

ffi rs.indd 12/17/2014 Page i

Linux®
Command Line

and Shell Scripting

Bible
Third Edtion

ffi rs.indd 12/17/2014 Page iii

Linux®
Command Line

and Shell Scripting

BIBLE
Third Edition

Richard Blum
Christine Bresnahan

ffi rs.indd 12/17/2014 Page iv

Linux® Command Line and Shell Scripting Bible, Third Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-98384-3
ISBN: 978-1-118-98385-0 (ebk)
ISBN: 978-1-118-98419-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of
a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/
or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers should
be aware that Internet websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014954688

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is
a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

v

ffi rs.indd 12/17/2014 Page v

About the Authors
Richard Blum has worked in the IT industry for more than 20 years as both a systems
and network administrator and has published numerous Linux and open-source books. He
has administered UNIX, Linux, Novell, and Microsoft servers, as well as helped design and
maintain a 3,500-user network utilizing Cisco switches and routers. He has used Linux
servers and shell scripts to perform automated network monitoring and has written shell
scripts in most of the common Linux shell environments. Rich is an online instructor for
an Introduction to Linux course that is used by colleges and universities across the United
States. When he isn’t being a computer nerd, Rich plays electric bass in a couple of dif-
ferent church worship bands, and enjoys spending time with his wife, Barbara, and two
daughters, Katie Jane and Jessica.

Christine Bresnahan starting working with computers more than 25 years ago in the IT
industry as a system administrator. Christine is currently an Adjunct Professor at Ivy Tech
Community College in Indianapolis, Indiana. She teaches classes on Linux system adminis-
tration, Linux security, and Windows security.

vii

ffi rs.indd 12/17/2014 Page vii

About the Technical Editor
Kevin E. Ryan holds a bachelor’s degree in electrical engineering technology from Purdue
University and has served as system administrator for a number of computing platforms
including HP-UX, Solaris, and Red Hat Linux. He’s also been involved with system plan-
ning, database management and application programming. When not pursuing his techni-
cal endeavors, Kevin enjoys reading, baseball, and camping with his wife and their fearless
Papillon.

ffi rs.indd 12/17/2014 Page ix

ix

Credits

Associate Publisher
Jim Minatel

Project Editor
Martin V. Minner

Technical Editor
Kevin E. Ryan

Production Manager
Kathleen Wisor

Copy Editor
Gwenette Gaddis

Manager of Content Development and
Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology and Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Project Coordinator, Cover
Patrick Redmond

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Designer
Wiley

Cover Image
iStockphoto.com / Aleksandar Velasevic

xi

ffi rs.indd 12/17/2014 Page xi

F
irst, all glory and praise go to God, Who through His Son, Jesus Christ, makes all
things possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for their out-
standing work on this project. Thanks to Mary James, the former acquisitions editor, for
offering us the opportunity to work on this book. Also thanks to Marty Minner, the project
editor, for keeping things on track and making this book more presentable. Thanks, Marty,
for all your hard work and diligence. The technical editor, Kevin E. Ryan, did a wonderful
job of double-checking all the work in the book, plus making suggestions to improve the
content. Thanks to Gwenette Gaddis, the copy editor, for her endless patience and diligence
to make our work readable. We would also like to thank Carole McClendon at Waterside
Productions, Inc., for arranging this opportunity for us, and for helping us out in our
writing careers. In addition, we would like to give a special thank you to H.L. Craft, who
produced several diagrams for our chapters.

Christine would like to thank her husband, Timothy, for his encouragement, patience, and
willingness to listen, even when he has no idea what she is talking about.

Acknowledgments

xiii

ffi rs.indd 12/17/2014 Page xiii

Introduction . xxxi

Part I The Linux Command Line . 1
Chapter 1 Starting with Linux Shells .. 3
Chapter 2 Getting to the Shell .. 23
Chapter 3 Basic bash Shell Commands ..47
Chapter 4 More bash Shell Commands .. 85
Chapter 5 Understanding the Shell ...113
Chapter 6 Using Linux Environment Variables ...135
Chapter 7 Understanding Linux File Permissions ...161
Chapter 8 Managing Filesystems ..187
Chapter 9 Installing Software ..211
Chapter 10 Working with Editors ..233

Part II Shell Scripting Basics . 267
Chapter 11 Basic Script Building ..269
Chapter 12 Using Structured Commands ...297
Chapter 13 More Structured Commands ..331
Chapter 14 Handling User Input ...365
Chapter 15 Presenting Data ...395
Chapter 16 Script Control ..419

Part III Advanced Shell Scripting . 447
Chapter 17 Creating Functions ...449
Chapter 18 Writing Scripts for Graphical Desktops ...477
Chapter 19 Introducing sed and gawk ...505
Chapter 20 Regular Expressions ...535
Chapter 21 Advanced sed ..561
Chapter 22 Advanced gawk ..591
Chapter 23 Working with Alternative Shells ..623

Contents at a Glance

xiv

ffi rs.indd 12/17/2014 Page xiv

Part IV Creating Practical Scripts . 643
Chapter 24 Writing Simple Script Utilities ..645
Chapter 25 Producing Scripts for Database, Web, and E-Mail ...681
Chapter 26 Creating Fun Little Shell Scripts ..709

Appendix A: Quick Guide to bash Commands ..739
Appendix B: Quick Guide to sed and gawk ..751
Index ..763

Contents at a Glance

xv

ftoc.indd 12/08/2014 Page xv

Contents

Introduction . xxxi

Part I: The Linux Command Line 1

Chapter 1: Starting with Linux Shells . 3

What Is Linux? ... 3
Looking into the Linux kernel ... 4

System memory management .. 5
Software program management ... 6
Hardware management ... 7
Filesystem management ... 8

The GNU utilities .. 9
The core GNU utilities .. 9
The shell ... 10

The Linux desktop environment ...11
The X Window system ..11
The KDE desktop .. 12
The GNOME desktop .. 13
The Unity desktop ... 13
Other desktops .. 14

Linux Distributions ... 17
Core Linux distributions ... 17
Specialized Linux distributions ... 18
The Linux LiveCD ... 19

Summary .. 21

Chapter 2: Getting to the Shell . 23

Reaching the Command Line .. 23
Console terminals ... 24
Graphical terminals .. 24

Accessing CLI via a Linux Console Terminal ... 25
Accessing CLI via Graphical Terminal Emulation .. 28

xvi

Contents

ftoc.indd 12/08/2014 Page xvi

Using the GNOME Terminal Emulator ... 29
Accessing the GNOME terminal .. 30
The menu bar ... 31

Using the Konsole Terminal Emulator ... 35
Accessing the Konsole terminal ... 35
The menu bar ... 37

Using the xterm Terminal Emulator ...41
Accessing xterm ... 42
Command line parameters ... 43

Summary .. 44

Chapter 3: Basic bash Shell Commands . 47

Starting the Shell ..47
Using the Shell Prompt .. 48
Interacting with the bash Manual .. 49
Navigating the Filesystem ... 52

Looking at the Linux fi lesystem .. 52
Traversing directories ... 55

Using absolute directory references ... 56
Using relative directory references .. 57

Listing Files and Directories .. 59
Displaying a basic listing .. 59
Displaying a long listing ..61
Filtering listing output ... 62

Handling Files .. 64
Creating fi les .. 64
Copying fi les .. 65
Using tab auto-complete ... 68
Linking fi les .. 68
Renaming fi les ... 70
Deleting fi les.. 72

Managing Directories .. 73
Creating directories .. 73
Deleting directories ...74

Viewing File Contents .. 77
Viewing the fi le type .. 77
Viewing the whole fi le .. 78

Using the cat command .. 78
Using the more command ... 79
Using the less command ... 80

Viewing parts of a fi le ... 81
Using the tail command ... 81
Using the head command .. 82

Summary .. 83

xvii

Contents

ftoc.indd 12/08/2014 Page xvii

Chapter 4: More bash Shell Commands . 85

Monitoring Programs ... 85
Peeking at the processes ... 85

Unix-style parameters .. 86
BSD-style parameters ... 89
The GNU long parameters .. 91

Real-time process monitoring .. 92
Stopping processes ... 95

The kill command .. 95
The killall command ... 96

Monitoring Disk Space ... 96
Mounting media ... 97

The mount command .. 97
The unmount command .. 99

Using the df command ...100
Using the du command ..101

Working with Data Files ..102
Sorting data ..102
Searching for data ...107
Compressing data ..108
Archiving data ..110

Summary ... 111

Chapter 5: Understanding the Shell . 113

Exploring Shell Types ...113
Exploring Parent and Child Shell Relationships ..115

Looking at process lists ...119
Creatively using subshells ..121

Investigating background mode ...121
Putting process lists into the background ...123
Looking at co-processing ...124

Understanding Shell Built-In Commands ..125
Looking at external commands ...125
Looking at built-in commands ..127

Using the history command ...128
Using command aliases ...131

Summary ...132

Chapter 6: Using Linux Environment Variables . 135

Exploring Environment Variables...135
Looking at global environment variables ...136
Looking at local environment variables ...138

Setting User-Defi ned Variables ..138
Setting local user-defi ned variables ..139

xviii

Contents

ftoc.indd 12/08/2014 Page xviii

Setting global environment variables ..140
Removing Environment Variables ..142
Uncovering Default Shell Environment Variables ..143
Setting the PATH Environment Variable ...148
Locating System Environment Variables ...150

Understanding the login shell process ...150
Viewing the /etc/profi le fi le ..151
Viewing the $HOME startup fi les ..154

Understanding the interactive shell process ..156
Understanding the non-interactive shell process ..156
Making environment variables persistent ..157

Learning about Variable Arrays ...158
Summary ...159

Chapter 7: Understanding Linux File Permissions . 161

Linux Security ...161
The /etc/passwd fi le ..162
The /etc/shadow fi le ..164
Adding a new user ...164
Removing a user ..168
Modifying a user ...168

usermod ...169
passwd and chpasswd ..169
chsh, chfn, and chage ...170

Using Linux Groups ..172
The /etc/group fi le ..173
Creating new groups .. 174
Modifying groups ..175

Decoding File Permissions...175
Using fi le permission symbols ..176
Default fi le permissions ...177

Changing Security Settings ..179
Changing permissions ..179
Changing ownership ..181

Sharing Files ...182
Summary ...184

Chapter 8: Managing Filesystems . 187

Exploring Linux Filesystems ...187
Understanding the basic Linux fi lesystems ..188

Looking at the ext fi lesystem ..188
Looking at the ext2 fi lesystem ...188

Understanding journaling fi lesystems ...189
Looking at the ext3 fi lesystem ...190
Looking at the ext4 fi lesystem ...190
Looking at the Reiser fi lesystem ..190

xix

Contents

ftoc.indd 12/08/2014 Page xix

Looking at the journaled fi lesystem ...191
Looking at the XFS fi lesystem ..191

Understanding the copy-on-write fi lesystems ..192
Looking at the ZFS fi lesystem ..192
Looking at the Btrfs fi lesystem ..192

Working with Filesystems ...192
Creating partitions ..193
Creating a fi lesystem ...196
Checking and repairing a fi lesystem ...198

Managing Logical Volumes ..200
Exploring logical volume management layout ..200
Using the LVM in Linux ..201

Taking a snapshot ...202
Striping ...202
Mirroring ...202

Using the Linux LVM ..203
Defi ning physical volumes ...203
Creating volume groups ...205
Creating logical volumes ..206
Creating the fi lesystem ...208
Modifying the LVM ..209

Summary ...210

Chapter 9: Installing Software . 211

Package Management Primer ...211
The Debian-Based Systems ..212

Managing packages with aptitude ...212
Installing software packages with aptitude ...215
Updating software with aptitude ..217
Uninstalling software with aptitude ...218
The aptitude repositories ...219

The Red Hat–Based Systems ..221
Listing installed packages ..221
Installing software with yum ...223
Updating software with yum ..224
Uninstalling software with yum ...225
Dealing with broken dependencies ..225
Yum repositories ...227

Installing from Source Code ..228
Summary ...232

Chapter 10: Working with Editors . 233

Visiting the vim Editor ...233
Checking your vim package ..234
Exploring vim basics ..235
Editing data ..238

xx

Contents

ftoc.indd 12/08/2014 Page xx

Copying and pasting ..238
Searching and substituting ..239

Navigating the nano Editor ...240
Exploring the emacs Editor ...242

Checking your emacs package ..243
Using emacs on the console ..245

Exploring the basics of emacs ..245
Editing data ...247
Copying and pasting ...247
Searching and replacing ..248
Using buffers in emacs ..248
Using windows in console mode emacs ...249

Using emacs in a GUI ...250
Exploring the KDE Family of Editors ..251

Looking at the KWrite editor ..251
Looking at the Kate editor ...256

Exploring the GNOME Editor ..260
Starting gedit ...260
Understanding basic gedit features ...262
Setting preferences ...262

Setting view preferences ...262
Setting editor preferences ...263
Setting font & color preferences ...264
Managing plug-ins ..264

Summary ...265

Part II: Shell Scripting Basics 267

Chapter 11: Basic Script Building . 269

Using Multiple Commands ...269
Creating a Script File ..270
Displaying Messages ...272
Using Variables ..274

Environment variables ...274
User variables ...275
Command substitution ...277

Redirecting Input and Output ...279
Output redirection ...279
Input redirection ...280

Pipes ...281
Performing Math ..285

The expr command ..285
Using brackets ..287
A fl oating-point solution ...288

xxi

Contents

ftoc.indd 12/08/2014 Page xxi

The basics of bc ..288
Using bc in scripts ..289

Exiting the Script ..292
Checking the exit status ..292
The exit command ...293

Summary ...295

Chapter 12: Using Structured Commands . 297

Working with the if-then Statement ..297
Exploring the if-then-else Statement ...300
Nesting ifs ...301
Trying the test Command ...304

Using numeric comparisons ..307
Using string comparisons ...308

Looking at string equality ...309
Looking at string order ...310
Looking at string size ...312

Using fi le comparisons ...313
Checking directories ...314
Checking whether an object exists ...315
Checking for a fi le ...316
Checking for read access ..317
Checking for empty fi les ..318
Checking whether you can write to a fi le ..319
Checking whether you can run a fi le ..321
Checking ownership ..321
Checking default group membership ...322
Checking fi le date ...322

Considering Compound Testing..324
Working with Advanced if-then Features ...325

Using double parentheses ...325
Using double brackets ..326

Considering the case Command ...327
Summary ...329

Chapter 13: More Structured Commands . 331

The for Command ...331
Reading values in a list ..332
Reading complex values in a list ...333
Reading a list from a variable ...335
Reading values from a command ...336
Changing the fi eld separator ..337
Reading a directory using wildcards ...339

The C-Style for Command ..341
The C language for command ..341

xxii

Contents

ftoc.indd 12/08/2014 Page xxii

Using multiple variables...342
The while Command ...343

Basic while format ...343
Using multiple test commands ..344

The until Command ..346
Nesting Loops ..347
Looping on File Data ..350
Controlling the Loop ..351

The break command ...352
Breaking out of a single loop ...352
Breaking out of an inner loop ..353
Breaking out of an outer loop ..354

The continue command ..355
Processing the Output of a Loop ..358
Practical Examples ...359

Finding executable fi les ...359
Creating multiple user accounts ..361

Summary ...362

Chapter 14: Handling User Input . 365

Passing Parameters ..365
Reading parameters ...366
Reading the script name ..368
Testing parameters ..370

Using Special Parameter Variables ...371
Counting parameters ...371
Grabbing all the data ...373

Being Shifty ..375
Working with Options ...376

Finding your options ...376
Processing simple options ..377
Separating options from parameters ...378
Processing options with values ..379

Using the getopt command ...380
Looking at the command format ..381
Using getopt in your scripts...382

Advancing to getopts ...384
Standardizing Options ..387
Getting User Input ...388

Reading basics ..388
Timing out ..389
Reading with no display ..391
Reading from a fi le ..391

Summary ...392

xxiii

Contents

ftoc.indd 12/08/2014 Page xxiii

Chapter 15: Presenting Data . 395

Understanding Input and Output ..395
Standard fi le descriptors ..395

STDIN ...396
STDOUT ..397
STDERR ..398

Redirecting errors ...398
Redirecting errors only ..398
Redirecting errors and data ...399

Redirecting Output in Scripts ...400
Temporary redirections ..400
Permanent redirections ..401

Redirecting Input in Scripts ...402
Creating Your Own Redirection ..403

Creating output fi le descriptors ..403
Redirecting fi le descriptors ..404
Creating input fi le descriptors ..405
Creating a read/write fi le descriptor ...406
Closing fi le descriptors ...407

Listing Open File Descriptors ..408
Suppressing Command Output ...410
Using Temporary Files .. 411

Creating a local temporary fi le .. 411
Creating a temporary fi le in /tmp ...413
Creating a temporary directory ...413

Logging Messages ...414
Practical Example ..416
Summary ...418

Chapter 16: Script Control . 419

Handling Signals..419
Signaling the bash shell ...419
Generating signals ...420

Interrupting a process ...420
Pausing a process ..421

Trapping signals ..422
Trapping a script exit ..423
Modifying or removing a trap ...424

Running Scripts in Background Mode ..427
Running in the background ..427
Running multiple background jobs ..429

Running Scripts without a Hang-Up ..430
Controlling the Job ..432

Viewing jobs ...432
Restarting stopped jobs ...434

xxiv

Contents

ftoc.indd 12/08/2014 Page xxiv

Being Nice ...436
Using the nice command ..436
Using the renice command ...437

Running Like Clockwork ...438
Scheduling a job using the at command ..438

Understanding the at command format ...438
Retrieving job output ..439
Listing pending jobs ...440
Removing jobs ..441

Scheduling regular scripts ..441
Looking at the cron table ..441
Building the cron table ...442
Viewing cron directories ..443
Looking at the anacron program ..443

Starting scripts with a new shell ..445
Summary ...446

Part III: Advanced Shell Scripting 447

Chapter 17: Creating Functions . 449

Basic Script Functions ..449
Creating a function ...450
Using functions ...450

Returning a Value ..453
The default exit status ...453
Using the return command ...454
Using function output ...455

Using Variables in Functions ...456
Passing parameters to a function ..456
Handling variables in a function ..459

Global variables ..459
Local variables ..460

Array Variables and Functions ..461
Passing arrays to functions ..461
Returning arrays from functions ..463

Function Recursion ..464
Creating a Library ..465
Using Functions on the Command Line ..467

Creating functions on the command line ...468
Defi ning functions in the .bashrc fi le ..468

Directly defi ning functions ..469
Sourcing function fi les ..469

Following a Practical Example ...470
Downloading and installing ...471
Building the library ...471

xxv

Contents

ftoc.indd 12/08/2014 Page xxv

The shtool library functions ...472
Using the library ...473

Summary ... 474

Chapter 18: Writing Scripts for Graphical Desktops . 477

Creating Text Menus ...477
Create the menu layout ..478
Create the menu functions ...479
Add the menu logic ...480
Putting it all together..481
Using the select command ..482

Doing Windows ..484
The dialog package ..484

The msgbox widget ...486
The yesno widget ..487
The inputbox widget ...487
The textbox widget ...488
The menu widget ..489
The fselect widget ...490

The dialog options ...491
Using the dialog command in a script ...493

Getting Graphic ...496
The KDE environment ..496

kdialog widgets ..496
Using kdialog ...498

The GNOME environment ..500
zenity widgets ..500
Using zenity in scripts ..501

Summary ...504

Chapter 19: Introducing sed and gawk . 505

Manipulating Text ..505
Getting to know the sed editor ...505

Defi ning an editor command in the command line506
Using multiple editor commands in the command line507
Reading editor commands from a fi le ..508

Getting to know the gawk program ...509
Visiting the gawk command format ..510
Reading the program script from the command line510
Using data fi eld variables .. 511
Using multiple commands in the program script512
Reading the program from a fi le ...513
Running scripts before processing data ..514
Running scripts after processing data ..514

Commanding at the sed Editor Basics...516
Introducing more substitution options ..516

xxvi

Contents

ftoc.indd 12/08/2014 Page xxvi

Substituting fl ags ...516
Replacing characters ...518

Using addresses ...518
Addressing the numeric line ..519
Using text pattern fi lters ...520
Grouping commands ..520

Deleting lines..521
Inserting and appending text ...523
Changing lines ..525
Transforming characters ..527
Printing revisited ..527

Printing lines ...528
Printing line numbers ...529
Listing lines ...529

Using fi les with sed ...530
Writing to a fi le ..530
Reading data from a fi le ..531

Summary ...533

Chapter 20: Regular Expressions . 535

What Are Regular Expressions? ...535
A defi nition ..535
Types of regular expressions ...536

Defi ning BRE Patterns ..537
Plain text ...537
Special characters ...539
Anchor characters ...540

Starting at the beginning ..540
Looking for the ending ..541
Combining anchors ...542

The dot character ..542
Character classes ...543
Negating character classes ...546
Using ranges ...546
Special character classes ..547
The asterisk ..548

Extended Regular Expressions ...549
The question mark ...550
The plus sign...551
Using braces ..551
The pipe symbol ..553
Grouping expressions ...553

Regular Expressions in Action ...554
Counting directory fi les ...554
Validating a phone number ..556

xxvii

Contents

ftoc.indd 12/08/2014 Page xxvii

Parsing an e-mail address...558
Summary ...560

Chapter 21: Advanced sed . 561

Looking at Multiline Commands ..561
Navigating the next command ..562

Using the single-line next command ..562
Combining lines of text ...563

Navigating the multiline delete command ...566
Navigating the multiline print command ...567

Holding Space ..567
Negating a Command ..569
Changing the Flow ...572

Branching ...572
Testing ... 574

Replacing via a Pattern ..575
Using the ampersand ...576
Replacing individual words ..576

Placing sed Commands in Scripts...577
Using wrappers ..578
Redirecting sed output ..578

Creating sed Utilities..579
Spacing with double lines ..579
Spacing fi les that may have blanks ...580
Numbering lines in a fi le ..581
Printing last lines ...582
Deleting lines..584

Deleting consecutive blank lines ..584
Deleting leading blank lines ..585
Deleting trailing blank lines ..586

Removing HTML tags ...586
Summary ...588

Chapter 22: Advanced gawk . 591

Using Variables ..591
Built-in variables ...592

The fi eld and record separator variables ..592
Data variables ...595

User-defi ned variables ...598
Assigning variables in scripts ..598
Assigning variables on the command line ...599

Working with Arrays ..600
Defi ning array variables ...600
Iterating through array variables..601
Deleting array variables ...602

xxviii

Contents

ftoc.indd 12/08/2014 Page xxviii

Using Patterns ...602
Regular expressions ...603
The matching operator ...603
Mathematical expressions ..604

Structured Commands ..605
The if statement ..605
The while statement ..607
The do-while statement ...608
The for statement ..609

Formatted Printing ..610
Built-In Functions ..613

Mathematical functions ...613
String functions ..615
Time functions ..616

User-Defi ned Functions ... 617
Defi ning a function ... 617
Using your functions ...618
Creating a function library ...619

Working through a Practical Example ..620
Summary ...621

Chapter 23: Working with Alternative Shells . 623

What Is the dash Shell? ..623
The dash Shell Features ..624

The dash command line parameters ..624
The dash environment variables ...625

Default environment variables ...626
Positional parameters ..627
User-defi ned environment variables ...627

The dash built-in commands ...628
Scripting in dash ...629

Creating dash scripts ...629
Things that don’t work ...629

Using arithmetic ...629
The test command ...630
The function Command ...631

The zsh Shell ...632
Parts of the zsh Shell ...632

Shell options ...632
Built-in commands ..633

Core built-in commands ...634
Add-in modules ...636
Viewing, adding, and removing modules ...637

Scripting with zsh ...638
Mathematical operations ..639

xxix

Contents

ftoc.indd 12/08/2014 Page xxix

Performing calculations ...639
Mathematical functions ...640

Structured commands ..640
Functions ...641

Summary ...642

Part IV: Creating Practical Scripts 643

Chapter 24 Writing Simple Script Utilities . 645

Performing Archives ...645
Archiving data fi les ...645

Obtaining the required functions ...646
Creating a daily archive location ..648
Creating a daily archive script ...649
Running the daily archive script ..651
Creating an hourly archive script ...652
Running the hourly archive script ..655

Managing User Accounts ...656
Obtaining the required functions ...657

Getting the correct account name ..657
Creating a function to get the correct account name658
Verifying the entered account name ...660
Determining whether the account exists ..661
Removing any account processes ..662
Finding account fi les ...664
Removing the account ...665

Creating the script ..665
Running the script ..671

Monitoring Disk Space ..673
Obtaining the required functions ...673
Creating the script ..676
Running the script ..677

Summary ...678

Chapter 25: Producing Scripts for Database, Web, and E-Mail . 681

Using a MySQL Database ...681
Using MySQL ...682

Connecting to the server ...682
The mysql commands ..683
Creating a database ...685
Creating a user account ...687
Creating a table ..688
Inserting and deleting data ...690

xxx

Contents

ftoc.indd 12/08/2014 Page xxx

Querying data...691
Using the database in your scripts ..692

Logging into the server ...692
Sending commands to the server ..693
Formatting data ..696

Using the Web..697
Installing Lynx ...698
The lynx command line ..699
The Lynx confi guration fi le ..700
Capturing data from Lynx ..701

Using E-Mail ..704
Summary ...708

Chapter 26: Creating Fun Little Shell Scripts . 709

Sending a Message ...709
Understanding the required functions ..709

Determining who is on the system ...710
Allowing messages ..710
Sending a message to another user ...711

Creating the script ..712
Checking if user is logged on ...713
Checking if user accepts messages ..714
Checking if message was included ..715
Transmitting a simple message ..715
Transmitting a long message ...716

Obtaining a Quote ..720
Understanding the required functions ..720

Learning about the wget utility ...720
Testing a web address ..723

Creating the script ..724
Checking the passed URL ...724
Obtaining web page information ..726
Parsing out the desired information ...727

Generating an Excuse ...731
Understanding the required functions ..732

Learning about curl ..732
Choosing to use e-mail ..734

Creating the script ..735
Summary ...737

Appendix A: Quick Guide to bash Commands . 739

Appendix B: Quick Guide to sed and gawk . 751

Index . 763

xxxi

fl ast.indd 12/09/2014 Page xxxi

Introduction

W
elcome to the third edition of Linux Command Line and Shell Scripting Bible. Like all books in
the Bible series, you can expect to fi nd both hands-on tutorials and real-world information,
as well as reference and background information that provide a context for what you are

learning. This book is a fairly comprehensive resource on the Linux command line and shell com-
mands. By the time you have completed Linux Command Line and Shell Scripting Bible, you will be
well prepared to write your own shell scripts that can automate practically any task on your Linux
system.

Who Should Read This Book
If you’re a system administrator in a Linux environment, you’ll benefi t greatly by knowing how to
write shell scripts. The book doesn’t walk you through the process of setting up a Linux system,
but after you have it running, you’ll want to start automating some of the routine administrative
tasks. That’s where shell scripting comes in, and that’s where this book helps you out. This book
demonstrates how to automate any administrative task using shell scripts, from monitoring system
statistics and data fi les to generating reports for your boss.

If you’re a home Linux enthusiast, you’ll also benefi t from Linux Command Line and Shell Scripting
Bible. Nowadays, it’s easy to get lost in the graphical world of pre-built widgets. Most desktop Linux
distributions try their best to hide the Linux system from the typical user. However, sometimes
you must know what’s going on under the hood. This book shows you how to access the Linux com-
mand line prompt and what to do when you get there. Often, performing simple tasks, such as fi le
management, can be done more quickly from the command line than from a fancy graphical inter-
face. You can use a wealth of commands from the command line, and this book shows you how to
use them.

How This Book Is Organized
This book leads you through the basics of the Linux command line and into more complicated top-
ics, such as creating your own shell scripts. The book is divided into four parts, each one building
on the previous parts.

Part I assumes that you either have a Linux system running or are looking into getting a Linux
system. Chapter 1, “Starting with Linux Shells,” describes the parts of a total Linux system and

xxxii

Introduction

fl ast.indd 12/09/2014 Page xxxii

shows how the shell fi ts in. After describing the basics of the Linux system, this part con-
tinues with the following:

 ■ Using a terminal emulation package to access the shell (Chapter 2)

 ■ Introducing the basic shell commands (Chapter 3)

 ■ Using more advanced shell commands to peek at system information (Chapter 4)

 ■ Understanding what the shell is used for (Chapter 5)

 ■ Working with shell variables to manipulate data (Chapter 6)

 ■ Understanding the Linux fi lesystem and security (Chapter 7)

 ■ Working with Linux fi lesystems from the command line (Chapter 8)

 ■ Installing and updating software from the command line (Chapter 9)

 ■ Using the Linux editors to start writing shell scripts (Chapter 10)

In Part II, you begin writing shell scripts. As you go through the chapters, you’ll do the
following:

 ■ Learn how to create and run shell scripts (Chapter 11)

 ■ Alter the program fl ow in a shell script (Chapter 12)

 ■ Iterate through code sections (Chapter 13)

 ■ Handle data from the user in your scripts (Chapter 14)

 ■ See different methods for storing and displaying data from your Script (Chapter 15)

 ■ Control how and when your shell scripts run on the system (Chapter 16)

Part III dives into more advanced areas of shell script programming, including these things:

 ■ Creating your own functions to use in all your scripts (Chapter 17)

 ■ Utilizing the Linux graphical desktop for interacting with your script users
(Chapter 18)

 ■ Using advanced Linux commands to fi lter and parse data fi les (Chapter 19)

 ■ Using regular expressions to defi ne data (Chapter 20)

 ■ Learning advanced methods of manipulating data in your scripts (Chapter 21)

 ■ Generating reports from raw data (Chapter 22)

 ■ Modifying your shell scripts to run in other Linux shells (Chapter 23)

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world
environments. In this part, you will learn these things:

 ■ How to put all the scripting features together to write your own scripts (Chapter
24)

xxxiii

Introduction

fl ast.indd 12/09/2014 Page xxxiii

 ■ How to store and retrieve data using databases, access data on the Internet, and
send e-mail messages (Chapter 25)

 ■ Write more advanced shell scripts to interact on your Linux system (Chapter 26)

Cautions, Tips, and Notes
You will fi nd many different organizational and typographical features throughout this
book designed to help you get the most of the information.

This information is important and is set off in a separate paragraph with a special icon. Cautions provide information

about things to watch out for, whether simply inconvenient or potentially hazardous to your data or systems.

Tips provide helpful advice to make your work easier and more effective. Tips may suggest a solution to a problem or

a better way to accomplish a task.

Notes provide additional, ancillary information that is helpful, but somewhat outside of the current presentation of

information.

Downloadable code
You can obtain the book’s code fi les at www.wiley.com/go/linuxcommandline.

Minimum Requirements
Linux Command Line and Shell Scripting Bible doesn’t focus on any specifi c Linux distribu-
tion, so you can follow along in the book using any Linux system you have available.
The bulk of the book references the bash shell, which is the default shell for most Linux
systems.

http://www.wiley.com/go/linuxcommandline

xxxiv

Introduction

fl ast.indd 12/09/2014 Page xxxiv

Where to Go from Here
After you’ve fi nished reading Linux Command Line and Shell Scripting Bible, you’re well on
your way to incorporating Linux commands in your daily Linux work. In the ever-changing
world of Linux, it’s always a good idea to stay in touch with new developments. Often,
Linux distributions change, adding new features and removing older ones. To keep your
knowledge of Linux fresh, always stay well-informed. Find a good Linux forum site and
monitor what’s happening in the Linux world. Many popular Linux news sites, such as
Slashdot and Distrowatch, provide up-to-the-minute information about new advances in
Linux.

c01.indd 12/16/2014 Page 1

Part I

The Linux Command Line

IN THIS PART

Chapter 1
Starting with Linux Shells

Chapter 2
Getting to the Shell

Chapter 3
Basic bash Shell Commands

Chapter 4
More bash Shell Commands

Chapter 5
Understanding the Shell

Chapter 6
Using Linux Environment Variables

Chapter 7
Understanding Linux File Permissions

Chapter 8
Managing Filesystems

Chapter 9
Installing Software

Chapter 10
Working with Editors

3

c01.indd 12/16/2014 Page 3

CHAP T ER

1
Starting with Linux Shells

IN THIS CHAPTER

What is Linux?

Parts of the Linux kernel

Exploring the Linux desktop

Visiting Linux distributions

B
efore you can dive into working with the Linux command line and shells, you should fi rst
understand what Linux is, where it came from, and how it works. This chapter walks you
through what Linux is and explains where the shell and command line fi t in the overall

Linux picture.

What Is Linux?
If you’ve never worked with Linux before, you may be confused about why so many different
versions are available. I’m sure you have been confused by various terms such as distribution,
LiveCD, and GNU when looking at Linux packages. Wading through the world of Linux for the fi rst
time can be a tricky experience. This chapter takes some of the mystery out of the Linux system
before you start working on commands and scripts.

First, four main parts make up a Linux system:

 ■ The Linux kernel

 ■ The GNU utilities

 ■ A graphical desktop environment

 ■ Application software

Each of these parts has a specifi c job in the Linux system. No part is very useful by itself.
Figure 1-1 shows a basic diagram of how the parts fi t together to create the overall Linux system.

4

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 4

FIGURE 1-1

The Linux system

Application Software

Window
Management

Software GNU
System
Utilities

Linux Kernel

Computer Hardware

This section describes these four main parts in detail and gives you an overview of how
they work together to create a complete Linux system.

Looking into the Linux Kernel
The core of the Linux system is the kernel. The kernel controls all the hardware and soft-
ware on the computer system, allocating hardware when necessary and executing software
when required.

If you’ve been following the Linux world at all, no doubt you’ve heard the name Linus
Torvalds. Linus is the person responsible for creating the fi rst Linux kernel software when
he was a student at the University of Helsinki. He intended it to be a copy of the Unix
system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solic-
ited suggestions for improving it. This simple process started a revolution in the world of
computer operating systems. Soon Linus was receiving suggestions from students as well as
professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos.
To simplify things, Linus acted as a central point for all improvement suggestions. It was
ultimately Linus’s decision whether or not to incorporate suggested code in the kernel.

5

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 5

1

1

This same concept is still in place with the Linux kernel code, except that instead of just
Linus controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:

 ■ System memory management

 ■ Software program management

 ■ Hardware management

 ■ Filesystem management

The following sections explore each of these functions in more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management. Not
only does the kernel manage the physical memory available on the server, but it can also
create and manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the
contents of virtual memory locations back and forth from the swap space to the actual
physical memory. This allows the system to think there is more memory available than
what physically exists, as shown in Figure 1-2.

FIGURE 1-2

The Linux system memory map

Virtual Memory

The Kernel

Physical Memory

Swap Space

6

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 6

The memory locations are grouped into blocks called pages. The kernel locates each page
of memory either in the physical memory or the swap space. The kernel then maintains a
table of the memory pages that indicates which pages are in physical memory and which
pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory
pages that have not been accessed for a period of time to the swap space area (called
swapping out), even if there’s other memory available. When a program wants to access a
memory page that has been swapped out, the kernel must make room for it in physical
memory by swapping out a different memory page and swapping in the required page from
the swap space. Obviously, this process takes time and can slow down a running process.
The process of swapping out memory pages for running applications continues for as long
as the Linux system is running.

Software Program Management

The Linux operating system calls a running program a process. A process can run in the
foreground, displaying output on a display, or it can run in the background, behind the
scenes. The kernel controls how the Linux system manages all the processes running on the
system.

The kernel creates the fi rst process, called the init process, to start all other processes on the
system. When the kernel starts, it loads the init process into virtual memory. As the kernel
starts each additional process, it gives it a unique area in virtual memory to store the data
and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on bootup.
On Linux systems, this table is usually located in the special fi le /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init.d
folder, which contains scripts for starting and stopping individual applications at boot
time. The scripts are started via entries under the /etc/rcX.d folders, where X is a
run level.

The Linux operating system uses an init system that utilizes run levels. A run level can be
used to direct the init process to run only certain types of processes, as defi ned in the /
etc/inittabs fi le or the /etc/rcX.d folders. There are fi ve init run levels in the Linux
operating system.

At run level 1, only the basic system processes are started, along with one console terminal
process. This is called single-user mode. Single-user mode is most often used for emergency
fi lesystem maintenance when something is broken. Obviously, in this mode, only one per-
son (usually the administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level, most application software, such as net-
work support software, is started. Another popular run level in Linux is run level 5. This is

7

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 7

1

the run level where the system starts the graphical X Window software and allows you to
log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run
level. By changing the run level from 3 to 5, the system can change from a console-based
system to an advanced, graphical X Window system.

In Chapter 4, you’ll see how to use the ps command to view the processes currently run-
ning on the Linux system.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the
Linux system must communicate with needs driver code inserted inside the kernel code.
The driver code allows the kernel to pass data back and forth to the device, acting as a
middle man between applications and the hardware. Two methods are used for inserting
device driver code in the Linux kernel:

 ■ Drivers compiled in the kernel

 ■ Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time
you added a new device to the system, you had to recompile the kernel code. This process
became even more ineffi cient as Linux kernels supported more hardware. Fortunately,
Linux developers devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code
into a running kernel without having to recompile the kernel. Also, a kernel module could
be removed from the kernel when the device was fi nished being used. This greatly simpli-
fi ed and expanded using hardware with Linux.

The Linux system identifi es hardware devices as special fi les, called device files. There are
three classifi cations of device fi les:

 ■ Character

 ■ Block

 ■ Network

Character device fi les are for devices that can only handle data one character at a time.
Most types of modems and terminals are created as character fi les. Block fi les are for
devices that can handle data in large blocks at a time, such as disk drives.

The network fi le types are used for devices that use packets to send and receive data. This
includes network cards and a special loopback device that allows the Linux system to com-
municate with itself using common network programming protocols.

8

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 8

Linux creates special fi les, called nodes, for each device on the system. All communication
with the device is performed through the device node. Each node has a unique number pair
that identifi es it to the Linux kernel. The number pair includes a major and a minor device
number. Similar devices are grouped into the same major device number. The minor device
number is used to identify a specifi c device within the major device group.

Filesystem Management

Unlike some other operating systems, the Linux kernel can support different types of
fi lesystems to read and write data to and from hard drives. Besides having over a dozen
fi lesystems of its own, Linux can read and write to and from fi lesystems used by other
operating systems, such as Microsoft Windows. The kernel must be compiled with support
for all types of fi lesystems that the system will use. Table 1-1 lists the standard fi lesystems
that a Linux system can use to read and write data.

TABLE 1-1 Linux Filesystems

Filesystem Description

ext Linux Extended fi lesystem — the original Linux fi lesystem

ext2 Second extended fi lesystem, provided advanced features over ext

ext3 Third extended fi lesystem, supports journaling

ext4 Fourth extended fi lesystem, supports advanced journaling

hpfs OS/2 high-performance fi lesystem

jfs IBM’s journaling fi lesystem

iso9660 ISO 9660 fi lesystem (CD-ROMs)

minix MINIX fi lesystem

msdos Microsoft FAT16

ncp Netware fi lesystem

nfs Network File System

ntfs Support for Microsoft NT fi lesystem

proc Access to system information

ReiserFS Advanced Linux fi lesystem for better performance and disk recovery

smb Samba SMB fi lesystem for network access

sysv Older Unix fi lesystem

ufs BSD fi lesystem

umsdos Unix-like fi lesystem that resides on top of msdos

vfat Windows 95 fi lesystem (FAT32)

XFS High-performance 64-bit journaling fi lesystem

9

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 9

1

Any hard drive that a Linux server accesses must be formatted using one of the fi lesystem
types listed in Table 1-1.

The Linux kernel interfaces with each fi lesystem using the Virtual File System (VFS). This
provides a standard interface for the kernel to communicate with any type of fi lesystem.
VFS caches information in memory as each fi lesystem is mounted and used.

The GNU Utilities
Besides having a kernel to control hardware devices, a computer operating system needs
utilities to perform standard functions, such as controlling fi les and programs. While Linus
created the Linux system kernel, he had no system utilities to run on it. Fortunately for
him, at the same time he was working, a group of people were working together on the
Internet trying to develop a standard set of computer system utilities that mimicked the
popular Unix operating system.

The GNU organization (GNU stands for GNU’s Not Unix) developed a complete set of Unix
utilities, but had no kernel system to run them on. These utilities were developed under a
software philosophy called open source software (OSS).

The concept of OSS allows programmers to develop software and then release it to the world
with no licensing fees attached. Anyone can use the software, modify it, or incorporate it
into his or her own system without having to pay a license fee. Uniting Linus’s Linux ker-
nel with the GNU operating system utilities created a complete, functional, free operating
system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will
see some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to
the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like
environment available. This focus resulted in the project porting many common Unix
system command line utilities. The core bundle of utilities supplied for Linux systems is
called the coreutils package.

The GNU coreutils package consists of three parts:

 ■ Utilities for handling fi les

 ■ Utilities for manipulating text

 ■ Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are
invaluable to the Linux system administrator and programmer. This book covers each of the
utilities contained in the GNU coreutils package in detail.

10

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 10

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start pro-
grams, manage fi les on the fi lesystem, and manage processes running on the Linux system.
The core of the shell is the command prompt. The command prompt is the interactive part
of the shell. It allows you to enter text commands, and then it interprets the commands
and executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as copy-
ing fi les, moving fi les, renaming fi les, displaying the programs currently running on the
system, and stopping programs running on the system. Besides the internal commands,
the shell also allows you to enter the name of a program at the command prompt. The shell
passes the program name off to the kernel to start it.

You can also group shell commands into fi les to execute as a program. Those fi les are called
shell scripts. Any command that you can execute from the command line can be placed in
a shell script and run as a group of commands. This provides great fl exibility in creating
utilities for commonly run commands, or processes that require several commands grouped
together.

There are quite a few Linux shells available to use on a Linux system. Different shells have
different characteristics, some being more useful for creating scripts and some being more
useful for managing processes. The default shell used in all Linux distributions is the bash
shell. The bash shell was developed by the GNU project as a replacement for the standard
Unix shell, called the Bourne shell (after its creator). The bash shell name is a play on this
wording, referred to as the “Bourne again shell.”

In addition to the bash shell, we will cover several other popular shells in this book.
Table 1-2 lists the different shells we will examine.

TABLE 1-2 Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full compat-
ibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced pro-
gramming features like associative arrays and fl oating-point arithmetic

tcsh A shell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history fi les, and themed prompts

11

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 11

1

Most Linux distributions include more than one shell, although usually they pick one of
them to be the default. If your Linux distribution includes multiple shells, feel free to
experiment with different shells and see which one fi ts your needs.

The Linux Desktop Environment
In the early days of Linux (the early 1990s) all that was available was a simple text inter-
face to the Linux operating system. This text interface allowed administrators to start pro-
grams, control program operations, and move fi les around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text
interface to work with. This spurred more development in the OSS community, and the
Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more
relevant than in graphical desktops. There are a plethora of graphical desktops you can
choose from in Linux. The following sections describe a few of the more popular ones.

The X Window System

Two basic elements control your video environment: the video card in your PC and your
monitor. To display fancy graphics on your computer, the Linux software needs to know
how to talk to both of them. The X Window software is the core element in presenting
graphics.

The X Window software is a low-level program that works directly with the video card and
monitor in the PC, and it controls how Linux applications can present fancy windows and
graphics on your computer.

Linux isn’t the only operating system that uses X Window; versions are written for many
different operating systems. In the Linux world, several different software packages can
implement it.

The most popular package is X.org. It provides an open source software implementation of
the X Window system and supports many of the newer video cards used today.

Two other X Window packages are gaining in popularity. The Fedora Linux distribution is
experimenting with the Wayland software, and the Ubuntu Linux distribution has devel-
oped the Mir display server for use with its desktop environment.

When you fi rst install a Linux distribution, it attempts to detect your video card and moni-
tor, and then it creates an X Window confi guration fi le that contains the required informa-
tion. During installation, you may notice a time when the installation program scans your
monitor for supported video modes. Sometimes, this causes your monitor to go blank for a

12

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 12

few seconds. Because there are lots of different types of video cards and monitors, this pro-
cess can take a while to complete.

The core X Window software produces a graphical display environment, but nothing else.
Although this is fi ne for running individual applications, it is not useful for day-to-day
computer use. No desktop environment allows users to manipulate fi les or launch programs.
To do that, you need a desktop environment on top of the X Window system software.

The KDE Desktop

The K Desktop Environment (KDE) was fi rst released in 1996 as an open source project to
produce a graphical desktop similar to the Microsoft Windows environment. The KDE desk-
top incorporates all the features you are probably familiar with if you are a Windows user.
Figure 1-3 shows a sample KDE 4 desktop running in the openSUSE Linux distribution.

FIGURE 1-3

The KDE 4 desktop on an openSUSE Linux system

13

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 13

1

The KDE desktop allows you to place both application and fi le icons in a special area on the
desktop. If you click an application icon, the Linux system starts the application. If you
click a fi le icon, the KDE desktop attempts to determine what application to start to
handle the fi le.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

 ■ The K menu: Much like the Windows Start menu, the K menu contains links to
start installed applications.

 ■ Program shortcuts: These are quick links to start applications directly from the
Panel.

 ■ The taskbar: The taskbar shows icons for applications currently running on the
desktop.

 ■ Applets: These are small applications that have an icon in the Panel that often can
change depending on information from the application.

The Panel features are similar to what you would fi nd in Windows. In addition to the desk-
top features, the KDE project has produced a wide assortment of applications that run in
the KDE environment.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop
environment. First released in 1999, GNOME has become the default desktop environment
for many Linux distributions. (However, the most popular is Red Hat Linux.)

Although GNOME chose to depart from the standard Microsoft Windows look-and-feel, it
incorporates many features that most Windows users are comfortable with:

 ■ A desktop area for icons

 ■ A panel area for showing running applications

 ■ Drag-and-drop capabilities

Figure 1-4 shows the standard GNOME desktop used in the CentOS Linux distribution.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical
applications that integrate with the GNOME desktop.

The Unity Desktop

If you’re using the Ubuntu Linux distribution, you’ll notice that it’s somewhat different
from both the KDE and GNOME desktop environments. Canonical, the company responsible

14

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 14

for developing Ubuntu, has decided to embark on its own Linux desktop environment,
called Unity.

FIGURE 1-4

A GNOME desktop on a CentOS Linux system

The Unity desktop gets its name from the goal of the project — to provide a single desktop
experience for workstations, tablet devices, and mobile devices. The Unity desktop works
the same whether you’re running Ubuntu on a workstation or a mobile phone! Figure 1-5
shows an example of the Unity desktop in Ubuntu 14.04 LTS.

Other Desktops

The downside to a graphical desktop environment is that it requires a fair amount of
system resources to operate properly. In the early days of Linux, a hallmark and selling

15

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 15

1

feature of Linux was its ability to operate on older, less powerful PCs that the newer
Microsoft desktop products couldn’t run on. However, with the popularity of KDE and
GNOME desktops, this has changed, because it takes just as much memory to run a KDE or
GNOME desktop as the latest Microsoft desktop environment.

FIGURE 1-5

The Unity desktop on the Ubuntu Linux distribution

If you have an older PC, don’t be discouraged. The Linux developers have banded together
to take Linux back to its roots. They’ve created several low-memory–oriented graphical
desktop applications that provide basic features that run perfectly fi ne on older PCs.

Although these graphical desktops don’t have a plethora of applications designed around
them, they still run many basic graphical applications that support features such as word
processing, spreadsheets, databases, drawing, and, of course, multimedia support.

Table 1-3 shows some of the smaller Linux graphical desktop environments that can be used
on lower-powered PCs and laptops.

16

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 16

TABLE 1-3 Other Linux Graphical Desktops

Desktop Description

Fluxbox A bare-bones desktop that doesn’t include a Panel, only a pop-up menu to
launch applications

Xfce A desktop that’s similar to the KDE desktop, but with fewer graphics for low-
memory environments

JWM Joe’s Window Manager, a very lightweight desktop ideal for low-memory and
low-disk space environments

Fvwm Supports some advanced desktop features such as virtual desktops and Panels,
but runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but
they provide basic graphical functionality just fi ne. Figure 1-6 shows what the JWM desk-
top used in the Puppy Linux antiX distribution looks like.

FIGURE 1-6

The JWM desktop as seen in the Puppy Linux distribution

17

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 17

1

If you are using an older PC, try a Linux distribution that uses one of these desktops and
see what happens. You may be pleasantly surprised.

Linux Distributions
Now that you have seen the four main components required for a complete Linux system,
you may be wondering how you are going to get them all put together to make a Linux sys-
tem. Fortunately, other people have already done that for you.

A complete Linux system package is called a distribution. Many different Linux distributions
are available to meet just about any computing requirement you could have. Most distribu-
tions are customized for a specifi c user group, such as business users, multimedia enthu-
siasts, software developers, or average home users. Each customized distribution includes
the software packages required to support specialized functions, such as audio- and video-
editing software for multimedia enthusiasts, or compilers and integrated development envi-
ronments (IDEs) for software developers.

The different Linux distributions are often divided into three categories:

 ■ Full core Linux distributions

 ■ Specialized distributions

 ■ LiveCD test distributions

The following sections describe these different types of Linux distributions and show some
examples of Linux distributions in each category.

Core Linux Distributions
A core Linux distribution contains a kernel, one or more graphical desktop environments,
and just about every Linux application that is available, precompiled for the kernel. It
provides one-stop shopping for a complete Linux installation. Table 1-4 shows some of the
more popular core Linux distributions.

TABLE 1-4 Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Continues

18

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 18

Distribution Description

Gentoo A distribution designed for advanced Linux users, containing only Linux source
code

openSUSE Different distributions for business and home use

Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of fl oppy disks. You had to
download groups of fi les and then copy them onto disks. It would usually take 20 or more
disks to make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux
distributions are released as either a CD set or a single DVD. This makes installing Linux
much easier.

However, beginners still often run into problems when they install one of the core Linux
distributions. To cover just about any situation in which someone might want to use Linux,
a single distribution must include lots of application software. They include everything
from high-end Internet database servers to common games. Because of the quantity of
applications available for Linux, a complete distribution often takes four or more CDs.

Although having lots of options available in a distribution is great for Linux geeks, it can
become a nightmare for beginning Linux users. Most distributions ask a series of questions
during the installation process to determine which applications to load by default, what
hardware is connected to the PC, and how to confi gure the hardware. Beginners often fi nd
these questions confusing. As a result, they often either load way too many programs on
their computer or don’t load enough and later discover that their computer won’t do what
they want it to.

Fortunately for beginners, there’s a much simpler way to install Linux.

Specialized Linux Distributions
A new subgroup of Linux distributions has started to appear. These are typically based on
one of the main distributions but contain only a subset of applications that would make
sense for a specifi c area of use.

In addition to providing specialized software (such as only offi ce products for business
users), customized Linux distributions also attempt to help beginning Linux users by

TABLE 1-4 (continued)

19

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 19

1

autodetecting and autoconfi guring common hardware devices. This makes installing Linux
a much more enjoyable process.

Table 1-5 shows some of the specialized Linux distributions available and what they
specialize in.

TABLE 1-5 Specialized Linux Distributions

Distribution Description

CentOS A free distribution built from the Red Hat Enterprise Linux source code

Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and offi ce use

Mint A free distribution for home entertainment use

dyne:bolic A free distribution designed for audio and MIDI applications

Puppy Linux A free small distribution that runs well on older PCs

That’s just a small sampling of specialized Linux distributions. There are literally hundreds
of specialized Linux distributions, and more are popping up all the time on the Internet. No
matter what your specialty, you’ll probably fi nd a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution.
They use the same installation fi les as Debian but package only a small fraction of a full-
blown Debian system.

The Linux LiveCD
A relatively new phenomenon in the Linux world is the bootable Linux CD distribution.
This lets you see what a Linux system is like without actually installing it. Most modern
PCs can boot from a CD instead of the standard hard drive. To take advantage of this, some
Linux distributions create a bootable CD that contains a sample Linux system (called a Linux

LiveCD). Because of the limitations of the single CD size, the sample can’t contain a complete
Linux system, but you’d be surprised at all the software they can cram in there. The result
is that you can boot your PC from the CD and run a Linux distribution without having to
install anything on your hard drive!

20

Part I: The Linux Command Line

c01.indd 12/16/2014 Page 20

This is an excellent way to test various Linux distributions without having to mess with
your PC. Just pop in a CD and boot! All the Linux software will run directly from the CD.
You can download lots of Linux LiveCDs from the Internet and burn onto a CD to test drive.

Table 1-6 shows some popular Linux LiveCDs that are available.

TABLE 1-6 Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the fi rst Linux LiveCD developed

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages

Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have
a Linux LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to
install the Linux distribution directly from the LiveCD. This enables you to boot with the
CD, test drive the Linux distribution, and then if you like it, install it on your hard drive.
This feature is extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Because you access every-
thing from the CD, applications run more slowly, especially if you’re using older, slower
computers and CD drives. Also, because you can’t write to the CD, any changes you make to
the Linux system will be gone the next time you reboot.

But advances are being made in the Linux LiveCD world that will help to solve some of
these problems. These advances include the ability to:

 ■ Copy Linux system fi les from the CD to memory

 ■ Copy system fi les to a fi le on the hard drive

 ■ Store system settings on a USB memory stick

 ■ Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux
system fi les. The LiveCD boot scripts copy them directly into memory when the CD boots.
This allows you to remove the CD from the computer as soon as Linux boots. Not only does
this make your applications run much faster (because applications run faster from mem-
ory), but it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs
from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the
tray after booting. It involves copying the core Linux fi les onto the Windows hard drive as

21

Chapter 1: Starting with Linux Shells

c01.indd 12/16/2014 Page 21

1

a single fi le. After the CD boots, it looks for that fi le and reads the system fi les from it. The
dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must
copy the system fi le to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a com-
mon USB memory stick (also called a fl ash drive or a thumb drive). Just about every Linux
LiveCD can recognize a plugged-in USB memory stick (even if the stick is formatted for
Windows) and read and write fi les to and from it. This allows you to boot a Linux LiveCD,
use the Linux applications to create fi les, store those fi les on your memory stick, and then
access them from your Windows applications later (or from a different computer). How
cool is that?

Summary
 This chapter discussed the Linux system and the basics of how it works. The Linux kernel
is the core of the system, controlling how memory, programs, and hardware all interact
with one another. The GNU utilities are also an important piece in the Linux system. The
Linux shell, which is the main focus of this book, is part of the GNU core utilities. The
chapter also discussed the fi nal piece of a Linux system, the Linux desktop environment.
Things have changed over the years, and Linux now supports several graphical desktop
environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles
the various parts of a Linux system into a simple package that you can easily install on
your PC. The Linux distribution world consists of full-blown Linux distributions that
include just about every application imaginable, as well as specialized Linux distributions
that include applications focused only on a special function. The Linux LiveCD craze has
created another group of Linux distributions that allow you to easily test-drive Linux with-
out even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell script-
ing experience. You’ll see what you need to do to get to the Linux shell utility from your
fancy graphical desktop environment. These days, that’s not always an easy thing.

23

CHAP T ER

2
Getting to the Shell

IN THIS CHAPTER

Accessing the command line

Reaching CLI via a Linux console terminal

Reaching CLI via a graphical terminal emulator

Using the GNOME terminal emulator

Using the Konsole terminal emulator

Using the xterm terminal emulator

I
n the old days of Linux, all you had to work with was the shell. System administrators, pro-
grammers, and system users all sat at something called a Linux console terminal entering shell
commands and viewing text output. These days, with graphical desktop environments, it’s get-

ting harder to fi nd a shell prompt on the system in order to enter shell commands. This chapter
discusses what is required to reach a command line environment. It walks you through the terminal
emulation packages that you may run into in the various Linux distributions.

Reaching the Command Line
Before the days of graphical desktops, the only way to interact with a Unix system was through a
text command line interface (CLI) provided by the shell. The CLI allowed text input only and could
display only text and rudimentary graphics output.

Because of these restrictions, output devices were not very fancy. Often, you needed only a simple
dumb terminal to interact with the Unix system. A dumb terminal was usually nothing more than
a monitor and keyboard connected to the Unix system via a communication cable (usually a multi-
wire serial cable). This simple combination provided an easy way to enter text data into the Unix
system and view text results.

As you well know, things are signifi cantly different in today’s Linux environment. Just about every
Linux distribution uses some type of graphical desktop environment. However, to enter shell com-
mands, you still need a text display to access the shell’s CLI. The problem now is getting to one.
Sometimes fi nding a way to get a CLI in a Linux distribution is not an easy task.

c02 December 3, 2014 4:28 PM V1

24

Part I: The Linux Command Line

Console Terminals
One way to get to a CLI is to take the Linux system out of graphical desktop mode and
place it in text mode. This provides nothing more than a simple shell CLI on the monitor,
just like the days before graphical desktops. This mode is called the Linux console because
it emulates the old days of a hard-wired console terminal and is a direct interface to the
Linux system.

When the Linux system starts, it automatically creates several virtual consoles. A virtual
console is a terminal session that runs in Linux system memory. Instead of having several
dumb terminals connected to the computer, most Linux distributions start fi ve or six (or
sometimes even more) virtual consoles that you can access from a single computer keyboard
and monitor.

Graphical Terminals
The alternative to using a virtual console terminal is to use a terminal emulation
package from within the Linux graphical desktop environment. A terminal emulation
package simulates working on a console terminal, but within a desktop graphical window.
Figure 2-1 shows an example of a terminal emulator running in a Linux graphical desktop
environment.

FIGURE 2-1

A simple terminal emulator running on a Linux desktop

c02 December 3, 2014 4:28 PM V1

25

Chapter 2: Getting to the Shell

2

Graphical terminal emulation is responsible only for a portion of the Linux graphical experi-
ence. As a whole, the experience is accomplished via several components, including graphi-
cal terminal emulation software (called a client). Table 2-1 shows the different components
in the Linux graphical desktop environment.

TABLE 2-1 Graphical Interface Elements

Name Examples Description

Client Graphical terminal emulator, desktop
environment, network browser

An application that requests
graphical services

Display Server Mir, Wayland Compositor, Xserver Element that manages the
display (screen) and the input
devices (keyboard, mouse,
touch screen)

Window
Manager

Compiz, Metacity, Kwin Element that adds borders to
windows and provides features
to move and manage windows

Widgets
Library

Athena(Xaw), X Intrinsics Element that adds menus and
appearance items for desktop
environment clients

For dealing with the command line from the desktop, the focus is on the graphical terminal
emulator. You can think of graphical terminal emulators as CLI terminals “in the GUI” and
virtual console terminals as CLI terminals “outside the GUI.” Understanding the various
terminals and their features can enhance your command line experience.

Accessing CLI via a Linux Console Terminal
In the early days of Linux, when you booted up your system you would see a login prompt
on your monitor, and that’s all. As mentioned earlier, this is called the Linux console. It
was the only place you could enter commands for the system.

Even though several virtual consoles are created at boot time, many Linux distributions
switch to a graphical environment after the boot sequence completes. This provides the
user with a graphical login and desktop experience. Therefore, in this case, accessing a vir-
tual console is done manually.

In most Linux distributions, you can access one of the Linux virtual consoles using a sim-
ple keystroke combination. Usually, you must hold down the Ctrl+Alt key combination and
then press a function key (F1 through F7) for the virtual console you want to use. Function
key F2 produces virtual console 2, key F3 produces virtual console 3, key F4 produces
virtual console 4, and so on.

c02 December 3, 2014 4:28 PM V1

26

Part I: The Linux Command Line

Linux distributions typically use the Ctrl+Alt key combination with either F1 or F7 to reach the graphical interface.

Ubuntu uses F7, while RHEL uses F1. It is best to test and see where your distribution puts the graphical interface.

Text mode virtual consoles use the whole screen and start with the text login screen dis-
played. An example of a text login screen from a virtual console is shown in Figure 2-2.

FIGURE 2-2

Linux virtual console login screen

Notice in Figure 2-2 the words tty2 at the end of the fi rst text line. The 2 in tty2 indi-
cates that it is virtual console 2 and was reached by pressing the Ctrl+Alt+F2 key sequence.
tty stands for teletypewriter. Teletypewriter is an old term, indicating a machine used for
sending messages.

Not all Linux distributions show the virtual console’s tty number at the login screen.

You log into a console terminal by entering your user ID after the login: prompt and
typing your password after the Password: prompt. If you have never logged in this way
before, be aware that typing your password is a different experience than in a graphical
environment. In a graphical environment, you may see dots or asterisks indicating the
password characters as you type. However, at the virtual console, nothing is displayed when
you type your password.

After logging into a virtual console, you are taken to the Linux CLI. Keep in mind that,
within the Linux virtual console, you do not have the ability to run any graphical
programs.

c02 December 3, 2014 4:28 PM V1

27

Chapter 2: Getting to the Shell

2

After you have logged in to a virtual console, you can keep it active and switch to another
virtual console without losing your active session. You can switch between all the virtual
consoles, with multiple active sessions running. This feature provides a great deal of fl ex-
ibility while you work at the CLI.

Additional fl exibility deals with the virtual console’s appearance. Even though it is a text
mode console terminal, you can modify the text and background colors.

For example, it may be easier on your eyes to set the background of the terminal to white
and the text to black. After you have logged in, you can accomplish this modifi cation in a
couple of ways. One way is to type in the command setterm -inversescreen on and press
the Enter key, as shown in Figure 2-3. Notice in the fi gure that the inversescreen fea-
ture is being turned on using the option on. You can also turn it off using the off option.

FIGURE 2-3

Linux virtual console with inversescreen being turned on

Another way is to type two commands, one after the other. Type setterm -background
white and press Enter, and then type setterm -foreground black and press Enter. Be care-
ful because, when you change your terminal background fi rst, it may be hard to see the
commands you are typing.

With the commands in the preceding paragraph, you are not turning features on and off, as
with inversescreen. Instead, you have a choice of eight colors. The choices are black,
red, green, yellow, blue, magenta, cyan, and white (which looks gray on some

c02 December 3, 2014 4:28 PM V1

28

Part I: The Linux Command Line

distributions). You can get rather creative with your plain text mode console terminals.
Table 2-2 shows some options you can use with the setterm command to help improve
your console terminal’s readability or appearance.

TABLE 2-2 setterm Options for Foreground and Background
Appearance

Option Parameter Choices Description

-background black, red, green, yellow,
blue, magenta, cyan, or white

Changes the terminal’s back-
ground color to the one
specifi ed

-foreground black, red, green, yellow,
blue, magenta, cyan, or white

Changes the terminal’s fore-
ground color, specifi cally text,
to the one specifi ed

-inversescreen on or off Switches the background color
to the foreground color and the
foreground color to the back-
ground color

-reset None Changes the terminal appear-
ance back to its default setting
and clears the screen

-store None Sets the current terminal’s fore-
ground and background colors
as the values to be used for
-reset

Virtual console terminals are great for accessing the CLI outside the GUI. However, some-
times, you need to access the CLI and run graphical programs. Using a terminal emulation
package solves this problem and is a popular way to access the shell CLI from within the
GUI. The following sections describe common software packages that provide graphical ter-
minal emulation.

Accessing CLI via Graphical Terminal Emulation
The graphical desktop environment offers a great deal more variety for CLI access than the
virtual console terminal does. Many graphical terminal emulator packages are available
for the graphical environment. Each package provides its own unique set of features and
options. Some popular graphical terminal emulator packages are shown in Table 2-3 along
with their websites.

c02 December 3, 2014 4:28 PM V1

29

Chapter 2: Getting to the Shell

2

TABLE 2-3 Popular Graphical Terminal Emulator Packages

Name Website

Eterm http://www.eterm.org

Final Term http://finalterm.org

GNOME Terminal https://help.gnome.org/users/gnome-terminal/stable

Guake https://github.com/Guake/guake

Konsole Terminal http://konsole.kde.org

LillyTerm http://lilyterm.luna.com.tw/index.html

LXTerminal http://wiki.lxde.org/en/LXTerminal

mrxvt https://code.google.com/p/mrxvt

ROXTerm http://roxterm.sourceforge.net

rxvt http://sourceforge.net/projects/rxvt

rxvt-unicode http://software.schmorp.de/pkg/rxvt-unicode

Sakura https://launchpad.net/sakura

st http://st.suckless.org

Terminator https://launchpad.net/terminator

Terminology http://www.enlightenment.org/p.php?p=about/terminology

tilda http://tilda.sourceforge.net/tildaabout.php

UXterm http://manpages.ubuntu.com/manpages/gutsy/man1/
uxterm.1.html

Wterm http://sourceforge.net/projects/wterm

xterm http://invisible-island.net/xterm

Xfce4 Terminal http://docs.xfce.org/apps/terminal/start

Yakuake http://extragear.kde.org/apps/yakuake

Although many graphical terminal emulator packages are available, the focus in this chap-
ter is on three commonly used ones. Often installed in Linux distributions by default, they
are GNOME Terminal, Konsole Terminal, and xterm.

Using the GNOME Terminal Emulator
GNOME Terminal is the GNOME desktop environment’s default terminal emulator. Many
distributions, such as RHEL, Fedora, and CentOS, use the GNOME desktop environment by

c02 December 3, 2014 4:28 PM V1

http://www.eterm.org
http://finalterm.org
https://help.gnome.org/users/gnome-terminal/stable
https://github.com/Guake/guake
http://konsole.kde.org
http://lilyterm.luna.com.tw/index.html
http://wiki.lxde.org/en/LXTerminal
https://code.google.com/p/mrxvt
http://roxterm.sourceforge.net
http://sourceforge.net/projects/rxvt
http://software.schmorp.de/pkg/rxvt-unicode
https://launchpad.net/sakura
http://st.suckless.org
https://launchpad.net/terminator
http://www.enlightenment.org/p.php?p=about/terminology
http://tilda.sourceforge.net/tildaabout.php
http://manpages.ubuntu.com/manpages/gutsy/man1
http://sourceforge.net/projects/wterm
http://invisible-island.net/xterm
http://docs.xfce.org/apps/terminal/start
http://extragear.kde.org/apps/yakuake

30

Part I: The Linux Command Line

default, and therefore use GNOME Terminal by default. However, other desktop environ-
ments, such as Ubuntu Unity, also use the GNOME terminal as their default terminal emula-
tor package. It is fairly easy to use and a good terminal emulator for individuals who are
new to Linux. This chapter section walks you through the various parts of accessing, con-
fi guring and using the GNOME terminal emulator.

Accessing the GNOME Terminal
Each graphical desktop environment has different methods for accessing the GNOME termi-
nal emulator. This section looks at accessing the GNOME Terminal in the GNOME, Unity, and
KDE desktop environments.

If you are using a different desktop environment than the ones listed in Table 2.3, you must look through the vari-

ous menus offered in your environment to fi nd the GNOME terminal emulator. In the menus, it is typically named

Terminal.

In the GNOME desktop environment, accessing the GNOME Terminal is fairly straightfor-
ward. From the menu system in the upper-left corner of the window, click Applications,
then select System Tools from the drop-down menu, and fi nally click Terminal. Written
in shorthand, the directions look like the following: Applications ➪ System Tools ➪
Terminal.

Refer to Figure 2-1 to see a picture of the GNOME Terminal. It was accessed in a GNOME
desktop environment on a CentOS distribution.

In the Unity desktop environment, accessing the GNOME terminal takes a little more effort.
The simplest access method is Dash ➪ Search and type Terminal. The GNOME terminal
shows up in the Dash home area as an application named Terminal. Click that icon to
open the GNOME terminal emulator.

In some Linux distribution desktop environments, such as Ubuntu’s Unity, you can quickly access the GNOME terminal using the

shortcut key combination Ctrl+Alt+T.

In the KDE desktop environment, the Konsole terminal emulator is the default emulator.
Therefore, you must dig down through the menus to access GNOME Terminal. Start with the
icon labeled Kickoff Application Launcher in the lower-left corner of the screen and
then click Applications ➪ Utilities ➪ Terminal.

c02 December 3, 2014 4:28 PM V1

31

Chapter 2: Getting to the Shell

2

In most desktop environments, you can create a launcher for accessing GNOME Terminal.
A launcher is an icon you create on your desktop that allows you to start a chosen applica-
tion. This is a great feature that allows you to quickly access a terminal emulator in the
graphical desktop. It is especially helpful if you do not want to use shortcut keys or the
shortcut key feature is not available in your desktop environment of choice.

For example, in the GNOME desktop environment, to create a launcher, right-click your
mouse in the middle of the desktop area; a drop-down menu appears. Select Create
Launcher... from the menu; the Create Launcher application window opens. In the Type
fi eld, select Application. Type a name for your icon in the Name fi eld. In the Command
fi eld, type gnome-terminal. Click Ok to save your new launcher. An icon with the name
you gave the launcher now appears on your desktop. Double-click it to open the GNOME
terminal emulator.

When you type gnome-terminal in the Command fi eld, you are typing the shell command for starting the GNOME ter-

minal emulator. You learn in Chapter 3 how to add special options to commands, such as gnome-terminal, to provide

special confi guration options, and how to view all the options available to you.

Several confi guration options are provided by menus and short-cut keys in the application,
which you can apply after you get the GNOME terminal emulation started. Understanding
these options can enhance your GNOME Terminal CLI experience.

The Menu Bar
The GNOME Terminal menu bar contains the confi guration and customization options you
need to make your GNOME Terminal just the way you want it. The following tables briefl y
describe the different confi guration options in the menu bar and shortcut keys associated
with the options.

As you read through these GNOME Terminal menu options, keep in mind that your Linux distribution’s GNOME

Terminal may have slightly different menu options available. This is because several Linux distributions use older ver-

sions of GNOME Terminal.

Table 2-4 shows the confi guration options available within the GNOME Terminal File menu
system. The File menu item contains items to create and manage your overall CLI terminal
sessions.

c02 December 3, 2014 4:28 PM V1

32

Part I: The Linux Command Line

TABLE 2-4 The File Menu

Name Shortcut Key Description

Open Terminal Shift+Ctrl+N Starts a new shell session in a new GNOME Terminal
window

Open Tab Shift+Ctrl+T Starts a new shell session in a new tab in the existing
GNOME Terminal window

New Profile None Customizes a session and saves as a profi le, which can be
recalled for later use

Save Contents None Saves the scrollback buffer contents to a text fi le

Close Tab Shift+Ctrl+W Closes the current tab session

Close Window Shift+Ctrl+Q Closes the current GNOME Terminal session

Notice that, as in a network browser, you can open new tabs within the GNOME Terminal
session to start a whole new CLI session. Each tab session is considered to be an indepen-
dent CLI session.

You do not have to click through the menu to reach options in the File menu. Most of the items are also available by right-

clicking in the session area.

The Edit menu contains items, shown in Table 2-5, for handling text within the tabs. You
can use your mouse to copy and paste text anywhere within the session window.

TABLE 2-5 The Edit Menu

Name Shortcut Key Description

Copy Shift+Ctrl+C Copies selected text to the GNOME clipboard

Paste Shift+Ctrl+V Pastes text from the GNOME clipboard into a
session

Paste Filenames Properly pastes copied fi lenames and their paths

Select All None Selects output in the entire scrollback buffer

Profiles None Adds, deletes, or modifi es GNOME Terminal profi les

Keyboard
Shortcuts

None Creates key combinations to quickly access GNOME
Terminal features

Profile
Preferences

None Edits the current session profi le

c02 December 3, 2014 4:28 PM V1

33

Chapter 2: Getting to the Shell

2

The Paste Filenames menu option is available only in later versions of GNOME Terminal.
Therefore, you may not see that menu option on your system.

The View menu, shown in Table 2-6, contains items for controlling how the CLI session
windows appear. These options can be helpful for individuals with visual impairment.

TABLE 2-6 The View Menu

Name Shortcut Key Description

Show Menubar None Toggles on/off the menu bar display

Full Screen F11 Toggles on/off the terminal window fi lling the entire
desktop

Zoom In Ctrl++ Enlarges the font size in the window incrementally

Zoom Out Ctrl+- Reduces the font size in the window incrementally

Normal Size Ctrl+0 Returns the font size to default

Be aware that if you toggle off the menu bar display, the session’s menu bar disappears.
However, you can easily get the menu bar to display again by right-clicking in any terminal
session window and toggling on the Show Menubar option.

The Search menu, shown in Table 2-7, contains items for conducting simple searches
within the terminal session. These searches are similar to ones you may have conducted in
a network browser or word processor.

TABLE 2-7 The Search Menu

Name Shortcut Key Description

Find Shift+Ctrl+F Opens Find window to provide designated text search
options

Find Next Shift+Ctrl+H Searches forward from current terminal session location for
designated text

Find
Previous

Shift+Ctrl+G Searches backward from current terminal session location
for designated text

The Terminal menu, shown in Table 2-8, contains options for controlling the terminal
emulation session features. There are no shortcut keys to access these items.

c02 December 3, 2014 4:28 PM V1

34

Part I: The Linux Command Line

TABLE 2-8 The Terminal Menu

Name Description

Change Profile Switches to a new profi le confi guration

Set Title Modifi es session tab title bar setting

Set Character Encoding Selects character set used to send and display characters

Reset Sends reset terminal session control code

Reset and Clear Sends reset terminal session control code and clears terminal
session screen

Window Size List Lists window sizes for adjusting the current terminal window
size

The Reset option is extremely useful. One day, you may accidently cause your terminal
session to display random characters and symbols. When this occurs, the text is unread-
able. It is typically caused by displaying a non-text fi le to the screen. You can quickly get
the terminal session back to normal by selecting Reset or Reset and Clear.

The Tabs menu, shown in Table 2-9, provides items for controlling the location of the tabs
and selecting which tab is active. This menu displays only when you have more than one
tab session open.

TABLE 2-9 The Tabs Menu

Name Shortcut Key Description

Next Tab Ctrl+Page Down Makes the next tab in the list active

Previous
Tab

Ctrl+Page Up Makes the previous tab in the list active

Move Tab
Left

Shift+Ctrl+Page
Up

Shuffl es the current tab in front of the previous tab

Move Tab
Right

Shift+Ctrl+Page
Down

Shuffl es the current tab in front of the next tab

Detach Tab None Removes the tab and starts a new GNOME Terminal win-
dow using this tab session

Tab List None Lists the currently running tabs (Select a tab to jump to
that session.)

Terminal
List

None Lists the currently running terminals (Select a terminal to
jump to that session. This is displayed only if multiple
window sessions are open.)

c02 December 3, 2014 4:28 PM V1

35

Chapter 2: Getting to the Shell

2

Finally, the Help menu contains two menu options. Contents provides a full GNOME
Terminal manual so you can research individual GNOME Terminal items and features. The
About option shows you the current GNOME Terminal version that’s running.

Besides the GNOME terminal emulator package, another commonly used package is Konsole
Terminal. In many ways, Konsole Terminal is similar to GNOME Terminal. However, enough
differences exist to warrant its own section.

Using the Konsole Terminal Emulator
The KDE Desktop Project created its own terminal emulation package called Konsole
Terminal. The Konsole package incorporates basic terminal emulation features, along with
more advanced ones expected from a graphical application. This section describes Konsole
Terminal features and shows you how to use them.

Accessing the Konsole Terminal
The Konsole Terminal is the default terminal emulator for the KDE desktop environment.
You can easily access it via the KDE environment’s menu system. In other desktop environ-
ments, accessing the Konsole Terminal can be a little more diffi cult.

In the KDE desktop environment, you can access the Konsole Terminal by clicking the icon
labeled Kickoff Application Launcher in the lower-left corner of the screen. Then
click Applications ➪ System ➪ Terminal (Konsole).

You may see two terminal menu options within the KDE menu environment. If you do, the Terminal menu option with

the words Konsole beneath it is the Konsole terminal.

In the GNOME desktop environment, the Konsole terminal is typically not installed
by default. If Konsole Terminal has been installed, you can access it via the GNOME
menu system. In the upper-left corner of the window, click Applications ➪
System Tools ➪ Konsole.

You may not have the Konsole terminal emulation package installed on your system. If you would like to install it,

read through Chapter 9 to learn how to install software via the command line.

c02 December 3, 2014 4:28 PM V1

36

Part I: The Linux Command Line

In the Unity desktop environment, if Konsole has been installed, you can access it via
Dash ➪ Search and type Konsole. The Konsole Terminal shows up in the Dash home area
as an application named Konsole. Click that icon to open the Konsole terminal emulator.

Figure 2-4 shows the Konsole Terminal. It was accessed on a KDE desktop environment in a
CentOS Linux distribution.

FIGURE 2-4

The Konsole Terminal

Remember that, in most desktop environments, you can create a launcher to access appli-
cations such as the Konsole Terminal. The command you need to type for the launcher
to start up the Konsole terminal emulator is konsole. Also, if the Konsole Terminal is
installed, you can start it from another terminal emulator by typing konsole and pressing
Enter.

The Konsole Terminal, similar to GNOME Terminal, has several confi guration options pro-
vided by menus and shortcut keys. The following section describes these various options.

c02 December 3, 2014 4:28 PM V1

37

Chapter 2: Getting to the Shell

2

The Menu Bar
The Konsole Terminal menu bar contains the confi guration and customization options you
need to easily view and change features in your terminal emulation session. The following
tables briefl y describe the menu options and associated shortcut keys.

The Konsole Terminal provides a simple menu when you right-click in the active session area. Several menu items are

available in this easy-to-access menu.

The File menu, shown in Table 2-10, provides options for starting a new tab in the current
window or in a new window.

TABLE 2-10 The File Menu

Name Shortcut Key Description

New Tab Ctrl+Shift+N Starts a new shell session in a new tab in the existing
Konsole Terminal window

New Window Ctrl+Shift+M Starts a new shell session in a new Konsole Terminal
window

Shell None Opens the default profi le, Shell

Open Browser
Here

None Opens the default fi le browser application

Close Tab Ctrl+Shift+W Closes the current tab session

Quit Ctrl+Shift+Q Quits the Konsole Terminal emulation application

When you fi rst start the Konsole Terminal, the only profi le listed in the menu is Shell. As
more profi les are created and saved, their names appear in the menu list.

As you read through these Konsole Terminal menu options, keep in mind that your Linux distribution’s Konsole

Terminal may have very different menu options available. This is because some Linux distributions have kept older

versions of the Konsole Terminal emulation package.

c02 December 3, 2014 4:28 PM V1

38

Part I: The Linux Command Line

The Edit menu, shown in Table 2-11, provides options for handling text in the session.
Also, managing tab names is in this options list.

TABLE 2-11 The Edit Menu

Name Shortcut Key Description

Copy Ctrl+Shift+C Copies selected text to the Konsole clipboard

Paste Ctrl+Shift+V Pastes text from the Konsole clipboard into a session

Rename Tab Ctrl+Alt+S Modifi es session tab title bar setting

Copy Input To None Starts/stops session input copies to chosen additional
sessions

Clear Display None Clears the terminal session screen

Clear & Reset None Clears the terminal session screen and sends the reset
terminal session control code

Konsole provides an excellent method for tracking what function is taking place in each
tab session. Using the Rename Tab menu option, you can name a tab to match its current
task. This helps in tracking which open tab session is performing what function.

The View menu, shown in Table 2-12, contains items for controlling individual session
views in the Konsole Terminal window. In addition, options are available that aid in moni-
toring terminal session activity.

TABLE 2-12 The View Menu

Name Shortcut Key Description

Split View None Controls the multiple tab session display within
the current Konsole Terminal window

Detach View Ctrl+Shift+H Removes a tab session and starts a new Konsole
Terminal window using this tab session

Show Menu Bar None Toggles on/off Menu bar display

Full Screen Mode Ctrl+Shift+F11 Toggles on/off the terminal window fi lling the
entire monitor display area

Monitor for
Silence

Ctrl+Shift+I Toggles on/off a special message for tab silence

Monitor for
Activity

Ctrl+Shift+A Toggles on/off a special message for tab
activity

Character Encoding None Selects the character set used to send and dis-
play characters

c02 December 3, 2014 4:28 PM V1

39

Chapter 2: Getting to the Shell

2

Increase Text Size Ctrl++ Enlarges the font size in the window
incrementally

Decrease Text Size Ctrl+- Reduces the font size in the window
incrementally

The Monitor for Silence menu option is used for indicating tab silence. Tab silence
occurs when no new text appears in the current tab session for 10 seconds. This allows you
to switch to another tab while waiting for application output to stop.

Tab activity, toggled by the Monitor for Activity option, issues a special message
when new text appears in the tab session. This option allows you to be notifi ed when out-
put from an application occurs.

Konsole retains a history, formally called a scrollback buffer, for each tab. The history
contains output text that has scrolled out of the terminal viewing area. By default, the
last 1,000 lines in the scrollback buffer are retained. The Scrollback menu, shown in
Table 2-13, contains options for viewing this buffer.

TABLE 2-13 The Scrollback Menu

Name Shortcut Key Description

Search Output Ctrl+Shift+F Opens the Find window at the bottom of the
Konsole Terminal window to provide scrollback text
search options

Find Next F3 Finds the next text match in more recent scrollback
buffer history

Find Previous Shift+F3 Finds the next text match in older scrollback buffer
history

Save Output None Saves scrollback buffer contents to a text or
HTML fi le

Scrollback
Options

None Opens the Scrollback Options window to confi gure
scrollback buffer options

Clear Scrollback None Removes scrollback buffer contents

Clear Scrollback
& Reset

Ctrl+Shift+X Removes scrollback buffer contents and resets the
terminal window

You can scroll back through the scrollback buffer by simply using the scrollbar in the view-
ing area. Also, you can scroll back line by line by pressing the Shift+Up Arrow or scroll back
a page (24 lines) at a time by pressing Shift+Page Up.

c02 December 3, 2014 4:28 PM V1

40

Part I: The Linux Command Line

The Bookmarks menu options, shown in Table 2-14, provide a way to manage bookmarks
set in the Konsole Terminal window. A bookmark enables you to save your active session’s
directory location and then easily return there in either the same session or a new session.

TABLE 2-14 The Bookmarks Menu

Name Shortcut Key Description

Add Bookmark Ctrl+Shift+B Creates a new bookmark at the current direc-
tory location

Bookmark Tabs as
Folder

None Creates a new bookmark for all current terminal
tab sessions

New Bookmark Folder None Creates a new bookmark storage folder

Edit Bookmarks None Edits existing bookmarks

The Settings menu, shown in Table 2-15, allows you to customize and manage your pro-
fi les. Also, you can add a little more functionality to your current tab session. There are no
shortcut keys to access these items.

TABLE 2-15 The Settings Menu

Name Description

Change Profile Applies to the current tab a selected profi le

Edit Current Profile Opens the Edit Profi le window to provide profi le confi guration
options

Manage Profiles Opens the Manage Profi le window to provide profi le manage-
ment options

Configure Shortcuts Creates Konsole Terminal command keyboard shortcuts

Configure
Notifications

Creates custom Konsole Terminal schemas and sessions

Configure Notifications allows you to associate specifi c events that can occur within
a session with different actions. When one of the events occurs, the defi ned action (or
actions) is taken.

The Help menu, shown in Table 2-16, provides the full Konsole handbook (if KDE handbooks
were installed in your Linux distribution) and the standard About Konsole dialog box.

c02 December 3, 2014 4:28 PM V1

41

Chapter 2: Getting to the Shell

2

TABLE 2-16 The Help Menu

Name Shortcut Key Description

Konsole Handbook None Contains the full Konsole Handbook

What’s This? Shift+F1 Contains help messages for terminal
widgets

Report Bug None Opens the Submit Bug Report form

Switch Application
Language

None Opens the Switch Application’s Language
form

About Konsole None Displays the current Konsole Terminal
version

About KDE Displays the current KDE desktop envi-
ronment version

Rather extensive documentation is provided to help you use the Konsole terminal emulator
package. In addition to help items, you are provided with a Bug Report form to submit to
the Konsole Terminal developers when you encounter a program bug.

The Konsole terminal emulator package is young compared to another popular package,
xterm. In the next section, we explore the “old-timer” xterm.

Using the xterm Terminal Emulator
The oldest and most basic of terminal emulation packages is xterm. The xterm package has
been around since before the original days of X Window, a popular display server, and it’s
often included by default in distributions.

Although xterm is a full terminal emulation package, it doesn’t require many resources
(such as memory) to operate. Because of this, the xterm package is still popular in Linux
distributions designed to run on older hardware. Some graphical desktop environments use
it as the default terminal emulation package.

Although it doesn’t offer many fancy features, the xterm package does one thing extremely
well: It emulates older terminals, such as the Digital Equipment Corporation (DEC) VT102,
VT220, and Tektronix 4014 terminals. For the VT102 and VT220 terminals, xterm can even
emulate the VT series of color control codes, allowing you to use color in your scripts.

c02 December 3, 2014 4:28 PM V1

42

Part I: The Linux Command Line

The DEC VT102 and VT220 were dumb text terminals popular for connecting to Unix systems in the 1980s and early

1990s. A VT102/VT220 could display text and display rudimentary graphics using block mode graphics. This style of

terminal access is still used in many business environments today, thus keeping VT102/VT220 emulation popular.

Figure 2-5 shows what the basic xterm display looks like running on a graphical Linux
desktop. You can see it is very basic.

FIGURE 2-5

The xterm Terminal

The xterm terminal emulator can be tricky to fi nd these days. Often, it is not included in a
desktop environment graphical menu arrangement.

Accessing xterm
In Ubuntu’s Unity desktop, xterm is installed by default. You can access it via
Dash ➪ Search and type xterm. xterm shows up in the Dash home area as an application
named XTerm. Click that icon to open the xterm terminal emulator.

You may see another terminal called UXTerm when you search for xterm on Ubuntu. This is simply the xterm emulator

package with Unicode support.

c02 December 3, 2014 4:28 PM V1

43

Chapter 2: Getting to the Shell

2

In the GNOME and KDE desktop environment, xterm is not installed by default. You must
install it fi rst (see Chapter 9 for help on installing software packages). After it’s installed,
you must start xterm from another terminal emulator. Open a terminal emulator for CLI
access, type xterm, and press Enter. Also, remember that you can create your own desktop
launcher to startup xterm.

The xterm package allows you to set individual features using command line parameters.
The following sections discuss these features and how to change them.

Command Line Parameters
The list of xterm command line parameters is extensive. You can control lots of features
to customize the terminal emulation features, such as enabling or disabling individual VT
emulations.

xterm has a huge number of confi guration options — so many that they cannot all be covered here. Extensive docu-

mentation is available via the bash manual. Accessing the bash manual is covered in Chapter 3. In addition, the xterm

development team provides some excellent help on its website: http://invisible-island.net/xterm/.

You can invoke certain confi guration options by adding a parameter to the xterm com-
mand. For example, to have the xterm emulate a DEC VT100 terminal, type the command
xterm -ti vt100 and press Enter. Table 2-17 shows some parameters you can include when
invoking the xterm terminal emulator software.

TABLE 2-17 xterm Command Line Parameters

Parameter Description

-bg color Specifi es the color to use for the terminal background

-fb font Specifi es the font to use for bold text

-fg color Specifi es the color to use for the foreground text

-fn font Specifi es the font to use for text

-fw font Specifi es the font to use for wide text

-lf filename Specifi es the fi lename to use for screen logging

-ms color Specifi es the color used for the text cursor

-name name Specifi es the name of the application that appears in the title bar

-ti terminal Specifi es the terminal type to emulate

c02 December 3, 2014 4:28 PM V1

http://invisible-island.net/xterm

44

Part I: The Linux Command Line

Some xterm command line parameters use a plus sign (+) or minus sign (-) to signify how a
feature is set. A plus sign may turn a feature on, while a minus sign turns it off. However,
the opposite can be true as well. A plus sign may disable a feature, while a minus sign
enables it, such as when using the bc parameter. Table 2-18 lists some of the more common
features you can set using the +/- command line parameters.

TABLE 2-18 xterm +/- Command Line Parameters

Parameter Description

ah Enables/disables highlighted text cursor

aw Enables/disables auto-line-wrap

bc Enables/disables text cursor blinking

cm Enables/disables recognition of ANSI color change control codes

fullscreen Enables/disables full screen mode

j Enables/disables jump scrolling

l Enables/disables logging screen data to a log fi le

mb Enables/disables margin bell

rv Enables/disables reverse video colors

t Enables/disables Tektronix mode

It is important to note that not all implementations of xterm support all these command
line parameters. You can determine which parameters your xterm implements by using the
-help parameter when you start xterm on your system.

Now that you have been introduced to three terminal emulator packages, the big question
is which is the best terminal emulator to use? There is no defi nite answer to that question.
Which terminal emulator package you use depends upon your individual needs and desires.
But it is great to have so many choices.

Summary
 To start learning Linux command line commands, you need access to a CLI. In the world of
graphical interfaces, this can sometimes be challenging. This chapter discussed different
interfaces you should consider to get to the Linux command line.

First, this chapter discussed the difference between accessing the CLI via a virtual console
terminal (a terminal outside the GUI) and a graphical terminal emulation package

c02 December 3, 2014 4:28 PM V1

45

Chapter 2: Getting to the Shell

2

(a terminal inside the GUI). We took a brief look at the basic differences between these two
access methods.

Next, we explored in detail accessing the CLI via a virtual console terminal, including spe-
cifi cs on how to change console terminal confi guration options such as background color.

After looking at virtual console terminals, the chapter traveled through accessing the CLI
via a graphical terminal emulator. Primarily, we covered three different types of terminal
emulators: GNOME Terminal, Konsole Terminal, and xterm.

This chapter also covered the GNOME desktop project’s GNOME terminal emulation package.
GNOME Terminal is typically installed by default on the GNOME desktop environment. It pro-
vides convenient ways to set many terminal features via menu options and shortcut keys.

We also covered the KDE desktop project’s Konsole terminal emulation package. The Konsole
Terminal is typically installed by default on the KDE desktop environment. It provides sev-
eral nice features, such as the ability to monitor a terminal for silence.

Finally, we covered the xterm terminal emulator package. xterm was the fi rst terminal
emulator available for Linux. It can emulate older terminal hardware such as the VT and
Tektronix terminals.

In the next chapter, you start looking at the Linux command line commands. It walks you
through the commands necessary to navigate around the Linux fi lesystem, and to create,
delete, and manipulate fi les.

c02 December 3, 2014 4:28 PM V1

47

c03.indd 12/03/2014 Page 47

CHAP T ER

3
 Basic bash Shell Commands

IN THIS CHAPTER

Interacting with the shell

Using the bash manual

Traversing the fi lesystem

Listing fi les and directories

Managing fi les and directories

Viewing fi le contents

The default shell used in many Linux distributions is the GNU bash shell. This chapter describes
the basic features available in the bash shell, such as the bash manual, tab auto-completion
and how to display a fi le’s contents. You will walk through how to work with Linux fi les and

directories using the basic commands provided by the bash shell. If you’re already comfortable with
the basics in the Linux environment, feel free to skip this chapter and continue with Chapter 4 to
see more advanced commands.

Starting the Shell
The GNU bash shell is a program that provides interactive access to the Linux system. It runs as a
regular program and is normally started whenever a user logs in to a terminal. The shell that the
system starts depends on your user ID confi guration.

The /etc/passwd fi le contains a list of all the system user accounts, along with some basic con-
fi guration information about each user. Here’s a sample entry from a /etc/passwd fi le:

christine:x:501:501:Christine Bresnahan:/home/christine:/bin/bash

Each entry has seven data fi elds, with fi elds separated by colons. The system uses the data in these
fi elds to assign specifi c features for the user. Most of these entries are discussed in more detail in
Chapter 7. For now, just pay attention to the last fi eld, which specifi es the user’s shell program.

48

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 48

Though the focus is on the GNU bash shell, additional shells are reviewed in this book. Chapter 23 covers working

with alternative shells, such as dash and tcsh.

In the earlier /etc/passwd sample entry, the user christine has /bin/bash set as her
default shell program. This means when christine logs into the Linux system, the bash
shell program is automatically started.

Although the bash shell program is automatically started at login, whether a shell com-
mand line interface (CLI) is presented depends on which login method is used. If a virtual
console terminal is used to log in, the CLI prompt is automatically presented, and you can
begin to type shell commands. However, if you log into the Linux system via a graphical
desktop environment, you need to start a graphical terminal emulator to access the shell
CLI prompt.

Using the Shell Prompt
After you start a terminal emulation package or log in to a Linux virtual console, you get
access to the shell CLI prompt. The prompt is your gateway to the shell. This is the place
where you enter shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates
that the shell is waiting for you to enter text. Different Linux distributions use different
formats for the prompt. On this Ubuntu Linux system, the shell prompt looks like this:

christine@server01:~$

On the CentOS Linux system, it looks like this:

[christine@server01 ~]$

Besides acting as your access point to the shell, the prompt can provide additional help-
ful information. In the two preceding examples, the current user ID name, christine, is
shown in the prompt. Also, the name of the system is shown, server01. You learn later in
this chapter about additional items shown in the prompt.

If you are new to the CLI, keep in mind that, after you type in a shell command at the prompt, you need to press the

Enter key for the shell to act upon your command.

The shell prompt is not static. It can be changed to suit your needs. Chapter 6, “Using
Linux Environment Variables,” covers modifying your shell CLI prompt confi guration.

49

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 49

3

3

Think of the shell CLI prompt as a helpmate, assisting you with your Linux system,
giving you helpful insights, and letting you know when the shell is ready for new
commands. Another helpful item in the shell is the bash Manual.

Interacting with the bash Manual
Most Linux distributions include an online manual for looking up information on shell
commands, as well as lots of other GNU utilities included in the distribution. You should
become familiar with the manual, because it’s invaluable for working with commands, espe-
cially when you’re trying to fi gure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system.
Entering the man command followed by a specifi c command name provides that utility’s
manual entry. Figure 3-1 shows an example of looking up the xterm command’s manual
pages. This page was reached by typing the command man xterm.

FIGURE 3-1

Manual pages for the xterm command

Notice the xterm command DESCRIPTION paragraphs in Figure 3-1. They are rather sparse
and full of technical jargon. The bash manual is not a step-by-step guide, but instead a
quick reference.

50

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 50

If you are new to the bash shell, you may fi nd that the man pages are not very helpful at fi rst. However, get into

the habit of using them, especially to read the fi rst paragraph or two of a command’s DESCRIPTION section.

Eventually, you will learn the technical lingo, and the man pages will become more helpful to you.

When you use the man command to view a command’s manual pages, they are displayed
with something called a pager. A pager is a utility that allows you to page through
displayed text. Thus, you can page through the man pages by pressing the spacebar, or you
can go line by line using the Enter key. In addition, you can use the arrow keys to scroll
forward and backward through the man page text (assuming that your terminal emulation
package supports the arrow key functions).

When you are fi nished with the man pages, press the q key to quit. When you quit the man
pages, you receive a shell CLI prompt, indicating the shell is waiting for your next command.

The bash manual even has reference information on itself. Type man man to see manual pages concerning the

man pages.

The manual page divides information about a command into separate sections. Each section
has a conventional naming standard as shown in Table 3-1.

TABLE 3-1 The Linux man Page Conventional Section Names

Section Description

Name Displays command name and a short description

Synopsis Shows command syntax

Confi guration Provides confi guration information

Description Describes command generally

Options Describes command option(s)

Exit Status Defi nes command exit status indicator(s)

Return Value Describes command return value(s)

Errors Provides command error messages

Environment Describes environment variable(s) used

Files Defi nes fi les used by command

Versions Describes command version information

51

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 51

3

Conforming To Provides standards followed

Notes Describes additional helpful command material

Bugs Provides the location to report found bugs

Example Shows command use examples

Authors Provides information on command developers

Copyright Defi nes command code copyright status

See Also Refers similar available commands

Not every command’s man page has all the section names described in Table 3-1. Also, some
commands have section names that are not listed in the conventional standard.

What if you can’t remember the command name? You can search the man pages using keywords. The syntax is

man -k keyword. For example, to fi nd commands dealing with the terminals, you type man -k terminal.

In addition to the conventionally named sections for a man page, there are man page sec-
tion areas. Each section area has an assigned number, starting at 1 and going to 9; they are
listed in Table 3-2.

TABLE 3-2 The Linux man Page Section Areas

Section Number Area Contents

1 Executable programs or shell commands

2 System calls

3 Library calls

4 Special fi les

5 File formats and conventions

6 Games

7 Overviews, conventions, and miscellaneous

8 Super user and system administration commands

9 Kernel routines

52

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 52

Typically, the man utility provides the lowest numbered content area for the command. For
example, looking back to Figure 3-1 where the command man xterm was entered, notice
that in the upper-left and upper-right display corners, the word XTERM is followed by a
number in parentheses, (1). This means the man pages displayed are coming from content
area 1 (executable programs or shell commands).

Occasionally, a command has man pages in multiple section content areas. For example,
there is a command called hostname. The man pages contain information on the command
as well as an overview section on system hostnames. To see the pages desired, you type
man section# topic. For the command’s man pages in section 1, type man 1
hostname. For the overview man pages in section 7, type man 7 hostname.

You can also step through an introduction to the various section content areas by typing
man 1 intro to read about section 1, man 2 intro to read about section 2, man 3 intro
to read about section 3, and so on.

The man pages are not the only reference. There are also the information pages called info
pages. You can learn about the info pages by typing info info.

In addition, most commands accept the -help or --help option. For example, you can
type hostname -help to see a help screen. For more information on using help, type
help help. (See a pattern here?)

Obviously, several helpful resources are available for reference. However, many basic shell
concepts still need detailed explanation. In the next section, we cover navigating through
the Linux fi lesystem.

Navigating the Filesystem
When you log into the system and reach the shell command prompt, you are usually placed
in your home directory. Often, you want to explore other areas in the Linux system besides
just your home directory. This section describes how to do that using shell commands. To
start, you need to take a tour of just what the Linux fi lesystem looks like so you know
where you are going.

Looking at the Linux fi lesystem
If you’re new to the Linux system, you may be confused by how it references fi les and
directories, especially if you’re used to the way the Microsoft Windows operating system
does that. Before exploring the Linux system, it helps to have an understanding of how it’s
laid out.

The fi rst difference you’ll notice is that Linux does not use drive letters in pathnames. In
the Windows world, the physical drives installed on the computer determine the pathname

53

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 53

3

of the fi le. Windows assigns a letter to each physical disk drive, and each drive contains its
own directory structure for accessing fi les stored on it.

For example, in Windows you may be used to seeing the fi le paths such as:

c:\Users\Rich\Documents\test.doc

The Windows fi le path tells you exactly which physical disk partition contains the fi le
named test.doc. For example, if you saved test.doc on a fl ash drive, designated by the
J drive, the fi le path would be J:\test.doc. This path indicates that the fi le is located at
the root of the drive assigned the letter J.

This is not the method used by Linux. Linux stores fi les within a single directory struc-
ture, called a virtual directory. The virtual directory contains fi le paths from all the storage
devices installed on the computer, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root.
Directories and fi les beneath the root directory are listed based on the directory path used
to get to them, similar to the way Windows does it.

You’ll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote directories in fi le paths.

The backslash character in Linux denotes an escape character and causes all sorts of problems when you use it in a

fi le path. This may take some getting used to if you’re coming from a Windows environment.

In Linux, you will see fi le paths similar to the following:

/home/Rich/Documents/test.doc

This indicates the fi le test.doc is in the directory Documents, under the directory rich,
which is contained in the directory home. Notice that the path doesn’t provide any infor-
mation as to which physical disk the fi le is stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device.
The fi rst hard drive installed in a Linux system is called the root drive. The root drive con-
tains the virtual directory core. Everything else builds from there.

On the root drive, Linux can use special directories as mount points. Mount points are
directories in the virtual directory where you can assign additional storage devices. Linux
causes fi les and directories to appear within these mount point directories, even though
they are physically stored on a different drive.

Often system fi les are physically stored on the root drive. User fi les are typically stored on a
separate drive or drives, as shown in Figure 3-2.

54

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 54

FIGURE 3-2

The Linux fi le structure

bin

barbara

jessica

katie

rich

etc

home

usr

var

Disk 1

Disk 2

Figure 3-2 shows two hard drives on the computer. One hard drive is associated with the
root of the virtual directory (indicated by a single forward slash). Other hard drives can
be mounted anywhere in the virtual directory structure. In this example, the second hard
drive is mounted at the location /home, which is where the user directories are located.

The Linux fi lesystem structure originally evolved from the Unix fi le structure. In a Linux
fi lesystem, common directory names are used for common functions. Table 3-3 lists some of
the more common Linux virtual top-level directory names and their contents.

TABLE 3-3 Common Linux Directory Names

Directory Usage

/ root of the virtual directory, where normally, no fi les are placed

/bin binary directory, where many GNU user-level utilities are stored

/boot boot directory, where boot fi les are stored

/dev device directory, where Linux creates device nodes

/etc system confi guration fi les directory

/home home directory, where Linux creates user directories

/lib library directory, where system and application library fi les are stored

/media media directory, a common place for mount points used for removable media

/mnt mount directory, another common place for mount points used for
removable media

/opt optional directory, often used to store third-party software packages
and data fi les

55

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 55

3

/proc process directory, where current hardware and process information is stored

/root root home directory

/sbin system binary directory, where many GNU admin-level utilities are stored

/run run directory, where runtime data is held during system operation

/srv service directory, where local services store their fi les

/sys system directory, where system hardware information fi les are stored

/tmp temporary directory, where temporary work fi les can be created and destroyed

/usr user binary directory, where the bulk of GNU user-level utilities and data fi les are
stored

/var variable directory, for fi les that change frequently, such as log fi les

The common Linux directory names are based upon the Filesystem Hierarchy Standard
(FHS). Many Linux distributions maintain compliance with FHS. Therefore, you should be
able to easily fi nd fi les on any FHS-compliant Linux systems.

The FHS is occasionally updated. You may fi nd that some Linux distributions are still using an older FHS standard,

while other distributions only partially implement the current standard. To keep up to date on the FHS standard, visit

its offi cial home at http://www.pathname.com/fhs/.

When you log in to your system and reach a shell CLI prompt, your session starts in your
home directory. Your home directory is a unique directory assigned to your user account.
When a user account is created, the system normally assigns a unique directory for the
account (see Chapter 7).

You can move around the virtual directory using a graphical interface. However, to move
around the virtual directory from a CLI prompt, you need to learn to use the cd command.

Traversing directories
You use the change directory command (cd) to move your shell session to another directory
in the Linux fi lesystem. The cd command syntax is pretty simplistic: cd destination.

The cd command may take a single parameter, destination, which specifi es the directory
name you want to go to. If you don’t specify a destination on the cd command, it takes you
to your home directory.

http://www.pathname.com/fhs

56

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 56

The destination parameter can be expressed using two different methods. One method is
using an absolute directory reference. The other method uses a relative directory reference.

The following sections describe each of these methods. The differences between these two
methods are important to understand as you traverse the fi lesystem.

Using absolute directory references

You can reference a directory name within the virtual directory system using an absolute
directory reference. The absolute directory reference defi nes exactly where the directory is
in the virtual directory structure, starting at the root. Think of the absolute directory ref-
erence as the full name for a directory.

An absolute directory reference always begins with a forward slash (/), indicating the
virtual directory system’s root. Thus, to reference user binaries, contained within the bin
directory stored within the usr directory, you would use an absolute directory reference as
follows:

/usr/bin

With the absolute directory reference, there’s no doubt as to exactly where you want to go.
To move to a specifi c location in the fi lesystem using the absolute directory reference, you
just specify the full pathname in the cd command:

christine@server01:~$ cd /usr/bin
christine@server01:/usr/bin$

Notice in the preceding example that the prompt originally had a tilde (~) in it. After the
change to a new directory occurred, the tilde was replaced by /usr/bin. This is where a
CLI prompt can help you keep track of where you are in the virtual directory structure. The
tilde indicates that your shell session is located in your home directory. After you move
out of your home directory, the absolute directory reference is shown in the prompt, if the
prompt has been confi gured to do so.

If your shell CLI prompt does not show your shell session’s current location, then it has not been confi gured to do so.

Chapter 6 shows you how to make confi guration changes, if you desire modifi cations to your CLI prompt.

If your prompt has not been confi gured to show the shell session’s current absolute direc-
tory location, then you can display the location via a shell command. The pwd command
displays the shell session’s current directory location, which is called the present working
directory. An example of using the pwd command is shown here.

christine@server01:/usr/bin$ pwd
/usr/bin
christine@server01:/usr/bin$

57

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 57

3

It is a good habit to use the pwd command whenever you change to a new present working directory. Because many

shell commands operate on the present working directory, you always want to make sure you are in the correct direc-

tory before issuing a command.

You can move to any level within the entire Linux virtual directory structure from any
level using the absolute directory reference:

christine@server01:/usr/bin$ cd /var/log
christine@server01:/var/log$
christine@server01:/var/log$ pwd
/var/log
christine@server01:/var/log$

You can also quickly jump to your home directory from any level within the Linux virtual
directory structure:

christine@server01:/var/log$ cd
christine@server01:~$
christine@server01:~$ pwd
/home/christine
christine@server01:~$

However, if you’re just working within your own home directory structure, often using
absolute directory references can get tedious. For example, if you’re already in the directory
/home/christine, it seems somewhat cumbersome to have to type the command:

cd /home/christine/Documents

just to get to your Documents directory. Fortunately, there’s a simpler solution.

Using relative directory references

Relative directory references allow you to specify a destination directory reference relative to
your current location. A relative directory reference doesn’t start with a forward slash (/).

Instead, a relative directory reference starts with either a directory name (if you’re travers-
ing to a directory under your current directory) or a special character. For example, if you
are in your home directory and want to move to your Documents subdirectory, you can use
the cd command along with a relative directory reference:

christine@server01:~$ pwd
/home/christine
christine@server01:~$
christine@server01:~$ cd Documents
christine@server01:~/Documents$ pwd
/home/christine/Documents
christine@server01:~/Documents$

58

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 58

In the preceding example, note that no forward slash (/) was used. Instead a relative direc-
tory reference was used and the present work directory was changed from /home/
christine to /home/christine/Documents, with much less typing.

Also notice in the example that if the prompt is confi gured to display the present working
directory, it keeps the tilde in the display. This shows that the present working directory is
in a directory under the user’s home directory.

If you are new to the command line and the Linux directory structure, it is recommended that you stick with absolute

directory references for a while. After you become more familiar with the directory layout, switch to using relative

directory references.

You can use a relative directory reference with the cd command in any directory contain-
ing subdirectories. You can also use a special character to indicate a relative directory
location.

The two special characters used for relative directory references are:

 ■ The single dot (.) to represent the current directory

 ■ The double dot (..) to represent the parent directory

You can use the single dot, but it doesn’t make sense to use it with the cd command. Later
in the chapter, you will see how another command uses the single dot for relative directory
references effectively.

The double dot character is extremely handy when trying to traverse a directory hierarchy.
For example, if you are in the Documents directory under your home directory and need to
go to your Downloads directory, also under your home directory, you can do this:

christine@server01:~/Documents$ pwd
/home/christine/Documents
christine@server01:~/Documents$ cd ../Downloads
christine@server01:~/Downloads$ pwd
/home/christine/Downloads
christine@server01:~/Downloads$

The double dot character takes you back up one level to your home directory; then the /
Downloads portion of the command takes you back down into the Downloads directory.
You can use as many double dot characters as necessary to move around. For example, if
you are in your home directory (/home/christine) and want to go to the /etc directory,
you could type the following:

christine@server01:~$ cd ../../etc
christine@server01:/etc$ pwd
/etc
christine@server01:/etc$

59

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 59

3

Of course, in a case like this, you actually have to do more typing rather than just typing
the absolute directory reference, /etc. Thus, use a relative directory reference only if it
makes sense to do so.

It’s helpful to have a long informative shell CLI prompt, as used in this chapter section. However, for clarity purposes,

a simple $ prompt is used in the rest of the book’s examples.

Now that you know how to traverse the directory system and confi rm your present work-
ing directory, you can start to explore what’s contained within the various directories.
The next section takes you through the process of looking at fi les within the directory
structure.

Listing Files and Directories
To see what fi les are available on the system, use the list command (ls). This section
describes the ls command and options available to format the information it can display.

Displaying a basic listing
The ls command at its most basic form displays the fi les and directories located in your
current directory:

$ ls
Desktop Downloads Music Pictures Templates Videos
Documents examples.desktop my_script Public test_file
$

Notice that the ls command produces the listing in alphabetical order (in columns rather
than rows). If you’re using a terminal emulator that supports color, the ls command may
also show different types of entries in different colors. The LS_COLORS environment
variable controls this feature. (Environment variables are covered in Chapter 6). Different
Linux distributions set this environment variable depending on the capabilities of the
terminal emulator.

If you don’t have a color terminal emulator, you can use the -F parameter with the ls
command to easily distinguish fi les from directories. Using the -F parameter produces the
following output:

$ ls -F
Desktop/ Downloads/ Music/ Pictures/ Templates/ Videos/
Documents/ examples.desktop my_script* Public/ test_file
$

60

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 60

The -F parameter fl ags the directories with a forward slash (/), to help identify them in
the listing. Similarly, it fl ags executable fi les (like the my_script fi le in the preceding
code) with an asterisk (*), to help you more easily fi nd fi les that can be run on the system.

The basic ls command can be somewhat misleading. It shows the fi les and directories
contained in the current directory, but not necessarily all of them. Linux often uses
hidden fi les to store confi guration information. In Linux, hidden fi les are fi les with
fi lenames starting with a period (.). These fi les don’t appear in the default ls listing. Thus,
they are called hidden fi les.

To display hidden fi les along with normal fi les and directories, use the -a parameter. Here
is an example of using the -a parameter with the ls command.

$ ls -a
. .compiz examples.desktop Music test_file
.. .config .gconf my_script Videos
.bash_history Desktop .gstreamer-0.10 Pictures .Xauthority
.bash_logout .dmrc .ICEauthority .profile .xsession-errors
.bashrc Documents .local Public .xsession-errors.old
.cache Downloads .mozilla Templates

$

All the fi les beginning with a period, hidden fi les, are now shown. Notice that three fi les
begin with .bash. These are hidden fi les that are used by the bash shell environment.
These features are covered in detail in Chapter 6.

The -R parameter is another option the ls command can use. Called the recursive option,
it shows fi les that are contained within subdirectories in the current directory. If you have
lots of subdirectories, this can be quite a long listing. Here’s a simple example of what the
-R parameter produces. The -F option was tacked on to help you see the fi le types:

$ ls -F -R
.:
Desktop/ Downloads/ Music/ Pictures/ Templates/ Videos/
Documents/ examples.desktop my_script* Public/ test_file

./Desktop:

./Documents:

./Downloads:

./Music:
ILoveLinux.mp3*

./Pictures:

./Public:

61

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 61

3

./Templates:

./Videos:
$

Notice that the -R parameter shows the contents of the current directory, which are the
fi les from a user’s home directory shown in earlier examples. It also shows each subdirec-
tory in the user’s home directory and their contents. The only subdirectory containing a
fi le is the Music subdirectory, and it contains the executable fi le, ILoveLinux.mp3.

Option parameters don’t have to be entered separately as shown in the nearby example: ls -F -R. They can

often be combined as follows: ls -FR.

In the previous example, there were no subdirectories within subdirectories. If there
had been further subdirectories, the -R parameter would have continued to traverse
those as well. As you can see, for large directory structures, this can become quite a
large output listing.

Displaying a long listing
In the basic listings, the ls command doesn’t produce much information about each fi le.
For listing additional information, another popular parameter is -l. The -l parameter
produces a long listing format, providing more information about each fi le in the directory:

$ ls -l
total 48
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Desktop
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Documents
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Downloads
-rw-r--r-- 1 christine christine 8980 Apr 22 13:36 examples.desktop
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
-rw-rw-r-- 1 christine christine 0 May 21 13:44 full
drwxr-xr-x 2 christine christine 4096 May 21 11:39 Music
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_file
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
-rw-rw-r-- 1 christine christine 0 May 21 13:42 new_file
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Pictures
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Public
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Templates
-rw-rw-r-- 1 christine christine 0 May 21 11:28 test_file
drwxr-xr-x 2 christine christine 4096 Apr 22 20:37 Videos
$

62

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 62

The long listing format lists each fi le and subdirectory on a single line. In addition to
the fi lename, the listing shows additional useful information. The fi rst line in the output
shows the total number of blocks contained within the directory. After that, each line con-
tains the following information about each fi le (or directory):

 ■ The fi le type — such as directory (d), fi le (-), linked fi le (l), character device (c),
or block device (b)

 ■ The fi le permissions (see Chapter 6)

 ■ The number of fi le hard links (See the section “Linking Files” in Chapter 7.)

 ■ The fi le owner username

 ■ The fi le primary group name

 ■ The fi le byte size

 ■ The last time the fi le was modifi ed

 ■ The fi lename or directory name

The -l parameter is a powerful tool to have. Armed with this parameter, you can see most
of the information you need for any fi le or directory.

