS . cuuuueiiiiiieeieiiieeteetiee e eetee e eetre e eetraeeeetaaeeeeeeaaaeeeaeaanaaeees 491
Using the dialog command in @ SCIIPt ceeeeevuuiriiiiiiierieiiier e eeeeie e e 493
GEtTINgG GIAPRIC cevvuueeiiiiiieeieiiie ettt eeree e e eeeae e e eeeaeeeetaa e eeaanaeeaaenannns 496
The KDE enVIrONIMENT ...uueiiiiiiiiiiiiiiieeee ettt ettt e eeeereneenaae 496
kAialog WIidgets cevvuueiirreneereiiieeretie e et e et eeraee s e erae e e ereae e eeeaaaas 496

USING KAIAl0G reerruireiinieeeeiiiiee et e e etie s e eteeeeeeeraeeseennaeeeernneeeeennns 498

The GNOME environmentccceviurmuuiiiiiiieiiiiiiiiiien ettt eeeeneneenaaees 500
ZENIEY WIAGEES . eiiitneiiiiiie ettt e e e eeaaes 500

USINg Zenity iN SCIIPLS cevvuniirueiiiieeeiieieiieeeieeeiieeeriee et e eraeeareeeneeennnees 501

SUITLITLAY Y ettt eevueetueeerueetueeeenneeeseneennneesnseannesesnseeessnessnnsessneesnssessssesnssssnsssesnsssnnnses 504
Chapter 19: Introducing sed and gawk. it e 505
ManipUlating TeXE...eieeuuueeeeiieeeretiiee e ettt e ettt e e ettaeeeeernieesertnneseeranneseeennnnssesnnnnnns 505
Getting to know the sed editor.....ccveeeuerriiiiiiriiiiieiiee e 505
Defining an editor command in the command line......cccccccevieeiiiiiennnnn. 506

Using multiple editor commands in the command line..........cceuueeeeeeeee. 507

Reading editor commands from a file......ccceeveeiiueiiiiiiiniiiiieiieeiieee e, 508

Getting to know the gawk program.......ccoeeeeeeiiiiiiiiernrreeiiiiiiieeeeeeeeeeeeeeenaeens 509
Visiting the gawk command formatcoeeeevueeiiiiiieniiiiiinn e 510

Reading the program script from the command linecccceeveevvueneennne. 510

Using data field variables ...couueereeenierieiiiiee e 511

Using multiple commands in the program script....cccceeeeeeveerreeenncnrennnn. 512

Reading the program from a file....c.ueeveeiiiierriiiiiiniiiiierieeieer et 513

Running scripts before processing dataoeeeeveeereernerreiinieneerineereennn. 514

Running scripts after processing dataceeeeeeeeeereeineneeiiiienreiiienneenn. 514
Commanding at the sed EAitOor BasiCS...ccuuuereeruuerririuenieeiiieenetiieeeetiieeeeeeieeeeeenaenne 516
Introducing more substitution OPtiomS....cceueereriuuirriiiiiirieiiiee et 516

XXV

Contents

SUDSTITULING flags vuueeeereeeeiiiiiiiriee e ettt e ee e e e e eeeeeeeenaes 516

Replacing CharaCterS..cuuuueiiiiuueieeiiiiee ettt eeeree e eerae e e eeaeee e e eaaaans 518

USING AA0TESSES e eetruurieiruiereerruiereetruieeeeetuueeeeeruneseeeresseeeesssseeessnssseesesneseeenes 518
Addressing the NUMeETiC LN ...ciiiiuuieiiiiiiiirieeiiee e e eeeeaenn 519

Using text pattern filters...veeiiiiiieiiiiiiin e, 520

GIOUPING COTMANIAS +uuunrerrnunrerrruiereeruneeerruneeernnneeerenneseerennsserennsseeenns 520

DEleting limeS uuuunteeeuueereeiiieeeettieeeetttee e eetaeeeeetieeeetaaaeeeeenaneseernnseernnnnseerens 521
Inserting and appending teXt. ... oo iuueereeiuirreiiieee et e eeeieeeeeraieeeeeees 523
Changing LIS ceuuueeeeieueereiiiee ettt e etieee e eeeae e e eeteeeetaneeeeenaneseeenneseennnnnnas 525
Transforming Charactersoooeieeeeiiruiiieeeereeeiiiiiiiree e eeeeerraee e e e e eeeeereaeaaaes 527
Printing reviSited..uuueiiueiiiieeiie ittt eeteeraeeeteeeteeereeeaaeeannaees 527
PrInting lINeS cuuueeiueieieeiieeiieeeieeeie et e et e et e eeneetaeeeaneeennsennneennnns 528

Printing line NUMDEISceiiitiiiiiieeeieeeeeiiieee et eeeeeeeeaees 529

LiStING LineS cuunieiuieeiiieiieeeeitiee e eetiee e eeteee e e eeree e eeaeaeeeeeane e eannneeeanennns 529

Using files With Sed ...ciceuuueiiiiiiieiiciiiiee et e e e e e 530
WIItIng 10 @ flle cevuereiiiiee e e e e e 530

Reading data from a file ..coeeeeeeereiiiiienieiiiee e 531

ST ITIAT Y ettt ettt ettt et e et ettt s et e et s eea e etaaseensenaesenaesennesennnannnssnnnssennssennneen 533
Chapter 20: Regular EXpressions.o v vttt i e it i it it et i nenns 535
What Are Regular EXPIeSSIONS? cuvuueeiiiruerieireieeeeirieeieeruieseeetnnseeeesnnseeesnnnseesssnnneens 535
A definItion «ooeeeeeiiecee et 535
Types of 1egULAT X PIESSIONS ceiruuurrrrrruereeruueeeertnieeeeerrnaereereneeeeernneseeresneseeenes 536
Defining BRE PatterImiS cuuuueiiiuuuieeeiiiiieeeiiiieereetiieereetiieeeeeraneeeeeeneseennnnsseessnnnseennnnnns 537
PLAIN tOXE weueeiie ettt 537
SPECial ChaTACTOYS tivuuiiii it ere e e e e e eee e e e e eeaa e eaanaas 539
ANChor Characterseveeiiiiiiiiiiiiiici 540
Starting at the beginning......ccceveeiuuieiiiiiiiiriiiee e, 540

Looking for the ending.......ccceeeeieeiuiieiieiiiieieiiiee e eeeaee e eeeneeeeeaaaens 541

Combining anchors ...ceeeeeeueereiie i e eee e ere e eeaeeeaes 542

The dot Character ceveeeeuueiee et eeeeeren e 542
ChaTaCteY ClaSSES ceeeeeeeiirenuueeeeeeeeettiitieee e e e eeeetereaaeeeeeeeeeenennaaeeeeeeeeeeeennannns 543
Negating character ClasSes coviiuuureieiuuieieeiiiiereeiiee e eeetee e eeeeieeeeeeaeeeenenaeeeeens 546
USITIG TAIIGES tevuunrerrruireeruneeeeeuneeeerenseeeensnnsseerussnseerssnseeeessssssesssssseesssnsseenens 546
Special Character ClaSSES .uvuuueiiirruerietiiieeeeteiieeeeteiieeeereeeeeraneeeeraaeeeernnaeaeees 547

The @SteriSK ..ueiiieiiiiiiieee et 548
Extended Regular EXPIeSSIONS..iceeuueererruueeeerrieeretenieereteniereernnneeeernnneeseeenneseersnnnees 549
The qUeSLION MATK...uiiiieiiiieeiiie it e et e erte e e rae e et e eereeeteeesaesnanaaes 550

The PLUS S10Mteeuuiiiiiieieeiie et e et e et e e e etae e e eteneseeraaeseeenneeerannaseerees 551
USITIg DIACES . tuuuteiiiueeeiitiee e et ettt e e tteee s e et e eetaneeeeenaaeeserenneseernaneseernes 551

The Pipe SYMDOL...iiei it ee e e e eeeeeaae e eaaeeees 553
GIOUPING EXPIESSIOIIS tuutrrunreruneerunrennrerueerunrerueserssseesnssrssseesssessnsessnsessnseennnns 553
Regular EXpressions in ACtIOM......eeeeereruuuueeereeeeiiiiiiieeeeeeeeeeeeenaieeeeeeeeeerennnnnnennns 554
Counting AireCtorY fileS coveiuuueiiiiiiieeieiiiiee ettt eetre e eeer e e e e e e e eren e e 554
Validating a phone NUMDET ...couueeiiiiiiieiiiiiee e eeeee e ee e 556

XXVi

Contents

Parsing an e-mail addressS....cceeeeeerrmuuuuieeeeeeeeiiiiiiieee e e e e eeeeteneee e e e eeeeerenaanaeens 558
UL ITLAY Ve ettt eerueetuererueerueeeenneeenneenneeeensrenneserssseessssesnssessssessssennssessssennsseennssnnnnees 560
Chapter 21: Advanced Sed.cc ittt it s ettt e e 561
Looking at Multiline COMMANAS ..uuieuunrerureruerernieeriererteeeuieeeueeenneeenneesneeeensesnenees 561
Navigating the next command.....cc.cccuueriiuiriiiiriiiiriiieeeiie e ereeeraeeeaaeees 562
Using the single-line next commanduueeeerreeriieiueiieeneeereeeeeennnnnenn. 562
Combining lines of teXt.uu.eiiiiiuieriiiiiiee et eer e e e e 563
Navigating the multiline delete commandccuuuereeiruiereeiiiieneeiinieeeeeeieeeenns 566
Navigating the multiline print command.........ccuuerieiiiiirieiiienieiiiee e, 567
200 o 8 4 To I o T Lol TP UUP PR PPPP O PPPPPRRPNt 567
Negating @ COMMANA....uiierruereeiiierieiiieereetieeeertaeeeetreaeeeeeraneseernneseennnnnseresnnnees 569
Changing the FLOW ..veeueeee ettt eere e s eeeae e e eraaeeseenaneseennnnnns 572
123N 0 (ol 18 4T PO PP PO PP PR PPRTSRPPPPPIRN 572
TOSTITIG tevuuerettunereetieee et titee s e et e e ettt e e eetaneeeeaaaeeseeraaneseernnneeeesnnssserennsneenes 574
Replacing via @ Patterm ...eieieeuiieiiiieieiiie ettt e e eea e 575
Using the ampersandceeueeieuueieuieieiiereiieeeeieeeetie et eeteeetneeenneeeeneesnesesnnnees 576
Replacing individual WOoTdS ..oeeeueeueeeeeneeiieriiereieeeteeetiee et e eeneerneeeneeeannees 576
Placing sed Commands in SCIIPLS....cceerruruuuurerereeeeieiiniiieeeeeeeeeeeetreieeeeeeeeeeeerennnnens 577
USITLg WTAD DTS e eeeetrruneeerruuereeeunseertenseeasenneeeessnssseessnnneeessssnseesssssseesssnsseeees 578
Redirecting S€A OULPUL covevvvurieiiiee ettt e e e eereee e e v e e eeeaeeeeees 578
Creating SEA ULilities . uuuuerieeueeeeeiiiieeeetiieeeetiieeeettieeeeettaeeeereaeeeeraaeseennneeeerennnnees 579
Spacing with double liNes .u..eveeiueeriiiiie e 579
Spacing files that may have blanks......ccoveeuuiiriiiiiiriiiiiieiiiee e 580
Numbering lines in @ file ... ieeueerieiieee e eeeae e e 581
Printing last TINes ceeeeueereeriiereeiiee ettt et e e et e e eree s eeraaeseennaeeeees 582
DEleting liMeS. euuueeiieuereetieeretiiee ettt e e eteaee s eetaeeeertaneeeraaneeernnneeseeennesaenes 584
Deleting consecutive blank lines.......cceeeeeueiriiiiiiiriiieiiiiiieereciieee e, 584
Deleting leading blank liNes c...ceeueeeeireiiieiiiireeiie e e eeeieeeaaees 585
Deleting trailing blank linesS....cceueeeeereeeeiiieeeie e eeeeeerieeenneeennens 586
RemOVING HTML £a0S tuuutierruniireiinieereitnereeiiie e eetiieeeeteneeeeeeneseernneseeenaeeaenes 586
UL ITLAY Ve ettt eerueetnererueerueeeeuneeeeuneenneeennsrensesernsseesnsensnssessssessssennssesnssennsssnnnnsnnnnees 588
Chapter 22: Advanced gawkttt ittt ettt e 591
USING VaTiableS cevuuniirieiiiiiieiieieiieeeiee et e etieeeieeeteeetie e et eeeuesesseesranssesnssesnnsesnneenes 591
Built-in variables.......cuuuuiiiiiiiiiiiiiiiiinriiiiii s 592
The field and record separator variables.......ccceeeeieeriueeieeiiieneeeenieneennnnn. 592
Data Variables...ceueuuuuueeeeee ettt ettt e eeeeeeeees 595
User-defined variablesc.oeeeeeeieimiiieeee ettt e e 598
Assigning variables in SCIIPtS ...cieuuuierieiriierieiiiien et eeere e eeeeaes 598
Assigning variables on the command line.....ccceevveeviieiriiiiinneeiininneennn. 599

WOTKING With ATTAYS cevuueriiiiiiirieiiiiee et eetiee e etteeeeeertee e e eraaeseeraaseeeeannesenennnnns

Defining array variables

Tterating through array variables.....c..eeereeeeieriiiiiierieiiiee e 601

Deleting array variablesS..couu e eieeeerieeuereeiie et et e e e et e eeraaeeeees 602

XXVii

Contents

USING PatlerTiS ceeneieiiiiiieeiie ettt e s e et e e et e e e eeene s e eranaeees 602
REGUIAT EXPIESSIOMS 1uuuuieiruueeeertuiieeetttieeeeetuneeeertuneeeeerenseerrenseesssseseesesnseeeees 603

The matching 0Perator...ccuu i iiiiiie i e e e e e eeees 603
Mathematical EXPIESSIOIIS vuuueerrruurrrrreuerreeruieeeerennereeerenereereneeeeenseseeresnseeeees 604
Structured COMIMANAS ..evvueeerueeiiieeeieeeieeetieeeeteeeeteeeteeraeeeetneeeaneeesnnaersnaessneessnneees 605
B e S = =D 11 (<Y o PPN 605

The while StatemMent ..ccuuiieeeiie e eee e e e e e eaa e ee 607

The do-while Statementcceuueiiiieiiiiiee e e e e e e 608

The for StAatemMeNt . iuu i ree e et e et e eaeeeaeeeaanaees 609
Formatted Printing ..cceeueeeeiieieriiiieeieiiiee ettt et e e e s eeeae s s eraaa e 610
BUIlt-In FUNCEIONS et tttiiiiieeiie et et etie et et e eeae e et e et eeanneeanesasneasnseennnaees 613
Mathematical fUNCTIONS ..ccevvirriiiiiiiieee ettt e e e eeeerenaa s 613
SEIING FUNCEIONS. cettitriiiiee e e ettt eeeeetee e e e e eete et e e e e e eeeenennanaees 615

Time FUNCEIONS cuuiiieeiie ettt e e e e e et e e et e e st e esnneessneeesaesnnnaeen 616
User-Defined FUNCTIONS. ...iiiieeiieeeiie ettt e e e et e et e e e e e e e e e e eenns 617
Defining @ fUNCEION vuuuiieiiiie et eeraee e e e e e e eae e e eeees 617
USING YOUY FUNCEIONS covetruieieiiiiieeeiiiee et eeriee e eeteiee e e eeeaeeeeeeneeeeeaaneeeenns 618
Creating a function lbrary....ce e eueereeeiiee et eeree e 619
Working through a Practical EXamPLe ceu.eeeieeeeieriiiiiiereeiiieer et et e eeeeieeeernneees 620
UL ITIAT Y ettt ettt ettt et e et s et e et s eea e e tane s eanesenaesenaaseraeseannsesnnsstanssennsssnnnsens 621
Chapter 23: Working with Alternative Shells. i, 623
What Is the dash Shell? ... e e e e e e e e e e e s e eaaans 623
The dash Shell FEAatUTES ..uuiiuueiiie it eeie et e et eeee e e ree e e e e et e et e eaaeeeaanesaanaanes 624
The dash command line Parametersccuuieeueeeiieieiiie e e ere e e e eaan e 624

The dash environment variablescuueieiieiiiiiiiiiiiiee e e 625
Default environment variablescccveieueriieieieiiiee e eeaiees 626

Positional ParameterS. ... i iiueiiieeiiie ettt et ee e e e eaaaaas 627
User-defined environment variablescoeeevvuueeieiiiienieiiieeeeenieeeeennnen. 627

The dash built-In COMMANAS...ccuuuiiriiuueireiiieiieeieee et eeeae e eeees 628
SCripting In dash ceeeeeeeeiieiieeee e e e et 629
Creating dash SCIIPLS cuuueeiiiuuieriiiiiiee et et eeeree e e et e e eerae e e eeeae e eesenaeaes 629
Things that don't WOTK....cuueiiiiuiie it e ee e e e e e e e eeees 629
USING arithimetiC. .. e ee e 629

The test COMMANG....cuuuiiiiieiiii et eeee e eree et e e et e e eae e e e esaaaas 630

The function CommMAandoeuuiiiieeiiiieiiie e e e e e e eeaaaas 631

The ZSh SHEll.cuuiii ittt e e et e e e te e e b e et e eaaneeaanaenes 632
Parts of the zsh SHhell ... e ea e e e e 632
R 1 L] o 6 103 s - PR PPPR PPN 632
BUilt-in COMMATIAS tvuuirriiiiieeerieieiieeetieeetieeetieeetteeeraeeraeeeenesesnaseesnneesnseesnneees 633

Core built-in COMMANAS ..ccvuriirueriiieeeiiireiiieeiiee e eereeereeeeneeeraeeerneeenes 634

Add-In MOAULES.cevueieiiiieeeiiiieee ettt e eeeeaees 636

Viewing, adding, and removing modules.........cceeerermuueerrreeeeermenuneeannnes 637

SCripting With ZSH coeeeveeeiiiiee et e ee e e rr e 638
Mathematical OPerationS..uu.eiieeuueeeiiiiieieeiieeeeetieeeeeeree e eeraee e eeeaieeeeeaaaeeeeees 639

XXviii

Contents

Performing calculations......ceeeeueuuueeeerereeeiieiiiiieeeeeeeeetereieeeeeeeeeeeenens 639
Mathematical fUNCtIONS....ccevtrirummieeeeeeeeeeiiieee et ee e 640

Structured COMMATIAS .uuuuuueeeeeeeeeiiiiiieee e e e eeeetertteee e e e eeeeetennnaeeeeeeeeeeeennnnaenns 640
FUNCEIONIS 1ttt ettt e ettt e e e e e e e e eeneanaees 641
SUITLIT AT Yttt e et eeiu e et e et e eea e eeui e etaeetuesenaeserneeetaeaeanesennssennssennesesnnsannnsernnnennnnnes 642
Part IV: Creating Practical Scripts 643
Chapter 24 Writing Simple Script Utilities i i i 645
Performing ATCRIVES.....civiiiiiiiiieeeeeeeeetiiree e eeeee ittt e e e e e e eeetraaeseeeeeeeenennnnannns 645
ATchiving data fileS .uuueieiuueeieiiiiee et eerree e ee it e e e e e e e e e eaaeeeeeas 645
Obtaining the required funCtions........ccevuerieiiiierieiiiie e e 646

Creating a daily archive 10Cationceeeeeeeriieuuiieenereeeeiiiiieeee e e eeeeeeees 648

Creating a daily archive SCIIPt ..ccccevuerieiiiieriiiiien e e eeeeaes 649

Running the daily archive SCript....cecieeeuuieriiiiiiriiiiiir e e 651

Creating an hourly archive SCIiptceeveeeeuerieiiiierieiiier e 652

Running the hourly archive SCIipt.....ccceeueierieiiieriiiiiieiieiieee e eeeens 655

Managing USEr ACCOUIMLS...ciuuuuererruieereetniereernuieeeeereneeeeernneeserenneseerssnsseerssnsssesennnes 656
Obtaining the required fUNCtIONS ooveveueeriiiiiieiieiee e 657
Getting the correct account NAME ..uuuereereiiereiiiiieeieiiee e 657

Creating a function to get the correct account namecccceeeevvuennnnnnne. 658

Verifying the entered account Name.......coeeeeeeeriviiiiierrreeeeeeiiniiieeeeeeeens 660
Determining whether the account exXistscceeevviiueiiiiniiiiniiieieieeennnns 661

Removing any aCCOUNt PrOCESSES..uuituuriruueerrneeeueeerneeeneerenseernneennneennnne 662

Finding account files.....ccoeeereremmmiieeeeeeeeeiiiiiieee et eeeeeeaeas 664

Removing the aCCOUNT..iuuuriiiiiiierieiiee ettt eeeae e e ee e e e eeeaaes 665

Creating the SCIIPt civuueiiiiiie it e e e e e eaae e eeees 665
RUNNING the SCIIPt cevuueiiiiiiei e e e e e e e 671
MONItOring DiSK SPate.cuuueiiiieuereiiiieeeeiiieeeeeteieeeettteeeeeeeeeeeeenneseeranneeeenssaseesennnes 673
Obtaining the required fUNCtIONS covevvueeriiiiiie it 673
Creating the SCIIPt civvueriiiiie et eeera e e e e 676
RUNNING the SCIIPt ceveueeiiiiiieieeiiee e e e e 677
SUITLITLAT Y. ettt tett ettt sttt et et et e et e et s ettt eba e e tae s eennsanaesennesanaesennssenanssennsesnnsnes 678
Chapter 25: Producing Scripts for Database, Web, and E-Mail 681
Using @ MySQL Database c....ueeeeeeieiiiiiiiiiieeeeeeiiiiee ettt e 681
USING MYSQAL cetnieieiiiieieiiieeeeetieeeeeteieeeeettieeeeteaneseetsnesseernnnnseeesnnsssersnnsseeees 682
Connecting to the SEIVEIiciuueeiiiiiiiriiiiee et eeree e e eeeaas 682

The mysql COMMANAS cevvuureeriiieereiinerretruereerieeereerenereernneserrannaeeeennns 683

Creating a database.....ceuuueereiiueiriiiieieetiee et et e e 685

Creating @ USer ACCOUML ..vvuuriruriiueeeiretieeeteeeeeeerieeetneeeeneerneeennneennnns 687

Creating @ table v e e e e e 688

Inserting and deleting data.....ccoeeeeeeeeeeemmuiieeenneeeeiiiiieeee e eeeeeeeeeaeees 690

XXiX

Contents

QUETTING QALAueuerrrrrrrrrrirrieiierereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesasssssssssssssssssnnns 691

Using the database in JOUTr SCIIPtS..uuueriiiuuuerieeruiieieetiiireeeeiiieeeeeeieeeeeeneeeeenes 692
L0gging into the SEIVETIciiiiiuieiiiiiiiee ettt e e eee e e e eeeaas 692

Sending commands to the SEIVeTI.....cciiiiuuieriiiiiieiiiiiie et e, 693
Formatting data. ... eeeeeeeerieiiiie e eeea e e e e e e e 696

USING the WeD.ceeu e eereee s ee e e e e e e s e eeea e eeranaaaes 697
INSTALING LYTIX 1ureirriereiiiieeetiieeeeeitee s eetaieeeeetnieeeeeeeneseeraneseennnessernnnnsserees 698

The lynx command line...uuu.eeeeeeeereiiiee et eeiieeeeeeeee e eeraeeseernaeeernaneeeeeees 699

The Lynx configuration fileeeeeiieiiiiiiiieiiiieeeeeeee e 700
Capturing data from LYNX ceeeeeereiieirieiiieeeeiieeeciie et et eerea e 701
USING E-MaIl ctuniiiiiiiiiiiiiieiiies sttt ete e et e eateeetaeeetaseaanneasnseesnseesnnsssnsesenns 704
SUTTITIAT Yttt eetuieeruneeruneeeuneeeeneenueeenneeensseennssessseessssessseessssesnsesnnssesnnssnsnnsesnssennnenen 708
Chapter 26: Creating Fun Little Shell Scripts o i i i 709
SENAING @ MESSAGE ceeerruuererreueereitneerettueeeetieeeretenaeererrnnseermnnsserssnessersnnessersnsesaes 709
Understanding the required functionsceeeeeueereeineireiiiiinreiiieereciieereeenee 709
Determining who is on the SYStem c...ciiuueiiiuiiiiiiiiiieiiee e 710

AllOWIING TNESSAGES ceevurrernnrerurernrerurerneeeneeeeeernnseesnseesnssesssesenseesnesaes 710

Sending a message to another USer......cccuvuuuuiiieeerreiiiiiiiiieeeeeeeeeeeeeene, 711

Creating the SCIIPL civveueriiiiiierieiiieecetiee et eetrre e e e et e e eeeaeeeeaeaaeeeesananaaes 712
Checking if user is 10gged Om cevvuueiieiuuuiriiiiiiee et et eeeee e eeeee e eees 713

Checking if user acCepPtS MESSAGES . cuvuuurrerruurereriiaereerrienrerenaeeeeeeeneeeenes 714

Checking if message was includedeeeeeeeerieeiiiereeriienreeiieeeeereee e 715
Transmitting a SIMple MESSAGE vvevruurrerrunerreriiereeriiereereieeeeeeaeeeenenees 715
Transmitting a l0Ng MESSAGE tevuurrerruuereernierreriieeeetteeereereaeererenneserenns 716

Obtaining @ QUOTEuuiiiiiiiiiiiice ettt 720
Understanding the required functionseeeeeeueereiinerreiiiienreiiee e reeens 720
Learning about the wget Utility....ccuueeriiimiiriiiiiiiiiiiieireereeeee e, 720

Testing @ Web addresS.. e cuueiiueiiieeeiieiiie e et et e et e eeneerneeeneeananns 723

Creating the SCIIPt civuiiiuiriiiir et ere e et e eea e eraeeanaeeennnes 724
Checking the passed URL......ccuuuuuuieierrieeiiiiiiiieeeeeeeeeeeeeiee e e e eeeeeeeennns 724

Obtaining web page informationcccceeeeiiuuieriiriierieiiiien e 726

Parsing out the desired information.....ccceeevreieuerieiiiierieiiiienieeiieeeeeen, 727

GENETating AN EXCUSE ivvuueeieiiiiee it eeetiee e eetieeeeetaieeeeetaeseeraaeeeeannaseeesannsseenennns 731
Understanding the required functionscceeeeeeeeeereeinierieeiiieneeeiiiee e eeeenns 732
Learning about CUTL coveevuuerreeiiiiereiiiee ettt eetrie e eeraa e e eeeaeeeeneaees 732

Choosing to USe e-MaAIl.ccuuueeriirruierieiierreeiieee et eereeeeeernaeeeernaeeeenes 734

Creating the SCIIPt civeeueeriiiuerieiiee ettt e et e e eeeae e eenanaeees 735
SUTTLITIAT Y ettt ettt ettt e ettt s et e et s e ea e e taae s eaa s enae s enaeseraeseannsesnnsstnnsssnnessnnasens 737
Appendix A: Quick Guide to bash Commands.o it iinnnnnnnn. 739
Appendix B: Quick Guidetosedand gawk., 751
INOEX. ot e 763

XXX

Introduction

the Bible series, you can expect to find both hands-on tutorials and real-world information,

as well as reference and background information that provide a context for what you are
learning. This book is a fairly comprehensive resource on the Linux command line and shell com-
mands. By the time you have completed Linux Command Line and Shell Scripting Bible, you will be
well prepared to write your own shell scripts that can automate practically any task on your Linux
system.

W elcome to the third edition of Linux Command Line and Shell Scripting Bible. Like all books in

Who Should Read This Book

If you're a system administrator in a Linux environment, you'll benefit greatly by knowing how to
write shell scripts. The book doesn’t walk you through the process of setting up a Linux system,
but after you have it running, you'll want to start automating some of the routine administrative
tasks. That's where shell scripting comes in, and that’s where this book helps you out. This book
demonstrates how to automate any administrative task using shell scripts, from monitoring system
statistics and data files to generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting
Bible. Nowadays, it’s easy to get lost in the graphical world of pre-built widgets. Most desktop Linux
distributions try their best to hide the Linux system from the typical user. However, sometimes
you must know what's going on under the hood. This book shows you how to access the Linux com-
mand line prompt and what to do when you get there. Often, performing simple tasks, such as file
management, can be done more quickly from the command line than from a fancy graphical inter-
face. You can use a wealth of commands from the command line, and this book shows you how to
use them.

How This Book Is Organized

This book leads you through the basics of the Linux command line and into more complicated top-
ics, such as creating your own shell scripts. The book is divided into four parts, each one building
on the previous parts.

Part I assumes that you either have a Linux system running or are looking into getting a Linux
system. Chapter 1, “Starting with Linux Shells,” describes the parts of a total Linux system and

XXXi

Introduction

shows how the shell fits in. After describing the basics of the Linux system, this part con-
tinues with the following:

Using a terminal emulation package to access the shell (Chapter 2)

Introducing the basic shell commands (Chapter 3)

Using more advanced shell commands to peek at system information (Chapter 4)
Understanding what the shell is used for (Chapter 5)

Working with shell variables to manipulate data (Chapter 6)

Understanding the Linux filesystem and security (Chapter 7)

Working with Linux filesystems from the command line (Chapter 8)

Installing and updating software from the command line (Chapter 9)

Using the Linux editors to start writing shell scripts (Chapter 10)

In Part II, you begin writing shell scripts. As you go through the chapters, you'll do the
following:

Learn how to create and run shell scripts (Chapter 11)

Alter the program flow in a shell script (Chapter 12)

Iterate through code sections (Chapter 13)

Handle data from the user in your scripts (Chapter 14)

See different methods for storing and displaying data from your Script (Chapter 15)

Control how and when your shell scripts run on the system (Chapter 16)

Part III dives into more advanced areas of shell script programming, including these things:

Creating your own functions to use in all your scripts (Chapter 17)

m Utilizing the Linux graphical desktop for interacting with your script users

(Chapter 18)

Using advanced Linux commands to filter and parse data files (Chapter 19)
Using regular expressions to define data (Chapter 20)

Learning advanced methods of manipulating data in your scripts (Chapter 21)
Generating reports from raw data (Chapter 22)

Modifying your shell scripts to run in other Linux shells (Chapter 23)

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world
environments. In this part, you will learn these things:

XXXii

How to put all the scripting features together to write your own scripts (Chapter
24)

Introduction

B How to store and retrieve data using databases, access data on the Internet, and
send e-mail messages (Chapter 25)

B Write more advanced shell scripts to interact on your Linux system (Chapter 26)

Cautions, Tips, and Notes

You will find many different organizational and typographical features throughout this
book designed to help you get the most of the information.

CAUTION
This information is important and is set off in a separate paragraph with a special icon. Cautions provide information
about things to watch out for, whether simply inconvenient or potentially hazardous to your data or systems.

Tip

Tips provide helpful advice to make your work easier and more effective. Tips may suggest a solution to a problem or
a better way to accomplish a task.

NoTE
Notes provide additional, ancillary information that is helpful, but somewhat outside of the current presentation of
information.

Downloadable code

You can obtain the book’s code files at www.wiley.com/go/linuxcommandline.

Minimum Requirements

Linux Command Line and Shell Scripting Bible doesn't focus on any specific Linux distribu-
tion, so you can follow along in the book using any Linux system you have available.
The bulk of the book references the bash shell, which is the default shell for most Linux
systems.

XXXiii

http://www.wiley.com/go/linuxcommandline

Introduction

XXXiV

Where to Go from Here

After you've finished reading Linux Command Line and Shell Scripting Bible, you're well on
your way to incorporating Linux commands in your daily Linux work. In the ever-changing
world of Linux, it's always a good idea to stay in touch with new developments. Often,
Linux distributions change, adding new features and removing older ones. To keep your
knowledge of Linux fresh, always stay well-informed. Find a good Linux forum site and
monitor what's happening in the Linux world. Many popular Linux news sites, such as
Slashdot and Distrowatch, provide up-to-the-minute information about new advances in
Linux.

Part |

The Linux Command Line

IN THIS PART

Chapter 1
Starting with Linux Shells

Chapter 2
Getting to the Shell

Chapter 3
Basic bash Shell Commands

Chapter 4
More bash Shell Commands

Chapter 5
Understanding the Shell

Chapter 6
Using Linux Environment Variables

Chapter 7
Understanding Linux File Permissions

Chapter 8
Managing Filesystems

Chapter 9
Installing Software

Chapter 10
Working with Editors

CHAPTER

Starting with Linux Shells

IN THIS CHAPTER
What is Linux?
Parts of the Linux kernel
Exploring the Linux desktop

Visiting Linux distributions

understand what Linux is, where it came from, and how it works. This chapter walks you
through what Linux is and explains where the shell and command line fit in the overall
Linux picture.

B efore you can dive into working with the Linux command line and shells, you should first

What Is Linux?

If you've never worked with Linux before, you may be confused about why so many different
versions are available. I'm sure you have been confused by various terms such as distribution,
LiveCD, and GNU when looking at Linux packages. Wading through the world of Linux for the first
time can be a tricky experience. This chapter takes some of the mystery out of the Linux system
before you start working on commands and scripts.

First, four main parts make up a Linux system:

® The Linux kernel
® The GNU utilities
B A graphical desktop environment

B Application software

Each of these parts has a specific job in the Linux system. No part is very useful by itself.
Figure 1-1 shows a basic diagram of how the parts fit together to create the overall Linux system.

Part I: The Linux Command Line

FIGURE 1-1

The Linux system

Application Software

{ { { {

Window ¢ ¢
Management
Software GNU
System
Utilities
{ ¢ { {

Linux Kernel

{ { { {

Computer Hardware

This section describes these four main parts in detail and gives you an overview of how
they work together to create a complete Linux system.

Looking into the Linux Kernel

The core of the Linux system is the kernel. The kernel controls all the hardware and soft-
ware on the computer system, allocating hardware when necessary and executing software
when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus
Torvalds. Linus is the person responsible for creating the first Linux kernel software when
he was a student at the University of Helsinki. He intended it to be a copy of the Unix
system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solic-
ited suggestions for improving it. This simple process started a revolution in the world of
computer operating systems. Soon Linus was receiving suggestions from students as well as
professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos.
To simplify things, Linus acted as a central point for all improvement suggestions. It was
ultimately Linus’s decision whether or not to incorporate suggested code in the kernel.

Chapter 1: Starting with Linux Shells

This same concept is still in place with the Linux kernel code, except that instead of just
Linus controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:

System memory management
Software program management

Hardware management

]
]
]
B Filesystem management

The following sections explore each of these functions in more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management. Not
only does the kernel manage the physical memory available on the server, but it can also
create and manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the
contents of virtual memory locations back and forth from the swap space to the actual
physical memory. This allows the system to think there is more memory available than
what physically exists, as shown in Figure 1-2.

FIGURE 1-2

The Linux system memory map

Virtual Memory

Physical Memory

Swap Space

—_
v

The Kernel

Part I: The Linux Command Line

The memory locations are grouped into blocks called pages. The kernel locates each page

of memory either in the physical memory or the swap space. The kernel then maintains a
table of the memory pages that indicates which pages are in physical memory and which
pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory
pages that have not been accessed for a period of time to the swap space area (called
swapping out), even if there’s other memory available. When a program wants to access a
memory page that has been swapped out, the kernel must make room for it in physical
memory by swapping out a different memory page and swapping in the required page from
the swap space. Obviously, this process takes time and can slow down a running process.
The process of swapping out memory pages for running applications continues for as long
as the Linux system is running.

Software Program Management

The Linux operating system calls a running program a process. A process can run in the
foreground, displaying output on a display, or it can run in the background, behind the
scenes. The kernel controls how the Linux system manages all the processes running on the
system.

The kernel creates the first process, called the init process, to start all other processes on the
system. When the kernel starts, it loads the init process into virtual memory. As the kernel
starts each additional process, it gives it a unique area in virtual memory to store the data
and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on bootup.
On Linux systems, this table is usually located in the special file /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init.d
folder, which contains scripts for starting and stopping individual applications at boot
time. The scripts are started via entries under the /etc/rcX.d folders, where X is a

run level.

The Linux operating system uses an init system that utilizes run levels. A run level can be
used to direct the init process to run only certain types of processes, as defined in the /
etc/inittabs file or the /etc/rcX.d folders. There are five init run levels in the Linux
operating system.

At run level 1, only the basic system processes are started, along with one console terminal
process. This is called single-user mode. Single-user mode is most often used for emergency
filesystem maintenance when something is broken. Obviously, in this mode, only one per-
son (usually the administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level, most application software, such as net-
work support software, is started. Another popular run level in Linux is run level 5. This is

Chapter 1: Starting with Linux Shells

the run level where the system starts the graphical X Window software and allows you to
log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run
level. By changing the run level from 3 to 5, the system can change from a console-based
system to an advanced, graphical X Window system.

In Chapter 4, you'll see how to use the ps command to view the processes currently run-
ning on the Linux system.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the
Linux system must communicate with needs driver code inserted inside the kernel code.
The driver code allows the kernel to pass data back and forth to the device, acting as a
middle man between applications and the hardware. Two methods are used for inserting
device driver code in the Linux kernel:

B Drivers compiled in the kernel

® Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time
you added a new device to the system, you had to recompile the kernel code. This process
became even more inefficient as Linux kernels supported more hardware. Fortunately,
Linux developers devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code
into a running kernel without having to recompile the kernel. Also, a kernel module could
be removed from the kernel when the device was finished being used. This greatly simpli-
fied and expanded using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There are
three classifications of device files:

® Character

B Block
m Network

Character device files are for devices that can only handle data one character at a time.
Most types of modems and terminals are created as character files. Block files are for
devices that can handle data in large blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and receive data. This
includes network cards and a special loopback device that allows the Linux system to com-
municate with itself using common network programming protocols.

Part I: The Linux Command Line

Linux creates special files, called nodes, for each device on the system. All communication
with the device is performed through the device node. Each node has a unique number pair
that identifies it to the Linux kernel. The number pair includes a major and a minor device
number. Similar devices are grouped into the same major device number. The minor device
number is used to identify a specific device within the major device group.

Filesystem Management

Unlike some other operating systems, the Linux kernel can support different types of
filesystems to read and write data to and from hard drives. Besides having over a dozen
filesystems of its own, Linux can read and write to and from filesystems used by other
operating systems, such as Microsoft Windows. The kernel must be compiled with support
for all types of filesystems that the system will use. Table 1-1 lists the standard filesystems
that a Linux system can use to read and write data.

TABLE 11 Linux Filesystems

Filesystem Description

ext Linux Extended filesystem — the original Linux filesystem
ext2 Second extended filesystem, provided advanced features over ext
ext3 Third extended filesystem, supports journaling

extd Fourth extended filesystem, supports advanced journaling
hpfs OS/2 high-performance filesystem

ifs IBM'’s journaling filesystem

509660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp Netware filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem

proc Access to system information

ReiserFS Advanced Linux filesystem for better performance and disk recovery
smb Samba SMB filesystem for network access

sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of msdos

vfat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

Chapter 1: Starting with Linux Shells

Any hard drive that a Linux server accesses must be formatted using one of the filesystem
types listed in Table 1-1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VES). This
provides a standard interface for the kernel to communicate with any type of filesystem.
VES caches information in memory as each filesystem is mounted and used.

The GNU Utilities

Besides having a kernel to control hardware devices, a computer operating system needs
utilities to perform standard functions, such as controlling files and programs. While Linus
created the Linux system kernel, he had no system utilities to run on it. Fortunately for
him, at the same time he was working, a group of people were working together on the
Internet trying to develop a standard set of computer system utilities that mimicked the
popular Unix operating system.

The GNU organization (GNU stands for GNU’s Not Unix) developed a complete set of Unix
utilities, but had no kernel system to run them on. These utilities were developed under a
software philosophy called open source software (0SS).

The concept of 0SS allows programmers to develop software and then release it to the world
with no licensing fees attached. Anyone can use the software, modify it, or incorporate it
into his or her own system without having to pay a license fee. Uniting Linus’s Linux ker-
nel with the GNU operating system utilities created a complete, functional, free operating
system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will
see some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to
the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like
environment available. This focus resulted in the project porting many common Unix
system command line utilities. The core bundle of utilities supplied for Linux systems is
called the coreutils package.

The GNU coreutils package consists of three parts:

m Utilities for handling files
m Utilities for manipulating text
m Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are
invaluable to the Linux system administrator and programmer. This book covers each of the
utilities contained in the GNU coreutils package in detail.

Part I: The Linux Command Line

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start pro-
grams, manage files on the filesystem, and manage processes running on the Linux system.
The core of the shell is the command prompt. The command prompt is the interactive part
of the shell. It allows you to enter text commands, and then it interprets the commands
and executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as copy-
ing files, moving files, renaming files, displaying the programs currently running on the
system, and stopping programs running on the system. Besides the internal commands,
the shell also allows you to enter the name of a program at the command prompt. The shell
passes the program name off to the kernel to start it.

You can also group shell commands into files to execute as a program. Those files are called
shell scripts. Any command that you can execute from the command line can be placed in

a shell script and run as a group of commands. This provides great flexibility in creating
utilities for commonly run commands, or processes that require several commands grouped
together.

There are quite a few Linux shells available to use on a Linux system. Different shells have
different characteristics, some being more useful for creating scripts and some being more
useful for managing processes. The default shell used in all Linux distributions is the bash
shell. The bash shell was developed by the GNU project as a replacement for the standard
Unix shell, called the Bourne shell (after its creator). The bash shell name is a play on this
wording, referred to as the “Bourne again shell.”

In addition to the bash shell, we will cover several other popular shells in this book.
Table 1-2 lists the different shells we will examine.

TABLE 1-2 Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full compat-
ibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced pro-
gramming features like associative arrays and floating-point arithmetic

tcsh Ashell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history files, and themed prompts

10

Chapter 1: Starting with Linux Shells

Most Linux distributions include more than one shell, although usually they pick one of
them to be the default. If your Linux distribution includes multiple shells, feel free to
experiment with different shells and see which one fits your needs.

The Linux Desktop Environment

In the early days of Linux (the early 1990s) all that was available was a simple text inter-
face to the Linux operating system. This text interface allowed administrators to start pro-
grams, control program operations, and move files around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text
interface to work with. This spurred more development in the 0SS community, and the
Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more
relevant than in graphical desktops. There are a plethora of graphical desktops you can
choose from in Linux. The following sections describe a few of the more popular ones.

The X Window System

Two basic elements control your video environment: the video card in your PC and your
monitor. To display fancy graphics on your computer, the Linux software needs to know
how to talk to both of them. The X Window software is the core element in presenting
graphics.

The X Window software is a low-level program that works directly with the video card and
monitor in the PC, and it controls how Linux applications can present fancy windows and
graphics on your computer.

Linux isn't the only operating system that uses X Window; versions are written for many
different operating systems. In the Linux world, several different software packages can
implement it.

The most popular package is X.org. It provides an open source software implementation of
the X Window system and supports many of the newer video cards used today.

Two other X Window packages are gaining in popularity. The Fedora Linux distribution is
experimenting with the Wayland software, and the Ubuntu Linux distribution has devel-
oped the Mir display server for use with its desktop environment.

When you first install a Linux distribution, it attempts to detect your video card and moni-
tor, and then it creates an X Window configuration file that contains the required informa-
tion. During installation, you may notice a time when the installation program scans your
monitor for supported video modes. Sometimes, this causes your monitor to go blank for a

11

Part I: The Linux Command Line

few seconds. Because there are lots of different types of video cards and monitors, this pro-
cess can take a while to complete.

The core X Window software produces a graphical display environment, but nothing else.
Although this is fine for running individual applications, it is not useful for day-to-day
computer use. No desktop environment allows users to manipulate files or launch programs.
To do that, you need a desktop environment on top of the X Window system software.

The KDE Desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to
produce a graphical desktop similar to the Microsoft Windows environment. The KDE desk-
top incorporates all the features you are probably familiar with if you are a Windows user.
Figure 1-3 shows a sample KDE 4 desktop running in the openSUSE Linux distribution.

FIGURE 1-3

The KDE 4 desktop on an openSUSE Linux system

g.l

Install

2

1 p g & - omssem

12

Chapter 1: Starting with Linux Shells

The KDE desktop allows you to place both application and file icons in a special area on the
desktop. If you click an application icon, the Linux system starts the application. If you
click a file icon, the KDE desktop attempts to determine what application to start to
handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

B The K menu: Much like the Windows Start menu, the K menu contains links to
start installed applications.

B Program shortcuts: These are quick links to start applications directly from the
Panel.

m The taskbar: The taskbar shows icons for applications currently running on the
desktop.

®m Applets: These are small applications that have an icon in the Panel that often can
change depending on information from the application.

The Panel features are similar to what you would find in Windows. In addition to the desk-
top features, the KDE project has produced a wide assortment of applications that run in
the KDE environment.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop
environment. First released in 1999, GNOME has become the default desktop environment
for many Linux distributions. (However, the most popular is Red Hat Linux.)

Although GNOME chose to depart from the standard Microsoft Windows look-and-feel, it
incorporates many features that most Windows users are comfortable with:

B A desktop area for icons

B A panel area for showing running applications

® Drag-and-drop capabilities
Figure 1-4 shows the standard GNOME desktop used in the Cent0S Linux distribution.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical
applications that integrate with the GNOME desktop.

The Unity Desktop

If you're using the Ubuntu Linux distribution, you'll notice that it’s somewhat different
from both the KDE and GNOME desktop environments. Canonical, the company responsible

13

Part I: The Linux Command Line

14

for developing Ubuntu, has decided to embark on its own Linux desktop environment,
called Unity.

FIGURE 1-4

A GNOME desktop on a CentOS Linux system

w> Applications Places System &) & [F [E:i [l Thumay22,22:01 LiveCD default user

Cent0S-6.5 5
LiveDVD

Install to Hard Drive

d

=g

Keyboari
i
I |

Trash

The Unity desktop gets its name from the goal of the project — to provide a single desktop
experience for workstations, tablet devices, and mobile devices. The Unity desktop works
the same whether you're running Ubuntu on a workstation or a mobile phone! Figure 1-5
shows an example of the Unity desktop in Ubuntu 14.04 LTS.

Other Desktops

The downside to a graphical desktop environment is that it requires a fair amount of
system resources to operate properly. In the early days of Linux, a hallmark and selling

Chapter 1: Starting with Linux Shells

feature of Linux was its ability to operate on older, less powerful PCs that the newer
Microsoft desktop products couldn’t run on. However, with the popularity of KDE and
GNOME desktops, this has changed, because it takes just as much memory to run a KDE or
GNOME desktop as the latest Microsoft desktop environment.

FIGURE 1-5

The Unity desktop on the Ubuntu Linux distribution

Ubuntu Desktop ty B = 4) c26rPM I

If you have an older PC, don't be discouraged. The Linux developers have banded together
to take Linux back to its roots. They've created several low-memory-oriented graphical
desktop applications that provide basic features that run perfectly fine on older PCs.

Although these graphical desktops don't have a plethora of applications designed around
them, they still run many basic graphical applications that support features such as word
processing, spreadsheets, databases, drawing, and, of course, multimedia support.

Table 1-3 shows some of the smaller Linux graphical desktop environments that can be used
on lower-powered PCs and laptops.

15

Part I: The Linux Command Line

TABLE 1-3 Other Linux Graphical Desktops

Desktop Description

Fluxbox A bare-bones desktop that doesn’t include a Panel, only a pop-up menu to
launch applications

Xfce A desktop that's similar to the KDE desktop, but with fewer graphics for low-
memory environments

JWM Joe's Window Manager, a very lightweight desktop ideal for low-memory and
low-disk space environments

Fvwm Supports some advanced desktop features such as virtual desktops and Panels,
but runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but
they provide basic graphical functionality just fine. Figure 1-6 shows what the JWM desk-
top used in the Puppy Linux antiX distribution looks like.

FIGURE 1-6

The JWM desktop as seen in the Puppy Linux distribution

- Wel ! Move pointer
ﬁ here for getting-started

information

mount install Setup

< B

eIt drav;

a8

email chat
® ~ (Thumbs)

& w2 e Q ., & {1 11 items (29 hidden)

2 e e e e e

Choices File-Sharing ftpd icewm mail my- my-

applications documents

puppy- spot Startup Web-Server
reference

{ Desktop
ststem

] tiliey
Eﬁlesystem
=5 Graphic

|| Document

|- Business

\22|Personal

ENetwnrk

& Interet
ﬁimulﬁmedia
lﬁ Fun

@Help

@ Shutdown

o) == 03:12 AM

16

Chapter 1: Starting with Linux Shells

If you are using an older PC, try a Linux distribution that uses one of these desktops and
see what happens. You may be pleasantly surprised.

Linux Distributions

Now that you have seen the four main components required for a complete Linux system,
you may be wondering how you are going to get them all put together to make a Linux sys-
tem. Fortunately, other people have already done that for you.

A complete Linux system package is called a distribution. Many different Linux distributions
are available to meet just about any computing requirement you could have. Most distribu-
tions are customized for a specific user group, such as business users, multimedia enthu-
siasts, software developers, or average home users. Each customized distribution includes
the software packages required to support specialized functions, such as audio- and video-
editing software for multimedia enthusiasts, or compilers and integrated development envi-
ronments (IDEs) for software developers.

The different Linux distributions are often divided into three categories:

® Full core Linux distributions
B Specialized distributions
m LiveCD test distributions

The following sections describe these different types of Linux distributions and show some
examples of Linux distributions in each category.

Core Linux Distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments,
and just about every Linux application that is available, precompiled for the kernel. It
provides one-stop shopping for a complete Linux installation. Table 1-4 shows some of the
more popular core Linux distributions.

TABLE 1-4 Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks
Red Hat A commercial business distribution used mainly for Internet servers
Fedora A spin-off from Red Hat but designed for home use

Continues

17

Part I: The Linux Command Line

18

TABLE 1-4 (continued)

Distribution Description

Gentoo A distribution designed for advanced Linux users, containing only Linux source
code

openSUSE Different distributions for business and home use

Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had to
download groups of files and then copy them onto disks. It would usually take 20 or more
disks to make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux
distributions are released as either a CD set or a single DVD. This makes installing Linux
much easier.

However, beginners still often run into problems when they install one of the core Linux
distributions. To cover just about any situation in which someone might want to use Linux,
a single distribution must include lots of application software. They include everything
from high-end Internet database servers to common games. Because of the quantity of
applications available for Linux, a complete distribution often takes four or more CDs.

Although having lots of options available in a distribution is great for Linux geeks, it can
become a nightmare for beginning Linux users. Most distributions ask a series of questions
during the installation process to determine which applications to load by default, what
hardware is connected to the PC, and how to configure the hardware. Beginners often find
these questions confusing. As a result, they often either load way too many programs on
their computer or don't load enough and later discover that their computer won't do what
they want it to.

Fortunately for beginners, there’s a much simpler way to install Linux.

Specialized Linux Distributions

A new subgroup of Linux distributions has started to appear. These are typically based on
one of the main distributions but contain only a subset of applications that would make
sense for a specific area of use.

In addition to providing specialized software (such as only office products for business
users), customized Linux distributions also attempt to help beginning Linux users by

Chapter 1: Starting with Linux Shells

autodetecting and autoconfiguring common hardware devices. This makes installing Linux
a much more enjoyable process.

Table 1-5 shows some of the specialized Linux distributions available and what they
specialize in.

TABLE 1-5 Specialized Linux Distributions

Distribution Description

CentOS A free distribution built from the Red Hat Enterprise Linux source code
Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and office use

Mint A free distribution for home entertainment use

dyne:bolic A free distribution designed for audio and MIDI applications

Puppy Linux A free small distribution that runs well on older PCs

That’s just a small sampling of specialized Linux distributions. There are literally hundreds
of specialized Linux distributions, and more are popping up all the time on the Internet. No
matter what your specialty, you'll probably find a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution.
They use the same installation files as Debian but package only a small fraction of a full-
blown Debian system.

The Linux LiveCD

A relatively new phenomenon in the Linux world is the bootable Linux CD distribution.

This lets you see what a Linux system is like without actually installing it. Most modern
PCs can boot from a CD instead of the standard hard drive. To take advantage of this, some
Linux distributions create a bootable CD that contains a sample Linux system (called a Linux
Live(D). Because of the limitations of the single CD size, the sample can’t contain a complete
Linux system, but you'd be surprised at all the software they can cram in there. The result
is that you can boot your PC from the CD and run a Linux distribution without having to
install anything on your hard drive!

19

Part I: The Linux Command Line

20

This is an excellent way to test various Linux distributions without having to mess with
your PC. Just pop in a CD and boot! All the Linux software will run directly from the CD.
You can download lots of Linux LiveCDs from the Internet and burn onto a CD to test drive.

Table 1-6 shows some popular Linux LiveCDs that are available.

TABLE 1-6 Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the first Linux LiveCD developed
PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages
Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have
a Linux LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to
install the Linux distribution directly from the LiveCD. This enables you to boot with the
CD, test drive the Linux distribution, and then if you like it, install it on your hard drive.
This feature is extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Because you access every-
thing from the CD, applications run more slowly, especially if you're using older, slower
computers and CD drives. Also, because you can't write to the CD, any changes you make to
the Linux system will be gone the next time you reboot.

But advances are being made in the Linux LiveCD world that will help to solve some of
these problems. These advances include the ability to:

® Copy Linux system files from the CD to memory
m Copy system files to a file on the hard drive

B Store system settings on a USB memory stick

B Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux
system files. The LiveCD boot scripts copy them directly into memory when the CD boots.
This allows you to remove the CD from the computer as soon as Linux boots. Not only does
this make your applications run much faster (because applications run faster from mem-
ory), but it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs
from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the
tray after booting. It involves copying the core Linux files onto the Windows hard drive as

Chapter 1: Starting with Linux Shells

a single file. After the CD boots, it looks for that file and reads the system files from it. The
dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must
copy the system file to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a com-
mon USB memory stick (also called a flash drive or a thumb drive). Just about every Linux
LiveCD can recognize a plugged-in USB memory stick (even if the stick is formatted for
Windows) and read and write files to and from it. This allows you to boot a Linux LiveCD,
use the Linux applications to create files, store those files on your memory stick, and then
access them from your Windows applications later (or from a different computer). How
cool is that?

Summary

This chapter discussed the Linux system and the basics of how it works. The Linux kernel
is the core of the system, controlling how memory, programs, and hardware all interact
with one another. The GNU utilities are also an important piece in the Linux system. The
Linux shell, which is the main focus of this book, is part of the GNU core utilities. The
chapter also discussed the final piece of a Linux system, the Linux desktop environment.
Things have changed over the years, and Linux now supports several graphical desktop
environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles
the various parts of a Linux system into a simple package that you can easily install on
your PC. The Linux distribution world consists of full-blown Linux distributions that
include just about every application imaginable, as well as specialized Linux distributions
that include applications focused only on a special function. The Linux LiveCD craze has
created another group of Linux distributions that allow you to easily test-drive Linux with-
out even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell script-
ing experience. You'll see what you need to do to get to the Linux shell utility from your
fancy graphical desktop environment. These days, that’s not always an easy thing.

21

CHAPTER

Getting to the Shell

IN THIS CHAPTER

Accessing the command line

Reaching CLI via a Linux console terminal
Reaching CLI via a graphical terminal emulator
Using the GNOME terminal emulator

Using the Konsole terminal emulator

Using the xterm terminal emulator

grammers, and system users all sat at something called a Linux console terminal entering shell

commands and viewing text output. These days, with graphical desktop environments, it’s get-
ting harder to find a shell prompt on the system in order to enter shell commands. This chapter
discusses what is required to reach a command line environment. It walks you through the terminal
emulation packages that you may run into in the various Linux distributions.

I n the old days of Linux, all you had to work with was the shell. System administrators, pro-

Reaching the Command Line

Before the days of graphical desktops, the only way to interact with a Unix system was through a
text command line interface (CLI) provided by the shell. The CLI allowed text input only and could
display only text and rudimentary graphics output.

Because of these restrictions, output devices were not very fancy. Often, you needed only a simple
dumb terminal to interact with the Unix system. A dumb terminal was usually nothing more than
a monitor and keyboard connected to the Unix system via a communication cable (usually a multi-
wire serial cable). This simple combination provided an easy way to enter text data into the Unix
system and view text results.

As you well know, things are significantly different in today’s Linux environment. Just about every
Linux distribution uses some type of graphical desktop environment. However, to enter shell com-
mands, you still need a text display to access the shell’s CLI. The problem now is getting to one.
Sometimes finding a way to get a CLI in a Linux distribution is not an easy task.

23

Part I: The Linux Command Line

24

Console Terminals

One way to get to a CLI is to take the Linux system out of graphical desktop mode and
place it in text mode. This provides nothing more than a simple shell CLI on the monitor,
just like the days before graphical desktops. This mode is called the Linux console because
it emulates the old days of a hard-wired console terminal and is a direct interface to the
Linux system.

When the Linux system starts, it automatically creates several virtual consoles. A virtual
console is a terminal session that runs in Linux system memory. Instead of having several
dumb terminals connected to the computer, most Linux distributions start five or six (or
sometimes even more) virtual consoles that you can access from a single computer keyboard
and monitor.

Graphical Terminals

The alternative to using a virtual console terminal is to use a terminal emulation

package from within the Linux graphical desktop environment. A terminal emulation
package simulates working on a console terminal, but within a desktop graphical window.
Figure 2-1 shows an example of a terminal emulator running in a Linux graphical desktop
environment.

FIGURE 2-1

A simple terminal emulator running on a Linux desktop

‘€ Applications Places system @ (5 ¢ .3 El(d}«) =' Mon May 12, 3:06 PM cChristine

Computer

Christine@server0L:~ - o x

=]
|Eile Edit View Search Terminal Help

[christine@erverol ~]1§ []
Christine's Hon

Trash

Chapter 2: Getting to the Shell

Graphical terminal emulation is responsible only for a portion of the Linux graphical experi-
ence. As a whole, the experience is accomplished via several components, including graphi-
cal terminal emulation software (called a client). Table 2-1 shows the different components
in the Linux graphical desktop environment.

TABLE 211 Graphical Interface Elements

Name Examples Description

Client Graphical terminal emulator, desktop An application that requests
environment, network browser graphical services

Display Server ~ Mir, Wayland Compositor, Xserver Element that manages the

display (screen) and the input
devices (keyboard, mouse,
touch screen)

Window Compiz, Metacity, Kwin Element that adds borders to
Manager windows and provides features
to move and manage windows
Widgets Athena(Xaw), X Intrinsics Element that adds menus and
Library appearance items for desktop

environment clients

For dealing with the command line from the desktop, the focus is on the graphical terminal
emulator. You can think of graphical terminal emulators as CLI terminals “in the GUI” and
virtual console terminals as CLI terminals “outside the GUIL.” Understanding the various
terminals and their features can enhance your command line experience.

Accessing CLI via a Linux Console Terminal

In the early days of Linux, when you booted up your system you would see a login prompt
on your monitor, and that’s all. As mentioned earlier, this is called the Linux console. It
was the only place you could enter commands for the system.

Even though several virtual consoles are created at boot time, many Linux distributions
switch to a graphical environment after the boot sequence completes. This provides the
user with a graphical login and desktop experience. Therefore, in this case, accessing a vir-
tual console is done manually.

In most Linux distributions, you can access one of the Linux virtual consoles using a sim-
ple keystroke combination. Usually, you must hold down the Ctrl+Alt key combination and
then press a function key (F1 through F7) for the virtual console you want to use. Function
key F2 produces virtual console 2, key F3 produces virtual console 3, key F4 produces
virtual console 4, and so on.

25

Part I: The Linux Command Line

NoTE

Linux distributions typically use the Ctrl+Alt key combination with either F1 or F7 to reach the graphical interface.
Ubuntu uses F7, while RHEL uses F1. It is best to test and see where your distribution puts the graphical interface.

NoTE

Text mode virtual consoles use the whole screen and start with the text login screen dis-
played. An example of a text login screen from a virtual console is shown in Figure 2-2.

FIGURE 2-2

Linux virtual console login screen

Ubuntu 14.04 LTS serverdl ttyz2

server0l login: christine

Passward:

Last login: Mon May 12 15:45:49 EDT 2014 on tty2

Welcome to Ubuntu 14.04 LTS (GHUALinux 3.13.0-24-generic xB6_f/d)
Documentation: https://shelp.ubuntu.coms

christine@serverl: ™%

Notice in Figure 2-2 the words tty2 at the end of the first text line. The 2 in tty2 indi-
cates that it is virtual console 2 and was reached by pressing the Ctrl+Alt+F2 key sequence.
tty stands for teletypewriter. Teletypewriter is an old term, indicating a machine used for
sending messages.

Not all Linux distributions show the virtual console’s tty number at the login screen.

26

You log into a console terminal by entering your user ID after the login: prompt and
typing your password after the Password: prompt. If you have never logged in this way
before, be aware that typing your password is a different experience than in a graphical
environment. In a graphical environment, you may see dots or asterisks indicating the
password characters as you type. However, at the virtual console, nothing is displayed when
you type your password.

After logging into a virtual console, you are taken to the Linux CLI. Keep in mind that,
within the Linux virtual console, you do not have the ability to run any graphical
programs.

Chapter 2: Getting to the Shell

After you have logged in to a virtual console, you can keep it active and switch to another
virtual console without losing your active session. You can switch between all the virtual
consoles, with multiple active sessions running. This feature provides a great deal of flex-
ibility while you work at the CLI.

Additional flexibility deals with the virtual console’s appearance. Even though it is a text
mode console terminal, you can modify the text and background colors.

For example, it may be easier on your eyes to set the background of the terminal to white
and the text to black. After you have logged in, you can accomplish this modification in a
couple of ways. One way is to type in the command setterm -inversescreen on and press
the Enter key, as shown in Figure 2-3. Notice in the figure that the inversescreen fea-
ture is being turned on using the option on. You can also turn it off using the of £ option.

FIGURE 2-3

Linux virtual console with inversescreen being turned on

Another way is to type two commands, one after the other. Type setterm -background
white and press Enter, and then type setterm -foreground black and press Enter. Be care-
ful because, when you change your terminal background first, it may be hard to see the
commands you are typing.

With the commands in the preceding paragraph, you are not turning features on and off, as
with inversescreen. Instead, you have a choice of eight colors. The choices are black,
red, green, yellow, blue, magenta, cyan, and white (which looks gray on some

27

Part I: The Linux Command Line

28

distributions). You can get rather creative with your plain text mode console terminals.
Table 2-2 shows some options you can use with the setterm command to help improve
your console terminal’s readability or appearance.

TABLE 2-2 setterm Options for Foreground and Background
Appearance

Option Parameter Choices Description
-background black, red, green, yellow, Changes the terminal’s back-
blue, magenta, cyan, or white ground color to the one
specified
-foreground black, red, green, yellow, Changestheterminal'sfore-
blue, magenta, cyan, or white ground color, specifically text,

to the one specified

-inversescreen onoroff Switches the background color
to the foreground color and the
foreground color to the back-
ground color

-reset None Changes the terminal appear-
ance back to its default setting
and clears the screen

-store None Sets the current terminal’s fore-
ground and background colors
as the values to be used for
-reset

Virtual console terminals are great for accessing the CLI outside the GUI. However, some-
times, you need to access the CLI and run graphical programs. Using a terminal emulation
package solves this problem and is a popular way to access the shell CLI from within the
GUI. The following sections describe common software packages that provide graphical ter-
minal emulation.

Accessing CLI via Graphical Terminal Emulation

The graphical desktop environment offers a great deal more variety for CLI access than the
virtual console terminal does. Many graphical terminal emulator packages are available
for the graphical environment. Each package provides its own unique set of features and
options. Some popular graphical terminal emulator packages are shown in Table 2-3 along
with their websites.

Chapter 2: Getting to the Shell

TABLE 2.3 Popular Graphical Terminal Emulator Packages

Name Website

Eterm http://www.eterm.org

Final Term http://finalterm.org

GNOME Terminal https://help.gnome.org/users/gnome-terminal /stable

Guake https://github.com/Guake/guake

Konsole Terminal http://konsole.kde.org

LillyTerm http://lilyterm.luna.com.tw/index.html

LXTerminal http://wiki.lxde.org/en/LXTerminal

mrxvt https://code.google.com/p/mrxvt

ROXTerm http://roxterm.sourceforge.net

rxvt http://sourceforge.net/projects/rxvt

rxvt-unicode http://software.schmorp.de/pkg/rxvt-unicode

Sakura https://launchpad.net/sakura

st http://st.suckless.org

Terminator https://launchpad.net/terminator

Terminology http://www.enlightenment.org/p.php?p=about/terminology

tilda http://tilda.sourceforge.net/tildaabout.php

UXterm http://manpages.ubuntu.com/manpages/gutsy/manl/
uxterm.l.html

Wterm http://sourceforge.net/projects/wterm

xterm http://invisible-island.net/xterm

Xfced Terminal http://docs.xfce.org/apps/terminal /start

Yakuake http://extragear.kde.org/apps/yakuake

Although many graphical terminal emulator packages are available, the focus in this chap-
ter is on three commonly used ones. Often installed in Linux distributions by default, they
are GNOME Terminal, Konsole Terminal, and xterm.

Using the GNOME Terminal Emulator

GNOME Terminal is the GNOME desktop environment’s default terminal emulator. Many
distributions, such as RHEL, Fedora, and Cent0S, use the GNOME desktop environment by

29

http://www.eterm.org
http://finalterm.org
https://help.gnome.org/users/gnome-terminal/stable
https://github.com/Guake/guake
http://konsole.kde.org
http://lilyterm.luna.com.tw/index.html
http://wiki.lxde.org/en/LXTerminal
https://code.google.com/p/mrxvt
http://roxterm.sourceforge.net
http://sourceforge.net/projects/rxvt
http://software.schmorp.de/pkg/rxvt-unicode
https://launchpad.net/sakura
http://st.suckless.org
https://launchpad.net/terminator
http://www.enlightenment.org/p.php?p=about/terminology
http://tilda.sourceforge.net/tildaabout.php
http://manpages.ubuntu.com/manpages/gutsy/man1
http://sourceforge.net/projects/wterm
http://invisible-island.net/xterm
http://docs.xfce.org/apps/terminal/start
http://extragear.kde.org/apps/yakuake

Part I: The Linux Command Line

default, and therefore use GNOME Terminal by default. However, other desktop environ-
ments, such as Ubuntu Unity, also use the GNOME terminal as their default terminal emula-
tor package. It is fairly easy to use and a good terminal emulator for individuals who are
new to Linux. This chapter section walks you through the various parts of accessing, con-
figuring and using the GNOME terminal emulator.

Accessing the GNOME Terminal

Each graphical desktop environment has different methods for accessing the GNOME termi-
nal emulator. This section looks at accessing the GNOME Terminal in the GNOME, Unity, and
KDE desktop environments.

NoTE
If you are using a different desktop environment than the ones listed in Table 2.3, you must look through the vari-

ous menus offered in your environment to find the GNOME terminal emulator. In the menus, it is typically named
Terminal.

In the GNOME desktop environment, accessing the GNOME Terminal is fairly straightfor-
ward. From the menu system in the upper-left corner of the window, click Applications,
then select System Tools from the drop-down menu, and finally click Terminal. Written
in shorthand, the directions look like the following: Applications = System Tools ™
Terminal.

Refer to Figure 2-1 to see a picture of the GNOME Terminal. It was accessed in a GNOME
desktop environment on a CentOS distribution.

In the Unity desktop environment, accessing the GNOME terminal takes a little more effort.
The simplest access method is Dash &> Search and type Terminal. The GNOME terminal
shows up in the Dash home area as an application named Terminal. Click that icon to
open the GNOME terminal emulator.

Tip

In some Linux distribution desktop environments, such as Ubuntu’s Unity, you can quickly access the GNOME terminal using the
shortcut key combination Ctrl+Alt+T.

In the KDE desktop environment, the Konsole terminal emulator is the default emulator.
Therefore, you must dig down through the menus to access GNOME Terminal. Start with the
icon labeled Kickoff Application Launcher in the lower-left corner of the screen and
then click Applications @ Utilities @ Terminal.

30

Chapter 2: Getting to the Shell

In most desktop environments, you can create a launcher for accessing GNOME Terminal.

A launcher is an icon you create on your desktop that allows you to start a chosen applica-
tion. This is a great feature that allows you to quickly access a terminal emulator in the
graphical desktop. It is especially helpful if you do not want to use shortcut keys or the
shortcut key feature is not available in your desktop environment of choice.

For example, in the GNOME desktop environment, to create a launcher, right-click your
mouse in the middle of the desktop area; a drop-down menu appears. Select Create
Launcher. .. from the menu; the Create Launcher application window opens. In the Type
field, select Application. Type a name for your icon in the Name field. In the Command
field, type gnome-terminal. Click Ok to save your new launcher. An icon with the name
you gave the launcher now appears on your desktop. Double-click it to open the GNOME
terminal emulator.

NoTE
When you type gnome-terminal in the Command field, you are typing the shell command for starting the GNOME ter-

minal emulator. You learn in Chapter 3 how to add special options to commands, such as gnome-terminal, to provide
special configuration options, and how to view all the options available to you.

Several configuration options are provided by menus and short-cut keys in the application,
which you can apply after you get the GNOME terminal emulation started. Understanding
these options can enhance your GNOME Terminal CLI experience.

The Menu Bar

The GNOME Terminal menu bar contains the configuration and customization options you
need to make your GNOME Terminal just the way you want it. The following tables briefly
describe the different configuration options in the menu bar and shortcut keys associated
with the options.

NoTE
As you read through these GNOME Terminal menu options, keep in mind that your Linux distribution’s GNOME

Terminal may have slightly different menu options available. This is because several Linux distributions use older ver-
sions of GNOME Terminal.

Table 2-4 shows the configuration options available within the GNOME Terminal File menu
system. The File menu item contains items to create and manage your overall CLI terminal
sessions.

31

Part I: The Linux Command Line

TABLE 2-4 The File Menu

Name Shortcut Key Description

Open Terminal Shift+Ctrl+N Starts a new shell session in a new GNOME Terminal
window

Open Tab Shift+Ctrl+T Starts a new shell session in a new tab in the existing
GNOME Terminal window

New Profile None Customizes a session and saves as a profile, which can be
recalled for later use

Save Contents None Saves the scrollback buffer contents to a text file

Close Tab Shift+Ctrl+W Closes the current tab session

Close Window Shift+Ctrl+Q Closes the current GNOME Terminal session

Notice that, as in a network browser, you can open new tabs within the GNOME Terminal
session to start a whole new CLI session. Each tab session is considered to be an indepen-
dent CLI session.

Tip

You do not have to click through the menu to reach options in the File menu. Most of the items are also available by right-
clicking in the session area.

The Edit menu contains items, shown in Table 2-5, for handling text within the tabs. You
can use your mouse to copy and paste text anywhere within the session window.

TABLE 2.5 The Edit Menu

Name Shortcut Key Description

Copy Shift+Ctrl+C Copies selected text to the GNOME clipboard

Paste Shift+Ctrl+V Pastes text from the GNOME clipboard into a
session

Paste Filenames Properly pastes copied filenames and their paths

Select All None Selects output in the entire scrollback buffer

Profiles None Adds, deletes, or modifies GNOME Terminal profiles

Keyboard None Creates key combinations to quickly access GNOME

Shortcuts Terminal features

Profile None Edits the current session profile

Preferences

32

Chapter 2: Getting to the Shell

The Paste Filenames menu option is available only in later versions of GNOME Terminal.
Therefore, you may not see that menu option on your system.

The View menu, shown in Table 2-6, contains items for controlling how the CLI session
windows appear. These options can be helpful for individuals with visual impairment.

TABLE 2-6 The View Menu

Name Shortcut Key Description

Show Menubar None Toggles on/off the menu bar display

Full Screen F11 Toggles on/off the terminal window filling the entire
desktop

Zoom In Ctrl++ Enlarges the font size in the window incrementally

Zoom Out Ctrl+- Reduces the font size in the window incrementally

Normal Size Ctrl+0 Returns the font size to default

Be aware that if you toggle off the menu bar display, the session’s menu bar disappears.
However, you can easily get the menu bar to display again by right-clicking in any terminal
session window and toggling on the Show Menubar option.

The Search menu, shown in Table 2-7, contains items for conducting simple searches
within the terminal session. These searches are similar to ones you may have conducted in
a network browser or word processor.

TABLE 2.7 The Search Menu

Name Shortcut Key Description

Find Shift+Ctrl+F ~ Opens Find window to provide designated text search
options

Find Next Shift+Ctrl+H Searches forward from current terminal session location for
designated text

Find Shift+Ctrl+G Searches backward from current terminal session location

Previous for designated text

The Terminal menu, shown in Table 2-8, contains options for controlling the terminal
emulation session features. There are no shortcut keys to access these items.

33

Part I: The Linux Command Line

TABLE 2-8 The Terminal Menu

Name

Description

Change Profile

Switches to a new profile configuration

Set Title

Modifies session tab title bar setting

Set Character Encoding

Selects character set used to send and display characters

Reset

Sends reset terminal session control code

Reset and Clear

Sends reset terminal session control code and clears terminal

session screen

Window Size List

Lists window sizes for adjusting the current terminal window
size

The Reset option is extremely useful. One day, you may accidently cause your terminal
session to display random characters and symbols. When this occurs, the text is unread-
able. It is typically caused by displaying a non-text file to the screen. You can quickly get
the terminal session back to normal by selecting Reset or Reset and Clear.

The Tabs menu, shown in Table 2-9, provides items for controlling the location of the tabs
and selecting which tab is active. This menu displays only when you have more than one
tab session open.

TABLE 2.9 The Tabs Menu

Name Shortcut Key Description

Next Tab Ctrl+Page Down Makes the next tab in the list active

Previous Ctrl+Page Up Makes the previous tab in the list active

Tab

Move Tab Shift+Ctrl+Page Shuffles the current tab in front of the previous tab

Left Up

Move Tab Shift+Ctrl+Page Shuffles the current tab in front of the next tab

Right Down

Detach Tab None Removes the tab and starts a new GNOME Terminal win-
dow using this tab session

Tab List None Lists the currently running tabs (Select a tab to jump to
that session.)

Terminal None Lists the currently running terminals (Select a terminal to

List jump to that session. This is displayed only if multiple

window sessions are open.)

34

Chapter 2: Getting to the Shell

Finally, the Help menu contains two menu options. Contents provides a full GNOME
Terminal manual so you can research individual GNOME Terminal items and features. The
About option shows you the current GNOME Terminal version that’s running.

Besides the GNOME terminal emulator package, another commonly used package is Konsole
Terminal. In many ways, Konsole Terminal is similar to GNOME Terminal. However, enough
differences exist to warrant its own section.

Using the Konsole Terminal Emulator

The KDE Desktop Project created its own terminal emulation package called Konsole
Terminal. The Konsole package incorporates basic terminal emulation features, along with
more advanced ones expected from a graphical application. This section describes Konsole
Terminal features and shows you how to use them.

Accessing the Konsole Terminal

The Konsole Terminal is the default terminal emulator for the KDE desktop environment.
You can easily access it via the KDE environment’s menu system. In other desktop environ-
ments, accessing the Konsole Terminal can be a little more difficult.

In the KDE desktop environment, you can access the Konsole Terminal by clicking the icon
labeled Kickoff Application Launcher in the lower-left corner of the screen. Then
click Applications & System= Terminal (Konsole).

NoTE

You may see two terminal menu options within the KDE menu environment. If you do, the Terminal menu option with
the words Konsole beneath it is the Konsole terminal.

In the GNOME desktop environment, the Konsole terminal is typically not installed
by default. If Konsole Terminal has been installed, you can access it via the GNOME
menu system. In the upper-left corner of the window, click Applications &
System Tools > Konsole.

NoTE

You may not have the Konsole terminal emulation package installed on your system. If you would like to install it,
read through Chapter 9 to learn how to install software via the command line.

35

Part I: The Linux Command Line

36

In the Unity desktop environment, if Konsole has been installed, you can access it via
Dash =™ Search and type Konsole. The Konsole Terminal shows up in the Dash home area
as an application named Konsole. Click that icon to open the Konsole terminal emulator.

Figure 2-4 shows the Konsole Terminal. It was accessed on a KDE desktop environment in a
CentOS Linux distribution.

FIGURE 2-4

The Konsole Terminal

& & Christine: bash —————— V) (= ®

File Edit View Scrollback Bookmarks Settings Help

[christine@serverol ~1% | «
=
~

Christine : bash

Remember that, in most desktop environments, you can create a launcher to access appli-
cations such as the Konsole Terminal. The command you need to type for the launcher

to start up the Konsole terminal emulator is konsole. Also, if the Konsole Terminal is
installed, you can start it from another terminal emulator by typing konsole and pressing
Enter.

The Konsole Terminal, similar to GNOME Terminal, has several configuration options pro-
vided by menus and shortcut keys. The following section describes these various options.

Chapter 2: Getting to the Shell

The Menu Bar

The Konsole Terminal menu bar contains the configuration and customization options you
need to easily view and change features in your terminal emulation session. The following
tables briefly describe the menu options and associated shortcut keys.

Tip

The Konsole Terminal provides a simple menu when you right-click in the active session area. Several menu items are
available in this easy-to-access menu.

The File menu, shown in Table 2-10, provides options for starting a new tab in the current
window or in a new window.

TABLE 2-10 The File Menu

Name Shortcut Key Description

New Tab Ctrl+Shift+N Starts a new shell session in a new tab in the existing
Konsole Terminal window

New Window Ctrl+Shift+M Starts a new shell session in a new Konsole Terminal
window

Shell None Opens the default profile, Shell

Open Browser None Opens the default file browser application

Here

Close Tab Ctrl+Shift+W Closes the current tab session

Quit Ctrl+Shift+Q Quits the Konsole Terminal emulation application

When you first start the Konsole Terminal, the only profile listed in the menu is Shell. As
more profiles are created and saved, their names appear in the menu list.