The ls command has lots of parameters that can come in handy as you do fi le management.
If you type at the shell prompt man ls, you see several pages of available parameters for
you to use to modify the ls command output.

Don’t forget that you can also combine many of the parameters. You can often fi nd a param-
eter combination that not only displays the desired output, but also is easy to remember,
such as ls -alF.

Filtering listing output
As you’ve seen in the examples, by default the ls command lists all the non-hidden direc-
tory fi les. Sometimes, this can be overkill, especially when you’re just looking for informa-
tion on a few fi les.

Fortunately, the ls command also provides a way for you to defi ne a fi lter on the
command line. It uses the fi lter to determine which fi les or directories it should display in
the output.

The fi lter works as a simple text-matching string. Include the fi lter after any command line
parameters you want to use:

$ ls -l my_script
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
$

When you specify the name of a specifi c fi le as the fi lter, the ls command only shows that
fi le’s information. Sometimes, you might not know the exact fi lename you’re looking for.

63

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 63

3

The ls command also recognizes standard wildcard characters and uses them to match
patterns within the fi lter:

 ■ A question mark (?) to represent one character

 ■ An asterisk (*) to represent any number of characters

The question mark can be used to replace exactly one character anywhere in the fi lter
string. For example:

$ ls -l my_scr?pt
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
$

The fi lter my_scr?pt matched two fi les in the directory. Similarly, the asterisk can be used
to match zero or more characters:

$ ls -l my*
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_file
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
$

Using the asterisk fi nds three different fi les, starting with the name my. As with the
question mark, you can place the asterisks anywhere in the fi lter:

$ ls -l my_s*t
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
$

Using the asterisk and question mark in the fi lter is called fi le globbing. File globbing is the
processing of pattern matching using wildcards. The wildcards are offi cially called
metacharacter wildcards. You can use more metacharacter wildcards for fi le globbing than
just the asterisk and question mark. You can also use brackets:

$ ls -l my_scr[ai]pt
-rw-rw-r-- 1 christine christine 0 May 21 13:25 my_scrapt
-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script
$

In this example, we used the brackets along with two potential choices for a single character
in that position, a or i. The brackets represent a single character position and give you mul-
tiple options for fi le globbing. You can list choices of characters, as shown in the preceding
example, and you can specify a range of characters, such as an alphabetic range [a - i]:

$ ls -l f[a-i]ll
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
$

64

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 64

Also, you can specify what should not be included in the pattern match by using the excla-
mation point (!):

$ ls -l f[!a]ll
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
-rw-rw-r-- 1 christine christine 0 May 21 13:44 full
$

File globbing is a powerful feature when searching for fi les. It can also be used with other
shell commands besides ls. You fi nd out more about this later in the chapter.

Handling Files
The shell provides many fi le manipulation commands on the Linux fi lesystem. This section
walks you through the basic shell commands you need to handle fi les.

Creating fi les
Every once in a while you run into a situation where you need to create an empty fi le. For
example, sometimes applications expect a log fi le to be present before they can write to it.
In these situations, you can use the touch command to easily create an empty fi le:

$ touch test_one
$ ls -l test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:17 test_one
$

The touch command creates the new fi le you specify and assigns your username as the fi le
owner. Notice in the preceding example that the fi le size is zero because the touch com-
mand just created an empty fi le.

The touch command can also be used to change the modifi cation time. This is done with-
out changing the fi le contents:

$ ls -l test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:17 test_one
$ touch test_one
$ ls -l test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
$

The modifi cation time of test_one is now updated to 14:35 from the original time,
14:17. To change only the access time, use the -a parameter with the touch command:

$ ls -l test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
$ touch -a test_one

65

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 65

3

$ ls -l test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
$ ls -l --time=atime test_one
-rw-rw-r-- 1 christine christine 0 May 21 14:55 test_one
$

In the preceding example, notice that by using only the ls -l command, the access time
does not display. This is because the modifi cation time is shown by default. To see a fi le’s
access time, you need to add an additional parameter, --time=atime. After we add that
parameter in the preceding example, the fi le’s altered access time is displayed.

Creating empty fi les and altering fi le timestamps is not something you will do on a Linux
system daily. However, copying fi les is an action you will do often while using the shell.

Copying fi les
Copying fi les and directories from one location in the fi lesystem to another is a common
practice for system administrators. The cp command provides this feature.

In its most basic form, the cp command uses two parameters — the source object and the
destination object: cp source destination.

When both the source and destination parameters are fi lenames, the cp command
copies the source fi le to a new destination fi le. The new fi le acts like a brand new fi le, with
an updated modifi cation time:

$ cp test_one test_two
$ ls -l test_*
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
-rw-rw-r-- 1 christine christine 0 May 21 15:15 test_two
$

The new fi le test_two shows a different modifi cation time than the test_one fi le. If the
destination fi le already exists, the cp command may not prompt you to this fact. It is best
to add the -i option to force the shell to ask whether you want to overwrite a fi le:

$ ls -l test_*
-rw-rw-r-- 1 christine christine 0 May 21 14:35 test_one
-rw-rw-r-- 1 christine christine 0 May 21 15:15 test_two
$
$ cp -i test_one test_two
cp: overwrite 'test_two'? n
$

If you don’t answer y, the fi le copy does not proceed. You can also copy a fi le into a
pre-existing directory:

$ cp -i test_one /home/christine/Documents/
$

66

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 66

$ ls -l /home/christine/Documents
total 0
-rw-rw-r-- 1 christine christine 0 May 21 15:25 test_one
$

The new fi le is now under the Documents subdirectory, using the same fi lename as the
original.

The preceding example uses a trailing forward slash (/) on the destination directory name. Using the slash indicates

Documents is a directory and not a fi le. This is helpful for clarity purposes and is important when copying single

fi les. If the forward slash is not used and the subdirectory /home/christine/Documents does not exist, prob-

lems can occur. In this case, attempting to copy a single fi le to the Documents subdirectory creates a fi le named

Documents instead, and no error messages display!

This last example used an absolute directory reference, but you can just as easily use a rela-
tive directory reference:

$ cp -i test_one Documents/
cp: overwrite 'Documents/test_one'? y
$
$ ls -l Documents
total 0
-rw-rw-r-- 1 christine christine 0 May 21 15:28 test_one
$

Earlier in this chapter, you read about the special symbols that can be used in relative
directory references. One of them, the single dot (.), is great to use with the cp command.
Remember that the single dot represents your present working directory. If you need to
copy a fi le with a long source object name to your present working directory, the single dot
can simplify the task:

$ cp -i /etc/NetworkManager/NetworkManager.conf .
$
$ ls -l NetworkManager.conf
-rw-r--r-- 1 christine christine 76 May 21 15:55 NetworkManager.conf
$

It’s hard to see that single dot! If you look closely, you’ll see it at the end of the fi rst exam-
ple code line. Using the single dot symbol is much easier than typing a full destination
object name, when you have long source object names.

There are many more cp command parameters than those described here. Remember that you can see all the differ-

ent available parameters available for the cp command, by typing man cp.

67

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 67

3

The -R parameter is a powerful cp command option. It allows you to recursively copy the
contents of an entire directory in one command:

$ ls -Fd *Scripts
Scripts/
$ ls -l Scripts/
total 25
-rwxrw-r-- 1 christine christine 929 Apr 2 08:23 file_mod.sh
-rwxrw-r-- 1 christine christine 254 Jan 2 14:18 SGID_search.sh
-rwxrw-r-- 1 christine christine 243 Jan 2 13:42 SUID_search.sh
$
$ cp -R Scripts/ Mod_Scripts
$ ls -Fd *Scripts
Mod_Scripts/ Scripts/
$ ls -l Mod_Scripts
total 25
-rwxrw-r-- 1 christine christine 929 May 21 16:16 file_mod.sh
-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID_search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID_search.sh
$

The directory Mod_Scripts did not exist prior to the cp -R command. It was created
with the cp -R command, and the entire Scripts directory’s contents were copied into
it. Notice that all the fi les in the new Mod_Scripts directory have new dates associated
with them. Now Mod_Scripts is a complete copy of the Scripts directory.

In the preceding example, the options -Fd were added to the ls command. You read about the -F option earlier

in this chapter. However, the -d option may be new to you. The -d option lists a directory’s information but not its

contents.

You can also use wildcard metacharacters in your cp commands:

$ cp *script Mod_Scripts/
$ ls -l Mod_Scripts
total 26
-rwxrw-r-- 1 christine christine 929 May 21 16:16 file_mod.sh
-rwxrw-r-- 1 christine christine 54 May 21 16:27 my_script
-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID_search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID_search.sh
$

This command copied any fi les that ended with script to Mod_Scripts. In this case,
only one fi le needed to be copied: my_script.

When copying fi les, another shell feature can help you besides the single dot and wildcard
metacharacters. It is called tab auto-complete.

68

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 68

Using tab auto-complete
When working at the command line, you can easily mistype a command, directory name, or
fi lename. In fact, the longer a directory reference or fi lename, the greater the chance that
you will mistype it.

This is where tab auto-complete can be a lifesaver. Tab auto-complete allows you to start
typing a fi lename or directory name and then press the tab key to have the shell complete
it for you:

$ ls really*
really_ridiculously_long_file_name
$
$ cp really_ridiculously_long_file_name Mod_Scripts/
ls -l Mod_Scripts
total 26
-rwxrw-r-- 1 christine christine 929 May 21 16:16 file_mod.sh
-rwxrw-r-- 1 christine christine 54 May 21 16:27 my_script
-rw-rw-r-- 1 christine christine 0 May 21 17:08
really_ridiculously_long_file_name
-rwxrw-r-- 1 christine christine 254 May 21 16:16 SGID_search.sh
-rwxrw-r-- 1 christine christine 243 May 21 16:16 SUID_search.sh
$

In the preceding example, we typed the command cp really and pressed the tab key, and
the shell auto-completed the rest of the fi lename! Of course, the destination directory had
to be typed, but still tab auto-complete saved the command from several potential typo-
graphical errors.

The trick to using tab auto-complete is to give the shell enough fi lename characters so it
can distinguish the desired fi le from other fi les. For example, if another fi lename started
with really, pressing the tab key would not auto-complete the fi lename. Instead, you
would hear a beep. If this happens, you can press the tab key again, and the shell shows
you all the fi lenames starting with really. This feature allows you to see what needs to be
typed for tab auto-complete to work properly.

Linking fi les
Linking fi les is a great option available in the Linux fi lesystem. If you need to maintain
two (or more) copies of the same fi le on the system, instead of having separate physical
copies, you can use one physical copy and multiple virtual copies, called links. A link is a
placeholder in a directory that points to the real location of the fi le. Two types of fi le links
are available in Linux:

 ■ A symbolic link

 ■ A hard link

69

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 69

3

A symbolic link is simply a physical fi le that points to another fi le somewhere in the
virtual directory structure. The two symbolically linked together fi les do not share the
same contents.

To create a symbolic link to a fi le, the original fi le must pre-exist. We can then use the ln
command with the -s option to create the symbolic link:

$ ls -l data_file
-rw-rw-r-- 1 christine christine 1092 May 21 17:27 data_file
$
$ ln -s data_file sl_data_file
$
$ ls -l *data_file
-rw-rw-r-- 1 christine christine 1092 May 21 17:27 data_file
lrwxrwxrwx 1 christine christine 9 May 21 17:29 sl_data_file -> data_file
$

In the preceding example, notice that the name of the symbolic link, sl_data_file, is
listed second in the ln command. The —> symbol displayed after the symbolic link fi le’s
long listing shows that it is symbolically linked to the fi le data_file.

Also note the symbolic link’s fi le size versus the data fi le’s fi le size. The symbolic link,
sl_data_file, is only 9 bytes, whereas the data_file is 1092 bytes. This is because
sl_data_file is only pointing to data_file. They do not share contents and are two
physically separate fi les.

Another way to tell that these linked fi les are separate physical fi les is by viewing their
inode number. The inode number of a fi le or directory is a unique identifi cation number
that the kernel assigns to each object in the fi lesystem. To view a fi le or directory’s inode
number, add the -i parameter to the ls command:

$ ls -i *data_file
296890 data_file 296891 sl_data_file
$

The example shows that the data fi le’s inode number is 296890, while the sl_data_file
inode number is different. It is 296891. Thus, they are different fi les.

A hard link creates a separate virtual fi le that contains information about the original fi le
and where to locate it. However, they are physically the same fi le. When you reference the
hard link fi le, it’s just as if you’re referencing the original fi le. To create a hard link, again
the original fi le must pre-exist, except that this time no parameter is needed on the ln
command:

$ ls -l code_file
-rw-rw-r-- 1 christine christine 189 May 21 17:56 code_file
$
$ ln code_file hl_code_file

70

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 70

$
$ ls -li *code_file
296892 -rw-rw-r-- 2 christine christine 189 May 21 17:56
code_file
296892 -rw-rw-r-- 2 christine christine 189 May 21 17:56
hl_code_file
$

In the preceding example, we used the ls -li command to show both the inode numbers
and a long listing for the *code_files. Notice that both fi les, which are hard linked
together, share the name inode number. This is because they are physically the same fi le.
Also notice that the link count (the third item in the listing) now shows that both fi les
have two links. In addition, their fi le size is exactly the same size as well.

You can only create a hard link between fi les on the same physical medium. To create a link between fi les under

separate physical mediums, you must use a symbolic link.

Be careful when copying linked fi les. If you use the cp command to copy a fi le that’s linked
to another source fi le, all you’re doing is making another copy of the source fi le. This can
quickly get confusing. Instead of copying the linked fi le, you can create another link to the
original fi le. You can have many links to the same fi le with no problems. However, you also
don’t want to create soft links to other soft-linked fi les. This creates a chain of links that
can be confusing — and easily broken — causing all sorts of problems.

You may fi nd symbolic and hard links diffi cult concepts. Fortunately, renaming fi les in the
next section is a great deal easier to understand.

Renaming fi les
In the Linux world, renaming fi les is called moving files. The mv command is available to
move both fi les and directories to another location or a new name:

$ ls -li f?ll
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fall
296717 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
294561 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
296742 -rw-rw-r-- 1 christine christine 0 May 21 13:44 full
$
$ mv fall fzll
$
$ ls -li f?ll
296717 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fell
294561 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fill
296742 -rw-rw-r-- 1 christine christine 0 May 21 13:44 full
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fzll
$

71

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 71

3

Notice that moving the fi le changed the name from fall to fzll, but it kept the same
inode number and timestamp value. This is because mv affects only a fi le’s name.

You can also use mv to change a fi le’s location:

$ ls -li /home/christine/fzll
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44
/home/christine/fzll
$
$ ls -li /home/christine/Pictures/
total 0
$ mv fzll Pictures/
$
$ ls -li /home/christine/Pictures/
total 0
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44 fzll
$
$ ls -li /home/christine/fzll
ls: cannot access /home/christine/fzll: No such file or directory
$

In the preceding example, we moved the fi le fzll from /home/christine to /home/
christine/Pictures using the mv command. Again, there were no changes to the fi le’s
inode number or timestamp value.

Like the cp command, you can use the -i option on the mv command. Thus, you are asked before the command

attempts to overwrite any pre-existing fi les.

The only change was to the fi le’s location. The fzll fi le no longer exists in /home/
christine, because a copy of it was not left in its original location, as the cp command
would have done.

You can use the mv command to move a fi le’s location and rename it, all in one easy step:

$ ls -li Pictures/fzll
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44
Pictures/fzll
$
$ mv /home/christine/Pictures/fzll /home/christine/fall
$
$ ls -li /home/christine/fall
296730 -rw-rw-r-- 1 christine christine 0 May 21 13:44
/home/christine/fall
$
$ ls -li /home/christine/Pictures/fzll
ls: cannot access /home/christine/Pictures/fzll:
No such file or directory

72

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 72

For this example, we moved the fi le fzll from a subdirectory, Pictures, to the home
directory, /home/christine, and renamed it to fall. Neither the timestamp value nor
the inode number changed. Only the location and name were altered.

You can also use the mv command to move entire directories and their contents:

$ ls -li Mod_Scripts
total 26
296886 -rwxrw-r-- 1 christine christine 929 May 21 16:16
file_mod.sh
296887 -rwxrw-r-- 1 christine christine 54 May 21 16:27
my_script
296885 -rwxrw-r-- 1 christine christine 254 May 21 16:16
SGID_search.sh
296884 -rwxrw-r-- 1 christine christine 243 May 21 16:16
SUID_search.sh
$
$ mv Mod_Scripts Old_Scripts
$
$ ls -li Mod_Scripts
ls: cannot access Mod_Scripts: No such file or directory
$
$ ls -li Old_Scripts
total 26
296886 -rwxrw-r-- 1 christine christine 929 May 21 16:16
file_mod.sh
296887 -rwxrw-r-- 1 christine christine 54 May 21 16:27
my_script
296885 -rwxrw-r-- 1 christine christine 254 May 21 16:16
SGID_search.sh
296884 -rwxrw-r-- 1 christine christine 243 May 21 16:16
SUID_search.sh
$

The directory’s entire contents are unchanged. The only thing that changes is the name of
the directory.

After you know how to rename...err...move fi les with the mv command, you realize how
simple it is to accomplish. Another easy, but potentially dangerous, task is deleting fi les.

Deleting fi les
Most likely at some point you’ll want to be able to delete existing fi les. Whether it’s to
clean up a fi lesystem or to remove a software package, you always have opportunities to
delete fi les.

In the Linux world, deleting is called removing. The command to remove fi les in the bash
shell is rm. The basic form of the rm command is simple:

73

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 73

3

$ rm -i fall
rm: remove regular empty file 'fall'? y
$
$ ls -l fall
ls: cannot access fall: No such file or directory
$

Notice that the -i command parameter prompts you to make sure that you’re serious
about removing the fi le. The shell has no recycle bin or trashcan. After you remove a fi le,
it’s gone forever. Therefore, a good habit is to always tack on the -i parameter to the rm
command.

You can also use wildcard metacharacters to remove groups of fi les. However, again, use
that -i option to protect yourself:

$ rm -i f?ll
rm: remove regular empty file 'fell'? y
rm: remove regular empty file 'fill'? y
rm: remove regular empty file 'full'? y
$
$ ls -l f?ll
ls: cannot access f?ll: No such file or directory
$

One other feature of the rm command, if you’re removing lots of fi les and don’t want to
be bothered with the prompt, is to use the -f parameter to force the removal. Just be
careful!

Managing Directories
Linux has a few commands that work for both fi les and directories (such as the cp com-
mand), and some that work only for directories. To create a new directory, you need to use
a specifi c command, which is covered in this section. Removing directories can get inter-
esting, so that is covered in this section as well.

Creating directories
Creating a new directory in Linux is easy — just use the mkdir command:

$ mkdir New_Dir
$ ls -ld New_Dir
drwxrwxr-x 2 christine christine 4096 May 22 09:48 New_Dir
$

The system creates a new directory named New_Dir. Notice in the new directory’s long list-
ing that the directory’s record begins with a d. This indicates that New_Dir is not a fi le,
but a directory.

74

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 74

You can create directories and subdirectories in “bulk” if needed. However, if you attempt
this with just the mkdir command, you get the following error message:

$ mkdir New_Dir/Sub_Dir/Under_Dir
mkdir: cannot create directory 'New_Dir/Sub_Dir/Under_Dir':
No such file or directory
$

To create several directories and subdirectories at the same time, you need to add the -p
parameter:

$ mkdir -p New_Dir/Sub_Dir/Under_Dir
$
$ ls -R New_Dir
New_Dir:
Sub_Dir

New_Dir/Sub_Dir:
Under_Dir

New_Dir/Sub_Dir/Under_Dir:
$

The -p option on the mkdir command makes any missing parent directories as needed. A
parent directory is a directory that contains other directories at the next level down the
directory tree.

Of course, after you make something, you need to know how to delete it. This is especially
useful if you created a directory in the wrong location.

Deleting directories
Removing directories can be tricky, and for good reason. There are lots of opportunities for
bad things to happen when you start deleting directories. The shell tries to protect us from
accidental catastrophes as much as possible. The basic command for removing a directory is
rmdir:

$ touch New_Dir/my_file
$ ls -li New_Dir/
total 0
294561 -rw-rw-r-- 1 christine christine 0 May 22 09:52 my_file
$
$ rmdir New_Dir
rmdir: failed to remove 'New_Dir': Directory not empty
$

By default, the rmdir command works only for removing empty directories. Because we cre-
ated a fi le, my_file, in the New_Dir directory, the rmdir command refuses to remove it.

75

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 75

3

To fi x this, we must remove the fi le fi rst. Then we can use the rmdir command on the now
empty directory:

$ rm -i New_Dir/my_file
rm: remove regular empty file 'New_Dir/my_file'? y
$
$ rmdir New_Dir
$
$ ls -ld New_Dir
ls: cannot access New_Dir: No such file or directory

The rmdir has no -i option to ask if you want to remove the directory. This is one reason
it is helpful that rmdir removes only empty directories.

You can also use the rm command on entire non-empty directories. Using the -r option
allows the command to descend into the directory, remove the fi les, and then remove the
directory itself:

$ ls -l My_Dir
total 0
-rw-rw-r-- 1 christine christine 0 May 22 10:02 another_file
$
$ rm -ri My_Dir
rm: descend into directory 'My_Dir'? y
rm: remove regular empty file 'My_Dir/another_file'? y
rm: remove directory 'My_Dir'? y
$
$ ls -l My_Dir
ls: cannot access My_Dir: No such file or directory
$

This also works for descending into multiple subdirectories and is especially useful when
you have lots of directories and fi les to delete:

$ ls -FR Small_Dir
Small_Dir:
a_file b_file c_file Teeny_Dir/ Tiny_Dir/

Small_Dir/Teeny_Dir:
e_file

Small_Dir/Tiny_Dir:
d_file
$
$ rm -ir Small_Dir
rm: descend into directory 'Small_Dir'? y
rm: remove regular empty file 'Small_Dir/a_file'? y
rm: descend into directory 'Small_Dir/Tiny_Dir'? y
rm: remove regular empty file 'Small_Dir/Tiny_Dir/d_file'? y

76

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 76

rm: remove directory 'Small_Dir/Tiny_Dir'? y
rm: descend into directory 'Small_Dir/Teeny_Dir'? y
rm: remove regular empty file 'Small_Dir/Teeny_Dir/e_file'? y
rm: remove directory 'Small_Dir/Teeny_Dir'? y
rm: remove regular empty file 'Small_Dir/c_file'? y
rm: remove regular empty file 'Small_Dir/b_file'? y
rm: remove directory 'Small_Dir'? y
$
$ ls -FR Small_Dir
ls: cannot access Small_Dir: No such file or directory
$

Although this works, it’s somewhat awkward. Notice that you still must verify each and
every fi le that gets removed. For a directory with lots of fi les and subdirectories, this can
become tedious.

For the rm command, the -r parameter and the -R parameter work exactly the same. When used with the rm com-

mand, the -R parameter also recursively traverses through the directory removing fi les. It is unusual for a shell com-

mand to have different cased parameters with the same function.

The ultimate solution for throwing caution to the wind and removing an entire directory,
contents and all, is the rm command with both the -r and -f parameters:

$ tree Small_Dir
Small_Dir
├── a_file
├── b_file
├── c_file
├── Teeny_Dir
│ └── e_file
└── Tiny_Dir
 └── d_file

2 directories, 5 files
$
$ rm -rf Small_Dir
$
$ tree Small_Dir
Small_Dir [error opening dir]

0 directories, 0 files
$

The rm -rf command gives no warnings and no fanfare. This, of course, is an extremely
dangerous tool to have, especially if have superuser privileges. Use it sparingly, and only
after triple checking to make sure that you’re doing exactly what you want to do!

77

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 77

3

Notice in the preceding example that we used the tree utility. It nicely displays directories, subdirectories, and their

fi les. It’s a useful utility when you need to understand a directory structure, especially before removing it. This utility

may not be installed by default in your Linux distribution. See Chapter 9 for learning about installing software.

In the last few sections, you looked at managing both fi les and directories. So far we
covered everything you need to know about fi les, except for how to peek inside of them.

Viewing File Contents
You can use several commands for looking inside fi les without having to pull out a text
editor utility (see Chapter 10). This section demonstrates a few of the commands you have
available to help you examine fi les.

Viewing the fi le type
Before you go charging off trying to display a fi le, try to get a handle on what type of fi le
it is. If you try to display a binary fi le, you get lots of gibberish on your monitor and may
even lock up your terminal emulator.

The file command is a handy little utility to have around. It can peek inside of a fi le and
determine just what kind of fi le it is:

$ file my_file
my_file: ASCII text
$

The fi le in the preceding example is a text fi le. The file command determined not only
that the fi le contains text but also the character code format of the text fi le, ASCII.

This following example shows a fi le that is simply a directory. Thus, the file command
gives you another method to distinguish a directory:

$ file New_Dir
New_Dir: directory
$

This third file command example shows a fi le, which is a symbolic link. Note that the
file command even tells you to which fi le it is symbolically linked:

$ file sl_data_file
sl_data_file: symbolic link to 'data_file'
$

78

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 78

The following example shows what the file command returns for a script fi le.
Although the fi le is ASCII text, because it’s a script fi le, you can execute (run) it on
the system:

$ file my_script
my_script: Bourne-Again shell script, ASCII text executable
$

The fi nal example is a binary executable program. The file command determines the
platform that the program was compiled for and what types of libraries it requires. This
is an especially handy feature if you have a binary executable program from an unknown
source:

$ file /bin/ls
/bin/ls: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
[...]
$

Now that you know a quick method for viewing a fi le’s type, you can start displaying and
viewing fi les.

Viewing the whole fi le
If you have a large text fi le on your hands, you may want to be able to see what’s inside of
it. Linux has three different commands that can help you here.

Using the cat command

The cat command is a handy tool for displaying all the data inside a text fi le:

$ cat test1
hello

This is a test file.

That we'll use to test the cat command.
$

Nothing too exciting, just the contents of the text fi le. However, the cat command has a
few parameters that can help you out.

The -n parameter numbers all the lines for you:

79

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 79

3

$ cat -n test1
 1 hello
 2
 3 This is a test file.
 4
 5
 6 That we'll use to test the cat command.
$

That feature will come in handy when you’re examining scripts. If you just want to number
the lines that have text in them, the -b parameter is for you:

$ cat -b test1
 1 hello

 2 This is a test file.

 3 That we'll use to test the cat command.
$

Finally, if you don’t want tab characters to appear, use the -T parameter:

$ cat -T test1
hello

This is a test file.

That we'll use to^Itest the cat command.
$

The -T parameter replaces any tabs in the text with the ^I character combination.

For large fi les, the cat command can be somewhat annoying. The text in the fi le just
quickly scrolls off the display without stopping. Fortunately, we have a simple way to solve
this problem.

Using the more command

The main drawback of the cat command is that you can’t control what’s happening
after you start it. To solve that problem, developers created the more command. The
more command displays a text fi le, but stops after it displays each page of data. We
typed the command more /etc/bash.bashrc to produce the sample more screen shown
in Figure 3-3.

80

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 80

FIGURE 3-3

Using the more command to display a text fi le

Notice at the bottom of the screen in Figure 3-3 that the more command displays a tag
showing that you’re still in the more application and how far along (56%) in the text fi le
you are. This is the prompt for the more command.

The more command is a pager utility. Remember from earlier in this chapter a pager utility
displays selected bash manual pages when you use the man command. Similarly to navigat-
ing through the man pages, you can use more to navigate through a text fi le by pressing
the spacebar or you can go forward line by line using the Enter key. When you are fi nished
navigating through the fi le using more, press the q key to quit.

The more command allows some rudimentary movement through the text fi le. For more
advanced features, try the less command.

Using the less command

From its name, it sounds like it shouldn’t be as advanced as the more command. However,
the less command name is actually a play on words and is an advanced version of the
more command (the less command name comes from the phrase “less is more”). It pro-
vides several very handy features for scrolling both forward and backward through a text
fi le, as well as some pretty advanced searching capabilities.

The less command can also display a fi le’s contents before it fi nishes reading the entire
fi le. The cat and more commands cannot do this.

81

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 81

3

The less command operates much the same as the more command, displaying one screen
of text from a fi le at a time. It supports the same command set as the more command, plus
many more options.

To see all the options available for the less command, view its man pages by typing man less. You can do the same

for the more command to see the reference material concerning its various options as well.

One set of features is that the less command recognizes the up and down arrow keys as
well as the Page Up and Page Down keys (assuming that you’re using a properly defi ned ter-
minal). This gives you full control when viewing a fi le.

Viewing parts of a fi le
Often the data you want to view is located either right at the top or buried at the bottom
of a text fi le. If the information is at the top of a large fi le, you still need to wait for the
cat or more commands to load the entire fi le before you can view it. If the information
is located at the bottom of a fi le (such as a log fi le), you need to wade through thousands
of lines of text just to get to the last few entries. Fortunately, Linux has specialized com-
mands to solve both of these problems.

Using the tail command

The tail command displays the last lines in a fi le (the fi le’s “tail”). By default, it shows
the last 10 lines in the fi le.

For these examples, we created a text fi le containing 20 text lines. It is displayed here in
its entirety using the cat command:

$ cat log_file
line1
line2
line3
line4
line5
Hello World - line 6
line7
line8
line9
line10
line11
Hello again - line 12
line13
line14
line15
Sweet - line16

82

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 82

line17
line18
line19
Last line - line20
$

Now that you have seen the entire text fi le, you can see the effect of using tail to view
the fi le’s last 10 lines:

$ tail log_file
line11
Hello again - line 12
line13
line14
line15
Sweet - line16
line17
line18
line19
Last line - line20
$

You can change the number of lines shown using tail by including the -n parameter. In
this example, only the last two lines of the fi le are displayed, by adding -n 2 to the tail
command:

$ tail -n 2 log_file
line19
Last line - line20
$

The -f parameter is a pretty cool feature of the tail command. It allows you to peek
inside a fi le as the fi le is being used by other processes. The tail command stays active
and continues to display new lines as they appear in the text fi le. This is a great way to
monitor the system log fi les in real-time mode.

Using the head command

The head command does what you’d expect; it displays a fi le’s fi rst group of lines (the fi le’s
“head”). By default, it displays the fi rst 10 lines of text:

$ head log_file
line1
line2
line3
line4
line5
Hello World - line 6

83

Chapter 3: Basic bash Shell Commands

c03.indd 12/03/2014 Page 83

3

line7
line8
line9
line10
$

Similar to the tail command, the head command supports the -n parameter so you can
alter what’s displayed. Both commands also allow you to simply type a dash along with the
number of lines to display, as shown here:

$ head -5 log_file
line1
line2
line3
line4
line5
$

Usually the beginning of a fi le doesn’t change, so the head command doesn’t support the
-f parameter feature as the tail command does. The head command is a handy way to
just peek at the beginning of a fi le.

Summary
This chapter covered the basics of working with the Linux fi lesystem from a shell prompt.
We began with a discussion of the bash shell and showed you how to interact with the
shell. The command line interface (CLI) uses a prompt string to indicate when it’s ready for
you to enter commands.

The shell provides a wealth of utilities you can use to create and manipulate fi les. Before
you start playing with fi les, you should understand how Linux stores them. This chapter
discussed the basics of the Linux virtual directory and showed you how Linux references
storage media devices. After describing the Linux fi lesystem, the chapter walked you
through using the cd command to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the ls
command to list the fi les and subdirectories. Lots of parameters can customize the output
of the ls command. You can obtain information on fi les and directories by using the ls
command.

The touch command is useful for creating empty fi les and for changing the access or modi-
fi cation times on an existing fi le. The chapter also discussed using the cp command to copy
existing fi les from one location to another. It walked you through the process of linking
fi les instead of copying them, providing an easy way to have the same fi le in two locations
without making a separate copy. The ln command provides this linking ability.

84

Part I: The Linux Command Line

c03.indd 12/03/2014 Page 84

Next, you learned how to rename fi les (called moving) in Linux using the mv command
and saw how to delete fi les (called removing) using the rm command. This chapter also
showed you how to perform the same tasks with directories, using the mkdir and rmdir
commands.

Finally, the chapter closed with a discussion on viewing the contents of fi les. The cat,
more, and less commands provide easy methods for viewing the entire contents of a fi le,
while the tail and head commands are great for peeking inside a fi le to just see a small
portion of it.

The next chapter continues the discussion on bash shell commands. We’ll look at more
advanced administrator commands that come in handy as you administer your Linux
system.

85

c04.indd 12/03/2014 Page 85

CHAP T ER

4
More bash Shell Commands

IN THIS CHAPTER

Managing processes

Getting disk statistics

Mounting new disks

Sorting data

Archiving data

C
hapter 3 covered the basics of walking through the Linux fi lesystem and working with fi les
and directories. File and directory management is a major feature of the Linux shell; how-
ever, we should look at some other things before we start our script programming. This chap-

ter digs into the Linux system management commands, showing you how to peek inside your Linux
system using command line commands. After that, we show you a few handy commands that you
can use to work with data fi les on the system.

Monitoring Programs
One of the toughest jobs of being a Linux system administrator is keeping track of what’s running
on the system — especially now, when graphical desktops take a handful of programs just to
produce a single desktop. You always have lots of programs running on the system.

Fortunately, a few command line tools are available to help make life easier for you. This section
covers a few of the basic tools you need to know how to use to manage programs on your Linux
system.

Peeking at the processes
When a program runs on the system, it’s referred to as a process. To examine these processes, you
need to become familiar with the ps command, the Swiss Army knife of utilities. It can produce
lots of information about all the programs running on your system.

86

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 86

Unfortunately, with this robustness comes complexity — in the form of numerous param-
eters — making the ps command probably one of the most diffi cult commands to master.
Most system administrators fi nd a subset of these parameters that provide the information
they want, and they stick with using only those.

That said, however, the basic ps command doesn’t really provide all that much information:

 $ ps
 PID TTY TIME CMD
 3081 pts/0 00:00:00 bash
 3209 pts/0 00:00:00 ps
 $

Not too exciting. By default, the ps command shows only the processes that belong to the
current user and that are running on the current terminal. In this case, we had only our
bash shell running (remember, the shell is just another program running on the system)
and, of course, the ps command itself.

The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they
are running from, and the CPU time the process has used.

The tricky feature of the ps command (and the part that makes it so complicated) is that at one time there were two

versions of it. Each version had its own set of command line parameters controlling what information it displayed

and how. Recently, Linux developers have combined the two ps command formats into a single ps program (and of

course added their own touches).

The GNU ps command that’s used in Linux systems supports three different types of com-
mand line parameters:

 ■ Unix-style parameters, which are preceded by a dash

 ■ BSD-style parameters, which are not preceded by a dash

 ■ GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of
how they work.

Unix-style parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T
Unix systems invented by Bell Labs. Table 4-1 shows these parameters.

87

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 87

4

TABLE 4-1 The ps Command Unix Parameters

Parameter Description

-A Shows all processes

-N Shows the opposite of the specifi ed parameters

-a Shows all processes except session headers and processes without a
terminal

-d Shows all processes except session headers

-e Shows all processes

-C cmslist Shows processes contained in the list cmdlist

-G grplist Shows processes with a group ID listed in grplist

-U userlist Shows processes owned by a userid listed in userlist

-g grplist Shows processes by session or by groupid contained in grplist

-p pidlist Shows processes with PIDs in the list pidlist

-s sesslist Shows processes with session ID in the list sesslist

-t ttylist Shows processes with terminal ID in the list ttylist

-u userlist Shows processes by effective userid in the list userlist

-F Uses extra full output

-O format Displays specifi c columns in the list format, along with the default
columns

-M Displays security information about the process

-c Shows additional scheduler information about the process

-f Displays a full format listing

-j Shows job information

-l Displays a long listing

-o format Displays only specifi c columns listed in format

-y Prevents display of process fl ags

-Z Displays the security context information

-H Displays processes in a hierarchical format (showing parent processes)

-n namelist Defi nes the values to display in the WCHAN column

-w Uses wide output format, for unlimited width displays

-L Shows process threads

-V Displays the version of ps

88

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 88

That’s a lot of parameters, and there are still more! The key to using the ps command is not
to memorize all the available parameters — only those you fi nd most useful. Most Linux
system administrators have their own sets of parameters that they use for extracting per-
tinent information. For example, if you need to see everything running on the system, use
the -ef parameter combination (the ps command lets you combine parameters like this):

 $ ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 11:29 ? 00:00:01 init [5]
 root 2 0 0 11:29 ? 00:00:00 [kthreadd]
 root 3 2 0 11:29 ? 00:00:00 [migration/0]
 root 4 2 0 11:29 ? 00:00:00 [ksoftirqd/0]
 root 5 2 0 11:29 ? 00:00:00 [watchdog/0]
 root 6 2 0 11:29 ? 00:00:00 [events/0]
 root 7 2 0 11:29 ? 00:00:00 [khelper]
 root 47 2 0 11:29 ? 00:00:00 [kblockd/0]
 root 48 2 0 11:29 ? 00:00:00 [kacpid]
 68 2349 1 0 11:30 ? 00:00:00 hald
 root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
 rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
 rich 3081 3080 0 12:00 pts/0 00:00:00 -bash
 rich 4445 3081 3 13:48 pts/0 00:00:00 ps -ef
 $

Quite a few lines have been cut from the output to save space, but you can see that lots of
processes are running on a Linux system. This example uses two parameters: the -e param-
eter, which shows all the processes running on the system, and the -f parameter, which
expands the output to show a few useful columns of information:

 ■ UID: The user responsible for launching the process

 ■ PID: The process ID of the process

 ■ PPID: The PID of the parent process (if a process is started by another process)

 ■ C: Processor utilization over the lifetime of the process

 ■ STIME: The system time when the process started

 ■ TTY: The terminal device from which the process was launched

 ■ TIME: The cumulative CPU time required to run the process

 ■ CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many system administra-
tors want to see. For even more information, you can use the -l parameter, which produces
the long format output:

 $ ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

89

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 89

4

 0 S 500 3081 3080 0 80 0 - 1173 wait pts/0 00:00:00 bash
 0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps
 $

Notice the extra columns that appear when you use the -l parameter:

 ■ F: System fl ags assigned to the process by the kernel

 ■ S: The state of the process (O = running on processor; S = sleeping; R = runnable,
waiting to run; Z = zombie, process terminated but parent not available;
T = process stopped)

 ■ PRI: The priority of the process (higher numbers mean lower priority)

 ■ NI: The nice value, which is used for determining priorities

 ■ ADDR: The memory address of the process

 ■ SZ: Approximate amount of swap space required if the process was swapped out

 ■ WCHAN: Address of the kernel function where the process is sleeping

BSD-style parameters

Now that you’ve seen the Unix parameters, let’s look at the BSD-style parameters. The
Berkeley Software Distribution (BSD) was a version of Unix developed at (of course) the
University of California, Berkeley. It had many subtle differences from the AT&T Unix
system, thus sparking many Unix wars over the years. Table 4-2 shows the BSD version of
the ps command parameters.

TABLE 4-2 The ps Command BSD Parameters

Parameter Description

T Shows all processes associated with this terminal

a Shows all processes associated with any terminal

g Shows all processes including session headers

r Shows only running processes

x Shows all processes, even those without a terminal device assigned

U userlist Shows processes owned by a userid listed in userlist

p pidlist Shows processes with a PID listed in pidlist

t ttylist Shows processes associated with a terminal listed in ttylist

O format Lists specifi c columns in format to display along with the standard columns

X Displays data in the register format

Z Includes security information in the output

j Shows job information

l Uses the long format

Continues

90

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 90

Parameter Description

o format Displays only columns specifi ed in format

s Uses the signal format

u Uses the user-oriented format

v Uses the virtual memory format

N namelist Defi nes the values to use in the WCHAN column

O order Defi nes the order in which to display the information columns

S Sums numerical information, such as CPU and memory usage, for child
processes into the parent process

c Displays the true command name (the name of the program used to start the
process)

e Displays any environment variables used by the command

f Displays processes in a hierarchical format, showing which processes started
which processes

h Prevents display of the header information

k sort Defi nes the column(s) to use for sorting the output

n Uses numeric values for user and group IDs, along with WCHAN information

w Produces wide output for wider terminals

H Displays threads as if they were processes

m Displays threads after their processes

L Lists all format specifi ers

V Displays the version of ps

As you can see, the Unix and BSD types of parameters have lots of overlap. Most of the
information you can get from one you can also get from the other. Most of the time, you
choose a parameter type based on which format you’re more comfortable with (for example,
if you were used to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically changes the output
to simulate the BSD format. Here’s an example using the l parameter:

 $ ps l
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
 0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash
 0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps l
 $

TABLE 4-2 (continued)

91

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 91

4

Notice that while many of the output columns are the same as when we used the Unix-style
parameters, some different ones appear as well:

 ■ VSZ: The size in kilobytes of the process in memory

 ■ RSS: The physical memory that a process has used that isn’t swapped out

 ■ STAT: A two-character state code representing the current process state

Many system administrators like the BSD-style l parameter because it produces a more
detailed state code for processes (the STAT column). The two-character code more precisely
defi nes exactly what’s happening with the process than the single-character Unix-style
output.

The fi rst character uses the same values as the Unix-style S output column, showing when
a process is sleeping, running, or waiting. The second character further defi nes the pro-
cess’s status:

 ■ <: The process is running at high priority.

 ■ N: The process is running at low priority.

 ■ L: The process has pages locked in memory.

 ■ s: The process is a session leader.

 ■ l: The process is multi-threaded.

 ■ +: The process is running in the foreground.

From the simple example shown previously, you can see that the bash command is sleep-
ing, but it is a session leader (it’s the main process in my session), whereas the ps command
was running in the foreground on the system.

The GNU long parameters

Finally, the GNU developers put their own touches on the new, improved ps command by
adding a few more options to the parameter mix. Some of the GNU long parameters copy
existing Unix- or BSD-style parameters, while others provide new features. Table 4-3 lists
the available GNU long parameters.

TABLE 4-3 The ps Command GNU Parameters

Parameter Description

--deselect Shows all processes except those listed in the command line

--Group grplist Shows processes whose group ID is listed in grplist

--User userlist Shows processes whose user ID is listed in userlist

--group grplist Shows processes whose effective group ID is listed in grplist

Continues

92

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 92

Parameter Description

--pid pidlist Shows processes whose process ID is listed in pidlist

--ppid pidlist Shows processes whose parent process ID is listed in pidlist

--sid sidlist Shows processes whose session ID is listed in sidlist

--tty ttylist Shows processes whose terminal device ID is listed in ttylist

--user userlist Shows processes whose effective user ID is listed in userlist

--format format Displays only columns specifi ed in the format

--context Displays additional security information

--cols n Sets screen width to n columns

--columns n Sets screen width to n columns

--cumulative Includes stopped child process information

--forest Displays processes in a hierarchical listing showing parent processes

--headers Repeats column headers on each page of output

--no-headers Prevents display of column headers

--lines n Sets the screen height to n lines

--rows n Sets the screen height to n rows

--sort order Defi nes the column(s) to use for sorting the output

--width n Sets the screen width to n columns

--help Displays the help information

--info Displays debugging information

--version Displays the version of the ps program

You can combine GNU long parameters with either Unix- or BSD-style parameters to really
customize your display. One cool feature of GNU long parameters that we really like is the
--forest parameter. It displays the hierarchical process information, but using ASCII
characters to draw cute charts:

 1981 ? 00:00:00 sshd
 3078 ? 00:00:00 _ sshd
 3080 ? 00:00:00 _ sshd
 3081 pts/0 00:00:00 _ bash
 16676 pts/0 00:00:00 _ ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring
The ps command is great for gleaning information about processes running on the system,
but it has one drawback. The ps command can display information only for a specifi c point

TABLE 4-3 (continued)

93

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 93

4

in time. If you’re trying to fi nd trends about processes that are frequently swapped in and
out of memory, it’s hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process
information similarly to the ps command, but it does it in real-time mode. Figure 4-1 is a
snapshot of the top command in action.

FIGURE 4-1

The output of the top command while it is running

The fi rst section of the output shows general system information. The fi rst line shows the
current time, how long the system has been up, the number of users logged in, and the load
average on the system.

The load average appears as three numbers: the 1-minute, 5-minute, and 15-minute load
averages. The higher the values, the more load the system is experiencing. It’s not uncom-
mon for the 1-minute load value to be high for short bursts of activity. If the 15-minute
load value is high, your system may be in trouble.

94

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 94

The trick in Linux system administration is defi ning what exactly a high load average value is. This value depends on

what’s normally running on your system and the hardware confi guration. What’s high for one system might be normal

for another. Usually, if your load averages start getting over 2, things are getting busy on your system.

The second line shows general process information (called tasks in top): how many
processes are running, sleeping, stopped, and zombie (have fi nished but their parent
process hasn’t responded).

The next line shows general CPU information. The top display breaks down the CPU
utilization into several categories depending on the owner of the process (user versus
system processes) and the state of the processes (running, idle, or waiting).

Following that are two lines that detail the status of the system memory. The fi rst line
shows the status of the physical memory in the system, how much total memory there is,
how much is currently being used, and how much is free. The second memory line shows
the status of the swap memory area in the system (if any is installed), with the same
information.

Finally, the next section shows a detailed list of the currently running processes, with
some information columns that should look familiar from the ps command output:

 ■ PID: The process ID of the process

 ■ USER: The user name of the owner of the process

 ■ PR: The priority of the process

 ■ NI: The nice value of the process

 ■ VIRT: The total amount of virtual memory used by the process

 ■ RES: The amount of physical memory the process is using

 ■ SHR: The amount of memory the process is sharing with other processes

 ■ S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced
or stopped, or Z = zombie)

 ■ %CPU: The share of CPU time that the process is using

 ■ %MEM: The share of available physical memory the process is using

 ■ TIME+: The total CPU time the process has used since starting

 ■ COMMAND: The command line name of the process (program started)

By default, when you start top, it sorts the processes based on the %CPU value. You can
change the sort order by using one of several interactive commands while top is running.
Each interactive command is a single character that you can press while top is running
and changes the behavior of the program. Pressing f allows you to select the fi eld to use

95

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 95

4

to sort the output, and pressing d allows you to change the polling interval. Press q to exit
the top display.

You have lots of control over the output of the top command. Using this tool, you can
often fi nd offending processes that have taken over your system. Of course, after you fi nd
one, the next job is to stop it, which brings us to the next topic.

Stopping processes
A crucial part of being a system administrator is knowing when and how to stop a process.
Sometimes, a process gets hung up and needs a gentle nudge to either get going again
or stop. Other times, a process runs away with the CPU and refuses to give it up. In both
cases, you need a command that allows you to control a process. Linux follows the Unix
method of interprocess communication.

In Linux, processes communicate with each other using signals. A process signal is a
predefi ned message that processes recognize and may choose to ignore or act on. The
developers program how a process handles signals. Most well-written applications have the
ability to receive and act on the standard Unix process signals. Table 4-4 shows these signals.

TABLE 4-4 Linux Process Signals

Signal Name Description

1 HUP Hangs up

2 INT Interrupts

3 QUIT Stops running

9 KILL Unconditionally terminates

11 SEGV Produces segment violation

15 TERM Terminates if possible

17 STOP Stops unconditionally, but doesn’t terminate

18 TSTP Stops or pauses, but continues to run in background

19 CONT Resumes execution after STOP or TSTP

Two commands available in Linux allow you to send process signals to running processes.

The kill command

The kill command allows you to send signals to processes based on their process ID (PID).
By default, the kill command sends a TERM signal to all the PIDs listed on the command
line. Unfortunately, you can only use the process PID instead of its command name, making
the kill command diffi cult to use sometimes.

96

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 96

To send a process signal, you must either be the owner of the process or be logged in as the
root user.

 $ kill 3940
 -bash: kill: (3940) - Operation not permitted
 $

The TERM signal tells the process to kindly stop running. Unfortunately, if you have a
runaway process, most likely it ignores the request. When you need to get forceful, the -s
parameter allows you to specify other signals (either using their name or signal number).

As you can see from the following example, no output is associated with the kill
command.

 # kill -s HUP 3940
 #

To see if the command was effective, you must perform another ps or top command to see
if the offending process stopped.

The killall command

The killall command is a powerful way to stop processes by using their names rather
than the PID numbers. The killall command allows you to use wildcard characters as
well, making it a very useful tool when you have a system that’s gone awry:

killall http*
#

This example kills all the processes that start with http, such as the httpd services for the
Apache web server.

Be extremely careful using the killall command when logged in as the root user. It’s easy to get carried away with

wildcard characters and accidentally stop important system processes. This could lead to a damaged fi lesystem.

Monitoring Disk Space
Another important task of the system administrator is to keep track of the disk usage on
the system. Whether you’re running a simple Linux desktop or a large Linux server, you
need to know how much space you have for your applications.

Some command line commands can help you manage the media environment on your Linux
system. This section describes the core commands you’ll likely run into during your system
administration duties.

97

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 97

4

Mounting media
As discussed in Chapter 3, the Linux fi lesystem combines all media disks into a single
virtual directory. Before you can use a new media disk on your system, you must place it in
the virtual directory. This task is called mounting.

In today’s graphical desktop world, most Linux distributions have the ability to automati-
cally mount specifi c types of removable media. A removable media device is a medium that
(obviously) can be easily removed from the PC, such as CD-ROMs and USB memory sticks.

If you’re not using a distribution that automatically mounts and unmounts removable
media, you have to do it yourself. This section describes the Linux command line com-
mands to help you manage your removable media devices.

The mount command

Oddly enough, the command used to mount media is called mount. By default, the mount
command displays a list of media devices currently mounted on the system:

 $ mount
 /dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
 proc on /proc type proc (rw)
 sysfs on /sys type sysfs (rw)
 devpts on /dev/pts type devpts (rw,gid=5,mode=620)
 /dev/sda1 on /boot type ext3 (rw)
 tmpfs on /dev/shm type tmpfs (rw)
 none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
 sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
 /dev/sdb1 on /media/disk type vfat
 (rw,nosuid,nodev,uhelper=hal,shortname=lower,uid=503)
 $

The mount command provides four pieces of information:

 ■ The device fi lename of the media

 ■ The mount point in the virtual directory where the media is mounted

 ■ The fi lesystem type

 ■ The access status of the mounted media

The last entry in the preceding example is a USB memory stick that the GNOME desktop
automatically mounted at the /media/disk mount point. The vfat fi lesystem type shows
that it was formatted on a Microsoft Windows PC.

To manually mount a media device in the virtual directory, you must be logged in as the
root user or use the sudo command to run the command as the root user. The following is
the basic command for manually mounting a media device:

 mount -t type device directory

98

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 98

The type parameter defi nes the fi lesystem type under which the disk was formatted. Linux
recognizes lots of different fi lesystem types. If you share removable media devices with
your Windows PCs, you are most likely to run into these types:

 ■ vfat: Windows long fi lesystem

 ■ ntfs: Windows advanced fi lesystem used in Windows NT, XP, and Vista

 ■ iso9660: The standard CD-ROM fi lesystem

Most USB memory sticks and fl oppies are formatted using the vfat fi lesystem. If you need
to mount a data CD, you must use the iso9660 fi lesystem type.

The next two parameters defi ne the location of the device fi le for the media device and the
location in the virtual directory for the mount point. For example, to manually mount the
USB memory stick at device /dev/sdb1 at location /media/disk, you use the following
command:

 mount -t vfat /dev/sdb1 /media/disk

After a media device is mounted in the virtual directory, the root user has full access to
the device, but access by other users is restricted. You can control who has access to the
device using directory permissions (discussed in Chapter 7).

In case you need to use some of the more exotic features of the mount command, Table 4-5
shows the available parameters .

TABLE 4-5 The mount Command Parameters

Parameter Description

-a Mounts all fi lesystems specifi ed in the /etc/fstab fi le

-f Causes the mount command to simulate mounting a device, but not actually
mount it

-F Mounts all fi lesystems at the same time when used with the -a parameter

-v Explains all the steps required to mount the device; stands for verbose mode

-I Tells you not to use any fi lesystem helper fi les under /sbin/mount
.filesystem

-l Adds the fi lesystem labels automatically for ext2, ext3, or XFS fi lesystems

-n Mounts the device without registering it in the /etc/mstab mounted device
fi le

-p num For encrypted mounting, reads the passphrase from the fi le descriptor num

-s Ignores mount options not supported by the fi lesystem

-r Mounts the device as read-only

99

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 99

4

-w Mounts the device as read-write (the default)

-L label Mounts the device with the specifi ed label

-U uuid Mounts the device with the specifi ed uuid

-O When used with the -a parameter, limits the set of fi lesystems applied

-o Adds specifi c options to the fi lesystem

The -o option allows you to mount the fi lesystem with a comma-separated list of additional
options. These are popular options to use:

 ■ ro: Mounts as read-only

 ■ rw: Mounts as read-write

 ■ user: Allows an ordinary user to mount the fi lesystem

 ■ check=none: Mounts the fi lesystem without performing an integrity check

 ■ loop: Mounts a fi le

The unmount command

To remove a removable media device, you should never just remove it from the system.
Instead, you should always unmount it fi rst.

Linux doesn’t allow you to eject a mounted CD. If you ever have trouble removing a CD from the drive, most likely it

means the CD is still mounted in the virtual directory. Unmount it fi rst, and then try to eject it.

The command used to unmount devices is umount (yes, there’s no “n” in the command,
which gets confusing sometimes). The format for the umount command is pretty simple:

 umount [directory | device]

The umount command gives you the choice of defi ning the media device by either its
device location or its mounted directory name. If any program has a fi le open on a device,
the system won’t let you unmount it.

 [root@testbox mnt]# umount /home/rich/mnt
 umount: /home/rich/mnt: device is busy
 umount: /home/rich/mnt: device is busy
 [root@testbox mnt]# cd /home/rich
 [root@testbox rich]# umount /home/rich/mnt
 [root@testbox rich]# ls -l mnt
 total 0
 [root@testbox rich]#

100

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 100

In this example, the command prompt was still in a directory within the fi lesystem struc-
ture, so the umount command couldn’t unmount the image fi le. After the command prompt
was moved out of the image fi le fi lesystem, the umount command successfully unmounted
the image fi le.

Using the df command
Sometimes, you need to see how much disk space is available on an individual device. The
df command allows you to easily see what’s happening on all the mounted disks:

 $ df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/sda2 18251068 7703964 9605024 45% /
 /dev/sda1 101086 18680 77187 20% /boot
 tmpfs 119536 0 119536 0% /dev/shm
 /dev/sdb1 127462 113892 13570 90% /media/disk
 $

The df command shows each mounted fi lesystem that contains data. As you can see from
the mount command earlier, some mounted devices are used for internal system purposes.
The command displays the following:

 ■ The device location of the device

 ■ How many 1024-byte blocks of data it can hold

 ■ How many 1024-byte blocks are used

 ■ How many 1024-byte blocks are available

 ■ The amount of used space as a percentage

 ■ The mount point where the device is mounted

A few different command line parameters are available with the df command, most of
which you’ll never use. One popular parameter is -h, which shows the disk space in human-
readable form, usually as an M for megabytes or a G for gigabytes:

 $ df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/sdb2 18G 7.4G 9.2G 45% /
 /dev/sda1 99M 19M 76M 20% /boot
 tmpfs 117M 0 117M 0% /dev/shm
 /dev/sdb1 125M 112M 14M 90% /media/disk
 $

Now instead of having to decode those ugly block numbers, all the disk sizes are shown
using “normal” sizes. The df command is invaluable in troubleshooting disk space problems
on the system.

101

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 101

4

Remember that the Linux system always has processes running in the background that handle fi les. The values

from the df command refl ect what the Linux system thinks are the current values at that point in time. It’s possible

that you have a process running that has created or deleted a fi le but has not released the fi le yet. This value is not

included in the free space calculation.

Using the du command
With the df command, you can easily see when a disk is running out of space. The next
problem for the system administrator is to know what to do when that happens.

Another useful command to help you is the du command. The du command shows the disk
usage for a specifi c directory (by default, the current directory). This is a quick way to
determine if you have any obvious disk hogs on the system.

By default, the du command displays all the fi les, directories, and subdirectories under
the current directory, and it shows how many disk blocks each fi le or directory takes. For a
standard-sized directory, this can be quite a listing. Here’s a partial listing of using the du
command:

 $ du
 484 ./.gstreamer-0.10
 8 ./Templates
 8 ./Download
 8 ./.ccache/7/0
 24 ./.ccache/7
 368 ./.ccache/a/d
 384 ./.ccache/a
 424 ./.ccache
 8 ./Public
 8 ./.gphpedit/plugins
 32 ./.gphpedit
 72 ./.gconfd
 128 ./.nautilus/metafiles
 384 ./.nautilus
 72 ./.bittorrent/data/metainfo
 20 ./.bittorrent/data/resume
 144 ./.bittorrent/data
 152 ./.bittorrent
 8 ./Videos
 8 ./Music
 16 ./.config/gtk-2.0
 40 ./.config
 8 ./Documents

102

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 102

The number at the left of each line is the number of disk blocks that each fi le or
directory takes. Notice that the listing starts at the bottom of a directory and works its
way up through the fi les and subdirectories contained within the directory.

The du command by itself can be somewhat useless. It’s nice to be able to see how much
disk space each individual fi le and directory takes up, but it can be meaningless when
you have to wade through pages and pages of information before you fi nd what you’re
looking for.

You can use a few command line parameters with the du command to make things a little
more legible:

 ■ -c: Produces a grand total of all the fi les listed

 ■ -h: Prints sizes in human-readable form, using K for kilobyte, M for megabyte, and
G for gigabyte

 ■ -s: Summarizes each argument

The next step for the system administrator is to use some fi le-handling commands for
manipulating large amounts of data. That’s exactly what the next section covers.

Working with Data Files
When you have a large amount of data, handling the information and making it useful can
be diffi cult. As you saw with the du command in the previous section, it’s easy to get data
overload when working with system commands.

The Linux system provides several command line tools to help you manage large amounts of
data. This section covers the basic commands that every system administrator — as well as
any everyday Linux user — should know how to use to make their lives easier.

Sorting data
The sort command is a popular function that comes in handy when working with large
amounts of data. The sort command does what it says: It sorts data.

By default, the sort command sorts the data lines in a text fi le using standard sorting
rules for the language you specify as the default for the session.

 $ cat file1
 one
 two
 three
 four

103

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 103

4

 five
 $ sort file1
 five
 four
 one
 three
 two
 $

It’s pretty simple, but things aren’t always as easy as they appear. Look at this example:

 $ cat file2
 1
 2
 100
 45
 3
 10
 145
 75
 $ sort file2
 1
 10
 100
 145
 2
 3
 45
 75
 $

If you were expecting the numbers to sort in numerical order, you were disappointed. By
default, the sort command interprets numbers as characters and performs a standard
character sort, producing output that might not be what you want. To solve this problem,
use the -n parameter, which tells the sort command to recognize numbers as numbers
instead of characters and to sort them based on their numerical values:

 $ sort -n file2
 1
 2
 3
 10
 45
 75
 100
 145
 $

104

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 104

Now, that’s much better! Another common parameter that’s used is -M, the month sort.
Linux log fi les usually contain a timestamp at the beginning of the line to indicate when
the event occurred:

 Sep 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened

If you sort a fi le that uses timestamp dates using the default sort, you get something like
this:

 $ sort file3
 Apr
 Aug
 Dec
 Feb
 Jan
 Jul
 Jun
 Mar
 May
 Nov
 Oct
 Sep
 $

It’s not exactly what you wanted. If you use the -M parameter, the sort command recog-
nizes the three-character month nomenclature and sorts appropriately:

 $ sort -M file3
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec
 $

Table 4-6 shows other handy sort parameters you can use.

105

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 105

4

TABLE 4-6 The sort Command Parameters

Single Dash Double Dash Description

-b --ignore-leading-blanks Ignores leading blanks when sorting

-C --check = quiet Doesn’t sort, but doesn’t report if data is out of sort
order

-c --check Doesn’t sort, but checks if the input data is already
sorted, and reports if not sorted

-d --dictionary-order Considers only blanks and alphanumeric charac-
ters; doesn’t consider special characters

-f --ignore-case By default, sort orders capitalized letters fi rst;
ignores case

-g --general-numeric-sort Uses general numerical value to sort

-i --ignore-nonprinting Ignores nonprintable characters in the sort

-k --key = POS1[,POS2] Sorts based on position POS1, and ends at POS2 if
specifi ed

-M --month-sort Sorts by month order using three-character month
names

-m --merge Merges two already sorted data fi les

-n --numeric-sort Sorts by string numerical value

-o --output = file Writes results to fi le specifi ed

-R --random-sort Sorts by a random hash of keys

--random-source = FILE Specifi es the fi le for random bytes used by the -R
parameter

-r --reverse Reverses the sort order (descending instead of
ascending

-S --buffer-size = SIZE Specifi es the amount of memory to use

-s --stable Disables last-resort comparison

-T --temporary-direction =
DIR

Specifi es a location to store temporary working fi les

-t --field-separator =
SEP

Specifi es the character used to distinguish key
positions

-u --unique With the -c parameter, checks for strict ordering;
without the -c parameter, outputs only the fi rst
occurrence of two similar lines

-z --zero-terminated Ends all lines with a NULL character instead of a
new line

106

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 106

The -k and -t parameters are handy when sorting data that uses fi elds, such as the /etc/
passwd fi le. Use the -t parameter to specify the fi eld separator character, and use the -k
parameter to specify which fi eld to sort on. For example, to sort the password fi le based on
numerical userid, just do this:

 $ sort -t ':' -k 3 -n /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 news:x:9:13:news:/etc/news:
 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 games:x:12:100:games:/usr/games:/sbin/nologin
 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

Now the data is perfectly sorted based on the third fi eld, which is the numerical userid
value.

The -n parameter is great for sorting numerical outputs, such as the output of the du
command:

 $ du -sh * | sort -nr
 1008k mrtg-2.9.29.tar.gz
 972k bldg1
 888k fbs2.pdf
 760k Printtest
 680k rsync-2.6.6.tar.gz
 660k code
 516k fig1001.tiff
 496k test
 496k php-common-4.0.4pl1-6mdk.i586.rpm
 448k MesaGLUT-6.5.1.tar.gz
 400k plp

Notice that the -r option also sorts the values in descending order, so you can easily see
what fi les are taking up the most space in your directory.

The pipe command (|) used in this example redirects the output of the du command to the sort command. That’s

discussed in more detail in Chapter 11.

news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

107

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 107

4

Searching for data
Often in a large fi le, you must look for a specifi c line of data buried somewhere in the
middle of the fi le. Instead of manually scrolling through the entire fi le, you can let the
grep command search for you. The command line format for the grep command is:

 grep [options] pattern [file]

The grep command searches either the input or the fi le you specify for lines that contain
characters that match the specifi ed pattern. The output from grep is the lines that contain
the matching pattern.

Here are two simple examples of using the grep command with the file1 fi le used in the
“Sorting data” section:

 $ grep three file1
 three
 $ grep t file1
 two
 three
 $

The fi rst example searches the fi le file1 for text matching the pattern three. The grep
command produces the line that contains the matching pattern. The next example searches
the fi le file1 for the text matching the pattern t. In this case, two lines matched the
specifi ed pattern, and both are displayed.

Because of the popularity of the grep command, it has undergone lots of development
changes over its lifetime. Lots of features have been added to the grep command. If you
look over the man pages for the grep command, you’ll see how versatile it really is.

If you want to reverse the search (output lines that don’t match the pattern), use the -v
parameter:

 $ grep -v t file1
 one
 four
 five
 $

If you need to fi nd the line numbers where the matching patterns are found, use the -n
parameter:

 $ grep -n t file1
 2:two
 3:three
 $

108

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 108

If you just need to see a count of how many lines contain the matching pattern, use the -c
parameter:

 $ grep -c t file1
 2
 $

If you need to specify more than one matching pattern, use the -e parameter to specify
each individual pattern:

 $ grep -e t -e f file1
 two
 three
 four
 five
 $

This example outputs lines that contain either the string t or the string f.

By default, the grep command uses basic Unix-style regular expressions to match patterns.
A Unix-style regular expression uses special characters to defi ne how to look for matching
patterns.

For a more detailed explanation of regular expressions, see Chapter 20.

Here’s a simple example of using a regular expression in a grep search:

 $ grep [tf] file1
 two
 three
 four
 five
 $

The square brackets in the regular expression indicate that grep should look for matches
that contain either a t or an f character. Without the regular expression, grep would search
for text that would match the string tf.

The egrep command is an offshoot of grep, which allows you to specify POSIX extended
regular expressions, which contain more characters for specifying the matching pattern
(again, see Chapter 20 for more details). The fgrep command is another version that allows
you to specify matching patterns as a list of fi xed-string values, separated by newline char-
acters. This allows you to place a list of strings in a fi le and then use that list in the fgrep
command to search for the strings in a larger fi le.

Compressing data
If you’ve done any work in the Microsoft Windows world, no doubt you’ve used zip fi les. It
became such a popular feature that Microsoft eventually incorporated it into the Windows

109

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 109

4

operating system starting with XP. The zip utility allows you to easily compress large fi les
(both text and executable) into smaller fi les that take up less space.

Linux contains several fi le compression utilities. Although this may sound great, it often
leads to confusion and chaos when trying to download fi les. Table 4-7 lists the fi le compres-
sion utilities available for Linux.

TABLE 4-7 Linux File Compression Utilities

Utility File Extension Description

bzip2 .bz2 Uses the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding

compress .Z Original Unix fi le compression utility; starting to fade away
into obscurity

gzip .gz The GNU Project’s compression utility; uses Lempel-Ziv
coding

zip .zip The Unix version of the PKZIP program for Windows

The compress fi le compression utility is not often found on Linux systems. If you down-
load a fi le with a .Z extension, you can usually install the compress package (called
ncompress in many Linux distributions) using the software installation methods dis-
cussed in Chapter 9 and then uncompress the fi le with the uncompress command. The
gzip utility is the most popular compression tool used in Linux.

The gzip package is a creation of the GNU Project, in their attempt to create a free version
of the original Unix compress utility. This package includes these fi les:

 ■ gzip for compressing fi les

 ■ gzcat for displaying the contents of compressed text fi les

 ■ gunzip for uncompressing fi les

These utilities work the same way as the bzip2 utilities:

 $ gzip myprog
 $ ls -l my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
 $

The gzip command compresses the fi le you specify on the command line. You can also
specify more than one fi lename or even use wildcard characters to compress multiple fi les
at once:

$ gzip my*
$ ls -l my*

110

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 110

 -rwxr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
 -rwxr-xr-x 1 rich rich 5178 Sep 6 13:43 myprog.gz
 -rwxr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
 -rwxr--r-- 1 rich rich 60 Sep 6 13:44 myscript2.gz
$

The gzip command compresses every fi le in the directory that matches the wildcard
pattern.

Archiving data
Although the zip command works great for compressing and archiving data into a single
fi le, it’s not the standard utility used in the Unix and Linux worlds. By far the most popular
archiving tool used in Unix and Linux is the tar command.

The tar command was originally used to write fi les to a tape device for archiving.
However, it can also write the output to a fi le, which has become a popular way to archive
data in Linux.

The following is the format of the tar command:

 tar function [options] object1 object2 ...

The function parameter defi nes what the tar command should do, as shown in Table 4-8.

TABLE 4-8 The tar Command Functions

Function Long Name Description

-A --concatenate Appends an existing tar archive fi le to another existing
tar archive fi le

-c --create Creates a new tar archive fi le

-d --diff Checks the differences between a tar archive fi le and the
fi lesystem

--delete Deletes from an existing tar archive fi le

-r --append Appends fi les to the end of an existing tar archive fi le

-t --list Lists the contents of an existing tar archive fi le

-u --update Appends fi les to an existing tar archive fi le that are newer
than a fi le with the same name in the existing archive

-x --extract Extracts fi les from an existing archive fi le

Each function uses options to defi ne a specifi c behavior for the tar archive fi le. Table 4-9
lists the common options that you can use with the tar command.

111

Chapter 4: More bash Shell Commands

c04.indd 12/03/2014 Page 111

4

TABLE 4-9 The tar Command Options

Option Description

-C dir Changes to the specifi ed directory

-f file Outputs results to fi le (or device) file

-j Redirects output to the bzip2 command for compression

-p Preserves all fi le permissions

-v Lists fi les as they are processed

-z Redirects the output to the gzip command for compression

These options are usually combined to create the following scenarios. First, you want to
create an archive fi le using this command:

 tar -cvf test.tar test/ test2/

The above command creates an archive fi le called test.tar containing the contents of
both the test directory and the test2 directory. Next, this command:

 tar -tf test.tar

lists (but doesn’t extract) the contents of the tar fi le test.tar. Finally, this command:

 tar -xvf test.tar

extracts the contents of the tar fi le test.tar. If the tar fi le was created from a directory
structure, the entire directory structure is re-created starting at the current directory.

As you can see, using the tar command is a simple way to create archive fi les of entire
directory structures. This is a common method for distributing source code fi les for open
source applications in the Linux world.

If you download open source software, often you see fi lenames that end in .tgz. These are gzipped tar fi les, which can

be extracted using the command tar -zxvf filename.tgz.

Summary
This chapter discussed some of the more advanced bash commands used by Linux system
administrators and programmers. The ps and top commands are vital in determining the
status of the system, allowing you to see what applications are running and how many
resources they are consuming.

112

Part I: The Linux Command Line

c04.indd 12/03/2014 Page 112

In this day of removable media, another popular topic for system administrators is
mounting storage devices. The mount command allows you to mount a physical storage
device into the Linux virtual directory structure. To remove the device, use the umount
command.

Finally, the chapter discussed various utilities used for handling data. The sort utility
easily sorts large data fi les to help you organize data, and the grep utility allows you to
quickly scan through large data fi les looking for specifi c information. Several fi le compres-
sion utilities are available in Linux, including gzip and zip. Each one allows you to com-
press large fi les to help save space on your fi lesystem. The Linux tar utility is a popular
way to archive directory structures into a single fi le that can easily be ported to another
system.

The next chapter discusses Linux shells and how to interact with them. Linux allows
you to communicate between shells, which can come in handy when creating subshells in
your scripts.

113

c05.indd 12/10/2014 Page 113

CHAP T ER

5
Understanding the Shell

IN THIS CHAPTER

Investigating Shell Types

Understanding the Parent/Child Shell Relationship

Using Subshells Creatively

Investigating Built-in Shell Commands

N
ow that you know a few shell basics, such as reaching the shell and rudimentary shell com-
mands, it is time to explore the actual shell process. To understand the shell, you need to
understand a few CLI basics.

A shell is not just a CLI. It is a complicated interactive running program. Entering commands and
using the shell to run scripts can raise some interesting and confusing issues. Understanding the
shell process and its relationships helps you resolve these issues or avoid them altogether.

This chapter takes you through learning about the shell process. You see how subshells are created
and their relationship to the parent shell. The varied commands that create child processes are
explored as well as built-in commands. You even read about some shell tips and tricks to try.

Exploring Shell Types
The shell program that the system starts depends on your user ID confi guration. In the /etc/
passwd fi le, the user ID has its default shell program listed in fi eld #7 of its record. The default
shell program is started whenever the user logs into a virtual console terminal or starts a terminal
emulator in the GUI.

In the following example, user christine has the GNU bash shell as her default shell program:

$ cat /etc/passwd
[...]
Christine:x:501:501:Christine B:/home/Christine:/bin/bash
$

114

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 114

The bash shell program resides in the /bin directory. A long listing reveals /bin/bash
(the bash shell) is an executable program:

$ ls -lF /bin/bash
-rwxr-xr-x. 1 root root 938832 Jul 18 2013 /bin/bash*
$

Several other shell programs are on this particular CentOS distribution. They include tcsh,
which is based off the original C shell:

$ ls -lF /bin/tcsh
-rwxr-xr-x. 1 root root 387328 Feb 21 2013 /bin/tcsh*
$

Also, the Debian based version of the ash shell, dash, is included:

$ ls -lF /bin/dash
-rwxr-xr-x. 1 root root 109672 Oct 17 2012 /bin/dash*
$

Finally, a soft link (see Chapter 3) of the C shell points to the tcsh shell:

$ ls -lF /bin/csh
lrwxrwxrwx. 1 root root 4 Mar 18 15:16 /bin/csh -> tcsh*
$

Each of these different shell programs could be set as a user’s default shell. However, due to
the bash shell’s popularity, it’s rare to use any other shell as a default shell.

A brief description of various shells was included in Chapter 1. You may be interested in learning even more about

shells other than the GNU bash shell. Additional alternative shell information is in Chapter 23.

The default interactive shell starts whenever a user logs into a virtual console terminal or
starts a terminal emulator in the GUI. However, another default shell, /bin/sh, is the
default system shell. The default system shell is used for system shell scripts, such as those
needed at startup.

Often, you see a distribution with its default system shell set to the bash shell using a soft
link as shown here on this CentOS distribution:

$ ls -l /bin/sh
lrwxrwxrwx. 1 root root 4 Mar 18 15:05 /bin/sh -> bash
$

However, be aware that on some distributions, the default system shell is different than
the default interactive shell, such as on this Ubuntu distribution:

115

Chapter 5: Understanding the Shell

c05.indd 12/10/2014 Page 115

5

$ cat /etc/passwd
[...]
christine:x:1000:1000:Christine,,,:/home/christine:/bin/bash
$
$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 Apr 22 12:33 /bin/sh -> dash
$

Note that the user, christine, has her default interactive shell set to /bin/bash, the
bash shell. But the default system shell, /bin/sh, is set to the dash shell.

For bash shell scripts, these two different shells, default interactive shell and default system shell, can cause prob-

lems. Be sure to read about the important syntax needed for a bash shell script’s fi rst line in Chapter 11 to avoid

these issues.

You are not forced to stick with your default interactive shell. You can start any shell avail-
able on your distribution, simply by typing its fi lename. For example, to start the dash
shell, you can run it directly by typing the command /bin/dash:

$ /bin/dash
$

It doesn’t look like anything happened, but the dash shell program started. The $ prompt
is a CLI prompt for the dash shell. You can leave the dash shell program by typing the com-
mand exit:

$ exit
exit
$

Again, it looks like nothing happened. However, the dash shell program was exited. To
understand this process, the next section explores the relationship between a login shell
program and a newly started shell program.

Exploring Parent and Child Shell Relationships
The default interactive shell started when a user logs into a virtual console terminal or
starts a terminal emulator in the GUI is a parent shell. As you have read so far in this book,
a parent shell process provides a CLI prompt and waits for commands to be entered.

When the /bin/bash command or the equivalent bash command is entered at the CLI
prompt, a new shell program is created. This is a child shell. A child shell also has a CLI
prompt and waits for commands to be entered.

116

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 116

Because you do not see any relevant messages when you type bash and spawn a child shell,
another command can help bring clarity. The ps command was covered in Chapter 4. Using
this with the -f option before and after entering a child shell is useful:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2429 1841 4 13:44 pts/0 00:00:00 ps -f
$
$ bash
$
$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2430 1841 0 13:44 pts/0 00:00:00 bash
501 2444 2430 1 13:44 pts/0 00:00:00 ps -f
$

The fi rst use of ps -f shows two processes. One process has a process ID of 1841 (second
column) and is running the bash shell program (last column). The second process (process
ID 2429) is the actual ps -f command running.

A process is a running program. The bash shell is a program, and when it runs, it is a process. A running shell is

simply one type of process. Therefore, when reading about running a bash shell, you often see the word “shell” and

the word “process” used interchangeably.

After the command bash is entered, a child shell is created. The second ps -f is exe-
cuted from within the child shell. From this display, you can see that two bash shell pro-
grams are running. The fi rst bash shell program, the parent shell process, has the original
process ID (PID) of 1841. The second bash shell program, the child shell process, has a PID
of 2430. Note that the child shell has a parent process ID (PPID) of 1841, denoting that the
parent shell process is its parent. Figure 5-1 diagrams this relationship.

FIGURE 5-1

Parent and child bash shell processes

Creates

subshell

Parent shell

issues command:

bash

Child subshell

issues command:

ps -f

117

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 117

When a child shell process is spawned, only some of the parent’s environment is copied to
the child shell environment. This can cause problems with items such as variables, and it is
covered in Chapter 6.

A child shell is also called a subshell. A subshell can be created from a parent shell, and a
subshell can be created from another subshell:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2532 1841 1 14:22 pts/0 00:00:00 ps -f
$
$ bash
$
$ bash
$
$ bash
$
$ ps --forest
 PID TTY TIME CMD
 1841 pts/0 00:00:00 bash
 2533 pts/0 00:00:00 _ bash
 2546 pts/0 00:00:00 _ bash
 2562 pts/0 00:00:00 _ bash
 2576 pts/0 00:00:00 _ ps
$

In the preceding example, the bash shell command was entered three times. Effectively,
this created three subshells. The ps --forest command shows the nesting of these sub-
shells. Figure 5-2 also shows this subshell nesting.

The ps -f command can be useful in subshell nesting, because it displays who is whose
parent via the PPID column:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 1841 1840 0 11:50 pts/0 00:00:00 -bash
501 2533 1841 0 14:22 pts/0 00:00:00 bash
501 2546 2533 0 14:22 pts/0 00:00:00 bash
501 2562 2546 0 14:24 pts/0 00:00:00 bash
501 2585 2562 1 14:29 pts/0 00:00:00 ps -f
$

The bash shell program can use command line parameters to modify the shell start.
Table 5-1 lists the command line parameters available in bash.

118

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 118

FIGURE 5-2

Subshell nesting

Creates

subshell

Creates
subshell

Parent shell

issues command:

bash

issues command:

bash

bash child subshell

Creates

subshell

bash great-
grandchild subshell

bash grandchild
subshell

issues command:

ps --forest

issues command:

bash

TABLE 5-1 The bash Command Line Parameters

Parameter Description

-c string Reads commands from string and processes them

-i Starts an interactive shell, allowing input from the user

-l Acts as if invoked as a login shell

-r Starts a restricted shell, limiting the user to the default directory

-s Reads commands from the standard input

You can fi nd more help on the bash command and even more command line parameters by
typing man bash. The bash --help command provides additional assistance as well.

You can gracefully exit out of each subshell by entering the exit command:

$ exit
exit
$
$ ps --forest
 PID TTY TIME CMD
 1841 pts/0 00:00:00 bash

119

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 119

 2533 pts/0 00:00:00 _ bash
 2546 pts/0 00:00:00 _ bash
 2602 pts/0 00:00:00 _ ps
$
$ exit
exit
$
$ exit
exit
$
$ ps --forest
 PID TTY TIME CMD
 1841 pts/0 00:00:00 bash
 2604 pts/0 00:00:00 _ ps
$

Not only does the exit command allow you to leave child subshells, but you can also log
out of your current virtual console terminal or terminal emulation software as well. Just
type exit in the parent shell, and you gracefully exit the CLI.

Another time a subshell can be created is when you run a shell script. You learn more about
that topic in Chapter 11.

Also, you can spawn subshells without using the bash shell command or running a shell
script. One way is by using a process list.

Looking at process lists
On a single line, you can designate a list of commands to be run one after another. This is
done by entering a command list using a semicolon (;) between commands:

$ pwd ; ls ; cd /etc ; pwd ; cd ; pwd ; ls
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
/etc
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
$

In the preceding example, the commands all executed one after another with no problems.
However, this is not a process list. For a command list to be considered a process list, the
commands must be encased in parentheses:

120

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 120

$ (pwd ; ls ; cd /etc ; pwd ; cd ; pwd ; ls)
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
/etc
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
$

Though the parentheses addition may not appear to be a big difference, they do cause a
very different effect. Adding parentheses and turning the command list into a process list
created a subshell to execute the commands.

A process list is a command grouping type. Another command grouping type puts the commands between curly

brackets and ends the command list with a semicolon (;). The syntax is as follows: { command; }. Using curly

brackets for command grouping does not create a subshell as a process list does.

To indicate if a subshell was spawned, a command using an environment variable is needed
here. (Environment variables are covered in detail in Chapter 6). The command needed is
echo $BASH_SUBSHELL. If it returns a 0, then there is no subshell. If it returns 1 or more,
then there is a subshell.

First, the example using just a command list is executed with the echo $BASH_SUBSHELL
tacked onto the end:

$ pwd ; ls ; cd /etc ; pwd ; cd ; pwd ; ls ; echo $BASH_SUBSHELL
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
/etc
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
0

At the very end of the commands’ output, you can see the number zero (0) is displayed.
This indicates a subshell was not created to execute these commands.

The results are different using a process list. The list is executed with
echo $BASH_SUBSHELL tacked onto the end:

$ (pwd ; ls ; cd /etc ; pwd ; cd ; pwd ; ls ; echo $BASH_SUBSHELL)
/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
/etc

121

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 121

/home/Christine
Desktop Downloads Music Public Videos
Documents junk.dat Pictures Templates
1

In this case, the number one (1) displayed at the output’s end. This indicates a subshell
was indeed created and used for executing these commands.

Thus, a process list is a command grouping enclosed with parentheses, which creates a sub-
shell to execute the command(s). You can even create a grandchild subshell by embedding
parentheses within a process list:

$ (pwd ; echo $BASH_SUBSHELL)
/home/Christine
1
$ (pwd ; (echo $BASH_SUBSHELL))
/home/Christine
2

Notice in the fi rst process list, the number one (1) is displayed indicating a child subshell
as you would expect. However in the example’s second process list, additional parentheses
were added around the echo $BASH_SUBSHELL command. These additional parentheses
caused a grandchild subshell to be created for the command’s execution. Thus, a number
two (2) was displayed indicating a subshell within a subshell.

Subshells are often used for multi-processing in shell scripts. However, entering into a sub-
shell is an expensive method and can signifi cantly slow down processing. Subshell issues
exist also for an interactive CLI shell session. It is not truly multi-processing, because the
terminal gets tied up with the subshell’s I/O.

Creatively using subshells
At the interactive shell CLI, you have more productive ways to use subshells. Process lists,
co-processes, and pipes (covered in Chapter 11) use subshells. They all can be used effec-
tively within the interactive shell.

One productive subshell method in the interactive shell uses background mode. Before
discussing how to use background mode and subshells together, you need to understand
background mode itself.

Investigating background mode

Running a command in background mode allows the command to be processed and frees up
your CLI for other use. A classic command to demonstrate background mode is the sleep
command.

122

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 122

The sleep command accepts as a parameter the number of seconds you want the process to
wait (sleep). This command is often used to introduce pauses in shell scripts. The command
sleep 10 causes the session to pause for 10 seconds and then return a shell CLI prompt:

$ sleep 10
$

To put a command into background mode, the & character is tacked onto its end. Putting
the sleep command into background mode allows a little investigation with the ps
command:

$ sleep 3000&
[1] 2396
$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 2338 2337 0 10:13 pts/9 00:00:00 -bash
christi+ 2396 2338 0 10:17 pts/9 00:00:00 sleep 3000
christi+ 2397 2338 0 10:17 pts/9 00:00:00 ps -f
$

The sleep command was told to sleep for 3000 seconds (50 minutes) in the background
(&). When it was put into the background, two informational items were displayed before
the shell CLI prompt was returned. The fi rst informational item is the background job’s
number (1) displayed in brackets. The second item is the background job’s process ID
(2396).

The ps command was used to display the various processes. Notice that the sleep 3000
command is listed. Also note that its process ID (PID) in the second column is the same PID
displayed when the command went into the background, 2396.

In addition to the ps command, you can use the jobs command to display background job
information. The jobs command displays any user’s processes (jobs) currently running in
background mode:

$ jobs
[1]+ Running sleep 3000 &
$

The jobs command shows the job number (1) in brackets. It also displays the job’s current
status (running) as well as the command itself, (sleep 3000 &).

You can see even more information by using the -l (lowercase L) parameter on the
jobs command. The -l parameter displays the command’s PID in addition to the other
information:

$ jobs -l
[1]+ 2396 Running sleep 3000 &
$

123

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 123

When the background job is fi nished, its completion status is displayed:

[1]+ Done sleep 3000 &
$

Be aware that a background job’s completion status won’t necessarily wait till a convenient time to display itself.

Don’t let it surprise you when a job’s completion status just suddenly appears on your screen.

Background mode is very handy. And it provides a method for creating useful subshells at
the CLI.

Putting process lists into the background

As stated earlier, a process list is a command or series of commands executed within a sub-
shell. Using a process list including sleep commands and displaying the BASH_SUBSHELL
variable operates as you would expect:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)
1
$

In the preceding example, a two-second pause occurs, the number one (1) is displayed indi-
cating a single subshell level (child subshell), and then another two-second pause occurs
before the prompt returns. Nothing too dramatic here.

Putting the same process list into background mode can cause a slightly different effect
with command output:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)&
[2] 2401
$ 1

[2]+ Done (sleep 2; echo $BASH_SUBSHELL; sleep 2)
$

Putting the process list into the background causes a job number and process ID to appear,
and the prompt returns. However, the odd event is that the displayed number one (1), indi-
cating a single-level subshell, is displayed by the prompt! Don’t let this confuse you. Simply
press the Enter key, and you get another prompt back.

Using a process list in background mode is one creative method for using subshells at the
CLI. You can do large amounts of processing within a subshell and not have your terminal
tied up with the subshell’s I/O.

124

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 124

Of course, the process list of sleep and echo commands are just for example purposes.
Creating backup fi les with tar (see Chapter 4) is a more practical example of using back-
ground process lists effectively:

$ (tar -cf Rich.tar /home/rich ; tar -cf My.tar /home/christine)&
[3] 2423
$

Putting a process list in background mode is not the only way to use subshells creatively at
the CLI. Co-processing is another method.

Looking at co-processing

Co-processing does two things at the same time. It spawns a subshell in background mode
and executes a command within that subshell.

To perform co-processing, the coproc command is used along with the command to be
executed in the subshell:

$ coproc sleep 10
[1] 2544
$

Co-processing performs almost identically to putting a command in background mode,
except for the fact that it creates a subshell. You’ll notice that when the coproc command
and its parameters were entered, a background job was started. The background job number
(1) and process ID (2544) were displayed on the screen.

The jobs command allows you to display the co-processing status:

$ jobs
[1]+ Running coproc COPROC sleep 10 &
$

From the preceding example, you can see the background command executing in the
subshell is coproc COPROC sleep 10. The COPROC is a name given to the process by
the coproc command. You can set the name yourself by using extended syntax for the
command:

$ coproc My_Job { sleep 10; }
[1] 2570
$
$ jobs
[1]+ Running coproc My_Job { sleep 10; } &
$

By using the extended syntax, the co-processing name was set to My_Job. Be careful here,
because the extended syntax is a little tricky. You have to make sure that a space appears
after the fi rst curly bracket ({) and before the start of your command. Also, you have to

125

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 125

make sure the command ends with a semicolon (;). And you have to ensure that a space
appears after the semicolon and before the closing curly bracket (}).

Co-processing allows you to get very fancy and send/receive information to the process running in the subshell. The

only time you need to name a co-process is when you have multiple co-processes running, and you need to communi-

cate with them all. Otherwise, just let the coproc command set the name to the default, COPROC.

You can be really clever and combine co-processing with process lists creating nested sub-
shells. Just type your process list and put the command coproc in front of it:

$ coproc (sleep 10; sleep 2)
[1] 2574
$
$ jobs
[1]+ Running coproc COPROC (sleep 10; sleep 2) &
$
$ ps --forest
 PID TTY TIME CMD
 2483 pts/12 00:00:00 bash
 2574 pts/12 00:00:00 _ bash
 2575 pts/12 00:00:00 | _ sleep
 2576 pts/12 00:00:00 _ ps
$

Just remember that spawning a subshell can be expensive and slow. Creating nested
subshells is even more so!

Using subshells can provide fl exibility at the command line as well as convenience.
Understanding their behavior is important to obtaining this fl exibility and convenience.
Command behavior is also important to understand. In the next section, the behavior
differences between built-in and external commands are explored.

Understanding Shell Built-In Commands
While learning about the GNU bash shell, you likely have heard the term built-in command.
It is important to understand both shell built-in and non-built-in (external) commands.
Built-in commands and non-built-in commands operate very differently.

Looking at external commands
An external command, sometimes called a fi lesystem command, is a program that exists
outside of the bash shell. They are not built into the shell program. An external command
program is typically located in /bin, /usr/bin, /sbin, or /usr/sbin.

126

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 126

The ps command is an external command. You can fi nd its fi lename by using both the
which and the type commands:

$ which ps
/bin/ps
$
$ type -a ps
ps is /bin/ps
$
$ ls -l /bin/ps
-rwxr-xr-x 1 root root 93232 Jan 6 18:32 /bin/ps
$

Whenever an external command is executed, a child process is created. This action is
termed forking. Conveniently, the external command ps displays its current parent as well
as its own forked child processes:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 2743 2742 0 17:09 pts/9 00:00:00 -bash
christi+ 2801 2743 0 17:16 pts/9 00:00:00 ps -f
$

Because it is an external command, when the ps command executes, a child process is
created. In this case, the ps command’s PID is 2801 and the parent PID is 2743. The bash
shell process, which is the parent, has a PID of 2743. Figure 5-3 illustrates the forking that
occurs when an external command is executed.

FIGURE 5-3

External command forking

Forks child

process

Parent process

issues external

command:

ps -f

executes external

command:

ps -f

Child process

Whenever a process must fork, it takes time and effort to set up the new child process’s
environment. Thus, external commands can be a little expensive.

127

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 127

If you fork a child process or create a subshell, you can still communicate with it via signaling, which is extremely

helpful in both the command line and in writing shell scripts. Signaling allows process communication via signals.

Signals and signaling are covered in Chapter 16.

When using a built-in command, no forking is required. Therefore, built-in commands are
less expensive.

Looking at built-in commands
Built-in commands are different in that they do not need a child process to execute. They
were compiled into the shell and thus are part of the shell’s toolkit. No external
program fi le exists to run them.

Both the cd and exit commands are built into the bash shell. You can tell a command is
built-in by using the type command:

$ type cd
cd is a shell builtin
$
$ type exit
exit is a shell builtin
$

Because they do not need to fork a child process to execute or open a program fi le, built-in
commands are faster and more effi cient. A list of GNU bash shell built-in commands is
provided in Appendix A.

Be aware that some commands have multiple fl avors. For example, both echo and pwd have
a built-in command fl avor as well as an external command fl avor. These fl avors are slightly
different. To see multiple fl avors for commands, use the -a option on the type command:

$ type -a echo
echo is a shell builtin
echo is /bin/echo
$
$ which echo
/bin/echo
$
$ type -a pwd
pwd is a shell builtin
pwd is /bin/pwd

128

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 128

$
$ which pwd
/bin/pwd
$

Using the type -a command shows both types for each of the two commands. Note that
the which command shows only the external command fi le.

To use the external command for a command that has multiple fl avors, directly reference the fi le. For example, to use

the pwd external command, type /bin/pwd.

Using the history command

A useful built-in command is the history command. The bash shell keeps track of the
commands you have used. You can recall these commands and even reuse them.

To see a recently used commands list, just type the history command with no options:

$ history
 1 ps -f
 2 pwd
 3 ls
 4 coproc (sleep 10; sleep 2)
 5 jobs
 6 ps --forest
 7 ls
 8 ps -f
 9 pwd
 10 ls -l /bin/ps
 11 history
 12 cd /etc
 13 pwd
 14 ls
 15 cd
 16 type pwd
 17 which pwd
 18 type echo
 19 which echo
 20 type -a pwd
 21 type -a echo
 22 pwd
 23 history

In this example, only the last 23 commands are shown. Typically, the last 1,000 commands
are kept in history. That is lots of commands!

129

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 129

You can set the number of commands to keep in the bash history. To do so, you need to modify an environment

variable called HISTSIZE (see Chapter 6).

You can recall and reuse the last command in your history list. This can save time and
typing. To recall and reuse your last command, type !! and press the Enter key:

$ ps --forest
 PID TTY TIME CMD
 2089 pts/0 00:00:00 bash
 2744 pts/0 00:00:00 _ ps
$
$!!
ps --forest
 PID TTY TIME CMD
 2089 pts/0 00:00:00 bash
 2745 pts/0 00:00:00 _ ps
$

When !! was entered, the bash shell fi rst displayed the command it was recalling from the
shell’s history. After the command was displayed, it was executed.

Command history is kept in the hidden .bash_history fi le, which is located in the user’s
home directory. Be careful here. The bash command history is stored in memory and then
written out into the history fi le when the shell is exited:

$ history
[...]
 25 ps --forest
 26 history
 27 ps --forest
 28 history
$
$ cat .bash_history
pwd
ls
history
exit
$

Notice when the history command is run, 28 commands are listed. In the example, the
listing is snipped for brevity. However, when the .bash_history fi le is displayed, only
four commands are listed, and they don’t match the history command’s list.

130

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 130

You can force the command history to be written to the .bash_history fi le before
leaving a shell session. In order to force this write, use the -a option on the history
command:

$ history -a
$
$ history
[...]
 25 ps --forest
 26 history
 27 ps --forest
 28 history
 29 ls -a
 30 cat .bash_history
 31 history -a
 32 history
$
$ cat .bash_history
[...]
ps --forest
history
ps --forest
history
ls -a
cat .bash_history
history -a

This time both listings need to be snipped because they are so long. Notice that contents
from both the history command and the .bash_history fi le match, except for the very
last command listed for the history command, because it came after the history -a
command was issued.

If you have multiple terminal sessions open, you can still append the .bash_history in each open session using the

history -a command. However, the histories are not automatically updated for your other open terminal sessions.

This is because the .bash_history fi le is read only when a terminal session is fi rst started. To force the

.bash_history fi le to be reread and a terminal session’s history to be updated, use the history -n command.

You can recall any command from the history list. Just enter an exclamation point and the
command’s number from the history list:

$ history
[...]
 13 pwd
 14 ls
 15 cd

131

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 131

 16 type pwd
 17 which pwd
 18 type echo
 19 which echo
 20 type -a pwd
 21 type -a echo
[...]
 32 history -a
 33 history
 34 cat .bash_history
 35 history
$
$!20
type -a pwd
pwd is a shell builtin
pwd is /bin/pwd
$

Command number 20 was pulled from command history. Notice that similar to executing
the last command in history, the bash shell fi rst displays the command it is recalling from
the shell’s history. After the command is displayed, it is executed.

Using bash shell command history can be a great timesaver. You can do even more with the
built-in history command. Be sure to view the bash manual pages for history, by typing
man history.

Using command aliases

The alias command is another shell built-in command. A command alias allows you to
 create an alias name for common commands (along with their parameters) to help keep your
typing to a minimum.

Most likely, your Linux distribution has already set some common command aliases for you.
To see a list of the active aliases, use the alias command with the -p parameter:

$ alias -p
[...]
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -CF'
alias la='ls -A'
alias ll='ls -alF'
alias ls='ls --color=auto'
$

Notice that, on this Ubuntu Linux distribution, an alias is used to override the standard ls
command. It automatically provides the --color parameter, indicating that the terminal
supports color mode listings.

132

Part I: The Linux Command Line

c05.indd 12/10/2014 Page 132

You can create your own aliases using the alias command:

$ alias li='ls -li'
$
$ li
total 36
529581 drwxr-xr-x. 2 Christine Christine 4096 May 19 18:17 Desktop
529585 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Documents
529582 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Downloads
529586 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Music
529587 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Pictures
529584 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Public
529583 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Templates
532891 -rwxrw-r--. 1 Christine Christine 36 May 30 07:21 test.sh
529588 drwxr-xr-x. 2 Christine Christine 4096 Apr 25 16:59 Videos
$

After you defi ne an alias value, you can use it at any time in your shell, including in shell
scripts. Be aware that because command aliases are built-in commands, an alias is valid
only for the shell process in which it is defi ned:

$ alias li='ls -li'
$
$ bash
$
$ li
bash: li: command not found
$
$ exit
exit
$

Fortunately, you can make an alias value permanent across subshells. The next chapter
covers how to do that, along with environment variables.

Summary
This chapter discussed the complicated interactive program, the GNU bash shell. It covered
understanding the shell process and its relationships, including how subshells are spawned
and their relationship to the parent shell. We also explored commands that create child
processes and commands that don’t.

The default interactive shell is normally started whenever a user logs in to a terminal. The
shell that the system starts depends upon a user ID confi guration. Typically, it is /bin/
bash. The default system shell, /bin/sh, is used for system shell scripts, such as those
needed at startup.

133

Chapter 5: Understanding the Shell

5

c05.indd 12/10/2014 Page 133

A subshell or child shell can be spawned using the bash command. They are also created
when a process list or the coproc command is used. Using subshells at the command line
can allow for creative and productive use of the CLI. Subshells can be nested, spawning
grandchild shells and great-grandchild shells. Creating a subshell is an expensive process as
a new environment for the shell must be created as well.

Finally, the chapter looked at two different types of shell commands: built-in and external
commands. External commands create a child process with a new environment, but a built-
in command does not. This causes external commands to be more expensive to use. Because
a new environment is not needed, built-in commands are more effi cient and not affected by
any environment changes.

Shells, subshells, processes, and forked processes are all affected by environment variables.
How the variables affect and can be used within these different contexts are explored in
the next chapter.

135

c06.indd 12/03/2014 Page 135

CHAP T ER

6
Using Linux Environment
Variables

IN THIS CHAPTER

Looking at environment variables

Creating your own local variables

Removing variables

Exploring default shell environment variables

Setting the PATH environment variable

Locating environment fi les

Using variable arrays

L
inux environment variables help defi ne your Linux shell experience. Many programs and
scripts use environment variables to obtain system information and store temporary data
and confi guration information. Environment variables are set in lots of places on the Linux

 system, and you should know where these places are.

This chapter walks you through the world of Linux environment variables, showing where they are,
how to use them, and even how to create your own. The chapter fi nishes off with how to use vari-
able arrays.

Exploring Environment Variables
The bash shell uses a feature called environment variables to store information about the shell
session and the working environment (thus the name environment variables). This feature also
allows you to store data in memory that can be easily accessed by any program or script running
from the shell. It is a handy way to store needed persistent data.

There are two environment variable types in the bash shell:

 ■ Global variables

 ■ Local variables

136

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 136

This section describes each type of environment variable and shows how to see and
use them.

Even though the bash shell uses specifi c environment variables that are consistent, different Linux distributions often

add their own environment variables. The environment variable examples you see in this chapter may differ slightly

from what’s available on your specifi c distribution. If you run into an environment variable not covered here, check

your Linux distribution’s documentation.

Looking at global environment variables
Global environment variables are visible from the shell session and from any spawned child
subshells. Local variables are available only in the shell that creates them. This makes
global environment variables useful in applications that create child subshells, which
require parent shell information.

The Linux system sets several global environment variables when you start your bash ses-
sion. (For more details about what variables are started at that time, see the “Locating
System Environment Variables” section later in this chapter.) The system environment vari-
ables almost always use all capital letters to differentiate them from normal user environ-
ment variables.

To view global environment variables, use the env or the printenv command:

$ printenv
HOSTNAME=server01.class.edu
SELINUX_ROLE_REQUESTED=
TERM=xterm
SHELL=/bin/bash
HISTSIZE=1000
[...]
HOME=/home/Christine
LOGNAME=Christine
[...]
G_BROKEN_FILENAMES=1
_=/usr/bin/printenv

So many global environment variables get set for the bash shell that the display had to
be snipped. Not only are many set during the login process, but how you log in can affect
which ones are set as well.

To display an individual environment variable’s value, you can use the printenv com-
mand, but not the env command:

$ printenv HOME
/home/Christine

137

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 137

6

$
$ env HOME
env: HOME: No such file or directory
$

You can also use the echo command to display a variable’s value. When referencing an
environment variable in this case, you must place a dollar sign ($) before the environment
variable name:

$ echo $HOME
/home/Christine
$

Using the dollar sign along with the variable name does more than just display its
current defi nition when used with the echo command. The dollar sign before a variable
name allows the variable to be passed as a command parameter:

$ ls $HOME
Desktop Downloads Music Public test.sh
Documents junk.dat Pictures Templates Videos
$
$ ls /home/Christine
Desktop Downloads Music Public test.sh
Documents junk.dat Pictures Templates Videos
$

As mentioned earlier, global environment variables are also available to any process’s
subshells:

$ bash
$
$ ps -f
UID PID PPID C STIME TTY TIME CMD
501 2017 2016 0 16:00 pts/0 00:00:00 -bash
501 2082 2017 0 16:08 pts/0 00:00:00 bash
501 2095 2082 0 16:08 pts/0 00:00:00 ps -f
$
$ echo $HOME
/home/Christine
$
$ exit
exit
$

In this example, after spawning a subshell using the bash command, the HOME envi-
ronment variable’s current value is shown. It is set to the exact same value, /home/
Christine, as it was in the parent shell.

138

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 138

Looking at local environment variables
Local environment variables, as their name implies, can be seen only in the local process
in which they are defi ned. Even though they are local, they are just as important as global
environment variables. In fact, the Linux system also defi nes standard local environment
variables for you by default. However, you can also defi ne your own local variables. These,
as you would assume, are called user-defi ned local variables.

Trying to see the local variables list is a little tricky at the CLI. Unfortunately, there isn’t
a command that displays only these variables. The set command displays all variables
defi ned for a specifi c process, including both local and global environment variables and
user-defi ned variables:

$ set
BASH=/bin/bash
[...]
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
BASH_CMDS=()
BASH_LINENO=()
BASH_SOURCE=()
[...]
colors=/etc/DIR_COLORS
my_variable='Hello World'
[...]
$

All global environment variables displayed using the env or printenv commands appear
in the set command’s output. The additional environment variables are the local environ-
ment and user-defi ned variables.

The differences between the commands env, printenv, and set are subtle. The set command displays both

global and local environment variables and user-defi ned variables. It also sorts the display alphabetically. The env

and printenv are different from set in that they do not sort the variables, nor do they include local environment

or local user-defi ned variables. Used in this context, env and printenv produce duplicate listings. However, the

env command has additional functionality that printenv does not have, making it the slightly more powerful

command.

Setting User-Defi ned Variables
You can set your own variables directly from the bash shell. This section shows you how to cre-
ate your own variables and reference them from an interactive shell or shell script program.

139

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 139

6

Setting local user-defi ned variables
After you start a bash shell (or spawn a shell script), you’re allowed to create local user-defi ned
variables that are visible within your shell process. You can assign either a numeric or a string
value to an environment variable by assigning the variable to a value using the equal sign:

$ echo $my_variable

$ my_variable=Hello
$
$ echo $my_variable
Hello

That was simple! Now, any time you need to reference the my_variable user-defi ned vari-
able’s value, just reference it by the name $my_variable.

If you need to assign a string value that contains spaces, you need to use a single or double
quotation mark to delineate the beginning and the end of the string:

$ my_variable=Hello World
-bash: World: command not found
$
$ my_variable="Hello World"
$
$ echo $my_variable
Hello World
$

Without the quotation marks, the bash shell assumes that the next word is another command
to process. Notice that for the local variable you defi ned, you used lowercase letters, while the
system environment variables you’ve seen so far have all used uppercase letters.

The standard bash shell convention is for all environment variables to use uppercase letters. If you are creating a

local variable for yourself and your own shell scripts, use lowercase letters. Variables are case sensitive. By keep-

ing your user-defi ned local variables lowercase, you avoid the potential disaster of redefi ning a system environment

variable.

It’s extremely important that you not use spaces between the variable name, the equal
sign, and the value. If you put any spaces in the assignment, the bash shell interprets the
value as a separate command:

$ my_variable = "Hello World"
-bash: my_variable: command not found
$

After you set a local variable, it’s available for use anywhere within your shell process.
However, if you spawn another shell, it’s not available in the child shell:

140

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 140

$ my_variable="Hello World"
$
$ bash
$
$ echo $my_variable

$ exit
exit
$
$ echo $my_variable
Hello World
$

In this example, a child shell was spawned. The user-defi ned my_variable was not avail-
able in the child shell. This is demonstrated by the blank line returned after the
echo $my_variable command. After the child shell was exited and returned to the
original shell, the local variable was still available.

Similarly, if you set a local variable in a child process, after you leave the child process, the
local variable is no longer available:

$ echo $my_child_variable

$ bash
$
$ my_child_variable="Hello Little World"
$
$ echo $my_child_variable
Hello Little World
$
$ exit
exit
$
$ echo $my_child_variable

$

The local variable set within the child shell doesn’t exist after a return to the parent shell.
You can change this behavior by turning your local user-defi ned variable into a global envi-
ronment variable.

Setting global environment variables
Global environment variables are visible from any child processes created by the parent pro-
cess that sets the variable. The method used to create a global environment variable is to
fi rst create a local variable and then export it to the global environment.

141

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 141

6

This is done by using the export command and the variable name minus the dollar sign:

$ my_variable="I am Global now"
$
$ export my_variable
$
$ echo $my_variable
I am Global now
$
$ bash
$
$ echo $my_variable
I am Global now
$
$ exit
exit
$
$ echo $my_variable
I am Global now
$

After defi ning and exporting the local variable my_variable, a child shell was started by
the bash command. The child shell was able to properly display the my_variable vari-
able’s value. The variable kept its value, because the export command made it a global
environment variable.

Changing a global environment variable within a child shell does not affect the variable’s
value in the parent shell:

$ my_variable="I am Global now"
$ export my_variable
$
$ echo $my_variable
I am Global now
$
$ bash
$
$ echo $my_variable
I am Global now
$
$ my_variable="Null"
$
$ echo $my_variable
Null
$
$ exit
exit
$

142

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 142

$ echo $my_variable
I am Global now
$

After defi ning and exporting the variable my_variable, a subshell was started by the
bash command. The subshell properly displayed the value of the my_variable global
environment variable. The variable’s value was then changed by the child shell. However,
the variable’s value was modifi ed only within the child shell and not in the parent’s shell.

A child shell cannot even use the export command to change the parent shell’s global
environment variable’s value:

$ my_variable="I am Global now"
$ export my_variable
$
$ echo $my_variable
I am Global now
$
$ bash
$
$ echo $my_variable
I am Global now
$
$ my_variable="Null"
$
$ export my_variable
$
$ echo $my_variable
Null
$
$ exit
exit
$
$ echo $my_variable
I am Global now
$

Even though the child shell redefi ned and exported the variable my_variable, the parent
shell’s my_variable variable kept its original value.

Removing Environment Variables
Of course, if you can create a new environment variable, it makes sense that you can also remove
an existing environment variable. You can do this with the unset command. When referencing
the environment variable in the unset command, remember not to use the dollar sign:

$ echo $my_variable
I am Global now

143

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 143

6

$
$ unset my_variable
$
$ echo $my_variable

$

It can be confusing to remember when to use and when not to use the dollar sign with environment variables. Just

remember this: If you are doing anything with the variable, use the dollar sign. If you are doing anything to the vari-

able, don’t use the dollar sign. The exception to this rule is using printenv to display a variable’s value.

When dealing with global environment variables, things get a little tricky. If you’re in a
child process and unset a global environment variable, it applies only to the child process.
The global environment variable is still available in the parent process:

$ my_variable="I am Global now"
$
$ export my_variable
$
$ echo $my_variable
I am Global now
$
$ bash
$
$ echo $my_variable
I am Global now
$
$ unset my_variable
$
$ echo $my_variable

$ exit
exit
$
$ echo $my_variable
I am Global now
$

Just as with modifying a variable, you cannot unset it in a child shell and have the vari-
able be unset in the parent’s shell.

Uncovering Default Shell Environment Variables
The bash shell uses specifi c environment variables by default to defi ne the system envi-
ronment. You can always count on these variables being set or available to be set on your

144

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 144

Linux system. Because the bash shell is a derivative of the original Unix Bourne shell, it
also includes environment variables originally defi ned in that shell.

Table 6-1 shows the environment variables that the bash shell provides that are compatible
with the original Unix Bourne shell.

TABLE 6-1 The bash Shell Bourne Variables

Variable Description

CDPATH A colon-separated list of directories used as a search path for the cd
command

HOME The current user’s home directory

IFS A list of characters that separate fi elds used by the shell to split text strings

MAIL The fi lename for the current user’s mailbox (The bash shell checks this fi le for
new mail.)

MAILPATH A colon-separated list of multiple fi lenames for the current user’s mailbox (The
bash shell checks each fi le in this list for new mail.)

OPTARG The value of the last option argument processed by the getopt command

OPTIND The index value of the last option argument processed by the getopt
command

PATH A colon-separated list of directories where the shell looks for commands

PS1 The primary shell command line interface prompt string

PS2 The secondary shell command line interface prompt string

Besides the default Bourne environment variables, the bash shell also provides a few vari-
ables of its own, as shown in Table 6-2.

TABLE 6-2 The bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the bash shell

BASH_ALIASES An associative array of currently set aliases

BASH_ARGC A variable array that contains the number of parameters being
passed to a subroutine or shell script

BASH_ARCV A variable array that contains the parameters being passed to a
subroutine or shell script

BASH_CMDS An associative array of locations of commands the shell has
executed

145

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 145

6

BASH_COMMAND The shell command currently being or about to be executed

BASH_ENV When set, each bash script attempts to execute a startup fi le
defi ned by this variable before running.

BASH_EXECUTION_STRING The command(s) passed using the bash -c option

BASH_LINENO A variable array containing the source code line number of the
currently executing shell function

BASH_REMATCH A read-only variable array containing patterns and their sub-
patterns for positive matches using the regular expression
comparison operator, =~

BASH_SOURCE A variable array containing the source code fi lename of the
currently executing shell function

BASH_SUBSHELL The current nesting level of a subshell environment (The initial
value is 0.)

BASH_VERSINFO A variable array that contains the individual major and minor
version numbers of the current instance of the bash shell

BASH_VERSION The version number of the current instance of the bash shell

BASH_XTRACEFD If set to a valid fi le descriptor (0,1,2), trace output generated from
the 'set -x' debugging option can be redirected. This is often
used to separate trace output into a fi le.

BASHOPTS A list of bash shell options that are currently enabled

BASHPID Process ID of the current bash process

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell

COMP_CWORD An index into the variable COMP_WORDS, which contains the
current cursor position

COMP_LINE The current command line

COMP_POINT The index of the current cursor position relative to the beginning
of the current command

COMP_KEY The fi nal key used to invoke the current completion of a shell
function

COMP_TYPE An integer value representing the type of completion attempted
that caused a completion shell function to be invoked

COMP_WORDBREAKS The Readline library word separator characters for performing
word completion

COMP_WORDS An array variable that contains the individual words on the
current command line

COMPREPLY An array variable that contains the possible completion codes
generated by a shell function

Continues

146

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 146

Variable Description

COPROC An array variable that holds an unnamed coprocess’ I/O fi le
descriptors

DIRSTACK An array variable that contains the current contents of the direc-
tory stack

EMACS Indicates the emacs shell buffer is executing and line editing is
disabled, when set to 't'

ENV When set, executes the startup fi le defi ned before a bash shell
script runs (It is used only when the bash shell has been invoked
in POSIX mode.)

EUID The numeric effective user ID of the current user

FCEDIT The default editor used by the fc command

FIGNORE A colon-separated list of suffi xes to ignore when performing fi le
name completion

FUNCNAME The name of the currently executing shell function

FUNCNEST Sets the maximum allowed function nesting level, when set to a
number greater than zero (If it is exceeded, the current com-
mand aborts.)

GLOBIGNORE A colon-separated list of patterns defi ning the set of fi lenames
to be ignored by fi le name expansion

GROUPS A variable array containing the list of groups of which the current
user is a member

histchars Up to three characters, which control history expansion

HISTCMD The history number of the current command

HISTCONTROL Controls what commands are entered in the shell history list

HISTFILE The name of the fi le in which to save the shell history list (.bash_
history by default)

HISTFILESIZE The maximum number of lines to save in the history fi le

HISTTIMEFORMAT Used as a formatting string to print each command’s timestamp
in bash history, if set and not null

HISTIGNORE A colon-separated list of patterns used to decide which com-
mands are ignored for the history fi le

HISTSIZE The maximum number of commands stored in the history fi le

HOSTFILE Contains the name of the fi le that should be read when the shell
needs to complete a hostname

HOSTNAME The name of the current host

HOSTTYPE A string describing the machine the bash shell is running on

TABLE 6-2 (continued)

147

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 147

6

IGNOREEOF The number of consecutive EOF characters the shell must
receive before exiting (If this value doesn’t exist, the default is 1.)

INPUTRC The name of the Readline initialization fi le (The default is
.inputrc.)

LANG The locale category for the shell

LC_ALL Overrides the LANG variable, defi ning a locale category

LC_COLLATE Sets the collation order used when sorting string values

LC_CTYPE Determines the interpretation of characters used in fi lename
expansion and pattern matching

LC_MESSAGES Determines the locale setting used when interpreting double-
quoted strings preceded by a dollar sign

LC_NUMERIC Determines the locale setting used when formatting numbers

LINENO The line number in a script currently executing

LINES Defi nes the number of lines available on the terminal

MACHTYPE A string defi ning the system type in cpu-company-system format

MAPFILE An array variable that holds read-in text from the mapfile com-
mand when no array variable name is given

MAILCHECK How often (in seconds) the shell should check for new mail (The
default is 60.)

OLDPWD The previous working directory used in the shell

OPTERR If set to 1, the bash shell displays errors generated by the
getopts command.

OSTYPE A string defi ning the operating system the shell is running on

PIPESTATUS A variable array containing a list of exit status values from the
processes in the foreground process

POSIXLY_CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell’s parent process

PROMPT_COMMAND If set, the command to execute before displaying the primary
prompt

PROMPT_DIRTRIM An integer used to indicate the number of trailing directory
names to display when using the \w and \W prompt string
escapes (The directory names removed are replaced with one
set of ellipses.)

PS3 The prompt to use for the select command

PS4 The prompt displayed before the command line is echoed if the
bash -x parameter is used

PWD The current working directory

Continues

148

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 148

Variable Description

RANDOM Returns a random number between 0 and 32767 (Assigning a
value to this variable seeds the pseudo-random number
generator.)

READLINE_LINE Readline buffer contents when using bind -x command

READLINE_POINT Readline buffer content insertion point’s current position when
using bind -x command

REPLY The default variable for the read command

SECONDS The number of seconds since the shell was started (Assigning a
value resets the timer to the value.)

SHELL The full pathname to the bash shell

SHELLOPTS A colon-separated list of enabled bash shell options

SHLVL Indicates the shell level, incremented by one each time a new
bash shell is started

TIMEFORMAT A format specifying how the shell displays time values

TMOUT The value of how long (in seconds) the select and read com-
mands should wait for input (The default of zero indicates to wait
indefi nitely.)

TMPDIR Directory name where the bash shell creates temporary fi les for
its use

UID The numeric real user ID of the current user

You may notice that not all default environment variables are shown when the set com-
mand is used. When not in use, the default environment variables are not all required to
contain a value.

Setting the PATH Environment Variable
When you enter an external command (see Chapter 5) in the shell command line interface
(CLI), the shell must search the system to fi nd the program. The PATH environment vari-
able defi nes the directories it searches looking for commands and programs. On this Ubuntu
Linux system, the PATH environment variable looks like this:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games
$

This shows that there are eight directories where the shell looks for commands and
programs. The directories in the PATH are separated by colons.

TABLE 6-2 (continued)

149

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 149

6

If a command’s or program’s location is not included in the PATH variable, the shell cannot
fi nd it without an absolute directory reference. If the shell cannot fi nd the command or
program, it produces an error message:

$ myprog
-bash: myprog: command not found
$

The problem is that often applications place their executable programs in directories that
aren’t in the PATH environment variable. The trick is ensuring that your PATH environment
variable includes all the directories where your applications reside.

You can add new search directories to the existing PATH environment variable without
having to rebuild it from scratch. The individual directories listed in the PATH are sepa-
rated by colons. All you need to do is reference the original PATH value and add any new
directories to the string. This looks something like this:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games
$
$ PATH=$PATH:/home/christine/Scripts
$
$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
 games:/usr/local/games:/home/christine/Scripts
$
$ myprog
The factorial of 5 is 120.
$

By adding the directory to the PATH environment variable, you can now execute your
program from anywhere in the virtual directory structure:

$ cd /etc
$
$ myprog
The factorial of 5 is 120
$

If you want your program’s location to be available to subshells, be sure to export your modifi ed PATH environment

variable.

A common trick for programmers is to include the single dot symbol in their PATH environment
variable. The single dot symbol represents the current directory (see Chapter 3):

$ PATH=$PATH:.
$

150

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 150

$ cd /home/christine/Old_Scripts
$
$ myprog2
The factorial of 6 is 720
$

Changes to the PATH variable last only until you exit the system or the system reboots.
The changes are not persistent. In the next section, you see how you can make changes to
environment variables permanent.

Locating System Environment Variables
The Linux system uses environment variables for many purposes. You know now how to
modify system environment variables and create your own variables. The trick is in how
these environment variables are made persistent.

When you start a bash shell by logging in to the Linux system, by default bash checks
several fi les for commands. These fi les are called startup files or environment files. The
startup fi les that bash processes depend on the method you use to start the bash shell.
You can start a bash shell in three ways:

 ■ As a default login shell at login time

 ■ As an interactive shell that is started by spawning a subshell

 ■ As a non-interactive shell to run a script

The following sections describe the startup fi les the bash shell executes in each of these
startup methods.

Understanding the login shell process
When you log in to the Linux system, the bash shell starts as a login shell. The login shell
typically looks for fi ve different startup fi les to process commands from:

 ■ /etc/profile

 ■ $HOME/.bash_profile

 ■ $HOME/.bashrc

 ■ $HOME/.bash_login

 ■ $HOME/.profile

The /etc/profile fi le is the main default startup fi le for the bash shell on the system.
All users on the system execute this startup fi le when they log in.

151

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 151

6

Be aware that some Linux distributions use Pluggable Authentication Modules (PAM). In this case, before the bash

shell is started, PAM fi les are processed, including ones that may contain environment variables. PAM fi le examples

include the /etc/environment fi le and the $HOME/.pam_environment fi le. Find more information about

PAM at http://linux-pam.org.

The other four startup fi les are specifi c for each user and can be customized for an indi-
vidual user’s requirements. Let’s look closer at these fi les.

Viewing the /etc/profile file

The /etc/profile fi le is the main default startup fi le for the bash shell. Whenever you
log in to the Linux system, bash executes the commands in the /etc/profile startup fi le
fi rst. Different Linux distributions place different commands in this fi le. On this Ubuntu
Linux system, the fi le looks like this:

$ cat /etc/profile
/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if ["$PS1"]; then
 if ["$BASH"] && ["$BASH" != "/bin/sh"]; then
 # The file bash.bashrc already sets the default PS1.
 # PS1='\h:\w\$ '
 if [-f /etc/bash.bashrc]; then
 . /etc/bash.bashrc
 fi
 else
 if ["`id -u`" -eq 0]; then
 PS1='# '
 else
 PS1='$ '
 fi
 fi
fi

The default umask is now handled by pam_umask.
See pam_umask(8) and /etc/login.defs.

if [-d /etc/profile.d]; then
 for i in /etc/profile.d/*.sh; do
 if [-r $i]; then
 . $i
 fi
 done
 unset i
fi
$

http://linux-pam.org

152

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 152

Most of the commands and syntax you see in this fi le are covered in more detail in Chapter
12 and beyond. Each distribution’s /etc/profile fi le has different settings and com-
mands. For example, notice that a fi le is mentioned in this Ubuntu distribution’s /etc/
profile fi le above, called /etc/bash.bashrc. It contains system environment variables.

However, in this CentOS distribution’s /etc/profile fi le listed below, no /etc/bash
.bashrc fi le is called. Also note that it sets and exports some system environment
variables within itself:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, to
prevent the need for merging in future updates.

pathmunge () {
 case ":${PATH}:" in
 :"$1":)
 ;;
 *)
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 esac
}

if [-x /usr/bin/id]; then
 if [-z "$EUID"]; then
 # ksh workaround
 EUID=`id -u`
 UID=`id -ru`
 fi
 USER="`id -un`"
 LOGNAME=$USER
 MAIL="/var/spool/mail/$USER"
fi

Path manipulation
if ["$EUID" = "0"]; then
 pathmunge /sbin

153

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 153

6

 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
else
 pathmunge /usr/local/sbin after
 pathmunge /usr/sbin after
 pathmunge /sbin after
fi

HOSTNAME=`/bin/hostname 2>/dev/null`
HISTSIZE=1000
if ["$HISTCONTROL" = "ignorespace"] ; then
 export HISTCONTROL=ignoreboth
else
 export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

By default, we want umask to get set. This sets it for login shell
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["`id -gn`" = "`id -un`"]; then
 umask 002
else
 umask 022
fi

for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
 if ["${-#*i}" != "$-"]; then
 . "$i"
 else
 . "$i" >/dev/null 2>&1
 fi
 fi
done

unset i
unset -f pathmunge
$

Both distributions’ /etc/profile fi les use a certain feature. It is a for statement that
iterates through any fi les located in the /etc/profile.d directory. (for statements are
discussed in detail in Chapter 13.) This provides a place for the Linux system to place
application-specifi c startup fi les that is executed by the shell when you log in. On this
Ubuntu Linux system, the following fi les are in the profile.d directory:

154

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 154

$ ls -l /etc/profile.d
total 12
-rw-r--r-- 1 root root 40 Apr 15 06:26 appmenu-qt5.sh
-rw-r--r-- 1 root root 663 Apr 7 10:10 bash_completion.sh
-rw-r--r-- 1 root root 1947 Nov 22 2013 vte.sh
$

You can see that this CentOs system has quite a few more fi les in /etc/profile.d:

$ ls -l /etc/profile.d
total 80
-rw-r--r--. 1 root root 1127 Mar 5 07:17 colorls.csh
-rw-r--r--. 1 root root 1143 Mar 5 07:17 colorls.sh
-rw-r--r--. 1 root root 92 Nov 22 2013 cvs.csh
-rw-r--r--. 1 root root 78 Nov 22 2013 cvs.sh
-rw-r--r--. 1 root root 192 Feb 24 09:24 glib2.csh
-rw-r--r--. 1 root root 192 Feb 24 09:24 glib2.sh
-rw-r--r--. 1 root root 58 Nov 22 2013 gnome-ssh-askpass.csh
-rw-r--r--. 1 root root 70 Nov 22 2013 gnome-ssh-askpass.sh
-rwxr-xr-x. 1 root root 373 Sep 23 2009 kde.csh
-rwxr-xr-x. 1 root root 288 Sep 23 2009 kde.sh
-rw-r--r--. 1 root root 1741 Feb 20 05:44 lang.csh
-rw-r--r--. 1 root root 2706 Feb 20 05:44 lang.sh
-rw-r--r--. 1 root root 122 Feb 7 2007 less.csh
-rw-r--r--. 1 root root 108 Feb 7 2007 less.sh
-rw-r--r--. 1 root root 976 Sep 23 2011 qt.csh
-rw-r--r--. 1 root root 912 Sep 23 2011 qt.sh
-rw-r--r--. 1 root root 2142 Mar 13 15:37 udisks-bash-completion.sh
-rw-r--r--. 1 root root 97 Apr 5 2012 vim.csh
-rw-r--r--. 1 root root 269 Apr 5 2012 vim.sh
-rw-r--r--. 1 root root 169 May 20 2009 which2.sh
$

Notice that several fi les are related to specifi c applications on the system. Most applications
create two startup fi les — one for the bash shell (using the .sh extension) and one for the
c shell (using the .csh extension).

The lang.csh and lang.sh fi les attempt to determine the default language character set
used on the system and set the LANG environment variable appropriately.

Viewing the $HOME startup files

The remaining startup fi les are all used for the same function — to provide a user-specifi c
startup fi le for defi ning user-specifi c environment variables. Most Linux distributions use
only one or two of these four startup fi les:

 ■ $HOME/.bash_profile

 ■ $HOME/.bashrc

155

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 155

6

 ■ $HOME/.bash_login

 ■ $HOME/.profile

Notice that all four fi les start with a dot, making them hidden fi les (they don’t appear in a
normal ls command listing). Because they are in the user’s HOME directory, each user can
edit the fi les and add his or her own environment variables that are active for every bash
shell session they start.

Environment fi les are one area where Linux distributions vary greatly. Not every $HOME fi le listed in this section

exists for every user. For example, some users may have only the $HOME/.bash_profile fi le. This is normal.

The fi rst fi le found in the following ordered list is run, and the rest are ignored:

$HOME/.bash_profile
$HOME/.bash_login
$HOME/.profile

Notice that $HOME/.bashrc is not in this list. This is because it is typically run from one
of the other fi les.

Remember that $HOME represents a user’s home directory. Also, the tilde (~) is used to represent a user’s home

directory.

This CentOS Linux system contains the following .bash_profile fi le:

$ cat $HOME/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH
$

The .bash_profile startup fi le fi rst checks to see if the startup fi le, .bashrc, is present
in the HOME directory. If it’s there, the startup fi le executes the commands in it.

156

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 156

Understanding the interactive shell process
If you start a bash shell without logging into a system (if you just type bash at a CLI
prompt, for example), you start what’s called an interactive shell. The interactive shell doesn’t
act like the login shell, but it still provides a CLI prompt for you to enter commands.

If bash is started as an interactive shell, it doesn’t process the /etc/profile fi le. Instead,
it only checks for the .bashrc fi le in the user’s HOME directory.

On this Linux CentOS distribution, this fi le looks like this:

$ cat .bashrc

.bashrc
Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions
$

The .bashrc fi le does two things. First, it checks for a common bashrc fi le in the /etc
directory. Second, it provides a place for the user to enter personal command aliases
(discussed in Chapter 5) and private script functions (described in Chapter 17).

Understanding the non-interactive shell process
The last type of shell is a non-interactive subshell. This is the shell where the
system can start to execute a shell script. This is different in that there isn’t a CLI prompt
to worry about. However, you may want to run specifi c startup commands each time you
start a script on your system.

Scripts can be executed in different ways. Only some execution methods start a subshell. You learn about the differ-

ent shell execution methods in Chapter 11.

To accommodate that situation, the bash shell provides the BASH_ENV environment vari-
able. When the shell starts a non-interactive subshell process, it checks this environment
variable for the startup fi le name to execute. If one is present, the shell executes the fi le’s
commands, which typically include variables set for the shell scripts.

On this CentOS Linux distribution, this environment value is not set by default. When a
variable is not set, the printenv command simply returns the CLI prompt:

$ printenv BASH_ENV
$

157

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 157

6

On this Ubuntu distribution, the BASH_ENV variable isn’t set either. Remember that, when
a variable is not set, the echo command displays a blank line and returns the CLI prompt:

$ echo $BASH_ENV

$

So if the BASH_ENV variable isn’t set, how do the shell scripts get their environment vari-
ables? Remember that some shell script execution methods start a subshell, also called a
child shell (see Chapter 5). A child shell inherits its parent shell’s exported variables.

For example, if the parent shell was a login shell and had variables set and exported in the
/etc/profile fi le, /etc/profile.d/*.sh fi les, and the $HOME/.bashrc fi le, the
child shell for the script inherits these variables.

However, remember that any variables set but not exported by the parent shell are local
variables. Local variables are not inherited by a subshell.

For scripts that do not start a subshell, the variables are already available in the current
shell. Thus, even if BASH_ENV is not set, both the current shell’s local and global variables
are present to be used.

Making environment variables persistent
Now that you know you way around the various shell process types and their various
environment fi les, locating the permanent environment variables is much easier. You can
also set your own permanent global or local variables using these fi les.

For global environment variables (those variables needed by all the users on a Linux
system), it may be tempting to put new or modifi ed variable settings in the /etc/
profile, but this is a bad idea. The fi le could be changed when your distribution is
upgraded, and you would lose all the customized variable settings.

It is a better idea to create a fi le ending with .sh in the /etc/profile.d directory. In
that fi le, place all your new or modifi ed global environment variable settings.

On most distributions, the best place to store an individual user’s persistent bash shell
variables is in the $HOME/.bashrc fi le. This is true for all shell process types. However, if
the BASH_ENV variable is set, keep in mind that unless it points to $HOME/.bashrc, you
may need to store a user’s variables for non-interactive shell types elsewhere.

Keep in mind that user environment variables for graphical interface elements, such as the GUI client, may need to

be set in different confi guration fi les than where bash shell environment variables are set.

Recall back in Chapter 5 that command alias settings are also not persistent. You can also store
your personal alias settings in the $HOME/.bashrc startup fi le to make them permanent.

158

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 158

Learning about Variable Arrays
A really cool feature of environment variables is that they can be used as arrays. An array
is a variable that can hold multiple values. Values can be referenced either individually or
as a whole for the entire array.

To set multiple values for an environment variable, just list them in parentheses, with
values separated by spaces:

$ mytest=(one two three four five)
$

Not much excitement there. If you try to display the array as a normal environment
variable, you’ll be disappointed:

$ echo $mytest
one
$

Only the fi rst value in the array appears. To reference an individual array element, you
must use a numerical index value, which represents its place in the array. The numeric
value is enclosed in square brackets:

$ echo ${mytest[2]}
three
$

Environment variable arrays start with an index value of zero. This can be confusing.

To display an entire array variable, you use the asterisk wildcard character as the index
value:

$ echo ${mytest[*]}
one two three four five
$

You can also change the value of an individual index position:

$ mytest[2]=seven
$
$ echo ${mytest[*]}
one two seven four five
$

You can even use the unset command to remove an individual value within the array, but
be careful, because this gets tricky. Watch this example:

159

Chapter 6: Using Linux Environment Variables

c06.indd 12/03/2014 Page 159

6

$ unset mytest[2]
$
$ echo ${mytest[*]}
one two four five
$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
four
$

This example uses the unset command to remove the value at index value 2. When you
display the array, it appears that the other index values just dropped down one. However, if
you specifi cally display the data at index value 2, you see that that location is empty.

Finally, you can remove the entire array just by using the array name in the unset
command:

$ unset mytest
$
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they’re often not used in shell script
programming. They’re not very portable to other shell environments, which is a downside if
you do lots of shell programming for different shells. Some bash system environment vari-
ables use arrays (such as BASH_VERSINFO), but overall you probably won’t run into them
very often.

Summary
This chapter examined the world of Linux environment variables. Global environment vari-
ables can be accessed from any child shell spawned by the parent shell in which they’re
defi ned. Local environment variables can be accessed only from the process in which
they’re defi ned.

The Linux system uses both global and local environment variables to store information
about the system environment. You can access this information from the shell command
line interface, as well as within shell scripts. The bash shell uses the system environment
variables defi ned in the original Unix Bourne shell, as well as lots of new environment
variables. The PATH environment variable defi nes the search pattern the bash shell
takes to fi nd an executable command. You can modify the PATH environment variable
to add your own directories, or even the current directory symbol, to make running your
programs easier.

160

Part I: The Linux Command Line

c06.indd 12/03/2014 Page 160

You can also create your own global and local environment variables for your own use.
After you create an environment variable, it’s accessible for the entire duration of your
shell session.

The bash shell executes several startup fi les when it starts up. These startup fi les can con-
tain environment variable defi nitions to set standard environment variables for each bash
session. When you log in to the Linux system, the bash shell accesses the /etc/profile
startup fi le and three local startup fi les for each user, $HOME/.bash_profile, $HOME/
.bash_login, and $HOME/.profile . Users can customize these fi les to include environ-
ment variables and startup scripts for their own use.

Finally, this chapter discussed the use of environment variable arrays. These environment
variables can contain multiple values in a single variable. You can access the values either
individually by referencing an index value or as a whole by referencing the entire environ-
ment variable array name.

The next chapter dives into the world of Linux fi le permissions. This is possibly the most
diffi cult topic for novice Linux users. However, to write good shell scripts, you need to
understand how fi le permissions work and be able to use them on your Linux system.

161

c07.indd 12/16/2014 Page 161

CHAP T ER

7
Understanding Linux File
Permissions

IN THIS CHAPTER

Understanding Linux security

Decoding the permissions

Working with Linux groups

N
o system is complete without some form of security. There must be a mechanism available to
protect fi les from unauthorized viewing or modifi cation. The Linux system follows the Unix
method of fi le permissions, allowing individual users and groups access to fi les based on a

set of security settings for each fi le and directory. This chapter discusses how to use the Linux fi le
security system to protect data when necessary and share data when desired.

Linux Security
The core of the Linux security system is the user account. Each individual who accesses a Linux
system should have a unique user account assigned. The users’ permissions to objects on the system
depend on the user account they log in with.

User permissions are tracked using a user ID (often called a UID), which is assigned to an account
when it’s created. The UID is a numerical value, unique for each user. However, you don’t log in to
a Linux system using your UID. Instead, you use a login name. The login name is an alphanumeric
text string of eight characters or fewer that the user uses to log in to the system (along with an
associated password).

The Linux system uses special fi les and utilities to track and manage user accounts on the system.
Before we can discuss fi le permissions, we need to discuss how Linux handles user accounts. This
section describes the fi les and utilities required for user accounts so that you can understand how
to use them when working with fi le permissions.

162

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 162

The /etc/passwd fi le
The Linux system uses a special fi le to match the login name to a corresponding UID
value. This fi le is the /etc/passwd fi le. The /etc/passwd fi le contains several pieces of
information about the user. Here’s what a typical /etc/passwd fi le looks like on a Linux
system:

 $ cat /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 news:x:9:13:news:/etc/news:
 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 games:x:12:100:games:/usr/games:/sbin/nologin
 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
 nobody:x:99:99:Nobody:/:/sbin/nologin
 rpm:x:37:37::/var/lib/rpm:/sbin/nologin
 vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
 mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
 smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
 apache:x:48:48:Apache:/var/www:/sbin/nologin
 rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
 ntp:x:38:38::/etc/ntp:/sbin/nologin
 nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
 tcpdump:x:72:72::/:/sbin/nologin
 dbus:x:81:81:System message bus:/:/sbin/nologin
 avahi:x:70:70:Avahi daemon:/:/sbin/nologin
 hsqldb:x:96:96::/var/lib/hsqldb:/sbin/nologin
 sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
 rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
 nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
 haldaemon:x:68:68:HAL daemon:/:/sbin/nologin
 xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
 gdm:x:42:42::/var/gdm:/sbin/nologin
 rich:x:500:500:Rich Blum:/home/rich:/bin/bash
 mama:x:501:501:Mama:/home/mama:/bin/bash
 katie:x:502:502:katie:/home/katie:/bin/bash
 jessica:x:503:503:Jessica:/home/jessica:/bin/bash
 mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
 $

news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
news:x:9:13:news:/etc/uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

163

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 163

7

7

The root user account is the administrator for the Linux system and is always assigned
UID 0. As you can see, the Linux system creates lots of user accounts for various functions
that aren’t actual users. These are called system accounts. A system account is a special
account that services running on the system use to gain access to resources on the system.
All services that run in background mode need to be logged in to the Linux system under a
system user account.

Before security became a big issue, these services often just logged in using the root user
account. Unfortunately, if an unauthorized person broke into one of these services, he
instantly gained access to the system as the root user. To prevent this, now just about
every service that runs in background on a Linux server has its own user account to log in
with. This way, if a troublemaker compromises a service, he still can’t necessarily get access
to the whole system.

Linux reserves UIDs below 500 for system accounts. Some services even require specifi c
UIDs to work properly. When you create accounts for normal users, most Linux systems
assign the fi rst available UID starting at 500 (although this is not necessarily true for all
Linux distributions).

You probably noticed that the /etc/passwd fi le contains much more than just the login
name and UID for the user. The fi elds of the /etc/passwd fi le contain the following
information:

 ■ The login username

 ■ The password for the user

 ■ The numerical UID of the user account

 ■ The numerical group ID (GID) of the user account

 ■ A text description of the user account (called the comment fi eld)

 ■ The location of the HOME directory for the user

 ■ The default shell for the user

The password fi eld in the /etc/passwd fi le is set to an x. This doesn’t mean that all the
user accounts have the same password. In the old days of Linux, the /etc/passwd fi le
contained an encrypted version of the user’s password. However, because lots of programs
need to access the /etc/passwd fi le for user information, this became a security prob-
lem. With the advent of software that could easily decrypt encrypted passwords, the bad
guys had a fi eld day trying to break user passwords stored in the /etc/passwd fi le. Linux
developers needed to rethink that policy.

Now, most Linux systems hold user passwords in a separate fi le (called the shadow fi le,
located at /etc/shadow). Only special programs (such as the login program) are allowed
access to this fi le.

164

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 164

The /etc/passwd fi le is a standard text fi le. You can use any text editor to manually
perform user management functions (such as adding, modifying, or removing user
accounts) directly in the /etc/passwd fi le. However, this is an extremely dangerous
practice. If the /etc/passwd fi le becomes corrupt, the system can’t read it, and it
prevents anyone (even the root user) from logging in. Instead, it’s safer to use the standard
Linux user management utilities to perform all user management functions.

The /etc/shadow fi le
The /etc/shadow fi le provides more control over how the Linux system manages pass-
words. Only the root user has access to the /etc/shadow fi le, making it more secure than
the /etc/passwd fi le.

The /etc/shadow fi le contains one record for each user account on the system. A record
looks like this:

 rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

There are nine fi elds in each /etc/shadow fi le record:

 ■ The login name corresponding to the login name in the /etc/passwd fi le

 ■ The encrypted password

 ■ The number of days since January 1, 1970, that the password was last changed

 ■ The minimum number of days before the password can be changed

 ■ The number of days before the password must be changed

 ■ The number of days before password expiration that the user is warned to change
the password

 ■ The number of days after a password expires before the account will be disabled

 ■ The date (stored as the number of days since January 1, 1970) since the user
account was disabled

 ■ A fi eld reserved for future use

Using the shadow password system, the Linux system has much fi ner control over user
passwords. It can control how often a user must change his or her password and when to
disable the account if the password hasn’t been changed.

Adding a new user
The primary tool used to add new users to your Linux system is useradd. This command
provides an easy way to create a new user account and set up the user’s HOME directory
structure all at once. The useradd command uses a combination of system default values
and command line parameters to defi ne a user account. The system defaults are set in the

165

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 165

7

/etc/default/useradd fi le. To see the system default values used on your Linux distri-
bution, enter the useradd command with the -D parameter:

 # /usr/sbin/useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/bash
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #

Some Linux distributions place the Linux user and group utilities in the /usr/sbin directory, which may not be in

your PATH environment variable. If that’s the case in your Linux distribution, either add the directory to your PATH or

use the absolute fi le path to run it.

The -D parameter shows what defaults the useradd command uses if you don’t specify
them in the command line when creating a new user account. This example shows the
following default values:

 ■ The new user is added to a common group with group ID 100.

 ■ The new user has a HOME account created in the directory /home/loginname.

 ■ The account can’t be disabled when the password expires.

 ■ The new account can’t be set to expire at a set date.

 ■ The new account uses the bash shell as the default shell.

 ■ The system copies the contents of the /etc/skel directory to the user’s HOME
directory.

 ■ The system creates a fi le in the mail directory for the user account to receive mail.

The penultimate value is interesting. The useradd command allows an administrator to
create a default HOME directory confi guration and then uses that as a template to create the
new user’s HOME directory. This allows you to place default fi les for the system in every new
user’s HOME directory automatically. In the Ubuntu Linux system, the /etc/skel directory
has the following fi les:

$ ls -al /etc/skel
total 32
drwxr-xr-x 2 root root 4096 2010-04-29 08:26 .
drwxr-xr-x 135 root root 12288 2010-09-23 18:49 ..
-rw-r--r-- 1 root root 220 2010-04-18 21:51 .bash_logout

166

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 166

-rw-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 root root 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 root root 675 2010-04-18 21:51 .profile
$

You should recognize these fi les from Chapter 6. These are the standard startup fi les for
the bash shell environment. The system automatically copies these default fi les into every
user’s HOME directory you create.

You can test this by creating a new user account using the default system parameters and
then looking at the HOME directory for the new user:

useradd -m test
ls -al /home/test
total 24
drwxr-xr-x 2 test test 4096 2010-09-23 19:01 .
drwxr-xr-x 4 root root 4096 2010-09-23 19:01 ..
-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 test test 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 test test 675 2010-04-18 21:51 .profile
#

By default, the useradd command doesn’t create a HOME directory, but the –m command
line option tells it to create the HOME directory. As you can see in the example, the
useradd command created the new HOME directory, using the fi les contained in the /etc/
skel directory.

To run the user account administration commands in this chapter, you either need to be logged in as the special root

user account or use the sudo command to run the commands as the root user account.

If you want to override a default value or behavior when creating a new user, you can do
that with command line parameters. These are shown in Table 7-1.

TABLE 7-1 The useradd Command Line Parameters

Parameter Description

-c comment Adds text to the new user’s comment fi eld

-d home_dir Specifi es a different name for the HOME directory other than the
login name

167

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 167

7

-e expire_date Specifi es a date, in YYYY-MM-DD format, when the account will
expire

-f inactive_days Specifi es the number of days after a password expires when the
account will be disabled. A value of 0 disables the account as soon
as the password expires; a value of -1 disables this feature.

-g initial_group Specifi es the group name or GID of the user’s login group

-G group . . . Specifi es one or more supplementary groups the user belongs to

-k Copies the /etc/skel directory contents into the user’s HOME direc-
tory (must use -m as well)

-m Creates the user’s HOME directory

-M Doesn’t create a user’s HOME directory (used if the default setting is
to create one)

-n Creates a new group using the same name as the user’s login name

-r Creates a system account

-p passwd Specifi es a default password for the user account

-s shell Specifi es the default login shell

-u uid Specifi es a unique UID for the account

As you can see, you can override all the system default values when creating a new user
account just by using command line parameters. However, if you fi nd yourself having to
override a value all the time, it’s easier to just change the system default value.

You can change the system default new user values by using the -D parameter, along with
a parameter representing the value you need to change. These parameters are shown in
Table 7-2.

TABLE 7-2 The useradd Change Default Values Parameters

Parameter Description

-b default_home Changes the location where users’ HOME directories are created

-e expiration_date Changes the expiration date on new accounts

-f inactive Changes the number of days after a password has expired
before the account is disabled

-g group Changes the default group name or GID used

-s shell Changes the default login shell

168

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 168

Changing the default values is a snap:

 # useradd -D -s /bin/tsch
 # useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/tsch
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #

Now, the useradd command uses the tsch shell as the default login shell for all new user
accounts you create.

Removing a user
If you want to remove a user from the system, the userdel command is what you need. By
default, the userdel command removes only the user information from the /etc/passwd
fi le. It doesn’t remove any fi les the account owns on the system.

If you use the -r parameter, userdel removes the user’s HOME directory, along with the
user’s mail directory. However, other fi les owned by the deleted user account may still be
on the system. This can be a problem in some environments.

Here’s an example of using the userdel command to remove an existing user account:

 # /usr/sbin/userdel -r test
 # ls -al /home/test
 ls: cannot access /home/test: No such file or directory
 #

After using the -r parameter, the user’s old /home/test directory no longer exists.

Be careful when using the -r parameter in an environment with lots of users. You never know if a user had important

fi les stored in his or her HOME directory that are used by someone else or another program. Always check before

removing a user’s HOME directory!

Modifying a user
Linux provides a few different utilities for modifying the information for existing user
accounts. Table 7-3 shows these utilities.

169

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 169

7

TABLE 7-3 User Account Modifi cation Utilities

Command Description

usermod Edits user account fi elds, as well as specifying primary and secondary group
membership

passwd Changes the password for an existing user

chpasswd Reads a fi le of login name and password pairs, and updates the passwords

chage Changes the password’s expiration date

chfn Changes the user account’s comment information

chsh Changes the user account’s default shell

Each of these utilities provides a specifi c function for changing information about user
accounts. The following sections describe each of these utilities.

usermod

The usermod command is the most robust of the user account modifi cation utilities. It
provides options for changing most of the fi elds in the /etc/passwd fi le. To do that, you
just need to use the command line parameter that corresponds to the value you want to
change. The parameters are mostly the same as the useradd parameters (such as -c to
change the comment fi eld, -e to change the expiration date, and -g to change the default
login group). However, a couple of additional parameters might come in handy:

 ■ -l changes the login name of the user account.

 ■ -L locks the account so the user can’t log in.

 ■ -p changes the password for the account.

 ■ -U unlocks the account so the user can log in.

The -L parameter is especially handy. Use this to lock an account so a user can’t log in
without having to remove the account and the user’s data. To return the account to normal,
just use the -U parameter.

passwd and chpasswd

A quick way to change just the password for a user is the passwd command:

 # passwd test
 Changing password for user test.
 New UNIX password:

170

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 170

 Retype new UNIX password:
 passwd: all authentication tokens updated successfully.
 #

If you just use the passwd command by itself, it changes your own password. Any user in
the system can change his or her own password, but only the root user can change someone
else’s password.

The -e option is a handy way to force a user to change the password on the next log in.
This allows you to set the user’s password to a simple value and forces them to change it to
something harder that they can remember.

If you ever need to do a mass password change for lots of users on the system, the
chpasswd command can be a lifesaver. The chpasswd command reads a list of login name
and password pairs (separated by a colon) from the standard input, automatically encrypts
the password, and sets it for the user account. You can also use the redirection command to
redirect a fi le of userid:password pairs into the command:

chpasswd < users.txt
#

chsh, chfn, and chage

The chsh, chfn, and chage utilities are specialized for specifi c account modifi cation func-
tions. The chsh command allows you to quickly change the default login shell for a user.
You must use the full pathname for the shell, and not just the shell name:

 # chsh -s /bin/csh test
 Changing shell for test.
 Shell changed.
 #

The chfn command provides a standard method for storing information in the comments
fi eld in the /etc/passwd fi le. Instead of just inserting random text, such as names or
nicknames, or even just leaving the comment fi eld blank, the chfn command uses specifi c
information used in the Unix finger command to store information in the comment fi eld.
The finger command allows you to easily fi nd information about people on your Linux
system:

 # finger rich
 Login: rich Name: Rich Blum
 Directory: /home/rich Shell: /bin/bash
 On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
 No mail.
 No Plan.
 #

171

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 171

7

Because of security concerns, many Linux system administrators disable the finger command on their systems,

and many Linux distributions don’t even install it by default.

If you use the chfn command with no parameters, it queries you for the appropriate values
to enter in to the comment fi eld:

 # chfn test
 Changing finger information for test.
 Name []: Ima Test
 Office []: Director of Technology
 Office Phone []: (123)555-1234
 Home Phone []: (123)555-9876

 Finger information changed.
 # finger test
 Login: test Name: Ima Test
 Directory: /home/test Shell: /bin/csh
 Office: Director of Technology Office Phone: (123)555-1234
 Home Phone: (123)555-9876
 Never logged in.
 No mail.
 No Plan.
 #

If you now look at the entry in the /etc/passwd fi le, it looks like this:

 # grep test /etc/passwd
 test:x:504:504:Ima Test,Director of Technology,(123)555-
 1234,(123)555-9876:/home/test:/bin/csh
 #

All the fi nger information is neatly stored away in the /etc/passwd fi le entry.

Finally, the chage command helps you manage the password aging process for user
accounts. You need to set several parameters to individual values, shown in Table 7-4.

TABLE 7-4 The chage Command Parameters

Parameter Description

-d Sets the number of days since the password was last changed

-E Sets the date the password expires

Continues

172

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 172

Parameter Description

-I Sets the number of days of inactivity after the password expires to lock the
account

-m Sets the minimum number of days between password changes

-W Sets the number of days before the password expires that a warning message
appears

The chage date values can be expressed using one of two methods:

 ■ A date in YYYY-MM-DD format

 ■ A numerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for
an account. Using this feature, you can create temporary user accounts that automatically
expire on a set date, without your having to remember to delete them! Expired accounts are
similar to locked accounts. The account still exists, but the user can’t log in with it.

Using Linux Groups
User accounts are great for controlling security for individual users, but they aren’t so good
at allowing groups of users to share resources. To accomplish this, the Linux system uses
another security concept, called groups.

Group permissions allow multiple users to share a common set of permissions for an object
on the system, such as a fi le, directory, or device (more on that later in the “Decoding File
Permissions” section).

Linux distributions differ somewhat on how they handle default group memberships. Some
Linux distributions create just one group that contains all the user accounts as members.
You need to be careful if your Linux distribution does this, because your fi les may be read-
able by all other users on the system. Other distributions create a separate group account
for each user to provide a little more security.

Each group has a unique GID, which, like UIDs, is a unique numerical value on the system.
Along with the GID, each group has a unique group name. You can use some group utilities
to create and manage your own groups on the Linux system. This section discusses how
group information is stored and how to use the group utilities to create new groups and
modify existing groups.

TABLE 7-4 (continued)

173

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 173

7

The /etc/group fi le
Just like user accounts, group information is stored in a fi le on the system. The /etc/
group fi le contains information about each group used on the system. These are examples
from a typical /etc/group fi le on a Linux system:

 root:x:0:root
 bin:x:1:root,bin,daemon
 daemon:x:2:root,bin,daemon
 sys:x:3:root,bin,adm
 adm:x:4:root,adm,daemon
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:

Like UIDs, GIDs are assigned using a special format. Groups used for system accounts are
assigned GIDs below 500, and user groups are assigned GIDs starting at 500. The /etc/
group fi le uses four fi elds:

 ■ The group name

 ■ The group password

 ■ The GID

 ■ The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a member of the
group by using the password. This feature is not used all that commonly, but it does exist.

You should never add users to groups by editing the /etc/group fi le. Instead, use
the usermod command (discussed earlier in the “Linux Security” section) to add a
user account to a group. Before you can add users to different groups, you must create
the groups.

The list of user accounts is somewhat misleading. You’ll notice that there are several groups in the list that don’t have

any users listed. This isn’t because they don’t have any members. When a user account uses a group as the default

group in the /etc/passwd fi le, the user account doesn’t appear in the /etc/group fi le as a member. This has

caused confusion for more than one system administrator over the years!

174

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 174

Creating new groups
The groupadd command allows you to create new groups on your system:

 # /usr/sbin/groupadd shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:
 #

When you create a new group, no users are assigned to it by default. The groupadd com-
mand doesn’t provide an option for adding user accounts to the group. Instead, to add new
users, use the usermod command:

 # /usr/sbin/usermod -G shared rich
 # /usr/sbin/usermod -G shared test
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:rich, test
 #

The shared group now has two members, test and rich. The -G parameter in usermod
appends the new group to the list of groups for the user account.

If you change the user groups for an account that is currently logged into the system, the user must log out and then

log back in for the group changes to take effect.

175

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 175

7

Be careful when assigning groups for user accounts. If you use the -g parameter, the group name you specify

replaces the default group for the user account. The -G parameter adds the group to the list of groups the user

belongs to, keeping the default group intact.

Modifying groups
As you can see from the /etc/group fi le, you don’t need to modify much information
about a group. The groupmod command allows you to change the GID (using the -g param-
eter) or the group name (using the -n parameter) of an existing group:

 # /usr/sbin/groupmod -n sharing shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 sharing:x:505:test,rich
 #

When changing the name of a group, the GID and group members remain the same, only the
group name changes. Because all security permissions are based on the GID, you can change
the name of a group as often as you wish without adversely affecting fi le security.

Decoding File Permissions
Now that you know about users and groups, it’s time to decode the cryptic fi le permissions
you’ve seen when using the ls command. This section describes how to decipher the per-
missions and where they come from.

176

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 176

Using fi le permission symbols
If you remember from Chapter 3, the ls command allows you to see the fi le permissions for
fi les, directories, and devices on the Linux system:

 $ ls -l
 total 68
 -rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 file1.gz
 -rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
 -rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3
 -rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
 -rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test1
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test2
 $

The fi rst fi eld in the output listing is a code that describes the permissions for the fi les and
directories. The fi rst character in the fi eld defi nes the type of the object:

 ■ - for fi les

 ■ d for directories

 ■ l for links

 ■ c for character devices

 ■ b for block devices

 ■ n for network devices

After that, you see three sets of three characters. Each set of three characters defi nes an
access permission triplet:

 ■ r for read permission for the object

 ■ w for write permission for the object

 ■ x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate the three
levels of security for the object:

 ■ The owner of the object

 ■ The group that owns the object

 ■ Everyone else on the system

This is broken down in Figure 7-1.

177

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 177

7

FIGURE 7-1

The Linux file permissions

-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

permissions for everyone else

permissions for group members

permissions for the file owner

The easiest way to discuss this is to take an example and decode the fi le permissions one
by one:

 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

The fi le myprog has the following sets of permissions:

 ■ rwx for the fi le owner (set to the login name rich)

 ■ rwx for the fi le group owner (set to the group name rich)

 ■ r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the
fi le (considered full permissions). Likewise, members in the group rich can also read, write,
and execute the fi le. However, anyone else not in the rich group can only read and execute
the fi le; the w is replaced with a dash, indicating that write permissions are not assigned to
this security level.

Default fi le permissions
You may be wondering about where these fi le permissions come from. The answer is umask.
The umask command sets the default permissions for any fi le or directory you create:

 $ touch newfile
 $ ls -al newfile
 -rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile
 $

The touch command created the fi le using the default permissions assigned to my user
account. The umask command shows and sets the default permissions:

 $ umask
 0022
 $

178

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 178

Unfortunately, the umask command setting isn’t overtly clear, and trying to understand
exactly how it works makes things even muddier. The fi rst digit represents a special secu-
rity feature called the sticky bit. We’ll talk more about that later on in this chapter in
the “Sharing Files” section.

The next three digits represent the octal values of the umask for a fi le or directory. To
understand how umask works, you fi rst need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert them into
a 3-bit binary value, represented by a single octal value. In the binary representation, each
position is a binary bit. Thus, if the read permission is the only permission set, the value
becomes r--, relating to a binary value of 100, indicating the octal value of 4. Table 7-5
shows the possible combinations you’ll run into.

TABLE 7-5 Linux File Permission Codes

Permissions Binary Octal Description

--- 000 0 No permissions

--x 001 1 Execute-only permission

-w- 010 2 Write-only permission

-wx 011 3 Write and execute permissions

r-- 100 4 Read-only permission

r-x 101 5 Read and execute permissions

rw- 110 6 Read and write permissions

rwx 111 7 Read, write, and execute permissions

Octal mode takes the octal permissions and lists three of them in order for the three secu-
rity levels (user, group, and everyone). Thus, the octal mode value 664 represents read and
write permissions for the user and group, but read-only permission for everyone else.

Now that you know about octal mode permissions, the umask value becomes even more
confusing. The octal mode shown for the default umask on my Linux system is 0022, but
the fi le I created had an octal mode permission of 644. How did that happen?

The umask value is just that, a mask. It masks out the permissions you don’t want to give
to the security level. Now we have to dive into some octal arithmetic to fi gure out the rest
of the story.

The umask value is subtracted from the full permission set for an object. The full permis-
sion for a fi le is mode 666 (read/write permission for all), but for a directory it’s 777 (read/
write/execute permission for all).

179

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 179

7

Thus, in the example, the fi le starts out with permissions 666, and the umask of 022 is
applied, leaving a fi le permission of 644.

The umask value is normally set in the /etc/profile startup fi le in most Linux distribu-
tions (see Chapter 6), but some prefer to set it in the /etc/login.defs fi le (such as in
Ubuntu). You can specify a different default umask setting using the umask command:

 $ umask 026
 $ touch newfile2
 $ ls -l newfile2
 -rw-r----- 1 rich rich 0 Sep 20 19:46 newfile2
 $

By setting the umask value to 026, the default fi le permissions become 640, so the new fi le
now is restricted to read-only for the group members, and everyone else on the system has
no permissions to the fi le.

The umask value also applies to making new directories:

 $ mkdir newdir
 $ ls -l
 drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/
 $

Because the default permissions for a directory are 777, the resulting permissions from the
umask are different from those of a new fi le. The 026 umask value is subtracted from 777,
leaving the 751 directory permission setting.

Changing Security Settings
If you’ve already created a fi le or directory and need to change the security settings on it,
Linux has a few different utilities available for this. This section shows you how to change
the existing permissions, the default owner, and the default group settings for a fi le or
directory.

Changing permissions
The chmod command allows you to change the security settings for fi les and directories.
The format of the chmod command is:

 chmod options mode file

The mode parameter allows you to set the security settings using either octal or symbolic
mode. The octal mode settings are pretty straightforward; just use the standard three-digit
octal code you want the fi le to have:

180

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 180

 $ chmod 760 newfile
 $ ls -l newfile
 -rwxrw---- 1 rich rich 0 Sep 20 19:16 newfile
$

The octal fi le permissions are automatically applied to the fi le indicated. The symbolic
mode permissions are not so easy to implement.

Instead of using the normal string of three sets of three characters, the chmod command
takes a different approach. The following is the format for specifying a permission in sym-
bolic mode:

 [ugoa…][[+-=][rwxXstugo…]

Makes perfectly good sense, doesn’t it? The fi rst group of characters defi nes to whom the
new permissions apply:

 ■ u for the user

 ■ g for the group

 ■ o for others (everyone else)

 ■ a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the existing
permissions (+), subtract the permission from the existing permission (−), or set the per-
missions to the value (=).

Finally, the third symbol is the permission used for the setting. You may notice that there
are more than the normal rwx values here. These are the additional settings:

 ■ X assigns execute permissions only if the object is a directory or if it already had
execute permissions.

 ■ s sets the UID or GID on execution.

 ■ t saves program text.

 ■ u sets the permissions to the owner’s permissions.

 ■ g sets the permissions to the group’s permissions.

 ■ o sets the permissions to the other’s permissions.

Using these permissions looks like this:

 $ chmod o+r newfile
 $ ls -lF newfile
 -rwxrw-r-- 1 rich rich 0 Sep 20 19:16 newfile*
$

The o+r entry adds the read permission to whatever permissions the everyone security
level already had.

181

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 181

7

 $ chmod u-x newfile
 $ ls -lF newfile
 -rw-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile
 $

The u-x entry removes the execute permission that the user already had. Note that the –F
option for the ls command indicates whether a fi le has execution permissions by adding an
asterisk to the fi lename.

The options parameters provide a few additional features to augment the behavior of the
chmod command. The -R parameter performs the fi le and directory changes recursively.
You can use wildcard characters for the fi lename specifi ed, changing the permissions on
multiple fi les with just one command.

Changing ownership
Sometimes, you need to change the owner of a fi le, such as when someone leaves an orga-
nization or a developer creates an application that needs to be owned by a system account
when it’s in production. Linux provides two commands for doing that. The chown command
makes it easy to change the owner of a fi le, and the chgrp command allows you to change
the default group of a fi le.

The format of the chown command is:

 chown options owner[.group] file

You can specify either the login name or the numeric UID for the new owner of the fi le:

 # chown dan newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Simple. The chown command also allows you to change both the user and group of a fi le:

 # chown dan.shared newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan shared 0 Sep 20 19:16 newfile
#

If you really want to get tricky, you can just change the default group for a fi le:

 # chown .rich newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Finally, if your Linux system uses individual group names that match user login names, you
can change both with just one entry:

182

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 182

 # chown test. newfile
 # ls -l newfile
 -rw-rw-r-- 1 test test 0 Sep 20 19:16 newfile
#

The chown command uses a few different option parameters. The -R parameter allows you
to make changes recursively through subdirectories and fi les, using a wildcard character.
The -h parameter also changes the ownership of any fi les that are symbolically linked to
the fi le.

Only the root user can change the owner of a fi le. Any user can change the default group of a fi le, but the user must

be a member of the groups the fi le is changed from and to.

The chgrp command provides an easy way to change just the default group for a fi le or
directory:

 $ chgrp shared newfile
 $ ls -l newfile
 -rw-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile
$

The user account must own the fi le, and be a member of the new group as well to be able
to change the group. Now any member in the shared group can write to the fi le. This is one
way to share fi les on a Linux system. However, sharing fi les among a group of people on the
system can get tricky. The next section discusses how to do this.

Sharing Files
As you’ve probably already fi gured out, creating groups is the way to share access to fi les
on the Linux system. However, for a complete fi le-sharing environment, things are more
complicated.

As you’ve already seen in the “Decoding File Permissions” section, when you create a
new fi le, Linux assigns the fi le permissions of the new fi le using your default UID and
GID. To allow others access to the fi le, you need to either change the security
permissions for the everyone security group or assign the fi le a different default group
that contains other users.

This can be a pain in a large environment if you want to create and share documents among
several people. Fortunately, there’s a simple solution for how to solve this problem.

183

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 183

7

There are three additional bits of information that Linux stores for each fi le and directory:

 ■ The set user id (SUID): When a fi le is executed by a user, the program runs under
the permissions of the fi le owner.

 ■ The set group id (SGID): For a fi le, the program runs under the permissions of the
fi le group. For a directory, new fi les created in the directory use the directory group
as the default group.

 ■ The sticky bit: The fi le remains (sticks) in memory after the process ends.

The SGID bit is important for sharing fi les. By enabling the SGID bit, you can force all new
fi les created in a shared directory to be owned by the directory’s group and now the indi-
vidual user’s group.

The SGID is set using the chmod command. It’s added to the beginning of the standard
three-digit octal value (making a four-digit octal value), or you can use the symbol s in
symbolic mode.

If you’re using octal mode, you’ll need to know the arrangement of the bits, shown in
Table 7-6.

TABLE 7-6: The chmod SUID, SGID, and Sticky Bit Octal Values

Binary Octal Description

000 0 All bits are cleared.

001 1 The sticky bit is set.

010 2 The SGID bit is set.

011 3 The SGID and sticky bits are set.

100 4 The SUID bit is set.

101 5 The SUID and sticky bits are set.

110 6 The SUID and SGID bits are set.

111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all new fi les, all you
need to do is set the SGID bit for the directory:

 $ mkdir testdir
 $ ls -l
 drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/

184

Part I: The Linux Command Line

c07.indd 12/16/2014 Page 184

 $ chgrp shared testdir
 $ chmod g+s testdir
 $ ls -l
 drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
 $ umask 002
 $ cd testdir
 $ touch testfile
 $ ls -l
 total 0
 -rw-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile
 $

The fi rst step is to create a directory that you want to share using the mkdir command.
Next, use the chgrp command to change the default group for the directory to a group that
contains the members who need to share fi les (you must be a member of that group for this
to work). Finally, set the SGID bit for the directory to ensure that any fi les created in the
directory use the shared group name as the default group.

For this environment to work properly, all the group members must have their umask
values set to make fi les writable by group members. In the preceding example, the umask is
changed to 002 so the fi les are writable by the group.

After all that’s done, any member of the group can go to the shared directory and create
a new fi le. As expected, the new fi le uses the default group of the directory, not the user
account’s default group. Now any user in the shared group can access this fi le.

Summary
This chapter discussed the command line commands you need to know to manage the Linux
security on your system. Linux uses a system of user IDs and group IDs to protect access to
fi les, directories, and devices. Linux stores information about user accounts in the /etc/
passwd fi le and information about groups in the /etc/group fi le. Each user is assigned
a unique numeric user ID, along with a text login name to identify the user in the system.
Groups are also assigned unique numerical group IDs and text group names. A group can
contain one or more users to allowed shared access to system resources.

Several commands are available for managing user accounts and groups. The useradd
command allows you to create new user accounts, and the groupadd command allows you
to create new group accounts. To modify an existing user account, use the usermod com-
mand. Similarly, use the groupmod command to modify group account information.

Linux uses a complicated system of bits to determine access permissions for fi les and direc-
tories. Each fi le contains three security levels of protection: the fi le’s owner, a default
group that has access to the fi le, and a level for everyone else on the system. Each security
level is defi ned by three access bits: read, write, and execute. The combination of three

185

Chapter 7: Understanding Linux File Permissions

c07.indd 12/16/2014 Page 185

7

bits is often referred to by the symbols rwx, for read, write, and execute. If a permission is
denied, its symbol is replaced with a dash (such as r-- for read-only permission).

The symbolic permissions are often referred to as octal values, with the three bits combined
into one octal value and three octal values representing the three security levels. Use the
umask command to set the default security settings for fi les and directories created on the
system. The system administrator normally sets a default umask value in the /etc
/profile fi le, but you can use the umask command to change your umask value at any
time.

Use the chmod command to change security settings for fi les and directories. Only the fi le’s
owner can change permissions for a fi le or directory. However, the root user can change the
security settings for any fi le or directory on the system. You can use the chown and chgrp
commands to change the default owner and group of the fi le.

The chapter closed with a discussion on how to use the set GID bit to create a shared
directory. The SGID bit forces any new fi les or directories created in a directory to use the
default group name of the parent directory, not that of the user who created them. This
provides an easy way to share fi les between users on the system.

Now that you’re up to speed with fi le permissions, it’s time to take a closer look at how to
work with the actual fi lesystem in Linux. The next chapter shows you how to create new
partitions in Linux from the command line and then how to format the new partitions so
that they can be used in the Linux virtual directory.

187

c08.indd 12/10/2014 Page 187

CHAP T ER

8
Managing Filesystems

IN THIS CHAPTER

Understanding fi lesystem basics

Exploring journaling and copy-on-write fi lesystems

Managing fi lesystems

Investigating the logical volume layout

Using the Linux Logical Volume Manager

W
hen you’re working with your Linux system, one of the decisions you’ll need to make is
what fi lesystem to use for the storage devices. Most Linux distributions kindly provide a
default fi lesystem for you at installation time, and most beginning Linux users just use it

without giving the topic another thought.

Although using the default fi lesystem choice isn’t necessarily a bad thing, sometimes it helps to
know the other options available to you. This chapter discusses the different fi lesystem options
you have available in the Linux world and shows you how to create and manage them from the
Linux command line.

Exploring Linux Filesystems
Chapter 3 discussed how Linux uses a filesystem to store fi les and folders on a storage device. The
fi lesystem provides a way for Linux to bridge the gap between the ones and zeroes stored in the
hard drive and the fi les and folders you work with in your applications.

Linux supports several types of fi lesystems to manage fi les and folders. Each fi lesystem implements
the virtual directory structure on storage devices using slightly different features. This section
walks you through the strengths and weaknesses of the more common fi lesystems used in the
Linux environment.

188

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 188

Understanding the basic Linux fi lesystems
The original Linux system used a simple fi lesystem that mimicked the functionality of the
Unix fi lesystem. This section discusses the evolution of that fi lesystem.

Looking at the ext Filesystem

The original fi lesystem introduced with the Linux operating system is called the extended
filesystem (or just ext for short). It provides a basic Unix-like fi lesystem for Linux, using
virtual directories to handle physical devices, and storing data in fi xed-length blocks on
the physical devices.

The ext fi lesystem uses a system called inodes to track information about the fi les stored
in the virtual directory. The inode system creates a separate table on each physical device,
called the inode table, to store fi le information. Each stored fi le in the virtual directory has
an entry in the inode table. The extended part of the name comes from the additional data
that it tracks on each fi le, which consists of these items:

 ■ The fi lename

 ■ The fi le size

 ■ The owner of the fi le

 ■ The group the fi le belongs to

 ■ Access permissions for the fi le

 ■ Pointers to each disk block that contains data from the fi le

Linux references each inode in the inode table using a unique number (called the inode
number), assigned by the fi lesystem as data fi les are created. The fi lesystem uses the inode
number to identify the fi le rather than having to use the full fi lename and path.

Looking at the ext2 Filesystem

The original ext fi lesystem had quite a few limitations, such as restraining fi les to only 2GB
in size. Not too long after Linux was fi rst introduced, the ext fi lesystem was upgraded to
create the second extended fi lesystem, called ext2.

As you can guess, the ext2 fi lesystem is an expansion of the basic abilities of the ext fi le-
system, but maintains the same structure. The ext2 fi lesystem expands the inode table
format to track additional information about each fi le on the system.

The ext2 inode table adds the created, modifi ed, and last accessed time values for fi les
to help system administrators track fi le access on the system. The ext2 fi lesystem also
increases the maximum fi le size allowed to 2TB (then in later versions of ext2, that was
increased to 32TB) to help accommodate large fi les commonly found in database servers.

In addition to expanding the inode table, the ext2 fi lesystem also changed the way in
which fi les are stored in the data blocks. A common problem with the ext fi lesystem was
that as a fi le is written to the physical device, the blocks used to store the data tend to be

189

Chapter 8: Managing Filesystems

c08.indd 12/10/2014 Page 189

8

scattered throughout the device (called fragmentation). Fragmentation of data blocks can
reduce the fi lesystem performance, because it takes longer to search the storage device to
access all the blocks for a specifi c fi le.

The ext2 fi lesystem helps reduce fragmentation by allocating disk blocks in groups when
you save a fi le. By grouping the data blocks for a fi le, the fi lesystem doesn’t have to search
all over the physical device for the data blocks to read the fi le.

The ext2 fi lesystem was the default fi lesystem used in Linux distributions for many years,
but it, too, had its limitations. The inode table, although a nice feature that allows the fi le-
system to track additional information about fi les, can cause problems that can be fatal to
the system. Each time the fi lesystem stores or updates a fi le, it must modify the inode table
with the new information. The problem is that this isn’t always a fl uid action.

If something should happen to the computer system between the fi le being stored and the
inode table being updated, the two would become out of sync. The ext2 fi lesystem is notori-
ous for easily becoming corrupted due to system crashes and power outages. Even if the fi le
data is stored just fi ne on the physical device, if the inode table entry isn’t completed, the
ext2 fi lesystem doesn’t even know that the fi le existed!

It wasn’t long before developers were exploring a different avenue of Linux fi lesystems.

Understanding journaling fi lesystems
Journaling filesystems provide a new level of safety to the Linux system. Instead of writing
data directly to the storage device and then updating the inode table, journaling fi lesys-
tems write fi le changes into a temporary fi le (called the journal) fi rst. After data is success-
fully written to the storage device and the inode table, the journal entry is deleted.

If the system should crash or suffer a power outage before the data can be written to the
storage device, the journaling fi lesystem just reads through the journal fi le and processes
any uncommitted data left over.

Linux commonly uses three different methods of journaling, each with different levels of
protection. These are shown in Table 8-1.

TABLE 8-1 Journaling Filesystem Methods

Method Description

Data mode Both inode and fi le data are journaled. Low risk of losing data, but poor
performance.

Ordered mode Only inode data is written to the journal, but not removed until fi le data is
successfully written. Good compromise between performance and safety.

Writeback
mode

Only inode data is written to the journal, no control over when the fi le data is
written. Higher risk of losing data, but still better than not using journaling.

190

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 190

The data mode journaling method is by far the safest for protecting data, but it is also the
slowest. All the data written to a storage device must be written twice, once to the journal
and again to the actual storage device. This can cause poor performance, especially for
systems that do lots of data writing.

Over the years, a few different journaling fi lesystems have appeared in Linux. The following
sections describe the popular Linux journaling fi lesystems available.

Looking at the ext3 Filesystem

The ext3 fi lesystem was added to the Linux kernel in 2001, and up until recently was the
default fi lesystem used by just about all Linux distributions. It uses the same inode table
structure as the ext2 fi lesystem, but adds a journal fi le to each storage device to journal
the data written to the storage device.

By default, the ext3 fi lesystem uses the ordered mode method of journaling, only writing
the inode information to the journal fi le, but not removing it until the data blocks have
been successfully written to the storage device. You can change the journaling method
used in the ext3 fi lesystem to either data or writeback modes with a simple command line
option when creating the fi lesystem.

Although the ext3 fi lesystem added basic journaling to the Linux fi lesystem, it still lacked
a few things. For example, the ext3 fi lesystem doesn’t provide any recovery from accidental
deletion of fi les, no built-in data compression is available (although a patch can be installed
separately that provides this feature), and the ext3 fi lesystem doesn’t support encrypting
fi les. For those reasons, developers in the Linux project chose to continue work on improv-
ing the ext3 fi lesystem.

Looking at the ext4 Filesystem

The result of expanding the ext3 fi lesystem was (as you probably guessed) the ext4 fi lesys-
tem. The ext4 fi lesystem was offi cially supported in the Linux kernel in 2008 and is now
the default fi lesystem used in popular Linux distributions, such as Ubuntu.

In addition to supporting compression and encryption, the ext4 fi lesystem also supports a
feature called extents. Extents allocate space on a storage device in blocks and only store
the starting block location in the inode table. This helps save space in the inode table by
not having to list all the data blocks used to store data from the fi le.

The ext4 fi lesystem also incorporates block preallocation. If you want to reserve space on a
storage device for a fi le that you know will grow in size, with the ext4 fi lesystem it’s possi-
ble to allocate all the expected blocks for the fi le, not just the blocks that physically exist.
The ext4 fi lesystem fi lls in the reserved data blocks with zeroes and knows not to allocate
them for any other fi le.

Looking at the Reiser Filesystem

In 2001, Hans Reiser created the fi rst journaling fi lesystem for Linux, called ReiserFS. The
ReiserFS fi lesystem supports only writeback journaling mode, writing only the inode table

191

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 191

data to the journal fi le. Because it writes only the inode table data to the journal, the
ReiserFS fi lesystem is one of the faster Linux journaling fi lesystems.

Two interesting features incorporated into the ReiserFS fi lesystem are that you can resize
an existing fi lesystem while it’s still active and that it uses a technique called tailpacking,
which stuffs data from one fi le into empty space in a data block from another fi le. The
active fi lesystem resizing feature is great if you have to expand an already created fi lesys-
tem to accommodate more data.

The ReiserFS development team began working on a new version called Reiser4 in 2004. The
Reiser4 fi lesystem has several improvements over ResierFS, including extremely effi cient
handling of small fi les. However, most current mainstream Linux distributions don’t use
the Reiser4 fi lesystem. Yet, you may still run into a Linux system that employs it.

Looking at the Journaled Filesystem

Possibly one of the oldest journaling fi lesystems around, the Journaled File System (JFS) was
developed by IBM in 1990 for its AIX fl avor of Unix. However, it wasn’t until its second ver-
sion that it was ported to the Linux environment.

The offi cial IBM name of the second version of the JFS fi lesystem is JFS2, but most Linux systems refer to it

as just JFS.

The JFS fi lesystem uses the ordered journaling method, storing only the inode table data in
the journal, but not removing it until the actual fi le data is written to the storage device.
This method is a compromise between the speed of the Reiser4 and the integrity of the data
mode journaling method.

The JFS fi lesystem uses extent-based fi le allocation, allocating a group of blocks for each
fi le written to the storage device. This method provides for less fragmentation on the stor-
age device.

Outside of the IBM Linux offerings, the JFS fi lesystem isn’t popularly used, but you may run
into it in your Linux journey.

Looking at the XFS Filesystem

The XFS journaling fi lesystem is yet another fi lesystem originally created for a commercial
Unix system that made its way into the Linux world. Silicon Graphics Incorporated (SGI) orig-
inally created XFS in 1994 for its commercial IRIX Unix system. It was released to the Linux
environment for common use in 2002. The XFS fi lesystem has recently become more popular
and is used as the default fi lesystem in mainstream Linux distributions, such as RHEL.

The XFS fi lesystem uses the writeback mode of journaling, which provides high perfor-
mance but does introduce an amount of risk because the actual data isn’t stored in the

192

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 192

journal fi le. The XFS fi lesystem also allows online resizing of the fi lesystem, similar to the
Reiser4 fi lesystem, except XFS fi lesystems can only be expanded and not shrunk.

Understanding the copy-on-write fi lesystems
With journaling, you must choose between safety and performance. Although data mode
journaling provides the highest safety, performance suffers because both inode and data
is journaled. With writeback mode journaling, performance is acceptable, but safety is
compromised.

For fi lesystems, an alternative to journaling is a technique called copy-on-write (COW). COW
offers both safety and performance via snapshots. For modifying data, a clone or writable-
snapshot is used. Instead of writing modifi ed data over current data, the modifi ed data is
put in a new fi lesystem location. Even when data modifi cation is completed, the old data is
never overwritten.

COW fi lesystems are gaining in popularity. Two of the most popular, Btrfs and ZFS, are
briefl y reviewed in the following sections.

Looking at the ZFS Filesystem

The COW fi lesystem ZFS was developed in 2005 by Sun Microsystems for the OpenSolaris
operating system. It began being ported to Linux in 2008 and was fi nally available for
Linux production use in 2012.

ZFS is a stable fi lesystem and competes well against Resier4, Btrfs, and ext4. Its biggest
detractor is that ZFS does not have a GPL license. The OpenZFS project was launched in
2013, which may help to change this situation. However, it’s possible that until a GPL
license is obtained, ZFS will never be a default Linux fi lesystem.

Looking at the Btrfs Filesystem

The COW newcomer is the Btrfs fi lesystem, also called the B-tree fi lesystem. Oracle started
development on Btrfs in 2007. It was based on many of Reiser4’s features, but offered
improvements in reliability. Additional developers eventually joined in and helped Btrfs
quickly rise toward the top of the popular fi lesystems list. This popularity is due to
stability, ease of use, as well as the ability to dynamically resize a mounted fi lesystem. The
openSUSE Linux distribution recently established Btrfs as its default fi lesystem. It is also
offered in other Linux distributions, such as RHEL, although not as the default fi lesystem.

Working with Filesystems
Linux provides a few different utilities that make it easier to work with fi lesystems from
the command line. You can add new fi lesystems or change existing fi lesystems from the
comfort of your own keyboard. This section walks you through the commands for interact-
ing with fi lesystems from a command line environment.

193

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 193

Creating partitions
To start out, you need to create a partition on the storage device to contain the fi lesystem.
The partition can be an entire disk or a subset of a disk that contains a portion of the vir-
tual directory.

The fdisk utility is used to help you organize partitions on any storage device installed on
the system. The fdisk command is an interactive program that allows you to enter com-
mands to walk through the steps of partitioning a hard drive.

To start the fdisk command, you need to specify the device name of the storage device
you want to partition and you need to have superuser privileges. When you don’t have
superuser privileges and attempt to use fdisk, you’ll receive some sort of error message,
like this one:

$ fdisk /dev/sdb

Unable to open /dev/sdb
$

Sometimes, the hardest part of creating a new disk partition is trying to fi nd the physical disk on your Linux system.

Linux uses a standard format for assigning device names to hard drives, but you need to be familiar with the format.

For older IDE drives, Linux uses /dev/hdx, where x is a letter based on the order the drive is detected (a for the

fi rst drive, b for the second, and so on). For both the newer SATA drives and SCSI drives, Linux uses /dev/sdx,

where x is a letter based on the order the drive is detected (again, a for the fi rst drive, b for the second, and so on).

It’s always a good idea to double-check to make sure you are referencing the correct drive before formatting the

partition!

If you do have superuser privileges and the correct device name, the fdisk command
allows you entrance into the utility as demonstrated here on a CentOS distribution:

$ sudo fdisk /dev/sdb
[sudo] password for Christine:
Device contains neither a valid DOS partition table,
nor Sun, SGI or OSF disklabel
Building a new DOS disklabel with disk identifier 0xd3f759b5.
Changes will remain in memory only
until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will
be corrected by w(rite)

[...]
Command (m for help):

194

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 194

If this is the fi rst time you’re partitioning the storage device, fdisk gives you a warning that a partition table is not

on the device.

The fdisk interactive command prompt uses single letter commands to instruct fdisk
what to do. Table 8-2 shows the commands available at the fdisk command prompt.

TABLE 8-2 The fdisk Commands

Command Description

a Toggles a fl ag indicating if the partition is bootable

b Edits the disklabel used by BSD Unix systems

c Toggles the DOS compatibility fl ag

d Deletes the partition

l Lists the available partition types

m Displays the command options

n Adds a new partition

o Creates a DOS partition table

p Displays the current partition table

q Quits without saving changes

s Creates a new disklabel for Sun Unix systems

t Changes the partition system ID

u Changes the storage units used

v Verifi es the partition table

w Writes the partition table to the disk

x Advanced functions

Although this list may look intimidating, usually you need just a few basic commands in
day-to-day work.

For starters, you can display the details of a storage device using the p command:

Command (m for help): p

Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

195

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 195

Disk identifier: 0x11747e88

 Device Boot Start End Blocks Id System

Command (m for help):

The output shows that the storage device has 5368MB of space on it (5GB). The listing under
the storage device details shows whether there are any existing partitions on the device.
The listing in this example doesn’t show any partitions, so the device is not partitioned yet.

Next, you’ll want to create a new partition on the storage device. Use the n command for that:

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-652, default 1): 1
Last cylinder, +cylinders or +size{K,M,G} (1-652, default 652): +2G

Command (m for help):

Partitions can be created as either a primary partition or an extended partition. Primary
partitions can be formatted with a fi lesystem directly, whereas extended partitions can only
contain other primary partitions. The reason for extended partitions is that there can only be
four partitions on a single storage device. You can extend that by creating multiple extended
partitions and then creating primary partitions inside the extended partitions. This example
creates a primary storage device, assigns it partition number 1, and then allocates 2GB of the
storage device space to it. You can see the results using the p command again:

Command (m for help): p

Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x029aa6af

 Device Boot Start End Blocks Id System
/dev/sdb1 1 262 2104483+ 83 Linux

Command (m for help):

Now in the output there’s a partition shown on the storage device (called /dev/sdb1). The
Id entry defi nes how Linux treats the partition. fdisk allows you to create lots of parti-
tion types. Using the l command lists the different types available. The default is type 83,
which defi nes a Linux fi lesystem. If you want to create a partition for a different fi lesystem
(such as a Windows NTFS partition), just select a different partition type.

196

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 196

You can repeat the process to allocate the remaining space on the storage device to another
Linux partition. After you’ve created the partitions you want, use the w command to save
the changes to the storage device:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$

The storage device partition information was written to the partition table, and Linux was
informed of the new partition via the ioctl() call. Now that you have set up a partition
on the storage device, you’re ready to format it with a Linux fi lesystem.

Some distributions and older distribution versions do not automatically inform your Linux system of a new partition

after it is made. In this case, you need to use either the partprobe or hdparm command (see their man pages),

or reboot your system so it reads the updated partition table.

Creating a fi lesystem
Before you can store data on the partition, you must format it with a fi lesystem so Linux
can use it. Each fi lesystem type uses its own command line program to format partitions.
Table 8-3 lists the utilities used for the different fi lesystems discussed in this chapter.

TABLE 8-3 Command Line Programs to Create Filesystems

Utility Purpose

mkefs Creates an ext fi lesystem

mke2fs Creates an ext2 fi lesystem

mkfs.ext3 Creates an ext3 fi lesystem

mkfs.ext4 Creates an ext4 fi lesystem

mkreiserfs Creates a ReiserFS fi lesystem

jfs_mkfs Creates a JFS fi lesystem

mkfs.xfs Creates an XFS fi lesystem

mkfs.zfs Creates a ZFS fi lesystem

mkfs.btrfs Creates a Btrfs fi lesystem

Not all fi lesystem utilities are installed by default. To determine whether you have a
particular fi lesystem utility, use the type command:

197

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 197

$ type mkfs.ext4
mkfs.ext4 is /sbin/mkfs.ext4
$
$ type mkfs.btrfs
-bash: type: mkfs.btrfs: not found
$

The preceding example on an Ubuntu system shows that the mkfs.ext4 utility is
available. However, the Btrfs utility is not. See Chapter 9 on how to install additional
software and utilities on your Linux distribution.

Each fi lesystem utility command has lots of command line options that allow you to
customize just how the fi lesystem is created in the partition. To see all the command line
options available, use the man command to display the manual pages for the fi lesystem
command (see Chapter 3). All the fi lesystem commands allow you to create a default
fi lesystem with just the simple command with no options:

$ sudo mkfs.ext4 /dev/sdb1
[sudo] password for Christine:
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131648 inodes, 526120 blocks
26306 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7744 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 23 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
$

The new fi lesystem uses the ext4 fi lesystem type, which is a journaling fi lesystem in Linux.
Notice that part of the creation process was to create the new journal.

After you create the fi lesystem for a partition, the next step is to mount it on a virtual
directory mount point so you can store data in the new fi lesystem. You can mount the new
fi lesystem anywhere in your virtual directory where you need the extra space.

198

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 198

$ ls /mnt
$
$ sudo mkdir /mnt/my_partition
$
$ ls -al /mnt/my_partition/
$
$ ls -dF /mnt/my_partition
/mnt/my_partition/
$
$ sudo mount -t ext4 /dev/sdb1 /mnt/my_partition
$
$ ls -al /mnt/my_partition/
total 24
drwxr-xr-x. 3 root root 4096 Jun 11 09:53 .
drwxr-xr-x. 3 root root 4096 Jun 11 09:58 ..
drwx------. 2 root root 16384 Jun 11 09:53 lost+found
$

The mkdir command (Chapter 3) creates the mount point in the virtual directory, and the
mount command adds the new hard drive partition to the mount point. The -t option on
the mount command indicates what fi lesystem type, ext4, you are mounting. Now you can
save new fi les and folders on the new partition!

This method of mounting a fi lesystem only temporarily mounts the fi lesystem. When you reboot your Linux system, the

fi lesystem doesn’t automatically mount. To force Linux to automatically mount the new fi lesystem at boot time, add

the new fi lesystem to the /etc/fstab fi le.

Now that the fi lesystem is mounted within the virtual directory system, it can start to be
used on a regular basis. Unfortunately, with regular use comes the potential for serious prob-
lems, such as fi lesystem corruption. The next section looks at how to deal with these issues.

Checking and repairing a fi lesystem
Even with modern fi lesystems, things can go wrong if power is unexpectedly lost, or if a
wayward application locks up the system while fi le access is in progress. Fortunately, some
command line tools are available to help you make an attempt to restore the fi lesystem
back to order.

Each fi lesystem has its own recovery command for interacting with the fi lesystem. That
has the potential of getting ugly, because more and more fi lesystems are available in the
Linux environment, making for lots of individual commands you have to know. Fortunately,
a common front-end program available can determine the fi lesystem on the storage device
and use the appropriate fi lesystem recovery command based on the fi lesystem being
recovered.

199

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 199

The fsck command is used to check and repair most Linux fi lesystem types, including ones
discussed earlier in this chapter — ext, ext2, ext3, ext4, Reiser4, JFS, and XFS. The format
of the command is:

fsck options filesystem

You can list multiple filesystem entries on the command line to check. Filesystems can
be referenced using either the device name, the mount point in the virtual directory, or a
special Linux UUID value assigned to the fi lesystem.

Although journaling fi lesystems users do need the fsck command, it is arguable as to whether COW fi lesystems

users do. In fact, the ZFS fi lesystem does not even have an interface to the fsck utility.

The fsck command uses the /etc/fstab fi le to automatically determine the fi lesystem on
a storage device that’s normally mounted on the system. If the storage device isn’t normally
mounted (such as if you just created a fi lesystem on a new storage device), you need to use
the -t command line option to specify the fi lesystem type. Table 8-4 lists the other com-
mand line options available.

TABLE 8-4 The fsck Command Line Options

Option Description

-a Automatically repairs the fi lesystem if errors are detected

-A Checks all the fi lesystems listed in the /etc/fstab fi le

-C Displays a progress bar for fi lesystems that support that feature (only ext2 and
ext3)

-N Doesn’t run the check, only displays what checks would be performed

-r Prompts to fi x if errors found

-R Skips the root fi lesystem if using the -A option

-s If checking multiple fi lesystems, performs the checks one at a time

-t Specifi es the fi lesystem type to check

-T Doesn’t show the header information when starting

-V Produces verbose output during the checks

-y Automatically repairs the fi lesystem if errors detected

You may notice that some of the command line options are redundant. That’s part of the
problem of trying to implement a common front-end for multiple commands. Some of the
individual fi lesystem repair commands have additional options that can be used. If you

200

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 200

need to do more advanced error checking, you’ll need to check the man pages for the indi-
vidual fi lesystem repair tool to see if there are extended options specifi c to that fi lesystem.

You can run the fsck command on unmounted fi lesystems only. For most fi lesystems, you can just unmount the

fi lesystem to check it and then remount it when you’re fi nished. However, because the root fi lesystem contains all the

core Linux commands and log fi les, you can’t unmount it on a running system.

This is a time where having a Linux LiveCD comes in handy! Just boot your system with the LiveCD, and then run the

fsck command on the root fi lesystem!

This chapter has showed how to handle fi lesystems contained in physical storage devices.
Linux also provides a couple of different ways to create logical storage devices for fi le-
systems. The next section examines how you can use a logical storage device for your
fi lesystems.

Managing Logical Volumes
If you create your fi lesystems using standard partitions on hard drives, trying to add
additional space to an existing fi lesystem can be somewhat of a painful experience. You
can only expand a partition to the extent of the available space on the same physical hard
drive. If no more space is available on that hard drive, you’re stuck having to get a larger
hard drive and manually moving the existing fi lesystem to the new drive.

What would come in handy is a way to dynamically add more space to an existing fi le-
system by just adding a partition from another hard drive to the existing fi lesystem. The
Linux Logical Volume Manager (LVM) software package allows you to do just that. It provides
an easy way for you to manipulate disk space on a Linux system without having to rebuild
entire fi lesystems.

Exploring logical volume management layout
The core of logical volume management is how it handles the physical hard drive partitions
installed on the system. In the logical volume management world, hard drives are called
physical volumes (PV). Each PV maps to a specifi c physical partition created on a hard drive.

Multiple PV elements are pooled together to create a volume group (VG). The logical volume
management system treats the VG like a physical hard drive, but in reality the VG may
consist of multiple physical partitions spread across multiple hard drives. The VG provides a
platform to create the logical partitions, which actually contain the fi lesystem.

The fi nal layer in the structure is the logical volume (LV). The LV creates the partition envi-
ronment for Linux to create a fi lesystem, acting similar to a physical hard disk partition as
far as Linux is concerned. The Linux system treats the LV just like a physical partition.

201

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 201

You can format the LV using any one of the standard Linux fi lesystems and then add it to
the Linux virtual directory at a mount point.

Figure 8-1 shows the basic layout of a typical Linux logical volume management
environment.

FIGURE 8-1

The logical volume management environment

Logical Volume 1

Hard Drive 1 Hard Drive 2 Hard Drive 3

Logical Volume 2

Volume Group

Physical
Volume 1

partition
1

partition
2

partition
1

partition
2

partition
1

unused
space

Physical
Volume 2

Physical
Volume 3

Physical
Volume 4

Physical
Volume 5

The volume group, shown in Figure 8-1, spans across three separate physical hard drives,
which contain fi ve separate physical partitions. Inside the volume group are two separate
logical volumes. The Linux system treats each logical volume just like a physical partition.
Each logical volume can be formatted as an ext4 fi lesystem and then mounted to a specifi c
location in the virtual directory.

Notice in Figure 8-1 that the third physical hard drive has an unused partition. Using
logical volume management, you can easily assign this unused partition to the existing
volume group at a later time, and then either use it to create a new logical volume or add it
to expand one of the existing logical volumes when you need more space.

Likewise, if you add a new hard drive to the system, the local volume management system
allows you to add it to the existing volume group, and then create more space for one of the
existing logical volumes, or start a new logical volume to be mounted. That’s a much better
way of handling expanding fi lesystems!

Using the LVM in Linux
The Linux LVM was developed by Heinz Mauelshagen and released to the Linux community
in 1998. It allows you to manage a complete logical volume management environment in
Linux using simple command line commands.

Two versions of Linux LVM are available:

202

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 202

 ■ LVM1: The original LVM package released in 1998 and available in only the 2.4
Linux kernels. It provides only basic logical volume management features.

 ■ LVM2: An updated version of the LVM, available in the 2.6 Linux kernels. It provides
additional features over the standard LVM1 features.

Most modern Linux distributions using the 2.6 kernel version or above provide support for
LVM2. Besides the standard logical volume management features, LVM2 provides a few other
nice things for you to use in your Linux system.

Taking a Snapshot

The original Linux LVM allows you to copy an existing logical volume to another device
while the logical volume is active. This feature is called a snapshot. Snapshots are great
for backing up important data that can’t be locked due to high availability requirements.
Traditional backup methods usually lock fi les as they’re being copied to the backup media.
The snapshot allows you to continue running mission critical web or database servers while
performing the copy. Unfortunately, LVM1 allows you to create only a read-only snapshot.
After you create the snapshot, you can’t write to it.

LVM2 allows you to create a read-write snapshot of an active logical volume. With the
read-write copy, you can remove the original logical volume and mount the snapshot as a
replacement. This feature is great for fast fail-overs or for experimenting with applications
that modify data that may need to be restored if something fails.

Striping

Another interesting feature that LVM2 provides is striping. With striping, a logical volume is
created across multiple physical hard drives. When the Linux LVM writes a fi le to the logical
volume, the data blocks in the fi le are spread across the multiple hard drives. Each succes-
sive block of data is written to the next hard drive.

Striping helps improve disk performance, because Linux can write the multiple data blocks
for a fi le to the multiple hard drives simultaneously, rather than having to wait for a single
hard drive to move the read/write head to different locations. This improvement also
applies to reading sequentially accessed fi les, because the LVM can read data from the mul-
tiple hard drives simultaneously.

LVM striping is not the same as RAID striping. LVM striping doesn’t provide a parity entry, which creates the fault-

tolerant environment. In fact, LVM striping may increase the chance of a fi le being lost due to a hard drive failure. A

single disk failure can result in multiple logical volumes being inaccessible.

Mirroring

Just because you install a fi lesystem using LVM doesn’t mean that things can’t still go
wrong in the fi lesystem. Just as in a physical partition, LVM logical volumes are susceptible

203

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 203

to power outages and disk crashes. After a fi lesystem becomes corrupt, there’s always a
possibility that you won’t be able to recover it.

The LVM snapshot process provides some comfort knowing that you can create a backup
copy of a logical volume at any time, but for some environments that may not be enough.
Systems that have lots of data changes, such as database servers, may store hundreds or
thousands of records since the last snapshot.

A solution to this problem is the LVM mirror. A mirror is a complete copy of a logical volume
that’s updated in real time. When you create the mirror logical volume, LVM synchronizes
the original logical volume to the mirror copy. Depending on the size of the original logical
volume, this may take some time to complete.

After the original synchronization is complete, LVM performs two writes for each write
process in the fi lesystem — one to the main logical volume and one to the mirrored copy.
As you can guess, this process does slow down write performance on the system. However,
if the original logical volume should become corrupt for some reason, you have a complete
up-to-date copy at your fi ngertips!

Using the Linux LVM
Now that you’ve seen what the Linux LVM can do, this section discusses how to implement
it to help organize the disk space on your system. The Linux LVM package only provides
command line programs for creating and managing all the components in the logical
volume management system. Some Linux distributions include graphical front-ends to the
command line commands, but for complete control of your LVM environment, it’s best to get
comfortable working directly with the commands.

Defining Physical Volumes

The fi rst step in the process is to convert the physical partitions on the hard drive into
physical volume extents used by the Linux LVM. Our friend the fdisk command helps us
here. After creating the basic Linux partition, you need to change the partition type using
the t command:

[...]
Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)

Command (m for help): p

Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

204

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 204

I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xa8661341

 Device Boot Start End Blocks Id System
/dev/sdb1 1 262 2104483+ 8e Linux LVM

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$

The 8e partition type denotes that the partition will be used as part of a Linux LVM system
and not as a direct fi lesystem, as you saw with the 83 partition type earlier.

If the pvcreate command in the next step does not work for you, it’s most likely due to the LVM2 package not

being installed by default. To install the package, use the package name lvm2 and see Chapter 9 for how to install

software packages.

The next step is to use the partition to create the actual physical volume. That’s done using
the pvcreate command. The pvcreate command defi nes the physical partition to use for
the PV. It simply tags the partition as a physical volume in the Linux LVM system:

$ sudo pvcreate /dev/sdb1
 dev_is_mpath: failed to get device for 8:17
 Physical volume "/dev/sdb1" successfully created
$

Don’t let the daunting message dev_is_mpath: failed to get device for 8:17 or similar messages

frighten you. As long as you receive the successfully created message, all is well. The pvcreate com-

mand checks to see whether the partition is a multi-path (mpath) device. If it is not, it issues the daunting message.

You can use the pvdisplay command to display a list of physical volumes you’ve created if
you’d like to see your progress along the way:

$ sudo pvdisplay /dev/sdb1
 "/dev/sdb1" is a new physical volume of "2.01 GiB"
 --- NEW Physical volume ---
 PV Name /dev/sdb1
 VG Name
 PV Size 2.01 GiB

205

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 205

 Allocatable NO
 PE Size 0
 Total PE 0
 Free PE 0
 Allocated PE 0
 PV UUID 0FIuq2-LBod-IOWt-8VeN-tglm-Q2ik-rGU2w7

$

The pvdisplay command shows that /dev/sdb1 is now tagged as a PV. Notice, however,
that in the output, the VG Name is blank. The PV does not yet belong to a volume group.

Creating Volume Groups

The next step in the process is to create one or more volume groups from the physical
volumes. There are no set rules for how many volume groups you need to create for your
system — you can add all the available physical volumes to a single volume group, or you
can create multiple volume groups by combining different physical volumes.

To create the volume group from the command line, you need to use the vgcreate
command. The vgcreate command requires a few command line parameters to defi ne
the volume group name, as well as the name of the physical volumes you’re using to
create the volume group:

$ sudo vgcreate Vol1 /dev/sdb1
 Volume group "Vol1" successfully created
$

That’s not all too exciting for output! If you’d like to see some details about the newly cre-
ated volume group, use the vgdisplay command:

$ sudo vgdisplay Vol1
 --- Volume group ---
 VG Name Vol1
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 1
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 0
 Open LV 0
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 2.00 GiB
 PE Size 4.00 MiB

206

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 206

 Total PE 513
 Alloc PE / Size 0 / 0
 Free PE / Size 513 / 2.00 GiB
 VG UUID oe4I7e-5RA9-G9ti-ANoI-QKLz-qkX4-58Wj6e

$

This example creates a volume group named Vol1, using the physical volume created on
the /dev/sdb1 partition.

Now that you have one or more volume groups created, you’re ready to create the logical volume.

Creating Logical Volumes

The logical volume is what the Linux system uses to emulate a physical partition, and it
holds the fi lesystem. The Linux system handles the logical volumes just like a physical
partition, allowing you to defi ne fi lesystems in the logical volume and then mount the
fi lesystem into the virtual directory.

To create the logical volume, use the lvcreate command. Although you can usually get
away without using command line options in the other Linux LVM commands, the
lvcreate command requires at least some options to be entered. Table 8-5 shows the
available command line options.

TABLE 8-5 The lvcreate Options

Option Long Option Name Description

-c --chunksize Specifi es the chunksize of the snapshot logical volume

-C --contiguous Sets or resets the contiguous allocation policy

-i --stripes Specifi es the number of stripes

-I --stripsize Specifi es the size of each stripe

-l --extents Specifi es the number of logical extents to allocate
to a new logical volume or the percent of the logical
extents to use

-L --size Specifi es the disk size to allocate to a new logical volume

--minor Specifi es the minor number of the device

-m --mirrors Creates a mirrored logical volume

-M --persistent Makes the minor number persistent

-n --name Specifi es the name of the new logical volume

-p --permission Sets read/write permission for the logical volume

-r --readahead Sets the read ahead sector count

207

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 207

-R --regionsize Specifi es the size to divide the mirror regions into

-s --snapshot Creates a snapshot logical volume

-Z --zero Sets the fi rst 1KB of data on the new logical volume to
zeros

Although the command line options may look intimidating, for most situations, you can get
by with a minimal amount of options:

$ sudo lvcreate -l 100%FREE -n lvtest Vol1
 Logical volume "lvtest" created
$

If you want to see the details of what you created, use the lvdisplay command:

$ sudo lvdisplay Vol1
 --- Logical volume ---
 LV Path /dev/Vol1/lvtest
 LV Name lvtest
 VG Name Vol1
 LV UUID 4W2369-pLXy-jWmb-lIFN-SMNX-xZnN-3KN208
 LV Write Access read/write
 LV Creation host, time ... -0400
 LV Status available
 # open 0
 LV Size 2.00 GiB
 Current LE 513
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:2

$

Now you can see just what you created! Notice that the volume group name (Vol1) is used
to identify the volume group to use when creating the new logical volume.

The -l parameter defi nes how much of the available space on the volume group specifi ed to
use for the logical volume. Notice that you can specify the value as a percent of the free space
in the volume group. This example used all (100%) of the free space for the new logical volume.

You can use the -l parameter to specify the size as a percentage of the available space
or the -L parameter to specify the actual size in bytes, kilobytes (KB), megabytes (MB),
or gigabytes (GB). The -n parameter allows you to provide a name for the logical volume
(called lvtest in this example).

208

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 208

Creating the Filesystem

After you run the lvcreate command, the logical volume exists but doesn’t have a fi lesys-
tem. To do that, you need to use the appropriate command line program for the fi lesystem
you want to create:

$ sudo mkfs.ext4 /dev/Vol1/lvtest
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131376 inodes, 525312 blocks
26265 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7728 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first.Use tune2fs -c or -i to override.
$

After you’ve created the new fi lesystem, you can mount the volume in the virtual directory
using the standard Linux mount command, just as if it were a physical partition. The only
difference is that you use a special path that identifi es the logical volume:

$ sudo mount /dev/Vol1/lvtest /mnt/my_partition
$
$ mount
/dev/mapper/vg_server01-lv_root on / type ext4 (rw)
[...]
/dev/mapper/Vol1-lvtest on /mnt/my_partition type ext4 (rw)
$
$ cd /mnt/my_partition
$
$ ls -al
total 24
drwxr-xr-x. 3 root root 4096 Jun 12 10:22 .
drwxr-xr-x. 3 root root 4096 Jun 11 09:58 ..
drwx------. 2 root root 16384 Jun 12 10:22 lost+found
$

209

Chapter 8: Managing Filesystems

8

c08.indd 12/10/2014 Page 209

Notice that the path used in both the mkfs.ext4 and mount commands is a little odd.
Instead of a physical partition path, the path uses the volume group name, along with the
logical volume name. After the fi lesystem is mounted, you can access the new area in the
virtual directory.

Modifying the LVM

Because the benefi t of using the Linux LVM is to dynamically modify fi lesystems, you’d
expect that some tools would allow you to do that. Some tools are available in Linux that
allow you to modify the existing logical volume management confi guration.

If you don’t have access to a fancy graphical interface for managing your Linux LVM envi-
ronment, all is not lost. You’ve already seen some of the Linux LVM command line programs
in action in this chapter. You can use a host of other command line programs to manage
the LVM setup after you’ve installed it. Table 8-6 lists the common commands that are
available in the Linux LVM package.

TABLE 8-6 The Linux LVM Commands

Command Function

vgchange Activates and deactivates a volume group

vgremove Removes a volume group

vgextend Adds physical volumes to a volume group

vgreduce Removes physical volumes from a volume group

lvextend Increases the size of a logical volume

lvreduce Decreases the size of a logical volume

Using these command line programs, you have full control over your Linux LVM
environment.

Be careful when manually increasing or decreasing the size of a logical volume. The fi lesystem stored in the logical

volume must be manually fi xed to handle the change in size. Most fi lesystems include command line programs for

reformatting the fi lesystem, such as the resize2fs program for the ext2, ext3, and ext4 fi lesystems.

210

Part I: The Linux Command Line

c08.indd 12/10/2014 Page 210

Summary
Working with storage devices in Linux requires that you know a little bit about fi lesys-
tems. Knowing how to create and work with fi lesystems from the command line can come
in handy as you work on Linux systems. This chapter discussed how to handle fi lesystems
from the Linux command line.

The Linux system is different from Windows in that it supports lots of different methods
for storing fi les and folders. Each fi lesystem method has different features that make it
ideal for different situations. Also, each fi lesystem method uses different commands for
interacting with the storage device.

Before you can install a fi lesystem on a storage device, you must fi rst prepare the
device. The fdisk command is used to partition storage devices to get them ready for
the fi lesystem. When you partition the storage device, you must defi ne what type of
fi lesystem will be used on it.

After you partition a storage device, you can use one of several different fi lesystems for the
partition. Popular Linux fi lesystems include ext4 and XFS. Both of these fi lesystems provide
journaling fi lesystem features, making them less prone to errors and problems if the Linux
system should crash.

One limiting factor to creating fi lesystems directly on a storage device partition is that you
can’t easily change the size of the fi lesystem if you run out of disk space. However, Linux
supports logical volume management, a method of creating virtual partitions across multi-
ple storage devices. This method allows you to easily expand an existing fi lesystem without
having to completely rebuild it. The Linux LVM package provides command line commands
to create logical volumes across multiple storage devices on which to build fi lesystems.

Now that you’ve seen the core Linux command line commands, it’s close to the time to start
creating some shell script programs. However, before you start coding, we need to discuss
another element: installing software. If you plan to write shell scripts, you need an envi-
ronment in which to create your masterpieces. The next chapter discusses how to install
and manage software packages from the command line in different Linux environments.

211

c09.indd 12/23/2014 Page 211

CHAP T ER

9
Installing Software

IN THIS CHAPTER

Installing software

Using Debian packages

Working with Red Hat packages

In the old days of Linux, installing software could be a painful experience. Fortunately, the
Linux developers have made life a little easier for us by bundling software into pre-built pack-
ages that are much easier to install. However, you still have a little work to do to get the soft-

ware packages installed, especially if you want to do that from the command line. This chapter
looks at the various Package Management Systems available in Linux and the command line tools
used for software installation, management, and removal.

Package Management Primer
Before diving into the world of Linux software package management, this chapter goes through
a few of the basics fi rst. Each of the major Linux distributions utilizes some form of a Package
Management System (PMS) to control installing software applications and libraries. A PMS utilizes
a database that keeps track of these items:

 ■ What software packages are installed on the Linux system

 ■ What fi les have been installed for each package

 ■ Versions of each of the software packages installed

Software packages are stored on servers, called repositories, and are accessed across the Internet via
PMS utilities running on your local Linux system. You can use the PMS utilities to search for new
software packages or even updates to software packages already installed on the system.

A software package often has dependencies or other packages that must be installed fi rst for the
software to run properly. The PMS utilities detect these dependencies and offer to install any addi-
tionally needed software packages before installing the desired package.

212

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 212

The downside to PMS is that there isn’t a single standard utility. Whereas all the bash shell
commands discussed so far in this book work no matter which Linux distribution you use,
this is not true with software package management.

The PMS utilities and their associated commands are vastly different between the various
Linux distributions. The two primary PMS base utilities commonly used in the Linux world
are dpkg and rpm.

Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their PMS
utilities, the dpkg command. This command interacts directly with the PMS on the Linux
system and is used for installing, managing, and removing software packages.

The Red Hat–based distributions, such as Fedora, openSUSE, and Mandriva, use the rpm
command at the base of their PMS. Similar to the dpkg command, the rpm command can
list installed packages, install new packages, and remove existing software.

Note that these two commands are the core of their respective PMS, not the entire PMS
itself. Many Linux distributions that use the dpkg or rpm methods have built additional
specialty PMS utilities upon these base commands to help make your life much easier. The
following sections walk through various PMS utility commands you’ll run into in the popu-
lar Linux distributions.

The Debian-Based Systems
The dpkg command is at the core of the Debian-based family of PMS tools. These other
tools are included in this PMS:

 ■ apt-get

 ■ apt-cache

 ■ aptitude

By far the most common command line tool is aptitude, and for good reason. The aptitude
tool is essentially a front-end for both the apt tools and dpkg. Whereas dpkg is a PMS tool,
aptitude is a complete Package Management System.

Using the aptitude command at the command line helps you avoid common software
installation problems, such as missing software dependencies, unstable system environ-
ments, and just a whole lot of unnecessary hassle. This section looks at how to use the
aptitude command tool from the Linux command line.

Managing packages with aptitude
A common task faced by Linux system administrators is to determine what packages are
already installed on the system. Fortunately, aptitude has a handy interactive interface
that makes this task an easy one.

213

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 213

9

9

If you have aptitude installed in your Linux distribution, at the shell prompt just type
aptitude and press Enter. You are thrown into aptitude’s full-screen mode, as you can see
in Figure 9-1.

FIGURE 9.1

The aptitude main window

Use the arrow keys to maneuver around the menu. Select the menu option Installed
Packages to see what packages are installed. You will see several groups of software pack-
ages, such as editors, and so on. A number in parentheses follows each group, which indi-
cates the number of packages the group contains.

Use the arrow keys to highlight a group, and press Enter to see each subgroup of packages.
You then see the individual package names and their version numbers. Press Enter on indi-
vidual packages to get very detailed information, such as the package’s description, home
page, size, maintainer, and so on.

When you’re fi nished viewing the installed packages, press q to quit the display. You can
then go back to the arrow keys. and use Enter to toggle open or closed the packages and
their subgroups. When you are all fi nished, just press q multiple times until you receive the
pop-up screen “Really quit Aptitude?”

If you already know the packages on your system and want to quickly display detailed
information about a particular package, you don’t need to go into aptitude’s interactive
interface. You can use aptitude as a single command at the command line:

aptitude show package_name

214

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 214

Here’s an example of displaying the details of the package mysql-client:

$ aptitude show mysql-client
Package: mysql-client
State: not installed
Version: 5.5.38-0ubuntu0.14.04.1
Priority: optional
Section: database
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: all
Uncompressed Size: 129 k
Depends: mysql-client-5.5
Provided by: mysql-client-5.5
Description: MySQL database client (metapackage depending on the latest version)
 This is an empty package that depends on the current "best" version of
 mysql-client (currently mysql-client-5.5), as determined by the MySQL
 maintainers. Install this package if in doubt about which MySQL version you
 want, as this is the one considered to be in the best shape by the Maintainers.
Homepage: http://dev.mysql.com/

$

The aptitude show command indicates that the package is not installed on the system. It also shows detailed

package information from the software repository.

One detail you cannot get with aptitude is a listing of all the fi les associated with a par-
ticular software package. To get this list, you must go to the dpkg tool itself:

dpkg -L package_name

Here’s an example of using dpkg to list all the fi les installed as part of the vim-common
package:

$
$ dpkg -L vim-common
/.
/usr
/usr/bin
/usr/bin/xxd
/usr/bin/helpztags
/usr/lib
/usr/lib/mime
/usr/lib/mime/packages
/usr/lib/mime/packages/vim-common
/usr/share
/usr/share/man
/usr/share/man/ru

mailto:discuss@lists.ubuntu.com
http://dev.mysql.com

215

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 215

9

/usr/share/man/ru/man1
/usr/share/man/ru/man1/vim.1.gz
/usr/share/man/ru/man1/vimdiff.1.gz
/usr/share/man/ru/man1/xxd.1.gz
/usr/share/man/it
/usr/share/man/it/man1
[...]
$

You can also do the reverse — fi nd what package a particular fi le belongs to:

dpkg --search absolute_file_name

Note that you need to use an absolute fi le reference for this to work:

$
$ dpkg --search /usr/bin/xxd
vim-common: /usr/bin/xxd
$

The output shows the /usr/bin/xxd fi le was installed as part of the vim-common
package.

Installing software packages with aptitude
Now that you know more about listing software package information on your system, this
section walks through a software package install. First, you’ll want to determine the pack-
age name to install. How do you fi nd a particular software package? Use the aptitude
command with the search option:

aptitude search package_name

The beauty of the search option is that you do not need to insert wildcards around
package_name. Wildcards are implied. Here’s an example of using aptitude to look
for the wine software package:

$
$ aptitude search wine
p gnome-wine-icon-theme - red variation of the GNOME- ...
v libkwineffects1-api -
p libkwineffects1a - library used by effects...
p q4wine - Qt4 GUI for wine (W.I.N.E)
p shiki-wine-theme - red variation of the Shiki- ...
p wine - Microsoft Windows Compatibility ...
p wine-dev - Microsoft Windows Compatibility ...
p wine-gecko - Microsoft Windows Compatibility ...
p wine1.0 - Microsoft Windows Compatibility ...
p wine1.0-dev - Microsoft Windows Compatibility ...

216

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 216

p wine1.0-gecko - Microsoft Windows Compatibility ...
p wine1.2 - Microsoft Windows Compatibility ...
p wine1.2-dbg - Microsoft Windows Compatibility ...
p wine1.2-dev - Microsoft Windows Compatibility ...
p wine1.2-gecko - Microsoft Windows Compatibility ...
p winefish - LaTeX Editor based on Bluefish
$

Notice that before each package name is either a p or i. If you see an i u, the package is
currently installed on your system. If you see a p or v, it is available but not installed. As
you can see from the preceding listing, this system does not have wine currently installed,
but the package is available from the software repository.

Installing a software package on a system from a repository using aptitude is as easy as
this:

aptitude install package_name

After you fi nd the software package name from the search option, just plug it into the
aptitude command using the install option:

$
$ sudo aptitude install wine
The following NEW packages will be installed:
 cabextract{a} esound-clients{a} esound-common{a} gnome-exe-thumbnailer
{a}
 icoutils{a} imagemagick{a} libaudio2{a} libaudiofile0{a} libcdt4{a}
 libesd0{a} libgraph4{a} libgvc5{a} libilmbase6{a} libmagickcore3-extra
{a}
 libmpg123-0{a} libnetpbm10{a} libopenal1{a} libopenexr6{a}
 libpathplan4{a} libxdot4{a} netpbm{a} ttf-mscorefonts-installer{a}
 ttf-symbol-replacement{a} winbind{a} wine wine1.2{a} wine1.2-gecko{a}
0 packages upgraded, 27 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/27.6MB of archives. After unpacking 121MB will be used.
Do you want to continue? [Y/n/?] Y
Preconfiguring packages ...
[...]
All done, no errors.
All fonts downloaded and installed.
Updating fontconfig cache for /usr/share/fonts/truetype/msttcorefonts
Setting up winbind (2:3.5.4~dfsg-1ubuntu7) ...
 * Starting the Winbind daemon winbind
 [OK]
Setting up wine (1.2-0ubuntu5) ...
Setting up gnome-exe-thumbnailer (0.6-0ubuntu1) ...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

$

217

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 217

9

Before the aptitude command in the preceding listing, the sudo command is used. The sudo command allows

you to run a command as the root user. You can use the sudo command to run administrative tasks, such as install-

ing software.

To check if the installation processed properly, just use the search option again. This time
you should see an i u listed in front of the wine software package, indicating it is installed.

You may also notice that there are additional packages with the i u in front of them. This
is because aptitude automatically resolved any necessary package dependencies for us
and installs the needed additional library and software packages. This is a wonderful fea-
ture included in many Package Management Systems.

Updating software with aptitude
While aptitude helps protect you from problems installing software, trying to coordinate a
multiple-package update with dependencies can get tricky. To safely update all the software
packages on a system with any new versions in the repository, use the safe-upgrade option:

aptitude safe-upgrade

Notice that this command doesn’t take a software package name as an argument. That’s
because the safe-upgrade option upgrades all the installed packages to the most recent
version available in the repository, which is safer for system stabilization.

Here’s a sample output from running the aptitude safe-update command:

$
$ sudo aptitude safe-upgrade
The following packages will be upgraded:
 evolution evolution-common evolution-plugins gsfonts libevolution
 xserver-xorg-video-geode
6 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 9,312kB of archives. After unpacking 0B will be used.
Do you want to continue? [Y/n/?] Y
Get:1 http://us.archive.ubuntu.com/ubuntu/ maverick/main
 libevolution i386 2.30.3-1ubuntu4 [2,096kB]
[...]
Preparing to replace xserver-xorg-video-geode 2.11.9-2
(using .../xserver-xorg-video-geode_2.11.9-3_i386.deb) ...
Unpacking replacement xserver-xorg-video-geode ...
Processing triggers for man-db ...
Processing triggers for desktop-file-utils ...
Processing triggers for python-gmenu ...
[...]
Current status: 0 updates [-6].
$

http://us.archive.ubuntu.com/ubuntu

218

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 218

You can also use less-conservative options for software upgrades:

 ■ aptitude full-upgrade

 ■ aptitude dist-upgrade

These options perform the same task, upgrading all the software packages to the latest ver-
sions. Where they differ from safe-upgrade is that they do not check dependencies between
packages. The whole package dependency issue can get real ugly. If you’re not exactly sure of
the dependencies for the various packages, stick with the safe-upgrade option.

Obviously, running aptitude’s safe-upgrade option is something you should do on a regular basis to keep your

system up to date. However, it is especially important to run it after a fresh distribution installation. Usually, lots of

security patches and updates have been released since the last full release of a distribution.

Uninstalling software with aptitude
Getting rid of software packages with aptitude is as easy as installing and upgrading them.
The only real choice you have to make is whether to keep the software’s data and confi gura-
tion fi les around afterward.

To remove a software package, but not the data and confi guration fi les, use the remove
option of aptitude. To remove a software package and the related data and confi guration
fi les, use the purge option:

$ sudo aptitude purge wine
[sudo] password for user:
The following packages will be REMOVED:
 cabextract{u} esound-clients{u} esound-common{u} gnome-exe-thumbnailer
{u}
 icoutils{u} imagemagick{u} libaudio2{u} libaudiofile0{u} libcdt4{u}
 libesd0{u} libgraph4{u} libgvc5{u} libilmbase6{u} libmagickcore3-extra
{u}
 libmpg123-0{u} libnetpbm10{u} libopenal1{u} libopenexr6{u}
 libpathplan4{u} libxdot4{u} netpbm{u} ttf-mscorefonts-installer{u}
 ttf-symbol-replacement{u} winbind{u} wine{p} wine1.2{u} wine1.2-gecko
{u}
0 packages upgraded, 0 newly installed, 27 to remove and 6 not upgraded.
Need to get 0B of archives. After unpacking 121MB will be freed.
Do you want to continue? [Y/n/?] Y
(Reading database ... 120968 files and directories currently installed.)
Removing ttf-mscorefonts-installer ...
[...]
Processing triggers for fontconfig ...
Processing triggers for ureadahead ...
Processing triggers for python-support ...

$

219

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 219

9

To see if the package has been removed, you can use the aptitude search option again.
If you see a c in front of the package name, it means the software has been removed, but
the confi guration fi les have not been purged from the system. A p in front indicates the
confi guration fi les have also been removed.

The aptitude repositories
The default software repository locations for aptitude are set up for you when you
install your Linux distribution. The repository locations are stored in the fi le /etc/apt/
sources.list.

In many cases, you never need to add/remove a software repository so you don’t need to
touch this fi le. However, aptitude pulls software from only these repositories. Also, when
searching for software to install or update, aptitude checks only these repositories. If you
need to include some additional software repositories for your PMS, this is the place to do it.

The Linux distribution developers work hard to make sure package versions added to the repositories don’t confl ict

with one another. Usually it’s safest to upgrade or install a software package from the repository. Even if a newer

version is available elsewhere, you may want to hold off installing it until that version is available in your Linux distri-

bution’s repository.

The following is an example of a sources.list fi le from an Ubuntu system:

$ cat /etc/apt/sources.list
#deb cdrom:[Ubuntu 14.04 LTS _Trusty Tahr_ - Release i386 (20140417)]/
 trusty main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.
deb http://us.archive.ubuntu.com/ubuntu/ trusty main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ trusty main restricted

Major bug fix updates produced after the final release of the
distribution.
deb http://us.archive.ubuntu.com/ubuntu/ trusty-updates main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ trusty-updates main restricted

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team. Also, please note that software in universe WILL NOT receive any
review or updates from the Ubuntu security team.
deb http://us.archive.ubuntu.com/ubuntu/ trusty universe
deb-src http://us.archive.ubuntu.com/ubuntu/ trusty universe
deb http://us.archive.ubuntu.com/ubuntu/ trusty-updates universe

http://help.ubuntu.com/community/UpgradeNotes
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

220

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 220

deb-src http://us.archive.ubuntu.com/ubuntu/ trusty-updates universe
[...]
Uncomment the following two lines to add software from Canonical's
'partner' repository.
This software is not part of Ubuntu, but is offered by Canonical and the
respective vendors as a service to Ubuntu users.
deb http://archive.canonical.com/ubuntu trusty partner
deb-src http://archive.canonical.com/ubuntu trusty partner

This software is not part of Ubuntu, but is offered by third-party
developers who want to ship their latest software.
deb http://extras.ubuntu.com/ubuntu trusty main
deb-src http://extras.ubuntu.com/ubuntu trusty main
$

First, notice that the fi le is full of helpful comments and warnings. The repository sources
specifi ed use the following structure:

deb (or deb-src) address distribution_name package_type_list

The deb or deb-src value indicates the software package type. The deb value indicates
it is a source of compiled programs, whereas the deb-src value indicates it is a source of
source code.

The address entry is the software repository’s web address. The distribution_name entry
is the name of this particular software repository’s distribution’s version. In the example, the
distribution name is trusty. This does not necessarily mean that the distribution you are
running is Ubuntu’s Trusty Tahr; it just means the Linux distribution is using the Ubuntu
Trusty Tahr software repositories! For example, in Linux Mint’s sources.list fi le, you see a
mix of Linux Mint and Ubuntu software repositories.

Finally, the package_type_list entry may be more than one word and indicates what
type of packages the repository has in it. For example, you may see values such as main,
restricted, universe, or partner.

When you need to add a software repository to your sources fi le, you can try to wing it
yourself, but that more than likely will cause problems. Often, software repository sites
or various package developer sites have an exact line of text that you can copy from their
website and paste into your sources.list fi le. It’s best to choose the safer route and
just copy/paste.

The front-end interface, aptitude, provides intelligent command line options for working
with the Debian-based dpkg utility. Now it’s time to look at the Red Hat–based distribu-
tions’ rpm utility and its various front-end interfaces.

http://us.archive.ubuntu.com/ubuntu
http://archive.canonical.com/ubuntu
http://archive.canonical.com/ubuntu
http://extras.ubuntu.com/ubuntu
http://extras.ubuntu.com/ubuntu

221

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 221

9

The Red Hat–Based Systems
Like the Debian-based distributions, the Red Hat–based systems have several different
front-end tools that are available. These are the common ones:

 ■ yum: Used in Red Hat and Fedora

 ■ urpm: Used in Mandriva

 ■ zypper: Used in openSUSE

These front-ends are all based on the rpm command line tool. The following section dis-
cusses how to manage software packages using these various rpm-based tools. The focus is
on yum, but information is also included for zypper and urpm.

Listing installed packages
To fi nd out what is currently installed on your system, at the shell prompt, type the follow-
ing command:

yum list installed

The information will probably whiz by you on the display screen, so it’s best to redirect the
installed software listing into a fi le. You can then use the more or less command (or a GUI
editor) to look at the list in a controlled manner.

yum list installed > installed_software

To list out the installed packages on your openSUSE or Mandriva distribution, see the com-
mands in Table 9-1. Unfortunately, the urpm tool used in Mandriva cannot produce a cur-
rently installed software listing. Thus, you need to revert to the underlying rpm tool.

TABLE 9-1 How to List Installed Software with zypper and urpm

Distribution Front-End Tool Command

Mandriva urpm rpm -qa > installed_software

openSUSE zypper zipper search -I > installed_software

To fi nd out detailed information for a particular software package, yum really shines. It
gives you a very verbose description of the package, and with another simple command,
you can see whether the package is installed:

yum list xterm
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
Available Packages

222

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 222

xterm.i686 253-1.el6

yum list installed xterm
Loaded plugins: refresh-packagekit
Error: No matching Packages to list
#

The commands to list detailed software package information using urpm and zypper are
in Table 9-2. You can acquire an even more detailed set of package information from the
repository, using the info option on the zypper command.

TABLE 9-2 How to See Various Package Details with zypper and urpm

Detail Type Front-End Tool Command

Package Information urpm urpmq -i package_name

Installed? urpm rpm -q package_name

Package Information zypper zypper search -s package_name

Installed? zypper Same command, but look for an i in the
Status column

Finally, if you need to fi nd out what software package provides a particular fi le on your
fi lesystem, the versatile yum can do that, too! Just enter the command:

yum provides file_name

Here’s an example of trying to fi nd what software provided the confi guration fi le /etc/
yum.conf:

yum provides /etc/yum.conf
Loaded plugins: fastestmirror, refresh-packagekit, security
Determining fastest mirrors
 * base: mirror.web-ster.com
 * extras: centos.chi.host-engine.com
 * updates: mirror.umd.edu
yum-3.2.29-40.el6.centos.noarch : RPM package installer/updater/manager
Repo : base
Matched from:
Filename : /etc/yum.conf

yum-3.2.29-43.el6.centos.noarch : RPM package installer/updater/manager
Repo : updates
Matched from:

223

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 223

9

Filename : /etc/yum.conf

yum-3.2.29-40.el6.centos.noarch : RPM package installer/updater/manager
Repo : installed
Matched from:
Other : Provides-match: /etc/yum.conf

#

#

yum checked three separate repositories: base, updates, and installed. From both, the
answer is: the yum software package provides this fi le!

Installing software with yum
Installation of a software package using yum is incredibly easy. The following is the basic
command for installing a software package, all its needed libraries, and package dependen-
cies from a repository:

yum install package_name

Here’s an example of installing the xterm package that we talked about in Chapter 2:

$ su -
Password:
yum install xterm
Loaded plugins: fastestmirror, refresh-packagekit, security
Determining fastest mirrors
 * base: mirrors.bluehost.com
 * extras: mirror.5ninesolutions.com
 * updates: mirror.san.fastserv.com
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package xterm.i686 0:253-1.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved
[...]
Installed:
 xterm.i686 0:253-1.el6

Complete!
#

224

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 224

Before the yum command in the preceding listing, the su - command is used. This command allows you to switch

to the root user. On this Linux system, the # denotes you are logged in as root. You should only switch to root user

temporarily in order to run administrative tasks, such as installing and updating software. The sudo command is

another option as well.

You can also manually download an rpm installation fi le and install it using yum. This is
called a local installation. This is the basic command:

yum localinstall package_name.rpm

You can begin to see that one of yum’s strengths is that it uses very logical and user-
friendly commands.

Table 9-3 shows how to perform a package install with urpm and zypper. You should note that
if you are not logged in as root, you get a “command not found” error message using urpm.