NoTE
As you read through these Konsole Terminal menu options, keep in mind that your Linux distribution’s Konsole

Terminal may have very different menu options available. This is because some Linux distributions have kept older
versions of the Konsole Terminal emulation package.

37

Part I: The Linux Command Line

38

The Edit menu, shown in Table 2-11, provides options for handling text in the session.
Also, managing tab names is in this options list.

TABLE 2-11 The Edit Menu

Name Shortcut Key Description

Copy Ctrl+Shift+C Copies selected text to the Konsole clipboard

Paste Ctrl+Shift+V Pastes text from the Konsole clipboard into a session

Rename Tab Ctrl+Alt+S Modifies session tab title bar setting

Copy Input To None Starts/stops session input copies to chosen additional
sessions

Clear Display None Clears the terminal session screen

Clear & Reset None Clears the terminal session screen and sends the reset

terminal session control code

Konsole provides an excellent method for tracking what function is taking place in each
tab session. Using the Rename Tab menu option, you can name a tab to match its current
task. This helps in tracking which open tab session is performing what function.

The View menu, shown in Table 2-12, contains items for controlling individual session
views in the Konsole Terminal window. In addition, options are available that aid in moni-
toring terminal session activity.

TABLE 212 The View Menu

Name

Shortcut Key

Description

Split View

Detach View

Show Menu Bar

None

Ctrl+Shift+H

None

Controls the multiple tab session display within
the current Konsole Terminal window

Removes a tab session and starts a new Konsole
Terminal window using this tab session

Toggles on/off Menu bar display

Full Screen Mode

Monitor for
Silence

Monitor for
Activity

Character Encoding

Ctrl+Shift+F11

Ctrl+Shift+l

Ctrl+Shift+A

None

Toggles on/off the terminal window filling the
entire monitor display area

Toggles on/off a special message for tab silence

Toggles on/off a special message for tab
activity

Selects the character set used to send and dis-
play characters

Chapter 2: Getting to the Shell

Increase Text Size Ctrl++ Enlarges the font size in the window
incrementally

Decrease Text Size Ctrl+- Reduces the font size in the window
incrementally

The Monitor for Silence menu option is used for indicating tab silence. Tab silence
occurs when no new text appears in the current tab session for 10 seconds. This allows you
to switch to another tab while waiting for application output to stop.

Tab activity, toggled by the Monitor for Activity option, issues a special message
when new text appears in the tab session. This option allows you to be notified when out-
put from an application occurs.

Konsole retains a history, formally called a scrollback buffer, for each tab. The history
contains output text that has scrolled out of the terminal viewing area. By default, the
last 1,000 lines in the scrollback buffer are retained. The Scrollback menu, shown in
Table 2-13, contains options for viewing this buffer.

TABLE 2-13 The Scrollback Menu

Name Shortcut Key Description

Search Output Ctrl+Shift+F Opens the Find window at the bottom of the
Konsole Terminal window to provide scrollback text
search options

Find Next F3 Finds the next text match in more recent scrollback
buffer history

Find Previous Shift+F3 Finds the next text match in older scrollback buffer
history

Save Output None Saves scrollback buffer contents to a text or
HTML file

Scrollback None Opens the Scrollback Options window to configure

Options scrollback buffer options

Clear Scrollback None Removes scrollback buffer contents

Clear Scrollback Ctrl+Shift+X Removes scrollback buffer contents and resets the

& Reset terminal window

You can scroll back through the scrollback buffer by simply using the scrollbar in the view-
ing area. Also, you can scroll back line by line by pressing the Shift+Up Arrow or scroll back
a page (24 lines) at a time by pressing Shift+Page Up.

39

Part I: The Linux Command Line

40

The Bookmarks menu options, shown in Table 2-14, provide a way to manage bookmarks
set in the Konsole Terminal window. A bookmark enables you to save your active session’s
directory location and then easily return there in either the same session or a new session.

TABLE 2-14 The Bookmarks Menu

Name Shortcut Key Description

Add Bookmark Ctrl+Shift+B Creates a new bookmark at the current direc-
tory location

Bookmark Tabs as None Creates a new bookmark for all current terminal

Folder tab sessions

New Bookmark Folder None Creates a new bookmark storage folder

Edit Bookmarks None Edits existing bookmarks

The Settings menu, shown in Table 2-15, allows you to customize and manage your pro-
files. Also, you can add a little more functionality to your current tab session. There are no
shortcut keys to access these items.

TABLE 215 The Settings Menu

Name Description

Change Profile Applies to the current tab a selected profile

Edit Current Profile Opens the Edit Profile window to provide profile configuration
options

Manage Profiles Opens the Manage Profile window to provide profile manage-
ment options

Configure Shortcuts Creates Konsole Terminal command keyboard shortcuts

Configure Creates custom Konsole Terminal schemas and sessions

Notifications

Configure Notifications allows you to associate specific events that can occur within
a session with different actions. When one of the events occurs, the defined action (or
actions) is taken.

The Help menu, shown in Table 2-16, provides the full Konsole handbook (if KDE handbooks
were installed in your Linux distribution) and the standard About Konsole dialog box.

Chapter 2: Getting to the Shell

TABLE 2-16 The Help Menu

Name Shortcut Key Description

Konsole Handbook None Contains the full Konsole Handbook

What’s This? Shift+F1 Contains help messages for terminal
widgets

Report Bug None Opens the Submit Bug Report form

Switch Application None Opens the Switch Application’s Language

Language form

About Konsole None Displays the current Konsole Terminal
version

About KDE Displays the current KDE desktop envi-

ronment version

Rather extensive documentation is provided to help you use the Konsole terminal emulator
package. In addition to help items, you are provided with a Bug Report form to submit to
the Konsole Terminal developers when you encounter a program bug.

The Konsole terminal emulator package is young compared to another popular package,
xterm. In the next section, we explore the “old-timer” xterm.

Using the xterm Terminal Emulator

The oldest and most basic of terminal emulation packages is xterm. The xterm package has
been around since before the original days of X Window, a popular display server, and it’s
often included by default in distributions.

Although xterm is a full terminal emulation package, it doesn’t require many resources
(such as memory) to operate. Because of this, the xterm package is still popular in Linux
distributions designed to run on older hardware. Some graphical desktop environments use
it as the default terminal emulation package.

Although it doesn't offer many fancy features, the xterm package does one thing extremely
well: It emulates older terminals, such as the Digital Equipment Corporation (DEC) VT102,
VT220, and Tektronix 4014 terminals. For the VT102 and VT220 terminals, xterm can even
emulate the VT series of color control codes, allowing you to use color in your scripts.

41

Part I: The Linux Command Line

NoTE
The DEC VT102 and V1220 were dumb text terminals popular for connecting to Unix systems in the 1980s and early

1990s. A VT102/VT220 could display text and display rudimentary graphics using block mode graphics. This style of
terminal access is still used in many business environments today, thus keeping VT102/VT220 emulation popular.

NoTE

Figure 2-5 shows what the basic xterm display looks like running on a graphical Linux
desktop. You can see it is very basic.

FIGURE 2-5

The xterm Terminal

@® christine@William: ~
chriztine@lilliam:™$ |

The xterm terminal emulator can be tricky to find these days. Often, it is not included in a
desktop environment graphical menu arrangement.

Accessing xterm

In Ubuntu's Unity desktop, xterm is installed by default. You can access it via
Dash ™ Search and type xterm. xterm shows up in the Dash home area as an application
named XTerm. Click that icon to open the xterm terminal emulator.

You may see another terminal called UXTerm when you search for xterm on Ubuntu. This is simply the xterm emulator
package with Unicode support.

42

Chapter 2: Getting to the Shell

In the GNOME and KDE desktop environment, xterm is not installed by default. You must
install it first (see Chapter 9 for help on installing software packages). After it’s installed,
you must start xterm from another terminal emulator. Open a terminal emulator for CLI
access, type xterm, and press Enter. Also, remember that you can create your own desktop
launcher to startup xterm.

The xterm package allows you to set individual features using command line parameters.
The following sections discuss these features and how to change them.

Command Line Parameters

The list of xterm command line parameters is extensive. You can control lots of features
to customize the terminal emulation features, such as enabling or disabling individual VT
emulations.

NoTE
xterm has a huge number of configuration options — so many that they cannot all be covered here. Extensive docu-

mentation is available via the bash manual. Accessing the bash manual is covered in Chapter 3. In addition, the xterm
development team provides some excellent help on its website: http://invisible-island.net/xterm/ .

You can invoke certain configuration options by adding a parameter to the xterm com-
mand. For example, to have the xterm emulate a DEC VT100 terminal, type the command
xterm -ti vt100 and press Enter. Table 2-17 shows some parameters you can include when
invoking the xterm terminal emulator software.

TABLE 217 xterm Command Line Parameters

Parameter Description

-bg color Specifies the color to use for the terminal background

-fb font Specifies the font to use for bold text

-fg color Specifies the color to use for the foreground text

-fn font Specifies the font to use for text

-fw font Specifies the font to use for wide text

-1f filename Specifies the filename to use for screen logging

-ms color Specifies the color used for the text cursor

-name name Specifies the name of the application that appears in the title bar
-ti terminal Specifies the terminal type to emulate

43

http://invisible-island.net/xterm

Part I: The Linux Command Line

44

Some xterm command line parameters use a plus sign (+) or minus sign (-) to signify how a
feature is set. A plus sign may turn a feature on, while a minus sign turns it off. However,
the opposite can be true as well. A plus sign may disable a feature, while a minus sign
enables it, such as when using the bc parameter. Table 2-18 lists some of the more common
features you can set using the +/- command line parameters.

TABLE 2-18 xterm +/- Command Line Parameters

Parameter Description

ah Enables/disables highlighted text cursor

aw Enables/disables auto-line-wrap

be Enables/disables text cursor blinking

cm Enables/disables recognition of ANSI color change control codes
fullscreen Enables/disables full screen mode

] Enables/disables jump scrolling

1 Enables/disables logging screen data to a log file
mb Enables/disables margin bell

v Enables/disables reverse video colors

t Enables/disables Tektronix mode

It is important to note that not all implementations of xterm support all these command
line parameters. You can determine which parameters your xterm implements by using the
-help parameter when you start xterm on your system.

Now that you have been introduced to three terminal emulator packages, the big question
is which is the best terminal emulator to use? There is no definite answer to that question.
Which terminal emulator package you use depends upon your individual needs and desires.
But it is great to have so many choices.

Summary

To start learning Linux command line commands, you need access to a CLI. In the world of
graphical interfaces, this can sometimes be challenging. This chapter discussed different
interfaces you should consider to get to the Linux command line.

First, this chapter discussed the difference between accessing the CLI via a virtual console
terminal (a terminal outside the GUI) and a graphical terminal emulation package

Chapter 2: Getting to the Shell

(a terminal inside the GUI). We took a brief look at the basic differences between these two
access methods.

Next, we explored in detail accessing the CLI via a virtual console terminal, including spe-
cifics on how to change console terminal configuration options such as background color.

After looking at virtual console terminals, the chapter traveled through accessing the CLI
via a graphical terminal emulator. Primarily, we covered three different types of terminal
emulators: GNOME Terminal, Konsole Terminal, and xterm.

This chapter also covered the GNOME desktop project’s GNOME terminal emulation package.
GNOME Terminal is typically installed by default on the GNOME desktop environment. It pro-
vides convenient ways to set many terminal features via menu options and shortcut keys.

We also covered the KDE desktop project’s Konsole terminal emulation package. The Konsole
Terminal is typically installed by default on the KDE desktop environment. It provides sev-
eral nice features, such as the ability to monitor a terminal for silence.

Finally, we covered the xterm terminal emulator package. xterm was the first terminal
emulator available for Linux. It can emulate older terminal hardware such as the VT and
Tektronix terminals.

In the next chapter, you start looking at the Linux command line commands. It walks you
through the commands necessary to navigate around the Linux filesystem, and to create,
delete, and manipulate files.

45

CHAPTER

Basic bash Shell Commands

IN THIS CHAPTER

Interacting with the shell
Using the bash manual
Traversing the filesystem
Listing files and directories
Managing files and directories

Viewing file contents

the basic features available in the bash shell, such as the bash manual, tab auto-completion

and how to display a file’s contents. You will walk through how to work with Linux files and
directories using the basic commands provided by the bash shell. If youre already comfortable with
the basics in the Linux environment, feel free to skip this chapter and continue with Chapter 4 to
see more advanced commands.

The default shell used in many Linux distributions is the GNU bash shell. This chapter describes

Starting the Shell

The GNU bash shell is a program that provides interactive access to the Linux system. It runs as a
regular program and is normally started whenever a user logs in to a terminal. The shell that the
system starts depends on your user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along with some basic con-
figuration information about each user. Here's a sample entry from a /etc/passwd file:

christine:x:501:501:Christine Bresnahan:/home/christine:/bin/bash

Each entry has seven data fields, with fields separated by colons. The system uses the data in these
fields to assign specific features for the user. Most of these entries are discussed in more detail in
Chapter 7. For now, just pay attention to the last field, which specifies the user’s shell program.

47

Part I: The Linux Command Line

NoTE

Though the focus is on the GNU bash shell, additional shells are reviewed in this book. Chapter 23 covers working
with alternative shells, such as dash and tcsh.

In the earlier /etc/passwd sample entry, the user christine has /bin/bash set as her
default shell program. This means when christine logs into the Linux system, the bash
shell program is automatically started.

Although the bash shell program is automatically started at login, whether a shell com-
mand line interface (CLI) is presented depends on which login method is used. If a virtual
console terminal is used to log in, the CLI prompt is automatically presented, and you can
begin to type shell commands. However, if you log into the Linux system via a graphical
desktop environment, you need to start a graphical terminal emulator to access the shell
CLI prompt.

Using the Shell Prompt

After you start a terminal emulation package or log in to a Linux virtual console, you get
access to the shell CLI prompt. The prompt is your gateway to the shell. This is the place
where you enter shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates
that the shell is waiting for you to enter text. Different Linux distributions use different
formats for the prompt. On this Ubuntu Linux system, the shell prompt looks like this:

christine@server0l:~$
On the Cent0S Linux system, it looks like this:
[christine@server0l ~]$

Besides acting as your access point to the shell, the prompt can provide additional help-
ful information. In the two preceding examples, the current user ID name, christine, is
shown in the prompt. Also, the name of the system is shown, server01. You learn later in
this chapter about additional items shown in the prompt.

Tip

If you are new to the CLI, keep in mind that, after you type in a shell command at the prompt, you need to press the
Enter key for the shell to act upon your command.

The shell prompt is not static. It can be changed to suit your needs. Chapter 6, “Using
Linux Environment Variables,” covers modifying your shell CLI prompt configuration.

48

Chapter 3: Basic bash Shell Commands

Think of the shell CLI prompt as a helpmate, assisting you with your Linux system,
giving you helpful insights, and letting you know when the shell is ready for new
commands. Another helpful item in the shell is the bash Manual.

Interacting with the bash Manual

Most Linux distributions include an online manual for looking up information on shell
commands, as well as lots of other GNU utilities included in the distribution. You should
become familiar with the manual, because it’s invaluable for working with commands, espe-
cially when you're trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system.
Entering the man command followed by a specific command name provides that utility’s
manual entry. Figure 3-1 shows an example of looking up the xterm command’s manual
pages. This page was reached by typing the command man xterm.

FIGURE 3-1

Manual pages for the xterm command

KTERM (1} A Window System KTERM({1)

NAME
“term - terminal emulator for X

SYNOPSIS
wterm [-toolkitoption ...] [-option ...] [shell]

DESCRIPTION

The xterm program is & terminal emulator for the ¥ Window System. It
provides DEC YTI02/YT220 and selected features from higher-level termi-
nals such as YT320/YT420/WTS20 (MTwww). It also provides Tektronix
4014 emulation for programs that cannot use the window system directly.
If the underlying operating sustem supports terminal resizing capabili-
ties (for example, the SIGHINCH signal in systems deriwved from 4.3bsd),
*term will use the facilities to notify programs running in the window
whenever it is resized.

The ¥Txxx and Tektronix 4014 terminals each hawve their own window so
that you can edit text in one and look at graphics in the other at the
same time. To maintain the correct aspect ratio (height/width), Tek-
tronix graphics will be restricted to the largest box with a 4014's
aspect ratio that will fit in the window. This box is located in the
upper left area of the window.

Although hoth windows may be displayed at the same time, one of them is
considered the “sctive™ window for receiving kewboard input and termi-
nal output. This iz the window that contains the text cursor. The
active window can be c 2

Manual ermil) line 1 (p

Notice the xterm command DESCRIPTION paragraphs in Figure 3-1. They are rather sparse
and full of technical jargon. The bash manual is not a step-by-step guide, but instead a
quick reference.

49

Part I: The Linux Command Line

Tip

If you are new to the bash shell, you may find that the man pages are not very helpful at first. However, get into

the habit of using them, especially to read the first paragraph or two of a command’s DESCRIPTION section.
Eventually, you will learn the technical lingo, and the man pages will become more helpful to you.

When you use the man command to view a command’s manual pages, they are displayed
with something called a pager. A pager is a utility that allows you to page through
displayed text. Thus, you can page through the man pages by pressing the spacebar, or you
can go line by line using the Enter key. In addition, you can use the arrow keys to scroll
forward and backward through the man page text (assuming that your terminal emulation
package supports the arrow key functions).

When you are finished with the man pages, press the q key to quit. When you quit the man
pages, you receive a shell CLI prompt, indicating the shell is waiting for your next command.

Tip

The bash manual even has reference information on itself. Type man man to see manual pages concerning the
man pages.

The manual page divides information about a command into separate sections. Each section
has a conventional naming standard as shown in Table 3-1.

TABLE 3-1 The Linux man Page Conventional Section Names

Section Description

Name Displays command name and a short description
Synopsis Shows command syntax

Configuration Provides configuration information
Description Describes command generally

Options Describes command option(s)

Exit Status Defines command exit status indicator(s)
Return Value Describes command return value(s)
Errors Provides command error messages
Environment Describes environment variable(s) used
Files Defines files used by command

Versions Describes command version information

50

Chapter 3: Basic bash Shell Commands

Conforming To Provides standards followed

Notes Describes additional helpful command material
Bugs Provides the location to report found bugs
Example Shows command use examples

Authors Provides information on command developers
Copyright Defines command code copyright status

See Also Refers similar available commands

Not every command’s man page has all the section names described in Table 3-1. Also, some
commands have section names that are not listed in the conventional standard.

Tip

What if you can’t remember the command name? You can search the man pages using keywords. The syntax is
man -k keyword. For example, to find commands dealing with the terminals, you type man -k terminal.

In addition to the conventionally named sections for a man page, there are man page sec-
tion areas. Each section area has an assigned number, starting at 1 and going to 9; they are
listed in Table 3-2.

TABLE 3-2 The Linux man Page Section Areas

Section Number Area Contents

—

Executable programs or shell commands
System calls

Library calls

Special files

File formats and conventions

Games

Overviews, conventions, and miscellaneous

Super user and system administration commands

VO | 0 N o0 w N

Kernel routines

51

Part I: The Linux Command Line

52

Typically, the man utility provides the lowest numbered content area for the command. For
example, looking back to Figure 3-1 where the command man xterm was entered, notice
that in the upper-left and upper-right display corners, the word XTERM is followed by a
number in parentheses, (1). This means the man pages displayed are coming from content
area 1 (executable programs or shell commands).

Occasionally, a command has man pages in multiple section content areas. For example,
there is a command called hostname. The man pages contain information on the command
as well as an overview section on system hostnames. To see the pages desired, you type
man section# topic. For the command’s man pages in section 1, type man 1
hostname. For the overview man pages in section 7, type man 7 hostname.

You can also step through an introduction to the various section content areas by typing
man 1 intro to read about section 1, man 2 intro to read about section 2, man 3 intro
to read about section 3, and so on.

The man pages are not the only reference. There are also the information pages called info
pages. You can learn about the info pages by typing info info.

In addition, most commands accept the -help or --help option. For example, you can
type hostname -help to see a help screen. For more information on using help, type
help help. (See a pattern here?)

Obviously, several helpful resources are available for reference. However, many basic shell
concepts still need detailed explanation. In the next section, we cover navigating through
the Linux filesystem.

Navigating the Filesystem

When you log into the system and reach the shell command prompt, you are usually placed
in your home directory. Often, you want to explore other areas in the Linux system besides
just your home directory. This section describes how to do that using shell commands. To
start, you need to take a tour of just what the Linux filesystem looks like so you know
where you are going.

Looking at the Linux filesystem

If you're new to the Linux system, you may be confused by how it references files and
directories, especially if you're used to the way the Microsoft Windows operating system
does that. Before exploring the Linux system, it helps to have an understanding of how it’s
laid out.

The first difference you'll notice is that Linux does not use drive letters in pathnames. In
the Windows world, the physical drives installed on the computer determine the pathname

Chapter 3: Basic bash Shell Commands

of the file. Windows assigns a letter to each physical disk drive, and each drive contains its
own directory structure for accessing files stored on it.

For example, in Windows you may be used to seeing the file paths such as:

c:\Users\Rich\Documents\test.doc

The Windows file path tells you exactly which physical disk partition contains the file
named test.doc. For example, if you saved test.doc on a flash drive, designated by the
J drive, the file path would be J:\test.doc. This path indicates that the file is located at
the root of the drive assigned the letter J.

This is not the method used by Linux. Linux stores files within a single directory struc-
ture, called a virtual directory. The virtual directory contains file paths from all the storage
devices installed on the computer, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root.
Directories and files beneath the root directory are listed based on the directory path used
to get to them, similar to the way Windows does it.

Tip

You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote directories in file paths.

The backslash character in Linux denotes an escape character and causes all sorts of problems when you use itin a
file path. This may take some getting used to if you’re coming from a Windows environment.

In Linux, you will see file paths similar to the following:

/home /Rich/Documents/test.doc

This indicates the file test.doc is in the directory Documents, under the directory rich,
which is contained in the directory home. Notice that the path doesn’t provide any infor-
mation as to which physical disk the file is stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device.
The first hard drive installed in a Linux system is called the root drive. The root drive con-
tains the virtual directory core. Everything else builds from there.

On the root drive, Linux can use special directories as mount points. Mount points are
directories in the virtual directory where you can assign additional storage devices. Linux
causes files and directories to appear within these mount point directories, even though
they are physically stored on a different drive.

Often system files are physically stored on the root drive. User files are typically stored on a
separate drive or drives, as shown in Figure 3-2.

53

Part I: The Linux Command Line

54

FIGURE 3-2
The Linux file structure
Disk 1
Disk 2
— bin
— barbara
— etc
home — jessica
L s — katie
— rich
— var

Figure 3-2 shows two hard drives on the computer. One hard drive is associated with the
root of the virtual directory (indicated by a single forward slash). Other hard drives can
be mounted anywhere in the virtual directory structure. In this example, the second hard
drive is mounted at the location /home, which is where the user directories are located.

The Linux filesystem structure originally evolved from the Unix file structure. In a Linux
filesystem, common directory names are used for common functions. Table 3-3 lists some of
the more common Linux virtual top-level directory names and their contents.

TABLE 3-3 Common Linux Directory Names

Directory Usage

/ root of the virtual directory, where normally, no files are placed

/bin binary directory, where many GNU user-level utilities are stored

/boot boot directory, where boot files are stored

/dev device directory, where Linux creates device nodes

/etc system configuration files directory

/home home directory, where Linux creates user directories

/lib library directory, where system and application library files are stored

/media media directory, a common place for mount points used for removable media
/mnt mount directory, another common place for mount points used for

removable media

/opt optional directory, often used to store third-party software packages
and data files

Chapter 3: Basic bash Shell Commands

/proc process directory, where current hardware and process information is stored

/root root home directory

/sbin system binary directory, where many GNU admin-level utilities are stored

/run run directory, where runtime data is held during system operation

/srv service directory, where local services store their files

/sys system directory, where system hardware information files are stored

/tmp temporary directory, where temporary work files can be created and destroyed

/usr user binary directory, where the bulk of GNU user-level utilities and data files are
stored

Ivar variable directory, for files that change frequently, such as log files

The common Linux directory names are based upon the Filesystem Hierarchy Standard
(FHS). Many Linux distributions maintain compliance with FHS. Therefore, you should be
able to easily find files on any FHS-compliant Linux systems.

NoTE
The FHS is occasionally updated. You may find that some Linux distributions are still using an older FHS standard,

while other distributions only partially implement the current standard. To keep up to date on the FHS standard, visit
its official home at http: //www.pathname.com/fhs/.

When you log in to your system and reach a shell CLI prompt, your session starts in your
home directory. Your home directory is a unique directory assigned to your user account.
When a user account is created, the system normally assigns a unique directory for the
account (see Chapter 7).

You can move around the virtual directory using a graphical interface. However, to move
around the virtual directory from a CLI prompt, you need to learn to use the cd command.

Traversing directories
You use the change directory command (cd) to move your shell session to another directory
in the Linux filesystem. The cd command syntax is pretty simplistic: cd destination.

The cd command may take a single parameter, destination, which specifies the directory
name you want to go to. If you don't specify a destination on the cd command, it takes you
to your home directory.

55

http://www.pathname.com/fhs

Part I: The Linux Command Line

The destination parameter can be expressed using two different methods. One method is
using an absolute directory reference. The other method uses a relative directory reference.

The following sections describe each of these methods. The differences between these two
methods are important to understand as you traverse the filesystem.

Using absolute directory references

You can reference a directory name within the virtual directory system using an absolute
directory reference. The absolute directory reference defines exactly where the directory is
in the virtual directory structure, starting at the root. Think of the absolute directory ref-
erence as the full name for a directory.

An absolute directory reference always begins with a forward slash (/), indicating the
virtual directory system’s root. Thus, to reference user binaries, contained within the bin
directory stored within the usr directory, you would use an absolute directory reference as
follows:

/usr/bin

With the absolute directory reference, there’s no doubt as to exactly where you want to go.
To move to a specific location in the filesystem using the absolute directory reference, you
just specify the full pathname in the cd command:

christine@server0l:~$ e¢d /usr/bin
christine@server0l:/usr/bins

Notice in the preceding example that the prompt originally had a tilde (~) in it. After the
change to a new directory occurred, the tilde was replaced by /usr/bin. This is where a
CLI prompt can help you keep track of where you are in the virtual directory structure. The
tilde indicates that your shell session is located in your home directory. After you move
out of your home directory, the absolute directory reference is shown in the prompt, if the
prompt has been configured to do so.

NoTE

If your shell CLI prompt does not show your shell session’s current location, then it has not been configured to do so.
Chapter 6 shows you how to make configuration changes, if you desire modifications to your CLI prompt.

If your prompt has not been configured to show the shell session’s current absolute direc-
tory location, then you can display the location via a shell command. The pwd command
displays the shell session’s current directory location, which is called the present working
directory. An example of using the pwd command is shown here.

christine@server0l:/usr/bin$ pwd

/usr/bin
christine@server01l:/usr/bin$

56

Chapter 3: Basic bash Shell Commands

Tip

It is a good habit to use the pwd command whenever you change to a new present working directory. Because many

shell commands operate on the present working directory, you always want to make sure you are in the correct direc-
tory before issuing a command.

You can move to any level within the entire Linux virtual directory structure from any
level using the absolute directory reference:

christine@server0l:/usr/bin$ c¢d /var/log
christine@server0l:/var/log$
christine@server0l:/var/log$ pwd
/var/log

christine@server0l:/var/logs$

You can also quickly jump to your home directory from any level within the Linux virtual
directory structure:

christine@server0l:/var/log$ cd
christine@server0l:~$
christine@server0l:~$ pwd
/home/christine
christine@server0l:~$

However, if you're just working within your own home directory structure, often using
absolute directory references can get tedious. For example, if you're already in the directory
/home/christine, it seems somewhat cumbersome to have to type the command:

cd /home/christine/Documents

just to get to your Documents directory. Fortunately, there’s a simpler solution.

Using relative directory references

Relative directory references allow you to specify a destination directory reference relative to
your current location. A relative directory reference doesn’t start with a forward slash (/).

Instead, a relative directory reference starts with either a directory name (if you're travers-
ing to a directory under your current directory) or a special character. For example, if you
are in your home directory and want to move to your Documents subdirectory, you can use
the cd command along with a relative directory reference:

christine@server0l:~$ pwd
/home/christine
christine@server0l:~$
christine@server0l:~$ cd Documents
christine@server0l:~/Documents$ pwd
/home/christine/Documents
christine@server01l:~/Documents$

57

Part I: The Linux Command Line

Tip

In the preceding example, note that no forward slash (/) was used. Instead a relative direc-
tory reference was used and the present work directory was changed from /home/
christine to /home/christine/Documents, with much less typing.

Also notice in the example that if the prompt is configured to display the present working
directory, it keeps the tilde in the display. This shows that the present working directory is
in a directory under the user’s home directory.

If you are new to the command line and the Linux directory structure, it is recommended that you stick with absolute

directory references for a while. After you become more familiar with the directory layout, switch to using relative
directory references.

58

You can use a relative directory reference with the cd command in any directory contain-
ing subdirectories. You can also use a special character to indicate a relative directory
location.

The two special characters used for relative directory references are:

® The single dot (.) to represent the current directory

® The double dot (. .) to represent the parent directory

You can use the single dot, but it doesn’t make sense to use it with the cd command. Later
in the chapter, you will see how another command uses the single dot for relative directory
references effectively.

The double dot character is extremely handy when trying to traverse a directory hierarchy.
For example, if you are in the Documents directory under your home directory and need to
go to your Downloads directory, also under your home directory, you can do this:

christine@server0l:~/Documents$ pwd
/home/christine/Documents
christine@server0l:~/Documents$ cd ../Downloads
christine@server0l:~/Downloads$ pwd
/home/christine/Downloads
christine@server0l:~/Downloads$

The double dot character takes you back up one level to your home directory; then the /
Downloads portion of the command takes you back down into the Downloads directory.
You can use as many double dot characters as necessary to move around. For example, if
you are in your home directory (/home/christine) and want to go to the /etc directory,
you could type the following:

christine@server0l:~$ e¢d ../../etc
christine@server0l:/etc$ pwd

/etc

christine@server0l:/etc$

Chapter 3: Basic bash Shell Commands

0f course, in a case like this, you actually have to do more typing rather than just typing
the absolute directory reference, /etc. Thus, use a relative directory reference only if it

makes sense to do so.

NoTE

It’s helpful to have a long informative shell CLI prompt, as used in this chapter section. However, for clarity purposes,

a simple $ prompt is used in the rest of the book’s examples.

Now that you know how to traverse the directory system and confirm your present work-
ing directory, you can start to explore what's contained within the various directories.
The next section takes you through the process of looking at files within the directory

structure.

Listing Files and Directories

To see what files are available on the system, use the list command (1s). This section
describes the 1s command and options available to format the information it can display.

Displaying a basic listing

The 1s command at its most basic form displays
current directory:

S 1ls

Desktop Downloads Music
Documents examples.desktop my_ sc
$

the files and directories located in your

Pictures Videos

Public

Templates

ript test file

Notice that the 1s command produces the listing in alphabetical order (in columns rather
than rows). If you're using a terminal emulator that supports color, the 1s command may

also show different types of entries in different

colors. The LS COLORS environment

variable controls this feature. (Environment variables are covered in Chapter 6). Different
Linux distributions set this environment variable depending on the capabilities of the

terminal emulator.

If you don't have a color terminal emulator, you

can use the -F parameter with the 1s

command to easily distinguish files from directories. Using the -F parameter produces the

following output:

S 1ls -F

Desktop/ Downloads/ Music/

Documents/ examples.desktop my script* Public/

$

Pictures/ Templates/ Videos/
test file

59

Part I: The Linux Command Line

60

The -F parameter flags the directories with a forward slash (/), to help identify them in
the listing. Similarly, it flags executable files (like the my script file in the preceding
code) with an asterisk (*), to help you more easily find files that can be run on the system.

The basic 1s command can be somewhat misleading. It shows the files and directories
contained in the current directory, but not necessarily all of them. Linux often uses

hidden files to store configuration information. In Linux, hidden files are files with
filenames starting with a period (.). These files don't appear in the default 1s listing. Thus,
they are called hidden files.

To display hidden files along with normal files and directories, use the -a parameter. Here
is an example of using the -a parameter with the 1s command.

$ 1s -a

.compiz examples.desktop Music test _file
.. .config .gconf my script Videos
.bash _history Desktop .gstreamer-0.10 Pictures .Xauthority
.bash_logout .dmrc .ICEauthority .profile .xsession-errors
.bashrc Documents .local Public .xsession-errors.old
.cache Downloads .mozilla Templates
$

All the files beginning with a period, hidden files, are now shown. Notice that three files
begin with .bash. These are hidden files that are used by the bash shell environment.
These features are covered in detail in Chapter 6.

The -R parameter is another option the 1s command can use. Called the recursive option,
it shows files that are contained within subdirectories in the current directory. If you have
lots of subdirectories, this can be quite a long listing. Here’s a simple example of what the
-R parameter produces. The -F option was tacked on to help you see the file types:

$ 1ls -F -R

Desktop/ Downloads/ Music/ Pictures/ Templates/ Videos/
Documents/ examples.desktop my script* Public/ test file

. /Desktop:
. /Documents:
. /Downloads:

./Music:
ILoveLinux.mp3*

./Pictures:

./Public:

Chapter 3: Basic bash Shell Commands

./Templates:

./Videos:
$

Notice that the -R parameter shows the contents of the current directory, which are the
files from a user’s home directory shown in earlier examples. It also shows each subdirec-
tory in the user’s home directory and their contents. The only subdirectory containing a
file is the Music subdirectory, and it contains the executable file, ILoveLinux.mp3.

Tip

Option parameters don’t have to be entered separately as shown in the nearby example: 1s -F -R. They can
often be combined as follows: 1s -FR.

In the previous example, there were no subdirectories within subdirectories. If there
had been further subdirectories, the -R parameter would have continued to traverse
those as well. As you can see, for large directory structures, this can become quite a
large output listing.

Displaying a long listing
In the basic listings, the 1s command doesn’t produce much information about each file.

For listing additional information, another popular parameter is -1. The -1 parameter
produces a long listing format, providing more information about each file in the directory:

$ 1s -1
total 48

drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Desktop
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Documents
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Downloads
-rw-r--r-- 1 christine christine 8980 Apr 22 13:36 examples.desktop
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
-rw-rw-r-- 1 christine christine 0 May 21 13:44 full
drwxr-xr-x 2 christine christine 4096 May 21 11:39 Music
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my file
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_ script
-rw-rw-r-- 1 christine christine 0 May 21 13:42 new_file
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Pictures
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Public
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Templates
-rw-rw-r-- 1 christine christine 0 May 21 11:28 test file
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Videos

$

61

Part I: The Linux Command Line

62

The long listing format lists each file and subdirectory on a single line. In addition to

the filename, the listing shows additional useful information. The first line in the output
shows the total number of blocks contained within the directory. After that, each line con-
tains the following information about each file (or directory):

m The file type — such as directory (d), file (-), linked file (1), character device (c),
or block device (b)

The file permissions (see Chapter 6)

The number of file hard links (See the section “Linking Files” in Chapter 7.)

The file owner username

The file primary group name

The file byte size

The last time the file was modified

The filename or directory name

The -1 parameter is a powerful tool to have. Armed with this parameter, you can see most
of the information you need for any file or directory.

The 1s command has lots of parameters that can come in handy as you do file management.
If you type at the shell prompt man 1s, you see several pages of available parameters for
you to use to modify the 1s command output.

Don't forget that you can also combine many of the parameters. You can often find a param-
eter combination that not only displays the desired output, but also is easy to remember,
suchas lg -alF.

Filtering listing output
As you've seen in the examples, by default the 1s command lists all the non-hidden direc-

tory files. Sometimes, this can be overkill, especially when you're just looking for informa-
tion on a few files.

Fortunately, the 1s command also provides a way for you to define a filter on the
command line. It uses the filter to determine which files or directories it should display in
the output.

The filter works as a simple text-matching string. Include the filter after any command line
parameters you want to use:

$ 1ls -1 my script
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my script

$

When you specify the name of a specific file as the filter, the 1s command only shows that
file’s information. Sometimes, you might not know the exact filename you're looking for.

Chapter 3: Basic bash Shell Commands

The 1s command also recognizes standard wildcard characters and uses them to match
patterns within the filter:

B A question mark (?) to represent one character

B An asterisk (*) to represent any number of characters

The question mark can be used to replace exactly one character anywhere in the filter
string. For example:

$ 1s -1 my scr?pt
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my script

$

The filter my scr?pt matched two files in the directory. Similarly, the asterisk can be used
to match zero or more characters:

$ 1s -1 my*

-rw-rw-r-- 1 christine christine 0 May 21 13:25 my file
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my script

$

Using the asterisk finds three different files, starting with the name my. As with the
question mark, you can place the asterisks anywhere in the filter:

$ 1s -1 my s*t
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my script

$

Using the asterisk and question mark in the filter is called file globbing. File globbing is the
processing of pattern matching using wildcards. The wildcards are officially called
metacharacter wildcards. You can use more metacharacter wildcards for file globbing than
just the asterisk and question mark. You can also use brackets:

$ 1s -1 my scrlailpt
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my script

$

In this example, we used the brackets along with two potential choices for a single character
in that position, a or i. The brackets represent a single character position and give you mul-
tiple options for file globbing. You can list choices of characters, as shown in the preceding
example, and you can specify a range of characters, such as an alphabetic range [a - 1i]:

$ 1s -1 fla-i]11

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill

$

63

Part I: The Linux Command Line

64

Also, you can specify what should not be included in the pattern match by using the excla-
mation point (!):

$ 1s -1 £[!alll

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
-rw-rw-r-- 1 christine christine 0 May 21 13:44 full

$

File globbing is a powerful feature when searching for files. It can also be used with other
shell commands besides 1s. You find out more about this later in the chapter.

Handling Files

The shell provides many file manipulation commands on the Linux filesystem. This section
walks you through the basic shell commands you need to handle files.

Creating files

Every once in a while you run into a situation where you need to create an empty file. For
example, sometimes applications expect a log file to be present before they can write to it.
In these situations, you can use the touch command to easily create an empty file:

$ touch test one
$ 1ls -1 test one
-rw-rw-r-- 1 christine christine 0 May 21 14:17 test one

$

The touch command creates the new file you specify and assigns your username as the file
owner. Notice in the preceding example that the file size is zero because the touch com-
mand just created an empty file.

The touch command can also be used to change the modification time. This is done with-
out changing the file contents:

$ 1ls -1 test ome
-rw-rw-r-- 1 christine christine 0 May 21 14:17 test one
$ touch test one
$ 1ls -1 test one
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test one

$

The modification time of test one is now updated to 14 :35 from the original time,
14:17. To change only the access time, use the -a parameter with the touch command:

$ 1ls -1 test ome
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test one
$ touch -a test one

Chapter 3: Basic bash Shell Commands

$ 1s -1 test omne

-rw-rw-r-- 1 christine christine 0 May 21 14:35 test one
$ 1ls -1 --time=atime test ome

-rw-rw-r-- 1 christine christine 0 May 21 14:55 test one

$

In the preceding example, notice that by using only the 1s -1 command, the access time
does not display. This is because the modification time is shown by default. To see a file's
access time, you need to add an additional parameter, --time=atime. After we add that
parameter in the preceding example, the file’s altered access time is displayed.

Creating empty files and altering file timestamps is not something you will do on a Linux
system daily. However, copying files is an action you will do often while using the shell.

Copying files

Copying files and directories from one location in the filesystem to another is a common
practice for system administrators. The cp command provides this feature.

In its most basic form, the cp command uses two parameters — the source object and the
destination object: cp source destination.

When both the source and destination parameters are filenames, the cp command
copies the source file to a new destination file. The new file acts like a brand new file, with
an updated modification time:

$ cp test one test two

$ 1ls -1 test *

-rw-rw-r-- 1 christine christine 0 May 21 14:35 test one
-rw-rw-r-- 1 christine christine 0 May 21 15:15 test two

$

The new file test two shows a different modification time than the test one file. If the
destination file already exists, the cp command may not prompt you to this fact. It is best
to add the -1 option to force the shell to ask whether you want to overwrite a file:

$ 1s -1 test *
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
-rw-rw-r-- 1 christine christine 0 May 21 15:15 test two

$
$ cp -i test one test two
cp: overwrite 'test two'? n

$

If you don't answer vy, the file copy does not proceed. You can also copy a file into a
pre-existing directory:

$ cp -i test one /home/christine/Documents/

$

65

Part I: The Linux Command Line

$ 1s -1 /home/christine/Documents
total 0
-rw-rw-r-- 1 christine christine 0 May 21 15:25 test one

$

The new file is now under the Documents subdirectory, using the same filename as the
original.

NoTE
The preceding example uses a trailing forward slash (/) on the destination directory name. Using the slash indicates
Documents is a directory and not a file. This is helpful for clarity purposes and is important when copying single

files. If the forward slash is not used and the subdirectory /home /christine/Documents does not exist, prob-
lems can occur. In this case, attempting to copy a single file to the Documents subdirectory creates a file named
Documents instead, and no error messages display!

This last example used an absolute directory reference, but you can just as easily use a rela-
tive directory reference:

$ cp -i test one Documents/
cp: overwrite 'Documents/test one'? y

$

S 1ls -1 Documents

total 0

-rw-rw-r-- 1 christine christine 0 May 21 15:28 test one
$

Earlier in this chapter, you read about the special symbols that can be used in relative
directory references. One of them, the single dot (.), is great to use with the cp command.
Remember that the single dot represents your present working directory. If you need to
copy a file with a long source object name to your present working directory, the single dot
can simplify the task:

$ cp -i /etc/NetworkManager/NetworkManager.conf

$
$ 1ls -1 NetworkManager.conf
-rw-r--r-- 1 christine christine 76 May 21 15:55 NetworkManager.conf

$

It's hard to see that single dot! If you look closely, you'll see it at the end of the first exam-
ple code line. Using the single dot symbol is much easier than typing a full destination
object name, when you have long source object names.

Tip

There are many more cp command parameters than those described here. Remember that you can see all the differ-
ent available parameters available for the cp command, by typing man cp.

66

Chapter 3: Basic bash Shell Commands

The -R parameter is a powerful cp command option. It allows you to recursively copy the
contents of an entire directory in one command:

$ 1ls -Fd *Scripts

Scripts/

$ 1s -1 Scripts/

total 25

-rwxrw-r-- 1 christine christine 929 Apr 2 08:23 file mod.sh
-rwxrw-r-- 1 christine christine 254 Jan 14:18 SGID search.sh
-rwxrw-r-- 1 christine christine 243 Jan 2 13:42 SUID search.sh
g

$ cp -R Scripts/ Mod Scripts

$ 1ls -Fd *Scripts

Mod_Scripts/ Scripts/

$ 1ls -1 Mod Scripts

total 25

-rwxrw-r-- 1 christine christine 929 May 21 16:16 file mod.sh
-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID search.sh
$

[\S)

The directory Mod_Scripts did not exist prior to the cp -R command. It was created
with the cp -R command, and the entire Scripts directory’s contents were copied into
it. Notice that all the files in the new Mod_Scripts directory have new dates associated
with them. Now Mod_Scripts is a complete copy of the Scripts directory.

NoTE
In the preceding example, the options - Fd were added to the 1 s command. You read about the - F option earlier

in this chapter. However, the -d option may be new to you. The -d option lists a directory’s information but not its
contents.

You can also use wildcard metacharacters in your cp commands:

$ cp *script Mod Scripts/

$ 1ls -1 Mod Scripts

total 26

-rwxrw-r-- 1 christine christine 929 May 21 16:16 file mod.sh
-rwxrw-r-- 1 christine christine 54 May 21 16:27 my script
-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID search.sh

$

This command copied any files that ended with script to Mod_ Scripts. In this case,
only one file needed to be copied: my script.

When copying files, another shell feature can help you besides the single dot and wildcard
metacharacters. It is called tab auto-complete.

67

Part I: The Linux Command Line

68

Using tab auto-complete

When working at the command line, you can easily mistype a command, directory name, or
filename. In fact, the longer a directory reference or filename, the greater the chance that
you will mistype it.

This is where tab auto-complete can be a lifesaver. Tab auto-complete allows you to start
typing a filename or directory name and then press the tab key to have the shell complete
it for you:

$ 1ls really*

really ridiculously long file name

$

$ cp really ridiculously long file name Mod Scripts/

ls -1 Mod Scripts

total 26

-rwxrw-r-- 1 christine christine 929 May 21 16:16 file mod.sh
-rwxrw-r-- 1 christine christine 54 May 21 16:27 my script
-rw-rw-r-- 1 christine christine 0 May 21 17:08

really ridiculously long file name

-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID search.sh
$

In the preceding example, we typed the command cp really and pressed the tab key, and
the shell auto-completed the rest of the filename! Of course, the destination directory had
to be typed, but still tab auto-complete saved the command from several potential typo-
graphical errors.

The trick to using tab auto-complete is to give the shell enough filename characters so it
can distinguish the desired file from other files. For example, if another filename started
with really, pressing the tab key would not auto-complete the filename. Instead, you
would hear a beep. If this happens, you can press the tab key again, and the shell shows
you all the filenames starting with really. This feature allows you to see what needs to be
typed for tab auto-complete to work properly.

Linking files

Linking files is a great option available in the Linux filesystem. If you need to maintain
two (or more) copies of the same file on the system, instead of having separate physical
copies, you can use one physical copy and multiple virtual copies, called links. A link is a
placeholder in a directory that points to the real location of the file. Two types of file links
are available in Linux:

m A symbolic link
® A hard link

Chapter 3: Basic bash Shell Commands

A symbolic link is simply a physical file that points to another file somewhere in the
virtual directory structure. The two symbolically linked together files do not share the
same contents.

To create a symbolic link to a file, the original file must pre-exist. We can then use the 1n
command with the -s option to create the symbolic link:

$ 1ls -1 data file

-rw-rw-r-- 1 christine christine 1092 May 21 17:27 data file

$

$ ln -s data file sl data file

$

$ 1s -1 *data file

-rw-rw-r-- 1 christine christine 1092 May 21 17:27 data file

lrwxrwxrwx 1 christine christine 9 May 21 17:29 sl data_file -> data file

$

In the preceding example, notice that the name of the symbolic link, s1 data file,is
listed second in the 1n command. The —> symbol displayed after the symbolic link file’s
long listing shows that it is symbolically linked to the file data file.

Also note the symbolic link’s file size versus the data file’s file size. The symbolic link,
sl data file, is only 9 bytes, whereas the data file is 1092 bytes. This is because
sl data file is only pointing to data_file. They do not share contents and are two
physically separate files.

Another way to tell that these linked files are separate physical files is by viewing their
inode number. The inode number of a file or directory is a unique identification number
that the kernel assigns to each object in the filesystem. To view a file or directory’s inode
number, add the -i parameter to the 1s command:

$ 1ls -i *data file
296890 data file 296891 sl data file
$

The example shows that the data file’s inode number is 296890, while the s1 data file
inode number is different. It is 296891. Thus, they are different files.

A hard link creates a separate virtual file that contains information about the original file
and where to locate it. However, they are physically the same file. When you reference the
hard link file, it’s just as if you're referencing the original file. To create a hard link, again
the original file must pre-exist, except that this time no parameter is needed on the 1n
command:

$ 1s -1 code file

-rw-rw-r-- 1 christine christine 189 May 21 17:56 code file
$

$ 1n code file hl code file

69

Part I: The Linux Command Line

$

$ 1ls -1i *code file

296892 -rw-rw-r-- 2 christine christine 189 May 21 17:56
code_file

296892 -rw-rw-r-- 2 christine christine 189 May 21 17:56
hl code file

$

In the preceding example, we used the 1s -11i command to show both the inode numbers
and a long listing for the *code files. Notice that both files, which are hard linked
together, share the name inode number. This is because they are physically the same file.
Also notice that the link count (the third item in the listing) now shows that both files
have two links. In addition, their file size is exactly the same size as well.

NoTE

You can only create a hard link between files on the same physical medium. To create a link between files under
separate physical mediums, you must use a symbolic link.

Be careful when copying linked files. If you use the cp command to copy a file that’s linked
to another source file, all you're doing is making another copy of the source file. This can
quickly get confusing. Instead of copying the linked file, you can create another link to the
original file. You can have many links to the same file with no problems. However, you also
don't want to create soft links to other soft-linked files. This creates a chain of links that
can be confusing — and easily broken — causing all sorts of problems.

You may find symbolic and hard links difficult concepts. Fortunately, renaming files in the
next section is a great deal easier to understand.

Renaming files

In the Linux world, renaming files is called moving files. The mv command is available to
move both files and directories to another location or a new name:

$ 1s -1i £?11

296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
296717 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
294561 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
296742 -rw-rw-r-- 1 christine christine 0 May 21 13:44 full
$

$ mv fall £z11

$

S 1ls -1i £?11

296717 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
294561 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
296742 -rw-rw-r-- 1 christine christine 0 May 21 13:44 full
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fzll

$

70

Chapter 3: Basic bash Shell Commands

Notice that moving the file changed the name from fall to £z11, but it kept the same
inode number and timestamp value. This is because mv affects only a file’s name.

You can also use mv to change a file's location:

$ ls -1i /home/christine/fzll
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44

/home/christine/fzll

$

$ 1ls -1i /home/christine/Pictures/

total 0

$ mv £z11l Pictures/

$

$ 1ls -1i /home/christine/Pictures/

total 0

296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fzll
$

$ ls -1i /home/christine/fzll
ls: cannot access /home/christine/fzll: No such file or directory

$

In the preceding example, we moved the file £z11 from /home/christine to /home/
christine/Pictures using the mv command. Again, there were no changes to the file’s
inode number or timestamp value.

Tip

Like the cp command, you can use the - i option on the mv command. Thus, you are asked before the command
attempts to overwrite any pre-existing files.

The only change was to the file’s location. The £z11 file no longer exists in /home/
christine, because a copy of it was not left in its original location, as the cp command
would have done.

You can use the mv command to move a file's location and rename it, all in one easy step:

$ ls -1i Pictures/fzll

296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44
Pictures/fzll

$

$ mv /home/christine/Pictures/£fz11l /home/christine/fall
$

$ 1ls -1i /home/christine/fall

296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44
/home/christine/fall

$

$ 1ls -1i /home/christine/Pictures/fzll

ls: cannot access /home/christine/Pictures/fzll:

No such file or directory

71

Part I: The Linux Command Line

For this example, we moved the file £z11 from a subdirectory, Pictures, to the home
directory, /home/christine, and renamed it to fall. Neither the timestamp value nor
the inode number changed. Only the location and name were altered.

You can also use the mv command to move entire directories and their contents:

$ 1ls -1i Mod Scripts

total 26

296886 -rwxrw-r-- 1 christine christine 929 May 21 16:16
file mod.sh

296887 -rwxrw-r-- 1 christine christine 54 May 21 16:27
my script

296885 -rwxrw-r-- 1 christine christine 254 May 21 16:16
SGID search.sh
296884 -rwxrw-r-- 1 christine christine 243 May 21 16:16
SUID search.sh

$
$ mv Mod Scripts O0ld Scripts

$
$ 1ls -1i Mod Scripts
ls: cannot access Mod Scripts: No such file or directory

$

$ 1ls -1i 0ld Scripts

total 26

296886 -rwxrw-r-- 1 christine christine 929 May 21 16:16
file mod.sh

296887 -rwxrw-r-- 1 christine christine 54 May 21 16:27
my script

296885 -rwxrw-r-- 1 christine christine 254 May 21 16:16
SGID search.sh

296884 -rwxrw-r-- 1 christine christine 243 May 21 16:16
SUID search.sh

$

The directory’s entire contents are unchanged. The only thing that changes is the name of
the directory.

After you know how to rename...err...move files with the mv command, you realize how
simple it is to accomplish. Another easy, but potentially dangerous, task is deleting files.

Deleting files

Most likely at some point you'll want to be able to delete existing files. Whether it's to
clean up a filesystem or to remove a software package, you always have opportunities to
delete files.

In the Linux world, deleting is called removing. The command to remove files in the bash
shell is rm. The basic form of the rm command is simple:

72

Chapter 3: Basic bash Shell Commands

S rm -i fall
rm: remove regular empty file 'fall'? y

$
$ 1ls -1 fall
ls: cannot access fall: No such file or directory

$

Notice that the -i command parameter prompts you to make sure that you're serious
about removing the file. The shell has no recycle bin or trashcan. After you remove a file,
it's gone forever. Therefore, a good habit is to always tack on the -1 parameter to the rm
command.

You can also use wildcard metacharacters to remove groups of files. However, again, use
that -1 option to protect yourself:

S rm -i £?11

rm: remove regular empty file 'fell'? y

rm: remove regular empty file 'fill'? y

rm: remove regular empty file 'full'? y

$

$ 1s -1 £?11

ls: cannot access f?11: No such file or directory

$

One other feature of the rm command, if you're removing lots of files and don't want to
be bothered with the prompt, is to use the - f parameter to force the removal. Just be
careful!

Managing Directories

Linux has a few commands that work for both files and directories (such as the cp com-
mand), and some that work only for directories. To create a new directory, you need to use
a specific command, which is covered in this section. Removing directories can get inter-
esting, so that is covered in this section as well.

Creating directories

Creating a new directory in Linux is easy — just use the mkdir command:

$ mkdir New Dir
$ 1ls -1d New Dir
drwxrwxr-x 2 christine christine 4096 May 22 09:48 New Dir

$

The system creates a new directory named New_Dir. Notice in the new directory’s long list-
ing that the directory’s record begins with a d. This indicates that New Dir is not a file,
but a directory.

73

Part I: The Linux Command Line

You can create directories and subdirectories in “bulk” if needed. However, if you attempt
this with just the mkdir command, you get the following error message:

$ mkdir New Dir/Sub Dir/Under Dir
mkdir: cannot create directory 'New Dir/Sub Dir/Under Dir':
No such file or directory

$

To create several directories and subdirectories at the same time, you need to add the -p
parameter:

$ mkdir -p New Dir/Sub Dir/Under Dir
$

$ 1ls -R New Dir

New_Dir:

Sub Dir

New Dir/Sub Dir:
Under_Dir

New Dir/Sub Dir/Under Dir:
$

The -p option on the mkdir command makes any missing parent directories as needed. A
parent directory is a directory that contains other directories at the next level down the

directory tree.

0f course, after you make something, you need to know how to delete it. This is especially
useful if you created a directory in the wrong location.

Deleting directories

Removing directories can be tricky, and for good reason. There are lots of opportunities for
bad things to happen when you start deleting directories. The shell tries to protect us from
accidental catastrophes as much as possible. The basic command for removing a directory is
rmdir:

$ touch New Dir/my file

$ 1ls -1i New Dir/

total 0

294561 -rw-rw-r-- 1 christine christine 0 May 22 09:52 my file
$

$ rmdir New Dir

rmdir: failed to remove 'New Dir': Directory not empty

$

By default, the rmdir command works only for removing empty directories. Because we cre-
ated a file, my file, in the New Dir directory, the rmdir command refuses to remove it.

74

Chapter 3: Basic bash Shell Commands

To fix this, we must remove the file first. Then we can use the rmdir command on the now
empty directory:

$ rm -i New Dir/my file

rm: remove regular empty file 'New Dir/my file'? y

$

$ rmdir New Dir

$

$ 1ls -1d New Dir

ls: cannot access New Dir: No such file or directory

The rmdir has no -1 option to ask if you want to remove the directory. This is one reason
it is helpful that rmdir removes only empty directories.

You can also use the rm command on entire non-empty directories. Using the -r option
allows the command to descend into the directory, remove the files, and then remove the
directory itself:

$ 1ls -1 My Dir

total 0

-rw-rw-r-- 1 christine christine 0 May 22 10:02 another file
$

$ rm -ri My Dir

rm: descend into directory 'My Dir'? y

rm: remove regular empty file 'My Dir/another file'? y
rm: remove directory 'My Dir'? y

$

$ 1ls -1 My Dir

ls: cannot access My Dir: No such file or directory

$

This also works for descending into multiple subdirectories and is especially useful when
you have lots of directories and files to delete:

$ ls -FR Small Dir
Small Dir:
a file b file c¢_file Teeny Dir/ Tiny Dir/

Small Dir/Teeny Dir:
e file

Small Dir/Tiny Dir:

d_file

$

$ rm -ir Small Dir

rm: descend into directory 'Small Dir'? y

rm: remove regular empty file 'Small Dir/a file'? y

rm: descend into directory 'Small Dir/Tiny Dir'? y

rm: remove regular empty file 'Small Dir/Tiny Dir/d file'? y

75

Part I: The Linux Command Line

rm: remove directory 'Small Dir/Tiny Dir'? y

rm: descend into directory 'Small Dir/Teeny Dir'? y

rm: remove regular empty file 'Small Dir/Teeny Dir/e file'? y
rm: remove directory 'Small_Dir/Teeny_Dir'? y

rm: remove regular empty file 'Small Dir/c file'? y

rm: remove regular empty file 'Small Dir/b file'? y

rm: remove directory 'Small Dir'? y

$

$ ls -FR Small Dir

ls: cannot access Small Dir: No such file or directory

$

Although this works, it's somewhat awkward. Notice that you still must verify each and
every file that gets removed. For a directory with lots of files and subdirectories, this can
become tedious.

NoTE
For the rm command, the - r parameter and the -R parameter work exactly the same. When used with the rm com-

mand, the -R parameter also recursively traverses through the directory removing files. It is unusual for a shell com-
mand to have different cased parameters with the same function.

The ultimate solution for throwing caution to the wind and removing an entire directory,
contents and all, is the rm command with both the -r and -f parameters:

$ tree Small Dir
Small Dir
— a file
— b _file
F— c_file
— Teeny Dir
| L— e file
L— Tiny Dir
L— d file

2 directories, 5 files

$

$ rm -rf Small Dir

$

$ tree Small Dir

Small Dir [error opening dir]

0 directories, 0 files

$

The rm -rf command gives no warnings and no fanfare. This, of course, is an extremely
dangerous tool to have, especially if have superuser privileges. Use it sparingly, and only
after triple checking to make sure that you're doing exactly what you want to do!

76

Chapter 3: Basic bash Shell Commands

NoTE
Notice in the preceding example that we used the t ree utility. It nicely displays directories, subdirectories, and their

files. It’s a useful utility when you need to understand a directory structure, especially before removing it. This utility
may not be installed by default in your Linux distribution. See Chapter 9 for learning about installing software.

In the last few sections, you looked at managing both files and directories. So far we
covered everything you need to know about files, except for how to peek inside of them.

Viewing File Contents

You can use several commands for looking inside files without having to pull out a text
editor utility (see Chapter 10). This section demonstrates a few of the commands you have
available to help you examine files.

Viewing the file type

Before you go charging off trying to display a file, try to get a handle on what type of file
it is. If you try to display a binary file, you get lots of gibberish on your monitor and may
even lock up your terminal emulator.

The file command is a handy little utility to have around. It can peek inside of a file and 3
determine just what kind of file it is:

$ file my file
my file: ASCII text
$

The file in the preceding example is a text file. The file command determined not only
that the file contains text but also the character code format of the text file, ASCII.

This following example shows a file that is simply a directory. Thus, the file command
gives you another method to distinguish a directory:

$ file New Dir
New Dir: directory

$

This third file command example shows a file, which is a symbolic link. Note that the
file command even tells you to which file it is symbolically linked:

$ file sl data file

sl data file: symbolic link to 'data file'
$

77

Part I: The Linux Command Line

The following example shows what the file command returns for a script file.
Although the file is ASCII text, because it's a script file, you can execute (run) it on
the system:

$ file my script
my script: Bourne-Again shell script, ASCII text executable

$

The final example is a binary executable program. The file command determines the
platform that the program was compiled for and what types of libraries it requires. This
is an especially handy feature if you have a binary executable program from an unknown
source:

$ file /bin/ls

/bin/ls: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
[...]

$

Now that you know a quick method for viewing a file’s type, you can start displaying and

viewing files.

Viewing the whole file

If you have a large text file on your hands, you may want to be able to see what's inside of
it. Linux has three different commands that can help you here.

Using the cat command
The cat command is a handy tool for displaying all the data inside a text file:

S cat testl
hello

This is a test file.

That we'll use to test the cat command.

$

Nothing too exciting, just the contents of the text file. However, the cat command has a
few parameters that can help you out.

The -n parameter numbers all the lines for you:

78

Chapter 3: Basic bash Shell Commands

$ cat -n testl
hello

This is a test file.

o Ul W N R

That we'll use to test the cat command.

$

That feature will come in handy when you're examining scripts. If you just want to number
the lines that have text in them, the -b parameter is for you:

$ cat -b testl
1 hello

2 This is a test file.
3 That we'll use to test the cat command.

$

Finally, if you don't want tab characters to appear, use the -T parameter:

S cat -T testl
hello

This is a test file.

That we'll use to”Itest the cat command.

$

The -T parameter replaces any tabs in the text with the *I character combination.

For large files, the cat command can be somewhat annoying. The text in the file just
quickly scrolls off the display without stopping. Fortunately, we have a simple way to solve
this problem.

Using the more command

The main drawback of the cat command is that you can’t control what's happening
after you start it. To solve that problem, developers created the more command. The
more command displays a text file, but stops after it displays each page of data. We
typed the command more /etc/bash.bashrc to produce the sample more screen shown
in Figure 3-3.

79

Part I: The Linux Command Line

80

FIGURE 3-3

Using the more command to display a text file

shopt -g£ checkwinsize

set variable identifuing the chroot you work in (used in the prompt below)

if [-z "$tdebian_chroot:-3" 1 && [-r setc/debian_chroot]; then
debian_chroot=%{cat setc/debian_chroot)

fi

set a fancy prompt (non-color, overwrite the one in setc/profile)
FEl="%idebian_chroot:+(%debian_chroot) isugshosuss

Commented out, don't overwrite xterm -T "title" -n "icontitle" by default.
If this is an xterm set the title to userghost:dir

#rase "ETERM" in

Hxterms| reytsx)

FROMPT_COMMAND= 'echo -ne "~03310;$IUSERIGEIHNSTHAMED © SIFHDI~00T"

i

)

i

#esac

enable bash completion in interactive shells

#1f | shopt -og posix; then

1if [-f rusrs/sharesbash-completionsbash_completion 1; then
. susr/share/sbash-complet ionsbash_completion

elif [-f setc/bash_completion 1; then

. setc/bash_complet ion

fi

#f 1

Notice at the bottom of the screen in Figure 3-3 that the more command displays a tag
showing that you're still in the more application and how far along (56%) in the text file
you are. This is the prompt for the more command.

The more command is a pager utility. Remember from earlier in this chapter a pager utility
displays selected bash manual pages when you use the man command. Similarly to navigat-
ing through the man pages, you can use more to navigate through a text file by pressing
the spacebar or you can go forward line by line using the Enter key. When you are finished
navigating through the file using more, press the q key to quit.

The more command allows some rudimentary movement through the text file. For more
advanced features, try the less command.

Using the less command

From its name, it sounds like it shouldn't be as advanced as the more command. However,
the less command name is actually a play on words and is an advanced version of the
more command (the less command name comes from the phrase “less is more”). It pro-
vides several very handy features for scrolling both forward and backward through a text
file, as well as some pretty advanced searching capabilities.

The less command can also display a file’s contents before it finishes reading the entire
file. The cat and more commands cannot do this.

Chapter 3: Basic bash Shell Commands

The less command operates much the same as the more command, displaying one screen
of text from a file at a time. It supports the same command set as the more command, plus
many more options.

Tip

To see all the options available for the Less command, view its man pages by typing man less. You can do the same
for the more command to see the reference material concerning its various options as well.

One set of features is that the 1less command recognizes the up and down arrow keys as
well as the Page Up and Page Down keys (assuming that you're using a properly defined ter-
minal). This gives you full control when viewing a file.

Viewing parts of a file

Often the data you want to view is located either right at the top or buried at the bottom
of a text file. If the information is at the top of a large file, you still need to wait for the
cat or more commands to load the entire file before you can view it. If the information
is located at the bottom of a file (such as a log file), you need to wade through thousands
of lines of text just to get to the last few entries. Fortunately, Linux has specialized com-
mands to solve both of these problems.

Using the tail command

The tail command displays the last lines in a file (the file's “tail”). By default, it shows
the last 10 lines in the file.

For these examples, we created a text file containing 20 text lines. It is displayed here in
its entirety using the cat command:

$ cat log file

linel

line2

line3

line4

line5

Hello World - line 6
line7

lines8

line9

linel0

linell

Hello again - line 12
linel3

linel4

linel5

Sweet - linelé6

81

Part I: The Linux Command Line

82

linel?7
linel8
linel9
Last line - 1line20

$

Now that you have seen the entire text file, you can see the effect of using tail to view
the file’s last 10 lines:

$ tail log file
linell

Hello again - line 12
linel3

linel4

linel5

Sweet - linelé6
linel7

linel8

linel9

Last line - line20

$

You can change the number of lines shown using tail by including the -n parameter. In
this example, only the last two lines of the file are displayed, by adding -n 2 to the tail
command:

$ tail -n 2 log file
linel9
Last line - 1ine20

$

The - £ parameter is a pretty cool feature of the tail command. It allows you to peek
inside a file as the file is being used by other processes. The tail command stays active
and continues to display new lines as they appear in the text file. This is a great way to
monitor the system log files in real-time mode.

Using the head command

The head command does what you'd expect; it displays a file’s first group of lines (the file’s
“head”). By default, it displays the first 10 lines of text:

$ head log file
linel

line2

line3

line4

line5

Hello World - line 6

Chapter 3: Basic bash Shell Commands

line?7
lines
line9
linel0
$

Similar to the tail command, the head command supports the -n parameter so you can
alter what's displayed. Both commands also allow you to simply type a dash along with the
number of lines to display, as shown here:

$ head -5 log file
linel
line2
line3
line4
line5

$

Usually the beginning of a file doesn't change, so the head command doesn't support the
-f parameter feature as the tail command does. The head command is a handy way to
just peek at the beginning of a file.

Summary

This chapter covered the basics of working with the Linux filesystem from a shell prompt.
We began with a discussion of the bash shell and showed you how to interact with the
shell. The command line interface (CLI) uses a prompt string to indicate when it’s ready for
you to enter commands.

The shell provides a wealth of utilities you can use to create and manipulate files. Before
you start playing with files, you should understand how Linux stores them. This chapter
discussed the basics of the Linux virtual directory and showed you how Linux references
storage media devices. After describing the Linux filesystem, the chapter walked you
through using the cd command to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the 1s
command to list the files and subdirectories. Lots of parameters can customize the output
of the 1s command. You can obtain information on files and directories by using the 1s
command.

The touch command is useful for creating empty files and for changing the access or modi-
fication times on an existing file. The chapter also discussed using the cp command to copy
existing files from one location to another. It walked you through the process of linking
files instead of copying them, providing an easy way to have the same file in two locations
without making a separate copy. The 1n command provides this linking ability.

83

Part I: The Linux Command Line

84

Next, you learned how to rename files (called moving) in Linux using the mv command
and saw how to delete files (called removing) using the rm command. This chapter also
showed you how to perform the same tasks with directories, using the mkdir and rmdir
commands.

Finally, the chapter closed with a discussion on viewing the contents of files. The cat,
more, and less commands provide easy methods for viewing the entire contents of a file,
while the tail and head commands are great for peeking inside a file to just see a small
portion of it.

The next chapter continues the discussion on bash shell commands. We'll look at more
advanced administrator commands that come in handy as you administer your Linux
system.

CHAPTER

More bash Shell Commands

IN THIS CHAPTER

Managing processes
Getting disk statistics
Mounting new disks
Sorting data

Archiving data

and directories. File and directory management is a major feature of the Linux shell; how-

ever, we should look at some other things before we start our script programming. This chap-
ter digs into the Linux system management commands, showing you how to peek inside your Linux
system using command line commands. After that, we show you a few handy commands that you
can use to work with data files on the system.

C hapter 3 covered the basics of walking through the Linux filesystem and working with files

Monitoring Programs

One of the toughest jobs of being a Linux system administrator is keeping track of what’s running
on the system — especially now, when graphical desktops take a handful of programs just to
produce a single desktop. You always have lots of programs running on the system.

Fortunately, a few command line tools are available to help make life easier for you. This section
covers a few of the basic tools you need to know how to use to manage programs on your Linux
system.

Peeking at the processes

When a program runs on the system, it’s referred to as a process. To examine these processes, you
need to become familiar with the ps command, the Swiss Army knife of utilities. It can produce
lots of information about all the programs running on your system.

85

Part I: The Linux Command Line

Unfortunately, with this robustness comes complexity — in the form of numerous param-
eters — making the ps command probably one of the most difficult commands to master.
Most system administrators find a subset of these parameters that provide the information
they want, and they stick with using only those.

That said, however, the basic ps command doesn't really provide all that much information:

$ ps
PID TTY TIME CMD
3081 pts/0 00:00:00 bash
3209 pts/0 00:00:00 ps
$

Not too exciting. By default, the ps command shows only the processes that belong to the
current user and that are running on the current terminal. In this case, we had only our
bash shell running (remember, the shell is just another program running on the system)
and, of course, the ps command itself.

The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they
are running from, and the CPU time the process has used.

NoTE
The tricky feature of the ps command (and the part that makes it so complicated) is that at one time there were two

versions of it. Each version had its own set of command line parameters controlling what information it displayed
and how. Recently, Linux developers have combined the two ps command formats into a single ps program (and of
course added their own touches).

The GNU ps command that’s used in Linux systems supports three different types of com-
mand line parameters:

B Unix-style parameters, which are preceded by a dash

B BSD-style parameters, which are not preceded by a dash

m GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of
how they work.

Unix-style parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T
Unix systems invented by Bell Labs. Table 4-1 shows these parameters.

86

Chapter 4: More bash Shell Commands

TABLE 41 The ps Command Unix Parameters

Parameter Description

-A Shows all processes

-N Shows the opposite of the specified parameters

-a Shows all processes except session headers and processes without a
terminal

-d Shows all processes except session headers

-e Shows all processes

-C cmslist Shows processes contained in the list cmdlist

-G grplist Shows processes with a group ID listed in grplist

-U userlist Shows processes owned by a userid listed in userlist

-ggrplist Shows processes by session or by groupid contained in grplist

-p pidlist Shows processes with PIDs in the list pidlist

-s sesslist Shows processes with session ID in the list sesslist

-t ttylist Shows processes with terminal ID in the list ttylist

-uuserlist Shows processes by effective userid in the list userlist

-F Uses extra full output

-0 format Displays specific columns in the list format, along with the default
columns

-M Displays security information about the process

-c Shows additional scheduler information about the process

-f Displays a full format listing

-3 Shows job information

-1 Displays a long listing

-o format Displays only specific columns listed in format

-y Prevents display of process flags

-Z Displays the security context information

-H Displays processes in a hierarchical format (showing parent processes)

-n namelist Defines the values to display in the WCHAN column

-w Uses wide output format, for unlimited width displays

-L Shows process threads

-v Displays the version of ps

87

Part I: The Linux Command Line

That’s a lot of parameters, and there are still more! The key to using the ps command is not
to memorize all the available parameters — only those you find most useful. Most Linux
system administrators have their own sets of parameters that they use for extracting per-
tinent information. For example, if you need to see everything running on the system, use
the -ef parameter combination (the ps command lets you combine parameters like this):

$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 11:29 2 00:00:01 init [5]

root 2 0 0 11:29 2 00:00:00 [kthreadd]

root 3 2 0 11:29 2 00:00:00 [migration/0]
root 4 2 0 11:29 ? 00:00:00 [ksoftirqgd/0]
root 5 2 0 11:29 ? 00:00:00 [watchdog/0]
root 6 2 0 11:29 2 00:00:00 [events/0]

root 7 2 0 11:29 7 00:00:00 [khelper]

root 47 2 0 11:29 ? 00:00:00 [kblockd/0]

root 48 2 0 11:29 7 00:00:00 [kacpid]

68 2349 1 0 11:30 7 00:00:00 hald

root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: richepts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash

rich 4445 3081 3 13:48 pts/0 00:00:00 ps -ef

$

Quite a few lines have been cut from the output to save space, but you can see that lots of
processes are running on a Linux system. This example uses two parameters: the -e param-
eter, which shows all the processes running on the system, and the -f parameter, which
expands the output to show a few useful columns of information:

UID: The user responsible for launching the process

PID: The process ID of the process

PPID: The PID of the parent process (if a process is started by another process)

C: Processor utilization over the lifetime of the process

STIME: The system time when the process started

TTY: The terminal device from which the process was launched

TIME: The cumulative CPU time required to run the process

CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many system administra-
tors want to see. For even more information, you can use the -1 parameter, which produces
the long format output:

$ ps -1
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

88

Chapter 4: More bash Shell Commands

0 S 500 3081 3080 0O 80 0 - 1173 wait pts/0 00:00:00 bash
0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps
$

Notice the extra columns that appear when you use the -1 parameter:

F: System flags assigned to the process by the kernel

S: The state of the process (O = running on processor; S = sleeping; R = runnable,
waiting to run; Z = zombie, process terminated but parent not available;
T = process stopped)

PRI: The priority of the process (higher numbers mean lower priority)
NI: The nice value, which is used for determining priorities
ADDR: The memory address of the process

S7: Approximate amount of swap space required if the process was swapped out

WCHAN: Address of the kernel function where the process is sleeping

BSD-style parameters

Now that you've seen the Unix parameters, let’s look at the BSD-style parameters. The
Berkeley Software Distribution (BSD) was a version of Unix developed at (of course) the
University of California, Berkeley. It had many subtle differences from the AT&T Unix
system, thus sparking many Unix wars over the years. Table 4-2 shows the BSD version of
the ps command parameters.

TABLE 4-2 The ps Command BSD Parameters

Parameter Description

T Shows all processes associated with this terminal
a Shows all processes associated with any terminal
g Shows all processes including session headers

Shows only running processes

X Shows all processes, even those without a terminal device assigned
Uuserlist Shows processes owned by a userid listed in userlist
ppidlist Shows processes with a PID listed in pidlist
t ttylist Shows processes associated with a terminal listed in ttylist
O format Lists specific columns in format to display along with the standard columns
X Displays data in the register format
Z Includes security information in the output
J Shows job information
1 Uses the long format
Continues

89

Part I: The Linux Command Line

90

TABLE 4-2 (continued)
Parameter Description
o format Displays only columns specified in format
s Uses the signal format
u Uses the user-oriented format
v Uses the virtual memory format

N namelist
O order

S

k sort

=}

< 02 I =

Defines the values to use in the WCHAN column
Defines the order in which to display the information columns

Sums numerical information, such as CPU and memory usage, for child
processes into the parent process

Displays the true command name (the name of the program used to start the
process)

Displays any environment variables used by the command

Displays processes in a hierarchical format, showing which processes started
which processes

Prevents display of the header information

Defines the column(s) to use for sorting the output

Uses numeric values for user and group IDs, along with WCHAN information
Produces wide output for wider terminals

Displays threads as if they were processes

Displays threads after their processes

Lists all format specifiers

Displays the version of ps

As you can see, the Unix and BSD types of parameters have lots of overlap. Most of the
information you can get from one you can also get from the other. Most of the time, you
choose a parameter type based on which format you're more comfortable with (for example,
if you were used to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically changes the output
to simulate the BSD format. Here's an example using the 1 parameter:

$ps 1

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash

0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps 1

$

Chapter 4: More bash Shell Commands

Notice that while many of the output columns are the same as when we used the Unix-style
parameters, some different ones appear as well:

B VSZ: The size in kilobytes of the process in memory

B RSS: The physical memory that a process has used that isn't swapped out

B STAT: A two-character state code representing the current process state
Many system administrators like the BSD-style 1 parameter because it produces a more
detailed state code for processes (the STAT column). The two-character code more precisely

defines exactly what's happening with the process than the single-character Unix-style
output.

The first character uses the same values as the Unix-style S output column, showing when
a process is sleeping, running, or waiting. The second character further defines the pro-
cess’s status:

<: The process is running at high priority.

: The process is running at low priority.

£ =

: The process has pages locked in memory.

: The process is a session leader.

0]

1: The process is multi-threaded.

+: The process is running in the foreground.

From the simple example shown previously, you can see that the bash command is sleep-
ing, but it is a session leader (it’s the main process in my session), whereas the ps command
was running in the foreground on the system.

The GNU long parameters

Finally, the GNU developers put their own touches on the new, improved ps command by
adding a few more options to the parameter mix. Some of the GNU long parameters copy
existing Unix- or BSD-style parameters, while others provide new features. Table 4-3 lists
the available GNU long parameters.