TABLE 9-3 How to Install Software with zypper and urpm

Front-End Tool Command

urpm urpmi package_name

zypper zypper install package_name

Updating software with yum
In most Linux distributions, when you’re working away in the GUI, you get those nice little
notifi cation icons telling you that an update is needed. Here at the command line, it takes
a little more work.

To see the list of all the available updates for your installed packages, type the following
command:

yum list updates

It’s always nice to get no response to this command because it means you have nothing to
update! However, if you do discover a particular software package needs updating, type the
following command:

yum update package_name

If you’d like to update all the packages listed in the update list, just enter the following
command:

yum update

225

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 225

9

Commands for updating software packages on Mandriva and openSUSE are listed in
Table 9-4. When urpm is used, the repository database is automatically refreshed as well as
software packages updated.

TABLE 9-4 How to Update Software with zypper and urpm

Front-End Tool Command

urpm urpmi --auto-update --update

zypper zypper update

Uninstalling software with yum
The yum tool also provides an easy way to uninstall software you no longer want on your
system. As with aptitude, you need to choose whether to keep the software package’s
data and confi guration fi les.

To just remove the software package and keep any confi guration and data fi les, use the fol-
lowing command:

yum remove package_name

To uninstall the software and all its fi les, use the erase option:

yum erase package_name

It is equally easy to remove software using urpm and zypper in Table 9-5. Both of these
tools perform a function similar to yum’s erase option.

TABLE 9-5 How to Uninstall Software with zypper and urpm

Front-End Tool Command

urpm urpme package_name

zypper zypper remove package_name

Although life is considerably easier with PMS packages, it’s not always problem-free.
Occasionally, things do go wrong. Fortunately, there’s help.

Dealing with broken dependencies
Sometimes, as multiple software packages get loaded, a software dependency for one pack-
age can get overwritten by the installation of another package. This is called a broken
dependency.

226

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 226

If this should happen on your system, fi rst try the following command:

yum clean all

Then try to use the update option in the yum command. Sometimes, just cleaning up any
misplaced fi les can help.

If that doesn’t solve the problem, try the following command:

yum deplist package_name

This command displays all the package’s library dependencies and what software package
provides them. After you know the libraries required for a package, you can then install
them. Here’s an example of determining the dependencies for the xterm package:

yum deplist xterm

Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
 * base: mirrors.bluehost.com
 * extras: mirror.5ninesolutions.com
 * updates: mirror.san.fastserv.com
Finding dependencies:
package: xterm.i686 253-1.el6
 dependency: libncurses.so.5
 provider: ncurses-libs.i686 5.7-3.20090208.el6
 dependency: libfontconfig.so.1
 provider: fontconfig.i686 2.8.0-3.el6
 dependency: libXft.so.2
 provider: libXft.i686 2.3.1-2.el6
 dependency: libXt.so.6
 provider: libXt.i686 1.1.3-1.el6
 dependency: libX11.so.6
 provider: libX11.i686 1.5.0-4.el6
 dependency: rtld(GNU_HASH)
 provider: glibc.i686 2.12-1.132.el6
 provider: glibc.i686 2.12-1.132.el6_5.1
 provider: glibc.i686 2.12-1.132.el6_5.2
 dependency: libICE.so.6
 provider: libICE.i686 1.0.6-1.el6
 dependency: libXaw.so.7
 provider: libXaw.i686 1.0.11-2.el6
 dependency: libtinfo.so.5
 provider: ncurses-libs.i686 5.7-3.20090208.el6
 dependency: libutempter.so.0
 provider: libutempter.i686 1.1.5-4.1.el6
 dependency: /bin/sh
 provider: bash.i686 4.1.2-15.el6_4
 dependency: libc.so.6(GLIBC_2.4)

227

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 227

9

 provider: glibc.i686 2.12-1.132.el6
 provider: glibc.i686 2.12-1.132.el6_5.1
 provider: glibc.i686 2.12-1.132.el6_5.2
 dependency: libXmu.so.6
 provider: libXmu.i686 1.1.1-2.el6
#

If that doesn’t solve your problem, you have one last tool:

yum update --skip-broken

The --skip-broken option allows you to just ignore the package with the broken depen-
dency and update the other software packages. This may not help the broken package, but
at least you can update the remaining packages on the system!

In Table 9-6, the commands to try for broken dependencies with urpm and zypper are
listed. With zypper, there is only the one command to verify and fi x a broken dependency.
With urpm, if the clean option does not work, you can skip updates on the offensive pack-
age. To do this, you must add the name of the offending package to the fi le /etc/urpmi/
skip.list.

TABLE 9-6 Broken Dependencies with zypper and urpm

Front End Tool Command

urpm urpmi --clean

zypper zypper verify

yum repositories
Just like the aptitude systems, yum has its software repositories set up at installation.
For most purposes, these pre-installed repositories work just fi ne for your needs. But if and
when the time comes that you need to install software from a different repository, here are
some things you need to know.

A wise system administrator sticks with approved repositories. An approved repository is one that is sanctioned by

the distribution’s offi cial site. If you start adding unapproved repositories, you lose the guarantee of stability. And you

will be heading into broken dependencies territory.

To see what repositories you are currently pulling software from, type the following
command:

yum repolist

228

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 228

If you don’t fi nd a repository you need software from, you need to do a little confi guration
fi le editing. The yum repository defi nition fi les are located in /etc/yum.repos.d. You
need to add the proper URL and gain access to any necessary encryption keys.

Good repository sites such as rpmfusion.org lay out all the steps necessary to use them.
Sometimes, these repository sites offer an rpm fi le that you can download and install using
the yum localinstall command. The installation of the rpm fi le does all the repository
setup work for you. Now that’s convenient!

urpm calls its repositories media. The commands for looking at urpm media and zypper’s
repositories are in Table 9-7. Notice with both of these front-end tools that you do not edit
a confi guration fi le. Instead, to add media or a repository, you just type the command.

TABLE 9-7 zypper and urpm Repositories

Action Front-End Tool Command

Display repository urpm urpmq --list-media

Add repository urpm urpmi.addmedia path_name

Display repository zypper zypper repos

Add repository zypper zypper addrepo path_name

Both Debian–based and Red Hat–based systems use Package Management Systems to ease
the process of managing software. Now we are going to step out of the world of Package
Management Systems and look at something a little more diffi cult: installing directly from
source code.

Installing from Source Code
Chapter 4 discussed tarball packages — how to create them using the tar command line
command and how to unpack them. Before the fancy rpm and dpkg tools, administrators
had to know how to unpack and install software from tarballs.

If you work in the open source software environment much, there’s a good chance you will
still fi nd software packed up as a tarball. This section walks you through the process of
unpacking and installing a tarball software package.

For this example, the software package sysstat is used. The sysstat utility is a very
nice software package that provides a variety of system monitoring tools.

First, you need to download the sysstat tarball to your Linux system. You can often fi nd
the sysstat package available on different Linux sites, but it’s usually best to go straight

229

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 229

9

to the source of the program. In this case, it’s the website http://sebastien.godard
.pagesperso-orange.fr/.

If you click the Download link, you go to the page that contains the fi les for downloading.
The current version at the time of this writing is 11.1.1, and the distribution fi le name is
sysstat-11.1.1.tar.gz.

Click the link to download the fi le to your Linux system. After you have downloaded the
fi le, you can unpack it.

To unpack a software tarball, use the standard tar command:

#
tar -zxvf sysstat-11.1.1.tar.gz
sysstat-11.1.1/
sysstat-11.1.1/cifsiostat.c
sysstat-11.1.1/FAQ
sysstat-11.1.1/ioconf.h
sysstat-11.1.1/rd_stats.h
sysstat-11.1.1/COPYING
sysstat-11.1.1/common.h
sysstat-11.1.1/sysconfig.in
sysstat-11.1.1/mpstat.h
sysstat-11.1.1/rndr_stats.h
[...]
sysstat-11.1.1/activity.c
sysstat-11.1.1/sar.c
sysstat-11.1.1/iostat.c
sysstat-11.1.1/rd_sensors.c
sysstat-11.1.1/prealloc.in
sysstat-11.1.1/sa2.in

#

Now that the tarball is unpacked and the fi les have neatly put themselves into a directory
called sysstat-11.1.1, you can dive down into that directory and continue.

First, use the cd command to get into the new directory and list the contents of the
directory:

$ cd sysstat-11.1.1
$ ls
activity.c iconfig prealloc.in sa.h
build INSTALL pr_stats.c sar.c
CHANGES ioconf.c pr_stats.h sa_wrap.c
cifsiostat.c ioconf.h rd_sensors.c sysconfig.in
cifsiostat.h iostat.c rd_sensors.h sysstat-11.1.1.lsm
common.c iostat.h rd_stats.c sysstat-11.1.1.spec

http://sebastien.godard

230

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 230

common.h json_stats.c rd_stats.h sysstat.in
configure json_stats.h README sysstat.ioconf
configure.in Makefile.in rndr_stats.c sysstat.service.in
contrib man rndr_stats.h sysstat.sysconfig.in
COPYING mpstat.c sa1.in version.in
count.c mpstat.h sa2.in xml
count.h nfsiostat-sysstat.c sa_common.c xml_stats.c
CREDITS nfsiostat-sysstat.h sadc.c xml_stats.h
cron nls sadf.c
FAQ pidstat.c sadf.h
format.c pidstat.h sadf_misc.c
$

In the listing of the directory, you should typically see a README or AAAREADME fi le. It is
very important to read this fi le. The actual instructions you need to fi nish the software’s
installation are in this fi le.

Following the advice contained in the README fi le, the next step is to configure
sysstat for your system. This checks your Linux system to ensure it has the proper
library dependencies, in addition to the proper compiler to compile the source code:

./configure

Check programs:
.
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
[...]
checking for ANSI C header files... (cached) yes
checking for dirent.h that defines DIR... yes
checking for library containing opendir... none required
checking ctype.h usability... yes
checking ctype.h presence... yes
checking for ctype.h... yes
checking errno.h usability... yes
checking errno.h presence... yes
checking for errno.h... yes
[...]
Check library functions:
.
checking for strchr... yes
checking for strcspn... yes
checking for strspn... yes
checking for strstr... yes
checking for sensors support... yes
checking for sensors_get_detected_chips in -lsensors... no
checking for sensors lib... no
.

231

Chapter 9: Installing Software

c09.indd 12/23/2014 Page 231

9

Check system services:
.
checking for special C compiler options needed for large files... no
checking for _FILE_OFFSET_BITS value needed for large files... 64
.
Check configuration:
[...]
Now create files:
[...]
config.status: creating Makefile

 Sysstat version: 11.1.1
 Installation prefix: /usr/local
 rc directory: /etc/rc.d
 Init directory: /etc/rc.d/init.d
 Systemd unit dir:
 Configuration directory: /etc/sysconfig
 Man pages directory: ${datarootdir}/man
 Compiler: gcc
 Compiler flags: -g -O2

#

If anything does go wrong, the configure step displays an error message explaining
what’s missing. If you don’t have the GNU C compiler installed in your Linux distribution,
you get a single error message, but for all other issues you should see multiple messages
indicating what’s installed and what isn’t.

The next stage is to build the various binary fi les using the make command. The make com-
mand compiles the source code and then the linker to create the fi nal executable fi les for
the package. As with the configure command, the make command produces lots of out-
put as it goes through the steps of compiling and linking all the source code fi les:

make
–gcc -o sadc.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2
 -DSA_DIR=\"/var/log/sa\" -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
 -DUSE_NLS -DPACKAGE=\"sysstat\"
 -DLOCALEDIR=\"/usr/local/share/locale\" sadc.c
gcc -o act_sadc.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2
 -DSOURCE_SADC -DSA_DIR=\"/var/log/sa\"
 -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
 -DUSE_NLS -DPACKAGE=\"sysstat\"
 -DLOCALEDIR=\"/usr/local/share/locale\" activity.c
[...]
#

When make is fi nished, you have the actual sysstat software program available in the
directory! However, it’s somewhat inconvenient to have to run it from that directory.

232

Part I: The Linux Command Line

c09.indd 12/23/2014 Page 232

Instead, you’ll want to install it in a common location on your Linux system. To do that,
you need to log in as the root user account (or use the sudo command if your Linux distri-
bution prefers) and then use the install option of the make command:

make install
mkdir -p /usr/local/share/man/man1
mkdir -p /usr/local/share/man/man5
mkdir -p /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa1.8*
install -m 644 -g man man/sa1.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa2.8*
install -m 644 -g man man/sa2.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sadc.8*
[...]
install -m 644 -g man man/sadc.8 /usr/local/share/man/man8
install -m 644 FAQ /usr/local/share/doc/sysstat-11.1.1
install -m 644 *.lsm /usr/local/share/doc/sysstat-11.1.1
#

Now the sysstat package is installed on the system! Although it’s not quite as easy as
installing a software package via a PMS, installing software using tarballs is not that diffi cult.

Summary
This chapter discussed how to work with a Package Management Systems (PMS) to install,
update, or remove software from the command line. Although most of the Linux distribu-
tions use fancy GUI tools for software package management, you can also perform package
management from the command line.

The Debian-based Linux distributions use the dpkg utility to interface with the PMS from
the command line. A front-end to the dpkg utility is aptitude. It provides simple com-
mand line options for working with software packages in the dpkg format.

The Red Hat–based Linux distributions are based on the rpm utility but use different front-
end tools at the command line. Red Hat and Fedora use yum for installing and managing
software packages. The openSUSE distribution uses zypper for managing software, while
the Mandriva distribution uses urpm.

The chapter closed with a discussion on how to install software packages that are only dis-
tributed in source code tarballs. The tar command allows you to unpack the source code
fi les from the tarball, and configure and make allow you to build the fi nal executable
program from the source code.

The next chapter looks at the different editors available in Linux distributions. As you
get ready to start working on shell scripts, it will come in handy to know what editors are
available to use!

233

c10.indd 12/05/2014 Page 233

CHAP T ER

10
Working with Editors

IN THIS CHAPTER

Working with the vim editor

Exploring nano

Understanding emacs

Getting comfortable with kwrite

Looking at Kate

Using the GNOME editor

B
efore you can start your shell scripting career, you need to know how to use at least one text
editor in Linux. The more you know about how to use features such as searching, cutting,
and pasting, the quicker you can develop your shell scripts.

You can choose from several editors. Many individuals fi nd a particular editor whose features they
love and exclusively use that text editor. This chapter discusses just a few of the text editors you’ll
see in the Linux world.

Visiting the vim Editor
The vi editor was the original editor used on Unix systems. It used the console graphics mode to
emulate a text-editing window, allowing you to see the lines of your fi le, move around within the
fi le, and insert, edit, and replace text.

Although it was quite possibly the most complicated editor in the world (at least in the opinion of
those who hate it), it provides many features that have made it a staple for Unix administrators for
decades.

When the GNU Project ported the vi editor to the open source world, they chose to make some
improvements to it. Because it no longer resembled the original vi editor found in the Unix world,
the developers also renamed it, to vi improved, or vim.

This section walks you through the basics of using the vim editor to edit your text shell script fi les.

234

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 234

Checking your vim package
Before you begin your exploration of the vim editor, it’s a good idea to understand what
vim package your Linux system has installed. On some distributions, you will have the
full vim package installed and an alias for the vi command, as shown on this CentOS
distribution:

$ alias vi
alias vi='vim'
$
$ which vim
/usr/bin/vim
$
$ ls -l /usr/bin/vim
-rwxr-xr-x. 1 root root 1967072 Apr 5 2012 /usr/bin/vim
$

Notice that the program fi le’s long listing does not show any linked fi les (see Chapter 3 for
more information on linked fi les). If the vim program is linked, it may be linked to a less
than full-featured editor. Thus, it’s a good idea to check for linked fi les.

On other distributions, you will fi nd various fl avors of the vim editor. Notice on this
Ubuntu distribution that not only is there no alias for the vi command, but the /usr/
bin/vi program fi le belongs to a series of fi le links:

$ alias vi
-bash: alias: vi: not found
$
$ which vi
/usr/bin/vi
$
$ ls -l /usr/bin/vi
lrwxrwxrwx 1 root root 20 Apr 22 12:39
/usr/bin/vi -> /etc/alternatives/vi
$
$ ls -l /etc/alternatives/vi
lrwxrwxrwx 1 root root 17 Apr 22 12:33
/etc/alternatives/vi -> /usr/bin/vim.tiny
$
$ ls -l /usr/bin/vim.tiny
-rwxr-xr-x 1 root root 884360 Jan 2 14:40
/usr/bin/vim.tiny
$
$ readlink -f /usr/bin/vi
/usr/bin/vim.tiny

235

Chapter 10: Working with Editors

c10.indd 12/05/2014 Page 235

10

Thus, when the vi command is entered, the /usr/bin/vim.tiny program is executed.
The vim.tiny program provides only a few vim editor features. If you are serious about
using the vim editor and have Ubuntu, you should install at least the basic vim package.

Notice in the preceding example that, instead of having to use the ls -l command multiple times to fi nd a series

of linked fi les’ fi nal object, you can use the readlink -f command. It immediately produces the linked fi le series’

fi nal object.

Software installations were covered in detail in Chapter 9. Installing the basic vim package
on this Ubuntu distribution is fairly straightforward:

$ sudo apt-get install vim
[...]
The following extra packages will be installed:
 vim-runtime
Suggested packages:
 ctags vim-doc vim-scripts
The following NEW packages will be installed:
 vim vim-runtime
[...]
$
$ readlink -f /usr/bin/vi
/usr/bin/vim.basic
$

The basic vim editor is now installed on this Ubuntu distribution, and the /usr/bin/vi
program fi le’s link was automatically changed to point to /usr/bin/vim.basic. Thus,
when the vi command is entered on this Ubuntu system, the basic vim editor is used
instead of tiny vim.

Exploring vim basics
The vim editor works with data in a memory buffer. To start the vim editor, just type the
vim command (or vi if there’s an alias or linked fi le) and the name of the fi le you want to
edit:

$ vim myprog.c

If you start vim without a fi lename, or if the fi le doesn’t exist, vim opens a new buffer area
for editing. If you specify an existing fi le on the command line, vim reads the entire fi le’s
contents into a buffer area, where it is ready for editing, as shown in Figure 10-1.

236

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 236

FIGURE 10-1

The vim main window.

The vim editor detects the terminal type for the session (see Chapter 2) and uses a full-
screen mode to use the entire console window for the editor area.

The initial vim edit window shows the contents of the fi le (if there are any) along with
a message line at the bottom of the window. If the fi le contents don’t take up the entire
screen, vim places a tilde on lines that are not part of the fi le (as shown in Figure 10-1).

The message line at the bottom indicates information about the edited fi le, depending on
the fi le’s status, and the default settings in your vim installation. If the fi le is new, the
message [New File] appears.

The vim editor has two modes of operation:

 ■ Normal mode

 ■ Insert mode

When you fi rst open a fi le (or start a new fi le) for editing, the vim editor enters normal
mode. In normal mode, the vim editor interprets keystrokes as commands (more on those
later).

In insert mode, vim inserts every key you type at the current cursor location in the buffer.
To enter insert mode, press the i key. To get out of insert mode and go back into normal
mode, press the Escape key on the keyboard.

237

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 237

In normal mode, you can move the cursor around the text area by using the arrow keys
(as long as your terminal type is detected properly by vim). If you happen to be on a fl aky
terminal connection that doesn’t have the arrow keys defi ned, all hope is not lost. The vim
commands include commands for moving the cursor:

 ■ h to move left one character

 ■ j to move down one line (the next line in the text)

 ■ k to move up one line (the previous line in the text)

 ■ l to move right one character

Moving around within large text fi les line by line can get tedious. Fortunately, vim pro-
vides a few commands to help speed things along:

 ■ PageDown (or Ctrl+F) to move forward one screen of data

 ■ PageUp (or Ctrl+B) to move backward one screen of data

 ■ G to move to the last line in the buffer

 ■ num G to move to the line number num in the buffer

 ■ gg to move to the fi rst line in the buffer

The vim editor has a special feature within normal mode called command line mode. The
command line mode provides an interactive command line where you can enter additional
commands to control the actions in vim. To get to command line mode, press the colon key
in normal mode. The cursor moves to the message line, and a colon (:) appears, waiting for
you to enter a command.

Within the command line mode are several commands for saving the buffer to the fi le and
exiting vim:

 ■ q to quit if no changes have been made to the buffer data

 ■ q! to quit and discard any changes made to the buffer data

 ■ w filename to save the fi le under a different fi lename

 ■ wq to save the buffer data to the fi le and quit

After seeing just a few basic vim commands, you might understand why some people
absolutely hate the vim editor. To be able to use vim to its fullest, you must know plenty
of obscure commands. However, after you get a few of the basic vim commands down, you
can quickly edit fi les directly from the command line, no matter what type of environ-
ment you’re in. Plus, after you get comfortable typing commands, it almost seems second
nature to type both data and editing commands, and it becomes odd having to jump back
to using a mouse!

238

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 238

Editing data
While in insert mode, you can insert data into the buffer; however, sometimes you need to
add or remove data after you’ve already entered it into the buffer. While in normal mode,
the vim editor provides several commands for editing the data in the buffer. Table 10-1 lists
some common editing commands for vim.

TABLE 10-1 vim Editing Commands

Command Description

x Deletes the character at the current cursor position

dd Deletes the line at the current cursor position

dw Deletes the word at the current cursor position

d$ Deletes to the end of the line from the current cursor position

J Deletes the line break at the end of the line at the current cursor position
(joins lines)

u Undoes the previous edit command

a Appends data after the current cursor position

A Appends data to the end of the line at the current cursor position

r char Replaces a single character at the current cursor position with char

R text Overwrites the data at the current cursor position with text, until you press
Escape

Some of the editing commands also allow you to use a numeric modifi er to indicate how
many times to perform the command. For example, the command 2x deletes two characters,
starting from the current cursor position, and the command 5dd deletes fi ve lines, starting
at the line from the current cursor position.

Be careful when trying to use the keyboard Backspace or Delete keys while in the vim editor’s normal mode. The vim

editor usually recognizes the Delete key as the functionality of the x command, deleting the character at the current

cursor location. Usually, the vim editor doesn’t recognize the Backspace key in normal mode.

Copying and pasting
A standard editor feature is the ability to cut or copy data and paste it elsewhere in the
document. The vim editor provides a way to do this.

239

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 239

Cutting and pasting is relatively easy. You’ve already seen the commands in Table 10-1 that
can remove data from the buffer. However, when vim removes data, it actually keeps it
stored in a separate register. You can retrieve that data by using the p command.

For example, you can use the dd command to delete a line of text, move the cursor to the
buffer location where you want to place it, and then use the p command. The p command
inserts the text after the line at the current cursor position. You can do this with any com-
mand that removes text.

Copying text is a little bit trickier. The copy command in vim is y (for yank). You can
use the same second character with y as with the d command (yw to yank a word, y$ to
yank to the end of a line). After you yank the text, move the cursor to the location where
you want to place the text and use the p command. The yanked text now appears at that
location.

Yanking is tricky in that you can’t see what happened because you’re not affecting the text
that you yank. You never know for sure what you yanked until you paste it somewhere. But
there’s another feature in vim that helps you out with yanking.

The visual mode highlights text as you move the cursor. You use visual mode to select text
to yank for pasting. To enter visual mode, move the cursor to the location where you want
to start yanking, and press v. Notice that the text at the cursor position is now high-
lighted. Next, move the cursor to cover the text you want to yank (you can even move
down lines to yank more than one line of text). As you move the cursor, vim highlights the
text in the yank area. After you’ve covered the text you want to copy, press the y key to
activate the yank command. Now that you have the text in the register, just move the cur-
sor to where you want to paste and use the p command.

Searching and substituting
You can easily search for data in the buffer using the vim search command. To enter a
search string, press the forward slash (/) key. The cursor goes to the message line, and vim
displays a forward slash. Enter the text you want to fi nd, and press the Enter key. The vim
editor responds with one of three actions:

 ■ If the word appears after the current cursor location, it jumps to the fi rst location
where the text appears.

 ■ If the word doesn’t appear after the current cursor location, it wraps around the
end of the fi le to the fi rst location in the fi le where the text appears (and indicates
this with a message).

 ■ It produces an error message stating that the text was not found in the fi le.

To continue searching for the same word, press the forward slash character and then press
the Enter key, or you can use the n key, for next.

240

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 240

The substitute command allows you to quickly replace (substitute) one word for another in
the text. To get to the substitute command, you must be in command line mode. The for-
mat for the substitute command is:

:s/old/new/

The vim editor jumps to the fi rst occurrence of the text old and replaces it with the text
new. You can make a few modifi cations to the substitute command to substitute more than
one occurrence of the text:

 ■ :s/old/new/g to replace all occurrences of old in a line

 ■ :n,ms/old/new/g to replace all occurrences of old between line numbers n and m

 ■ :%s/old/new/g to replace all occurrences of old in the entire fi le

 ■ :%s/old/new/gc to replace all occurrences of old in the entire fi le, but prompt
for each occurrence

As you can see, for a console mode text editor, vim contains quite a few advanced features.
Because every Linux distribution includes it, it’s a good idea to at least know the basics of
the vim editor so you can always edit scripts, no matter where you are or what you have
available.

Navigating the nano Editor
Although vim is a very complicated editor with many powerful features, nano is a very
simple editor. For individuals who need a simple console mode text editor that is easy to
navigate, nano is the tool to use. It’s also a great text editor for kids who are starting on
their Linux command line adventure.

The nano text editor is a clone of the Unix systems’ Pico editor. Although Pico also is a
light and simple text editor, it is not licensed under the GPL. Not only is the nano text edi-
tor licensed under the GPL, it is also part of the GNU project.

The nano text editor is installed on most Linux distributions by default. Everything about
the nano text editor is simple. To open a fi le at the command line with nano:

$ nano myprog.c

If you start nano without a fi lename, or if the fi le doesn’t exist, nano simply opens a new
buffer area for editing. If you specify an existing fi le on the command line, nano reads
the entire contents of the fi le into a buffer area, where it is ready for editing, as shown in
Figure 10-2.

241

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 241

FIGURE 10-2

The nano editor window

Notice at the bottom of the nano editor window various commands with a brief description
are shown. These commands are the nano control commands. The caret (^) symbol shown
represents the Ctrl key. Therefore, ^X stands for the keyboard sequence Ctrl+X.

Though the nano control commands list capital letters in the keyboard sequences, you can use either lowercase or

uppercase characters for control commands.

Having all the basic commands listed right in front of you is great. No need to memorize
what control command does what. Table 10-2 presents the various nano control commands.

TABLE 10-2 nano Control Commands

Command Description

CTRL+C Displays the cursor’s position within the text editing buffer

CTRL+G Displays nano’s main help window

CTRL+J Justifi es the current text paragraph

CTRL+K Cuts the text line and stores it in cut buffer

CTRL+O Writes out the current text editing buffer to a fi le

Continues

242

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 242

Command Description

CTRL+R Reads a fi le into the current text editing buffer

CTRL+T Starts the available spell checker

CTRL+U Pastes text stored in cut buffer and places in current line

CTRL+V Scrolls text editing buffer to next page

CTRL+W Searches for word or phrases within text editing buffer

CTRL+X Closes the current text editing buffer, exits nano, and returns to the shell

CTRL+Y Scrolls text editing buffer to previous page

The control commands listed in Table 10-2 are really all you need. However, if you desire
more powerful control features than those listed, nano has them. To see more control com-
mands, type Ctrl+G in the nano text editor to display its main help window containing
additional control commands.

If you try to use the nano spell checker via the Ctrl+T command and get the error message

Spell checking failed: Error invoking 'Spell', there are some potential solutions. Install the

spell checker software package, aspell, on your Linux distribution using Chapter 9 as a guide.

If installing the aspell software package does not solve the problem, as superuser edit the /etc/nanorc fi le,

using your favorite text editor. Find the line, # set speller "aspell -x -c" and delete the hash mark (#)

from the line. Save and exit the fi le.

Additional powerful features are available at the command line. You can use command line
options to control nano editor features, such as creating a backup fi le before editing. Type
man nano to see these additional command line options for starting nano.

The vim and nano text editors offer a choice between powerful and simple console mode
text editors. However, neither offers the ability to use graphical features for editing. Some
text editors can operate in both worlds, as explored in the next section.

Exploring the emacs Editor
The emacs editor is an extremely popular editor that appeared before even Unix was
around. Developers liked it so much that they ported it to the Unix environment, and now
it’s been ported to the Linux environment. The emacs editor started out life as a console
editor, much like vi, but has migrated to the graphical world.

TABLE 10-2 (continued)

243

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 243

The emacs editor still provides the original console mode editor, and now it also has
the ability to use a graphical window to allow editing text in a graphical environment.
Typically, when you start the emacs editor from a command line, the editor determines
whether you have an available graphical session and starts in graphical mode. If you don’t,
it starts in console mode.

This section describes both the console mode and graphical mode emacs editors so that
you’ll know how to use either one if you want (or need) to.

Checking your emacs package
Many distributions do not come with the emacs editor installed by default. You can check
your Red Hat-based distribution, by using the which and/or yum list command as shown
on this CentOS distribution:

$ which emacs
/usr/bin/which: no emacs in (/usr/lib64/qt-3.3
/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:
/usr/sbin:/sbin:/home/Christine/bin)
$
$ yum list emacs
[...]
Available Packages
emacs.x86_64 1:23.1-25.el6 base

The emacs editor package is not currently installed on this CentOS distribution. However,
it is available to be installed. (For a more thorough discussion on displaying installed soft-
ware, see Chapter 9).

For a Debian-based distribution, check for the emacs editor package by using the which
and/or apt-cache show command as shown on this Ubuntu distribution:

$ which emacs
$
$ sudo apt-cache show emacs
Package: emacs
Priority: optional
Section: editors
Installed-Size: 25
[...]
Description-en: GNU Emacs editor (metapackage)
 GNU Emacs is the extensible self-documenting text editor.
 This is a metapackage that will always depend on the latest
 recommended Emacs release.
Description-md5: 21fb7da111336097a2378959f6d6e6a8
Bugs: https://bugs.launchpad.net/ubuntu/+filebug

https://bugs.launchpad.net/ubuntu/+filebug

244

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 244

Origin: Ubuntu
Supported: 5y
$

The which command operates a little differently here. When it does not fi nd the installed
command, it simply returns the bash shell prompt. The emacs editor package is optional for
this Ubuntu distribution, but is available to be installed. The following shows the emacs
editor being installed on Ubuntu:

$ sudo apt-get install emacs
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
[...]
Install emacsen-common for emacs24
emacsen-common: Handling install of emacsen flavor emacs24
Wrote /etc/emacs24/site-start.d/00debian-vars.elc
Wrote /usr/share/emacs24/site-lisp/debian-startup.elc
Setting up emacs (45.0ubuntu1) ...
Processing triggers for libc-bin (2.19-0ubuntu6) ...
$
$ which emacs
/usr/bin/emacs
$

Now when the which command is used, it points to the emacs program fi le. The emacs edi-
tor is ready to be used on this Ubuntu distribution.

For the CentOS distribution, install the emacs editor using the yum install command:

$ sudo yum install emacs
[sudo] password for Christine:
[...]
Setting up Install Process
Resolving Dependencies
[...]
Installed:
 emacs.x86_64 1:23.1-25.el6

Dependency Installed:
 emacs-common.x86_64 1:23.1-25.el6
 libotf.x86_64 0:0.9.9-3.1.el6
 m17n-db-datafiles.noarch 0:1.5.5-1.1.el6

Complete!
$
$ which emacs
/usr/bin/emacs
$
$ yum list emacs

245

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 245

[...]
Installed Packages
emacs.x86_64 1:23.1-25.el6 @base
$

With the emacs editor successfully installed on your Linux distribution, you can begin to
explore its different features, staring with using it on the console.

Using emacs on the console
The console mode version of emacs is another editor that uses lots of key commands to per-
form editing functions. The emacs editor uses key combinations involving the Control key
(the Ctrl key on the keyboard) and the Meta key. In most terminal emulator packages, the
Meta key is mapped to the Alt key. The offi cial emacs documents abbreviate the Ctrl key as
C- and the Meta key as M-. Thus, if you enter a Ctrl+x key combination, the document shows
C-x. This chapter does the same so as not to confuse you.

Exploring the basics of emacs

To edit a fi le using emacs, from the command line, enter:

$ emacs myprog.c

The emacs console mode window appears with a short introduction and help screen. Don’t
be alarmed; as soon as you press a key, emacs loads the fi le into the active buffer and dis-
plays the text, as shown in Figure 10-3.

FIGURE 10-3

Editing a file using the emacs editor in console mode

246

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 246

You’ll notice that the top of the console mode window shows a typical menu bar.
Unfortunately, you can’t use the menu bar in console mode, only in graphical mode.

Some commands in this section work differently than described, if you run emacs in a graphical desktop environ-

ment. To use emac’s console mode in a graphical desktop environment, use the emacs -nw command. If you want to

use emacs’ graphical features, see the section “Using emacs in a GUI.”

Unlike the vim editor, where you have to move into and out of insert mode to switch
between entering commands and inserting text, the emacs editor has only one mode. If you
type a printable character, emacs inserts it at the current cursor position. If you type a
command, emacs executes the command.

To move the cursor around the buffer area, you can use the arrow keys and the PageUp and
PageDown keys, assuming that emacs detected your terminal emulator correctly. If not,
these commands move the cursor around:

 ■ C-p moves up one line (the previous line in the text).

 ■ C-b moves left (back) one character.

 ■ C-f moves right (forward) one character.

 ■ C-n moves down one line (the next line in the text).

These commands make longer jumps with the cursor within the text:

 ■ M-f moves right (forward) to the next word.

 ■ M-b moves left (backward) to the previous word.

 ■ C-a moves to the beginning of the current line.

 ■ C-e moves to the end of the current line.

 ■ M-a moves to the beginning of the current sentence.

 ■ M-e moves to the end of the current sentence.

 ■ M-v moves back one screen of data.

 ■ C-v moves forward one screen of data.

 ■ M-< moves the fi rst line of the text.

 ■ M-> moves to the last line of the text.

You should know these commands for saving the editor buffer back into the fi le and exiting
emacs:

 ■ C-x C-s saves the current buffer contents to the fi le.

 ■ C-z exits emacs but keeps it running in your session so you can come back to it.

 ■ C-x C-c exits emacs and stops the program.

247

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 247

You’ll notice that two of these features require two key commands. The C-x command is
called the extend command. This provides yet another whole set of commands to work with.

Editing data

The emacs editor is pretty robust about inserting and deleting text in the buffer. To insert
text, just move the cursor to the location where you want to insert the text and start typ-
ing. To delete text, emacs uses the Backspace key to delete the character before the current
cursor position and the Delete key to delete the character at the current cursor location.

The emacs editor also has commands for killing text. The difference between deleting text
and killing text is that when you kill text, emacs places it in a temporary area where you
can retrieve it (see the next section, “Copying and pasting”). Deleted text is gone forever.

These commands are for killing text in the buffer:

 ■ M-Backspace kills the word before the current cursor position.

 ■ M-d kills the word after the current cursor position.

 ■ C-k kills from the current cursor position to the end of the line.

 ■ M-k kills from the current cursor position to the end of the sentence.

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor to
the start of the area you want to kill, and press either the C-@ or C-Spacebar keys. Then
move the cursor to the end of the area you want to kill, and press the C-w command keys.
All the text between the two locations is killed.

If you happen to make a mistake when killing text, the C-/ command undoes the kill com-
mand and returns the data to the state it was in before you killed it.

Copying and pasting

You’ve seen how to cut data from the emacs buffer area; now it’s time to see how to paste
it somewhere else. Unfortunately, if you use the vim editor, this process may confuse you
when you use the emacs editor.

In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim editor,
copying is called yanking, which is what makes this a diffi cult thing to remember if you
happen to use both editors.

After you kill data using one of the kill commands, move the cursor to the location where
you want to paste the data, and use the C-y command. This yanks the text out of the
temporary area and pastes it at the current cursor position. The C-y command yanks the
text from the last kill command. If you’ve performed multiple kill commands, you can cycle
through them using the M-y command.

To copy text, just yank it back into the same location you killed it from and then move to
the new location and use the C-y command again. You can yank text back as many times
as you desire.

248

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 248

Searching and Replacing

Searching for text in the emacs editor is done by using the C-s and C-r commands. The
C-s command performs a forward search in the buffer area from the current cursor position
to the end of the buffer, whereas the C-r command performs a backward search in the buf-
fer area from the current cursor position to the start of the buffer.

When you enter either the C-s or C-r command, a prompt appears in the bottom line,
querying you for the text to search. You can perform two types of searches in emacs.

In an incremental search, the emacs editor performs the text search in real-time mode as
you type the word. When you type the fi rst letter, it highlights all the occurrences of that
letter in the buffer. When you type the second letter, it highlights all the occurrences of
the two-letter combination in the text and so on until you complete the text you’re search-
ing for.

In a non-incremental search, press the Enter key after the C-s or C-r commands. This locks
the search query into the bottom line area and allows you to type the search text in full
before searching.

To replace an existing text string with a new text string, you must use the M-x command.
This command requires a text command, along with parameters.

The text command is replace-string. After typing the command, press the Enter key,
and emacs queries you for the existing text string. After entering that, press the Enter key
again and emacs queries you for the new replacement text string.

Using buffers in emacs

The emacs editor allows you to edit multiple fi les at the same time by having multiple buf-
fer areas. You can load fi les into a buffer and switch between buffers while editing.

To load a new fi le into a buffer while you’re in emacs, use the C-x C-f key combination.
This is the emacs Find a File mode. It takes you to the bottom line in the window and
allows you to enter the name of the fi le you want to start to edit. If you don’t know the
name or location of the fi le, just press the Enter key. This brings up a fi le browser in the
edit window, as shown in Figure 10-4.

From here, you can browse to the fi le you want to edit. To traverse up a directory level, go
to the double dot entry and press the Enter key. To traverse down a directory, go to the
directory entry and press the Enter key. When you’ve found the fi le you want to edit, press
the Enter key and emacs loads it into a new buffer area.

You can list the active buffer areas by pressing the C-x C-b extended command combina-
tion. The emacs editor splits the editor window and displays a list of buffers in the bottom
window. emacs provides two buffers in addition to your main editing buffer:

 ■ A scratch area called *scratch*

 ■ A message area called *Messages*

249

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 249

FIGURE 10-4

The emacs Find a File mode browser

The scratch area allows you to enter LISP programming commands as well as enter notes
to yourself. The message area shows messages generated by emacs while operating. If any
errors occur while using emacs, they appear in the message area.

You can switch to a different buffer area in the window in two ways:

 ■ Use C-x o to switch to the buffer listing window. Use the arrow keys to move to
the buffer area you want and press the Enter key.

 ■ Use C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, emacs opens the buffer
area in the new window area. The emacs editor allows you to have multiple windows open
in a single session. The following section discusses how to manage multiple windows in
emacs.

Using windows in console mode emacs

The console mode emacs editor was developed many years before the idea of graphical
windows appeared. However, it was advanced for its time, in that it could support multiple
editing windows within the main emacs window.

You can split the emacs editing window into multiple windows by using one of two
commands:

 ■ C-x 2 splits the window horizontally into two windows.

 ■ C-x 3 splits the window vertically into two windows.

250

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 250

To move from one window to another, use the C-x o command. Notice that when you cre-
ate a new window, emacs uses the buffer area from the original window in the new window.
After you move into the new window, you can use the C-x C-f command to load a new fi le
or use one of the commands to switch to a different buffer area in the new window.

To close a window, move to it and use the C-x 0 (that’s a zero) command. If you want
to close all the windows except the one you’re in, use the C-x 1 (that’s a numerical one)
command.

Using emacs in a GUI
If you use emacs from a GUI environment (such as the Unity or GNOME desktops), it starts
in graphical mode, as shown in Figure 10-5.

FIGURE 10-5

The emacs graphical window

If you’ve already used emacs in console mode, you should be fairly familiar with the graphi-
cal mode. All the key commands are available as menu bar items. The emacs menu bar con-
tains the following items:

 ■ File allows you to open fi les in the window, create new windows, close windows,
save buffers, and print buffers.

 ■ Edit allows you to cut and copy selected text to the clipboard, paste clipboard data
to the current cursor position, search for text, and replace text.

251

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 251

 ■ Options provides settings for many more emacs features, such as highlighting,
word wrap, cursor type, and setting fonts.

 ■ Buffers lists the current buffers available and allows you to easily switch between
buffer areas.

 ■ Tools provides access to the advanced features in emacs, such as the command line
interface access, spell checking, comparing text between fi les (called diff), sending
an e-mail message, calendar, and the calculator.

 ■ Help provides the emacs manual online for access to help on specifi c emacs
functions.

In addition to the normal graphical emacs menu bar items, there is often a separate item
specifi c to the fi le type in the editor buffer. Figure 10-5 shows opening a C program, so
emacs provided a C menu item, allowing advanced settings for highlighting C syntax, and
compiling, running, and debugging the code from a command prompt.

The graphical emacs window is an example of an older console application making the
migration to the graphical world. Now that many Linux distributions provide graphical
desktops (even on servers that don’t need them), graphical editors are becoming more com-
monplace. Popular Linux desktop environments (such as KDE and GNOME) have also pro-
vided graphical text editors specifi cally for their environments, which are covered in the
rest of this chapter.

Exploring the KDE Family of Editors
If you’re using a Linux distribution that uses the KDE desktop (see Chapter 1), you have
a couple of options when it comes to text editors. The KDE project offi cially supports two
popular text editors:

 ■ KWrite: A single-screen text-editing package

 ■ Kate: A full-featured, multi-window text-editing package

Both of these editors are graphical text editors that contain many advanced features. The
Kate editor provides more advanced features, plus extra niceties not often found in stan-
dard text editors. This section describes each of the editors and shows some of the features
you can use to help with your shell script editing.

Looking at the KWrite editor
The basic editor for the KDE environment is KWrite. It provides simple word-processing–
style text editing, along with support for code syntax highlighting and editing. The default
KWrite editing window is shown in Figure 10-6.

252

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 252

FIGURE 10-6

The default KWrite window editing a shell script program

You can’t tell from Figure 10-6, but the KWrite editor recognizes several types of program-
ming languages and uses color coding to distinguish constants, functions, and comments.
Also, notice that the for loop has an icon that links the opening and closing braces. This
is called a folding marker. By clicking the icon, you can collapse the function into a single
line. This is a great feature when working through large applications.

The KWrite editing window provides full cut and paste capabilities, using the mouse and
the arrow keys. As in a word processor, you can highlight and cut (or copy) text anywhere
in the buffer area and paste it at any other place.

To edit a fi le using KWrite, you can either select KWrite from the KDE menu system on your
desktop (some Linux distributions even create a Panel icon for it) or start it from the com-
mand line prompt:

$ kwrite factorial.sh

The kwrite command has several command line parameters you can use to customize how
it starts:

 ■ --stdin causes KWrite to read data from the standard input device instead of a
fi le.

 ■ --encoding specifi es a character encoding type to use for the fi le.

253

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 253

 ■ --line specifi es a line number in the fi le to start at in the editor window.

 ■ --column specifi es a column number in the fi le to start at in the editor window.

The KWrite editor provides both a menu bar and a toolbar at the top of the edit window,
allowing you to select features and change confi guration settings of the KWrite editor.

The menu bar contains these items:

 ■ File loads, saves, prints, and exports text from fi les.

 ■ Edit manipulates text in the buffer area.

 ■ View manages how the text appears in the editor window.

 ■ Bookmarks handle pointers to return to specifi c locations in the text; this option
may need to be enabled in the confi gurations.

 ■ Tools contains specialized features to manipulate the text.

 ■ Settings confi gures the way the editor handles text.

 ■ Help gives you information about the editor and commands.

The Edit menu bar item provides commands for all your text-editing needs. Instead of hav-
ing to remember cryptic key commands (which by the way, KWrite also supports), you can
just select items in the Edit menu bar, as shown in Table 10-3.

TABLE 10-3 The KWrite Edit Menu Items

Item Description

Undo Reverses the last action or operation

Redo Reverses the last undo action

Cut Deletes the selected text and places it in the clipboard

Copy Copies the selected text to the clipboard

Paste Inserts the current contents of the clipboard at the current cursor
position

Select All Selects all text in the editor

Deselect Deselects any text that is currently selected

Overwrite Mode Toggles insert mode to overwrite mode, replacing text with new
typed text instead of just inserting the new text

Find Produces the Find Text dialog box, which allows you to customize a
text search

Find Next Repeats the last fi nd operation forward in the buffer area

Find Previous Repeats the last fi nd operation backwards in the buffer area

Continues

254

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 254

Item Description

Replace Produces the Replace With dialog box, which allows you to cus-
tomize a text search and replace

Find Selected Finds the next occurrence of the selected text

Find Selected
Backwards

Finds the previous occurrence of the selected text

Go to Line Produces the Goto dialog box, which allows you to enter a line
number. The cursor moves to the specifi ed line

The Find feature has two modes. Normal mode performs simple text searches and power
searches. Replace mode lets you do advanced searching and replacing if necessary. You
toggle between the two modes using the green arrow in the Find section, as shown in
Figure 10-7.

FIGURE 10-7

The KWrite Find section

TABLE 10-3 (continued)

255

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 255

The Find power mode allows you to search not only with words, but with a regular expres-
sion (discussed in Chapter 20) for the search. You can use some other options to custom-
ize the search as well, indicating, for example, whether or not to perform a case-sensitive
search or to look only for whole words instead of fi nding the text within words.

The Tools menu bar item provides several handy features for working with the text in the
buffer area. Table 10-4 describes the tools available in KWrite.

TABLE 10-4 The KWrite Tools

Tool Description

Read Only Mode Locks the text so no changes can be made while in the editor

Encoding Sets the character set encoding used by the text

Spelling Starts the spell-check program at the start of the text

Spelling (from cursor) Starts the spell-check program from the current cursor position

Spellcheck Selection Starts the spell-check program only on the selected section of text

Indent Increases the paragraph indentation by one

Unindent Decreases the paragraph indentation by one

Clean Indentation Returns all paragraph indentation to the original settings

Align Forces the current line or the selected lines to return to the default
indentation settings

Uppercase Sets the selected text, or the character at the current cursor position,
to uppercase

Lowercase Sets the selected text, or the character at the current cursor position,
to lowercase

Capitalize Capitalizes the fi rst letter of the selected text or the word at the cur-
rent cursor position

Join Lines Combines the selected lines, or the line at the current cursor position
and the next line, into one line

Word Wrap
Document

Enables word wrapping in the text. If a line extends past the editor
window edge, the line continues on the next line.

There are lots of tools for a simple text editor!

The Settings menu includes the Confi gure Editor dialog box, shown in Figure 10-8.

256

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 256

FIGURE 10-8

The KWrite Configure Editor dialog box

The Confi guration dialog box uses icons on the left side for you to select the feature in
KWrite to confi gure. When you select an icon, the right side of the dialog box shows the
confi guration settings for the feature.

The Appearance feature allows you to set several features that control how the text appears
in the text editor window. You can enable word wrap, line numbers (great for programmers),
and the folder markers from here. With the Fonts & Colors feature, you can customize the
complete color scheme for the editor, determining what colors to make each category of
text in the program code.

Looking at the Kate editor
The Kate editor is the fl agship editor for the KDE Project. It uses the same text editor as the
KWrite application (so most of those features are the same), but it incorporates lots of other
features into a single package.

257

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 257

If you fi nd that the Kate editor has not been installed with your KDE desktop environment, you can easily install it

(see Chapter 9). The package name that contains Kate is kdesdk.

When you start the Kate editor from the KDE menu system, the fi rst thing you notice is
that the editor doesn’t start! Instead, you get a dialog box, as shown in Figure 10-9.

FIGURE 10-9

The Kate session dialog box

The Kate editor handles fi les in sessions. You can have multiple fi les open in a session, and
you can have multiple sessions saved. When you start Kate, it provides you with the choice
of which session to return to. When you close your Kate session, it remembers the docu-
ments you had open and displays them the next time you start Kate. This allows you to
easily manage fi les from multiple projects by using separate workspaces for each project.

After selecting a session, you see the main Kate editor window, shown in Figure 10-10.

The left side frame shows the documents currently open in the session. You can switch
between documents just by clicking the document name. To edit a new fi le, click the
Filesystem Browser tab on the left side. The left frame is now a full graphical fi lesystem
browser, allowing you to graphically browse to locate your fi les.

A great feature of the Kate editor is the built-in terminal window, shown in Figure 10-11.

258

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 258

FIGURE 10-10

The main Kate editing window

The terminal tab at the bottom of the text editor window starts the built-in terminal emu-
lator in Kate (using the KDE Konsole terminal emulator). This feature horizontally splits the
current editing window, creating a new window with Konsole running in it. You can now
enter command line commands, start programs, or check on system settings without having
to leave the editor! To close the terminal window, just type exit at the command prompt.

As you can tell from the terminal feature, Kate also supports multiple windows. The
Window menu bar item (View) provides options to perform these tasks:

 ■ Create a new Kate window using the current session

 ■ Split the current window vertically to create a new window

 ■ Split the current window horizontally to create a new window

 ■ Close the current window

259

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 259

FIGURE 10-11

The Kate built-in terminal window

To set the confi guration settings in Kate, select the Confi gure Kate item under the Settings
menu bar item. The Confi guration dialog box, shown in Figure 10-12, appears.

Notice that the Editor settings area is exactly the same as for KWrite. This is because the
two editors share the same text editor engine. The Application settings area allows you to
confi gure settings for the Kate items, such as controlling sessions (shown in Figure 10-12),
the documents list, and the fi lesystem browser. Kate also supports external plug-in applica-
tions, which can be activated here.

260

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 260

FIGURE 10-12

The Kate configuration settings dialog box

Exploring the GNOME Editor
If you’re working on a Linux system using the GNOME or Unity desktop environment, there’s
a graphical text editor that you can use as well. The gedit text editor is a basic text editor,
with a few advanced features thrown in just for fun. This section walks you through the
features of gedit and demonstrates how to use it for your shell script programming.

Starting gedit
Most GNOME desktop environments include gedit in the Accessories Panel menu item. For
the Unity desktop environment, go to Dash ➪ Search and type gedit. If you can’t fi nd
gedit via the menu system, you can start it from the command line prompt in a GUI termi-
nal emulator:

$ gedit factorial.sh myprog.c

261

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 261

When you start gedit with multiple fi les, it loads all the fi les into separate buffers and dis-
plays each one as a tabbed window within the main editor window, as shown in
Figure 10-13.

FIGURE 10-13

The gedit main editor window

The left frame in the gedit main editor window shows the documents you’re currently edit-
ing. If your gedit doesn’t show the left frame when started, you can press the F9 function
key or enable Side Pane from the View menu.

Different desktops may have gedit options that are available in slightly different menu locations than shown in these

fi gures. Additional options may also be available. Consult your distribution’s gedit Help menu for more assistance.

The right side shows the tabbed windows that contain the buffer text. If you hover your
mouse pointer over each tab, a dialog box appears, showing the full pathname of the fi le,
the MIME type, and the character set encoding it uses.

262

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 262

Understanding basic gedit features
In addition to the editor windows, gedit uses both a menu bar and toolbar that allow you
to set features and confi gure settings. The toolbar provides quick access to menu bar items.
These menu bar items are available:

 ■ File handles new fi les, saves existing fi les, and prints fi les.

 ■ Edit manipulates text in the active buffer area and sets the editor preferences.

 ■ View sets the editor features to display in the window and sets the text highlight-
ing mode.

 ■ Search fi nds and replaces text in the active editor buffer area.

 ■ Tools accesses plug-in tools installed in gedit.

 ■ Documents manages fi les open in the buffer areas.

 ■ Help provides access to the full gedit manual.

There shouldn’t be anything too surprising here. The Edit menu contains the standard cut,
copy, and paste functions, along with a neat feature that allows you to easily enter the
date and time in the text in several different formats. The Search menu provides a stan-
dard fi nd function, which produces a dialog box where you can enter the text to fi nd, along
with the capability to select how the fi nd feature should work (matching case, matching
the whole word, and the search direction). It also provides an incremental search feature,
which works in real-time mode, fi nding text as you type the characters of the word.

Setting preferences
The Edit menu contains a Preferences item, which produces the gedit Preferences dialog
box, shown in Figure 10-14.

This is where you can customize the operation of the gedit editor. The Preferences dialog
box contains fi ve tabbed areas for setting the features and behavior of the editor.

Setting View preferences

The View tab provides options for how gedit displays the text in the editor window:

 ■ Text Wrapping: Determines how to handle long lines of text in the editor. The
Enabling text wrapping option wraps long lines to the next line of the editor. The
Do Not Split Words Over Two Lines option prevents the auto-inserting of hyphens
into long words, to prevent them being split between two lines.

 ■ Line Numbers: Displays line numbers in the left margin in the editor window.

263

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 263

 ■ Current Line: Highlights the line where the cursor is currently positioned,
enabling you to easily fi nd the cursor position.

 ■ Right Margin: Enables the right margin and allows you to set how many columns
should be in the editor window. The default value is 80 columns.

 ■ Bracket Matching: When enabled, highlights bracket pairs in programming code,
allowing you to easily match brackets in if-then statements, for and while
loops, and other coding elements that use brackets.

The line-numbering and bracket-matching features provide an environment for program-
mers to troubleshoot code that’s not often found in text editors.

FIGURE 10-14

The GNOME desktop gedit Preferences dialog box

Setting Editor preferences

The Editor tab provides options for how the gedit editor handles tabs and indentation,
along with how fi les are saved:

264

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 264

 ■ Tab Stops: Sets the number of spaces skipped when you press the Tab key. The
default value is eight. This feature also includes a check box that, when selected,
inserts spaces instead of a tab skip.

 ■ Automatic Indentation: When enabled, causes gedit to automatically indent lines
in the text for paragraphs and code elements (such as if-then statements and
loops).

 ■ File Saving: Provides two features for saving fi les: whether or not to create a
backup copy of the fi le when opened in the edit window, and whether or not to
automatically save the fi le at a preselected interval.

The auto-save feature is a great way to ensure that your changes are saved on a regular
basis to prevent catastrophes from crashes or power outages.

Setting Font & Color preferences

The Font & Colors tab allows you to confi gure (not surprisingly) two items:

 ■ Font: Allows you to select the default font, or to select a customized font and font
size from a dialog box.

 ■ Color Scheme: Allows you to select the default color scheme used for text, back-
ground, selected text, and selection colors, or choose a custom color for each
category.

The default colors for gedit normally match the standard GNOME desktop theme selected for
the desktop. These colors will change to match the scheme you select for the desktop.

Managing plug-ins

The Plugins tab provides control over the plug-ins used in gedit. Plug-ins are separate
programs that can interface with gedit to provide additional functionality.

Several plug-ins are available for gedit, but not all of them are installed by default.
Table 10-5 describes the plug-ins that are currently available in the GNOME desktop’s gedit.

TABLE 10-5 The GNOME desktop gedit Plug-ins

Plug-In Description

Change Case Changes the case of selected text

Document
Statistics

Reports the number of words, lines, characters, and non-space
characters

External Tools Provides a shell environment in the editor to execute commands and
scripts

File Browser Pane Provides a simple fi le browser to make selecting fi les for editing easier

265

Chapter 10: Working with Editors

10

c10.indd 12/05/2014 Page 265

Indent Lines Provides selected lines to be indented or un-indented

Insert Date/Time Inserts the current date and time in several formats at the current cursor
position

Modelines Provides emacs-style message lines at the bottom of the editor window

Python Console Provides an interactive console at the bottom of the editor window for
entering commands using the Python programming language

Quick Open Opens fi les directly in the gedit edit window

Snippets Allows you to store often-used pieces of text for easy retrieval anywhere
in the text

Sort Quickly sorts the entire fi le or selected text

Spell Checker Provides dictionary spellchecking for the text fi le

Tag List Provides a list of commonly used strings you can easily enter into your
text

Plug-ins that are enabled show a check mark in the check box next to their name. Some
plug-ins, such as the External Tools plug-in, also provide additional confi guration features
after you select them. It allows you to set a shortcut key to start the terminal, where gedit
displays output, and the command to use to start the shell session.

Unfortunately, not all plug-ins are installed in the same place in the gedit menu bar. Some
plug-ins appear in the Tools menu bar item (such as the Spell Checker and External Tools
plug-ins), while others appear in the Edit menu bar item (such as the Change Case and
Insert Date/Time plug-ins).

This chapter has covered just a few of the text editors available on Linux. If you fi nd that
the text editors described here don’t meet your needs, you have options. Many more Linux
editors are available, such as geany, Eclipse, jed, Bluefi sh, and leafpad to name a few. All
these editors can help you as you begin your bash shell script writing journey.

Summary
 When it comes to creating shell scripts, you need some type of text editor. Several popu-
lar text editors are available for the Linux environment. The most popular editor in the
Unix world, vi, has been ported to the Linux world as the vim editor. The vim editor
provides simple text editing from the console, using a rudimentary full-screen graphical
mode. The vim editor provides many advanced editor features, such as text searching and
replacement.

Another editor that has been ported from the Unix world to Linux is the nano text editor.
The vim editor can be rather complex, but the nano editor offers simplicity. The nano editor
allows quick text editing in console mode.

266

Part I: The Linux Command Line

c10.indd 12/05/2014 Page 266

Another popular Unix editor — emacs — has also made its way to the Linux world. The
Linux version of emacs has both console and a graphical mode, making it the bridge
between the old world and the new. The emacs editor provides multiple buffer areas, allow-
ing you to edit multiple fi les simultaneously.

The KDE Project created two editors for use in the KDE desktop. The KWrite editor is a sim-
ple editor that provides the basic text-editing features, along with a few advanced features,
such as syntax highlighting for programming code, line numbering, and code folding. The
Kate editor provides more advanced features for programmers. One great feature in Kate is
a built-in terminal window. You can open a command line interface session directly in the
Kate editor without having to open a separate terminal emulator window. The Kate editor
also allows you to open multiple fi les, providing different windows for each opened fi le.

The GNOME Project also provides a simple text editor for programmers. The gedit editor is
a basic text editor that provides some advanced features such as code syntax highlighting
and line numbering, but it was designed to be a bare-bones editor. To spruce up the gedit
editor, developers created plug-ins, which expand the features available in gedit. Current
plug-ins include a spell-checker, a terminal emulator, and a fi le browser.

This wraps up the background chapters on working with the command line in Linux. The
next part of the book dives into the shell-scripting world. The next chapter starts off by
showing you how to create a shell script fi le and how to run it on your Linux system. It also
shows you the basics of shell scripts, allowing you to create simple programs by stringing
multiple commands together into a script you can run.

c11.indd 12/23/2014 Page 267

IN THIS PART

Chapter 11
Basic Script Building

Chapter 12
Using Structured Commands

Chapter 13
More Structured Commands

Chapter 14
Handling User Input

Chapter 15
Presenting Data

Chapter 16
Script Control

Part II

Shell Scripting Basics

c11.indd 12/23/2014 Page 268

269

c11.indd 12/23/2014 Page 269

Basic Script Building

IN THIS CHAPTER

Using multiple commands

Creating a script fi le

Displaying messages

Using variables

Redirecting input and output

Pipes

Performing math

Exiting the script

N
ow that we’ve covered the basics of the Linux system and the command line, it’s time to
start coding. This chapter discusses the basics of writing shell scripts. You need to know
these basic concepts before you can start writing your own shell script masterpieces.

Using Multiple Commands
So far you’ve seen how to use the command line interface (CLI) prompt of the shell to enter com-
mands and view the command results. The key to shell scripts is the ability to enter multiple
commands and process the results from each command, even possibly passing the results of one
command to another. The shell allows you to chain commands together into a single step.

If you want to run two commands together, you can enter them on the same prompt line, separated
with a semicolon:

$ date ; who
Mon Feb 21 15:36:09 EST 2014
Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy tty1 2014-02-21 15:26
user tty7 2014-02-19 14:03 (:0)

CHAP T ER

11

270

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 270

user pts/0 2014-02-21 15:21 (:0.0)

$

Congratulations, you just wrote a shell script! This simple script uses just two bash shell
commands. The date command runs fi rst, displaying the current date and time, followed
by the output of the who command, showing who is currently logged on to the system.
Using this technique, you can string together as many commands as you wish, up to the
maximum command line character count of 255 characters.

Using this technique is fi ne for small scripts, but it has a major drawback: You must enter
the entire command at the command prompt every time you want to run it. Instead of hav-
ing to manually enter the commands onto a command line, you can combine the commands
into a simple text fi le. When you need to run the commands, just simply run the text fi le.

Creating a Script File
To place shell commands in a text fi le, fi rst you need to use a text editor (see Chapter 10) to
create a fi le and then enter the commands into the fi le.

When creating a shell script fi le, you must specify the shell you are using in the fi rst line of
the fi le. Here’s the format for this:

#!/bin/bash

In a normal shell script line, the pound sign (#) is used as a comment line. A comment line
in a shell script isn’t processed by the shell. However, the fi rst line of a shell script fi le is
a special case, and the pound sign followed by the exclamation point tells the shell what
shell to run the script under (yes, you can be using a bash shell and run your script using
another shell).

After indicating the shell, commands are entered onto each line of the fi le, followed by a
carriage return. As mentioned, comments can be added by using the pound sign. An exam-
ple looks like this:

#!/bin/bash
This script displays the date and who's logged on
date
who

And that’s all there is to it. You can use the semicolon and put both commands on the same
line if you want to, but in a shell script, you can list commands on separate lines. The shell
processes commands in the order in which they appear in the fi le.

Also notice that another line was included that starts with the pound symbol and adds
a comment. Lines that start with the pound symbol (other than the fi rst #! line) aren’t

271

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 271

11

interpreted by the shell. This is a great way to leave comments for yourself about what’s
happening in the script, so when you come back to it two years later, you can easily remem-
ber what you did.

Save this script in a fi le called test1, and you are almost ready. You need to do a couple of
things before you can run your new shell script fi le.

If you try running the fi le now, you’ll be somewhat disappointed to see this:

$ test1
bash: test1: command not found
$

The fi rst hurdle to jump is getting the bash shell to fi nd your script fi le. If you remember
from Chapter 6, the shell uses an environment variable called PATH to fi nd commands. A
quick look at the PATH environment variable demonstrates our problem:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin
:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin $

The PATH environment variable is set to look for commands only in a handful of directo-
ries. To get the shell to fi nd the test1 script, we need to do one of two things:

 ■ Add the directory where our shell script fi le is located to the PATH environment
variable.

 ■ Use an absolute or relative fi le path to reference our shell script fi le in the prompt.

Some Linux distributions add the $HOME/bin directory to the PATH environment variable. This creates a place in

every user’s HOME directory to place fi les where the shell can fi nd them to execute.

For this example, we use the second method to tell the shell exactly where the script fi le is
located. Remember that to reference a fi le in the current directory, you can use the single
dot operator in the shell:

$./test1
bash: ./test1: Permission denied
$

The shell found the shell script fi le just fi ne, but there’s another problem. The shell indi-
cated that you don’t have permission to execute the fi le. A quick look at the fi le permis-
sions should show what’s going on here:

$ ls -l test1
-rw-rw-r-- 1 user user 73 Sep 24 19:56 test1
$

272

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 272

When the new test1 fi le was created, the umask value determined the default permis-
sion settings for the new fi le. Because the umask variable is set to 002 (see Chapter 7) in
Ubuntu, the system created the fi le with only read/write permissions for the fi le’s owner
and group.

The next step is to give the fi le owner permission to execute the fi le, using the chmod com-
mand (see Chapter 7):

$ chmod u+x test1
$./test1
Mon Feb 21 15:38:19 EST 2014
Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy tty1 2014-02-21 15:26
user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0) $

Success! Now all the pieces are in the right places to execute the new shell script fi le.

Displaying Messages
Most shell commands produce their own output, which is displayed on the console moni-
tor where the script is running. Many times, however, you will want to add your own text
messages to help the script user know what is happening within the script. You can do this
with the echo command. The echo command can display a simple text string if you add
the string following the command:

$ echo This is a test
This is a test
$

Notice that by default you don’t need to use quotes to delineate the string you’re display-
ing. However, sometimes this can get tricky if you are using quotes within your string:

$ echo Let's see if this'll work
Lets see if thisll work
$

The echo command uses either double or single quotes to delineate text strings. If you use
them within your string, you need to use one type of quote within the text and the other
type to delineate the string:

$ echo "This is a test to see if you're paying attention"
This is a test to see if you're paying attention
$ echo 'Rich says "scripting is easy".'
Rich says "scripting is easy".
$

Now all the quotation marks appear properly in the output.

273

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 273

11

You can add echo statements anywhere in your shell scripts where you need to display
additional information:

$ cat test1
#!/bin/bash
This script displays the date and who's logged on
echo The time and date are:
date
echo "Let's see who's logged into the system:"
who
$

When you run this script, it produces the following output:

$./test1
The time and date are:
Mon Feb 21 15:41:13 EST 2014
Let's see who's logged into the system:
Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy tty1 2014-02-21 15:26
user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0)
$

That’s nice, but what if you want to echo a text string on the same line as a command out-
put? You can use the -n parameter for the echo statement to do that. Just change the fi rst
echo statement line to this:

echo -n "The time and date are: "

You need to use quotes around the string to ensure that there’s a space at the end of the
echoed string. The command output begins exactly where the string output stops. The out-
put now looks like this:

$./test1
The time and date are: Mon Feb 21 15:42:23 EST 2014
Let's see who's logged into the system:
Christine tty2 2014-02-21 15:26
Samantha tty3 2014-02-21 15:26
Timothy tty1 2014-02-21 15:26
user tty7 2014-02-19 14:03 (:0)
user pts/0 2014-02-21 15:21 (:0.0)
$

Perfect! The echo command is a crucial piece of shell scripts that interact with users. You’ll
fi nd yourself using it in many situations, especially when you want to display the values of
script variables. Let’s look at that next.

274

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 274

Using Variables
Just running individual commands from the shell script is useful, but this has its limi-
tations. Often, you’ll want to incorporate other data in your shell commands to process
information. You can do this by using variables. Variables allow you to temporarily store
information within the shell script for use with other commands in the script. This section
shows how to use variables in your shell scripts.

Environment variables
You’ve already seen one type of Linux variable in action. Chapter 6 described the environ-
ment variables available in the Linux system. You can access these values from your shell
scripts as well.

The shell maintains environment variables that track specifi c system information, such as
the name of the system, the name of the user logged in to the system, the user’s system ID
(called UID), the default home directory of the user, and the search path used by the shell
to fi nd programs. You can display a complete list of active environment variables available
by using the set command:

$ set
BASH=/bin/bash
[...]
HOME=/home/Samantha
HOSTNAME=localhost.localdomain
HOSTTYPE=i386
IFS=$' \t\n'
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN='|/usr/bin/lesspipe.sh %s'
LINES=24
LOGNAME=Samantha
[...]

You can tap into these environment variables from within your scripts by using the envi-
ronment variable’s name preceded by a dollar sign. This is demonstrated in the following
script:

$ cat test2
#!/bin/bash
display user information from the system.
echo "User info for userid: $USER"
echo UID: $UID
echo HOME: $HOME
$

275

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 275

11

The $USER, $UID, and $HOME environment variables are used to display the pertinent
information about the logged-in user. The output should look something like this:

$chmod u+x test2
$./test2
User info for userid: Samantha
UID: 1001
HOME: /home/Samantha
$

Notice that the environment variables in the echo commands are replaced by their current
values when the script runs. Also notice that we were able to place the $USER system vari-
able within the double quotation marks in the fi rst string, and the shell script still fi gured
out what we meant. There is a drawback to using this method, however. Look at what hap-
pens in this example:

$ echo "The cost of the item is $15"
The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar sign within
quotes, it assumes you’re referencing a variable. In this example, the script attempted to
display the variable $1 (which was not defi ned) and then the number 5. To display an
actual dollar sign, you must precede it with a backslash character:

$ echo "The cost of the item is \$15"
The cost of the item is $15

That’s better. The backslash allowed the shell script to interpret the dollar sign as an actual
dollar sign and not a variable. The next section shows how to create your own variables in
your scripts.

You may also see variables referenced using the format ${variable}. The extra braces around the variable name are

often used to help identify the variable name from the dollar sign.

User variables
In addition to the environment variables, a shell script allows you to set and use your own
variables within the script. Setting variables allows you to temporarily store data and use it
throughout the script, making the shell script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore character. User
variables are case sensitive, so the variable Var1 is different from the variable var1. This little
rule often gets novice script programmers in trouble.

276

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 276

Values are assigned to user variables using an equal sign. No spaces can appear between the
variable, the equal sign, and the value (another trouble spot for novices). Here are a few
examples of assigning values to user variables:

var1=10
var2=-57
var3=testing
var4="still more testing"

The shell script automatically determines the data type used for the variable value.
Variables defi ned within the shell script maintain their values throughout the life of the
shell script but are deleted when the shell script completes.

Just like system variables, user variables can be referenced using the dollar sign:

$ cat test3
#!/bin/bash
testing variables
days=10
guest="Katie"
echo "$guest checked in $days days ago"
days=5
guest="Jessica"
echo "$guest checked in $days days ago"
$

Running the script produces the following output:

$ chmod u+x test3
$./test3
Katie checked in 10 days ago
Jessica checked in 5 days ago
$

Each time the variable is referenced, it produces the value currently assigned to it. It’s
important to remember that when referencing a variable value you use the dollar sign, but
when referencing the variable to assign a value to it, you do not use the dollar sign. Here’s
an example of what I mean:

$ cat test4
#!/bin/bash
assigning a variable value to another variable

value1=10
value2=$value1
echo The resulting value is $value2
$

277

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 277

11

When you use the value of the value1 variable in the assignment statement, you must still
use the dollar sign. This code produces the following output:

$ chmod u+x test4
$./test4
The resulting value is 10
$

If you forget the dollar sign and make the value2 assignment line look like this:

value2=value1

you get the following output:

$./test4
The resulting value is value1
$

Without the dollar sign, the shell interprets the variable name as a normal text string,
which is most likely not what you wanted.

Command substitution
One of the most useful features of shell scripts is the ability to extract information from
the output of a command and assign it to a variable. After you assign the output to a vari-
able, you can use that value anywhere in your script. This comes in handy when processing
data in your scripts.

There are two ways to assign the output of a command to a variable:

 ■ The backtick character (`)

 ■ The $() format

Be careful with the backtick character; it is not the normal single quotation mark
character you are used to using for strings. Because it is not used very often outside
of shell scripts, you may not even know where to fi nd it on your keyboard. You should
become familiar with it because it’s a crucial component of many shell scripts. Hint: On a
U.S. keyboard, it is usually on the same key as the tilde symbol (~).

Command substitution allows you to assign the output of a shell command to a variable.
Although this doesn’t seem like much, it is a major building block in script programming.

You must either surround the entire command line command with two backtick characters:

testing='date'

or use the $() format:

testing=$(date)

278

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 278

The shell runs the command within the command substitution characters and assigns the
output to the variable testing. Notice that there are no spaces between the assignment
equal sign and the command substitution character. Here’s an example of creating a vari-
able using the output from a normal shell command:

$ cat test5
#!/bin/bash
testing=$(date)
echo "The date and time are: " $testing
$

The variable testing receives the output from the date command, and it is used in the
echo statement to display it. Running the shell script produces the following output:

$ chmod u+x test5
$./test5
The date and time are: Mon Jan 31 20:23:25 EDT 2014
$

That’s not all that exciting in this example (you could just as easily just put the command
in the echo statement), but after you capture the command output in a variable, you can
do anything with it.

Here’s a popular example of how command substitution is used to capture the current date
and use it to create a unique fi lename in a script:

#!/bin/bash
copy the /usr/bin directory listing to a log file
today=$(date +%y%m%d)
ls /usr/bin -al > log.$today

The today variable is assigned the output of a formatted date command. This is a com-
mon technique used to extract date information for log fi lenames. The +%y%m%d format
instructs the date command to display the date as a two-digit year, month, and day:

$ date +%y%m%d
140131
$

The script assigns the value to a variable, which is then used as part of a fi lename. The fi le
itself contains the redirected output (discussed in the “Redirecting Input and Output” section)
of a directory listing. After running the script, you should see a new fi le in your directory:

-rw-r--r-- 1 user user 769 Jan 31 10:15 log.140131

The log fi le appears in the directory using the value of the $today variable as part of the
fi lename. The contents of the log fi le are the directory listing from the /usr/bin direc-
tory. If the script runs the next day, the log fi lename is log.140201, thus creating a new
fi le for the new day.

279

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 279

11

Command substitution creates what’s called a subshell to run the enclosed command. A subshell is a separate

child shell generated from the shell that’s running the script. Because of that, any variables you create in the script

aren’t available to the subshell command.

Subshells are also created if you run a command from the command prompt using the ./ path, but they aren’t cre-

ated if you just run the command without a path. However, if you use a built-in shell command, that doesn’t generate

a subshell. Be careful when running scripts from the command prompt!

Redirecting Input and Output
Sometimes, you want to save the output from a command instead of just having it dis-
played on the monitor. The bash shell provides a few different operators that allow you to
redirect the output of a command to an alternative location (such as a fi le). Redirection
can be used for input as well as output, redirecting a fi le to a command for input. This sec-
tion describes what you need to do to use redirection in your shell scripts.

Output redirection
The most basic type of redirection is sending output from a command to a fi le. The bash
shell uses the greater-than symbol (>) for this:

command > outputfile

Anything that would appear on the monitor from the command instead is stored in the out-
put fi le specifi ed:

$ date > test6
$ ls -l test6
-rw-r--r-- 1 user user 29 Feb 10 17:56 test6
$ cat test6
Thu Feb 10 17:56:58 EDT 2014
$

The redirect operator created the fi le test6 (using the default umask settings) and redi-
rected the output from the date command to the test6 fi le. If the output fi le already
exists, the redirect operator overwrites the existing fi le with the new fi le data:

$ who > test6
$ cat test6
user pts/0 Feb 10 17:55
$

Now the contents of the test6 fi le contain the output from the who command.

280

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 280

Sometimes, instead of overwriting the fi le’s contents, you may need to append output from
a command to an existing fi le — for example, if you’re creating a log fi le to document an
action on the system. In this situation, you can use the double greater-than symbol (>>) to
append data:

$ date >> test6
$ cat test6
user pts/0 Feb 10 17:55
Thu Feb 10 18:02:14 EDT 2014
$

The test6 fi le still contains the original data from the who command processed earlier —
and now it contains the new output from the date command.

Input redirection
Input redirection is the opposite of output redirection. Instead of taking the output of a
command and redirecting it to a fi le, input redirection takes the content of a fi le and redi-
rects it to a command.

The input redirection symbol is the less-than symbol (<):

command < inputfile

The easy way to remember this is that the command is always listed fi rst in the command
line, and the redirection symbol “points” to the way the data is fl owing. The less-than
symbol indicates that the data is fl owing from the input fi le to the command.

Here’s an example of using input redirection with the wc command:

$ wc < test6
 2 11 60
$

The wc command provides a count of text in the data. By default, it produces three values:

 ■ The number of lines in the text

 ■ The number of words in the text

 ■ The number of bytes in the text

By redirecting a text fi le to the wc command, you can get a quick count of the lines, words,
and bytes in the fi le. The example shows that there are 2 lines, 11 words, and 60 bytes in
the test6 fi le.

Another method of input redirection is called inline input redirection. This method allows
you to specify the data for input redirection on the command line instead of in a fi le. This
may seem somewhat odd at fi rst, but a few applications are available for this process (such
as those shown in the “Performing Math” section).

281

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 281

11

The inline input redirection symbol is the double less-than symbol (<<). Besides this sym-
bol, you must specify a text marker that delineates the beginning and end of the data used
for input. You can use any string value for the text marker, but it must be the same at the
beginning of the data and the end of the data:

command << marker
data
marker

When using inline input redirection on the command line, the shell prompts for data using
the secondary prompt, defi ned in the PS2 environment variable (see Chapter 6). Here’s how
this looks when you use it:

$ wc << EOF
> test string 1
> test string 2
> test string 3
> EOF
 3 9 42
$

The secondary prompt continues to prompt for more data until you enter the string value
for the text marker. The wc command performs the line, word, and byte counts of the data
supplied by the inline input redirection.

Pipes
Sometimes, you need to send the output of one command to the input of another command.
This is possible using redirection, but somewhat clunky:

$ rpm -qa > rpm.list
$ sort < rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686

[...]

282

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 282

The rpm command manages the software packages installed on systems using the Red Hat
Package Management system (RPM), such as the Fedora system as shown. When used with
the -qa parameters, it produces a list of the existing packages installed, but not necessar-
ily in any specifi c order. If you’re looking for a specifi c package or group of packages, it can
be diffi cult to fi nd it using the output of the rpm command.

Using the standard output redirection, the output was redirected from the rpm command
to a fi le, called rpm.list. After the command fi nished, the rpm.list fi le contained a list
of all the installed software packages on my system. Next, input redirection was used to
send the contents of the rpm.list fi le to the sort command to sort the package names
alphabetically.

That was useful, but again, a somewhat clunky way of producing the information. Instead
of redirecting the output of a command to a fi le, you can redirect the output to another
command. This process is called piping.

Like the command substitution backtick, the symbol for piping is not used often outside of
shell scripting. The symbol is two vertical lines, one above the other. However, the pipe
symbol often looks like a single vertical line in print (|). On a U.S. keyboard, it is usually
on the same key as the backslash (\). The pipe is put between the commands to redirect
the output from one to the other:

command1 | command2

Don’t think of piping as running two commands back to back. The Linux system actually
runs both commands at the same time, linking them together internally in the system. As
the fi rst command produces output, it’s sent immediately to the second command. No inter-
mediate fi les or buffer areas are used to transfer the data.

Now, using piping you can easily pipe the output of the rpm command directly to the
sort command to produce your results:

$ rpm -qa | sort
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686

[...]

283

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 283

11

Unless you’re a (very) quick reader, you probably couldn’t keep up with the output gener-
ated by this command. Because the piping feature operates in real time, as soon as the rpm
command produces data, the sort command gets busy sorting it. By the time the rpm com-
mand fi nishes outputting data, the sort command already has the data sorted and starts
displaying it on the monitor.

There’s no limit to the number of pipes you can use in a command. You can continue pip-
ing the output of commands to other commands to refi ne your operation.

In this case, because the output of the sort command zooms by so quickly, you can use
one of the text paging commands (such as less or more) to force the output to stop at
every screen of data:

$ rpm -qa | sort | more

This command sequence runs the rpm command, pipes the output to the sort command,
and then pipes that output to the more command to display the data, stopping after
every screen of information. This now lets you pause and read what’s on the display before
continuing, as shown in Figure 11-1.

FIGURE 11-1

Using piping to send data to the more command

To get even fancier, you can use redirection along with piping to save your output to a fi le:

$ rpm -qa | sort > rpm.list
$ more rpm.list

284

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 284

abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686
[...]

As expected, the data in the rpm.list fi le is now sorted!

By far one of the most popular uses of piping is piping the results of commands that pro-
duce long output to the more command. This is especially common with the ls command,
as shown in Figure 11-2.

FIGURE 11-2

Using the more command with the ls command

The ls -l command produces a long listing of all the fi les in the directory. For directories
with lots of fi les, this can be quite a listing. By piping the output to the more command,
you force the output to stop at the end of every screen of data.

285

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 285

11

Performing Math
Another feature crucial to any programming language is the ability to manipulate numbers.
Unfortunately, for shell scripts this process is a bit awkward. There are two different ways
to perform mathematical operations in your shell scripts.

The expr command
Originally, the Bourne shell provided a special command that was used for processing math-
ematical equations. The expr command allowed the processing of equations from the com-
mand line, but it is extremely clunky:

$ expr 1 + 5
6

The expr command recognizes a few different mathematical and string operators, shown in
Table 11-1.

TABLE 11-1 The expr Command Operators

Operator Description

ARG1 | ARG2 Returns ARG1 if neither argument is null or zero; otherwise, returns
ARG2

ARG1 & ARG2 Returns ARG1 if neither argument is null or zero; otherwise, returns
0

ARG1 < ARG2 Returns 1 if ARG1 is less than ARG2; otherwise, returns 0

ARG1 <= ARG2 Returns 1 if ARG1 is less than or equal to ARG2; otherwise, returns 0

ARG1 = ARG2 Returns 1 if ARG1 is equal to ARG2; otherwise, returns 0

ARG1 != ARG2 Returns 1 if ARG1 is not equal to ARG2; otherwise, returns 0

ARG1 >= ARG2 Returns 1 if ARG1 is greater than or equal to ARG2; otherwise,
returns 0

ARG1 > ARG2 Returns 1 if ARG1 is greater than ARG2; otherwise, returns 0

ARG1 + ARG2 Returns the arithmetic sum of ARG1 and ARG2

ARG1 - ARG2 Returns the arithmetic difference of ARG1 and ARG2

ARG1 * ARG2 Returns the arithmetic product of ARG1 and ARG2

ARG1 / ARG2 Returns the arithmetic quotient of ARG1 divided by ARG2

ARG1 % ARG2 Returns the arithmetic remainder of ARG1 divided by ARG2

STRING : REGEXP Returns the pattern match if REGEXP matches a pattern in STRING

Continues

286

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 286

Operator Description

match STRING REGEXP Returns the pattern match if REGEXP matches a pattern in STRING

substr STRING POS
LENGTH

Returns the substring LENGTH characters in length, starting at posi-
tion POS (starting at 1)

index STRING CHARS Returns position in STRING where CHARS is found; otherwise,
returns 0

length STRING Returns the numeric length of the string STRING

+ TOKEN Interprets TOKEN as a string, even if it’s a keyword

(EXPRESSION) Returns the value of EXPRESSION

Although the standard operators work fi ne in the expr command, the problem occurs when
using them from a script or the command line. Many of the expr command operators have
other meanings in the shell (such as the asterisk). Using them in the expr command pro-
duces odd results:

$ expr 5 * 2
expr: syntax error
$

To solve this problem, you need to use the shell escape character (the backslash) to identify
any characters that may be misinterpreted by the shell before being passed to the expr
command:

$ expr 5 * 2
10
$

Now that’s really starting to get ugly! Using the expr command in a shell script is equally
cumbersome:

$ cat test6
#!/bin/bash
An example of using the expr command
var1=10
var2=20
var3=$(expr $var2 / $var1)
echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to use command
substitution to extract the output from the expr command:

$ chmod u+x test6
$./test6
The result is 2
$

TABLE 11-1 (continued)

287

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 287

11

Fortunately, the bash shell has an improvement for processing mathematical operators as
you shall see in the next section.

Using brackets
The bash shell includes the expr command to stay compatible with the Bourne shell; how-
ever, it also provides a much easier way of performing mathematical equations. In bash,
when assigning a mathematical value to a variable, you can enclose the mathematical equa-
tion using a dollar sign and square brackets ($[operation]):

$ var1=$[1 + 5]
$ echo $var1
6
$ var2=$[$var1 * 2]
$ echo $var2
12
$

Using brackets makes shell math much easier than with the expr command. This same
technique also works in shell scripts:

$ cat test7
#!/bin/bash
var1=100
var2=50
var3=45
var4=$[$var1 * ($var2 - $var3)]
echo The final result is $var4
$

Running this script produces the output:

$ chmod u+x test7
$./test7
The final result is 500
$

Also, notice that when using the square brackets method for calculating equations, you
don’t need to worry about the multiplication symbol, or any other characters, being mis-
interpreted by the shell. The shell knows that it’s not a wildcard character because it is
within the square brackets.

There’s one major limitation to performing math in the bash shell script. Look at this
example:

$ cat test8
#!/bin/bash
var1=100

288

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 288

var2=45
var3=$[$var1 / $var2]
echo The final result is $var3
$

Now run it and see what happens:

$ chmod u+x test8
$./test8
The final result is 2
$

The bash shell mathematical operators support only integer arithmetic. This is a huge limi-
tation if you’re trying to do any sort of real-world mathematical calculations.

The z shell (zsh) provides full fl oating-point arithmetic operations. If you require fl oating-point calculations in your

shell scripts, you might consider checking out the z shell (discussed in Chapter 23).

A fl oating-point solution
You can use several solutions for overcoming the bash integer limitation. The most popular
solution uses the built-in bash calculator, called bc.

The basics of bc

The bash calculator is actually a programming language that allows you to enter fl oating-
point expressions at a command line and then interprets the expressions, calculates them,
and returns the result. The bash calculator recognizes these:

 ■ Numbers (both integer and fl oating point)

 ■ Variables (both simple variables and arrays)

 ■ Comments (lines starting with a pound sign or the C language /* */ pair)

 ■ Expressions

 ■ Programming statements (such as if-then statements)

 ■ Functions

You can access the bash calculator from the shell prompt using the bc command:

$ bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.

289

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 289

11

12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit
$

The example starts out by entering the expression 12 * 5.4. The bash calculator returns
the answer. Each subsequent expression entered into the calculator is evaluated, and the
result is displayed. To exit the bash calculator, you must enter quit.

The fl oating-point arithmetic is controlled by a built-in variable called scale. You must set
this value to the desired number of decimal places you want in your answers, or you won’t
get what you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$

The default value for the scale variable is zero. Before the scale value is set, the bash
calculator provides the answer to zero decimal places. After you set the scale variable
value to four, the bash calculator displays the answer to four decimal places. The -q com-
mand line parameter suppresses the lengthy welcome banner from the bash calculator.

In addition to normal numbers, the bash calculator also understands variables:

$ bc -q
var1=10
var1 * 4
40
var2 = var1 / 5
print var2
2
quit
$

After a variable value is defi ned, you can use the variable throughout the bash calculator
session. The print statement allows you to print variables and numbers.

Using bc in scripts

Now you may be wondering how the bash calculator is going to help you with fl oating-point
arithmetic in your shell scripts. Do you remember command substitution? Yes, you can use

290

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 290

the command substitution character to run a bc command and assign the output to a vari-
able! The basic format to use is this:

variable=$(echo "options; expression" | bc)

The fi rst portion, options, allows you to set variables. If you need to set more than one
variable, separate them using the semicolon. The expression parameter defi nes the math-
ematical expression to evaluate using bc. Here’s a quick example of doing this in a script:

$ cat test9
#!/bin/bash
var1=$(echo "scale=4; 3.44 / 5" | bc)
echo The answer is $var1
$

This example sets the scale variable to four decimal places and then specifi es a specifi c
calculation for the expression. Running this script produces the following output:

$ chmod u+x test9
$./test9
The answer is .6880
$

Now that’s fancy! You aren’t limited to just using numbers for the expression value. You can
also use variables defi ned in the shell script:

$ cat test10
#!/bin/bash
var1=100
var2=45
var3=$(echo "scale=4; $var1 / $var2" | bc)
echo The answer for this is $var3
$

The script defi nes two variables, which are used within the expression sent to the bc com-
mand. Remember to use the dollar sign to signify the value for the variables and not the
variables themselves. The output of this script is as follows:

$./test10
The answer for this is 2.2222
$

And of course, after a value is assigned to a variable, that variable can be used in yet
another calculation:

$ cat test11
#!/bin/bash
var1=20
var2=3.14159

291

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 291

11

var3=$(echo "scale=4; $var1 * $var1" | bc)
var4=$(echo "scale=4; $var3 * $var2" | bc)
echo The final result is $var4
$

This method works fi ne for short calculations, but sometimes you need to get more involved
with your numbers. If you have more than just a couple of calculations, it gets confusing
trying to list multiple expressions on the same command line.

There’s a solution to this problem. The bc command recognizes input redirection, allowing
you to redirect a fi le to the bc command for processing. However, this also can get confus-
ing, because you’d need to store your expressions in a fi le.

The best method is to use inline input redirection, which allows you to redirect data
directly from the command line. In the shell script, you assign the output to a variable:

variable=$(bc << EOF
options
statements
expressions
EOF
)

The EOF text string indicates the beginning and end of the inline redirection data.
Remember that the command substitution characters are still needed to assign the output
of the bc command to the variable.

Now you can place all the individual bash calculator elements on separate lines in the script
fi le. Here’s an example of using this technique in a script:

$ cat test12
#!/bin/bash

var1=10.46
var2=43.67
var3=33.2
var4=71

var5=$(bc << EOF
scale = 4
a1 = ($var1 * $var2)
b1 = ($var3 * $var4)
a1 + b1
EOF
)

echo The final answer for this mess is $var5
$

292

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 292

Placing each option and expression on a separate line in your script makes things cleaner
and easier to read and follow. The EOF string indicates the start and end of the data to
redirect to the bc command. Of course, you must use the command substitution characters
to indicate the command to assign to the variable.

You’ll also notice in this example that you can assign variables within the bash calculator.
It’s important to remember that any variables created within the bash calculator are valid
only within the bash calculator and can’t be used in the shell script.

Exiting the Script
So far in our sample scripts, we terminated things pretty abruptly. When we were fi nished
with our last command, we just ended the script. There’s a more elegant way of completing
things available to us.

Every command that runs in the shell uses an exit status to indicate to the shell that
it’s fi nished processing. The exit status is an integer value between 0 and 255 that’s passed
by the command to the shell when the command fi nishes running. You can capture this
value and use it in your scripts.

Checking the exit status
Linux provides the $? special variable that holds the exit status value from the last com-
mand that executed. You must view or use the $? variable immediately after the command
you want to check. It changes values to the exit status of the last command executed by
the shell:

$ date
Sat Jan 15 10:01:30 EDT 2014
$ echo $?
0
$

By convention, the exit status of a command that successfully completes is zero. If a com-
mand completes with an error, then a positive integer value is placed in the exit status:

$ asdfg
-bash: asdfg: command not found
$ echo $?
127
$

The invalid command returns an exit status of 127. There’s not much of a standard
convention to Linux error exit status codes. However, you can use the guidelines shown in
Table 11-2.

293

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 293

11

TABLE 11-2 Linux Exit Status Codes

Code Description

0 Successful completion of the command

1 General unknown error

2 Misuse of shell command

126 The command can’t execute

127 Command not found

128 Invalid exit argument

128+x Fatal error with Linux signal x

130 Command terminated with Ctrl+C

255 Exit status out of range

An exit status value of 126 indicates that the user didn’t have the proper permissions set to
execute the command:

$./myprog.c
-bash: ./myprog.c: Permission denied
$ echo $?
126
$

Another common error you’ll encounter occurs if you supply an invalid parameter to a
command:

$ date %t
date: invalid date '%t'
$ echo $?
1
$

This generates the general exit status code of 1, indicating that an unknown error occurred
in the command.

The exit command
By default, your shell script exits with the exit status of the last command in your script:

$./test6
The result is 2
$ echo $?
0
$

294

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 294

You can change that to return your own exit status code. The exit command allows you to
specify an exit status when your script ends:

$ cat test13
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + $var2]
echo The answer is $var3
exit 5
$

When you check the exit status of the script, you get the value used as the parameter of
the exit command:

$ chmod u+x test13
$./test13
The answer is 40
$ echo $?
5
$

You can also use variables in the exit command parameter:

$ cat test14
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + $var2]
exit $var3
$

When you run this command, it produces the following exit status:

$ chmod u+x test14
$./test14
$ echo $?
40
$

You should be careful with this feature, however, because the exit status codes can only go
up to 255. Watch what happens in this example:

$ cat test14b
#!/bin/bash
testing the exit status
var1=10

295

Chapter 11: Basic Script Building

c11.indd 12/23/2014 Page 295

11

var2=30
var3=$[$var1 * $var2]
echo The value is $var3
exit $var3
$

Now when you run it, you get the following:

$./test14b
The value is 300
$ echo $?
44
$

The exit status code is reduced to fi t in the 0 to 255 range. The shell does this by using
modulo arithmetic. The modulo of a value is the remainder after a division. The resulting
number is the remainder of the specifi ed number divided by 256. In the case of 300 (the
result value), the remainder is 44, which is what appears as the exit status code.

In Chapter 12, you’ll see how you can use the if-then statement to check the error status
returned by a command to see whether the command was successful.

Summary
The bash shell script allows you to string commands together into a script. The most basic
way to create a script is to separate multiple commands on the command line using a semi-
colon. The shell executes each command in order, displaying the output of each command
on the monitor.

You can also create a shell script fi le, placing multiple commands in the fi le for the shell
to execute in order. The shell script fi le must defi ne the shell used to run the script. This
is done in the fi rst line of the script fi le, using the #! symbol, followed by the full path of
the shell.

Within the shell script you can reference environment variable values by using a dollar sign
in front of the variable. You can also defi ne your own variables for use within the script,
and assign values and even the output of a command by using the backtick character or the
$() format. The variable value can be used within the script by placing a dollar sign in front
of the variable name.

The bash shell allows you to redirect both the input and output of a command from the
standard behavior. You can redirect the output of any command from the monitor display
to a fi le by using the greater-than symbol, followed by the name of the fi le to capture the
output. You can append output data to an existing fi le by using two greater-than symbols.

296

Part II: Shell Scripting Basics

c11.indd 12/23/2014 Page 296

The less-than symbol is used to redirect input to a command. You can redirect input from a
fi le to a command.

The Linux pipe command (the broken bar symbol) allows you to redirect the output of
a command directly to the input of another command. The Linux system runs both com-
mands at the same time, sending the output of the fi rst command to the input of the sec-
ond command without using any redirect fi les.

The bash shell provides a couple of ways for you to perform mathematical operations in
your shell scripts. The expr command is a simple way to perform integer math. In the bash
shell, you can also perform basic math calculations by enclosing equations in square brack-
ets, preceded by a dollar sign. To perform fl oating-point arithmetic, you need to utilize the
bc calculator command, redirecting input from inline data and storing the output in a user
variable.

Finally, the chapter discussed how to use the exit status in your shell script. Every com-
mand that runs in the shell produces an exit status. The exit status is an integer value
between 0 and 255 that indicates if the command completed successfully, and if not, what
the reason may have been. An exit status of 0 indicates that the command completed suc-
cessfully. You can use the exit command in your shell script to declare a specifi c exit sta-
tus upon the completion of your script.

So far in your shell scripts, things have proceeded in an orderly fashion from one command
to the next. In the next chapter, you’ll see how you can use some logic fl ow control to alter
which commands are executed within the script.

297

c12.indd 12/23/2014 Page 297

CHAP T ER

12
Using Structured Commands

IN THIS CHAPTER

Working with the if-then statement

Nesting ifs

Understanding the test command

Testing compound conditions

Using double brackets and parentheses

Looking at case

I
n the shell scripts presented in Chapter 11, the shell processed each individual command in the
shell script in the order it appeared. This works out fi ne for sequential operations, where you want
all the commands to process in the proper order. However, this isn’t how all programs operate.

Many programs require some sort of logic fl ow control between the commands in the script. There is
a whole command class that allows the script to skip over executed commands based on tested con-
ditions. These commands are generally referred to as structured commands.

The structured commands allow you to alter the operation fl ow of a program. Quite a few structured
commands are available in the bash shell, so we’ll look at them individually. In this chapter, we
look at if-then and case statements.

Working with the if-then Statement
The most basic type of structured command is the if-then statement. The if-then statement
has the following format:

if command
then
 commands
fi

If you’re using if-then statements in other programming languages, this format may be somewhat
confusing. In other programming languages, the object after the if statement is an equation that
is evaluated for a TRUE or FALSE value. That’s not how the bash shell if statement works.

298

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 298

The bash shell if statement runs the command defi ned on the if line. If the exit status of
the command (see Chapter 11) is zero (the command completed successfully), the commands
listed under the then section are executed. If the exit status of the command is anything
else, the then commands aren’t executed, and the bash shell moves on to the next com-
mand in the script. The fi statement delineates the if-then statement’s end.

Here’s a simple example to demonstrate this concept:

$ cat test1.sh
#!/bin/bash
testing the if statement
if pwd
then
 echo "It worked"
fi
$

This script uses the pwd command on the if line. If the command completes successfully,
the echo statement should display the text string. When you run this script from the com-
mand line, you get the following results:

$./test1.sh
/home/Christine
It worked
$

The shell executed the pwd command listed on the if line. Because the exit status was
zero, it also executed the echo statement listed in the then section.

Here’s another example:

$ cat test2.sh
#!/bin/bash
testing a bad command
if IamNotaCommand
then
 echo "It worked"
fi
echo "We are outside the if statement"
$
$./test2.sh
./test2.sh: line 3: IamNotaCommand: command not found
We are outside the if statement
$

In this example, we deliberately used a command, IamNotaCommand, that does not work
in the if statement line. Because this is a bad command, it produces an exit status that’s
non-zero, and the bash shell skips the echo statement in the then section. Also notice
that the error message generated from running the command in the if statement still

299

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 299

12

12

appears in the script’s output. There may be times when you don’t want an error statement
to appear. Chapter 15 discusses how this can be avoided.

You might see an alternative form of the if-then statement used in some scripts:

if command; then

 commands

fi

By putting a semicolon at the end of the command to evaluate, you can include the then statement on the same

line, which looks closer to how if-then statements are handled in some other programming languages.

You are not limited to just one command in the then section. You can list commands just
as in the rest of the shell script. The bash shell treats the commands as a block, executing
all of them when the command in the if statement line returns a zero exit status or skip-
ping all of them when the command returns a non-zero exit status:

$ cat test3.sh
#!/bin/bash
testing multiple commands in the then section
#
testuser=Christine
#
if grep $testuser /etc/passwd
then
 echo "This is my first command"
 echo "This is my second command"
 echo "I can even put in other commands besides echo:"
 ls -a /home/$testuser/.b*
fi
$

The if statement line uses the grep comment to search the /etc/passwd fi le to see if a
specifi c username is currently used on the system. If there’s a user with that logon name,
the script displays some text and then lists the bash fi les in the user’s HOME directory:

$./test3.sh
Christine:x:501:501:Christine B:/home/Christine:/bin/bash
This is my first command
This is my second command
I can even put in other commands besides echo:
/home/Christine/.bash_history /home/Christine/.bash_profile
/home/Christine/.bash_logout /home/Christine/.bashrc
$

However, if you set the testuser variable to a user that doesn’t exist on the system,
nothing happens:

300

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 300

$ cat test3.sh
#!/bin/bash
testing multiple commands in the then section
#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
 echo "This is my first command"
 echo "This is my second command"
 echo "I can even put in other commands besides echo:"
 ls -a /home/$testuser/.b*
fi
$
$./test3.sh
$

It’s not all that exciting. It would be nice if we could display a little message saying that
the username wasn’t found on the system. Well, we can, using another feature of the
if-then statement.

Exploring the if-then-else Statement
In the if-then statement, you have only one option for whether a command is success-
ful. If the command returns a non-zero exit status code, the bash shell just moves on to
the next command in the script. In this situation, it would be nice to be able to execute an
alternate set of commands. That’s exactly what the if-then-else statement is for.

The if-then-else statement provides another group of commands in the statement:

if command
then
 commands
else
 commands
fi

When the command in the if statement line returns with a zero exit status code, the com-
mands listed in the then section are executed, just as in a normal if-then statement.
When the command in the if statement line returns a non-zero exit status code, the bash
shell executes the commands in the else section.

Now you can copy and modify the test script to include an else section:

$ cp test3.sh test4.sh
$
$ nano test4.sh
$

301

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 301

12

$ cat test4.sh
#!/bin/bash
testing the else section
#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
 echo "The bash files for user $testuser are:"
 ls -a /home/$testuser/.b*
 echo
else
 echo "The user $testuser does not exist on this system."
 echo
fi
$
$./test4.sh
The user NoSuchUser does not exist on this system.

$

That’s more user-friendly. Just like the then section, the else section can contain mul-
tiple commands. The fi statement delineates the end of the else section.

Nesting ifs
Sometimes, you must check for several situations in your script code. For these situations,
you can nest the if-then statements:

To check if a logon name is not in the /etc/passwd fi le and yet a directory for that user
still exists, use a nested if-then statement. In this case, the nested if-then statement
is within the primary if-then-else statement’s else code block:

$ ls -d /home/NoSuchUser/
/home/NoSuchUser/
$
$ cat test5.sh
#!/bin/bash
Testing nested ifs
#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
 echo "The user $testuser exists on this system."
else
 echo "The user $testuser does not exist on this system."

302

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 302

 if ls -d /home/$testuser/
 then
 echo "However, $testuser has a directory."
 fi
fi
$
$./test5.sh
The user NoSuchUser does not exist on this system.
/home/NoSuchUser/
However, NoSuchUser has a directory.
$

The script correctly fi nds that although the login name has been removed from the /etc/
passwd fi le, the user’s directory is still on the system. The problem with using this man-
ner of nested if-then statements in a script is that the code can get hard to read, and the
logic fl ow becomes diffi cult to follow.

Instead of having to write separate if-then statements, you can use an alternative ver-
sion of the else section, called elif. The elif continues an else section with another
if-then statement:

if command1
then
 commands
elif command2
then
 more commands
fi

The elif statement line provides another command to evaluate, similar to the original if
statement line. If the exit status code from the elif command is zero, bash executes the
commands in the second then statement section. Using this method of nesting provides
cleaner code with an easier-to-follow logic fl ow:

$ cat test5.sh
#!/bin/bash
Testing nested ifs - use elif
#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
 echo "The user $testuser exists on this system."
#
elif ls -d /home/$testuser
then
 echo "The user $testuser does not exist on this system."
 echo "However, $testuser has a directory."
#

303

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 303

12

fi
$
$./test5.sh
/home/NoSuchUser
The user NoSuchUser does not exist on this system.
However, NoSuchUser has a directory.
$

You can even take this script a step further and have it check for both a non-existent user
with a directory and a non-existent user without a directory. This is accomplished by add-
ing an else statement within the nested elif:

$ cat test5.sh
#!/bin/bash
Testing nested ifs - use elif & else
#
testuser=NoSuchUser
#
if grep $testuser /etc/passwd
then
 echo "The user $testuser exists on this system."
#
elif ls -d /home/$testuser
then
 echo "The user $testuser does not exist on this system."
 echo "However, $testuser has a directory."
#
else
 echo "The user $testuser does not exist on this system."
 echo "And, $testuser does not have a directory."
fi
$
$./test5.sh
/home/NoSuchUser
The user NoSuchUser does not exist on this system.
However, NoSuchUser has a directory.
$
$ sudo rmdir /home/NoSuchUser
[sudo] password for Christine:
$
$./test5.sh
ls: cannot access /home/NoSuchUser: No such file or directory
The user NoSuchUser does not exist on this system.
And, NoSuchUser does not have a directory.
$

Before the /home/NoSuchUser directory was removed and the test script executed the
elif statement, a zero exit status was returned. Thus, the statements within the elif’s
then code block were executed. After the /home/NoSuchUser directory was removed, a

304

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 304

non-zero exit status was returned for the elif statement. This caused the statements in
the else block within the elif block to be executed.

Keep in mind that, with an elif statement, any else statements immediately following it are for that elif code

block. They are not part of a preceding if-then statement code block.

You can continue to string elif statements together, creating one huge if-then-elif
conglomeration:

if command1
then
 command set 1
elif command2
then
 command set 2
elif command3
then
 command set 3
elif command4
then
 command set 4
fi

Each block of commands is executed depending on which command returns the zero exit
status code. Remember that the bash shell executes the if statements in order, and only
the fi rst one that returns a zero exit status results in the then section being executed.

Even though the code looks cleaner with elif statements, it still can be confusing to fol-
low the script’s logic. Later in the “Considering the case Command” section, you’ll see how
to use the case command instead of having to nest lots of if-then statements.

Trying the test Command
So far, all you’ve seen in the if statement line are normal shell commands. You might be
wondering if the bash if-then statement has the ability to evaluate any condition other
than a command’s exit status code.

The answer is no, it can’t. However, there’s a neat utility available in the bash shell that
helps you evaluate other things, using the if-then statement.

The test command provides a way to test different conditions in an if-then statement.
If the condition listed in the test command evaluates to TRUE, the test command exits
with a zero exit status code. This makes the if-then statement behave in much the same

305

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 305

12

way that if-then statements work in other programming languages. If the condition is
FALSE, the test command exits with a non-zero exit status code, which causes the if-
then statement to exit.

The format of the test command is pretty simple:

test condition

The condition is a series of parameters and values that the test command evaluates. When
used in an if-then statement, the test command looks like this:

if test condition
then
 commands
fi

If you leave out the condition portion of the test command statement, it exits with a
non-zero exit status code and triggers any else block statements:

$ cat test6.sh
#!/bin/bash
Testing the test command
#
if test
then
 echo "No expression returns a True"
else
 echo "No expression returns a False"
fi
$
$./test6.sh
No expression returns a False
$

When you add in a condition, it is tested by the test command. For example, using the
test command, you can determine whether a variable has content. A simple condition
expression is needed to determine whether a variable has content:

$ cat test6.sh
#!/bin/bash
Testing the test command
#
my_variable="Full"
#
if test $my_variable
then
 echo "The $my_variable expression returns a True"
#
else

306

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 306

 echo "The $my_variable expression returns a False"
fi
$
$./test6.sh
The Full expression returns a True
$

The variable my_variable contains content (Full), so when the test command checks the
condition, the exit status returns a zero. This triggers the statement in the then code block.

As you would suspect, the opposite occurs when the variable does not contain content:

$ cat test6.sh
#!/bin/bash
Testing the test command
#
my_variable=""
#
if test $my_variable
then
 echo "The $my_variable expression returns a True"
#
else
 echo "The $my_variable expression returns a False"
fi
$
$./test6.sh
The expression returns a False
$

The bash shell provides an alternative way of testing a condition without declaring the
test command in an if-then statement:

if [condition]
then
 commands
fi

The square brackets defi ne the test condition. Be careful; you must have a space after the
fi rst bracket and a space before the last bracket, or you’ll get an error message.

The test command and test conditions can evaluate three classes of conditions:

 ■ Numeric comparisons

 ■ String comparisons

 ■ File comparisons

307

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 307

12

The next sections describe how to use each of these test classes in your if-then
statements.

Using numeric comparisons
The most common test evaluation method is to perform a comparison of two numeric val-
ues. Table 12-1 shows the list of condition parameters used for testing two values.

TABLE 12-1 The test Numeric Comparisons

Comparison Description

n1 -eq n2 Checks if n1 is equal to n2

n1 -ge n2 Checks if n1 is greater than or equal to n2

n1 -gt n2 Checks if n1 is greater than n2

n1 -le n2 Checks if n1 is less than or equal to n2

n1 -lt n2 Checks if n1 is less than n2

n1 -ne n2 Checks if n1 is not equal to n2

The numeric test conditions can be used to evaluate both numbers and variables. Here’s an
example of doing that:

$ cat numeric_test.sh
#!/bin/bash
Using numeric test evaluations
#
value1=10
value2=11
#
if [$value1 -gt 5]
then
 echo "The test value $value1 is greater than 5"
fi
#
if [$value1 -eq $value2]
then
 echo "The values are equal"
else
 echo "The values are different"
fi
#
$

308

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 308

The fi rst test condition:

if [$value1 -gt 5]

tests if the value of the variable value1 is greater than 5. The second test condition:

if [$value1 -eq $value2]

tests if the value of the variable value1 is equal to the value of the variable value2. Both
numeric test conditions evaluate as expected:

$./numeric_test.sh
The test value 10 is greater than 5
The values are different
$

There is a limitation to the test numeric conditions concerning fl oating-point values:

$ cat floating_point_test.sh
#!/bin/bash
Using floating point numbers in test evaluations
#
value1=5.555
#
echo "The test value is $value1"
#
if [$value1 -gt 5]
then
 echo "The test value $value1 is greater than 5"
fi
#
$./floating_point_test.sh
The test value is 5.555
./floating_point_test.sh: line 8:
[: 5.555: integer expression expected
$

This example uses a fl oating-point value, stored in the value1 variable. Next, it evaluates
the value. Something obviously went wrong.

Remember that the only numbers the bash shell can handle are integers. This works per-
fectly fi ne if all you need to do is display the result, using an echo statement. However,
this doesn’t work in numeric-oriented functions, such as our numeric test condition. The
bottom line is that you cannot use fl oating-point values for test conditions.

Using string comparisons
Test conditions also allow you to perform comparisons on string values. Performing com-
parisons on strings can get tricky, as you’ll see. Table 12-2 shows the comparison functions
you can use to evaluate two string values.

309

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 309

12

TABLE 12-2 The test String Comparisons

Comparison Description

str1 = str2 Checks if str1 is the same as string str2

str1 != str2 Checks if str1 is not the same as str2

str1 < str2 Checks if str1 is less than str2

str1 > str2 Checks if str1 is greater than str2

-n str1 Checks if str1 has a length greater than zero

-z str1 Checks if str1 has a length of zero

The following sections describe the different string comparisons available.

Looking at string equality

The equal and not equal conditions are fairly self-explanatory with strings. It’s pretty easy
to know when two string values are the same or not:

$ cat test7.sh
#!/bin/bash
testing string equality
testuser=rich
#
if [$USER = $testuser]
then
 echo "Welcome $testuser"
fi
$
$./test7.sh
Welcome rich
$

Also, using the not equals string comparison allows you to determine if two strings have
the same value or not:

$ cat test8.sh
#!/bin/bash
testing string equality
testuser=baduser
#
if [$USER != $testuser]
then
 echo "This is not $testuser"
else
 echo "Welcome $testuser"
fi

310

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 310

$
$./test8.sh
This is not baduser
$

Keep in mind that the test comparison takes all punctuation and capitalization into
account when comparing strings for equality.

Looking at string order

Trying to determine if one string is less than or greater than another is where things
start getting tricky. Two problems often plague shell programmers when trying to use the
greater-than or less-than features of test conditions:

 ■ The greater-than and less-than symbols must be escaped, or the shell uses them
as redirection symbols, with the string values as fi lenames.

 ■ The greater-than and less-than order is not the same as that used with the
sort command.

The fi rst item can result in a huge problem that often goes undetected when program-
ming your scripts. Here’s an example of what sometimes happens to novice shell script
programmers:

$ cat badtest.sh
#!/bin/bash
mis-using string comparisons
#
val1=baseball
val2=hockey
#
if [$val1 > $val2]
then
 echo "$val1 is greater than $val2"
else
 echo "$val1 is less than $val2"
fi
$
$./badtest.sh
baseball is greater than hockey
$ ls -l hockey
-rw-r--r-- 1 rich rich 0 Sep 30 19:08 hockey
$

By just using the greater-than symbol itself in the script, no errors are generated, but the
results are wrong. The script interpreted the greater-than symbol as an output redirection
(see Chapter 15). Thus, it created a fi le called hockey. Because the redirection completed
successfully, the test condition returns a zero exit status code, which the if statement
evaluates as though things completed successfully!

311

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 311

12

To fi x this problem, you need to properly escape the greater-than symbol:

$ cat test9.sh
#!/bin/bash
mis-using string comparisons
#
val1=baseball
val2=hockey
#
if [$val1 \> $val2]
then
 echo "$val1 is greater than $val2"
else
 echo "$val1 is less than $val2"
fi
$
$./test9.sh
baseball is less than hockey
$

Now that answer is more along the lines of what you would expect from the string
comparison.

The second issue is a little more subtle, and you may not even run across it unless you are
working with uppercase and lowercase letters. The sort command handles uppercase let-
ters opposite to the way the test conditions consider them:

$ cat test9b.sh
#!/bin/bash
testing string sort order
val1=Testing
val2=testing
#
if [$val1 \> $val2]
then
 echo "$val1 is greater than $val2"
else
 echo "$val1 is less than $val2"
fi
$
$./test9b.sh
Testing is less than testing
$
$ sort testfile
testing
Testing
$

312

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 312

Capitalized letters are treated as less than lowercase letters in test comparisons. However, the
sort command does the opposite. When you put the same strings in a fi le and use the sort
command, the lowercase letters appear fi rst. This is due to different ordering techniques.

Test comparisons use standard ASCII ordering, using each character’s ASCII numeric value
to determine the sort order. The sort command uses the sorting order defi ned for the
system locale language settings. For the English language, the locale settings specify that
lowercase letters appear before uppercase letters in sorted order.

The test command and test expressions use the standard mathematical comparison symbols for string compari-

sons and text codes for numerical comparisons. This is a subtle feature that many programmers manage to get

reversed. If you use the mathematical comparison symbols for numeric values, the shell interprets them as string

values and may not produce the correct results.

Looking at string size

The -n and -z comparisons are handy when trying to evaluate whether a variable
contains data:

$ cat test10.sh
#!/bin/bash
testing string length
val1=testing
val2=''
#
if [-n $val1]
then
 echo "The string '$val1' is not empty"
else
 echo "The string '$val1' is empty"
fi
#
if [-z $val2]
then
 echo "The string '$val2' is empty"
else
 echo "The string '$val2' is not empty"
fi
#
if [-z $val3]
then
 echo "The string '$val3' is empty"
else
 echo "The string '$val3' is not empty"
fi

313

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 313

12

$
$./test10.sh
The string 'testing' is not empty
The string '' is empty
The string '' is empty
$

This example creates two string variables. The val1 variable contains a string, and the
val2 variable is created as an empty string. The following comparisons are made as shown
below:

if [-n $val1]

The preceding code determines whether the val1 variable is non-zero in length, which it is,
so its then section is processed.

if [-z $var2]

This preceding code determines whether the val2 variable is zero in length, which it is, so
its then section is processed.

if [-z $val3]

The preceding determines whether the val3 variable is zero in length. This variable was
never defi ned in the shell script, so it indicates that the string length is still zero, even
though it wasn’t defi ned.