TABLE 4-3 The ps Command GNU Parameters

Parameter Description

--deselect Shows all processes except those listed in the command line
--Group grplist Shows processes whose group ID is listed in grplist
--User userlist Shows processes whose user ID is listed in userlist

--group grplist Shows processes whose effective group ID is listed in grplist

Continues

91

Part I: The Linux Command Line

TABLE 4-3 (continued)

Parameter Description

--pid pidlist Shows processes whose process ID is listed in pidlist
--ppid pidlist Shows processes whose parent process ID is listed in pidlist
--sid sidlist Shows processes whose session ID is listed in sidlist

--tty ttylist Shows processes whose terminal device ID is listed in ttylist
--user userlist Shows processes whose effective user ID is listed in userlist
--format format Displays only columns specified in the format

--context Displays additional security information

--colsn Sets screen width to n columns

--columns n Sets screen width to n columns

--cumulative Includes stopped child process information

--forest Displays processes in a hierarchical listing showing parent processes
--headers Repeats column headers on each page of output
--no-headers Prevents display of column headers

--linesn Sets the screen height to n lines

--rows n Sets the screen height to n rows

--sort order Defines the column(s) to use for sorting the output

--widthn Sets the screen width to n columns

--help Displays the help information

--info Displays debugging information

--version Displays the version of the ps program

You can combine GNU long parameters with either Unix- or BSD-style parameters to really
customize your display. One cool feature of GNU long parameters that we really like is the
--forest parameter. It displays the hierarchical process information, but using ASCII
characters to draw cute charts:

1981 ? 00:00:00 sshd

3078 ? 00:00:00 _ sshd

3080 ? 00:00:00 _ sshd

3081 pts/0 00:00:00 _ bash
16676 pts/0 00:00:00 _ ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring

The ps command is great for gleaning information about processes running on the system,
but it has one drawback. The ps command can display information only for a specific point

92

Chapter 4: More bash Shell Commands

in time. If you're trying to find trends about processes that are frequently swapped in and
out of memory, it’s hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process
information similarly to the ps command, but it does it in real-time mode. Figure 4-1 is a
snapshot of the top command in action.

FIGURE 4-1

The output of the top command while it is running

13 1) 4:04PM @ rich (b

top - 16:04:38 up 1 min, 2 users, load average: 0.82, 0.52, 0.20

Tasks: 179 total, 1 running, 178 sleeping, 0 stopped, 6 zombie
Cpu(s): ©.5%us, 1.3%sy, 0.0%ni, 97.8%id, ©.3%wa, ©.0%hi, ©.0%si, 0.8%st

Mem: 1026084k total, 433076k used, 593008k free, 50440k buffers
Swap: 2781176k total, 0k used, 2781176k free, 191008k cached
NI VIRT RES S %M TIME+ COMMAND
952 root 20 @ 35924 22m 7576 S 1 2. 0:03.99 Xorg
1432 root 20 0 15856 1868 1516 S 0 0. 0:00.25 pri_wmouse_d
1527 rich 20 @ 78512 17m 13m S e 1. 0:00.43 nautilus
1668 rich 20 @ 64568 15m 11m S e 1. 0:81.25 gnome-terminal
1 root 20 0 2804 1656 1260 S 8 o. 0:00.61 init
2 root 20 %] <] %] es 0 o. 0:00.00 kthreadd
3 root RT @] 0 s 0 . 0:00.00 migration/@
4 root 20 ©] 2] 8 s e o. 0:00.01 ksoftirgd/e
5 root RT @ e 4] 0 s 0 0. 0:80.00 watchdog/®
6 root RT @] 2] 65 0 e. 0:00.00 migration/1
7 root 20 [¢] a [¢] 0 s 0 0. 0:00.00 ksoftirgd/1
8 root RT @] 2] 85 0 @e. 0:00.00 watchdog/1
9 root 20 %] <] %] es 0 o. 0:00.08 events/@
10 root 20 @] ¢} 65 0 a. 0:00.04 events/1
11 root 20 @ G} [¢] 05 0 o. 0:00.00 cpuset
12 root 20 @] 2] 8 s 0 8. 0:00.00 khelper
13 root 20 ©] 2] 8 s e o. 0:00.00 netns
14 root 20 2] a 2] 0 s 0 0. 0:00.08 async/mgr
15 root 20 ©] 2] 8 s e o. 0:00.00 pm
17 root 20 2] a 2] 0 s 0 0. 0:00.00 sync_supers

=] rich@rich-desktop: ~ # [Update Manager]

The first section of the output shows general system information. The first line shows the
current time, how long the system has been up, the number of users logged in, and the load
average on the system.

The load average appears as three numbers: the 1-minute, 5-minute, and 15-minute load
averages. The higher the values, the more load the system is experiencing. It's not uncom-
mon for the 1-minute load value to be high for short bursts of activity. If the 15-minute
load value is high, your system may be in trouble.

93

Part I: The Linux Command Line

NoTE

The trick in Linux system administration is defining what exactly a high load average value is. This value depends on

what'’s normally running on your system and the hardware configuration. What’s high for one system might be normal
for another. Usually, if your load averages start getting over 2, things are getting busy on your system.

94

The second line shows general process information (called tasks in top): how many
processes are running, sleeping, stopped, and zombie (have finished but their parent
process hasn't responded).

The next line shows general CPU information. The top display breaks down the CPU
utilization into several categories depending on the owner of the process (user versus
system processes) and the state of the processes (running, idle, or waiting).

Following that are two lines that detail the status of the system memory. The first line
shows the status of the physical memory in the system, how much total memory there is,
how much is currently being used, and how much is free. The second memory line shows
the status of the swap memory area in the system (if any is installed), with the same
information.

Finally, the next section shows a detailed list of the currently running processes, with
some information columns that should look familiar from the ps command output:
PID: The process ID of the process

USER: The user name of the owner of the process

PR: The priority of the process

NI: The nice value of the process

VIRT: The total amount of virtual memory used by the process

RES: The amount of physical memory the process is using

SHR: The amount of memory the process is sharing with other processes

S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced
or stopped, or Z = zombie)

%CPU: The share of CPU time that the process is using
%MEM: The share of available physical memory the process is using

TIME+: The total CPU time the process has used since starting

COMMAND: The command line name of the process (program started)

By default, when you start top, it sorts the processes based on the $CPU value. You can
change the sort order by using one of several interactive commands while top is running.
Each interactive command is a single character that you can press while top is running
and changes the behavior of the program. Pressing £ allows you to select the field to use

Chapter 4: More bash Shell Commands

to sort the output, and pressing d allows you to change the polling interval. Press g to exit
the top display.

You have lots of control over the output of the top command. Using this tool, you can
often find offending processes that have taken over your system. Of course, after you find
one, the next job is to stop it, which brings us to the next topic.

Stopping processes

A crucial part of being a system administrator is knowing when and how to stop a process.
Sometimes, a process gets hung up and needs a gentle nudge to either get going again

or stop. Other times, a process runs away with the CPU and refuses to give it up. In both
cases, you need a command that allows you to control a process. Linux follows the Unix
method of interprocess communication.

In Linux, processes communicate with each other using signals. A process signal is a
predefined message that processes recognize and may choose to ignore or act on. The
developers program how a process handles signals. Most well-written applications have the
ability to receive and act on the standard Unix process signals. Table 4-4 shows these signals.

TABLE 4-4 Linux Process Signals

Signal Name Description

1 HUP Hangs up

2 INT Interrupts

3 QUIT Stops running

9 KILL Unconditionally terminates

1 SEGV Produces segment violation

15 TERM Terminates if possible

17 STOP Stops unconditionally, but doesn’t terminate

18 TSTP Stops or pauses, but continues to run in background
19 CONT Resumes execution after STOP or TSTP

Two commands available in Linux allow you to send process signals to running processes.

The kill command

The ki1l command allows you to send signals to processes based on their process ID (PID).
By default, the kill command sends a TERM signal to all the PIDs listed on the command
line. Unfortunately, you can only use the process PID instead of its command name, making
the kill command difficult to use sometimes.

95

Part I: The Linux Command Line

To send a process signal, you must either be the owner of the process or be logged in as the
root user.

$ kill 3940
-bash: kill: (3940) - Operation not permitted

$

The TERM signal tells the process to kindly stop running. Unfortunately, if you have a
runaway process, most likely it ignores the request. When you need to get forceful, the -s
parameter allows you to specify other signals (either using their name or signal number).

As you can see from the following example, no output is associated with the ki1l
command.

kill -s HUP 3940
#

To see if the command was effective, you must perform another ps or top command to see
if the offending process stopped.

The killall command

The killall command is a powerful way to stop processes by using their names rather
than the PID numbers. The killall command allows you to use wildcard characters as
well, making it a very useful tool when you have a system that’s gone awry:

killall http*
#

This example kills all the processes that start with http, such as the httpd services for the
Apache web server.

CAUTION

Be extremely careful using the killall command when logged in as the root user. It’s easy to get carried away with
wildcard characters and accidentally stop important system processes. This could lead to a damaged filesystem.

96

Monitoring Disk Space

Another important task of the system administrator is to keep track of the disk usage on
the system. Whether you're running a simple Linux desktop or a large Linux server, you
need to know how much space you have for your applications.

Some command line commands can help you manage the media environment on your Linux
system. This section describes the core commands you'll likely run into during your system
administration duties.

Chapter 4: More bash Shell Commands

Mounting media

As discussed in Chapter 3, the Linux filesystem combines all media disks into a single
virtual directory. Before you can use a new media disk on your system, you must place it in
the virtual directory. This task is called mounting.

In today’s graphical desktop world, most Linux distributions have the ability to automati-
cally mount specific types of removable media. A removable media device is a medium that
(obviously) can be easily removed from the PC, such as CD-ROMs and USB memory sticks.

If you're not using a distribution that automatically mounts and unmounts removable
media, you have to do it yourself. This section describes the Linux command line com-
mands to help you manage your removable media devices.

The mount command

0ddly enough, the command used to mount media is called mount. By default, the mount
command displays a list of media devices currently mounted on the system:

$ mount

/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sdal on /boot type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt misc type binfmt misc (rw)
sunrpc on /var/lib/nfs/rpc pipefs type rpc_pipefs (rw)
/dev/sdbl on /media/disk type vfat

(rw,nosuid, nodev,uhelper=hal, shortname=lower,uid=503)

$

The mount command provides four pieces of information:

B The device filename of the media

B The mount point in the virtual directory where the media is mounted
m The filesystem type

|

The access status of the mounted media

The last entry in the preceding example is a USB memory stick that the GNOME desktop
automatically mounted at the /media/disk mount point. The vfat filesystem type shows
that it was formatted on a Microsoft Windows PC.

To manually mount a media device in the virtual directory, you must be logged in as the
root user or use the sudo command to run the command as the root user. The following is
the basic command for manually mounting a media device:

mount -t type device directory

97

Part I: The Linux Command Line

98

The type parameter defines the filesystem type under which the disk was formatted. Linux
recognizes lots of different filesystem types. If you share removable media devices with
your Windows PCs, you are most likely to run into these types:

m vfat: Windows long filesystem
B ntfs: Windows advanced filesystem used in Windows NT, XP, and Vista
B is09660: The standard CD-ROM filesystem

Most USB memory sticks and floppies are formatted using the vfat filesystem. If you need
to mount a data CD, you must use the is09660 filesystem type.

The next two parameters define the location of the device file for the media device and the
location in the virtual directory for the mount point. For example, to manually mount the
USB memory stick at device /dev/sdbl at location /media/disk, you use the following
command:

mount -t vfat /dev/sdbl /media/disk

After a media device is mounted in the virtual directory, the root user has full access to
the device, but access by other users is restricted. You can control who has access to the
device using directory permissions (discussed in Chapter 7).

In case you need to use some of the more exotic features of the mount command, Table 4-5
shows the available parameters .

TABLE 4-5 The mount Command Parameters

Parameter Description

-a Mounts all filesystems specified in the /etc/fstab file

-t Causes the mount command to simulate mounting a device, but not actually
mount it

-F Mounts all filesystems at the same time when used with the -a parameter

-v Explains all the steps required to mount the device; stands for verbose mode

-1 Tells you not to use any filesystem helper files under /sbin/mount
.filesystem

-1 Adds the filesystem labels automatically for ext2, ext3, or XFS filesystems

-n Mounts the device without registering it in the /etc/mstab mounted device
file

-p num For encrypted mounting, reads the passphrase from the file descriptor num

-s Ignores mount options not supported by the filesystem

-r Mounts the device as read-only

Chapter 4: More bash Shell Commands

-w Mounts the device as read-write (the default)

-L label Mounts the device with the specified 1abel

-U uuid Mounts the device with the specified uuid

-0 When used with the -a parameter, limits the set of filesystems applied
-o Adds specific options to the filesystem

The -o option allows you to mount the filesystem with a comma-separated list of additional
options. These are popular options to use:

ro: Mounts as read-only

rw: Mounts as read-write

]
]

B user: Allows an ordinary user to mount the filesystem

B check=none: Mounts the filesystem without performing an integrity check
]

loop: Mounts a file

The unmount command

To remove a removable media device, you should never just remove it from the system.
Instead, you should always unmount it first.

Tip

Linux doesn’t allow you to eject a mounted CD. If you ever have trouble removing a CD from the drive, most likely it
means the CD is still mounted in the virtual directory. Unmount it first, and then try to eject it.

u_m

The command used to unmount devices is umount (yes, there’s no “n” in the command,
which gets confusing sometimes). The format for the umount command is pretty simple:

umount [directory | device]

The umount command gives you the choice of defining the media device by either its
device location or its mounted directory name. If any program has a file open on a device,
the system won't let you unmount it.

[root@testbox mnt]# umount /home/rich/mnt
umount : /home/rich/mnt: device is busy
umount: /home/rich/mnt: device is busy
[root@testbox mnt]l# cd /home/rich
[root@testbox richl# umount /home/rich/mnt
[root@etestbox richl# 1ls -1 mnt

total 0

[root@testbox richl#

99

Part I: The Linux Command Line

In this example, the command prompt was still in a directory within the filesystem struc-
ture, so the umount command couldn't unmount the image file. After the command prompt
was moved out of the image file filesystem, the umount command successfully unmounted
the image file.

Using the df command

Sometimes, you need to see how much disk space is available on an individual device. The
df command allows you to easily see what's happening on all the mounted disks:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 18251068 7703964 9605024 45% /

/dev/sdal 101086 18680 77187 20% /boot

tmpfs 119536 0 119536 0% /dev/shm
/dev/sdbl 127462 113892 13570 90% /media/disk
$

The df command shows each mounted filesystem that contains data. As you can see from
the mount command earlier, some mounted devices are used for internal system purposes.
The command displays the following:

The device location of the device

How many 1024-byte blocks of data it can hold

How many 1024-byte blocks are used

How many 1024-byte blocks are available

The amount of used space as a percentage

The mount point where the device is mounted

A few different command line parameters are available with the df command, most of
which you'll never use. One popular parameter is -h, which shows the disk space in human-
readable form, usually as an M for megabytes or a G for gigabytes:

$ df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sdb2 18G 7.4G 9.2G 45% /

/dev/sdal 99M 19M 76M 20% /boot

tmpfs 117M 0 117M 0% /dev/shm
/dev/sdbl 125M 112M 14M 90% /media/disk
$

Now instead of having to decode those ugly block numbers, all the disk sizes are shown
using “normal” sizes. The df command is invaluable in troubleshooting disk space problems
on the system.

100

Chapter 4: More bash Shell Commands

NoTE
Remember that the Linux system always has processes running in the background that handle files. The values

from the Af command reflect what the Linux system thinks are the current values at that point in time. It's possible
that you have a process running that has created or deleted a file but has not released the file yet. This value is not
included in the free space calculation.

Using the du command

With the df command, you can easily see when a disk is running out of space. The next
problem for the system administrator is to know what to do when that happens.

Another useful command to help you is the du command. The du command shows the disk
usage for a specific directory (by default, the current directory). This is a quick way to
determine if you have any obvious disk hogs on the system.

By default, the du command displays all the files, directories, and subdirectories under
the current directory, and it shows how many disk blocks each file or directory takes. For a
standard-sized directory, this can be quite a listing. Here's a partial listing of using the du

command:
S du
484 ./ .gstreamer-0.10
8 ./Templates
8 . /Download
8 ./.ccache/7/0
24 ./ .ccache/7
368 ./ .ccache/a/d
384 ./ .ccache/a
424 ./ .ccache
8 ./Public
8 ./ .gphpedit/plugins
32 ./ .gphpedit
72 ./ .gconfd
128 ./.nautilus/metafiles
384 ./ .nautilus
72 ./.bittorrent/data/metainfo
20 ./.bittorrent/data/resume
144 ./ .bittorrent/data
152 ./.bittorrent
8 ./Videos
8 ./Music
16 ./.config/gtk-2.0
40 ./.config
8 . /Documents

101

Part I: The Linux Command Line

102

The number at the left of each line is the number of disk blocks that each file or
directory takes. Notice that the listing starts at the bottom of a directory and works its
way up through the files and subdirectories contained within the directory.

The du command by itself can be somewhat useless. It's nice to be able to see how much
disk space each individual file and directory takes up, but it can be meaningless when
you have to wade through pages and pages of information before you find what you're
looking for.

You can use a few command line parameters with the du command to make things a little
more legible:
B -c: Produces a grand total of all the files listed

B -h: Prints sizes in human-readable form, using K for kilobyte, M for megabyte, and
G for gigabyte

B -s: Summarizes each argument

The next step for the system administrator is to use some file-handling commands for
manipulating large amounts of data. That’s exactly what the next section covers.

Working with Data Files

When you have a large amount of data, handling the information and making it useful can
be difficult. As you saw with the du command in the previous section, it’s easy to get data
overload when working with system commands.

The Linux system provides several command line tools to help you manage large amounts of
data. This section covers the basic commands that every system administrator — as well as
any everyday Linux user — should know how to use to make their lives easier.

Sorting data

The sort command is a popular function that comes in handy when working with large
amounts of data. The sort command does what it says: It sorts data.

By default, the sort command sorts the data lines in a text file using standard sorting
rules for the language you specify as the default for the session.

$ cat filel
one

two

three

four

Chapter 4: More bash Shell Commands

five

$ sort filel
five

four

one

three

two

$

It's pretty simple, but things aren’t always as easy as they appear. Look at this example:

S cat file2
1

2

100

45

3

10

145

75

S sort file2
1

10

100

145

2

3

45

75

$

If you were expecting the numbers to sort in numerical order, you were disappointed. By
default, the sort command interprets numbers as characters and performs a standard
character sort, producing output that might not be what you want. To solve this problem,
use the -n parameter, which tells the sort command to recognize numbers as numbers
instead of characters and to sort them based on their numerical values:

$ sort -n file2
1

2

3

10

45

75

100

145

103

Part I: The Linux Command Line

104

Now, that’s much better! Another common parameter that’s used is -M, the month sort.
Linux log files usually contain a timestamp at the beginning of the line to indicate when
the event occurred:

Sep 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened

If you sort a file that uses timestamp dates using the default sort, you get something like
this:

$ sort file3
Apr
Aug
Dec
Feb
Jan
Jul
Jun
Mar
May
Nov
Oct
Sep
$

It's not exactly what you wanted. If you use the -M parameter, the sort command recog-
nizes the three-character month nomenclature and sorts appropriately:

$ sort -M file3
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

$

Table 4-6 shows other handy sort parameters you can use.

Chapter 4: More bash Shell Commands

TABLE 4-6 The sort Command Parameters

Single Dash Double Dash Description

-b --ignore-leading-blanks Ignores leading blanks when sorting

-C --check = quiet Doesn't sort, but doesn't report if data is out of sort
order

-c --check Doesn't sort, but checks if the input data is already
sorted, and reports if not sorted

-d --dictionary-order Considers only blanks and alphanumeric charac-
ters; doesn't consider special characters

-f --ignore-case By default, sort orders capitalized letters first;
ignores case

-9 --general-numeric-sort Uses general numerical value to sort

-1 --ignore-nonprinting Ignores nonprintable characters in the sort

-k --key = POS1[,P0OS2] Sorts based on position POS1, and ends at POS2 if
specified

-M --month-sort Sorts by month order using three-character month
names

-m --merge Merges two already sorted data files

-n --numeric-sort Sorts by string numerical value

-0 —-output = file Writes results to file specified

-R --random-sort Sorts by a random hash of keys

--random-source = FILE Specifies the file for random bytes used by the -rR

parameter
-r --reverse Reverses the sort order (descending instead of
ascending
-S --buffer-size = S1ZE Specifies the amount of memory to use
-8 --stable Disables last-resort comparison
-T --temporary-direction = Specifies a location to store temporary working files
DIR
-t --field-separator = Specifies the character used to distinguish key
SEP positions
-u --unique With the -c parameter, checks for strict ordering;
without the -c parameter, outputs only the first
occurrence of two similar lines
-z --zero-terminated Ends all lines with a NULL character instead of a

new line

105

Part I: The Linux Command Line

The -k and -t parameters are handy when sorting data that uses fields, such as the /etc/
passwd file. Use the -t parameter to specify the field separator character, and use the -k
parameter to specify which field to sort on. For example, to sort the password file based on
numerical userid, just do this:

$ sort -t ':' -k 3 -n /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon: /sbin:/sbin/nologin
adm:x:3:4:adm: /var/adm: /sbin/nologin
lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin: /bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:

uucp:x:10:14 :uucp: /var/spool/uucp: /sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games: /usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

Now the data is perfectly sorted based on the third field, which is the numerical userid
value.

The -n parameter is great for sorting numerical outputs, such as the output of the du
command:

$ du -sh * | sort -nr

1008k mrtg-2.9.29.tar.gz
972k bldgl

888k fbs2.pdf

760k Printtest

680k rsync-2.6.6.tar.gz
660k code

516k £ig1001.tiff

496k test

496k php-common-4.0.4pll-6mdk.1586.rpm
448k MesaGLUT-6.5.1.tar.gz
400k plp

Notice that the -r option also sorts the values in descending order, so you can easily see
what files are taking up the most space in your directory.

NoTE

The pipe command (]) used in this example redirects the output of the du command to the sort command. That’s
discussed in more detail in Chapter 11.

106

news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

Chapter 4: More bash Shell Commands

Searching for data

Often in a large file, you must look for a specific line of data buried somewhere in the
middle of the file. Instead of manually scrolling through the entire file, you can let the
grep command search for you. The command line format for the grep command is:

grep [options] pattern [file]

The grep command searches either the input or the file you specify for lines that contain
characters that match the specified pattern. The output from grep is the lines that contain
the matching pattern.

Here are two simple examples of using the grep command with the filel file used in the
“Sorting data” section:

S grep three filel
three

$ grep t filel

two

three

$

The first example searches the file filel for text matching the pattern three. The grep
command produces the line that contains the matching pattern. The next example searches
the file filel for the text matching the pattern t. In this case, two lines matched the
specified pattern, and both are displayed.

Because of the popularity of the grep command, it has undergone lots of development
changes over its lifetime. Lots of features have been added to the grep command. If you
look over the man pages for the grep command, you'll see how versatile it really is.

If you want to reverse the search (output lines that dont match the pattern), use the -v
parameter:

$ grep -v t filel
one

four

five

$

If you need to find the line numbers where the matching patterns are found, use the -n
parameter:

$ grep -n t filel
2:two

3:three

$

107

Part I: The Linux Command Line

108

If you just need to see a count of how many lines contain the matching pattern, use the -c
parameter:

$ grep -c t filel
2
$

If you need to specify more than one matching pattern, use the -e parameter to specify
each individual pattern:

$ grep -e t -e f filel
two

three

four

five

$

This example outputs lines that contain either the string t or the string f.

By default, the grep command uses basic Unix-style regular expressions to match patterns.
A Unix-style regular expression uses special characters to define how to look for matching
patterns.

For a more detailed explanation of reqular expressions, see Chapter 20.
Here’s a simple example of using a regular expression in a grep search:

$ grep [tf] filel
two

three

four

five

$

The square brackets in the regular expression indicate that grep should look for matches
that contain either a t or an f character. Without the reqgular expression, grep would search
for text that would match the string tf£.

The egrep command is an offshoot of grep, which allows you to specify POSIX extended
regular expressions, which contain more characters for specifying the matching pattern
(again, see Chapter 20 for more details). The fgrep command is another version that allows
you to specify matching patterns as a list of fixed-string values, separated by newline char-
acters. This allows you to place a list of strings in a file and then use that list in the fgrep
command to search for the strings in a larger file.

Compressing data

If you've done any work in the Microsoft Windows world, no doubt you've used zip files. It
became such a popular feature that Microsoft eventually incorporated it into the Windows

Chapter 4: More bash Shell Commands

operating system starting with XP. The zip utility allows you to easily compress large files
(both text and executable) into smaller files that take up less space.

Linux contains several file compression utilities. Although this may sound great, it often
leads to confusion and chaos when trying to download files. Table 4-7 lists the file compres-
sion utilities available for Linux.

TABLE 4-7 Linux File Compression Utilities

Utility File Extension Description

bzip2 -bz2 Uses the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding

compress -7 Original Unix file compression utility; starting to fade away
into obscurity

gzip -9z The GNU Project’s compression utility; uses Lempel-Ziv
coding

zip -zip The Unix version of the PKZIP program for Windows

The compress file compression utility is not often found on Linux systems. If you down-
load a file with a . Z extension, you can usually install the compress package (called
ncompress in many Linux distributions) using the software installation methods dis-
cussed in Chapter 9 and then uncompress the file with the uncompress command. The
gzip utility is the most popular compression tool used in Linux.

The gzip package is a creation of the GNU Project, in their attempt to create a free version
of the original Unix compress utility. This package includes these files:

B gzip for compressing files
B gzcat for displaying the contents of compressed text files

B gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

$ gzip myprog

$ 1ls -1 my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
$

The gzip command compresses the file you specify on the command line. You can also
specify more than one filename or even use wildcard characters to compress multiple files
at once:

$ gzip my*
$ 1ls -1 my*

109

Part I: The Linux Command Line

-TWXr--T-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
-TWXY-Xr-X 1 rich rich 5178 Sep 6 13:43 myprog.gz
-ITWXr--T-- 1 rich rich 59 Sep 6 13:46 myscript.gz
-TWXT--Y-- 1 rich rich 60 Sep 6 13:44 myscript2.gz
$

The gzip command compresses every file in the directory that matches the wildcard

pattern.

Archiving data

Although the zip command works great for compressing and archiving data into a single
file, it's not the standard utility used in the Unix and Linux worlds. By far the most popular
archiving tool used in Unix and Linux is the tar command.

The tar command was originally used to write files to a tape device for archiving.
However, it can also write the output to a file, which has become a popular way to archive
data in Linux.

The following is the format of the tar command:

tar function [options] objectl object2

The function parameter defines what the tar command should do, as shown in Table 4-8.

TABLE 4-8 The tar Command Functions

Function Long Name Description

-A --concatenate Appends an existing tar archive file to another existing
tar archive file

-c --create Creates a new tar archive file

-d --diff Checks the differences between a tar archive file and the
filesystem

--delete Deletes from an existing tar archive file

-r - -append Appends files to the end of an existing tar archive file

-t --list Lists the contents of an existing tar archive file

-u --update Appends files to an existing tar archive file that are newer

than a file with the same name in the existing archive

-X --extract Extracts files from an existing archive file

Each function uses options to define a specific behavior for the tar archive file. Table 4-9
lists the common options that you can use with the tar command.

110

Chapter 4: More bash Shell Commands

TABLE 4-9 The tar Command Options

Option Description

-Cdir Changes to the specified directory

-f file Outputs results to file (or device) file

-3 Redirects output to the bzip2 command for compression
-p Preserves all file permissions

-V Lists files as they are processed

-z Redirects the output to the gzip command for compression

These options are usually combined to create the following scenarios. First, you want to
create an archive file using this command:

tar -cvf test.tar test/ test2/

The above command creates an archive file called test.tar containing the contents of
both the test directory and the test2 directory. Next, this command:

tar -tf test.tar
lists (but doesn’t extract) the contents of the tar file test.tar. Finally, this command:
tar -xvf test.tar

extracts the contents of the tar file test.tar. If the tar file was created from a directory
structure, the entire directory structure is re-created starting at the current directory.

As you can see, using the tar command is a simple way to create archive files of entire
directory structures. This is a common method for distributing source code files for open
source applications in the Linux world.

Tip

If you download open source software, often you see filenames that end in .tgz. These are gzipped tar files, which can
be extracted using the command tar -zxvf filename.tgz.

Summary

This chapter discussed some of the more advanced bash commands used by Linux system
administrators and programmers. The ps and top commands are vital in determining the
status of the system, allowing you to see what applications are running and how many
resources they are consuming.

111

Part I: The Linux Command Line

112

In this day of removable media, another popular topic for system administrators is
mounting storage devices. The mount command allows you to mount a physical storage
device into the Linux virtual directory structure. To remove the device, use the umount
command.

Finally, the chapter discussed various utilities used for handling data. The sort utility
easily sorts large data files to help you organize data, and the grep utility allows you to
quickly scan through large data files looking for specific information. Several file compres-
sion utilities are available in Linux, including gzip and zip. Each one allows you to com-
press large files to help save space on your filesystem. The Linux tar utility is a popular
way to archive directory structures into a single file that can easily be ported to another
system.

The next chapter discusses Linux shells and how to interact with them. Linux allows
you to communicate between shells, which can come in handy when creating subshells in
your scripts.

CHAPTER

Understanding the Shell

IN THIS CHAPTER

Investigating Shell Types
Understanding the Parent/Child Shell Relationship
Using Subshells Creatively

Investigating Built-in Shell Commands

mands, it is time to explore the actual shell process. To understand the shell, you need to

N ow that you know a few shell basics, such as reaching the shell and rudimentary shell com-
understand a few CLI basics.

A shell is not just a CLL. It is a complicated interactive running program. Entering commands and
using the shell to run scripts can raise some interesting and confusing issues. Understanding the
shell process and its relationships helps you resolve these issues or avoid them altogether.

This chapter takes you through learning about the shell process. You see how subshells are created
and their relationship to the parent shell. The varied commands that create child processes are
explored as well as built-in commands. You even read about some shell tips and tricks to try.

Exploring Shell Types

The shell program that the system starts depends on your user ID configuration. In the /etc/
passwd file, the user ID has its default shell program listed in field #7 of its record. The default
shell program is started whenever the user logs into a virtual console terminal or starts a terminal
emulator in the GUI.

In the following example, user christine has the GNU bash shell as her default shell program:

$ cat /etc/passwd
[...]
Christine:x:501:501:Christine B:/home/Christine:/bin/bash

$

113

Part I: The Linux Command Line

The bash shell program resides in the /bin directory. A long listing reveals /bin/bash
(the bash shell) is an executable program:

$ 1ls -1F /bin/bash
-rwWXr-xr-x. 1 root root 938832 Jul 18 2013 /bin/bash*
$

Several other shell programs are on this particular CentOS distribution. They include tcsh,
which is based off the original C shell:

$ 1s -1F /bin/tcsh
-YwXr-xr-x. 1 root root 387328 Feb 21 2013 /bin/tcsh*
$

Also, the Debian based version of the ash shell, dash, is included:

$ 1ls -1F /bin/dash
-TwXr-xr-x. 1 root root 109672 Oct 17 2012 /bin/dash*
$

Finally, a soft link (see Chapter 3) of the C shell points to the tcsh shell:

$ 1s -1F /bin/csh
lrwxrwxrwx. 1 root root 4 Mar 18 15:16 /bin/csh -> tcsh*

$

Each of these different shell programs could be set as a user’s default shell. However, due to
the bash shell’s popularity, it's rare to use any other shell as a default shell.

NoTE

A brief description of various shells was included in Chapter 1. You may be interested in learning even more about
shells other than the GNU bash shell. Additional alternative shell information is in Chapter 23.

The default interactive shell starts whenever a user logs into a virtual console terminal or
starts a terminal emulator in the GUI. However, another default shell, /bin/sh, is the
default system shell. The default system shell is used for system shell scripts, such as those
needed at startup.

Often, you see a distribution with its default system shell set to the bash shell using a soft
link as shown here on this CentOS distribution:

$ 1s -1 /bin/sh
lrwxrwxrwx. 1 root root 4 Mar 18 15:05 /bin/sh -> bash

$

However, be aware that on some distributions, the default system shell is different than
the default interactive shell, such as on this Ubuntu distribution:

114

Chapter 5: Understanding the Shell

$ cat /etc/passwd

[...]
christine:x:1000:1000:Christine,,, :/home/christine:/bin/bash

$

$ 1ls -1 /bin/sh

lrwxrwxrwx 1 root root 4 Apr 22 12:33 /bin/sh -> dash
$

Note that the user, christine, has her default interactive shell set to /bin/bash, the
bash shell. But the default system shell, /bin/sh, is set to the dash shell.

Tip

For bash shell scripts, these two different shells, default interactive shell and default system shell, can cause prob-

lems. Be sure to read about the important syntax needed for a bash shell script’s first line in Chapter 11 to avoid
these issues.

You are not forced to stick with your default interactive shell. You can start any shell avail-
able on your distribution, simply by typing its filename. For example, to start the dash
shell, you can run it directly by typing the command /bin/dash:

$ /bin/dash
$

It doesn't look like anything happened, but the dash shell program started. The $ prompt
is a CLI prompt for the dash shell. You can leave the dash shell program by typing the com-
mand exit:

S exit

exit

$
Again, it looks like nothing happened. However, the dash shell program was exited. To
understand this process, the next section explores the relationship between a login shell
program and a newly started shell program.

Exploring Parent and Child Shell Relationships

The default interactive shell started when a user logs into a virtual console terminal or
starts a terminal emulator in the GUI is a parent shell. As you have read so far in this book,
a parent shell process provides a CLI prompt and waits for commands to be entered.

When the /bin/bash command or the equivalent bash command is entered at the CLI
prompt, a new shell program is created. This is a child shell. A child shell also has a CLI
prompt and waits for commands to be entered.

115

Part I: The Linux Command Line

Because you do not see any relevant messages when you type bash and spawn a child shell,
another command can help bring clarity. The ps command was covered in Chapter 4. Using
this with the - £ option before and after entering a child shell is useful:

$ ps -f

UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2429 1841 4 13:44 pts/0 00:00:00 ps -f
$

$ bash

$

$ ps -f

UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2430 1841 0 13:44 pts/0 00:00:00 bash
501 2444 2430 1 13:44 pts/0 00:00:00 ps -f
$

The first use of ps -f shows two processes. One process has a process ID of 1841 (second
column) and is running the bash shell program (last column). The second process (process
ID 2429) is the actual ps -f command running.

NoTE
A process is a running program. The bash shell is a program, and when it runs, it is a process. A running shell is

simply one type of process. Therefore, when reading about running a bash shell, you often see the word “shell” and
the word “process” used interchangeably.

After the command bash is entered, a child shell is created. The second ps -f is exe-
cuted from within the child shell. From this display, you can see that two bash shell pro-
grams are running. The first bash shell program, the parent shell process, has the original
process ID (PID) of 1841. The second bash shell program, the child shell process, has a PID
of 2430. Note that the child shell has a parent process ID (PPID) of 1841, denoting that the
parent shell process is its parent. Figure 5-1 diagrams this relationship.

FIGURE 5-1

Parent and child bash shell processes

Parent shell Child subshell

Creates
subshell

issues command:
ps -f

issues command:
bash

116

Chapter 5: Understanding the Shell

When a child shell process is spawned, only some of the parent’s environment is copied to
the child shell environment. This can cause problems with items such as variables, and it is
covered in Chapter 6.

A child shell is also called a subshell. A subshell can be created from a parent shell, and a
subshell can be created from another subshell:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2532 1841 1 14:22 pts/0 00:00:00 ps -f
$

$ bash

$

S bash

$

$ bash

$

S ps --forest

PID TTY TIME CMD

1841 pts/0 00:00:00 bash

2533 pts/0 00:00:00 _ bash

2546 pts/0 00:00:00 _ bash

2562 pts/0 00:00:00 _ bash

2576 pts/0 00:00:00 _ ps

$

In the preceding example, the bash shell command was entered three times. Effectively,
this created three subshells. The ps --forest command shows the nesting of these sub-

shells. Figure 5-2 also shows this subshell nesting.

The ps -f command can be useful in subshell nesting, because it displays who is whose
parent via the PPID column:

$ ps -f

UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2533 1841 0 14:22 pts/O 00:00:00 bash
501 2546 2533 0 14:22 pts/0 00:00:00 bash
501 2562 2546 0 14:24 pts/0 00:00:00 bash
501 2585 2562 1 14:29 pts/0 00:00:00 ps -f
$

The bash shell program can use command line parameters to modify the shell start.
Table 5-1 lists the command line parameters available in bash.

117

Part I: The Linux Command Line

118

FIGURE 5-2

Subshell nesting

Parent shell bash child subshell
Creates
issues command: subshell issues command:
bash bash

Creates

subshell
bash great- bash grandchild

grandchild subshell Creates subshell

issues command: subshell issues command:

ps --forest bash

TABLE 51 The bash Command Line Parameters

Parameter Description

-c string Reads commands from string and processes them

i Starts an interactive shell, allowing input from the user

| Acts as if invoked as a login shell

-r Starts a restricted shell, limiting the user to the default directory

-s Reads commands from the standard input

You can find more help on the bash command and even more command line parameters by
typing man bash. The bash --help command provides additional assistance as well.

You can gracefully exit out of each subshell by entering the exit command:

S exit

exit

$

S ps --forest
PID TTY TIME CMD
1841 pts/0 00:00:00 bash

Chapter 5: Understanding the Shell

2533 pts/0 00:00:00 _ Dbash

2546 pts/0 00:00:00 _ bash
2602 pts/0 00:00:00 _ ps
$
S exit
exit
$
S exit
exit
$
$ ps --forest
PID TTY TIME CMD
1841 pts/0 00:00:00 bash
2604 pts/0 00:00:00 _ ps
$

Not only does the exit command allow you to leave child subshells, but you can also log
out of your current virtual console terminal or terminal emulation software as well. Just
type exit in the parent shell, and you gracefully exit the CLI.

Another time a subshell can be created is when you run a shell script. You learn more about
that topic in Chapter 11.

Also, you can spawn subshells without using the bash shell command or running a shell
script. One way is by using a process list.

Looking at process lists

On a single line, you can designate a list of commands to be run one after another. This is
done by entering a command list using a semicolon (;) between commands:

S pwd ; 1ls ; cd /etc ; pwd ; cd ; pwd ; ls

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

/etc

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

$

In the preceding example, the commands all executed one after another with no problems.
However, this is not a process list. For a command list to be considered a process list, the
commands must be encased in parentheses:

119

Part I: The Linux Command Line

S (pwd ; 1s ; cd /etec ; pwd ; cd ; pwd ; 1ls)

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

/etc

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

$

Though the parentheses addition may not appear to be a big difference, they do cause a
very different effect. Adding parentheses and turning the command list into a process list
created a subshell to execute the commands.

NoTE
A process list is a command grouping type. Another command grouping type puts the commands between curly

brackets and ends the command list with a semicolon (;). The syntax is as follows: { command; }. Using curly
brackets for command grouping does not create a subshell as a process list does.

To indicate if a subshell was spawned, a command using an environment variable is needed
here. (Environment variables are covered in detail in Chapter 6). The command needed is
echo $BASH SUBSHELL. If it returns a 0, then there is no subshell. If it returns 1 or more,
then there is a subshell.

First, the example using just a command list is executed with the echo $BASH SUBSHELL
tacked onto the end:

$pwd ; 1s ; cd /etc ; pwd ; cd ; pwd ; ls ; echo $BASH SUBSHELL

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

/etc

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

0

At the very end of the commands’ output, you can see the number zero (0) is displayed.
This indicates a subshell was not created to execute these commands.

The results are different using a process list. The list is executed with
echo $BASH SUBSHELL tacked onto the end:

$ (pwd ; 1s ; cd /etc ; pwd ; cd ; pwd ; 1s ; echo $BASH SUBSHELL)

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

/etc

120

Chapter 5: Understanding the Shell

/home/Christine

Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates

1

In this case, the number one (1) displayed at the output’s end. This indicates a subshell
was indeed created and used for executing these commands.

Thus, a process list is a command grouping enclosed with parentheses, which creates a sub-
shell to execute the command(s). You can even create a grandchild subshell by embedding
parentheses within a process list:

$ (pwd ; echo $BASH SUBSHELL)
/home/Christine

1

$ (pwd ; (echo $BASH SUBSHELL))
/home/Christine

2

Notice in the first process list, the number one (1) is displayed indicating a child subshell
as you would expect. However in the example’s second process list, additional parentheses
were added around the echo $BASH SUBSHELL command. These additional parentheses
caused a grandchild subshell to be created for the command’s execution. Thus, a number
two (2) was displayed indicating a subshell within a subshell.

Subshells are often used for multi-processing in shell scripts. However, entering into a sub-
shell is an expensive method and can significantly slow down processing. Subshell issues
exist also for an interactive CLI shell session. It is not truly multi-processing, because the
terminal gets tied up with the subshell’s I/0.

Creatively using subshells

At the interactive shell CLIL, you have more productive ways to use subshells. Process lists,
co-processes, and pipes (covered in Chapter 11) use subshells. They all can be used effec-
tively within the interactive shell.

One productive subshell method in the interactive shell uses background mode. Before
discussing how to use background mode and subshells together, you need to understand
background mode itself.

Investigating background mode

Running a command in background mode allows the command to be processed and frees up
your CLI for other use. A classic command to demonstrate background mode is the sleep
command.

121

Part I: The Linux Command Line

122

The sleep command accepts as a parameter the number of seconds you want the process to
wait (sleep). This command is often used to introduce pauses in shell scripts. The command
sleep 10 causes the session to pause for 10 seconds and then return a shell CLI prompt:

S sleep 10
$

To put a command into background mode, the & character is tacked onto its end. Putting
the sleep command into background mode allows a little investigation with the ps
command:

S sleep 3000&

[1] 2396

$ ps -f

UID PID PPID C STIME TTY TIME CMD
christi+ 2338 2337 0 10:13 pts/9 00:00:00 -bash
christi+ 2396 2338 0 10:17 pts/9 00:00:00 sleep 3000
christi+ 2397 2338 0 10:17 pts/9 00:00:00 ps -£

$

The sleep command was told to sleep for 3000 seconds (50 minutes) in the background
(&). When it was put into the background, two informational items were displayed before
the shell CLI prompt was returned. The first informational item is the background job's
number (1) displayed in brackets. The second item is the background job’s process ID
(2396).

The ps command was used to display the various processes. Notice that the sleep 3000
command is listed. Also note that its process ID (PID) in the second column is the same PID
displayed when the command went into the background, 2396.

In addition to the ps command, you can use the jobs command to display background job
information. The jobs command displays any user’s processes (jobs) currently running in
background mode:

S jobs
[1]+ Running sleep 3000 &
$

The jobs command shows the job number (1) in brackets. It also displays the job’s current
status (running) as well as the command itself, (sleep 3000 &).

You can see even more information by using the -1 (lowercase L) parameter on the
jobs command. The -1 parameter displays the command’s PID in addition to the other
information:

$ jobs -1
[1]+ 2396 Running sleep 3000 &
$

Chapter 5: Understanding the Shell

When the background job is finished, its completion status is displayed:

[1]+ Done sleep 3000 &
$

Tip

Be aware that a background job’s completion status won’t necessarily wait till a convenient time to display itself.
Don't let it surprise you when a job’s completion status just suddenly appears on your screen.

Background mode is very handy. And it provides a method for creating useful subshells at
the CLI.

Putting process lists into the background

As stated earlier, a process list is a command or series of commands executed within a sub-
shell. Using a process list including sleep commands and displaying the BASH SUBSHELL
variable operates as you would expect:

$ (sleep 2 ; echo $BASH SUBSHELL ; sleep 2)
1
$

In the preceding example, a two-second pause occurs, the number one (1) is displayed indi-
cating a single subshell level (child subshell), and then another two-second pause occurs
before the prompt returns. Nothing too dramatic here.

Putting the same process list into background mode can cause a slightly different effect
with command output:

$ (sleep 2 ; echo $BASH SUBSHELL ; sleep 2)&

[2] 2401

S 1

[2]+ Done (sleep 2; echo $BASH SUBSHELL; sleep 2)
$

Putting the process list into the background causes a job number and process ID to appear,
and the prompt returns. However, the odd event is that the displayed number one (1), indi-
cating a single-level subshell, is displayed by the prompt! Don't let this confuse you. Simply
press the Enter key, and you get another prompt back.

Using a process list in background mode is one creative method for using subshells at the
CLI. You can do large amounts of processing within a subshell and not have your terminal
tied up with the subshell’s I/0.

123

Part I: The Linux Command Line

124

0f course, the process list of sleep and echo commands are just for example purposes.
Creating backup files with tar (see Chapter 4) is a more practical example of using back-
ground process lists effectively:

$ (tar -cf Rich.tar /home/rich ; tar -cf My.tar /home/christine)&
[3] 2423
$

Putting a process list in background mode is not the only way to use subshells creatively at
the CLI. Co-processing is another method.

Looking at co-processing

Co-processing does two things at the same time. It spawns a subshell in background mode
and executes a command within that subshell.

To perform co-processing, the coproc command is used along with the command to be
executed in the subshell:

S coproc sleep 10
[1] 2544
$

Co-processing performs almost identically to putting a command in background mode,
except for the fact that it creates a subshell. You'll notice that when the coproc command
and its parameters were entered, a background job was started. The background job number
(1) and process ID (2544) were displayed on the screen.

The jobs command allows you to display the co-processing status:

S jobs
[1]+ Running coproc COPROC sleep 10 &
$

From the preceding example, you can see the background command executing in the
subshell is coproc COPROC sleep 10. The COPROC is a name given to the process by
the coproc command. You can set the name yourself by using extended syntax for the
command:

$ coproc My Job { sleep 10; }

[11 2570

$

$ jobs

[11+ Running coproc My Job { sleep 10; } &
$

By using the extended syntax, the co-processing name was set to My Job. Be careful here,
because the extended syntax is a little tricky. You have to make sure that a space appears
after the first curly bracket ({) and before the start of your command. Also, you have to

Chapter 5: Understanding the Shell

make sure the command ends with a semicolon (;). And you have to ensure that a space
appears after the semicolon and before the closing curly bracket (}).

NoTE
Co-processing allows you to get very fancy and send/receive information to the process running in the subshell. The

only time you need to name a co-process is when you have multiple co-processes running, and you need to communi-
cate with them all. Otherwise, just let the coproc command set the name to the default, COPROC.

You can be really clever and combine co-processing with process lists creating nested sub-
shells. Just type your process list and put the command coproc in front of it:

$ coproc (sleep 10; sleep 2)
[1] 2574

$
S jobs
[1]+ Running coproc COPROC (sleep 10; sleep 2) &

$
S ps --forest
PID TTY TIME CMD
2483 pts/12 00:00:00 bash
2574 pts/12 00:00:00 _ bash
2575 pts/12 00:00:00 | _ sleep
2576 pts/12 00:00:00 _ ps
$

Just remember that spawning a subshell can be expensive and slow. Creating nested
subshells is even more so!

Using subshells can provide flexibility at the command line as well as convenience.
Understanding their behavior is important to obtaining this flexibility and convenience.
Command behavior is also important to understand. In the next section, the behavior
differences between built-in and external commands are explored.

Understanding Shell Built-In Commands

While learning about the GNU bash shell, you likely have heard the term built-in command.
It is important to understand both shell built-in and non-built-in (external) commands.
Built-in commands and non-built-in commands operate very differently.

Looking at external commands

An external command, sometimes called a filesystem command, is a program that exists
outside of the bash shell. They are not built into the shell program. An external command
program is typically located in /bin, /usr/bin, /sbin, or /usr/sbin.

125

Part I: The Linux Command Line

126

The ps command is an external command. You can find its filename by using both the
which and the type commands:

$ which ps

/bin/ps

$

S type -a ps

ps is /bin/ps

$

$ 1s -1 /bin/ps

-rwxr-xr-x 1 root root 93232 Jan 6 18:32 /bin/ps
$

Whenever an external command is executed, a child process is created. This action is
termed forking. Conveniently, the external command ps displays its current parent as well
as its own forked child processes:

$ ps -f

UID PID PPID C STIME TTY TIME CMD
christi+ 2743 2742 0 17:09 pts/9 00:00:00 -bash
christi+ 2801 2743 0 17:16 pts/9 00:00:00 ps -f
$

Because it is an external command, when the ps command executes, a child process is
created. In this case, the ps command’s PID is 2801 and the parent PID is 2743. The bash
shell process, which is the parent, has a PID of 2743. Figure 5-3 illustrates the forking that
occurs when an external command is executed.

FIGURE 5-3

External command forking

Parent process Child process

Forks child

_—
process executes external
command:

ps -f

issues external
command:
ps -f

Whenever a process must fork, it takes time and effort to set up the new child process’s
environment. Thus, external commands can be a little expensive.

Chapter 5: Understanding the Shell

NoTE
If you fork a child process or create a subshell, you can still communicate with it via signaling, which is extremely

helpful in both the command line and in writing shell scripts. Signaling allows process communication via signals.
Signals and signaling are covered in Chapter 16.

When using a built-in command, no forking is required. Therefore, built-in commands are
less expensive.

Looking at built-in commands

Built-in commands are different in that they do not need a child process to execute. They
were compiled into the shell and thus are part of the shell’s toolkit. No external
program file exists to run them.

Both the cd and exit commands are built into the bash shell. You can tell a command is
built-in by using the type command:

S type cd

cd is a shell builtin

$

S type exit

exit is a shell builtin
$

Because they do not need to fork a child process to execute or open a program file, built-in
commands are faster and more efficient. A list of GNU bash shell built-in commands is
provided in Appendix A.

Be aware that some commands have multiple flavors. For example, both echo and pwd have
a built-in command flavor as well as an external command flavor. These flavors are slightly
different. To see multiple flavors for commands, use the -a option on the type command:

S type -a echo

echo is a shell builtin
echo is /bin/echo

$

$ which echo

/bin/echo

$

$ type -a pwd

pwd is a shell builtin
pwd is /bin/pwd

127

Part I: The Linux Command Line

$

S which pwd
/bin/pwd

$

Using the type -a command shows both types for each of the two commands. Note that
the which command shows only the external command file.

Tip

To use the external command for a command that has multiple flavors, directly reference the file. For example, to use
the pwd external command, type /bin/pwd.

Using the history command

A useful built-in command is the history command. The bash shell keeps track of the
commands you have used. You can recall these commands and even reuse them.

To see a recently used commands list, just type the history command with no options:

S history
1 ps -f

pwd

1s

coproc (sleep 10; sleep 2)
jobs
ps --forest
1s
ps -£

9 pwd
10 1s -1 /bin/ps
11 history

W J o Ul WN

12 cd /etc
13 pwd

14 1s

15 cd

16 type pwd

17 which pwd

18 type echo

19 which echo
20 type -a pwd
21 type -a echo
22 pwd

23 history

In this example, only the last 23 commands are shown. Typically, the last 1,000 commands
are kept in history. That is lots of commands!

128

Chapter 5: Understanding the Shell

Tip

You can set the number of commands to keep in the bash history. To do so, you need to modify an environment
variable called HISTSIZE (see Chapter 6).

You can recall and reuse the last command in your history list. This can save time and
typing. To recall and reuse your last command, type !! and press the Enter key:

$ ps --forest

PID TTY TIME CMD
2089 pts/0 00:00:00 bash
2744 pts/0 00:00:00 _ ps

$
S 1!
ps --forest

PID TTY TIME CMD
2089 pts/0 00:00:00 bash
2745 pts/0 00:00:00 _ ps

$

When ! ! was entered, the bash shell first displayed the command it was recalling from the
shell’s history. After the command was displayed, it was executed.

Command history is kept in the hidden .bash history file, which is located in the user’s
home directory. Be careful here. The bash command history is stored in memory and then
written out into the history file when the shell is exited:

$ history

[...]
25 ps --forest
26 history
27 ps --forest
28 history

$

$ cat .bash history

pwd

1ls

history

exit

$

Notice when the history command is run, 28 commands are listed. In the example, the
listing is snipped for brevity. However, when the .bash history file is displayed, only
four commands are listed, and they don't match the history command’s list.

129

Part I: The Linux Command Line

You can force the command history to be written to the .bash history file before
leaving a shell session. In order to force this write, use the -a option on the history
command:

$ history -a

$

S history

[...]
25 ps --forest
26 history
27 ps --forest
28 history
29 1s -a
30 cat .bash history
31 history -a
32 history

$

$ cat .bash history
[...]

ps --forest

history

ps --forest

history

1s -a

cat .bash history
history -a

This time both listings need to be snipped because they are so long. Notice that contents
from both the history command and the .bash history file match, except for the very
last command listed for the history command, because it came after the history -a
command was issued.

NoTE
If you have multiple terminal sessions open, you can still append the . bash history ineach open session using the

history -acommand. However, the histories are not automatically updated for your other open terminal sessions.
This is because the .bash history fileis read only when a terminal session is first started. To force the
.bash history file to be reread and a terminal session’s history to be updated, use the history -n command.

You can recall any command from the history list. Just enter an exclamation point and the
command’s number from the history list:

S history
[...]
13 pwd
14 1s
15 cd

130

Chapter 5: Understanding the Shell

16 type pwd

17 which pwd

18 type echo

19 which echo
20 type -a pwd
21 type -a echo
.1

32 history -a
33 history

34 cat .bash history
35 history

$
$ 120
type -a pwd

pwd is a shell builtin
pwd is /bin/pwd
$

Command number 20 was pulled from command history. Notice that similar to executing
the last command in history, the bash shell first displays the command it is recalling from
the shell’s history. After the command is displayed, it is executed.

Using bash shell command history can be a great timesaver. You can do even more with the
built-in history command. Be sure to view the bash manual pages for history, by typing
man history.

Using command aliases

The alias command is another shell built-in command. A command alias allows you to
create an alias name for common commands (along with their parameters) to help keep your
typing to a minimum.

Most likely, your Linux distribution has already set some common command aliases for you.
To see a list of the active aliases, use the alias command with the -p parameter:

$ alias -p

[...]

alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias 1='ls -CF'

alias la='ls -A'

alias 1l='ls -alF'

alias 1s='ls --color=auto'

$

Notice that, on this Ubuntu Linux distribution, an alias is used to override the standard 1s
command. It automatically provides the - -color parameter, indicating that the terminal
supports color mode listings.

131

Part I: The Linux Command Line

You can create your own aliases using the alias command:

S alias li='ls -1i'
$

S 1i

total 36

529581 drwXr-Xr-x.
529585 drwXr-xr-x.
529582 drwXr-xXr-x.
529586 drwXr-xr-x.
529587 drwXr-Xr-x.
529584 drwXr-Xr-xX.
529583 drwXr-xXr-x.
532891 -rwxrw-r--.
529588 drwXr-xXr-x.
$

Christine Christine 4096
Christine Christine 4096
Christine Christine 4096
Christine Christine 4096
Christine Christine 4096
Christine Christine 4096
Christine Christine 4096
Christine Christine 36
Christine Christine 4096

N R NDDNDNDNDNDNDDN

May
Apr
Apr
Apr
Apr
Apr
Apr
May
Apr

19
25
25
25
25
25
25
30
25

18:
16:
16:
16:
16:
16:
16:
:21
16:

07

17
59
59
59
59
59
59

59

Desktop
Documents
Downloads
Music
Pictures
Public
Templates
test.sh
Videos

After you define an alias value, you can use it at any time in your shell, including in shell
scripts. Be aware that because command aliases are built-in commands, an alias is valid

only for the shell process in which it is defined:

$ alias li='ls -1i'

$

S bash

$

s 1i

bash: 1i: command not found
$

S exit

exit

$

Fortunately, you can make an alias value permanent across subshells. The next chapter

covers how to do that, along with environment variables.

Summary

This chapter discussed the complicated interactive program, the GNU bash shell. It covered
understanding the shell process and its relationships, including how subshells are spawned
and their relationship to the parent shell. We also explored commands that create child

processes and commands that don't.

The default interactive shell is normally started whenever a user logs in to a terminal. The
shell that the system starts depends upon a user ID configuration. Typically, it is /bin/
bash. The default system shell, /bin/sh, is used for system shell scripts, such as those

needed at startup.

132

Chapter 5: Understanding the Shell

A subshell or child shell can be spawned using the bash command. They are also created
when a process list or the coproc command is used. Using subshells at the command line
can allow for creative and productive use of the CLI. Subshells can be nested, spawning
grandchild shells and great-grandchild shells. Creating a subshell is an expensive process as
a new environment for the shell must be created as well.

Finally, the chapter looked at two different types of shell commands: built-in and external
commands. External commands create a child process with a new environment, but a built-
in command does not. This causes external commands to be more expensive to use. Because
a new environment is not needed, built-in commands are more efficient and not affected by
any environment changes.

Shells, subshells, processes, and forked processes are all affected by environment variables.
How the variables affect and can be used within these different contexts are explored in
the next chapter.

133

CHAPTER

Using Linux Environment
Variables

IN THIS CHAPTER

Looking at environment variables

Creating your own local variables

Removing variables

Exploring default shell environment variables
Setting the PATH environment variable
Locating environment files

Using variable arrays

scripts use environment variables to obtain system information and store temporary data
and configuration information. Environment variables are set in lots of places on the Linux
system, and you should know where these places are.

Linux environment variables help define your Linux shell experience. Many programs and

This chapter walks you through the world of Linux environment variables, showing where they are,
how to use them, and even how to create your own. The chapter finishes off with how to use vari-
able arrays.

Exploring Environment Variables

The bash shell uses a feature called environment variables to store information about the shell
session and the working environment (thus the name environment variables). This feature also
allows you to store data in memory that can be easily accessed by any program or script running
from the shell. It is a handy way to store needed persistent data.

There are two environment variable types in the bash shell:

m Global variables

B Local variables

135

Part I: The Linux Command Line

This section describes each type of environment variable and shows how to see and
use them.

NoTE
Even though the bash shell uses specific environment variables that are consistent, different Linux distributions often

add their own environment variables. The environment variable examples you see in this chapter may differ slightly
from what'’s available on your specific distribution. If you run into an environment variable not covered here, check
your Linux distribution’s documentation.

Looking at global environment variables

Global environment variables are visible from the shell session and from any spawned child
subshells. Local variables are available only in the shell that creates them. This makes
global environment variables useful in applications that create child subshells, which
require parent shell information.

The Linux system sets several global environment variables when you start your bash ses-
sion. (For more details about what variables are started at that time, see the “Locating
System Environment Variables” section later in this chapter.) The system environment vari-
ables almost always use all capital letters to differentiate them from normal user environ-
ment variables.

To view global environment variables, use the env or the printenv command:

$ printenv
HOSTNAME=server0l.class.edu
SELINUX ROLE REQUESTED=
TERM=xterm

SHELL=/bin/bash
HISTSIZE=1000

[...]

HOME=/home/Christine
LOGNAME=Christine

[...]
G_BROKEN FILENAMES=1
_=/usr/bin/printenv

So many global environment variables get set for the bash shell that the display had to
be snipped. Not only are many set during the login process, but how you log in can affect
which ones are set as well.

To display an individual environment variable’s value, you can use the printenv com-
mand, but not the env command:

S printenv HOME
/home/Christine

136

Chapter 6: Using Linux Environment Variables

$

$ env HOME

env: HOME: No such file or directory
$

You can also use the echo command to display a variable’s value. When referencing an
environment variable in this case, you must place a dollar sign ($) before the environment
variable name:

$ echo $HOME
/home/Christine

$

Using the dollar sign along with the variable name does more than just display its
current definition when used with the echo command. The dollar sign before a variable
name allows the variable to be passed as a command parameter:

$ 1ls $HOME

Desktop Downloads Music Public test.sh
Documents Jjunk.dat Pictures Templates Videos
$

$ ls /home/Christine

Desktop Downloads Music Public test.sh
Documents junk.dat Pictures Templates Videos
$

As mentioned earlier, global environment variables are also available to any process’s
subshells:

$ bash

$

$ ps -f

UIlD PID PPID
501 2017 2016
501 2082 2017
501 2095 2082
$

$ echo $HOME
/home/Christine

$

S exit

exit

$

STIME TTY TIME CMD

16:00 pts/0 00:00:00 -bash
16:08 pts/0 00:00:00 bash
16:08 pts/0 00:00:00 ps -f

o O o N

In this example, after spawning a subshell using the bash command, the HOME envi-
ronment variable’s current value is shown. It is set to the exact same value, /home/
Christine, as it was in the parent shell.

137

Part I: The Linux Command Line

Looking at local environment variables

Local environment variables, as their name implies, can be seen only in the local process
in which they are defined. Even though they are local, they are just as important as global
environment variables. In fact, the Linux system also defines standard local environment
variables for you by default. However, you can also define your own local variables. These,
as you would assume, are called user-defined local variables.

Trying to see the local variables list is a little tricky at the CLI. Unfortunately, there isn't
a command that displays only these variables. The set command displays all variables
defined for a specific process, including both local and global environment variables and
user-defined variables:

S set

BASH=/bin/bash

[...]

BASH ALIASES=()
BASH_ARGC= ()
BASH_ARGV=()

BASH_CMDS= ()
BASH_LINENO= ()
BASH_SOURCE-= ()

[...]
colors=/etc/DIR_COLORS
my variable='Hello World'
[...]

$

All global environment variables displayed using the env or printenv commands appear
in the set command’s output. The additional environment variables are the local environ-
ment and user-defined variables.

NoTE
The differences between the commands env, printenv, and set are subtle. The set command displays both
global and local environment variables and user-defined variables. It also sorts the display alphabetically. The env

and printenv are different from set in that they do not sort the variables, nor do they include local environment
or local user-defined variables. Used in this context, env and printenv produce duplicate listings. However, the
env command has additional functionality that printenv does not have, making it the slightly more powerful
command.

Setting User-Defined Variables

You can set your own variables directly from the bash shell. This section shows you how to cre-
ate your own variables and reference them from an interactive shell or shell script program.

138

Chapter 6: Using Linux Environment Variables

Setting local user-defined variables

After you start a bash shell (or spawn a shell script), you're allowed to create local user-defined
variables that are visible within your shell process. You can assign either a numeric or a string
value to an environment variable by assigning the variable to a value using the equal sign:

$ echo $my variable

$ my variable=Hello

g
$ echo $my variable
Hello

That was simple! Now, any time you need to reference the my variable user-defined vari-
able’s value, just reference it by the name smy variable.

If you need to assign a string value that contains spaces, you need to use a single or double
quotation mark to delineate the beginning and the end of the string:

$ my variable=Hello World
-bash: World: command not found

$
$ my variable="Hello World"

$
$ echo $my variable
Hello World

$

Without the quotation marks, the bash shell assumes that the next word is another command
to process. Notice that for the local variable you defined, you used lowercase letters, while the
system environment variables you've seen so far have all used uppercase letters.

Tip

The standard bash shell convention is for all environment variables to use uppercase letters. If you are creating a

local variable for yourself and your own shell scripts, use lowercase letters. Variables are case sensitive. By keep-
ing your user-defined local variables lowercase, you avoid the potential disaster of redefining a system environment
variable.

It's extremely important that you not use spaces between the variable name, the equal
sign, and the value. If you put any spaces in the assignment, the bash shell interprets the
value as a separate command:

$ my variable = "Hello World"
-bash: my variable: command not found

$

After you set a local variable, it's available for use anywhere within your shell process.
However, if you spawn another shell, it’s not available in the child shell:

139

Part I: The Linux Command Line

140

$ my variable="Hello World"

$
S bash

$

$ echo $my variable

S exit
exit
$

$ echo $my variable
Hello World

$

In this example, a child shell was spawned. The user-defined my variable was not avail-
able in the child shell. This is demonstrated by the blank line returned after the

echo $my variable command. After the child shell was exited and returned to the
original shell, the local variable was still available.

Similarly, if you set a local variable in a child process, after you leave the child process, the
local variable is no longer available:

$ echo $my child variable

S bash

$
$ my child variable="Hello Little World"

$
$ echo $my child variable
Hello Little World

$

S exit

exit

$

$ echo $my child variable

$

The local variable set within the child shell doesn't exist after a return to the parent shell.
You can change this behavior by turning your local user-defined variable into a global envi-
ronment variable.

Setting global environment variables

Global environment variables are visible from any child processes created by the parent pro-
cess that sets the variable. The method used to create a global environment variable is to
first create a local variable and then export it to the global environment.

Chapter 6: Using Linux Environment Variables

This is done by using the export command and the variable name minus the dollar sign:
my variable="I am Global now"
export my variable

echo $my variable
am Global now

bash

echo $my variable
am Global now

exit
xit

echo $my variable
am Global now

Ur H W»rvr O Ur r H Uy r r U H Oy 0 Uy Uy

After defining and exporting the local variable my variable, a child shell was started by
the bash command. The child shell was able to properly display the my variable vari-
able’s value. The variable kept its value, because the export command made it a global
environment variable.

Changing a global environment variable within a child shell does not affect the variable’s
value in the parent shell:

$ my variable="I am Global now"
$ export my variable
$

$ echo $my variable
I am Global now

$

S bash

$

$ echo $my variable
I am Global now

$

$ my variable="Null"
$

$ echo $my variable
Null

$

S exit

exit

$

141

Part I: The Linux Command Line

142

$ echo $my variable
I am Global now

$

After defining and exporting the variable my variable, a subshell was started by the
bash command. The subshell properly displayed the value of the my variable global
environment variable. The variable’s value was then changed by the child shell. However,
the variable’s value was modified only within the child shell and not in the parent’s shell.

A child shell cannot even use the export command to change the parent shell’s global
environment variable’s value:

my variable="I am Global now"
export my variable

echo $my variable
am Global now

bash

echo $my variable
am Global now

my variable="Null"

export my variable

Uy Uy Ur Ur Ur Ur H Ur Ur Ur Ur H Uy Ur Ur r

echo $my variable
Null
$

S exit

exit

$

$ echo $my variable
I am Global now

$

Even though the child shell redefined and exported the variable my variable, the parent
shell's my variable variable kept its original value.

Removing Environment Variables

0f course, if you can create a new environment variable, it makes sense that you can also remove
an existing environment variable. You can do this with the unset command. When referencing
the environment variable in the unset command, remember not to use the dollar sign:

$ echo $my variable
I am Global now

Chapter 6: Using Linux Environment Variables

$

$ unset my variable

$
$ echo $my variable
$

Tip

It can be confusing to remember when to use and when not to use the dollar sign with environment variables. Just

remember this: If you are doing anything with the variable, use the dollar sign. If you are doing anything to the vari-
able, don’t use the dollar sign. The exception to this rule is using printenv to display a variable’s value.

When dealing with global environment variables, things get a little tricky. If you're in a
child process and unset a global environment variable, it applies only to the child process.
The global environment variable is still available in the parent process:

my variable="I am Global now"
export my variable

echo $my variable
am Global now

echo $my variable
am Global now

unset my variable

$
$
$
$
$
I
$
$ bash
$
$
I
$
$
$
$

echo $my variable

S exit

exit

$

$ echo $my variable
I am Global now

$

Just as with modifying a variable, you cannot unset it in a child shell and have the vari-
able be unset in the parent’s shell.

Uncovering Default Shell Environment Variables

The bash shell uses specific environment variables by default to define the system envi-
ronment. You can always count on these variables being set or available to be set on your

143

Part I: The Linux Command Line

Linux system. Because the bash shell is a derivative of the original Unix Bourne shell, it
also includes environment variables originally defined in that shell.

Table 6-1 shows the environment variables that the bash shell provides that are compatible
with the original Unix Bourne shell.

TABLE 6-1 The bash Shell Bourne Variables

Variable Description

CDPATH A colon-separated list of directories used as a search path for the cd
command

HOME The current user’s home directory

IFS A list of characters that separate fields used by the shell to split text strings

MAIL The filename for the current user’s mailbox (The bash shell checks this file for
new mail.)

MAILPATH A colon-separated list of multiple filenames for the current user’s mailbox (The
bash shell checks each file in this list for new mail.)

OPTARG The value of the last option argument processed by the getopt command

OPTIND The index value of the last option argument processed by the getopt
command

PATH A colon-separated list of directories where the shell looks for commands

ps1 The primary shell command line interface prompt string

PS2 The secondary shell command line interface prompt string

Besides the default Bourne environment variables, the bash shell also provides a few vari-
ables of its own, as shown in Table 6-2.

TABLE 6-2 The bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the bash shell

BASH ALIASES An associative array of currently set aliases

BASH_ARGC A variable array that contains the number of parameters being
passed to a subroutine or shell script

BASH_ARCV A variable array that contains the parameters being passed to a
subroutine or shell script

BASH CMDS An associative array of locations of commands the shell has
executed

144

Chapter 6: Using Linux Environment Variables

BASH_COMMAND The shell command currently being or about to be executed

BASH_ENV When set, each bash script attempts to execute a startup file
defined by this variable before running.

BASH_EXECUTION_STRING The command(s) passed using the bash -c option

BASH_LINENO A variable array containing the source code line number of the
currently executing shell function

BASH_REMATCH A read-only variable array containing patterns and their sub-
patterns for positive matches using the regular expression
comparison operator, =~

BASH_SOURCE A variable array containing the source code filename of the
currently executing shell function

BASH_SUBSHELL The current nesting level of a subshell environment (The initial
value is 0.)

BASH_VERSINFO A variable array that contains the individual major and minor
version numbers of the current instance of the bash shell

BASH_VERSION The version number of the current instance of the bash shell

BASH_XTRACEFD If set to a valid file descriptor (0,1,2), trace output generated from

the 'set -x' debugging option can be redirected. This is often
used to separate trace output into a file.

BASHOPTS A list of bash shell options that are currently enabled

BASHPID Process ID of the current bash process

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell

COMP_CWORD An index into the variable COMP_WORDS, which contains the
current cursor position

COMP_LINE The current command line

COMP_POINT The index of the current cursor position relative to the beginning
of the current command

COMP_KEY The final key used to invoke the current completion of a shell
function

COMP_TYPE An integer value representing the type of completion attempted

that caused a completion shell function to be invoked

COMP_WORDBREAKS The Readline library word separator characters for performing
word completion

COMP_WORDS An array variable that contains the individual words on the
current command line

COMPREPLY An array variable that contains the possible completion codes
generated by a shell function

Continues

145

Part I: The Linux Command Line

146

TABLE 6-2 (continued)

Variable Description

COPROC An array variable that holds an unnamed coprocess’ I/O file
descriptors

DIRSTACK An array variable that contains the current contents of the direc-
tory stack

EMACS Indicates the emacs shell buffer is executing and line editing is
disabled, when setto 't

ENV When set, executes the startup file defined before a bash shell
script runs (It is used only when the bash shell has been invoked
in POSIX mode.)

EUID The numeric effective user ID of the current user

FCEDIT The default editor used by the fc command

FIGNORE A colon-separated list of suffixes to ignore when performing file
name completion

FUNCNAME The name of the currently executing shell function

FUNCNEST Sets the maximum allowed function nesting level, when set to a
number greater than zero (If it is exceeded, the current com-
mand aborts.)

GLOBIGNORE A colon-separated list of patterns defining the set of filenames
to be ignored by file name expansion

GROUPS A variable array containing the list of groups of which the current
user is a member

histchars Up to three characters, which control history expansion

HISTCMD The history number of the current command

HISTCONTROL Controls what commands are entered in the shell history list

HISTFILE The name of the file in which to save the shell history list (.bash
history by default)

HISTFILESIZE The maximum number of lines to save in the history file
HISTTIMEFORMAT Used as a formatting string to print each command's timestamp
in bash history, if set and not null

HISTIGNORE A colon-separated list of patterns used to decide which com-
mands are ignored for the history file

HISTSIZE The maximum number of commands stored in the history file

HOSTFILE Contains the name of the file that should be read when the shell
needs to complete a hostname

HOSTNAME The name of the current host

HOSTTYPE A string describing the machine the bash shell is running on

Chapter 6: Using Linux Environment Variables

IGNOREEOF The number of consecutive EOF characters the shell must
receive before exiting (If this value doesn't exist, the defaultis 1.)

INPUTRC The name of the Readline initialization file (The default is
.inputrc.)

LANG The locale category for the shell

LC_ALL Overrides the LANG variable, defining a locale category

LC_COLLATE Sets the collation order used when sorting string values

LC_CTYPE Determines the interpretation of characters used in filename
expansion and pattern matching

LC_MESSAGES Determines the locale setting used when interpreting double-
quoted strings preceded by a dollar sign

LC_NUMERIC Determines the locale setting used when formatting numbers

LINENO The line number in a script currently executing

LINES Defines the number of lines available on the terminal

MACHTYPE A string defining the system type in cpu-company-system format

MAPFILE An array variable that holds read-in text from the mapfile com-
mand when no array variable name is given

MAILCHECK How often (in seconds) the shell should check for new mail (The
default is 60.)

OLDPWD The previous working directory used in the shell

OPTERR If set to 1, the bash shell displays errors generated by the
getopts command.

OSTYPE A string defining the operating system the shell is running on

PIPESTATUS Avariable array containing a list of exit status values from the
processes in the foreground process

POSIXLY_ CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell’s parent process

PROMPT_COMMAND If set, the command to execute before displaying the primary
prompt

PROMPT_DIRTRIM An integer used to indicate the number of trailing directory

names to display when using the \w and \W prompt string
escapes (The directory names removed are replaced with one
set of ellipses.)

pPs3 The prompt to use for the select command

ps4 The prompt displayed before the command line is echoed if the
bash -x parameter is used

PWD The current working directory

Continues

147

Part I: The Linux Command Line

TABLE 6-2 (continued)
Variable Description
RANDOM Returns a random number between 0 and 32767 (Assigning a

READLINE LINE
READLINE_ POINT

REPLY
SECONDS

SHELL
SHELLOPTS
SHLVL

TIMEFORMAT

TMOUT

TMPDIR

UID

value to this variable seeds the pseudo-random number
generator.)

Readline buffer contents when using bind -x command

Readline buffer content insertion point’s current position when
using bind -x command

The default variable for the read command

The number of seconds since the shell was started (Assigning a
value resets the timer to the value.)

The full pathname to the bash shell
A colon-separated list of enabled bash shell options

Indicates the shell level, incremented by one each time a new
bash shell is started

A format specifying how the shell displays time values

The value of how long (in seconds) the select and read com-
mands should wait for input (The default of zero indicates to wait
indefinitely.)

Directory name where the bash shell creates temporary files for
its use

The numeric real user ID of the current user

You may notice that not all default environment variables are shown when the set com-
mand is used. When not in use, the default environment variables are not all required to

contain a value.

Setting the PATH Environment Variable

When you enter an external command (see Chapter 5) in the shell command line interface
(CLI), the shell must search the system to find the program. The PATH environment vari-

able defines the directories it searches looking for commands and programs. On this Ubuntu
Linux system, the PATH environment variable looks like this:

S echo $PATH
/usr/local/sbin:/usr/local/bin: /usr/sbin: /usr/bin:
/sbin: /bin:/usr/games: /usr/local/games

$

This shows that there are eight directories where the shell looks for commands and
programs. The directories in the PATH are separated by colons.

148

Chapter 6: Using Linux Environment Variables

If a command’s or program’s location is not included in the PATH variable, the shell cannot
find it without an absolute directory reference. If the shell cannot find the command or
program, it produces an error message:

$ myprog
-bash: myprog: command not found

$

The problem is that often applications place their executable programs in directories that
aren't in the PATH environment variable. The trick is ensuring that your PATH environment
variable includes all the directories where your applications reside.

You can add new search directories to the existing PATH environment variable without
having to rebuild it from scratch. The individual directories listed in the PATH are sepa-
rated by colons. All you need to do is reference the original PATH value and add any new
directories to the string. This looks something like this:

S echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:

/sbin:/bin:/usr/games: /usr/local/games

$

$ PATH=$PATH:/home/christine/Scripts

$

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin: /bin: /usr/
games: /usr/local/games: /home/christine/Scripts

$

$ myprog

The factorial of 5 is 120.

$

By adding the directory to the PATH environment variable, you can now execute your
program from anywhere in the virtual directory structure:

$ e¢d /etc

$

$ myprog

The factorial of 5 is 120
$

Tip

If you want your program’s location to be available to subshells, be sure to export your modified PATH environment
variable.

A common trick for programmers is to include the single dot symbol in their PATH environment
variable. The single dot symbol represents the current directory (see Chapter 3):

$ PATH=$PATH:.
$

149

Part I: The Linux Command Line

150

$ cd /home/christine/0ld Scripts
$

$ myprog2

The factorial of 6 is 720

$

Changes to the PATH variable last only until you exit the system or the system reboots.
The changes are not persistent. In the next section, you see how you can make changes to
environment variables permanent.

Locating System Environment Variables

The Linux system uses environment variables for many purposes. You know now how to
modify system environment variables and create your own variables. The trick is in how
these environment variables are made persistent.

When you start a bash shell by logging in to the Linux system, by default bash checks
several files for commands. These files are called startup files or environment files. The
startup files that bash processes depend on the method you use to start the bash shell.
You can start a bash shell in three ways:

B As a default login shell at login time

® As an interactive shell that is started by spawning a subshell

B As a non-interactive shell to run a script

The following sections describe the startup files the bash shell executes in each of these
startup methods.

Understanding the login shell process
When you log in to the Linux system, the bash shell starts as a login shell. The login shell
typically looks for five different startup files to process commands from:

B /etc/profile

B SHOME/.bash profile

B $HOME/.bashrc

B $HOME/.bash login

B SHOME/.profile

The /etc/profile file is the main default startup file for the bash shell on the system.
All users on the system execute this startup file when they log in.

Chapter 6: Using Linux Environment Variables

NoTE
Be aware that some Linux distributions use Pluggable Authentication Modules (PAM). In this case, before the bash

shell is started, PAM files are processed, including ones that may contain environment variables. PAM file examples
include the /etc/environment file and the SHOME/ .pam_environment file. Find more information about
PAM at http://linux-pam.org.

The other four startup files are specific for each user and can be customized for an indi-
vidual user’s requirements. Let’s look closer at these files.

Viewing the /etc/profile file

The /etc/profile file is the main default startup file for the bash shell. Whenever you
log in to the Linux system, bash executes the commands in the /etc/profile startup file
first. Different Linux distributions place different commands in this file. On this Ubuntu
Linux system, the file looks like this:

$ cat /etc/profile
/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1l), ksh(l), ash(1), ...).

if ["$PS1"]; then
if ["$BASH"] && ["SBASH" != "/bin/sh"]; then
The file bash.bashrc already sets the default PS1.
PS1="\h:\w\$ '
if [-f /etc/bash.bashrc]; then
. /etc/bash.bashrc

fi
else
if [" id -u™" -eq 0]; then
PS1="4# '
else
PS1='$!
fi
fi
fi

The default umask is now handled by pam umask.
See pam umask(8) and /etc/login.defs.

if [-d /etc/profile.d]; then
for i in /etc/profile.d/*.sh; do
if [-r $i]; then
.81
fi
done
unset i
fi
$

151

http://linux-pam.org

Part I: The Linux Command Line

Most of the commands and syntax you see in this file are covered in more detail in Chapter
12 and beyond. Each distribution’s /etc/profile file has different settings and com-
mands. For example, notice that a file is mentioned in this Ubuntu distribution’s /etc/
profile file above, called /etc/bash.bashrec. It contains system environment variables.

However, in this CentOS distribution’s /etc/profile file listed below, no /etc/bash
.bashrec file is called. Also note that it sets and exports some system environment
variables within itself:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login setup

Functions and aliases go in /etc/bashrc
It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, to
prevent the need for merging in future updates.
pathmunge ()
case ":${PATH}:" in
:n$1n:)
*)
if ["$2" = "after"] ; then
PATH=$PATH:S1
else
PATH=$1:$PATH
fi
esac
}

if [-x /usr/bin/id]; then
if [-z "SEUID"]; then
ksh workaround
EUID="1id -u”
UID="id -ru"
fi
USER=""1d -un™"
LOGNAME=SUSER
MAIL="/var/spool/mail/SUSER"
fi

Path manipulation

if ["SEUID" = "0"]; then
pathmunge /sbin

152

Chapter 6: Using Linux Environment Variables

pathmunge /usr/sbin
pathmunge /usr/local/sbin

else
pathmunge /usr/local/sbin after
pathmunge /usr/sbin after
pathmunge /sbin after

fi

HOSTNAME="/bin/hostname 2>/dev/null”
HISTSIZE=1000
if ["SHISTCONTROL" = "ignorespace"] ; then
export HISTCONTROL=ignoreboth
else
export HISTCONTROL=ignoredups

fi
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

By default, we want umask to get set. This sets it for login shell
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && [""id -gn™" = "“id -un™" 1; then
umask 002
else
umask 022
fi

for i in /etc/profile.d/*.sh ; do

if [-r "$i"]; then
if ["${-#*i}" 1= "$-v]; then
"$i"
else
"$i" >/dev/null 2>&1
fi
fi
done
unset 1
unset -f pathmunge
$

Both distributions’ /etc/profile files use a certain feature. It is a for statement that
iterates through any files located in the /etc/profile.d directory. (for statements are
discussed in detail in Chapter 13.) This provides a place for the Linux system to place
application-specific startup files that is executed by the shell when you log in. On this
Ubuntu Linux system, the following files are in the profile.d directory:

153

Part I: The Linux Command Line

154

$ 1s -1 /etc/profile.d

total 12

-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-YW-Y--r--

$

40 Apr 15 06:26 appmenu-gt5.sh

663 Apr

7 10:10 bash completion.sh
2013 vte.sh

1 root root 1947 Nov 22

You can see that this CentOs system has quite a few more files in /etc/profile.d:

$ 1ls -1 /etc/profile.d

total 80

-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rwxr-xr-x. 1 root root
-rwxr-xr-x. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root
-rw-r--r--. 1 root root

$

1127
1143
92
78
192
192
58
70
373
288
1741
2706
122
108
976
912
2142
97
269
169

Mar
Mar
Nov
Nov
Feb
Feb
Nov
Nov
Sep
Sep
Feb
Feb
Feb
Feb
Sep
Sep
Mar
Apr
Apr
May

22
22
24
24
22
22
23
23
20
20

23
23
13

U,

07:17
07:17
2013
2013
09:24
09:24
2013
2013
2009
2009
05:44
05:44
2007
2007
2011
2011
15:37
2012
2012
2009

colorls.csh
colorls.sh

cvs.csh

cvs.sh

glib2.csh

glib2.sh
gnome-ssh-askpass.csh
gnome-ssh-askpass.sh
kde.csh

kde.sh

lang.csh

lang.sh

less.csh

less.sh

gt.csh

gt.sh
udisks-bash-completion.sh
vim.csh

vim.sh

which2.sh

Notice that several files are related to specific applications on the system. Most applications
create two startup files — one for the bash shell (using the . sh extension) and one for the

c shell (using the .csh extension).

The lang.csh and lang. sh files attempt to determine the default language character set
used on the system and set the LANG environment variable appropriately.

Viewing the $SHOME startup files

The remaining startup files are all used for the same function — to provide a user-specific
startup file for defining user-specific environment variables. Most Linux distributions use
only one or two of these four startup files:

B SHOME/.bash profile
B 3$HOME/ .bashrc

Chapter 6: Using Linux Environment Variables

B SHOME/.bash login
B SHOME/.profile

Notice that all four files start with a dot, making them hidden files (they don't appear in a
normal 1s command listing). Because they are in the user’s HOME directory, each user can
edit the files and add his or her own environment variables that are active for every bash

shell session they start.

NoTE

Environment files are one area where Linux distributions vary greatly. Not every SHOME file listed in this section
exists for every user. For example, some users may have only the SHOME/ . bash profile file. This is normal.

The first file found in the following ordered list is run, and the rest are ignored:

SHOME/ .bash profile
$HOME/ .bash login
SHOME/ .profile

Notice that SHOME/ .bashrc is not in this list. This is because it is typically run from one
of the other files.

Tip

Remember that SHOME represents a user’s home directory. Also, the tilde (~) is used to represent a user’'s home
directory.

This Cent0S Linux system contains the following .bash profile file:

$ cat $HOME/.bash profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
~/ .bashrc
fi
User specific environment and startup programs

PATH=$PATH: SHOME/bin

export PATH
$

The .bash profile startup file first checks to see if the startup file, .bashrc, is present
in the HOME directory. If it’s there, the startup file executes the commands in it.

155

Part I: The Linux Command Line

Understanding the interactive shell process

If you start a bash shell without logging into a system (if you just type bash at a CLI
prompt, for example), you start what's called an interactive shell. The interactive shell doesn’t
act like the login shell, but it still provides a CLI prompt for you to enter commands.

If bash is started as an interactive shell, it doesn’t process the /etc/profile file. Instead,
it only checks for the .bashrc file in the user’s HOME directory.

On this Linux CentOS distribution, this file looks like this:

$ cat .bashrc

.bashrc

Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

User specific aliases and functions

$

The .bashrc file does two things. First, it checks for a common bashrc file in the /etc
directory. Second, it provides a place for the user to enter personal command aliases
(discussed in Chapter 5) and private script functions (described in Chapter 17).

Understanding the non-interactive shell process

The last type of shell is a non-interactive subshell. This is the shell where the

system can start to execute a shell script. This is different in that there isn’t a CLI prompt
to worry about. However, you may want to run specific startup commands each time you
start a script on your system.

Tip

Scripts can be executed in different ways. Only some execution methods start a subshell. You learn about the differ-
ent shell execution methods in Chapter 11.

To accommodate that situation, the bash shell provides the BASH ENV environment vari-

able. When the shell starts a non-interactive subshell process, it checks this environment

variable for the startup file name to execute. If one is present, the shell executes the file’s
commands, which typically include variables set for the shell scripts.

On this CentOS Linux distribution, this environment value is not set by default. When a
variable is not set, the printenv command simply returns the CLI prompt:

$ printenv BASH ENV
$

156

Chapter 6: Using Linux Environment Variables

On this Ubuntu distribution, the BASH ENV variable isn't set either. Remember that, when
a variable is not set, the echo command displays a blank line and returns the CLI prompt:

$ echo $BASH ENV

$

So if the BASH ENV variable isn't set, how do the shell scripts get their environment vari-
ables? Remember that some shell script execution methods start a subshell, also called a
child shell (see Chapter 5). A child shell inherits its parent shell’s exported variables.

For example, if the parent shell was a login shell and had variables set and exported in the
/etc/profile file, /etc/profile.d/*.sh files, and the $SHOME/ .bashrc file, the
child shell for the script inherits these variables.

However, remember that any variables set but not exported by the parent shell are local
variables. Local variables are not inherited by a subshell.

For scripts that do not start a subshell, the variables are already available in the current
shell. Thus, even if BASH ENV is not set, both the current shell’s local and global variables
are present to be used.

Making environment variables persistent

Now that you know you way around the various shell process types and their various
environment files, locating the permanent environment variables is much easier. You can
also set your own permanent global or local variables using these files.

For global environment variables (those variables needed by all the users on a Linux
system), it may be tempting to put new or modified variable settings in the /etc/
profile, but this is a bad idea. The file could be changed when your distribution is
upgraded, and you would lose all the customized variable settings.

It is a better idea to create a file ending with .sh in the /etc/profile.d directory. In
that file, place all your new or modified global environment variable settings.

On most distributions, the best place to store an individual user’s persistent bash shell
variables is in the $HOME/ .bashrc file. This is true for all shell process types. However, if
the BASH ENV variable is set, keep in mind that unless it points to $HOME/ .bashrc, you
may need to store a user’s variables for non-interactive shell types elsewhere.

NoTE

Keep in mind that user environment variables for graphical interface elements, such as the GUI client, may need to
be set in different configuration files than where bash shell environment variables are set.

Recall back in Chapter 5 that command alias settings are also not persistent. You can also store
your personal alias settings in the $HOME/ .bashrc startup file to make them permanent.

157

Part I: The Linux Command Line

Learning about Variable Arrays

A really cool feature of environment variables is that they can be used as arrays. An array
is a variable that can hold multiple values. Values can be referenced either individually or
as a whole for the entire array.

To set multiple values for an environment variable, just list them in parentheses, with
values separated by spaces:

S mytest=(one two three four five)

$

Not much excitement there. If you try to display the array as a normal environment
variable, you'll be disappointed:

S echo $mytest
one

$

Only the first value in the array appears. To reference an individual array element, you
must use a numerical index value, which represents its place in the array. The numeric
value is enclosed in square brackets:

$ echo ${mytest[2]}
three

$

Tip

Environment variable arrays start with an index value of zero. This can be confusing.

To display an entire array variable, you use the asterisk wildcard character as the index
value:

$ echo ${mytest[*]}
one two three four five

$
You can also change the value of an individual index position:

S mytest[2] =seven

$

$ echo ${mytest[*]}

one two seven four five

$

You can even use the unset command to remove an individual value within the array, but
be careful, because this gets tricky. Watch this example:

158

Chapter 6: Using Linux Environment Variables

$ unset mytest[2]

$

$ echo ${mytest[*]}
one two four five

$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
four

$

This example uses the unset command to remove the value at index value 2. When you
display the array, it appears that the other index values just dropped down one. However, if
you specifically display the data at index value 2, you see that that location is empty.

Finally, you can remove the entire array just by using the array name in the unset
command:

$ unset mytest

$
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they're often not used in shell script
programming. They're not very portable to other shell environments, which is a downside if
you do lots of shell programming for different shells. Some bash system environment vari-
ables use arrays (such as BASH VERSINFO), but overall you probably won't run into them
very often.

Summary

This chapter examined the world of Linux environment variables. Global environment vari-
ables can be accessed from any child shell spawned by the parent shell in which they're
defined. Local environment variables can be accessed only from the process in which
they're defined.

The Linux system uses both global and local environment variables to store information
about the system environment. You can access this information from the shell command
line interface, as well as within shell scripts. The bash shell uses the system environment
variables defined in the original Unix Bourne shell, as well as lots of new environment
variables. The PATH environment variable defines the search pattern the bash shell

takes to find an executable command. You can modify the PATH environment variable

to add your own directories, or even the current directory symbol, to make running your
programs easier.

159

Part I: The Linux Command Line

160

You can also create your own global and local environment variables for your own use.
After you create an environment variable, it’s accessible for the entire duration of your
shell session.

The bash shell executes several startup files when it starts up. These startup files can con-
tain environment variable definitions to set standard environment variables for each bash
session. When you log in to the Linux system, the bash shell accesses the /etc/profile
startup file and three local startup files for each user, $HOME/ .bash profile, SHOME/
.bash login, and $HOME/ .profile. Users can customize these files to include environ-
ment variables and startup scripts for their own use.

Finally, this chapter discussed the use of environment variable arrays. These environment
variables can contain multiple values in a single variable. You can access the values either
individually by referencing an index value or as a whole by referencing the entire environ-
ment variable array name.

The next chapter dives into the world of Linux file permissions. This is possibly the most
difficult topic for novice Linux users. However, to write good shell scripts, you need to
understand how file permissions work and be able to use them on your Linux system.

CHAPTER

Understanding Linux File
Permissions

IN THIS CHAPTER

Understanding Linux security
Decoding the permissions

Working with Linux groups

protect files from unauthorized viewing or modification. The Linux system follows the Unix

method of file permissions, allowing individual users and groups access to files based on a
set of security settings for each file and directory. This chapter discusses how to use the Linux file
security system to protect data when necessary and share data when desired.

N o system is complete without some form of security. There must be a mechanism available to

Linux Security

The core of the Linux security system is the user account. Each individual who accesses a Linux
system should have a unique user account assigned. The users’ permissions to objects on the system
depend on the user account they log in with.

User permissions are tracked using a user ID (often called a UID), which is assigned to an account
when it’s created. The UID is a numerical value, unique for each user. However, you don't log in to
a Linux system using your UID. Instead, you use a login name. The login name is an alphanumeric
text string of eight characters or fewer that the user uses to log in to the system (along with an
associated password).

The Linux system uses special files and utilities to track and manage user accounts on the system.
Before we can discuss file permissions, we need to discuss how Linux handles user accounts. This
section describes the files and utilities required for user accounts so that you can understand how
to use them when working with file permissions.

161

Part I: The Linux Command Line

The /etc/passwd file

The Linux system uses a special file to match the login name to a corresponding UID
value. This file is the /etc/passwd file. The /etc/passwd file contains several pieces of
information about the user. Here's what a typical /etc/passwd file looks like on a Linux
system:

$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon: /sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin: /bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:

uucp:x:10:14:uucp:/var/spool /uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games: /usr/games: /sbin/nologin
gopher:x:13:30:gopher: /var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

nobody :x:99:99:Nobody:/:/sbin/nologin
rpm:x:37:37::/var/lib/rpm:/sbin/nologin
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue: /sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
apache:x:48:48:Apache: /var/www:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin

nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
tepdump:x:72:72::/:/sbin/nologin

dbus:x:81:81:System message bus:/:/sbin/nologin
avahi:x:70:70:Avahi daemon:/:/sbin/nologin
hsqldb:x:96:96::/var/lib/hsgldb:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534 :Anonymous NFS User:/var/lib/nfs:/sbin/nologin
haldaemon:x:68:68:HAL daemon:/:/sbin/nologin
xfs:x:43:43:X Font Server:/etc/X11l/fs:/sbin/nologin
gdm:x:42:42::/var/gdm: /sbin/nologin

rich:x:500:500:Rich Blum:/home/rich:/bin/bash
mama:x:501:501:Mama: /home/mama: /bin/bash
katie:x:502:502:katie: /home/katie:/bin/bash
jessica:x:503:503:Jessica:/home/jessica: /bin/bash
mysqgl:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

$

162

news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

Chapter 7: Understanding Linux File Permissions

The root user account is the administrator for the Linux system and is always assigned
UID 0. As you can see, the Linux system creates lots of user accounts for various functions
that aren't actual users. These are called system accounts. A system account is a special
account that services running on the system use to gain access to resources on the system.
All services that run in background mode need to be logged in to the Linux system under a
system user account.

Before security became a big issue, these services often just logged in using the root user
account. Unfortunately, if an unauthorized person broke into one of these services, he
instantly gained access to the system as the root user. To prevent this, now just about
every service that runs in background on a Linux server has its own user account to log in
with. This way, if a troublemaker compromises a service, he still can’t necessarily get access
to the whole system.

Linux reserves UIDs below 500 for system accounts. Some services even require specific
UIDs to work properly. When you create accounts for normal users, most Linux systems
assign the first available UID starting at 500 (although this is not necessarily true for all
Linux distributions).

You probably noticed that the /etc/passwd file contains much more than just the login
name and UID for the user. The fields of the /etc/passwd file contain the following
information:

The login username

The password for the user

The numerical UID of the user account

The numerical group ID (GID) of the user account

A text description of the user account (called the comment field)

The location of the HOME directory for the user

The default shell for the user

The password field in the /etc/passwd file is set to an x. This doesn't mean that all the
user accounts have the same password. In the old days of Linux, the /etc/passwd file
contained an encrypted version of the user’'s password. However, because lots of programs
need to access the /etc/passwd file for user information, this became a security prob-
lem. With the advent of software that could easily decrypt encrypted passwords, the bad
guys had a field day trying to break user passwords stored in the /etc/passwd file. Linux
developers needed to rethink that policy.

Now, most Linux systems hold user passwords in a separate file (called the shadow file,
located at /etc/shadow). Only special programs (such as the login program) are allowed
access to this file.

163

Part I: The Linux Command Line

The /etc/passwd file is a standard text file. You can use any text editor to manually
perform user management functions (such as adding, modifying, or removing user
accounts) directly in the /etc/passwd file. However, this is an extremely dangerous
practice. If the /etc/passwd file becomes corrupt, the system can't read it, and it
prevents anyone (even the root user) from logging in. Instead, it’s safer to use the standard
Linux user management utilities to perform all user management functions.

The /etc/shadow file

The /etc/shadow file provides more control over how the Linux system manages pass-
words. Only the root user has access to the /etc/shadow file, making it more secure than
the /etc/passwd file.

The /etc/shadow file contains one record for each user account on the system. A record
looks like this:

rich:1.FfcKOnssf1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

There are nine fields in each /etc/shadow file record:

The login name corresponding to the login name in the /etc/passwd file
The encrypted password

The number of days since January 1, 1970, that the password was last changed
The minimum number of days before the password can be changed

The number of days before the password must be changed

The number of days before password expiration that the user is warned to change
the password

® The number of days after a password expires before the account will be disabled

®m The date (stored as the number of days since January 1, 1970) since the user
account was disabled

m A field reserved for future use
Using the shadow password system, the Linux system has much finer control over user

passwords. It can control how often a user must change his or her password and when to
disable the account if the password hasn't been changed.

Adding a new user

The primary tool used to add new users to your Linux system is useradd. This command
provides an easy way to create a new user account and set up the user’s HOME directory

structure all at once. The useradd command uses a combination of system default values
and command line parameters to define a user account. The system defaults are set in the

164

Chapter 7: Understanding Linux File Permissions

/etc/default/useradd file. To see the system default values used on your Linux distri-
bution, enter the useradd command with the -D parameter:

/usr/sbin/useradd -D
GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL SPOOL=yes
#

NoTE
Some Linux distributions place the Linux user and group utilities in the /usr/sbin directory, which may not be in

your PATH environment variable. If that’s the case in your Linux distribution, either add the directory to your PATH or
use the absolute file path to run it.

The -D parameter shows what defaults the useradd command uses if you don't specify
them in the command line when creating a new user account. This example shows the
following default values:

The new user is added to a common group with group ID 100.

The new user has a HOME account created in the directory /home/loginname.
The account can't be disabled when the password expires.

The new account can't be set to expire at a set date.

The new account uses the bash shell as the default shell.

The system copies the contents of the /etc/skel directory to the user’s HOME
directory.

B The system creates a file in the mail directory for the user account to receive mail.

The penultimate value is interesting. The useradd command allows an administrator to
create a default HOME directory configuration and then uses that as a template to create the
new user’s HOME directory. This allows you to place default files for the system in every new
user’'s HOME directory automatically. In the Ubuntu Linux system, the /etc/skel directory
has the following files:

$ 1s -al /etc/skel

total 32

drwxr-xr-x 2 root root 4096 2010-04-29 08:26

drwxr-xr-x 135 root root 12288 2010-09-23 18:49

-YW-Ir--r-- 1 root root 220 2010-04-18 21:51 .bash logout

165

Part I: The Linux Command Line

-YwW-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rwW-Y--r-- 1 root root 179 2010-03-26 08:31 examples.desktop
-rw-Y--r-- 1 root root 675 2010-04-18 21:51 .profile

$

You should recognize these files from Chapter 6. These are the standard startup files for
the bash shell environment. The system automatically copies these default files into every
user’'s HOME directory you create.

You can test this by creating a new user account using the default system parameters and
then looking at the HOME directory for the new user:

useradd -m test
1s -al /home/test
total 24
drwxr-xr-x
drwxr-xr-x

2 test test 4096 2010-09-23 19:01

4 root root 4096 2010-09-23 19:01 ..
-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash logout
-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 test test 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 test test 675 2010-04-18 21:51 .profile
#

By default, the useradd command doesn't create a HOME directory, but the -m command
line option tells it to create the HOME directory. As you can see in the example, the
useradd command created the new HOME directory, using the files contained in the /etc/
skel directory.

NoTE

To run the user account administration commands in this chapter, you either need to be logged in as the special root
user account or use the sudo command to run the commands as the root user account.

If you want to override a default value or behavior when creating a new user, you can do
that with command line parameters. These are shown in Table 7-1.

TABLE 71 The useradd Command Line Parameters

Parameter Description

-c comment Adds text to the new user’s comment field

-d home dir Specifies a different name for the HOME directory other than the
login name

166

Chapter 7: Understanding Linux File Permissions

-e expire date Specifies a date, in YYYY-MM-DD format, when the account will
expire
-f inactive days Specifies the number of days after a password expires when the

account will be disabled. A value of 0 disables the account as soon
as the password expires; a value of -1 disables this feature.

-g initial group Specifies the group name or GID of the user's login group

-Ggroup . . . Specifies one or more supplementary groups the user belongs to

-k Copies the /etc/skel directory contents into the user’s HOME direc-
tory (must use -m as well)

-m Creates the user's HOME directory

-M Doesn't create a user's HOME directory (used if the default setting is
to create one)

-n Creates a new group using the same name as the user’s login name

-r Creates a system account

-p passwd Specifies a default password for the user account

-s shell Specifies the default login shell

-u uid Specifies a unique UID for the account

As you can see, you can override all the system default values when creating a new user
account just by using command line parameters. However, if you find yourself having to
override a value all the time, it's easier to just change the system default value.

You can change the system default new user values by using the -D parameter, along with
a parameter representing the value you need to change. These parameters are shown in
Table 7-2.

TABLE 7-2 The useradd Change Default Values Parameters

Parameter Description

-b default home Changes the location where users’ HOME directories are created

-e expiration date Changes the expiration date on new accounts

-f inactive Changes the number of days after a password has expired
before the account is disabled

-g group Changes the default group name or GID used

-5 shell Changes the default login shell

167

Part I: The Linux Command Line

Changing the default values is a snap:

useradd -D -s /bin/tsch
useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/tsch
SKEL=/etc/skel
CREATE_MAIL SPOOL=yes

#

Now, the useradd command uses the tsch shell as the default login shell for all new user
accounts you create.

Removing a user

If you want to remove a user from the system, the userdel command is what you need. By
default, the userdel command removes only the user information from the /etc/passwd
file. It doesn't remove any files the account owns on the system.

If you use the -r parameter, userdel removes the user’s HOME directory, along with the
user’s mail directory. However, other files owned by the deleted user account may still be
on the system. This can be a problem in some environments.

Here's an example of using the userdel command to remove an existing user account:

/usr/sbin/userdel -r test
1s -al /home/test
ls: cannot access /home/test: No such file or directory

#

After using the -r parameter, the user’s old /home/test directory no longer exists.

CAUTION
Be careful when using the - parameter in an environment with lots of users. You never know if a user had important

files stored in his or her HOME directory that are used by someone else or another program. Always check before
removing a user’s HOME directory!

168

Modifying a user

Linux provides a few different utilities for modifying the information for existing user
accounts. Table 7-3 shows these utilities.

Chapter 7: Understanding Linux File Permissions

TABLE 7-3 User Account Modification Utilities

Command Description

usermod Edits user account fields, as well as specifying primary and secondary group
membership

passwd Changes the password for an existing user

chpasswd Reads a file of login name and password pairs, and updates the passwords
chage Changes the password’s expiration date

chfn Changes the user account’s comment information

chsh Changes the user account’s default shell

Each of these utilities provides a specific function for changing information about user
accounts. The following sections describe each of these utilities.

usermod

The usermod command is the most robust of the user account modification utilities. It
provides options for changing most of the fields in the /etc/passwd file. To do that, you
just need to use the command line parameter that corresponds to the value you want to
change. The parameters are mostly the same as the useradd parameters (such as -c to
change the comment field, -e to change the expiration date, and -g to change the default
login group). However, a couple of additional parameters might come in handy:

B -1 changes the login name of the user account.

® -1, locks the account so the user can't log in.

B -p changes the password for the account.

B -U unlocks the account so the user can log in.

The -1 parameter is especially handy. Use this to lock an account so a user can't log in

without having to remove the account and the user’s data. To return the account to normal,
just use the -U parameter.

passwd and chpasswd
A quick way to change just the password for a user is the passwd command:
passwd test

Changing password for user test.
New UNIX password:

169

Part I: The Linux Command Line

170

Retype new UNIX password:
passwd: all authentication tokens updated successfully.

#

If you just use the passwd command by itself, it changes your own password. Any user in
the system can change his or her own password, but only the root user can change someone
else’s password.

The -e option is a handy way to force a user to change the password on the next log in.
This allows you to set the user’s password to a simple value and forces them to change it to
something harder that they can remember.

If you ever need to do a mass password change for lots of users on the system, the
chpasswd command can be a lifesaver. The chpasswd command reads a list of login name
and password pairs (separated by a colon) from the standard input, automatically encrypts
the password, and sets it for the user account. You can also use the redirection command to
redirect a file of userid:password pairs into the command:

chpasswd < users.txt

#

chsh, chfn, and chage

The chsh, chfn, and chage utilities are specialized for specific account modification func-
tions. The chsh command allows you to quickly change the default login shell for a user.
You must use the full pathname for the shell, and not just the shell name:

chsh -s /bin/csh test
Changing shell for test.
Shell changed.

#

The chfn command provides a standard method for storing information in the comments
field in the /etc/passwd file. Instead of just inserting random text, such as names or
nicknames, or even just leaving the comment field blank, the chfn command uses specific
information used in the Unix finger command to store information in the comment field.
The finger command allows you to easily find information about people on your Linux
system:

finger rich

Login: rich Name: Rich Blum
Directory: /home/rich Shell: /bin/bash
On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
No mail.

No Plan.

#

Chapter 7: Understanding Linux File Permissions

NoTE

Because of security concerns, many Linux system administrators disable the £inger command on their systems,
and many Linux distributions don’t even install it by default.

If you use the chfn command with no parameters, it queries you for the appropriate values
to enter in to the comment field:

chfn test

Changing finger information for test.
Name []: Ima Test

Office []: Director of Technology
Office Phone []: (123)555-1234

Home Phone []: (123)555-9876

Finger information changed.
finger test

Login: test Name: Ima Test
Directory: /home/test Shell: /bin/csh
Office: Director of Technology Office Phone: (123)555-1234

Home Phone: (123)555-9876
Never logged in.

No mail.

No Plan.

#

If you now look at the entry in the /etc/passwd file, it looks like this:

grep test /etc/passwd

test:x:504:504:Ima Test,Director of Technology, (123)555-
1234, (123)555-9876: /home/test: /bin/csh

#

All the finger information is neatly stored away in the /etc/passwd file entry.

Finally, the chage command helps you manage the password aging process for user
accounts. You need to set several parameters to individual values, shown in Table 7-4.

TABLE 7-4 The chage Command Parameters

Parameter Description
-d Sets the number of days since the password was last changed
-E Sets the date the password expires

Continues

171

Part I: The Linux Command Line

172

TABLE 7-4 (continued)

Parameter Description

-1 Sets the number of days of inactivity after the password expires to lock the
account

-m Sets the minimum number of days between password changes

-W Sets the number of days before the password expires that a warning message
appears

The chage date values can be expressed using one of two methods:

H A date in YYYY-MM-DD format

B A numerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for
an account. Using this feature, you can create temporary user accounts that automatically
expire on a set date, without your having to remember to delete them! Expired accounts are
similar to locked accounts. The account still exists, but the user can’t log in with it.

Using Linux Groups

User accounts are great for controlling security for individual users, but they aren't so good
at allowing groups of users to share resources. To accomplish this, the Linux system uses
another security concept, called groups.

Group permissions allow multiple users to share a common set of permissions for an object
on the system, such as a file, directory, or device (more on that later in the “Decoding File
Permissions” section).

Linux distributions differ somewhat on how they handle default group memberships. Some
Linux distributions create just one group that contains all the user accounts as members.
You need to be careful if your Linux distribution does this, because your files may be read-
able by all other users on the system. Other distributions create a separate group account
for each user to provide a little more security.

Each group has a unique GID, which, like UIDs, is a unique numerical value on the system.
Along with the GID, each group has a unique group name. You can use some group utilities
to create and manage your own groups on the Linux system. This section discusses how
group information is stored and how to use the group utilities to create new groups and
modify existing groups.

Chapter 7: Understanding Linux File Permissions

The /etc/group file

Just like user accounts, group information is stored in a file on the system. The /etc/
group file contains information about each group used on the system. These are examples
from a typical /etc/group file on a Linux system:

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin, daemon
sys:x:3:root,bin, adm
adm:x:4:root,adm, daemon
rich:x:500:

mama:x:501:
katie:x:502:
jessica:x:503:
mysqgl:x:27:

test:x:504:

Like UIDs, GIDs are assigned using a special format. Groups used for system accounts are
assigned GIDs below 500, and user groups are assigned GIDs starting at 500. The /etc/
group file uses four fields:

The group name

The GID

]

B The group password

]

m The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a member of the
group by using the password. This feature is not used all that commonly, but it does exist.

You should never add users to groups by editing the /etc/group file. Instead, use
the usermod command (discussed earlier in the “Linux Security” section) to add a
user account to a group. Before you can add users to different groups, you must create
the groups.

NoTE
The list of user accounts is somewhat misleading. You'll notice that there are several groups in the list that don’t have

any users listed. This isn’t because they don’t have any members. When a user account uses a group as the default
group in the /etc/passwd file, the user account doesn’t appear in the /etc/group file as a member. This has
caused confusion for more than one system administrator over the years!

173

Part I: The Linux Command Line

Creating new groups
The groupadd command allows you to create new groups on your system:

/usr/sbin/groupadd shared
tail /etc/group
haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:
shared:x:505:

#

When you create a new group, no users are assigned to it by default. The groupadd com-
mand doesn't provide an option for adding user accounts to the group. Instead, to add new
users, use the usermod command:

/usr/sbin/usermod -G shared rich
/usr/sbin/usermod -G shared test
tail /etc/group

haldaemon:x:68:

xfs:x:43:

gdm:x:42:

rich:x:500:

mama:x:501:

katie:x:502:

jessica:x:503:

mysql:x:27:

test:x:504:

shared:x:505:rich, test

#

The shared group now has two members, test and rich. The -G parameter in usermod
appends the new group to the list of groups for the user account.

NoTE

If you change the user groups for an account that is currently logged into the system, the user must log out and then
log back in for the group changes to take effect.

174

Chapter 7: Understanding Linux File Permissions

CAUTION
Be careful when assigning groups for user accounts. If you use the -g parameter, the group name you specify

replaces the default group for the user account. The -G parameter adds the group to the list of groups the user
belongs to, keeping the default group intact.

Modifying groups
As you can see from the /etc/group file, you don't need to modify much information

about a group. The groupmod command allows you to change the GID (using the -g param-
eter) or the group name (using the -n parameter) of an existing group:

/usr/sbin/groupmod -n sharing shared
tail /etc/group
haldaemon:x:68:
xfs:x:43:

gdm:x:42:

rich:x:500:

mama:x:501:

katie:x:502:
jessica:x:503:
mysqgl:x:27:

test:x:504:
sharing:x:505:test,rich
#

When changing the name of a group, the GID and group members remain the same, only the
group name changes. Because all security permissions are based on the GID, you can change
the name of a group as often as you wish without adversely affecting file security.

Decoding File Permissions

Now that you know about users and groups, it’s time to decode the cryptic file permissions
you've seen when using the 1s command. This section describes how to decipher the per-
missions and where they come from.

175

Part I: The Linux Command Line

176

Using file permission symbols

If you remember from Chapter 3, the 1s command allows you to see the file permissions for
files, directories, and devices on the Linux system:

S 1ls -1

total 68

-rw-rw-r-- 1 rich
-rw-rw-r-- 1 rich
-rw-rw-r-- 1 rich
-rw-rw-r-- 1 rich
-rwxrwxr-x 1 rich
-rw-rw-r-- 1 rich
drwxrwxr-x 2 rich
drwxrwxr-x 2 rich

$

rich 50
rich 23
rich 48
rich 34
rich 4882
rich 237
rich 4096
rich 4096

2010-09-13
2010-09-13
2010-09-13
2010-09-13
2010-09-18
2010-09-18
2010-09-03
2010-09-03

07

:49
07:
07:
08:
13:
13:
15:
15:

50
56
59
58
58
12
12

filel.gz
file2
file3l
file4
myprog
myprog.c
testl
test2

The first field in the output listing is a code that describes the permissions for the files and
directories. The first character in the field defines the type of the object:

- for files
d for directories
1 for links

b for block devices

n for network devices

c for character devices

After that, you see three sets of three characters. Each set of three characters defines an

access permission triplet:

® 1 for read permission for the object

m w for write permission for the object

B x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate the three
levels of security for the object:

® The owner of the object

® The group that owns the object

B Everyone else on the system

This is broken down in Figure 7-1.

Chapter 7: Understanding Linux File Permissions

FIGURE 7-1

The Linux file permissions

-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

permissions for everyone else

permissions for group members

permissions for the file owner

The easiest way to discuss this is to take an example and decode the file permissions one
by one:

-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

The file myprog has the following sets of permissions:

B rwx for the file owner (set to the login name rich)
B rwx for the file group owner (set to the group name rich)

B r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the
file (considered full permissions). Likewise, members in the group rich can also read, write,
and execute the file. However, anyone else not in the rich group can only read and execute
the file; the wis replaced with a dash, indicating that write permissions are not assigned to
this security level.

Default file permissions

You may be wondering about where these file permissions come from. The answer is umask.
The umask command sets the default permissions for any file or directory you create:

$ touch newfile

S 1ls -al newfile

-rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile
$

The touch command created the file using the default permissions assigned to my user
account. The umask command shows and sets the default permissions:

$ umask
0022
$

177

Part I: The Linux Command Line

178

Unfortunately, the umask command setting isn't overtly clear, and trying to understand
exactly how it works makes things even muddier. The first digit represents a special secu-
rity feature called the sticky bit. We'll talk more about that later on in this chapter in
the “Sharing Files” section.

The next three digits represent the octal values of the umask for a file or directory. To
understand how umask works, you first need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert them into
a 3-bit binary value, represented by a single octal value. In the binary representation, each
position is a binary bit. Thus, if the read permission is the only permission set, the value
becomes r- -, relating to a binary value of 100, indicating the octal value of 4. Table 7-5
shows the possible combinations you'll run into.

TABLE 7-5 Linux File Permission Codes

Permissions Binary Octal Description

--- 000 0 No permissions

--x 001 1 Execute-only permission

-w- 010 2 Write-only permission

-Wx oM 3 Write and execute permissions

r-- 100 4 Read-only permission

r-x 101 5 Read and execute permissions

rw- 110 6 Read and write permissions

rwXx M 7 Read, write, and execute permissions

Octal mode takes the octal permissions and lists three of them in order for the three secu-
rity levels (user, group, and everyone). Thus, the octal mode value 664 represents read and
write permissions for the user and group, but read-only permission for everyone else.

Now that you know about octal mode permissions, the umask value becomes even more
confusing. The octal mode shown for the default umask on my Linux system is 0022, but
the file I created had an octal mode permission of 644. How did that happen?

The umask value is just that, a mask. It masks out the permissions you don't want to give
to the security level. Now we have to dive into some octal arithmetic to figure out the rest
of the story.

The umask value is subtracted from the full permission set for an object. The full permis-
sion for a file is mode 666 (read/write permission for all), but for a directory it’s 777 (read/
write/execute permission for all).

Chapter 7: Understanding Linux File Permissions

Thus, in the example, the file starts out with permissions 666, and the umask of 022 is
applied, leaving a file permission of 644.

The umask value is normally set in the /etc/profile startup file in most Linux distribu-
tions (see Chapter 6), but some prefer to set it in the /etc/login.defs file (such asin
Ubuntu). You can specify a different default umask setting using the umask command:

S umask 026

$ touch newfile2

$ 1s -1 newfile2

-rW-r----- 1 rich rich 0 Sep 20 19:46 newfile2
$

By setting the umask value to 026, the default file permissions become 640, so the new file
now is restricted to read-only for the group members, and everyone else on the system has
no permissions to the file.

The umask value also applies to making new directories:

$ mkdir newdir

S 1s -1
drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/
$

Because the default permissions for a directory are 777, the resulting permissions from the
umask are different from those of a new file. The 026 umask value is subtracted from 777,
leaving the 751 directory permission setting.

Changing Security Settings

If you've already created a file or directory and need to change the security settings on it,
Linux has a few different utilities available for this. This section shows you how to change
the existing permissions, the default owner, and the default group settings for a file or
directory.

Changing permissions

The chmod command allows you to change the security settings for files and directories.
The format of the chmod command is:

chmod options mode file

The mode parameter allows you to set the security settings using either octal or symbolic
mode. The octal mode settings are pretty straightforward; just use the standard three-digit
octal code you want the file to have:

179

Part I: The Linux Command Line

$ chmod 760 newfile
$ 1s -1 newfile
-TWXTW- - - - 1 rich rich 0 Sep 20 19:16 newfile

$
The octal file permissions are automatically applied to the file indicated. The symbolic

mode permissions are not so easy to implement.

Instead of using the normal string of three sets of three characters, the chmod command
takes a different approach. The following is the format for specifying a permission in sym-
bolic mode:

[ugoa..] [[+-=] [rwxXstugo...]
Makes perfectly good sense, doesn't it? The first group of characters defines to whom the
new permissions apply:
u for the user
g for the group
o for others (everyone else)

a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the existing
permissions (+), subtract the permission from the existing permission (-), or set the per-
missions to the value (=).

Finally, the third symbol is the permission used for the setting. You may notice that there
are more than the normal rwx values here. These are the additional settings:

B X assigns execute permissions only if the object is a directory or if it already had
execute permissions.

s sets the UID or GID on execution.

t saves program text.

u sets the permissions to the owner’s permissions.

g sets the permissions to the group’s permissions.

o sets the permissions to the other’s permissions.
Using these permissions looks like this:

$ chmod o+r newfile
$ 1ls -1F newfile
-ITWXIW-T-- 1 rich rich 0 Sep 20 19:16 newfile*

$

The o+r entry adds the read permission to whatever permissions the everyone security
level already had.

180

Chapter 7: Understanding Linux File Permissions

$ chmod u-x newfile
$ 1s -1F newfile
-ITW-Yw-Y-- 1 rich rich 0 Sep 20 19:16 newfile

$

The u-x entry removes the execute permission that the user already had. Note that the -F
option for the 1s command indicates whether a file has execution permissions by adding an
asterisk to the filename.

The options parameters provide a few additional features to augment the behavior of the
chmod command. The -R parameter performs the file and directory changes recursively.
You can use wildcard characters for the filename specified, changing the permissions on
multiple files with just one command.

Changing ownership

Sometimes, you need to change the owner of a file, such as when someone leaves an orga-
nization or a developer creates an application that needs to be owned by a system account
when it’s in production. Linux provides two commands for doing that. The chown command
makes it easy to change the owner of a file, and the chgrp command allows you to change
the default group of a file.

The format of the chown command is:

chown options owner/[.group] file

You can specify either the login name or the numeric UID for the new owner of the file:

chown dan newfile

1ls -1 newfile

-rW-Yw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Simple. The chown command also allows you to change both the user and group of a file:

chown dan.shared newfile

1ls -1 newfile

-ITW-rw-Y-- 1 dan shared 0 Sep 20 19:16 newfile
#

If you really want to get tricky, you can just change the default group for a file:

chown .rich newfile
1ls -1 newfile
-rW-Yw-Y-- 1 dan rich 0 Sep 20 19:16 newfile

#

Finally, if your Linux system uses individual group names that match user login names, you
can change both with just one entry:

181

Part I: The Linux Command Line

chown test. newfile

1ls -1 newfile

-TW-Yw-Y-- 1 test test 0 Sep 20 19:16 newfile
#

The chown command uses a few different option parameters. The -R parameter allows you
to make changes recursively through subdirectories and files, using a wildcard character.
The -h parameter also changes the ownership of any files that are symbolically linked to
the file.

NoTE

Only the root user can change the owner of a file. Any user can change the default group of a file, but the user must
be a member of the groups the file is changed from and to.

The chgrp command provides an easy way to change just the default group for a file or
directory:

$ chgrp shared newfile
$ 1s -1 newfile
-ITW-TW-T-- 1 rich shared 0 Sep 20 19:16 newfile

$

The user account must own the file, and be a member of the new group as well to be able

to change the group. Now any member in the shared group can write to the file. This is one
way to share files on a Linux system. However, sharing files among a group of people on the
system can get tricky. The next section discusses how to do this.

Sharing Files

As you've probably already figured out, creating groups is the way to share access to files
on the Linux system. However, for a complete file-sharing environment, things are more
complicated.

As you've already seen in the “Decoding File Permissions” section, when you create a
new file, Linux assigns the file permissions of the new file using your default UID and
GID. To allow others access to the file, you need to either change the security
permissions for the everyone security group or assign the file a different default group
that contains other users.

This can be a pain in a large environment if you want to create and share documents among
several people. Fortunately, there’s a simple solution for how to solve this problem.

182

Chapter 7: Understanding Linux File Permissions

There are three additional bits of information that Linux stores for each file and directory:

B The set user id (SUID): When a file is executed by a user, the program runs under
the permissions of the file owner.

B The set group id (SGID): For a file, the program runs under the permissions of the
file group. For a directory, new files created in the directory use the directory group
as the default group.

B The sticky bit: The file remains (sticks) in memory after the process ends.

The SGID bit is important for sharing files. By enabling the SGID bit, you can force all new
files created in a shared directory to be owned by the directory’s group and now the indi-
vidual user’s group.

The SGID is set using the chmod command. It's added to the beginning of the standard
three-digit octal value (making a four-digit octal value), or you can use the symbol s in
symbolic mode.

If you're using octal mode, you'll need to know the arrangement of the bits, shown in
Table 7-6.

TABLE 7-6: The chmod SUID, SGID, and Sticky Bit Octal Values

Binary Octal Description

000
001

All bits are cleared.

0
1 The sticky bit is set.
010 2 The SGID bit is set.
01 3 The SGID and sticky bits are set.
100 4 The SUID bit is set.
5
6
7

101 The SUID and sticky bits are set.
110 The SUID and SGID bits are set.
1M All bits are set.

So, to create a shared directory that always sets the directory group for all new files, all you
need to do is set the SGID bit for the directory:

$ mkdir testdir

S 1s -1
drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/

183

Part I: The Linux Command Line

184

$ chgrp shared testdir
$ chmod g+s testdir

$ 1s -1
drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
$ umask 002

$ cd testdir

$ touch testfile

S 1ls -1

total 0

-ITW-Tw-T-- 1 rich shared 0 Sep 20 23:13 testfile
$

The first step is to create a directory that you want to share using the mkdir command.
Next, use the chgrp command to change the default group for the directory to a group that
contains the members who need to share files (you must be a member of that group for this
to work). Finally, set the SGID bit for the directory to ensure that any files created in the
directory use the shared group name as the default group.

For this environment to work properly, all the group members must have their umask
values set to make files writable by group members. In the preceding example, the umask is
changed to 002 so the files are writable by the group.

After all that’s done, any member of the group can go to the shared directory and create
a new file. As expected, the new file uses the default group of the directory, not the user
account’s default group. Now any user in the shared group can access this file.

Summary

This chapter discussed the command line commands you need to know to manage the Linux
security on your system. Linux uses a system of user IDs and group IDs to protect access to
files, directories, and devices. Linux stores information about user accounts in the /etc/
passwd file and information about groups in the /etc/group file. Each user is assigned

a unique numeric user ID, along with a text login name to identify the user in the system.
Groups are also assigned unique numerical group IDs and text group names. A group can
contain one or more users to allowed shared access to system resources.

Several commands are available for managing user accounts and groups. The useradd
command allows you to create new user accounts, and the groupadd command allows you
to create new group accounts. To modify an existing user account, use the usermod com-
mand. Similarly, use the groupmod command to modify group account information.

Linux uses a complicated system of bits to determine access permissions for files and direc-
tories. Each file contains three security levels of protection: the file's owner, a default
group that has access to the file, and a level for everyone else on the system. Each security
level is defined by three access bits: read, write, and execute. The combination of three

Chapter 7: Understanding Linux File Permissions

bits is often referred to by the symbols rwx, for read, write, and execute. If a permission is
denied, its symbol is replaced with a dash (such as r-- for read-only permission).

The symbolic permissions are often referred to as octal values, with the three bits combined
into one octal value and three octal values representing the three security levels. Use the
umask command to set the default security settings for files and directories created on the
system. The system administrator normally sets a default umask value in the /etc
/profile file, but you can use the umask command to change your umask value at any
time.

Use the chmod command to change security settings for files and directories. Only the file's
owner can change permissions for a file or directory. However, the root user can change the
security settings for any file or directory on the system. You can use the chown and chgrp
commands to change the default owner and group of the file.

The chapter closed with a discussion on how to use the set GID bit to create a shared
directory. The SGID bit forces any new files or directories created in a directory to use the
default group name of the parent directory, not that of the user who created them. This
provides an easy way to share files between users on the system.

Now that you're up to speed with file permissions, it’s time to take a closer look at how to
work with the actual filesystem in Linux. The next chapter shows you how to create new
partitions in Linux from the command line and then how to format the new partitions so
that they can be used in the Linux virtual directory.

185

CHAPTER

Managing Filesystems

IN THIS CHAPTER

Understanding filesystem basics

Exploring journaling and copy-on-write filesystems
Managing filesystems

Investigating the logical volume layout

Using the Linux Logical Volume Manager

what filesystem to use for the storage devices. Most Linux distributions kindly provide a
default filesystem for you at installation time, and most beginning Linux users just use it
without giving the topic another thought.

W hen you're working with your Linux system, one of the decisions you'll need to make is

Although using the default filesystem choice isn't necessarily a bad thing, sometimes it helps to
know the other options available to you. This chapter discusses the different filesystem options
you have available in the Linux world and shows you how to create and manage them from the
Linux command line.

Exploring Linux Filesystems

Chapter 3 discussed how Linux uses a filesystem to store files and folders on a storage device. The
filesystem provides a way for Linux to bridge the gap between the ones and zeroes stored in the
hard drive and the files and folders you work with in your applications.

Linux supports several types of filesystems to manage files and folders. Each filesystem implements
the virtual directory structure on storage devices using slightly different features. This section
walks you through the strengths and weaknesses of the more common filesystems used in the
Linux environment.

187

Part I: The Linux Command Line

188

Understanding the basic Linux filesystems

The original Linux system used a simple filesystem that mimicked the functionality of the
Unix filesystem. This section discusses the evolution of that filesystem.

Looking at the ext Filesystem

The original filesystem introduced with the Linux operating system is called the extended
filesystem (or just ext for short). It provides a basic Unix-like filesystem for Linux, using
virtual directories to handle physical devices, and storing data in fixed-length blocks on
the physical devices.

The ext filesystem uses a system called inodes to track information about the files stored
in the virtual directory. The inode system creates a separate table on each physical device,
called the inode table, to store file information. Each stored file in the virtual directory has
an entry in the inode table. The extended part of the name comes from the additional data
that it tracks on each file, which consists of these items:

® The filename

The file size

The owner of the file

The group the file belongs to
Access permissions for the file

Pointers to each disk block that contains data from the file

Linux references each inode in the inode table using a unique number (called the inode
number), assigned by the filesystem as data files are created. The filesystem uses the inode
number to identify the file rather than having to use the full filename and path.

Looking at the ext2 Filesystem

The original ext filesystem had quite a few limitations, such as restraining files to only 2GB
in size. Not too long after Linux was first introduced, the ext filesystem was upgraded to
create the second extended filesystem, called ext2.

As you can guess, the ext? filesystem is an expansion of the basic abilities of the ext file-
system, but maintains the same structure. The ext2 filesystem expands the inode table
format to track additional information about each file on the system.

The ext?2 inode table adds the created, modified, and last accessed time values for files
to help system administrators track file access on the system. The ext2 filesystem also
increases the maximum file size allowed to 2TB (then in later versions of ext2, that was
increased to 32TB) to help accommodate large files commonly found in database servers.

In addition to expanding the inode table, the ext? filesystem also changed the way in
which files are stored in the data blocks. A common problem with the ext filesystem was
that as a file is written to the physical device, the blocks used to store the data tend to be

Chapter 8: Managing Filesystems

scattered throughout the device (called fragmentation). Fragmentation of data blocks can
reduce the filesystem performance, because it takes longer to search the storage device to
access all the blocks for a specific file.

The ext? filesystem helps reduce fragmentation by allocating disk blocks in groups when
you save a file. By grouping the data blocks for a file, the filesystem doesn't have to search
all over the physical device for the data blocks to read the file.

The ext? filesystem was the default filesystem used in Linux distributions for many years,
but it, too, had its limitations. The inode table, although a nice feature that allows the file-
system to track additional information about files, can cause problems that can be fatal to
the system. Each time the filesystem stores or updates a file, it must modify the inode table
with the new information. The problem is that this isn’t always a fluid action.

If something should happen to the computer system between the file being stored and the
inode table being updated, the two would become out of sync. The ext2 filesystem is notori-
ous for easily becoming corrupted due to system crashes and power outages. Even if the file
data is stored just fine on the physical device, if the inode table entry isn't completed, the
ext2 filesystem doesnt even know that the file existed!

It wasn't long before developers were exploring a different avenue of Linux filesystems.

Understanding journaling filesystems

Journaling filesystems provide a new level of safety to the Linux system. Instead of writing
data directly to the storage device and then updating the inode table, journaling filesys-
tems write file changes into a temporary file (called the journal) first. After data is success-
fully written to the storage device and the inode table, the journal entry is deleted.

If the system should crash or suffer a power outage before the data can be written to the
storage device, the journaling filesystem just reads through the journal file and processes
any uncommitted data left over.

Linux commonly uses three different methods of journaling, each with different levels of
protection. These are shown in Table 8-1.

TABLE 8-1 Journaling Filesystem Methods

Method Description
Data mode Both inode and file data are journaled. Low risk of losing data, but poor
performance.

Ordered mode Only inode data is written to the journal, but not removed until file data is
successfully written. Good compromise between performance and safety.

Writeback Only inode data is written to the journal, no control over when the file data is
mode written. Higher risk of losing data, but still better than not using journaling.

189

Part I: The Linux Command Line

190

The data mode journaling method is by far the safest for protecting data, but it is also the
slowest. All the data written to a storage device must be written twice, once to the journal
and again to the actual storage device. This can cause poor performance, especially for
systems that do lots of data writing.

Over the years, a few different journaling filesystems have appeared in Linux. The following
sections describe the popular Linux journaling filesystems available.

Looking at the ext3 Filesystem

The ext3 filesystem was added to the Linux kernel in 2001, and up until recently was the

default filesystem used by just about all Linux distributions. It uses the same inode table
structure as the ext2 filesystem, but adds a journal file to each storage device to journal

the data written to the storage device.

By default, the ext3 filesystem uses the ordered mode method of journaling, only writing
the inode information to the journal file, but not removing it until the data blocks have
been successfully written to the storage device. You can change the journaling method
used in the ext3 filesystem to either data or writeback modes with a simple command line
option when creating the filesystem.

Although the ext3 filesystem added basic journaling to the Linux filesystem, it still lacked
a few things. For example, the ext3 filesystem doesn’t provide any recovery from accidental
deletion of files, no built-in data compression is available (although a patch can be installed
separately that provides this feature), and the ext3 filesystem doesn't support encrypting
files. For those reasons, developers in the Linux project chose to continue work on improv-
ing the ext3 filesystem.

Looking at the ext4 Filesystem

The result of expanding the ext3 filesystem was (as you probably guessed) the ext4 filesys-
tem. The ext4 filesystem was officially supported in the Linux kernel in 2008 and is now
the default filesystem used in popular Linux distributions, such as Ubuntu.

In addition to supporting compression and encryption, the ext4 filesystem also supports a
feature called extents. Extents allocate space on a storage device in blocks and only store
the starting block location in the inode table. This helps save space in the inode table by
not having to list all the data blocks used to store data from the file.

The ext4 filesystem also incorporates block preallocation. If you want to reserve space on a
storage device for a file that you know will grow in size, with the ext4 filesystem it’s possi-
ble to allocate all the expected blocks for the file, not just the blocks that physically exist.
The ext4 filesystem fills in the reserved data blocks with zeroes and knows not to allocate
them for any other file.

Looking at the Reiser Filesystem

In 2001, Hans Reiser created the first journaling filesystem for Linux, called ReiserFS. The
ReiserFS filesystem supports only writeback journaling mode, writing only the inode table

Chapter 8: Managing Filesystems

data to the journal file. Because it writes only the inode table data to the journal, the
ReiserFsS filesystem is one of the faster Linux journaling filesystems.

Two interesting features incorporated into the ReiserFS filesystem are that you can resize
an existing filesystem while it’s still active and that it uses a technique called tailpacking,
which stuffs data from one file into empty space in a data block from another file. The
active filesystem resizing feature is great if you have to expand an already created filesys-
tem to accommodate more data.

The ReiserFS development team began working on a new version called Reiser4 in 2004. The
Reiser4 filesystem has several improvements over ResierFS, including extremely efficient
handling of small files. However, most current mainstream Linux distributions don't use
the Reiser4 filesystem. Yet, you may still run into a Linux system that employs it.

Looking at the Journaled Filesystem

Possibly one of the oldest journaling filesystems around, the Journaled File System (JES) was
developed by IBM in 1990 for its AIX flavor of Unix. However, it wasn't until its second ver-
sion that it was ported to the Linux environment.

NoTE

The official IBM name of the second version of the JFS filesystem is JFS2, but most Linux systems refer to it
as just JFS.

The JFS filesystem uses the ordered journaling method, storing only the inode table data in
the journal, but not removing it until the actual file data is written to the storage device.
This method is a compromise between the speed of the Reiser4 and the integrity of the data
mode journaling method.

The JFS filesystem uses extent-based file allocation, allocating a group of blocks for each
file written to the storage device. This method provides for less fragmentation on the stor-
age device.

Outside of the IBM Linux offerings, the JFS filesystem isn't popularly used, but you may run
into it in your Linux journey.

Looking at the XFS Filesystem

The XFS journaling filesystem is yet another filesystem originally created for a commercial
Unix system that made its way into the Linux world. Silicon Graphics Incorporated (SGI) orig-
inally created XFS in 1994 for its commercial IRIX Unix system. It was released to the Linux
environment for common use in 2002. The XFS filesystem has recently become more popular
and is used as the default filesystem in mainstream Linux distributions, such as RHEL.

The XES filesystem uses the writeback mode of journaling, which provides high perfor-
mance but does introduce an amount of risk because the actual data isn't stored in the

191

Part I: The Linux Command Line

192

journal file. The XFES filesystem also allows online resizing of the filesystem, similar to the
Reiser4 filesystem, except XFS filesystems can only be expanded and not shrunk.

Understanding the copy-on-write filesystems

With journaling, you must choose between safety and performance. Although data mode
journaling provides the highest safety, performance suffers because both inode and data
is journaled. With writeback mode journaling, performance is acceptable, but safety is
compromised.

For filesystems, an alternative to journaling is a technique called copy-on-write (COW). COW
offers both safety and performance via snapshots. For modifying data, a clone or writable-
snapshot is used. Instead of writing modified data over current data, the modified data is
put in a new filesystem location. Even when data modification is completed, the old data is
never overwritten.

COW filesystems are gaining in popularity. Two of the most popular, Btrfs and ZFS, are
briefly reviewed in the following sections.

Looking at the ZFS Filesystem

The COW filesystem ZFS was developed in 2005 by Sun Microsystems for the OpenSolaris
operating system. It began being ported to Linux in 2008 and was finally available for
Linux production use in 2012.

ZFS is a stable filesystem and competes well against Resier4, Btrfs, and ext4. Its biggest
detractor is that ZFS does not have a GPL license. The OpenZFS project was launched in
2013, which may help to change this situation. However, it’s possible that until a GPL
license is obtained, ZFS will never be a default Linux filesystem.

Looking at the Btrfs Filesystem

The COW newcomer is the Btrfs filesystem, also called the B-tree filesystem. Oracle started
development on Btrfs in 2007. It was based on many of Reiser4’s features, but offered
improvements in reliability. Additional developers eventually joined in and helped Btrfs
quickly rise toward the top of the popular filesystems list. This popularity is due to
stability, ease of use, as well as the ability to dynamically resize a mounted filesystem. The
openSUSE Linux distribution recently established Btrfs as its default filesystem. It is also
offered in other Linux distributions, such as RHEL, although not as the default filesystem.

Working with Filesystems

Linux provides a few different utilities that make it easier to work with filesystems from
the command line. You can add new filesystems or change existing filesystems from the
comfort of your own keyboard. This section walks you through the commands for interact-
ing with filesystems from a command line environment.

Chapter 8: Managing Filesystems

Creating partitions

To start out, you need to create a partition on the storage device to contain the filesystem.
The partition can be an entire disk or a subset of a disk that contains a portion of the vir-
tual directory.

The £disk utility is used to help you organize partitions on any storage device installed on
the system. The £disk command is an interactive program that allows you to enter com-
mands to walk through the steps of partitioning a hard drive.

To start the £disk command, you need to specify the device name of the storage device
you want to partition and you need to have superuser privileges. When you don't have
superuser privileges and attempt to use £disk, you'll receive some sort of error message,
like this one:

$ fdisk /dev/sdb

Unable to open /dev/sdb
$

NoTE

Sometimes, the hardest part of creating a new disk partition is trying to find the physical disk on your Linux system.
Linux uses a standard format for assigning device names to hard drives, but you need to be familiar with the format.
For older IDE drives, Linux uses /dev/hdx, where x is a letter based on the order the drive is detected (a for the

first drive, b for the second, and so on). For both the newer SATA drives and SCSI drives, Linux uses /dev/sdx,
where x is a letter based on the order the drive is detected (again, a for the first drive, b for the second, and so on).
It’s always a good idea to double-check to make sure you are referencing the correct drive before formatting the
partition!

If you do have superuser privileges and the correct device name, the £disk command
allows you entrance into the utility as demonstrated here on a Cent0S distribution:

$ sudo fdisk /dev/sdb

[sudo] password for Christine:

Device contains neither a valid DOS partition table,

nor Sun, SGI or OSF disklabel

Building a new DOS disklabel with disk identifier 0xd3£759b5.
Changes will remain in memory only

until you decide to write them.

After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will
be corrected by w(rite)

[...]

Command (m for help):

193

Part I: The Linux Command Line

Tip

If this is the first time you're partitioning the storage device, £disk gives you a warning that a partition table is not
on the device.

The f£disk interactive command prompt uses single letter commands to instruct £disk
what to do. Table 8-2 shows the commands available at the fdisk command prompt.

TABLE 8-2 The fdisk Commands

Command Description

a Toggles a flag indicating if the partition is bootable
b Edits the disklabel used by BSD Unix systems
Toggles the DOS compatibility flag

Q

d Deletes the partition

1 Lists the available partition types

m Displays the command options

n Adds a new partition

o Creates a DOS partition table

p Displays the current partition table
q Quits without saving changes

s Creates a new disklabel for Sun Unix systems
t Changes the partition system ID

u Changes the storage units used

v Verifies the partition table

w Writes the partition table to the disk
x Advanced functions

Although this list may look intimidating, usually you need just a few basic commands in
day-to-day work.

For starters, you can display the details of a storage device using the p command:
Command (m for help): p
Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes

194

Chapter 8: Managing Filesystems

Disk identifier: 0x11747e88
Device Boot Start End Blocks Id System

Command (m for help):

The output shows that the storage device has 5368MB of space on it (5GB). The listing under
the storage device details shows whether there are any existing partitions on the device.
The listing in this example doesn’t show any partitions, so the device is not partitioned yet.

Next, you'll want to create a new partition on the storage device. Use the n command for that:

Command (m for help): n
Command action
e extended
P primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-652, default 1): 1
Last cylinder, +cylinders or +size{X,M,G} (1-652, default 652): +2G

Command (m for help):

Partitions can be created as either a primary partition or an extended partition. Primary
partitions can be formatted with a filesystem directly, whereas extended partitions can only
contain other primary partitions. The reason for extended partitions is that there can only be
four partitions on a single storage device. You can extend that by creating multiple extended
partitions and then creating primary partitions inside the extended partitions. This example
creates a primary storage device, assigns it partition number 1, and then allocates 2GB of the
storage device space to it. You can see the results using the p command again:

Command (m for help): p

Disk /dev/sdb: 5368 MB, 5368709120 bytes

255 heads, 63 sectors/track, 652 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x029%aaé6af

Device Boot Start End Blocks Id System
/dev/sdbl 1 262 2104483+ 83 Linux

Command (m for help):

Now in the output there’s a partition shown on the storage device (called /dev/sdb1l). The
Id entry defines how Linux treats the partition. £disk allows you to create lots of parti-
tion types. Using the 1 command lists the different types available. The default is type 83,
which defines a Linux filesystem. If you want to create a partition for a different filesystem
(such as a Windows NTES partition), just select a different partition type.

195

Part I: The Linux Command Line

You can repeat the process to allocate the remaining space on the storage device to another
Linux partition. After you've created the partitions you want, use the w command to save
the changes to the storage device:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$

The storage device partition information was written to the partition table, and Linux was
informed of the new partition via the ioctl () call. Now that you have set up a partition
on the storage device, you're ready to format it with a Linux filesystem.

Tip

Some distributions and older distribution versions do not automatically inform your Linux system of a new partition

after it is made. In this case, you need to use either the partprobe or hdparm command (see their man pages),
or reboot your system so it reads the updated partition table.

Creating a filesystem

Before you can store data on the partition, you must format it with a filesystem so Linux
can use it. Each filesystem type uses its own command line program to format partitions.
Table 8-3 lists the utilities used for the different filesystems discussed in this chapter.

TABLE 8-3 Command Line Programs to Create Filesystems

Utility Purpose

mkefs Creates an ext filesystem
mke2fs Creates an ext?2 filesystem
mkfs.ext3 Creates an ext3 filesystem
mkfs.ext4 Creates an ext4 filesystem
mkreiserfs Creates a ReiserFS filesystem
jfs_mkfs Creates a JFS filesystem
mkfs.xfs Creates an XFS filesystem
mkfs.zfs Creates a ZFS filesystem
mkfs.btrfs Creates a Btrfs filesystem

Not all filesystem utilities are installed by default. To determine whether you have a
particular filesystem utility, use the type command:

196

Chapter 8: Managing Filesystems

S type mkfs.ext4
mkfs.ext4 is /sbin/mkfs.ext4

$
S type mkfs.btrfs
-bash: type: mkfs.btrfs: not found

$

The preceding example on an Ubuntu system shows that the mkfs.ext4 utility is
available. However, the Btrfs utility is not. See Chapter 9 on how to install additional
software and utilities on your Linux distribution.

Each filesystem utility command has lots of command line options that allow you to
customize just how the filesystem is created in the partition. To see all the command line
options available, use the man command to display the manual pages for the filesystem
command (see Chapter 3). All the filesystem commands allow you to create a default
filesystem with just the simple command with no options:

$ sudo mkfs.ext4 /dev/sdbl
[sudo] password for Christine:
mke2fs 1.41.12 (17-May-2010)
Filesystem labels=
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131648 inodes, 526120 blocks
26306 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7744 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 23 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

$

The new filesystem uses the ext4 filesystem type, which is a journaling filesystem in Linux.
Notice that part of the creation process was to create the new journal.

After you create the filesystem for a partition, the next step is to mount it on a virtual
directory mount point so you can store data in the new filesystem. You can mount the new
filesystem anywhere in your virtual directory where you need the extra space.

197

Part I: The Linux Command Line

ls /mnt
sudo mkdir /mnt/my partition
ls -al /mnt/my partition/

ls -dF /mnt/my partition
nt/my partition/

$
$
$
$
$
$
$
/m
$
$ sudo mount -t ext4 /dev/sdbl /mnt/my partition

$

$ 1s -al /mnt/my partition/

total 24

drwxr-xr-x. 3 root root 4096 Jun 11 09:53
drwxr-xr-x. 3 root root 4096 Jun 11 09:58

drwx------ . 2 root root 16384 Jun 11 09:53 lost+found

The mkdir command (Chapter 3) creates the mount point in the virtual directory, and the
mount command adds the new hard drive partition to the mount point. The -t option on
the mount command indicates what filesystem type, ext4, you are mounting. Now you can
save new files and folders on the new partition!

NoTE
This method of mounting a filesystem only temporarily mounts the filesystem. When you reboot your Linux system, the

filesystem doesn’t automatically mount. To force Linux to automatically mount the new filesystem at boot time, add
the new filesystem to the /etc/fstab file.

Now that the filesystem is mounted within the virtual directory system, it can start to be
used on a regular basis. Unfortunately, with regular use comes the potential for serious prob-
lems, such as filesystem corruption. The next section looks at how to deal with these issues.

Checking and repairing a filesystem

Even with modern filesystems, things can go wrong if power is unexpectedly lost, or if a
wayward application locks up the system while file access is in progress. Fortunately, some
command line tools are available to help you make an attempt to restore the filesystem
back to order.

Each filesystem has its own recovery command for interacting with the filesystem. That
has the potential of getting ugly, because more and more filesystems are available in the
Linux environment, making for lots of individual commands you have to know. Fortunately,
a common front-end program available can determine the filesystem on the storage device
and use the appropriate filesystem recovery command based on the filesystem being
recovered.

198

Chapter 8: Managing Filesystems

The fsck command is used to check and repair most Linux filesystem types, including ones
discussed earlier in this chapter — ext, ext2, ext3, ext4, Reiser4, JFS, and XFS. The format
of the command is:

fsck options filesystem

You can list multiple filesystem entries on the command line to check. Filesystems can
be referenced using either the device name, the mount point in the virtual directory, or a
special Linux UUID value assigned to the filesystem.

Tip

Although journaling filesystems users do need the £sck command, it is arguable as to whether COW filesystems
users do. In fact, the ZFS filesystem does not even have an interface to the fsck utility.

The fsck command uses the /etc/fstab file to automatically determine the filesystem on
a storage device that’s normally mounted on the system. If the storage device isn't normally
mounted (such as if you just created a filesystem on a new storage device), you need to use
the -t command line option to specify the filesystem type. Table 8-4 lists the other com-
mand line options available.

TABLE 8-4 The fsck Command Line Options

Option Description

-a Automatically repairs the filesystem if errors are detected

-A Checks all the filesystems listed in the /etc/fstab file

-C Displays a progress bar for filesystems that support that feature (only ext2 and
ext3)

-N Doesn't run the check, only displays what checks would be performed

-r Prompts to fix if errors found

-R Skips the root filesystem if using the -A option

-s If checking multiple filesystems, performs the checks one at a time

-t Specifies the filesystem type to check

-T Doesn't show the header information when starting

-V Produces verbose output during the checks

-y Automatically repairs the filesystem if errors detected

You may notice that some of the command line options are redundant. That's part of the
problem of trying to implement a common front-end for multiple commands. Some of the
individual filesystem repair commands have additional options that can be used. If you

199

Part I: The Linux Command Line

Tip

need to do more advanced error checking, you'll need to check the man pages for the indi-
vidual filesystem repair tool to see if there are extended options specific to that filesystem.

You can run the £sck command on unmounted filesystems only. For most filesystems, you can just unmount the
filesystem to check it and then remount it when you're finished. However, because the root filesystem contains all the
core Linux commands and log files, you can’t unmount it on a running system.

This is a time where having a Linux LiveCD comes in handy! Just boot your system with the LiveCD, and then run the
fsck command on the root filesystem!

200

This chapter has showed how to handle filesystems contained in physical storage devices.
Linux also provides a couple of different ways to create logical storage devices for file-
systems. The next section examines how you can use a logical storage device for your
filesystems.

Managing Logical Volumes

If you create your filesystems using standard partitions on hard drives, trying to add
additional space to an existing filesystem can be somewhat of a painful experience. You
can only expand a partition to the extent of the available space on the same physical hard
drive. If no more space is available on that hard drive, you're stuck having to get a larger
hard drive and manually moving the existing filesystem to the new drive.

What would come in handy is a way to dynamically add more space to an existing file-
system by just adding a partition from another hard drive to the existing filesystem. The
Linux Logical Volume Manager (LVM) software package allows you to do just that. It provides
an easy way for you to manipulate disk space on a Linux system without having to rebuild
entire filesystems.

Exploring logical volume management layout

The core of logical volume management is how it handles the physical hard drive partitions
installed on the system. In the logical volume management world, hard drives are called
physical volumes (PV). Each PV maps to a specific physical partition created on a hard drive.

Multiple PV elements are pooled together to create a volume group (VG). The logical volume
management system treats the VG like a physical hard drive, but in reality the VG may
consist of multiple physical partitions spread across multiple hard drives. The VG provides a
platform to create the logical partitions, which actually contain the filesystem.

The final layer in the structure is the logical volume (LV). The LV creates the partition envi-
ronment for Linux to create a filesystem, acting similar to a physical hard disk partition as
far as Linux is concerned. The Linux system treats the LV just like a physical partition.

Chapter 8: Managing Filesystems

You can format the LV using any one of the standard Linux filesystems and then add it to
the Linux virtual directory at a mount point.

Figure 8-1 shows the basic layout of a typical Linux logical volume management
environment.

FIGURE 8-1

The logical volume management environment

Logical Volume 1 Logical Volume 2

Volume Group

Physical Physical Physical Physical Physical
Volume 1 Volume 2 Volume 3 Volume 4 Volume 5
partition partition partition partition partition unused
1 2 1 2 1 space
Hard Drive 1 Hard Drive 2 Hard Drive 3

The volume group, shown in Figure 8-1, spans across three separate physical hard drives,
which contain five separate physical partitions. Inside the volume group are two separate
logical volumes. The Linux system treats each logical volume just like a physical partition.
Each logical volume can be formatted as an ext4 filesystem and then mounted to a specific
location in the virtual directory.

Notice in Figure 8-1 that the third physical hard drive has an unused partition. Using
logical volume management, you can easily assign this unused partition to the existing
volume group at a later time, and then either use it to create a new logical volume or add it
to expand one of the existing logical volumes when you need more space.

Likewise, if you add a new hard drive to the system, the local volume management system
allows you to add it to the existing volume group, and then create more space for one of the
existing logical volumes, or start a new logical volume to be mounted. That’s a much better
way of handling expanding filesystems!

Using the LVM in Linux

The Linux LVM was developed by Heinz Mauelshagen and released to the Linux community
in 1998. It allows you to manage a complete logical volume management environment in
Linux using simple command line commands.

Two versions of Linux LVM are available:

201

Part I: The Linux Command Line

m LVM1: The original LVM package released in 1998 and available in only the 2.4
Linux kernels. It provides only basic logical volume management features.

B LVM2: An updated version of the LVM, available in the 2.6 Linux kernels. It provides
additional features over the standard LVM1 features.

Most modern Linux distributions using the 2.6 kernel version or above provide support for
LVM2. Besides the standard logical volume management features, LVM2 provides a few other
nice things for you to use in your Linux system.

Taking a Snapshot

The original Linux LVM allows you to copy an existing logical volume to another device
while the logical volume is active. This feature is called a snapshot. Snapshots are great

for backing up important data that can't be locked due to high availability requirements.
Traditional backup methods usually lock files as they're being copied to the backup media.
The snapshot allows you to continue running mission critical web or database servers while
performing the copy. Unfortunately, LVM1 allows you to create only a read-only snapshot.
After you create the snapshot, you can't write to it.

LVM2 allows you to create a read-write snapshot of an active logical volume. With the
read-write copy, you can remove the original logical volume and mount the snapshot as a
replacement. This feature is great for fast fail-overs or for experimenting with applications
that modify data that may need to be restored if something fails.

Striping

Another interesting feature that LVM2 provides is striping. With striping, a logical volume is
created across multiple physical hard drives. When the Linux LVM writes a file to the logical
volume, the data blocks in the file are spread across the multiple hard drives. Each succes-
sive block of data is written to the next hard drive.

Striping helps improve disk performance, because Linux can write the multiple data blocks
for a file to the multiple hard drives simultaneously, rather than having to wait for a single
hard drive to move the read/write head to different locations. This improvement also
applies to reading sequentially accessed files, because the LVM can read data from the mul-
tiple hard drives simultaneously.

NoTE
LVM striping is not the same as RAID striping. LVM striping doesn’t provide a parity entry, which creates the fault-

tolerant environment. In fact, LVM striping may increase the chance of a file being lost due to a hard drive failure. A
single disk failure can result in multiple logical volumes being inaccessible.

Mirroring
Just because you install a filesystem using LVM doesnt mean that things can't still go
wrong in the filesystem. Just as in a physical partition, LVM logical volumes are susceptible

202

Chapter 8: Managing Filesystems

to power outages and disk crashes. After a filesystem becomes corrupt, there’s always a
possibility that you won't be able to recover it.

The LVM snapshot process provides some comfort knowing that you can create a backup
copy of a logical volume at any time, but for some environments that may not be enough.
Systems that have lots of data changes, such as database servers, may store hundreds or
thousands of records since the last snapshot.

A solution to this problem is the LVM mirror. A mirror is a complete copy of a logical volume
that’s updated in real time. When you create the mirror logical volume, LVM synchronizes
the original logical volume to the mirror copy. Depending on the size of the original logical
volume, this may take some time to complete.

After the original synchronization is complete, LVM performs two writes for each write
process in the filesystem — one to the main logical volume and one to the mirrored copy.
As you can guess, this process does slow down write performance on the system. However,
if the original logical volume should become corrupt for some reason, you have a complete
up-to-date copy at your fingertips!

Using the Linux LVM

Now that you've seen what the Linux LVM can do, this section discusses how to implement
it to help organize the disk space on your system. The Linux LVM package only provides
command line programs for creating and managing all the components in the logical
volume management system. Some Linux distributions include graphical front-ends to the
command line commands, but for complete control of your LVM environment, it’s best to get
comfortable working directly with the commands.

Defining Physical Volumes

The first step in the process is to convert the physical partitions on the hard drive into
physical volume extents used by the Linux LVM. Our friend the £disk command helps us
here. After creating the basic Linux partition, you need to change the partition type using
the t command:

[...]

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): 8e

Changed system type of partition 1 to 8e (Linux LVM)

Command (m for help): p

Disk /dev/sdb: 5368 MB, 5368709120 bytes

255 heads, 63 sectors/track, 652 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

203

Part I: The Linux Command Line

I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xa8661341

Device Boot Start End Blocks Id System
/dev/sdbl 1 262 2104483+ 8e Linux LVM

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$

The 8e partition type denotes that the partition will be used as part of a Linux LVM system
and not as a direct filesystem, as you saw with the 83 partition type earlier.

NoTE
If the pvcreate command in the next step does not work for you, it’s most likely due to the LVM2 package not

being installed by default. To install the package, use the package name lvm2 and see Chapter 9 for how to install
software packages.

The next step is to use the partition to create the actual physical volume. That's done using
the pvcreate command. The pvcreate command defines the physical partition to use for
the PV. It simply tags the partition as a physical volume in the Linux LVM system:

$ sudo pvcreate /dev/sdbl
dev_is mpath: failed to get device for 8:17
Physical volume "/dev/sdbl" successfully created

$

NoTE
Don’t let the daunting message dev_is mpath: failed to get device for 8:17 orsimilar messages

frighten you. As long as you receive the successfully created message, all is well. The pvcreate com-
mand checks to see whether the partition is a multi-path (mpath) device. If it is not, it issues the daunting message.

You can use the pvdisplay command to display a list of physical volumes you've created if
you'd like to see your progress along the way:

$ sudo pvdisplay /dev/sdbl
"/dev/sdbl" is a new physical volume of "2.01 GiB"
--- NEW Physical volume ---

PV Name /dev/sdbl
VG Name
PV Size 2.01 GiB

204

Chapter 8: Managing Filesystems

Allocatable NO

PE Size 0

Total PE 0

Free PE 0

Allocated PE 0

PV UUID 0FIug2-LBod-IOWt-8VeN-tglm-Q2ik-rGU2w7
$

The pvdisplay command shows that /dev/sdb1l is now tagged as a PV. Notice, however,
that in the output, the VG Name is blank. The PV does not yet belong to a volume group.

Creating Volume Groups

The next step in the process is to create one or more volume groups from the physical
volumes. There are no set rules for how many volume groups you need to create for your
system — you can add all the available physical volumes to a single volume group, or you
can create multiple volume groups by combining different physical volumes.