Empty and uninitialized variables can have catastrophic effects on your shell script tests. If you’re not sure of the

contents of a variable, it’s always best to test if the variable contains a value using -n or -z before using it in a

numeric or string comparison.

Using fi le comparisons
The last category of test comparisons is quite possibly the most powerful and most used
comparisons in shell scripting. This category allows you to test the status of fi les and direc-
tories on the Linux fi lesystem. Table 12-3 lists these comparisons.

TABLE 12-3 The test File Comparisons

Comparison Description

-d file Checks if file exists and is a directory

-e file Checks if file exists

-f file Checks if file exists and is a fi le

Continues

314

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 314

Comparison Description

-r file Checks if file exists and is readable

-s file Checks if file exists and is not empty

-w file Checks if file exists and is writable

-x file Checks if file exists and is executable

-O file Checks if file exists and is owned by the current user

-G file Checks if file exists and the default group is the same as the
current user

file1 -nt file2 Checks if file1 is newer than file2

file1 -ot file2 Checks if file1 is older than file2

These conditions give you the ability to check fi lesystem fi les within shell scripts. They are
often used in scripts that access fi les. Because they’re used so often, let’s look at each of
these individually.

Checking directories

The -d test checks to see if a specifi ed directory exists on the system. This is usually a
good thing to do if you’re trying to write a fi le to a directory or before you try to change to
a directory location:

$ cat test11.sh
#!/bin/bash
Look before you leap
#
jump_directory=/home/arthur
#
if [-d $jump_directory]
then
 echo "The $jump_directory directory exists"
 cd $jump_directory
 ls
else
 echo "The $jump_directory directory does not exist"
fi
#
$
$./test11.sh
The /home/arthur directory does not exist
$

The -d test condition checks to see if the jump_directory variable’s directory exists. If
it does, it proceeds to use the cd command to change to the current directory and performs
a directory listing. If it does not, the script emits a warning message and exits the script.

TABLE 12.3 (continued)

315

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 315

12

Checking whether an object exists

The -e comparison allows you to check if either a fi le or directory object exists before you
attempt to use it in your script:

$ cat test12.sh
#!/bin/bash
Check if either a directory or file exists
#
location=$HOME
file_name="sentinel"
#
if [-e $location]
then #Directory does exist
 echo "OK on the $location directory."
 echo "Now checking on the file, $file_name."
 #
 if [-e $location/$file_name]
 then #File does exist
 echo "OK on the filename"
 echo "Updating Current Date..."
 date >> $location/$file_name
 #
 else #File does not exist
 echo "File does not exist"
 echo "Nothing to update"
 fi
#
else #Directory does not exist
 echo "The $location directory does not exist."
 echo "Nothing to update"
fi
#
$
$./test12.sh
OK on the /home/Christine directory.
Now checking on the file, sentinel.
File does not exist
Nothing to update
$
$ touch sentinel
$
$./test12.sh
OK on the /home/Christine directory.
Now checking on the file, sentinel.
OK on the filename
Updating Current Date...
$

316

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 316

The fi rst check uses the -e comparison to determine whether the user has a $HOME direc-
tory. If so, the next -e comparison checks to determine whether the sentinel fi le exists
in the $HOME directory. If the fi le doesn’t exist, the shell script notes that the fi le is miss-
ing and that there is nothing to update.

To ensure that the update will work, the sentinel fi le was created and the shell script
was run a second time. This time when the conditions are tested, both the $HOME and the
sentinel fi le are found, and the current date and time is appended to the fi le.

Checking for a file

The -e comparison works for both fi les and directories. To be sure that the object specifi ed
is a fi le and not a directory, you must use the -f comparison:

$ cat test13.sh
#!/bin/bash
Check if either a directory or file exists
#
item_name=$HOME
echo
echo "The item being checked: $item_name"
echo
#
if [-e $item_name]
then #Item does exist
 echo "The item, $item_name, does exist."
 echo "But is it a file?"
 echo
 #
 if [-f $item_name]
 then #Item is a file
 echo "Yes, $item_name is a file."
 #
 else #Item is not a file
 echo "No, $item_name is not a file."
 fi
#
else #Item does not exist
 echo "The item, $item_name, does not exist."
 echo "Nothing to update"
fi
#
$./test13.sh

The item being checked: /home/Christine

The item, /home/Christine, does exist.
But is it a file?

No, /home/Christine is not a file.
$

317

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 317

12

This little script does lots of checking! First, it uses the -e comparison to test whether
$HOME exists. If it does, it uses -f to test whether it’s a fi le. If it isn’t a fi le (which of
course it isn’t), a message is displayed stating that it is not a fi le.

A slight modifi cation to the variable, item_name, replacing the directory $HOME with a
fi le, $HOME/sentinel, causes a different outcome:

$ nano test13.sh
$
$ cat test13.sh
#!/bin/bash
Check if either a directory or file exists
#
item_name=$HOME/sentinel
[...]
$
$./test13.sh

The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.
$

The test13.sh script listing is snipped, because the only item changed in the shell script
was the item_name variable’s value. Now when the script is run, the -f test on $HOME/
sentinel exits with a zero status, triggering the then statement, which in turn outputs
the message Yes, /home/Christine/sentinel is a file.

Checking for read access

Before trying to read data from a fi le, it’s usually a good idea to test whether you can read
from the fi le fi rst. You do this with the -r comparison:

$ cat test14.sh
#!/bin/bash
testing if you can read a file
pwfile=/etc/shadow
#
first, test if the file exists, and is a file
if [-f $pwfile]
then
 # now test if you can read it
 if [-r $pwfile]

318

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 318

 then
 tail $pwfile
 else
 echo "Sorry, I am unable to read the $pwfile file"
 fi
else
 echo "Sorry, the file $file does not exist"
fi
$
$./test14.sh
Sorry, I am unable to read the /etc/shadow file
$

The /etc/shadow fi le contains the encrypted passwords for system users, so it’s not read-
able by normal users on the system. The -r comparison determined that read access to the
fi le wasn’t allowed, so the test command failed and the bash shell executed the else sec-
tion of the if-then statement.

Checking for empty files

You should use -s comparison to check whether a fi le is empty, especially if you don’t want
to remove a non-empty fi le. Be careful because when the -s comparison succeeds, it indi-
cates that a fi le has data in it:

$ cat test15.sh
#!/bin/bash
Testing if a file is empty
#
file_name=$HOME/sentinel
#
if [-f $file_name]
then
 if [-s $file_name]
 then
 echo "The $file_name file exists and has data in it."
 echo "Will not remove this file."
#
 else
 echo "The $file_name file exists, but is empty."
 echo "Deleting empty file..."
 rm $file_name
 fi
else
 echo "File, $file_name, does not exist."
fi
#
$ ls -l $HOME/sentinel
-rw-rw-r--. 1 Christine Christine 29 Jun 25 05:32 /home/Christine/sentinel

319

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 319

12

$
$./test15.sh
The /home/Christine/sentinel file exists and has data in it.
Will not remove this file.
$

First, the -f comparison tests whether the fi le exists. If it does exist, the -s comparison is trig-
gered to determine whether the fi le is empty. An empty fi le will be deleted. You can see from
the ls -l that the sentinel fi le is not empty, and therefore the script does not delete it.

Checking whether you can write to a file

The -w comparison determines whether you have permission to write to a fi le. The
test16.sh script is simply an update of the test13.sh script. Now instead of just check-
ing whether the item_name exists and is a fi le, the script also checks to see whether it has
permission to write to the fi le:

$ cat test16.sh
#!/bin/bash
Check if a file is writable.
#
item_name=$HOME/sentinel
echo
echo "The item being checked: $item_name"
echo
[...]
 echo "Yes, $item_name is a file."
 echo "But is it writable?"
 echo
 #
 if [-w $item_name]
 then #Item is writable
 echo "Writing current time to $item_name"
 date +%H%M >> $item_name
 #
 else #Item is not writable
 echo "Unable to write to $item_name"
 fi
 #
 else #Item is not a file
 echo "No, $item_name is not a file."
 fi
[...]
$
$ ls -l sentinel
-rw-rw-r--. 1 Christine Christine 0 Jun 27 05:38 sentinel
$

320

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 320

$./test16.sh

The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.
But is it writable?

Writing current time to /home/Christine/sentinel
$
$ cat sentinel
0543
$

The item_name variable is set to $HOME/sentinel, and this fi le allows user write access
(see Chapter 7 for more information on fi le permissions). Thus, when the script is run, the
-w test expressions returns a non-zero exit status and the then code block is executed,
which writes a time stamp into the sentinel fi le.

When the sentinel fi le user’s write access is removed via chmod, the -w test expression
returns a non-zero status, and a time stamp is not written to the fi le:

$ chmod u-w sentinel
$
$ ls -l sentinel
-r--rw-r--. 1 Christine Christine 5 Jun 27 05:43 sentinel
$
$./test16.sh

The item being checked: /home/Christine/sentinel

The item, /home/Christine/sentinel, does exist.
But is it a file?

Yes, /home/Christine/sentinel is a file.
But is it writable?

Unable to write to /home/Christine/sentinel
$

The chmod command could be used again to grant the write permission back for the user.
This would make the write test expression return a zero exit status and allow a write
attempt to the fi le.

321

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 321

12

Checking whether you can run a file

The -x comparison is a handy way to determine whether you have execute permission for a
specifi c fi le. Although this may not be needed for most commands, if you run lots of scripts
from your shell scripts, it could be useful:

$ cat test17.sh
#!/bin/bash
testing file execution
#
if [-x test16.sh]
then
 echo "You can run the script: "
 ./test16.sh
else
 echo "Sorry, you are unable to execute the script"
fi
$
$./test17.sh
You can run the script:
[...]
$
$ chmod u-x test16.sh
$
$./test17.sh
Sorry, you are unable to execute the script
$

This example shell script uses the -x comparison to test whether you have permission to
execute the test16.sh script. If so, it runs the script. After successfully running the
test16.sh script the fi rst time, the permissions were changed. This time, the -x compari-
son failed, because execute permission had been removed for the test16.sh script.

Checking ownership

The -O comparison allows you to easily test whether you’re the owner of a fi le:

$ cat test18.sh
#!/bin/bash
check file ownership
#
if [-O /etc/passwd]
then
 echo "You are the owner of the /etc/passwd file"
else
 echo "Sorry, you are not the owner of the /etc/passwd file"
fi

322

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 322

$
$./test18.sh
Sorry, you are not the owner of the /etc/passwd file
$

The script uses the -O comparison to test whether the user running the script is the owner
of the /etc/passwd fi le. The script is run under a normal user account, so the test fails.

Checking default group membership

The -G comparison checks the default group of a fi le, and it succeeds if it matches the
group of the default group for the user. This can be somewhat confusing because the
-G comparison checks the default groups only and not all the groups to which the user
belongs. Here’s an example of this:

$ cat test19.sh
#!/bin/bash
check file group test
#
if [-G $HOME/testing]
then
 echo "You are in the same group as the file"
else
 echo "The file is not owned by your group"
fi
$
$ ls -l $HOME/testing
-rw-rw-r-- 1 rich rich 58 2014-07-30 15:51 /home/rich/testing
$
$./test19.sh
You are in the same group as the file
$
$ chgrp sharing $HOME/testing
$
$./test19
The file is not owned by your group
$

The fi rst time the script is run, the $HOME/testing fi le is in the rich group, and the -G
comparison succeeds. Next, the group is changed to the sharing group, of which the user
is also a member. However, the -G comparison failed, because it compares only the default
groups, not any additional group memberships.

Checking file date

The last set of comparisons deal with comparing the creation times of two fi les. This comes
in handy when writing scripts to install software. Sometimes, you don’t want to install a
fi le that is older than a fi le already installed on the system.

323

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 323

12

The -nt comparison determines whether a fi le is newer than another fi le. If a fi le is newer,
it has a more recent fi le creation time. The -ot comparison determines whether a fi le is
older than another fi le. If the fi le is older, it has an older fi le creation time:

$ cat test20.sh
#!/bin/bash
testing file dates
#
if [test19.sh -nt test18.sh]
then
 echo "The test19 file is newer than test18"
else
 echo "The test18 file is newer than test19"
fi
if [test17.sh -ot test19.sh]
then
 echo "The test17 file is older than the test19 file"
fi
$
$./test20.sh
The test19 file is newer than test18
The test17 file is older than the test19 file
$
$ ls -l test17.sh test18.sh test19.sh
-rwxrw-r-- 1 rich rich 167 2014-07-30 16:31 test17.sh
-rwxrw-r-- 1 rich rich 185 2014-07-30 17:46 test18.sh
-rwxrw-r-- 1 rich rich 167 2014-07-30 17:50 test19.sh
$

The fi le paths used in the comparisons are relative to the directory from which you run the
script. This can cause problems if the fi les being checked are moved around. Another prob-
lem is that neither of these comparisons checks whether the fi le exists fi rst. Try this test:

$ cat test21.sh
#!/bin/bash
testing file dates
#
if [badfile1 -nt badfile2]
then
 echo "The badfile1 file is newer than badfile2"
else
 echo "The badfile2 file is newer than badfile1"
fi
$
$./test21.sh
The badfile2 file is newer than badfile1
$

324

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 324

This little example demonstrates that if the fi les don’t exist, the -nt comparison just
returns a failed condition. It’s imperative to ensure that the fi les exist before trying to use
them in the -nt or -ot comparison.

Considering Compound Testing
The if-then statement allows you to use Boolean logic to combine tests. You can use
these two Boolean operators:

 ■ [condition1] && [condition2]

 ■ [condition1] || [condition2]

The fi rst Boolean operation uses the AND Boolean operator to combine two conditions. Both
conditions must be met for the then section to execute.

Boolean logic is a method that reduces the potential returned values to be either TRUE or FALSE.

The second Boolean operation uses the OR Boolean operator to combine two conditions. If
either condition evaluates to a TRUE condition, the then section is executed.

The following shows the AND Boolean operator in use:

$ cat test22.sh
#!/bin/bash
testing compound comparisons
#
if [-d $HOME] && [-w $HOME/testing]
then
 echo "The file exists and you can write to it"
else
 echo "I cannot write to the file"
fi
$
$./test22.sh
I cannot write to the file
$
$ touch $HOME/testing
$
$./test22.sh
The file exists and you can write to it
$

Using the AND Boolean operator, both of the comparisons must be met. The fi rst comparison
checks to see if the $HOME directory exists for the user. The second comparison checks to

325

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 325

12

see if there’s a fi le called testing in the user’s $HOME directory, and if the user has write
permissions for the fi le. If either of these comparisons fails, the if statement fails and the
shell executes the else section. If both of the comparisons succeed, the if statement suc-
ceeds, and the shell executes the then section.

Working with Advanced if-then Features
Two additions to the bash shell provide advanced features that you can use in if-then
statements:

 ■ Double parentheses for mathematical expressions

 ■ Double square brackets for advanced string handling functions

The following sections describe each of these features in more detail.

Using double parentheses
The double parentheses command allows you to incorporate advanced mathematical formulas
in your comparisons. The test command allows for only simple arithmetic operations in
the comparison. The double parentheses command provides more mathematical symbols,
which programmers who have used other programming languages may be familiar with
using. Here’s the format of the double parentheses command:

((expression))

The expression term can be any mathematical assignment or comparison expression. Besides
the standard mathematical operators that the test command uses, Table 12-4 shows the
list of additional operators available for use in the double parentheses command.

TABLE 12-4 The Double Parentheses Command Symbols

Symbol Description

val++ Post-increment

val-- Post-decrement

++val Pre-increment

--val Pre-decrement

! Logical negation

~ Bitwise negation

** Exponentiation

Continues

326

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 326

Symbol Description

<< Left bitwise shift

>> Right bitwise shift

& Bitwise Boolean AND

| Bitwise Boolean OR

&& Logical AND

|| Logical OR

You can use the double parentheses command in an if statement, as well as in a normal
command in the script for assigning values:

$ cat test23.sh
#!/bin/bash
using double parenthesis
#
val1=10
#
if (($val1 ** 2 > 90))
then
 ((val2 = $val1 ** 2))
 echo "The square of $val1 is $val2"
fi
$
$./test23.sh
The square of 10 is 100
$

Notice that you don’t need to escape the greater-than symbol in the expression within the dou-
ble parentheses. This is yet another advanced feature besides the double parentheses command.

Using double brackets
The double bracket command provides advanced features for string comparisons. Here’s the
double bracket command format:

[[expression]]

The double bracketed expression uses the standard string comparison used in the test
evaluations. However, it provides an additional feature that the test evaluations don’t —
pattern matching.

Double brackets work fi ne in the bash shell. Be aware, however, that not all shells support double brackets.

TABLE 12.4 (continued)

327

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 327

12

In pattern matching, you can defi ne a regular expression (discussed in detail in Chapter 20)
that’s matched against the string value:

$ cat test24.sh
#!/bin/bash
using pattern matching
#
if [[$USER == r*]]
then
 echo "Hello $USER"
else
 echo "Sorry, I do not know you"
fi
$
$./test24.sh
Hello rich
$

Notice in the preceding script that double equal signs (==) are used. These double equal
signs designate the string to the right (r*) as a pattern, and pattern matching rules are
applied. The double bracket command matches the $USER environment variable to see
whether it starts with the letter r. If so, the comparison succeeds, and the shell executes
the then section commands.

Considering the case Command
Often, you’ll fi nd yourself trying to evaluate a variable’s value, looking for a specifi c value
within a set of possible values. In this scenario, you end up having to write a lengthy
if-then-else statement, like this:

$ cat test25.sh
#!/bin/bash
looking for a possible value
#
if [$USER = "rich"]
then
 echo "Welcome $USER"
 echo "Please enjoy your visit"
elif [$USER = "barbara"]
then
 echo "Welcome $USER"
 echo "Please enjoy your visit"
elif [$USER = "testing"]
then
 echo "Special testing account"
elif [$USER = "jessica"]

328

Part II: Shell Scripting Basics

c12.indd 12/23/2014 Page 328

then
 echo "Do not forget to logout when you're done"
else
 echo "Sorry, you are not allowed here"
fi
$
$./test25.sh
Welcome rich
Please enjoy your visit
$

The elif statements continue the if-then checking, looking for a specifi c value for the
single comparison variable.

Instead of having to write all the elif statements to continue checking the same variable
value, you can use the case command. The case command checks multiple values of a
single variable in a list-oriented format:

case variable in
pattern1 | pattern2) commands1;;
pattern3) commands2;;
*) default commands;;
esac

The case command compares the variable specifi ed against the different patterns. If the
variable matches the pattern, the shell executes the commands specifi ed for the pattern.
You can list more than one pattern on a line, using the bar operator to separate each pat-
tern. The asterisk symbol is the catch-all for values that don’t match any of the listed
patterns. Here’s an example of converting the if-then-else program to using the case
command:

$ cat test26.sh
#!/bin/bash
using the case command
#
case $USER in
rich | barbara)
 echo "Welcome, $USER"
 echo "Please enjoy your visit";;
testing)
 echo "Special testing account";;
jessica)
 echo "Do not forget to log off when you're done";;
*)
 echo "Sorry, you are not allowed here";;
esac
$
$./test26.sh

329

Chapter 12: Using Structured Commands

c12.indd 12/23/2014 Page 329

12

Welcome, rich
Please enjoy your visit
$

The case command provides a much cleaner way of specifying the various options for each
possible variable value.

Summary
Structured commands allow you to alter the normal fl ow of shell script execution. The most
basic structured command is the if-then statement. This statement provides a command
evaluation and performs other commands based on the evaluated command’s output.

You can expand the if-then statement to include a set of commands the bash shell exe-
cutes if the specifi ed command fails as well. The if-then-else statement executes com-
mands only if the command being evaluated returns a non-zero exit status code.

You can also link if-then-else statements together, using the elif statement. The
elif is equivalent to using an else if statement, providing for additional checking of
whether the original command that was evaluated failed.

In most scripts, instead of evaluating a command, you’ll want to evaluate a condition, such
as a numeric value, the contents of a string, or the status of a fi le or directory. The test
command provides an easy way for you to evaluate all these conditions. If the condition
evaluates to a TRUE condition, the test command produces a zero exit status code for the
if-then statement. If the condition evaluates to a FALSE condition, the test command
produces a non-zero exit status code for the if-then statement.

The square bracket is a special bash command that is a synonym for the test command.
You can enclose a test condition in square brackets in the if-then statement to test for
numeric, string, and fi le conditions.

The double parentheses command provides advanced mathematical evaluations using
additional operators. The double square bracket command allows you to perform advanced
string pattern-matching evaluations.

Finally, the chapter discussed the case command, which is a shorthand way of performing
multiple if-then-else commands, checking the value of a single variable against a list of
values.

The next chapter continues the discussion of structured commands by examining the shell
looping commands. The for and while commands let you create loops that iterate through
commands for a given period of time.

c12.indd 12/23/2014 Page 330

331

c13.indd 12/16/2014 Page 331

 CHAP T ER

13
More Structured Commands

IN THIS CHAPTER

Looping with the for statement

Iterating with the until statement

Using the while statement

Combining loops

Redirecting loop output

In the previous chapter, you saw how to manipulate the fl ow of a shell script program by check-
ing the output of commands and the values of variables. In this chapter, we continue to look at
structured commands that control the fl ow of your shell scripts. You’ll see how you can perform

repeating processes, commands that can loop through a set of commands until an indicated condi-
tion has been met. This chapter discusses and demonstrates the for, while, and until bash shell
looping commands.

The for Command
Iterating through a series of commands is a common programming practice. Often, you need to
repeat a set of commands until a specifi c condition has been met, such as processing all the fi les in
a directory, all the users on a system, or all the lines in a text fi le.

The bash shell provides the for command to allow you to create a loop that iterates through a
series of values. Each iteration performs a defi ned set of commands using one of the values in the
series. Here’s the basic format of the bash shell for command:

 for var in list
 do
 commands
 done

You supply the series of values used in the iterations in the list parameter. You can specify the val-
ues in the list in several ways.

332

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 332

In each iteration, the variable var contains the current value in the list. The fi rst iteration
uses the fi rst item in the list, the second iteration the second item, and so on until all the
items in the list have been used.

The commands entered between the do and done statements can be one or more standard
bash shell commands. Within the commands, the $var variable contains the current list
item value for the iteration.

If you prefer, you can include the do statement on the same line as the for statement, but you must separate it

from the list items using a semicolon: for var in list; do.

We mentioned that there are several different ways to specify the values in the list. The
following sections show the various ways to do that.

Reading values in a list
The most basic use of the for command is to iterate through a list of values defi ned within
the for command itself:

 $ cat test1
 #!/bin/bash
 # basic for command

 for test in Alabama Alaska Arizona Arkansas California Colorado
 do
 echo The next state is $test
 done
 $./test1
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas
 The next state is California
 The next state is Colorado
 $

Each time the for command iterates through the list of values provided, it assigns the
$test variable the next value in the list. The $test variable can be used just like any
other script variable within the for command statements. After the last iteration, the
$test variable remains valid throughout the remainder of the shell script. It retains the
last iteration value (unless you change its value):

 $ cat test1b
 #!/bin/bash

333

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 333

13

13

 # testing the for variable after the looping

 for test in Alabama Alaska Arizona Arkansas California Colorado
 do
 echo "The next state is $test"
 done
 echo "The last state we visited was $test"
 test=Connecticut
 echo "Wait, now we're visiting $test"
 $./test1b
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas
 The next state is California
 The next state is Colorado
 The last state we visited was Colorado
 Wait, now we're visiting Connecticut
 $

The $test variable retained its value and allowed us to change the value and use it outside
of the for command loop, as any other variable would.

Reading complex values in a list
Things aren’t always as easy as they seem with the for loop. There are times when you
run into data that causes problems. Here’s a classic example of what can cause problems for
shell script programmers:

 $ cat badtest1
 #!/bin/bash
 # another example of how not to use the for command

 for test in I don't know if this'll work
 do
 echo "word:$test"
 done
 $./badtest1
 word:I
 word:dont know if thisll
 word:work
 $

Ouch, that hurts. The shell saw the single quotation marks within the list values and
attempted to use them to defi ne a single data value, and it really messed things up in the
process.

334

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 334

You have two ways to solve this problem:

 ■ Use the escape character (the backslash) to escape the single quotation mark.

 ■ Use double quotation marks to defi ne the values that use single quotation marks.

Neither solution is all that fantastic, but each one helps solve the problem:

 $ cat test2
 #!/bin/bash
 # another example of how not to use the for command

 for test in I don\'t know if "this'll" work
 do
 echo "word:$test"
 done
 $./test2
 word:I
 word:don't
 word:know
 word:if
 word:this'll
 word:work
 $

In the fi rst problem value, you added the backslash character to escape the single quotation
mark in the don't value. In the second problem value, you enclosed the this'll value in
double quotation marks. Both methods worked fi ne to distinguish the value.

Another problem you may run into is multi-word values. Remember that the for loop
assumes that each value is separated with a space. If you have data values that contain
spaces, you run into yet another problem:

 $ cat badtest2
 #!/bin/bash
 # another example of how not to use the for command

 for test in Nevada New Hampshire New Mexico New York North Carolina
 do
 echo "Now going to $test"
 done
 $./badtest1
 Now going to Nevada
 Now going to New
 Now going to Hampshire
 Now going to New
 Now going to Mexico
 Now going to New
 Now going to York

335

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 335

13

 Now going to North
 Now going to Carolina
 $

Oops, that’s not exactly what we wanted. The for command separates each value in the list
with a space. If there are spaces in the individual data values, you must accommodate them
using double quotation marks:

 $ cat test3
 #!/bin/bash
 # an example of how to properly define values

 for test in Nevada "New Hampshire" "New Mexico" "New York"
 do
 echo "Now going to $test"
 done
 $./test3
 Now going to Nevada
 Now going to New Hampshire
 Now going to New Mexico
 Now going to New York
 $

Now the for command can properly distinguish between the different values. Also, notice
that when you use double quotation marks around a value, the shell doesn’t include the
quotation marks as part of the value.

Reading a list from a variable
Often what happens in a shell script is that you accumulate a list of values stored in a vari-
able and then need to iterate through the list. You can do this using the for command as
well:

 $ cat test4
 #!/bin/bash
 # using a variable to hold the list

 list="Alabama Alaska Arizona Arkansas Colorado"
 list=$list" Connecticut"

 for state in $list
 do
 echo "Have you ever visited $state?"
 done
 $./test4
 Have you ever visited Alabama?
 Have you ever visited Alaska?
 Have you ever visited Arizona?

336

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 336

 Have you ever visited Arkansas?
 Have you ever visited Colorado?
 Have you ever visited Connecticut?
 $

The $list variable contains the standard text list of values to use for the iterations.
Notice that the code also uses another assignment statement to add (or concatenate) an
item to the existing list contained in the $list variable. This is a common method for
adding text to the end of an existing text string stored in a variable.

Reading values from a command
Another way to generate values for use in the list is to use the output of a command. You
use command substitution to execute any command that produces output and then use the
output of the command in the for command:

 $ cat test5
 #!/bin/bash
 # reading values from a file

 file="states"

 for state in $(cat $file)
 do
 echo "Visit beautiful $state"
 done
 $ cat states
 Alabama
 Alaska
 Arizona
 Arkansas
 Colorado
 Connecticut
 Delaware
 Florida
 Georgia
 $./test5
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas
 Visit beautiful Colorado
 Visit beautiful Connecticut
 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 $

337

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 337

13

This example uses the cat command in the command substitution to display the contents
of the fi le states. Notice that the states fi le includes each state on a separate line, not sepa-
rated by spaces. The for command still iterates through the output of the cat command
one line at a time, assuming that each state is on a separate line. However, this doesn’t
solve the problem of having spaces in data. If you list a state with a space in it, the for
command still takes each word as a separate value. There’s a reason for this, which we look
at in the next section.

The test5 code example assigned the fi lename to the variable using just the fi lename without a path. This requires

that the fi le be in the same directory as the script. If this isn’t the case, you need to use a full pathname (either abso-

lute or relative) to reference the fi le location.

Changing the fi eld separator
The cause of this problem is the special environment variable IFS, called the internal fi eld
separator. The IFS environment variable defi nes a list of characters the bash shell uses
as fi eld separators. By default, the bash shell considers the following characters as fi eld
separators:

 ■ A space

 ■ A tab

 ■ A newline

If the bash shell sees any of these characters in the data, it assumes that you’re starting
a new data fi eld in the list. When working with data that can contain spaces (such as fi le-
names), this can be annoying, as you saw in the previous script example.

To solve this problem, you can temporarily change the IFS environment variable values in
your shell script to restrict the characters the bash shell recognizes as fi eld separators. For
example, if you want to change the IFS value to recognize only the newline character, you
need to do this:

IFS=$'\n'

Adding this statement to your script tells the bash shell to ignore spaces and tabs in data
values. Applying this technique to the previous script yields the following:

$ cat test5b
 #!/bin/bash
 # reading values from a file

 file="states"

 IFS=$'\n'

338

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 338

 for state in $(cat $file)
 do
 echo "Visit beautiful $state"
 done
 $./test5b
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas
 Visit beautiful Colorado
 Visit beautiful Connecticut
 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 Visit beautiful New York
 Visit beautiful New Hampshire
 Visit beautiful North Carolina
 $

Now the shell script can use values in the list that contain spaces.

When working on long scripts, it’s possible to change the IFS value in one place, and then forget about it and assume

the default value elsewhere in the script. A safe practice to get into is to save the original IFS value before changing

it and then restore it when you’re fi nished.

This technique can be coded like this:

 IFS.OLD=$IFS
 IFS=$'\n'
 <use the new IFS value in code>
 IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for future operations within the script.

Other excellent applications of the IFS environment variable are possible. Suppose you
want to iterate through values in a fi le that are separated by a colon (such as in the /etc/
passwd fi le). You just need to set the IFS value to a colon:

 IFS=:

If you want to specify more than one IFS character, just string them together on the
assignment line:

 IFS=$'\n':;"

This assignment uses the newline, colon, semicolon, and double quotation mark characters
as fi eld separators. There’s no limit to how you can parse your data using the IFS characters.

339

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 339

13

Reading a directory using wildcards
Finally, you can use the for command to automatically iterate through a directory of fi les.
To do this, you must use a wildcard character in the fi le or pathname. This forces the shell
to use fi le globbing. File globbing is the process of producing fi lenames or pathnames that
match a specifi ed wildcard character.

This feature is great for processing fi les in a directory when you don’t know all the
fi lenames:

 $ cat test6
 #!/bin/bash
 # iterate through all the files in a directory

 for file in /home/rich/test/*
 do

 if [-d "$file"]
 then
 echo "$file is a directory"
 elif [-f "$file"]
 then
 echo "$file is a file"
 fi
 done
 $./test6
 /home/rich/test/dir1 is a directory
 /home/rich/test/myprog.c is a file
 /home/rich/test/myprog is a file
 /home/rich/test/myscript is a file
 /home/rich/test/newdir is a directory
 /home/rich/test/newfile is a file
 /home/rich/test/newfile2 is a file
 /home/rich/test/testdir is a directory
 /home/rich/test/testing is a file
 /home/rich/test/testprog is a file
 /home/rich/test/testprog.c is a file
 $

The for command iterates through the results of the /home/rich/test/* listing.
The code tests each entry using the test command (using the square bracket method)
to see if it’s a directory, using the -d parameter, or a fi le, using the -f parameter (See
Chapter 12).

Notice in this example that we did something different in the if statement tests:

 if [-d "$file"]

340

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 340

In Linux, it’s perfectly legal to have directory and fi lenames that contain spaces. To accom-
modate that, you should enclose the $file variable in double quotation marks. If you
don’t, you’ll get an error if you run into a directory or fi lename that contains spaces:

 ./test6: line 6: [: too many arguments
 ./test6: line 9: [: too many arguments

The bash shell interprets the additional words as arguments within the test command,
causing an error.

You can also combine both the directory search method and the list method in the same
for statement by listing a series of directory wildcards in the for command:

 $ cat test7
 #!/bin/bash
 # iterating through multiple directories

 for file in /home/rich/.b* /home/rich/badtest
 do
 if [-d "$file"]
 then
 echo "$file is a directory"
 elif [-f "$file"]
 then
 echo "$file is a file"
 else
 echo "$file doesn't exist"
 fi
 done
 $./test7
 /home/rich/.backup.timestamp is a file
 /home/rich/.bash_history is a file
 /home/rich/.bash_logout is a file
 /home/rich/.bash_profile is a file
 /home/rich/.bashrc is a file
 /home/rich/badtest doesn't exist
 $

The for statement fi rst uses fi le globbing to iterate through the list of fi les that result from
the wildcard character; then it iterates through the next fi le in the list. You can combine
any number of wildcard entries in the list to iterate through.

Notice that you can enter anything in the list data. Even if the fi le or directory doesn’t exist, the for statement

attempts to process whatever you place in the list. This can be a problem when working with fi les and directories. You

have no way of knowing if you’re trying to iterate through a nonexistent directory: It’s always a good idea to test each

fi le or directory before trying to process it.

341

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 341

13

The C-Style for Command
If you’ve done any programming using the C programming language, you’re probably sur-
prised by the way the bash shell uses the for command. In the C language, a for loop nor-
mally defi nes a variable, which it then alters automatically during each iteration. Typically,
programmers use this variable as a counter and either increment or decrement the counter
by one in each iteration. The bash for command can also provide this functionality. This
section shows you how to use a C-style for command in a bash shell script.

The C language for command
The C language for command has a specifi c method for specifying a variable, a condition
that must remain true for the iterations to continue, and a method for altering the variable
for each iteration. When the specifi ed condition becomes false, the for loop stops. The con-
dition equation is defi ned using standard mathematical symbols. For example, consider the
following C language code:

 for (i = 0; i < 10; i++)
 {
 printf("The next number is %d\n", i);
 }

This code produces a simple iteration loop, where the variable i is used as a counter. The
fi rst section assigns a default value to the variable. The middle section defi nes the condi-
tion under which the loop will iterate. When the defi ned condition becomes false, the for
loop stops iterations. The last section defi nes the iteration process. After each iteration,
the expression defi ned in the last section is executed. In this example, the i variable is
incremented by one after each iteration.

The bash shell also supports a version of the for loop that looks similar to the C-style for
loop, although it does have some subtle differences, including a couple of things that will
confuse shell script programmers. Here’s the basic format of the C-style bash for loop:

 for ((variable assignment ; condition ; iteration process))

The format of the C-style for loop can be confusing for bash shell script programmers,
because it uses C-style variable references instead of the shell-style variable references.
Here’s what a C-style for command looks like:

 for ((a = 1; a < 10; a++))

Notice that there are a couple of things that don’t follow the standard bash shell for
method:

 ■ The assignment of the variable value can contain spaces.

 ■ The variable in the condition isn’t preceded with a dollar sign.

 ■ The equation for the iteration process doesn’t use the expr command format.

342

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 342

The shell developers created this format to more closely resemble the C-style for command.
Although this is great for C programmers, it can throw even expert shell programmers into a
tizzy. Be careful when using the C-style for loop in your scripts.

Here’s an example of using the C-style for command in a bash shell program:

 $ cat test8
 #!/bin/bash
 # testing the C-style for loop

 for ((i=1; i <= 10; i++))
 do
 echo "The next number is $i"
 done
 $./test8
 The next number is 1
 The next number is 2
 The next number is 3
 The next number is 4
 The next number is 5
 The next number is 6
 The next number is 7
 The next number is 8
 The next number is 9
 The next number is 10
 $

The for loop iterates through the commands using the variable defi ned in the for loop
(the letter i in this example). In each iteration, the $i variable contains the value assigned
in the for loop. After each iteration, the loop iteration process is applied to the variable,
which in this example, increments the variable by one.

Using multiple variables
The C-style for command also allows you to use multiple variables for the iteration. The
loop handles each variable separately, allowing you to defi ne a different iteration process
for each variable. Although you can have multiple variables, you can defi ne only one condi-
tion in the for loop:

 $ cat test9
 #!/bin/bash
 # multiple variables

 for ((a=1, b=10; a <= 10; a++, b--))
 do
 echo "$a - $b"
 done
 $./test9

343

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 343

13

 1 - 10
 2 - 9
 3 - 8
 4 - 7
 5 - 6
 6 - 5
 7 - 4
 8 - 3
 9 - 2
 10 - 1
 $

The a and b variables are each initialized with different values, and different iteration pro-
cesses are defi ned. While the loop increases the a variable, it decreases the b variable for
each iteration.

The while Command
The while command is somewhat of a cross between the if-then statement and the for
loop. The while command allows you to defi ne a command to test and then loop through a
set of commands for as long as the defi ned test command returns a zero exit status. It tests
the test command at the start of each iteration. When the test command returns a non-
zero exit status, the while command stops executing the set of commands.

Basic while format
Here’s fhe format of the while command:

 while test command
 do
 other commands
 done

The test command defi ned in the while command is the exact same format as in if-then
statements (see Chapter 12). As in the if-then statement, you can use any normal bash shell
command, or you can use the test command to test for conditions, such as variable values.

The key to the while command is that the exit status of the test command specifi ed
must change, based on the commands run during the loop. If the exit status never changes,
the while loop will get stuck in an infi nite loop.

The most common use of the test command is to use brackets to check a value of a shell
variable that’s used in the loop commands:

 $ cat test10
 #!/bin/bash

344

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 344

 # while command test

 var1=10
 while [$var1 -gt 0]
 do
 echo $var1
 var1=$[$var1 - 1]
 done
 $./test10
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 $

The while command defi nes the test condition to check for each iteration:

 while [$var1 -gt 0]

As long as the test condition is true, the while command continues to loop through the
commands defi ned. Within the commands, the variable used in the test condition must
be modifi ed, or you’ll have an infi nite loop. In this example, we use shell arithmetic to
decrease the variable value by one:

 var1=$[$var1 - 1]

The while loop stops when the test condition is no longer true.

Using multiple test commands
The while command allows you to defi ne multiple test commands on the while statement
line. Only the exit status of the last test command is used to determine when the loop
stops. This can cause some interesting results if you’re not careful. Here’s an example of
what we mean:

 $ cat test11
 #!/bin/bash
 # testing a multicommand while loop

 var1=10

 while echo $var1

345

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 345

13

 [$var1 -ge 0]
 do
 echo "This is inside the loop"
 var1=$[$var1 - 1]
 done
 $./test11
 10
 This is inside the loop
 9
 This is inside the loop
 8
 This is inside the loop
 7
 This is inside the loop
 6
 This is inside the loop
 5
 This is inside the loop
 4
 This is inside the loop
 3
 This is inside the loop
 2
 This is inside the loop
 1
 This is inside the loop
 0
 This is inside the loop
 -1
 $

Pay close attention to what happened in this example. Two test commands were defi ned in
the while statement:

 while echo $var1
 [$var1 -ge 0]

The fi rst test simply displays the current value of the var1 variable. The second test uses
brackets to determine the value of the var1 variable. Inside the loop, an echo statement
displays a simple message, indicating that the loop was processed. Notice when you run the
example how the output ends:

 This is inside the loop
 -1
 $

The while loop executed the echo statement when the var1 variable was equal to zero
and then decreased the var1 variable value. Next, the test commands were executed for

346

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 346

the next iteration. The echo test command was executed, displaying the value of the var1
variable, which is now less than zero. It’s not until the shell executes the test test com-
mand that the while loop terminates.

This demonstrates that in a multi-command while statement, all the test commands are
executed in each iteration, including the last iteration when the last test command fails.
Be careful of this. Another thing to be careful of is how you specify the multiple test com-
mands. Note that each test command is on a separate line!

The until Command
The until command works in exactly the opposite way from the while command. The
until command requires that you specify a test command that normally produces a non-
zero exit status. As long as the exit status of the test command is non-zero, the bash shell
executes the commands listed in the loop. When the test command returns a zero exit sta-
tus, the loop stops.

As you would expect, the format of the until command is:

 until test commands
 do
 other commands
 done

Similar to the while command, you can have more than one test command in the until
command statement. Only the exit status of the last command determines if the bash shell
executes the other commands defi ned.

The following is an example of using the until command:

 $ cat test12
 #!/bin/bash
 # using the until command

 var1=100

 until [$var1 -eq 0]
 do
 echo $var1
 var1=$[$var1 - 25]
 done
 $./test12
 100
 75
 50
 25
 $

347

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 347

13

This example tests the var1 variable to determine when the until loop should stop. As
soon as the value of the variable is equal to zero, the until command stops the loop. The
same caution as for the while command applies when you use multiple test commands
with the until command:

 $ cat test13
 #!/bin/bash
 # using the until command

 var1=100

 until echo $var1
 [$var1 -eq 0]
 do
 echo Inside the loop: $var1
 var1=$[$var1 - 25]
 done
 $./test13
 100
 Inside the loop: 100
 75
 Inside the loop: 75
 50
 Inside the loop: 50
 25
 Inside the loop: 25
 0
 $

The shell executes the test commands specifi ed and stops only when the last command is
true.

Nesting Loops
A loop statement can use any other type of command within the loop, including other
loop commands. This is called a nested loop. Care should be taken when using nested loops,
because you’re performing an iteration within an iteration, which multiplies the number of
times commands are being run. If you don’t pay close attention to this, it can cause prob-
lems in your scripts.

Here’s a simple example of nesting a for loop inside another for loop:

 $ cat test14
 #!/bin/bash

348

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 348

 # nesting for loops

 for ((a = 1; a <= 3; a++))
 do
 echo "Starting loop $a:"
 for ((b = 1; b <= 3; b++))
 do
 echo " Inside loop: $b"
 done
 done
 $./test14
 Starting loop 1:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 2:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 3:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 $

The nested loop (also called the inner loop) iterates through its values for each iteration of
the outer loop. Notice that there’s no difference between the do and done commands for
the two loops. The bash shell knows when the fi rst done command is executed that it refers
to the inner loop and not the outer loop.

The same applies when you mix loop commands, such as placing a for loop inside a while
loop:

 $ cat test15
 #!/bin/bash
 # placing a for loop inside a while loop

 var1=5

 while [$var1 -ge 0]
 do
 echo "Outer loop: $var1"
 for ((var2 = 1; $var2 < 3; var2++))
 do
 var3=$[$var1 * $var2]
 echo " Inner loop: $var1 * $var2 = $var3"
 done
 var1=$[$var1 - 1]
 done
 $./test15

349

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 349

13

 Outer loop: 5
 Inner loop: 5 * 1 = 5
 Inner loop: 5 * 2 = 10
 Outer loop: 4
 Inner loop: 4 * 1 = 4
 Inner loop: 4 * 2 = 8
 Outer loop: 3
 Inner loop: 3 * 1 = 3
 Inner loop: 3 * 2 = 6
 Outer loop: 2
 Inner loop: 2 * 1 = 2
 Inner loop: 2 * 2 = 4
 Outer loop: 1
 Inner loop: 1 * 1 = 1
 Inner loop: 1 * 2 = 2
 Outer loop: 0
 Inner loop: 0 * 1 = 0
 Inner loop: 0 * 2 = 0
 $

Again, the shell distinguished between the do and done commands of the inner for loop
from the same commands in the outer while loop.

If you really want to test your brain, you can even combine until and while loops:

 $ cat test16
 #!/bin/bash
 # using until and while loops

 var1=3

 until [$var1 -eq 0]
 do
 echo "Outer loop: $var1"
 var2=1
 while [$var2 -lt 5]
 do
 var3=$(echo "scale=4; $var1 / $var2" | bc)
 echo " Inner loop: $var1 / $var2 = $var3"
 var2=$[$var2 + 1]
 done
 var1=$[$var1 - 1]
 done
 $./test16
 Outer loop: 3
 Inner loop: 3 / 1 = 3.0000
 Inner loop: 3 / 2 = 1.5000
 Inner loop: 3 / 3 = 1.0000
 Inner loop: 3 / 4 = .7500

350

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 350

 Outer loop: 2
 Inner loop: 2 / 1 = 2.0000
 Inner loop: 2 / 2 = 1.0000
 Inner loop: 2 / 3 = .6666
 Inner loop: 2 / 4 = .5000
 Outer loop: 1
 Inner loop: 1 / 1 = 1.0000
 Inner loop: 1 / 2 = .5000
 Inner loop: 1 / 3 = .3333
 Inner loop: 1 / 4 = .2500
 $

The outer until loop starts with a value of 3 and continues until the value equals 0. The
inner while loop starts with a value of 1 and continues as long as the value is less than
5. Each loop must change the value used in the test condition, or the loop will get stuck
infi nitely.

Looping on File Data
Often, you must iterate through items stored inside a fi le. This requires combining two of
the techniques covered:

 ■ Using nested loops

 ■ Changing the IFS environment variable

By changing the IFS environment variable, you can force the for command to handle each
line in the fi le as a separate item for processing, even if the data contains spaces. After
you’ve extracted an individual line in the fi le, you may have to loop again to extract data
contained within it.

The classic example of this is processing data in the /etc/passwd fi le. This requires that
you iterate through the /etc/passwd fi le line by line and then change the IFS variable
value to a colon so you can separate the individual components in each line.

The following is an example of doing just that:

 #!/bin/bash
 # changing the IFS value

 IFS.OLD=$IFS
 IFS=$'\n'
 for entry in $(cat /etc/passwd)
 do
 echo "Values in $entry –"
 IFS=:
 for value in $entry

351

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 351

13

 do
 echo " $value"
 done
 done
 $

This script uses two different IFS values to parse the data. The fi rst IFS value parses the
individual lines in the /etc/passwd fi le. The inner for loop next changes the IFS value
to the colon, which allows you to parse the individual values within the /etc/passwd
lines.

When you run this script, you get output something like this:

 Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -
 rich
 x
 501
 501
 Rich Blum
 /home/rich
 /bin/bash
 Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash -
 katie
 x
 506
 509
 Katie Blum
 /home/katie
 /bin/bash

The inner loop parses each individual value in the /etc/passwd entry. This is also a great
way to process comma-separated data, a common way to import spreadsheet data.

Controlling the Loop
You might be tempted to think that after you start a loop, you’re stuck until the loop fi n-
ishes all its iterations. This is not true. A couple of commands help us control what happens
inside of a loop:

 ■ The break command

 ■ The continue command

Each command has a different use in how to control the operation of a loop. The following
sections describe how you can use these commands to control the operation of your loops.

352

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 352

The break command
The break command is a simple way to escape a loop in progress. You can use the break
command to exit any type of loop, including while and until loops.

You can use the break command in several situations. This section shows each of these
methods.

Breaking out of a single loop

When the shell executes a break command, it attempts to break out of the loop that’s cur-
rently processing:

 $ cat test17
 #!/bin/bash
 # breaking out of a for loop

 for var1 in 1 2 3 4 5 6 7 8 9 10
 do
 if [$var1 -eq 5]
 then
 break
 fi
 echo "Iteration number: $var1"
 done
 echo "The for loop is completed"
 $./test17
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 The for loop is completed
 $

The for loop should normally have iterated through all the values specifi ed in the list.
However, when the if-then condition was satisfi ed, the shell executed the break com-
mand, which stopped the for loop.

This technique also works for while and until loops:

 $ cat test18
 #!/bin/bash
 # breaking out of a while loop

 var1=1

 while [$var1 -lt 10]
 do
 if [$var1 -eq 5]

353

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 353

13

 then
 break
 fi
 echo "Iteration: $var1"
 var1=$[$var1 + 1]
 done
 echo "The while loop is completed"
 $./test18
 Iteration: 1
 Iteration: 2
 Iteration: 3
 Iteration: 4
 The while loop is completed
 $

The while loop terminated when the if-then condition was met, executing the break
command.

Breaking out of an inner loop

When you’re working with multiple loops, the break command automatically terminates
the innermost loop you’re in:

 $ cat test19
 #!/bin/bash
 # breaking out of an inner loop

 for ((a = 1; a < 4; a++))
 do
 echo "Outer loop: $a"
 for ((b = 1; b < 100; b++))
 do
 if [$b -eq 5]
 then
 break
 fi
 echo " Inner loop: $b"
 done
 done
 $./test19
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 Outer loop: 2
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3

354

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 354

 Inner loop: 4
 Outer loop: 3
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $

The for statement in the inner loop specifi es to iterate until the b variable is equal to 100.
However, the if-then statement in the inner loop specifi es that when the b variable value
is equal to 5, the break command is executed. Notice that even though the inner loop is
terminated with the break command, the outer loop continues working as specifi ed.

Breaking out of an outer loop

There may be times when you’re in an inner loop but need to stop the outer loop. The
break command includes a single command line parameter value:

 break n

where n indicates the level of the loop to break out of. By default, n is 1, indicating to
break out of the current loop. If you set n to a value of 2, the break command stops the
next level of the outer loop:

 $ cat test20
 #!/bin/bash
 # breaking out of an outer loop

 for ((a = 1; a < 4; a++))
 do
 echo "Outer loop: $a"
 for ((b = 1; b < 100; b++))
 do
 if [$b -gt 4]
 then
 break 2
 fi
 echo " Inner loop: $b"
 done
 done
 $./test20
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $

Now when the shell executes the break command, the outer loop stops.

355

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 355

13

The continue command
The continue command is a way to prematurely stop processing commands inside of a
loop but not terminate the loop completely. This allows you to set conditions within a loop
where the shell won’t execute commands. Here’s a simple example of using the continue
command in a for loop:

 $ cat test21
 #!/bin/bash
 # using the continue command

 for ((var1 = 1; var1 < 15; var1++))
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then
 continue
 fi
 echo "Iteration number: $var1"
 done
 $./test21
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 Iteration number: 5
 Iteration number: 10
 Iteration number: 11
 Iteration number: 12
 Iteration number: 13
 Iteration number: 14
 $

When the conditions of the if-then statement are met (the value is greater than 5 and
less than 10), the shell executes the continue command, which skips the rest of the com-
mands in the loop, but keeps the loop going. When the if-then condition is no longer
met, things return to normal.

You can use the continue command in while and until loops, but be extremely careful
with what you’re doing. Remember that when the shell executes the continue command,
it skips the remaining commands. If you’re incrementing your test condition variable in
one of those conditions, bad things happen:

 $ cat badtest3
 #!/bin/bash
 # improperly using the continue command in a while loop

 var1=0

 while echo "while iteration: $var1"

356

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 356

 [$var1 -lt 15]
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then
 continue
 fi
 echo " Inside iteration number: $var1"
 var1=$[$var1 + 1]
 done
 $./badtest3 | more
 while iteration: 0
 Inside iteration number: 0
 while iteration: 1
 Inside iteration number: 1
 while iteration: 2
 Inside iteration number: 2
 while iteration: 3
 Inside iteration number: 3
 while iteration: 4
 Inside iteration number: 4
 while iteration: 5
 Inside iteration number: 5
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 $

You’ll want to make sure you redirect the output of this script to the more command so you
can stop things. Everything seems to be going just fi ne until the if-then condition is met,
and the shell executes the continue command. When the shell executes the continue
command, it skips the remaining commands in the while loop. Unfortunately, that’s where
the $var1 counter variable that is tested in the while test command is incremented. That
means that the variable isn’t incremented, as you can see from the continually displaying
output.

As with the break command, the continue command allows you to specify what level of
loop to continue with a command line parameter:

 continue n

357

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 357

13

where n defi nes the loop level to continue. Here’s an example of continuing an outer for
loop:

 $ cat test22
 #!/bin/bash
 # continuing an outer loop

 for ((a = 1; a <= 5; a++))
 do
 echo "Iteration $a:"
 for ((b = 1; b < 3; b++))
 do
 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi
 var3=$[$a * $b]
 echo " The result of $a * $b is $var3"
 done
 done
 $./test22
 Iteration 1:
 The result of 1 * 1 is 1
 The result of 1 * 2 is 2
 Iteration 2:
 The result of 2 * 1 is 2
 The result of 2 * 2 is 4
 Iteration 3:
 Iteration 4:
 The result of 4 * 1 is 4
 The result of 4 * 2 is 8
 Iteration 5:
 The result of 5 * 1 is 5
 The result of 5 * 2 is 10
 $

The if-then statement:

 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi

uses the continue command to stop processing the commands inside the loop but con-
tinue the outer loop. Notice in the script output that the iteration for the value 3 doesn’t
process any inner loop statements, because the continue command stopped the process-
ing, but it continues with the outer loop processing.

358

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 358

Processing the Output of a Loop
Finally, you can either pipe or redirect the output of a loop within your shell script. You do
this by adding the processing command to the end of the done command:

 for file in /home/rich/*
 do
 if [-d "$file"]
 then
 echo "$file is a directory"
 elif
 echo "$file is a file"
 fi
 done > output.txt

Instead of displaying the results on the monitor, the shell redirects the results of the for
command to the fi le output.txt.

Consider the following example of redirecting the output of a for command to a fi le:

 $ cat test23
 #!/bin/bash
 # redirecting the for output to a file

 for ((a = 1; a < 10; a++))
 do
 echo "The number is $a"
 done > test23.txt
 echo "The command is finished."
 $./test23
 The command is finished.
 $ cat test23.txt
 The number is 1
 The number is 2
 The number is 3
 The number is 4
 The number is 5
 The number is 6
 The number is 7
 The number is 8
 The number is 9
 $

The shell creates the fi le test23.txt and redirects the output of the for command only
to the fi le. The shell displays the echo statement after the for command just as normal.

This same technique also works for piping the output of a loop to another command:

 $ cat test24
 #!/bin/bash

359

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 359

13

 # piping a loop to another command

 for state in "North Dakota" Connecticut Illinois Alabama Tennessee
 do
 echo "$state is the next place to go"
 done | sort
 echo "This completes our travels"
 $./test24
 Alabama is the next place to go
 Connecticut is the next place to go
 Illinois is the next place to go
 North Dakota is the next place to go
 Tennessee is the next place to go
 This completes our travels
 $

The state values aren’t listed in any particular order in the for command list. The output
of the for command is piped to the sort command, which changes the order of the for
command output. Running the script indeed shows that the output was properly sorted
within the script.

Practical Examples
Now that you’ve seen how to use the different ways to create loops in shell scripts, let’s
look at some practical examples of how to use them. Looping is a common way to iterate
through data on the system, whether it’s fi les in folders or data contained in a fi le. Here are
a couple of examples that demonstrate using simple loops to work with data.

Finding executable fi les
When you run a program from the command line, the Linux system searches a series of
folders looking for that fi le. Those folders are defi ned in the PATH environment variable. If
you want to fi nd out just what executable fi les are available on your system for you to use,
just scan all the folders in the PATH environment variable. That may take some time to do
manually, but it’s a breeze working out a small shell script to do that.

The fi rst step is to create a for loop to iterate through the folders stored in the PATH envi-
ronment variable. When you do that, don’t forget to set the IFS separator character:

IFS=:
for folder in $PATH
do

Now that you have the individual folders in the $folder variable, you can use another
for loop to iterate through all the fi les inside that particular folder:

for file in $folder/*
do

360

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 360

The last step is to check whether the individual fi les have the executable permission set,
which you can do using the if-then test feature:

if [-x $file]
then
 echo " $file"
fi

And there you have it! Putting all the pieces together into a script looks like this:

$ cat test25
#!/bin/bash
finding files in the PATH

IFS=:
for folder in $PATH
do
 echo "$folder:"
 for file in $folder/*
 do
 if [-x $file]
 then
 echo " $file"
 fi
 done
done
$

When you run the code, you get a listing of the executable fi les that you can use from the
command line:

$./test25 | more
/usr/local/bin:
/usr/bin:
 /usr/bin/Mail
 /usr/bin/Thunar
 /usr/bin/X
 /usr/bin/Xorg
 /usr/bin/[
 /usr/bin/a2p
 /usr/bin/abiword
 /usr/bin/ac
 /usr/bin/activation-client
 /usr/bin/addr2line
...

The output shows all the executable fi les found in all the folders defi ned in the PATH envi-
ronment variable, which is quite a few!

361

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 361

13

Creating multiple user accounts
The goal of shell scripts is to make life easier for the system administrator. If you happen to
work in an environment with lots of users, one of the most boring tasks can be creating new
user accounts. Fortunately, you can use the while loop to make your job a little easier!

Instead of having to manually enter useradd commands for every new user account you
need to create, you can place the new user accounts in a text fi le and create a simple shell
script to do that work for you. The format of the text fi le that we’ll use looks like this:

userid,user name

The fi rst entry is the userid you want to use for the new user account. The second entry is
the full name of the user. The two values are separated by a comma, making this a comma-
separated fi le format, or .csv. This is a very common fi le format used in spreadsheets, so
you can easily create the user account list in a spreadsheet program and save it in .csv for-
mat for your shell script to read and process.

To read the fi le data, we’re going to use a little shell scripting trick. We’ll actually set the
IFS separator character to a comma as the test part of the while statement. Then to read
the individual lines, we’ll use the read command. That looks like this:

while IFS=',' read –r userid name

The read command does the work of moving onto the next line of text in the .csv text fi le,
so we don’t need another loop to do that. The while command exits when the read command
returns a FALSE value, which happens when it runs out of lines to read in the fi le. Tricky!

To feed the data from the fi le into the while command, you just use a redirection symbol
at the end of the while command.

Putting everything together results in this script:

$ cat test26
#!/bin/bash
process new user accounts

input="users.csv"
while IFS=',' read -r userid name
do
 echo "adding $userid"
 useradd -c "$name" -m $userid
done < "$input"
$

The $input variable points to the data fi le and is used as the redirect data for the while
command. The users.csv fi le looks like this:

$ cat users.csv
rich,Richard Blum

362

Part II: Shell Scripting Basics

c13.indd 12/16/2014 Page 362

christine,Christine Bresnahan
barbara,Barbara Blum
tim,Timothy Bresnahan
$

To run the problem, you must be the root user account, because the useradd command
requires root privileges:

./test26
adding rich
adding christine
adding barbara
adding tim

Then by taking a quick look at the /etc/passwd fi le, you can see that the accounts have
been created:

tail /etc/passwd
rich:x:1001:1001:Richard Blum:/home/rich:/bin/bash
christine:x:1002:1002:Christine Bresnahan:/home/christine:/bin/bash
barbara:x:1003:1003:Barbara Blum:/home/barbara:/bin/bash
tim:x:1004:1004:Timothy Bresnahan:/home/tim:/bin/bash
#

Congratulations, you’ve saved yourself lots of time in adding user accounts!

Summary
Looping is an integral part of programming. The bash shell provides three looping com-
mands that you can use in your scripts.

The for command allows you to iterate through a list of values, either supplied within the
command line, contained in a variable, or obtained by using fi le globbing, to extract fi le
and directory names from a wildcard character.

The while command provides a method to loop based on the condition of a command,
using either ordinary commands or the test command, which allows you to test conditions
of variables. As long as the command (or condition) produces a zero exit status, the while
loop continues to iterate through the specifi ed set of commands.

The until command also provides a method to iterate through commands, but it bases
its iterations on a command (or condition) producing a non-zero exit status. This feature
allows you to set a condition that must be met before the iteration stops.

363

Chapter 13: More Structured Commands

c13.indd 12/16/2014 Page 363

13

You can combine loops in shell scripts, producing multiple layers of loops. The bash shell
provides the continue and break commands, which allow you to alter the fl ow of the nor-
mal loop process based on different values within the loop.

The bash shell also allows you to use standard command redirection and piping to alter the
output of a loop. You can use redirection to redirect the output of a loop to a fi le or piping
to redirect the output of a loop to another command. This provides a wealth of features
with which you can control your shell script execution.

The next chapter discusses how to interact with your shell script user. Often, shell scripts
aren’t completely self-contained. They require some sort of external data that must be sup-
plied at the time you run them. The next chapter discusses different methods with which
you can provide real-time data to your shell scripts for processing.

c13.indd 12/16/2014 Page 364

365

c14.indd 12/12/2014 Page 365

CHAP T ER

14
Handling User Input

IN THIS CHAPTER

Passing parameters

Tracking parameters

Being shifty

Working with options

Standardizing options

Getting user input

S
o far you’ve seen how to write scripts that interact with data, variables, and fi les on the
Linux system. Sometimes, you need to write a script that has to interact with the person
running the script. The bash shell provides a few different methods for retrieving data from

people, including command line parameters (data values added after the command), command line
options (single-letter values that modify the behavior of the command), and the capability to read
input directly from the keyboard. This chapter discusses how to incorporate these different meth-
ods into your bash shell scripts to obtain data from the person running your script.

Passing Parameters
The most basic method of passing data to your shell script is to use command line parameters.
Command line parameters allow you to add data values to the command line when you execute
the script:

$./addem 10 30

This example passes two command line parameters (10 and 30) to the script addem. The script
handles the command line parameters using special variables. The following sections describe how
to use command line parameters in your bash shell scripts.

366

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 366

Reading parameters
The bash shell assigns special variables, called positional parameters, to all of the command
line parameters entered. This includes the name of the script the shell is executing. The
positional parameter variables are standard numbers, with $0 being the script’s name, $1
being the fi rst parameter, $2 being the second parameter, and so on, up to $9 for the ninth
parameter.

Here’s a simple example of using one command line parameter in a shell script:

$ cat test1.sh
#!/bin/bash
using one command line parameter
#
factorial=1
for ((number = 1; number <= $1 ; number++))
do
 factorial=$[$factorial * $number]
done
echo The factorial of $1 is $factorial
$
$./test1.sh 5
The factorial of 5 is 120
$

You can use the $1 variable just like any other variable in the shell script. The shell script
automatically assigns the value from the command line parameter to the variable; you don’t
need to do anything with it.

If you need to enter more command line parameters, each parameter must be separated by a
space on the command line:

$ cat test2.sh
#!/bin/bash
testing two command line parameters
#
total=$[$1 * $2]
echo The first parameter is $1.
echo The second parameter is $2.
echo The total value is $total.
$
$./test2.sh 2 5
The first parameter is 2.
The second parameter is 5.
The total value is 10.
$

The shell assigns each parameter to the appropriate variable.

367

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 367

14

14

In the preceding example, the command line parameters used were both numerical values.
You can also use text strings in the command line:

$ cat test3.sh
#!/bin/bash
testing string parameters
#
echo Hello $1, glad to meet you.
$
$./test3.sh Rich
Hello Rich, glad to meet you.
$

The shell passes the string value entered into the command line to the script. However,
you’ll have a problem if you try to do this with a text string that contains spaces:

$./test3.sh Rich Blum
Hello Rich, glad to meet you.
$

Remember that each of the parameters is separated by a space, so the shell interpreted the
space as just separating the two values. To include a space as a parameter value, you must
use quotation marks (either single or double quotation marks):

$./test3.sh 'Rich Blum'
Hello Rich Blum, glad to meet you.
$
$./test3.sh "Rich Blum"
Hello Rich Blum, glad to meet you.
$

The quotation marks used when you pass text strings as parameters are not part of the data. They just delineate the

beginning and the end of the data.

If your script needs more than nine command line parameters, you can continue, but the
variable names change slightly. After the ninth variable, you must use braces around the
variable number, such as ${10}. Here’s an example of doing that:

$ cat test4.sh
#!/bin/bash
handling lots of parameters
#
total=$[${10} * ${11}]
echo The tenth parameter is ${10}
echo The eleventh parameter is ${11}
echo The total is $total

368

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 368

$
$./test4.sh 1 2 3 4 5 6 7 8 9 10 11 12
The tenth parameter is 10
The eleventh parameter is 11
The total is 110
$

This technique allows you to add as many command line parameters to your scripts as you
could possibly need.

Reading the script name
You can use the $0 parameter to determine the script name the shell started from the
command line. This can come in handy if you’re writing a utility that can have multiple
functions.

$ cat test5.sh
#!/bin/bash
Testing the $0 parameter
#
echo The zero parameter is set to: $0
#
$
$ bash test5.sh
The zero parameter is set to: test5.sh
$

However, there is a potential problem. When using a different command to run the shell
script, the command becomes entangled with the script name in the $0 parameter:

$./test5.sh
The zero parameter is set to: ./test5.sh
$

There is another potential problem. When the actual string passed is the full script path,
and not just the script’s name, the $0 variable gets set to the full script path and name:

$ bash /home/Christine/test5.sh
The zero parameter is set to: /home/Christine/test5.sh
$

If you want to write a script that performs different functions based on just the script’s
name, you’ll have to do a little work. You need to be able to strip off whatever path is used to
run the script. Also, you need to be able to remove any entangled commands from the script.

Fortunately, there’s a handy little command available that does just that. The basename
command returns just the script’s name without the path:

$ cat test5b.sh
#!/bin/bash

369

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 369

14

Using basename with the $0 parameter
#
name=$(basename $0)
echo
echo The script name is: $name
#
$ bash /home/Christine/test5b.sh

The script name is: test5b.sh
$
$./test5b.sh

The script name is: test5b.sh
$

Now that’s much better. You can use this technique to write scripts that perform different
functions based on the script name used. Here’s a simple example:

$ cat test6.sh
#!/bin/bash
Testing a Multi-function script
#
name=$(basename $0)
#
if [$name = "addem"]
then
 total=$[$1 + $2]
#
elif [$name = "multem"]
then
 total=$[$1 * $2]
fi
#
echo
echo The calculated value is $total
#
$
$ cp test6.sh addem
$ chmod u+x addem
$
$ ln -s test6.sh multem
$
$ ls -l *em
-rwxrw-r--. 1 Christine Christine 224 Jun 30 23:50 addem
lrwxrwxrwx. 1 Christine Christine 8 Jun 30 23:50 multem -> test6.sh
$
$./addem 2 5

The calculated value is 7

370

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 370

$
$./multem 2 5

The calculated value is 10
$

The example creates two separate fi lenames from the test6.sh script, one by just copying
the fi le to a new script (addem) and the other by using a symbolic link (see Chapter 3) to
create the new script (multem). In both cases, the script determines the script’s base name
and performs the appropriate function based on that value.

Testing parameters
Be careful when using command line parameters in your shell scripts. If the script is run
without the parameters, bad things can happen:

$./addem 2
./addem: line 8: 2 + : syntax error: operand expected (error
 token is " ")
The calculated value is
$

When the script assumes there is data in a parameter variable, and no data is present,
most likely you’ll get an error message from your script. This is a poor way to write scripts.
Always check your parameters to make sure the data is there before using it:

$ cat test7.sh
#!/bin/bash
testing parameters before use
#
if [-n "$1"]
then
 echo Hello $1, glad to meet you.
else
 echo "Sorry, you did not identify yourself. "
fi
$
$./test7.sh Rich
Hello Rich, glad to meet you.
$
$./test7.sh
Sorry, you did not identify yourself.
$

In this example, the -n test evaluation was used to check for data in the $1 command
line parameter. In the next section, you’ll learn another way to check command line
parameters.

371

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 371

14

Using Special Parameter Variables
A few special bash shell variables track command line parameters. This section describes
what they are and how to use them.

Counting parameters
As you saw in the last section, you should verify command line parameters before using
them in your script. For scripts that use multiple command line parameters, this checking
can get tedious.

Instead of testing each parameter, you can count how many parameters were entered on
the command line. The bash shell provides a special variable for this purpose.

The special $# variable contains the number of command line parameters included when
the script was run. You can use this special variable anywhere in the script, just like a nor-
mal variable:

$ cat test8.sh
#!/bin/bash
getting the number of parameters
#
echo There were $# parameters supplied.
$
$./test8.sh
There were 0 parameters supplied.
$
$./test8.sh 1 2 3 4 5
There were 5 parameters supplied.
$
$./test8.sh 1 2 3 4 5 6 7 8 9 10
There were 10 parameters supplied.
$
$./test8.sh "Rich Blum"
There were 1 parameters supplied.
$

Now you have the ability to test the number of parameters present before trying to
use them:

$ cat test9.sh
#!/bin/bash
Testing parameters
#
if [$# -ne 2]
then
 echo

372

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 372

 echo Usage: test9.sh a b
 echo
else
 total=$[$1 + $2]
 echo
 echo The total is $total
 echo
fi
#
$
$ bash test9.sh

Usage: test9.sh a b

$ bash test9.sh 10

Usage: test9.sh a b

$ bash test9.sh 10 15

The total is 25

$

The if-then statement uses the -ne evaluation to perform a numeric test of the command
line parameters supplied. If the correct number of parameters isn’t present, an error mes-
sage displays showing the correct usage of the script.

This variable also provides a cool way of grabbing the last parameter on the command line
without having to know how many parameters were used. However, you need to use a little
trick to get there.

If you think this through, you might think that because the $# variable contains the value
of the number of parameters, using the variable ${$#} would represent the last command
line parameter variable. Try that and see what happens:

$ cat badtest1.sh
#!/bin/bash
testing grabbing last parameter
#
echo The last parameter was ${$#}
$
$./badtest1.sh 10
The last parameter was 15354
$

Wow, what happened? Obviously, something went wrong. It turns out that you can’t use the
dollar sign within the braces. Instead, you must replace the dollar sign with an exclamation
mark. Odd, but it works:

373

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 373

14

$ cat test10.sh
#!/bin/bash
Grabbing the last parameter
#
params=$#
echo
echo The last parameter is $params
echo The last parameter is ${!#}
echo
#
$
$ bash test10.sh 1 2 3 4 5

The last parameter is 5
The last parameter is 5

$
$ bash test10.sh

The last parameter is 0
The last parameter is test10.sh

$

Perfect. This script also assigned the $# variable value to the variable params and then
used that variable within the special command line parameter variable format as well. Both
versions worked. It’s also important to notice that, when there weren’t any parameters on
the command line, the $# value was zero, which is what appears in the params variable,
but the ${!#} variable returns the script name used on the command line.

Grabbing all the data
In some situations you want to grab all the parameters provided on the command line.
Instead of having to mess with using the $# variable to determine how many parameters
are on the command line and having to loop through all of them, you can use a couple of
other special variables.

The $* and $@ variables provide easy access to all your parameters. Both of these variables
include all the command line parameters within a single variable.

The $* variable takes all the parameters supplied on the command line as a single word.
The word contains each of the values as they appear on the command line. Basically,
instead of treating the parameters as multiple objects, the $* variable treats them all as
one parameter.

The $@ variable, on the other hand, takes all the parameters supplied on the command line
as separate words in the same string. It allows you to iterate through the values, separating
out each parameter supplied. This is most often accomplished using the for command.

374

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 374

It can easily get confusing to fi gure out how these two variables operate. Let’s look at the
difference between the two:

$ cat test11.sh
#!/bin/bash
testing $* and $@
#
echo
echo "Using the \$* method: $*"
echo
echo "Using the \$@ method: $@"
$
$./test11.sh rich barbara katie jessica

Using the $* method: rich barbara katie jessica

Using the $@ method: rich barbara katie jessica
$

Notice that on the surface, both variables produce the same output, showing all the com-
mand line parameters provided at once.

The following example demonstrates where the differences are:

$ cat test12.sh
#!/bin/bash
testing $* and $@
#
echo
count=1
#
for param in "$*"
do
 echo "\$* Parameter #$count = $param"
 count=$[$count + 1]
done
#
echo
count=1
#
for param in "$@"
do
 echo "\$@ Parameter #$count = $param"
 count=$[$count + 1]
done
$
$./test12.sh rich barbara katie jessica

$* Parameter #1 = rich barbara katie jessica

$@ Parameter #1 = rich

375

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 375

14

$@ Parameter #2 = barbara
$@ Parameter #3 = katie
$@ Parameter #4 = jessica
$

Now we’re getting somewhere. By using the for command to iterate through the special
variables, you can see how they each treat the command line parameters differently. The
$* variable treated all the parameters as a single parameter, while the $@ variable treated
each parameter separately. This is a great way to iterate through command line parameters.

Being Shifty
Another tool you have in your bash shell tool belt is the shift command. The bash shell
provides the shift command to help you manipulate command line parameters. The
shift command literally shifts the command line parameters in their relative positions.

When you use the shift command, it moves each parameter variable one position to the
left by default. Thus, the value for variable $3 is moved to $2, the value for variable $2 is
moved to $1, and the value for variable $1 is discarded (note that the value for variable
$0, the program name, remains unchanged).

This is another great way to iterate through command line parameters, especially if you
don’t know how many parameters are available. You can just operate on the fi rst parameter,
shift the parameters over, and then operate on the fi rst parameter again.

Here’s a short demonstration of how this works:

$ cat test13.sh
#!/bin/bash
demonstrating the shift command
echo
count=1
while [-n "$1"]
do
 echo "Parameter #$count = $1"
 count=$[$count + 1]
 shift
done
$
$./test13.sh rich barbara katie jessica

Parameter #1 = rich
Parameter #2 = barbara
Parameter #3 = katie
Parameter #4 = jessica
$

376

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 376

The script performs a while loop, testing the length of the fi rst parameter’s value. When
the fi rst parameter’s length is zero, the loop ends. After testing the fi rst parameter, the
shift command is used to shift all the parameters one position.

Be careful when working with the shift command. When a parameter is shifted out, its value is lost and can’t be

recovered.

Alternatively, you can perform a multiple location shift by providing a parameter to the
shift command. Just provide the number of places you want to shift:

$ cat test14.sh
#!/bin/bash
demonstrating a multi-position shift
#
echo
echo "The original parameters: $*"
shift 2
echo "Here's the new first parameter: $1"
$
$./test14.sh 1 2 3 4 5

The original parameters: 1 2 3 4 5
Here's the new first parameter: 3
$

By using values in the shift command, you can easily skip over parameters you
don’t need.

Working with Options
If you’ve been following along in the book, you’ve seen several bash commands that provide
both parameters and options. Options are single letters preceded by a dash that alter the
behavior of a command. This section shows three methods for working with options in your
shell scripts.

Finding your options
On the surface, there’s nothing all that special about command line options. They appear
on the command line immediately after the script name, just the same as command line
parameters. In fact, if you want, you can process command line options the same way you
process command line parameters.

377

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 377

14

Processing simple options

In the test13.sh script earlier, you saw how to use the shift command to work your
way down the command line parameters provided with the script program. You can use this
same technique to process command line options.

As you extract each individual parameter, use the case statement (see Chapter 12) to
determine when a parameter is formatted as an option:

$ cat test15.sh
#!/bin/bash
extracting command line options as parameters
#
echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) echo "Found the -b option" ;;
 -c) echo "Found the -c option" ;;
 *) echo "$1 is not an option" ;;
 esac
 shift
done
$
$./test15.sh -a -b -c -d

Found the -a option
Found the -b option
Found the -c option
-d is not an option
$

The case statement checks each parameter for valid options. When one is found, the
appropriate commands are run in the case statement.

This method works, no matter in what order the options are presented on the command
line:

$./test15.sh -d -c -a

-d is not an option
Found the -c option
Found the -a option
$

The case statement processes each option as it fi nds it in the command line parameters. If
any other parameters are included on the command line, you can include commands in the
catch-all part of the case statement to process them.

378

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 378

Separating options from parameters

Often you’ll run into situations where you’ll want to use both options and parameters for a shell
script. The standard way to do this in Linux is to separate the two with a special character code
that tells the script when the options are fi nished and when the normal parameters start.

For Linux, this special character is the double dash (--). The shell uses the double dash to
indicate the end of the option list. After seeing the double dash, your script can safely pro-
cess the remaining command line parameters as parameters and not options.

To check for the double dash, simply add another entry in the case statement:

$ cat test16.sh
#!/bin/bash
extracting options and parameters
echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) echo "Found the -b option";;
 -c) echo "Found the -c option" ;;
 --) shift
 break ;;
 *) echo "$1 is not an option";;
 esac
 shift
done
#
count=1
for param in $@
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
$

This script uses the break command to break out of the while loop when it encounters
the double dash. Because we’re breaking out prematurely, we need to ensure that we stick
in another shift command to get the double dash out of the parameter variables.

For the fi rst test, try running the script using a normal set of options and parameters:

$./test16.sh -c -a -b test1 test2 test3

Found the -c option
Found the -a option
Found the -b option
test1 is not an option

379

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 379

14

test2 is not an option
test3 is not an option
$

The results show that the script assumed that all the command line parameters were
options when it processed them. Next, try the same thing, only this time using the double
dash to separate the options from the parameters on the command line:

$./test16.sh -c -a -b -- test1 test2 test3

Found the -c option
Found the -a option
Found the -b option
Parameter #1: test1
Parameter #2: test2
Parameter #3: test3
$

When the script reaches the double dash, it stops processing options and assumes that any
remaining parameters are command line parameters.

Processing options with values

Some options require an additional parameter value. In these situations, the command line
looks something like this:

$./testing.sh -a test1 -b -c -d test2

Your script must be able to detect when your command line option requires an additional
parameter and be able to process it appropriately. Here’s an example of how to do that:

$ cat test17.sh
#!/bin/bash
extracting command line options and values
echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option";;
 -b) param="$2"
 echo "Found the -b option, with parameter value $param"
 shift ;;
 -c) echo "Found the -c option";;
 --) shift
 break ;;
 *) echo "$1 is not an option";;
 esac
 shift
done

380

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 380

#
count=1
for param in "$@"
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
$
$./test17.sh -a -b test1 -d

Found the -a option
Found the -b option, with parameter value test1
-d is not an option
$

In this example, the case statement defi nes three options that it processes. The -b option
also requires an additional parameter value. Because the parameter being processed is $1,
you know that the additional parameter value is located in $2 (because all the parameters
are shifted after they are processed). Just extract the parameter value from the $2 vari-
able. Of course, because we used two parameter spots for this option, you also need to set
the shift command to shift one additional position.

Just as with the basic feature, this process works no matter what order you place the options
in (just remember to include the appropriate option parameter with the each option):

$./test17.sh -b test1 -a -d
Found the -b option, with parameter value test1
Found the -a option
-d is not an option
$

Now you have the basic ability to process command line options in your shell scripts, but
there are limitations. For example, this doesn’t work if you try to combine multiple options
in one parameter:

$./test17.sh -ac
-ac is not an option
$

It is a common practice in Linux to combine options, and if your script is going to be user-
friendly, you’ll want to offer this feature for your users as well. Fortunately, there’s another
method for processing options that can help you.

Using the getopt command
The getopt command is a great tool to have handy when processing command line options
and parameters. It reorganizes the command line parameters to make parsing them in your
script easier.

381

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 381

14

Looking at the command format

The getopt command can take a list of command line options and parameters, in any form,
and automatically turn them into the proper format. It uses the following command format:

getopt optstring parameters

The optstring is the key to the process. It defi nes the valid option letters that can be
used in the command line. It also defi nes which option letters require a parameter value.

First, list each command line option letter you’re going to use in your script in the
optstring. Then place a colon after each option letter that requires a parameter value.
The getopt command parses the supplied parameters based on the optstring you defi ne.

A more advanced version of the getopt command, called getopts (notice it is plural), is available. The getopts

command is covered later in this chapter. Because of their nearly identical spelling, it’s easy to get these two com-

mands confused. Be careful!

Here’s a simple example of how getopt works:

$ getopt ab:cd -a -b test1 -cd test2 test3
 -a -b test1 -c -d -- test2 test3
$

The optstring defi nes four valid option letters, a, b, c, and d. A colon (:) is placed behind
the letter b in order to require option b to have a parameter value. When the getopt com-
mand runs, it examines the provided parameter list (-a -b test1 -cd test2 test3)
and parses it based on the supplied optstring. Notice that it automatically separated the
-cd options into two separate options and inserted the double dash to separate the addi-
tional parameters on the line.

If you specify a parameter option not in the optstring, by default the getopt command
produces an error message:

$ getopt ab:cd -a -b test1 -cde test2 test3
getopt: invalid option -- e
 -a -b test1 -c -d -- test2 test3
$

If you prefer to just ignore the error messages, use getopt with the -q option:

$ getopt -q ab:cd -a -b test1 -cde test2 test3
 -a -b 'test1' -c -d -- 'test2' 'test3'
$

Note that the getopt command options must be listed before the optstring. Now you
should be ready to use this command in your scripts to process command line options.

382

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 382

Using getopt in your scripts

You can use the getopt command in your scripts to format any command line options or
parameters entered for your script. It’s a little tricky, however, to use.

The trick is to replace the existing command line options and parameters with the for-
matted version produced by the getopt command. The way to do that is to use the set
command.

You saw the set command back in Chapter 6. The set command works with the different
variables in the shell.

One of the set command options is the double dash (--). The double dash instructs set to
replace the command line parameter variables with the values on the set command’s com-
mand line.

The trick then is to feed the original script command line parameters to the getopt com-
mand and then feed the output of the getopt command to the set command to replace
the original command line parameters with the nicely formatted ones from getopt. This
looks something like this:

set -- $(getopt -q ab:cd "$@")

Now the values of the original command line parameter variables are replaced with the out-
put from the getopt command, which formats the command line parameters for us.

Using this technique, we can now write scripts that handle our command line parameters
for us:

$ cat test18.sh
#!/bin/bash
Extract command line options & values with getopt
#
set -- $(getopt -q ab:cd "$@")
#
echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) param="$2"
 echo "Found the -b option, with parameter value $param"
 shift ;;
 -c) echo "Found the -c option" ;;
 --) shift
 break ;;
 *) echo "$1 is not an option";;
 esac
 shift

383

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 383

14

done
#
count=1
for param in "$@"
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
#
$

You’ll notice this is basically the same script as in test17.sh. The only thing that changed
is the addition of the getopt command to help format our command line parameters.

Now when you run the script with complex options, things work much better:

$./test18.sh -ac

Found the -a option
Found the -c option
$

And of course, all the original features work just fi ne as well:

$./test18.sh -a -b test1 -cd test2 test3 test4

Found the -a option
Found the -b option, with parameter value 'test1'
Found the -c option
Parameter #1: 'test2'
Parameter #2: 'test3'
Parameter #3: 'test4'
$

Now things are looking pretty fancy. However, there’s still one small bug that lurks in the
getopt command. Check out this example:

$./test18.sh -a -b test1 -cd "test2 test3" test4

Found the -a option
Found the -b option, with parameter value 'test1'
Found the -c option
Parameter #1: 'test2
Parameter #2: test3'
Parameter #3: 'test4'
$

The getopt command isn’t good at dealing with parameter values with spaces and quota-
tion marks. It interpreted the space as the parameter separator, instead of following the

384

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 384

double quotation marks and combining the two values into one parameter. Fortunately, this
problem has another solution.

Advancing to getopts
The getopts command (notice that it is plural) is built into the bash shell. It looks much
like its getopt cousin, but has some expanded features.

Unlike getopt, which produces one output for all the processed options and parameters
found in the command line, the getopts command works on the existing shell parameter
variables sequentially.

It processes the parameters it detects in the command line one at a time each time it’s
called. When it runs out of parameters, it exits with an exit status greater than zero. This
makes it great for using in loops to parse all the parameters on the command line.

Here’s the format of the getopts command:

getopts optstring variable

The optstring value is similar to the one used in the getopt command. Valid option let-
ters are listed in the optstring, along with a colon if the option letter requires a param-
eter value. To suppress error messages, start the optstring with a colon. The getopts
command places the current parameter in the variable defi ned in the command line.

The getopts command uses two environment variables. The OPTARG environment variable
contains the value to be used if an option requires a parameter value. The OPTIND environ-
ment variable contains the value of the current location within the parameter list where
getopts left off. This allows you to continue processing other command line parameters
after fi nishing the options.

Let’s look at a simple example that uses the getopts command:

$ cat test19.sh
#!/bin/bash
simple demonstration of the getopts command
#
echo
while getopts :ab:c opt
do
 case "$opt" in
 a) echo "Found the -a option" ;;
 b) echo "Found the -b option, with value $OPTARG";;
 c) echo "Found the -c option" ;;
 *) echo "Unknown option: $opt";;
 esac
done
$

385

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 385

14

$./test19.sh -ab test1 -c

Found the -a option
Found the -b option, with value test1
Found the -c option
$

The while statement defi nes the getopts command, specifying what command line
options to look for, along with the variable name (opt) to store them in for each iteration.

You’ll notice something different about the case statement in this example. When the
getopts command parses the command line options, it strips off the leading dash, so you
don’t need leading dashes in the case defi nitions.

The getopts command offers several nice features. For starters, you can include spaces in
your parameter values:

$./test19.sh -b "test1 test2" -a

Found the -b option, with value test1 test2
Found the -a option
$

Another nice feature is that you can run the option letter and the parameter value together
without a space:

$./test19.sh -abtest1

Found the -a option
Found the -b option, with value test1
$

The getopts command correctly parsed the test1 value from the -b option. In addition,
the getopts command bundles any undefi ned option it fi nds in the command line into a
single output, the question mark:

$./test19.sh -d

Unknown option: ?
$
$./test19.sh -acde

Found the -a option
Found the -c option
Unknown option: ?
Unknown option: ?
$

Any option letter not defi ned in the optstring value is sent to your code as a
question mark.

386

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 386

The getopts command knows when to stop processing options and leave the parameters
for you to process. As getopts processes each option, it increments the OPTIND environ-
ment variable by one. When you’ve reached the end of the getopts processing, you can
use the OPTIND value with the shift command to move to the parameters:

$ cat test20.sh
#!/bin/bash
Processing options & parameters with getopts
#
echo
while getopts :ab:cd opt
do
 case "$opt" in
 a) echo "Found the -a option" ;;
 b) echo "Found the -b option, with value $OPTARG" ;;
 c) echo "Found the -c option" ;;
 d) echo "Found the -d option" ;;
 *) echo "Unknown option: $opt" ;;
 esac
done
#
shift $[$OPTIND - 1]
#
echo
count=1
for param in "$@"
do
 echo "Parameter $count: $param"
 count=$[$count + 1]
done
#
$
$./test20.sh -a -b test1 -d test2 test3 test4

Found the -a option
Found the -b option, with value test1
Found the -d option

Parameter 1: test2
Parameter 2: test3
Parameter 3: test4
$

Now you have a full-featured command line option and parameter processing utility you
can use in all your shell scripts!

387

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 387

14

Standardizing Options
When you create your shell script, obviously you’re in control of what happens. It’s
 completely up to you as to which letter options you select to use and how you select to
use them.

However, a few letter options have achieved a somewhat standard meaning in the
Linux world. If you leverage these options in your shell script, your scripts will be more
user-friendly.

Table 14-1 shows some of the common meanings for command line options used in Linux.

TABLE 14-1 Common Linux Command Line Options

Option Description

-a Shows all objects

-c Produces a count

-d Specifi es a directory

-e Expands an object

-f Specifi es a fi le to read data from

-h Displays a help message for the command

-i Ignores text case

-l Produces a long format version of the output

-n Uses a non-interactive (batch) mode

-o Specifi es an output fi le to redirect all output to

-q Runs in quiet mode

-r Processes directories and fi les recursively

-s Runs in silent mode

-v Produces verbose output

-x Excludes an object

-y Answers yes to all questions

You’ll probably recognize most of these option meanings just from working with the various
bash commands throughout the book. Using the same meaning for your options helps users
interact with your script without having to worry about manuals.

388

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 388

Getting User Input
Although providing command line options and parameters is a great way to get data from
your script users, sometimes your script needs to be more interactive. Sometimes you need
to ask a question while the script is running and wait for a response from the person run-
ning your script. The bash shell provides the read command just for this purpose.

Reading basics
The read command accepts input either from standard input (such as from the keyboard)
or from another fi le descriptor. After receiving the input, the read command places the
data into a variable. Here’s the read command at its simplest:

$ cat test21.sh
#!/bin/bash
testing the read command
#
echo -n "Enter your name: "
read name
echo "Hello $name, welcome to my program. "
#
$
$./test21.sh
Enter your name: Rich Blum
Hello Rich Blum, welcome to my program.
$

That’s pretty simple. Notice that the echo command that produced the prompt uses the -n
option. This suppresses the newline character at the end of the string, allowing the script
user to enter data immediately after the string, instead of on the next line. This gives your
scripts a more form-like appearance.

In fact, the read command includes the -p option, which allows you to specify a prompt
directly in the read command line:

$ cat test22.sh
#!/bin/bash
testing the read -p option
#
read -p "Please enter your age: " age
days=$[$age * 365]
echo "That makes you over $days days old! "
#
$
$./test22.sh
Please enter your age: 10
That makes you over 3650 days old!
$

389

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 389

14

You’ll notice in the fi rst example that when a name was entered, the read command
assigned both the fi rst name and last name to the same variable. The read command
assigns all data entered at the prompt to a single variable, or you can specify multiple vari-
ables. Each data value entered is assigned to the next variable in the list. If the list of vari-
ables runs out before the data does, the remaining data is assigned to the last variable:

$ cat test23.sh
#!/bin/bash
entering multiple variables
#
read -p "Enter your name: " first last
echo "Checking data for $last, $first…"
$
$./test23.sh
Enter your name: Rich Blum
Checking data for Blum, Rich...
$

You can also specify no variables on the read command line. If you do that, the read com-
mand places any data it receives in the special environment variable REPLY:

$ cat test24.sh
#!/bin/bash
Testing the REPLY Environment variable
#
read -p "Enter your name: "
echo
echo Hello $REPLY, welcome to my program.
#
$
$./test24.sh
Enter your name: Christine

Hello Christine, welcome to my program.
$

The REPLY environment variable contains all the data entered in the input, and it can be
used in the shell script as any other variable.

Timing out
Be careful when using the read command. Your script may get stuck waiting for the script
user to enter data. If the script must go on regardless of whether any data was entered, you
can use the -t option to specify a timer. The -t option specifi es the number of seconds for
the read command to wait for input. When the timer expires, the read command returns a
non-zero exit status:

$ cat test25.sh
#!/bin/bash

390

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 390

timing the data entry
#
if read -t 5 -p "Please enter your name: " name
then
 echo "Hello $name, welcome to my script"
else
 echo
 echo "Sorry, too slow! "
fi
$
$./test25.sh
Please enter your name: Rich
Hello Rich, welcome to my script
$
$./test25.sh
Please enter your name:
Sorry, too slow!
$

Because the read command exits with a non-zero exit status if the timer expires, it’s easy
to use the standard structured statements, such as an if-then statement or a while loop
to track what happened. In this example, when the timer expires, the if statement fails,
and the shell executes the commands in the else section.

Instead of timing the input, you can also set the read command to count the input charac-
ters. When a preset number of characters has been entered, it automatically exits, assigning
the entered data to the variable:

$ cat test26.sh
#!/bin/bash
getting just one character of input
#
read -n1 -p "Do you want to continue [Y/N]? " answer
case $answer in
Y | y) echo
 echo "fine, continue on…";;
N | n) echo
 echo OK, goodbye
 exit;;
esac
echo "This is the end of the script"
$
$./test26.sh
Do you want to continue [Y/N]? Y
fine, continue on…
This is the end of the script
$
$./test26.sh

391

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 391

14

Do you want to continue [Y/N]? n
OK, goodbye
$

This example uses the -n option with the value of 1, instructing the read command to
accept only a single character before exiting. As soon as you press the single character to
answer, the read command accepts the input and passes it to the variable. You don’t need
to press the Enter key.

Reading with no display
Sometimes you need input from the script user, but you don’t want that input to display on
the monitor. The classic example is when entering passwords, but there are plenty of other
types of data that you need to hide.

The -s option prevents the data entered in the read command from being displayed on the
monitor; actually, the data is displayed, but the read command sets the text color to the
same as the background color. Here’s an example of using the -s option in a script:

$ cat test27.sh
#!/bin/bash
hiding input data from the monitor
#
read -s -p "Enter your password: " pass
echo
echo "Is your password really $pass? "
$
$./test27.sh
Enter your password:
Is your password really T3st1ng?
$

The data typed at the input prompt doesn’t appear on the monitor but is assigned to the
variable for use in the script.

Reading from a fi le
Finally, you can also use the read command to read data stored in a fi le on the Linux sys-
tem. Each call to the read command reads a single line of text from the fi le. When no more
lines are left in the fi le, the read command exits with a non-zero exit status.

The tricky part is getting the data from the fi le to the read command. The most common
method is to pipe the result of the cat command of the fi le directly to a while command
that contains the read command. Here’s an example:

$ cat test28.sh
#!/bin/bash

392

Part II: Shell Scripting Basics

c14.indd 12/12/2014 Page 392

reading data from a file
#
count=1
cat test | while read line
do
 echo "Line $count: $line"
 count=$[$count + 1]
done
echo "Finished processing the file"
$
$ cat test
The quick brown dog jumps over the lazy fox.
This is a test, this is only a test.
O Romeo, Romeo! Wherefore art thou Romeo?
$
$./test28.sh
Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test, this is only a test.
Line 3: O Romeo, Romeo! Wherefore art thou Romeo?
Finished processing the file
$

The while command loop continues processing lines of the fi le with the read command,
until the read command exits with a non-zero exit status.

Summary
This chapter showed three methods for retrieving data from the script user. Command
line parameters allow users to enter data directly on the command line when they run the
script. The script uses positional parameters to retrieve the command line parameters and
assign them to variables.

The shift command allows you to manipulate the command line parameters by rotating
them within the positional parameters. This command allows you to easily iterate through
the parameters without knowing how many parameters are available.

You can use three special variables when working with command line parameters. The shell
sets the $# variable to the number of parameters entered on the command line. The $*
variable contains all the parameters as a single string, and the $@ variable contains all the
parameters as separate words. These variables come in handy when you’re trying to process
long parameter lists.

Besides parameters, your script users can use command line options to pass information to
your script. Command line options are single letters preceded by a dash. Different options
can be assigned to alter the behavior of your script.

393

Chapter 14: Handling User Input

c14.indd 12/12/2014 Page 393

14

The bash shell provides three ways to handle command line options.

The fi rst way is to handle them just like command line parameters. You can iterate through
the options using the positional parameter variables, processing each option as it appears
on the command line.

Another way to handle command line options is with the getopt command. This command
converts command line options and parameters into a standard format that you can process
in your script. The getopt command allows you to specify which letters it recognizes as
options and which options require an additional parameter value. The getopt command
processes the standard command line parameters and outputs the options and parameters
in the proper order.

The fi nal method for handling command line options is via the getopts command (note
that it’s plural). The getopts command provides more advanced processing of the com-
mand line parameters. It allows for multi-value parameters, along with identifying options
not defi ned by the script.

An interactive method to obtain data from your script users is the read command. The
read command allows your scripts to query users for information and wait. The read com-
mand places any data entered by the script user into one or more variables, which you can
use within the script.

Several options are available for the read command that allow you to customize the data
input into your script, such as using hidden data entry, applying timed data entry, and
requesting a specifi c number of input characters.

In the next chapter, we look further into how bash shell scripts output data. So far, you’ve
seen how to display data on the monitor and redirect it to a fi le. Next, we explore a few
other options that you have available not only to direct data to specifi c locations but also
to direct specifi c types of data to specifi c locations. This will help make your shell scripts
look professional!

c14.indd 12/12/2014 Page 394

395

c15.indd 12/08/2014 Page 395

CHAP T ER

15
Presenting Data

IN THIS CHAPTER

Revisiting redirection

Standard input and output

Reporting errors

Throwing away data

Creating log fi les

So far the scripts shown in this book display information either by echoing data to the monitor
or by redirecting data to a fi le. Chapter 11 demonstrated how to redirect the output of a com-
mand to a fi le. This chapter expands on that topic by showing you how you can redirect the

output of your script to different locations on your Linux system.

Understanding Input and Output
So far, you’ve seen two methods for displaying the output from your scripts:

 ■ Displaying output on the monitor screen

 ■ Redirecting output to a fi le

Both methods produced an all-or-nothing approach to data output. There are times, however, when
it would be nice to display some data on the monitor and other data in a fi le. For these instances, it
comes in handy to know how Linux handles input and output so you can get your script output to
the right place.

The following sections describe how to use the standard Linux input and output system to your
advantage, to help direct script output to specifi c locations.

Standard fi le descriptors
The Linux system handles every object as a fi le. This includes the input and output process. Linux
identifi es each fi le object using a file descriptor. The fi le descriptor is a non-negative integer that

396

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 396

uniquely identifi es open fi les in a session. Each process is allowed to have up to nine open
fi le descriptors at a time. The bash shell reserves the fi rst three fi le descriptors (0, 1, and 2)
for special purposes. These are shown in Table 15-1.

TABLE 15-1 Linux Standard File Descriptors

File Descriptor Abbreviation Description

0 STDIN Standard input

1 STDOUT Standard output

2 STDERR Standard error

These three special fi le descriptors handle the input and output from your script. The shell
uses them to direct the default input and output in the shell to the appropriate location,
which by default is usually your monitor. The following sections describe each of these
standard fi le descriptors in greater detail.

STDIN

The STDIN fi le descriptor references the standard input to the shell. For a terminal inter-
face, the standard input is the keyboard. The shell receives input from the keyboard on the
STDIN fi le descriptor and processes each character as you type it.

When you use the input redirect symbol (<), Linux replaces the standard input fi le descrip-
tor with the fi le referenced by the redirection. It reads the fi le and retrieves data just as if
it were typed on the keyboard.

Many bash commands accept input from STDIN, especially if no fi les are specifi ed on
the command line. Here’s an example of using the cat command with data entered from
STDIN:

 $ cat
 this is a test
 this is a test
 this is a second test.
 this is a second test.

When you enter the cat command on the command line by itself, it accepts input from
STDIN. As you enter each line, the cat command echoes the line to the display.

However, you can also use the STDIN redirect symbol to force the cat command to accept
input from another fi le other than STDIN:

 $ cat < testfile
 This is the first line.
 This is the second line.

397

Chapter 15: Presenting Data

c15.indd 12/08/2014 Page 397

15

 This is the third line.
 $

Now the cat command uses the lines that are contained in the testfile fi le as the input.
You can use this technique to input data to any shell command that accepts data from
STDIN.

STDOUT

The STDOUT fi le descriptor references the standard output for the shell. On a terminal
interface, the standard output is the terminal monitor. All output from the shell (including
programs and scripts you run in the shell) is directed to the standard output, which is the
monitor.

Most bash commands direct their output to the STDOUT fi le descriptor by default. As shown
in Chapter 11, you can change that using output redirection:

 $ ls -l > test2
 $ cat test2
 total 20
 -rw-rw-r-- 1 rich rich 53 2014-10-16 11:30 test
 -rw-rw-r-- 1 rich rich 0 2014-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 73 2014-10-16 11:23 testfile
 $

With the output redirection symbol, all the output that normally would go to the monitor is
instead redirected to the designated redirection fi le by the shell.

You can also append data to a fi le. You do this using the >> symbol:

 $ who >> test2
 $ cat test2
 total 20
 -rw-rw-r-- 1 rich rich 53 2014-10-16 11:30 test
 -rw-rw-r-- 1 rich rich 0 2014-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 73 2014-10-16 11:23 testfile
 rich pts/0 2014-10-17 15:34 (192.168.1.2)
 $

The output generated by the who command is appended to the data already in the test2
fi le.

However, if you use the standard output redirection for your scripts, you can run into a
problem. Here’s an example of what can happen in your script:

 $ ls -al badfile > test3
 ls: cannot access badfile: No such file or directory
 $ cat test3
 $

398

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 398

When a command produces an error message, the shell doesn’t redirect the error message to
the output redirection fi le. The shell created the output redirection fi le, but the error mes-
sage appeared on the monitor screen. Notice that there isn’t an error when trying to display
the contents of the test3 fi le. The test3 fi le was created just fi ne, but it’s empty.

The shell handles error messages separately from the normal output. If you’re creating a
shell script that runs in background mode, often you must rely on the output messages
being sent to a log fi le. Using this technique, if any error messages occur, they don’t appear
in the log fi le. You need to do something different.

STDERR

The shell handles error messages using the special STDERR fi le descriptor. The STDERR fi le
descriptor references the standard error output for the shell. This is the location where the
shell sends error messages generated by the shell or programs and scripts running in the shell.

By default, the STDERR fi le descriptor points to the same place as the STDOUT fi le descrip-
tor (even though they are assigned different fi le descriptor values). This means that, by
default, all error messages go to the monitor display.

However, as you saw in the example, when you redirect STDOUT, this doesn’t automatically
redirect STDERR. When working with scripts, you’ll often want to change that behavior,
especially if you’re interested in logging error messages to a log fi le.

Redirecting errors
You’ve already seen how to redirect the STDOUT data by using the redirection symbol.
Redirecting the STDERR data isn’t much different; you just need to defi ne the STDERR fi le
descriptor when you use the redirection symbol. You can do this in a couple of ways.

Redirecting errors only

As you saw in Table 15-1, the STDERR fi le descriptor is set to the value 2. You can select
to redirect only error messages by placing this fi le descriptor value immediately before the
redirection symbol. The value must appear immediately before the redirection symbol or it
doesn’t work:

 $ ls -al badfile 2> test4
 $ cat test4
 ls: cannot access badfile: No such file or directory
 $

Now when you run the command, the error message doesn’t appear on the monitor. Instead,
the output fi le contains any error messages that are generated by the command. Using this
method, the shell redirects the error messages only, not the normal data. Here’s another
example of mixing STDOUT and STDERR messages in the same output:

 $ ls -al test badtest test2 2> test5
 -rw-rw-r-- 1 rich rich 158 2014-10-16 11:32 test2

399

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 399

 $ cat test5
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 $

The normal STDOUT output from the ls command still goes to the default STDOUT fi le
descriptor, which is the monitor. Because the command redirects fi le descriptor 2 output
(STDERR) to an output fi le, the shell sends any error messages generated directly to the
specifi ed redirection fi le.

Redirecting errors and data

If you want to redirect both errors and the normal output, you need to use two redirection
symbols. You need to precede each with the appropriate fi le descriptor for the data you
want to redirect and then have them point to the appropriate output fi le for holding the
data:

 $ ls -al test test2 test3 badtest 2> test6 1> test7
 $ cat test6
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 $ cat test7
 -rw-rw-r-- 1 rich rich 158 2014-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 0 2014-10-16 11:33 test3
 $

The shell redirects the normal output of the ls command that would have gone to STDOUT
to the test7 fi le using the 1> symbol. Any error messages that would have gone to
STDERR were redirected to the test6 fi le using the 2> symbol.

You can use this technique to separate normal script output from any error messages
that occur in the script. This allows you to easily identify errors without having to wade
through thousands of lines of normal output data.

Alternatively, if you want, you can redirect both STDERR and STDOUT output to the same
output fi le. The bash shell provides a special redirection symbol just for this purpose, the
&> symbol:

 $ ls -al test test2 test3 badtest &> test7
 $ cat test7
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 -rw-rw-r-- 1 rich rich 158 2014-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 0 2014-10-16 11:33 test3
 $

When you use the &> symbol, all the output generated by the command is sent to the
same location, both data and errors. Notice that one of the error messages is out of order
from what you’d expect. The error message for the badtest fi le (the last fi le to be listed)

400

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 400

appears second in the output fi le. The bash shell automatically gives error messages a
higher priority than the standard output. This allows you to view the error messages
together, rather than scattered throughout the output fi le.

Redirecting Output in Scripts
You can use the STDOUT and STDERR fi le descriptors in your scripts to produce output
in multiple locations simply by redirecting the appropriate fi le descriptors. There are two
methods for redirecting output in the script:

 ■ Temporarily redirecting each line

 ■ Permanently redirecting all commands in the script

The following sections describe how each of these methods works.

Temporary redirections
If you want to purposely generate error messages in your script, you can redirect an indi-
vidual output line to STDERR. You just need to use the output redirection symbol to redi-
rect the output to the STDERR fi le descriptor. When you redirect to a fi le descriptor, you
must precede the fi le descriptor number with an ampersand (&):

 echo "This is an error message" >&2

This line displays the text wherever the STDERR fi le descriptor for the script is pointing,
instead of the normal STDOUT. The following is an example of a script that uses this feature:

 $ cat test8
 #!/bin/bash
 # testing STDERR messages

 echo "This is an error" >&2
 echo "This is normal output"
 $

If you run the script as normal, you don’t notice any difference:

 $./test8
 This is an error
 This is normal output
 $

Remember that, by default, Linux directs the STDERR output to STDOUT. However, if you redi-
rect STDERR when running the script, any text directed to STDERR in the script is redirected:

 $./test8 2> test9
 This is normal output

401

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 401

 $ cat test9
 This is an error
 $

Perfect! The text displayed using STDOUT appears on the monitor, while the echo state-
ment text sent to STDERR is redirected to the output fi le.

This method is great for generating error messages in your scripts. If someone uses your scripts,
they can easily redirect the error messages using the STDERR fi le descriptor, as shown.

Permanent redirections
If you have lots of data that you’re redirecting in your script, it can get tedious having
to redirect every echo statement. Instead, you can tell the shell to redirect a specifi c fi le
descriptor for the duration of the script by using the exec command:

 $ cat test10
 #!/bin/bash
 # redirecting all output to a file
 exec 1>testout

 echo "This is a test of redirecting all output"
 echo "from a script to another file."
 echo "without having to redirect every individual line"
 $./test10
 $ cat testout
 This is a test of redirecting all output
 from a script to another file.
 without having to redirect every individual line
 $

The exec command starts a new shell and redirects the STDOUT fi le descriptor to a fi le. All
output in the script that goes to STDOUT is instead redirected to the fi le.

You can also redirect the STDOUT in the middle of a script:

 $ cat test11
 #!/bin/bash
 # redirecting output to different locations

 exec 2>testerror

 echo "This is the start of the script"
 echo "now redirecting all output to another location"

 exec 1>testout

 echo "This output should go to the testout file"

402

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 402

 echo "but this should go to the testerror file" >&2
 $
 $./test11
 This is the start of the script
 now redirecting all output to another location
 $ cat testout
 This output should go to the testout file
 $ cat testerror
 but this should go to the testerror file
 $

The script uses the exec command to redirect any output going to STDERR to the fi le
testerror. Next, the script uses the echo statement to display a few lines to STDOUT.
After that, the exec command is used again to redirect STDOUT to the testout fi le.
Notice that even when STDOUT is redirected, you can still specify the output from an echo
statement to go to STDERR, which in this case is still redirected to the testerror fi le.

This feature can come in handy when you want to redirect the output of just parts of a
script to an alternative location, such as an error log. There’s just one problem you run into
when using this.

After you redirect STDOUT or STDERR, you can’t easily redirect them back to their original
location. If you need to switch back and forth with your redirection, you need to learn a
trick. The “Creating Your Own Redirection” section later in this chapter discusses this trick
and how to use it in your shell scripts.

Redirecting Input in Scripts
You can use the same technique used to redirect STDOUT and STDERR in your scripts to
redirect STDIN from the keyboard. The exec command allows you to redirect STDIN from a
fi le on the Linux system:

 exec 0< testfile

This command informs the shell that it should retrieve input from the fi le testfile
instead of STDIN. This redirection applies anytime the script requests input. Here’s an
example of this in action:

 $ cat test12
 #!/bin/bash
 # redirecting file input

 exec 0< testfile
 count=1

 while read line

403

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 403

 do
 echo "Line #$count: $line"
 count=$[$count + 1]
 done
 $./test12
 Line #1: This is the first line.
 Line #2: This is the second line.
 Line #3: This is the third line.
 $

Chapter 14 showed you how to use the read command to read data entered from the key-
board by a user. By redirecting STDIN from a fi le, when the read command attempts to
read from STDIN, it retrieves data from the fi le instead of the keyboard.

This is an excellent technique to read data in fi les for processing in your scripts. A common
task for Linux system administrators is to read data from log fi les for processing. This is the
easiest way to accomplish that task.

Creating Your Own Redirection
When you redirect input and output in your script, you’re not limited to the three default
fi le descriptors. I mentioned that you could have up to nine open fi le descriptors in the
shell. The other six fi le descriptors are numbered from 3 through 8 and are available for you
to use as either input or output redirection. You can assign any of these fi le descriptors to a
fi le and then use them in your scripts as well. This section shows you how to use the other
fi le descriptors in your scripts.

Creating output fi le descriptors
You assign a fi le descriptor for output by using the exec command. As with the standard
fi le descriptors, after you assign an alternative fi le descriptor to a fi le location, that redi-
rection stays permanent until you reassign it. Here’s a simple example of using an alterna-
tive fi le descriptor in a script:

 $ cat test13
 #!/bin/bash
 # using an alternative file descriptor

 exec 3>test13out

 echo "This should display on the monitor"
 echo "and this should be stored in the file" >&3
 echo "Then this should be back on the monitor"
 $./test13
 This should display on the monitor

404

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 404

 Then this should be back on the monitor
 $ cat test13out
 and this should be stored in the file
 $

The script uses the exec command to redirect fi le descriptor 3 to an alternative fi le loca-
tion. When the script executes the echo statements, they display on STDOUT as you would
expect. However, the echo statements that you redirect to fi le descriptor 3 go to the
alternative fi le. This allows you to keep normal output for the monitor and redirect special
information to fi les, such as log fi les.

You can also use the exec command to append data to an existing fi le instead of creating a
new fi le:

exec 3>>test13out

Now the output is appended to the test13out fi le instead of creating a new fi le.

Redirecting fi le descriptors
Here’s the trick to help you bring back a redirected fi le descriptor. You can assign an alter-
native fi le descriptor to a standard fi le descriptor, and vice versa. This means that you can
redirect the original location of STDOUT to an alternative fi le descriptor and then redirect
that fi le descriptor back to STDOUT. This might sound somewhat complicated, but in prac-
tice it’s fairly straightforward. This example will clear things up for you:

 $ cat test14
 #!/bin/bash
 # storing STDOUT, then coming back to it

 exec 3>&1
 exec 1>test14out

 echo "This should store in the output file"
 echo "along with this line."

 exec 1>&3

 echo "Now things should be back to normal"
 $
 $./test14
 Now things should be back to normal
 $ cat test14out
 This should store in the output file
 along with this line.
 $

405

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 405

This example is a little crazy so let’s walk through it piece by piece. First, the script redi-
rects fi le descriptor 3 to the current location of fi le descriptor 1, which is STDOUT. This
means that any output sent to fi le descriptor 3 goes to the monitor.

The second exec command redirects STDOUT to a fi le. The shell now redirects any output
sent to STDOUT directly to the output fi le. However, fi le descriptor 3 still points to the
original location of STDOUT, which is the monitor. If you send output data to fi le descriptor
3 at this point, it still goes to the monitor, even though STDOUT is redirected.

After sending some output to STDOUT, which points to a fi le, the script then redirects
STDOUT to the current location of fi le descriptor 3, which is still set to the monitor. This
means that now STDOUT points to its original location, the monitor.

This method can get confusing, but it’s a common way to temporarily redirect output in
script fi les and then set the output back to the normal settings.

Creating input fi le descriptors
You can redirect input fi le descriptors exactly the same way as output fi le descriptors. Save
the STDIN fi le descriptor location to another fi le descriptor before redirecting it to a fi le;
when you’re fi nished reading the fi le, you can restore STDIN to its original location:

 $ cat test15
 #!/bin/bash
 # redirecting input file descriptors

 exec 6<&0

 exec 0< testfile

 count=1
 while read line
 do
 echo "Line #$count: $line"
 count=$[$count + 1]
 done
 exec 0<&6
 read -p "Are you done now? " answer
 case $answer in
 Y|y) echo "Goodbye";;
 N|n) echo "Sorry, this is the end.";;
 esac
 $./test15
 Line #1: This is the first line.
 Line #2: This is the second line.
 Line #3: This is the third line.
 Are you done now? y
 Goodbye
 $

406

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 406

In this example, fi le descriptor 6 is used to hold the location for STDIN. The script then
redirects STDIN to a fi le. All the input for the read command comes from the redirected
STDIN, which is now the input fi le.

When all the lines have been read, the script returns STDIN to its original location by redi-
recting it to fi le descriptor 6. The script tests to make sure that STDIN is back to normal by
using another read command, which this time waits for input from the keyboard.

Creating a read/write fi le descriptor
As odd as it may seem, you can also open a single fi le descriptor for both input and output.
You can then use the same fi le descriptor to both read data from a fi le and write data to the
same fi le.

You need to be especially careful with this method, however. As you read and write data to
and from a fi le, the shell maintains an internal pointer, indicating where it is in the fi le.
Any reading or writing occurs where the fi le pointer last left off. This can produce some
interesting results if you’re not careful. Look at this example:

 $ cat test16
 #!/bin/bash
 # testing input/output file descriptor

 exec 3<> testfile
 read line <&3
 echo "Read: $line"
 echo "This is a test line" >&3
 $ cat testfile
 This is the first line.
 This is the second line.
 This is the third line.
 $./test16
 Read: This is the first line.
 $ cat testfile
 This is the first line.
 This is a test line
 ine.
 This is the third line.
 $

This example uses the exec command to assign fi le descriptor 3 for both input and output
sent to and from the fi le testfile. Next, it uses the read command to read the fi rst line
in the fi le, using the assigned fi le descriptor, and then it displays the read line of data in
STDOUT. After that, it uses the echo statement to write a line of data to the fi le opened
with the same fi le descriptor.