To create the volume group from the command line, you need to use the vgcreate
command. The vgcreate command requires a few command line parameters to define
the volume group name, as well as the name of the physical volumes you're using to
create the volume group:

$ sudo vgcreate Voll /dev/sdbl
Volume group "Voll" successfully created

$

That'’s not all too exciting for output! If you'd like to see some details about the newly cre-
ated volume group, use the vgdisplay command:

$ sudo vgdisplay Voll
--- Volume group ---

VG Name Voll
System ID

Format lvm2
Metadata Areas 1
Metadata Sequence No 1

VG Access read/write
VG Status resizable
MAX LV 0

Cur LV 0

Open LV 0

Max PV 0

Cur PV 1

Act PV 1

VG Size 2.00 GiB
PE Size 4.00 MiB

205

Part I: The Linux Command Line

206

Total PE 513

Alloc PE / Size 0/ 0

Free PE / Size 513 / 2.00 GiB

VG UUID Oe4I7e—5RA9—G9ti—ANOI—QKLZ—qu4—58Wj66

$

This example creates a volume group named Vol1l, using the physical volume created on
the /dev/sdbl partition.

Now that you have one or more volume groups created, you're ready to create the logical volume.

Creating Logical Volumes

The logical volume is what the Linux system uses to emulate a physical partition, and it
holds the filesystem. The Linux system handles the logical volumes just like a physical
partition, allowing you to define filesystems in the logical volume and then mount the
filesystem into the virtual directory.

To create the logical volume, use the 1vcreate command. Although you can usually get
away without using command line options in the other Linux LVM commands, the
lvcreate command requires at least some options to be entered. Table 8-5 shows the
available command line options.

TABLE 8-5 The lvcreate Options

Option Long Option Name Description

-c --chunksize Specifies the chunksize of the snapshot logical volume
-C --contiguous Sets or resets the contiguous allocation policy

-1 --stripes Specifies the number of stripes

-I --stripsize Specifies the size of each stripe

-1 --extents Specifies the number of logical extents to allocate

to a new logical volume or the percent of the logical
extents to use

-L --size Specifies the disk size to allocate to a new logical volume
--minor Specifies the minor number of the device

-m --mirrors Creates a mirrored logical volume

-M --persistent Makes the minor number persistent

-n --name Specifies the name of the new logical volume

-p --permission Sets read/write permission for the logical volume

-r --readahead Sets the read ahead sector count

Chapter 8: Managing Filesystems

-R --regionsize Specifies the size to divide the mirror regions into

-s - -snapshot Creates a snapshot logical volume

-7 --zero Sets the first 1KB of data on the new logical volume to
zeros

Although the command line options may look intimidating, for most situations, you can get
by with a minimal amount of options:

$ sudo lvcreate -1 100%FREE -n lvtest Voll
Logical volume "lvtest" created

$
If you want to see the details of what you created, use the 1vdisplay command:

$ sudo lvdisplay Voll
--- Logical volume ---

LV Path /dev/Voll/lvtest
LV Name lvtest

VG Name Voll

LV UUID 4W2369-pLXy-jWmb-1IFN-SMNX-xZnN-3KN208
LV Write Access read/write

LV Creation host, time ... -0400

LV Status available

open 0

LV Size 2.00 GiB

Current LE 513

Segments 1

Allocation inherit

Read ahead sectors auto

- currently set to 256

Block device 253:2

$

Now you can see just what you created! Notice that the volume group name (Vol1) is used
to identify the volume group to use when creating the new logical volume.

The -1 parameter defines how much of the available space on the volume group specified to
use for the logical volume. Notice that you can specify the value as a percent of the free space
in the volume group. This example used all (100%) of the free space for the new logical volume.

You can use the -1 parameter to specify the size as a percentage of the available space
or the -L parameter to specify the actual size in bytes, kilobytes (KB), megabytes (MB),
or gigabytes (GB). The -n parameter allows you to provide a name for the logical volume
(called 1vtest in this example).

207

Part I: The Linux Command Line

Creating the Filesystem

After you run the 1vcreate command, the logical volume exists but doesn’t have a filesys-
tem. To do that, you need to use the appropriate command line program for the filesystem
you want to create:

$ sudo mkfs.ext4 /dev/Voll/lvtest
mke2fs 1.41.12 (17-May-2010)
Filesystem labels=
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131376 inodes, 525312 blocks
26265 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7728 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first.Use tune2fs -c or -i to override.

$

After you've created the new filesystem, you can mount the volume in the virtual directory
using the standard Linux mount command, just as if it were a physical partition. The only
difference is that you use a special path that identifies the logical volume:

$ sudo mount /dev/Voll/lvtest /mnt/my partition

$

$ mount

/dev/mapper/vg_server0l-1lv_root on / type ext4 (rw)

[...]

/dev/mapper/Voll-lvtest on /mnt/my partition type ext4 (rw)

$

$ cd /mnt/my partition
$

$ ls -al

total 24

drwxr-xr-x. 3 root root 4096 Jun 12 10:22
drwxr-xr-x. 3 root root 4096 Jun 11 09:58 ..
drwx------ . 2 root root 16384 Jun 12 10:22 lost+found

208

Chapter 8: Managing Filesystems

Notice that the path used in both the mkfs.ext4 and mount commands is a little odd.
Instead of a physical partition path, the path uses the volume group name, along with the
logical volume name. After the filesystem is mounted, you can access the new area in the
virtual directory.

Modifying the LVM

Because the benefit of using the Linux LVM is to dynamically modify filesystems, you'd
expect that some tools would allow you to do that. Some tools are available in Linux that
allow you to modify the existing logical volume management configuration.

If you don't have access to a fancy graphical interface for managing your Linux LVM envi-
ronment, all is not lost. You've already seen some of the Linux LVM command line programs
in action in this chapter. You can use a host of other command line programs to manage
the LVM setup after you've installed it. Table 8-6 lists the common commands that are
available in the Linux LVM package.

TABLE 8-6 The Linux LVM Commands

Command Function

vgchange Activates and deactivates a volume group
vgremove Removes a volume group

vgextend Adds physical volumes to a volume group
vgreduce Removes physical volumes from a volume group
lvextend Increases the size of a logical volume

lvreduce Decreases the size of a logical volume

Using these command line programs, you have full control over your Linux LVM
environment.

Tip

Be careful when manually increasing or decreasing the size of a logical volume. The filesystem stored in the logical

volume must be manually fixed to handle the change in size. Most filesystems include command line programs for
reformatting the filesystem, such as the resize2fs program for the ext2, ext3, and ext4 filesystems.

209

Part I: The Linux Command Line

210

Summary

Working with storage devices in Linux requires that you know a little bit about filesys-
tems. Knowing how to create and work with filesystems from the command line can come
in handy as you work on Linux systems. This chapter discussed how to handle filesystems
from the Linux command line.

The Linux system is different from Windows in that it supports lots of different methods
for storing files and folders. Each filesystem method has different features that make it
ideal for different situations. Also, each filesystem method uses different commands for
interacting with the storage device.

Before you can install a filesystem on a storage device, you must first prepare the
device. The £disk command is used to partition storage devices to get them ready for
the filesystem. When you partition the storage device, you must define what type of
filesystem will be used on it.

After you partition a storage device, you can use one of several different filesystems for the
partition. Popular Linux filesystems include ext4 and XFS. Both of these filesystems provide
journaling filesystem features, making them less prone to errors and problems if the Linux
system should crash.

One limiting factor to creating filesystems directly on a storage device partition is that you
can't easily change the size of the filesystem if you run out of disk space. However, Linux
supports logical volume management, a method of creating virtual partitions across multi-
ple storage devices. This method allows you to easily expand an existing filesystem without
having to completely rebuild it. The Linux LVM package provides command line commands
to create logical volumes across multiple storage devices on which to build filesystems.

Now that you've seen the core Linux command line commands, it’s close to the time to start
creating some shell script programs. However, before you start coding, we need to discuss
another element: installing software. If you plan to write shell scripts, you need an envi-
ronment in which to create your masterpieces. The next chapter discusses how to install
and manage software packages from the command line in different Linux environments.

CHAPTER

Installing Software

IN THIS CHAPTER

Installing software
Using Debian packages

Working with Red Hat packages

Linux developers have made life a little easier for us by bundling software into pre-built pack-

ages that are much easier to install. However, you still have a little work to do to get the soft-
ware packages installed, especially if you want to do that from the command line. This chapter
looks at the various Package Management Systems available in Linux and the command line tools
used for software installation, management, and removal.

In the old days of Linux, installing software could be a painful experience. Fortunately, the

Package Management Primer

Before diving into the world of Linux software package management, this chapter goes through

a few of the basics first. Each of the major Linux distributions utilizes some form of a Package
Management System (PMS) to control installing software applications and libraries. A PMS utilizes
a database that keeps track of these items:

® What software packages are installed on the Linux system
® What files have been installed for each package
m Versions of each of the software packages installed
Software packages are stored on servers, called repositories, and are accessed across the Internet via

PMS utilities running on your local Linux system. You can use the PMS utilities to search for new
software packages or even updates to software packages already installed on the system.

A software package often has dependencies or other packages that must be installed first for the
software to run properly. The PMS utilities detect these dependencies and offer to install any addi-
tionally needed software packages before installing the desired package.

211

Part I: The Linux Command Line

212

The downside to PMS is that there isn't a single standard utility. Whereas all the bash shell
commands discussed so far in this book work no matter which Linux distribution you use,
this is not true with software package management.

The PMS utilities and their associated commands are vastly different between the various
Linux distributions. The two primary PMS base utilities commonly used in the Linux world
are dpkg and rpm.

Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their PMS
utilities, the dpkg command. This command interacts directly with the PMS on the Linux
system and is used for installing, managing, and removing software packages.

The Red Hat-based distributions, such as Fedora, openSUSE, and Mandriva, use the rpm
command at the base of their PMS. Similar to the dpkg command, the rpm command can
list installed packages, install new packages, and remove existing software.

Note that these two commands are the core of their respective PMS, not the entire PMS
itself. Many Linux distributions that use the dpkg or rpm methods have built additional
specialty PMS utilities upon these base commands to help make your life much easier. The
following sections walk through various PMS utility commands you'll run into in the popu-
lar Linux distributions.

The Debian-Based Systems

The dpkg command is at the core of the Debian-based family of PMS tools. These other
tools are included in this PMS:

B apt-get
B apt-cache

B aptitude

By far the most common command line tool is aptitude, and for good reason. The aptitude
tool is essentially a front-end for both the apt tools and dpkg. Whereas dpkg is a PMS tool,
aptitude is a complete Package Management System.

Using the aptitude command at the command line helps you avoid common software
installation problems, such as missing software dependencies, unstable system environ-
ments, and just a whole lot of unnecessary hassle. This section looks at how to use the
aptitude command tool from the Linux command line.

Managing packages with aptitude

A common task faced by Linux system administrators is to determine what packages are
already installed on the system. Fortunately, aptitude has a handy interactive interface
that makes this task an easy one.

Chapter 9: Installing Software

If you have aptitude installed in your Linux distribution, at the shell prompt just type
aptitude and press Enter. You are thrown into aptitude’s full-screen mode, as you can see
in Figure 9-1.

FIGURE 9.1

The aptitude main window

Actions Undo Package Resolver Search Options Views Help
C-T: Menu ?: Help q: Quit u: Update g: Download/Install/Remove Pkgs

Security updates for these packages are available from security.ubuntu.com.

This group contains 47 packages.

Use the arrow keys to maneuver around the menu. Select the menu option Installed
Packages to see what packages are installed. You will see several groups of software pack-
ages, such as editors, and so on. A number in parentheses follows each group, which indi-
cates the number of packages the group contains.

Use the arrow keys to highlight a group, and press Enter to see each subgroup of packages.
You then see the individual package names and their version numbers. Press Enter on indi-
vidual packages to get very detailed information, such as the package’s description, home

page, size, maintainer, and so on.

When you're finished viewing the installed packages, press g to quit the display. You can
then go back to the arrow keys. and use Enter to toggle open or closed the packages and
their subgroups. When you are all finished, just press g multiple times until you receive the
pop-up screen “Really quit Aptitude?”

If you already know the packages on your system and want to quickly display detailed
information about a particular package, you don't need to go into aptitude’s interactive
interface. You can use aptitude as a single command at the command line:

aptitude show package name

213

Part I: The Linux Command Line

Here's an example of displaying the details of the package mysgl-client:

$ aptitude show mysgl-client

Package: mysgl-client

State: not installed

Version: 5.5.38-0ubuntu0.14.04.1

Priority: optional

Section: database

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Architecture: all

Uncompressed Size: 129 k

Depends: mysgl-client-5.5

Provided by: mysgl-client-5.5

Description: MySQL database client (metapackage depending on the latest version)
This is an empty package that depends on the current "best" version of
mysgl-client (currently mysgl-client-5.5), as determined by the MySQL
maintainers. Install this package if in doubt about which MySQL version you
want, as this is the one considered to be in the best shape by the Maintainers.
Homepage: http://dev.mysqgl.com/

NoTE

The aptitude show command indicates that the package is not installed on the system. It also shows detailed
package information from the software repository.

One detail you cannot get with aptitude is a listing of all the files associated with a par-
ticular software package. To get this list, you must go to the dpkg tool itself:

dpkg -L package name

Here’s an example of using dpkg to list all the files installed as part of the vim-common
package:

$

$ dpkg -L vim-common
/.

/usr

/usr/bin

/usr/bin/xxd
/usr/bin/helpztags
/usr/1lib

/usr/lib/mime
/usr/lib/mime/packages
/usr/lib/mime/packages/vim-common
/usr/share
/usr/share/man
/usr/share/man/ru

214

mailto:discuss@lists.ubuntu.com
http://dev.mysql.com

Chapter 9: Installing Software

/usr/share/man/ru/manl
/usr/share/man/ru/manl/vim.1l.gz
/usr/share/man/ru/manl/vimdiff.1.gz
/usr/share/man/ru/manl/xxd.l.gz
/usr/share/man/it
/usr/share/man/it/manl

[...1]

$

You can also do the reverse — find what package a particular file belongs to:
dpkg --search absolute file name
Note that you need to use an absolute file reference for this to work:

$
$ dpkg --search /usr/bin/xxd
vim-common: /usr/bin/xxd

$

The output shows the /usr/bin/xxd file was installed as part of the vim-common
package.

Installing software packages with aptitude

Now that you know more about listing software package information on your system, this
section walks through a software package install. First, you'll want to determine the pack-
age name to install. How do you find a particular software package? Use the aptitude
command with the search option:

aptitude search package name

The beauty of the search option is that you do not need to insert wildcards around
package_name. Wildcards are implied. Here's an example of using aptitude to look
for the wine software package:

$

$ aptitude search wine

P gnome-wine-icon-theme - red variation of the GNOME- ...

v libkwineffectsl-api -

P libkwineffectsla - library used by effects...

p g4wine - Qt4 GUI for wine (W.I.N.E)

P shiki-wine-theme - red variation of the Shiki- ...

P wine - Microsoft Windows Compatibility ...
p wine-dev - Microsoft Windows Compatibility ...
p wine-gecko - Microsoft Windows Compatibility ...
P winel.0 - Microsoft Windows Compatibility ...
P winel.0-dev - Microsoft Windows Compatibility ...

215

Part I: The Linux Command Line

216

p winel.0-gecko - Microsoft Windows Compatibility ...
p winel.2 - Microsoft Windows Compatibility ...
P winel.2-dbg - Microsoft Windows Compatibility ...
p winel.2-dev - Microsoft Windows Compatibility ...
p winel.2-gecko - Microsoft Windows Compatibility ...
p winefish - LaTeX Editor based on Bluefish

$

Notice that before each package name is either a p or i. If you see an i u, the package is
currently installed on your system. If you see ap or v, it is available but not installed. As
you can see from the preceding listing, this system does not have wine currently installed,
but the package is available from the software repository.

Installing a software package on a system from a repository using aptitude is as easy as
this:

aptitude install package name

After you find the software package name from the search option, just plug it into the
aptitude command using the install option:

$
$ sudo aptitude install wine
The following NEW packages will be installed:
cabextract{a} esound-clients{a} esound-common{a} gnome-exe-thumbnailer
{a}
icoutils{a} imagemagick{a} libaudio2{a} libaudiofile0O{a} libcdt4{a}
libesdo{a} libgraph4{a} libgvc5{a} libilmbaseé6{a} libmagickcore3-extra
{a}
libmpgl23-0{a} libnetpbml0{a} libopenall{a} libopenexré{a}
libpathplan4{a} libxdot4{a} netpbm{a} ttf-mscorefonts-installer{a}
ttf-symbol-replacement{a} winbind{a} wine winel.2{a} winel.2-gecko{a}
0 packages upgraded, 27 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/27.6MB of archives. After unpacking 121MB will be used.
Do you want to continue? [Y/n/?] Y
Preconfiguring packages
[...]
All done, no errors.
All fonts downloaded and installed.
Updating fontconfig cache for /usr/share/fonts/truetype/msttcorefonts
Setting up winbind (2:3.5.4~dfsg-lubuntu?7)
* Starting the Winbind daemon winbind
[OK]
Setting up wine (1.2-Oubuntu5)
Setting up gnome-exe-thumbnailer (0.6-0ubuntul)
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

Chapter 9: Installing Software

NoTE
Before the aptitude command in the preceding listing, the sudo command is used. The sudo command allows

you to run a command as the root user. You can use the sudo command to run administrative tasks, such as install-
ing software.

To check if the installation processed properly, just use the search option again. This time
you should see an i u listed in front of the wine software package, indicating it is installed.

You may also notice that there are additional packages with the i u in front of them. This
is because aptitude automatically resolved any necessary package dependencies for us
and installs the needed additional library and software packages. This is a wonderful fea-
ture included in many Package Management Systems.

Updating software with aptitude

While aptitude helps protect you from problems installing software, trying to coordinate a
multiple-package update with dependencies can get tricky. To safely update all the software
packages on a system with any new versions in the repository, use the safe-upgrade option:

aptitude safe-upgrade

Notice that this command doesn't take a software package name as an argument. That's
because the safe-upgrade option upgrades all the installed packages to the most recent
version available in the repository, which is safer for system stabilization.

Here’s a sample output from running the aptitude safe-update command:

$

$ sudo aptitude safe-upgrade

The following packages will be upgraded:
evolution evolution-common evolution-plugins gsfonts libevolution
xserver-xorg-video-geode

6 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Need to get 9,312kB of archives. After unpacking 0B will be used.

Do you want to continue? [Y/n/?] Y

Get:1 http://us.archive.ubuntu.com/ubuntu/ maverick/main
libevolution 1386 2.30.3-1lubuntu4 [2,096kB]

[...]

Preparing to replace xserver-xorg-video-geode 2.11.9-2

(using .../xserver-xorg-video-geode 2.11.9-3 i386.deb)

Unpacking replacement xserver-xorg-video-geode ...

Processing triggers for man-db ...

Processing triggers for desktop-file-utils ...

Processing triggers for python-gmenu ...

[...]

Current status: 0 updates [-6].

$

217

http://us.archive.ubuntu.com/ubuntu

Part I: The Linux Command Line

You can also use less-conservative options for software upgrades:

B aptitude full-upgrade
B aptitude dist-upgrade

These options perform the same task, upgrading all the software packages to the latest ver-
sions. Where they differ from safe-upgrade is that they do not check dependencies between
packages. The whole package dependency issue can get real ugly. If youre not exactly sure of
the dependencies for the various packages, stick with the safe-upgrade option.

NoTE
Obviously, running aptitude’s safe-upgrade option is something you should do on a regular basis to keep your

system up to date. However, it is especially important to run it after a fresh distribution installation. Usually, lots of
security patches and updates have been released since the last full release of a distribution.

Uninstalling software with aptitude

Getting rid of software packages with aptitude is as easy as installing and upgrading them.
The only real choice you have to make is whether to keep the software’s data and configura-
tion files around afterward.

To remove a software package, but not the data and configuration files, use the remove
option of aptitude. To remove a software package and the related data and configuration
files, use the purge option:

$ sudo aptitude purge wine
[sudo] password for user:
The following packages will be REMOVED:
cabextract{u} esound-clients{u} esound-common{u} gnome-exe-thumbnailer
{u}
icoutils{u} imagemagick{u} libaudio2{u} libaudiofileO{u} libcdt4{u}
libesdo{u} libgraph4{u} libgvc5{u} libilmbase6{u} libmagickcore3-extra
{u)
1ibmpg123-0{u} libnetpbm10{u} libopenall{u} libopenexré6{u}
libpathplan4{u} libxdot4{u} netpbm{u} ttf-mscorefonts-installer{u}
ttf-symbol-replacement{u} winbind{u} wine{p} winel.2{u} winel.2-gecko
{u}
0 packages upgraded, 0 newly installed, 27 to remove and 6 not upgraded.
Need to get 0B of archives. After unpacking 121MB will be freed.
Do you want to continue? [Y/n/?] Y
(Reading database ... 120968 files and directories currently installed.)
Removing ttf-mscorefonts-installer ...
[...]
Processing triggers for fontconfig ...
Processing triggers for ureadahead ...
Processing triggers for python-support ...

$

218

Chapter 9: Installing Software

To see if the package has been removed, you can use the aptitude search option again.
If you see a c in front of the package name, it means the software has been removed, but
the configuration files have not been purged from the system. A p in front indicates the
configuration files have also been removed.

The aptitude repositories

The default software repository locations for aptitude are set up for you when you
install your Linux distribution. The repository locations are stored in the file /etc/apt/
sources.list.

In many cases, you never need to add/remove a software repository so you don't need to
touch this file. However, aptitude pulls software from only these repositories. Also, when
searching for software to install or update, aptitude checks only these repositories. If you
need to include some additional software repositories for your PMS, this is the place to do it.

Tip

The Linux distribution developers work hard to make sure package versions added to the repositories don’t conflict

with one another. Usually it’s safest to upgrade or install a software package from the repository. Even if a newer
version is available elsewhere, you may want to hold off installing it until that version is available in your Linux distri-
bution’s repository.

The following is an example of a sources.1list file from an Ubuntu system:

$ cat /etc/apt/sources.list
#deb cdrom: [Ubuntu 14.04 LTS _Trusty Tahr - Release 1386 (20140417)]/
trusty main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ trusty main restricted

deb-src http://us.archive.ubuntu.com/ubuntu/ trusty main restricted

Major bug fix updates produced after the final release of the

distribution.

deb http://us.archive.ubuntu.com/ubuntu/ trusty-updates main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ trusty-updates main restricted

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team. Also, please note that software in universe WILL NOT receive any
review or updates from the Ubuntu security team.

deb http://us.archive.ubuntu.com/ubuntu/ trusty universe

deb-src http://us.archive.ubuntu.com/ubuntu/ trusty universe

deb http://us.archive.ubuntu.com/ubuntu/ trusty-updates universe

219

http://help.ubuntu.com/community/UpgradeNotes
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

Part I: The Linux Command Line

220

deb-src http://us.archive.ubuntu.com/ubuntu/ trusty-updates universe

[...]

Uncomment the following two lines to add software from Canonical's

'partner' repository.

This software is not part of Ubuntu, but is offered by Canonical and the
respective vendors as a service to Ubuntu users.

deb http://archive.canonical.com/ubuntu trusty partner

deb-src http://archive.canonical.com/ubuntu trusty partner

This software is not part of Ubuntu, but is offered by third-party
developers who want to ship their latest software.

deb http://extras.ubuntu.com/ubuntu trusty main

deb-src http://extras.ubuntu.com/ubuntu trusty main

$

First, notice that the file is full of helpful comments and warnings. The repository sources
specified use the following structure:

deb (or deb-src) address distribution name package type list

The deb or deb-src value indicates the software package type. The deb value indicates
it is a source of compiled programs, whereas the deb-src value indicates it is a source of
source code.

The address entry is the software repository’s web address. The distribution name entry
is the name of this particular software repository’s distribution’s version. In the example, the
distribution name is trusty. This does not necessarily mean that the distribution you are
running is Ubuntu's Trusty Tahr; it just means the Linux distribution is using the Ubuntu
Trusty Tahr software repositories! For example, in Linux Mint’s sources.list file, you see a
mix of Linux Mint and Ubuntu software repositories.

Finally, the package type list entry may be more than one word and indicates what
type of packages the repository has in it. For example, you may see values such as main,
restricted, universe, or partner.

When you need to add a software repository to your sources file, you can try to wing it
yourself, but that more than likely will cause problems. Often, software repository sites
or various package developer sites have an exact line of text that you can copy from their
website and paste into your sources.list file. It's best to choose the safer route and
just copy/paste.

The front-end interface, aptitude, provides intelligent command line options for working
with the Debian-based dpkg utility. Now it’s time to look at the Red Hat-based distribu-
tions’ rpm utility and its various front-end interfaces.

http://us.archive.ubuntu.com/ubuntu
http://archive.canonical.com/ubuntu
http://archive.canonical.com/ubuntu
http://extras.ubuntu.com/ubuntu
http://extras.ubuntu.com/ubuntu

Chapter 9: Installing Software

The Red Hat-Based Systems

Like the Debian-based distributions, the Red Hat-based systems have several different
front-end tools that are available. These are the common ones:

B yum: Used in Red Hat and Fedora
B urpm: Used in Mandriva
B zypper: Used in openSUSE
These front-ends are all based on the rpm command line tool. The following section dis-

cusses how to manage software packages using these various rpm-based tools. The focus is
on yum, but information is also included for zypper and urpm.

Listing installed packages

To find out what is currently installed on your system, at the shell prompt, type the follow-
ing command:

yum list installed

The information will probably whiz by you on the display screen, so it’s best to redirect the
installed software listing into a file. You can then use the more or less command (or a GUI
editor) to look at the list in a controlled manner.

yum list installed > installed software

To list out the installed packages on your openSUSE or Mandriva distribution, see the com-
mands in Table 9-1. Unfortunately, the urpm tool used in Mandriva cannot produce a cur-
rently installed software listing. Thus, you need to revert to the underlying rpm tool.

TABLE 9-1 How to List Installed Software with zypper and urpm

Distribution Front-End Tool Command
Mandriva urpm rpm -ga > installed software
openSUSE zypper zipper search -I > installed software

To find out detailed information for a particular software package, yum really shines. It
gives you a very verbose description of the package, and with another simple command,
you can see whether the package is installed:

yum list xterm

Loaded plugins: langpacks, presto, refresh-packagekit
Adding en US to language list

Available Packages

221

Part I: The Linux Command Line

222

xterm.i686 253-1.el6

#

yum list installed xterm

Loaded plugins: refresh-packagekit
Error: No matching Packages to list
#

The commands to list detailed software package information using urpm and zypper are
in Table 9-2. You can acquire an even more detailed set of package information from the

repository, using the info option on the zypper command.

TABLE 9-2 How to See Various Package Details with zypper and urpm

Detail Type Front-End Tool Command

Package Information urpm urpmg -i package name

Installed? urpm rpm -q package name
Packagelnfonnaﬂon zZypper zypper search -s package name
Installed? zypper Same command, but look for an i in the

Status column

Finally, if you need to find out what software package provides a particular file on your

filesystem, the versatile yum can do that, too! Just enter the command:

yum provides file name

Here’s an example of trying to find what software provided the configuration file /etc/

yum. conf:

#
yum provides /etc/yum.conf
Loaded plugins: fastestmirror, refresh-packagekit, security
Determining fastest mirrors
* base: mirror.web-ster.com
* extras: centos.chi.host-engine.com
* updates: mirror.umd.edu
yum-3.2.29-40.el6.centos.noarch : RPM package installer/updater/manager

Repo : base
Matched from:
Filename : /etc/yum.conf

yum-3.2.29-43.el6.centos.noarch : RPM package installer/updater/manager
Repo : updates
Matched from:

Chapter 9: Installing Software

Filename : /etc/yum.conf

yum-3.2.29-40.el6.centos.noarch : RPM package installer/updater/manager

Repo : installed

Matched from:

Other : Provides-match: /etc/yum.conf
#

#

yum checked three separate repositories: base, updates, and installed. From both, the
answer is: the yum software package provides this file!

Installing software with yum

Installation of a software package using yum is incredibly easy. The following is the basic
command for installing a software package, all its needed libraries, and package dependen-
cies from a repository:

yum install package name
Here'’s an example of installing the xterm package that we talked about in Chapter 2:

$ su -
Password:
yum install xterm
Loaded plugins: fastestmirror, refresh-packagekit, security
Determining fastest mirrors
* base: mirrors.bluehost.com
* extras: mirror.5ninesolutions.com
* updates: mirror.san.fastserv.com
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package xterm.i686 0:253-1.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved
[...1]
Installed:

xterm.1686 0:253-1.el6

Complete!
#

223

Part I: The Linux Command Line

NoTE

Before the yum command in the preceding listing, the su - command is used. This command allows you to switch

to the root user. On this Linux system, the # denotes you are logged in as root. You should only switch to root user
temporarily in order to run administrative tasks, such as installing and updating software. The sudo command is
another option as well.

224

You can also manually download an rpm installation file and install it using yum. This is
called a local installation. This is the basic command:

yum localinstall package name.rpm

You can begin to see that one of yum's strengths is that it uses very logical and user-
friendly commands.

Table 9-3 shows how to perform a package install with urpm and zypper. You should note that
if you are not logged in as root, you get a “command not found” error message using urpm.

TABLE 9-3 How to Install Software with zypper and urpm

Front-End Tool Command
urpm urpmi package name
zypper zypper install package name

Updating software with yum

In most Linux distributions, when you're working away in the GUI, you get those nice little
notification icons telling you that an update is needed. Here at the command line, it takes
a little more work.

To see the list of all the available updates for your installed packages, type the following
command:

yum list updates

It's always nice to get no response to this command because it means you have nothing to
update! However, if you do discover a particular software package needs updating, type the
following command:

yum update package name

If you'd like to update all the packages listed in the update list, just enter the following
command:

yum update

Chapter 9: Installing Software

Commands for updating software packages on Mandriva and openSUSE are listed in
Table 9-4. When urpm is used, the repository database is automatically refreshed as well as
software packages updated.

TABLE 9-4 How to Update Software with zypper and urpm

Front-End Tool Command
urpm urpmi --auto-update --update
zypper zypper update

Uninstalling software with yum

The yum tool also provides an easy way to uninstall software you no longer want on your
system. As with aptitude, you need to choose whether to keep the software package’s
data and configuration files.

To just remove the software package and keep any configuration and data files, use the fol-
lowing command:

yum remove package name
To uninstall the software and all its files, use the erase option:
yum erase package name
It is equally easy to remove software using urpm and zypper in Table 9-5. Both of these

tools perform a function similar to yum's erase option.

TABLE 9-5 How to Uninstall Software with zypper and urpm

Front-End Tool Command
urpm urpme package name
zZypper zypper remove package name

Although life is considerably easier with PMS packages, it's not always problem-free.
Occasionally, things do go wrong. Fortunately, there’s help.

Dealing with broken dependencies

Sometimes, as multiple software packages get loaded, a software dependency for one pack-
age can get overwritten by the installation of another package. This is called a broken
dependency.

225

Part I: The Linux Command Line

If this should happen on your system, first try the following command:
yum clean all

Then try to use the update option in the yum command. Sometimes, just cleaning up any
misplaced files can help.

If that doesn't solve the problem, try the following command:
yum deplist package name

This command displays all the package’s library dependencies and what software package
provides them. After you know the libraries required for a package, you can then install
them. Here’s an example of determining the dependencies for the xterm package:

yum deplist xterm

Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
* base: mirrors.bluehost.com
* extras: mirror.5ninesolutions.com
* updates: mirror.san.fastserv.com
Finding dependencies:
package: xterm.i686 253-1.elé6
dependency: libncurses.so.5
provider: ncurses-libs.i686 5.7-3.20090208.el6
dependency: libfontconfig.so.1l

226

provider:

dependency:

provider:

dependency:

provider:

dependency:

provider:

dependency:

provider:
provider:
provider:

dependency:

provider:

dependency:

provider:

dependency:

provider:

dependency:

provider:

dependency:

provider:

dependency:

fontconfig.i686 2.8.0-3.el6
libXft.so.2

libXft.i686 2.3.1-2.el6
1libXt.so.6

libXt.i686 1.1.3-1.el6
1ibX11l.s0.6

1ibX11.1686 1.5.0-4.elé6
rt1d (GNU_HASH)

glibc.i686 2.12-1.132.el6

glibc.i686 2.12-1.132.el6 5.1

glibc.i686 2.12-1.132.el6 5.2
1ibICE.s0.6

1ibICE.1686 1.0.6-1.el6
libXaw.so.7

libXaw.1686 1.0.11-2.el6
libtinfo.so.5

ncurses-1libs.i686 5.7-3.20090208.el6
libutempter.so.0
libutempter.i686 1.1.5-4.1.el6
/bin/sh

bash.i686 4.1.2-15.el6 4
libc.so.6 (GLIBC 2.4)

Chapter 9: Installing Software

provider: glibc.i686 2.12-1.132.el6
provider: glibc.i686 2.12-1.132.el6 5.1
provider: glibc.i686 2.12-1.132.el6 5.2
dependency: libXmu.so.6
provider: libXmu.i686 1.1.1-2.el6

#

If that doesn't solve your problem, you have one last tool:
yum update --skip-broken

The - -skip-broken option allows you to just ignore the package with the broken depen-
dency and update the other software packages. This may not help the broken package, but
at least you can update the remaining packages on the system!

In Table 9-6, the commands to try for broken dependencies with urpm and zypper are
listed. With zypper, there is only the one command to verify and fix a broken dependency.
With urpm, if the clean option does not work, you can skip updates on the offensive pack-
age. To do this, you must add the name of the offending package to the file /etc/urpmi/
skip.list.

TABLE 9-6 Broken Dependencies with zypper and urpm

Front End Tool Command
urpm urpmi --clean
zypper zypper verify

yum repositories

Just like the aptitude systems, yum has its software repositories set up at installation.
For most purposes, these pre-installed repositories work just fine for your needs. But if and
when the time comes that you need to install software from a different repository, here are
some things you need to know.

Tip

A wise system administrator sticks with approved repositories. An approved repository is one that is sanctioned by

the distribution’s official site. If you start adding unapproved repositories, you lose the guarantee of stability. And you
will be heading into broken dependencies territory.

To see what repositories you are currently pulling software from, type the following
command:

yum repolist

227

Part I: The Linux Command Line

228

If you don't find a repository you need software from, you need to do a little configuration
file editing. The yum repository definition files are located in /etc/yum.repos.d. You
need to add the proper URL and gain access to any necessary encryption keys.

Good repository sites such as rpmfusion.org lay out all the steps necessary to use them.
Sometimes, these repository sites offer an rpm file that you can download and install using
the yum localinstall command. The installation of the rpm file does all the repository
setup work for you. Now that’s convenient!

urpm calls its repositories media. The commands for looking at urpm media and zypper’s
repositories are in Table 9-7. Notice with both of these front-end tools that you do not edit
a configuration file. Instead, to add media or a repository, you just type the command.

TABLE 9-7 zypper and urpm Repositories

Action Front-End Tool Command

Display repository urpm urpmg --list-media

Add repository urpm urpmi.addmedia path name
Display repository zypper Zypper repos

Add repository zypper zypper addrepo path name

Both Debian-based and Red Hat-based systems use Package Management Systems to ease
the process of managing software. Now we are going to step out of the world of Package
Management Systems and look at something a little more difficult: installing directly from
source code.

Installing from Source Code

Chapter 4 discussed tarball packages — how to create them using the tar command line
command and how to unpack them. Before the fancy rpm and dpkg tools, administrators
had to know how to unpack and install software from tarballs.

If you work in the open source software environment much, there’s a good chance you will
still find software packed up as a tarball. This section walks you through the process of
unpacking and installing a tarball software package.

For this example, the software package sysstat is used. The sysstat utility is a very
nice software package that provides a variety of system monitoring tools.

First, you need to download the sysstat tarball to your Linux system. You can often find
the sysstat package available on different Linux sites, but it's usually best to go straight

Chapter 9: Installing Software

to the source of the program. In this case, it’s the website http://sebastien.godard
.pagesperso-orange.fr/.

If you click the Download link, you go to the page that contains the files for downloading.
The current version at the time of this writing is 11.1.1, and the distribution file name is
sysstat-11.1.1.tar.gz.

Click the link to download the file to your Linux system. After you have downloaded the
file, you can unpack it.

To unpack a software tarball, use the standard tar command:

#

tar -zxvf sysstat-11.1.1l.tar.gz
sysstat-11.1.1/
sysstat-11.1.1/cifsiostat.c
sysstat-11.1.1/FAQ
sysstat-11.1.1/ioconf.h
sysstat-11.1.1/rd _stats.h
sysstat-11.1.1/COPYING
sysstat-11.1.1/common.h
sysstat-11.1.1/sysconfig.in
sysstat-11.1.1/mpstat.h
sysstat-11.1.1/rndr_stats.h
[...]
sysstat-11.1.1/activity.c
sysstat-11.1.1/sar.c
sysstat-11.1.1/iostat.c
sysstat-11.1.1/rd sensors.c
sysstat-11.1.1/prealloc.in
sysstat-11.1.1/sa2.in

#

#

Now that the tarball is unpacked and the files have neatly put themselves into a directory
called sysstat-11.1.1, you can dive down into that directory and continue.

First, use the cd command to get into the new directory and list the contents of the
directory:

$ cd sysstat-11.1.1

S 1s

activity.c iconfig prealloc.in sa.h
build INSTALL pr stats.c sar.c
CHANGES ioconf. pr stats.h sa_wrap.c

rd sensors.c sysconfig.in
rd_sensors.h sysstat-11.1.1.1sm
rd_stats.c sysstat-11.1.1.spec

cifsiostat.h iostat.

c
cifsiostat.c doconf.h
c

iostat.h

common. c

229

http://sebastien.godard

Part I: The Linux Command Line

230

common. h
configure
configure
contrib
COPYING
count.c
count.h
CREDITS
cron

FAQ
format.c

$

json stats.c rd stats.h sysstat.in
json stats.h README sysstat.ioconf

.in Makefile.in rndr stats.c sysstat.service.in
man rndr_stats.h sysstat.sysconfig.in
mpstat.c sal.in version.in
mpstat.h sa2.in xml
nfsiostat-sysstat.c sa common.c xml stats.c
nfsiostat-sysstat.h sadc.c xml stats.h
nls sadf.c
pidstat.c sadf.h
pidstat.h sadf misc.c

In the listing of the directory, you should typically see a README or AAAREADME file. It is
very important to read this file. The actual instructions you need to finish the software’s
installation are in this file.

Following the advice contained in the README file, the next step is to configure

sysstat for you
library dependen

./confi
Check pro

checking
checking
checking
[...]

checking
checking
checking
checking
checking
checking
checking
checking
checking

[...]

r system. This checks your Linux system to ensure it has the proper
cies, in addition to the proper compiler to compile the source code:

gure

grams :

for gcec... gcc

whether the C compiler works... yes

for C compiler default output file name... a.out
for ANSI C header files... (cached) yes

for dirent.h that defines DIR... yes

for library containing opendir... none required
ctype.h usability... yes

ctype.h presence... yes

for ctype.h... vyes

errno.h usability... yes

errno.h presence... yes

for errno.h... yes

Check library functions:

checking
checking
checking
checking
checking
checking
checking

for strchr... yes

for strcspn... yes

for strspn... yes

for strstr... yes

for sensors support... yes

for sensors get detected chips in -lsensors... no
for sensors lib... no

Chapter 9: Installing Software

Check system services:

checking for special C compiler options needed for large files... no
checking for _FILE OFFSET BITS value needed for large files... 64

Check configuration:
[...]

Now create files:
[...]

config.status: creating Makefile

Sysstat version: 11.1.1

Installation prefix: /usr/local

rc directory: /etc/rc.d

Init directory: /etc/rc.d/init.d
Systemd unit dir:

Configuration directory: /etc/sysconfig
Man pages directory: ${datarootdir}/man
Compiler: gcc

Compiler flags: -g -02

#

If anything does go wrong, the configure step displays an error message explaining
what’s missing. If you don't have the GNU C compiler installed in your Linux distribution,
you get a single error message, but for all other issues you should see multiple messages
indicating what's installed and what isn't.

The next stage is to build the various binary files using the make command. The make com-
mand compiles the source code and then the linker to create the final executable files for
the package. As with the configure command, the make command produces lots of out-
put as it goes through the steps of compiling and linking all the source code files:

make

-gcc -o sadc.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02
-DSA DIR=\"/var/log/sa\" -DSADC PATH=\"/usr/local/lib/sa/sadc\"
-DUSE_NLS -DPACKAGE=\"sysstat\"
-DLOCALEDIR=\"/usr/local/share/locale\" sadc.c

gcc -o act_sadc.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02
-DSOURCE_SADC —DSA_DIR:\ "/var/log/sa\"
-DSADC_PATH=\"/usr/local/lib/sa/sadc\"

-DUSE_NLS —DPACKAGE=\"SySStat\"
-DLOCALEDIR=\"/usr/local/share/locale\" activity.c

[...]

#

When make is finished, you have the actual sysstat software program available in the
directory! However, it's somewhat inconvenient to have to run it from that directory.

231

Part I: The Linux Command Line

232

Instead, you'll want to install it in a common location on your Linux system. To do that,
you need to log in as the root user account (or use the sudo command if your Linux distri-
bution prefers) and then use the install option of the make command:

make install

mkdir -p /usr/local/share/man/manl

mkdir -p /usr/local/share/man/man5

mkdir -p /usr/local/share/man/man8

rm -f /usr/local/share/man/man8/sal.8x*

install -m 644 -g man man/sal.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa2.8%

install -m 644 -g man man/sa2.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sadc.8%

[...]

install -m 644 -g man man/sadc.8 /usr/local/share/man/man8
install -m 644 FAQ /usr/local/share/doc/sysstat-11.1.1
install -m 644 *.lsm /usr/local/share/doc/sysstat-11.1.1
#

Now the sysstat package is installed on the system! Although it's not quite as easy as
installing a software package via a PMS, installing software using tarballs is not that difficult.

Summary

This chapter discussed how to work with a Package Management Systems (PMS) to install,
update, or remove software from the command line. Although most of the Linux distribu-
tions use fancy GUI tools for software package management, you can also perform package
management from the command line.

The Debian-based Linux distributions use the dpkg utility to interface with the PMS from
the command line. A front-end to the dpkg utility is aptitude. It provides simple com-
mand line options for working with software packages in the dpkg format.

The Red Hat-based Linux distributions are based on the rpm utility but use different front-
end tools at the command line. Red Hat and Fedora use yum for installing and managing
software packages. The openSUSE distribution uses zypper for managing software, while
the Mandriva distribution uses urpm.

The chapter closed with a discussion on how to install software packages that are only dis-
tributed in source code tarballs. The tar command allows you to unpack the source code
files from the tarball, and configure and make allow you to build the final executable
program from the source code.

The next chapter looks at the different editors available in Linux distributions. As you
get ready to start working on shell scripts, it will come in handy to know what editors are
available to use!

CHAPTER

Working with Editors

IN THIS CHAPTER

Working with the vim editor
Exploring nano

Understanding emacs

Getting comfortable with kwrite
Looking at Kate

Using the GNOME editor

editor in Linux. The more you know about how to use features such as searching, cutting,

B efore you can start your shell scripting career, you need to know how to use at least one text
and pasting, the quicker you can develop your shell scripts.

You can choose from several editors. Many individuals find a particular editor whose features they
love and exclusively use that text editor. This chapter discusses just a few of the text editors you'll
see in the Linux world.

Visiting the vim Editor

The vi editor was the original editor used on Unix systems. It used the console graphics mode to
emulate a text-editing window, allowing you to see the lines of your file, move around within the
file, and insert, edit, and replace text.

Although it was quite possibly the most complicated editor in the world (at least in the opinion of
those who hate it), it provides many features that have made it a staple for Unix administrators for
decades.

When the GNU Project ported the vi editor to the open source world, they chose to make some
improvements to it. Because it no longer resembled the original vi editor found in the Unix world,
the developers also renamed it, to vi improved, or vim.

This section walks you through the basics of using the vim editor to edit your text shell script files.

233

Part I: The Linux Command Line

234

Checking your vim package

Before you begin your exploration of the vim editor, it’s a good idea to understand what
vim package your Linux system has installed. On some distributions, you will have the
full vim package installed and an alias for the vi command, as shown on this Cent0S
distribution:

$ alias vi

alias vi='vim'

$

S which vim

/usr/bin/vim

$

$ 1s -1 /usr/bin/vim

-rwxr-xr-x. 1 root root 1967072 Apr 5 2012 /usr/bin/vim
$

Notice that the program file’s long listing does not show any linked files (see Chapter 3 for
more information on linked files). If the vim program is linked, it may be linked to a less
than full-featured editor. Thus, it's a good idea to check for linked files.

On other distributions, you will find various flavors of the vim editor. Notice on this
Ubuntu distribution that not only is there no alias for the vi command, but the /usr/
bin/vi program file belongs to a series of file links:

S alias vi

-bash: alias: vi: not found

$

S which vi

/usr/bin/vi

$

$ 1s -1 /usr/bin/vi

lrwxrwxrwx 1 root root 20 Apr 22 12:39
/usr/bin/vi -> /etc/alternatives/vi

$

$ 1s -1 /etc/alternatives/vi

lrwxrwxrwx 1 root root 17 Apr 22 12:33
/etc/alternatives/vi -> /usr/bin/vim.tiny
$

$ 1s -1 /usr/bin/vim.tiny

-YwWXr-xXr-x 1 root root 884360 Jan 2 14:40
/usr/bin/vim.tiny

$

$ readlink -f /usr/bin/vi
/usr/bin/vim.tiny

Chapter 10: Working with Editors

Thus, when the vi command is entered, the /usr/bin/vim.tiny program is executed.
The vim.tiny program provides only a few vim editor features. If you are serious about
using the vim editor and have Ubuntu, you should install at least the basic vim package.

NoTE
Notice in the preceding example that, instead of having to use the 1s -1 command multiple times to find a series

of linked files’ final object, you can use the readlink -f command. It immediately produces the linked file series’
final object.

Software installations were covered in detail in Chapter 9. Installing the basic vim package
on this Ubuntu distribution is fairly straightforward:

$ sudo apt-get install vim

[...]

The following extra packages will be installed:
vim-runtime

Suggested packages:
ctags vim-doc vim-scripts

The following NEW packages will be installed:
vim vim-runtime

[...]

$

$ readlink -f /usr/bin/vi

/usr/bin/vim.basic

$

The basic vim editor is now installed on this Ubuntu distribution, and the /usr/bin/vi
program file's link was automatically changed to point to /usr/bin/vim.basic. Thus,
when the vi command is entered on this Ubuntu system, the basic vim editor is used
instead of tiny vim.

Exploring vim basics

The vim editor works with data in a memory buffer. To start the vim editor, just type the
vim command (or vi if there’s an alias or linked file) and the name of the file you want to
edit:

S vim myprog.c

If you start vim without a filename, or if the file doesn't exist, vim opens a new buffer area
for editing. If you specify an existing file on the command line, vim reads the entire file’s
contents into a buffer area, where it is ready for editing, as shown in Figure 10-1.

235

Part I: The Linux Command Line

236

FIGURE 10-1

The vim main window.

2 @ @ rich@rich-desktop: ~

File Edit View Terminal Help

Ginclude <stdio.h>
int main()
int i;
int factorial = 1;
int number = 5;
for(i = 1; i <= number; i++)
factorial = factorial * i;

printf("The factorial of %d is %d\n", number, factorial);
return 8;

]

"myprog.c" 16 lines, 237 characters

The vim editor detects the terminal type for the session (see Chapter 2) and uses a full-
screen mode to use the entire console window for the editor area.

The initial vim edit window shows the contents of the file (if there are any) along with
a message line at the bottom of the window. If the file contents don't take up the entire
screen, vim places a tilde on lines that are not part of the file (as shown in Figure 10-1).

The message line at the bottom indicates information about the edited file, depending on
the file's status, and the default settings in your vim installation. If the file is new, the
message [New File] appears.

The vim editor has two modes of operation:

® Normal mode

B Insert mode

When you first open a file (or start a new file) for editing, the vim editor enters normal
mode. In normal mode, the vim editor interprets keystrokes as commands (more on those
later).

In insert mode, vim inserts every key you type at the current cursor location in the buffer.
To enter insert mode, press the i key. To get out of insert mode and go back into normal
mode, press the Escape key on the keyboard.

Chapter 10: Working with Editors

In normal mode, you can move the cursor around the text area by using the arrow keys
(as long as your terminal type is detected properly by vim). If you happen to be on a flaky
terminal connection that doesn't have the arrow keys defined, all hope is not lost. The vim
commands include commands for moving the cursor:

B h to move left one character

B j to move down one line (the next line in the text)

B k to move up one line (the previous line in the text)

® 1 to move right one character
Moving around within large text files line by line can get tedious. Fortunately, vim pro-
vides a few commands to help speed things along:
PageDown (or Ctrl+F) to move forward one screen of data
PageUp (or Ctrl+B) to move backward one screen of data
G to move to the last line in the buffer

num G to move to the line number numin the buffer

gg to move to the first line in the buffer

The vim editor has a special feature within normal mode called command line mode. The
command line mode provides an interactive command line where you can enter additional
commands to control the actions in vim. To get to command line mode, press the colon key
in normal mode. The cursor moves to the message line, and a colon (:) appears, waiting for
you to enter a command.

Within the command line mode are several commands for saving the buffer to the file and
exiting vim:

g to quit if no changes have been made to the buffer data

g! to quit and discard any changes made to the buffer data

w filename to save the file under a different filename

wq to save the buffer data to the file and quit

After seeing just a few basic vim commands, you might understand why some people
absolutely hate the vim editor. To be able to use vim to its fullest, you must know plenty
of obscure commands. However, after you get a few of the basic vim commands down, you
can quickly edit files directly from the command line, no matter what type of environ-
ment you're in. Plus, after you get comfortable typing commands, it almost seems second
nature to type both data and editing commands, and it becomes odd having to jump back
to using a mouse!

237

Part I: The Linux Command Line

Editing data

While in insert mode, you can insert data into the buffer; however, sometimes you need to
add or remove data after you've already entered it into the buffer. While in normal mode,
the vim editor provides several commands for editing the data in the buffer. Table 10-1 lists
some common editing commands for vim.

TABLE 10-1 vim Editing Commands

Command Description

X Deletes the character at the current cursor position

dd Deletes the line at the current cursor position

dw Deletes the word at the current cursor position

as Deletes to the end of the line from the current cursor position

J Deletes the line break at the end of the line at the current cursor position
(joins lines)

u Undoes the previous edit command

a Appends data after the current cursor position

A Appends data to the end of the line at the current cursor position

r char Replaces a single character at the current cursor position with char

R text Overwrites the data at the current cursor position with text, until you press
Escape

Some of the editing commands also allow you to use a numeric modifier to indicate how
many times to perform the command. For example, the command 2x deletes two characters,
starting from the current cursor position, and the command 5dd deletes five lines, starting
at the line from the current cursor position.

NoTE
Be careful when trying to use the keyboard Backspace or Delete keys while in the vim editor’s normal mode. The vim

editor usually recognizes the Delete key as the functionality of the x command, deleting the character at the current
cursor location. Usually, the vim editor doesn’t recognize the Backspace key in normal mode.

Copying and pasting
A standard editor feature is the ability to cut or copy data and paste it elsewhere in the
document. The vim editor provides a way to do this.

238

Chapter 10: Working with Editors

Cutting and pasting is relatively easy. You've already seen the commands in Table 10-1 that
can remove data from the buffer. However, when vim removes data, it actually keeps it
stored in a separate register. You can retrieve that data by using the p command.

For example, you can use the dd command to delete a line of text, move the cursor to the
buffer location where you want to place it, and then use the p command. The p command
inserts the text after the line at the current cursor position. You can do this with any com-
mand that removes text.

Copying text is a little bit trickier. The copy command in vim is y (for yank). You can

use the same second character with y as with the d command (yw to yank a word, y$ to
yank to the end of a line). After you yank the text, move the cursor to the location where
you want to place the text and use the p command. The yanked text now appears at that
location.

Yanking is tricky in that you can’t see what happened because you're not affecting the text
that you yank. You never know for sure what you yanked until you paste it somewhere. But
there’s another feature in vim that helps you out with yanking.

The visual mode highlights text as you move the cursor. You use visual mode to select text
to yank for pasting. To enter visual mode, move the cursor to the location where you want
to start yanking, and press v. Notice that the text at the cursor position is now high-
lighted. Next, move the cursor to cover the text you want to yank (you can even move
down lines to yank more than one line of text). As you move the cursor, vim highlights the
text in the yank area. After you've covered the text you want to copy, press the y key to
activate the yank command. Now that you have the text in the register, just move the cur-
sor to where you want to paste and use the p command.

Searching and substituting

You can easily search for data in the buffer using the vim search command. To enter a
search string, press the forward slash (/) key. The cursor goes to the message line, and vim
displays a forward slash. Enter the text you want to find, and press the Enter key. The vim
editor responds with one of three actions:

m If the word appears after the current cursor location, it jumps to the first location
where the text appears.

m If the word doesn't appear after the current cursor location, it wraps around the
end of the file to the first location in the file where the text appears (and indicates
this with a message).

B Tt produces an error message stating that the text was not found in the file.

To continue searching for the same word, press the forward slash character and then press
the Enter key, or you can use the n key, for next.

239

Part I: The Linux Command Line

240

The substitute command allows you to quickly replace (substitute) one word for another in
the text. To get to the substitute command, you must be in command line mode. The for-
mat for the substitute command is:

:s/0ld/new/

The vim editor jumps to the first occurrence of the text o1d and replaces it with the text
new. You can make a few modifications to the substitute command to substitute more than
one occurrence of the text:

:s/0ld/new/g to replace all occurrences of o1d in a line

:n, ms/old/new/g to replace all occurrences of o1d between line numbers n and m

:%$s/0ld/new/g to replace all occurrences of old in the entire file

:%s/0ld/new/gc to replace all occurrences of o1d in the entire file, but prompt
for each occurrence

As you can see, for a console mode text editor, vim contains quite a few advanced features.
Because every Linux distribution includes it, it’s a good idea to at least know the basics of
the vim editor so you can always edit scripts, no matter where you are or what you have
available.

Navigating the nano Editor

Although vim is a very complicated editor with many powerful features, nano is a very
simple editor. For individuals who need a simple console mode text editor that is easy to
navigate, nano is the tool to use. It’s also a great text editor for kids who are starting on
their Linux command line adventure.

The nano text editor is a clone of the Unix systems’ Pico editor. Although Pico also is a
light and simple text editor, it is not licensed under the GPL. Not only is the nano text edi-
tor licensed under the GPL, it is also part of the GNU project.

The nano text editor is installed on most Linux distributions by default. Everything about
the nano text editor is simple. To open a file at the command line with nano:

$ nano myprog.c

If you start nano without a filename, or if the file doesn't exist, nano simply opens a new
buffer area for editing. If you specify an existing file on the command line, nano reads
the entire contents of the file into a buffer area, where it is ready for editing, as shown in
Figure 10-2.

Chapter 10: Working with Editors

FIGURE 10-2

The nano editor window

Notice at the bottom of the nano editor window various commands with a brief description
are shown. These commands are the nano control commands. The caret (*) symbol shown
represents the Ctrl key. Therefore, “X stands for the keyboard sequence Ctrl+X.

Tip

Though the nano control commands list capital letters in the keyboard sequences, you can use either lowercase or
uppercase characters for control commands.

Having all the basic commands listed right in front of you is great. No need to memorize
what control command does what. Table 10-2 presents the various nano control commands.

TABLE 10-2 nano Control Commands

Command Description

CTRL+C Displays the cursor’s position within the text editing buffer
CTRL+G Displays nano’s main help window

CTRL+] Justifies the current text paragraph

CTRL+K Cuts the text line and stores it in cut buffer

CTRL+O Writes out the current text editing buffer to a file

Continues

241

Part I: The Linux Command Line

TABLE 10-2 (continued)

Command Description

CTRL+R Reads a file into the current text editing buffer

CTRL+T Starts the available spell checker

CTRL+U Pastes text stored in cut buffer and places in current line

CTRL+V Scrolls text editing buffer to next page

CTRL+W Searches for word or phrases within text editing buffer

CTRL+X Closes the current text editing buffer, exits nano, and returns to the shell
CTRL+Y Scrolls text editing buffer to previous page

The control commands listed in Table 10-2 are really all you need. However, if you desire
more powerful control features than those listed, nano has them. To see more control com-
mands, type Ctrl+G in the nano text editor to display its main help window containing
additional control commands.

NoTE

If you try to use the nano spell checker via the Ctrl+T command and get the error message

Spell checking failed: Error invoking 'Spell', there are some potential solutions. Install the
spell checker software package, aspell, on your Linux distribution using Chapter 9 as a guide.

If installing the aspell software package does not solve the problem, as superuser edit the /etc/nanorc file,
using your favorite text editor. Find the line, # set speller "aspell -x -c" and delete the hash mark (#)
from the line. Save and exit the file.

Additional powerful features are available at the command line. You can use command line
options to control nano editor features, such as creating a backup file before editing. Type
man nano to see these additional command line options for starting nano.

The vim and nano text editors offer a choice between powerful and simple console mode
text editors. However, neither offers the ability to use graphical features for editing. Some
text editors can operate in both worlds, as explored in the next section.

Exploring the emacs Editor

The emacs editor is an extremely popular editor that appeared before even Unix was
around. Developers liked it so much that they ported it to the Unix environment, and now
it’s been ported to the Linux environment. The emacs editor started out life as a console
editor, much like vi, but has migrated to the graphical world.

242

Chapter 10: Working with Editors

The emacs editor still provides the original console mode editor, and now it also has

the ability to use a graphical window to allow editing text in a graphical environment.
Typically, when you start the emacs editor from a command line, the editor determines
whether you have an available graphical session and starts in graphical mode. If you don't,
it starts in console mode.

This section describes both the console mode and graphical mode emacs editors so that
you'll know how to use either one if you want (or need) to.

Checking your emacs package

Many distributions do not come with the emacs editor installed by default. You can check
your Red Hat-based distribution, by using the which and/or yum list command as shown
on this CentOS distribution:

$ which emacs

/usr/bin/which: no emacs in (/usr/lib64/qt-3.3

/bin: /usr/local/bin:/bin:/usr/bin:/usr/local/sbin:
/usr/sbin:/sbin:/home/Christine/bin)

$

S yum list emacs

[...1]

Available Packages

emacs.x86 64 1:23.1-25.el6 base

The emacs editor package is not currently installed on this CentOS distribution. However,
it is available to be installed. (For a more thorough discussion on displaying installed soft-
ware, see Chapter 9).

For a Debian-based distribution, check for the emacs editor package by using the which
and/or apt -cache show command as shown on this Ubuntu distribution:

$ which emacs

$

$ sudo apt-cache show emacs

Package: emacs

Priority: optional

Section: editors

Installed-Size: 25

[...]

Description-en: GNU Emacs editor (metapackage)

GNU Emacs is the extensible self-documenting text editor.
This is a metapackage that will always depend on the latest
recommended Emacs release.

Description-md5: 21fb7dalll336097a2378959f6d6e6al

Bugs: https://bugs.launchpad.net/ubuntu/+filebug

243

https://bugs.launchpad.net/ubuntu/+filebug

Part I: The Linux Command Line

244

Origin: Ubuntu
Supported: 5y
$

The which command operates a little differently here. When it does not find the installed
command, it simply returns the bash shell prompt. The emacs editor package is optional for
this Ubuntu distribution, but is available to be installed. The following shows the emacs
editor being installed on Ubuntu:

S sudo apt-get install emacs

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

[...]

Install emacsen-common for emacs24

emacsen-common: Handling install of emacsen flavor emacs24
Wrote /etc/emacs24/site-start.d/00debian-vars.elc
Wrote /usr/share/emacs24/site-lisp/debian-startup.elc
Setting up emacs (45.0ubuntul)

Processing triggers for libc-bin (2.19-0ubuntué)

$

$ which emacs

/usr/bin/emacs

$

Now when the which command is used, it points to the emacs program file. The emacs edi-
tor is ready to be used on this Ubuntu distribution.

For the Cent0S distribution, install the emacs editor using the yum install command:

S sudo yum install emacs
[sudo] password for Christine:
[...]
Setting up Install Process
Resolving Dependencies
[...]
Installed:

emacs.x86 64 1:23.1-25.el6

Dependency Installed:
emacs-common.x86 64 1:23.1-25.el6
libotf.x86 64 0:0.9.9-3.1.el6
ml7n-db-datafiles.noarch 0:1.5.5-1.1.elé6

Complete!

$

S which emacs
/usr/bin/emacs
$

S yum list emacs

Chapter 10: Working with Editors

[...]

Installed Packages

emacs.x86 64 1:23.1-25.el6 @base
$

With the emacs editor successfully installed on your Linux distribution, you can begin to
explore its different features, staring with using it on the console.

Using emacs on the console

The console mode version of emacs is another editor that uses lots of key commands to per-
form editing functions. The emacs editor uses key combinations involving the Control key
(the Ctrl key on the keyboard) and the Meta key. In most terminal emulator packages, the
Meta key is mapped to the Alt key. The official emacs documents abbreviate the Ctrl key as
C- and the Meta key as M-. Thus, if you enter a Ctrl+x key combination, the document shows
C-x. This chapter does the same so as not to confuse you.

Exploring the basics of emacs
To edit a file using emacs, from the command line, enter:

S emacs myprog.c

The emacs console mode window appears with a short introduction and help screen. Don't
be alarmed; as soon as you press a key, emacs loads the file into the active buffer and dis-
plays the text, as shown in Figure 10-3.

FIGURE 10-3

Editing a file using the emacs editor in console mode

245

Part I: The Linux Command Line

You'll notice that the top of the console mode window shows a typical menu bar.
Unfortunately, you can’t use the menu bar in console mode, only in graphical mode.

NoTE
Some commands in this section work differently than described, if you run emacs in a graphical desktop environ-

ment. To use emac’s console mode in a graphical desktop environment, use the emacs -nw command. If you want to
use emacs’ graphical features, see the section “Using emacs in a GUL.”

Unlike the vim editor, where you have to move into and out of insert mode to switch
between entering commands and inserting text, the emacs editor has only one mode. If you
type a printable character, emacs inserts it at the current cursor position. If you type a
command, emacs executes the command.

To move the cursor around the buffer area, you can use the arrow keys and the PageUp and
PageDown keys, assuming that emacs detected your terminal emulator correctly. If not,
these commands move the cursor around:

B C-p moves up one line (the previous line in the text).

® C-b moves left (back) one character.

B C-f moves right (forward) one character.

B C-n moves down one line (the next line in the text).
These commands make longer jumps with the cursor within the text:

M-f moves right (forward) to the next word.
M-b moves left (backward) to the previous word.
C-a moves to the beginning of the current line.
C-e moves to the end of the current line.

M-a moves to the beginning of the current sentence.

[]
[
[
[
[|
B M-e moves to the end of the current sentence.
B M-v moves back one screen of data.

B C-v moves forward one screen of data.

B M-< moves the first line of the text.

[

M-> moves to the last line of the text.

You should know these commands for saving the editor buffer back into the file and exiting
emacs:

B C-x C-s saves the current buffer contents to the file.
B C-z exits emacs but keeps it running in your session so you can come back to it.

B C-x C-c exits emacs and stops the program.

246

Chapter 10: Working with Editors

You'll notice that two of these features require two key commands. The C-x command is
called the extend command. This provides yet another whole set of commands to work with.

Editing data

The emacs editor is pretty robust about inserting and deleting text in the buffer. To insert
text, just move the cursor to the location where you want to insert the text and start typ-
ing. To delete text, emacs uses the Backspace key to delete the character before the current
cursor position and the Delete key to delete the character at the current cursor location.

The emacs editor also has commands for killing text. The difference between deleting text
and killing text is that when you kill text, emacs places it in a temporary area where you
can retrieve it (see the next section, “Copying and pasting”). Deleted text is gone forever.

These commands are for killing text in the buffer:

M-Backspace kills the word before the current cursor position.
M-d kills the word after the current cursor position.

C-k kills from the current cursor position to the end of the line.

M-k kills from the current cursor position to the end of the sentence.

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor to
the start of the area you want to kill, and press either the C-@ or C-Spacebar keys. Then
move the cursor to the end of the area you want to kill, and press the C-w command keys.
All the text between the two locations is killed.

If you happen to make a mistake when killing text, the C-/ command undoes the kill com-
mand and returns the data to the state it was in before you killed it.

Copying and pasting

You've seen how to cut data from the emacs buffer area; now it’s time to see how to paste
it somewhere else. Unfortunately, if you use the vim editor, this process may confuse you
when you use the emacs editor.

In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim editor,
copying is called yanking, which is what makes this a difficult thing to remember if you
happen to use both editors.

After you kill data using one of the kill commands, move the cursor to the location where
you want to paste the data, and use the C-y command. This yanks the text out of the
temporary area and pastes it at the current cursor position. The C-y command yanks the
text from the last kill command. If you've performed multiple kill commands, you can cycle
through them using the M-y command.

To copy text, just yank it back into the same location you killed it from and then move to
the new location and use the C-y command again. You can yank text back as many times
as you desire.

247

Part I: The Linux Command Line

248

Searching and Replacing

Searching for text in the emacs editor is done by using the C-s and C-r commands. The
C-s command performs a forward search in the buffer area from the current cursor position
to the end of the buffer, whereas the C-r command performs a backward search in the buf-
fer area from the current cursor position to the start of the buffer.

When you enter either the C-s or C-r command, a prompt appears in the bottom line,
querying you for the text to search. You can perform two types of searches in emacs.

In an incremental search, the emacs editor performs the text search in real-time mode as
you type the word. When you type the first letter, it highlights all the occurrences of that
letter in the buffer. When you type the second letter, it highlights all the occurrences of
the two-letter combination in the text and so on until you complete the text you're search-
ing for.

In a non-incremental search, press the Enter key after the C-s or C-r commands. This locks
the search query into the bottom line area and allows you to type the search text in full
before searching.

To replace an existing text string with a new text string, you must use the M-x command.
This command requires a text command, along with parameters.

The text command is replace-string. After typing the command, press the Enter key,
and emacs queries you for the existing text string. After entering that, press the Enter key
again and emacs queries you for the new replacement text string.

Using buffers in emacs

The emacs editor allows you to edit multiple files at the same time by having multiple buf-
fer areas. You can load files into a buffer and switch between buffers while editing.

To load a new file into a buffer while you're in emacs, use the C-x C-£f key combination.
This is the emacs Find a File mode. It takes you to the bottom line in the window and
allows you to enter the name of the file you want to start to edit. If you don’t know the
name or location of the file, just press the Enter key. This brings up a file browser in the
edit window, as shown in Figure 10-4.

From here, you can browse to the file you want to edit. To traverse up a directory level, go
to the double dot entry and press the Enter key. To traverse down a directory, go to the
directory entry and press the Enter key. When you've found the file you want to edit, press
the Enter key and emacs loads it into a new buffer area.

You can list the active buffer areas by pressing the C-x C-b extended command combina-
tion. The emacs editor splits the editor window and displays a list of buffers in the bottom
window. emacs provides two buffers in addition to your main editing buffer:

B A scratch area called *scratch*

B A message area called *Messages*

Chapter 10: Working with Editors

FIGURE 10-4

The emacs Find a File mode browser

The scratch area allows you to enter LISP programming commands as well as enter notes
to yourself. The message area shows messages generated by emacs while operating. If any
errors occur while using emacs, they appear in the message area.

You can switch to a different buffer area in the window in two ways:

B Use C-x o to switch to the buffer listing window. Use the arrow keys to move to
the buffer area you want and press the Enter key.

m Use C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, emacs opens the buffer
area in the new window area. The emacs editor allows you to have multiple windows open
in a single session. The following section discusses how to manage multiple windows in
emacs.

Using windows in console mode emacs

The console mode emacs editor was developed many years before the idea of graphical
windows appeared. However, it was advanced for its time, in that it could support multiple
editing windows within the main emacs window.

You can split the emacs editing window into multiple windows by using one of two
commands:

B C-x 2 splits the window horizontally into two windows.

B C-x 3 splits the window vertically into two windows.

249

Part I: The Linux Command Line

250

To move from one window to another, use the C-x o command. Notice that when you cre-
ate a new window, emacs uses the buffer area from the original window in the new window.
After you move into the new window, you can use the C-x C-f command to load a new file
or use one of the commands to switch to a different buffer area in the new window.

To close a window, move to it and use the C-x 0 (that’s a zero) command. If you want
to close all the windows except the one you're in, use the C-x 1 (that’s a numerical one)
command.

Using emacs in a GUI

If you use emacs from a GUI environment (such as the Unity or GNOME desktops), it starts
in graphical mode, as shown in Figure 10-5.

FIGURE 10-5

The emacs graphical window

£ emacs@server0Ol.class.edu - 0 x
File Edit Options Buffers Tools C Help

[praxaReyzpaaxs

Binclude <stdio.h>

int main()

{
int i;
int factorial = 1;
int number = 5;

for(i=1; i == number; i++)
{
factorial = factorial * 1i;

}

printf("The factorial of %d is %d\n", number, factorial)

return 8;
L :
--1*¥- myprog.c ALl L1 (C/L Abbrev)---------ommm oo
Welcome to GNU Emacs, one component of the GNU/Linux operating system.
Emacs Tutorial Learn basic keystroke commands
-U:%%- *GNU Emacs* Top L3 (Fundamental)----------ommmmm o

If you've already used emacs in console mode, you should be fairly familiar with the graphi-
cal mode. All the key commands are available as menu bar items. The emacs menu bar con-
tains the following items:

m File allows you to open files in the window, create new windows, close windows,
save buffers, and print buffers.

m Edit allows you to cut and copy selected text to the clipboard, paste clipboard data
to the current cursor position, search for text, and replace text.

Chapter 10: Working with Editors

m Options provides settings for many more emacs features, such as highlighting,
word wrap, cursor type, and setting fonts.

m Buffers lists the current buffers available and allows you to easily switch between
buffer areas.

B Tools provides access to the advanced features in emacs, such as the command line
interface access, spell checking, comparing text between files (called diff), sending
an e-mail message, calendar, and the calculator.

m Help provides the emacs manual online for access to help on specific emacs
functions.

In addition to the normal graphical emacs menu bar items, there is often a separate item
specific to the file type in the editor buffer. Figure 10-5 shows opening a C program, so
emacs provided a C menu item, allowing advanced settings for highlighting C syntax, and
compiling, running, and debugging the code from a command prompt.

The graphical emacs window is an example of an older console application making the
migration to the graphical world. Now that many Linux distributions provide graphical
desktops (even on servers that don't need them), graphical editors are becoming more com-
monplace. Popular Linux desktop environments (such as KDE and GNOME) have also pro-
vided graphical text editors specifically for their environments, which are covered in the
rest of this chapter.

Exploring the KDE Family of Editors

If you're using a Linux distribution that uses the KDE desktop (see Chapter 1), you have
a couple of options when it comes to text editors. The KDE project officially supports two
popular text editors:

B KWrite: A single-screen text-editing package

m Kate: A full-featured, multi-window text-editing package

Both of these editors are graphical text editors that contain many advanced features. The
Kate editor provides more advanced features, plus extra niceties not often found in stan-
dard text editors. This section describes each of the editors and shows some of the features
you can use to help with your shell script editing.

Looking at the KWrite editor

The basic editor for the KDE environment is KWrite. It provides simple word-processing-
style text editing, along with support for code syntax highlighting and editing. The default
KWrite editing window is shown in Figure 10-6.

251

Part I: The Linux Command Line

FIGURE 10-6

The default KWrite window editing a shell script program

() factorial.sh — KWrite
File Edit View Tools Settings Help

e H 4d @ ™

New Open Save SaveAs Close Unelo Redo

<
>
)

] >

factorial=1
number=5

for ((i=1l; i <= $number; i++))
v
factorial="expr §factorial “* §i°

)

echo The Tactorial of $number is $factorial.]

<>

<[) <
Line: 11 Col: 45 INS LINE Bash factorial.sh

You can't tell from Figure 10-6, but the KWrite editor recognizes several types of program-
ming languages and uses color coding to distinguish constants, functions, and comments.
Also, notice that the for loop has an icon that links the opening and closing braces. This
is called a folding marker. By clicking the icon, you can collapse the function into a single
line. This is a great feature when working through large applications.

The KWrite editing window provides full cut and paste capabilities, using the mouse and
the arrow keys. As in a word processor, you can highlight and cut (or copy) text anywhere
in the buffer area and paste it at any other place.

To edit a file using KWrite, you can either select KWrite from the KDE menu system on your
desktop (some Linux distributions even create a Panel icon for it) or start it from the com-
mand line prompt:

S kwrite factorial.sh

The kwrite command has several command line parameters you can use to customize how
it starts:

B --stdin causes KWrite to read data from the standard input device instead of a
file.

B - -encoding specifies a character encoding type to use for the file.

252

Chapter 10: Working with Editors

B --line specifies a line number in the file to start at in the editor window.

B --column specifies a column number in the file to start at in the editor window.

The KWrite editor provides both a menu bar and a toolbar at the top of the edit window,
allowing you to select features and change configuration settings of the KWrite editor.

The menu bar contains these items:

File loads, saves, prints, and exports text from files.
Edit manipulates text in the buffer area.

View manages how the text appears in the editor window.

Bookmarks handle pointers to return to specific locations in the text; this option
may need to be enabled in the configurations.

B Tools contains specialized features to manipulate the text.
B Settings configures the way the editor handles text.
m Help gives you information about the editor and commands.
The Edit menu bar item provides commands for all your text-editing needs. Instead of hav-

ing to remember cryptic key commands (which by the way, KWrite also supports), you can
just select items in the Edit menu bar, as shown in Table 10-3.

TABLE 10-3 The KWrite Edit Menu Items

Item Description

Undo Reverses the last action or operation

Redo Reverses the last undo action

Cut Deletes the selected text and places it in the clipboard

Copy Copies the selected text to the clipboard

Paste Inserts the current contents of the clipboard at the current cursor
position

Select All Selects all text in the editor

Deselect Deselects any text that is currently selected

Overwrite Mode Toggles insert mode to overwrite mode, replacing text with new
typed text instead of just inserting the new text

Find Produces the Find Text dialog box, which allows you to customize a
text search

Find Next Repeats the last find operation forward in the buffer area

Find Previous Repeats the last find operation backwards in the buffer area

Continues

253

Part I: The Linux Command Line

TABLE 10-3 (continued)

Item

Description

Replace

Find Selected

Find Selected
Backwards

Go to Line

Produces the Replace With dialog box, which allows you to cus-
tomize a text search and replace

Finds the next occurrence of the selected text

Finds the previous occurrence of the selected text

Produces the Goto dialog box, which allows you to enter a line
number. The cursor moves to the specified line

The Find feature has two modes. Normal mode performs simple text searches and power
searches. Replace mode lets you do advanced searching and replacing if necessary. You
toggle between the two modes using the green arrow in the Find section, as shown in

Figure 10-7.

FIGURE 10-7

The KWrite Find section

1 () factorialsh — KWite OE ®
File Edit Miew Tools Settings Help
°G H M 0 D
MNew Open Save SaveAs Close Undo FRedo
#1 ~
factorial=l
number=5
for ((i=1; i <= $number; i++ 33
v
factorial="expr $factorial “* §i°
i
echo The factorial of Jnumber is §factorial.
~
v
<) <>
o Find:) ¥ Next 4 Previous | ¥
Replace: w Replace Replace All
Plain text v | |+ Match case Options v
Line: 4 Col: & INS LINE Bash factorial.sh

254

Chapter 10: Working with Editors

The Find power mode allows you to search not only with words, but with a regular expres-
sion (discussed in Chapter 20) for the search. You can use some other options to custom-
ize the search as well, indicating, for example, whether or not to perform a case-sensitive
search or to look only for whole words instead of finding the text within words.

The Tools menu bar item provides several handy features for working with the text in the
buffer area. Table 10-4 describes the tools available in KWrite.

TABLE 10-4 The KWrite Tools

Tool Description

Read Only Mode Locks the text so no changes can be made while in the editor

Encoding Sets the character set encoding used by the text

Spelling Starts the spell-check program at the start of the text

Spelling (from cursor) Starts the spell-check program from the current cursor position

Spellcheck Selection Starts the spell-check program only on the selected section of text

Indent Increases the paragraph indentation by one

Unindent Decreases the paragraph indentation by one

Clean Indentation Returns all paragraph indentation to the original settings

Align Forces the current line or the selected lines to return to the default
indentation settings

Uppercase Sets the selected text, or the character at the current cursor position,
to uppercase

Lowercase Sets the selected text, or the character at the current cursor position,
to lowercase

Capitalize Capitalizes the first letter of the selected text or the word at the cur-
rent cursor position

Join Lines Combines the selected lines, or the line at the current cursor position
and the next line, into one line

Word Wrap Enables word wrapping in the text. If a line extends past the editor

Document window edge, the line continues on the next line.

There are lots of tools for a simple text editor!

The Settings menu includes the Configure Editor dialog box, shown in Figure 10-8.

255

Part I: The Linux Command Line

256

FIGURE 10-8

The KWrite Configure Editor dialog box

[1) configure — KWrite = O E ®
- Appearance /]
-
Appearance .
. Dynamic Word Wrap
Lt L] _
T!\" Dynamic word wrap indicators (if applicable)
bentsiElCelon Align dynamically wrapped lines to indentation depth
Ed’ilir.lg Borders
l I +| Show folding markers (if available)
Open/Save | Show jcon border
I ;-.: | Show line numbers
. Show scrollbar marks
Extensions — -
Advanced
| Enable power user mods (KDE 3 mode)
| Show indentation lines
| Highlight range between selected brackets
7 Help W 0K @ Cancel

The Configuration dialog box uses icons on the left side for you to select the feature in
KWrite to configure. When you select an icon, the right side of the dialog box shows the
configuration settings for the feature.

The Appearance feature allows you to set several features that control how the text appears
in the text editor window. You can enable word wrap, line numbers (great for programmers),
and the folder markers from here. With the Fonts & Colors feature, you can customize the
complete color scheme for the editor, determining what colors to make each category of
text in the program code.

Looking at the Kate editor

The Kate editor is the flagship editor for the KDE Project. It uses the same text editor as the
KWrite application (so most of those features are the same), but it incorporates lots of other
features into a single package.

Chapter 10: Working with Editors

Tip

If you find that the Kate editor has not been installed with your KDE desktop environment, you can easily install it
(see Chapter 9). The package name that contains Kate is kdesdk.

When you start the Kate editor from the KDE menu system, the first thing you notice is
that the editor doesn't start! Instead, you get a dialog box, as shown in Figure 10-9.

FIGURE 10-9

The Kate session dialog box

_ () session Chooser — Kate = HO0E ®

Session Name Open Documents
(Default Session 1 |

| Always use this choice

% New Session i Open Session | 4 Quit

The Kate editor handles files in sessions. You can have multiple files open in a session, and
you can have multiple sessions saved. When you start Kate, it provides you with the choice
of which session to return to. When you close your Kate session, it remembers the docu-
ments you had open and displays them the next time you start Kate. This allows you to
easily manage files from multiple projects by using separate workspaces for each project.

After selecting a session, you see the main Kate editor window, shown in Figure 10-10.

The left side frame shows the documents currently open in the session. You can switch
between documents just by clicking the document name. To edit a new file, click the
Filesystem Browser tab on the left side. The left frame is now a full graphical filesystem
browser, allowing you to graphically browse to locate your files.

A great feature of the Kate editor is the built-in terminal window, shown in Figure 10-11.

257

Part I: The Linux Command Line

258

FIGURE 10-10

The main Kate editing window

/() Default Session: factorial.c — Kate ——
File Edit “iew Go Bookmarks Sessjons Tools Settings Help

S e > H 4O D

ew Open Back Forward Save SaveAs Close Unelo Redo

=

®e

[factorial.c | #include <stdio.h>

int main()
¥
int i
int factorial = 1;

Dncuments]

Terminal @& Find in Files

E int number = 5
z
o for(i = 1; 1 <= number; i++)
£ !
= factorial = factorial * i:
E
n i
=z
i
= printf("The factorial of %d is %d'n", number, factorial):
return @;
I}
<
Line: 17 Col: 1 INS LINE factorial.c

] >

<>

The terminal tab at the bottom of the text editor window starts the built-in terminal emu-
lator in Kate (using the KDE Konsole terminal emulator). This feature horizontally splits the
current editing window, creating a new window with Konsole running in it. You can now
enter command line commands, start programs, or check on system settings without having
to leave the editor! To close the terminal window, just type exit at the command prompt.

As you can tell from the terminal feature, Kate also supports multiple windows. The
Window menu bar item (View) provides options to perform these tasks:

Create a new Kate window using the current session

Close the current window

Split the current window vertically to create a new window

Split the current window horizontally to create a new window

Chapter 10: Working with Editors

FIGURE 10-11

The Kate built-in terminal window

I A O Default Session: factorial.sh — Kate ——————— @ @ @
File Edit “iew Go Bookmarks Sessjons Tools Settings Help

CH @ » H M4 O

New Open Back Forward Save SaveAs Close Undo Redo

E factorial.c ES
z | factorial.sh |

3 factorial=l

Z number=5

for ((i=1; 1 <= $number; i++ 3}
¥
factorial="expr §factorial v* §i°
i

echo The factorial of $number is §factorial.

[T Filesystem Browser =

< >__(

< <>
Line: 1 Col: 1 INS LINE factaorial sh

rich@localhost ~/Documents> ./factorial.sh
The factorial of 5 is 128
rich@localhost:~/Documents:]

<> C .

Terminal @& Find in Files

To set the configuration settings in Kate, select the Configure Kate item under the Settings
menu bar item. The Configuration dialog box, shown in Figure 10-12, appears.

Notice that the Editor settings area is exactly the same as for KWrite. This is because the
two editors share the same text editor engine. The Application settings area allows you to
configure settings for the Kate items, such as controlling sessions (shown in Figure 10-12),
the documents list, and the filesystem browser. Kate also supports external plug-in applica-
tions, which can be activated here.

259

Part I: The Linux Command Line

FIGURE 10-12

The Kate configuration settings dialog box

(| < © configure - Kate — DACLS £y ®
File - =
T gpgii!?; Session Management H
New ' Sessions
= = Document List Elements of Sessions — A
€ -4 Plugins =
E [& Terminal + | Include window configuration
2 [File Selector
=1 — 1 Editor Component :
= = Behavior on Application Startup
y /| Appearance
5 ' Fonts & Colors _ Start new session
g ' 1 Editing)
g I Open/Save __ Load last-used session
2 @ Extensions # Manually choose a session
#
E Behavior on Application Exit or Session Switch
T _
Do not save session ~
= ./ D 2
#, Save session <>
. Ask user
~
~
v
Hel W OK & Appl Cancel
Help Yl pply L

Exploring the GNOME Editor

If you're working on a Linux system using the GNOME or Unity desktop environment, there’s
a graphical text editor that you can use as well. The gedit text editor is a basic text editor,
with a few advanced features thrown in just for fun. This section walks you through the
features of gedit and demonstrates how to use it for your shell script programming.

Starting gedit

Most GNOME desktop environments include gedit in the Accessories Panel menu item. For
the Unity desktop environment, go to Dash > Search and type gedit. If you can't find
gedit via the menu system, you can start it from the command line prompt in a GUI termi-
nal emulator:

$ gedit factorial.sh myprog.c

260

Chapter 10: Working with Editors

When you start gedit with multiple files, it loads all the files into separate buffers and dis-
plays each one as a tabbed window within the main editor window, as shown in
Figure 10-13.

FIGURE 10-13

The gedit main editor window

& © @ factorial.sh (~) - gedit

File Edit Vie ch Tools Documents Help
| @ [g@open v ;_G::Save () Q Qe
|| Documents ® [factorialsh % |- myprog.c &
= factorial.sh #1/bin/bash
myprog.c factorial=1
number=5

for ((i=1; i <= Snumber; i++))

{
}

factorial="expr $factorial * $i"

echo The factorial of $number is $factorial.

sh v TabWidth: 8 v Ln1, Coll INS

The left frame in the gedit main editor window shows the documents you're currently edit-
ing. If your gedit doesn't show the left frame when started, you can press the F9 function
key or enable Side Pane from the View menu.

NoTE

Different desktops may have gedit options that are available in slightly different menu locations than shown in these
figures. Additional options may also be available. Consult your distribution’s gedit Help menu for more assistance.

The right side shows the tabbed windows that contain the buffer text. If you hover your
mouse pointer over each tab, a dialog box appears, showing the full pathname of the file,
the MIME type, and the character set encoding it uses.

261

Part I: The Linux Command Line

262

Understanding basic gedit features
In addition to the editor windows, gedit uses both a menu bar and toolbar that allow you
to set features and configure settings. The toolbar provides quick access to menu bar items.
These menu bar items are available:

m File handles new files, saves existing files, and prints files.

m Edit manipulates text in the active buffer area and sets the editor preferences.

B View sets the editor features to display in the window and sets the text highlight-
ing mode.

Search finds and replaces text in the active editor buffer area.
Tools accesses plug-in tools installed in gedit.

Documents manages files open in the buffer areas.

Help provides access to the full gedit manual.

There shouldn't be anything too surprising here. The Edit menu contains the standard cut,
copy, and paste functions, along with a neat feature that allows you to easily enter the
date and time in the text in several different formats. The Search menu provides a stan-
dard find function, which produces a dialog box where you can enter the text to find, along
with the capability to select how the find feature should work (matching case, matching
the whole word, and the search direction). It also provides an incremental search feature,
which works in real-time mode, finding text as you type the characters of the word.

Setting preferences

The Edit menu contains a Preferences item, which produces the gedit Preferences dialog
box, shown in Figure 10-14.

This is where you can customize the operation of the gedit editor. The Preferences dialog
box contains five tabbed areas for setting the features and behavior of the editor.

Setting View preferences
The View tab provides options for how gedit displays the text in the editor window:

m Text Wrapping: Determines how to handle long lines of text in the editor. The
Enabling text wrapping option wraps long lines to the next line of the editor. The
Do Not Split Words Over Two Lines option prevents the auto-inserting of hyphens
into long words, to prevent them being split between two lines.

B Line Numbers: Displays line numbers in the left margin in the editor window.

Chapter 10: Working with Editors

® Current Line: Highlights the line where the cursor is currently positioned,
enabling you to easily find the cursor position.

m Right Margin: Enables the right margin and allows you to set how many columns
should be in the editor window. The default value is 80 columns.

® Bracket Matching: When enabled, highlights bracket pairs in programming code,
allowing you to easily match brackets in if-then statements, for and while
loops, and other coding elements that use brackets.

The line-numbering and bracket-matching features provide an environment for program-
mers to troubleshoot code that’s not often found in text editors.

FIGURE 10-14
The GNOME desktop gedit Preferences dialog box

File Edit View &

@ gedit Preferences

| @ | Open X %

View Editor Font & Colors Plugins

|| Documents
Text Wrapping

= factorial.sh
myprog.c

& Enable text wrapping

& Do not split words over two lines

Line Numbers

Display line numbers

Current Line

Highlight current line Hal.
Right Margin

Display right margin

Bracket Matching
Highlight matching bracket

B

INS

|

Setting Editor preferences

The Editor tab provides options for how the gedit editor handles tabs and indentation,
along with how files are saved:

263

Part I: The Linux Command Line

264

m Tab Stops: Sets the number of spaces skipped when you press the Tab key. The
default value is eight. This feature also includes a check box that, when selected,
inserts spaces instead of a tab skip.

B Automatic Indentation: When enabled, causes gedit to automatically indent lines
in the text for paragraphs and code elements (such as if-then statements and
loops).

m File Saving: Provides two features for saving files: whether or not to create a
backup copy of the file when opened in the edit window, and whether or not to
automatically save the file at a preselected interval.

The auto-save feature is a great way to ensure that your changes are saved on a regular
basis to prevent catastrophes from crashes or power outages.

Setting Font & Color preferences
The Font & Colors tab allows you to configure (not surprisingly) two items:

m Font: Allows you to select the default font, or to select a customized font and font
size from a dialog box.

® Color Scheme: Allows you to select the default color scheme used for text, back-
ground, selected text, and selection colors, or choose a custom color for each
category.

The default colors for gedit normally match the standard GNOME desktop theme selected for
the desktop. These colors will change to match the scheme you select for the desktop.

Managing plug-ins
The Plugins tab provides control over the plug-ins used in gedit. Plug-ins are separate
programs that can interface with gedit to provide additional functionality.

Several plug-ins are available for gedit, but not all of them are installed by default.
Table 10-5 describes the plug-ins that are currently available in the GNOME desktop’s gedit.

TABLE 10-5 The GNOME desktop gedit Plug-ins

Plug-In Description

Change Case Changes the case of selected text

Document Reports the number of words, lines, characters, and non-space

Statistics characters

External Tools Provides a shell environment in the editor to execute commands and
scripts

File Browser Pane Provides a simple file browser to make selecting files for editing easier

Chapter 10: Working with Editors

Indent Lines Provides selected lines to be indented or un-indented

Insert Date/Time Inserts the current date and time in several formats at the current cursor
position

Modelines Provides emacs-style message lines at the bottom of the editor window

Python Console Provides an interactive console at the bottom of the editor window for
entering commands using the Python programming language

Quick Open Opens files directly in the gedit edit window

Snippets Allows you to store often-used pieces of text for easy retrieval anywhere
in the text

Sort Quickly sorts the entire file or selected text

Spell Checker Provides dictionary spellchecking for the text file

Tag List Provides a list of commonly used strings you can easily enter into your
text

Plug-ins that are enabled show a check mark in the check box next to their name. Some
plug-ins, such as the External Tools plug-in, also provide additional configuration features
after you select them. It allows you to set a shortcut key to start the terminal, where gedit
displays output, and the command to use to start the shell session.

Unfortunately, not all plug-ins are installed in the same place in the gedit menu bar. Some
plug-ins appear in the Tools menu bar item (such as the Spell Checker and External Tools
plug-ins), while others appear in the Edit menu bar item (such as the Change Case and
Insert Date/Time plug-ins).

This chapter has covered just a few of the text editors available on Linux. If you find that
the text editors described here don't meet your needs, you have options. Many more Linux
editors are available, such as geany, Eclipse, jed, Bluefish, and leafpad to name a few. All
these editors can help you as you begin your bash shell script writing journey.

Summary

When it comes to creating shell scripts, you need some type of text editor. Several popu-
lar text editors are available for the Linux environment. The most popular editor in the
Unix world, vi, has been ported to the Linux world as the vim editor. The vim editor
provides simple text editing from the console, using a rudimentary full-screen graphical
mode. The vim editor provides many advanced editor features, such as text searching and
replacement.

Another editor that has been ported from the Unix world to Linux is the nano text editor.
The vim editor can be rather complex, but the nano editor offers simplicity. The nano editor
allows quick text editing in console mode.

265

Part I: The Linux Command Line

266

Another popular Unix editor — emacs — has also made its way to the Linux world. The
Linux version of emacs has both console and a graphical mode, making it the bridge
between the old world and the new. The emacs editor provides multiple buffer areas, allow-
ing you to edit multiple files simultaneously.

The KDE Project created two editors for use in the KDE desktop. The KWrite editor is a sim-
ple editor that provides the basic text-editing features, along with a few advanced features,
such as syntax highlighting for programming code, line numbering, and code folding. The
Kate editor provides more advanced features for programmers. One great feature in Kate is
a built-in terminal window. You can open a command line interface session directly in the
Kate editor without having to open a separate terminal emulator window. The Kate editor
also allows you to open multiple files, providing different windows for each opened file.

The GNOME Project also provides a simple text editor for programmers. The gedit editor is

a basic text editor that provides some advanced features such as code syntax highlighting
and line numbering, but it was designed to be a bare-bones editor. To spruce up the gedit
editor, developers created plug-ins, which expand the features available in gedit. Current

plug-ins include a spell-checker, a terminal emulator, and a file browser.

This wraps up the background chapters on working with the command line in Linux. The
next part of the book dives into the shell-scripting world. The next chapter starts off by
showing you how to create a shell script file and how to run it on your Linux system. It also
shows you the basics of shell scripts, allowing you to create simple programs by stringing
multiple commands together into a script you can run.

Part Il

Shell Scripting Basics

IN THIS PART

Chapter 11
Basic Script Building

Chapter 12
Using Structured Commands

Chapter 13
More Structured Commands

Chapter 14
Handling User Input

Chapter 15
Presenting Data

Chapter 16
Script Control

CHAPTER

Basic Script Building

IN THIS CHAPTER

Using multiple commands
Creating a script file
Displaying messages

Using variables

Redirecting input and output
Pipes

Performing math

Exiting the script

start coding. This chapter discusses the basics of writing shell scripts. You need to know

N ow that we've covered the basics of the Linux system and the command line, its time to
these basic concepts before you can start writing your own shell script masterpieces.

Using Multiple Commands

So far you've seen how to use the command line interface (CLI) prompt of the shell to enter com-
mands and view the command results. The key to shell scripts is the ability to enter multiple
commands and process the results from each command, even possibly passing the results of one
command to another. The shell allows you to chain commands together into a single step.

If you want to run two commands together, you can enter them on the same prompt line, separated
with a semicolon:

$ date ; who
Mon Feb 21 15:36:09 EST 2014

Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy ttyl 2014-02-21 15:26
user tty7 2014-02-19 14:03 (:0)

269

Part 1l: Shell Scripting Basics

270

user pts/0 2014-02-21 15:21 (:0.0)

$

Congratulations, you just wrote a shell script! This simple script uses just two bash shell
commands. The date command runs first, displaying the current date and time, followed
by the output of the who command, showing who is currently logged on to the system.
Using this technique, you can string together as many commands as you wish, up to the
maximum command line character count of 255 characters.

Using this technique is fine for small scripts, but it has a major drawback: You must enter
the entire command at the command prompt every time you want to run it. Instead of hav-
ing to manually enter the commands onto a command line, you can combine the commands
into a simple text file. When you need to run the commands, just simply run the text file.

Creating a Script File

To place shell commands in a text file, first you need to use a text editor (see Chapter 10) to
create a file and then enter the commands into the file.

When creating a shell script file, you must specify the shell you are using in the first line of
the file. Here’s the format for this:

#!/bin/bash

In a normal shell script line, the pound sign (#) is used as a comment line. A comment line
in a shell script isn't processed by the shell. However, the first line of a shell script file is
a special case, and the pound sign followed by the exclamation point tells the shell what
shell to run the script under (yes, you can be using a bash shell and run your script using
another shell).

After indicating the shell, commands are entered onto each line of the file, followed by a
carriage return. As mentioned, comments can be added by using the pound sign. An exam-
ple looks like this:

#!/bin/bash

This script displays the date and who's logged on
date

who

And that's all there is to it. You can use the semicolon and put both commands on the same
line if you want to, but in a shell script, you can list commands on separate lines. The shell
processes commands in the order in which they appear in the file.

Also notice that another line was included that starts with the pound symbol and adds
a comment. Lines that start with the pound symbol (other than the first #! line) aren't

Chapter 11: Basic Script Building

interpreted by the shell. This is a great way to leave comments for yourself about what's
happening in the script, so when you come back to it two years later, you can easily remem-
ber what you did.

Save this script in a file called test1, and you are almost ready. You need to do a couple of
things before you can run your new shell script file.

If you try running the file now, you'll be somewhat disappointed to see this:

$ testl
bash: testl: command not found
$

The first hurdle to jump is getting the bash shell to find your script file. If you remember
from Chapter 6, the shell uses an environment variable called PATH to find commands. A
quick look at the PATH environment variable demonstrates our problem:

$ echo $SPATH
/usr/kerberos/sbin: /usr/kerberos/bin: /usr/local/bin: /usr/bin
:/bin:/usr/local/sbin: /usr/sbin:/sbin:/home/user/bin $

The PATH environment variable is set to look for commands only in a handful of directo-
ries. To get the shell to find the test1 script, we need to do one of two things:

B Add the directory where our shell script file is located to the PATH environment
variable.

m Use an absolute or relative file path to reference our shell script file in the prompt.

Tip

Some Linux distributions add the SHOME /bin directory to the PATH environment variable. This creates a place in
every user's HOME directory to place files where the shell can find them to execute.

For this example, we use the second method to tell the shell exactly where the script file is
located. Remember that to reference a file in the current directory, you can use the single
dot operator in the shell:

$./testl
bash: ./testl: Permission denied
$

The shell found the shell script file just fine, but there’s another problem. The shell indi-
cated that you don't have permission to execute the file. A quick look at the file permis-
sions should show what’s going on here:

S 1ls -1 testl
-YW-Yrw-TI-- 1 user user 73 Sep 24 19:56 testl

$

271

Part 1l: Shell Scripting Basics

272

When the new test1 file was created, the umask value determined the default permis-
sion settings for the new file. Because the umask variable is set to 002 (see Chapter 7) in
Ubuntu, the system created the file with only read/write permissions for the file’s owner
and group.

The next step is to give the file owner permission to execute the file, using the chmod com-
mand (see Chapter 7):

$ chmod u+x testl

$./testl

Mon Feb 21 15:38:19 EST 2014

Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26

Timothy ttyl 2014-02-21 15:26

user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0) $

Success! Now all the pieces are in the right places to execute the new shell script file.

Displaying Messages

Most shell commands produce their own output, which is displayed on the console moni-
tor where the script is running. Many times, however, you will want to add your own text
messages to help the script user know what is happening within the script. You can do this
with the echo command. The echo command can display a simple text string if you add
the string following the command:

$ echo This is a test
This is a test

$

Notice that by default you don't need to use quotes to delineate the string you're display-
ing. However, sometimes this can get tricky if you are using quotes within your string:

S echo Let's see if this'll work
Lets see if thisll work

$

The echo command uses either double or single quotes to delineate text strings. If you use
them within your string, you need to use one type of quote within the text and the other
type to delineate the string:

$ echo "This is a test to see if you're paying attention"
This is a test to see if you're paying attention

$ echo 'Rich says "scripting is easy".'

Rich says "scripting is easy".

$
Now all the quotation marks appear properly in the output.

Chapter 11: Basic Script Building

You can add echo statements anywhere in your shell scripts where you need to display
additional information:

$ cat testl

#!/bin/bash

This script displays the date and who's logged on
echo The time and date are:

date

echo "Let's see who's logged into the system:"

who

$

When you run this script, it produces the following output:

$./testl

The time and date are:

Mon Feb 21 15:41:13 EST 2014

Let's see who's logged into the system:

Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy ttyl 2014-02-21 15:26

user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0)
$

That’s nice, but what if you want to echo a text string on the same line as a command out-
put? You can use the -n parameter for the echo statement to do that. Just change the first
echo statement line to this:

echo -n "The time and date are: "

You need to use quotes around the string to ensure that there’s a space at the end of the
echoed string. The command output begins exactly where the string output stops. The out-
put now looks like this:

$./testl
The time and date are: Mon Feb 21 15:42:23 EST 2014
Let's see who's logged into the system:

Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy ttyl 2014-02-21 15:26

user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0)
$

Perfect! The echo command is a crucial piece of shell scripts that interact with users. You'll
find yourself using it in many situations, especially when you want to display the values of
script variables. Let’s look at that next.

273

Part 1l: Shell Scripting Basics

274

Using Variables

Just running individual commands from the shell script is useful, but this has its limi-
tations. Often, you'll want to incorporate other data in your shell commands to process
information. You can do this by using variables. Variables allow you to temporarily store
information within the shell script for use with other commands in the script. This section
shows how to use variables in your shell scripts.

Environment variables

You've already seen one type of Linux variable in action. Chapter 6 described the environ-
ment variables available in the Linux system. You can access these values from your shell
scripts as well.

The shell maintains environment variables that track specific system information, such as

the name of the system, the name of the user logged in to the system, the user’s system ID
(called UID), the default home directory of the user, and the search path used by the shell

to find programs. You can display a complete list of active environment variables available
by using the set command:

S set

BASH=/bin/bash

[...]

HOME=/home/Samantha
HOSTNAME=1localhost.localdomain
HOSTTYPE=1386

IFS=$' \t\n'

IMSETTINGS INTEGRATE DESKTOP=yes
IMSETTINGS MODULE=none

LANG=en US.utfs8
LESSOPEN='|/usr/bin/lesspipe.sh %s'
LINES=24

LOGNAME=Samantha

[...]

You can tap into these environment variables from within your scripts by using the envi-
ronment variable’s name preceded by a dollar sign. This is demonstrated in the following
script:

$ cat test2

#!/bin/bash

display user information from the system.
echo "User info for userid: SUSER"

echo UID: SUID

echo HOME: SHOME

$

Chapter 11: Basic Script Building

The SUSER, $UID, and $HOME environment variables are used to display the pertinent
information about the logged-in user. The output should look something like this:

Schmod u+x test2

$./test2

User info for userid: Samantha
UID: 1001

HOME: /home/Samantha

$

Notice that the environment variables in the echo commands are replaced by their current
values when the script runs. Also notice that we were able to place the SUSER system vari-
able within the double quotation marks in the first string, and the shell script still figured
out what we meant. There is a drawback to using this method, however. Look at what hap-
pens in this example:

$ echo "The cost of the item is $15"
The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar sign within
quotes, it assumes you're referencing a variable. In this example, the script attempted to
display the variable $1 (which was not defined) and then the number 5. To display an
actual dollar sign, you must precede it with a backslash character:

$ echo "The cost of the item is \$15"
The cost of the item is $15

That's better. The backslash allowed the shell script to interpret the dollar sign as an actual
dollar sign and not a variable. The next section shows how to create your own variables in
your scripts.

NoTE

You may also see variables referenced using the format ${variable}. The extra braces around the variable name are
often used to help identify the variable name from the dollar sign.

User variables

In addition to the environment variables, a shell script allows you to set and use your own
variables within the script. Setting variables allows you to temporarily store data and use it
throughout the script, making the shell script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore character. User
variables are case sensitive, so the variable Var1 is different from the variable vari. This little
rule often gets novice script programmers in trouble.

275

Part 1l: Shell Scripting Basics

276

Values are assigned to user variables using an equal sign. No spaces can appear between the
variable, the equal sign, and the value (another trouble spot for novices). Here are a few
examples of assigning values to user variables:

varl=10

var2=-57

var3=testing

var4="still more testing"

The shell script automatically determines the data type used for the variable value.
Variables defined within the shell script maintain their values throughout the life of the
shell script but are deleted when the shell script completes.

Just like system variables, user variables can be referenced using the dollar sign:

$ cat test3

#!/bin/bash

testing variables

days=10

guest="Katie"

echo "S$guest checked in s$days days ago"
days=5

guest="Jessica"

echo "$guest checked in $days days ago"
$

Running the script produces the following output:

$ chmod u+x test3

$./test3

Katie checked in 10 days ago
Jessica checked in 5 days ago

$

Each time the variable is referenced, it produces the value currently assigned to it. It’s
important to remember that when referencing a variable value you use the dollar sign, but
when referencing the variable to assign a value to it, you do not use the dollar sign. Here's
an example of what I mean:

$ cat test4
#!/bin/bash
assigning a variable value to another variable

valuel=10
value2=3Svaluel
echo The resulting value is $value2

$

Chapter 11: Basic Script Building

When you use the value of the valuel variable in the assignment statement, you must still
use the dollar sign. This code produces the following output:

$ chmod u+x test4

$./test4
The resulting value is 10
$

If you forget the dollar sign and make the value2 assignment line look like this:

value2=valuel

you get the following output:

$./test4
The resulting value is valuel
$

Without the dollar sign, the shell interprets the variable name as a normal text string,
which is most likely not what you wanted.

Command substitution

One of the most useful features of shell scripts is the ability to extract information from
the output of a command and assign it to a variable. After you assign the output to a vari-
able, you can use that value anywhere in your script. This comes in handy when processing
data in your scripts.

There are two ways to assign the output of a command to a variable:

B The backtick character (7)
B The $() format

Be careful with the backtick character; it is not the normal single quotation mark
character you are used to using for strings. Because it is not used very often outside

of shell scripts, you may not even know where to find it on your keyboard. You should
become familiar with it because it’s a crucial component of many shell scripts. Hint: On a
U.S. keyboard, it is usually on the same key as the tilde symbol (~).

Command substitution allows you to assign the output of a shell command to a variable.
Although this doesn't seem like much, it is a major building block in script programming.

You must either surround the entire command line command with two backtick characters:
testing="'date'
or use the $() format:

testing=$ (date)

277

Part 1l: Shell Scripting Basics

278

The shell runs the command within the command substitution characters and assigns the
output to the variable testing. Notice that there are no spaces between the assignment
equal sign and the command substitution character. Here's an example of creating a vari-
able using the output from a normal shell command:

$ cat tests

#!/bin/bash

testing=$ (date)

echo "The date and time are: " S$testing

$

The variable testing receives the output from the date command, and it is used in the
echo statement to display it. Running the shell script produces the following output:

$ chmod u+x tests

$./tests
The date and time are: Mon Jan 31 20:23:25 EDT 2014
$

That’s not all that exciting in this example (you could just as easily just put the command
in the echo statement), but after you capture the command output in a variable, you can
do anything with it.

Here’s a popular example of how command substitution is used to capture the current date
and use it to create a unique filename in a script:

#!/bin/bash

copy the /usr/bin directory listing to a log file
today=$ (date +%y%m%d)

1ls /usr/bin -al > log.Stoday

The today variable is assigned the output of a formatted date command. This is a com-
mon technique used to extract date information for log filenames. The +%y%m%d format
instructs the date command to display the date as a two-digit year, month, and day:

$ date +%y%m%d
140131
$

The script assigns the value to a variable, which is then used as part of a filename. The file
itself contains the redirected output (discussed in the “Redirecting Input and Output” section)
of a directory listing. After running the script, you should see a new file in your directory:

-IrW-Y--r-- 1 user user 769 Jan 31 10:15 log.140131

The log file appears in the directory using the value of the $today variable as part of the
filename. The contents of the log file are the directory listing from the /usr/bin direc-
tory. If the script runs the next day, the log filename is 1og.140201, thus creating a new
file for the new day.

Chapter 11: Basic Script Building

CAUTION

Command substitution creates what'’s called a subshell to run the enclosed command. A subshell is a separate
child shell generated from the shell that’s running the script. Because of that, any variables you create in the script
aren’t available to the subshell command.

Subshells are also created if you run a command from the command prompt using the ./ path, but they aren’t cre-
ated if you just run the command without a path. However, if you use a built-in shell command, that doesn’t generate
a subshell. Be careful when running scripts from the command prompt!

Redirecting Input and Output

Sometimes, you want to save the output from a command instead of just having it dis-
played on the monitor. The bash shell provides a few different operators that allow you to
redirect the output of a command to an alternative location (such as a file). Redirection
can be used for input as well as output, redirecting a file to a command for input. This sec-
tion describes what you need to do to use redirection in your shell scripts.

Output redirection

The most basic type of redirection is sending output from a command to a file. The bash
shell uses the greater-than symbol (>) for this:

command > outputfile

Anything that would appear on the monitor from the command instead is stored in the out-
put file specified:

$ date > testé

$ 1s -1 testé6

-YwW-r--r-- 1 user user 29 Feb 10 17:56 testé6
S cat testé

Thu Feb 10 17:56:58 EDT 2014

$

The redirect operator created the file test6 (using the default umask settings) and redi-
rected the output from the date command to the testé file. If the output file already
exists, the redirect operator overwrites the existing file with the new file data:

S who > testé6

$ cat testé

user pts/0 Feb 10 17:55
$

Now the contents of the testé file contain the output from the who command.

279

Part 1l: Shell Scripting Basics

280

Sometimes, instead of overwriting the file’s contents, you may need to append output from
a command to an existing file — for example, if you're creating a log file to document an
action on the system. In this situation, you can use the double greater-than symbol (>>) to
append data:

$ date >> testé
S cat testé6

user pts/0 Feb 10 17:55
Thu Feb 10 18:02:14 EDT 2014
$

The testé file still contains the original data from the who command processed earlier —
and now it contains the new output from the date command.

Input redirection

Input redirection is the opposite of output redirection. Instead of taking the output of a
command and redirecting it to a file, input redirection takes the content of a file and redi-
rects it to a command.

The input redirection symbol is the less-than symbol (<):
command < inputfile

The easy way to remember this is that the command is always listed first in the command
line, and the redirection symbol “points” to the way the data is flowing. The less-than
symbol indicates that the data is flowing from the input file to the command.

Here's an example of using input redirection with the wec command:

S wc < teste
2 11 60

$

The we command provides a count of text in the data. By default, it produces three values:

B The number of lines in the text
B The number of words in the text
® The number of bytes in the text

By redirecting a text file to the we command, you can get a quick count of the lines, words,
and bytes in the file. The example shows that there are 2 lines, 11 words, and 60 bytes in
the testé file.

Another method of input redirection is called inline input redirection. This method allows
you to specify the data for input redirection on the command line instead of in a file. This
may seem somewhat odd at first, but a few applications are available for this process (such
as those shown in the “Performing Math” section).

Chapter 11: Basic Script Building

The inline input redirection symbol is the double less-than symbol (<<). Besides this sym-
bol, you must specify a text marker that delineates the beginning and end of the data used
for input. You can use any string value for the text marker, but it must be the same at the
beginning of the data and the end of the data:

command << marker
data
marker

When using inline input redirection on the command line, the shell prompts for data using
the secondary prompt, defined in the PS2 environment variable (see Chapter 6). Here’s how
this looks when you use it:

wc << EOF
test string 1
test string 2
test string 3
EOF

vV VvV v Vv i\

3 9 42
$

The secondary prompt continues to prompt for more data until you enter the string value
for the text marker. The we command performs the line, word, and byte counts of the data
supplied by the inline input redirection.

Pipes

Sometimes, you need to send the output of one command to the input of another command.
This is possible using redirection, but somewhat clunky:

$ rpm -ga > rpm.list

$ sort < rpm.list
abrt-1.1.14-1.fcl4.1686
abrt-addon-ccpp-1.1.14-1.fcl14.1686
abrt-addon-kerneloops-1.1.14-1.fcl4.1686
abrt-addon-python-1.1.14-1.fcl4.1i686
abrt-desktop-1.1.14-1.fcl14.1686
abrt-gui-1.1.14-1.fcl4.1686
abrt-libs-1.1.14-1.fcl4.1686
abrt-plugin-bugzilla-1.1.14-1.£fcl14.1686
abrt-plugin-logger-1.1.14-1.fcl14.1686
abrt-plugin-runapp-1.1.14-1.fcl4.1686
acl-2.2.49-8.fcl4.1i686

[...]

281

Part 1l: Shell Scripting Basics

282

The rpm command manages the software packages installed on systems using the Red Hat
Package Management system (RPM), such as the Fedora system as shown. When used with
the -ga parameters, it produces a list of the existing packages installed, but not necessar-
ily in any specific order. If you're looking for a specific package or group of packages, it can
be difficult to find it using the output of the rpm command.

Using the standard output redirection, the output was redirected from the rpm command
to a file, called rpm.list. After the command finished, the rpm.1ist file contained a list
of all the installed software packages on my system. Next, input redirection was used to
send the contents of the rpm. list file to the sort command to sort the package names
alphabetically.

That was useful, but again, a somewhat clunky way of producing the information. Instead
of redirecting the output of a command to a file, you can redirect the output to another
command. This process is called piping.

Like the command substitution backtick, the symbol for piping is not used often outside of
shell scripting. The symbol is two vertical lines, one above the other. However, the pipe
symbol often looks like a single vertical line in print (|). On a U.S. keyboard, it is usually
on the same key as the backslash (\). The pipe is put between the commands to redirect
the output from one to the other:

commandl | command2

Don't think of piping as running two commands back to back. The Linux system actually
runs both commands at the same time, linking them together internally in the system. As
the first command produces output, it's sent immediately to the second command. No inter-
mediate files or buffer areas are used to transfer the data.

Now, using piping you can easily pipe the output of the rpm command directly to the
sort command to produce your results:

$ rpm -ga | sort
abrt-1.1.14-1.fcl4.1686
abrt-addon-ccpp-1.1.14-1.£fc14.1i686
abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fc14.1i686
abrt-gui-1.1.14-1.£fcl14.1i686
abrt-libs-1.1.14-1.£fcl4.1686
abrt-plugin-bugzilla-1.1.14-1.£fc14.1686
abrt-plugin-logger-1.1.14-1.fcl4.1686
abrt-plugin-runapp-1.1.14-1.fcl4.1686
acl-2.2.49-8.fcl4.1686

[...]

Chapter 11: Basic Script Building

Unless you're a (very) quick reader, you probably couldn’t keep up with the output gener-
ated by this command. Because the piping feature operates in real time, as soon as the rpm
command produces data, the sort command gets busy sorting it. By the time the rpm com-
mand finishes outputting data, the sort command already has the data sorted and starts
displaying it on the monitor.

There’s no limit to the number of pipes you can use in a command. You can continue pip-
ing the output of commands to other commands to refine your operation.

In this case, because the output of the sort command zooms by so quickly, you can use
one of the text paging commands (such as less or more) to force the output to stop at
every screen of data:

$ rpm -ga | sort | more

This command sequence runs the rpm command, pipes the output to the sort command,
and then pipes that output to the more command to display the data, stopping after
every screen of information. This now lets you pause and read what's on the display before
continuing, as shown in Figure 11-1.

FIGURE 11-1

Using piping to send data to the more command

File Edit View Search Terminal Help

abrt-1.1.14-1.fc14.i686 (4l
abrt-addon-ccpp-1.1.14-1.Tc14.1686
abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fcl4.1686
abrt-desktop-1.1.14-1.Tcl4.1686 E
abrt-gui-1.1.14-1.fcl4.1686
abrt-libs-1.1.14-1.fcl4.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fcl4.1686
abrt-plugin-runapp-1.1.14-1.fc14.1686
acl-2.2.49-8.fcl4.1686
alsa-firmware-1.8.23-1.fcl4.noarch
alsa-1ib-1.0.23-2.fc14.1686
alsa-plugins-pulseaudio-1.0.22-1.fcl3.1686
alsa-tools-firmware-1.8.23-1.fcl4.1686
alsa-utils-1.0.23-3.fcl4.1686
anaconda-14.22-1.fcl4.1686
anaconda-yum-plugins-1.8-5.fcl2.noarch
anthy-9108h-15.fc14.1686
apr-1.3.9-3.fcl3.1686
apr-util-1.3.10-1.fc14.1686
apr-util-ldap-1.3.10-1.fcl4.1686
ar9170-firmware-2689.05.28-2.fcl3.noarch

To get even fancier, you can use redirection along with piping to save your output to a file:

$ rpm -ga | sort > rpm.list
$ more rpm.list

283

Part 1l: Shell Scripting Basics

abrt-1.1.14-1.fcl4.1686
abrt-addon-ccpp-1.1.14-1.fc14.1i686
abrt-addon-kerneloops-1.1.14-1.fcl4.1686
abrt-addon-python-1.1.14-1.fcl14.1686
abrt-desktop-1.1.14-1.fc14.1i686
abrt-gui-1.1.14-1.fcl14.1686
abrt-libs-1.1.14-1.fcl4.1686
abrt-plugin-bugzilla-1.1.14-1.£fcl4.1686
abrt-plugin-logger-1.1.14-1.fcl4.1i686
abrt-plugin-runapp-1.1.14-1.fcl4.1686
acl-2.2.49-8.fcl4.1686

[...1]

As expected, the data in the rpm.1list file is now sorted!

By far one of the most popular uses of piping is piping the results of commands that pro-
duce long output to the more command. This is especially common with the 1s command,
as shown in Figure 11-2.

FIGURE 11-2

Using the more command with the Is command

= user@localhost:~ LEJ l@u@]
File Edit View Terminal Help
total 2276 (=
drwxr-xr-x. 3 root root 4096 Sep 15 17:55 abrt
drwxr-xr-x. 4 root root 4096 Sep 14 20:44 acpi
-rw-r--r--. 1 root root 45 Sep 21 14:27 adjtime
-rw-r--r--. 1 root root 1512 May 24 ©8:32 aliases
-rw-r----- .1 root smmsp 12288 Sep 14 20:43 aliases.db
drwxr-xr-x. 2 root root 4096 Sep 15 18:081 alsa
drwxr-xr-x. 2 root root 4096 Sep 15 1B8:16 alternatives
-rw-r--r--. 1 root root 541 Aug 13 09:53 anacrontab
-rw-r--r--. 1 root root 245 May 18 07:17 anthy-conf
-rw-r--r--. 1 root root 148 Sep 10 2008 asound.conf
-MW------- .1 root root 1 Mar 19 2010 at.deny
drwxr-x---. 3 root root 4096 Sep 14 20:30 audisp
drwxr-x---. 2 root root 4096 Sep 14 20:30 audit
drwxr-xr-x. 4 root root 4096 Sep 15 17:53 avahi
drwxr-xr-x. 2 root root 4896 Sep 15 18:15 bash_completion.d
-rw-r--r--. 1 root root 2615 May 24 08:32 bashrc i
drwxr-xr-x. 2 root root 4896 Aug 5 06:45 blkid
drwxr-xr-x. 2 root root 4096 Sep 15 18:02 bluetooth
drwxr-xr-x. 2 root root 4896 Sep 14 20:27 bonobo-activation :
-rw-r--r--. 1 root root 788 Aug 2 10:50 cgconfig.ceonf
-rw-r--r--. 1 root root 1705 Aug 2 10:50 cgrules.conf
2 root root 4096 Mar 4 2010 chkconfig.d

The 1s -1 command produces a long listing of all the files in the directory. For directories
with lots of files, this can be quite a listing. By piping the output to the more command,
you force the output to stop at the end of every screen of data.

284

Chapter 11: Basic Script Building

Performing Math

Another feature crucial to any programming language is the ability to manipulate numbers.
Unfortunately, for shell scripts this process is a bit awkward. There are two different ways
to perform mathematical operations in your shell scripts.

The expr command

Originally, the Bourne shell provided a special command that was used for processing math-
ematical equations. The expr command allowed the processing of equations from the com-
mand line, but it is extremely clunky:

S expr 1 + 5
6

The expr command recognizes a few different mathematical and string operators, shown in
Table 11-1.

TABLE 111 The expr Command Operators

Operator Description

ARG1l | ARG2 Returns ARG1 if neither argument is null or zero; otherwise, returns
ARG2

ARGl & ARG2 Returns ARG1 if neither argument is null or zero; otherwise, returns
0

ARGl < ARG2 Returns 1 if ARG1 is less than ARG2; otherwise, returns O

ARGl <= ARG2 Returns 1if ARG1 is less than or equal to ARG2; otherwise, returns 0

ARG1 = ARG2 Returns 1 if ARG1 is equal to ARG2; otherwise, returns O

ARGl != ARG2 Returns 1 if ARG1 is not equal to ARG2; otherwise, returns O

ARGl >= ARG2 Returns 1 if ARG1 is greater than or equal to ARG2; otherwise,
returns O

ARGl > ARG2 Returns 1 if ARG1 is greater than ARG2; otherwise, returns 0

ARG1 + ARG2 Returns the arithmetic sum of ARG1 and ARG2

ARGl - ARG2 Returns the arithmetic difference of ARG1 and ARG2

ARGl * ARG2 Returns the arithmetic product of ARG1 and ARG2

ARGl / ARG2 Returns the arithmetic quotient of ARG1 divided by ARG2

ARG1 % ARG2 Returns the arithmetic remainder of ARG1 divided by ARG2

STRING : REGEXP Returns the pattern match if REGEXP matches a pattern in STRING

Continues

285

Part 1l: Shell Scripting Basics

TABLE 11-1 (continued)

Operator Description

match STRING REGEXP Returns the pattern match if REGEXP matches a pattern in STRING

substr STRING POS Returns the substring LENGTH characters in length, starting at posi-

LENGTH tion POS (starting at 1)

index STRING CHARS Returns position in STRING where CHARS is found; otherwise,
returns O

length STRING Returns the numeric length of the string STRING

+ TOKEN Interprets TOKEN as a string, even if it's a keyword

(EXPRESSION) Returns the value of EXPRESSION

Although the standard operators work fine in the expr command, the problem occurs when
using them from a script or the command line. Many of the expr command operators have
other meanings in the shell (such as the asterisk). Using them in the expr command pro-
duces odd results:

S expr 5 * 2
expr: syntax error

$

To solve this problem, you need to use the shell escape character (the backslash) to identify
any characters that may be misinterpreted by the shell before being passed to the expr
command:

$ expr 5 * 2
10
$

Now that’s really starting to get ugly! Using the expr command in a shell script is equally
cumbersome:

S cat testé6

#!/bin/bash

An example of using the expr command
varl=10

var2=20

var3=$ (expr $var2 / $varl)

echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to use command
substitution to extract the output from the expr command:

$ chmod u+x testé6

$./testé
The result is 2
$

286

Chapter 11: Basic Script Building

Fortunately, the bash shell has an improvement for processing mathematical operators as
you shall see in the next section.

Using brackets

The bash shell includes the expr command to stay compatible with the Bourne shell; how-
ever, it also provides a much easier way of performing mathematical equations. In bash,
when assigning a mathematical value to a variable, you can enclose the mathematical equa-
tion using a dollar sign and square brackets ($ [operation]):

S varl=$[1 + 5]

$ echo $varl

6

$ var2=S$[Svarl * 2]
$ echo S$Svar2

12

$

Using brackets makes shell math much easier than with the expr command. This same
technique also works in shell scripts:

$ cat test?7

#!/bin/bash

varl=100

var2=50

var3=45

var4=$[Svarl * (Svar2 - S$var3)]
echo The final result is $var4

$
Running this script produces the output:

$ chmod u+x test7?

$./test?
The final result is 500
$

Also, notice that when using the square brackets method for calculating equations, you
don’t need to worry about the multiplication symbol, or any other characters, being mis-
interpreted by the shell. The shell knows that it's not a wildcard character because it is
within the square brackets.

There’s one major limitation to performing math in the bash shell script. Look at this
example:

S cat tests8

#!/bin/bash
varl=100

287

Part 1l: Shell Scripting Basics

var2=45
var3d=$[Svarl / $var2]
echo The final result is S$var3

$
Now run it and see what happens:

$ chmod u+x test8

$./tests8
The final result is 2
$

The bash shell mathematical operators support only integer arithmetic. This is a huge limi-
tation if you're trying to do any sort of real-world mathematical calculations.

NoTE

The z shell (zsh) provides full floating-point arithmetic operations. If you require floating-point calculations in your
shell scripts, you might consider checking out the z shell (discussed in Chapter 23).

A floating-point solution

You can use several solutions for overcoming the bash integer limitation. The most popular
solution uses the built-in bash calculator, called bc.

The basics of bc
The bash calculator is actually a programming language that allows you to enter floating-

point expressions at a command line and then interprets the expressions, calculates them,
and returns the result. The bash calculator recognizes these:

Numbers (both integer and floating point)

Variables (both simple variables and arrays)

Comments (lines starting with a pound sign or the C language /* */ pair)
Expressions

Programming statements (such as 1f-then statements)

Functions

You can access the bash calculator from the shell prompt using the bc command:

S bc

bc 1.06.95

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.

For details type 'warranty'.

288

Chapter 11: Basic Script Building

12 * 5.4

64.8

3.156 * (3 + 5)
25.248

quit

$

The example starts out by entering the expression 12 * 5.4. The bash calculator returns
the answer. Each subsequent expression entered into the calculator is evaluated, and the
result is displayed. To exit the bash calculator, you must enter quit.

The floating-point arithmetic is controlled by a built-in variable called scale. You must set
this value to the desired number of decimal places you want in your answers, or you won't
get what you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit

$

The default value for the scale variable is zero. Before the scale value is set, the bash
calculator provides the answer to zero decimal places. After you set the scale variable
value to four, the bash calculator displays the answer to four decimal places. The -g com-
mand line parameter suppresses the lengthy welcome banner from the bash calculator.

In addition to normal numbers, the bash calculator also understands variables:

$ bc -q
varl=10

varl * 4

40

var2 = varl / 5
print var2

2

quit

$

After a variable value is defined, you can use the variable throughout the bash calculator
session. The print statement allows you to print variables and numbers.

Using bc in scripts

Now you may be wondering how the bash calculator is going to help you with floating-point
arithmetic in your shell scripts. Do you remember command substitution? Yes, you can use

289

Part 1l: Shell Scripting Basics

290

the command substitution character to run a bc command and assign the output to a vari-
able! The basic format to use is this:

variable=$ (echo "options; expression" | bc)

The first portion, options, allows you to set variables. If you need to set more than one
variable, separate them using the semicolon. The expression parameter defines the math-
ematical expression to evaluate using be. Here's a quick example of doing this in a script:

S cat test9
#!/bin/bash

varl=$(echo "scale=4; 3.44 / 5" | Dbc)
echo The answer is S$varl
$

This example sets the scale variable to four decimal places and then specifies a specific
calculation for the expression. Running this script produces the following output:

S chmod u+x test9

$./test9
The answer 1s .6880
$

Now that’s fancy! You aren't limited to just using numbers for the expression value. You can
also use variables defined in the shell script:

$ cat testlo0
#!/bin/bash

varl=100

var2=45

var3=$ (echo "scale=4; $varl / $var2" | bc)
echo The answer for this is S$var3

$

The script defines two variables, which are used within the expression sent to the bc com-
mand. Remember to use the dollar sign to signify the value for the variables and not the
variables themselves. The output of this script is as follows:

$./testl0
The answer for this is 2.2222
$

And of course, after a value is assigned to a variable, that variable can be used in yet
another calculation:

$ cat testll
#!/bin/bash
varl=20

var2=3.14159

Chapter 11: Basic Script Building

var3=$ (echo "scale=4; $varl * $varl" | bc)
var4d=$ (echo "scale=4; $var3 * $var2" | bc)
echo The final result is Svar4

$

This method works fine for short calculations, but sometimes you need to get more involved
with your numbers. If you have more than just a couple of calculations, it gets confusing
trying to list multiple expressions on the same command line.

There’s a solution to this problem. The bc command recognizes input redirection, allowing
you to redirect a file to the bc command for processing. However, this also can get confus-
ing, because you'd need to store your expressions in a file.

The best method is to use inline input redirection, which allows you to redirect data
directly from the command line. In the shell script, you assign the output to a variable:

variable=$ (bc << EOF
options

statements
expressions

EOF

)

The EOF text string indicates the beginning and end of the inline redirection data.
Remember that the command substitution characters are still needed to assign the output
of the bc command to the variable.

Now you can place all the individual bash calculator elements on separate lines in the script
file. Here's an example of using this technique in a script:

$ cat testl2
#!/bin/bash

varl=10.46
var2=43.67
var3=33.2
var4=71

var5=$ (bc << EOF
scale = 4

al = ($varl * $var2)
bl = ($var3 * sSvar4)
al + bl

EOF

)

echo The final answer for this mess is $var5s

$

291

Part 1l: Shell Scripting Basics

292

Placing each option and expression on a separate line in your script makes things cleaner
and easier to read and follow. The EOF string indicates the start and end of the data to
redirect to the bc command. Of course, you must use the command substitution characters
to indicate the command to assign to the variable.

You'll also notice in this example that you can assign variables within the bash calculator.
It's important to remember that any variables created within the bash calculator are valid
only within the bash calculator and can't be used in the shell script.

Exiting the Script

So far in our sample scripts, we terminated things pretty abruptly. When we were finished
with our last command, we just ended the script. There’s a more elegant way of completing
things available to us.

Every command that runs in the shell uses an exit status to indicate to the shell that
it’s finished processing. The exit status is an integer value between 0 and 255 that’s passed
by the command to the shell when the command finishes running. You can capture this
value and use it in your scripts.

Checking the exit status

Linux provides the $? special variable that holds the exit status value from the last com-
mand that executed. You must view or use the $? variable immediately after the command
you want to check. It changes values to the exit status of the last command executed by
the shell:

$ date

Sat Jan 15 10:01:30 EDT 2014
$ echo $?

0

$

By convention, the exit status of a command that successfully completes is zero. If a com-
mand completes with an error, then a positive integer value is placed in the exit status:

$ asdfg

-bash: asdfg: command not found
$ echo $?

127

$

The invalid command returns an exit status of 127. There’s not much of a standard
convention to Linux error exit status codes. However, you can use the guidelines shown in
Table 11-2.

Chapter 11: Basic Script Building

TABLE 11-2 Linux Exit Status Codes

Code Description

0 Successful completion of the command
1 General unknown error

2 Misuse of shell command

126 The command can't execute

127 Command not found

128 Invalid exit argument

128+x Fatal error with Linux signal x

130 Command terminated with Ctrl+C

255 Exit status out of range

An exit status value of 126 indicates that the user didn’t have the proper permissions set to
execute the command:

$./myprog.c

-bash: ./myprog.c: Permission denied
$ echo $?

126

$

Another common error you'll encounter occurs if you supply an invalid parameter to a
command:

$ date %t

date: invalid date 'Sst'
$ echo $?

1

$

This generates the general exit status code of 1, indicating that an unknown error occurred
in the command.

The exit command

By default, your shell script exits with the exit status of the last command in your script:

$./testé

The result is 2
$ echo $?

0

$

293

Part 1l: Shell Scripting Basics

You can change that to return your own exit status code. The exit command allows you to
specify an exit status when your script ends:

$ cat testl3

#!/bin/bash

testing the exit status
varl=10

var2=30

var3=$[Svarl + Svar2]
echo The answer is $var3
exit 5

$

When you check the exit status of the script, you get the value used as the parameter of
the exit command:

$ chmod u+x testl3
$./testl3

The answer is 40

$ echo $?

5

$

You can also use variables in the exit command parameter:

S cat testl4

#!/bin/bash

testing the exit status
varl=10

var2=30

var3=$[Svarl + Svar2]
exit S$Svar3

$
When you run this command, it produces the following exit status:

$ chmod u+x testl4

S ./testl4
$ echo $?
40

$

You should be careful with this feature, however, because the exit status codes can only go
up to 255. Watch what happens in this example:

$ cat testl4b
#!/bin/bash

testing the exit status
varl=10

294

Chapter 11: Basic Script Building

var2=30

var3d=$[Svarl * S$Svar2]
echo The value is $var3
exit Svar3

$
Now when you run it, you get the following:

$./testldb

The value is 300
$ echo $?

44

$

The exit status code is reduced to fit in the 0 to 255 range. The shell does this by using
modulo arithmetic. The modulo of a value is the remainder after a division. The resulting
number is the remainder of the specified number divided by 256. In the case of 300 (the
result value), the remainder is 44, which is what appears as the exit status code.

In Chapter 12, you'll see how you can use the if-then statement to check the error status
returned by a command to see whether the command was successful.

Summary

The bash shell script allows you to string commands together into a script. The most basic
way to create a script is to separate multiple commands on the command line using a semi-
colon. The shell executes each command in order, displaying the output of each command
on the monitor.

You can also create a shell script file, placing multiple commands in the file for the shell
to execute in order. The shell script file must define the shell used to run the script. This
is done in the first line of the script file, using the #! symbol, followed by the full path of
the shell.

Within the shell script you can reference environment variable values by using a dollar sign
in front of the variable. You can also define your own variables for use within the script,
and assign values and even the output of a command by using the backtick character or the
$() format. The variable value can be used within the script by placing a dollar sign in front
of the variable name.

The bash shell allows you to redirect both the input and output of a command from the

standard behavior. You can redirect the output of any command from the monitor display
to a file by using the greater-than symbol, followed by the name of the file to capture the
output. You can append output data to an existing file by using two greater-than symbols.

295

Part 1l: Shell Scripting Basics

296

The less-than symbol is used to redirect input to a command. You can redirect input from a
file to a command.

The Linux pipe command (the broken bar symbol) allows you to redirect the output of

a command directly to the input of another command. The Linux system runs both com-
mands at the same time, sending the output of the first command to the input of the sec-
ond command without using any redirect files.

The bash shell provides a couple of ways for you to perform mathematical operations in
your shell scripts. The expr command is a simple way to perform integer math. In the bash
shell, you can also perform basic math calculations by enclosing equations in square brack-
ets, preceded by a dollar sign. To perform floating-point arithmetic, you need to utilize the
be calculator command, redirecting input from inline data and storing the output in a user
variable.

Finally, the chapter discussed how to use the exit status in your shell script. Every com-
mand that runs in the shell produces an exit status. The exit status is an integer value
between 0 and 255 that indicates if the command completed successfully, and if not, what
the reason may have been. An exit status of 0 indicates that the command completed suc-
cessfully. You can use the exit command in your shell script to declare a specific exit sta-
tus upon the completion of your script.

So far in your shell scripts, things have proceeded in an orderly fashion from one command
to the next. In the next chapter, you'll see how you can use some logic flow control to alter
which commands are executed within the script.

CHAPTER

Using Structured Commands

IN THIS CHAPTER

Working with the if-then statement
Nesting ifs

Understanding the test command
Testing compound conditions

Using double brackets and parentheses

Looking at case

shell script in the order it appeared. This works out fine for sequential operations, where you want

I n the shell scripts presented in Chapter 11, the shell processed each individual command in the
all the commands to process in the proper order. However, this isn't how all programs operate.

Many programs require some sort of logic flow control between the commands in the script. There is
a whole command class that allows the script to skip over executed commands based on tested con-
ditions. These commands are generally referred to as structured commands.

The structured commands allow you to alter the operation flow of a program. Quite a few structured
commands are available in the bash shell, so we'll look at them individually. In this chapter, we
look at if-then and case statements.

Working with the if-then Statement

The most basic type of structured command is the if-then statement. The if-then statement
has the following format:

if command
then

commands
fi

If you're using if-then statements in other programming languages, this format may be somewhat
confusing. In other programming languages, the object after the if statement is an equation that
is evaluated for a TRUE or FALSE value. That’s not how the bash shell i f statement works.

297

Part 1l: Shell Scripting Basics

298

The bash shell if statement runs the command defined on the if line. If the exit status of
the command (see Chapter 11) is zero (the command completed successfully), the commands
listed under the then section are executed. If the exit status of the command is anything
else, the then commands aren't executed, and the bash shell moves on to the next com-
mand in the script. The £i statement delineates the if-then statement’s end.

Here's a simple example to demonstrate this concept:

S cat testl.sh
#!/bin/bash
testing the if statement
if pwd
then
echo "It worked"
fi
$

This script uses the pwd command on the if line. If the command completes successfully,
the echo statement should display the text string. When you run this script from the com-
mand line, you get the following results:

$./testl.sh
/home/Christine
It worked

$

The shell executed the pwd command listed on the if line. Because the exit status was
zero, it also executed the echo statement listed in the then section.

Here's another example:

S cat test2.sh
#!/bin/bash

testing a bad command
if IamNotaCommand

then
echo "It worked"
fi
echo "We are outside the if statement"
$

$./test2.sh
./test2.sh: line 3: IamNotaCommand: command not found
We are outside the if statement

$

In this example, we deliberately used a command, ITamNotaCommand, that does not work
in the if statement line. Because this is a bad command, it produces an exit status that's
non-zero, and the bash shell skips the echo statement in the then section. Also notice
that the error message generated from running the command in the if statement still

Chapter 12: Using Structured Commands

appears in the script’s output. There may be times when you don't want an error statement
to appear. Chapter 15 discusses how this can be avoided.

NoTE
You might see an alternative form of the i f - then statement used in some scripts:
if command; then
commands
fi

By putting a semicolon at the end of the command to evaluate, you can include the then statement on the same
line, which looks closer to how i f -then statements are handled in some other programming languages.

12

You are not limited to just one command in the then section. You can list commands just
as in the rest of the shell script. The bash shell treats the commands as a block, executing
all of them when the command in the if statement line returns a zero exit status or skip-
ping all of them when the command returns a non-zero exit status:

S cat test3.sh
#!/bin/bash
testing multiple commands in the then section

#

testuser=Christine

#

if grep Stestuser /etc/passwd

then
echo "This is my first command"
echo "This is my second command"
echo "I can even put in other commands besides echo:"
ls -a /home/stestuser/.b*

fi

$

The if statement line uses the grep comment to search the /etc/passwd file to see if a
specific username is currently used on the system. If there’s a user with that logon name,
the script displays some text and then lists the bash files in the user’s HOME directory:

$./test3.sh

Christine:x:501:501:Christine B:/home/Christine:/bin/bash
This is my first command

This is my second command

I can even put in other commands besides echo:
/home/Christine/.bash history /home/Christine/.bash profile
/home/Christine/.bash logout /home/Christine/.bashrc

$

However, if you set the testuser variable to a user that doesn't exist on the system,
nothing happens:

299

Part 1l: Shell Scripting Basics

300

$ cat test3.sh
#!/bin/bash
testing multiple commands in the then section

#

testuser=NoSuchUser

#

if grep S$Stestuser /etc/passwd

then
echo "This is my first command"
echo "This is my second command"
echo "I can even put in other commands besides echo:"
ls -a /home/S$testuser/.b*

fi

$

$./test3.sh

$

It’s not all that exciting. It would be nice if we could display a little message saying that
the username wasn't found on the system. Well, we can, using another feature of the
if-then statement.

Exploring the if-then-else Statement

In the if-then statement, you have only one option for whether a command is success-
ful. If the command returns a non-zero exit status code, the bash shell just moves on to
the next command in the script. In this situation, it would be nice to be able to execute an
alternate set of commands. That’s exactly what the i f-then-else statement is for.

The if-then-else statement provides another group of commands in the statement:

if command
then
commands
else
commands
fi

When the command in the if statement line returns with a zero exit status code, the com-
mands listed in the then section are executed, just as in a normal if-then statement.
When the command in the if statement line returns a non-zero exit status code, the bash
shell executes the commands in the else section.

Now you can copy and modify the test script to include an else section:

S cp test3.sh test4.sh
$

$ nano test4.sh

$

Chapter 12: Using Structured Commands

$ cat test4.sh
#!/bin/bash
testing the else section

#

testuser=NoSuchUser

#

if grep $testuser /etc/passwd

then
echo "The bash files for user S$Stestuser are:"
ls -a /home/Stestuser/.b*
echo

else
echo "The user S$testuser does not exist on this system."
echo

fi

$

$./test4.sh
The user NoSuchUser does not exist on this system.

$

That's more user-friendly. Just like the then section, the else section can contain mul-
tiple commands. The £1i statement delineates the end of the else section.

Nesting ifs

Sometimes, you must check for several situations in your script code. For these situations,
you can nest the if-then statements:

To check if a logon name is not in the /etc/passwd file and yet a directory for that user
still exists, use a nested if-then statement. In this case, the nested if-then statement
is within the primary if-then-else statement’s else code block:

$ 1ls -d /home/NoSuchUser/
/home /NoSuchUser/

$

$ cat test5.sh
#!/bin/bash

Testing nested ifs

#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
echo "The user Stestuser exists on this system."
else

echo "The user S$Stestuser does not exist on this system."

301

Part 1l: Shell Scripting Basics

if 1s -d /home/S$Stestuser/
then
echo "However, S$Stestuser has a directory."
fi
fi
$
$./test5.sh
The user NoSuchUser does not exist on this system.

/home /NoSuchUser/
However, NoSuchUser has a directory.
$

The script correctly finds that although the login name has been removed from the /etc/
passwd file, the user’s directory is still on the system. The problem with using this man-
ner of nested if-then statements in a script is that the code can get hard to read, and the
logic flow becomes difficult to follow.

Instead of having to write separate if-then statements, you can use an alternative ver-
sion of the else section, called elif. The elif continues an else section with another
if-then statement:

if commandl
then

commands
elif command2
then

more commands
fi

The elif statement line provides another command to evaluate, similar to the original if
statement line. If the exit status code from the elif command is zero, bash executes the
commands in the second then statement section. Using this method of nesting provides
cleaner code with an easier-to-follow logic flow:

$ cat test5.sh
#!/bin/bash
Testing nested ifs - use elif

#
testuser=NoSuchUser
#
if grep S$testuser /etc/passwd
then
echo "The user S$testuser exists on this system."
#
elif 1s -d /home/Stestuser
then
echo "The user S$testuser does not exist on this system."
echo "However, Stestuser has a directory."
#

302

Chapter 12: Using Structured Commands

fi

$

$./test5.sh

/home /NoSuchUser

The user NoSuchUser does not exist on this system.
However, NoSuchUser has a directory.

$

You can even take this script a step further and have it check for both a non-existent user
with a directory and a non-existent user without a directory. This is accomplished by add-
ing an else statement within the nested elif:

S cat test5.sh
#!/bin/bash
Testing nested ifs - use elif & else

#

testuser=NoSuchUser

#

if grep $testuser /etc/passwd

then
echo "The user S$Stestuser exists on this system."

#

elif 1ls -d /home/Stestuser

then
echo "The user S$testuser does not exist on this system."
echo "However, S$Stestuser has a directory."

#

else
echo "The user S$testuser does not exist on this system."
echo "And, S$testuser does not have a directory."

fi

$

$./test5.sh

/home /NoSuchUser

The user NoSuchUser does not exist on this system.
However, NoSuchUser has a directory.

$

$ sudo rmdir /home/NoSuchUser

[sudo] password for Christine:

$

$./test5.sh

ls: cannot access /home/NoSuchUser: No such file or directory
The user NoSuchUser does not exist on this system.

And, NoSuchUser does not have a directory.

$

Before the /home/NoSuchUser directory was removed and the test script executed the
elif statement, a zero exit status was returned. Thus, the statements within the elif’s
then code block were executed. After the /home/NoSuchUser directory was removed, a

303

Part 1l: Shell Scripting Basics

non-zero exit status was returned for the elif statement. This caused the statements in
the else block within the elif block to be executed.

Tip

Keep in mind that, with an e11if statement, any el se statements immediately following it are for that e1if code
block. They are not part of a preceding i f -then statement code block.

You can continue to string elif statements together, creating one huge if-then-elif
conglomeration:

if commandl
then

command set 1
elif command2
then

command set 2
elif command3
then

command set 3
elif command4
then

command set 4
fi

Each block of commands is executed depending on which command returns the zero exit
status code. Remember that the bash shell executes the if statements in order, and only
the first one that returns a zero exit status results in the then section being executed.

Even though the code looks cleaner with elif statements, it still can be confusing to fol-
low the script’s logic. Later in the “Considering the case Command” section, you'll see how
to use the case command instead of having to nest lots of 1 f-then statements.

Trying the test Command

So far, all you've seen in the if statement line are normal shell commands. You might be
wondering if the bash if-then statement has the ability to evaluate any condition other
than a command’s exit status code.

The answer is no, it can't. However, there’s a neat utility available in the bash shell that
helps you evaluate other things, using the if-then statement.

The test command provides a way to test different conditions in an if-then statement.
If the condition listed in the test command evaluates to TRUE, the test command exits
with a zero exit status code. This makes the if-then statement behave in much the same

304

Chapter 12: Using Structured Commands

way that if-then statements work in other programming languages. If the condition is
FALSE, the test command exits with a non-zero exit status code, which causes the if-
then statement to exit.

The format of the test command is pretty simple:
test condition

The condition is a series of parameters and values that the test command evaluates. When
used in an if-then statement, the test command looks like this:

if test condition
then

commands
fi

If you leave out the condition portion of the test command statement, it exits with a
non-zero exit status code and triggers any else block statements:

$ cat test6.sh
#!/bin/bash
Testing the test command
#
if test
then
echo "No expression returns a True"
else
echo "No expression returns a False"
fi
$
$./test6.sh
No expression returns a False

$

When you add in a condition, it is tested by the test command. For example, using the
test command, you can determine whether a variable has content. A simple condition
expression is needed to determine whether a variable has content:

$ cat test6.sh
#!/bin/bash
Testing the test command
#
my_variable="Full"
#
if test $my variable
then
echo "The $my variable expression returns a True"
#

else

305

Part 1l: Shell Scripting Basics

echo "The $my variable expression returns a False"
fi
$
$./test6.sh
The Full expression returns a True

$

The variable my variable contains content (Full), so when the test command checks the
condition, the exit status returns a zero. This triggers the statement in the then code block.

As you would suspect, the opposite occurs when the variable does not contain content:

S cat testé6.sh
#!/bin/bash
Testing the test command

#

my variable=""
#
if test $my variable
then
echo "The s$my variable expression returns a True"
#
else
echo "The Smy_ variable expression returns a False"
fi
$
$./test6.sh
The expression returns a False

$

The bash shell provides an alternative way of testing a condition without declaring the
test command in an if-then statement:

if [condition]
then

commands
fi

The square brackets define the test condition. Be careful; you must have a space after the
first bracket and a space before the last bracket, or you'll get an error message.

The test command and test conditions can evaluate three classes of conditions:

B Numeric comparisons
B String comparisons

B File comparisons

306

Chapter 12: Using Structured Commands

The next sections describe how to use each of these test classes in your if-then
statements.

Using numeric comparisons

The most common test evaluation method is to perform a comparison of two numeric val-
ues. Table 12-1 shows the list of condition parameters used for testing two values.

TABLE 12-1 The test Numeric Comparisons

Comparison Description

nl -eq n2 Checks if nl is equal ton2

nl -ge n2 Checks if nl is greater than or equal to n2
nl -gt n2 Checks if nl is greater than n2

nl -le n2 Checks if nl is less than or equal to n2
nl -1t n2 Checks if nl is less than n2

nl -ne n2 Checks if nl is not equal to n2

The numeric test conditions can be used to evaluate both numbers and variables. Here’s an
example of doing that:

$ cat numeric test.sh
#!/bin/bash
Using numeric test evaluations
#
valuel=10
value2=11
#
if [$valuel -gt 5]
then
echo "The test value $valuel is greater than 5"
fi
#
if [$valuel -eq $value2]
then
echo "The values are equal"
else
echo "The values are different"
fi
#
$

307

Part 1l: Shell Scripting Basics

308

The first test condition:
if [$valuel -gt 5]

tests if the value of the variable valuel is greater than 5. The second test condition:
if [$valuel -eq S$value2]

tests if the value of the variable valuel is equal to the value of the variable value2. Both
numeric test conditions evaluate as expected:

$./numeric_test.sh
The test value 10 is greater than 5
The values are different

$

There is a limitation to the test numeric conditions concerning floating-point values:

$ cat floating point test.sh
#!/bin/bash
Using floating point numbers in test evaluations
#
valuel=5.555
#
echo "The test value is S$valuel"
#
if [$valuel -gt 5]
then
echo "The test value $valuel is greater than 5"
fi
#
$./floating point test.sh
The test value is 5.555
./floating point test.sh: line 8:
[: 5.555: integer expression expected

$

This example uses a floating-point value, stored in the valuel variable. Next, it evaluates
the value. Something obviously went wrong.

Remember that the only numbers the bash shell can handle are integers. This works per-
fectly fine if all you need to do is display the result, using an echo statement. However,
this doesn't work in numeric-oriented functions, such as our numeric test condition. The
bottom line is that you cannot use floating-point values for test conditions.

Using string comparisons

Test conditions also allow you to perform comparisons on string values. Performing com-
parisons on strings can get tricky, as you'll see. Table 12-2 shows the comparison functions
you can use to evaluate two string values.

Chapter 12: Using Structured Commands

TABLE 12-2 The test String Comparisons

Comparison Description

strl = str2 Checks if strl is the same as string str2
strl != str2 Checks if strl is not the same as str2

strl < str2 Checks if strl is less than str2

strl > str2 Checks if strl is greater than str2

-n stril Checks if strl has a length greater than zero
-z strl Checks if stril has a length of zero

The following sections describe the different string comparisons available.

Looking at string equality
The equal and not equal conditions are fairly self-explanatory with strings. It's pretty easy
to know when two string values are the same or not:

S cat test7.sh
#!/bin/bash

testing string equality
testuser=rich

#
if [SUSER = Stestuser |
then

echo "Welcome S$testuser"
fi
$

$./test7.sh
Welcome rich

$

Also, using the not equals string comparison allows you to determine if two strings have
the same value or not:

S cat test8.sh
#!/bin/bash

testing string equality
testuser=baduser

#
if [SUSER != Stestuser]
then
echo "This is not Stestuser"
else
echo "Welcome S$testuser"
fi

309

Part 1l: Shell Scripting Basics

310

$
$./test8.sh
This is not baduser

$

Keep in mind that the test comparison takes all punctuation and capitalization into
account when comparing strings for equality.

Looking at string order

Trying to determine if one string is less than or greater than another is where things
start getting tricky. Two problems often plague shell programmers when trying to use the
greater-than or less-than features of test conditions:

B The greater-than and less-than symbols must be escaped, or the shell uses them
as redirection symbols, with the string values as filenames.

® The greater-than and less-than order is not the same as that used with the
sort command.

The first item can result in a huge problem that often goes undetected when program-
ming your scripts. Here’s an example of what sometimes happens to novice shell script
programmers:

S cat badtest.sh

#!/bin/bash

mis-using string comparisons
#

vall=baseball

val2=hockey

#
if [$vall > $val2]
then
echo "$vall is greater than $val2"
else
echo "$vall is less than S$val2"
fi
$

$./badtest.sh

baseball is greater than hockey

S 1ls -1 hockey

-YW-r--r-- 1 rich rich 0 Sep 30 19:08 hockey
$

By just using the greater-than symbol itself in the script, no errors are generated, but the
results are wrong. The script interpreted the greater-than symbol as an output redirection
(see Chapter 15). Thus, it created a file called hockey. Because the redirection completed
successfully, the test condition returns a zero exit status code, which the if statement
evaluates as though things completed successfully!

Chapter 12: Using Structured Commands

To fix this problem, you need to properly escape the greater-than symbol:

$ cat test9.sh

#!/bin/bash

mis-using string comparisons
#

vall=baseball

val2=hockey

#
if [$vall \»> $val2]
then

echo "$vall is greater than S$val2"
else

echo "$vall is less than S$val2"

fi
$

$./test9.sh
baseball is less than hockey
$

Now that answer is more along the lines of what you would expect from the string
comparison.

The second issue is a little more subtle, and you may not even run across it unless you are
working with uppercase and lowercase letters. The sort command handles uppercase let-
ters opposite to the way the test conditions consider them:

$ cat test9b.sh

#!/bin/bash

testing string sort order
vall=Testing

val2=testing

#
if [$vall \> S$val2]
then
echo "$vall is greater than Sval2"
else
echo "$vall is less than S$val2"
fi
$

$./test9b.sh
Testing is less than testing

$

$ sort testfile
testing

Testing

$

311

Part 1l: Shell Scripting Basics

Capitalized letters are treated as less than lowercase letters in test comparisons. However, the
sort command does the opposite. When you put the same strings in a file and use the sort
command, the lowercase letters appear first. This is due to different ordering techniques.

Test comparisons use standard ASCII ordering, using each character’s ASCII numeric value
to determine the sort order. The sort command uses the sorting order defined for the
system locale language settings. For the English language, the locale settings specify that
lowercase letters appear before uppercase letters in sorted order.

NoTE
The test command and test expressions use the standard mathematical comparison symbols for string compari-

sons and text codes for numerical comparisons. This is a subtle feature that many programmers manage to get
reversed. If you use the mathematical comparison symbols for numeric values, the shell interprets them as string
values and may not produce the correct results.

Looking at string size
The -n and -z comparisons are handy when trying to evaluate whether a variable

contains data:

$ cat testl0.sh
#!/bin/bash

testing string length
vall=testing

val2=""

#

if [-n

then
echo

else
echo

fi

#

if [-z

then
echo

else
echo

fi

#

if [-z

then
echo

else
echo

fi

312

Svall]
"The string

"The string

Sval2]
"The string

"The string

Sval3]
"The string

"The string

'Svall!'

'Svall!

'Sval2!'

'Sval2!'

'sval3!

'Sval3!’

is

not empty"

empty"

empty"

not empty"

empty"

not empty"

Chapter 12: Using Structured Commands

$
$./testl0.sh
The string 'testing' is not empty

The string '' is empty
The string '' is empty
$

This example creates two string variables. The vall variable contains a string, and the
val2 variable is created as an empty string. The following comparisons are made as shown
below:

if [-n $vall]

The preceding code determines whether the vall variable is non-zero in length, which it is,
so its then section is processed.

if [-z $var2]

This preceding code determines whether the val2 variable is zero in length, which it is, so
its then section is processed.

if [-z S$val3d]

The preceding determines whether the val3 variable is zero in length. This variable was
never defined in the shell script, so it indicates that the string length is still zero, even
though it wasn't defined.

Tip

Empty and uninitialized variables can have catastrophic effects on your shell script tests. If you're not sure of the

contents of a variable, it's always best to test if the variable contains a value using -n or -z before using it in a
numeric or string comparison.

Using file comparisons

The last category of test comparisons is quite possibly the most powerful and most used
comparisons in shell scripting. This category allows you to test the status of files and direc-
tories on the Linux filesystem. Table 12-3 lists these comparisons.

TABLE 12-3 The test File Comparisons

Comparison Description

-d file Checks if £ile exists and is a directory
-e file Checks if file exists

-f file Checks if file exists and is a file

Continues

313

Part 1l: Shell Scripting Basics

TABLE 12.3 (continued)

Comparison Description

-r file Checks if file exists and is readable

-s file Checks if £ile exists and is not empty

-w file Checks if £ile exists and is writable

-x file Checks if £ile exists and is executable

-0 file Checks if £ile exists and is owned by the current user

-G file Checks if file exists and the default group is the same as the
current user

filel -nt file2 Checks if filel is newer than file2

filel -ot file2 Checks if filel is older than file2

These conditions give you the ability to check filesystem files within shell scripts. They are
often used in scripts that access files. Because theyre used so often, let’s look at each of
these individually.

Checking directories

The -4 test checks to see if a specified directory exists on the system. This is usually a
good thing to do if you're trying to write a file to a directory or before you try to change to
a directory location:

S cat testll.sh
#!/bin/bash
Look before you leap

#
jump_directory=/home/arthur
#
if [-d $jump directory]
then
echo "The $jump directory directory exists"
cd $jump directory
1s
else
echo "The $jump directory directory does not exist"
fi
#
$

$./testll.sh
The /home/arthur directory does not exist

$

The -d test condition checks to see if the jump _directory variable’s directory exists. If
it does, it proceeds to use the cd command to change to the current directory and performs
a directory listing. If it does not, the script emits a warning message and exits the script.

314

Chapter 12: Using Structured Commands

Checking whether an object exists

The -e comparison allows you to check if either a file or directory object exists before you
attempt to use it in your script:

S cat testl2.sh
#!/bin/bash
Check if either a directory or file exists
#
location=$HOME
file_name="sentinel"
#
if [-e $location]
then #Directory does exist
echo "OK on the $location directory."
echo "Now checking on the file, $file name."
#
if [-e $Slocation/$file name]
then #File does exist
echo "OK on the filename"
echo "Updating Current Date..."
date >> $location/$file name

#
else #File does not exist
echo "File does not exist"
echo "Nothing to update™"
fi
#
else #Directory does not exist
echo "The $location directory does not exist."
echo "Nothing to update™"
fi
#
$
$./testl2.sh
OK on the /home/Christine directory.
Now checking on the file, sentinel.
File does not exist
Nothing to update
$
$ touch sentinel
$
$./testl2.sh
OK on the /home/Christine directory.
Now checking on the file, sentinel.
OK on the filename
Updating Current Date...
$

315

Part 1l: Shell Scripting Basics

316

The first check uses the -e comparison to determine whether the user has a $HOME direc-
tory. If so, the next -e comparison checks to determine whether the sentinel file exists
in the $HOME directory. If the file doesn't exist, the shell script notes that the file is miss-
ing and that there is nothing to update.