407

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 407

When you run the script, at fi rst things look just fi ne. The output shows that the script
read the fi rst line in the testfile fi le. However, if you display the contents of the
testfile fi le after running the script, you see that the data written to the fi le overwrote
the existing data.

When the script writes data to the fi le, it starts where the fi le pointer is located. The read
command reads the fi rst line of data, so it left the fi le pointer pointing to the fi rst charac-
ter in the second line of data. When the echo statement outputs data to the fi le, it places
the data at the current location of the fi le pointer, overwriting whatever data was there.

Closing fi le descriptors
If you create new input or output fi le descriptors, the shell automatically closes them when
the script exits. There are situations, however, when you need to manually close a fi le
descriptor before the end of the script.

To close a fi le descriptor, redirect it to the special symbol &-. This is how this looks in the
script:

 exec 3>&-

This statement closes fi le descriptor 3, preventing it from being used any more in the
script. Here’s an example of what happens when you try to use a closed fi le descriptor:

 $ cat badtest
 #!/bin/bash
 # testing closing file descriptors

 exec 3> test17file

 echo "This is a test line of data" >&3

 exec 3>&-

 echo "This won't work" >&3
 $./badtest
 ./badtest: 3: Bad file descriptor
 $

After you close the fi le descriptor, you can’t write any data to it in your script or the shell
produces an error message.

There’s yet another thing to be careful of when closing fi le descriptors. If you open the
same output fi le later on in your script, the shell replaces the existing fi le with a new fi le.
This means that if you output any data, it overwrites the existing fi le. Consider the follow-
ing example of this problem:

408

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 408

 $ cat test17
 #!/bin/bash
 # testing closing file descriptors

 exec 3> test17file
 echo "This is a test line of data" >&3
 exec 3>&-

 cat test17file

 exec 3> test17file
 echo "This'll be bad" >&3
 $./test17
 This is a test line of data
 $ cat test17file
 This'll be bad
 $

After sending a data string to the test17file fi le and closing the fi le descriptor, the
script uses the cat command to display the contents of the fi le. So far, so good. Next, the
script reopens the output fi le and sends another data string to it. When you display the
contents of the output fi le, all you see is the second data string. The shell overwrote the
original output fi le.

Listing Open File Descriptors
With only nine fi le descriptors available to you, you’d think that it wouldn’t be hard to
keep things straight. Sometimes, however, it’s easy to get lost when trying to keep track of
which fi le descriptor is redirected where. To help you keep your sanity, the bash shell pro-
vides the lsof command.

The lsof command lists all the open fi le descriptors on the entire Linux system. This is
somewhat of a controversial feature, because it can provide information about the Linux
system to non-system-administrators. That’s why many Linux systems hide this command
so users don’t accidentally stumble across it.

On many Linux systems (such as Fedora) the lsof command is located in the /usr/sbin
directory. To run it with a normal user account, I have to reference it by its full pathname:

 $ /usr/sbin/lsof

This produces an amazing amount of output. It displays information about every fi le cur-
rently open on the Linux system. This includes all the processes running on background, as
well as any user accounts logged in to the system.

409

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 409

Plenty of command line parameters and options are available to help fi lter out the lsof
output. The most commonly used are -p, which allows you to specify a process ID (PID),
and -d, which allows you to specify the fi le descriptor numbers to display.

To easily determine the current PID of the process, you can use the special environment
variable $$, which the shell sets to the current PID. The -a option is used to perform a
Boolean AND of the results of the other two options, to produce the following:

 $ /usr/sbin/lsof -a -p $$ -d 0,1,2
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 3344 rich 0u CHR 136,0 2 /dev/pts/0
 bash 3344 rich 1u CHR 136,0 2 /dev/pts/0
 bash 3344 rich 2u CHR 136,0 2 /dev/pts/0
 $

This shows the default fi le descriptors (0, 1, and 2) for the current process (the bash shell).
The default output of lsof contains several columns of information, described in Table 15-2.

TABLE 15-2 Default lsof Output

Column Description

COMMAND The fi rst nine characters of the name of the command in the process

PID The process ID of the process

USER The login name of the user who owns the process

FD The fi le descriptor number and access type [r—(read), w—(write), u—(read/
write)]

TYPE The type of fi le [CHR—(character), BLK— (block), DIR— (directory), REG—
(regular fi le)]

DEVICE The device numbers (major and minor) of the device

SIZE If available, the size of the fi le

NODE The node number of the local fi le

NAME The name of the fi le

The fi le type associated with STDIN, STDOUT, and STDERR is character mode. Because the
STDIN, STDOUT, and STDERR fi le descriptors all point to the terminal, the name of the
output fi le is the device name of the terminal. All three standard fi les are available for both
reading and writing (although it does seem odd to be able to write to STDIN and read from
STDOUT).

Now, let’s look at the results of the lsof command from inside a script that’s opened a
couple of alternative fi le descriptors:

410

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 410

 $ cat test18
 #!/bin/bash
 # testing lsof with file descriptors

 exec 3> test18file1
 exec 6> test18file2
 exec 7< testfile

 /usr/sbin/lsof -a -p $$ -d0,1,2,3,6,7
 $./test18
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 test18 3594 rich 0u CHR 136,0 2 /dev/pts/0
 test18 3594 rich 1u CHR 136,0 2 /dev/pts/0
 test18 3594 rich 2u CHR 136,0 2 /dev/pts/0
 18 3594 rich 3w REG 253,0 0 360712 /home/rich/test18file1
 18 3594 rich 6w REG 253,0 0 360715 /home/rich/test18file2
 18 3594 rich 7r REG 253,0 73 360717 /home/rich/testfile
 $

The script creates three alternative fi le descriptors, two for output (3 and 6) and one for
input (7). When the script runs the lsof command, you can see the new fi le descriptors
in the output. We truncated the fi rst part of the output so you could see the results of the
fi lename. The fi lename shows the complete pathname for the fi les used in the fi le descrip-
tors. It shows each of the fi les as type REG, which indicates that they are regular fi les on
the fi lesystem.

Suppressing Command Output
Sometimes, you may not want to display any output from your script. This often occurs
if you’re running a script as a background process (see Chapter 16). If any error messages
occur from the script while it’s running in the background, the shell e-mails them to the
owner of the process. This can get tedious, especially if you run scripts that generate minor
nuisance errors.

To solve that problem, you can redirect STDERR to a special fi le called the null file. The null
fi le is pretty much what it says it is — a fi le that contains nothing. Any data that the shell
outputs to the null fi le is not saved, thus the data are lost.

The standard location for the null fi le on Linux systems is /dev/null. Any data you redi-
rect to that location is thrown away and doesn’t appear:

 $ ls -al > /dev/null
 $ cat /dev/null
 $

This is a common way to suppress any error messages without actually saving them:

411

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 411

 $ ls -al badfile test16 2> /dev/null
 -rwxr--r-- 1 rich rich 135 Oct 29 19:57 test16*
 $

You can also use the /dev/null fi le for input redirection as an input fi le. Because the /
dev/null fi le contains nothing, it is often used by programmers to quickly remove data
from an existing fi le without having to remove the fi le and re-create it:

 $ cat testfile
 This is the first line.
 This is the second line.
 This is the third line.
 $ cat /dev/null > testfile
 $ cat testfile
 $

The fi le testfile still exists on the system, but now it is empty. This is a common method
used to clear out log fi les that must remain in place for applications to operate.

Using Temporary Files
The Linux system contains a special directory location reserved for temporary fi les. Linux
uses the /tmp directory for fi les that don’t need to be kept indefi nitely. Most Linux distribu-
tions confi gure the system to automatically remove any fi les in the /tmp directory at bootup.

Any user account on the system has privileges to read and write fi les in the /tmp directory.
This feature provides an easy way for you to create temporary fi les that you don’t necessar-
ily have to worry about cleaning up.

There’s even a specifi c command to use for creating a temporary fi le. The mktemp command
allows you to easily create a unique temporary fi le in the /tmp folder. The shell creates the
fi le but doesn’t use your default umask value (see Chapter 7). Instead, it only assigns read
and write permissions to the fi le’s owner and makes you the owner of the fi le. After you
create the fi le, you have full access to read and write to and from it from your script, but no
one else can access it (other than the root user, of course).

Creating a local temporary fi le
By default, mktemp creates a fi le in the local directory. To create a temporary fi le in a local
directory with the mktemp command, you just need to specify a fi lename template. The
template consists of any text fi lename, plus six X’s appended to the end of the fi lename:

 $ mktemp testing.XXXXXX
 $ ls -al testing*
 -rw------- 1 rich rich 0 Oct 17 21:30 testing.UfIi13
 $

412

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 412

The mktemp command replaces the six X’s with a six-character code to ensure the fi lename
is unique in the directory. You can create multiple temporary fi les and be assured that each
one is unique:

 $ mktemp testing.XXXXXX
 testing.1DRLuV
 $ mktemp testing.XXXXXX
 testing.lVBtkW
 $ mktemp testing.XXXXXX
 testing.PgqNKG
 $ ls -l testing*
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.1DRLuV
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.PgqNKG
 -rw------- 1 rich rich 0 Oct 17 21:30 testing.UfIi13
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.lVBtkW
 $

As you can see, the output of the mktemp command is the name of the fi le that it creates.
When you use the mktemp command in a script, you’ll want to save that fi lename in a vari-
able, so you can refer to it later on in the script:

 $ cat test19
 #!/bin/bash
 # creating and using a temp file

 tempfile=$(mktemp test19.XXXXXX)

 exec 3>$tempfile

 echo "This script writes to temp file $tempfile"

 echo "This is the first line" >&3
 echo "This is the second line." >&3
 echo "This is the last line." >&3
 exec 3>&-

 echo "Done creating temp file. The contents are:"
 cat $tempfile
 rm -f $tempfile 2> /dev/null
 $./test19
 This script writes to temp file test19.vCHoya
 Done creating temp file. The contents are:
 This is the first line
 This is the second line.
 This is the last line.
 $ ls -al test19*
 -rwxr--r-- 1 rich rich 356 Oct 29 22:03 test19*
 $

413

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 413

The script uses the mktemp command to create a temporary fi le and assigns the fi lename to
the $tempfile variable. It then uses the temporary fi le as the output redirection fi le for
fi le descriptor 3. After displaying the temporary fi lename on STDOUT, it writes a few lines
to the temporary fi le, and then it closes the fi le descriptor. Finally, it displays the contents
of the temporary fi le and then uses the rm command to remove it.

Creating a temporary fi le in /tmp
The -t option forces mktemp to create the fi le in the temporary directory of the system.
When you use this feature, the mktemp command returns the full pathname used to create
the temporary fi le, not just the fi lename:

 $ mktemp -t test.XXXXXX
 /tmp/test.xG3374
 $ ls -al /tmp/test*
 -rw------- 1 rich rich 0 2014-10-29 18:41 /tmp/test.xG3374
 $

Because the mktemp command returns the full pathname, you can then reference the tem-
porary fi le from any directory on the Linux system, no matter where it places the temporary
directory:

 $ cat test20
 #!/bin/bash
 # creating a temp file in /tmp

 tempfile=$(mktemp -t tmp.XXXXXX)

 echo "This is a test file." > $tempfile
 echo "This is the second line of the test." >> $tempfile

 echo "The temp file is located at: $tempfile"
 cat $tempfile
 rm -f $tempfile
 $./test20
 The temp file is located at: /tmp/tmp.Ma3390
 This is a test file.
 This is the second line of the test.
 $

When mktemp creates the temporary fi le, it returns the full pathname to the environment
variable. You can then use that value in any command to reference the temporary fi le.

Creating a temporary directory
The -d option tells the mktemp command to create a temporary directory instead of a fi le.
You can then use that directory for whatever purposes you need, such as creating addi-
tional temporary fi les:

414

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 414

 $ cat test21
 #!/bin/bash
 # using a temporary directory

 tempdir=$(mktemp -d dir.XXXXXX)
 cd $tempdir
 tempfile1=$(mktemp temp.XXXXXX)
 tempfile2=$(mktemp temp.XXXXXX)
 exec 7> $tempfile1
 exec 8> $tempfile2

 echo "Sending data to directory $tempdir"
 echo "This is a test line of data for $tempfile1" >&7
 echo "This is a test line of data for $tempfile2" >&8
 $./test21
 Sending data to directory dir.ouT8S8
 $ ls -al
 total 72
 drwxr-xr-x 3 rich rich 4096 Oct 17 22:20 ./
 drwxr-xr-x 9 rich rich 4096 Oct 17 09:44 ../
 drwx------ 2 rich rich 4096 Oct 17 22:20 dir.ouT8S8/
 -rwxr--r-- 1 rich rich 338 Oct 17 22:20 test21*
 $ cd dir.ouT8S8
 [dir.ouT8S8]$ ls -al
 total 16
 drwx------ 2 rich rich 4096 Oct 17 22:20 ./
 drwxr-xr-x 3 rich rich 4096 Oct 17 22:20 ../
 -rw------- 1 rich rich 44 Oct 17 22:20 temp.N5F3O6
 -rw------- 1 rich rich 44 Oct 17 22:20 temp.SQslb7
 [dir.ouT8S8]$ cat temp.N5F3O6
 This is a test line of data for temp.N5F3O6
 [dir.ouT8S8]$ cat temp.SQslb7
 This is a test line of data for temp.SQslb7
 [dir.ouT8S8]$

The script creates a directory in the current directory and uses the cd command to change
to that directory before creating two temporary fi les. The two temporary fi les are then
assigned to fi le descriptors and used to store output from the script.

Logging Messages
Sometimes, it’s benefi cial to send output both to the monitor and to a fi le for logging.
Instead of having to redirect output twice, you can use the special tee command.

The tee command is like a T-connector for pipes. It sends data from STDIN to two desti-
nations at the same time. One destination is STDOUT. The other destination is a fi lename
specifi ed on the tee command line:

 tee filename

415

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 415

Because tee redirects data from STDIN, you can use it with the pipe command to redirect
output from any command:

 $ date | tee testfile
 Sun Oct 19 18:56:21 EDT 2014
 $ cat testfile
 Sun Oct 19 18:56:21 EDT 2014
 $

The output appears in STDOUT and is written to the fi le specifi ed. Be careful: By default,
the tee command overwrites the output fi le on each use:

 $ who | tee testfile
 rich pts/0 2014-10-17 18:41 (192.168.1.2)
 $ cat testfile
 rich pts/0 2014-10-17 18:41 (192.168.1.2)
 $

If you want to append data to the fi le, you must use the -a option:

 $ date | tee -a testfile
 Sun Oct 19 18:58:05 EDT 2014
 $ cat testfile
 rich pts/0 2014-10-17 18:41 (192.168.1.2)
 Sun Oct 19 18:58:05 EDT 2014
 $

Using this technique, you can both save data in fi les and display the data on the monitor
for your users:

 $ cat test22
 #!/bin/bash
 # using the tee command for logging

 tempfile=test22file

 echo "This is the start of the test" | tee $tempfile
 echo "This is the second line of the test" | tee -a $tempfile
 echo "This is the end of the test" | tee -a $tempfile
 $./test22
 This is the start of the test
 This is the second line of the test
 This is the end of the test
 $ cat test22file
 This is the start of the test
 This is the second line of the test
 This is the end of the test
 $

Now you can save a permanent copy of your output at the same time as you’re displaying it
to your users.

416

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 416

Practical Example
File redirection is very common both when reading fi les into scripts and when outputting
data from a script into a fi le. This example script does both of those things. It reads a .csv-
formatted data fi le and outputs SQL INSERT statements to insert the data into a database
(see Chapter 25).

The shell script uses a command line parameter to defi ne the name of the .csv fi le from
which to read the data. The .csv format is used to export data from spreadsheets, so you
can place the database data into a spreadsheet, save the spreadsheet in .csv format, read
the fi le, and create INSERT statements to insert the data into a MySQL database.

Here’s what the script looks like:

$cat test23
#!/bin/bash
read file and create INSERT statements for MySQL

outfile='members.sql'
IFS=','
while read lname fname address city state zip
do
 cat >> $outfile << EOF
 INSERT INTO members (lname,fname,address,city,state,zip) VALUES
('$lname', '$fname', '$address', '$city', '$state', '$zip');
EOF
done < ${1}
$

That’s a pretty short script, thanks to the fi le redirection that goes on! There are three
redirection operations happening in the script. The while loop uses the read statement
(discussed in Chapter 14) to read text from the data fi le. Notice in the done statement the
redirection symbol:

done < ${1}

The $1 represents the fi rst command line parameter when you run the test23 program.
That specifi es the data fi le from which to read the data. The read statement parses the
text using the IFS character, which we specify as a comma.

The other two redirection operations in the script both appear in the same statement:

cat >> $outfile << EOF

417

Chapter 15: Presenting Data

15

c15.indd 12/08/2014 Page 417

This one statement has one output append redirection (the double greater-than symbol) and
one input append redirection (the double less-than symbol). The output redirection appends
the cat command output to the fi le specifi ed by the $outfile variable. The input to the
cat command is redirected from the standard input to use the data stored inside the script.
The EOF symbol marks the start and end delimiter of the data that’s appended to the fi le:

INSERT INTO members (lname,fname,address,city,state,zip) VALUES
('$lname', '$fname', '$address', '$city', '$state', '$zip');

The text creates a standard SQL INSERT statement. Notice that the data values are
replaced with the variables for the data read from the read statement.

So basically the while loop reads on the data one line at a time, plugs those data values
into the INSERT statement template, then outputs the result to the output fi le.

For this experiment, I used this as the input data fi le:

$ cat members.csv
Blum,Richard,123 Main St.,Chicago,IL,60601
Blum,Barbara,123 Main St.,Chicago,IL,60601
Bresnahan,Christine,456 Oak Ave.,Columbus,OH,43201
Bresnahan,Timothy,456 Oak Ave.,Columbus,OH,43201
$

When you run the script, nothing appears in the output on the monitor:

$./test23 < members.csv
$

But when you look at the members.sql output fi le, you should see the output data:

$ cat members.sql
 INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Blum',
 'Richard', '123 Main St.', 'Chicago', 'IL', '60601');
 INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Blum',
 'Barbara', '123 Main St.', 'Chicago', 'IL', '60601');
 INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Bresnahan',
 'Christine', '456 Oak Ave.', 'Columbus', 'OH', '43201');
 INSERT INTO members (lname,fname,address,city,state,zip) VALUES ('Bresnahan',
 'Timothy', '456 Oak Ave.', 'Columbus', 'OH', '43201');
$

The script worked exactly as expected! Now you can easily import the members.sql fi le
into a MySQL database table (see Chapter 25).

418

Part II: Shell Scripting Basics

c15.indd 12/08/2014 Page 418

Summary
Understanding how the bash shell handles input and output can come in handy when creat-
ing your scripts. You can manipulate both how the script receives data and how it displays
data, to customize your script for any environment. You can redirect the input of a script
from the standard input (STDIN) to any fi le on the system. You can also redirect the output
of the script from the standard output (STDOUT) to any fi le on the system.

Besides the STDOUT, you can redirect any error messages your script generates by redirect-
ing the STDERR output. This is accomplished by redirecting the fi le descriptor associated
with the STDERR output, which is fi le descriptor 2. You can redirect STDERR output to the
same fi le as the STDOUT output or to a completely separate fi le. This enables you to sepa-
rate normal script messages from any error messages generated by the script.

The bash shell allows you to create your own fi le descriptors for use in your scripts. You can
create fi le descriptors 3 through 8 and assign them to any output fi le you desire. After you
create a fi le descriptor, you can redirect the output of any command to it, using the stan-
dard redirection symbols.

The bash shell also allows you to redirect input to a fi le descriptor, providing an easy way
to read data contained in a fi le into your script. You can use the lsof command to display
the active fi le descriptors in your shell.

Linux systems provide a special fi le, called /dev/null, to allow you to redirect output that
you don’t want. The Linux system discards anything redirected to the /dev/null fi le. You
can also use this fi le to produce an empty fi le by redirecting the contents of the /dev/
null fi le to the fi le.

The mktemp command is a handy feature of the bash shell that allows you to easily create
temporary fi les and directories. Simply specify a template for the mktemp command, and it
creates a unique fi le each time you call it, based on the fi le template format. You can also
create temporary fi les and directories in the /tmp directory on the Linux system, which is
a special location that isn’t preserved between system boots.

The tee command is a handy way to send output both to the standard output and to a log
fi le. This enables you to display messages from your script on the monitor and store them
in a log fi le at the same time.

In Chapter 16, you’ll see how to control and run your scripts. Linux provides several dif-
ferent methods for running scripts other than directly from the command line interface
prompt. You’ll see how to schedule your scripts to run at a specifi c time, as well as learn
how to pause them while they’re running.

419

c16.indd 12/16/2014 Page 419

CHAP T ER

16
Script Control

IN THIS CHAPTER

Handling signals

Running scripts in the background

Forbidding hang-ups

Controlling a Job

Modifying script priority

Automating script execution

A
s you start building advanced scripts, you’ll probably wonder how to run and control them
on your Linux system. So far in this book, the only way we’ve run scripts is directly from the
command line interface in real-time mode. This isn’t the only way to run scripts in Linux.

Quite a few options are available for running your shell scripts. There are also options for control-
ling your scripts. Various control methods include sending signals to your script, modifying a
script’s priority, and switching the run mode while a script is running. This chapter examines the
different ways you can control your shell scripts.

Handling Signals
Linux uses signals to communicate with processes running on the system. Chapter 4 described the
different Linux signals and how the Linux system uses these signals to stop, start, and kill pro-
cesses. You can control the operation of your shell script by programming the script to perform cer-
tain commands when it receives specifi c signals.

Signaling the bash shell
There are more than 30 Linux signals that can be generated by the system and applications. Table 16-1
lists the most common Linux system signals that you’ll run across in your shell script writing.

420

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 420

TABLE 16-1 Linux Signals

Signal Value Description

 1 SIGHUP Hangs up the process

 2 SIGINT Interrupts the process

 3 SIGQUIT Stops the process

 9 SIGKILL Unconditionally terminates the process

15 SIGTERM Terminates the process if possible

17 SIGSTOP Unconditionally stops, but doesn’t terminate, the process

18 SIGTSTP Stops or pauses the process, but doesn’t terminate

19 SIGCONT Continues a stopped process

By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals it receives
(so an interactive shell cannot be accidentally terminated). However, the bash shell does
not ignore any SIGHUP (1) and SIGINT (2) signals it receives.

If the bash shell receives a SIGHUP signal, such as when you leave an interactive shell, it
exits. Before it exits, however, it passes the SIGHUP signal to any processes started by the
shell, including any running shell scripts.

With a SIGINT signal, the shell is just interrupted. The Linux kernel stops giving the shell
processing time on the CPU. When this happens, the shell passes the SIGINT signal to any
processes started by the shell to notify them of the situation.

As you probably have noticed, the shell passes these signals on to your shell script program
for processing. However, a shell script’s default behavior does not govern these signals,
which may have an adverse effect on the script’s operation. To avoid this situation, you can
program your script to recognize signals and perform commands to prepare the script for
the consequences of the signal.

Generating signals
The bash shell allows you to generate two basic Linux signals using key combinations on
the keyboard. This feature comes in handy if you need to stop or pause a runaway script.

Interrupting a process

The Ctrl+C key combination generates a SIGINT signal and sends it to any processes cur-
rently running in the shell. You can test this by running a command that normally takes a
long time to fi nish and pressing the Ctrl+C key combination:

$ sleep 100
^C
$

421

Chapter 16: Script Control

c16.indd 12/16/2014 Page 421

16

16

The Ctrl+C key combination sends a SIGINT signal, which simply stops the current process
running in the shell. The sleep command pauses the shell’s operation for the specifi ed
number of seconds and returns the shell prompt. By pressing the Ctrl+C key combination
before the time passed, the sleep command terminated prematurely.

Pausing a process

Instead of terminating a process, you can pause it in the middle of whatever it’s doing.
Sometimes, this can be a dangerous thing (for example, if a script has a fi le lock open on
a crucial system fi le), but often it allows you to peek inside what a script is doing without
actually terminating the process.

The Ctrl+Z key combination generates a SIGTSTP signal, stopping any processes running in
the shell. Stopping a process is different than terminating the process. Stopping the process
leaves the program in memory and able to continue running from where it left off. In the
“Controlling the Job” section later in this chapter, you learn how to restart a process that’s
been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the process has been
stopped:

$ sleep 100
^Z
[1]+ Stopped sleep 100
$

The number in the square brackets is the job number assigned by the shell. The shell refers
to each process running in the shell as a job and assigns each job a unique job number
within the current shell. It assigns the fi rst started process job number 1, the second job
number 2, and so on.

If you have a stopped job assigned to your shell session, bash warns you if you try to exit
the shell:

$ sleep 100
^Z
[1]+ Stopped sleep 100
$ exit
exit
There are stopped jobs.
$

You can view the stopped jobs using the ps command:

$ sleep 100
^Z
[1]+ Stopped sleep 100
$
$ ps -l

422

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 422

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 501 2431 2430 0 80 0 - 27118 wait pts/0 00:00:00 bash
0 T 501 2456 2431 0 80 0 - 25227 signal pts/0 00:00:00 sleep
0 R 501 2458 2431 0 80 0 - 27034 - pts/0 00:00:00 ps
$

In the S column (process state), the ps command shows the stopped job’s state as T. This
indicates the command is either being traced or is stopped.

If you really want to exit the shell with a stopped job still active, just type the exit com-
mand again. The shell exits, terminating the stopped job. Alternately, now that you know
the PID of the stopped job, you can use the kill command to send a SIGKILL signal to
terminate it:

$ kill -9 2456
$
[1]+ Killed sleep 100
$

When you kill the job, initially you don’t get any response. However, the next time you do
something that produces a shell prompt (such as pressing the Enter key), you’ll see a message
indicating that the job was killed. Each time the shell produces a prompt, it also displays the
status of any jobs that have changed states in the shell. After you kill a job, the next time
you force the shell to produce a prompt, it displays a message showing that the job was killed
while running.

Trapping signals
Instead of allowing your script to leave signals ungoverned, you can trap them when they
appear and perform other commands. The trap command allows you to specify which
Linux signals your shell script can watch for and intercept from the shell. If the script
receives a signal listed in the trap command, it prevents it from being processed by the
shell and instead handles it locally.

The format of the trap command is:

trap commands signals

On the trap command line, you just list the commands you want the shell to execute,
along with a space-separated list of signals you want to trap. You can specify the signals
either by their numeric value or by their Linux signal name.

Here’s a simple example of using the trap command to capture the SIGINT signal and gov-
ern the script’s behavior when the signal is sent:

$ cat test1.sh
#!/bin/bash
Testing signal trapping
#

423

Chapter 16: Script Control

c16.indd 12/16/2014 Page 423

16

trap "echo ' Sorry! I have trapped Ctrl-C'" SIGINT
#
echo This is a test script
#
count=1
while [$count -le 10]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
echo "This is the end of the test script"
#

The trap command used in this example displays a simple text message each time it
detects the SIGINT signal. Trapping this signal makes this script impervious to the user
attempting to stop the program by using the bash shell keyboard Ctrl+C command:

$./test1.sh
This is a test script
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
^C Sorry! I have trapped Ctrl-C
Loop #6
Loop #7
Loop #8
^C Sorry! I have trapped Ctrl-C
Loop #9
Loop #10
This is the end of the test script
$

Each time the Ctrl+C key combination was used, the script executed the echo statement
specifi ed in the trap command instead of not managing the signal and allowing the shell
to stop the script.

Trapping a script exit
Besides trapping signals in your shell script, you can trap them when the shell script exits.
This is a convenient way to perform commands just as the shell fi nishes its job.

To trap the shell script exiting, just add the EXIT signal to the trap command:

$ cat test2.sh
#!/bin/bash

424

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 424

Trapping the script exit
#
trap "echo Goodbye..." EXIT
#
count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
$
$./test2.sh
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Goodbye...
$

When the script gets to the normal exit point, the trap is triggered, and the shell executes
the command you specify on the trap command line. The EXIT trap also works if you pre-
maturely exit the script:

$./test2.sh
Loop #1
Loop #2
Loop #3
^CGoodbye...

$

Because the SIGINT signal isn’t listed in the trap command list, when the Ctrl+C key
combination is used to send that signal, the script exits. However, before the script exits,
because the EXIT is trapped, the shell executes the trap command.

Modifying or removing a trap
To handle traps differently in various sections of your shell script, you simply reissue the
trap command with new options:

$ cat test3.sh
#!/bin/bash
Modifying a set trap
#
trap "echo ' Sorry... Ctrl-C is trapped.'" SIGINT

425

Chapter 16: Script Control

c16.indd 12/16/2014 Page 425

16

#
count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
trap "echo ' I modified the trap!'" SIGINT
#
count=1
while [$count -le 5]
do
 echo "Second Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
$

After the signal trap is modifi ed, the script manages the signal or signals differently.
However, if a signal is received before the trap is modifi ed, the script processes it per the
original trap command:

$./test3.sh
Loop #1
Loop #2
Loop #3
^C Sorry... Ctrl-C is trapped.
Loop #4
Loop #5
Second Loop #1
Second Loop #2
^C I modified the trap!
Second Loop #3
Second Loop #4
Second Loop #5
$

You can also remove a set trap. Simply add two dashes after the trap command and a list
of the signals you want to return to default behavior:

$ cat test3b.sh
#!/bin/bash
Removing a set trap
#
trap "echo ' Sorry... Ctrl-C is trapped.'" SIGINT
#

426

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 426

count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
Remove the trap
trap -- SIGINT
echo "I just removed the trap"
#
count=1
while [$count -le 5]
do
 echo "Second Loop #$count"
 sleep 1
 count=$[$count + 1]
done
#
$./test3b.sh
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
I just removed the trap
Second Loop #1
Second Loop #2
Second Loop #3
^C
$

You can use a single dash instead of a double dash after the trap command to return signals to their default behav-

ior. Both the single and double dash work properly.

After the signal trap is removed, the script handles the SIGINT signal in its default man-
ner, terminating the script. However, if a signal is received before the trap is removed, the
script processes it per the original trap command:

$./test3b.sh
Loop #1
Loop #2
Loop #3
^C Sorry... Ctrl-C is trapped.
Loop #4

427

Chapter 16: Script Control

c16.indd 12/16/2014 Page 427

16

Loop #5
I just removed the trap
Second Loop #1
Second Loop #2
^C
$

In this example, the fi rst Ctrl+C key combination was used to attempt to terminate the
script prematurely. Because the signal was received before the trap was removed, the script
executed the command specifi ed in the trap. After the script executed the trap removal,
then Ctrl+C could prematurely terminate the script.

Running Scripts in Background Mode
Sometimes, running a shell script directly from the command line interface is inconve-
nient. Some scripts can take a long time to process, and you may not want to tie up the
command line interface waiting. While the script is running, you can’t do anything else in
your terminal session. Fortunately, there’s a simple solution to that problem.

When you use the ps command, you see a whole bunch of different processes running on
the Linux system. Obviously, all these processes are not running on your terminal moni-
tor. This is called running processes in the background. In background mode, a process runs
without being associated with a STDIN, STDOUT, and STDERR on a terminal session (see
Chapter 15).

You can exploit this feature with your shell scripts as well, allowing them to run behind
the scenes and not lock up your terminal session. The following sections describe how to
run your scripts in background mode on your Linux system.

Running in the background
Running a shell script in background mode is a fairly easy thing to do. To run a shell script
in background mode from the command line interface, just place an ampersand symbol (&)
after the command:

$ cat test4.sh
#!/bin/bash
Test running in the background
#
count=1
while [$count -le 10]
do
 sleep 1
 count=$[$count + 1]
done

428

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 428

#
$
$./test4.sh &
[1] 3231
$

When you place the ampersand symbol after a command, it separates the command from
the bash shell and runs it as a separate background process on the system. The fi rst thing
that displays is the line:

[1] 3231

The number in the square brackets is the job number assigned by the shell to the back-
ground process. The next number is the Process ID (PID) the Linux system assigns to the
process. Every process running on the Linux system must have a unique PID.

As soon as the system displays these items, a new command line interface prompt appears.
You are returned to the shell, and the command you executed runs safely in background
mode. At this point, you can enter new commands at the prompt.

When the background process fi nishes, it displays a message on the terminal:

[1] Done ./test4.sh

This shows the job number and the status of the job (Done), along with the command used
to start the job.

Be aware that while the background process is running, it still uses your terminal monitor
for STDOUT and STDERR messages:

$ cat test5.sh
#!/bin/bash
Test running in the background with output
#
echo "Start the test script"
count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 5
 count=$[$count + 1]
done
#
echo "Test script is complete"
#
$
$./test5.sh &
[1] 3275

429

Chapter 16: Script Control

c16.indd 12/16/2014 Page 429

16

$ Start the test script
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Test script is complete

[1] Done ./test5.sh
$

You’ll notice from the example that the output from the test5.sh script displays. The
output intermixes with the shell prompt, which is why Start the test script appears
next to the $ prompt.

You can still issue commands while this output is occurring:

$./test5.sh &
[1] 3319
$ Start the test script
Loop #1
Loop #2
Loop #3
ls myprog*
myprog myprog.c
$ Loop #4
Loop #5
Test script is complete

[1]+ Done ./test5.sh
$$

While the test5.sh script is running in the background, the command ls myprog*
was entered. The script’s output, the typed command, and the command’s output all inter-
mixed with each other’s output display. This can be confusing! It is a good idea to redirect
STDOUT and STDERR for scripts you will be running in the background (Chapter 15) to
avoid this messy output.

Running multiple background jobs
You can start any number of background jobs at the same time from the command line
prompt:

$./test6.sh &
[1] 3568
$ This is Test Script #1

$./test7.sh &

430

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 430

[2] 3570
$ This is Test Script #2

$./test8.sh &
[3] 3573
$ And...another Test script

$./test9.sh &
[4] 3576
$ Then...there was one more test script

$

Each time you start a new job, the Linux system assigns it a new job number and PID. You
can see that all the scripts are running using the ps command:

$ ps
 PID TTY TIME CMD
 2431 pts/0 00:00:00 bash
 3568 pts/0 00:00:00 test6.sh
 3570 pts/0 00:00:00 test7.sh
 3573 pts/0 00:00:00 test8.sh
 3574 pts/0 00:00:00 sleep
 3575 pts/0 00:00:00 sleep
 3576 pts/0 00:00:00 test9.sh
 3577 pts/0 00:00:00 sleep
 3578 pts/0 00:00:00 sleep
 3579 pts/0 00:00:00 ps
$

You must be careful when using background processes from a terminal session. Notice in the
output from the ps command that each of the background processes is tied to the terminal
session (pts/0) terminal. If the terminal session exits, the background process also exits.

Earlier in this chapter we mentioned that when you attempt to exit a terminal session, a warning is issued if there

are stopped processes. However, with background processes, only some terminal emulators remind you that a back-

ground job is running, before you attempt to exit the terminal session.

If you want your script to continue running in background mode after you have logged off
the console, there’s something else you need to do. The next section discusses that process.

Running Scripts without a Hang-Up
Sometimes, you may want to start a shell script from a terminal session and let the script
run in background mode until it fi nishes, even if you exit the terminal session. You can do
this by using the nohup command.

431

Chapter 16: Script Control

c16.indd 12/16/2014 Page 431

16

The nohup command runs another command blocking any SIGHUP signals that are sent to
the process. This prevents the process from exiting when you exit your terminal session.

The format used for the nohup command is as follows:

$ nohup ./test1.sh &
[1] 3856
$ nohup: ignoring input and appending output to 'nohup.out'

$

As with a normal background process, the shell assigns the command a job number, and the
Linux system assigns a PID number. The difference is that when you use the nohup com-
mand, the script ignores any SIGHUP signals sent by the terminal session if you close the
session.

Because the nohup command disassociates the process from the terminal, the process loses
the STDOUT and STDERR output links. To accommodate any output generated by the com-
mand, the nohup command automatically redirects STDOUT and STDERR messages to a fi le,
called nohup.out.

If you run another command using nohup, the output is appended to the existing nohup.out fi le. Be careful when

running multiple commands from the same directory, because all the output is sent to the same nohup.out fi le,

which can get confusing.

The nohup.out fi le contains all the output that would normally be sent to the terminal
monitor. After the process fi nishes running, you can view the nohup.out fi le for the out-
put results:

$ cat nohup.out
This is a test script
Loop 1
Loop 2
Loop 3
Loop 4
Loop 5
Loop 6
Loop 7
Loop 8
Loop 9
Loop 10
This is the end of the test script
$

The output appears in the nohup.out fi le just as if the process ran on the command line.

432

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 432

Controlling the Job
Earlier in this chapter, you saw how to use the Ctrl+C key combination to stop a job run-
ning in the shell. After you stop a job, the Linux system lets you either kill or restart it.
You can kill the process by using the kill command. Restarting a stopped process requires
that you send it a SIGCONT signal.

The function of starting, stopping, killing, and resuming jobs is called job control. With job
control, you have full control over how processes run in your shell environment. This sec-
tion describes the commands used to view and control jobs running in your shell.

Viewing jobs
The key command for job control is the jobs command. The jobs command allows you to
view the current jobs being handled by the shell:

$ cat test10.sh
#!/bin/bash
Test job control
#
echo "Script Process ID: $$"
#
count=1
while [$count -le 10]
do
 echo "Loop #$count"
 sleep 10
 count=$[$count + 1]
done
#
echo "End of script..."
#
$

The script uses the $$ variable to display the PID that the Linux system assigns to the
script; then it goes into a loop, sleeping for 10 seconds at a time for each iteration.

You can start the script from the command line interface and then stop it using the Ctrl+Z
key combination:

$./test10.sh
Script Process ID: 1897
Loop #1
Loop #2
^Z
[1]+ Stopped ./test10.sh
$

433

Chapter 16: Script Control

c16.indd 12/16/2014 Page 433

16

Using the same script, another job is started as a background process, using the ampersand
symbol. To make life a little easier, the output of that script is redirected to a fi le so it
doesn’t appear on the screen:

$./test10.sh > test10.out &
[2] 1917
$

The jobs command enables you to view the jobs assigned to the shell. The jobs command
shows both the stopped and the running jobs, along with their job numbers and the com-
mands used in the jobs:

$ jobs
[1]+ Stopped ./test10.sh
[2]- Running ./test10.sh > test10.out &
$

You can view the various jobs’ PIDs by adding the -l parameter (lowercase L) on the jobs
command:

$ jobs -l
[1]+ 1897 Stopped ./test10.sh
[2]- 1917 Running ./test10.sh > test10.out &
$

The jobs command uses a few different command line parameters, as shown in Table 16-2.

TABLE 16-2 The jobs Command Parameters

Parameter Description

-l Lists the PID of the process along with the job number

-n Lists only jobs that have changed their status since the last notifi cation from the
shell

-p Lists only the PIDs of the jobs

-r Lists only the running jobs

-s Lists only stopped jobs

You probably noticed the plus and minus signs in the jobs command output. The job with
the plus sign is considered the default job. It would be the job referenced by any job control
commands if a job number wasn’t specifi ed in the command line.

The job with the minus sign is the job that would become the default job when the current
default job fi nishes processing. There will be only one job with the plus sign and one job
with the minus sign at any time, no matter how many jobs are running in the shell.

434

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 434

The following is an example showing how the next job in line takes over the default status,
when the default job is removed. Three separate processes are started in the background.
The jobs command listing shows the three processes, their PID, and their status. Note that
the default process (the one listed with the plus sign) is the last process started, job #3.

$./test10.sh > test10a.out &
[1] 1950
$./test10.sh > test10b.out &
[2] 1952
$./test10.sh > test10c.out &
[3] 1955
$
$ jobs -l
[1] 1950 Running ./test10.sh > test10a.out &
[2]- 1952 Running ./test10.sh > test10b.out &
[3]+ 1955 Running ./test10.sh > test10c.out &
$

Using the kill command to send a SIGHUP signal to the default process causes the job to
terminate. In the next jobs listing, the job that previously had the minus sign now has
the plus sign and is the default job:

$ kill 1955
$
[3]+ Terminated ./test10.sh > test10c.out
$
$ jobs -l
[1]- 1950 Running ./test10.sh > test10a.out &
[2]+ 1952 Running ./test10.sh > test10b.out &
$
$ kill 1952
$
[2]+ Terminated ./test10.sh > test10b.out
$
$ jobs -l
[1]+ 1950 Running ./test10.sh > test10a.out &
$

Although changing a background job to the default process is interesting, it doesn’t seem
very useful. In the next section, you learn how to use commands to interact with the
default process using no PID or job number.

Restarting stopped jobs
Under bash job control, you can restart any stopped job as either a background process or a
foreground process. A foreground process takes over control of the terminal you’re working
on, so be careful about using that feature.

435

Chapter 16: Script Control

c16.indd 12/16/2014 Page 435

16

To restart a job in background mode, use the bg command:

$./test11.sh
^Z
[1]+ Stopped ./test11.sh
$
$ bg
[1]+ ./test11.sh &
$
$ jobs
[1]+ Running ./test11.sh &
$

Because the job was the default job, indicated by the plus sign, only the bg command was
needed to restart it in background mode. Notice that no PID is listed when the job is moved
into background mode.

If you have additional jobs, you need to use the job number along with the bg command:

$./test11.sh
^Z
[1]+ Stopped ./test11.sh
$
$./test12.sh
^Z
[2]+ Stopped ./test12.sh
$
$ bg 2
[2]+ ./test12.sh &
$
$ jobs
[1]+ Stopped ./test11.sh
[2]- Running ./test12.sh &
$

The command bg 2 was used to send the second job into background mode. Notice that
when the jobs command was used, it listed both jobs with their status, even though the
default job is not currently in background mode.

To restart a job in foreground mode, use the fg command, along with the job number:

$ fg 2
./test12.sh
This is the script's end...
$

Because the job is running in foreground mode, the command line interface prompt does
not appear until the job fi nishes.

436

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 436

Being Nice
In a multitasking operating system (which Linux is), the kernel is responsible for assigning
CPU time for each process running on the system. The scheduling priority is the amount of
CPU time the kernel assigns to the process relative to the other processes. By default, all
processes started from the shell have the same scheduling priority on the Linux system.

The scheduling priority is an integer value, from -20 (the highest priority) to +19 (the low-
est priority). By default, the bash shell starts all processes with a scheduling priority of 0.

It’s confusing to remember that -20, the lowest value, is the highest priority and 19, the highest value, is the low-

est priority. Just remember the phrase, “Nice guys fi nish last.” The “nicer” or higher you are in value, the lower your

chance of getting the CPU.

Sometimes, you want to change the priority of a shell script, either lowering its priority so
it doesn’t take as much processing power away from other processes or giving it a higher
priority so it gets more processing time. You can do this by using the nice command.

Using the nice command
The nice command allows you to set the scheduling priority of a command as you start it.
To make a command run with less priority, just use the -n command line option for nice
to specify a new priority level:

$ nice -n 10 ./test4.sh > test4.out &
[1] 4973
$
$ ps -p 4973 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 4973 4721 10 /bin/bash ./test4.sh
$

Notice that you must use the nice command on the same line as the command you are
starting. The output from the ps command confi rms that the nice value (column NI) has
been set to 10.

The nice command causes the script to run at a lower priority. However, if you try to
increase the priority of one of your commands, you might be in for a surprise:

$ nice -n -10 ./test4.sh > test4.out &
[1] 4985
$ nice: cannot set niceness: Permission denied

 [1]+ Done nice -n -10 ./test4.sh > test4.out
$

437

Chapter 16: Script Control

c16.indd 12/16/2014 Page 437

16

The nice command prevents normal system users from increasing the priority of their
commands. Notice that the job does run, even though the attempt to raise its priority with
the nice command failed.

You don’t have to use the -n option with the nice command. You can simply type the pri-
ority preceded by a dash:

$ nice -10 ./test4.sh > test4.out &
[1] 4993
$
$ ps -p 4993 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 4993 4721 10 /bin/bash ./test4.sh
$

However, this can get confusing when the priority is a negative number, because you must
have a double-dash. It’s best just to use the -n option to avoid confusion.

Using the renice command
Sometimes, you’d like to change the priority of a command that’s already running on the
system. That’s what the renice command is for. It allows you to specify the PID of a run-
ning process to change its priority:

$./test11.sh &
[1] 5055
$
$ ps -p 5055 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 5055 4721 0 /bin/bash ./test11.sh
$
$ renice -n 10 -p 5055
5055: old priority 0, new priority 10
$
$ ps -p 5055 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 5055 4721 10 /bin/bash ./test11.sh
$

The renice command automatically updates the scheduling priority of the running
process. As with the nice command, the renice command has some limitations:

 ■ You can only renice processes that you own.

 ■ You can only renice your processes to a lower priority.

 ■ The root user can renice any process to any priority.

If you want to fully control running processes, you must be logged in as the root account or
use the sudo command.

438

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 438

Running Like Clockwork
When you start working with scripts, you may want to run a script at a preset time, usu-
ally at a time when you’re not there. The Linux system provides a couple of ways to run a
script at a preselected time: the at command and the cron table. Each method uses a dif-
ferent technique for scheduling when and how often to run scripts. The following sections
describe each of these methods.

Scheduling a job using the at command
The at command allows you to specify a time when the Linux system will run a script. The
at command submits a job to a queue with directions on when the shell should run the
job. The at daemon, atd, runs in the background and checks the job queue for jobs to run.
Most Linux distributions start this daemon automatically at boot time.

The atd daemon checks a special directory on the system (usually /var/spool/at) for
jobs submitted using the at command. By default, the atd daemon checks this directory
every 60 seconds. When a job is present, the atd daemon checks the time the job is set to
be run. If the time matches the current time, the atd daemon runs the job.

The following sections describe how to use the at command to submit jobs to run and how
to manage these jobs.

Understanding the at command format

The basic at command format is pretty simple:

at [-f filename] time

By default, the at command submits input from STDIN to the queue. You can specify a fi le-
name used to read commands (your script fi le) using the -f parameter.

The time parameter specifi es when you want the Linux system to run the job. If you spec-
ify a time that has already passed, the at command runs the job at that time on the next
day.

You can get pretty creative with how you specify the time. The at command recognizes
lots of different time formats:

 ■ A standard hour and minute, such as 10:15

 ■ An AM/PM indicator, such as 10:15PM

 ■ A specifi c named time, such as now, noon, midnight, or teatime (4PM)

In addition to specifying the time to run the job, you can also include a specifi c date, using
a few different date formats:

439

Chapter 16: Script Control

c16.indd 12/16/2014 Page 439

16

 ■ A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY

 ■ A text date, such as Jul 4 or Dec 25, with or without the year

 ■ A time increment:

 ■ Now + 25 minutes

 ■ 10:15PM tomorrow

 ■ 10:15 + 7 days

When you use the at command, the job is submitted into a job queue. The job queue holds
the jobs submitted by the at command for processing. There are 26 different job queues
available for different priority levels. Job queues are referenced using lowercase letters, a
through z, and uppercase letters A through Z.

A few years ago, the batch command was another method that allowed a script to be run at a later time. The

batch command was unique because you could schedule a script to run when the system was at a lower usage

level. However, nowadays, the batch command is just simply a script, /usr/bin/batch, that calls the at com-

mand and submits your job to the b queue.

The higher alphabetically the job queue, the lower the priority (higher nice value) the job
will run under. By default, at jobs are submitted to the at job a queue. If you want to run
a job at a lower priority, you can specify a different queue letter using the -q parameter.

Retrieving job output

When the job runs on the Linux system, there’s no monitor associated with the job.
Instead, the Linux system uses the e-mail address of the user who submitted the job as
STDOUT and STDERR. Any output destined to STDOUT or STDERR is mailed to the user via
the mail system.

Here’s a simple example using the at command to schedule a job to run on a CentOS
distribution:

$ cat test13.sh
#!/bin/bash
Test using at command
#
echo "This script ran at $(date +%B%d,%T)"
echo
sleep 5
echo "This is the script's end..."
#

440

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 440

$ at -f test13.sh now
job 7 at 2015-07-14 12:38
$

The at command displays the job number assigned to the job along with the time the job is
scheduled to run. The -f option tells what script fi le to use and the now time designation
directs at to run the script immediately.

Using e-mail for the at command’s output is inconvenient at best. The at command sends
e-mail via the sendmail application. If your system does not use sendmail, you won’t get
any output! Therefore, it’s best to redirect STDOUT and STDERR in your scripts (see Chapter
15) when using the at command, as the following example shows:

$ cat test13b.sh
#!/bin/bash
Test using at command
#
echo "This script ran at $(date +%B%d,%T)" > test13b.out
echo >> test13b.out
sleep 5
echo "This is the script's end..." >> test13b.out
#
$
$ at -M -f test13b.sh now
job 8 at 2015-07-14 12:48
$
$ cat test13b.out
This script ran at July14,12:48:18

This is the script's end...
$

If you don’t want to use e-mail or redirection with at, it is best to add the -M option to
suppress any output generated by jobs using the at command.

Listing pending jobs

The atq command allows you to view what jobs are pending on the system:

$ at -M -f test13b.sh teatime
job 17 at 2015-07-14 16:00
$
$ at -M -f test13b.sh tomorrow
job 18 at 2015-07-15 13:03
$
$ at -M -f test13b.sh 13:30
job 19 at 2015-07-14 13:30
$
$ at -M -f test13b.sh now

441

Chapter 16: Script Control

c16.indd 12/16/2014 Page 441

16

job 20 at 2015-07-14 13:03
$
$ atq
20 2015-07-14 13:03 = Christine
18 2015-07-15 13:03 a Christine
17 2015-07-14 16:00 a Christine
19 2015-07-14 13:30 a Christine
$

The job listing shows the job number, the date and time the system will run the job, and
the job queue the job is stored in.

Removing jobs

After you know the information about what jobs are pending in the job queues, you can use
the atrm command to remove a pending job:

$ atq
18 2015-07-15 13:03 a Christine
17 2015-07-14 16:00 a Christine
19 2015-07-14 13:30 a Christine
$
$ atrm 18
$
$ atq
17 2015-07-14 16:00 a Christine
19 2015-07-14 13:30 a Christine
$

Just specify the job number you want to remove. You can only remove jobs that you submit
for execution. You can’t remove jobs submitted by others.

Scheduling regular scripts
Using the at command to schedule a script to run at a preset time is great, but what if you
need that script to run at the same time every day or once a week or once a month? Instead
of having to continually submit at jobs, you can use another feature of the Linux system.

The Linux system uses the cron program to allow you to schedule jobs that need to run on
a regular basis. The cron program runs in the background and checks special tables, called
cron tables, for jobs that are scheduled to run.

Looking at the cron table

The cron table uses a special format for allowing you to specify when a job should be run.
The format for the cron table is:

min hour dayofmonth month dayofweek command

442

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 442

The cron table allows you to specify entries as specifi c values, ranges of values (such as
1–5), or as a wildcard character (the asterisk). For example, if you want to run a command
at 10:15 on every day, you would use this cron table entry:

15 10 * * * command

The wildcard character used in the dayofmonth, month, and dayofweek fi elds indicates
that cron will execute the command every day of every month at 10:15. To specify a com-
mand to run at 4:15 PM every Monday, you would use the following:

15 16 * * 1 command

You can specify the dayofweek entry as either a three-character text value (mon, tue,
wed, thu, fri, sat, sun) or as a numeric value, with 0 being Sunday and 6 being Saturday.

Here’s another example: to execute a command at 12 noon on the fi rst day of every month,
you would use the following format:

00 12 1 * * command

The dayofmonth entry specifi es a date value (1–31) for the month.

The astute reader might be wondering just how you would be able to set a command to execute on the last day of

every month because you can’t set the dayofmonth value to cover every month. This problem has plagued Linux

and Unix programmers, and has spawned quite a few different solutions. A common method is to add an if-then

statement that uses the date command to check if tomorrow’s date is 01:

00 12 * * * if [`date +%d -d tomorrow` = 01] ; then ; command

This checks every day at 12 noon to see if it’s the last day of the month, and if so, cron runs the command.

The command list must specify the full command pathname or shell script to run. You
can add any command line parameters or redirection symbols you like, as a regular
command line:

15 10 * * * /home/rich/test4.sh > test4out

The cron program runs the script using the user account that submitted the job. Thus, you
must have the proper permissions to access the command and output fi les specifi ed in the
command listing.

Building the cron table

Each system user can have their own cron table (including the root user) for running
scheduled jobs. Linux provides the crontab command for handling the cron table. To list
an existing cron table, use the -l parameter:

443

Chapter 16: Script Control

c16.indd 12/16/2014 Page 443

16

$ crontab -l
no crontab for rich
$

By default, each user’s cron table fi le doesn’t exist. To add entries to your cron table,
use the -e parameter. When you do that, the crontab command starts a text editor (see
Chapter 10) with the existing cron table (or an empty fi le if it doesn’t yet exist).

Viewing cron directories

When you create a script that has less precise execution time needs, it is easier to use one
of the pre-confi gured cron script directories. There are four basic directories: hourly, daily,
monthly, and weekly.

$ ls /etc/cron.*ly
/etc/cron.daily:
cups makewhatis.cron prelink tmpwatch
logrotate mlocate.cron readahead.cron

/etc/cron.hourly:
0anacron

/etc/cron.monthly:
readahead-monthly.cron

/etc/cron.weekly:
$

Thus, if you have a script that needs to be run one time per day, just copy the script to the
daily directory and cron executes it each day.

Looking at the anacron program

The only problem with the cron program is that it assumes that your Linux system is oper-
ational 24 hours a day, 7 days a week. Unless you’re running Linux in a server environment,
this may not necessarily be true.

If the Linux system is turned off at the time a job is scheduled to run in the cron table,
the job doesn’t run. The cron program doesn’t retroactively run missed jobs when the
system is turned back on. To resolve this issue, many Linux distributions also include the
anacron program.

If anacron determines that a job has missed a scheduled running, it runs the job as soon
as possible. This means that if your Linux system is turned off for a few days, when it
starts back up, any jobs scheduled to run during the time it was off are automatically run.

This feature is often used for scripts that perform routine log maintenance. If the system
is always off when the script should run, the log fi les would never get trimmed and could

444

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 444

grow to undesirable sizes. With anacron, you’re guaranteed that the log fi les are trimmed
at least each time the system is started.

The anacron program deals only with programs located in the cron directories, such as
/etc/cron.monthly. It uses timestamps to determine if the jobs have been run at the
proper scheduled interval. A timestamp fi le exists for each cron directory and is located in
/var/spool/anacron:

$ sudo cat /var/spool/anacron/cron.monthly
20150626
$

The anacron program has its own table (usually located at /etc/anacrontab) to check
the job directories:

$ sudo cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=45
the jobs will be started during the following hours only
START_HOURS_RANGE=3-22

#period in days delay in minutes job-identifier command
1 5 cron.daily nice run-parts /etc/cron.daily
7 25 cron.weekly nice run-parts /etc/cron.weekly
@monthly 45 cron.monthly nice run-parts /etc/cron.monthly
$

The basic format of the anacron table is slightly different from that of the cron table:

period delay identifier command

The period entry defi nes how often the jobs should be run, specifi ed in days. The anacron
program uses this entry to check against the jobs’ timestamp fi le. The delay entry specifi es
how many minutes after the system starts the anacron program should run missed scripts.
The command entry contains the run-parts program and a cron script directory name.
The run-parts program is responsible for running any script in the directory passed to it.

Notice that anacron does not run the scripts located in /etc/cron.hourly. This is
because the anacron program does not deal with scripts that have execution time needs of
less than daily.

445

Chapter 16: Script Control

c16.indd 12/16/2014 Page 445

16

The identifi er entry is a unique non-blank character string — for example, cron-weekly.
It is used to uniquely identify the job in log messages and error e-mails.

Starting scripts with a new shell
The ability to run a script every time a user starts a new bash shell (even just when a spe-
cifi c user starts a bash shell) can come in handy. Sometimes, you want to set shell features
for a shell session or just ensure that a specifi c fi le has been set.

Recall the startup fi les run when a user logs into the bash shell (covered in detail in
Chapter6). Also, remember that not every distribution has all the startup fi les. Essentially,
the fi rst fi le found in the following ordered list is run and the rest are ignored:

 ■ $HOME/.bash_profile

 ■ $HOME/.bash_login

 ■ $HOME/.profile

Therefore, you should place any scripts you want run at login time in the fi rst fi le listed.

The bash shell runs the .bashrc fi le any time a new shell is started. You can test this by
adding a simple echo statement to the .bashrc fi le in your home directory and starting a
new shell:

$ cat .bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions
echo "I'm in a new shell!"
$
$ bash
I'm in a new shell!
$
$ exit
exit
$

The .bashrc fi le is also typically run from one of the bash startup fi les. Because the
.bashrc fi le runs both when you log into the bash shell and when you start a bash shell, if
you need a script to run in both instances, place your shell script inside this fi le.

446

Part II: Shell Scripting Basics

c16.indd 12/16/2014 Page 446

Summary
The Linux system allows you to control your shell scripts by using signals. The bash shell
accepts signals and passes them on to any process running under the shell process. Linux sig-
nals allow you to easily kill a runaway process or temporarily pause a long-running process.

You can use the trap statement in your scripts to catch signals and perform commands. This
feature provides a simple way to control whether a user can interrupt your script while it’s
running.

By default, when you run a script in a terminal session shell, the interactive shell is sus-
pended until the script completes. You can cause a script or command to run in background
mode by adding an ampersand sign (&) after the command name. When you run a script
or command in background mode, the interactive shell returns, allowing you to continue
entering more commands. Any background processes run using this method are still tied to
the terminal session. If you exit the terminal session, the background processes also exit.

To prevent this from happening, use the nohup command. This command intercepts any
signals intended for the command that would stop it — for example, when you exit the ter-
minal session. This allows scripts to continue running in background mode even if you exit
the terminal session.

When you move a process to background mode, you can still control what happens to it. The
jobs command allows you to view processes started from the shell session. After you know
the job ID of a background process, you can use the kill command to send Linux signals
to the process or use the fg command to bring the process back to the foreground in the
shell session. You can suspend a running foreground process by using the Ctrl+Z key combi-
nation and place it back in background mode, using the bg command.

The nice and renice commands allow you to change the priority level of a process. By
giving a process a lower priority, you allow the CPU to allocate less time to it. This comes in
handy when running long processes that can take lots of CPU time.

In addition to controlling processes while they’re running, you can also determine when a pro-
cess starts on the system. Instead of running a script directly from the command line interface
prompt, you can schedule the process to run at an alternative time. You can accomplish this in
several different ways. The at command enables you to run a script once at a preset time. The
cron program provides an interface that can run scripts at a regularly scheduled interval.

Finally, the Linux system provides script fi les for you to use for scheduling your scripts to
run whenever a user starts a new bash shell. Similarly, the startup fi les, such as .bashrc ,
are located in every user’s home directory to provide a location to place scripts and com-
mands that run with a new shell.

In the next chapter, we look at how to write script functions. Script functions allow you to
write code blocks once and then use them in multiple locations throughout your script.

c17.indd 12/08/2014 Page 447

Part III

Advanced Shell Scripting

IN THIS PART

Chapter 17
Creating Functions

Chapter 18
Writing Scripts for Graphical Desktops

Chapter 19
Introducing sed and gawk

Chapter 20
Regular Expressions

Chapter 21
Advanced sed

Chapter 22
Advanced gawk

Chapter 23
Working with Alternative Shells

449

c17.indd 12/08/2014 Page 449

CHAP T ER

17
Creating Functions

IN THIS CHAPTER

Basic script functions

Returning a value

Using variables in functions

Array and variable functions

Function recursion

Creating a library

Using functions on the command line

O
ften while writing shell scripts, you’ll fi nd yourself using the same code in multiple loca-
tions. If it’s just a small code snippet, it’s usually not that big of a deal. However, rewriting
large chunks of code multiple times in your shell script can get tiring. The bash shell pro-

vides a way to help you out by supporting user-defi ned functions. You can encapsulate your shell
script code into a function and use it as many times as you want anywhere in your script. This
chapter walks you through the process of creating your own shell script functions and demon-
strates how to use them in other shell script applications.

Basic Script Functions
As you start writing more complex shell scripts, you’ll fi nd yourself reusing parts of code that
perform specifi c tasks. Sometimes, it’s something simple, such as displaying a text message and
retrieving an answer from the script users. Other times, it’s a complicated calculation that’s used
multiple times in your script as part of a larger process.

In each of these situations, it can get tiresome writing the same blocks of code over and over in
your script. It would be nice to just write the block of code once and be able to refer to that block
of code anywhere in your script without having to rewrite it.

The bash shell provides a feature allowing you to do just that. Functions are blocks of script code
that you assign a name to and reuse anywhere in your code. Anytime you need to use that block of

450

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 450

code in your script, you simply use the function name you assigned it (referred to as calling
the function). This section describes how to create and use functions in your shell scripts.

Creating a function
There are two formats you can use to create functions in bash shell scripts. The fi rst format
uses the keyword function, along with the function name you assign to the block of code:

function name {
 commands
}

The name attribute defi nes a unique name assigned to the function. Each function you
defi ne in your script must be assigned a unique name.

The commands are one or more bash shell commands that make up your function. When
you call the function, the bash shell executes each of the commands in the order they
appear in the function, just as in a normal script.

The second format for defi ning a function in a bash shell script more closely follows how
functions are defi ned in other programming languages:

name() {
commands
}

The empty parentheses after the function name indicate that you’re defi ning a function.
The same naming rules apply in this format as in the original shell script function format.

Using functions
To use a function in your script, specify the function name on a line, just as you would any
other shell command:

$ cat test1
#!/bin/bash
using a function in a script

function func1 {
 echo "This is an example of a function"
}

count=1
while [$count -le 5]
do
 func1
 count=$[$count + 1]

451

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 451

17

done

echo "This is the end of the loop"
func1
echo "Now this is the end of the script"
$
$./test1
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
Now this is the end of the script
$

Each time you reference the func1 function name, the bash shell returns to the
func1 function defi nition and executes any commands you defi ned there.

The function defi nition doesn’t have to be the fi rst thing in your shell script, but be care-
ful. If you attempt to use a function before it’s defi ned, you’ll get an error message:

$ cat test2
#!/bin/bash
using a function located in the middle of a script

count=1
echo "This line comes before the function definition"

function func1 {
 echo "This is an example of a function"
}

while [$count -le 5]
do
 func1
 count=$[$count + 1]
done
echo "This is the end of the loop"
func2
echo "Now this is the end of the script"

function func2 {
 echo "This is an example of a function"
}
$
$./test2
This line comes before the function definition
This is an example of a function

452

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 452

This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
./test2: func2: command not found
Now this is the end of the script
$

The fi rst function, func1, was defi ned after a couple of statements in the script, which is
perfectly fi ne. When the func1 function was used in the script, the shell knew where to
fi nd it.

However, the script attempted to use the func2 function before it was defi ned. Because
the func2 function wasn’t defi ned, when the script reached the place where we used it, it
produced an error message.

You also need to be careful about your function names. Remember, each function name
must be unique, or you’ll have a problem. If you redefi ne a function, the new defi nition
overrides the original function defi nition, without producing any error messages:

$ cat test3
#!/bin/bash
testing using a duplicate function name

function func1 {
echo "This is the first definition of the function name"
}

func1

function func1 {
 echo "This is a repeat of the same function name"
}

func1
echo "This is the end of the script"
$
$./test3
This is the first definition of the function name
This is a repeat of the same function name
This is the end of the script
$

The original defi nition of the func1 function works fi ne, but after the second defi nition of
the func1 function, any subsequent uses of the function use the second defi nition.

453

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 453

17

Returning a Value
The bash shell treats functions like mini-scripts, complete with an exit status (see
Chapter11). There are three different ways you can generate an exit status for your
functions.

The default exit status
By default, the exit status of a function is the exit status returned by the last command in
the function. After the function executes, you use the standard $? variable to determine
the exit status of the function:

$ cat test4
#!/bin/bash
testing the exit status of a function

func1() {
 echo "trying to display a non-existent file"
 ls -l badfile
}

echo "testing the function: "
func1
echo "The exit status is: $?"
$
$./test4
testing the function:
trying to display a non-existent file
ls: badfile: No such file or directory
The exit status is: 1
$

The exit status of the function is 1 because the last command in the function failed.
However, you have no way of knowing if any of the other commands in the function com-
pleted successfully or not. Look at this example:

$ cat test4b
#!/bin/bash
testing the exit status of a function

func1() {
 ls -l badfile
 echo "This was a test of a bad command"

454

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 454

}

echo "testing the function:"
func1
echo "The exit status is: $?"
$
$./test4b
testing the function:
ls: badfile: No such file or directory
This was a test of a bad command
The exit status is: 0
$

This time, because the function ended with an echo statement that completed successfully,
the exit status of the function is 0, even though one of the commands in the function
failed. Using the default exit status of a function can be a dangerous practice. Fortunately,
we have a couple of other solutions.

Using the return command
The bash shell uses the return command to exit a function with a specifi c exit status.
The return command allows you to specify a single integer value to defi ne the function
exit status, providing an easy way for you to programmatically set the exit status of your
function:

$ cat test5
#!/bin/bash
using the return command in a function

function dbl {
 read -p "Enter a value: " value
 echo "doubling the value"
 return $[$value * 2]
}

dbl
echo "The new value is $?"
$

The dbl function doubles the integer value contained in the $value variable provided by
the user input. It then returns the result using the return command, which the script dis-
plays using the $? variable.

You must be careful, however, when using this technique to return a value from a function.
Keep the following two tips in mind to avoid problems:

 ■ Remember to retrieve the return value as soon as the function completes.

 ■ Remember that an exit status must be in the range of 0 to 255.

455

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 455

17

If you execute any other commands before retrieving the value of the function, using the
$? variable, the return value from the function is lost. Remember that the $? variable
returns the exit status of the last executed command.

The second problem defi nes a limitation for using this return value technique. Because an
exit status must be less than 256, the result of your function must produce an integer value
less than 256. Any value over that returns an error value:

$./test5
Enter a value: 200
doubling the value
The new value is 1
$

You cannot use this return value technique if you need to return either larger integer val-
ues or a string value. Instead, you need to use another method, demonstrated in the next
section.

Using function output
Just as you can capture the output of a command to a shell variable, you can also capture
the output of a function to a shell variable. You can use this technique to retrieve any type
of output from a function to assign to a variable:

 result='dbl'

This command assigns the output of the dbl function to the $result shell variable. Here’s
an example of using this method in a script:

$ cat test5b
#!/bin/bash
using the echo to return a value

function dbl {
 read -p "Enter a value: " value
 echo $[$value * 2]
}

result=$(dbl)
echo "The new value is $result"
$
$./test5b
Enter a value: 200
The new value is 400
$
$./test5b

456

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 456

Enter a value: 1000
The new value is 2000
$

The new function now uses an echo statement to display the result of the calculation. The
script just captures the output of the dbl function instead of looking at the exit status for
the answer.

There’s a subtle trick that this example demonstrates. You’ll notice that the db1 function
really outputs two messages. The read command outputs a short message querying the
user for the value. The bash shell script is smart enough to not consider this as part of the
STDOUT output and ignores it. If you had used an echo statement to produce this query
message to the user, it would have been captured by the shell variable as well as the output
value.

Using this technique, you can also return fl oating point and string values, making this an extremely versatile method

for returning values from functions.

Using Variables in Functions
You might have noticed in the test5 example in the previous section that we used a vari-
able called $value within the function to hold the value that it processed. When you use
variables in your functions, you need to be somewhat careful about how you defi ne and
handle them. This is a common cause of problems in shell scripts. This section goes over a
few techniques for handling variables both inside and outside your shell script functions.

Passing parameters to a function
As mentioned earlier in the “Returning a Value” section, the bash shell treats functions
just like mini-scripts. This means that you can pass parameters to a function just like a
regular script (see Chapter 14).

Functions can use the standard parameter environment variables to represent any param-
eters passed to the function on the command line. For example, the name of the function is
defi ned in the $0 variable, and any parameters on the function command line are defi ned
using the variables $1, $2, and so on. You can also use the special variable $# to determine
the number of parameters passed to the function.

When specifying the function in your script, you must provide the parameters on the same
command line as the function, like this:

func1 $value1 10

457

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 457

17

The function can then retrieve the parameter values using the parameter environment
variables. Here’s an example of using this method to pass values to a function:

$ cat test6
#!/bin/bash
passing parameters to a function

function addem {
 if [$# -eq 0] || [$# -gt 2]
 then
 echo -1
 elif [$# -eq 1]
 then
 echo $[$1 + $1]
 else
 echo $[$1 + $2]
 fi
}

echo -n "Adding 10 and 15: "
value=$(addem 10 15)
echo $value
echo -n "Let's try adding just one number: "
value=$(addem 10)
echo $value
echo -n "Now trying adding no numbers: "
value=$(addem)
echo $value
echo -n "Finally, try adding three numbers: "
value=$(addem 10 15 20)
echo $value
$
$./test6
Adding 10 and 15: 25
Let's try adding just one number: 20
Now trying adding no numbers: -1
Finally, try adding three numbers: -1
$

The addem function in the text6 script fi rst checks the number of parameters passed to
it by the script. If there aren’t any parameters, or if there are more than two parameters,
addem returns a value of -1. If there’s just one parameter, addem adds the parameter to
itself for the result. If there are two parameters, addem adds them together for the result.

Because the function uses the special parameter environment variables for its own param-
eter values, it can’t directly access the script parameter values from the command line of
the script. The following example fails:

$ cat badtest1
#!/bin/bash

458

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 458

trying to access script parameters inside a function

function badfunc1 {
 echo $[$1 * $2]
}

if [$# -eq 2]
then
 value=$(badfunc1)
 echo "The result is $value"
else
 echo "Usage: badtest1 a b"
fi
$
$./badtest1
Usage: badtest1 a b
$./badtest1 10 15
./badtest1: * : syntax error: operand expected (error token is "*
")
The result is
$

Even though the function uses the $1 and $2 variables, they aren’t the same $1 and $2
variables available in the main part of the script. Instead, if you want to use those values
in your function, you have to manually pass them when you call the function:

$ cat test7
#!/bin/bash
trying to access script parameters inside a function

function func7 {
 echo $[$1 * $2]
}

if [$# -eq 2]
then
 value=$(func7 $1 $2)
 echo "The result is $value"
else
 echo "Usage: badtest1 a b"
fi
$
$./test7
Usage: badtest1 a b
$./test7 10 15
The result is 150
$

459

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 459

17

By passing the $1 and $2 variables to the function, they become available for the function
to use, just like any other parameter.

Handling variables in a function
One thing that causes problems for shell script programmers is the scope of a variable. The
scope is where the variable is visible. Variables defi ned in functions can have a different
scope than regular variables. That is, they can be hidden from the rest of the script.

Functions use two types of variables:

 ■ Global

 ■ Local

The following sections describe how to use both types of variables in your functions.

Global variables

Global variables are variables that are valid anywhere within the shell script. If you defi ne a
global variable in the main section of a script, you can retrieve its value inside a function.
Likewise, if you defi ne a global variable inside a function, you can retrieve its value in the
main section of the script.

By default, any variables you defi ne in the script are global variables. Variables defi ned
outside of a function can be accessed within the function just fi ne:

$ cat test8
#!/bin/bash
using a global variable to pass a value

function dbl {
 value=$[$value * 2]
}

read -p "Enter a value: " value
dbl
echo "The new value is: $value"
$
$./test8
Enter a value: 450
The new value is: 900
$

The $value variable is defi ned outside of the function and assigned a value outside of the
function. When the dbl function is called, the variable and its value are still valid inside

460

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 460

the function. When the variable is assigned a new value inside the function, that new
value is still valid when the script references the variable.

This can be a dangerous practice, however, especially if you intend to use your functions
in different shell scripts. It requires that you know exactly what variables are used in the
function, including any variables used to calculate values not returned to the script. Here’s
an example of how things can go bad:

$ cat badtest2
#!/bin/bash
demonstrating a bad use of variables

function func1 {
 temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then
 echo "temp is larger"
else
 echo "temp is smaller"
fi
$
$./badtest2
The result is 22
temp is larger
$

Because the $temp variable was used in the function, its value is compromised in the
script, producing a result that you may not have intended. There’s an easy way to solve this
problem in your functions, as shown in the next section.

Local variables

Instead of using global variables in functions, any variables that the function uses inter-
nally can be declared as local variables. To do that, just use the local keyword in front of
the variable declaration:

local temp

You can also use the local keyword in an assignment statement while assigning a value to
the variable:

local temp=$[$value + 5]

461

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 461

17

The local keyword ensures that the variable is limited to only within the function. If a
variable with the same name appears outside the function in the script, the shell keeps
the two variable values separate. Now you can easily keep your function variables separate
from your script variables and share only the ones you want to share:

$ cat test9
#!/bin/bash
demonstrating the local keyword

function func1 {
 local temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then
 echo "temp is larger"
else
 echo "temp is smaller"
fi
$
$./test9
The result is 22
temp is smaller
$

Now when you use the $temp variable within the func1 function, it doesn’t affect the
value assigned to the $temp variable in the main script.

Array Variables and Functions
Chapter 6 discussed an advanced way of allowing a single variable to hold multiple values
by using arrays. Using array variable values with functions is a little tricky, and there are
some special considerations. This section describes a technique that allows you to do that.

Passing arrays to functions
The art of passing an array variable to a script function can be confusing. If you try to pass
the array variable as a single parameter, it doesn’t work:

$ cat badtest3
#!/bin/bash

462

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 462

trying to pass an array variable

function testit {
 echo "The parameters are: $@"
 thisarray=$1
 echo "The received array is ${thisarray[*]}"
}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
testit $myarray
$
$./badtest3
The original array is: 1 2 3 4 5
The parameters are: 1
The received array is 1
$

If you try using the array variable as a function parameter, the function only picks up the
fi rst value of the array variable.

To solve this problem, you must disassemble the array variable into its individual values
and use the values as function parameters. Inside the function, you can reassemble all the
parameters into a new array variable. Here’s an example of doing this:

$ cat test10
#!/bin/bash
array variable to function test

function testit {
 local newarray
 newarray=(;'echo "$@"')
 echo "The new array value is: ${newarray[*]}"
}

myarray=(1 2 3 4 5)
echo "The original array is ${myarray[*]}"
testit ${myarray[*]}
$
$./test10
The original array is 1 2 3 4 5
The new array value is: 1 2 3 4 5
$

The script uses the $myarray variable to hold all the individual array values to place them
all on the command line for the function. The function then rebuilds the array variable
from the command line parameters. Once inside the function, the array can be used just
like any other array:

$ cat test11
#!/bin/bash

463

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 463

17

adding values in an array

function addarray {
 local sum=0
 local newarray
 newarray=($(echo "$@"))
 for value in ${newarray[*]}
 do
 sum=$[$sum + $value]
 done
 echo $sum
}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=$(echo ${myarray[*]})
result=$(addarray $arg1)
echo "The result is $result"
$
$./test11
The original array is: 1 2 3 4 5
The result is 15
$

The addarray function iterates through the array values, adding them together. You can
put any number of values in the myarray array variable, and the addarray function adds
them.

Returning arrays from functions
Passing an array variable from a function back to the shell script uses a similar technique.
The function uses an echo statement to output the individual array values in the proper
order, and the script must reassemble them into a new array variable:

$ cat test12
#!/bin/bash
returning an array value

function arraydblr {
 local origarray
 local newarray
 local elements
 local i
 origarray=($(echo "$@"))
 newarray=($(echo "$@"))
 elements=$[$# - 1]
 for ((i = 0; i <= $elements; i++))
 {
 newarray[$i]=$[${origarray[$i]} * 2]
 }

464

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 464

 echo ${newarray[*]}
}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=$(echo ${myarray[*]})
result=($(arraydblr $arg1))
echo "The new array is: ${result[*]}"
$
$./test12
The original array is: 1 2 3 4 5
The new array is: 2 4 6 8 10

The script passes the array value, using the $arg1 variable to the arraydblr function.
The arraydblr function reassembles the array into a new array variable, and it makes a
copy for the output array variable. It then iterates through the individual array variable
values, doubles each value, and places it into the copy of the array variable in the function.

The arraydblr function then uses the echo statement to output the individual values of
the array variable values. The script uses the output of the arraydblr function to reas-
semble a new array variable with the values.

Function Recursion
One feature that local function variables provide is self-containment. A self-contained func-
tion doesn’t use any resources outside of the function, other than whatever variables the
script passes to it in the command line.

This feature enables the function to be called recursively, which means that the function
calls itself to reach an answer. Usually, a recursive function has a base value that it eventu-
ally iterates down to. Many advanced mathematical algorithms use recursion to reduce a
complex equation down one level repeatedly, until they get to the level defi ned by the base
value.

The classic example of a recursive algorithm is calculating factorials. A factorial of a num-
ber is the value of the preceding numbers multiplied with the number. Thus, to fi nd the
factorial of 5, you’d perform the following equation:

5! = 1 * 2 * 3 * 4 * 5 = 120

Using recursion, the equation is reduced down to the following format:

x! = x * (x-1)!

or in English, the factorial of x is equal to x times the factorial of x-1. This can be
expressed in a simple recursive script:

function factorial {
 if [$1 -eq 1]

465

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 465

17

 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result='factorial $temp'
 echo $[$result * $1]
 fi
}

The factorial function uses itself to calculate the value for the factorial:

$ cat test13
#!/bin/bash
using recursion

function factorial {
 if [$1 -eq 1]
 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result=$(factorial $temp)
 echo $[$result * $1]
 fi
}

read -p "Enter value: " value
result=$(factorial $value)
echo "The factorial of $value is: $result"
$
$./test13
Enter value: 5
The factorial of 5 is: 120
$

Using the factorial function is easy. Having created a function like this, you may want to
use it in other scripts. Next, we look at how to do that effi ciently.

Creating a Library
It’s easy to see how functions can help save typing in a single script, but what if you just
happen to use the same single code block between scripts? It’s obviously challenging if you
have to defi ne the same function in each script, only to use it one time in each script.

There’s a solution for that problem! The bash shell allows you to create a library file for your
functions and then reference that single library fi le in as many scripts as you need to.

466

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 466

The fi rst step in the process is to create a common library fi le that contains the functions
you need in your scripts. Here’s a simple library fi le called myfuncs that defi nes three
simple functions:

$ cat myfuncs
my script functions

function addem {
 echo $[$1 + $2]
}

function multem {
 echo $[$1 * $2]
}

function divem {
 if [$2 -ne 0]
 then
 echo $[$1 / $2]
 else
 echo -1
 fi
}
$

The next step is to include the myfuncs library fi le in your script fi les that want to use
any of the functions. This is where things get tricky.

The problem is with the scope of shell functions. As with environment variables, shell func-
tions are valid only for the shell session in which you defi ne them. If you run the myfuncs
shell script from your shell command line interface prompt, the shell creates a new shell
and runs the script in that new shell. This defi nes the three functions for that shell, but
when you try to run another script that uses those functions, they aren’t available.

This applies to scripts as well. If you try to just run the library fi le as a regular script fi le,
the functions don’t appear in your script:

$ cat badtest4
#!/bin/bash
using a library file the wrong way
./myfuncs

result=$(addem 10 15)
echo "The result is $result"
$
$./badtest4
./badtest4: addem: command not found
The result is
$

467

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 467

17

The key to using function libraries is the source command. The source command exe-
cutes commands within the current shell context instead of creating a new shell to execute
them. You use the source command to run the library fi le script inside of your shell script.
This makes the functions available to the script.

The source command has a shortcut alias, called the dot operator. To source the myfuncs
library fi le in a shell script, you just need to add the following line:

. ./myfuncs

This example assumes that the myfuncs library fi le is located in the same directory as the
shell script. If not, you need to use the appropriate path to access the fi le. Here’s an exam-
ple of creating a script that uses the myfuncs library fi le:

$ cat test14
#!/bin/bash
using functions defined in a library file
. ./myfuncs

value1=10
value2=5
result1=$(addem $value1 $value2)
result2=$(multem $value1 $value2)
result3=$(divem $value1 $value2)
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$
$./test14
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$

The script successfully uses the functions defi ned in the myfuncs library fi le.

Using Functions on the Command Line
You can use script functions to create some pretty complex operations. Sometimes, it would
be nice to be able to use these functions directly on the command line interface prompt.

Just as you can use a script function as a command in a shell script, you can also use a
script function as a command in the command line interface. This is a nice feature because
after you defi ne the function in the shell, you can use it from any directory on the system;
you don’t have to worry about a script being in your PATH environment variable. The trick
is to get the shell to recognize the function. You can do that in a couple of ways.

468

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 468

Creating functions on the command line
Because the shell interprets commands as you type them, you can defi ne a function
directly on the command line. You can do that in two ways.

The fi rst method defi nes the function all on one line:

$ function divem { echo $[$1 / $2]; }
$ divem 100 5
20
$

When you defi ne the function on the command line, you must remember to include a semi-
colon at the end of each command, so the shell knows where to separate commands:

$ function doubleit { read -p "Enter value: " value; echo $[
 $value * 2]; }
$
$ doubleit
Enter value: 20
40
$

The other method is to use multiple lines to defi ne the function. When you do that,
the bash shell uses the secondary prompt to prompt you for more commands. Using this
method, you don’t need to place a semicolon at the end of each command; just press the
Enter key:

$ function multem {
> echo $[$1 * $2]
> }
$ multem 2 5
10
$

When you use the brace at the end of the function, the shell knows that you’re fi nished
defi ning the function.

Be extremely careful when creating functions on the command line. If you use a function with the same name as a

built-in command or another command, the function overrides the original command.

Defi ning functions in the .bashrc fi le
The obvious downside to defi ning shell functions directly on the command line is that
when you exit the shell, your function disappears. For complex functions, this can become
a problem.

469

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 469

17

A much simpler method is to defi ne the function in a place where it is reloaded by the shell
each time you start a new shell.

The best place to do that is the .bashrc fi le. The bash shell looks for this fi le in your home
directory each time it starts, whether interactively or as the result of starting a new shell
from within an existing shell.

Directly defining functions

You can defi ne the functions directly in the .bashrc fi le in your home directory. Most
Linux distributions already defi ne some things in the .bashrc fi le, so be careful not to
remove those items. Just add your functions to the bottom of the existing fi le. Here’s an
example of doing that:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

function addem {
 echo $[$1 + $2]
}
$

The function doesn’t take effect until the next time you start a new bash shell. After you
do that, you can use the function anywhere on the system.

Sourcing function files

Just as in a shell script, you can use the source command (or its alias the dot operator) to
add functions from an existing library fi le to your .bashrc script:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

. /home/rich/libraries/myfuncs
$

Make sure that you include the proper pathname to reference the library fi le for the bash
shell to fi nd. The next time you start a shell, all the functions in your library are available
at the command line interface:

470

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 470

$ addem 10 5
15
$ multem 10 5
50
$ divem 10 5
2
$

Even better, the shell also passes any defi ned functions to child shell processes so your
functions are automatically available for any shell scripts you run from your shell session.
You can test this by writing a script that uses the functions without defi ning or sourcing
them:

$ cat test15
#!/bin/bash
using a function defined in the .bashrc file

value1=10
value2=5
result1=$(addem $value1 $value2)
result2=$(multem $value1 $value2)
result3=$(divem $value1 $value2)
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$
$./test15
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$

Even without sourcing the library fi le, the functions worked perfectly in the shell script.

Following a Practical Example
There’s much more to using functions than just creating your own functions to work with.
In the open source world, code sharing is key, and that also applies to shell script func-
tions. Quite a few different shell script functions are available for you to download and use
in your own applications.

This section walks through downloading, installing, and using the GNU shtool shell script
function library. The shtool library provides some simple shell script functions for perform-
ing everyday shell functions, such as working with temporary fi les and folders or format-
ting output to display.

471

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 471

17

Downloading and installing
The fi rst step in the process is to download and install the GNU shtool library to your sys-
tem so you can use the library functions in your own shell scripts. To do that, you need to
use an FTP client program or a browser in a graphical desktop. Use this URL to download
the shtool package:

ftp://ftp.gnu.org/gnu/shtool/shtool-2.0.8.tar.gz

This downloads the fi le shtool-2.0.8.tar.gz to the download folder. From there, you
can use the cp command line tool or the graphical fi le manager tool in your Linux distribu-
tion (such as Nautilus in Ubuntu) to copy the fi le to your Home folder.

After you copy the fi le to your Home folder, you can extract it using the tar command:

tar -zxvf shtool-2.0.8.tar.gz

This extracts the package fi les into a folder named shtool-2.0.8. Now you’re ready to
build the shell script library fi le.

Building the library
The shtool distribution fi le must be confi gured for your specifi c Linux environment. To do
that, it uses standard configure and make commands, commonly used in the C program-
ming environment. To build the library fi le, you just need to run two commands:

$./confifgure
$ make

The configure command checks the software necessary to build the shtool library fi le.
As it fi nds the tools it needs, it modifi es the confi guration fi le with the proper paths to the
tools.

The make command runs through the steps to build the shtool library fi le. The resulting fi le
(shtool) is the full library package fi le. You can test the library fi le using the make com-
mand as well:

$ make test
Running test suite:
echo...........ok
mdate..........ok
table..........ok
prop...........ok
move...........ok
install........ok
mkdir..........ok
mkln...........ok

ftp://ftp.gnu.org/gnu/shtool/shtool-2.0.8.tar.gz

472

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 472

mkshadow.......ok
fixperm........ok
rotate.........ok
tarball........ok
subst..........ok
platform.......ok
arx............ok
slo............ok
scpp...........ok
version........ok
path...........ok
OK: passed: 19/19
$

The test mode tests all the functions available in the shtool library. If all pass, then you’re
ready to install the library into a common location on your Linux system so all your scripts
can use it. To do that, you can use the install option of the make command. However,
you need to be logged in as the root user account to run it:

$ su
Password:
make install
./shtool mkdir -f -p -m 755 /usr/local
./shtool mkdir -f -p -m 755 /usr/local/bin
./shtool mkdir -f -p -m 755 /usr/local/share/man/man1
./shtool mkdir -f -p -m 755 /usr/local/share/aclocal
./shtool mkdir -f -p -m 755 /usr/local/share/shtool
...
./shtool install -c -m 644 sh.version /usr/local/share/shtool/sh.version
./shtool install -c -m 644 sh.path /usr/local/share/shtool/sh.path
#

Now you’re ready to start using the functions in your own shell scripts!

The shtool library functions
The shtool library provides quite a few functions that can come in handy when working
with shell scripts. Table 17.1 shows the functions available in the library.

TABLE 17.1 The shtool Library Functions

Function Description

Arx Creates an archive with extended features

Echo Displays the string value with construct expansion

fi xperm Changes fi le permissions inside a folder tree

473

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 473

17

install Installs a script or fi le

mdate Displays modifi cation time of a fi le or directory

mkdir Creates one or more directories

Mkln Creates a link using relative paths

mkshadow Creates a shadow tree

move Moves fi les with substitution

Path Works with program paths

platform Displays the platform identity

Prop Displays an animated progress propeller

rotate Rotates logfi les

Scpp The sharing C pre-processor

Slo Separates linker options by library class

Subst Uses sed substitution operations

Table Displays fi eld-separated data in a table format

tarball Creates tar fi les from fi les and folders

version Creates a version information fi le

Each of the shtool functions has lots of options and arguments that you can use to modify
how it works. Here’s the format to use a shtool function:

shtool [options] [function [options] [args]]

Using the library
You can use the shtool functions directly from the command line or from within your
shell scripts. Here’s an example of using the platform function inside a shell script:

$ cat test16
#!/bin/bash

shtool platform
$./test16
Ubuntu 14.04 (iX86)
$

The platform function returns the Linux distribution and the CPU hardware that the host
system is using. One of my favorites is the prop function. It creates a spinning propeller
from alternating the \, |, /, and – characters while something is processing. That’s a great
tool to help show your shell script users that something is happening in the background
while the script is running.

474

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 474

To use the prop function, you just pipe the output of the function you want to monitor to
the shtool script:

$ ls –al /usr/bin | shtool prop –p "waiting..."
waiting...
$

The prop function alternates between the propeller characters to indicate that something
is happening. In this case, it’s the output from the ls command. How much of that you see
depends on how fast your CPU can list out all the fi les in the /usr/bin folder! The –p
option allows you to customize the output text that appears before the propeller charac-
ters. Now that’s getting fancy!

Summary
Shell script functions allow you to place script code that’s repeated throughout the script
in a single place. Instead of having to rewrite blocks of code, you can create a function
containing the code block and then just reference the function name in your script. The
bash shell jumps to the function code block whenever it sees the function name used in the
script.

You can even create script functions that return values. This allows you to create functions
that interact with the script, returning both numeric and character data. Script functions
can return numeric data by using the exit status of the last command in the function or
using the return command. The return command allows you to programmatically set the
exit status of your function to a specifi c value based on the results of the function.

Functions can also return values using the standard echo statement. You can capture the
output data using the backtick character as you would any other shell command. This
enables you to return any type of data from a function, including strings and fl oating-
point numbers.

You can use shell variables within your functions, assigning values to variables and retriev-
ing values from existing variables. This allows you to pass any type of data both into and
out of a script function from the main script program. Functions also allow you to defi ne
local variables, which are accessible only from within the function code block. Local vari-
ables allow you to create self-contained functions, which don’t interfere with any variables
or processes used in the main shell script.

Functions can also call other functions, including themselves. When a function calls itself,
it is called recursion. A recursive function often has a base value that is the terminal value
of the function. The function continues to call itself with a decreasing parameter value
until the base value is reached.

475

Chapter 17: Creating Functions

c17.indd 12/08/2014 Page 475

17

If you use lots of functions in your shell scripts, you can create library fi les of script func-
tions. The library fi les can be included in any shell script fi le by using the source command,
or its alias, the dot operator. This is called sourcing the library fi le. The shell doesn’t run
the library fi le but makes the functions available within the shell that runs the script. You
can use this same technique to create functions that you can use on the normal shell com-
mand line. You can either defi ne functions directly on the command line or you can add
them to your .bashrc fi le so they are available for each new shell session you start. This
is a handy way to create utilities that can be used no matter what your PATH environment
variable is set to.

The next chapter discusses the use of text graphics in your scripts. In this day of modern
graphical interfaces, sometimes a plain text interface just doesn’t cut it. The bash shell pro-
vides some easy ways for you to incorporate simple graphics features in your scripts to help
spice things up.

477

c18.indd 12/16/2014 Page 477

CHAP T ER

18
Writing Scripts for Graphical
Desktops

IN THIS CHAPTER

Creating text menus

Building text window widgets

Adding X Window graphics

O
ver the years, shell scripts have acquired a reputation for being dull and boring. This doesn’t
have to be the case, however, if you plan on running your scripts in a graphical environ-
ment. There are plenty of ways to interact with your script user that don’t rely on the read

and echo statements. This chapter dives into a few different methods you can use to help add life
to your interactive scripts so they don’t look so old-fashioned.

Creating Text Menus
The most common way to create an interactive shell script is to utilize a menu. Offering your
customers a choice of various options helps guide them through exactly what the script can and
can’t do.

Menu scripts usually clear the display area and then show a list of options available. The customer
can select an option by pressing an associated letter or number assigned to each option. Figure 18-1
shows the layout of a sample menu.

The core of a shell script menu is the case command (see Chapter 12). The case command performs
specifi c commands, depending on what character your customer selects from the menu.

The following sections walk you through the steps you should follow to create a menu-based
shell script.

478

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 478

FIGURE 18-1

Displaying a menu from a shell script

Create the menu layout
The fi rst step in creating a menu is, obviously, to determine what elements you want to
appear in the menu and lay them out the way that you want them to appear.

Before creating the menu, it’s usually a good idea to clear the monitor display. This enables
you to display your menu in a clean environment without distracting text.

The clear command uses the terminfo data of your terminal session (see Chapter 2) to
clear any text that appears on the monitor. After the clear command, you can use the
echo command to display your menu elements.

By default, the echo command can only display printable text characters. When creating
menu items, it’s often helpful to use nonprintable items, such as the tab and newline char-
acters. To include these characters in your echo command, you must use the -e option.
Thus, the command:

 echo -e "1.\tDisplay disk space"

results in the output line:

 1. Display disk space

479

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 479

18

This greatly helps in formatting the layout of the menu items. With just a few echo com-
mands, you can create a reasonable-looking menu:

 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit menu\n\n"
 echo –en "\t\tEnter option: "

The -en option on the last line displays the line without adding the newline character at
the end. This gives the menu a more professional look, because the cursor stays at the end
of the line waiting for the customer’s input.

The last part of creating the menu is to retrieve the input from the customer. This is done
using the read command (see Chapter 14). Because we expect only single-character input,
the nice thing to do is to use the -n option in the read command to retrieve only one char-
acter. This allows the customer to enter a number without having to press the Enter key:

 read -n 1 option

Next, you need to create your menu functions.

Create the menu functions
Shell script menu options are easier to create as a group of separate functions. This enables
you to create a simple, concise case command that is easy to follow.

To do that, you need to create separate shell functions for each of your menu options. The
fi rst step in creating a menu shell script is to determine what functions you want your
script to perform and lay them out as separate functions in your code.

It is common practice to create stub functions for functions that aren’t implemented yet. A
stub function is a function that doesn’t contain any commands yet or possibly just an echo
statement indicating what should be there eventually:

 function diskspace {
 clear
 echo "This is where the diskspace commands will go"
 }

This enables your menu to operate smoothly while you work on the individual functions.
You don’t have to code all the functions for your menu to work. You’ll notice that the

480

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 480

function starts out with the clear command. This enables you to start the function on a
clean monitor screen, without the menu showing.

One thing that helps out in the shell script menu is to create the menu layout itself as a
function:

 function menu {
 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit program\n\n"
 echo -en "\t\tEnter option: "
 read -n 1 option
 }

This enables you to easily redisplay the menu at any time just by calling the menu function.

Add the menu logic
Now that you have your menu layout and your functions, you just need to create the
programming logic to put the two together. As mentioned, this requires the case command.

The case command should call the appropriate function according to the character selec-
tion expected from the menu. It’s always a good idea to use the default case command
character (the asterisk) to catch any incorrect menu entries.

The following code illustrates the use of the case command in a typical menu:

 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac

This code fi rst uses the menu function to clear the monitor screen and display the menu. The
read command in the menu function pauses until the customer hits a character on the keyboard.

481

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 481

18

After that’s been done, the case command takes over. The case command calls the appropriate
function based on the returned character. After the function completes, the case command exits.

Putting it all together
Now that you’ve seen all the parts that make up a shell script menu, let’s put them together
and see how they all interoperate. Here’s an example of a full menu script:

 $ cat menu1
 #!/bin/bash
 # simple script menu

 function diskspace {
 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

 function menu {
 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit program\n\n"
 echo -en "\t\tEnter option: "
 read -n 1 option
 }

 while [1]
 do
 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;

482

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 482

 2)
 whoseon ;;
 3)
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac
 echo -en "\n\n\t\t\tHit any key to continue"
 read -n 1 line
 done
 clear
 $

This menu creates three functions to retrieve administrative information about the Linux
system using common commands. It uses a while loop to continually loop through the
menu until the customer selects option 0, which uses the break command to break out of
the while loop.

You can use this same template to create any shell script menu interface. It provides a
simple way to interact with your customers.

Using the select command
You may have noticed that half the challenge of creating a text menu is just creating the
menu layout and retrieving the answer that you enter. The bash shell provides a handy
little utility for you that does all this work automatically.

The select command allows you to create a menu from a single command line and then
retrieve the entered answer and automatically process it. The format of the select com-
mand is as follows:

 select variable in list
 do
 commands
 done

The list parameter is a space-separated list of text items that build the menu. The
select command displays each item in the list as a numbered option and then displays a
special prompt, defi ned by the PS3 environment variable, for the selection.

Here’s a simple example of the select command in action:

 $ cat smenu1
 #!/bin/bash
 # using select in the menu

 function diskspace {

483

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 483

18

 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

 PS3="Enter option: "
 select option in "Display disk space" "Display logged on users"¬
 "Display memory usage" "Exit program"
 do
 case $option in
 "Exit program")
 break ;;
 "Display disk space")
 diskspace ;;
 "Display logged on users")
 whoseon ;;
 "Display memory usage")
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac
 done
 clear
 $

The select statement must all be on one line in the code fi le. That’s indicated by the con-
tinuation character in the listing. When you run the program, it automatically produces the
following menu:

 $./smenu1
 1) Display disk space 3) Display memory usage
 2) Display logged on users 4) Exit program
 Enter option:

When you use the select command, remember that the result value stored in the variable
is the entire text string and not the number associated with the menu item. The text string
values are what you need to compare in your case statements.

484

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 484

Doing Windows
Using text menus is a step in the right direction, but there’s still so much missing in
our interactive scripts, especially if we try to compare them to the graphical Windows
world. Fortunately for us, some very resourceful people out in the open source world have
helped us out.

The dialog package is a nifty little tool originally created by Savio Lam and currently main-
tained by Thomas E. Dickey. This package recreates standard Windows dialog boxes in a
text environment using ANSI escape control codes. You can easily incorporate these dialog
boxes in your shell scripts to interact with your script users. This section describes the dia-
log package and demonstrates how to use it in shell scripts.

The dialog package isn’t installed in all Linux distributions by default. If it’s not installed by default, because of its

popularity it’s almost always included in the software repository. Check your specifi c Linux distribution documenta-

tion for how to load the dialog package. For the Ubuntu Linux distribution, the following is the command line com-

mand to install it:

sudo apt-get install dialog

That package installs the dialog package plus the required libraries for your system.

The dialog package
The dialog command uses command line parameters to determine what type of Windows
widget to produce. A widget is the dialog package term for a type of Windows element. The
dialog package currently supports the types of widgets shown in Table 18-1.

TABLE 18-1 The dialog Widgets

Widget Description

calendar Provides a calendar from which to select a date

checklist Displays multiple entries where each entry can be turned on or off

form Allows you to build a form with labels and text fi elds to be fi lled out

fselect Provides a fi le selection window to browse for a fi le

gauge Displays a meter showing a percentage of completion

infobox Displays a message without waiting for a response

inputbox Displays a single text form box for text entry

inputmenu Provides an editable menu

menu Displays a list of selections from which to choose

485

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 485

18

msgbox Displays a message and requires the user to select an OK button

pause Displays a meter showing the status of a specifi ed pause period

passwordbox Displays a single textbox that hides entered text

passwordform Displays a form with labels and hidden text fi elds

radiolist Provides a group of menu items where only one item can be selected

tailbox Displays text from a fi le in a scroll window using the tail command

tailboxbg Same as tailbox, but operates in background mode

textbox Displays the contents of a fi le in a scroll window

timebox Provides a window to select an hour, minute, and second

yesno Provides a simple message with Yes and No buttons

As you can see from Table 18-1, you can choose from lots of different widgets. This can give
your scripts a more professional look with very little effort.

To specify a specifi c widget on the command line, you need to use the double dash format:

 dialog --widget parameters

where widget is the widget name as seen in Table 18-1, and parameters defi nes the size
of the widget window and any text required for the widget.

Each dialog widget provides output in two forms:

 ■ Using STDERR

 ■ Using the exit code status

The exit code status of the dialog command determines the button selected by the
user. If an OK or Yes button is selected, the dialog command returns a 0 exit status.
If a Cancel or No button is selected, the dialog command returns a 1 exit status. You
can use the standard $? variable to determine which button was selected in the dialog
widget.

If a widget returns any data, such as a menu selection, the dialog command sends the
data to STDERR. You can use the standard bash shell technique of redirecting the STDERR
output to another fi le or fi le descriptor:

 dialog --inputbox "Enter your age:" 10 20 2>age.txt

This command redirects the text entered in the textbox to the age.txt fi le.

The following sections look at some examples of the more common dialog widgets you’ll use
in your shell scripts.

486

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 486

The msgbox widget

The msgbox widget is the most common type of dialog box. It displays a simple message in
a window and waits for the user to click an OK button before disappearing. The following
format is required to use a msgbox widget:

 dialog --msgbox text height width

The text parameter is any string you want to place in the window. The dialog command
automatically wraps the text to fi t the size of the window you create, using the height
and width parameters. If you want to place a title at the top of the window, you can also
use the --title parameter, along with the text of the title. Here’s an example of using the
msgbox widget:

 $ dialog --title Testing --msgbox "This is a test" 10 20

After entering this command, the message box appears on the screen of the terminal
emulator session you’re using. Figure 18-2 shows what this looks like.

FIGURE 18-2

Using the msgbox widget in the dialog command

If your terminal emulator supports the mouse, you can click the OK button to close the
dialog box. You can also use keyboard commands to simulate a click — just press the
Enter key.

487

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 487

18

The yesno widget

The yesno widget takes the msgbox widget one step further, allowing the user to answer
a yes/no question displayed in the window. It produces two buttons at the bottom of the
window — one for Yes and another for No. The user can switch between buttons by using
the mouse, the tab key, or the keyboard arrow keys. To select the button, the user can
either press the spacebar or the Enter key.

Here’s an example of using the yesno widget:

 $ dialog --title "Please answer" --yesno "Is this thing on?" 10 20
 $ echo $?
 1
 $

This produces the widget shown in Figure 18-3.

FIGURE 18-3

Using the yesno widget in the dialog command

The exit status of the dialog command is set depending on which button the user selects.
If the No button is selected, the exit status is 1, and if the Yes button is selected, the exit
status is 0.

The inputbox widget

The inputbox widget provides a simple textbox area for the user to enter a text string.
The dialog command sends the value of the text string to STDERR. You must redirect that
to retrieve the answer. Figure 18-4 demonstrates what the inputbox widget looks like.

488

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 488

FIGURE 18-4

The inputbox widget

As you can see in Figure 18-4, the inputbox provides two buttons — OK and Cancel. If
the Cancel button is selected, the exit status of the command is 1; otherwise, the exit
status is 0:

 $ dialog --inputbox "Enter your age:" 10 20 2>age.txt
 $ echo $?
 0
 $ cat age.txt
 12$

You’ll notice when you use the cat command to display the contents of the text fi le that
there’s no newline character after the value. This enables you to easily redirect the fi le con-
tents to a variable in a shell script to extract the string entered by the user.

The textbox widget

The textbox widget is a great way to display lots of information in a window. It produces
a scrollable window containing the text from a fi le specifi ed in the parameters:

 $ dialog --textbox /etc/passwd 15 45

The contents of the /etc/passwd fi le are shown within the scrollable text window, as
illustrated in Figure 18-5.

489

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 489

18

FIGURE 18-5

The textbox widget

You can use the arrow keys to scroll left and right, as well as up and down in the text
fi le. The bottom line in the window shows the percent location within the fi le that
you’re viewing. The textbox contains only a single Exit button, which should be selected
to exit the widget.

The menu widget

The menu widget allows you to create a window version of the text menu we created earlier
in this chapter. You simply provide a selection tag and the text for each item:

 $ dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space"
 2 "Display users" 3 "Display memory usage" 4 "Exit" 2> test.txt

The fi rst parameter defi nes a title for the menu. The next two parameters defi ne the height
and width of the menu window, while the third parameter defi nes the number of menu
items that appear in the window at one time. If there are more menu items, you can scroll
through them using the arrow keys.

Following those parameters, you must add menu item pairs. The fi rst element is the tag
used to select the menu item. Each tag should be unique for each menu item and can be
selected by pressing the appropriate key on the keyboard. The second element is the text
used in the menu. Figure 18-6 demonstrates the menu produced by the example command.

490

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 490

FIGURE 18-6

The menu widget with menu items

If the user selects a menu item by pressing the appropriate key for the tag, that menu item
is highlighted but not selected. A selection isn’t made until the OK button is selected by
using either the mouse or the Enter key. The dialog command sends the selected menu
item text to STDERR, which you can redirect as needed.

The fselect widget

There are several fancy built-in widgets provided by the dialog command. The fselect
widget is extremely handy when working with fi lenames. Instead of forcing the user to
type a fi lename, you can use the fselect widget to browse to the fi le location and select
the fi le, as shown in Figure 18-7.

The fselect widget format looks like:

 $ dialog --title "Select a file" --fselect $HOME/ 10 50 2>file.txt

The fi rst parameter after the fselect option is the starting folder location used in the
window. The fselect widget window consists of a directory listing on the left side, a fi le
listing on the right side that shows all the fi les in the selected directory, and a simple text-
box that contains the currently selected fi le or directory. You can manually type a fi lename
in the textbox, or you can use the directory and fi le listings to select one (use the spacebar
to select a fi le to add to the textbox).

491

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 491

18

FIGURE 18-7

The fselect widget

The dialog options
In addition to the standard widgets, you can customize lots of different options in the dia-
log command. You’ve already seen the --title parameter in action. This allows you to set
a title for the widget that appears at the top of the window.

Lots of other options allow you to completely customize both the appearance and the
behavior of your windows. Table 18-2 shows the options available for the dialog
command.

TABLE 18-2 The dialog Command Options

Option Description

--add-widget Proceeds to the next dialog unless Esc or the Cancel button
has been pressed

--aspect ratio Specifi es the width/height aspect ratio of the window

--backtitle title Specifi es a title to display on the background, at the top of the
screen

--begin x y Specifi es the starting location of the top-left corner of the
window

--cancel-label label Specifi es an alternative label for the Cancel button

Continues

492

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 492

Option Description

--clear Clears the display using the default dialog background color

--colors Embeds ANSI color codes in dialog text

--cr-wrap Allows newline characters in dialog text and forces a line wrap

--create-rc file Dumps a sample confi guration fi le to the specifi ed fi le

--defaultno Makes the default of a yes/no dialog No

--default-item string Sets the default item in a checklist, form, or menu dialog

--exit-label label Specifi es an alternative label for the Exit button

--extra-button Displays an extra button between the OK and Cancel buttons

--extra-label label Specifi es an alternative label for the Extra button

--help Displays the dialog command help message

--help-button Displays a Help button after the OK and Cancel buttons

--help-label label Specifi es an alternative label for the Help button

--help-status Writes the checklist, radiolist, or form information after the
help information in the Help button was selected

--ignore Ignores options that dialog does not recognize

--input-fd fd Specifi es an alternative fi le descriptor, other than STDIN

--insecure Changes the password widget to display asterisks when
typing

--item-help Adds a help column at the bottom of the screen for each tag
in a checklist, radiolist, or menu for the tag item

--keep-window Doesn’t clear old widgets from the screen

--max-input size Specifi es a maximum string size for the input; default is 2048

--nocancel Suppresses the Cancel button

--no-collapse Doesn’t convert tabs to spaces in dialog text

--no-kill Places the tailboxbg dialog in background and disables
SIGHUP for the process

--no-label label Specifi es an alternative label for the No button

--no-shadow Doesn’t display shadows for dialog windows

--ok-label label Specifi es an alternative label for the OK button

--output-fd fd Specifi es an alternative output fi le descriptor other than
STDERR

--print-maxsize Prints the maximum size of dialog windows allowed to the
output

TABLE 18-2 (continued)

493

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 493

18

--print-size Prints the size of each dialog window to the output

--print-version Prints the dialog version to output

--separate-output Outputs the result of a checklist widget one line at a time with
no quoting

--separator string Specifi es a string that separates the output for each widget

--separate-widget
string

Specifi es a string that separates the output for each widget

--shadow Draws a shadow to the right and bottom of each window

--single-quoted Uses single quoting if needed for the checklist output

--sleep sec Delays for the specifi ed number of seconds after processing
the dialog window

--stderr Sends output to STDERR — the default behavior

--stdout Sends output to STDOUT

--tab-correct Converts tabs to spaces

--tab-len n Specifi es the number of spaces a tab character uses; default is 8

--timeout sec Specifi es the number of seconds before exiting with an error
code if no user input

--title title Specifi es the title of the dialog window

--trim Removes leading spaces and newline characters from dialog text

--visit-items Modifi es the tab stops in the dialog window to include the list
of items

--yes-label label Specifi es an alternative label for the Yes button

The --backtitle option is a handy way to create a common title for your menu through
the script. If you specify it for each dialog window, it persists throughout your application,
creating a professional look to your script.

As you can tell from Table 18-2, you can overwrite any of the button labels in your dialog
window. This feature allows you to create just about any window situation you need.

Using the dialog command in a script
Using the dialog command in your scripts is a snap. There are just two things you must
remember:

 ■ Check the exit status of the dialog command if there’s a Cancel or No button
available.

 ■ Redirect STDERR to retrieve the output value.

494

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 494

If you follow these two rules, you’ll have a professional-looking interactive script in no
time. Here’s an example using dialog widgets to reproduce the system admin menu created
earlier in the chapter:

 $ cat menu3
 #!/bin/bash
 # using dialog to create a menu

 temp=$(mktemp -t test.XXXXXX)
 temp2=$(mktemp -t test2.XXXXXX)

 function diskspace {
 df -k > $temp
 dialog --textbox $temp 20 60
 }

 function whoseon {
 who > $temp
 dialog --textbox $temp 20 50
 }

 function memusage {
 cat /proc/meminfo > $temp
 dialog --textbox $temp 20 50
 }

 while [1]
 do
 dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space" 2
 "Display users" 3 "Display memory usage" 0 "Exit" 2> $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;
 *)
 dialog --msgbox "Sorry, invalid selection" 10 30

495

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 495

18

 esac
 done
 rm -f $temp 2> /dev/null
 rm -f $temp2 2> /dev/null
 $

The script uses the while loop with a constant true value to create an endless loop dis-
playing the menu dialog. This means that, after every function, the script returns to dis-
playing the menu.

The menu dialog includes a Cancel button, so the script checks the exit status of the dialog
command in case the user presses the Cancel button to exit. Because it’s in a while loop,
exiting is as easy as using the break command to jump out of the while loop.

The script uses the mktemp command to create two temporary fi les for holding data for
the dialog commands. The fi rst one, $temp, is used to hold the output of the df, whoe-
son, and meminfo commands so they can be displayed in the textbox dialog (see Figure
18-8). The second temporary fi le, $temp2, is used to hold the selection value from the
main menu dialog.

FIGURE 18-8

The meminfo command output displayed using the textbox dialog option

Now this is starting to look like a real application that you can show off to people!

496

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 496

Getting Graphic
If you’re looking for even more graphics for your interactive scripts, you can go one step
further. Both the KDE and GNOME desktop environments (see Chapter 1) have expanded on
the dialog command idea and include commands that produce X Window graphical widgets
for their respective environments.

This section describes the kdialog and zenity packages, which provide graphical window
widgets for the KDE and GNOME desktops, respectively.

The KDE environment
The KDE graphical environment includes the kdialog package by default. The kdialog pack-
age uses the kdialog command to generate standard windows, similar to the dialog-style
widgets, within your KDE desktop. However, instead of having the clunky feel to them,
these windows blend right in with the rest of your KDE application windows! This allows
you to produce Windows-quality user interfaces directly from your shell scripts!

Just because your Linux distribution uses the KDE desktop doesn’t necessarily mean it has the kdialog package

installed by default. You may need to manually install it from the distribution repository.

kdialog widgets

Just like the dialog command, the kdialog command uses command line options to
specify what type of window widget to use. The following is the format of the kdialog
command:

 kdialog display-options window-options arguments

The window-options options allow you to specify what type of window widget to use.
The available options are shown in Table 18-3.

TABLE 18-3 kdialog Window Options

Option Description

--checklist title [tag
item status]

A checklist menu, with status specifying if the item is checked
or not

--error text Error message box

--inputbox text [init] Input textbox where you can specify the default value using
the init value

--menu title [tag item] Menu selection box title and a list of items identifi ed by a tag

497

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 497

18

--msgbox text Simple message box with specifi ed text

--password text Password input textbox that hides user input

--radiolist title [tag
item status]

A radiolist menu, with status specifying if the item is selected
or not

--separate-output Returns items on separate lines for checklist and radiolist
menus

--sorry text Sorry message box

--textbox file [width]
[height]

Textbox displaying the contents of file, alternatively speci-
fi ed by width and height

--title title Specifi es a title for the TitleBar area of the dialog window

--warningyesno text Warning message box with Yes and No buttons

--warningcontinuecancel
text

Warning message box with Continue and Cancel buttons

--warningyesnocancel
text

Warning message box with Yes, No, and Cancel buttons

--yesno text Question box with Yes and No buttons

--yesnocancel text Question box with Yes, No, and Cancel buttons

As you can see from Table 18-3, all the standard window dialog box types are represented.
However, when you use a kdialog window widget, it appears as a separate window in the
KDE desktop, not inside the terminal emulator session!

The checklist and radiolist widgets allow you to defi ne individual items in the lists
and whether they are selected by default:

$kdialog --checklist "Items I need" 1 "Toothbrush" on 2 "Toothpaste"
 off 3 "Hair brush" on 4 "Deodorant" off 5 "Slippers" off

The resulting checklist window is shown in Figure 18-9.