To ensure that the update will work, the sentinel file was created and the shell script
was run a second time. This time when the conditions are tested, both the $SHOME and the
sentinel file are found, and the current date and time is appended to the file.

Checking for a file

The -e comparison works for both files and directories. To be sure that the object specified
is a file and not a directory, you must use the -f comparison:

S cat testl3.sh
#!/bin/bash
Check if either a directory or file exists
#
item name=$HOME
echo
echo "The item being checked: $item name"
echo
#
if [-e $item name]
then #Item does exist
echo "The item, $item name, does exist."
echo "But is it a file?"
echo
#
if [-f $item name]
then #Item is a file
echo "Yes, $item name is a file."
#
else #Item is not a file
echo "No, $item name is not a file."
fi
#
else #Item does not exist
echo "The item, $item name, does not exist."
echo "Nothing to update™"
fi
#
$./testl3.sh

The item being checked: /home/Christine

The item, /home/Christine, does exist.
But is it a file?

No, /home/Christine is not a file.

$

Chapter 12: Using Structured Commands

This little script does lots of checking! First, it uses the -e comparison to test whether
SHOME exists. If it does, it uses - £ to test whether it’s a file. If it isn't a file (which of
course it isn't), a message is displayed stating that it is not a file.

A slight modification to the variable, item name, replacing the directory SHOME with a
file, SHOME/sentinel, causes a different outcome:

S nano testl3.sh

$

$ cat testl3.sh

#!/bin/bash

Check if either a directory or file exists
#

item name=$HOME/sentinel

[...]

$
$./testl3.sh

The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.

$

The test13.sh script listing is snipped, because the only item changed in the shell script
was the item name variable’s value. Now when the script is run, the -£f test on SHOME/
sentinel exits with a zero status, triggering the then statement, which in turn outputs
the message Yes, /home/Christine/sentinel is a file.

Checking for read access

Before trying to read data from a file, it’s usually a good idea to test whether you can read
from the file first. You do this with the -r comparison:

$ cat testl4.sh
#!/bin/bash
testing if you can read a file
pwfile=/etc/shadow
#
first, test if the file exists, and is a file
if [-f Spwfile]
then
now test if you can read it
if [-r spwfile]

317

Part 1l: Shell Scripting Basics

318

then
tail spwfile
else
echo "Sorry, I am unable to read the Spwfile file"
fi
else
echo "Sorry, the file $file does not exist"
fi
$

$./testl4.sh
Sorry, I am unable to read the /etc/shadow file

$

The /etc/shadow file contains the encrypted passwords for system users, so it’s not read-
able by normal users on the system. The -r comparison determined that read access to the
file wasn't allowed, so the test command failed and the bash shell executed the else sec-
tion of the if-then statement.

Checking for empty files

You should use -s comparison to check whether a file is empty, especially if you don't want
to remove a non-empty file. Be careful because when the -s comparison succeeds, it indi-
cates that a file has data in it:

S cat testl5.sh
#!/bin/bash
Testing if a file is empty

#
file name=$HOME/sentinel
#
if [-f $file name]
then
if [-s s$file name]
then
echo "The $file name file exists and has data in it."
echo "Will not remove this file."
#
else
echo "The $file name file exists, but is empty."
echo "Deleting empty file..."
rm $file name
fi
else
echo "File, $file name, does not exist."
fi
#
$ 1ls -1 $HOME/sentinel
-rw-rw-r--. 1 Christine Christine 29 Jun 25 05:32 /home/Christine/sentinel

Chapter 12: Using Structured Commands

$

$./testl5.sh

The /home/Christine/sentinel file exists and has data in it.
Will not remove this file.

$

First, the - £ comparison tests whether the file exists. If it does exist, the -s comparison is trig-
gered to determine whether the file is empty. An empty file will be deleted. You can see from
the 1s -1 that the sentinel file is not empty, and therefore the script does not delete it.

Checking whether you can write to a file

The -w comparison determines whether you have permission to write to a file. The
test16.sh script is simply an update of the test13. sh script. Now instead of just check-
ing whether the item name exists and is a file, the script also checks to see whether it has
permission to write to the file:

S cat testl6.sh
#!/bin/bash
Check if a file is writable.

#
item name=$HOME/sentinel
echo
echo "The item being checked: $item name"
echo
[...]
echo "Yes, $item name is a file."
echo "But is it writable?"
echo
#
if [-w $item name]
then #Item is writable
echo "Writing current time to $item name"
date +%H%M >> $item name
#
else #Item is not writable
echo "Unable to write to $item name"
fi
#
else #Item is not a file
echo "No, $item name is not a file."
fi
[...]
$
$ 1ls -1 sentinel
-rw-rw-r--. 1 Christine Christine 0 Jun 27 05:38 sentinel
$

319

Part 1l: Shell Scripting Basics

$./testl6.sh
The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.
But is it writable?

Writing current time to /home/Christine/sentinel

$
S cat sentinel
0543

$

The item name variable is set to $HOME/sentinel, and this file allows user write access
(see Chapter 7 for more information on file permissions). Thus, when the script is run, the
-w test expressions returns a non-zero exit status and the then code block is executed,
which writes a time stamp into the sentinel file.

When the sentinel file user’s write access is removed via chmod, the -w test expression
returns a non-zero status, and a time stamp is not written to the file:

S chmod u-w sentinel

$

$ 1ls -1 sentinel

-r--rw-r--. 1 Christine Christine 5 Jun 27 05:43 sentinel
$

$./testl6.sh
The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.
But is it writable?

Unable to write to /home/Christine/sentinel

$

The chmod command could be used again to grant the write permission back for the user.
This would make the write test expression return a zero exit status and allow a write
attempt to the file.

320

Chapter 12: Using Structured Commands

Checking whether you can run a file

The -x comparison is a handy way to determine whether you have execute permission for a
specific file. Although this may not be needed for most commands, if you run lots of scripts
from your shell scripts, it could be useful:

$ cat testl7.sh
#!/bin/bash
testing file execution

#
if [-x testl6.sh]
then
echo "You can run the script: "
./testl6.sh
else
echo "Sorry, you are unable to execute the script"
fi
$

$./testl7.sh

You can run the script:

[...]

$

$ chmod u-x testl6.sh

$

$./testl7.sh

Sorry, you are unable to execute the script

$

This example shell script uses the -x comparison to test whether you have permission to
execute the test16.sh script. If so, it runs the script. After successfully running the
test16.sh script the first time, the permissions were changed. This time, the -x compari-
son failed, because execute permission had been removed for the test16.sh script.

Checking ownership
The -0 comparison allows you to easily test whether you're the owner of a file:

S cat testl8.sh
#!/bin/bash
check file ownership

#
if [-0 /etc/passwd]
then
echo "You are the owner of the /etc/passwd file"
else
echo "Sorry, you are not the owner of the /etc/passwd file"
fi

321

Part 1l: Shell Scripting Basics

322

$
$./testl8.sh
Sorry, you are not the owner of the /etc/passwd file

$

The script uses the -0 comparison to test whether the user running the script is the owner
of the /etc/passwd file. The script is run under a normal user account, so the test fails.

Checking default group membership

The -G comparison checks the default group of a file, and it succeeds if it matches the
group of the default group for the user. This can be somewhat confusing because the
-G comparison checks the default groups only and not all the groups to which the user
belongs. Here’s an example of this:

$ cat testl9.sh
#!/bin/bash
check file group test

#
if [-G $HOME/testing]
then

echo "You are in the same group as the file"
else

echo "The file is not owned by your group"
fi
$

$ 1ls -1 $HOME/testing

-rw-rw-r-- 1 rich rich 58 2014-07-30 15:51 /home/rich/testing
$

$./testl9.sh

You are in the same group as the file

$

$ chgrp sharing $HOME/testing

$

$./testl9

The file is not owned by your group
$

The first time the script is run, the $SHOME/testing file is in the rich group, and the -G
comparison succeeds. Next, the group is changed to the sharing group, of which the user
is also a member. However, the -G comparison failed, because it compares only the default
groups, not any additional group memberships.

Checking file date

The last set of comparisons deal with comparing the creation times of two files. This comes
in handy when writing scripts to install software. Sometimes, you don't want to install a
file that is older than a file already installed on the system.

Chapter 12: Using Structured Commands

The -nt comparison determines whether a file is newer than another file. If a file is newer,
it has a more recent file creation time. The -ot comparison determines whether a file is
older than another file. If the file is older, it has an older file creation time:

$ cat test20.sh
#!/bin/bash
testing file dates

#
if [testl9.sh -nt testl8.sh]
then

echo "The testl9 file is newer than testl18"
else

echo "The testl8 file is newer than testl9"
fi
if [testl7.sh -ot testl9.sh]
then

echo "The testl7 file is older than the testl9 file"

fi
$

$./test20.sh

The testl9 file is newer than testl8

The testl7 file is older than the testl9 file

$

S 1ls -1 testl7.sh testl8.sh testl9.sh

-rwxrw-r-- 1 rich rich 167 2014-07-30 16:31 testl7.sh
-rwxrw-r-- 1 rich rich 185 2014-07-30 17:46 testl8.sh
-rwxrw-r-- 1 rich rich 167 2014-07-30 17:50 testl9.sh
$

The file paths used in the comparisons are relative to the directory from which you run the
script. This can cause problems if the files being checked are moved around. Another prob-
lem is that neither of these comparisons checks whether the file exists first. Try this test:

$ cat test2l.sh
#!/bin/bash
testing file dates

#
if [badfilel -nt badfile2]
then

echo "The badfilel file is newer than badfile2"
else

echo "The badfile2 file is newer than badfilel"
fi
$

$./test2l.sh
The badfile2 file is newer than badfilel

$

323

Part 1l: Shell Scripting Basics

This little example demonstrates that if the files don't exist, the -nt comparison just
returns a failed condition. It's imperative to ensure that the files exist before trying to use
them in the -nt or -ot comparison.

Considering Compound Testing

The if-then statement allows you to use Boolean logic to combine tests. You can use
these two Boolean operators:

B [conditionl] && [condition2]

B [conditionl] || [condition2]

The first Boolean operation uses the AND Boolean operator to combine two conditions. Both
conditions must be met for the then section to execute.

Tip

Boolean logic is a method that reduces the potential returned values to be either TRUE or FALSE.

The second Boolean operation uses the OR Boolean operator to combine two conditions. If
either condition evaluates to a TRUE condition, the then section is executed.

The following shows the AND Boolean operator in use:
S cat test22.sh

#!/bin/bash
testing compound comparisons

#
if [-d SHOME] && [-w SHOME/testing]
then
echo "The file exists and you can write to it"
else
echo "I cannot write to the file"
fi
$
$./test22.sh
I cannot write to the file
$
$ touch $HOME/testing
$
$./test22.sh
The file exists and you can write to it
$

Using the AND Boolean operator, both of the comparisons must be met. The first comparison
checks to see if the SHOME directory exists for the user. The second comparison checks to

324

Chapter 12: Using Structured Commands

see if there’s a file called testing in the user’s SHOME directory, and if the user has write
permissions for the file. If either of these comparisons fails, the if statement fails and the
shell executes the else section. If both of the comparisons succeed, the if statement suc-
ceeds, and the shell executes the then section.

Working with Advanced if-then Features

Two additions to the bash shell provide advanced features that you can use in if-then
statements:

® Double parentheses for mathematical expressions

® Double square brackets for advanced string handling functions

The following sections describe each of these features in more detail.

Using double parentheses

The double parentheses command allows you to incorporate advanced mathematical formulas
in your comparisons. The test command allows for only simple arithmetic operations in
the comparison. The double parentheses command provides more mathematical symbols,
which programmers who have used other programming languages may be familiar with
using. Here’s the format of the double parentheses command:

((expression))

The expression term can be any mathematical assignment or comparison expression. Besides
the standard mathematical operators that the test command uses, Table 12-4 shows the
list of additional operators available for use in the double parentheses command.

TABLE 12-4 The Double Parentheses Command Symbols

Symbol Description
val++ Post-increment
val-- Post-decrement
++val Pre-increment
--val Pre-decrement

! Logical negation
~ Bitwise negation

** Exponentiation

Continues

325

Part 1l: Shell Scripting Basics

TABLE 12.4 (continued)

Symbol Description

<< Left bitwise shift

>> Right bitwise shift

& Bitwise Boolean AND
| Bitwise Boolean OR
&& Logical AND

|| Logical OR

You can use the double parentheses command in an if statement, as well as in a normal
command in the script for assigning values:

S cat test23.sh
#!/bin/bash
using double parenthesis

#
vall=10
#
if (($vall ** 2 > 90))
then
((val2 = $Svall ** 2))
echo "The square of $vall is S$val2"
fi
$

$./test23.sh
The square of 10 is 100
$

Notice that you don't need to escape the greater-than symbol in the expression within the dou-
ble parentheses. This is yet another advanced feature besides the double parentheses command.

Using double brackets

The double bracket command provides advanced features for string comparisons. Here's the
double bracket command format:

[[expression]]

The double bracketed expression uses the standard string comparison used in the test

evaluations. However, it provides an additional feature that the test evaluations dont —
pattern matching.

NoTE

Double brackets work fine in the bash shell. Be aware, however, that not all shells support double brackets.

326

Chapter 12: Using Structured Commands

In pattern matching, you can define a reqular expression (discussed in detail in Chapter 20)
that’s matched against the string value:

$ cat test24.sh
#!/bin/bash
using pattern matching

#
if [[SUSER == r*]]
then
echo "Hello SUSER"
else
echo "Sorry, I do not know you"
fi
$

$./test24.sh
Hello rich
$

Notice in the preceding script that double equal signs (==) are used. These double equal
signs designate the string to the right (r*) as a pattern, and pattern matching rules are
applied. The double bracket command matches the SUSER environment variable to see
whether it starts with the letter r. If so, the comparison succeeds, and the shell executes
the then section commands.

Considering the case Command

Often, you'll find yourself trying to evaluate a variable’s value, looking for a specific value
within a set of possible values. In this scenario, you end up having to write a lengthy
if-then-else statement, like this:

S cat test25.sh
#!/bin/bash
looking for a possible value
#
if [SUSER = "rich"]
then
echo "Welcome SUSER"
echo "Please enjoy your visit"
elif [SUSER = "barbara"]
then
echo "Welcome SUSER"
echo "Please enjoy your visit"
elif [SUSER = "testing"]

then
echo "Special testing account"
elif [SUSER = "jessica"]

327

Part 1l: Shell Scripting Basics

328

then
echo "Do not forget to logout when you're done"
else
echo "Sorry, you are not allowed here"
fi
$

$./test25.sh
Welcome rich
Please enjoy your visit

$

The elif statements continue the if-then checking, looking for a specific value for the
single comparison variable.

Instead of having to write all the elif statements to continue checking the same variable
value, you can use the case command. The case command checks multiple values of a
single variable in a list-oriented format:

case variable in

patternl | pattern2) commandsl;;
pattern3) commands2;;

*) default commands; ;

esac

The case command compares the variable specified against the different patterns. If the
variable matches the pattern, the shell executes the commands specified for the pattern.
You can list more than one pattern on a line, using the bar operator to separate each pat-
tern. The asterisk symbol is the catch-all for values that don't match any of the listed
patterns. Here's an example of converting the if-then-else program to using the case
command:

$ cat test26.sh
#!/bin/bash
using the case command
#
case SUSER in
rich | barbara)

echo "Welcome, SUSER"

echo "Please enjoy your visit'";;
testing)

echo "Special testing account';;

jessica)

echo "Do not forget to log off when you're done'";;
*)

echo "Sorry, you are not allowed here";;
esac
$
$./test26.sh

Chapter 12: Using Structured Commands

Welcome, rich
Please enjoy your visit

$

The case command provides a much cleaner way of specifying the various options for each
possible variable value.

Summary

Structured commands allow you to alter the normal flow of shell script execution. The most
basic structured command is the if-then statement. This statement provides a command
evaluation and performs other commands based on the evaluated command’s output.

You can expand the if-then statement to include a set of commands the bash shell exe-
cutes if the specified command fails as well. The if-then-else statement executes com-
mands only if the command being evaluated returns a non-zero exit status code.

You can also link if-then-else statements together, using the elif statement. The
elif is equivalent to using an else if statement, providing for additional checking of
whether the original command that was evaluated failed.

In most scripts, instead of evaluating a command, you'll want to evaluate a condition, such
as a numeric value, the contents of a string, or the status of a file or directory. The test
command provides an easy way for you to evaluate all these conditions. If the condition
evaluates to a TRUE condition, the test command produces a zero exit status code for the
if-then statement. If the condition evaluates to a FALSE condition, the test command
produces a non-zero exit status code for the if-then statement.

The square bracket is a special bash command that is a synonym for the test command.
You can enclose a test condition in square brackets in the if-then statement to test for
numeric, string, and file conditions.

The double parentheses command provides advanced mathematical evaluations using
additional operators. The double square bracket command allows you to perform advanced
string pattern-matching evaluations.

Finally, the chapter discussed the case command, which is a shorthand way of performing
multiple if-then-else commands, checking the value of a single variable against a list of
values.

The next chapter continues the discussion of structured commands by examining the shell
looping commands. The for and while commands let you create loops that iterate through
commands for a given period of time.

329

CHAPTER

More Structured Commands

IN THIS CHAPTER

Looping with the for statement
Iterating with the until statement
Using the while statement
Combining loops

Redirecting loop output

ing the output of commands and the values of variables. In this chapter, we continue to look at

structured commands that control the flow of your shell scripts. You'll see how you can perform
repeating processes, commands that can loop through a set of commands until an indicated condi-
tion has been met. This chapter discusses and demonstrates the for, while, and until bash shell
looping commands.

In the previous chapter, you saw how to manipulate the flow of a shell script program by check-

The for Command

Iterating through a series of commands is a common programming practice. Often, you need to
repeat a set of commands until a specific condition has been met, such as processing all the files in
a directory, all the users on a system, or all the lines in a text file.

The bash shell provides the for command to allow you to create a loop that iterates through a
series of values. Each iteration performs a defined set of commands using one of the values in the
series. Here’s the basic format of the bash shell for command:

for var in 1list
do

commands
done

You supply the series of values used in the iterations in the list parameter. You can specify the val-
ues in the list in several ways.

331

Part 1l: Shell Scripting Basics

In each iteration, the variable var contains the current value in the list. The first iteration
uses the first item in the list, the second iteration the second item, and so on until all the
items in the list have been used.

The commands entered between the do and done statements can be one or more standard
bash shell commands. Within the commands, the $var variable contains the current list
item value for the iteration.

NoTE

If you prefer, you can include the do statement on the same line as the for statement, but you must separate it
from the list items using a semicolon: for var in list; do.

We mentioned that there are several different ways to specify the values in the list. The
following sections show the various ways to do that.

Reading values in a list

The most basic use of the for command is to iterate through a list of values defined within
the for command itself:

$ cat testl
#!/bin/bash
basic for command

for test in Alabama Alaska Arizona Arkansas California Colorado
do
echo The next state is S$test
done
$./testl
The next state is Alabama
The next state is Alaska
The next state is Arizona
The next state is Arkansas
The next state is California
The next state is Colorado

$

Each time the for command iterates through the list of values provided, it assigns the
$test variable the next value in the list. The $test variable can be used just like any
other script variable within the for command statements. After the last iteration, the
$test variable remains valid throughout the remainder of the shell script. It retains the
last iteration value (unless you change its value):

S cat testilb
#!/bin/bash

332

Chapter 13: More Structured Commands

testing the for variable after the looping

for test in Alabama Alaska Arizona Arkansas California Colorado
do
echo "The next state is Stest"
done
echo "The last state we visited was S$Stest"
test=Connecticut
echo "Wait, now we're visiting Stest"
$./testlb
The next state is Alabama
The next state is Alaska
The next state is Arizona
The next state is Arkansas
The next state is California
The next state is Colorado
The last state we visited was Colorado
Wait, now we're visiting Connecticut

$

The $test variable retained its value and allowed us to change the value and use it outside
of the for command loop, as any other variable would.

Reading complex values in a list

Things aren't always as easy as they seem with the for loop. There are times when you
run into data that causes problems. Here’s a classic example of what can cause problems for
shell script programmers:

$ cat badtestl
#!/bin/bash
another example of how not to use the for command

for test in I don't know if this'll work

do
echo "word:S$Stest"
done
$./badtestl
word: I

word:dont know if thisll
word:work

$

Ouch, that hurts. The shell saw the single quotation marks within the list values and
attempted to use them to define a single data value, and it really messed things up in the
process.

333

Part 1l: Shell Scripting Basics

334

You have two ways to solve this problem:

B Use the escape character (the backslash) to escape the single quotation mark.

m Use double quotation marks to define the values that use single quotation marks.
Neither solution is all that fantastic, but each one helps solve the problem:

$ cat test2
#!/bin/bash
another example of how not to use the for command

for test in I don\'t know if "this'll" work
do
echo "word:Stest"
done
$./test2
word:I
word:don't
word: know
word:if
word:this'1ll
word:work

$

In the first problem value, you added the backslash character to escape the single quotation
mark in the don't value. In the second problem value, you enclosed the this'11 value in
double quotation marks. Both methods worked fine to distinguish the value.

Another problem you may run into is multi-word values. Remember that the for loop
assumes that each value is separated with a space. If you have data values that contain
spaces, you run into yet another problem:

$ cat badtest2
#!/bin/bash
another example of how not to use the for command

for test in Nevada New Hampshire New Mexico New York North Carolina
do
echo "Now going to Stest"
done
$./badtestl
Now going to Nevada
Now going to New
Now going to Hampshire
Now going to New
Now going to Mexico
Now going to New
Now going to York

Chapter 13: More Structured Commands

Now going to North
Now going to Carolina

$

Oops, that's not exactly what we wanted. The for command separates each value in the list
with a space. If there are spaces in the individual data values, you must accommodate them
using double quotation marks:

$ cat test3
#!/bin/bash
an example of how to properly define values

for test in Nevada "New Hampshire" "New Mexico" "New York"
do
echo "Now going to S$test"
done
$./test3
Now going to Nevada
Now going to New Hampshire
Now going to New Mexico
Now going to New York

$

Now the for command can properly distinguish between the different values. Also, notice
that when you use double quotation marks around a value, the shell doesn’t include the
quotation marks as part of the value.

Reading a list from a variable

Often what happens in a shell script is that you accumulate a list of values stored in a vari-
able and then need to iterate through the list. You can do this using the for command as
well:

S cat test4
#!/bin/bash
using a variable to hold the list

list="Alabama Alaska Arizona Arkansas Colorado"
list=$1list" Connecticut"

for state in $list
do
echo "Have you ever visited $state?"
done
$./test4
Have you ever visited Alabama?
Have you ever visited Alaska?
Have you ever visited Arizona?

335

Part 1l: Shell Scripting Basics

336

Have you ever visited Arkansas?
Have you ever visited Colorado?
Have you ever visited Connecticut?

$

The $1ist variable contains the standard text list of values to use for the iterations.
Notice that the code also uses another assignment statement to add (or concatenate) an
item to the existing list contained in the $1ist variable. This is a common method for
adding text to the end of an existing text string stored in a variable.

Reading values from a command

Another way to generate values for use in the list is to use the output of a command. You
use command substitution to execute any command that produces output and then use the
output of the command in the for command:

S cat testbs
#!/bin/bash
reading values from a file

file="states"

for state in $(cat $file)
do

echo "Visit beautiful S$state"
done
$ cat states
Alabama
Alaska
Arizona
Arkansas
Colorado
Connecticut
Delaware
Florida
Georgia
$./tests
Visit beautiful Alabama
Visit beautiful Alaska
Visit beautiful Arizona
Visit beautiful Arkansas
Visit beautiful Colorado
Visit beautiful Connecticut
Visit beautiful Delaware
Visit beautiful Florida
Visit beautiful Georgia

$

Chapter 13: More Structured Commands

This example uses the cat command in the command substitution to display the contents
of the file states. Notice that the states file includes each state on a separate line, not sepa-
rated by spaces. The for command still iterates through the output of the cat command
one line at a time, assuming that each state is on a separate line. However, this doesn't
solve the problem of having spaces in data. If you list a state with a space in it, the for
command still takes each word as a separate value. There’s a reason for this, which we look
at in the next section.

NoTE
The test5 code example assigned the filename to the variable using just the filename without a path. This requires

that the file be in the same directory as the script. If this isn’t the case, you need to use a full pathname (either abso-
lute or relative) to reference the file location.

Changing the field separator

The cause of this problem is the special environment variable IFS, called the internal field
separator. The IES environment variable defines a list of characters the bash shell uses

as field separators. By default, the bash shell considers the following characters as field
separators:

m A space
m Atab

B A newline

If the bash shell sees any of these characters in the data, it assumes that you're starting
a new data field in the list. When working with data that can contain spaces (such as file-
names), this can be annoying, as you saw in the previous script example.

To solve this problem, you can temporarily change the IFS environment variable values in
your shell script to restrict the characters the bash shell recognizes as field separators. For
example, if you want to change the IFS value to recognize only the newline character, you
need to do this:

IFS=$'\n'

Adding this statement to your script tells the bash shell to ignore spaces and tabs in data
values. Applying this technique to the previous script yields the following:

S cat testb5b
#!/bin/bash
reading values from a file

file="states"

IFS=s'\n'

337

Part 1l: Shell Scripting Basics

for state in $(cat S$file)

do

echo "Visit beautiful S$state"
done
$./tests5b

Visit beautiful Alabama

Visit beautiful Alaska

Visit beautiful Arizona

Visit beautiful Arkansas
Visit beautiful Colorado
Visit beautiful Connecticut
Visit beautiful Delaware
Visit beautiful Florida

Visit beautiful Georgia

Visit beautiful New York
Visit beautiful New Hampshire
Visit beautiful North Carolina

$

Now the shell script can use values in the list that contain spaces.

CAUTION

When working on long scripts, it's possible to change the IFS value in one place, and then forget about it and assume
the default value elsewhere in the script. A safe practice to get into is to save the original IFS value before changing
it and then restore it when you're finished.

This technique can be coded like this:

IFS.OLD=SIFS

IFS=$'\n"

<use the new IFS value in code>
IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for future operations within the script.

Other excellent applications of the IFS environment variable are possible. Suppose you
want to iterate through values in a file that are separated by a colon (such as in the /etc/
passwd file). You just need to set the IFS value to a colon:

IFS=:

If you want to specify more than one IFS character, just string them together on the
assignment line:

IFS=$'\n':;"

This assignment uses the newline, colon, semicolon, and double quotation mark characters
as field separators. There’s no limit to how you can parse your data using the IFS characters.

338

Chapter 13: More Structured Commands

Reading a directory using wildcards

Finally, you can use the for command to automatically iterate through a directory of files.
To do this, you must use a wildcard character in the file or pathname. This forces the shell
to use file globbing. File globbing is the process of producing filenames or pathnames that
match a specified wildcard character.

This feature is great for processing files in a directory when you don't know all the
filenames:

S cat testé
#!/bin/bash
iterate through all the files in a directory

for file in /home/rich/test/*
do

if [-d "sfile"]
then

echo "$file is a directory"
elif [-f "S$file"]

then
echo "$file is a file"
fi
done
$./testé

/home/rich/test/dirl is a directory
/home/rich/test/myprog.c is a file
/home/rich/test/myprog is a file
/home/rich/test/myscript is a file
/home/rich/test/newdir is a directory
/home/rich/test/newfile is a file
/home/rich/test/newfile2 is a file
/home/rich/test/testdir is a directory
/home/rich/test/testing is a file
/home/rich/test/testprog is a file
/home/rich/test/testprog.c is a file
$

The for command iterates through the results of the /home/rich/test/* listing.
The code tests each entry using the test command (using the square bracket method)
to see if it’s a directory, using the -d parameter, or a file, using the - £ parameter (See
Chapter 12).

Notice in this example that we did something different in the if statement tests:

if [-d "$filen]

339

Part 1l: Shell Scripting Basics

In Linug, it’s perfectly legal to have directory and filenames that contain spaces. To accom-
modate that, you should enclose the $file variable in double quotation marks. If you
don't, you'll get an error if you run into a directory or filename that contains spaces:

./test6: line 6: [: too many arguments
./test6: line 9: [: too many arguments

The bash shell interprets the additional words as arguments within the test command,
causing an error.

You can also combine both the directory search method and the list method in the same
for statement by listing a series of directory wildcards in the for command:

$ cat test?7
#!/bin/bash
iterating through multiple directories

for file in /home/rich/.b* /home/rich/badtest
do
if [-d "sfile"]
then
echo "$file is a directory"
elif [-f "$file"]

then
echo "$file is a file"
else
echo "$file doesn't exist"
fi
done
$./test?7

/home/rich/.backup.timestamp is a file
/home/rich/.bash history is a file
/home/rich/.bash logout is a file
/home/rich/.bash profile is a file
/home/rich/.bashrc is a file
/home/rich/badtest doesn't exist

$

The for statement first uses file globbing to iterate through the list of files that result from
the wildcard character; then it iterates through the next file in the list. You can combine
any number of wildcard entries in the list to iterate through.

CAUTION
Notice that you can enter anything in the list data. Even if the file or directory doesn't exist, the for statement

attempts to process whatever you place in the list. This can be a problem when working with files and directories. You
have no way of knowing if you're trying to iterate through a nonexistent directory: It’s always a good idea to test each
file or directory before trying to process it.

340

Chapter 13: More Structured Commands

The C-Style for Command

If you've done any programming using the C programming language, you're probably sur-
prised by the way the bash shell uses the for command. In the C language, a for loop nor-
mally defines a variable, which it then alters automatically during each iteration. Typically,
programmers use this variable as a counter and either increment or decrement the counter
by one in each iteration. The bash for command can also provide this functionality. This
section shows you how to use a C-style for command in a bash shell script.

The C language for command

The C language for command has a specific method for specifying a variable, a condition
that must remain true for the iterations to continue, and a method for altering the variable
for each iteration. When the specified condition becomes false, the for loop stops. The con-
dition equation is defined using standard mathematical symbols. For example, consider the
following C language code:

for (i = 0; 1 < 10; 1i++)

{
}

This code produces a simple iteration loop, where the variable i is used as a counter. The
first section assigns a default value to the variable. The middle section defines the condi-
tion under which the loop will iterate. When the defined condition becomes false, the for
loop stops iterations. The last section defines the iteration process. After each iteration,
the expression defined in the last section is executed. In this example, the i variable is
incremented by one after each iteration.

printf ("The next number is %d\n", 1i);

The bash shell also supports a version of the for loop that looks similar to the C-style for
loop, although it does have some subtle differences, including a couple of things that will
confuse shell script programmers. Here's the basic format of the C-style bash for loop:

for ((variable assignment ; condition ; iteration process))

The format of the C-style for loop can be confusing for bash shell script programmers,
because it uses C-style variable references instead of the shell-style variable references.
Here’s what a C-style for command looks like:

for (((a =1; a < 10; a++))

Notice that there are a couple of things that don't follow the standard bash shell for
method:

B The assignment of the variable value can contain spaces.
B The variable in the condition isn't preceded with a dollar sign.

B The equation for the iteration process doesn't use the expr command format.

341

Part 1l: Shell Scripting Basics

342

The shell developers created this format to more closely resemble the C-style for command.
Although this is great for C programmers, it can throw even expert shell programmers into a
tizzy. Be careful when using the C-style for loop in your scripts.

Here’s an example of using the C-style for command in a bash shell program:

S cat tests8
#!/bin/bash
testing the C-style for loop

for ((i=1; 1 <= 10; i++))
do

echo "The next number is $i"
done
$./tests
The next number is
The next number is
The next number is
The next number is
The next number is
The next number is
The next number is
The next number is
The next number is
The next number is

$

P W oo 30 Ul WN

The for loop iterates through the commands using the variable defined in the for loop
(the letter 7 in this example). In each iteration, the $i variable contains the value assigned
in the for loop. After each iteration, the loop iteration process is applied to the variable,
which in this example, increments the variable by one.

Using multiple variables

The C-style for command also allows you to use multiple variables for the iteration. The
loop handles each variable separately, allowing you to define a different iteration process
for each variable. Although you can have multiple variables, you can define only one condi-
tion in the for loop:

$ cat test?
#!/bin/bash
multiple variables

for ((a=1, b=10; a <= 10; a++, b--))
do
echo "$a - Sb"
done
$./test9

Chapter 13: More Structured Commands

1 - 10
2 -9
3 -8
4 -7
5 -6
6 - 5
7 - 4
8 - 3
9 - 2
10 - 1
$

The a and b variables are each initialized with different values, and different iteration pro-
cesses are defined. While the loop increases the a variable, it decreases the b variable for
each iteration.

The while Command

The while command is somewhat of a cross between the if-then statement and the for
loop. The while command allows you to define a command to test and then loop through a
set of commands for as long as the defined test command returns a zero exit status. It tests
the test command at the start of each iteration. When the test command returns a non-
zero exit status, the while command stops executing the set of commands.

Basic while format

Here’s fhe format of the while command:

while test command
do

other commands
done

The test command defined in the while command is the exact same format asin if-then
statements (see Chapter 12). As in the if-then statement, you can use any normal bash shell
command, or you can use the test command to test for conditions, such as variable values.

The key to the while command is that the exit status of the test command specified
must change, based on the commands run during the loop. If the exit status never changes,
the while loop will get stuck in an infinite loop.

The most common use of the test command is to use brackets to check a value of a shell
variable that’s used in the loop commands:

S cat testlo
#!/bin/bash

343

Part 1l: Shell Scripting Basics

while command test

varl=10
while [$varl -gt 0]
do

echo $varl

varl=$[Svarl - 1]
done
$./testlo
10

N}

RN W U0y

The while command defines the test condition to check for each iteration:

while [S$varl -gt 0]

As long as the test condition is true, the while command continues to loop through the
commands defined. Within the commands, the variable used in the test condition must
be modified, or you'll have an infinite loop. In this example, we use shell arithmetic to
decrease the variable value by one:

varl=$[$varl - 1]

The while loop stops when the test condition is no longer true.

Using multiple test commands

The while command allows you to define multiple test commands on the while statement
line. Only the exit status of the last test command is used to determine when the loop
stops. This can cause some interesting results if you're not careful. Here’s an example of
what we mean:

$ cat testll
#!/bin/bash
testing a multicommand while loop

varl=10

while echo S$Svarl

344

Chapter 13: More Structured Commands

[Svarl -ge 0]

do

echo "This is inside the loop"

varl=$[$varl - 1]
done
$./testll
10
This is inside the loop
9
This is inside the loop
8
This is inside the loop
7
This is inside the loop
6
This is inside the loop
5
This is inside the loop
4
This is inside the loop
3
This is inside the loop
2
This is inside the loop
1
This is inside the loop
0
This is inside the loop
-1
$

Pay close attention to what happened in this example. Two test commands were defined in
the while statement:

while echo S$Svarl
[$Svarl -ge 0]

The first test simply displays the current value of the varl variable. The second test uses
brackets to determine the value of the varl variable. Inside the loop, an echo statement
displays a simple message, indicating that the loop was processed. Notice when you run the
example how the output ends:

This is inside the loop

-1
$

The while loop executed the echo statement when the varl variable was equal to zero
and then decreased the var1l variable value. Next, the test commands were executed for

345

Part 1l: Shell Scripting Basics

346

the next iteration. The echo test command was executed, displaying the value of the varl
variable, which is now less than zero. It's not until the shell executes the test test com-
mand that the while loop terminates.

This demonstrates that in a multi-command while statement, all the test commands are
executed in each iteration, including the last iteration when the last test command fails.
Be careful of this. Another thing to be careful of is how you specify the multiple test com-
mands. Note that each test command is on a separate line!

The until Command

The until command works in exactly the opposite way from the while command. The
until command requires that you specify a test command that normally produces a non-
zero exit status. As long as the exit status of the test command is non-zero, the bash shell
executes the commands listed in the loop. When the test command returns a zero exit sta-
tus, the loop stops.

As you would expect, the format of the until command is:

until test commands
do

other commands
done

Similar to the while command, you can have more than one test command in the until
command statement. Only the exit status of the last command determines if the bash shell
executes the other commands defined.

The following is an example of using the until command:

S cat testl2
#!/bin/bash
using the until command

varl=100

until [Svarl -eq 0]
do
echo $varl
varl=$[Svarl - 25]
done
$./testl2
100
75
50
25
$

Chapter 13: More Structured Commands

This example tests the varl variable to determine when the until loop should stop. As
soon as the value of the variable is equal to zero, the until command stops the loop. The
same caution as for the while command applies when you use multiple test commands
with the until command:

$ cat testl3
#!/bin/bash
using the until command

varl=100

until echo S$Svarl
[$varl -eqg 0]
do
echo Inside the loop: S$varl
varl=$[Svarl - 25]
done
$./testl3
100
Inside the loop: 100
75
Inside the loop: 75
50
Inside the loop: 50
25
Inside the loop: 25
0
$

The shell executes the test commands specified and stops only when the last command is
true.

Nesting Loops

A loop statement can use any other type of command within the loop, including other
loop commands. This is called a nested loop. Care should be taken when using nested loops,
because you're performing an iteration within an iteration, which multiplies the number of
times commands are being run. If you don't pay close attention to this, it can cause prob-
lems in your scripts.

Here’s a simple example of nesting a for loop inside another for loop:

$ cat testl4
#!/bin/bash

347

Part 1l: Shell Scripting Basics

348

nesting for loops

for ((a =1; a <= 3; a++))
do
echo "Starting loop $a:"
for ((b =1; b <= 3; b++))

do
echo " Inside loop: Sb"
done
done
$./testld

Starting loop 1:
Inside loop:
Inside loop:
Inside loop: 3

Starting loop 2:

N -

Inside loop: 1
Inside loop: 2
Inside loop: 3
Starting loop 3:
Inside loop: 1
Inside loop: 2
Inside loop: 3

$

The nested loop (also called the inner loop) iterates through its values for each iteration of
the outer loop. Notice that there’s no difference between the do and done commands for
the two loops. The bash shell knows when the first done command is executed that it refers
to the inner loop and not the outer loop.

The same applies when you mix loop commands, such as placing a for loop inside a while
loop:

$ cat testls
#!/bin/bash
placing a for loop inside a while loop

varl=>5

while [$varl -ge 0]

do
echo "Outer loop: S$varl"
for ((var2 = 1; S$var2 < 3; var2++))
do
var3=$[svarl * S$var2]
echo " 1Inner loop: Svarl * $Svar2 = Svar3"
done
varl=$[Svarl - 1]
done
$./testls

Chapter 13: More Structured Commands

Outer loop: 5

Inner loop: 5 1 =75

Inner loop: 5 2 =10
Outer loop: 4

Inner loop: 4 1 =4

Inner loop: 4 2 =8
Outer loop: 3

Inner loop: 3 1 =3

Inner loop: 3 2 =6
Outer loop: 2

Inner loop: 2 1 =2

Inner loop: 2 2 =4
Outer loop: 1

Inner loop: 1 1 =1

Inner loop: 1 2 =2
Outer loop: 0

Inner loop: 0 1 =0

Inner loop: 0 2 =0

$

Again, the shell distinguished between the do and done commands of the inner for loop
from the same commands in the outer while loop.

If you really want to test your brain, you can even combine until and while loops:
$ cat testle

#!/bin/bash
using until and while loops

varl=3

until [S$varl -eq 0]

do
echo "Outer loop: $varl"
var2=1
while [Svar2 -1t 5]
do
var3=$ (echo "scale=4; $varl / S$Svar2" | bc)
echo " Inner loop: $varl / $var2 = $var3"
var2=$[$var2 + 1]
done
varl=$[$varl - 1]
done
$./testlé

Outer loop: 3

Inner loop: 3 / 1 = 3.0000
Inner loop: 3 / 2 = 1.5000
Inner loop: 3 / 3 = 1.0000
Inner loop: 3 / 4 = .7500

349

Part 1l: Shell Scripting Basics

350

Outer loop: 2

Inner loop: 2 / 1 = 2.0000
Inner loop: 2 / 2 = 1.0000
Inner loop: 2 / 3 = .6666
Inner loop: 2 / 4 = .5000
Outer loop: 1
Inner loop: 1 / 1 = 1.0000
Inner loop: 1 / 2 = .5000
Inner loop: 1 / 3 = .3333
Inner loop: 1 / 4 = .2500

$

The outer until loop starts with a value of 3 and continues until the value equals 0. The
inner while loop starts with a value of 1 and continues as long as the value is less than
5. Each loop must change the value used in the test condition, or the loop will get stuck
infinitely.

Looping on File Data

Often, you must iterate through items stored inside a file. This requires combining two of
the techniques covered:

m Using nested loops

B Changing the IFS environment variable
By changing the IFS environment variable, you can force the for command to handle each
line in the file as a separate item for processing, even if the data contains spaces. After

you've extracted an individual line in the file, you may have to loop again to extract data
contained within it.

The classic example of this is processing data in the /etc/passwd file. This requires that
you iterate through the /etc/passwd file line by line and then change the IFS variable
value to a colon so you can separate the individual components in each line.

The following is an example of doing just that:

#!/bin/bash
changing the IFS value

IFS.OLD=$IFS

IFS=$'\n"
for entry in $(cat /etc/passwd)
do
echo "Values in Sentry -"
IFS=:

for value in Sentry

Chapter 13: More Structured Commands

do
echo " Svalue"
done
done

$

This script uses two different IFS values to parse the data. The first IFS value parses the
individual lines in the /etc/passwd file. The inner for loop next changes the IFS value
to the colon, which allows you to parse the individual values within the /etc/passwd
lines.

When you run this script, you get output something like this:

Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -

rich

X

501

501

Rich Blum

/home/rich

/bin/bash
Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash -

katie

X

506

509

Katie Blum

/home /katie

/bin/bash

The inner loop parses each individual value in the /etc/passwd entry. This is also a great
way to process comma-separated data, a common way to import spreadsheet data.

Controlling the Loop

You might be tempted to think that after you start a loop, you're stuck until the loop fin-
ishes all its iterations. This is not true. A couple of commands help us control what happens
inside of a loop:

B The break command

B The continue command

Each command has a different use in how to control the operation of a loop. The following
sections describe how you can use these commands to control the operation of your loops.

351

Part 1l: Shell Scripting Basics

352

The break command

The break command is a simple way to escape a loop in progress. You can use the break
command to exit any type of loop, including while and until loops.

You can use the break command in several situations. This section shows each of these
methods.

Breaking out of a single loop

When the shell executes a break command, it attempts to break out of the loop that's cur-
rently processing:

$ cat testl?

#!/bin/bash
breaking out of a for loop

for varl in 1 2 3 456 7 8 9 10

do

if [$varl -eq 5]

then

break

fi

echo "Iteration number: $varl"
done
echo "The for loop is completed"
$./testl?

Iteration number:
Iteration number:
Iteration number:
Iteration number: 4

The for loop is completed
$

w N B

The for loop should normally have iterated through all the values specified in the list.
However, when the if-then condition was satisfied, the shell executed the break com-
mand, which stopped the for loop.

This technique also works for while and until loops:
$ cat testl8

#!/bin/bash
breaking out of a while loop

varl=1
while [$varl -1t 10]

do
if [$varl -eq 5]

Chapter 13: More Structured Commands

then
break

fi

echo "Iteration: S$varl"

varl=$[$varl + 1]
done
echo "The while loop is completed"
$./testls
Iteration:
Iteration:
Iteration:
Iteration: 4
The while loop is completed
$

w N

The while loop terminated when the if-then condition was met, executing the break
command.

Breaking out of an inner loop

When you're working with multiple loops, the break command automatically terminates
the innermost loop you're in:

$ cat testl9
#!/bin/bash
breaking out of an inner loop

for ((a =1; a < 4; a++))
do

echo "Outer loop: $a"
for ((b =1; b < 100; b++))
do
if [$b -eq 5]
then
break
fi
echo " Inner loop: $b"
done
done
$./testl9
Outer loop: 1
Inner loop:
Inner loop:
Inner loop:
Inner loop:
Outer loop: 2
Inner loop:
Inner loop:
Inner loop: 3

B W N

N -

353

Part 1l: Shell Scripting Basics

Inner loop: 4
Outer loop: 3
Inner loop:
Inner loop:
Inner loop:
Inner loop:

[T

$

The for statement in the inner loop specifies to iterate until the b variable is equal to 100.
However, the if-then statement in the inner loop specifies that when the b variable value
is equal to 5, the break command is executed. Notice that even though the inner loop is
terminated with the break command, the outer loop continues working as specified.

Breaking out of an outer loop

There may be times when you're in an inner loop but need to stop the outer loop. The
break command includes a single command line parameter value:

break n

where n indicates the level of the loop to break out of. By default, n is 1, indicating to
break out of the current loop. If you set n to a value of 2, the break command stops the
next level of the outer loop:

$ cat test20
#!/bin/bash
breaking out of an outer loop

for (((a =1; a < 4; a++))
do
echo "Outer loop: $a"
for (((b =1; b < 100; b++))

do
if [$b -gt 4]
then
break 2
fi
echo " Inner loop: S$b"
done
done
$./test20

Outer loop: 1
Inner loop:
Inner loop:
Inner loop:
Inner loop:

[T O

$

Now when the shell executes the break command, the outer loop stops.

354

Chapter 13: More Structured Commands

The continue command

The continue command is a way to prematurely stop processing commands inside of a
loop but not terminate the loop completely. This allows you to set conditions within a loop
where the shell won't execute commands. Here’s a simple example of using the continue
command in a for loop:

$ cat test2l
#!/bin/bash
using the continue command

for ((varl = 1; varl < 15; varl++))
do
if [$varl -gt 51 && [$varl -1t 10]
then
continue
fi
echo "Iteration number: Svarl"
done
$./test21

Iteration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4
Iteration number: 5
Iteration number: 10
Iteration number: 11
Iteration number: 12
Iteration number: 13
Iteration number: 14

$

When the conditions of the if-then statement are met (the value is greater than 5 and
less than 10), the shell executes the continue command, which skips the rest of the com-
mands in the loop, but keeps the loop going. When the if-then condition is no longer
met, things return to normal.

You can use the continue command in while and until loops, but be extremely careful
with what you're doing. Remember that when the shell executes the continue command,
it skips the remaining commands. If you're incrementing your test condition variable in
one of those conditions, bad things happen:

$ cat badtest3
#!/bin/bash
improperly using the continue command in a while loop

varl=0

while echo "while iteration: S$varl"

355

Part 1l: Shell Scripting Basics

[$varl -1t 15]

do

if [$varl -gt 51 && [$varl -1t 10]

then

continue

fi

echo " Inside iteration number: $varl"

varl=$[Svarl + 1]
done
$./badtest3 | more
while iteration: 0

Inside iteration number: 0
while iteration: 1

Inside iteration number: 1
while iteration: 2

Inside iteration number: 2
while iteration: 3

Inside iteration number: 3
while iteration: 4

Inside iteration number: 4
while iteration: 5

Inside iteration number: 5
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:

$

(o))

OOy O O OO O OV OY OV O\

You'll want to make sure you redirect the output of this script to the more command so you
can stop things. Everything seems to be going just fine until the if-then condition is met,
and the shell executes the continue command. When the shell executes the continue
command, it skips the remaining commands in the while loop. Unfortunately, that's where
the $varl counter variable that is tested in the while test command is incremented. That
means that the variable isn’t incremented, as you can see from the continually displaying
output.

As with the break command, the cont inue command allows you to specify what level of
loop to continue with a command line parameter:

continue n

356

Chapter 13: More Structured Commands

where n defines the loop level to continue. Here's an example of continuing an outer for
loop:

$ cat test22
#!/bin/bash
continuing an outer loop

for ((a =1; a <= 5; a++))
do

echo "Iteration S$Sa:"

for ((b = 1; b < 3; b++))

do
if [Sa -gt 2] && [Sa -1t 4]
then
continue 2
fi
var3=S$[Sa * S$b]
echo " The result of $a * $b is Svar3"
done
done
S ./test22

Iteration 1:
The result of 1 * 1 is 1
The result of 1 * 2 is 2
Iteration 2:
The result of 2 * 1 is 2
The result of 2 * 2 is 4
Iteration 3:
Iteration 4:
The result of 4 * 1 is 4
The result of 4 * 2 is 8
Iteration 5:
The result of 5 * 1 is 5
The result of 5 * 2 is 10

$
The if-then statement:

if [Sa -gt 2] && [Sa -1t 4]
then
continue 2
fi

uses the continue command to stop processing the commands inside the loop but con-
tinue the outer loop. Notice in the script output that the iteration for the value 3 doesn't
process any inner loop statements, because the continue command stopped the process-
ing, but it continues with the outer loop processing.

357

Part 1l: Shell Scripting Basics

Processing the Output of a Loop

Finally, you can either pipe or redirect the output of a loop within your shell script. You do
this by adding the processing command to the end of the done command:

for file in /home/rich/*

do
if [-d "sfile"]
then
echo "$file is a directory"
elif
echo "$file is a file"
fi

done > output.txt

Instead of displaying the results on the monitor, the shell redirects the results of the for
command to the file output. txt.

Consider the following example of redirecting the output of a for command to a file:

$ cat test23
#!/bin/bash
redirecting the for output to a file

for (((a =1; a < 10; a++))
do

echo "The number is $a"
done > test23.txt
echo "The command is finished."
$./test23
The command is finished.
$ cat test23.txt
The number is 1
The number is
The number is
The number is
The number is
The number is
The number is
The number is
The number is

$

The shell creates the file test23.txt and redirects the output of the for command only
to the file. The shell displays the echo statement after the for command just as normal.

W 0 ~J 0 Ul b WN

This same technique also works for piping the output of a loop to another command:

S cat test24
#!/bin/bash

358

Chapter 13: More Structured Commands

piping a loop to another command

for state in "North Dakota" Connecticut Illinois Alabama Tennessee
do

echo "$state is the next place to go"
done | sort
echo "This completes our travels"
$./test24
Alabama is the next place to go
Connecticut is the next place to go
Illinois is the next place to go
North Dakota is the next place to go
Tennessee is the next place to go
This completes our travels

$

The state values aren't listed in any particular order in the for command list. The output
of the for command is piped to the sort command, which changes the order of the for
command output. Running the script indeed shows that the output was properly sorted
within the script.

Practical Examples

Now that you've seen how to use the different ways to create loops in shell scripts, let’s
look at some practical examples of how to use them. Looping is a common way to iterate
through data on the system, whether it's files in folders or data contained in a file. Here are
a couple of examples that demonstrate using simple loops to work with data.

Finding executable files

When you run a program from the command line, the Linux system searches a series of
folders looking for that file. Those folders are defined in the PATH environment variable. If
you want to find out just what executable files are available on your system for you to use,
just scan all the folders in the PATH environment variable. That may take some time to do
manually, but it’s a breeze working out a small shell script to do that.

The first step is to create a for loop to iterate through the folders stored in the PATH envi-
ronment variable. When you do that, don't forget to set the IFS separator character:

IFS=:
for folder in S$PATH
do

Now that you have the individual folders in the $folder variable, you can use another
for loop to iterate through all the files inside that particular folder:

for file in $folder/*
do

359

Part 1l: Shell Scripting Basics

The last step is to check whether the individual files have the executable permission set,
which you can do using the if-then test feature:

if [-x $file]
then

echo " sfile"
fi

And there you have it! Putting all the pieces together into a script looks like this:

$ cat test25
#!/bin/bash
finding files in the PATH

IFS=:
for folder in $PATH
do
echo "$folder:"
for file in $folder/*

do
if [-x $file]
then
echo " sfile"
fi
done
done

$

When you run the code, you get a listing of the executable files that you can use from the
command line:

$./test25 | more

/usr/local/bin:

/usr/bin:
/usr/bin/Mail
/usr/bin/Thunar
/usr/bin/X
/usr/bin/Xorg
/usr/bin/ [
/usr/bin/a2p
/usr/bin/abiword
/usr/bin/ac
/usr/bin/activation-client
/usr/bin/addr2line

The output shows all the executable files found in all the folders defined in the PATH envi-
ronment variable, which is quite a few!

360

Chapter 13: More Structured Commands

Creating multiple user accounts

The goal of shell scripts is to make life easier for the system administrator. If you happen to
work in an environment with lots of users, one of the most boring tasks can be creating new
user accounts. Fortunately, you can use the while loop to make your job a little easier!

Instead of having to manually enter useradd commands for every new user account you
need to create, you can place the new user accounts in a text file and create a simple shell
script to do that work for you. The format of the text file that we'll use looks like this:

userid,user name

The first entry is the userid you want to use for the new user account. The second entry is
the full name of the user. The two values are separated by a comma, making this a comma-
separated file format, or .csv. This is a very common file format used in spreadsheets, so
you can easily create the user account list in a spreadsheet program and save it in .csv for-
mat for your shell script to read and process.

To read the file data, we're going to use a little shell scripting trick. We'll actually set the
IFS separator character to a comma as the test part of the while statement. Then to read
the individual lines, we'll use the read command. That looks like this:

while IFS=',' read -r userid name

The read command does the work of moving onto the next line of text in the .csv text file,
so we don't need another loop to do that. The while command exits when the read command
returns a FALSE value, which happens when it runs out of lines to read in the file. Tricky!

To feed the data from the file into the while command, you just use a redirection symbol
at the end of the while command.

Putting everything together results in this script:

$ cat test2e6
#!/bin/bash
process new user accounts

input="users.csv"
while IFS=',' read -r userid name
do

echo "adding $userid"

useradd -c "$name" -m Suserid
done < "$input"

$

The $input variable points to the data file and is used as the redirect data for the while
command. The users.csv file looks like this:

$ cat users.csv
rich,Richard Blum

361

Part 1l: Shell Scripting Basics

362

christine,Christine Bresnahan
barbara,Barbara Blum
tim, Timothy Bresnahan

$

To run the problem, you must be the root user account, because the useradd command
requires root privileges:

./test26
adding rich
adding christine
adding barbara
adding tim

#

Then by taking a quick look at the /etc/passwd file, you can see that the accounts have
been created:

tail /etc/passwd

rich:x:1001:1001:Richard Blum:/home/rich:/bin/bash
christine:x:1002:1002:Christine Bresnahan:/home/christine:/bin/bash
barbara:x:1003:1003:Barbara Blum:/home/barbara:/bin/bash
tim:x:1004:1004:Timothy Bresnahan:/home/tim:/bin/bash

#

Congratulations, you've saved yourself lots of time in adding user accounts!

Summary

Looping is an integral part of programming. The bash shell provides three looping com-
mands that you can use in your scripts.

The for command allows you to iterate through a list of values, either supplied within the
command line, contained in a variable, or obtained by using file globbing, to extract file
and directory names from a wildcard character.

The while command provides a method to loop based on the condition of a command,
using either ordinary commands or the test command, which allows you to test conditions
of variables. As long as the command (or condition) produces a zero exit status, the while
loop continues to iterate through the specified set of commands.

The until command also provides a method to iterate through commands, but it bases
its iterations on a command (or condition) producing a non-zero exit status. This feature
allows you to set a condition that must be met before the iteration stops.

Chapter 13: More Structured Commands

You can combine loops in shell scripts, producing multiple layers of loops. The bash shell
provides the continue and break commands, which allow you to alter the flow of the nor-
mal loop process based on different values within the loop.

The bash shell also allows you to use standard command redirection and piping to alter the
output of a loop. You can use redirection to redirect the output of a loop to a file or piping
to redirect the output of a loop to another command. This provides a wealth of features
with which you can control your shell script execution.

The next chapter discusses how to interact with your shell script user. Often, shell scripts
aren’t completely self-contained. They require some sort of external data that must be sup-
plied at the time you run them. The next chapter discusses different methods with which
you can provide real-time data to your shell scripts for processing.

363

CHAPTER

Handling User Input

IN THIS CHAPTER

Passing parameters
Tracking parameters
Being shifty

Working with options
Standardizing options

Getting user input

Linux system. Sometimes, you need to write a script that has to interact with the person

running the script. The bash shell provides a few different methods for retrieving data from
people, including command line parameters (data values added after the command), command line
options (single-letter values that modify the behavior of the command), and the capability to read
input directly from the keyboard. This chapter discusses how to incorporate these different meth-
ods into your bash shell scripts to obtain data from the person running your script.

S o far you've seen how to write scripts that interact with data, variables, and files on the

Passing Parameters

The most basic method of passing data to your shell script is to use command line parameters.
Command line parameters allow you to add data values to the command line when you execute
the script:

$./addem 10 30

This example passes two command line parameters (10 and 30) to the script addem. The script
handles the command line parameters using special variables. The following sections describe how
to use command line parameters in your bash shell scripts.

365

Part 1l: Shell Scripting Basics

Reading parameters

The bash shell assigns special variables, called positional parameters, to all of the command
line parameters entered. This includes the name of the script the shell is executing. The
positional parameter variables are standard numbers, with $0 being the script’s name, $1
being the first parameter, $2 being the second parameter, and so on, up to $9 for the ninth
parameter.

Here'’s a simple example of using one command line parameter in a shell script:
S cat testl.sh

#!/bin/bash
using one command line parameter

#
factorial=1
for ((number = 1; number <= $1 ; number++))
do
factorial=$[S$factorial * Snumber]
done
echo The factorial of $1 is $factorial
$

$./testl.sh 5
The factorial of 5 is 120

$

You can use the $1 variable just like any other variable in the shell script. The shell script
automatically assigns the value from the command line parameter to the variable; you don't
need to do anything with it.

If you need to enter more command line parameters, each parameter must be separated by a
space on the command line:

$ cat test2.sh

#!/bin/bash

testing two command line parameters
#

total=$[$1 * $2]

echo The first parameter is $1.
echo The second parameter is $2.
echo The total value is $total.
$

S ./test2.sh 2 5

The first parameter is 2.

The second parameter is 5.

The total value is 10.

$

The shell assigns each parameter to the appropriate variable.

366

Chapter 14: Handling User Input

In the preceding example, the command line parameters used were both numerical values.
You can also use text strings in the command line:

$ cat test3.sh

#!/bin/bash

testing string parameters

#

echo Hello $1, glad to meet you.

$
$./test3.sh Rich

Hello Rich, glad to meet you.
$

The shell passes the string value entered into the command line to the script. However,
you'll have a problem if you try to do this with a text string that contains spaces:

$./test3.sh Rich Blum
Hello Rich, glad to meet you.
$

Remember that each of the parameters is separated by a space, so the shell interpreted the
space as just separating the two values. To include a space as a parameter value, you must
use quotation marks (either single or double quotation marks):

$./test3.sh 'Rich Blum'
Hello Rich Blum, glad to meet you.

$
$./test3.sh "Rich Blum"

Hello Rich Blum, glad to meet you.
$

NoTE

The quotation marks used when you pass text strings as parameters are not part of the data. They just delineate the
beginning and the end of the data.

If your script needs more than nine command line parameters, you can continue, but the
variable names change slightly. After the ninth variable, you must use braces around the
variable number, such as ${10}. Here’s an example of doing that:

S cat test4.sh

#!/bin/bash

handling lots of parameters

#

total=$[${10} * ${11}]

echo The tenth parameter is ${10}
echo The eleventh parameter is ${11}
echo The total is S$Stotal

367

Part 1l: Shell Scripting Basics

$

S ./test4.sh 1 23 4567 89 10 11 12
The tenth parameter is 10

The eleventh parameter is 11

The total is 110

$

This technique allows you to add as many command line parameters to your scripts as you
could possibly need.

Reading the script name

You can use the $0 parameter to determine the script name the shell started from the
command line. This can come in handy if you're writing a utility that can have multiple
functions.

S cat test5.sh

#!/bin/bash

Testing the $0 parameter

#

echo The zero parameter is set to: $0
#

$

S bash test5.sh

The zero parameter is set to: test5.sh

$

However, there is a potential problem. When using a different command to run the shell
script, the command becomes entangled with the script name in the $0 parameter:

$./test5.sh
The zero parameter is set to: ./test5.sh

$

There is another potential problem. When the actual string passed is the full script path,
and not just the script’s name, the $0 variable gets set to the full script path and name:

$ bash /home/Christine/test5.sh
The zero parameter is set to: /home/Christine/test5.sh

$

If you want to write a script that performs different functions based on just the script’s
name, you'll have to do a little work. You need to be able to strip off whatever path is used to
run the script. Also, you need to be able to remove any entangled commands from the script.

Fortunately, there’s a handy little command available that does just that. The basename
command returns just the script’s name without the path:

S cat test5b.sh
#!/bin/bash

368

Chapter 14: Handling User Input

Using basename with the $0 parameter
#

name=$ (basename $0)

echo

echo The script name is: $name

#

$ bash /home/Christine/test5b.sh

The script name is: testbb.sh

$
$./testbb.sh

The script name is: testbb.sh

$

Now that’s much better. You can use this technique to write scripts that perform different
functions based on the script name used. Here's a simple example:

S cat test6.sh
#!/bin/bash
Testing a Multi-function script

#
name=$ (basename $0)
#
if [S$name = "addem"]
then
total=$[$1 + $2]
#
elif [Sname = "multem"]
then
total=$[$1 * $2]
fi
#
echo
echo The calculated value is Stotal
#
$
$ cp test6.sh addem
S chmod u+x addem
$
$ ln -s test6.sh multem
$
S 1ls -1 *em
-rwxrw-r--. 1 Christine Christine 224 Jun 30 23:50 addem
lrwxrwxrwx. 1 Christine Christine 8 Jun 30 23:50 multem -> testé6.sh
$

$./addem 2 5

The calculated value is 7

369

Part 1l: Shell Scripting Basics

$
$./multem 2 5

The calculated value is 10

$

The example creates two separate filenames from the testé. sh script, one by just copying
the file to a new script (addem) and the other by using a symbolic link (see Chapter 3) to
create the new script (multem). In both cases, the script determines the script’s base name
and performs the appropriate function based on that value.

Testing parameters

Be careful when using command line parameters in your shell scripts. If the script is run
without the parameters, bad things can happen:

$./addem 2

./addem: line 8: 2 + : syntax error: operand expected (error
token is " ")

The calculated value is

$

When the script assumes there is data in a parameter variable, and no data is present,
most likely you'll get an error message from your script. This is a poor way to write scripts.
Always check your parameters to make sure the data is there before using it:

S cat test7.sh
#!/bin/bash
testing parameters before use

#
lf [-n "$l"]
then
echo Hello $1, glad to meet you.
else
echo "Sorry, you did not identify yourself. "
fi
$

$./test7.sh Rich
Hello Rich, glad to meet you.

$
$./test7.sh
Sorry, you did not identify yourself.

$

In this example, the -n test evaluation was used to check for data in the $1 command
line parameter. In the next section, you'll learn another way to check command line
parameters.

370

Chapter 14: Handling User Input

Using Special Parameter Variables

A few special bash shell variables track command line parameters. This section describes
what they are and how to use them.

Counting parameters

As you saw in the last section, you should verify command line parameters before using
them in your script. For scripts that use multiple command line parameters, this checking
can get tedious.

Instead of testing each parameter, you can count how many parameters were entered on
the command line. The bash shell provides a special variable for this purpose.

The special $# variable contains the number of command line parameters included when
the script was run. You can use this special variable anywhere in the script, just like a nor-
mal variable:

S cat test8.sh

#!/bin/bash

getting the number of parameters
#

echo There were $# parameters supplied.
$

$./test8.sh

There were 0 parameters supplied.
$

$./test8.sh 1 2 3 45

There were 5 parameters supplied.
$

$./test8.sh 1 23 4567 89 10
There were 10 parameters supplied.
$

$./test8.sh "Rich Blum"

There were 1 parameters supplied.

$

Now you have the ability to test the number of parameters present before trying to
use them:

S cat test9.sh
#!/bin/bash
Testing parameters
#
if [S# -ne 2]
then

echo

371

Part 1l: Shell Scripting Basics

echo Usage: test9.sh a b

echo
else
total=S$[$1 + $2]
echo
echo The total is S$Stotal
echo
fi
#
$

S bash test9.sh
Usage: test9.sh a b

S bash test9.sh 10
Usage: test9.sh a b

S bash test9.sh 10 15

The total is 25

$

The if-then statement uses the -ne evaluation to perform a numeric test of the command
line parameters supplied. If the correct number of parameters isn't present, an error mes-
sage displays showing the correct usage of the script.

This variable also provides a cool way of grabbing the last parameter on the command line
without having to know how many parameters were used. However, you need to use a little
trick to get there.

If you think this through, you might think that because the $# variable contains the value
of the number of parameters, using the variable ${$#} would represent the last command
line parameter variable. Try that and see what happens:

S cat badtestl.sh

#!/bin/bash

testing grabbing last parameter
#

echo The last parameter was ${S$#}

$
$./badtestl.sh 10
The last parameter was 15354

$

Wow, what happened? Obviously, something went wrong. It turns out that you can’t use the
dollar sign within the braces. Instead, you must replace the dollar sign with an exclamation
mark. 0dd, but it works:

372

Chapter 14: Handling User Input

$ cat testl0.sh

#!/bin/bash

Grabbing the last parameter

#

params=S#

echo

echo The last parameter is $params
echo The last parameter is ${!#}
echo

#

$
S bash testl0.sh 1 2 3 4 5

The last parameter is 5
The last parameter is 5

$
$ bash testl0O.sh

The last parameter is 0
The last parameter is testl0.sh

$

Perfect. This script also assigned the $# variable value to the variable params and then
used that variable within the special command line parameter variable format as well. Both
versions worked. It's also important to notice that, when there weren't any parameters on
the command line, the $# value was zero, which is what appears in the params variable,
but the ${!#} variable returns the script name used on the command line.

Grabbing all the data

In some situations you want to grab all the parameters provided on the command line.
Instead of having to mess with using the $# variable to determine how many parameters
are on the command line and having to loop through all of them, you can use a couple of
other special variables.

The $* and s@ variables provide easy access to all your parameters. Both of these variables
include all the command line parameters within a single variable.

The $# variable takes all the parameters supplied on the command line as a single word.
The word contains each of the values as they appear on the command line. Basically,
instead of treating the parameters as multiple objects, the $* variable treats them all as
one parameter.

The $@ variable, on the other hand, takes all the parameters supplied on the command line
as separate words in the same string. It allows you to iterate through the values, separating
out each parameter supplied. This is most often accomplished using the for command.

373

14

Part 1l: Shell Scripting Basics

374

It can easily get confusing to figure out how these two variables operate. Let’s look at the
difference between the two:

S cat testll.sh

#!/bin/bash

testing $* and s@

#

echo

echo "Using the \$* method: $*"
echo

echo "Using the \$@ method: S$e"
$

$./testll.sh rich barbara katie jessica
Using the $* method: rich barbara katie jessica

Using the $@ method: rich barbara katie jessica

$

Notice that on the surface, both variables produce the same output, showing all the com-
mand line parameters provided at once.

The following example demonstrates where the differences are:

S cat testl2.sh

#!/bin/bash

testing $* and se@

#

echo

count=1

#

for param in "$*"

do
echo "\$* Parameter #S$count = S$param"
count=$[Scount + 1]

done

#

echo

count=1

#

for param in "S@"

do
echo "\Se@ Parameter #S$Scount = Sparam"
count=$[Scount + 1]

done

$

$./testl2.sh rich barbara katie jessica
$* Parameter #1 = rich barbara katie jessica

S@ Parameter #1 rich

Chapter 14: Handling User Input

$@ Parameter #2 = barbara
$@ Parameter #3 = katie
S@ Parameter #4 = jessica

$

Now we're getting somewhere. By using the for command to iterate through the special
variables, you can see how they each treat the command line parameters differently. The
$* variable treated all the parameters as a single parameter, while the $@ variable treated
each parameter separately. This is a great way to iterate through command line parameters.

Being Shifty

Another tool you have in your bash shell tool belt is the shift command. The bash shell
provides the shift command to help you manipulate command line parameters. The
shift command literally shifts the command line parameters in their relative positions.

When you use the shift command, it moves each parameter variable one position to the
left by default. Thus, the value for variable $3 is moved to $2, the value for variable $2 is
moved to $1, and the value for variable $1 is discarded (note that the value for variable
$0, the program name, remains unchanged).

This is another great way to iterate through command line parameters, especially if you
don’t know how many parameters are available. You can just operate on the first parameter,
shift the parameters over, and then operate on the first parameter again.

Here’s a short demonstration of how this works:

$ cat testl3.sh
#!/bin/bash
demonstrating the shift command
echo
count=1
while [-n "$1"]
do
echo "Parameter #$count = $1"
count=$[Scount + 1]
shift
done
$

$./testl3.sh rich barbara katie jessica

Parameter #1 = rich
Parameter #2 = barbara
Parameter #3 = katie
Parameter #4 = jessica

$

375

Part 1l: Shell Scripting Basics

The script performs a while loop, testing the length of the first parameter’s value. When
the first parameter’s length is zero, the loop ends. After testing the first parameter, the
shift command is used to shift all the parameters one position.

Tip

Be careful when working with the shift command. When a parameter is shifted out, its value is lost and can’t be
recovered.

Alternatively, you can perform a multiple location shift by providing a parameter to the
shift command. Just provide the number of places you want to shift:

$ cat testl4.sh
#!/bin/bash
demonstrating a multi-position shift

#

echo

echo "The original parameters: S$*"

shift 2

echo "Here's the new first parameter: $1"
$

$./testld.sh 1 2 3 4 5

The original parameters: 1 2 3 4 5
Here's the new first parameter: 3

$

By using values in the shift command, you can easily skip over parameters you
don't need.

Working with Options

If you've been following along in the book, you've seen several bash commands that provide
both parameters and options. Options are single letters preceded by a dash that alter the
behavior of a command. This section shows three methods for working with options in your
shell scripts.

Finding your options

On the surface, there’s nothing all that special about command line options. They appear
on the command line immediately after the script name, just the same as command line
parameters. In fact, if you want, you can process command line options the same way you
process command line parameters.

376

Chapter 14: Handling User Input

Processing simple options
In the test13.sh script earlier, you saw how to use the shift command to work your

way down the command line parameters provided with the script program. You can use this
same technique to process command line options.

As you extract each individual parameter, use the case statement (see Chapter 12) to
determine when a parameter is formatted as an option:

S cat testl5.sh
#!/bin/bash
extracting command line options as parameters

#
echo
while [-n "$1"]
do
case "$1" in
-a) echo "Found the -a option" ;;
-b) echo "Found the -b option" ;;
-c) echo "Found the -c option" ;;
*) echo "$1 is not an option" ;;
esac
shift
done
$

$./testl5.sh -a -b -c¢ -d

Found the -a option
Found the -b option
Found the -c option
-d is not an option

$

The case statement checks each parameter for valid options. When one is found, the
appropriate commands are run in the case statement.

This method works, no matter in what order the options are presented on the command
line:

$./testl5.sh -d -c -a

-d is not an option
Found the -c option
Found the -a option

$

The case statement processes each option as it finds it in the command line parameters. If
any other parameters are included on the command line, you can include commands in the
catch-all part of the case statement to process them.

377

Part 1l: Shell Scripting Basics

378

Separating options from parameters

Often you'll run into situations where you'll want to use both options and parameters for a shell
script. The standard way to do this in Linux is to separate the two with a special character code
that tells the script when the options are finished and when the normal parameters start.

For Linux, this special character is the double dash (--). The shell uses the double dash to
indicate the end of the option list. After seeing the double dash, your script can safely pro-
cess the remaining command line parameters as parameters and not options.

To check for the double dash, simply add another entry in the case statement:

$ cat testl6.sh
#!/bin/bash
extracting options and parameters
echo
while [-n "$1"]
do
case "S$1" in
-a) echo "Found the -a option" ;;
) echo "Found the -b option'";;
-c) echo "Found the -c option" ;;
)

--) shift
break ;;
*) echo "$1 is not an option'";;
esac
shift
done
#
count=1
for param in Se@
do
echo "Parameter #Scount: S$param"
count=$[Scount + 1]
done
$

This script uses the break command to break out of the while loop when it encounters
the double dash. Because we're breaking out prematurely, we need to ensure that we stick
in another shift command to get the double dash out of the parameter variables.

For the first test, try running the script using a normal set of options and parameters:

$./testlé.sh -c -a -b testl test2 test3

Found the -c option
Found the -a option
Found the -b option
testl is not an option

Chapter 14: Handling User Input

test2 is not an option
test3 is not an option

$

The results show that the script assumed that all the command line parameters were
options when it processed them. Next, try the same thing, only this time using the double
dash to separate the options from the parameters on the command line:

$./testl6é.sh -c -a -b -- testl test2 test3

Found the
Found the
Found the
Parameter
Parameter
Parameter

$

-c option
-a option
-b option
#1: testl
#2: test2
#3: test3

When the script reaches the double dash, it stops processing options and assumes that any
remaining parameters are command line parameters.

Processing options with values

Some options require an additional parameter value. In these situations, the command line
looks something like this:

$./testing.sh -a testl -b -c -d test2

Your script must be able to detect when your command line option requires an additional
parameter and be able to process it appropriately. Here’s an example of how to do that:

$ cat testl7.sh
#!/bin/bash
extracting command line

while [-n "s$1"]

case "$1" in

echo

do
—a)
-b)
—c)
--)

*)
esac
shift

done

echo "Found the

param="$2"

echo "Found the
shift ;;

echo "Found the
shift

break ;;

echo "$1 is not

options and values

an

option";;
option, with parameter value $param"

option";;

option";;

379

Part 1l: Shell Scripting Basics

380

#

count=1

for param in "$@"

do
echo "Parameter #Scount: S$param"
count=$[Scount + 1]

done

$

$./testl7.sh -a -b testl -d

Found the -a option
Found the -b option, with parameter value testl
-d is not an option

$

In this example, the case statement defines three options that it processes. The -b option
also requires an additional parameter value. Because the parameter being processed is $1,
you know that the additional parameter value is located in $2 (because all the parameters
are shifted after they are processed). Just extract the parameter value from the $2 vari-
able. Of course, because we used two parameter spots for this option, you also need to set
the shift command to shift one additional position.

Just as with the basic feature, this process works no matter what order you place the options
in (just remember to include the appropriate option parameter with the each option):

$./testl7.sh -b testl -a -d

Found the -b option, with parameter value testl
Found the -a option

-d is not an option

$

Now you have the basic ability to process command line options in your shell scripts, but
there are limitations. For example, this doesn’t work if you try to combine multiple options
in one parameter:

$./testl7.sh -ac
-ac 1s not an option

$

It is a common practice in Linux to combine options, and if your script is going to be user-
friendly, you'll want to offer this feature for your users as well. Fortunately, there’s another
method for processing options that can help you.

Using the getopt command

The getopt command is a great tool to have handy when processing command line options
and parameters. It reorganizes the command line parameters to make parsing them in your
script easier.

Chapter 14: Handling User Input

Looking at the command format

The getopt command can take a list of command line options and parameters, in any form,
and automatically turn them into the proper format. It uses the following command format:

getopt optstring parameters

The optstringis the key to the process. It defines the valid option letters that can be
used in the command line. It also defines which option letters require a parameter value.

First, list each command line option letter you're going to use in your script in the
optstring. Then place a colon after each option letter that requires a parameter value.
The getopt command parses the supplied parameters based on the optstring you define.

Tip

A more advanced version of the getopt command, called getopts (notice it is plural), is available. The getopts

command is covered later in this chapter. Because of their nearly identical spelling, it’s easy to get these two com-
mands confused. Be careful!

Here’s a simple example of how getopt works:

$ getopt ab:cd -a -b testl -cd test2 test3
-a -b testl -c -d -- test2 test3
$

The optstring defines four valid option letters, a, b, ¢, and d. A colon (:) is placed behind
the letter b in order to require option b to have a parameter value. When the getopt com-
mand runs, it examines the provided parameter list (-a -b testl -cd test2 test3)
and parses it based on the supplied optstring. Notice that it automatically separated the
-cd options into two separate options and inserted the double dash to separate the addi-
tional parameters on the line.

If you specify a parameter option not in the optstring, by default the getopt command
produces an error message:

$ getopt ab:cd -a -b testl -cde test2 test3
getopt: invalid option -- e

-a -b testl -c -d -- test2 test3
$

If you prefer to just ignore the error messages, use getopt with the -g option:

$ getopt -q ab:cd -a -b testl -cde test2 test3
-a -b 'testl' -c -d -- 'test2' 'test3'
$

Note that the getopt command options must be listed before the optstring. Now you
should be ready to use this command in your scripts to process command line options.

381

Part 1l: Shell Scripting Basics

382

Using getopt in your scripts
You can use the getopt command in your scripts to format any command line options or
parameters entered for your script. It's a little tricky, however, to use.

The trick is to replace the existing command line options and parameters with the for-
matted version produced by the getopt command. The way to do that is to use the set
command.

You saw the set command back in Chapter 6. The set command works with the different
variables in the shell.

One of the set command options is the double dash (--). The double dash instructs set to
replace the command line parameter variables with the values on the set command’s com-
mand line.

The trick then is to feed the original script command line parameters to the getopt com-
mand and then feed the output of the getopt command to the set command to replace
the original command line parameters with the nicely formatted ones from getopt. This
looks something like this:

set -- $(getopt -g ab:cd "se")

Now the values of the original command line parameter variables are replaced with the out-
put from the getopt command, which formats the command line parameters for us.

Using this technique, we can now write scripts that handle our command line parameters
for us:

S cat testl8.sh
#!/bin/bash
Extract command line options & values with getopt
#
set -- $(getopt -g ab:cd "se")
#
echo
while [-n "$1"]
do

case "$1" in

-a) echo "Found the -a option" ;;

-b) param="$2"

echo "Found the -b option, with parameter value $param"

shift ;;
-c) echo "Found the -c option" ;;
--) shift
break ;;
*) echo "$1 is not an option';;
esac
shift

Chapter 14: Handling User Input

done
#

count=1

for param in "s@"

do

echo "Parameter #Scount: Sparam"
count=$[Scount + 1]

done
#
$

You'll notice this is basically the same script as in test17.sh. The only thing that changed
is the addition of the getopt command to help format our command line parameters.