The items specifi ed as “on” are highlighted in the checklist. To select or deselect an item in
the checklist, just click it. If you select the OK button, the kdialog sends the tag values
to STDOUT:

"1" "3"
$

When you press the Enter key, the kdialog box appears with the selections. When you click
the OK or Cancel buttons, the kdialog command returns each tag as a string value to
STDOUT (these are the "1", and "3" values you see in the output). Your script must be able
to parse the resulting values and match them with the original values.

498

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 498

FIGURE 18-9

A kdialog checklist dialog window

Using kdialog

You can use the kdialog window widgets in your shell scripts similarly to how you use
the dialog widgets. The big difference is that the kdialog window widgets output values
using STDOUT instead of STDERR.

Here’s a script that converts the sys admin menu created earlier into a KDE application:

 $ cat menu4
 #!/bin/bash
 # using kdialog to create a menu

 temp=$(mktemp -t temp.XXXXXX)
 temp2=$(mktemp -t temp2.XXXXXX)

 function diskspace {
 df -k > $temp
 kdialog --textbox $temp 1000 10
 }

 function whoseon {
 who > $temp
 kdialog --textbox $temp 500 10
 }

 function memusage {
 cat /proc/meminfo > $temp
 kdialog --textbox $temp 300 500
 }

 while [1]
 do

499

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 499

18

kdialog --menu "Sys Admin Menu" "1" "Display diskspace" "2" "Display
 users" "3" "Display memory usage" "0" "Exit" > $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;
 *)
 kdialog --msgbox "Sorry, invalid selection"
 esac
 done
 $

There isn’t much difference in the script from using the kdialog command and the
dialog command. The resulting main menu generated is shown in Figure 18-10.

FIGURE 18-10

The sys admin menu script using kdialog

Now your simple shell script looks just like a real KDE application! There’s no limit to what
you can do with your interactive scripts now.

500

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 500

The GNOME environment
The GNOME graphical environment supports two popular packages that can generate stan-
dard windows:

 ■ gdialog

 ■ zenity

By far, zenity is the most commonly available package found in most GNOME desktop Linux
distributions (it’s installed by default in both Ubuntu and Fedora). This section describes
the features of zenity and demonstrates how to use it in your shell scripts.

zenity Widgets

As you would expect, zenity allows you to create different windows widgets by using com-
mand line options. Table 18-4 shows the different widgets that zenity can produce.

TABLE 18-4 The zenity Windows Widgets

Option Description

--calendar Displays a full month calendar

--entry Displays a text entry dialog window

--error Displays an error message dialog window

--file-selection Displays a full pathname and fi lename dialog window

--info Displays an informational dialog window

--list Displays a checklist or radiolist dialog window

--notification Displays a notifi cation icon

--progress Displays a progress bar dialog window

--question Displays a yes/no question dialog window

--scale Displays a scale dialog window

--text-info Displays a textbox containing text

--warning Displays a warning dialog window

The zenity command line program works somewhat differently than the kdialog and
dialog programs. Many of the widget types are defi ned using additional options on the
command line, instead of including them as arguments to an option.

The zenity command does offer some pretty cool advanced dialog windows. The
calendar option produces a full month calendar, as shown in Figure 18-11.

501

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 501

18

FIGURE 18-11

The zenity calendar dialog window

When you select a date from the calendar, the zenity command returns the value to
STDOUT, just like kdialog:

 $ zenity --calendar
 12/25/2011
 $

Another pretty cool window in zenity is the fi le selection option, shown in Figure 18-12.

You can use the dialog window to browse to any directory location on the system (as long
as you have the privileges to view the directory) and select a fi le. When you select a fi le,
the zenity command returns the full fi le and pathname:

 $ zenity --file-selection
 /home/ubuntu/menu5
 $

With tools like that at your disposal, the sky’s the limit with your shell script creations!

Using zenity in scripts

As you would expect, zenity performs well in shell scripts. Unfortunately, zenity chose not
to follow the option convention used in dialog and kdialog, so converting any existing
interactive scripts to zenity may prove challenging.

502

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 502

FIGURE 18-12

The zenity fi le selection dialog window

In converting the sys admin menu from kdialog to zenity, we had to do quite a bit of
manipulation of the widget defi nitions:

 $cat menu5
 #!/bin/bash
 # using zenity to create a menu

 temp=$(mktemp -t temp.XXXXXX)
 temp2=$(mktemp -t temp2.XXXXXX)

 function diskspace {
 df -k > $temp
 zenity --text-info --title "Disk space" --filename=$temp
 --width 750 --height 10
 }

 function whoseon {
 who > $temp
 zenity --text-info --title "Logged in users" --filename=$temp

503

Chapter 18: Writing Scripts for Graphical Desktops

c18.indd 12/16/2014 Page 503

18

 --width 500 --height 10
 }

 function memusage {
 cat /proc/meminfo > $temp
 zenity --text-info --title "Memory usage" --filename=$temp
 --width 300 --height 500
 }

 while [1]
 do
 zenity --list --radiolist --title "Sys Admin Menu" --column "Select"
--column "Menu Item" FALSE "Display diskspace" FALSE "Display users"
 FALSE "Display memory usage" FALSE "Exit" > $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)
 case $selection in
 "Display disk space")
 diskspace ;;
 "Display users")
 whoseon ;;
 "Display memory usage")
 memusage ;;
 Exit)
 break ;;
 *)
 zenity --info "Sorry, invalid selection"
 esac
 done
 $

Because zenity doesn’t support the menu dialog window, we used a radiolist type window
for the main menu, as shown in Figure 18-13.

The radiolist uses two columns, each with a column heading. The fi rst column includes
the radio buttons to select. The second column is the item text. The radiolist also doesn’t
use tags for the items. When you select an item, the full text of the item is returned to
STDOUT. This makes life a little more interesting for the case command. You must use the
full text from the items in the case options. If there are any spaces in the text, you need to
use quotation marks around the text.

Using the zenity package, you can add a Windows feel to your interactive shell scripts in
the GNOME desktop.

504

Part III: Advanced Shell Scripting

c18.indd 12/16/2014 Page 504

FIGURE 18-13

The sys admin menu using zenity

Summary
Interactive shell scripts have a reputation for being dull and boring. You can change that by
using a few different techniques and tools available on most Linux systems. First, you can create
menu systems for your interactive scripts by using the case command and shell script functions.

The menu command allows you to paint a menu, using the standard echo command, and
read a response from the user, using the read command. The case command then selects
the appropriate shell script function based on the value entered.

The dialog program provides several prebuilt text widgets for creating Windows-like
objects on a text-based terminal emulator. You can create dialog boxes for displaying text,
entering text, and choosing fi les and dates by using the dialog program. This helps bring
even more life to your shell script.

If you’re running your shell scripts in a graphical X Window environment, you can utilize
even more tools in your interactive scripts. For the KDE desktop, there’s the kdialog pro-
gram. This program provides simple commands to create windows widgets for all the basic
windows functions. For the GNOME desktop, there are the gdialog and zenity programs.
Each of these programs provides window widgets that blend into the GNOME desktop just
like a real Windows application.

The next chapter dives into the subject of editing and manipulating text data fi les. Often
the biggest use of shell scripts revolves around parsing and displaying data in text fi les
such as log and error fi les. The Linux environment includes two very useful tools, sed and
gawk , for working with text data in your shell scripts. The next chapter introduces you to
these tools, and shows the basics of how to use them.

505

c19.indd 12/16/2014 Page 505

CHAP T ER

19
Introducing sed and gawk

IN THIS CHAPTER

Learning about the sed Editor

Getting introduced to the gawk Editor

Exploring sed Editor basics

B
y far, one of the most common functions that people use shell scripts for is to work with text
fi les. Between examining log fi les, reading confi guration fi les, and handling data elements,
shell scripts can help automate the mundane tasks of manipulating any type of data con-

tained in text fi les. However, trying to manipulate the contents of text fi les using just shell script
commands can be somewhat awkward. If you perform any type of data manipulation in your shell
scripts, you want to become familiar with the sed and gawk tools available in Linux. These tools
can greatly simplify any data-handling tasks you need to perform.

Manipulating Text
Chapter 10 showed you how to edit text fi les using different editor programs available in the Linux
environment. These editors enable you to easily manipulate text contained in a text fi le by using
simple commands or mouse clicks.

There are times, however, when you’ll fi nd yourself wanting to manipulate text in a text fi le on the
fl y, without having to pull out a full-fl edged interactive text editor. In these situations, it would be
useful to have a simple command line editor that could easily format, insert, modify, or delete text
elements automatically.

The Linux system provides two common tools for doing just that. This section describes the two
most popular command line editors used in the Linux world, sed and gawk.

Getting to know the sed editor
The sed editor is called a stream editor, as opposed to a normal interactive text editor. In an inter-
active text editor, such as vim, you interactively use keyboard commands to insert, delete, or
replace text in the data. A stream editor edits a stream of data based on a set of rules you supply
ahead of time, before the editor processes the data.

506

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 506

The sed editor can manipulate data in a data stream based on commands you either enter
into the command line or store in a command text fi le. The sed editor does these things:

 1. Reads one data line at a time from the input

 2. Matches that data with the supplied editor commands

 3. Changes data in the stream as specifi ed in the commands

 4. Outputs the new data to STDOUT

After the stream editor matches all the commands against a line of data, it reads the next
line of data and repeats the process. After the stream editor processes all the lines of data
in the stream, it terminates.

Because the commands are applied sequentially line by line, the sed editor makes only one
pass through the data stream to make the edits. This makes the sed editor much faster than
an interactive editor and allows you to quickly make changes to data in a fi le on the fl y.

Here’s the format for using the sed command:

sed options script file

The options parameters allow you to customize the behavior of the sed command and
include the options shown in Table 19-1.

TABLE 19-1 The sed Command Options

Option Description

-e script Adds commands specifi ed in the script to the commands run while process-
ing the input

-f file Adds the commands specifi ed in the fi le to the commands run while process-
ing the input

-n Doesn’t produce output for each command, but waits for the print
command

The script parameter specifi es a single command to apply against the stream data. If more
than one command is required, you must use either the -e option to specify them in the
command line or the -f option to specify them in a separate fi le. Numerous commands are
available for manipulating data. We examine some of the basic commands used by the sed
editor in this chapter and then look at some of the more advanced commands in Chapter 21.

Defining an editor command in the command line

By default, the sed editor applies the specifi ed commands to the STDIN input stream. This
allows you to pipe data directly to the sed editor for processing. Here’s a quick example
demonstrating how to do this:

507

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 507

19

$ echo "This is a test" | sed 's/test/big test/'
This is a big test
$

This example uses the s command in the sed editor. The s command substitutes a second
text string for the fi rst text string pattern specifi ed between the forward slashes. In this
example, the words big test were substituted for the word test.

When you run this example, it should display the results almost instantaneously. That’s the
power of using the sed editor. You can make multiple edits to data in about the same time
it takes for some of the interactive editors just to start up.

Of course, this simple test just edited one line of data. You should get the same speedy
results when editing complete fi les of data:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed 's/dog/cat/' data1.txt
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
$

The sed command executes and returns the data almost instantaneously. As it processes
each line of data, the results are displayed. You’ll start seeing results before the sed editor
completes processing the entire fi le.

It’s important to note that the sed editor doesn’t modify the data in the text fi le itself. It
only sends the modifi ed text to STDOUT. If you look at the text fi le, it still contains the
original data:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Using multiple editor commands in the command line

To execute more than one command from the sed command line, just use the -e option:

$ sed -e 's/brown/green/; s/dog/cat/' data1.txt
The quick green fox jumps over the lazy cat.

508

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 508

The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
$

Both commands are applied to each line of data in the fi le. The commands must be sepa-
rated with a semicolon, and there shouldn’t be any spaces between the end of the command
and the semicolon.

Instead of using a semicolon to separate the commands, you can use the secondary prompt
in the bash shell. Just enter the fi rst single quotation mark to open the sed program script
(sed editor command list), and bash continues to prompt you for more commands until you
enter the closing quotation mark:

$ sed -e '
> s/brown/green/
> s/fox/elephant/
> s/dog/cat/' data1.txt
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$

You must remember to fi nish the command on the same line where the closing single quota-
tion mark appears. After the bash shell detects the closing quotation mark, it processes the
command. After it starts, the sed command applies each command you specifi ed to each
line of data in the text fi le.

Reading editor commands from a file

Finally, if you have lots of sed commands you want to process, it is often easier to just
store them in a separate fi le. Use the -f option to specify the fi le in the sed command:

$ cat script1.sed
s/brown/green/
s/fox/elephant/
s/dog/cat/
$
$ sed -f script1.sed data1.txt
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$

In this case, you don’t put a semicolon after each command. The sed editor knows that
each line contains a separate command. As with entering commands on the command line,

509

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 509

19

the sed editor reads the commands from the specifi ed fi le and applies them to each line in
the data fi le.

It can be easy to confuse your sed editor script fi les with your bash shell script fi les. To eliminate confusion, use a .sed

fi le extension on your sed script fi les.

We’ll look at some other sed editor commands that come in handy for manipulating data
in the “Commanding at the sed Editor Basics” section. Before that, let’s quickly look at the
other Linux data editor.

Getting to know the gawk program
Although the sed editor is a handy tool for modifying text fi les on the fl y, it has its limita-
tions. Often, you need a more advanced tool for manipulating data in a fi le, one that pro-
vides a more programming-like environment allowing you to modify and reorganize data in
a fi le. This is where gawk comes in.

The gawk program is not installed by default on all distributions. If your Linux distribution does not have the gawk

program, install the gawk package using Chapter 9 as a guide.

The gawk program is the GNU version of the original awk program in Unix. The gawk
program takes stream editing one step further than the sed editor by providing a program-
ming language instead of just editor commands. Within the gawk programming language,
you can do the following:

 ■ Defi ne variables to store data.

 ■ Use arithmetic and string operators to operate on data.

 ■ Use structured programming concepts, such as if-then statements and loops, to
add logic to your data processing.

 ■ Generate formatted reports by extracting data elements within the data fi le and
repositioning them in another order or format.

The gawk program’s report-generating capabilities are often used for extracting data
elements from large bulky text fi les and formatting them into a readable report. The per-
fect example of this is formatting log fi les. Trying to pore through lines of errors in a log
fi le can be diffi cult. The gawk program allows you to fi lter just the data elements you want
to view from the log fi le, and then you can format them in a manner that makes reading
the important data easier.

510

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 510

Visiting the gawk command format

Here’s the basic format of the gawk program:

gawk options program file

Table 19-2 shows the options available with the gawk program.

TABLE 19-2 The gawk Options

Option Description

-F fs Specifi es a fi le separator for delineating data fi elds in a line

-f file Specifi es a fi le name to read the program from

-v var=value Defi nes a variable and default value used in the gawk program

-mf N Specifi es the maximum number of fi elds to process in the data fi le

-mr N Specifi es the maximum record size in the data fi le

-W keyword Specifi es the compatibility mode or warning level for gawk

The command line options provide an easy way to customize features in the gawk program.
We’ll look more closely at these as we explore gawk.

The power of gawk is in the program script. You can write scripts to read the data within a
text line and then manipulate and display the data to create any type of output report.

Reading the program script from the command line

A gawk program script is defi ned by opening and closing braces. You must place script com-
mands between the two braces ({}). If you incorrectly use a parenthesis instead of a brace
to enclose your gawk script, you get error messages, similar to the following:

$ gawk '(print "Hello World!"}'
gawk: (print "Hello World!"}
gawk: ^ syntax error

Because the gawk command line assumes that the script is a single text string, you must
also enclose your script in single quotation marks. Here’s an example of a simple gawk
program script specifi ed on the command line:

$ gawk '{print "Hello World!"}'

The program script defi nes a single command, the print command. The print command
does what it says: It prints text to STDOUT. If you try running this command, you’ll be
somewhat disappointed, because nothing happens right away. Because no fi lename was
defi ned in the command line, the gawk program retrieves data from STDIN. When you run
the program, it just waits for text to come in via STDIN.

511

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 511

19

If you type a line of text and press the Enter key, gawk runs the text through the program
script. Just like the sed editor, the gawk program executes the program script on each line
of text available in the data stream. Because the program script is set to display a fi xed text
string, no matter what text you enter in the data stream, you get the same text output:

$ gawk '{print "Hello World!"}'
This is a test
Hello World!
hello
Hello World!
This is another test
Hello World!

To terminate the gawk program, you must signal that the data stream has ended. The bash
shell provides a key combination to generate an End-of-File (EOF) character. The Ctrl+D key
combination generates an EOF character in bash. Using that key combination terminates
the gawk program and returns you to a command line interface prompt.

Using data field variables

One of the primary features of gawk is its ability to manipulate data in the text fi le. It does
this by automatically assigning a variable to each data element in a line. By default, gawk
assigns the following variables to each data fi eld it detects in the line of text:

 ■ $0 represents the entire line of text.

 ■ $1 represents the fi rst data fi eld in the line of text.

 ■ $2 represents the second data fi eld in the line of text.

 ■ $n represents the nth data fi eld in the line of text.

Each data fi eld is determined in a text line by a fi eld separation character. When gawk reads
a line of text, it delineates each data fi eld using the defi ned fi eld separation character. The
default fi eld separation character in gawk is any whitespace character (such as the tab or
space characters).

Here’s an example gawk program that reads a text fi le and displays only the fi rst data fi eld
value:

$ cat data2.txt
One line of test text.
Two lines of test text.
Three lines of test text.
$
$ gawk '{print $1}' data2.txt
One
Two
Three
$

512

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 512

This program uses the $1 fi eld variable to display only the fi rst data fi eld for each line
of text.

If you’re reading a fi le that uses a different fi eld separation character, you can specify it by
using the -F option:

$ gawk -F: '{print $1}' /etc/passwd
root
bin
daemon
adm
lp
sync
shutdown
halt
mail
[...]

This short program displays the fi rst data fi eld in the password fi le on the system. Because
the /etc/passwd fi le uses a colon to separate the data fi elds, if you want to separate each
data element, you must specify it as the fi eld separation character in the gawk options.

Using multiple commands in the program script

A programming language wouldn’t be very useful if you could only execute one command.
The gawk programming language allows you to combine commands into a normal program.
To use multiple commands in the program script specifi ed on the command line, just place a
semicolon between each command:

$ echo "My name is Rich" | gawk '{$4="Christine"; print $0}'
My name is Christine
$

The fi rst command assigns a value to the $4 fi eld variable. The second command then
prints the entire data fi eld. Notice from the output that the gawk program replaced the
fourth data fi eld in the original text with the new value.

You can also use the secondary prompt to enter your program script commands one line at
a time:

$ gawk '{
> $4="Christine"
> print $0}'
My name is Rich
My name is Christine
$

After you open the single quotation mark, the bash shell provides the secondary prompt to
prompt you for more data. You can add your commands one at a time on each line until you

513

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 513

19

enter the closing single quotation mark. Because no fi lename was defi ned in the command
line, the gawk program retrieves data from STDIN. When you run the program, it waits for
text to come in via STDIN. To exit the program, just press the Ctrl+D key combination to
signal the end of the data.

Reading the program from a file

As with the sed editor, the gawk editor allows you to store your programs in a fi le and
refer to them in the command line:

$ cat script2.gawk
{print $1 "'s home directory is " $6}
$
$ gawk -F: -f script2.gawk /etc/passwd
root's home directory is /root
bin's home directory is /bin
daemon's home directory is /sbin
adm's home directory is /var/adm
lp's home directory is /var/spool/lpd
[...]
Christine's home directory is /home/Christine
Samantha's home directory is /home/Samantha
Timothy's home directory is /home/Timothy
$

The script2.gawk program script uses the print command again to print the /etc/
passwd fi le’s home directory data fi eld (fi eld variable $6) and the userid data fi eld (fi eld
variable $1).

You can specify multiple commands in the program fi le. To do so, just place each command
on a separate line. You don’t need to use semicolons:

$ cat script3.gawk
{
text = "'s home directory is "
print $1 text $6
}
$
$ gawk -F: -f script3.gawk /etc/passwd
root's home directory is /root
bin's home directory is /bin
daemon's home directory is /sbin
adm's home directory is /var/adm
lp's home directory is /var/spool/lpd
[...]
Christine's home directory is /home/Christine
Samantha's home directory is /home/Samantha
Timothy's home directory is /home/Timothy
$

514

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 514

The script3.gawk program script defi nes a variable to hold a text string used in the
print command. Notice that gawk programs don’t use a dollar sign when referencing a
variable’s value, as a shell script does.

Running scripts before processing data

The gawk program also allows you to specify when the program script is run. By default,
gawk reads a line of text from the input and then executes the program script on the data
in the line of text. Sometimes, you may need to run a script before processing data, such
as to create a header section for a report. The BEGIN keyword is used to accomplish this. It
forces gawk to execute the program script specifi ed after the BEGIN keyword, before gawk
reads the data:

$ gawk 'BEGIN {print "Hello World!"}'
Hello World!
$

This time the print command displays the text before reading any data. However, after it
displays the text, it quickly exits, without waiting for any data.

The reason for this is that the BEGIN keyword only applies the specifi ed script before it
processes any data. If you want to process data with a normal program script, you must
defi ne the program using another script section:

$ cat data3.txt
Line 1
Line 2
Line 3
$
$ gawk 'BEGIN {print "The data3 File Contents:"}
> {print $0}' data3.txt
The data3 File Contents:
Line 1
Line 2
Line 3
$

Now after gawk executes the BEGIN script, it uses the second script to process any fi le
data. Be careful when doing this; both of the scripts are still considered one text string on
the gawk command line. You need to place your single quotation marks accordingly.

Running scripts after processing data

Like the BEGIN keyword, the END keyword allows you to specify a program script that
gawk executes after reading the data:

$ gawk 'BEGIN {print "The data3 File Contents:"}
> {print $0}

515

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 515

19

> END {print "End of File"}' data3.txt
The data3 File Contents:
Line 1
Line 2
Line 3
End of File
$

When the gawk program is fi nished printing the fi le contents, it executes the commands
in the END script. This is a great technique to use to add footer data to reports after all the
normal data has been processed.

You can put all these elements together into a nice little program script fi le to create a full
report from a simple data fi le:

$ cat script4.gawk
BEGIN {
print "The latest list of users and shells"
print " UserID \t Shell"
print "-------- \t -------"
FS=":"
}

{
print $1 " \t " $7
}

END {
print "This concludes the listing"
}
$

This script uses the BEGIN script to create a header section for the report. It also defi nes a
special variable called FS. This is yet another way to defi ne the fi eld separation character.
This way, you don’t have to depend on the script’s user to defi ne the fi eld separation char-
acter in the command line options.

Here’s a somewhat truncated output from running this gawk program script:

$ gawk -f script4.gawk /etc/passwd
The latest list of users and shells
 UserID Shell
-------- -------
root /bin/bash
bin /sbin/nologin
daemon /sbin/nologin
[...]
Christine /bin/bash

516

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 516

mysql /bin/bash
Samantha /bin/bash
Timothy /bin/bash
This concludes the listing
$

As expected, the BEGIN script created the header text, the program script processed the
information from the specifi ed data fi le (the /etc/passwd fi le), and the END script pro-
duced the footer text. The \t within the print command produces some nicely formatted
tabbed output.

This gives you a small taste of the power available when you use simple gawk scripts.
Chapter 22 describes some more basic programming principles available for your gawk
scripts, along with some even more advanced programming concepts you can use in your
gawk program scripts to create professional looking reports from even the most cryptic
data fi les.

Commanding at the sed Editor Basics
The key to successfully using the sed editor is to know its myriad of commands and for-
mats, which help you to customize your text editing. This section describes some of the
basic commands and features you can incorporate into your script to start using the sed
editor.

Introducing more substitution options
You’ve already seen how to use the s command to substitute new text for the text in a line.
However, a few additional options are available for the substitute command that can
help make your life easier.

Substituting flags

There’s a caveat to how the substitute command replaces matching patterns in the text
string. Watch what happens in this example:

$ cat data4.txt
This is a test of the test script.
This is the second test of the test script.
$
$ sed 's/test/trial/' data4.txt
This is a trial of the test script.
This is the second trial of the test script.
$

517

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 517

19

The substitute command works fi ne in replacing text in multiple lines, but by default, it
replaces only the fi rst occurrence in each line. To get the substitute command to work
on different occurrences of the text, you must use a substitution fl ag. The substitution fl ag
is set after the substitution command strings:

s/pattern/replacement/flags

Four types of substitution fl ags are available:

 ■ A number, indicating the pattern occurrence for which new text should be
substituted

 ■ g, indicating that new text should be substituted for all occurrences of the
existing text

 ■ p, indicating that the contents of the original line should be printed

 ■ w file, which means to write the results of the substitution to a fi le

In the fi rst type of substitution, you can specify which occurrence of the matching pattern
the sed editor should substitute new text for:

$ sed 's/test/trial/2' data4.txt
This is a test of the trial script.
This is the second test of the trial script.
$

As a result of specifying a 2 as the substitution fl ag, the sed editor replaces the pattern
only in the second occurrence in each line. The g substitution fl ag enables you to replace
every occurrence of the pattern in the text:

$ sed 's/test/trial/g' data4.txt
This is a trial of the trial script.
This is the second trial of the trial script.
$

The p substitution fl ag prints a line that contains a matching pattern in the substitute
command. This is most often used in conjunction with the -n sed option:

$ cat data5.txt
This is a test line.
This is a different line.
$
$ sed -n 's/test/trial/p' data5.txt
This is a trial line.
$

The -n option suppresses output from the sed editor. However, the p substitution fl ag out-
puts any line that has been modifi ed. Using the two in combination produces output only
for lines that have been modifi ed by the substitute command.

518

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 518

The w substitution fl ag produces the same output but stores the output in the specifi ed fi le:

$ sed 's/test/trial/w test.txt' data5.txt
This is a trial line.
This is a different line.
$
$ cat test.txt
This is a trial line.
$

The normal output of the sed editor appears in STDOUT, but only the lines that include the
matching pattern are stored in the specifi ed output fi le.

Replacing characters

Sometimes, you run across characters in text strings that aren’t easy to use in the substitu-
tion pattern. One popular example in the Linux world is the forward slash (/).

Substituting pathnames in a fi le can get awkward. For example, if you wanted to substitute
the C shell for the bash shell in the /etc/passwd fi le, you’d have to do this:

$ sed 's/\/bin\/bash/\/bin\/csh/' /etc/passwd

Because the forward slash is used as the string delimiter, you must use a backslash to
escape it if it appears in the pattern text. This often leads to confusion and mistakes.

To solve this problem, the sed editor allows you to select a different character for the
string delimiter in the substitute command:

$ sed 's!/bin/bash!/bin/csh!' /etc/passwd

In this example, the exclamation point is used for the string delimiter, making the path-
names much easier to read and understand.

Using addresses
By default, the commands you use in the sed editor apply to all lines of the text data. If
you want to apply a command only to a specifi c line or a group of lines, you must use line
addressing.

There are two forms of line addressing in the sed editor:

 ■ A numeric range of lines

 ■ A text pattern that fi lters out a line

Both forms use the same format for specifying the address:

[address]command

519

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 519

19

You can also group more than one command together for a specifi c address:

address {
 command1
 command2
 command3
}

The sed editor applies each of the commands you specify only to lines that match the
address specifi ed. This section demonstrates using both of these addressing techniques in
your sed editor scripts.

Addressing the numeric line

When using numeric line addressing, you reference lines using their line position in the
text stream. The sed editor assigns the fi rst line in the text stream as line number one and
continues sequentially for each new line.

The address you specify in the command can be a single line number or a range of lines
specifi ed by a starting line number, a comma, and an ending line number. Here’s an exam-
ple of specifying a line number to which the sed command will be applied:

$ sed '2s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$

The sed editor modifi ed the text only in line two per the address specifi ed. Here’s another
example, this time using a range of line addresses:

$ sed '2,3s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
$

If you want to apply a command to a group of lines starting at some point within the text,
but continuing to the end of the text, you can use the special address, the dollar sign:

$ sed '2,$s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
$

520

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 520

Because you may not know how many lines of data are in the text, the dollar sign often
comes in handy.

Using text pattern filters

The other method of restricting which lines a command applies to is a bit more compli-
cated. The sed editor allows you to specify a text pattern that it uses to fi lter lines for the
command. This is the format:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed editor applies the
command only to lines that contain the text pattern you specify.

For example, if you want to change the default shell for only the user Samantha, you’d use
the sed command:

$ grep Samantha /etc/passwd
Samantha:x:502:502::/home/Samantha:/bin/bash
$
$ sed '/Samantha/s/bash/csh/' /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
[...]
Christine:x:501:501:Christine B:/home/Christine:/bin/bash
Samantha:x:502:502::/home/Samantha:/bin/csh
Timothy:x:503:503::/home/Timothy:/bin/bash
$

The command was applied only to the line with the matching text pattern. Although using
a fi xed text pattern may be useful for fi ltering specifi c values, as in the userid example,
it’s somewhat limited in what you can do with it. The sed editor uses a feature called
regular expressions in text patterns to allow you to create patterns that get pretty involved.

Regular expressions allow you to create advanced text pattern–matching formulas to match
all sorts of data. These formulas combine a series of wildcard characters, special characters,
and fi xed text characters to produce a concise pattern that can match just about any text
situation. Regular expressions are one of the scarier parts of shell script programming, and
Chapter 20 covers them in great detail.

Grouping commands

If you need to perform more than one command on an individual line, group the commands
together using braces. The sed editor processes each command listed on the address line(s):

$ sed '2{
> s/fox/elephant/
> s/dog/cat/

521

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 521

19

> }' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown elephant jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Both commands are processed against the address. And of course, you can specify an
address range before the grouped commands:

$ sed '3,${
> s/brown/green/
> s/lazy/active/
> }' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick green fox jumps over the active dog.
The quick green fox jumps over the active dog.
$

The sed editor applies all the commands to all the lines in the address range.

Deleting lines
The text substitution command isn’t the only command available in the sed editor. If you
need to delete specifi c lines of text in a text stream, you can use the delete command.

The delete command, d, pretty much does what it says. It deletes any text lines that
match the addressing scheme supplied. Be careful with the delete command, because if
you forget to include an addressing scheme, all the lines are deleted from the stream:

$ cat data1.txt
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$
$ sed 'd' data1.txt
$

The delete command is obviously most useful when used in conjunction with a specifi ed
address. This allows you to delete specifi c lines of text from the data stream, either by line
number:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is line number 3.

522

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 522

This is line number 4.
$
$ sed '3d' data6.txt
This is line number 1.
This is line number 2.
This is line number 4.
$

or by a specifi c range of lines:

$ sed '2,3d' data6.txt
This is line number 1.
This is line number 4.
$

or by using the special end-of-fi le character:

$ sed '3,$d' data6.txt
This is line number 1.
This is line number 2.
$

The pattern-matching feature of the sed editor also applies to the delete command:

$ sed '/number 1/d' data6.txt
This is line number 2.
This is line number 3.
This is line number 4.
$

The sed editor removes the line containing text that matches the pattern you specify.

Remember that the sed editor doesn’t touch the original fi le. Any lines you delete are only gone from the output of

the sed editor. The original fi le still contains the “deleted” lines.

You can also delete a range of lines using two text patterns, but be careful if you do this.
The fi rst pattern you specify “turns on” the line deletion, and the second pattern “turns
off” the line deletion. The sed editor deletes any lines between the two specifi ed lines
(including the specifi ed lines):

$ sed '/1/,/3/d' data6.txt
This is line number 4.
$

In addition, you must be careful because the delete feature “turns on” whenever the sed
editor detects the start pattern in the data stream. This may produce an unexpected result:

523

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 523

19

$ cat data7.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is line number 1 again.
This is text you want to keep.
This is the last line in the file.
$
$ sed '/1/,/3/d' data7.txt
This is line number 4.
$

The second occurrence of a line with the number 1 in it triggered the delete command
again, deleting the rest of the lines in the data stream, because the stop pattern wasn’t
recognized. Of course, the other obvious problem occurs if you specify a stop pattern that
never appears in the text:

$ sed '/1/,/5/d' data7.txt
$

Because the delete features “turned on” at the fi rst pattern match, but never found the end
pattern match, the entire data stream was deleted.

Inserting and appending text
As you would expect, like any other editor, the sed editor allows you to insert and append
text lines to the data stream. The difference between the two actions can be confusing:

 ■ The insert command (i) adds a new line before the specifi ed line.

 ■ The append command (a) adds a new line after the specifi ed line.

What is confusing about these two commands is their formats. You can’t use these com-
mands on a single command line. You must specify the line to insert or append the line to
insert on a separate line by itself. Here’s the format for doing this:

sed '[address]command\
new line'

The text in new line appears in the sed editor output in the place you specify. Remember
that when you use the insert command, the text appears before the data stream text:

$ echo "Test Line 2" | sed 'i\Test Line 1'
Test Line 1
Test Line 2
$

524

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 524

And when you use the append command, the text appears after the data stream text:

$ echo "Test Line 2" | sed 'a\Test Line 1'
Test Line 2
Test Line 1
$

When you use the sed editor from the command line interface prompt, you get the second-
ary prompt to enter the new line of data. You must complete the sed editor command on
this line. After you enter the ending single quotation mark, the bash shell processes the
command:

$ echo "Test Line 2" | sed 'i\
> Test Line 1'
Test Line 1
Test Line 2
$

This works well for adding text before or after the text in the data stream, but what about
adding text inside the data stream?

To insert or append data inside the data stream lines, you must use addressing to tell the
sed editor where you want the data to appear. You can specify only a single line address
when using these commands. You can match either a numeric line number or a text pat-
tern, but you cannot use a range of addresses. This is logical, because you can only insert
or append before or after a single line, and not a range of lines.

Here’s an example of inserting a new line before line 3 in the data stream:

$ sed '3i\
> This is an inserted line.' data6.txt
This is line number 1.
This is line number 2.
This is an inserted line.
This is line number 3.
This is line number 4.
$

Here’s an example of appending a new line after line 3 in the data stream:

$ sed '3a\
> This is an appended line.' data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is an appended line.
This is line number 4.
$

525

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 525

19

This uses the same process as the insert command; it just places the new text line after
the specifi ed line number. If you have a multiline data stream, and you want to append a
new line of text to the end of a data stream, just use the dollar sign, which represents the
last line of data:

$ sed '$a\
> This is a new line of text.' data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is a new line of text.
$

The same idea applies if you want to add a new line at the beginning of the data stream.
Just insert a new line before line number one.

To insert or append more than one line of text, you must use a backslash on each line of
new text until you reach the last text line where you want to insert or append text:

$ sed '1i\
> This is one line of new text.\
> This is another line of new text.' data6.txt
This is one line of new text.
This is another line of new text.
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$

Both of the specifi ed lines are added to the data stream.

Changing lines
The change command allows you to change the contents of an entire line of text in the
data stream. It works the same way as the insert and append commands, in that you
must specify the new line separately from the rest of the sed command:

$ sed '3c\
> This is a changed line of text.' data6.txt
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$

526

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 526

In this example, the sed editor changes the text in line number 3. You can also use a text
pattern for the address:

$ sed '/number 3/c\
> This is a changed line of text.' data6.txt
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$

The text pattern change command changes any line of text in the data stream that it
matches.

$ cat data8.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is line number 1 again.
This is yet another line.
This is the last line in the file.
$
$ sed '/number 1/c\
> This is a changed line of text.' data8.txt
This is a changed line of text.
This is line number 2.
This is line number 3.
This is line number 4.
This is a changed line of text.
This is yet another line.
This is the last line in the file.
$

You can use an address range in the change command, but the results may not be what you
expect:

$ sed '2,3c\
> This is a new line of text.' data6.txt
This is line number 1.
This is a new line of text.
This is line number 4.
$

Instead of changing both lines with the text, the sed editor uses the single line of text to
replace both lines.

527

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 527

19

Transforming characters
The transform command (y) is the only sed editor command that operates on a single
character. The transform command uses the format:

[address]y/inchars/outchars/

The transform command performs a one-to-one mapping of the inchars and the
outchars values. The fi rst character in inchars is converted to the fi rst character in
outchars. The second character in inchars is converted to the second character in
outchars. This mapping continues throughout the length of the specifi ed characters. If the
inchars and outchars are not the same length, the sed editor produces an error message.

Here’s a simple example of using the transform command:

$ sed 'y/123/789/' data8.txt
This is line number 7.
This is line number 8.
This is line number 9.
This is line number 4.
This is line number 7 again.
This is yet another line.
This is the last line in the file.
$

As you can see from the output, each instance of the characters specifi ed in the inchars
pattern has been replaced by the character in the same position in the outchars pattern.

The transform command is a global command; that is, it performs the transformation on
any character found in the text line automatically, without regard to the occurrence:

$ echo "This 1 is a test of 1 try." | sed 'y/123/456/'
This 4 is a test of 4 try.
$

The sed editor transformed both instances of the matching character 1 in the text line.
You can’t limit the transformation to a specifi c occurrence of the character.

Printing revisited
The “Introducing more substitution options” section showed you how to use the p fl ag with
the substitution command to display lines that the sed editor changed. In addition, three
commands that can be used to print information from the data stream:

 ■ The p command to print a text line

 ■ The equal sign (=) command to print line numbers

 ■ The l (lowercase L) command to list a line

528

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 528

The following sections look at these three printing commands in the sed editor.

Printing lines

Like the p fl ag in the substitution command, the p command prints a line in the sed
editor output. On its own, this command doesn’t offer much excitement:

$ echo "this is a test" | sed 'p'
this is a test
this is a test
$

All it does is print the data text that you already know is there. The most common use for
the print command is printing lines that contain matching text from a text pattern:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$
$ sed -n '/number 3/p' data6.txt
This is line number 3.
$

By using the -n option on the command line, you can suppress all the other lines and print
only the line that contains the matching text pattern.

You can also use this as a quick way to print a subset of lines in a data stream:

$ sed -n '2,3p' data6.txt
This is line number 2.
This is line number 3.
$

You can also use the print command when you need to see a line before it gets altered,
such as with the substitution or change command. You can create a script that displays
the line before it’s changed:

$ sed -n '/3/{
> p
> s/line/test/p
> }' data6.txt
This is line number 3.
This is test number 3.
$

This sed editor command searches for lines that contain the number 3 and executes two
commands. First, the script uses the p command to print the original version of the line;

529

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 529

19

then it uses the s command to substitute text, along with the p fl ag to print the resulting
text. The output shows both the original line text and the new line text.

Printing line numbers

The equal sign command prints the current line number for the line within the data
stream. Line numbers are determined by using the newline character in the data stream.
Each time a newline character appears in the data stream, the sed editor assumes that it
terminates a line of text:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed '=' data1.txt
1
The quick brown fox jumps over the lazy dog.
2
The quick brown fox jumps over the lazy dog.
3
The quick brown fox jumps over the lazy dog.
4
The quick brown fox jumps over the lazy dog.
$

The sed editor prints the line number before the actual line of text. The equal sign com-
mand comes in handy if you’re searching for a specifi c text pattern in the data stream:

$ sed -n '/number 4/{
> =
> p
> }' data6.txt
4
This is line number 4.
$

By using the -n option, you can have the sed editor display both the line number and text
for the line that contains the matching text pattern.

Listing lines

The list command (l) allows you to print both the text and nonprintable characters in a
data stream. Any nonprintable characters are shown using either their octal values, pre-
ceded by a backslash or the standard C-style nomenclature for common nonprintable char-
acters, such as \t for tab characters:

$ cat data9.txt
This line contains tabs.

530

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 530

$
$ sed -n 'l' data9.txt
This\tline\tcontains\ttabs.$
$

The tab character locations are shown with the \t nomenclature. The dollar sign at the
end of the line indicates the newline character. If you have a data stream that contains an
escape character, the list command displays it using the octal code if necessary:

$ cat data10.txt
This line contains an escape character.
$
$ sed -n 'l' data10.txt
This line contains an escape character. \a$
$

The data10.txt fi le contains an escape control code, which generates a bell sound. When
you use the cat command to display the text fi le, you don’t see the escape control code;
you just hear the sound (if your speakers are turned on). However, using the list com-
mand, you can display the escape control code used.

Using fi les with sed
The substitution command contains fl ags that allow you to work with fi les. There are
also regular sed editor commands that let you do that without having to substitute text.

Writing to a file

The w command is used to write lines to a fi le. Here’s the format for the w command:

[address]w filename

The filename can be specifi ed as either a relative or absolute pathname, but in either
case, the person running the sed editor must have write permissions for the fi le. The
address can be any type of addressing method used in sed, such as a single line number, a
text pattern, or a range of line numbers or text patterns.

Here’s an example that prints only the fi rst two lines of a data stream to a text fi le:

$ sed '1,2w test.txt' data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$
$ cat test.txt
This is line number 1.
This is line number 2.
$

531

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 531

19

Of course, if you don’t want the lines to display on STDOUT, you can use the -n option for
the sed command.

This is a great tool to use if you need to create a data fi le from a master fi le on the basis of
common text values, such as those in a mailing list:

$ cat data11.txt
Blum, R Browncoat
McGuiness, A Alliance
Bresnahan, C Browncoat
Harken, C Alliance
$
$ sed -n '/Browncoat/w Browncoats.txt' data11.txt
$
$ cat Browncoats.txt
Blum, R Browncoat
Bresnahan, C Browncoat
$

The sed editor writes to a destination fi le only the data lines that contain the text pattern.

Reading data from a file

You’ve already seen how to insert data into and append text to a data stream from the sed
command line. The read command (r) allows you to insert data contained in a separate fi le.

Here’s the format of the read command:

[address]r filename

The filename parameter specifi es either an absolute or relative pathname for the fi le that
contains the data. You can’t use a range of addresses for the read command. You can only
specify a single line number or text pattern address. The sed editor inserts the text from
the fi le after the address.

$ cat data12.txt
This is an added line.
This is the second added line.
$
$ sed '3r data12.txt' data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is an added line.
This is the second added line.
This is line number 4.
$

532

Part III: Advanced Shell Scripting

c19.indd 12/16/2014 Page 532

The sed editor inserts into the data stream all the text lines in the data fi le. The same
technique works when using a text pattern address:

$ sed '/number 2/r data12.txt' data6.txt
This is line number 1.
This is line number 2.
This is an added line.
This is the second added line.
This is line number 3.
This is line number 4.
$

If you want to add text to the end of a data stream, just use the dollar sign address symbol:

$ sed '$r data12.txt' data6.txt
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is an added line.
This is the second added line.
$

A cool application of the read command is to use it in conjunction with a delete com-
mand to replace a placeholder in a fi le with data from another fi le. For example, suppose
that you had a form stored in a text fi le that looked like this:

$ cat notice.std
Would the following people:
LIST
please report to the ship's captain.
$

The form letter uses the generic placeholder LIST in place of a list of people. To insert the
list of people after the placeholder, you just use the read command. However, this still
leaves the placeholder text in the output. To remove that, just use the delete command.
The result looks like this:

$ sed '/LIST/{
> r data11.txt
> d
> }' notice.std
Would the following people:
Blum, R Browncoat
McGuiness, A Alliance
Bresnahan, C Browncoat

533

Chapter 19: Introducing sed and gawk

c19.indd 12/16/2014 Page 533

19

Harken, C Alliance
please report to the ship's captain.
$

Now the placeholder text is replaced with the list of names from the data fi le.

Summary
Shell scripts can do lots of work on their own, but it’s often diffi cult to manipulate data
with just a shell script. Linux provides two handy utilities to help with handling text data.
The sed editor is a stream editor that quickly processes data on the fl y as it reads it. You
must provide the sed editor with a list of editing commands, which it applies to the data.

The gawk program is a utility from the GNU organization that mimics and expands on the
functionality of the Unix awk program. The gawk program contains a built-in programming
language that you can use to write scripts to handle and process data. You can use the
gawk program to extract data elements from large data fi les and output them in just about
any format you desire. This makes processing large log fi les a snap, as well as creating
custom reports from data fi les.

A crucial element of using both the sed and gawk programs is knowing how to use regular
expressions. Regular expressions are key to creating customized fi lters for extracting and
manipulating data in text fi les. The next chapter dives into the often misunderstood world
of regular expressions, showing you how to build regular expressions for manipulating all
types of data.

c19.indd 12/16/2014 Page 534

535

c20.indd 12/23/2014 Page 535

CHAP T ER

20
Regular Expressions

IN THIS CHAPTER

Defi ning regular expressions

Looking at the basics

Extending our patterns

Creating expressions

T
he key to successfully working with the sed editor and the gawk program in your shell script
is your comfort using regular expressions. This is not always an easy thing to do, because
trying to fi lter specifi c data from a large batch of data can (and often does) get complicated.

This chapter describes how to create regular expressions in both the sed editor and the gawk
program that can fi lter out just the data you need.

What Are Regular Expressions?
The fi rst step to understanding regular expressions is to defi ne just exactly what they are. This
section explains what a regular expression is and describes how Linux uses regular expressions.

A defi nition
A regular expression is a pattern template you defi ne that a Linux utility uses to fi lter text.
A Linux utility (such as the sed editor or the gawk program) matches the regular expression
pattern against data as that data fl ows into the utility. If the data matches the pattern, it’s
accepted for processing. If the data doesn’t match the pattern, it’s rejected. This is illustrated
in Figure 20-1.

The regular expression pattern makes use of wildcard characters to represent one or more charac-
ters in the data stream. There are plenty of instances in Linux where you can specify a wildcard
character to represent data you don’t know about. You’ve already seen an example of using wildcard
characters with the Linux ls command for listing fi les and directories (see Chapter 3).

536

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 536

FIGURE 20-1

Matching data against a regular expression pattern

regular
expression

matching datadata stream

rejected data

The asterisk wildcard character allows you to list only fi les that match a certain criteria.
For example:

$ ls -al da*
-rw-r--r-- 1 rich rich 45 Nov 26 12:42 data
-rw-r--r-- 1 rich rich 25 Dec 4 12:40 data.tst
-rw-r--r-- 1 rich rich 180 Nov 26 12:42 data1
-rw-r--r-- 1 rich rich 45 Nov 26 12:44 data2
-rw-r--r-- 1 rich rich 73 Nov 27 12:31 data3
-rw-r--r-- 1 rich rich 79 Nov 28 14:01 data4
-rw-r--r-- 1 rich rich 187 Dec 4 09:45 datatest
$

The da* parameter instructs the ls command to list only the fi les whose name starts with
da. There can be any number of characters after the da in the fi lename (including none).
The ls command reads the information regarding all the fi les in the directory but displays
only the ones that match the wildcard character.

Regular expression wildcard patterns work in a similar way. The regular expression pattern
contains text and/or special characters that defi ne a template for the sed editor and the
gawk program to follow when matching data. You can use different special characters in a
regular expression to defi ne a specifi c pattern for fi ltering data.

Types of regular expressions
The biggest problem with using regular expressions is that there isn’t just one set of them.
Several different applications use different types of regular expressions in the Linux envi-
ronment. These include such diverse applications as programming languages (Java, Perl, and

537

Chapter 20: Regular Expressions

c20.indd 12/23/2014 Page 537

20

Python), Linux utilities (such as the sed editor, the gawk program, and the grep utility),
and mainstream applications (such as the MySQL and PostgreSQL database servers).

A regular expression is implemented using a regular expression engine. A regular expres-
sion engine is the underlying software that interprets regular expression patterns and uses
those patterns to match text.

The Linux world has two popular regular expression engines:

 ■ The POSIX Basic Regular Expression (BRE) engine

 ■ The POSIX Extended Regular Expression (ERE) engine

Most Linux utilities at a minimum conform to the POSIX BRE engine specifi cations,
recognizing all the pattern symbols it defi nes. Unfortunately, some utilities (such as the
sed editor) conform only to a subset of the BRE engine specifi cations. This is due to speed
constraints, because the sed editor attempts to process text in the data stream as quickly
as possible.

The POSIX ERE engine is often found in programming languages that rely on regular expres-
sions for text fi ltering. It provides advanced pattern symbols as well as special symbols for
common patterns, such as matching digits, words, and alphanumeric characters. The gawk
program uses the ERE engine to process its regular expression patterns.

Because there are so many different ways to implement regular expressions, it’s hard to
present a single, concise description of all the possible regular expressions. The following
sections discuss the most commonly found regular expressions and demonstrate how to use
them in the sed editor and gawk program.

Defi ning BRE Patterns
The most basic BRE pattern is matching text characters in a data stream. This section dem-
onstrates how you can defi ne text in the regular expression pattern and what to expect
from the results.

Plain text
Chapter 18 demonstrated how to use standard text strings in the sed editor and the gawk
program to fi lter data. Here’s an example to refresh your memory:

$ echo "This is a test" | sed -n '/test/p'
This is a test
$ echo "This is a test" | sed -n '/trial/p'
$
$ echo "This is a test" | gawk '/test/{print $0}'

538

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 538

This is a test
$ echo "This is a test" | gawk '/trial/{print $0}'
$

The fi rst pattern defi nes a single word, test. The sed editor and gawk program scripts each
use their own version of the print command to print any lines that match the regular
expression pattern. Because the echo statement contains the word “test” in the text
string, the data stream text matches the defi ned regular expression pattern, and the sed
editor displays the line.

The second pattern again defi nes just a single word, this time the word “trial.” Because
the echo statement text string doesn’t contain that word, the regular expression pattern
doesn’t match, so neither the sed editor nor the gawk program prints the line.

You probably already noticed that the regular expression doesn’t care where in the data
stream the pattern occurs. It also doesn’t matter how many times the pattern occurs. After
the regular expression can match the pattern anywhere in the text string, it passes the
string along to the Linux utility that’s using it.

The key is matching the regular expression pattern to the data stream text. It’s important
to remember that regular expressions are extremely picky about matching patterns. The
fi rst rule to remember is that regular expression patterns are case sensitive. This means
they’ll match only those patterns with the proper case of characters:

$ echo "This is a test" | sed -n '/this/p'
$
$ echo "This is a test" | sed -n '/This/p'
This is a test
$

The fi rst attempt failed to match because the word “this” doesn’t appear in all lowercase in
the text string, while the second attempt, which uses the uppercase letter in the pattern,
worked just fi ne.

You don’t have to limit yourself to whole words in the regular expression. If the defi ned
text appears anywhere in the data stream, the regular expression matches the following:

$ echo "The books are expensive" | sed -n '/book/p'
The books are expensive
$

Even though the text in the data stream is books, the data in the stream contains the
regular expression book, so the regular expression pattern matches the data. Of course, if
you try the opposite, the regular expression fails:

$ echo "The book is expensive" | sed -n '/books/p'
$

539

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 539

The complete regular expression text didn’t appear in the data stream, so the match failed
and the sed editor didn’t display the text.

You also don’t have to limit yourself to single text words in the regular expression. You can
include spaces and numbers in your text string as well:

$ echo "This is line number 1" | sed -n '/ber 1/p'
This is line number 1
$

Spaces are treated just like any other character in the regular expression:

$ echo "This is line number1" | sed -n '/ber 1/p'
$

If you defi ne a space in the regular expression, it must appear in the data stream. You can
even create a regular expression pattern that matches multiple contiguous spaces:

$ cat data1
This is a normal line of text.
This is a line with too many spaces.
$ sed -n '/ /p' data1
This is a line with too many spaces.
$

The line with two spaces between words matches the regular expression pattern. This is a
great way to catch spacing problems in text fi les!

Special characters
As you use text strings in your regular expression patterns, there’s something you need to
be aware of. There are a few exceptions when defi ning text characters in a regular expres-
sion. Regular expression patterns assign a special meaning to a few characters. If you try to
use these characters in your text pattern, you won’t get the results you were expecting.

These special characters are recognized by regular expressions:

.*[]^${}\+?|()

As the chapter progresses, you’ll fi nd out just what these special characters do in a regular
expression. For now, however, just remember that you can’t use these characters by them-
selves in your text pattern.

If you want to use one of the special characters as a text character, you need to escape it.
When you escape the special characters, you add a special character in front of it to indi-
cate to the regular expression engine that it should interpret the next character as a nor-
mal text character. The special character that does this is the backslash character (\).

540

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 540

For example, if you want to search for a dollar sign in your text, just precede it with a
backslash character:

$ cat data2
The cost is $4.00
$ sed -n '/\$/p' data2
The cost is $4.00
$

Because the backslash is a special character, if you need to use it in a regular expression
pattern, you need to escape it as well, producing a double backslash:

$ echo "\ is a special character" | sed -n '/\\/p'
\ is a special character
$

Finally, although the forward slash isn’t a regular expression special character, if you use it
in your regular expression pattern in the sed editor or the gawk program, you get an error:

$ echo "3 / 2" | sed -n '///p'
sed: -e expression #1, char 2: No previous regular expression
$

To use a forward slash, you need to escape that as well:

$ echo "3 / 2" | sed -n '/\//p'
3 / 2
$

Now the sed editor can properly interpret the regular expression pattern, and all is well.

Anchor characters
As shown in the “Plain Text” section, by default, when you specify a regular expression
pattern, if the pattern appears anywhere in the data stream, it matches. You can use two
special characters to anchor a pattern to either the beginning or the end of lines in the
data stream.

Starting at the beginning

The caret character (^) defi nes a pattern that starts at the beginning of a line of text in
the data stream. If the pattern is located any place other than the start of the line of text,
the regular expression pattern fails.

To use the caret character, you must place it before the pattern specifi ed in the regular
expression:

$ echo "The book store" | sed -n '/^book/p'
$

541

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 541

$ echo "Books are great" | sed -n '/^Book/p'
Books are great
$

The caret anchor character checks for the pattern at the beginning of each new line of
data, as determined by the newline character:

$ cat data3
This is a test line.
this is another test line.
A line that tests this feature.
Yet more testing of this
$ sed -n '/^this/p' data3
this is another test line.
$

As long as the pattern appears at the start of a new line, the caret anchor catches it.

If you position the caret character in any place other than at the beginning of the pattern,
it acts like a normal character and not as a special character:

$ echo "This ^ is a test" | sed -n '/s ^/p'
This ^ is a test
$

Because the caret character is listed last in the regular expression pattern, the sed editor
uses it as a normal character to match text.

If you need to specify a regular expression pattern using only the caret character, you don’t need to escape it with a

backslash. However, if you specify the caret character fi rst, followed by additional text in the pattern, you need to use

the escape character before the caret character.

Looking for the ending

The opposite of looking for a pattern at the start of a line is looking for it at the end of a
line. The dollar sign ($) special character defi nes the end anchor. Add this special character
after a text pattern to indicate that the line of data must end with the text pattern:

$ echo "This is a good book" | sed -n '/book$/p'
This is a good book
$ echo "This book is good" | sed -n '/book$/p'
$

The problem with an ending text pattern is that you must be careful what you’re looking for:

$ echo "There are a lot of good books" | sed -n '/book$/p'
$

542

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 542

Making the word “book” plural at the end of the line means that it no longer matches the
regular expression pattern, even though book is in the data stream. The text pattern must
be the last thing on the line for the pattern to match.

Combining anchors

In some common situations, you can combine both the start and end anchor on the same
line. In the fi rst situation, suppose you want to look for a line of data containing only a
specifi c text pattern:

$ cat data4
this is a test of using both anchors
I said this is a test
this is a test
I'm sure this is a test.
$ sed -n '/^this is a test$/p' data4
this is a test
$

The sed editor ignores the lines that include other text besides the specifi ed text.

The second situation may seem a little odd at fi rst but is extremely useful. By combining
both anchors in a pattern with no text, you can fi lter blank lines from the data stream.
Consider this example:

$ cat data5
This is one test line.

This is another test line.
$ sed '/^$/d' data5
This is one test line.
This is another test line.
$

The regular expression pattern that is defi ned looks for lines that have nothing between
the start and end of the line. Because blank lines contain no text between the two newline
characters, they match the regular expression pattern. The sed editor uses the d delete
command to delete lines that match the regular expression pattern, thus removing all
blank lines from the text. This is an effective way to remove blank lines from documents.

The dot character
The dot special character is used to match any single character except a newline character. The
dot character must match a character, however; if there’s no character in the place of the dot,
then the pattern fails.

Let’s look at a few examples of using the dot character in a regular expression pattern:

543

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 543

$ cat data6
This is a test of a line.
The cat is sleeping.
That is a very nice hat.
This test is at line four.
at ten o'clock we'll go home.
$ sed -n '/.at/p' data6
The cat is sleeping.
That is a very nice hat.
This test is at line four.
$

You should be able to fi gure out why the fi rst line failed and why the second and third
lines passed. The fourth line is a little tricky. Notice that we matched the at, but there’s
no character in front of it to match the dot character. Ah, but there is! In regular expres-
sions, spaces count as characters, so the space in front of the at matches the pattern. The
fi fth line proves this, by putting the at in the front of the line, which fails to match the
pattern.

Character classes
The dot special character is great for matching a character position against any character,
but what if you want to limit what characters to match? This is called a character class in
regular expressions.

You can defi ne a class of characters that would match a position in a text pattern. If one of
the characters from the character class is in the data stream, it matches the pattern.

To defi ne a character class, you use square brackets. The brackets should contain any char-
acter you want to include in the class. You then use the entire class within a pattern just
like any other wildcard character. This takes a little getting used to at fi rst, but after you
catch on, it can generate some pretty amazing results.

The following is an example of creating a character class:

$ sed -n '/[ch]at/p' data6
The cat is sleeping.
That is a very nice hat.
$

Using the same data fi le as in the dot special character example, we came up with a differ-
ent result. This time we managed to fi lter out the line that just contained the word at. The
only words that match this pattern are cat and hat. Also notice that the line that started
with at didn’t match as well. There must be a character in the character class that matches
the appropriate position.

544

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 544

Character classes come in handy if you’re not sure which case a character is in:

$ echo "Yes" | sed -n '/[Yy]es/p'
Yes
$ echo "yes" | sed -n '/[Yy]es/p'
yes
$

You can use more than one character class in a single expression:

$ echo "Yes" | sed -n '/[Yy][Ee][Ss]/p'
Yes
$ echo "yEs" | sed -n '/[Yy][Ee][Ss]/p'
yEs
$ echo "yeS" | sed -n '/[Yy][Ee][Ss]/p'
yeS
$

The regular expression used three character classes to cover both lower and upper cases for
all three character positions.

Character classes don’t have to contain just letters; you can use numbers in them as well:

$ cat data7
This line doesn't contain a number.
This line has 1 number on it.
This line a number 2 on it.
This line has a number 4 on it.
$ sed -n '/[0123]/p' data7
This line has 1 number on it.
This line a number 2 on it.
$

The regular expression pattern matches any lines that contain the numbers 0, 1, 2, or 3.
Any other numbers are ignored, as are lines without numbers in them.

You can combine character classes to check for properly formatted numbers, such as phone
numbers and ZIP codes. However, when you’re trying to match a specifi c format, you must
be careful. Here’s an example of a ZIP code match gone wrong:

$ cat data8
60633
46201
223001
4353
22203
$ sed -n '
>/[0123456789][0123456789][0123456789][0123456789][0123456789]/p
>' data8

545

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 545

60633
46201
223001
22203
$

This might not have produced the result you were thinking of. It did a fi ne job of fi ltering
out the number that was too short to be a ZIP code, because the last character class didn’t
have a character to match against. However, it still passed the six-digit number, even
though we only defi ned fi ve character classes.

Remember that the regular expression pattern can be found anywhere in the text of the
data stream. You may always have additional characters besides the matching pattern char-
acters. If you want to ensure that you match against only fi ve numbers, you need to delin-
eate them somehow, either with spaces, or as in this example, by showing that they’re at
the start and end of the line:

$ sed -n '
> /^[0123456789][0123456789][0123456789][0123456789][0123456789]$/p
> ' data8
60633
46201
22203
$

Now that’s much better! Later in this chapter, we look at how to simplify this even further.

One extremely popular use for character classes is parsing words that might be misspelled,
such as data entered from a user form. You can easily create regular expressions that can
accept common misspellings in data:

$ cat data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.
$ sed -n '
/maint[ea]n[ae]nce/p
/sep[ea]r[ea]te/p
' data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.
$

The two sed print commands in this example utilize regular expression character classes
to help catch the misspelled words, maintenance and separate, in the text. The same regular
expression pattern also matches the properly spelled occurrence of “maintenance.”

546

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 546

Negating character classes
In regular expression patterns, you can also reverse the effect of a character class. Instead of
looking for a character contained in the class, you can look for any character that’s not in the
class. To do that, just place a caret character at the beginning of the character class range:

$ sed -n '/[^ch]at/p' data6
This test is at line four.
$

By negating the character class, the regular expression pattern matches any character
that’s neither a c nor an h, along with the text pattern. Because the space character fi ts
this category, it passed the pattern match. However, even with the negation, the character
class must still match a character, so the line with the at in the start of the line still
doesn’t match the pattern.

Using ranges
You may have noticed when I showed the ZIP code example earlier that it was somewhat
awkward having to list all the possible digits in each character class. Fortunately, you can
use a shortcut so you don’t have to do that.

You can use a range of characters within a character class by using the dash symbol. Just
specify the fi rst character in the range, a dash, and then the last character in the range.
The regular expression includes any character that’s within the specifi ed character range,
according to the character set used by the Linux system (see Chapter 2).

Now you can simplify the ZIP code example by specifying a range of digits:

$ sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p' data8
60633
46201
45902
$

That saved lots of typing! Each character class matches any digit from 0 to 9. The pattern
fails if a letter is present anywhere in the data:

$ echo "a8392" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$ echo "1839a" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$ echo "18a92" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$

The same technique works with letters:

$ sed -n '/[c-h]at/p' data6
The cat is sleeping.

547

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 547

That is a very nice hat.
$

The new pattern [c-h]at matches words where the fi rst letter is between the letter c and
the letter h. In this case, the line with only the word at failed to match the pattern.

You can also specify multiple, non-continuous ranges in a single character class:

$ sed -n '/[a-ch-m]at/p' data6
The cat is sleeping.
That is a very nice hat.
$

The character class allows the ranges a through c, and h through m to appear before the at
text. This range would reject any letters between d and g:

$ echo "I'm getting too fat." | sed -n '/[a-ch-m]at/p'
$

This pattern rejected the fat text, as it wasn’t in the specifi ed range.

Special character classes
In addition to defi ning your own character classes, the BRE contains special character
classes you can use to match against specifi c types of characters. Table 20-1 describes the
BRE special characters you can use.

TABLE 20-1 BRE Special Character Classes

Class Description

[[:alpha:]] Matches any alphabetical character, either upper or lower case

[[:alnum:]] Matches any alphanumeric character 0–9, A–Z, or a–z

[[:blank:]] Matches a space or Tab character

[[:digit:]] Matches a numerical digit from 0 through 9

[[:lower:]] Matches any lowercase alphabetical character a–z

[[:print:]] Matches any printable character

[[:punct:]] Matches a punctuation character

[[:space:]] Matches any whitespace character: space, Tab, NL, FF, VT, CR

[[:upper:]] Matches any uppercase alphabetical character A–Z

You use the special character classes just as you would a normal character class in your
regular expression patterns:

$ echo "abc" | sed -n '/[[:digit:]]/p'
$

548

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 548

$ echo "abc" | sed -n '/[[:alpha:]]/p'
abc
$ echo "abc123" | sed -n '/[[:digit:]]/p'
abc123
$ echo "This is, a test" | sed -n '/[[:punct:]]/p'
This is, a test
$ echo "This is a test" | sed -n '/[[:punct:]]/p'
$

Using the special character classes is an easy way to defi ne ranges. Instead of having to use
a range [0–9], you can just use [[:digit:]].

The asterisk
Placing an asterisk after a character signifi es that the character must appear zero or more
times in the text to match the pattern:

$ echo "ik" | sed -n '/ie*k/p'
ik
$ echo "iek" | sed -n '/ie*k/p'
iek
$ echo "ieek" | sed -n '/ie*k/p'
ieek
$ echo "ieeek" | sed -n '/ie*k/p'
ieeek
$ echo "ieeeek" | sed -n '/ie*k/p'
ieeeek
$

This pattern symbol is commonly used for handling words that have a common misspelling
or variations in language spellings. For example, if you need to write a script that may be
used in either American or British English, you could write:

$ echo "I'm getting a color TV" | sed -n '/colou*r/p'
I'm getting a color TV
$ echo "I'm getting a colour TV" | sed -n '/colou*r/p'
I'm getting a colour TV
$

The u* in the pattern indicates that the letter u may or may not appear in the text to
match the pattern. Similarly, if you know of a word that is commonly misspelled, you can
accommodate it by using the asterisk:

$ echo "I ate a potatoe with my lunch." | sed -n '/potatoe*/p'
I ate a potatoe with my lunch.
$ echo "I ate a potato with my lunch." | sed -n '/potatoe*/p'
I ate a potato with my lunch.
$

549

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 549

Placing an asterisk next to the possible extra letter allows you to accept the
misspelled word.

Another handy feature is combining the dot special character with the asterisk special
character. This combination provides a pattern to match any number of any characters. It’s
often used between two text strings that may or may not appear next to each other in the
data stream:

$ echo "this is a regular pattern expression" | sed -n '
> /regular.*expression/p'
this is a regular pattern expression
$

Using this pattern, you can easily search for multiple words that may appear anywhere in a
line of text in the data stream.

The asterisk can also be applied to a character class. This allows you to specify a group or
range of characters that can appear more than once in the text:

$ echo "bt" | sed -n '/b[ae]*t/p'
bt
$ echo "bat" | sed -n '/b[ae]*t/p'
bat
$ echo "bet" | sed -n '/b[ae]*t/p'
bet
$ echo "btt" | sed -n '/b[ae]*t/p'
btt
$
$ echo "baat" | sed -n '/b[ae]*t/p'
baat
$ echo "baaeeet" | sed -n '/b[ae]*t/p'
baaeeet
$ echo "baeeaeeat" | sed -n '/b[ae]*t/p'
baeeaeeat
$ echo "baakeeet" | sed -n '/b[ae]*t/p'
$

As long as the a and e characters appear in any combination between the b and t characters
(including not appearing at all), the pattern matches. If any other character outside of the
defi ned character class appears, the pattern match fails.

Extended Regular Expressions
The POSIX ERE patterns include a few additional symbols that are used by some Linux
applications and utilities. The gawk program recognizes the ERE patterns, but the sed
editor doesn’t.

550

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 550

Remember that the regular expression engines in the sed editor and the gawk program are different. The gawk

program can use most of the extended regular expression pattern symbols, and it can provide some additional fi l-

tering capabilities that the sed editor doesn’t have. However, because of this, it is often slower in processing data

streams.

This section describes the more commonly found ERE pattern symbols that you can use in
your gawk program scripts.

The question mark
The question mark is similar to the asterisk, but with a slight twist. The question mark
indicates that the preceding character can appear zero or one time, but that’s all. It doesn’t
match repeating occurrences of the character:

$ echo "bt" | gawk '/be?t/{print $0}'
bt
$ echo "bet" | gawk '/be?t/{print $0}'
bet
$ echo "beet" | gawk '/be?t/{print $0}'
$
$ echo "beeet" | gawk '/be?t/{print $0}'
$

If the e character doesn’t appear in the text, or as long as it appears only once in the text,
the pattern matches.

As with the asterisk, you can use the question mark symbol along with a character class:

$ echo "bt" | gawk '/b[ae]?t/{print $0}'
bt
$ echo "bat" | gawk '/b[ae]?t/{print $0}'
bat
$ echo "bot" | gawk '/b[ae]?t/{print $0}'
$
$ echo "bet" | gawk '/b[ae]?t/{print $0}'
bet
$ echo "baet" | gawk '/b[ae]?t/{print $0}'
$
$ echo "beat" | gawk '/b[ae]?t/{print $0}'
$
$ echo "beet" | gawk '/b[ae]?t/{print $0}'
$

If zero or one character from the character class appears, the pattern match passes.
However, if both characters appear, or if one of the characters appears twice, the pattern
match fails.

551

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 551

The plus sign
The plus sign is another pattern symbol that’s similar to the asterisk, but with a different
twist than the question mark. The plus sign indicates that the preceding character can
appear one or more times, but must be present at least once. The pattern doesn’t match if
the character is not present:

$ echo "beeet" | gawk '/be+t/{print $0}'
beeet
$ echo "beet" | gawk '/be+t/{print $0}'
beet
$ echo "bet" | gawk '/be+t/{print $0}'
bet
$ echo "bt" | gawk '/be+t/{print $0}'
$

If the e character is not present, the pattern match fails. The plus sign also works with
character classes, the same way as the asterisk and question mark do:

$ echo "bt" | gawk '/b[ae]+t/{print $0}'
$
$ echo "bat" | gawk '/b[ae]+t/{print $0}'
bat
$ echo "bet" | gawk '/b[ae]+t/{print $0}'
bet
$ echo "beat" | gawk '/b[ae]+t/{print $0}'
beat
$ echo "beet" | gawk '/b[ae]+t/{print $0}'
beet
$ echo "beeat" | gawk '/b[ae]+t/{print $0}'
beeat
$

This time if either character defi ned in the character class appears, the text matches the
specifi ed pattern.

Using braces
Curly braces are available in ERE to allow you to specify a limit on a repeatable regular
expression. This is often referred to as an interval. You can express the interval in two
formats:

 ■ m: The regular expression appears exactly m times.

 ■ m,n: The regular expression appears at least m times, but no more than n times.

This feature allows you to fi ne-tune exactly how many times you allow a character (or char-
acter class) to appear in a pattern.

552

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 552

By default, the gawk program doesn’t recognize regular expression intervals. You must specify the

--re-interval command line option for the gawk program to recognize regular expression intervals.

Here’s an example of using a simple interval of one value:

$ echo "bt" | gawk --re-interval '/be{1}t/{print $0}'
$
$ echo "bet" | gawk --re-interval '/be{1}t/{print $0}'
bet
$ echo "beet" | gawk --re-interval '/be{1}t/{print $0}'
$

By specifying an interval of one, you restrict the number of times the character can be
present for the string to match the pattern. If the character appears more times, the
pattern match fails.

Often, specifying the lower and upper limit comes in handy:

$ echo "bt" | gawk --re-interval '/be{1,2}t/{print $0}'
$
$ echo "bet" | gawk --re-interval '/be{1,2}t/{print $0}'
bet
$ echo "beet" | gawk --re-interval '/be{1,2}t/{print $0}'
beet
$ echo "beeet" | gawk --re-interval '/be{1,2}t/{print $0}'
$

In this example, the e character can appear once or twice for the pattern match to pass;
otherwise, the pattern match fails.

The interval pattern match also applies to character classes:

$ echo "bt" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
$
$ echo "bat" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
bat
$ echo "bet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
bet
$ echo "beat" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
beat
$ echo "beet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
beet
$ echo "beeat" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
$
$ echo "baeet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
$

553

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 553

$ echo "baeaet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
$

This regular expression pattern matches if there are exactly one or two instances of the
letter a or e in the text pattern, but it fails if there are any more in any combination.

The pipe symbol
The pipe symbol allows to you to specify two or more patterns that the regular expression engine
uses in a logical OR formula when examining the data stream. If any of the patterns match the
data stream text, the text passes. If none of the patterns match, the data stream text fails.

Here’s the format for using the pipe symbol:

expr1|expr2|...

Here’s an example of this:

$ echo "The cat is asleep" | gawk '/cat|dog/{print $0}'
The cat is asleep
$ echo "The dog is asleep" | gawk '/cat|dog/{print $0}'
The dog is asleep
$ echo "The sheep is asleep" | gawk '/cat|dog/{print $0}'
$

This example looks for the regular expression cat or dog in the data stream. You can’t
place any spaces within the regular expressions and the pipe symbol, or they’re added to
the regular expression pattern.

The regular expressions on either side of the pipe symbol can use any regular expression
pattern, including character classes, to defi ne the text:

$ echo "He has a hat." | gawk '/[ch]at|dog/{print $0}'
He has a hat.
$

This example would match cat, hat, or dog in the data stream text.

Grouping expressions
Regular expression patterns can also be grouped by using parentheses. When you group a
regular expression pattern, the group is treated like a standard character. You can apply a
special character to the group just as you would to a regular character. For example:

$ echo "Sat" | gawk '/Sat(urday)?/{print $0}'
Sat
$ echo "Saturday" | gawk '/Sat(urday)?/{print $0}'
Saturday
$

554

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 554

The grouping of the “urday” ending along with the question mark allows the pattern to
match either the full day name Saturday or the abbreviated name Sat.

It’s common to use grouping along with the pipe symbol to create groups of possible pattern
matches:

$ echo "cat" | gawk '/(c|b)a(b|t)/{print $0}'
cat
$ echo "cab" | gawk '/(c|b)a(b|t)/{print $0}'
cab
$ echo "bat" | gawk '/(c|b)a(b|t)/{print $0}'
bat
$ echo "bab" | gawk '/(c|b)a(b|t)/{print $0}'
bab
$ echo "tab" | gawk '/(c|b)a(b|t)/{print $0}'
$
$ echo "tac" | gawk '/(c|b)a(b|t)/{print $0}'
$

The pattern (c|b)a(b|t) matches any combination of the letters in the fi rst group along
with any combination of the letters in the second group.

Regular Expressions in Action
Now that you’ve seen the rules and a few simple demonstrations of using regular expression
patterns, it’s time to put that knowledge into action. The following sections demonstrate
some common regular expression examples within shell scripts.

Counting directory fi les
To start things out, let’s look at a shell script that counts the executable fi les that are pres-
ent in the directories defi ned in your PATH environment variable. To do that, you need to
parse out the PATH variable into separate directory names. Chapter 6 showed you how to
display the PATH environment variable:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/
local/games
$

Your PATH environment variable will differ, depending on where the applications are
located on your Linux system. The key is to recognize that each directory in the PATH is
separated by a colon. To get a listing of directories that you can use in a script, you must
replace each colon with a space. You now recognize that the sed editor can do just that
using a simple regular expression:

555

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 555

$ echo $PATH | sed 's/:/ /g'
/usr/local/sbin /usr/local/bin /usr/sbin /usr/bin /sbin /bin
/usr/games /usr/local/games
$

After you have the directories separated out, you can use them in a standard for state-
ment (see Chapter 13) to iterate through each directory:

mypath=$(echo $PATH | sed 's/:/ /g')
for directory in $mypath
do
...
done

After you have each directory, you can use the ls command to list each fi le in each direc-
tory, and use another for statement to iterate through each fi le, incrementing a counter
for each fi le.

The fi nal version of the script looks like this:

$ cat countfiles
#!/bin/bash
count number of files in your PATH
mypath=$(echo $PATH | sed 's/:/ /g')
count=0
for directory in $mypath
do
 check=$(ls $directory)
 for item in $check
 do
 count=$[$count + 1]
 done
 echo "$directory - $count"
 count=0
done
$./countfiles /usr/local/sbin - 0
/usr/local/bin - 2
/usr/sbin - 213
/usr/bin - 1427
/sbin - 186
/bin - 152
/usr/games - 5
/usr/local/games – 0
$

Now we’re starting to see some of the power behind regular expressions!

556

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 556

Validating a phone number
The previous example showed how to incorporate the simple regular expression along with
sed to replace characters in a data stream to process data. Often, regular expressions are
used to validate data to ensure that data is in the correct format for a script.

A common data validation application checks phone numbers. Often, data entry forms
request phone numbers, and often customers fail to enter a properly formatted phone num-
ber. People in the United States use several common ways to display a phone number:

(123)456-7890
(123) 456-7890
123-456-7890
123.456.7890

This leaves four possibilities for how customers can enter their phone number in a form.
The regular expression must be robust enough to handle any of these situations.

When building a regular expression, it’s best to start on the left side and build your pattern
to match the possible characters you’ll run into. In this example, there may or may not be a
left parenthesis in the phone number. This can be matched by using the pattern:

^\(?

The caret is used to indicate the beginning of the data. Because the left parenthesis is a
special character, you must escape it to use it as a normal character. The question mark
indicates that the left parenthesis may or may not appear in the data to match.

Next is the three-digit area code. In the United States, area codes start with the number 2
(no area codes start with the digits 0 or 1), and can go to 9. To match the area code, you’d
use the following pattern:

[2-9][0-9]{2}

This requires that the fi rst character be a digit between 2 and 9, followed by any two digits.
After the area code, the ending right parenthesis may or may not appear:

\)?

After the area code, there can be a space, no space, a dash, or a dot. You can group those
using a character group along with the pipe symbol:

(| |-|\.)

The very fi rst pipe symbol appears immediately after the left parenthesis to match the no
space condition. You must use the escape character for the dot; otherwise, it is interpreted
to match any character.

557

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 557

Next is the three-digit phone exchange number. Nothing special is required here:

[0-9]{3}

After the phone exchange number, you must match a space, a dash, or a dot (this time
you don’t have to worry about matching no space because there must be at least a space
between the phone exchange number and the rest of the number):

 (|-|\.)

Then to fi nish things off, you must match the four-digit local phone extension at the end
of the string:

[0-9]{4}$

Putting the entire pattern together results in this:

^\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]{4}$

You can use this regular expression pattern in the gawk program to fi lter out bad phone
numbers. Now you just need to create a simple script using the regular expression in a gawk
program and fi lter your phone list through the script. Remember that when you use regular
expression intervals in the gawk program, you must use the --re-interval command
line option, or you won’t get the correct results.

Here’s the script:

$ cat isphone
#!/bin/bash
script to filter out bad phone numbers
gawk --re-interval '/^\(?[2-9][0-9]{2}\)?(| |-|\¬
[0-9]{3}(|-|\.)[0-9]{4}/{print $0}'
$

Although you can’t tell from this listing, the gawk command is on a single line in the shell
script. You can then redirect phone numbers to the script for processing:

$ echo "317-555-1234" | ./isphone
317-555-1234
$ echo "000-555-1234" | ./isphone
$ echo "312 555-1234" | ./isphone
312 555-1234
$

Or you can redirect an entire fi le of phone numbers to fi lter out the invalid ones:

$ cat phonelist
000-000-0000
123-456-7890

558

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 558

212-555-1234
(317)555-1234
(202) 555-9876
33523
1234567890
234.123.4567
$ cat phonelist | ./isphone
212-555-1234
(317)555-1234
(202) 555-9876
234.123.4567
$

Only the valid phone numbers that match the regular expression pattern appear.

Parsing an e-mail address
These days, e-mail has become a crucial form of communication. Trying to validate e-mail
addresses has become quite a challenge for script builders because of the myriad ways to
create an e-mail address. This is the basic form of an e-mail address:

username@hostname

The username value can use any alphanumeric character, along with several special
characters:

 ■ Dot

 ■ Dash

 ■ Plus sign

 ■ Underscore

These characters can appear in any combination in a valid e-mail userid. The hostname
portion of the e-mail address consists of one or more domain names and a server name. The
server and domain names must also follow strict naming rules, allowing only alphanumeric
characters, along with the special characters:

 ■ Dot

 ■ Underscore

The server and domain names are each separated by a dot, with the server name specifi ed
fi rst, any subdomain names specifi ed next, and fi nally, the top-level domain name without
a trailing dot.

At one time, the top-level domains were fairly limited, and regular expression
pattern builders attempted to add them all in patterns for validation. Unfortunately, as
the Internet grew, so did the possible top-level domains. This technique is no longer a
viable solution.

559

Chapter 20: Regular Expressions

20

c20.indd 12/23/2014 Page 559

Let’s start building the regular expression pattern from the left side. We know that there
can be multiple valid characters in the username. This should be fairly easy:

^([a-zA-Z0-9_\-\.\+]+)@

This grouping specifi es the allowable characters in the username and the plus sign to indi-
cate that at least one character must be present. The next character obviously is the @
symbol — no surprises there.

The hostname pattern uses the same technique to match the server name and the subdo-
main names:

([a-zA-Z0-9_\-\.]+)

This pattern matches the text:

server
server.subdomain
server.subdomain.subdomain

There are special rules for the top-level domain. Top-level domains are only alphabetic characters,
and they must be no fewer than two characters (used in country codes) and no more than fi ve
characters in length. The following is the regular expression pattern for the top-level domain:

\.([a-zA-Z]{2,5})$

Putting the entire pattern together results in the following:

^([a-zA-Z0-9_\-\.\+]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$

This pattern fi lters out poorly formatted e-mail addresses from a data list. Now you can
create your script to implement the regular expression:

$ echo "rich@here.now" | ./isemail
rich@here.now
$ echo "rich@here.now." | ./isemail
$
$ echo "rich@here.n" | ./isemail
$
$ echo "rich@here-now" | ./isemail
$
$ echo "rich.blum@here.now" | ./isemail
rich.blum@here.now
$ echo "rich_blum@here.now" | ./isemail
rich_blum@here.now
$ echo "rich/blum@here.now" | ./isemail
$

mailto:rich@here.now
mailto:rich@here.now
mailto:rich@here.now
mailto:rich@here.n
mailto:blum@here.now
mailto:blum@here.now
mailto:blum@here.now
mailto:blum@here.now
mailto:blum@here.now

560

Part III: Advanced Shell Scripting

c20.indd 12/23/2014 Page 560

$ echo "rich#blum@here.now" | ./isemail
$
$ echo "rich*blum@here.now" | ./isemail
$

Summary
 If you manipulate data fi les in shell scripts, you need to become familiar with regular
expressions. Regular expressions are implemented in Linux utilities, programming
languages, and applications using regular expression engines. A host of different regular
expression engines is available in the Linux world. The two most popular are the POSIX
Basic Regular Expression (BRE) engine and the POSIX Extended Regular Expression (ERE)
engine. The sed editor conforms mainly to the BRE engine, while the gawk program uti-
lizes most features found in the ERE engine.

A regular expression defi nes a pattern template that’s used to fi lter text in a data stream.
The pattern consists of a combination of standard text characters and special characters.
The special characters are used by the regular expression engine to match a series of one or
more characters, similarly to how wildcard characters work in other applications.

By combining characters and special characters, you can defi ne a pattern to match almost
any type of data. You can then use the sed editor or gawk program to fi lter specifi c data
from a larger data stream, or for validating data received from data entry applications.

The next chapter digs deeper into using the sed editor to perform advanced text manipula-
tion. Lots of advanced features are available in the sed editor that make it useful for han-
dling large data streams and fi ltering out just what you need.

mailto:blum@here.now
mailto:blum@here.now

561

c21.indd 12/05/2014 Page 561

CHAP T ER

21
Advanced sed

IN THIS CHAPTER

Using multiline commands

Understanding the hold space

Negating a command

Changing the fl ow

Replacing via a pattern

Using sed in scripts

Creating sed utilities

C
hapter 19 showed you how to use the basics of the sed editor to manipulate text in data
streams. The basic sed editor commands are capable of handling most of your everyday text-
editing requirements. This chapter looks at the more advanced features that the sed editor

has to offer. These are features that you might not use as often. But when you need them, it’s nice
to know that they’re available and how to use them.

Looking at Multiline Commands
When using the basic sed editor commands, you may have noticed a limitation. All the sed
editor commands perform functions on a single line of data. As the sed editor reads a data stream,
it divides the data into lines based on the presence of newline characters. The sed editor handles
each data line one at a time, processing the defi ned script commands on the data line, and then
moving on to the next line and repeating the processing.

Sometimes, you need to perform actions on data that spans more than one line. This is especially
true if you’re trying to fi nd or replace a phrase.

For example, if you’re looking for the phrase Linux System Administrators Group in your
data, it’s quite possible that the phrase’s words can be split onto two lines. If you processed the
text using a normal sed editor command, it would be impossible to detect the split phrase.

562

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 562

Fortunately, the designers behind the sed editor thought of that situation and devised a
solution. The sed editor includes three special commands that you can use to process mul-
tiline text:

 ■ N adds the next line in the data stream to create a multiline group for processing.

 ■ D deletes a single line in a multiline group.

 ■ P prints a single line in a multiline group.

The following sections examine these multiline commands more closely and demonstrate
how you can use them in your scripts.

Navigating the next command
Before you can examine the multiline next command, you fi rst need to look at how the
single-line version of the next command works. After you know what that command does,
it’s much easier to understand how the multiline version of the next command operates.

Using the single-line next command

The lowercase n command tells the sed editor to move to the next line of text in the data
stream, without going back to the beginning of the commands. Remember that normally
the sed editor processes all the defi ned commands on a line before moving to the next line
of text in the data stream. The single-line next command alters this fl ow.

This may sound somewhat complicated, and sometimes it is. In this example, you have a
data fi le that contains fi ve lines, two of which are empty. The goal is to remove the blank
line after the header line but leave the blank line before the last line intact. If you write a
sed script to just remove blank lines, you remove both blank lines:

$ cat data1.txt
This is the header line.

This is a data line.

This is the last line.
$
$ sed '/^$/d' data1.txt
This is the header line.
This is a data line.
This is the last line.
$

Because the line you want to remove is blank, you don’t have any text you can search for to
uniquely identify the line. The solution is to use the n command. In this next example, the

563

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 563

21

script looks for a unique line that contains the word header. After the script identifi es that
line, the n command moves the sed editor to the next line of text, which is the empty line.

$ sed '/header/{n ; d}' data1.txt
This is the header line.
This is a data line.

This is the last line.
$

At that point, the sed editor continues processing the command list, which uses the d
command to delete the empty line. When the sed editor reaches the end of the command
script, it reads the next line of text from the data stream and starts processing commands
from the top of the command script. The sed editor does not fi nd another line with the
word header; thus, no further lines are deleted.

Combining lines of text

Now that you’ve seen the single-line next command, you can look at the multiline version.
The single-line next command moves the next line of text from the data stream into the
processing space (called the pattern space) of the sed editor. The multiline version of
the next command (which uses a capital N) adds the next line of text to the text already
in the pattern space.

This has the effect of combining two lines of text from the data stream into the same pat-
tern space. The lines of text are still separated by a newline character, but the sed editor
can now treat both lines of text as one line.

Here’s a demonstration of how the N command operates:

$ cat data2.txt
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed '/first/{ N ; s/\n/ / }' data2.txt
This is the header line.
This is the first data line. This is the second data line.
This is the last line.
$

The sed editor script searches for the line of text that contains the word “fi rst” in it. When
it fi nds the line, it uses the N command to combine the next line with that line. It then
uses the substitution command (s) to replace the newline character with a space. The
result is that the two lines in the text fi le appear as one line in the sed editor output.

564

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 564

This has a practical application if you’re searching for a text phrase that may be split
between two lines in the data fi le. Here’s an example:

$ cat data3.txt
On Tuesday, the Linux System
Administrator's group meeting will be held.
All System Administrators should attend.
Thank you for your attendance.
$
$ sed 'N ; s/System Administrator/Desktop User/' data3.txt
On Tuesday, the Linux System
Administrator's group meeting will be held.
All Desktop Users should attend.
Thank you for your attendance.
$

The substitution command is looking for the specifi c two-word phrase
System Administrator in the text fi le. In the single line where the phrase appears,
everything is fi ne; the substitution command can replace the text. But in the situation
where the phrase is split between two lines, the substitution command doesn’t recog-
nize the matching pattern.

The N command helps solve this problem:

$ sed 'N ; s/System.Administrator/Desktop User/' data3.txt
On Tuesday, the Linux Desktop User's group meeting will be held.
All Desktop Users should attend.
Thank you for your attendance.
$

By using the N command to combine the next line with the line where the fi rst word is
found, you can detect when a line split occurs in the phrase.

Notice that the substitution command uses a wildcard pattern (.) between the word
System and the word Administrator to match both the space and the newline situation.
However, when it matched the newline character, it removed it from the string, causing the
two lines to merge into one line. This may not be exactly what you want.

To solve this problem, you can use two substitution commands in the sed editor script,
one to match the multiline occurrence and one to match the single-line occurrence:

$ sed 'N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ' data3.txt
On Tuesday, the Linux Desktop

565

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 565

21

User's group meeting will be held.
All Desktop Users should attend.
Thank you for your attendance.
$

The fi rst substitution command specifi cally looks for the newline character between the
two search words and includes it in the replacement string. This allows you to add the new-
line character in the same place in the new text.

There’s still one subtle problem with this script, however. The script always reads the
next line of text into the pattern space before executing the sed editor commands. When
it reaches the last line of text, there isn’t a next line of text to read, so the N command
causes the sed editor to stop. If the matching text is on the last line in the data stream,
the commands don’t catch the matching data:

$ cat data4.txt
On Tuesday, the Linux System
Administrator's group meeting will be held.
All System Administrators should attend.
$
$ sed 'N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ' data4.txt
On Tuesday, the Linux Desktop
User's group meeting will be held.
All System Administrators should attend.
$

Because the System Administrator text appears in the last line in the data stream, the
N command misses it, as there isn’t another line to read into the pattern space to combine.
You can easily resolve this problem by moving your single-line commands before the N com-
mand and having only the multiline commands appear after the N command, like this:

$ sed '
> s/System Administrator/Desktop User/
> N
> s/System\nAdministrator/Desktop\nUser/
> ' data4.txt
On Tuesday, the Linux Desktop
User's group meeting will be held.
All Desktop Users should attend.
$

Now, the substitution command that looks for the phrase in a single line works just fi ne
on the last line in the data stream, and the multiline substitution command covers the
occurrence in the middle of the data stream.

566

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 566

Navigating the multiline delete command
Chapter 19 introduced the single-line delete command (d). The sed editor uses it to
delete the current line in the pattern space. If you’re working with the N command, how-
ever, you must be careful when using the single-line delete command:

$ sed 'N ; /System\nAdministrator/d' data4.txt
All System Administrators should attend.
$

The delete command looked for the words System and Administrator in separate lines
and deleted both of the lines in the pattern space. This may or may not have been what you
intended.

The sed editor provides the multiline delete command (D), which deletes only the
fi rst line in the pattern space. It removes all characters up to and including the newline
character:

$ sed 'N ; /System\nAdministrator/D' data4.txt
Administrator's group meeting will be held.
All System Administrators should attend.
$

The second line of text, added to the pattern space by the N command, remains intact. This
comes in handy if you need to remove a line of text that appears before a line that you fi nd
a data string in.

Here’s an example of removing a blank line that appears before the fi rst line in a data
stream:

$ cat data5.txt

This is the header line.
This is a data line.

This is the last line.
$
$ sed '/^$/{N ; /header/D}' data5.txt
This is the header line.
This is a data line.

This is the last line.
$

This sed editor script looks for blank lines and then uses the N command to add the next
line of text into the pattern space. If the new pattern space contents contain the word

567

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 567

21

header, the D command removes the fi rst line in the pattern space. Without the combina-
tion of the N and D commands, it would be impossible to remove the fi rst blank line with-
out removing all other blank lines.

Navigating the multiline print command
By now, you’re probably catching on to the difference between the single-line and multiline
versions of the commands. The multiline print command (P) follows along using the same
technique. It prints only the fi rst line in a multiline pattern space. This includes all char-
acters up to the newline character in the pattern space. It is used in much the same way as
the single-line p command to display text when you use the -n option to suppress output
from the script.

$ sed -n 'N ; /System\nAdministrator/P' data3.txt
On Tuesday, the Linux System
$

When the multiline match occurs, the P command prints only the fi rst line in the pattern
space. The power of the multiline P command comes into play when you combine it with
the N and D multiline commands.

The D command has a unique feature in that it forces the sed editor to return to the begin-
ning of the script and repeat the commands on the same pattern space (it doesn’t read
a new line of text from the data stream). By including the N command in the command
script, you can effectively single-step through the pattern space, matching multiple lines
together.

Next, by using the P command, you can print the fi rst line, and then using the D command,
you can delete the fi rst line and loop back to the beginning of the script. When you are
back at the script’s beginning, the N command reads in the next line of text and starts the
process all over again. This loop continues until you reach the end of the data stream.

Holding Space
The pattern space is an active buffer area that holds the text examined by the sed editor
while it processes commands. However, it isn’t the only space available in the sed editor for
storing text.

The sed editor utilizes another buffer area called the hold space. You can use the hold
space to temporarily hold lines of text while working on other lines in the pattern space.
The fi ve commands associated with operating with the hold space are shown in Table 21-1.

568

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 568

TABLE 21-1 The sed Editor Hold Space Commands

Command Description

h Copies pattern space to hold space

H Appends pattern space to hold space

g Copies hold space to pattern space

G Appends hold space to pattern space

x Exchanges contents of pattern and hold spaces

These commands let you copy text from the pattern space to the hold space. This frees up
the pattern space to load another string for processing.

Usually, after using the h or H commands to move a string to the hold space, eventually you
want to use the g, G, or x commands to move the stored string back into the pattern space
(otherwise, you wouldn’t have cared about saving them in the fi rst place).

With two buffer areas, trying to determine what line of text is in which buffer area can
sometimes get confusing. Here’s a short example that demonstrates how to use the h and g
commands to move data back and forth between the sed editor buffer spaces:

$ cat data2.txt
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed -n '/first/ {h ; p ; n ; p ; g ; p }' data2.txt
This is the first data line.
This is the second data line.
This is the first data line.
$

Look at the preceding code example step by step:

 1. The sed script uses a regular expression in the address to fi lter the line containing
the word first.

 2. When the line containing the word first appears, the initial command in {}, the
h command, places the line in the hold space.

 3. The next command, the p command, prints the contents of the pattern space,
which is still the fi rst data line.

 4. The n command retrieves the next line in the data stream
(This is the second data line) and places it in the pattern space.

 5. The p command prints the contents of the pattern space, which is now the second
data line.

569

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 569

21

 6. The g command places the contents of the hold space
(This is the first data line) back into the pattern space, replacing the
current text.

 7. The p command prints the current contents of the pattern space, which is now back
to the fi rst data line.

By shuffl ing the text lines around using the hold space, you can force the fi rst data line to
appear after the second data line in the output. If you just drop the fi rst p command, you
can output the two lines in reverse order:

$ sed -n '/first/ {h ; n ; p ; g ; p }' data2.txt
This is the second data line.
This is the first data line.
$

This is the start of something useful. You can use this technique to create a sed script that
reverses an entire fi le of text lines! To do that, however, you need to see the negating fea-
ture of the sed editor, which is what the next section is all about.

Negating a Command
Chapter 19 showed that the sed editor applies commands either to every text line in the
data stream or to lines specifi cally indicated by either a single address or an address range.
You can also confi gure a command to not apply to a specifi c address or address range in the
data stream.

The exclamation mark command (!) is used to negate a command. This means in situations
where the command would normally have been activated, it isn’t. Here’s an example demon-
strating this feature:

$ sed -n '/header/!p' data2.txt
This is the first data line.
This is the second data line.
This is the last line.
$

The normal p command would have printed only the line in the data2 fi le that contained
the word header. By adding the exclamation mark, the opposite happens — all lines in the
fi le are printed except the one that contained the word header.

Using the exclamation mark comes in handy in several applications. Recall that earlier in
the chapter, the “Navigating the next command” section showed a situation where a sed
editor command wouldn’t operate on the last line of text in the data stream because there
wasn’t a line after it. You can use the exclamation point to fi x that problem:

$ sed 'N;
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/

570

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 570

> ' data4.txt
On Tuesday, the Linux Desktop
User's group meeting will be held.
All System Administrators should attend.
$
$ sed '$!N;
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ' data4.txt
On Tuesday, the Linux Desktop
User's group meeting will be held.
All Desktop Users should attend.
$

This example shows the exclamation mark used with the N command, along with the dollar
sign ($) special address. The dollar sign represents the last line of text in the data stream,
so when the sed editor reaches the last line, it doesn’t execute the N command. However,
for all other lines, it does execute the command.

Using this technique, you can reverse the order of text lines in a data stream. To reverse
the order of the lines as they appear in the text stream (display the last line fi rst and the
fi rst line last), you need to do some fancy footwork using the hold space.

The pattern you need to work with goes like this:

 1. Place a line in the pattern space.

 2. Place the line from the pattern space to the hold space.

 3. Put the next line of text in the pattern space.

 4. Append the hold space to the pattern space.

 5. Place everything in the pattern space into the hold space.

 6. Repeat Steps 3 through 5 until you’ve put all the lines in reverse order in the
hold space.

 7. Retrieve the lines, and print them.

Figure 21-1 diagrams what this looks like in more detail.

When using this technique, you do not want to print lines as they are processed. This
means using the -n command line option for sed. The next thing to determine is how to
append the hold space text to the pattern space text. This is done by using the G command.
The only problem is that you don’t want to append the hold space to the fi rst line of text
processed. This is easily solved by using the exclamation mark command:

1!G

The next step is to place the new pattern space (the text line with the appended reverse
lines) into the hold space. This is simple enough; just use the h command.

571

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 571

21

When you’ve got the entire data stream in the pattern space in reverse order, you just need
to print the results. You know you have the entire data stream in the pattern space when
you’ve reached the last line in the data stream. To print the results, just use the following
command:

$p

FIGURE 21-1

Reversing the order of a text file using the hold space

Line 1
Line 1

Line 1

Line 1

Line 1

Line 1

Line 1

Line 1

data file Pattern Space Hold Space

Line 2 Line 2

Line 3

Line 3

Line 3

Line 3

Line 2

1

3

7

5

4

2

Line 2

Line 2

Line 2

Line 2

Line 3

Line 4

Line 4

Line 4

Those are the pieces you need to create your line-reversing sed editor script. Now try it out
in a test run:

$ cat data2.txt
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed -n '{1!G ; h ; $p }' data2.txt
This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$

572

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 572

The sed editor script performed as expected. The output from the script reverses the origi-
nal lines in the text fi le. This demonstrates the power of using the hold space in your sed
scripts. It provides an easy way to manipulate the order of lines in the script output.

In case you’re wondering, a bash shell command can perform the function of reversing a text fi le. The tac command

displays a text fi le in reverse order. You probably noticed the clever name of the command because it performs the

reverse function of the cat command.

Changing the Flow
Normally, the sed editor processes commands starting at the top and proceeding toward
the end of the script (the exception is the D command, which forces the sed editor to
return to the top of the script without reading a new line of text). The sed editor provides
a method for altering the fl ow of the command script, producing a result similar to that of a
structured programming environment.

Branching
In the previous section, you saw how the exclamation mark command is used to negate
the effect of a command on a line of text. The sed editor provides a way to negate an
entire section of commands, based on an address, an address pattern, or an address range.
This allows you to perform a group of commands only on a specifi c subset within the data
stream.

Here’s the format of the branch command:

[address]b [label]

The address parameter determines which line or lines of data trigger the branch com-
mand. The label parameter defi nes the location to branch to. If the label parameter is
not present, the branch command proceeds to the end of the script.

$ cat data2.txt
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed '{2,3b ; s/This is/Is this/ ; s/line./test?/}' data2.txt
Is this the header test?
This is the first data line.
This is the second data line.
Is this the last test?
$

573

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 573

21

The branch command skips the two substitution commands for the second and third
lines in the data stream.

Instead of going to the end of the script, you can defi ne a label for the branch command
to jump to. Labels start with a colon and can be up to seven characters in length:

:label2

To specify the label, just add it after the b command. Using labels allows you to skip com-
mands that match the branch address but still process other commands in the script:

$ sed '{/first/b jump1 ; s/This is the/No jump on/
> :jump1
> s/This is the/Jump here on/}' data2.txt
No jump on header line
Jump here on first data line
No jump on second data line
No jump on last line
$

The branch command specifi es that the program should jump to the script line labeled
jump1 if the matching text “fi rst” appears in the line. If the branch command pattern
doesn’t match, the sed editor continues processing commands in the script, including the
command after the branch label. (Thus, all three substitution commands are processed
on lines that don’t match the branch pattern.)

If a line matches the branch pattern, the sed editor branches to the branch label line.
Thus, only the last substitution command is executed.

The example shows branching to a label further down in the sed script. You can also
branch to a label that appears earlier in the script, thus creating a looping effect:

$ echo "This, is, a, test, to, remove, commas." | sed -n '{
> :start
> s/,//1p
> b start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
^C
$

Each script iteration removes the fi rst occurrence of a comma from the text string and
prints the string. There’s one catch to this script: It never ends. This situation creates an
endless loop, searching for commas until you manually stop it by sending a signal with the
Ctrl+C key combination.

574

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 574

To prevent this problem, you should specify an address pattern for the branch command to
look for. If the pattern isn’t present, the branching should stop:

$ echo "This, is, a, test, to, remove, commas." | sed -n '{
> :start
> s/,//1p
> /,/b start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$

Now the branch command branches only if there’s a comma in the line. After the last
comma has been removed, the branch command doesn’t execute, allowing the script to
properly fi nish.

Testing
Similar to the branch command, the test command (t) is also used to modify the fl ow
of the sed editor script. Instead of jumping to a label based on an address, the test com-
mand jumps to a label based on the outcome of a substitution command.

If the substitution command successfully matches and substitutes a pattern, the test
command branches to the specifi ed label. If the substitution command doesn’t match
the specifi ed pattern, the test command doesn’t branch.

The test command uses the same format as the branch command:

[address]t [label]

Like the branch command, if you don’t specify a label, sed branches to the end of the
script if the test succeeds.

The test command provides a cheap way to perform a basic if-then statement on the
text in the data stream. For example, if you don’t need to make a substitution if another
substitution was made, the test command can help:

$ sed '{
> s/first/matched/
> t
> s/This is the/No match on/
> }' data2.txt
No match on header line

575

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 575

21

This is the matched data line
No match on second data line
No match on last line
$

The fi rst substitution command looks for the pattern text first. If it matches the
pattern in the line, it replaces the text, and the test command jumps over the second
substitution command. If the fi rst substitution command doesn’t match the pattern,
the second substitution command is processed.

Using the test command, you can clean up the loop you tried using the branch command:

$ echo "This, is, a, test, to, remove, commas. " | sed -n '{
> :start
> s/,//1p
> t start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$

When there are no more substitutions to make, the test command doesn’t branch and con-
tinues with the rest of the script.

Replacing via a Pattern
You’ve seen how to use patterns in the sed commands to replace text in the data stream.
However, when using wildcard characters it’s not easy to know exactly what text will match
the pattern.

For example, say that you want to place double quotation marks around a word you match
in a line. That’s simple enough if you’re just looking for one word in the pattern to match:

$ echo "The cat sleeps in his hat." | sed 's/cat/"cat"/'
The "cat" sleeps in his hat.
$

But what if you use a wildcard character (.) in the pattern to match more than one word?

$ echo "The cat sleeps in his hat." | sed 's/.at/".at"/g'
The ".at" sleeps in his ".at".
$

576

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 576

The substitution string used the dot wildcard character to match any occurrence of a letter
followed by “at”. Unfortunately, the replacement string doesn’t match the wildcard charac-
ter value of the matching word.

Using the ampersand
The sed editor has a solution for you. The ampersand symbol (&) is used to represent the
matching pattern in the substitution command. Whatever text matches the pattern
defi ned, you can use the ampersand symbol to recall it in the replacement pattern. This lets
you manipulate whatever word matches the pattern defi ned:

$ echo "The cat sleeps in his hat." | sed 's/.at/"&"/g'
The "cat" sleeps in his "hat".
$

When the pattern matches the word cat, “cat” appears in the substituted word. When it
matches the word hat, “hat” appears in the substituted word.

Replacing individual words
The ampersand symbol retrieves the entire string that matches the pattern you specify
in the substitution command. Sometimes, you’ll only want to retrieve a subset of the
string. You can do that, too, but it’s a little tricky.

The sed editor uses parentheses to defi ne a substring component within the substitution
pattern. You can then reference each substring component using a special character in the
replacement pattern. The replacement character consists of a backslash and a number. The
number indicates the substring component’s position. The sed editor assigns the fi rst com-
ponent the character \1, the second component the character \2, and so on.

When you use parentheses in the substitution command, you must use the escape character to identify them

as grouping characters and not normal parentheses. This is the reverse of when you escape other special characters.

Look at an example of using this feature in a sed editor script:

$ echo "The System Administrator manual" | sed '
> s/\(System\) Administrator/\1 User/'
The System User manual
$

This substitution command uses one set of parentheses around the word System identi-
fying it as a substring component. It then uses the \1 in the replacement pattern to recall
the fi rst identifi ed component. This isn’t too exciting, but it can really be useful when
working with wildcard patterns.

577

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 577

21

If you need to replace a phrase with just a single word, that’s a substring of the phrase, but
that substring just happens to be using a wildcard character; using substring components
is a lifesaver:

$ echo "That furry cat is pretty" | sed 's/furry \(.at\)/\1/'
That cat is pretty
$
$ echo "That furry hat is pretty" | sed 's/furry \(.at\)/\1/'
That hat is pretty
$

In this situation, you can’t use the ampersand symbol, because it would replace the entire
matching pattern. The substring component provides the answer, allowing you to select
just which part of the pattern to use as the replacement pattern.

This feature can be especially helpful when you need to insert text between two or more
substring components. Here’s a script that uses substring components to insert a comma in
long numbers:

$ echo "1234567" | sed '{
> :start
> s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
> t start
> }'
1,234,567
$

The script divides the matching pattern into two components:

.*[0-9]
[0-9]{3}

This pattern looks for two substrings. The fi rst substring is any number of characters,
ending in a digit. The second substring is a series of three digits (see Chapter 20 for infor-
mation about how to use braces in a regular expression). If this pattern is found in the
text, the replacement text puts a comma between the two components, each identifi ed by
its component position. The script uses the test command to iterate through the number
until all commas have been placed.

Placing sed Commands in Scripts
Now that you’ve seen the various parts of the sed editor, it’s time to put them together
and use them in your shell scripts. This section demonstrates some of the features that you
should know about when using the sed editor in your bash shell scripts.

578

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 578

Using wrappers
You may have noticed that trying to implement a sed editor script can be cumbersome,
especially if the script is long. Instead of having to retype the entire script each time you
want to use it, you can place the sed editor command in a shell script wrapper. The wrap-
per acts as a go-between for the sed editor script and the command line.

Once inside the shell script, you can use normal shell variables and parameters with your
sed editor scripts. Here’s an example of using the command line parameter variable as the
input to a sed script:

$ cat reverse.sh
#!/bin/bash
Shell wrapper for sed editor script.
to reverse text file lines.
#
sed -n '{ 1!G ; h ; $p }' $1
#
$

The shell script called reverse uses the sed editor script to reverse text lines in a data
stream. It uses the $1 shell parameter to retrieve the fi rst parameter from the command
line, which should be the name of the fi le to reverse:

$./reverse.sh data2.txt
This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$

Now you can easily use the sed editor script on any fi le, without having to constantly
retype the entire command line.

Redirecting sed output
By default, the sed editor outputs the results of the script to STDOUT. You can employ all
the standard methods of redirecting the output of the sed editor in your shell scripts.

You can use dollar sign/parenthesis, $(), to redirect the output of your sed editor com-
mand to a variable for use later in the script. The following is an example of using the sed
script to add commas to the result of a numeric computation:

$ cat fact.sh
#!/bin/bash
Add commas to number in factorial answer
#
factorial=1

579

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 579

21

counter=1
number=$1
#
while [$counter -le $number]
do
 factorial=$[$factorial * $counter]
 counter=$[$counter + 1]
done
#
result=$(echo $factorial | sed '{
:start
s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
t start
}')
#
echo "The result is $result"
#
$
$./fact.sh 20
The result is 2,432,902,008,176,640,000
$

After you use the normal factorial calculation script, the result of that script is used as the
input to the sed editor script, which adds commas. This value is then used in the echo
statement to produce the result.

Creating sed Utilities
As you’ve seen in the short examples presented so far in this chapter, you can do lots of
cool data-formatting things with the sed editor. This section shows a few handy well-
known sed editor scripts for performing common data-handling functions.

Spacing with double lines
To start things off, look at a simple sed script to insert a blank line between lines in a
text fi le:

$ sed 'G' data2.txt
This is the header line.

This is the first data line.

This is the second data line.

This is the last line.

$

580

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 580

That was pretty simple! The key to this trick is the default value of the hold space.
Remember that the G command simply appends the contents of the hold space to the cur-
rent pattern space contents. When you start the sed editor, the hold space contains an
empty line. By appending that to an existing line, you create a blank line after the exist-
ing line.

You may have noticed that this script also adds a blank line to the last line in the data
stream, producing a blank line at the end of the fi le. If you want to get rid of this, you can
use the negate symbol and the last line symbol to ensure that the script doesn’t add the
blank line to the last line of the data stream:

$ sed '$!G' data2.txt
This is the header line.

This is the first data line.

This is the second data line.

This is the last line.
$

Now that looks a little better. As long as the line isn’t the last line, the G command
appends the contents of the hold space. When the sed editor gets to the last line, it skips
the G command.

Spacing fi les that may have blanks
To take double spacing one step further, what if the text fi le already has a few blank lines,
but you want to double space all the lines? If you use the previous script, you’ll get some
areas that have too many blank lines, because each existing blank line gets doubled:

$ cat data6.txt
This is line one.
This is line two.

This is line three.
This is line four.
$
$ sed '$!G' data6.txt
This is line one.

This is line two.

This is line three.

This is line four.
$

581

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 581

21

Now you have three blank lines where the original blank line was located. The solution to
this problem is to fi rst delete any blank lines from the data stream and then use the G com-
mand to insert new blank lines after all the lines. To delete existing blank lines, you just
need to use the d command with a pattern that matches a blank line:

/^$/d

This pattern uses the start line tag (the caret) and the end line tag (the dollar sign).
Adding this pattern to the script produces the desired results:

$ sed '/^$/d ; $!G' data6.txt
This is line one.

This is line two.

This is line three.

This is line four.
$

Perfect! It works just as expected.

Numbering lines in a fi le
Chapter 19 showed you how to use the equal sign to display the line numbers of lines in the
data stream:

$ sed '=' data2.txt
1
This is the header line.
2
This is the first data line.
3
This is the second data line.
4
This is the last line.
$

This can be a little awkward to read, because the line number is on a line above the actual
line in the data stream. A better solution is to place the line number on the same line as
the text.

Now that you’ve seen how to combine lines using the N command, it shouldn’t be too hard
to utilize that information in the sed editor script. The trick to this utility, however, is
that you can’t combine the two commands in the same script.

582

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 582

After you have the output for the equal sign command, you can pipe the output to another
sed editor script that uses the N command to combine the two lines. You also need to use
the substitution command to replace the newline character with either a space or a tab
character. Here’s what the fi nal solution looks like:

$ sed '=' data2.txt | sed 'N; s/\n/ /'
1 This is the header line.
2 This is the first data line.
3 This is the second data line.
4 This is the last line.
$

Now that looks much better. This is a great little utility to have around when working on
programs where you need to see the line numbers used in error messages.

There are bash shell commands that can also add line numbers. However, they add some
additional (and potentially unwanted spacing):

$ nl data2.txt
 1 This is the header line.
 2 This is the first data line.
 3 This is the second data line.
 4 This is the last line.
$
$ cat -n data2.txt
 1 This is the header line.
 2 This is the first data line.
 3 This is the second data line.
 4 This is the last line.
$

The sed editor script handles the output without any additional spacing.

Printing last lines
So far, you’ve seen how to use the p command to print all the lines in a data stream or just
lines that match a specifi c pattern. What if you just need to work with the last few lines of
a long listing, such as a log fi le?

The dollar sign represents the last line of a data stream, so it’s easy to display just the
last line:

$ sed -n '$p' data2.txt
This is the last line.
$

Now how can you use the dollar sign symbol to display a set number of lines at the end of
the data stream? The answer is to create a rolling window.

583

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 583

21

A rolling window is a common way to examine blocks of text lines in the pattern space by
combining them using the N command. The N command appends the next line of text to
the text already in the pattern space. After you have a block of 10 text lines in the pattern
space, you can check to see if you’re at the end of the data stream using the dollar sign. If
you’re not at the end, continue adding more lines to the pattern space, while removing the
original lines (remember the D command, which deletes the fi rst line in the pattern space).

By looping through the N and D commands, you add new lines to the block of lines in the
pattern space while removing old lines. The branch command is the perfect fi t for the
loop. To end the loop, just identify the last line and use the q command to quit.

Here’s what the fi nal sed editor script looks like:

$ cat data7.txt
This is line 1.
This is line 2.
This is line 3.
This is line 4.
This is line 5.
This is line 6.
This is line 7.
This is line 8.
This is line 9.
This is line 10.
This is line 11.
This is line 12.
This is line 13.
This is line 14.
This is line 15.
$
$ sed '{
> :start
> $q ; N ; 11,$D
> b start
> }' data7.txt
This is line 6.
This is line 7.
This is line 8.
This is line 9.
This is line 10.
This is line 11.
This is line 12.
This is line 13.
This is line 14.
This is line 15.
$

584

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 584

The script fi rst checks whether the line is the last line in the data stream. If it is, the quit
command stops the loop. The N command appends the next line to the current line in the
pattern space. The 11,$D command deletes the fi rst line in the pattern space if the current
line is after line 10. This creates the sliding window effect in the pattern space. Thus, the
sed program script displays only the last 10 lines of the data7.txt fi le.