Now when you run the script with complex options, things work much better:

$./testl8.sh -ac

Found the
Found the
$

-a option
-c option

And of course, all the original features work just fine as well:

S ./testl8.sh -a -b testl -cd test2 test3 test4

Found the
Found the
Found the
Parameter
Parameter
Parameter

$

-a option

-b option, with parameter value 'testl'
-c option

#1: 'test2!

#2: 'test3!

#3: 'test4'

Now things are looking pretty fancy. However, there’s still one small bug that lurks in the
getopt command. Check out this example:

$./testl8.sh -a -b testl -cd "test2 test3" test4

Found the
Found the
Found the
Parameter
Parameter
Parameter

$

-a option

-b option, with parameter value 'testl'
-c option

#1: 'test2

#2: test3!'

#3: 'test4'

The getopt command isn't good at dealing with parameter values with spaces and quota-
tion marks. It interpreted the space as the parameter separator, instead of following the

383

Part 1l: Shell Scripting Basics

384

double quotation marks and combining the two values into one parameter. Fortunately, this
problem has another solution.

Advancing to getopts

The getopts command (notice that it is plural) is built into the bash shell. It looks much
like its getopt cousin, but has some expanded features.

Unlike getopt, which produces one output for all the processed options and parameters
found in the command line, the getopts command works on the existing shell parameter
variables sequentially.

It processes the parameters it detects in the command line one at a time each time it’s
called. When it runs out of parameters, it exits with an exit status greater than zero. This
makes it great for using in loops to parse all the parameters on the command line.

Here's the format of the getopts command:

getopts optstring variable

The optstring value is similar to the one used in the getopt command. Valid option let-
ters are listed in the optstring, along with a colon if the option letter requires a param-
eter value. To suppress error messages, start the optstring with a colon. The getopts
command places the current parameter in the variable defined in the command line.

The getopts command uses two environment variables. The OPTARG environment variable
contains the value to be used if an option requires a parameter value. The OPTIND environ-
ment variable contains the value of the current location within the parameter list where
getopts left off. This allows you to continue processing other command line parameters
after finishing the options.

Let’s look at a simple example that uses the getopts command:
$ cat testl9.sh

#!/bin/bash
simple demonstration of the getopts command

#
echo
while getopts :ab:c opt
do
case "$Sopt" in
a) echo "Found the -a option" ;;
b) echo "Found the -b option, with value $SOPTARG';;
c) echo "Found the -c option" ;;
*) echo "Unknown option: S$Sopt";;
esac
done
$

Chapter 14: Handling User Input

$./testl9.sh -ab testl -c

Found the -a option
Found the -b option, with value testl
Found the -c option

$

The while statement defines the getopts command, specifying what command line
options to look for, along with the variable name (opt) to store them in for each iteration.

You'll notice something different about the case statement in this example. When the
getopts command parses the command line options, it strips off the leading dash, so you
don't need leading dashes in the case definitions.

The getopts command offers several nice features. For starters, you can include spaces in
your parameter values:

$./testl9.sh -b "testl test2" -a

Found the -b option, with value testl test2
Found the -a option

$

Another nice feature is that you can run the option letter and the parameter value together
without a space:

$./testl9.sh -abtestl

Found the -a option
Found the -b option, with value testl

$

The getopts command correctly parsed the testl value from the -b option. In addition,
the getopts command bundles any undefined option it finds in the command line into a
single output, the question mark:

$./testl9.sh -d

Unknown option: ?

$
$./testl9.sh -acde

Found the -a option

Found the -c option

Unknown option: ?

Unknown option: ?

$
Any option letter not defined in the optstring value is sent to your code as a
question mark.

385

Part 1l: Shell Scripting Basics

$ cat test20.sh
#!/bin/bash

The getopts command knows when to stop processing options and leave the parameters
for you to process. As getopts processes each option, it increments the OPTIND environ-
ment variable by one. When you've reached the end of the getopts processing, you can
use the OPTIND value with the shift command to move to the parameters:

Processing options & parameters with getopts

#
echo
while getopts :ab:cd opt
do
case "Sopt" in

a) echo "Found the -a option" ;;
b) echo "Found the -b option, with value $SOPTARG"
c) echo "Found the -c option" ;;
d) echo "Found the -d option" ;;

*) echo "Unknown option:

esac

done

#

shift $[SOPTIND - 1]

#

echo

count=1

for param in "$S@"

do
echo "Parameter S$Scount:
count=$[Scount + 1]

done

#

$

sopt" ;;

Sparam"

$./test20.sh -a -b testl -d test2 test3

Found the -a option

Found the -b option, with value testl

Found the -d option

Parameter 1: test2
Parameter 2: test3
Parameter 3: test4

$

test4

Now you have a full-featured command line option and parameter processing utility you
can use in all your shell scripts!

Chapter 14: Handling User Input

Standardizing Options

When you create your shell script, obviously you're in control of what happens. It's
completely up to you as to which letter options you select to use and how you select to

use them.

However, a few letter options have achieved a somewhat standard meaning in the
Linux world. If you leverage these options in your shell script, your scripts will be more
user-friendly.

Table 14-1 shows some of the common meanings for command line options used in Linux.

TABLE 14-1 Common Linux Command Line Options
Option Description
-a Shows all objects
-c Produces a count
-d Specifies a directory
-e Expands an object
-f Specifies a file to read data from
-h Displays a help message for the command
-1 Ignores text case
-1 Produces a long format version of the output
-n Uses a non-interactive (batch) mode
-0 Specifies an output file to redirect all output to
-q Runs in quiet mode
-r Processes directories and files recursively
-s Runs in silent mode
-v Produces verbose output
-X Excludes an object
Y Answers yes to all questions

You'll probably recognize most of these option meanings just from working with the various
bash commands throughout the book. Using the same meaning for your options helps users
interact with your script without having to worry about manuals.

387

Part 1l: Shell Scripting Basics

388

Getting User Input

Although providing command line options and parameters is a great way to get data from

your script users, sometimes your script needs to be more interactive. Sometimes you need
to ask a question while the script is running and wait for a response from the person run-
ning your script. The bash shell provides the read command just for this purpose.

Reading basics

The read command accepts input either from standard input (such as from the keyboard)
or from another file descriptor. After receiving the input, the read command places the
data into a variable. Here’s the read command at its simplest:

S cat test2l.sh

#!/bin/bash

testing the read command

#

echo -n "Enter your name: "

read name

echo "Hello $name, welcome to my program. "
#

$

$./test2l.sh

Enter your name: Rich Blum

Hello Rich Blum, welcome to my program.

$

That'’s pretty simple. Notice that the echo command that produced the prompt uses the -n
option. This suppresses the newline character at the end of the string, allowing the script
user to enter data immediately after the string, instead of on the next line. This gives your
scripts a more form-like appearance.

In fact, the read command includes the -p option, which allows you to specify a prompt
directly in the read command line:

S cat test22.sh

#!/bin/bash

testing the read -p option

#

read -p "Please enter your age: " age
days=$[Sage * 365]

echo "That makes you over $days days old! "
#

$

$./test22.sh

Please enter your age: 10

That makes you over 3650 days old!

$

Chapter 14: Handling User Input

You'll notice in the first example that when a name was entered, the read command
assigned both the first name and last name to the same variable. The read command
assigns all data entered at the prompt to a single variable, or you can specify multiple vari-
ables. Each data value entered is assigned to the next variable in the list. If the list of vari-
ables runs out before the data does, the remaining data is assigned to the last variable:

$ cat test23.sh
#!/bin/bash
entering multiple variables

#
read -p "Enter your name: " first last
echo "Checking data for S$last, sfirst.."
$

$./test23.sh

Enter your name: Rich Blum
Checking data for Blum, Rich...
$

You can also specify no variables on the read command line. If you do that, the read com-
mand places any data it receives in the special environment variable REPLY:

$ cat test24.sh

#!/bin/bash

Testing the REPLY Environment variable
#

read -p "Enter your name: "

echo

echo Hello $REPLY, welcome to my program.
#

$
$./test24.sh
Enter your name: Christine

Hello Christine, welcome to my program.

$

The REPLY environment variable contains all the data entered in the input, and it can be
used in the shell script as any other variable.

Timing out

Be careful when using the read command. Your script may get stuck waiting for the script

user to enter data. If the script must go on regardless of whether any data was entered, you
can use the -t option to specify a timer. The -t option specifies the number of seconds for
the read command to wait for input. When the timer expires, the read command returns a
non-zero exit status:

S cat test25.sh
#!/bin/bash

389

Part 1l: Shell Scripting Basics

390

timing the data entry

#
if read -t 5 -p "Please enter your name: " name
then

echo "Hello Sname, welcome to my script"
else

echo

echo "Sorry, too slow! "
fi
$

$./test25.sh

Please enter your name: Rich
Hello Rich, welcome to my script
$

$./test25.sh

Please enter your name:

Sorry, too slow!

$

Because the read command exits with a non-zero exit status if the timer expires, it's easy
to use the standard structured statements, such as an if-then statement or a while loop
to track what happened. In this example, when the timer expires, the if statement fails,
and the shell executes the commands in the else section.

Instead of timing the input, you can also set the read command to count the input charac-
ters. When a preset number of characters has been entered, it automatically exits, assigning
the entered data to the variable:

S cat test26.sh
#!/bin/bash
getting just one character of input
#
read -nl -p "Do you want to continue [Y/N]? " answer
case S$Sanswer in
Y | y) echo
echo "fine, continue on..";;
N | n) echo
echo OK, goodbye

exit;;
esac
echo "This is the end of the script"
$

$./test26.sh

Do you want to continue [Y/N]? Y
fine, continue on..

This is the end of the script

$

$./test26.sh

Chapter 14: Handling User Input

Do you want to continue [Y/N]? n
OK, goodbye
$

This example uses the -n option with the value of 1, instructing the read command to
accept only a single character before exiting. As soon as you press the single character to
answer, the read command accepts the input and passes it to the variable. You don't need
to press the Enter key.

Reading with no display

Sometimes you need input from the script user, but you don’t want that input to display on
the monitor. The classic example is when entering passwords, but there are plenty of other
types of data that you need to hide.

The -s option prevents the data entered in the read command from being displayed on the
monitor; actually, the data is displayed, but the read command sets the text color to the
same as the background color. Here’s an example of using the -s option in a script:

$ cat test27.sh
#!/bin/bash
hiding input data from the monitor

#

read -s -p "Enter your password: " pass
echo

echo "Is your password really $pass? "
$

$./test27.sh
Enter your password:
Is your password really T3stlng?

$

The data typed at the input prompt doesn’t appear on the monitor but is assigned to the
variable for use in the script.

Reading from a file

Finally, you can also use the read command to read data stored in a file on the Linux sys-
tem. Each call to the read command reads a single line of text from the file. When no more
lines are left in the file, the read command exits with a non-zero exit status.

The tricky part is getting the data from the file to the read command. The most common
method is to pipe the result of the cat command of the file directly to a while command
that contains the read command. Here's an example:

S cat test28.sh
#!/bin/bash

391

Part 1l: Shell Scripting Basics

392

reading data from a file

#

count=1

cat test | while read line

do
echo "Line $count: $line"
count=$[Scount + 1]

done

echo "Finished processing the file"

$

S cat test

The quick brown dog jumps over the lazy fox.

This is a test, this is only a test.

O Romeo, Romeo! Wherefore art thou Romeo?

$

$./test28.sh

Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test, this is only a test.

Line 3: O Romeo, Romeo! Wherefore art thou Romeo?
Finished processing the file

$

The while command loop continues processing lines of the file with the read command,
until the read command exits with a non-zero exit status.

Summary

This chapter showed three methods for retrieving data from the script user. Command
line parameters allow users to enter data directly on the command line when they run the
script. The script uses positional parameters to retrieve the command line parameters and
assign them to variables.

The shift command allows you to manipulate the command line parameters by rotating
them within the positional parameters. This command allows you to easily iterate through
the parameters without knowing how many parameters are available.

You can use three special variables when working with command line parameters. The shell
sets the $# variable to the number of parameters entered on the command line. The $#*
variable contains all the parameters as a single string, and the $@ variable contains all the
parameters as separate words. These variables come in handy when you're trying to process
long parameter lists.

Besides parameters, your script users can use command line options to pass information to
your script. Command line options are single letters preceded by a dash. Different options
can be assigned to alter the behavior of your script.

Chapter 14: Handling User Input

The bash shell provides three ways to handle command line options.

The first way is to handle them just like command line parameters. You can iterate through
the options using the positional parameter variables, processing each option as it appears
on the command line.

Another way to handle command line options is with the getopt command. This command
converts command line options and parameters into a standard format that you can process
in your script. The getopt command allows you to specify which letters it recognizes as
options and which options require an additional parameter value. The getopt command
processes the standard command line parameters and outputs the options and parameters
in the proper order.

The final method for handling command line options is via the getopts command (note
that it's plural). The getopts command provides more advanced processing of the com-
mand line parameters. It allows for multi-value parameters, along with identifying options
not defined by the script.

An interactive method to obtain data from your script users is the read command. The
read command allows your scripts to query users for information and wait. The read com-
mand places any data entered by the script user into one or more variables, which you can
use within the script.

Several options are available for the read command that allow you to customize the data
input into your script, such as using hidden data entry, applying timed data entry, and
requesting a specific number of input characters.

In the next chapter, we look further into how bash shell scripts output data. So far, you've
seen how to display data on the monitor and redirect it to a file. Next, we explore a few
other options that you have available not only to direct data to specific locations but also
to direct specific types of data to specific locations. This will help make your shell scripts
look professional!

393

CHAPTER

Presenting Data

IN THIS CHAPTER

Revisiting redirection
Standard input and output
Reporting errors

Throwing away data

Creating log files

or by redirecting data to a file. Chapter 11 demonstrated how to redirect the output of a com-
mand to a file. This chapter expands on that topic by showing you how you can redirect the
output of your script to different locations on your Linux system.

So far the scripts shown in this book display information either by echoing data to the monitor

Understanding Input and Output

So far, you've seen two methods for displaying the output from your scripts:

® Displaying output on the monitor screen

B Redirecting output to a file
Both methods produced an all-or-nothing approach to data output. There are times, however, when
it would be nice to display some data on the monitor and other data in a file. For these instances, it

comes in handy to know how Linux handles input and output so you can get your script output to
the right place.

The following sections describe how to use the standard Linux input and output system to your
advantage, to help direct script output to specific locations.

Standard file descriptors

The Linux system handles every object as a file. This includes the input and output process. Linux
identifies each file object using a file descriptor. The file descriptor is a non-negative integer that

395

Part 1l: Shell Scripting Basics

396

uniquely identifies open files in a session. Each process is allowed to have up to nine open
file descriptors at a time. The bash shell reserves the first three file descriptors (0, 1, and 2)
for special purposes. These are shown in Table 15-1.

TABLE 15-1 Linux Standard File Descriptors

File Descriptor Abbreviation Description

0 STDIN Standard input
1 STDOUT Standard output
) STDERR Standard error

These three special file descriptors handle the input and output from your script. The shell
uses them to direct the default input and output in the shell to the appropriate location,
which by default is usually your monitor. The following sections describe each of these
standard file descriptors in greater detail.

STDIN

The STDIN file descriptor references the standard input to the shell. For a terminal inter-
face, the standard input is the keyboard. The shell receives input from the keyboard on the
STDIN file descriptor and processes each character as you type it.

When you use the input redirect symbol (<), Linux replaces the standard input file descrip-
tor with the file referenced by the redirection. It reads the file and retrieves data just as if
it were typed on the keyboard.

Many bash commands accept input from STDIN, especially if no files are specified on
the command line. Here's an example of using the cat command with data entered from
STDIN:

$ cat

this is a test

this is a test

this is a second test.
this is a second test.

When you enter the cat command on the command line by itself, it accepts input from
STDIN. As you enter each line, the cat command echoes the line to the display.

However, you can also use the STDIN redirect symbol to force the cat command to accept
input from another file other than STDIN:

$ cat < testfile
This is the first line.
This is the second line.

Chapter 15: Presenting Data

This is the third line.
$

Now the cat command uses the lines that are contained in the testfile file as the input.
You can use this technique to input data to any shell command that accepts data from
STDIN.

STDOUT

The STDOUT file descriptor references the standard output for the shell. On a terminal
interface, the standard output is the terminal monitor. All output from the shell (including
programs and scripts you run in the shell) is directed to the standard output, which is the
monitor.

Most bash commands direct their output to the STDOUT file descriptor by default. As shown
in Chapter 11, you can change that using output redirection:

$ 1s -1 > test2

$ cat test2

total 20

-rw-rw-r-- 1 rich rich 53 2014-10-16 11:30 test
-rw-rw-r-- 1 rich rich 0 2014-10-16 11:32 test2
-rw-rw-r-- 1 rich rich 73 2014-10-16 11:23 testfile
$

With the output redirection symbol, all the output that normally would go to the monitor is
instead redirected to the designated redirection file by the shell.

You can also append data to a file. You do this using the >> symbol:

$ who >> test2

S cat test2

total 20

-rw-rw-r-- 1 rich rich 53 2014-10-16 11:30 test
-rw-rw-r-- 1 rich rich 0 2014-10-16 11:32 test2
-rw-rw-r-- 1 rich rich 73 2014-10-16 11:23 testfile
rich pts/0 2014-10-17 15:34 (192.168.1.2)
$

The output generated by the who command is appended to the data already in the test2
file.

However, if you use the standard output redirection for your scripts, you can run into a
problem. Here's an example of what can happen in your script:

$ 1s -al badfile > test3

ls: cannot access badfile: No such file or directory
$ cat test3

$

397

Part 1l: Shell Scripting Basics

398

When a command produces an error message, the shell doesn’t redirect the error message to
the output redirection file. The shell created the output redirection file, but the error mes-
sage appeared on the monitor screen. Notice that there isn't an error when trying to display
the contents of the test3 file. The test3 file was created just fine, but it's empty.

The shell handles error messages separately from the normal output. If you're creating a
shell script that runs in background mode, often you must rely on the output messages
being sent to a log file. Using this technique, if any error messages occur, they don't appear
in the log file. You need to do something different.

STDERR

The shell handles error messages using the special STDERR file descriptor. The STDERR file
descriptor references the standard error output for the shell. This is the location where the
shell sends error messages generated by the shell or programs and scripts running in the shell.

By default, the STDERR file descriptor points to the same place as the STDOUT file descrip-
tor (even though they are assigned different file descriptor values). This means that, by
default, all error messages go to the monitor display.

However, as you saw in the example, when you redirect STDOUT, this doesn’t automatically
redirect STDERR. When working with scripts, you'll often want to change that behavior,
especially if you're interested in logging error messages to a log file.

Redirecting errors

You've already seen how to redirect the STDOUT data by using the redirection symbol.
Redirecting the STDERR data isn't much different; you just need to define the STDERR file
descriptor when you use the redirection symbol. You can do this in a couple of ways.

Redirecting errors only

As you saw in Table 15-1, the STDERR file descriptor is set to the value 2. You can select
to redirect only error messages by placing this file descriptor value immediately before the
redirection symbol. The value must appear immediately before the redirection symbol or it
doesn't work:

$ 1s -al badfile 2> test4
S cat test4
ls: cannot access badfile: No such file or directory

$

Now when you run the command, the error message doesn’t appear on the monitor. Instead,
the output file contains any error messages that are generated by the command. Using this
method, the shell redirects the error messages only, not the normal data. Here's another
example of mixing STDOUT and STDERR messages in the same output:

$ ls -al test badtest test2 2> testb
-rw-rw-r-- 1 rich rich 158 2014-10-16 11:32 test2

Chapter 15: Presenting Data

$ cat tests
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory

$

The normal STDOUT output from the 1s command still goes to the default STDOUT file
descriptor, which is the monitor. Because the command redirects file descriptor 2 output
(STDERR) to an output file, the shell sends any error messages generated directly to the
specified redirection file.

Redirecting errors and data

If you want to redirect both errors and the normal output, you need to use two redirection
symbols. You need to precede each with the appropriate file descriptor for the data you
want to redirect and then have them point to the appropriate output file for holding the
data:

S 1ls -al test test2 test3 badtest 2> test6 1> test?7
$ cat testé

ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
$ cat test7

-rw-rw-r-- 1 rich rich 158 2014-10-16 11:32 test2
-rw-rw-r-- 1 rich rich 0 2014-10-16 11:33 test3

$

The shell redirects the normal output of the 1s command that would have gone to STDOUT
to the test?7 file using the 1> symbol. Any error messages that would have gone to
STDERR were redirected to the testé6 file using the 2> symbol.

You can use this technique to separate normal script output from any error messages
that occur in the script. This allows you to easily identify errors without having to wade
through thousands of lines of normal output data.

Alternatively, if you want, you can redirect both STDERR and STDOUT output to the same
output file. The bash shell provides a special redirection symbol just for this purpose, the
&> symbol:

S ls -al test test2 test3 badtest &> test7

$ cat test?

ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
-rw-rw-¥r-- 1 rich rich 158 2014-10-16 11:32 test2
-rw-rw-r-- 1 rich rich 0 2014-10-16 11:33 test3

$

When you use the &> symbol, all the output generated by the command is sent to the
same location, both data and errors. Notice that one of the error messages is out of order
from what you'd expect. The error message for the badtest file (the last file to be listed)

399

Part 1l: Shell Scripting Basics

appears second in the output file. The bash shell automatically gives error messages a
higher priority than the standard output. This allows you to view the error messages
together, rather than scattered throughout the output file.

Redirecting Output in Scripts

You can use the STDOUT and STDERR file descriptors in your scripts to produce output
in multiple locations simply by redirecting the appropriate file descriptors. There are two
methods for redirecting output in the script:

B Temporarily redirecting each line

B Permanently redirecting all commands in the script

The following sections describe how each of these methods works.

Temporary redirections

If you want to purposely generate error messages in your script, you can redirect an indi-
vidual output line to STDERR. You just need to use the output redirection symbol to redi-
rect the output to the STDERR file descriptor. When you redirect to a file descriptor, you
must precede the file descriptor number with an ampersand (&):

echo "This is an error message" >&2

This line displays the text wherever the STDERR file descriptor for the script is pointing,
instead of the normal STDOUT. The following is an example of a script that uses this feature:

S cat tests8
#!/bin/bash
testing STDERR messages

echo "This is an error" >&2
echo "This is normal output"

$
If you run the script as normal, you don't notice any difference:

$./tests8
This is an error
This is normal output

$

Remember that, by default, Linux directs the STDERR output to STDOUT. However, if you redi-
rect STDERR when running the script, any text directed to STDERR in the script is redirected:

$./test8 2> test9
This is normal output

400

Chapter 15: Presenting Data

$ cat test9
This is an error

$

Perfect! The text displayed using STDOUT appears on the monitor, while the echo state-
ment text sent to STDERR is redirected to the output file.

This method is great for generating error messages in your scripts. If someone uses your scripts,
they can easily redirect the error messages using the STDERR file descriptor, as shown.

Permanent redirections

If you have lots of data that you're redirecting in your script, it can get tedious having
to redirect every echo statement. Instead, you can tell the shell to redirect a specific file
descriptor for the duration of the script by using the exec command:

$ cat testlo

#!/bin/bash

redirecting all output to a file
exec l>testout

echo "This is a test of redirecting all output"

echo "from a script to another file."

echo "without having to redirect every individual line"
$./testlo

$ cat testout

This is a test of redirecting all output

from a script to another file.

without having to redirect every individual line

$

The exec command starts a new shell and redirects the STDOUT file descriptor to a file. All
output in the script that goes to STDOUT is instead redirected to the file.

You can also redirect the STDOUT in the middle of a script:
$ cat testll
#!/bin/bash
redirecting output to different locations

exec 2>testerror

echo "This is the start of the script"
echo "now redirecting all output to another location"

exec l>testout

echo "This output should go to the testout file"

401

Part 1l: Shell Scripting Basics

402

echo "but this should go to the testerror file" >&2
$

$./testll

This is the start of the script

now redirecting all output to another location

$ cat testout

This output should go to the testout file

S cat testerror

but this should go to the testerror file

$

The script uses the exec command to redirect any output going to STDERR to the file
testerror. Next, the script uses the echo statement to display a few lines to STDOUT.
After that, the exec command is used again to redirect STDOUT to the testout file.
Notice that even when STDOUT is redirected, you can still specify the output from an echo
statement to go to STDERR, which in this case is still redirected to the testerror file.

This feature can come in handy when you want to redirect the output of just parts of a
script to an alternative location, such as an error log. There’s just one problem you run into
when using this.

After you redirect STDOUT or STDERR, you can't easily redirect them back to their original
location. If you need to switch back and forth with your redirection, you need to learn a
trick. The “Creating Your Own Redirection” section later in this chapter discusses this trick
and how to use it in your shell scripts.

Redirecting Input in Scripts

You can use the same technique used to redirect STDOUT and STDERR in your scripts to
redirect STDIN from the keyboard. The exec command allows you to redirect STDIN from a
file on the Linux system:

exec 0O< testfile

This command informs the shell that it should retrieve input from the file testfile
instead of STDIN. This redirection applies anytime the script requests input. Here’s an
example of this in action:

S cat testl2
#!/bin/bash

redirecting file input

exec 0O< testfile
count=1

while read line

Chapter 15: Presenting Data

do
echo "Line #$Scount: $line"
count=$[Scount + 1]
done
$./testl2
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
$

Chapter 14 showed you how to use the read command to read data entered from the key-
board by a user. By redirecting STDIN from a file, when the read command attempts to
read from STDIN, it retrieves data from the file instead of the keyboard.

This is an excellent technique to read data in files for processing in your scripts. A common
task for Linux system administrators is to read data from log files for processing. This is the
easiest way to accomplish that task.

Creating Your Own Redirection

When you redirect input and output in your script, you're not limited to the three default
file descriptors. I mentioned that you could have up to nine open file descriptors in the
shell. The other six file descriptors are numbered from 3 through 8 and are available for you
to use as either input or output redirection. You can assign any of these file descriptors to a
file and then use them in your scripts as well. This section shows you how to use the other
file descriptors in your scripts.

Creating output file descriptors

You assign a file descriptor for output by using the exec command. As with the standard
file descriptors, after you assign an alternative file descriptor to a file location, that redi-
rection stays permanent until you reassign it. Here's a simple example of using an alterna-
tive file descriptor in a script:

S cat testl3
#!/bin/bash
using an alternative file descriptor

exec 3>testl3out

echo "This should display on the monitor"

echo "and this should be stored in the file" >&3
echo "Then this should be back on the monitor"

$./testl3

This should display on the monitor

403

Part 1l: Shell Scripting Basics

Then this should be back on the monitor
$ cat testl3out
and this should be stored in the file

$

The script uses the exec command to redirect file descriptor 3 to an alternative file loca-
tion. When the script executes the echo statements, they display on STDOUT as you would
expect. However, the echo statements that you redirect to file descriptor 3 go to the
alternative file. This allows you to keep normal output for the monitor and redirect special
information to files, such as log files.

You can also use the exec command to append data to an existing file instead of creating a
new file:

exec 3>>testl3out

Now the output is appended to the test13out file instead of creating a new file.

Redirecting file descriptors

Here’s the trick to help you bring back a redirected file descriptor. You can assign an alter-
native file descriptor to a standard file descriptor, and vice versa. This means that you can
redirect the original location of STDOUT to an alternative file descriptor and then redirect
that file descriptor back to STDOUT. This might sound somewhat complicated, but in prac-
tice it’s fairly straightforward. This example will clear things up for you:

$ cat testl4
#!/bin/bash
storing STDOUT, then coming back to it

exec 3>&1
exec 1l>testl4out

echo "This should store in the output file"
echo "along with this line."

exec 1>&3

echo "Now things should be back to normal"
$

$./testl4

Now things should be back to normal

$ cat testl4out

This should store in the output file
along with this line.

$

404

Chapter 15: Presenting Data

This example is a little crazy so let’s walk through it piece by piece. First, the script redi-
rects file descriptor 3 to the current location of file descriptor 1, which is STDOUT. This
means that any output sent to file descriptor 3 goes to the monitor.

The second exec command redirects STDOUT to a file. The shell now redirects any output
sent to STDOUT directly to the output file. However, file descriptor 3 still points to the
original location of STDOUT, which is the monitor. If you send output data to file descriptor
3 at this point, it still goes to the monitor, even though STDOUT is redirected.

After sending some output to STDOUT, which points to a file, the script then redirects
STDOUT to the current location of file descriptor 3, which is still set to the monitor. This
means that now STDOUT points to its original location, the monitor.

This method can get confusing, but it's a common way to temporarily redirect output in
script files and then set the output back to the normal settings.

Creating input file descriptors

You can redirect input file descriptors exactly the same way as output file descriptors. Save
the STDIN file descriptor location to another file descriptor before redirecting it to a file;
when you're finished reading the file, you can restore STDIN to its original location:

S cat testls
#!/bin/bash
redirecting input file descriptors

exec 6<&0
exec 0O< testfile

count=1
while read line
do
echo "Line #$Scount: $line"
count=$[Scount + 1]
done
exec 0<&6
read -p "Are you done now? " answer
case Sanswer in
Y|y) echo "Goodbye";;
N|n) echo "Sorry, this is the end.";;
esac
$./testls
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
Are you done now? y
Goodbye
$

405

Part 1l: Shell Scripting Basics

406

In this example, file descriptor 6 is used to hold the location for STDIN. The script then
redirects STDIN to a file. All the input for the read command comes from the redirected
STDIN, which is now the input file.

When all the lines have been read, the script returns STDIN to its original location by redi-
recting it to file descriptor 6. The script tests to make sure that STDIN is back to normal by
using another read command, which this time waits for input from the keyboard.

Creating a read/write file descriptor

As odd as it may seem, you can also open a single file descriptor for both input and output.
You can then use the same file descriptor to both read data from a file and write data to the
same file.

You need to be especially careful with this method, however. As you read and write data to
and from a file, the shell maintains an internal pointer, indicating where it is in the file.
Any reading or writing occurs where the file pointer last left off. This can produce some
interesting results if you're not careful. Look at this example:

$ cat testle
#!/bin/bash
testing input/output file descriptor

exec 3<> testfile

read line <&3

echo "Read: $line"

echo "This is a test line" >&3
$ cat testfile

This is the first line.

This is the second line.

This is the third line.

$./testls

Read: This is the first line.
S cat testfile

This is the first line.

This is a test line

ine.

This is the third line.

$

This example uses the exec command to assign file descriptor 3 for both input and output
sent to and from the file testfile. Next, it uses the read command to read the first line
in the file, using the assigned file descriptor, and then it displays the read line of data in
STDOUT. After that, it uses the echo statement to write a line of data to the file opened
with the same file descriptor.

Chapter 15: Presenting Data

When you run the script, at first things look just fine. The output shows that the script
read the first line in the testfile file. However, if you display the contents of the
testfile file after running the script, you see that the data written to the file overwrote
the existing data.

When the script writes data to the file, it starts where the file pointer is located. The read
command reads the first line of data, so it left the file pointer pointing to the first charac-
ter in the second line of data. When the echo statement outputs data to the file, it places
the data at the current location of the file pointer, overwriting whatever data was there.

Closing file descriptors

If you create new input or output file descriptors, the shell automatically closes them when
the script exits. There are situations, however, when you need to manually close a file
descriptor before the end of the script.

To close a file descriptor, redirect it to the special symbol &-. This is how this looks in the
script:

exec 3>&-

This statement closes file descriptor 3, preventing it from being used any more in the
script. Here’s an example of what happens when you try to use a closed file descriptor:

$ cat badtest
#!/bin/bash
testing closing file descriptors

exec 3> testl7file

echo "This is a test line of data" >&3
exec 3>&-

echo "This won't work" >&3

$./badtest

./badtest: 3: Bad file descriptor
$

After you close the file descriptor, you can't write any data to it in your script or the shell
produces an error message.

There’s yet another thing to be careful of when closing file descriptors. If you open the
same output file later on in your script, the shell replaces the existing file with a new file.
This means that if you output any data, it overwrites the existing file. Consider the follow-
ing example of this problem:

407

Part 1l: Shell Scripting Basics

408

$ cat testl?’
#!/bin/bash
testing closing file descriptors

exec 3> testl7file
echo "This is a test line of data" >&3
exec 3>&-

cat testl7file

exec 3> testl7file

echo "This'll be bad" >&3

$./testl7?

This is a test line of data
$ cat testl7file

This'll be bad

$

After sending a data string to the test17file file and closing the file descriptor, the
script uses the cat command to display the contents of the file. So far, so good. Next, the
script reopens the output file and sends another data string to it. When you display the
contents of the output file, all you see is the second data string. The shell overwrote the
original output file.

Listing Open File Descriptors

With only nine file descriptors available to you, you'd think that it wouldn't be hard to
keep things straight. Sometimes, however, it’s easy to get lost when trying to keep track of
which file descriptor is redirected where. To help you keep your sanity, the bash shell pro-
vides the 1sof command.

The 1sof command lists all the open file descriptors on the entire Linux system. This is
somewhat of a controversial feature, because it can provide information about the Linux
system to non-system-administrators. That’s why many Linux systems hide this command
so users don't accidentally stumble across it.

On many Linux systems (such as Fedora) the 1sof command is located in the /usr/sbin
directory. To run it with a normal user account, I have to reference it by its full pathname:

¢ /usr/sbin/lsof

This produces an amazing amount of output. It displays information about every file cur-
rently open on the Linux system. This includes all the processes running on background, as
well as any user accounts logged in to the system.

Chapter 15: Presenting Data

Plenty of command line parameters and options are available to help filter out the 1sof
output. The most commonly used are -p, which allows you to specify a process ID (PID),
and -d, which allows you to specify the file descriptor numbers to display.

To easily determine the current PID of the process, you can use the special environment
variable $3, which the shell sets to the current PID. The -a option is used to perform a
Boolean AND of the results of the other two options, to produce the following:

$ /usr/sbin/lsof -a -p $$ -4 0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

bash 3344 rich ou CHR 136,0 2 /dev/pts/0
bash 3344 rich 1lu CHR 136,0 2 /dev/pts/0
bash 3344 rich 2u CHR 136,0 2 /dev/pts/0
$

This shows the default file descriptors (0, 1, and 2) for the current process (the bash shell).
The default output of 1sof contains several columns of information, described in Table 15-2.

TABLE 15-2 Default Isof Output

Column Description

COMMAND The first nine characters of the name of the command in the process

PID The process ID of the process

USER The login name of the user who owns the process

FD The file descriptor number and access type [r—(read), w—(write), u—(read/
write)]

TYPE The type of file [CHR—(character), BLK— (block), DIR— (directory), REG—
(regular file)]

DEVICE The device numbers (major and minor) of the device

SIZE If available, the size of the file

NODE The node number of the local file

NAME The name of the file

The file type associated with STDIN, STDOUT, and STDERR is character mode. Because the
STDIN, STDOUT, and STDERR file descriptors all point to the terminal, the name of the
output file is the device name of the terminal. All three standard files are available for both
reading and writing (although it does seem odd to be able to write to STDIN and read from
STDOUT).

Now, let’s look at the results of the 1sof command from inside a script that’s opened a
couple of alternative file descriptors:

409

Part 1l: Shell Scripting Basics

410

$ cat testls
#!/bin/bash
testing lsof with file descriptors

exec 3> testl8filel
exec 6> testl8file2

exec 7< testfile

/usr/sbin/lsof -a -p $$ -d0,1,2,3,6,7

$./testls

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

testl8 3594 rich ou CHR 136,0 2 /dev/pts/0

testl8 3594 rich 1lu CHR 136,0 2 /dev/pts/0

testl8 3594 rich 2u CHR 136,0 2 /dev/pts/0

18 3594 rich 3w REG 253,0 0 360712 /home/rich/testl18filel
18 3594 rich 6w REG 253,0 0 360715 /home/rich/testl8file2
18 3594 rich 7r REG 253,0 73 360717 /home/rich/testfile

$

The script creates three alternative file descriptors, two for output (3 and 6) and one for
input (7). When the script runs the 1sof command, you can see the new file descriptors
in the output. We truncated the first part of the output so you could see the results of the
filename. The filename shows the complete pathname for the files used in the file descrip-
tors. It shows each of the files as type REG, which indicates that they are reqular files on
the filesystem.

Suppressing Command Output

Sometimes, you may not want to display any output from your script. This often occurs

if you're running a script as a background process (see Chapter 16). If any error messages
occur from the script while it’s running in the background, the shell e-mails them to the
owner of the process. This can get tedious, especially if you run scripts that generate minor
nuisance errors.

To solve that problem, you can redirect STDERR to a special file called the null file. The null
file is pretty much what it says it is — a file that contains nothing. Any data that the shell
outputs to the null file is not saved, thus the data are lost.

The standard location for the null file on Linux systems is /dev/null. Any data you redi-
rect to that location is thrown away and doesn't appear:

$ 1s -al > /dev/null
$ cat /dev/null
$

This is a common way to suppress any error messages without actually saving them:

Chapter 15: Presenting Data

$ 1ls -al badfile testlé 2> /dev/null
-YWXY--Y-- 1 rich rich 135 Oct 29 19:57 testlé*
$

You can also use the /dev/null file for input redirection as an input file. Because the /
dev/null file contains nothing, it is often used by programmers to quickly remove data
from an existing file without having to remove the file and re-create it:

$ cat testfile

This is the first line.
This is the second line.
This is the third line.

$ cat /dev/null > testfile
$ cat testfile

$

The file testfile still exists on the system, but now it is empty. This is a common method
used to clear out log files that must remain in place for applications to operate.

Using Temporary Files

The Linux system contains a special directory location reserved for temporary files. Linux
uses the /tmp directory for files that dont need to be kept indefinitely. Most Linux distribu-
tions configure the system to automatically remove any files in the /tmp directory at bootup.

Any user account on the system has privileges to read and write files in the /tmp directory.
This feature provides an easy way for you to create temporary files that you don't necessar-
ily have to worry about cleaning up.

There’s even a specific command to use for creating a temporary file. The mktemp command
allows you to easily create a unique temporary file in the /tmp folder. The shell creates the
file but doesn’t use your default umask value (see Chapter 7). Instead, it only assigns read
and write permissions to the file’s owner and makes you the owner of the file. After you
create the file, you have full access to read and write to and from it from your script, but no
one else can access it (other than the root user, of course).

Creating a local temporary file

By default, mktemp creates a file in the local directory. To create a temporary file in a local
directory with the mktemp command, you just need to specify a filename template. The
template consists of any text filename, plus six X’s appended to the end of the filename:

S mktemp testing.XXXXXX
S 1ls -al testing*
“rW------- 1 rich rich 0 Oct 17 21:30 testing.UfIil3

411

Part 1l: Shell Scripting Basics

The mktemp command replaces the six X's with a six-character code to ensure the filename
is unique in the directory. You can create multiple temporary files and be assured that each
one is unique:

$ mktemp testing.XXXXXX
testing.1DRLuV

$ mktemp testing.XXXXXX
testing.lVBtkW

$ mktemp testing.XXXXXX
testing.PggNKG

$ 1s -1 testing*

-rwW------- 1 rich rich 0 Oct 17 21:57 testing.lDRLuVv
-TW------- 1 rich rich 0 Oct 17 21:57 testing.PggNKG
-rwW------- 1 rich rich 0 Oct 17 21:30 testing.UfIil3
-rw------- 1 rich rich 0 Oct 17 21:57 testing.lVBtkW

As you can see, the output of the mktemp command is the name of the file that it creates.
When you use the mktemp command in a script, you'll want to save that filename in a vari-
able, so you can refer to it later on in the script:

$ cat testl9
#!/bin/bash
creating and using a temp file

tempfile=$ (mktemp testl9.XXXXXX)
exec 3>$tempfile
echo "This script writes to temp file S$tempfile"

echo "This is the first line" >&3
echo "This is the second line." >&3
echo "This is the last line." >&3
exec 3>&-

echo "Done creating temp file. The contents are:"
cat Stempfile

rm -f $tempfile 2> /dev/null

$./testl9

This script writes to temp file testl9.vCHoya
Done creating temp file. The contents are:

This is the first line

This is the second line.

This is the last line.

$ 1s -al testlox

-YWXY--Y-- 1 rich rich 356 Oct 29 22:03 testlo*
$

412

Chapter 15: Presenting Data

The script uses the mktemp command to create a temporary file and assigns the filename to
the $tempfile variable. It then uses the temporary file as the output redirection file for
file descriptor 3. After displaying the temporary filename on STDOUT, it writes a few lines
to the temporary file, and then it closes the file descriptor. Finally, it displays the contents
of the temporary file and then uses the rm command to remove it.

Creating a temporary file in /tmp

The -t option forces mktemp to create the file in the temporary directory of the system.
When you use this feature, the mktemp command returns the full pathname used to create
the temporary file, not just the filename:

$ mktemp -t test.XXXXXX

/tmp/test .xG3374

$ 1ls -al /tmp/test*

-TW------- 1 rich rich 0 2014-10-29 18:41 /tmp/test.xG3374

Because the mktemp command returns the full pathname, you can then reference the tem-
porary file from any directory on the Linux system, no matter where it places the temporary
directory:

$ cat test20
#!/bin/bash
creating a temp file in /tmp

tempfile=$ (mktemp -t tmp.XXXXXX)

echo "This is a test file." > Stempfile
echo "This is the second line of the test." >> Stempfile

echo "The temp file is located at: Stempfile"
cat Stempfile

rm -f Stempfile

$./test20

The temp file is located at: /tmp/tmp.Ma3390
This is a test file.

This is the second line of the test.

$
When mktemp creates the temporary file, it returns the full pathname to the environment

variable. You can then use that value in any command to reference the temporary file.

Creating a temporary directory

The -d option tells the mktemp command to create a temporary directory instead of a file.
You can then use that directory for whatever purposes you need, such as creating addi-
tional temporary files:

413

Part 1l: Shell Scripting Basics

414

$ cat test2l
#!/bin/bash
using a temporary directory

tempdir=$ (mktemp -d dir.XXXXXX)

cd stempdir

tempfilel=$ (mktemp
tempfile2=$ (mktemp

exec
exec

echo
echo
echo

7> Stempfilel
8> Stempfile2

"Sending data

temp . XXXXXX)
temp . XXXXXX)

to directory $tempdir"

"This is a test line of data for Stempfilel™
"This is a test line of data for Stempfile2"
$./test2l

Sending data to

directory dir.ouT8S8

rich
rich
rich
rich

rich
rich
rich
rich

rich
rich
rich
rich

rich
rich
rich
rich

ouT8S8]S cat temp.N5F306

is a test line of data for temp.N5F306

ouT8S8]$ cat temp.SQslb7

is a test line of data for temp.SQslb7

$ 1ls -al

total 72
drwxr-xr-x 3
drwXr-xXr-x 9
drwx------ 2
-YWXr--Y-- 1
$ cd dir.ouT8S8
[dir.ouT8S8]$ 1s -al
total 16
drwx------ 2
drwxr-xr-x 3
-IrW------- 1
-rw------- 1
[dir.

This

[dir.

This
[dir.ouT8S8]$

4096
4096
4096

338

4096
4096
44
44

Oct
Oct
Oct
Oct

Oct
Oct
Oct
Oct

17
17
17
17

17
17
17
17

>&7
>&8

22
09
22
22

22
22
22
22

:20
144
:20
: 20

: 20
:20
: 20
:20

./

../
dir.ouT8ss/
test21l*

-/

./
temp.N5F306
temp.SQs1b7

The script creates a directory in the current directory and uses the cd command to change
to that directory before creating two temporary files. The two temporary files are then
assigned to file descriptors and used to store output from the script.

Logging Messages

Sometimes, it's beneficial to send output both to the monitor and to a file for logging.
Instead of having to redirect output twice, you can use the special tee command.

The tee command is like a T-connector for pipes. It sends data from STDIN to two desti-
nations at the same time. One destination is STDOUT. The other destination is a filename

specified on the tee command line:

tee filename

Chapter 15: Presenting Data

Because tee redirects data from STDIN, you can use it with the pipe command to redirect
output from any command:

$ date | tee testfile

Sun Oct 19 18:56:21 EDT 2014
S cat testfile

Sun Oct 19 18:56:21 EDT 2014

$

The output appears in STDOUT and is written to the file specified. Be careful: By default,
the tee command overwrites the output file on each use:

$ who | tee testfile

rich pts/0 2014-10-17 18:41 (192.168.1.2)
$ cat testfile

rich ptS/O 2014-10-17 18:41 (192.168.1.2)
$

If you want to append data to the file, you must use the -a option:

$ date | tee -a testfile
Sun Oct 19 18:58:05 EDT 2014
$ cat testfile

rich pts/0 2014-10-17 18:41 (192.168.1.2)
Sun Oct 19 18:58:05 EDT 2014
$

Using this technique, you can both save data in files and display the data on the monitor
for your users:

S cat test22
#!/bin/bash
using the tee command for logging

tempfile=test22file

echo "This is the start of the test" | tee $tempfile

echo "This is the second line of the test" | tee -a Stempfile
echo "This is the end of the test" | tee -a Stempfile

$./test22

This is the start of the test

This is the second line of the test
This is the end of the test

S cat test22file

This is the start of the test

This is the second line of the test
This is the end of the test

$

Now you can save a permanent copy of your output at the same time as you're displaying it
to your users.

415

Part 1l: Shell Scripting Basics

416

Practical Example

File redirection is very common both when reading files into scripts and when outputting
data from a script into a file. This example script does both of those things. It reads a .csv-
formatted data file and outputs SQI. INSERT statements to insert the data into a database
(see Chapter 25).

The shell script uses a command line parameter to define the name of the .csv file from
which to read the data. The .csv format is used to export data from spreadsheets, so you
can place the database data into a spreadsheet, save the spreadsheet in .csv format, read
the file, and create INSERT statements to insert the data into a MySQL database.

Here’s what the script looks like:

Scat test23
#!/bin/bash
read file and create INSERT statements for MySQL

outfile='members.sqgl'
IFS="',"
while read lname fname address city state zip
do
cat >> Soutfile << EOF
INSERT INTO members (lname, fname,address,city,state,zip) VALUES
('$lname', 'S$fname', 'Saddress', 'S$city', '$state', '$zip');
EOF
done < ${1}
$

That'’s a pretty short script, thanks to the file redirection that goes on! There are three
redirection operations happening in the script. The while loop uses the read statement
(discussed in Chapter 14) to read text from the data file. Notice in the done statement the
redirection symbol:

done < ${1}

The $1 represents the first command line parameter when you run the test23 program.
That specifies the data file from which to read the data. The read statement parses the
text using the IFS character, which we specify as a comma.

The other two redirection operations in the script both appear in the same statement:

cat >> Soutfile << EOF

Chapter 15: Presenting Data

This one statement has one output append redirection (the double greater-than symbol) and
one input append redirection (the double less-than symbol). The output redirection appends
the cat command output to the file specified by the Soutfile variable. The input to the
cat command is redirected from the standard input to use the data stored inside the script.
The EOF symbol marks the start and end delimiter of the data that's appended to the file:

INSERT INTO members (lname, fname,address,city,state,zip) VALUES
('$lname', 'Sfname', 'Saddress', 'Scity', 'S$state', 'S$zip');

The text creates a standard SQL. INSERT statement. Notice that the data values are
replaced with the variables for the data read from the read statement.

So basically the while loop reads on the data one line at a time, plugs those data values
into the INSERT statement template, then outputs the result to the output file.

For this experiment, I used this as the input data file:

$ cat members.csv

Blum,Richard, 123 Main St.,Chicago,IL,60601

Blum, Barbara,123 Main St.,Chicago, IL,60601
Bresnahan, Christine, 456 Oak Ave.,Columbus,OH,43201
Bresnahan, Timothy, 456 Oak Ave.,Columbus,OH, 43201

$
When you run the script, nothing appears in the output on the monitor:

$./test23 < members.csv

$
But when you look at the members.sqgl output file, you should see the output data:

$ cat members.sqgl
INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Blum',

'Richard', '123 Main St.', 'Chicago', 'IL', '60601'");

INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Blum',
'Barbara', '123 Main St.', 'Chicago', 'IL', '60601');

INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Bresnahan',
'Christine', '456 Oak Ave.',6 'Columbus', 'OH', '43201"');

INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Bresnahan',
'Timothy', '456 Oak Ave.', 'Columbus', 'OH', '43201');

$

The script worked exactly as expected! Now you can easily import the members. sql file
into a MySQL database table (see Chapter 25).

417

Part 1l: Shell Scripting Basics

418

Summary

Understanding how the bash shell handles input and output can come in handy when creat-
ing your scripts. You can manipulate both how the script receives data and how it displays
data, to customize your script for any environment. You can redirect the input of a script
from the standard input (STDIN) to any file on the system. You can also redirect the output
of the script from the standard output (STDOUT) to any file on the system.

Besides the STDOUT, you can redirect any error messages your script generates by redirect-
ing the STDERR output. This is accomplished by redirecting the file descriptor associated
with the STDERR output, which is file descriptor 2. You can redirect STDERR output to the
same file as the STDOUT output or to a completely separate file. This enables you to sepa-
rate normal script messages from any error messages generated by the script.

The bash shell allows you to create your own file descriptors for use in your scripts. You can
create file descriptors 3 through 8 and assign them to any output file you desire. After you
create a file descriptor, you can redirect the output of any command to it, using the stan-
dard redirection symbols.

The bash shell also allows you to redirect input to a file descriptor, providing an easy way
to read data contained in a file into your script. You can use the 1sof command to display
the active file descriptors in your shell.

Linux systems provide a special file, called /dev/null, to allow you to redirect output that
you don't want. The Linux system discards anything redirected to the /dev/null file. You
can also use this file to produce an empty file by redirecting the contents of the /dev/
null file to the file.

The mktemp command is a handy feature of the bash shell that allows you to easily create
temporary files and directories. Simply specify a template for the mktemp command, and it
creates a unique file each time you call it, based on the file template format. You can also
create temporary files and directories in the /tmp directory on the Linux system, which is
a special location that isn't preserved between system boots.

The tee command is a handy way to send output both to the standard output and to a log
file. This enables you to display messages from your script on the monitor and store them
in a log file at the same time.

In Chapter 16, you'll see how to control and run your scripts. Linux provides several dif-
ferent methods for running scripts other than directly from the command line interface
prompt. You'll see how to schedule your scripts to run at a specific time, as well as learn
how to pause them while they’re running.

CHAPTER

Script Control

IN THIS CHAPTER

Handling signals

Running scripts in the background
Forbidding hang-ups

Controlling a Job

Modifying script priority

Automating script execution

on your Linux system. So far in this book, the only way we've run scripts is directly from the

command line interface in real-time mode. This isn’t the only way to run scripts in Linux.
Quite a few options are available for running your shell scripts. There are also options for control-
ling your scripts. Various control methods include sending signals to your script, modifying a
script’s priority, and switching the run mode while a script is running. This chapter examines the
different ways you can control your shell scripts.

A s you start building advanced scripts, you'll probably wonder how to run and control them

Handling Signals

Linux uses signals to communicate with processes running on the system. Chapter 4 described the
different Linux signals and how the Linux system uses these signals to stop, start, and kill pro-
cesses. You can control the operation of your shell script by programming the script to perform cer-
tain commands when it receives specific signals.

Signaling the bash shell

There are more than 30 Linux signals that can be generated by the system and applications. Table 16-1
lists the most common Linux system signals that you'll run across in your shell script writing.

419

Part 1l: Shell Scripting Basics

420

TABLE 16-1 Linux Signals

Signal Value Description

1 SIGHUP Hangs up the process

2 SIGINT Interrupts the process

3 SIGQUIT Stops the process

9 SIGKILL Unconditionally terminates the process

15 SIGTERM Terminates the process if possible

17 SIGSTOP Unconditionally stops, but doesn’t terminate, the process
18 SIGTSTP Stops or pauses the process, but doesn’t terminate

19 SIGCONT Continues a stopped process

By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals it receives
(so an interactive shell cannot be accidentally terminated). However, the bash shell does
not ignore any SIGHUP (1) and SIGINT (2) signals it receives.

If the bash shell receives a SIGHUP signal, such as when you leave an interactive shell, it
exits. Before it exits, however, it passes the SIGHUP signal to any processes started by the
shell, including any running shell scripts.

With a SIGINT signal, the shell is just interrupted. The Linux kernel stops giving the shell
processing time on the CPU. When this happens, the shell passes the SIGINT signal to any
processes started by the shell to notify them of the situation.

As you probably have noticed, the shell passes these signals on to your shell script program
for processing. However, a shell script’s default behavior does not govern these signals,
which may have an adverse effect on the script’s operation. To avoid this situation, you can
program your script to recognize signals and perform commands to prepare the script for
the consequences of the signal.

Generating signals

The bash shell allows you to generate two basic Linux signals using key combinations on
the keyboard. This feature comes in handy if you need to stop or pause a runaway script.

Interrupting a process

The Ctrl+C key combination generates a SIGINT signal and sends it to any processes cur-
rently running in the shell. You can test this by running a command that normally takes a
long time to finish and pressing the Ctrl+C key combination:

S sleep 100
e
$

Chapter 16: Script Control

The Ctrl+C key combination sends a STGINT signal, which simply stops the current process
running in the shell. The sleep command pauses the shell’s operation for the specified
number of seconds and returns the shell prompt. By pressing the Ctrl+C key combination
before the time passed, the sleep command terminated prematurely.

Pausing a process

Instead of terminating a process, you can pause it in the middle of whatever it’s doing.
Sometimes, this can be a dangerous thing (for example, if a script has a file lock open on
a crucial system file), but often it allows you to peek inside what a script is doing without
actually terminating the process.

The Ctrl+Z key combination generates a SIGTSTP signal, stopping any processes running in
the shell. Stopping a process is different than terminating the process. Stopping the process
leaves the program in memory and able to continue running from where it left off. In the
“Controlling the Job” section later in this chapter, you learn how to restart a process that'’s
been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the process has been
stopped:

$ sleep 100
*Z
[1]+ Stopped sleep 100

The number in the square brackets is the job number assigned by the shell. The shell refers
to each process running in the shell as a job and assigns each job a unique job number
within the current shell. It assigns the first started process job number 1, the second job
number 2, and so on.

If you have a stopped job assigned to your shell session, bash warns you if you try to exit
the shell:

$ sleep 100

*Z

[1]+ Stopped sleep 100
S exit

exit

There are stopped jobs.

$

You can view the stopped jobs using the ps command:

$ sleep 100

Z

[1]+ Stopped sleep 100
$
$ ps -1

421

Part 1l: Shell Scripting Basics

422

F S UID PID PPID
0 S 501 2431 2430
0 T 501 2456 2431
0 R 501 2458 2431
$

PRI NI ADDR SZ WCHAN TTY TIME CMD
80 0 - 27118 wait pts/0 00:00:00 bash
80 0 - 25227 signal pts/0 00:00:00 sleep
80 0 - 27034 - pts/0 00:00:00 ps

o o o N

In the S column (process state), the ps command shows the stopped job's state as T. This
indicates the command is either being traced or is stopped.

If you really want to exit the shell with a stopped job still active, just type the exit com-
mand again. The shell exits, terminating the stopped job. Alternately, now that you know
the PID of the stopped job, you can use the kill command to send a SIGKILL signal to
terminate it:

kill -9 2456

$
$
[1]+ Killed sleep 100

$

When you kill the job, initially you don't get any response. However, the next time you do
something that produces a shell prompt (such as pressing the Enter key), you'll see a message
indicating that the job was killed. Each time the shell produces a prompt, it also displays the
status of any jobs that have changed states in the shell. After you kill a job, the next time

you force the shell to produce a prompt, it displays a message showing that the job was killed
while running.

Trapping signals

Instead of allowing your script to leave signals ungoverned, you can trap them when they
appear and perform other commands. The trap command allows you to specify which
Linux signals your shell script can watch for and intercept from the shell. If the script
receives a signal listed in the trap command, it prevents it from being processed by the
shell and instead handles it locally.

The format of the trap command is:

trap commands signals

On the trap command line, you just list the commands you want the shell to execute,
along with a space-separated list of signals you want to trap. You can specify the signals
either by their numeric value or by their Linux signal name.

Here’s a simple example of using the trap command to capture the SIGINT signal and gov-
ern the script’s behavior when the signal is sent:

S cat testl.sh
#!/bin/bash

Testing signal trapping
#

Chapter 16: Script Control

trap "echo ' Sorry! I have trapped Ctrl-C'" SIGINT

#
echo This is a test script
#
count=1
while [Scount -le 10]
do
echo "Loop #$count"
sleep 1
count=$[Scount + 1]
done
#
echo "This is the end of the test script"
#

The trap command used in this example displays a simple text message each time it
detects the SIGINT signal. Trapping this signal makes this script impervious to the user
attempting to stop the program by using the bash shell keyboard Ctrl+C command:

$./testl.sh

This is a test script

Loop #1

Loop #2

Loop #3

Loop #4

Loop #5

*C Sorry! I have trapped Ctrl-C
Loop #6

Loop #7

Loop #8

*C Sorry! I have trapped Ctrl-C
Loop #9

Loop #10

This is the end of the test script
$

Each time the Ctrl+C key combination was used, the script executed the echo statement
specified in the trap command instead of not managing the signal and allowing the shell
to stop the script.

Trapping a script exit

Besides trapping signals in your shell script, you can trap them when the shell script exits.
This is a convenient way to perform commands just as the shell finishes its job.

To trap the shell script exiting, just add the EXIT signal to the trap command:

S cat test2.sh
#!/bin/bash

423

Part 1l: Shell Scripting Basics

424

Trapping the script exit
#
trap "echo Goodbye..." EXIT
#
count=1
while [Scount -le 5]
do
echo "Loop #S$Scount"
sleep 1
count=$[Scount + 1]
done
#
$
$./test2.sh
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Goodbye. ..
$

When the script gets to the normal exit point, the trap is triggered, and the shell executes
the command you specify on the trap command line. The EXIT trap also works if you pre-
maturely exit the script:

$./test2.sh
Loop #1
Loop #2
Loop #3
*CGoodbye. ..

$

Because the SIGINT signal isn't listed in the trap command list, when the Ctrl+C key
combination is used to send that signal, the script exits. However, before the script exits,
because the EXIT is trapped, the shell executes the trap command.

Modifying or removing a trap

To handle traps differently in various sections of your shell script, you simply reissue the
trap command with new options:

$ cat test3.sh

#!/bin/bash

Modifying a set trap

#

trap "echo ' Sorry... Ctrl-C is trapped.'" SIGINT

Chapter 16: Script Control

#
count=1
while [Scount -le 5]
do
echo "Loop #Scount"
sleep 1
count=$[Scount + 1]
done
#
trap "echo ' I modified the trap!'" SIGINT
#
count=1
while [Scount -le 5]
do
echo "Second Loop #S$Scount"
sleep 1
count=$[Scount + 1]
done
#
$

After the signal trap is modified, the script manages the signal or signals differently.
However, if a signal is received before the trap is modified, the script processes it per the
original trap command:

$./test3.sh

Loop #1

Loop #2

Loop #3

*C Sorry... Ctrl-C is trapped.
Loop #4

Loop #5

Second Loop #1

Second Loop #2

*C I modified the trap!
Second Loop #3

Second Loop #4

Second Loop #5

$

You can also remove a set trap. Simply add two dashes after the trap command and a list
of the signals you want to return to default behavior:

$ cat test3b.sh

#!/bin/bash

Removing a set trap

#

trap "echo ' Sorry... Ctrl-C is trapped.'" SIGINT
#

425

Part 1l: Shell Scripting Basics

count=1
while [S$count -le 5]
do
echo "Loop #S$count"
sleep 1
count=$[Scount + 1]
done
#
Remove the trap
trap -- SIGINT
echo "I just removed the trap"
#
count=1
while [Scount -le 5]
do
echo "Second Loop #Scount"
sleep 1
count=$[Scount + 1]
done
#
$./test3b.sh
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5

I just removed the trap
Second Loop #1
Second Loop #2
Second Loop #3

Tip

You can use a single dash instead of a double dash after the t rap command to return signals to their default behav-
ior. Both the single and double dash work properly.

After the signal trap is removed, the script handles the SIGINT signal in its default man-
ner, terminating the script. However, if a signal is received before the trap is removed, the
script processes it per the original trap command:

$./test3b.sh

Loop #1

Loop #2

Loop #3

*C Sorry... Ctrl-C is trapped.
Loop #4

426

Chapter 16: Script Control

Loop #5

I just removed the trap
Second Loop #1

Second Loop #2

e

$

In this example, the first Ctrl+C key combination was used to attempt to terminate the
script prematurely. Because the signal was received before the trap was removed, the script
executed the command specified in the trap. After the script executed the trap removal,
then Ctrl+C could prematurely terminate the script.

Running Scripts in Background Mode

Sometimes, running a shell script directly from the command line interface is inconve-
nient. Some scripts can take a long time to process, and you may not want to tie up the
command line interface waiting. While the script is running, you can't do anything else in
your terminal session. Fortunately, there’s a simple solution to that problem.

When you use the ps command, you see a whole bunch of different processes running on
the Linux system. Obviously, all these processes are not running on your terminal moni-
tor. This is called running processes in the background. In background mode, a process runs
without being associated with a STDIN, STDOUT, and STDERR on a terminal session (see
Chapter 15).

You can exploit this feature with your shell scripts as well, allowing them to run behind
the scenes and not lock up your terminal session. The following sections describe how to
run your scripts in background mode on your Linux system.

Running in the background

Running a shell script in background mode is a fairly easy thing to do. To run a shell script
in background mode from the command line interface, just place an ampersand symbol (&)
after the command:

S cat test4.sh
#!/bin/bash
Test running in the background

#
count=1
while [$count -le 10]
do

sleep 1

count=$[Scount + 1]
done

427

Part 1l: Shell Scripting Basics

428

#
$
$./testd4.sh &
[1] 3231

$

When you place the ampersand symbol after a command, it separates the command from
the bash shell and runs it as a separate background process on the system. The first thing
that displays is the line:

[1] 3231

The number in the square brackets is the job number assigned by the shell to the back-
ground process. The next number is the Process ID (PID) the Linux system assigns to the
process. Every process running on the Linux system must have a unique PID.

As soon as the system displays these items, a new command line interface prompt appears.
You are returned to the shell, and the command you executed runs safely in background
mode. At this point, you can enter new commands at the prompt.

When the background process finishes, it displays a message on the terminal:
[1] Done ./test4.sh

This shows the job number and the status of the job (Done), along with the command used
to start the job.

Be aware that while the background process is running, it still uses your terminal monitor
for STDOUT and STDERR messages:

S cat test5.sh
#!/bin/bash
Test running in the background with output

#
echo "Start the test script"
count=1
while [$Scount -le 5]
do
echo "Loop #S$Scount"
sleep 5
count=$[$count + 1]
done
#
echo "Test script is complete"
#
$
$./test5.sh &
[1] 3275

Chapter 16: Script Control

$ Start the test script
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Test script is complete

[1] Done ./test5.sh

You'll notice from the example that the output from the test5. sh script displays. The
output intermixes with the shell prompt, which is why Start the test script appears
next to the $ prompt.

You can still issue commands while this output is occurring:

$./test5.sh &

[11 3319

$ Start the test script
Loop #1

Loop #2

Loop #3

1s myprog*

myprog myprog.c

$ Loop #4

Loop #5

Test script is complete

[11+ Done ./test5.sh
$S

While the test5. sh script is running in the background, the command 1s myprog*
was entered. The script’s output, the typed command, and the command’s output all inter-
mixed with each other’s output display. This can be confusing! It is a good idea to redirect
STDOUT and STDERR for scripts you will be running in the background (Chapter 15) to
avoid this messy output.

Running multiple background jobs

You can start any number of background jobs at the same time from the command line
prompt:

S ./test6.sh &

[1] 3568

$ This is Test Script #1

$./test7.sh &

429

Part 1l: Shell Scripting Basics

[2] 3570
$ This is Test Script #2

$./test8.sh &
[3] 3573
$ And...another Test script

$./test9.sh &
[4] 3576
$ Then...there was one more test script

$

Each time you start a new job, the Linux system assigns it a new job number and PID. You
can see that all the scripts are running using the ps command:

$ ps
PID TTY TIME CMD

2431 pts/0 00:00:00 bash
3568 pts/0 00:00:00 test6.sh
3570 pts/0 00:00:00 test7.sh
3573 pts/0 00:00:00 test8.sh
3574 pts/0 00:00:00 sleep
3575 pts/0 00:00:00 sleep
3576 pts/0 00:00:00 test9.sh
3577 pts/0 00:00:00 sleep
3578 pts/0 00:00:00 sleep
3579 pts/0 00:00:00 ps

$

You must be careful when using background processes from a terminal session. Notice in the
output from the ps command that each of the background processes is tied to the terminal
session (pts/0) terminal. If the terminal session exits, the background process also exits.

NoTE
Earlier in this chapter we mentioned that when you attempt to exit a terminal session, a warning is issued if there

are stopped processes. However, with background processes, only some terminal emulators remind you that a back-
ground job is running, before you attempt to exit the terminal session.

If you want your script to continue running in background mode after you have logged off
the console, there’s something else you need to do. The next section discusses that process.

Running Scripts without a Hang-Up

Sometimes, you may want to start a shell script from a terminal session and let the script
run in background mode until it finishes, even if you exit the terminal session. You can do
this by using the nohup command.

430

Chapter 16: Script Control

The nohup command runs another command blocking any SIGHUP signals that are sent to
the process. This prevents the process from exiting when you exit your terminal session.

The format used for the nohup command is as follows:

$ nohup ./testl.sh &
[1] 3856
$ nohup: ignoring input and appending output to 'nohup.out'

$

As with a normal background process, the shell assigns the command a job number, and the
Linux system assigns a PID number. The difference is that when you use the nohup com-
mand, the script ignores any SIGHUP signals sent by the terminal session if you close the
session.

Because the nohup command disassociates the process from the terminal, the process loses
the STDOUT and STDERR output links. To accommodate any output generated by the com-
mand, the nohup command automatically redirects STDOUT and STDERR messages to a file,
called nohup.out

NoTE
If you run another command using nohup, the output is appended to the existing nohup . out file. Be careful when

running multiple commands from the same directory, because all the output is sent to the same nohup . out file,
which can get confusing.

The nohup . out file contains all the output that would normally be sent to the terminal
monitor. After the process finishes running, you can view the nohup.out file for the out-
put results:

$ cat nohup.out

This is a test script
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop 10

This is the end of the test script
$

R W o 30 Ul & WN K

The output appears in the nohup . out file just as if the process ran on the command line.

431

Part 1l: Shell Scripting Basics

432

Controlling the Job

Earlier in this chapter, you saw how to use the Ctrl+C key combination to stop a job run-
ning in the shell. After you stop a job, the Linux system lets you either kill or restart it.
You can kill the process by using the kill command. Restarting a stopped process requires
that you send it a STGCONT signal.

The function of starting, stopping, killing, and resuming jobs is called job control. With job
control, you have full control over how processes run in your shell environment. This sec-
tion describes the commands used to view and control jobs running in your shell.

Viewing jobs
The key command for job control is the jobs command. The jobs command allows you to
view the current jobs being handled by the shell:

S cat testl0.sh
#!/bin/bash
Test job control

#
echo "Script Process ID: $$"
#
count=1
while [$count -le 10]
do
echo "Loop #Scount"
sleep 10
count=$[Scount + 1]
done
#
echo "End of script..."
#
$

The script uses the $3 variable to display the PID that the Linux system assigns to the
script; then it goes into a loop, sleeping for 10 seconds at a time for each iteration.

You can start the script from the command line interface and then stop it using the Ctrl+Z
key combination:

$./testl0.sh

Script Process ID: 1897

Loop #1

Loop #2

7z

[1]1+ Stopped ./testl1l0.sh
$

Chapter 16: Script Control

Using the same script, another job is started as a background process, using the ampersand
symbol. To make life a little easier, the output of that script is redirected to a file so it
doesn't appear on the screen:

$./testl0.sh > testl0.out &
[2] 1917
$

The jobs command enables you to view the jobs assigned to the shell. The jobs command
shows both the stopped and the running jobs, along with their job numbers and the com-
mands used in the jobs:

S jobs

[11+ Stopped ./testl0.sh

[2]- Running ./testl0.sh > testlO.out &
$

You can view the various jobs’ PIDs by adding the -1 parameter (lowercase L) on the jobs
command:

$ jobs -1

[1]1+ 1897 Stopped ./testl0.sh

[2]- 1917 Running ./testl0.sh > testlO.out &
$

The jobs command uses a few different command line parameters, as shown in Table 16-2.

TABLE 16-2 The jobs Command Parameters

Parameter Description

-1 Lists the PID of the process along with the job number

-n Lists only jobs that have changed their status since the last notification from the
shell

-p Lists only the PIDs of the jobs

-r Lists only the running jobs

-s Lists only stopped jobs

You probably noticed the plus and minus signs in the jobs command output. The job with
the plus sign is considered the default job. It would be the job referenced by any job control
commands if a job number wasn't specified in the command line.

The job with the minus sign is the job that would become the default job when the current
default job finishes processing. There will be only one job with the plus sign and one job
with the minus sign at any time, no matter how many jobs are running in the shell.

433

Part 1l: Shell Scripting Basics

434

The following is an example showing how the next job in line takes over the default status,
when the default job is removed. Three separate processes are started in the background.
The jobs command listing shows the three processes, their PID, and their status. Note that
the default process (the one listed with the plus sign) is the last process started, job #3.

$./testl0.sh > testllOa.out &

[1] 1950

$./testl0.sh > testlOb.out &

[2] 1952

$./testl0.sh > testlOc.out &

[3] 1955

$

$ jobs -1

[1] 1950 Running ./testl0.sh > testlOa.out &
[2]- 1952 Running ./testl0.sh > testlOb.out &
[3]+ 1955 Running ./testl0.sh > testlOc.out &
$

Using the kill command to send a SIGHUP signal to the default process causes the job to
terminate. In the next jobs listing, the job that previously had the minus sign now has
the plus sign and is the default job:

$ kill 1955

$

[3]+ Terminated ./testl0.sh > testlOc.out

$

S jobs -1

[1]- 1950 Running ./testl0.sh > testlOa.out &
[2]+ 1952 Running ./testl0.sh > testlOb.out &
$

$ kill 1952

$

[2]+ Terminated ./testl0.sh > testl0b.out

$

S jobs -1

[1]+ 1950 Running ./testl0.sh > testlOa.out &
$

Although changing a background job to the default process is interesting, it doesn’t seem
very useful. In the next section, you learn how to use commands to interact with the
default process using no PID or job number.

Restarting stopped jobs

Under bash job control, you can restart any stopped job as either a background process or a
foreground process. A foreground process takes over control of the terminal youre working
on, so be careful about using that feature.

Chapter 16: Script Control

To restart a job in background mode, use the bg command:

$./testll.sh

“Z

[1]1+ Stopped ./testll.sh

$

$ bg

[1]+ ./testll.sh &

$

S jobs

[1]+ Running ./testll.sh &
$

Because the job was the default job, indicated by the plus sign, only the bg command was
needed to restart it in background mode. Notice that no PID is listed when the job is moved
into background mode.

If you have additional jobs, you need to use the job number along with the bg command:

$./testll.sh

Z

[11+ Stopped ./testll.sh
$
$./testl2.sh
*Z

[2]1+ Stopped ./testl2.sh
$
S bg 2

[2]+ ./testl2.sh &
$
S jobs

[1]1+ Stopped ./testll.sh
[2] - Running ./testl2.sh &
$

The command bg 2 was used to send the second job into background mode. Notice that
when the jobs command was used, it listed both jobs with their status, even though the
default job is not currently in background mode.

To restart a job in foreground mode, use the fg command, along with the job number:

S fg 2

./testl2.sh

This is the script's end...
$

Because the job is running in foreground mode, the command line interface prompt does
not appear until the job finishes.

435

Part 1l: Shell Scripting Basics

Tip

It's confusing to remember that - 20, the lowest value, is the highest priority and 19, the highest value, is the low-

Being Nice

In a multitasking operating system (which Linux is), the kernel is responsible for assigning
CPU time for each process running on the system. The scheduling priority is the amount of
CPU time the kernel assigns to the process relative to the other processes. By default, all
processes started from the shell have the same scheduling priority on the Linux system.

The scheduling priority is an integer value, from -20 (the highest priority) to +19 (the low-
est priority). By default, the bash shell starts all processes with a scheduling priority of 0.

est priority. Just remember the phrase, “Nice guys finish last.” The “nicer” or higher you are in value, the lower your
chance of getting the CPU.

436

Sometimes, you want to change the priority of a shell script, either lowering its priority so
it doesn't take as much processing power away from other processes or giving it a higher
priority so it gets more processing time. You can do this by using the nice command.

Using the nice command

The nice command allows you to set the scheduling priority of a command as you start it.
To make a command run with less priority, just use the -n command line option for nice
to specify a new priority level:

$ nice -n 10 ./test4.sh > test4.out &
[1] 4973

$
S ps -p 4973 -o pid,ppid,ni,cmd
PID PPID NI CMD
4973 4721 10 /bin/bash ./test4.sh

$

Notice that you must use the nice command on the same line as the command you are
starting. The output from the ps command confirms that the nice value (column NI) has
been set to 10.

The nice command causes the script to run at a lower priority. However, if you try to
increase the priority of one of your commands, you might be in for a surprise:

$ nice -n -10 ./test4.sh > test4.out &
[1] 4985
$ nice: cannot set niceness: Permission denied

[1]+ Done nice -n -10 ./test4.sh > test4.out

$

Chapter 16: Script Control

The nice command prevents normal system users from increasing the priority of their
commands. Notice that the job does run, even though the attempt to raise its priority with
the nice command failed.

You don't have to use the -n option with the nice command. You can simply type the pri-
ority preceded by a dash:

$ nice -10 ./test4.sh > test4.out &
[1] 4993
$
S ps -p 4993 -o pid,ppid,ni,cmd
PID PPID NI CMD
4993 4721 10 /bin/bash ./test4.sh

$

However, this can get confusing when the priority is a negative number, because you must
have a double-dash. It’s best just to use the -n option to avoid confusion.

Using the renice command

Sometimes, you'd like to change the priority of a command that’s already running on the
system. That's what the renice command is for. It allows you to specify the PID of a run-
ning process to change its priority:

$./testll.sh &
[1] 5055
$
$ ps -p 5055 -o pid,ppid,ni,cmd
PID PPID NI CMD
5055 4721 0 /bin/bash ./testll.sh

$
$ renice -n 10 -p 5055
5055: old priority 0, new priority 10
$
S ps -p 5055 -o pid,ppid,ni,cmd
PID PPID NI CMD

5055 4721 10 /bin/bash ./testll.sh

$

The renice command automatically updates the scheduling priority of the running
process. As with the nice command, the renice command has some limitations:

B You can only renice processes that you own.
B You can only renice your processes to a lower priority.

® The root user can renice any process to any priority.

If you want to fully control running processes, you must be logged in as the root account or
use the sudo command.

437

Part 1l: Shell Scripting Basics

438

Running Like Clockwork

When you start working with scripts, you may want to run a script at a preset time, usu-
ally at a time when you're not there. The Linux system provides a couple of ways to run a
script at a preselected time: the at command and the cron table. Each method uses a dif-
ferent technique for scheduling when and how often to run scripts. The following sections
describe each of these methods.

Scheduling a job using the at command

The at command allows you to specify a time when the Linux system will run a script. The
at command submits a job to a queue with directions on when the shell should run the
job. The at daemon, atd, runs in the background and checks the job queue for jobs to run.
Most Linux distributions start this daemon automatically at boot time.

The atd daemon checks a special directory on the system (usually /var/spool/at) for
jobs submitted using the at command. By default, the atd daemon checks this directory
every 60 seconds. When a job is present, the atd daemon checks the time the job is set to
be run. If the time matches the current time, the atd daemon runs the job.

The following sections describe how to use the at command to submit jobs to run and how
to manage these jobs.

Understanding the at command format
The basic at command format is pretty simple:

at [-f filename]l time

By default, the at command submits input from STDIN to the queue. You can specify a file-
name used to read commands (your script file) using the - £ parameter.

The time parameter specifies when you want the Linux system to run the job. If you spec-
ify a time that has already passed, the at command runs the job at that time on the next
day.

You can get pretty creative with how you specify the time. The at command recognizes
lots of different time formats:

® A standard hour and minute, such as 10:15

® An AM/PM indicator, such as 10:15PM

B A specific named time, such as now, noon, midnight, or teatime (4PM)

In addition to specifying the time to run the job, you can also include a specific date, using
a few different date formats:

Chapter 16: Script Control

®m A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY
B A text date, such as Jul 4 or Dec 25, with or without the year
B A time increment:

® Now + 25 minutes
m 10:15PM tomorrow
| 10:15 + 7 days

When you use the at command, the job is submitted into a job queue. The job queue holds
the jobs submitted by the at command for processing. There are 26 different job queues
available for different priority levels. Job queues are referenced using lowercase letters, a
through z, and uppercase letters A through Z.

NoTE
A few years ago, the batch command was another method that allowed a script to be run at a later time. The

batch command was unique because you could schedule a script to run when the system was at a lower usage
level. However, nowadays, the batch command is just simply a script, /usr/bin/batch, that calls the at com-
mand and submits your job to the b queue.

The higher alphabetically the job queue, the lower the priority (higher nice value) the job
will run under. By default, at jobs are submitted to the at job a que