Deleting lines
Another useful utility for the sed editor is to remove unwanted blank lines in a data
stream. It’s easy to remove all the blank lines from a data stream, but it takes a little inge-
nuity to selectively remove blank lines. This section shows you a couple of quick sed editor
scripts that you can use to help remove unwanted blank lines from your data.

Deleting consecutive blank lines

It can be a nuisance when extra blank lines crop up in data fi les. Often you have a data
fi le that contains blank lines, but sometimes a data line is missing and produces too many
blank lines (as you saw in the double-spacing example earlier).

The easiest way to remove consecutive blank lines is to check the data stream using a
range address. Chapter 19 showed you how to use ranges in addresses, including how to
incorporate patterns in the address range. The sed editor executes the command for all
lines that match within the specifi ed address range.

The key to removing consecutive blank lines is to create an address range that includes
a non-blank line and a blank line. If the sed editor comes across this range, it shouldn’t
delete the line. However, for lines that don’t match that range (two or more blank lines in a
row), it should delete the lines.

Here’s the script to do this:

/./,/^$/!d

The range is /./ to /^$/. The start address in the range matches any line that contains at
least one character. The end address in the range matches a blank line. Lines within this
range aren’t deleted.

Here’s the script in action:

$ cat data8.txt
This is line one.

This is line two.

This is line three.

This is line four.

585

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 585

21

$
$ sed '/./,/^$/!d' data8.txt
This is line one.

This is line two.

This is line three.

This is line four.
$

No matter how many blank lines appear between lines of data in the fi le, the output places
only one blank line between the lines.

Deleting leading blank lines

It is also a nuisance when data fi les contain multiple blank lines at the start of the fi le.
Often when you are trying to import data from a text fi le into a database, the blank lines
create null entries, throwing off any calculations using the data.

Removing blank lines from the top of a data stream is not a diffi cult task. Here’s the script
that accomplishes that function:

/./,$!d

The script uses an address range to determine what lines are deleted. The range starts
with a line that contains a character and continues to the end of the data stream. Any line
within this range is not deleted from the output. This means that any lines before the fi rst
line that contain a character are deleted.

Look at this simple script in action:

$ cat data9.txt

This is line one.

This is line two.
$
$ sed '/./,$!d' data9.txt
This is line one.

This is line two.
$

The test fi le contains two blank lines before the data lines. The script successfully removes
both of the leading blank lines, while keeping the blank line within the data intact.

586

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 586

Deleting trailing blank lines

Unfortunately, deleting trailing blank lines is not as simple as deleting leading blank lines.
Just like printing the end of a data stream, deleting blank lines at the end of a data stream
requires a little ingenuity and looping.

Before we start the discussion, let’s see what the script looks like:

sed '{
:start
/^\n*$/{$d; N; b start }
}'

This may look a little odd to you at fi rst. Notice that there are braces within the normal
script braces. This allows you to group commands together within the overall command
script. The group of commands applies to the specifi ed address pattern. The address pattern
matches any line that contains only a newline character. When one is found, if it’s the last
line, the delete command deletes it. If it’s not the last line, the N command appends the
next line to it, and the branch command loops to the beginning to start over.

Here’s the script in action:

$ cat data10.txt
This is the first line.
This is the second line.

$ sed '{
> :start
> /^\n*$/{$d ; N ; b start }
> }' data10.txt
This is the first line.
This is the second line.
$

The script successfully removed the blank lines from the end of the text fi le.

Removing HTML tags
These days, it’s not uncommon to download text from a website to save or use as data in an
application. Sometimes, however, when you download text from the website, you also get
the HTML tags used to format the data. This can be a problem when all you want to see is
the data.

587

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 587

21

A standard HTML web page contains several different types of HTML tags, identifying for-
matting features required to properly display the page information. Here’s a sample of what
an HTML fi le looks like:

$ cat data11.txt
<html>
<head>
<title>This is the page title</title>
</head>
<body>
<p>
This is the first line in the Web page.
This should provide some <i>useful</i>
information to use in our sed script.
</body>
</html>
$

HTML tags are identifi ed by the less-than and greater-than symbols. Most HTML tags come
in pairs. One tag starts the formatting process (for example, for bolding), and another
tag stops the formatting process (for example, to turn off bolding).

Removing HTML tags creates a problem, however, if you’re not careful. At fi rst glance, you’d
think that the way to remove HTML tags would be to just look for a text string that starts
with a less-than symbol (<), ends with a greater-than symbol (>), and has data in between
the symbols:

 s/<.*>//g

Unfortunately, this command has some unintended consequences:

$ sed 's/<.*>//g' data11.txt

This is the line in the Web page.
This should provide some
information to use in our sed script.

$

588

Part III: Advanced Shell Scripting

c21.indd 12/05/2014 Page 588

Notice that the title text is missing, along with the text that was bolded and italicized.
The sed editor literally interpreted the script to mean any text between the less-than and
greater-than sign, including other less-than and greater-than signs! Each time the text was
enclosed in HTML tags (such as first), the sed script removed the entire text.

The solution to this problem is to have the sed editor ignore any embedded greater-than
signs between the original tags. To do that, you can create a character class that negates
the greater-than sign. This changes the script to:

s/<[^>]*>//g

This script now works properly, displaying the data you need to see from the web page
HTML code:

$ sed 's/<[^>]*>//g' data11.txt

This is the page title

This is the first line in the Web page.
This should provide some useful
information to use in our sed script.

$

That’s a little better. To clean things up some, you can add a delete command to get rid of
those pesky blank lines:

$ sed 's/<[^>]*>//g ; /^$/d' data11.txt
This is the page title
This is the first line in the Web page.
This should provide some useful
information to use in our sed script.
$

Now that’s much more compact; there’s only the data you need to see.

Summary
The sed editor provides some advanced features that allow you to work with text patterns
across multiple lines. This chapter showed you how to use the next command to retrieve
the next line in a data stream and place it in the pattern space. Once in the pattern space,
you can perform complex substitution commands to replace phrases that span more
than one line of text.

589

Chapter 21: Advanced sed

c21.indd 12/05/2014 Page 589

21

The multiline delete command allows you to remove the fi rst line when the pattern space
contains two or more lines. This is a convenient way to iterate through multiple lines in
the data stream. Similarly, the multiline print command allows you to print just the fi rst
line when the pattern space contains two or more lines of text. The combination of the
multiline commands allows you to iterate through the data stream and create a multiline
substitution system.

Next, we covered the hold space. The hold space allows you to set aside a line of text while
processing more lines of text. You can recall the contents of the hold space at any time and
either replace the text in the pattern space or append the contents of the hold space to the
text in the pattern space. Using the hold space allows you to sort through data streams,
reversing the order of text lines as they appear in the data.

Next we reviewed the various sed editor fl ow control commands. The branch command
provides a way for you to alter the normal fl ow of sed editor commands in the script,
creating loops or skipping commands under certain conditions. The test command pro-
vides an if-then type of statement for your sed editor command scripts. The test
command branches only if a prior substitution command succeeds in replacing text
in a line.

The chapter concluded with a discussion of how to use sed scripts in your shell scripts. A
common technique for large sed scripts is to place the script in a shell wrapper. You can
use command line parameter variables within the sed script to pass shell command line
values. This creates an easy way to utilize your sed editor scripts directly from the com-
mand line, or even from other shell scripts.

The next chapter digs deeper into the gawk world. The gawk program supports many
features of higher-level programming languages. You can create some pretty involved data
manipulation and reporting programs just by using gawk . The chapter describes the vari-
ous programming features and demonstrates how to use them to generate your own fancy
reports from simple data.

591

c22.indd 12/16/2014 Page 591

CHAP T ER

22
Advanced gawk

IN THIS CHAPTER

Reexamining gawk

Using variables in gawk

Using structured commands

Formatting your printing

Working with functions

C
hapter 19 introduced the gawk program and demonstrated the basics of using it to produce
formatted reports from raw data fi les. This chapter dives more deeply into customizing gawk
to produce reports. The gawk program is a full-fl edged programming language, providing

features that allow you to write advanced programs to manipulate data. If you are jumping into the
shell script world from another programming language, you should feel right at home with gawk.
In this chapter, you’ll see how to use the gawk programming language to write programs to handle
just about any data-formatting task you’ll run into.

Using Variables
One important feature of any programming language is the ability to store and recall values using
variables. The gawk programming language supports two different types of variables:

 ■ Built-in variables

 ■ User-defi ned variables

Several built-in variables are available for you to use in gawk. The built-in variables contain infor-
mation used in handling the data fi elds and records in the data fi le. You can also create your own
variables in your gawk programs. The following sections walk you through how to use variables in
your gawk programs.

592

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 592

Built-in variables
The gawk program uses built-in variables to reference specifi c features within the program
data. This section describes the built-in variables available for you to use in your gawk
programs and demonstrates how to use them.

The field and record separator variables

Chapter 19 demonstrated one type of built-in variable available in gawk: the data fi eld
variables. The data fi eld variables allow you to reference individual data fi elds within a data
record using a dollar sign and the numerical position of the data fi eld in the record. Thus,
to reference the fi rst data fi eld in the record, you use the $1 variable. To reference the
second data fi eld, you use the $2 variable, and so on.

Data fi elds are delineated by a fi eld separator character. By default, the fi eld separator
character is a whitespace character, such as a space or a tab. Chapter 19 showed how to
change the fi eld separator character either on the command line by using the -F command
line parameter or within the gawk program using the special FS built-in variable.

The FS built-in variable belongs to a group of built-in variables that control how gawk
handles fi elds and records in both input data and output data. Table 22-1 lists the built-in
variables contained in this group.

TABLE 22-1 The gawk Data Field and Record Variables

Variable Description

FIELDWIDTHS A space-separated list of numbers defi ning the exact width (in spaces) of
each data fi eld

FS Input fi eld separator character

RS Input record separator character

OFS Output fi eld separator character

ORS Output record separator character

The FS and OFS variables defi ne how your gawk program handles data fi elds in the data
stream. You’ve already seen how to use the FS variable to defi ne what character separates
data fi elds in a record. The OFS variable performs the same function but for the output by
using the print command.

By default, gawk sets the OFS variable to a space, so when you use the command:

print $1,$2,$3

you see the output as:

field1 field2 field3

593

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 593

22

22

You can see this in the following example:

$ cat data1
data11,data12,data13,data14,data15
data21,data22,data23,data24,data25
data31,data32,data33,data34,data35
$ gawk 'BEGIN{FS=","} {print $1,$2,$3}' data1
data11 data12 data13
data21 data22 data23
data31 data32 data33
$

The print command automatically places the value of the OFS variable between each data
fi eld in the output. By setting the OFS variable, you can use any string to separate data
fi elds in the output:

$ gawk 'BEGIN{FS=","; OFS="-"} {print $1,$2,$3}' data1
data11-data12-data13
data21-data22-data23
data31-data32-data33
$ gawk 'BEGIN{FS=","; OFS="--"} {print $1,$2,$3}' data1
data11--data12--data13
data21--data22--data23
data31--data32--data33
$ gawk 'BEGIN{FS=","; OFS="<-->"} {print $1,$2,$3}' data1
data11<-->data12<-->data13
data21<-->data22<-->data23
data31<-->data32<-->data33
$

The FIELDWIDTHS variable allows you to read records without using a fi eld separator char-
acter. In some applications, instead of using a fi eld separator character, data is placed in
specifi c columns within the record. In these instances, you must set the FIELDWIDTHS
variable to match the layout of the data in the records.

After you set the FIELDWIDTHS variable, gawk ignores the FS and calculates data fi elds
based on the provided fi eld width sizes. Here’s an example using fi eld widths instead of
fi eld separator characters:

$ cat data1b
1005.3247596.37
115-2.349194.00
05810.1298100.1
$ gawk 'BEGIN{FIELDWIDTHS="3 5 2 5"}{print $1,$2,$3,$4}' data1b
100 5.324 75 96.37
115 -2.34 91 94.00
058 10.12 98 100.1
$

594

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 594

The FIELDWIDTHS variable defi nes four data fi elds, and gawk parses the data record
accordingly. The string of numbers in each record is split based on the defi ned fi eld width
values.

It’s important to remember that after you set the FIELDWIDTHS variable, those values must remain constant. This

method can’t accommodate variable-length data fi elds.

The RS and ORS variables defi ne how your gawk program handles records in the data
stream. By default, gawk sets the RS and ORS variables to the newline character. The
default RS variable value indicates that each new line of text in the input data stream is a
new record.

Sometimes, you run into situations where data fi elds are spread across multiple lines in the
data stream. A classic example of this is data that includes an address and phone number,
each on a separate line:

Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234

If you try to read this data using the default FS and RS variable values, gawk reads each
line as a separate record and interprets each space in the record as a fi eld separator. This
isn’t what you intended.

To solve this problem, you need to set the FS variable to the newline character. This indi-
cates that each line in the data stream is a separate fi eld and all the data on a line belongs
to the data fi eld. However, when you do that, you don’t know where a new record starts.

To solve this problem, set the RS variable to an empty string, and leave a blank line
between data records in the data stream. The gawk program interprets each blank line as a
record separator.

The following is an example of using this technique:

$ cat data2
Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234

Frank Williams
456 Oak Street
Indianapolis, IN 46201

595

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 595

22

(317)555-9876

Haley Snell
4231 Elm Street
Detroit, MI 48201
(313)555-4938
$ gawk 'BEGIN{FS="\n"; RS=""} {print $1,$4}' data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

Perfect! The gawk program interpreted each line in the fi le as a data fi eld and the blank
lines as record separators.

Data variables

Besides the fi eld and record separator variables, gawk provides some other built-in variables
to help you know what’s going on with your data and extract information from the shell
environment. Table 22-2 shows the other built-in variables in gawk.

TABLE 22-2 More gawk Built-In Variables

Variable Description

ARGC The number of command line parameters present

ARGIND The index in ARGV of the current fi le being processed

ARGV An array of command line parameters

CONVFMT The conversion format for numbers (see the printf statement), with a
default value of %.6 g

ENVIRON An associative array of the current shell environment variables and their
values

ERRNO The system error if an error occurs when reading or closing input fi les

FILENAME The fi lename of the data fi le used for input to the gawk program

FNR The current record number in the data fi le

IGNORECASE If set to a non-zero value, ignores the case of characters in strings used in
the gawk command

NF The total number of data fi elds in the data fi le

NR The number of input records processed

OFMT The output format for displaying numbers, with a default of %.6 g

RLENGTH The length of the substring matched in the match function

RSTART The start index of the substring matched in the match function

You should recognize a few of these variables from your shell script programming. The
ARGC and ARGV variables allow you to retrieve the number of command line parameters and

596

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 596

their values from the shell. This can be a little tricky, however, because gawk doesn’t count
the program script as part of the command line parameters:

$ gawk 'BEGIN{print ARGC,ARGV[1]}' data1
2 data1
$

The ARGC variable indicates that two parameters are on the command line. This includes
the gawk command and the data1 parameter (remember that the program script doesn’t
count as a parameter). The ARGV array starts with an index of 0, which represents the com-
mand. The fi rst array value is the fi rst command line parameter after the gawk command.

Note that unlike shell variables, when you reference a gawk variable in the script, you don’t add a dollar sign before

the variable name.

The ENVIRON variable may seem a little odd to you. It uses an associative array to retrieve
shell environment variables. An associative array uses text for the array index values
instead of numeric values.

The text in the array index is the shell environment variable. The value of the array is the
value of the shell environment variable. The following is an example of this:

$ gawk '
> BEGIN{
> print ENVIRON["HOME"]
> print ENVIRON["PATH"]
> }'
/home/rich
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
$

The ENVIRON["HOME"] variable retrieves the HOME environment variable value from the
shell. Likewise, the ENVIRON["PATH"] variable retrieves the PATH environment variable
value. You can use this technique to retrieve any environment variable value from the shell
to use in your gawk programs.

The FNR, NF, and NR variables come in handy when you’re trying to keep track of data
fi elds and records in your gawk program. Sometimes, you’re in a situation where you don’t
know exactly how many data fi elds are in a record. The NF variable allows you to specify
the last data fi eld in the record without having to know its position:

$ gawk 'BEGIN{FS=":"; OFS=":"} {print $1,$NF}' /etc/passwd
rich:/bin/bash
testy:/bin/csh
mark:/bin/bash

597

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 597

22

dan:/bin/bash
mike:/bin/bash
test:/bin/bash
$

The NF variable contains the numerical value of the last data fi eld in the data fi le. You can
then use it as a data fi eld variable by placing a dollar sign in front of it.

The FNR and NR variables are similar to each other, but slightly different. The FNR variable
contains the number of records processed in the current data fi le. The NR variable con-
tains the total number of records processed. Let’s look at a couple of examples to see this
difference:

$ gawk 'BEGIN{FS=","}{print $1,"FNR="FNR}' data1 data1
data11 FNR=1
data21 FNR=2
data31 FNR=3
data11 FNR=1
data21 FNR=2
data31 FNR=3
$

In this example, the gawk program command line defi nes two input fi les. (It specifi es the
same input fi le twice.) The script prints the fi rst data fi eld value and the current value of
the FNR variable. Notice that the FNR value was reset to 1 when the gawk program
processed the second data fi le.

Now, let’s add the NR variable and see what that produces:

$ gawk '
> BEGIN {FS=","}
> {print $1,"FNR="FNR,"NR="NR}
> END{print "There were",NR,"records processed"}' data1 data1
data11 FNR=1 NR=1
data21 FNR=2 NR=2
data31 FNR=3 NR=3
data11 FNR=1 NR=4
data21 FNR=2 NR=5
data31 FNR=3 NR=6
There were 6 records processed
$

The FNR variable value was reset when gawk processed the second data fi le, but the NR
variable maintained its count into the second data fi le. The bottom line is that if you’re
using only one data fi le for input, the FNR and NR values are the same. If you’re using mul-
tiple data fi les for input, the FNR value is reset for each data fi le, and the NR value keeps
count throughout all the data fi les.

598

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 598

When using gawk, notice that the gawk script can often become larger than the rest of your shell script. In the

examples in this chapter, for simplicity we just run the gawk scripts directly from the command line, using the multi-

line feature of the shell. When you use gawk in a shell script, you should place different gawk commands on sepa-

rate lines. This makes it much easier for you to read and follow, rather than trying to cram it all onto one line in the

shell script. Also, if you fi nd yourself using the same gawk scripts in different shell scripts, you can save the gawk

script in a separate fi le and reference it using the –f parameter (see Chapter 19).

User-defi ned variables
Just like any other self-respecting programming language, gawk allows you to defi ne your
own variables for use within the program code. A gawk user-defi ned variable name can
be any number of letters, digits, and underscores, but it can’t begin with a digit. It is also
important to remember that gawk variable names are case sensitive.

Assigning variables in scripts

Assigning values to variables in gawk programs is similar to doing so in a shell script, using
an assignment statement:

$ gawk '
> BEGIN{
> testing="This is a test"
> print testing
> }'
This is a test
$

The output of the print statement is the current value of the testing variable. Like shell
script variables, gawk variables can hold either numeric or text values:

$ gawk '
> BEGIN{
> testing="This is a test"
> print testing
> testing=45
> print testing
> }'
This is a test
45
$

In this example, the value of the testing variable is changed from a text value to a
numeric value.

599

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 599

22

Assignment statements can also include mathematical algorithms to handle numeric values:

$ gawk 'BEGIN{x=4; x= x * 2 + 3; print x}'
11
$

As you can see from this example, the gawk programming language includes the standard
mathematical operators for processing numerical values. These can include the remainder
symbol (%) and the exponentiation symbol (using either ^ or **).

Assigning variables on the command line

You can also use the gawk command line to assign values to variables for the gawk
program. This allows you to set values outside of the normal code, changing values on the
fl y. Here’s an example of using a command line variable to display a specifi c data fi eld in
the fi le:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
data12
data22
data32
$ gawk -f script1 n=3 data1
data13
data23
data33
$

This feature allows you to change the behavior of the script without necessitating that you
change the actual script code. The fi rst example displays the second data fi eld in the fi le,
while the second example displays the third data fi eld, just by setting the value of the n
variable in the command line.

There’s one problem with using command line parameters to defi ne variable values. When
you set the variable, the value isn’t available in the BEGIN section of the code:

$ cat script2
BEGIN{print "The starting value is",n; FS=","}
{print $n}
$ gawk -f script2 n=3 data1
The starting value is
data13
data23
data33
$

600

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 600

You can solve this using the -v command line parameter. This allows you to specify vari-
ables that are set before the BEGIN section of code. The -v command line parameter must
be placed before the script code in the command line:

$ gawk -v n=3 -f script2 data1
The starting value is 3
data13
data23
data33
$

Now the n variable contains the value set in the command line during the BEGIN section
of code.

Working with Arrays
Many programming languages provide arrays for storing multiple values in a single vari-
able. The gawk programming language provides the array feature using associative arrays.

Associative arrays are different from numerical arrays in that the index value can be any
text string. You don’t have to use sequential numbers to identify data elements contained
in the array. Instead, an associative array consists of a hodge-podge of strings referencing
values. Each index string must be unique and uniquely identifi es the data element that’s
assigned to it. If you’re familiar with other programming languages, this is the same con-
cept as hash maps or dictionaries.

The following sections walk you through using associative array variables in your gawk
programs.

Defi ning array variables
You can defi ne an array variable using a standard assignment statement. Here’s the format
of the array variable assignment:

var[index] = element

In this example, var is the variable name, index is the associative array index value, and
element is the data element value. Here are some examples of array variables in gawk:

capital["Illinois"] = "Springfield"
capital["Indiana"] = "Indianapolis"
capital["Ohio"] = "Columbus"

When you reference an array variable, you must include the index value to retrieve the
appropriate data element value:

$ gawk 'BEGIN{
> capital["Illinois"] = "Springfield"

601

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 601

22

> print capital["Illinois"]
> }'
Springfield
$

When you reference the array variable, the data element value appears. This also works
with numeric data element values:

$ gawk 'BEGIN{
> var[1] = 34
> var[2] = 3
> total = var[1] + var[2]
> print total
> }'
37
$

As you can see from this example, you can use array variables just as you would any other
variable in the gawk program.

Iterating through array variables
The problem with associative array variables is that you might not have any way of know-
ing what the index values are. Unlike numeric arrays, which use sequential numbers for
index values, an associative array index can be anything.

If you need to iterate through an associate array in gawk, you can use a special format of
the for statement:

for (var in array)
{
 statements
}

The for statement loops through the statements, each time assigning the variable var the
next index value from the array associative array. It’s important to remember that the vari-
able is the value of the index and not the data element value. You can easily extract the
data element value by using the variable as the array index:

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> var["m"] = 3
> var["u"] = 4
> for (test in var)
> {
> print "Index:",test," - Value:",var[test]
> }
> }'

602

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 602

Index: u - Value: 4
Index: m - Value: 3
Index: a - Value: 1
Index: g - Value: 2
$

Notice that the index values aren’t returned in any particular order, but they each refer-
ence the appropriate data element value. This is somewhat important to know, because you
can’t count on the returned values being in the same order, just that the index and data
values match.

Deleting array variables
Removing an array index from an associative array requires a special command:

delete array[index]

The delete command removes the associative index value and the associated data element
value from the array:

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> for (test in var)
> {
> print "Index:",test," - Value:",var[test]
> }
> delete var["g"]
> print "---"
> for (test in var)
> print "Index:",test," - Value:",var[test]
> }'
Index: a - Value: 1
Index: g - Value: 2

Index: a - Value: 1
$

After you delete an index value from the associative array, you can’t retrieve it.

Using Patterns
The gawk program supports several types of matching patterns to fi lter data records, in
much the same way as the sed editor. Chapter 19 showed two special patterns in action.
The BEGIN and END keywords are special patterns that execute statements before or after
the data stream data has been read. Similarly, you can create other patterns to execute
statements when matching data appears in the data stream.

603

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 603

22

This section demonstrates how to use matching patterns in your gawk scripts to limit what
records a program script applies to.

Regular expressions
Chapter 20 showed how to use regular expressions as matching patterns. You can use either
a Basic Regular Expression (BRE) or an Extended Regular Expression (ERE) to fi lter which
lines in the data stream the program script applies to.

When using a regular expression, the regular expression must appear before the left brace
of the program script that it controls:

$ gawk 'BEGIN{FS=","} /11/{print $1}' data1
data11
$

The regular expression /11/ matches records that contain the string 11 anywhere in the
data fi elds. The gawk program matches the defi ned regular expression against all the data
fi elds in the record, including the fi eld separator character:

$ gawk 'BEGIN{FS=","} /,d/{print $1}' data1
data11
data21
data31
$

This example matches the comma used as the fi eld separator in the regular expression. This
is not always a good thing. It can lead to problems trying to match data specifi c to one data
fi eld that may also appear in another data fi eld. If you need to match a regular expression
to a specifi c data instance, you should use the matching operator.

The matching operator
The matching operator allows you to restrict a regular expression to a specifi c data fi eld in
the records. The matching operator is the tilde symbol (~). You specify the matching opera-
tor, along with the data fi eld variable, and the regular expression to match:

$1 ~ /^data/

The $1 variable represents the fi rst data fi eld in the record. This expression fi lters records
where the fi rst data fi eld starts with the text data. The following is an example of using
the matching operator in a gawk program script:

$ gawk 'BEGIN{FS=","} $2 ~ /^data2/{print $0}' data1
data21,data22,data23,data24,data25
$

604

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 604

The matching operator compares the second data fi eld with the regular expression
/^data2/, which indicates the string starts with the text data2.
This is a powerful tool that is commonly used in gawk program scripts to search for specifi c
data elements in a data fi le:

$ gawk -F: '$1 ~ /rich/{print $1,$NF}' /etc/passwd
rich /bin/bash
$

This example searches the fi rst data fi eld for the text rich. When it fi nds the pattern in a
record, it prints the fi rst and last data fi eld values of the record.

You can also negate the regular expression match by using the ! symbol:

$1 !~ /expression/

If the regular expression isn’t found in the record, the program script is applied to the
record data:

$ gawk –F: '$1 !~ /rich/{print $1,$NF}' /etc/passwd
root /bin/bash
daemon /bin/sh
bin /bin/sh
sys /bin/sh
--- output truncated ---
$

In this example, the gawk program script prints the userid and shell for all the entries in
the /etc/passwd fi le that don’t match the userid rich!

Mathematical expressions
In addition to regular expressions, you can also use mathematical expressions in the
matching pattern. This feature comes in handy when matching numerical values in data
fi elds. For example, if you want to display all the system users who belong to the root users
group (group number 0), you could use this script:

$ gawk -F: '$4 == 0{print $1}' /etc/passwd
root
sync
shutdown
halt
operator
$

The script checks for records where the fourth data fi eld contains the value 0. On this Linux
system, fi ve user accounts belong to the root user group.

605

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 605

22

You can use any of the normal mathematical comparison expressions:

 ■ x == y: Value x is equal to y.

 ■ x <= y: Value x is less than or equal to y.

 ■ x < y: Value x is less than y.

 ■ x >= y: Value x is greater than or equal to y.

 ■ x > y: Value x is greater than y.

You can also use expressions with text data, but you must be careful. Unlike regular expres-
sions, expressions are an exact match. The data must match exactly with the pattern:

$ gawk -F, '$1 == "data"{print $1}' data1
$
$ gawk -F, '$1 == "data11"{print $1}' data1
data11
$

The fi rst test doesn’t match any records because the fi rst data fi eld value isn’t data in any
of the records. The second test matches one record with the value data11.

Structured Commands
The gawk programming language supports the usual cast of structured programming com-
mands. This section describes each of these commands and demonstrates how to use them
within a gawk programming environment.

The if statement
The gawk programming language supports the standard if-then-else format of the
if statement. You must defi ne a condition for the if statement to evaluate, enclosed in
parentheses. If the condition evaluates to a TRUE condition, the statement immediately fol-
lowing the if statement is executed. If the condition evaluates to a FALSE condition, the
statement is skipped. You can use this format:

if (condition)
 statement1

Or you can place it on one line, like this:

if (condition) statement1

Here’s a simple example demonstrating this format:

$ cat data4
10

606

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 606

5
13
50
34
$ gawk '{if ($1 > 20) print $1}' data4
50
34
$

Not too complicated. If you need to execute multiple statements in the if statement, you
must enclose them with braces:

$ gawk '{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> }
> }' data4
100
68
$

Be careful that you don’t confuse the if statement braces with the braces used to start and
stop the program script. The gawk program can detect missing braces and produces an error
message if you mess up:

$ gawk '{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> }' data4
gawk: cmd. line:6: }
gawk: cmd. line:6: ^ unexpected newline or end of string
$

The gawk if statement also supports the else clause, allowing you to execute one or more
statements if the if statement condition fails. Here’s an example of using the else clause:

$ gawk '{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> } else
> {
> x = $1 / 2
> print x

607

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 607

22

> }}' data4
5
2.5
6.5
100
68
$

You can use the else clause on a single line, but you must use a semicolon after the if
statement section:

if (condition) statement1; else statement2

Here’s the same example using the single line format:

$ gawk '{if ($1 > 20) print $1 * 2; else print $1 / 2}' data4
5
2.5
6.5
100
68
$

This format is more compact but can be harder to follow.

The while statement
The while statement provides a basic looping feature for gawk programs. Here’s the format
of the while statement:

while (condition)
{
 statements
}

The while loop allows you to iterate over a set of data, checking a condition that stops the
iteration. This is useful if you have multiple data values in each record that you must use
in calculations:

$ cat data5
130 120 135
160 113 140
145 170 215
$ gawk '{
> total = 0
> i = 1
> while (i < 4)
> {

608

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 608

> total += $i
> i++
> }
> avg = total / 3
> print "Average:",avg
> }' data5
Average: 128.333
Average: 137.667
Average: 176.667
$

The while statement iterates through the data fi elds in the record, adding each value
to the total variable and incrementing the counter variable, i. When the counter value
is equal to 4, the while condition becomes FALSE, and the loop terminates, dropping
through to the next statement in the script. That statement calculates the average and
prints the average. This process is repeated for each record in the data fi le.

The gawk programming language supports using the break and continue statements in
while loops, allowing you to jump out of the middle of the loop:

$ gawk '{
> total = 0
> i = 1
> while (i < 4)
> {
> total += $i
> if (i == 2)
> break
> i++
> }
> avg = total / 2
> print "The average of the first two data elements is:",avg
> }' data5
The average of the first two data elements is: 125
The average of the first two data elements is: 136.5
The average of the first two data elements is: 157.5
$

The break statement is used to break out of the while loop if the value of the i
variable is 2.

The do-while statement
The do-while statement is similar to the while statement but performs the statements
before checking the condition statement. Here’s the format for the do-while statement:

do
{

609

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 609

22

 statements
} while (condition)

This format guarantees that the statements are executed at least one time before the
condition is evaluated. This comes in handy when you need to perform statements before
evaluating the condition:

$ gawk '{
> total = 0
> i = 1
> do
> {
> total += $i
> i++
> } while (total < 150)
> print total }' data5
250
160
315
$

The script reads the data fi elds from each record and totals them until the cumulative value
reaches 150. If the fi rst data fi eld is over 150 (as seen in the second record), the script is
guaranteed to read at least the fi rst data fi eld before evaluating the condition.

The for statement
The for statement is a common method used in many programming languages for looping.
The gawk programming language supports the C-style of for loops:

for(variable assignment; condition; iteration process)

This helps simplify the loop by combining several functions in one statement:

$ gawk '{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> print "Average:",avg
> }' data5
Average: 128.333
Average: 137.667
Average: 176.667
$

By defi ning the iteration counter in the for loop, you don’t have to worry about incre-
menting it yourself as you did when using the while statement.

610

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 610

Formatted Printing
You may have noticed that the print statement doesn’t exactly give you much control over
how gawk displays your data. About all you can do is control the output fi eld separator
character (OFS). If you’re creating detailed reports, often you need to place data in a spe-
cifi c format and location.

The solution is to use the formatted printing command, called printf. If you’re familiar
with C programming, the printf command in gawk performs the same way, allowing you
to specify detailed instructions on how to display data.

Here’s the format of the printf command:

printf "format string", var1, var2 . . .

The format string is the key to the formatted output. It specifi es exactly how the formatted
output should appear, using both text elements and format specifi ers. A format specifi er is
a special code that indicates what type of variable is displayed and how to display it. The
gawk program uses each format specifi er as a placeholder for each variable listed in the
command. The fi rst format specifi er matches the fi rst variable listed, the second matches
the second variable, and so on.

The format specifi ers use the following format:

%[modifier]control-letter

In this example, control-letter is a one-character code that indicates what type of data
value will be displayed, and modifier defi nes an optional formatting feature.

Table 22-3 lists the control letters that can be used in the format specifi er.

TABLE 22-3 Format Specifi er Control Letters

Control Letter Description

c Displays a number as an ASCII character

d Displays an integer value

i Displays an integer value (same as d)

e Displays a number in scientifi c notation

f Displays a fl oating-point value

g Displays either scientifi c notation or fl oating point, whichever is shorter

o Displays an octal value

s Displays a text string

611

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 611

22

x Displays a hexadecimal value

X Displays a hexadecimal value, but using capital letters for A through F

Thus, if you need to display a string variable, you use the format specifi er %s. If you need
to display an integer variable, you use either %d or %i (%d is the C-style for decimals). If
you want to display a large value using scientifi c notation, you use the %e format specifi er:

$ gawk 'BEGIN{
> x = 10 * 100
> printf "The answer is: %e\n", x
> }'
The answer is: 1.000000e+03
$

In addition to the control letters, you can use three modifi ers for even more control over
your output:

 ■ width: This is a numeric value that specifi es the minimum width of the output
fi eld. If the output is shorter, printf pads the space with spaces, using right
justifi cation for the text. If the output is longer than the specifi ed width, it over-
rides the width value.

 ■ prec: This is a numeric value that specifi es the number of digits to the right of the
decimal place in fl oating-point numbers, or the maximum number of characters
displayed in a text string.

 ■ - (minus sign): The minus sign indicates that left justifi cation should be used
instead of right justifi cation when placing data in the formatted space.

When using the printf statement, you have complete control over how your output
appears. For example, in the “Built-in variables” section, we used the print command to
display data fi elds from our records:

$ gawk 'BEGIN{FS="\n"; RS=""} {print $1,$4}' data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

You can use the printf command to help format the output so it looks better. First, let’s
just convert the print command to a printf command and see what that does:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%s %s\n", $1, $4}' data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

612

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 612

That produces the same output as the print command. The printf command uses the %s
format specifi er as a placeholder for the two string values.

Notice that you have to manually add the newline character at the end of the printf com-
mand to force a new line. Without it, the printf command uses the same line on subse-
quent prints.

This is useful if you need to print multiple things on the same line, but using separate
printf commands:

$ gawk 'BEGIN{FS=","} {printf "%s ", $1} END{printf "\n"}' data1
data11 data21 data31
$

Both printf outputs appear on the same line. To be able to terminate the line, the END
section prints a single newline character.

Next, let’s use a modifi er to format the fi rst string value:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%16s %s\n", $1, $4}' data2
 Riley Mullen (312)555-1234
 Frank Williams (317)555-9876
 Haley Snell (313)555-4938
$

By adding the 16 modifi er value, we force the output for the fi rst string to use 16 spaces.
By default, the printf command uses right justifi cation to place the data in the format
space. To make it left justifi ed, just add a minus sign to the modifi er:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%-16s %s\n", $1, $4}' data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

Now that looks pretty professional!

The printf command also comes in handy when dealing with fl oating-point values. By
specifying a format for the variable, you can make the output look more uniform:

$ gawk '{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> printf "Average: %5.1f\n",avg
> }' data5

613

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 613

22

Average: 128.3
Average: 137.7
Average: 176.7
$

By using the %5.1f format specifi er, you can force the printf command to round the
fl oating-point values to a single decimal place.

Built-In Functions
The gawk programming language provides quite a few built-in functions that perform com-
mon mathematical, string, and even time functions. You can utilize these functions in your
gawk programs to help cut down on the coding requirements in your scripts. This section
walks you through the different built-in functions available in gawk.

Mathematical functions
If you’ve done programming in any type of language, you’re probably familiar with using
built-in functions in your code to perform common mathematical functions. The gawk pro-
gramming language doesn’t disappoint those looking for advanced mathematical features.

Table 22-4 shows the mathematical built-in functions available in gawk.

TABLE 22-4 The gawk Mathematical Functions

Function Description

atan2(x, y) The arctangent of x / y, with x and y specifi ed in radians

cos(x) The cosine of x, with x specifi ed in radians

exp(x) The exponential of x

int(x) The integer part of x, truncated toward 0

log(x) The natural logarithm of x

rand() A random fl oating point value larger than 0 and less than 1

sin(x) The sine of x, with x specifi ed in radians

sqrt(x) The square root of x

srand(x) Specifi es a seed value for calculating random numbers

Although it does not have an extensive list of mathematical functions, gawk does provide
some of the basic elements you need for standard mathematical processing. The int()
function produces the integer portion of a value, but it doesn’t round the value. It behaves
much like a fl oor function found in other programming languages. It produces the nearest
integer to a value between the value and 0.

614

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 614

This means that the int() function of the value 5.6 returns 5, while the int() function
of the value -5.6 returns -5.

The rand() function is great for creating random numbers, but you need to use a trick to
get meaningful values. The rand() function returns a random number, but only between
the values 0 and 1 (not including 0 or 1). To get a larger number, you need to scale the
returned value.

A common method for producing larger integer random numbers is to create an algorithm
that uses the rand() function, along with the int() function:

x = int(10 * rand())

This returns a random integer value between (and including) 0 and 9. Just substitute the 10
in the equation with the upper limit value for your application, and you’re ready to go.

Be careful when using some of the mathematical functions, because the gawk programming
language does have a limited range of numeric values it can work with. If you go over that
range, you get an error message:

$ gawk 'BEGIN{x=exp(100); print x}'
26881171418161356094253400435962903554686976
$ gawk 'BEGIN{x=exp(1000); print x}'
gawk: warning: exp argument 1000 is out of range
inf
$

The fi rst example calculates the natural exponential function of 100, which is a very large
number but within the range of the system. The second example attempts to calculate the
natural exponential function of 1,000, which goes over the numerical range limit of the
system and produces an error message.

Besides the standard mathematical functions, gawk also provides a few functions for bit-
wise manipulating of data:

 ■ and(v1, v2): Performs a bitwise AND of values v1 and v2

 ■ compl(val): Performs the bitwise complement of val

 ■ lshift(val, count): Shifts the value val count number of bits left

 ■ or(v1, v2): Performs a bitwise OR of values v1 and v2

 ■ rshift(val, count): Shifts the value val count number of bits right

 ■ xor(v1, v2): Performs a bitwise XOR of values v1 and v2

The bit manipulation functions are useful when working with binary values in your data.

615

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 615

22

String functions
The gawk programming language also provides several functions you can use to manipulate
string values, shown in Table 22-5.

TABLE 22-5 The gawk String Functions

Function Description

asort(s [,d]) This function sorts an array s based on the data element values.
The index values are replaced with sequential numbers indicat-
ing the new sort order. Alternatively, the new sorted array is
stored in array d if specifi ed.

asorti(s [,d]) This function sorts an array s based on the index values. The
resulting array contains the index values as the data element val-
ues, with sequential number indexes indicating the sort order.
Alternatively, the new sorted array is stored in array d if specifi ed.

gensub(r, s, h [, t]) This function searches either the variable $0, or the target string
t if supplied, for matches of the regular expression r. If h is a
string beginning with either g or G, it replaces the matching text
with s. If h is a number, it represents which occurrence of r to
replace.

gsub(r, s [,t]) This function searches either the variable $0, or the target string
t if supplied, for matches of the regular expression r. If found, it
substitutes the string s globally.

index(s, t) This function returns the index of the string t in string s, or 0 if
not found.

length([s]) This function returns the length of string s, or if not specifi ed, the
length of $0.

match(s, r [,a]) This function returns the index of the string s where the regular
expression r occurs. If array a is specifi ed, it contains the portion
of s that matches the regular expression.

split(s, a [,r]) This function splits s into array a using either the FS character, or
the regular expression r if supplied. It returns the number of
fi elds.

sprintf(format,
variables)

This function returns a string similar to the output of printf
using the format and variables supplied.

sub(r, s [,t]) This function searches either the variable $0, or the target string
t, for matches of the regular expression r. If found, it substitutes
the string s for the fi rst occurrence.

substr(s, i [,n]) This function returns the nth character substring of s, starting at
index i. If n is not supplied, the rest of s is used.

tolower(s) This function converts all characters in s to lowercase.

toupper(s) This function converts all characters in s to uppercase.

616

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 616

Some string functions are relatively self-explanatory:

$ gawk 'BEGIN{x = "testing"; print toupper(x); print length(x) }'
TESTING
7
$

However, some string functions can get pretty complicated. The asort and asorti func-
tions are new gawk functions that allow you to sort an array variable based on either the
data element values (asort) or the index values (asorti). Here’s an example of using
asort:

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> var["m"] = 3
> var["u"] = 4
> asort(var, test)
> for (i in test)
> print "Index:",i," - value:",test[i]
> }'
Index: 4 - value: 4
Index: 1 - value: 1
Index: 2 - value: 2
Index: 3 - value: 3
$

The new array, test, contains the newly sorted data elements of the original array, but the
index values are now changed to numerical values, indicating the proper sort order.

The split function is a great way to push data fi elds into an array for further processing:

$ gawk 'BEGIN{ FS=","}{
> split($0, var)
> print var[1], var[5]
> }' data1
data11 data15
data21 data25
data31 data35
$

The new array uses sequential numbers for the array index, starting with index value 1
containing the fi rst data fi eld.

Time functions
The gawk programming language contains a few functions to help you deal with time
values, shown in Table 22-6.

617

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 617

22

TABLE 22-6 The gawk Time Functions

Function Description

mktime(datespec) Converts a date specifi ed in the format YYYY MM DD HH MM SS
[DST] into a timestamp value

strftime(format
[,timestamp])

Formats either the current time of day timestamp, or timestamp if
provided, into a formatted day and date, using the date() shell
function format

systime() Returns the timestamp for the current time of day

The time functions are often used when working with log fi les that contain dates that you
need to compare. By converting the text representation of a date to the epoch time (the
number of seconds since midnight, January 1, 1970), you can easily compare dates.

The following is an example of using the time functions in a gawk program:

$ gawk 'BEGIN{
> date = systime()
> day = strftime("%A, %B %d, %Y", date)
> print day
> }'
Friday, December 26, 2014
$

This example uses the systime function to retrieve the current epoch timestamp from the
system and then uses the strftime function to convert it into a human-readable format
using the date shell command’s date format characters.

User-Defi ned Functions
You’re not limited to just using the built-in functions available in gawk. You can create
your own functions for use in gawk programs. This section shows you how to defi ne and
use your own functions in gawk programs.

Defi ning a function
To defi ne you own function, you must use the function keyword:

function name([variables])
{
 statements
}

618

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 618

The function name must uniquely identify your function. You can pass one or more vari-
ables into the function from the calling gawk program:

function printthird()
{
 print $3
}

This function prints the third data fi eld in the record.

The function can also return a value using the return statement:

return value

The value can be a variable, or an equation that evaluates to a value:

function myrand(limit)
{
 return int(limit * rand())
}

You can assign the value returned from the function to a variable in the gawk program:

x = myrand(100)

The variable contains the value returned from the function.

Using your functions
When you defi ne a function, it must appear by itself before you defi ne any programming
sections (including the BEGIN section). This may look a little odd at fi rst, but it helps keep
the function code separate from the rest of the gawk program:

$ gawk '
> function myprint()
> {
> printf "%-16s - %s\n", $1, $4
> }
> BEGIN{FS="\n"; RS=""}
> {
> myprint()
> }' data2
Riley Mullen - (312)555-1234
Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$

619

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 619

22

The function defi nes the myprint() function, which formats the fi rst and fourth data
fi elds in the record for printing. The gawk program then uses the function to display the
data from the data fi le.

After you defi ne a function, you can use it as often as necessary in the program section of
the code. This saves lots of work when using long algorithms.

Creating a function library
Obviously, having to rewrite your gawk functions every time you need them is not a pleas-
ant experience. However, gawk provides a way for you to combine your functions into a
single library fi le that you can use in all your gawk programming.

First, you need to create a fi le that contains all your gawk functions:

$ cat funclib
function myprint()
{
 printf "%-16s - %s\n", $1, $4
}
function myrand(limit)
{
 return int(limit * rand())
}
function printthird()
{
 print $3
}
$

The funclib fi le contains three function defi nitions. To use them, you need to use the -f
command line parameter. Unfortunately, you can’t combine the -f command line parameter
with an inline gawk script, but you can use multiple -f parameters on the same command line.

Thus, to use your library, just create a fi le that contains your gawk program, and specify
both the library fi le and your program fi le on the command line:

$ cat script4
BEGIN{ FS="\n"; RS=""}
{
 myprint()
}
$ gawk -f funclib -f script4 data2
Riley Mullen - (312)555-1234
Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$

620

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 620

Now you just need to add the funclib fi le to your gawk command line whenever you
need to use a function defi ned in the library.

Working through a Practical Example
The advanced gawk features come in handy if you have to handle data values in a data fi le,
such as tabulating sales fi gures or calculating bowling scores. When you work with data
fi les, the key is to fi rst group related data records together and then perform any calcula-
tions required on the related data.

For example, let’s work with a data fi le that contains the bowling scores from a game
between two teams, each with two players:

$ cat scores.txt
Rich Blum,team1,100,115,95
Barbara Blum,team1,110,115,100
Christine Bresnahan,team2,120,115,118
Tim Bresnahan,team2,125,112,116
$

Each player has scores from three separate games in the data fi le, and each player is identi-
fi ed by a team name in the second column. Here’s the shell script to sort the data for each
team and calculate the totals and averages:

$ cat bowling.sh
#!/bin/bash

for team in $(gawk –F, '{print $2}' scores.txt | uniq)
do
 gawk –v team=$team 'BEGIN{FS=","; total=0}
 {
 if ($2==team)
 {
 total += $3 + $4 + $5;
 }
 }
 END {
 avg = total / 6;
 print "Total for", team, "is", total, ",the average is",avg
 }' scores.txt
done
$

The fi rst gawk statement inside the for loop fi lters out the team names in the data fi le
and then uses the uniq function to return one value for each separate team name. The for
loop then iterates for each separate team name.

621

Chapter 22: Advanced gawk

c22.indd 12/16/2014 Page 621

22

The gawk statement inside the for loop is what’s doing the calculations. For each data
record, it fi rst determines if the team name matches the loop team. That’s done by using the
–v option in gawk, which allows us to pass a shell variable inside the gawk program. If the
team name matches, the code keeps a running sum of the three scores in the data record,
adding each data record’s values, as long as that data record matches the team name.

At the end of each loop iteration, the gawk code displays the score totals, as well as the
average of the scores. The output should look like this:

$./bowling.sh
Total for team1 is 635, the average is 105.833
Total for team2 is 706, the average is 117.667
$

Now you have a handy shell script to calculate the results of all your bowling tournaments;
you just need to plug the data from each player into the data text fi le and run the script!

Summary
This chapter walked you through the more advanced features of the gawk programming
language. Every programming language requires using variables, and gawk is no different.
The gawk programming language includes some built-in variables that you can use to
reference specifi c data fi eld values and retrieve information about the number of data fi e lds
and records processed in the data fi le. You can also create your own variables for use in
your scripts.

The gawk programming language also provides many of the standard structured commands
you expect from a programming language. You can easily create fancy programs using
if-then logic and while, do-while, and for loops. Each of these commands allows you
to alter the fl ow of your gawk program script to iterate through data fi eld values to create
detailed data reports.

The printf command is a great tool to have if you need to customize your report out-
put. It allows you to specify the exact format for displaying data from the gawk program
script. You can easily create formatted reports, placing data elements in exactly the correct
position.

Finally, this chapter discussed the many built-in functions available in the gawk program-
ming language and showed you how to create your own functions. The gawk program
contains many useful functions for handling mathematical features, such as standard
square roots and logarithms, as well as trigonometric functions. There are also several
string-related functions that make extracting substrings from larger strings a breeze.

622

Part III: Advanced Shell Scripting

c22.indd 12/16/2014 Page 622

You aren’t limited to the built-in functions in the gawk program. If you’re working on an
application that uses lots of specialized algorithms, you can create your own functions to
process the algorithms and use those functions in your own code. You can also set up a
library fi le containing all the functions you use in your gawk programs, saving you time
and effort in all your coding.

The next chapter switches gears a little. It examines a few other shell environments you
may run into in your Linux shell-scripting endeavors. Although the bash shell is the most
common shell used in Linux, it’s not the only shell. It helps to know a little about some of
the other shells available and how they differ from the bash shell.

623

c23.indd 12/09/2014 Page 623

CHAP T ER

23
Working with Alternative Shells

IN THIS CHAPTER

Understanding the dash shell

Programming in the dash shell

Introducing the zsh shell

Writing scripts for zsh

A
lthough the bash shell is the most widely used shell in Linux distributions, it isn’t the only
one. Now that you’ve seen the standard Linux bash shell and what you can do with it, it’s
time to examine a few other shells available in the Linux world. This chapter describes two

other shells that you may run into in your Linux journey and how they differ from the bash shell.

What Is the dash Shell?
The Debian dash shell has had an interesting past. It’s a direct descendant of the ash shell, a simple
copy of the original Bourne shell available on Unix systems (see Chapter 1). Kenneth Almquist
created a small-scale version of the Bourne shell for Unix systems and called it the Almquist shell,
which was then shortened to ash. This original version of the ash shell was extremely small and
fast but without many advanced features, such as command line editing or history features, mak-
ing it diffi cult to use as an interactive shell.

The NetBSD Unix operating system adopted the ash shell and still uses it today as the default shell.
The NetBSD developers customized the ash shell by adding several new features, making it closer
to the Bourne shell. The new features include command line editing using both emacs and vi editor
commands, as well as a history command to recall previously entered commands. This version of the
ash shell is also used by the FreeBSD operating system as the default login shell.

The Debian Linux distribution created its own version of the ash shell (called Debian ash, or dash)
for inclusion in its version of Linux. For the most part, dash copies the features of the NetBSD
version of the ash shell, providing the advanced command line editing capabilities.

However, to add to the shell confusion, the dash shell is actually not the default shell in many
Debian-based Linux distributions. Because of the popularity of the bash shell in Linux, most

624

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 624

Debian-based Linux distributions use the bash shell as the normal login shell and use the
dash shell only as a quick-start shell for the installation script to install the distribution
fi les.

The exception is the popular Ubuntu distribution. This often confuses shell script program-
mers and causes a great number of problems with running shell scripts in a Linux environ-
ment. The Ubuntu Linux distribution uses the bash shell as the default interactive shell,
but uses the dash shell as the default /bin/sh shell. This “feature” really confuses shell
script programmers.

As you saw in Chapter 11, every shell script must start with a line that declares the shell
used for the script. In our bash shell scripts, we’ve been using this:

#!/bin/bash

This tells the shell to use the shell program located at /bin/bash to execute the script.
In the Unix world, the default shell was always /bin/sh. Many shell script programmers
familiar with the Unix environment copy this into their Linux shell scripts:

#!/bin/sh

On most Linux distributions, the /bin/sh fi le is a symbolic link (see Chapter 3) to the
/bin/bash shell program. This allows you to easily port shell scripts designed for the Unix
Bourne shell to the Linux environment without having to modify them.

Unfortunately, the Ubuntu Linux distribution links the /bin/sh fi le to the /bin/dash
shell program. Because the dash shell contains only a subset of the commands available
in the original Bourne shell, this can — and often does — cause some shell scripts to not
work properly.

The next section walks you through the basics of the dash shell and how it differs from
the bash shell. This is especially important to know if you write bash shell scripts that may
need to be run in an Ubuntu environment.

The dash Shell Features
Although both the bash shell and the dash shell are modeled after the Bourne shell, they
have some differences. This section walks you through the features found in the Debian
dash shell to acquaint you with how the dash shell works before we dive into the shell
scripting features.

The dash command line parameters
The dash shell uses command line parameters to control its behavior. Table 23-1 lists the
command line parameters and describes what each one does.

625

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 625

23

23

TABLE 23-1 The dash Command Line Parameters

Parameter Description

-a Exports all variables assigned to the shell

-c Reads commands from a specifi ed command string

-e If not interactive, exits immediately if any untested command fails

-f Displays pathname wildcard characters

-n If not interactive, reads commands but doesn’t execute them

-u Writes an error message to STDERR when attempting to expand a variable that
is not set

-v Writes input to STDERR as it is read

-x Writes each command to STDERR as it is executed

-I Ignores EOF characters from the input when in interactive mode

-i Forces the shell to operate in interactive mode

-m Turns on job control (enabled by default in interactive mode)

-s Reads commands from STDIN (the default behavior if no fi le arguments are
present)

-E Enables the emacs command line editor

-V Enables the vi command line editor

Debian added a few additional command line parameters to the original ash shell command
line parameter list. The -E and -V command line parameters enable the special command
line editing features of the dash shell.

The -E command line parameter allows you to use the emacs editor commands for editing
command line text (see Chapter 10). You can use all the emacs commands for manipulating
text on a single line using the Ctrl and Meta key combinations.

The -V command line parameter allows you to use the vi editor commands for editing com-
mand line text (again, see Chapter 10). This feature allows you to switch between normal
mode and vi editor mode on the command line by using the Esc key. When you’re in vi
editor mode, you can use all the standard vi editor commands (such as x to delete a char-
acter, and i to insert text). After you fi nish editing the command line, you must press the
Esc key again to exit vi editor mode.

The dash environment variables
The dash shell uses quite a few default environment variables uses to track information,
and you can create your own environment variables as well. This section describes the
environment variables and how dash handles them.

626

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 626

Default environment variables

The dash environment variables are very similar to the environment variables used in bash
(see Chapter 6). This is not by accident. Remember that both the dash and bash shells are
extensions of the Bourne shell, so they both incorporate many of its features. However,
because of its goal of simplicity, the dash shell contains signifi cantly fewer environment
variables than the bash shell. You need to take this into consideration when creating shell
scripts in a dash shell environment.

The dash shell uses the set command to display environment variables:

$set
COLORTERM=''
DESKTOP_SESSION='default'
DISPLAY=':0.0'
DM_CONTROL='/var/run/xdmctl'
GS_LIB='/home/atest/.fonts'
HOME='/home/atest'
IFS='
'
KDEROOTHOME='/root/.kde'
KDE_FULL_SESSION='true'
KDE_MULTIHEAD='false'
KONSOLE_DCOP='DCOPRef(konsole-5293,konsole)'
KONSOLE_DCOP_SESSION='DCOPRef(konsole-5293,session-1)'
LANG='en_US'
LANGUAGE='en'
LC_ALL='en_US'
LOGNAME='atest'
OPTIND='1'
PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
PPID='5293'
PS1='$ '
PS2='> '
PS4='+ '
PWD='/home/atest'
SESSION_MANAGER='local/testbox:/tmp/.ICE-unix/5051'
SHELL='/bin/dash'
SHLVL='1'
TERM='xterm'
USER='atest'
XCURSOR_THEME='default'
_='ash'
$

Your default dash shell environment will most likely differ, because different Linux distri-
butions assign different default environment variables at login.

627

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 627

23

Positional parameters

In addition to the default environment variables, the dash shell also assigns special vari-
ables to any parameters defi ned in the command line. Here are the positional parameter
variables available for use in the dash shell:

 ■ $0: The name of the shell

 ■ $n: The nth position parameter

 ■ $*: A single value with the contents of all the parameters, separated by the fi rst
character in the IFS environment variable, or a space if IFS isn’t defi ned

 ■ $@: Expands to multiple arguments consisting of all the command line parameters

 ■ $#: The number of positional parameters

 ■ $?: The exit status of the most recent command

 ■ $-: The current option fl ags

 ■ $$: The process ID (PID) of the current shell

 ■ $!: The process ID (PID) of the most recent background command

All the dash positional parameters mimic the same positional parameters available in the
bash shell. You can use each of the positional parameters in your shell scripts just as you
would in the bash shell.

User-defined environment variables

The dash shell also allows you to set your own environment variables. As with bash, you
can defi ne a new environment variable on the command line by using the assignment
statement:

$ testing=10 ; export testing
$ echo $testing
10
$

Without the export command, user-defi ned environment variables are visible only in the
current shell or process.

There’s one huge difference between dash variables and bash variables. The dash shell doesn’t support variable

arrays. This small feature causes all sorts of problems for advanced shell script writers.

628

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 628

The dash built-in commands
Just as with the bash shell, the dash shell contains a set of built-in commands that it rec-
ognizes. You can use these commands directly from the command line interface, or you can
incorporate them in your shell scripts. Table 23-2 lists the dash shell built-in commands.

TABLE 23-2 The dash Shell Built-In Commands

Command Description

alias Creates an alias string to represent a text string

bg Continues specifi ed job in background mode

cd Switches to the specifi ed directory

echo Displays a text string and environment variables

eval Concatenates all arguments with a space

exec Replaces the shell process with the specifi ed command

exit Terminates the shell process

export Exports the specifi ed environment variable for use in all child shells

fg Continues specifi ed job in foreground mode

getopts Obtains options and arguments from a list of parameters

hash Maintains and retrieves a hash table of recent commands and their locations

pwd Displays the value of the current working directory

read Reads a line from STDIN and assign the value to a variable

readonly Reads a line from STDIN to a variable that can’t be changed

printf Displays text and variables using a formatted string

set Lists or sets option fl ags and environment variables

shift Shifts the positional parameters a specifi ed number of times

test Evaluates an expression and returns 0 if true or 1 if false

times Displays the accumulated user and system times for the shell and all shell
processes

trap Parses and executes an action when the shell receives a specifi ed signal

type Interprets the specifi ed name and displays the resolution (alias, built-in, com-
mand, keyword)

ulimit Queries or sets limits on processes

umask Sets the value of the default fi le and directory permissions

unalias Removes the specifi ed alias

unset Removes the specifi ed variable or option fl ag from the exported variables

wait Waits for the specifi ed job to complete and returns the exit status

629

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 629

23

You probably recognize all these built-in commands from the bash shell. The dash shell sup-
ports many of the same built-in commands as the bash shell. You’ll notice that there are no
commands for the command history fi le or for the directory stack. The dash shell doesn’t
support these features.

Scripting in dash
Unfortunately, the dash shell doesn’t recognize all the scripting features of the bash shell.
Shell scripts written for the bash environment often fail when run in the dash shell,
causing all sorts of grief for shell script programmers. This section describes the differ-
ences you’ll need to be aware of to get your shell scripts to run properly in a dash shell
environment.

Creating dash scripts
You probably guessed by now that creating shell scripts for the dash shell is pretty similar
to creating shell scripts for the bash shell. You should always specify which shell you want
to use in your script to ensure that the script runs with the proper shell.

You do this on the fi rst line of the shell:

#!/bin/dash

You can also specify a shell command line parameter on this line, as was documented ear-
lier in “The dash command line parameters” section.

Things that don’t work
Unfortunately, because the dash shell is only a subset of the Bourne shell features, some
things in bash shell scripts don’t work in the dash shell. These are often called bashisms.
This section is a quick summary of bash shell features you may be used to using in your
bash shell scripts that don’t work if you’re in a dash shell environment.

Using arithmetic

Chapter 11 showed three ways to express a mathematical operation in the bash shell script:

 ■ Using the expr command: expr operation

 ■ Using square brackets: $[operation]

 ■ Using double parentheses: $((operation))

The dash shell supports the expr command and the double parentheses method but doesn’t
support the square bracket method. This can be a problem if you have lots of mathematical
operations that use the square brackets.

630

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 630

The proper format for performing mathematical operations in dash shell scripts is to use
the double parentheses method:

$ cat test5b
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$(($value1 * $value2))
echo "The answer is $value3"
$./test5b
The answer is 150
$

Now the shell can perform the calculation properly.

The test command

Although the dash shell supports the test command, you must be careful how you use
it. The bash shell version of the test command is slightly different from the dash shell
version.

The bash shell test command allows you to use the double equal sign (==) to test if two
strings are equal. This is an add-on to accommodate programmers familiar with using this
format in other programming languages.

However, the test command available in the dash shell doesn’t recognize the == symbol for
text comparisons. Instead, it only recognizes the = symbol. If you use the == symbol in your
bash scripts, you need to change the text comparison symbol to just a single equal sign:

$ cat test7
#!/bin/dash
testing the = comparison

test1=abcdef
test2=abcdef

if [$test1 = $test2]
then
 echo "They're the same!"
else
 echo "They're different"
fi
$./test7
They're the same!
$

631

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 631

23

This little bashism is responsible for many hours of frustration for shell programmers!

The function Command

Chapter 17 showed you how to defi ne your own functions in your shell scripts. The bash
shell supports two methods for defi ning functions:

 ■ Using the function() statement

 ■ Using the function name only

The dash shell doesn’t support the function statement. Instead, in the dash shell you
must defi ne a function using the function name with parentheses.

If you’re writing shell scripts that may be used in the dash environment, always defi ne
functions using the function name and not the function() statement:

$ cat test10
#!/bin/dash
testing functions

func1() {
 echo "This is an example of a function"
}

count=1
while [$count -le 5]
do
 func1
 count=$(($count + 1))
done
echo "This is the end of the loop"
func1
echo "This is the end of the script"
$./test10
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
This is the end of the script
$

Now the dash shell recognizes the function defi ned in the script just fi ne and uses it within
the script.

632

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 632

The zsh Shell
Another popular shell that you may run into is the Z shell (called zsh). The zsh shell is
an open source Unix shell developed by Paul Falstad. It takes ideas from all the existing
shells and adds many unique features to create a full-blown advanced shell designed for
programmers.

The following are some of the features that make the zsh shell unique:

 ■ Improved shell option handling

 ■ Shell compatibility modes

 ■ Loadable modules

Of all these features, a loadable module is the most advanced feature in shell design. As
you’ve seen in the bash and dash shells, each shell contains a set of built-in commands that
are available without the need for external utility programs. The benefi t of built-in com-
mands is execution speed. The shell doesn’t have to load a utility program into memory
before running it; the built-in commands are already in the shell memory, ready to go.

The zsh shell provides a core set of built-in commands, plus the capability to add more
command modules. Each command module provides a set of additional built-in commands for
specifi c circumstances, such as network support and advanced math functions. You can add
only the modules you think you need for your specifi c situation.

This feature provides a great way to either limit the size of the zsh shell for situations that
require a small shell size and few commands or expand the number of available built-in
commands for situations that require faster execution speeds.

Parts of the zsh Shell
This section walks you through the basics of the zsh shell, showing the built-in commands
that are available (or can be added by installing modules), as well as the command line
parameters and environment variables used by the zsh shell.

Shell options
Most shells use command line parameters to defi ne the behavior of the shell. The zsh shell
uses a few command line parameters to defi ne the operation of the shell, but mostly it uses
options to customize the behavior of the shell. You can set shell options either on the com-
mand line or within the shell itself using the set command.

Table 23-3 lists the command line parameters available for the zsh shell.

633

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 633

23

TABLE 23-3 The zsh Shell Command Line Parameters

Parameter Description

-c Executes only the specifi ed command and exits

-i Starts as an interactive shell, providing a command line interface prompt

-s Forces the shell to read commands from STDIN

-o Specifi es command line options

Although this may seem like a small set of command line parameters, the -o parameter is
somewhat misleading. It allows you to set shell options that defi ne features within the shell.
By far, the zsh shell is the most customizable shell available. You can alter lots of features
for your shell environment. The different options fi t into several general categories:

 ■ Changing directories: Options that control how the cd and dirs commands han-
dle directory changes

 ■ Completion: Options that control command completion features

 ■ Expansion and globbing: Options that control fi le expansion in commands

 ■ History: Options that control command history recall

 ■ Initialization: Options that control how the shell handles variables and startup
fi les when started

 ■ Input/output: Options that control command handling

 ■ Job control: Options that dictate how the shell handles and starts jobs

 ■ Prompting: Options that defi ne how the shell works with command line prompts

 ■ Scripts and functions: Options that control how the shell processes shell scripts
and defi nes shell functions

 ■ Shell emulation: Options that allow you to set the behavior of the zsh shell to
mimic the behavior of other shell types

 ■ Shell state: Options that defi ne what type of shell to start

 ■ zle: Options for controlling the zsh line editor (zle) feature

 ■ Option aliases: Special options that can be used as aliases for other option names

With this many different categories of shell options, you can imagine just how many actual
options the zsh shell supports.

Built-in commands
The zsh shell is unique in that it allows you to expand the built-in commands available in
the shell. This provides for a wealth of speedy utilities at your fi ngertips for a host of dif-
ferent applications.

634

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 634

This section describes the core built-in commands, along with the various modules available
at the time of this writing.

Core built-in commands

The core of the zsh shell contains the basic built-in commands you’re used to seeing in
other shells. Table 23-4 describes the built-in commands available for you.

TABLE 23-4 The zsh Core Built-In Commands

Command Description

alias Defi nes an alternate name for a command and arguments

autoload Preloads a shell function into memory for quicker access

bg Executes a job in background mode

bindkey Binds keyboard combinations to commands

builtin Executes the specifi ed built-in command instead of an executable fi le of
the same name

bye The same as exit

cd Changes the current working directory

chdir Changes the current working directory

command Executes the specifi ed command as an external fi le instead of a function or
built-in command

declare Sets the data type of a variable (same as typeset)

dirs Displays the contents of the directory stack

disable Temporarily disables the specifi ed hash table elements

disown Removes the specifi ed job from the job table

echo Displays variables and text

emulate Sets zsh to emulate another shell, such as the Bourne, Korn, or C shells

enable Enables the specifi ed hash table elements

eval Executes the specifi ed command and arguments in the current shell
process

exec Executes the specifi ed command and arguments replacing the current
shell process

exit Exits the shell with the specifi ed exit status. If none specifi ed, uses the exit
status of the last command

export Allows the specifi ed environment variable names and values to be used in
child shell processes

false Returns an exit status of 1

635

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 635

23

fc Selects a range of commands from the history list

fg Executes the specifi ed job in foreground mode

float Sets the specifi ed variable for use as a fl oating point variable

functions Sets the specifi ed name as a function

getln Reads the next value in the buffer stack and places it in the specifi ed
variable

getopts Retrieves the next valid option in the command line arguments and places
it in the specifi ed variable

hash Directly modifi es the contents of the command hash table

history Lists the commands contained in the history fi le

integer Sets the specifi ed variable for use as an integer value

jobs Lists information about the specifi ed job or all jobs assigned to the shell
process

kill Sends a signal (Default SIGTERM) to the specifi ed process or job

let Evaluates a mathematical operation and assigns the result to a variable

limit Sets or displays resource limits

local Sets the data features for the specifi ed variable

log Displays all users currently logged in who are affected by the watch
parameter

logout Same as exit, but works only when the shell is a login shell

popd Removes the next entry from the directory stack

print Displays variables and text

printf Displays variables and text using C-style format strings

pushd Changes the current working directory and puts the previous directory in
the directory stack

pushln Places the specifi ed arguments into the editing buffer stack

pwd Displays the full pathname of the current working directory

read Reads a line and assigns data fi elds to the specifi ed variables using the IFS
characters

readonly Assigns a value to a variable that can’t be changed

rehash Rebuilds the command hash table

set Sets options or positional parameters for the shell

setopt Sets the options for a shell

shift Reads and deletes the fi rst positional parameter and shifts the remaining
ones down one position

Continues

636

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 636

Command Description

source Finds the specifi ed fi le and copies its contents into the current location

suspend Suspends the execution of the shell until it receives a SIGCONT signal

test Returns an exit status of 0 if the specifi ed condition is TRUE

times Displays the cumulative user and system times for the shell and processes
that run in the shell

trap Blocks the specifi ed signals from being processed by the shell and exe-
cutes the specifi ed commands if the signals are received

true Returns a zero exit status

ttyctl Locks and unlocks the display

type Displays how the specifi ed command would be interpreted by the shell

typeset Sets or displays attributes of variables

ulimit Sets or displays resource limits of the shell or processes running in the shell

umask Sets or displays the default permissions for creating fi les and directories

unalias Removes the specifi ed command alias

unfunction Removes the specifi ed defi ned function

unhash Removes the specifi ed command from the hash table

unlimit Removes the specifi ed resource limit

unset Removes the specifi ed variable attribute.

unsetopt Removes the specifi ed shell option

wait Waits for the specifi ed job or process to complete

whence Displays how the specifi ed command would be interpreted by the shell

where Displays the pathname of the specifi ed command if found by the shell

Which Displays the pathname of the specifi ed command using csh-style output

zcompile Compiles the specifi ed function or script for faster autoloading

zmodload Performs operations on loadable zsh modules

The zsh shell is no slouch when it comes to providing built-in commands! You should recog-
nize most of these commands from their bash counterparts. The most important features of
the zsh shell built-in commands are modules.

Add-in modules

There’s a long list of modules that provide additional built-in commands for the zsh shell,
and the list continues to grow as resourceful programmers create new modules. Table 23-5
shows some of the more popular modules available.

TABLE 23-4 (continued)

637

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 637

23

TABLE 23-5 The zsh Modules

Module Description

zsh/datetime Additional date and time commands and variables

zsh/files Commands for basic fi le handling

zsh/mapfile Access to external fi les via associative arrays

zsh/mathfunc Additional scientifi c functions

zsh/pcre The extended regular expression library

zsh/net/socket Unix domain socket support

zsh/stat Access to the stat system call to provide system statistics

zsh/system Interface for various low-level system features

zsh/net/tcp Access to TCP sockets

zsh/zftp A specialized FTP client command

zsh/zselect Blocks and returns when fi le descriptors are ready

zsh/zutil Various shell utilities

The zsh shell modules cover a wide range of topics, from providing simple command line
editing features to advanced networking functions. The idea behind the zsh shell is to pro-
vide a basic minimum shell environment and let you add on the pieces you need to accom-
plish your programming job.

Viewing, adding, and removing modules

The zmodload command is the interface to the zsh modules. You use this command to
view, add, and remove modules from the zsh shell session.

Using the zmodload command without any command line parameters displays the cur-
rently installed modules in your zsh shell:

% zmodload
zsh/zutil
zsh/complete
zsh/main
zsh/terminfo
zsh/zle
zsh/parameter
%

638

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 638

Different zsh shell implementations include different modules by default. To add a new
module, just specify the module name on the zmodload command line:

% zmodload zsh/zftp
%

Nothing indicates that the module loaded. You can perform another zmodload command,
and the new module should appear in the list of installed modules.

After you load a module, the commands associated with the module are available as built-in
commands:

% zftp open myhost.com rich testing1
Welcome to the myhost FTP server.
% zftp cd test
% zftp dir
01-21-11 11:21PM 120823 test1
01-21-11 11:23PM 118432 test2
% zftp get test1 > test1.txt
% zftp close
%

The zftp command allows you to conduct a complete FTP session directly from your zsh
shell command line! You can incorporate these commands into your zsh shell scripts to per-
form fi le transfers directly from your scripts.

To remove an installed module, use the -u parameter, along with the module name:

% zmodload -u zsh/zftp
% zftp
zsh: command not found: zftp
%

It’s a common practice to place zmodload commands in the $HOME/.zshrc startup fi le so your favorite func-

tions load automatically when the zsh shell starts.

Scripting with zsh
The main purpose of the zsh shell was to provide an advanced programming environment
for shell programmers. With that in mind, it’s no surprise that the zsh shell offers many
features that make shell scripting easier.

639

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 639

23

Mathematical operations
As you would expect, the zsh shell allows you to perform mathematical functions with
ease. In the past, the Korn shell has led the way in supporting mathematical operations by
providing support for fl oating-point numbers. The zsh shell has full support for fl oating-
point numbers in all its mathematical operations!

Performing calculations

The zsh shell supports two methods for performing mathematical operations:

 ■ The let command

 ■ Double parentheses

When you use the let command, you should enclose the operation in double quotation
marks to allow for spaces:

% let value1=" 4 * 5.1 / 3.2 "
% echo $value1
6.3750000000
%

Be careful, using fl oating point numbers may introduce a precision problem. To solve this,
it’s always a good idea to use the printf command and to specify the decimal precision
needed to correctly display the answer:

% printf "%6.3f\n" $value1
6.375
%

Now that’s much better!

The second method is to use the double parentheses. This method incorporates two tech-
niques for defi ning the mathematical operation:

% value1=$((4 * 5.1))
% ((value2 = 4 * 5.1))
% printf "%6.3f\n" $value1 $value2
20.400
20.400
%

Notice that you can place the double parentheses either around just the operation (pre-
ceded by a dollar sign) or around the entire assignment statement. Both methods produce
the same results.

If you don’t use the typeset command to declare the data type of a variable beforehand,
the zsh shell attempts to automatically assign the data type. This can be dangerous when
working with both integer and fl oating-point numbers. Look at this example:

640

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 640

% value1=10
% value2=$(($value1 / 3))
% echo $value2
3
%

Now, that’s probably not the answer you want to come out from the calculation. When you
specify numbers without decimal places, the zsh shell interprets them as integer values
and performs integer calculations. To ensure that the result is a fl oating-point number, you
must specify the numbers with decimal places:

% value1=10.
% value2=$(($value1 / 3.))
% echo $value2
3.3333333333333335
%

Now the result is in the fl oating-point format.

Mathematical functions

With the zsh shell, built-in mathematical functions are either feast or famine. The default
zsh shell doesn’t include any special mathematical function. However, if you install the
zsh/mathfunc module, you have more math functions than you’ll most likely ever need:

% value1=$((sqrt(9)))
zsh: unknown function: sqrt
% zmodload zsh/mathfunc
% value1=$((sqrt(9)))
% echo $value1
3.
%

That was simple! Now you have an entire math library of functions at your fi ngertips.

Lots of mathematical functions are supported in zsh. For a complete listing of all the math functions that the zsh/
mathfunc module provides, look at the manual page for zsh modules.

Structured commands
The zsh shell provides the usual set of structured commands for your shell scripts:

 ■ if-then-else statements

 ■ for loops (including the C-style)

 ■ while loops

641

Chapter 23: Working with Alternative Shells

c23.indd 12/09/2014 Page 641

23

 ■ until loops

 ■ select statements

 ■ case statements

The zsh shell uses the same syntax for each of these structured commands that you’re used
to from the bash shell. The zsh shell also includes a different structured command called
repeat. The repeat command uses this format:

repeat param
do
 commands
done

The param parameter must be a number or a mathematical operation that evaluates to
a number. The repeat command then performs the specifi ed commands that number of
times:

% cat test1
#!/bin/zsh
using the repeat command

value1=$((10 / 2))
repeat $value1
do
 echo "This is a test"
done
$./test1
This is a test
This is a test
This is a test
This is a test
This is a test
%

This command allows you to repeat sections of code for a set number of times based on a
calculation.

Functions
The zsh shell supports the creation of your own functions either using the function com-
mand or by defi ning the function name with parentheses:

% function functest1 {
> echo "This is the test1 function"
}
% functest2() {
> echo "This is the test2 function"
}

642

Part III: Advanced Shell Scripting

c23.indd 12/09/2014 Page 642

% functest1
This is the test1 function
% functest2
This is the test2 function
%

As with bash shell functions (see Chapter 17), you can defi ne functions within your shell
script and then either use global variables or pass parameters to your functions.

Summary
 This chapter discussed two popular alternative Linux shells that you may run into. The
dash shell was developed as part of the Debian Linux distribution and is mainly found in
the Ubuntu Linux distribution. It’s a smaller version of the Bourne shell, so it doesn’t sup-
port as many features as the bash shell, which can cause problems for script writing.

The zsh shell is often found in programming environments, because it provides lots of cool
features for shell script programmers. It uses loadable modules to load separate code librar-
ies, which make using advanced functions as easy as running command line commands!
There are loadable modules for lots of different functions, from complex mathematical algo-
rithms to network applications such as FTP and HTTP.

The next section of this book dives into some specifi c scripting applications you might run
into in the Linux environment. The next chapter shows how to write simple utilities to help
with your day-to-day Linux administration functions. Those can greatly help simplify com-
mon tasks you perform on the system.

c24.indd 12/05/2014 Page 643

Part IV

Creating Practical Scripts

IN THIS PART

Chapter 24
Writing Simple Script Utilities

Chapter 25
Producing Scripts for Database, Web, and
E-Mail

Chapter 26
Creating Fun Little Shell Scripts

645

c24.indd 12/05/2014 Page 645

CHAP T ER

24
Writing Simple Script Utilities

IN THIS CHAPTER

Automating backups

Managing user accounts

Watching disk space

N
owhere is shell script programming more useful than writing script utilities for the Linux
system administrator. The typical Linux system administrator has many various jobs to do
daily, from monitoring disk space to backing up important fi les to managing user accounts.

Shell script utilities can make these tasks much easier! This chapter demonstrates some of the
capabilities you have writing script utilities in the bash shell.

Performing Archives
Whether you’re responsible for a Linux system in a business environment or just using it at home,
the loss of data can be catastrophic. To help prevent bad things from happening, it’s always a good
idea to perform regular backups (or archives).

However, what’s a good idea and what’s practical are often two separate things. Trying to arrange
a backup schedule to store important fi les can be a challenge. This is another place where shell
scripts often come to the rescue.

This section demonstrates two methods for using shell scripts to archive data on your Linux
system.

Archiving data fi les
If you’re using your Linux system to work on an important project, you can create a shell script
that automatically takes snapshots of specifi c directories. Designating these directories in a confi g-
uration fi le allows you to change them when a particular project changes. This helps avoid a time-
consuming restore process from your main archive fi les.

This section shows you how to create an automated shell script that can take snapshots of specifi ed
directories and keep an archive of your data’s past versions.

646

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 646

Obtaining the required functions

The workhorse for archiving data in the Linux world is the tar command (see Chapter 4).
The tar command is used to archive entire directories into a single fi le. Here’s an example
of creating an archive fi le of a working directory using the tar command:

$ tar -cf archive.tar /home/Christine/Project/*.*
tar: Removing leading '/' from member names
$
$ ls -l archive.tar
-rw-rw-r--. 1 Christine Christine 51200 Aug 27 10:51 archive.tar
$

The tar command responds with a warning message that it’s removing the leading forward
slash from the pathname to convert it from an absolute pathname to a relative pathname
(see Chapter 3). This allows you to extract the tar archived fi les anywhere you want in
your fi lesystem. You’ll probably want to get rid of that message in your script. You can
accomplish this by redirecting STDERR to the /dev/null fi le (see Chapter 15):

$ tar -cf archive.tar /home/Christine/Project/*.* 2>/dev/null
$
$ ls -l archive.tar
-rw-rw-r--. 1 Christine Christine 51200 Aug 27 10:53 archive.tar
$

Because a tar archive fi le can consume lots of disk space, it’s a good idea to compress the
fi le. You can do this by simply adding the -z option. This compresses the tar archive fi le
into a gzipped tar fi le, which is called a tarball. Be sure to use the proper fi le extensions to
denote that the fi le is a tarball. Either .tar.gz or .tgz is fi ne. Here’s an example of creat-
ing a tarball of the project directory:

$ tar -zcf archive.tar.gz /home/Christine/Project/*.* 2>/dev/null
$
$ ls -l archive.tar.gz
-rw-rw-r--. 1 Christine Christine 3331 Aug 27 10:53 archive.tar.gz
$

Now you have the main component for your archive script completed.

Instead of modifying or creating a new archive script for each new directory or fi le you
want to back up, you can use a confi guration fi le. The confi guration fi le should contain
each directory or fi le you want to be included in the archive.

$ cat Files_To_Backup
/home/Christine/Project
/home/Christine/Downloads
/home/Does_not_exist
/home/Christine/Documents
$

647

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 647

24

If you’re using a Linux distribution that includes a graphical desktop, be careful about archiving your entire $HOME

directory. Although this may be tempting, the $HOME directory contains lots of confi guration and temporary fi les

related to the graphical desktop. It creates a much larger archive fi le than you probably intended. Pick a subdirectory

in which to store your working fi les, and use that subdirectory in your archive confi guration fi le.

You can have the script read through the confi guration fi le and add the names of each
directory to the archive list. To do this, use the simple read command (see Chapter 14) to
read each record from the fi le. But instead of using the cat command piped into a while
loop (see Chapter 13), this script redirects standard input (STDIN) using the exec com-
mand (see Chapter 15). Here’s how it looks:

exec < $CONFIG_FILE

read FILE_NAME

Notice that a variable is used for the archive confi guration fi le, CONFIG_FILE. Each record
is read in from the confi guration fi le. As long as the read command fi nds a new confi gu-
ration fi le record to read, it returns an exit value of 0 for success in the ? variable (see
Chapter 11). You can use this as a test in a while loop in order to read all the records from
the confi guration fi le:

while [$? -eq 0]
do
[...]
read FILE_NAME
done

When the read command hits the end of the confi guration fi le, it returns a non-zero
status. At that point, the while loop is exited.

In the while loop, two things need to happen. First, you must add the directory name
to your archive list. Even more important is to check to see if that directory even exists!
It would be very easy to remove a directory from the fi lesystem and forget to update the
archive confi guration fi le. You can check a directory’s existence using a simple if state-
ment (see Chapter 12). If the directory does exist, it is added to the list of directories to
archive, FILE_LIST. Otherwise, a warning message is issued. Here is what this if state-
ment looks like:

if [-f $FILE_NAME -o -d $FILE_NAME]
 then
 # If file exists, add its name to the list.
 FILE_LIST="$FILE_LIST $FILE_NAME"
 else
 # If file doesn't exist, issue warning

648

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 648

 echo
 echo "$FILE_NAME, does not exist."
 echo "Obviously, I will not include it in this archive."
 echo "It is listed on line $FILE_NO of the config file."
 echo "Continuing to build archive list..."
 echo
 fi

 FILE_NO=$[$FILE_NO + 1] # Increase Line/File number by one.

Because a record in our archive confi guration fi le can be a fi lename or a directory, the if
statement tests for the existence of both, using the -f and the -d options. The or option,
-o, allows for either the fi le’s or the directory’s existence test to return a non-zero status
for the entire if statement to be treated as true.

To provide a little extra help in tracking down non-existent directories and fi les, the
variable FILE_NO is added. Thus, the script can tell you exactly what line number in the
archive confi guration fi le contains the incorrect or missing fi le or directory.

Creating a daily archive location

If you are just backing up a few fi les, it’s fi ne to keep the archive in your personal direc-
tory. However, if several directories are being backed up, it is best to create a central repos-
itory archive directory:

$ sudo mkdir /archive
[sudo] password for Christine:
$
$ ls -ld /archive
drwxr-xr-x. 2 root root 4096 Aug 27 14:10 /archive
$

After you have your central repository archive directory created, you need to grant access
to it for certain users. If you do not do this, trying to create fi les in this directory fails, as
shown here:

$ mv Files_To_Backup /archive/
mv: cannot move 'Files_To_Backup' to
'/archive/Files_To_Backup': Permission denied
$

You could grant the users needing to create fi les in this directory permission via sudo or
create a user group. In this case, a special user group is created, Archivers:

$ sudo groupadd Archivers
$
$ sudo chgrp Archivers /archive
$
$ ls -ld /archive

649

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 649

24

drwxr-xr-x. 2 root Archivers 4096 Aug 27 14:10 /archive
$
$ sudo usermod -aG Archivers Christine
[sudo] password for Christine:
$
$ sudo chmod 775 /archive
$
$ ls -ld /archive
drwxrwxr-x. 2 root Archivers 4096 Aug 27 14:10 /archive
$

After a user has been added to the Archivers group, the user must log out and log back in
for the group membership to take effect. Now fi les can be created by this group’s members
without the use of super-user privileges:

$ mv Files_To_Backup /archive/
$
$ ls /archive
Files_To_Backup
$

Keep in mind that all Archivers group members can add and delete fi les from this direc-
tory. It may be best to add the sticky bit (see Chapter 7) to the directory, in order to keep
group members from deleting each other’s archive tarballs.

You should now have enough information to start building the script. The next section
walks you through creating the daily archive script.

Creating a daily archive script

The Daily_Archive.sh script automatically creates an archive to a designated location,
using the current date to uniquely identify the fi le. Here’s the code for that portion of the
script:

DATE=$(date +%y%m%d)
#
Set Archive File Name
#
FILE=archive$DATE.tar.gz

Set Configuration and Destination File
#
CONFIG_FILE=/archive/Files_To_Backup
DESTINATION=/archive/$FILE
#

The DESTINATION variable appends the full pathname for the archived fi le. The CONFIG_
FILE variable points to the archive confi guration fi le containing the directories to be
archived. These both can be easily changed to alternate directories and fi les if needed.

650

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 650

When you are new to script writing and are presented with an entire script (as shown nearby), make a habit of reading

through the whole script. Try to follow the logic and script fl ow. Note any script syntax or sections you have trouble

understanding, and reread the chapter that covers that topic. This reviewing habit helps you to build your script writ-

ing skills much more quickly.

The Daily_Archive.sh script, all put together, now looks like this:

#!/bin/bash
#
Daily_Archive - Archive designated files & directories
##
#
Gather Current Date
#
DATE=$(date +%y%m%d)
#
Set Archive File Name
#
FILE=archive$DATE.tar.gz
#
Set Configuration and Destination File
#
CONFIG_FILE=/archive/Files_To_Backup
DESTINATION=/archive/$FILE
#
######### Main Script #########################
#
Check Backup Config file exists
#
if [-f $CONFIG_FILE] # Make sure the config file still exists.
then # If it exists, do nothing but continue on.
 echo
else # If it doesn't exist, issue error & exit script.
 echo
 echo "$CONFIG_FILE does not exist."
 echo "Backup not completed due to missing Configuration File"
 echo
 exit
fi
#
Build the names of all the files to backup
#
FILE_NO=1 # Start on Line 1 of Config File.
exec < $CONFIG_FILE # Redirect Std Input to name of Config File
#

651

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 651

24

read FILE_NAME # Read 1st record
#
while [$? -eq 0] # Create list of files to backup.
do
 # Make sure the file or directory exists.
 if [-f $FILE_NAME -o -d $FILE_NAME]
 then
 # If file exists, add its name to the list.
 FILE_LIST="$FILE_LIST $FILE_NAME"
 else
 # If file doesn't exist, issue warning
 echo
 echo "$FILE_NAME, does not exist."
 echo "Obviously, I will not include it in this archive."
 echo "It is listed on line $FILE_NO of the config file."
 echo "Continuing to build archive list..."
 echo
 fi
#
 FILE_NO=$[$FILE_NO + 1] # Increase Line/File number by one.
 read FILE_NAME # Read next record.
done
#
#######################################
#
Backup the files and Compress Archive
#
echo "Starting archive..."
echo
#
tar -czf $DESTINATION $FILE_LIST 2> /dev/null
#
echo "Archive completed"
echo "Resulting archive file is: $DESTINATION"
echo
#
exit

Running the daily archive script

Before you attempt to test the script, remember that you need to change permissions on
the script fi le (see Chapter 11). The fi le’s owner must be given execute (x) privilege before
the script can be run:

$ ls -l Daily_Archive.sh
-rw-rw-r--. 1 Christine Christine 1994 Aug 28 15:58 Daily_Archive.sh
$
$ chmod u+x Daily_Archive.sh
$

652

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 652

$ ls -l Daily_Archive.sh
-rwxrw-r--. 1 Christine Christine 1994 Aug 28 15:58 Daily_Archive.sh
$

Testing the Daily_Archive.sh script is straightforward:

$./Daily_Archive.sh

/home/Does_not_exist, does not exist.
Obviously, I will not include it in this archive.
It is listed on line 3 of the config file.
Continuing to build archive list...

Starting archive...

Archive completed
Resulting archive file is: /archive/archive140828.tar.gz

$ ls /archive
archive140828.tar.gz Files_To_Backup
$

You can see that the script caught one directory that does not exist, /home/Does_not_
exist. It lets you know what line number in the confi guration fi le this erroneous directory
is on and continues making a list and archiving the data. Your data is now safely archived
in a tarball fi le.

Creating an hourly archive script

If you are in a high-volume production environment where fi les are changing rapidly, a
daily archive might not be good enough. If you want to increase the archiving frequency to
hourly, you need to take another item into consideration.

When backing up fi les hourly and trying to use the date command to timestamp each
tarball, things can get pretty ugly pretty quickly. Sifting through a directory of tarballs
with fi lenames looking like this is tedious:

archive010211110233.tar.gz

Instead of placing all the archive fi les in the same folder, you can create a directory hierar-
chy for your archived fi les. Figure 24-1 demonstrates this principle.

653

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 653

24

FIGURE 24-1

Creating an archive directory hierarchy

/archive/hourly

Base

Month

Day

02

01

01

02

01

The archive directory contains directories for each month of the year, using the month
number as the directory name. Each month’s directory in turn contains folders for each day
of the month (using the day’s numerical value as the directory name). This allows you to
just timestamp the individual tarballs and place them in the appropriate directory for the
day and month.

First, the new directory /archive/hourly must be created, along with the appropri-
ate permissions set upon it. Remember from early in this chapter that members of the
Archivers group are granted permission to create archives in this directory area. Thus,
the newly created directory must have its primary group and group permissions changed:

$ sudo mkdir /archive/hourly
[sudo] password for Christine:
$

654

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 654

$ sudo chgrp Archivers /archive/hourly
$
$ ls -ld /archive/hourly/
drwxr-xr-x. 2 root Archivers 4096 Sep 2 09:24 /archive/hourly/
$
$ sudo chmod 775 /archive/hourly
$
$ ls -ld /archive/hourly
drwxrwxr-x. 2 root Archivers 4096 Sep 2 09:24 /archive/hourly
$

After the new directory is set up, the Files_To_Backup confi guration fi le for the hourly
archives can be moved to the new directory:

$ cat Files_To_Backup
/usr/local/Production/Machine_Errors
/home/Development/Simulation_Logs
$
$ mv Files_To_Backup /archive/hourly/
$

Now, there is a new challenge to solve. The script must create the individual month and day
directories automatically. If these directories already exist, and the script tries to create
them, an error is generated. This is not a desirable outcome!

If you peruse the command line options for the mkdir command (see Chapter 3), you’ll fi nd
the -p command line option. This option allows you to create directories and subdirectories
in a single command; plus, the added benefi t is that it doesn’t produce an error message if
the directory already exists. Perfect fi t for what is needed in the script!

We’re now ready to create the Hourly_Archive.sh script. Here is the top half of the
script:

#!/bin/bash
#
Hourly_Archive - Every hour create an archive
###
#
Set Configuration File
#
CONFIG_FILE=/archive/hourly/Files_To_Backup
#
Set Base Archive Destination Location
#
BASEDEST=/archive/hourly
#
Gather Current Day, Month & Time
#

655

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 655

24

DAY=$(date +%d)
MONTH=$(date +%m)
TIME=$(date +%k%M)
#
Create Archive Destination Directory
#
mkdir -p $BASEDEST/$MONTH/$DAY
#
Build Archive Destination File Name
#
DESTINATION=$BASEDEST/$MONTH/$DAY/archive$TIME.tar.gz
#
########## Main Script ####################
[...]

After the script reaches the “Main Script” portion of Hourly_Archive.sh, the script is an
exact duplicate of the Daily_Archive.sh script. Lots of the work has already been done!

Hourly_Archive.sh retrieves the day and month values from the date command,
along with the timestamp used to uniquely identify the archive fi le. It then uses that
information to create the archive directory for the day (or to silently exit if it already
exists). Finally, the script uses the tar command to create the archive and compress it
into a tarball.

Running the hourly archive script

As with the Daily_Archive.sh script, it’s a good idea to test the Hourly_Archive.sh
script before putting it in the cron table. Before the script is run, the permissions must be
modifi ed. Also, the hour and minute is checked via the date command. Having the current
hour and minute allows the fi nal archive fi lename to be verifi ed for correctness:

$ chmod u+x Hourly_Archive.sh
$
$ date +%k%M
1011
$
$./Hourly_Archive.sh

Starting archive...

Archive completed
Resulting archive file is: /archive/hourly/09/02/archive1011.tar.gz

$
$ ls /archive/hourly/09/02/
archive1011.tar.gz
$

656

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 656

The script worked fi ne the fi rst time, creating the appropriate month and day directories,
and then creating the properly named archive fi le. Notice that the archive fi le has the
appropriate hour (10) and minute (11) in its name, archive1011.tar.gz.

If you run the Hourly_Archive.sh script during the day, when the hour is in single digits, your archive

fi le’s name will only have three digits. For example, if you run the script at 1:15am, the archive fi le’s name is

archive115.tar.gz. If you prefer to always have four digits in the archive fi le name, modify the script line,

TIME=$(date +%k%M), to TIME=$(date +%k0%M). By adding a zero (0) after the %k, any single digit hours

are padded to two digits with a leading zero. Thus, archive115.tar.gz is instead named archive0115
.tar.gz.

Just to test things out, the script was run a second time to see if it would have a problem
with the existing directory, /archive,hourly/09/02:

$ date +%k%M
1017
$
$./Hourly_Archive.sh

Starting archive...

Archive completed
Resulting archive file is: /archive/hourly/09/02/archive1017.tar.gz

$ ls /archive/hourly/09/02/
archive1011.tar.gz archive1017.tar.gz
$

No problems with the existing directory! The script again ran fi ne and created a second
archive fi le. It’s now ready for the cron table.

Managing User Accounts
Managing user accounts is much more than just adding, modifying, and deleting accounts.
You must also consider security issues, the need to preserve work, and the accurate man-
agement of the accounts. This can be a time-consuming task. Here is another instance
when writing script utilities is a real timesaver!

657

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 657

24

Obtaining the required functions
Deleting an account is the more complicated accounts management task. When deleting an
account, at least four separate actions are required:

 1. Obtain the correct user account name to delete.

 2. Kill any processes currently running on the system that belongs to that account.

 3. Determine all fi les on the system belonging to the account.

 4. Remove the user account.

It’s easy to miss a step. The shell script utility in this section helps you avoid making such
mistakes.

Getting the correct account name

The fi rst step in the account deletion process is the most important: obtaining the correct
user account name to delete. Because this is an interactive script, you can use the read
command (see Chapter 14) to obtain the account name. If the script user walks away and
leaves the question hanging, you can use the -t option on the read command and timeout
after giving the script user 60 seconds to answer the question:

echo "Please enter the username of the user "
echo -e "account you wish to delete from system: \c"
read -t 60 ANSWER

Because interruptions are part of life, it’s best to give users three chances to answer the
question. This is accomplished by using a while loop (Chapter 13) with the -z option, to
test whether the ANSWER variable is empty. The ANSWER variable is empty when the script
fi rst enters the while loop on purpose. The question to fi ll the ANSWER variable is at the
end of the loop:

while [-z "$ANSWER"]
do
[...]
echo "Please enter the username of the user "
echo -e "account you wish to delete from system: \c"
read -t 60 ANSWER
done

A way to communicate with the script user is needed when the fi rst question timeout
occurs, when there is one more chance to answer the question, and so on. The case state-
ment (see Chapter 12) is the structured command that works perfectly here. Using the

658

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 658

incremented ASK_COUNT variable, different messages can be set up to communicate to the
script user. The code for this section looks like this:

case $ASK_COUNT in
2)
 echo
 echo "Please answer the question."
 echo
;;
3)
 echo
 echo "One last try...please answer the question."
 echo
;;
4)
 echo
 echo "Since you refuse to answer the question..."
 echo "exiting program."
 echo
 #
 exit
;;
esac
#

Now the script has all the structure it needs to ask the user what account to delete. There
are several more questions in this script to ask the user and asking just that one question
was lots of code! Therefore, let’s turn this piece of code into a function (see Chapter 17) in
order to use it in multiple locations in your Delete_User.sh script.

Creating a function to get the correct account name

The fi rst thing you need to do is declare the function’s name, get_answer. Next, clear out
any previous answers to questions your script user gave using the unset command (see
Chapter 6). The code to do these two items looks like this:

function get_answer {
#
unset ANSWER

The other original code item you need to change is the question to the script user. The
script doesn’t ask the same question each time, so two new variables are created, LINE1
and LINE2, to handle question lines:

echo $LINE1
echo -e $LINE2" \c"

659

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 659

24

However, not every question has two lines to display. Some have only one line. An if
statement (see Chapter 12) assists with this problem. The function tests if LINE2 is empty
and only uses LINE1 if it is:

if [-n "$LINE2"]
then
 echo $LINE1
 echo -e $LINE2" \c"
else
 echo -e $LINE1" \c"
fi

Finally, the function needs to clean up after itself by clearing out the LINE1 and LINE2
variables. Thus, the function now looks like this:

function get_answer {
#
unset ANSWER
ASK_COUNT=0
#
while [-z "$ANSWER"]
do
 ASK_COUNT=$[$ASK_COUNT + 1]
#
 case $ASK_COUNT in
 2)
 echo
[...]
 esac
#
 echo
 if [-n "$LINE2"]
 then #Print 2 lines
 echo $LINE1
 echo -e $LINE2" \c"
 else #Print 1 line
 echo -e $LINE1" \c"
 fi
#
 read -t 60 ANSWER
done

unset LINE1
unset LINE2
#
} #End of get_answer function

660

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 660

To ask the script user what account to delete, a few variables must be set and the get_
answer function should be called. Using the new function makes the script code much
simpler:

LINE1="Please enter the username of the user "
LINE2="account you wish to delete from system:"
get_answer
USER_ACCOUNT=$ANSWER

Verifying the entered account name

Because of potential typographical errors, the user account name that was entered should
be verifi ed. This is easy because the code is already in place to handle asking a question:

LINE1="Is $USER_ACCOUNT the user account "
LINE2="you wish to delete from the system? [y/n]"
get_answer

After the question is asked, the script must process the answer. The variable ANSWER again
carries the script user’s answer to the question. If the user answered “yes,” the correct user
account to delete has been entered and the script can continue. A case statement (see
Chapter 12) processes the answer. The case statement must be coded so it checks for the
multiple ways the answer “yes” can be entered.

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
#
;;
*)
 echo
 echo "Because the account, $USER_ACCOUNT, is not "
 echo "the one you wish to delete, we are leaving the script..."
 echo
 exit
;;
esac

Sometimes, this script needs to handle a yes/no answer from the user. Thus, again, it
makes sense to create a function to handle this task. Only a few changes need to be made
to the preceding code. The function’s name must be declared and the variables EXIT_
LINE1 and EXIT_LINE2 added to the case statement. These changes, along with some
variable cleanup at the end, result in the process_answer function:

function process_answer {
#
case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
;;
*)

661

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 661

24

 echo
 echo $EXIT_LINE1
 echo $EXIT_LINE2
 echo
 exit
;;
esac
#
unset EXIT_LINE1
unset EXIT_LINE2
#
} #End of process_answer function

A simple function call now processes the answer:

EXIT_LINE1="Because the account, $USER_ACCOUNT, is not "
EXIT_LINE2="the one you wish to delete, we are leaving the script..."
process_answer

Determining whether the account exists

The user has given us the name of the account to delete and has verifi ed it. Now is a good
time to double-check that the user account really exists on the system. Also, it is a good
idea to show the full account record to the script user to check one more time that this is
the account to delete. To accomplish these items, a variable, USER_ACCOUNT_RECORD, is
set to the outcome of a grep (see Chapter 4) search for the account through the /etc/
passwd fi le. The -w option allows an exact word match for this particular user account:

USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w $USER_ACCOUNT)

If no user account record is found in /etc/passwd, the account has already been deleted
or never existed in the fi rst place. In either case, the script user must be notifi ed of this
situation and the script exited. The exit status of the grep command helps here. If the
account record is not found, the ? variable is set to 1:

if [$? -eq 1]
then
 echo
 echo "Account, $USER_ACCOUNT, not found. "
 echo "Leaving the script..."
 echo
 exit
fi

If the record was found, you still need to verify with the script user that this is the correct
account. Here is where all the work to set up the functions really pays off! You just need to
set the proper variables and call the functions:

echo "I found this record:"
echo $USER_ACCOUNT_RECORD

662

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 662

echo

LINE1="Is this the correct User Account? [y/n]"
get_answer

EXIT_LINE1="Because the account, $USER_ACCOUNT, is not"
EXIT_LINE2="the one you wish to delete, we are leaving the script..."
process_answer

Removing any account processes

So far, the script has obtained and verifi ed the correct name of the user account to be
deleted. In order to remove the user account from the system, the account cannot own any
processes currently running. Thus, the next step is to fi nd and kill off those processes. This
is going to get a little complicated!

Finding the user processes is the easy part. Here the script can use the ps command (see
Chapter 4) and the -u option to locate any running processes owned by the account. By
redirecting the output to /dev/null, the user doesn’t see any display. This is handy,
because if there are no processes, the ps command only shows a header, which can be con-
fusing to the script user:

ps -u $USER_ACCOUNT >/dev/null #Are user processes running?

The ps command’s exit status and a case structure are used to determine the next step
to take:

case $? in
1) # No processes running for this User Account
 #
 echo "There are no processes for this account currently running."
 echo
;;
0) # Processes running for this User Account.
 # Ask Script User if wants us to kill the processes.
 #
 echo "$USER_ACCOUNT has the following processes running: "
 echo
 ps -u $USER_ACCOUNT
 #
 LINE1="Would you like me to kill the process(es)? [y/n]"
 get_answer
 #
[...]
esac

If the ps command’s exit status returns a 1, there are no processes running on the system
that belong to the user account. However, if the exit status returns a 0, processes owned by

663

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 663

24

this account are running on the system. In this case, the script needs to ask the script user
if he would like to have these processes killed. This task can be accomplished by using the
get_answer function.

You might think that the next action the script does is to call the process_answer func-
tion. Unfortunately, the next item is too complicated for process_answer. Another case
statement must be embedded to process the script user’s answer. The fi rst part of the case
statement looks very similar to the process_answer function:

case $ANSWER in
 y|Y|YES|yes|Yes|yEs|yeS|YEs|yES) # If user answers "yes",
 #kill User Account processes.
[...]
;;
*) # If user answers anything but "yes", do not kill.
 echo
 echo "Will not kill the process(es)"
 echo
;;
esac

As you can see, there is nothing interesting in the case statement itself. Where things get
interesting is within the “yes” section of the case statement. Here, the user account pro-
cesses need to be killed. To build the command necessary to kill off one or more processes,
three commands are needed. The fi rst command is the ps command again. It is needed to
gather up the process IDs (PIDs) of the currently running user account processes. The nec-
essary ps command is assigned to the variable, COMMAND_1:

COMMAND_1="ps -u $USER_ACCOUNT --no-heading"

The second command strips off just the PIDs. This simple gawk command (see Chapter 19)
strips off the fi rst fi eld from the ps command’s output, which happens to be the PIDs:

gawk '{print $1}'

The third command, xargs, has not yet been introduced in this book. The xargs command
builds and executes commands from standard input, STDIN (see Chapter 15). It is a great
command to use at the end of a pipe, building and executing commands from each STDIN
item produced. The xargs command is actually killing off each process via its PID:

COMMAND_3="xargs -d \\n /usr/bin/sudo /bin/kill -9"

The xargs command is assigned to variable COMMAND_3. It uses the -d option to denote
what is considered a delimiter. In other words, because the xargs command can accept
multiple items as input, what separates one item from another item? In this case, \n
(newline) is used to set the delimiter. Thus, when each PID is sent to xargs, it treats the
PID as a separate item to be processed. Because the xargs command is being assigned to a
variable, the backslash (\) in the \n must be escaped with an additional backslash (\).

664

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 664

Notice that xargs needs the full pathname of the commands it is using on each PID. Both
the sudo and kill (see Chapter 4) commands are used to kill any of the user account’s
running processes. Notice also that the kill signal -9 is used.

All three commands are hooked together via a pipe. The ps command produces a list of the
user’s running processes, which include the PID of each process. The ps command passes
its standard output (STDOUT) as STDIN to the gawk command. The gawk command, in
turn, strips off only the PIDs from the ps command’s STDOUT (see Chapter 15). The xargs
command takes each PID the gawk command produces as STDIN. It creates and executes
a kill command for each PID to kill all the user’s running processes. The command pipe
looks like this:

$COMMAND_1 | gawk '{print $1}' | $COMMAND_3

Thus, the complete case statement for killing off any of the user account’s running pro-
cesses is as follows:

case $ANSWER in
 y|Y|YES|yes|Yes|yEs|yeS|YEs|yES) # If user answers "yes",
 #kill User Account processes.
 echo
 echo "Killing off process(es)..."
 #
 # List user processes running code in variable, COMMAND_1
 COMMAND_1="ps -u $USER_ACCOUNT --no-heading"
 #
 # Create command to kill proccess in variable, COMMAND_3
 COMMAND_3="xargs -d \\n /usr/bin/sudo /bin/kill -9"
 #
 # Kill processes via piping commands together
 $COMMAND_1 | gawk '{print $1}' | $COMMAND_3
 #
 echo
 echo "Process(es) killed."
 ;;

By far, this is the most complicated piece of the script! However, now with any user
account–owned processes killed, the script can move on to the next step: fi nding all the
user account’s fi les.

Finding account files

When a user account is deleted from the system, it is a good practice to archive all the fi les
that belonged to that account. Along with that practice, it is also important to remove the
fi les or assign their ownership to another account. If the account you delete has a User ID

665

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 665

24

of 1003, and you don’t remove or reassign those fi les, then the next account that is created
with a User ID of 1003 owns those fi les! You can see the security disasters that can occur in
this scenario.

The Delete_User.sh script doesn’t do all that for you, but it creates a report that can be
used in the Daily_Archive.sh script as an archive confi guration fi le. And you can use
the report to help you remove or reassign the fi les.

To fi nd the user’s fi les, you can use the find command. In this case, the find command
searches the entire fi lesystem with the -u option, which pinpoints any user account–owned
fi les. The command looks like the following:

find / -user $USER_ACCOUNT > $REPORT_FILE

That was pretty simple compared to dealing with the user account processes! It gets even
easier in the next step of the Delete_User.sh script: actually removing the user account.

Removing the account

It’s always a good idea to be a little paranoid about removing a user account from the sys-
tem. Therefore, you should ask one more time if the script user really wants to remove the
account.

LINE1="Remove $User_Account's account from system? [y/n]"
get_answer

EXIT_LINE1="Since you do not wish to remove the user account,"
EXIT_LINE2="$USER_ACCOUNT at this time, exiting the script..."
process_answer

Finally, we get to the main purpose of our script, actually removing the user account from
the system. Here the userdel command (see Chapter 7) is used:

userdel $USER_ACCOUNT

Now that we have all the pieces, we are ready to put them together into a whole, useful
script utility.

Creating the script
Recall that the Delete_User.sh script is highly interactive with the script’s user.
Therefore, it is important to include lots of verbiage to keep the script user informed about
what is going on during the script’s execution.

At the top of the script, the two functions get_answer and process_answer are
declared. The script then goes to the four steps of removing the user: obtaining and

666

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 666

confi rming the user account name, fi nding and killing the user’s processes, creating a
report of all fi les owned by the user account, and actually removing the user account.

When you are new to script writing and are presented with an entire script (as shown in the following code), you

should make a habit of reading through the whole script to improve your script-writing skills!

Here’s the entire Delete_User.sh script:

#!/bin/bash
#
#Delete_User - Automates the 4 steps to remove an account
#
###
Define Functions
#
###
function get_answer {
#
unset ANSWER
ASK_COUNT=0
#
while [-z "$ANSWER"] #While no answer is given, keep asking.
do
 ASK_COUNT=$[$ASK_COUNT + 1]
#
 case $ASK_COUNT in #If user gives no answer in time allotted
 2)
 echo
 echo "Please answer the question."
 echo
 ;;
 3)
 echo
 echo "One last try...please answer the question."
 echo
 ;;
 4)
 echo
 echo "Since you refuse to answer the question..."
 echo "exiting program."
 echo
 #
 exit
 ;;
 esac
#

667

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 667

24

 echo
#
 if [-n "$LINE2"]
 then #Print 2 lines
 echo $LINE1
 echo -e $LINE2" \c"
 else #Print 1 line
 echo -e $LINE1" \c"
 fi
#
Allow 60 seconds to answer before time-out
 read -t 60 ANSWER
done
Do a little variable clean-up
unset LINE1
unset LINE2
#
} #End of get_answer function
#
###
function process_answer {
#
case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
If user answers "yes", do nothing.
;;
*)
If user answers anything but "yes", exit script
 echo
 echo $EXIT_LINE1
 echo $EXIT_LINE2
 echo
 exit
;;
esac
#
Do a little variable clean-up
#
unset EXIT_LINE1
unset EXIT_LINE2
#
} #End of process_answer function
#
##
End of Function Definitions
#
############# Main Script ####################
Get name of User Account to check
#

668

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 668

echo "Step #1 - Determine User Account name to Delete "
echo
LINE1="Please enter the username of the user "
LINE2="account you wish to delete from system:"
get_answer
USER_ACCOUNT=$ANSWER
#
Double check with script user that this is the correct User Account
#
LINE1="Is $USER_ACCOUNT the user account "
LINE2="you wish to delete from the system? [y/n]"
get_answer
#
Call process_answer funtion:
if user answers anything but "yes", exit script
#
EXIT_LINE1="Because the account, $USER_ACCOUNT, is not "
EXIT_LINE2="the one you wish to delete, we are leaving the script..."
process_answer
#
##
Check that USER_ACCOUNT is really an account on the system
#
USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w $USER_ACCOUNT)
#
if [$? -eq 1] # If the account is not found, exit script
then
 echo
 echo "Account, $USER_ACCOUNT, not found. "
 echo "Leaving the script..."
 echo
 exit
fi
#
echo
echo "I found this record:"
echo $USER_ACCOUNT_RECORD
#
LINE1="Is this the correct User Account? [y/n]"
get_answer
#
#
Call process_answer function:
if user answers anything but "yes", exit script
#
EXIT_LINE1="Because the account, $USER_ACCOUNT, is not "
EXIT_LINE2="the one you wish to delete, we are leaving the script..."
process_answer
#

669

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 669

24

##
Search for any running processes that belong to the User Account
#
echo
echo "Step #2 - Find process on system belonging to user account"
echo
#
ps -u $USER_ACCOUNT >/dev/null #Are user processes running?
#
case $? in
1) # No processes running for this User Account
 #
 echo "There are no processes for this account currently running."
 echo
;;
0) # Processes running for this User Account.
 # Ask Script User if wants us to kill the processes.
 #
 echo "$USER_ACCOUNT has the following processes running: "
 echo
 ps -u $USER_ACCOUNT
 #
 LINE1="Would you like me to kill the process(es)? [y/n]"
 get_answer
 #
 case $ANSWER in
 y|Y|YES|yes|Yes|yEs|yeS|YEs|yES) # If user answers "yes",
 # kill User Account processes.
 #
 echo
 echo "Killing off process(es)..."
 #
 # List user processes running code in variable, COMMAND_1
 COMMAND_1="ps -u $USER_ACCOUNT --no-heading"
 #
 # Create command to kill proccess in variable, COMMAND_3
 COMMAND_3="xargs -d \\n /usr/bin/sudo /bin/kill -9"
 #
 # Kill processes via piping commands together
 $COMMAND_1 | gawk '{print $1}' | $COMMAND_3
 #
 echo
 echo "Process(es) killed."
 ;;
 *) # If user answers anything but "yes", do not kill.
 echo
 echo "Will not kill the process(es)"
 echo
 ;;

670

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 670

 esac
;;
esac
###
Create a report of all files owned by User Account
#
echo
echo "Step #3 - Find files on system belonging to user account"
echo
echo "Creating a report of all files owned by $USER_ACCOUNT."
echo
echo "It is recommended that you backup/archive these files,"
echo "and then do one of two things:"
echo " 1) Delete the files"
echo " 2) Change the files' ownership to a current user account."
echo
echo "Please wait. This may take a while..."
#
REPORT_DATE=$(date +%y%m%d)
REPORT_FILE=$USER_ACCOUNT"_Files_"$REPORT_DATE".rpt"
#
find / -user $USER_ACCOUNT > $REPORT_FILE 2>/dev/null
#
echo
echo "Report is complete."
echo "Name of report: $REPORT_FILE"
echo "Location of report: $(pwd)"
echo
####################################
Remove User Account
echo
echo "Step #4 - Remove user account"
echo
#
LINE1="Remove $USER_ACCOUNT's account from system? [y/n]"
get_answer
#
Call process_answer function:
if user answers anything but "yes", exit script
#
EXIT_LINE1="Since you do not wish to remove the user account,"
EXIT_LINE2="$USER_ACCOUNT at this time, exiting the script..."
process_answer
#
userdel $USER_ACCOUNT #delete user account
echo
echo "User account, $USER_ACCOUNT, has been removed"
echo
#
exit

671

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 671

24

That was lots of work! However, the Delete_User.sh script is a great timesaver and helps
you avoid lots of nasty problems when deleting user accounts.

Running the script
Because it is intended to be an interactive script, the Delete_User.sh script should
not be placed in the cron table. However, it is still important to ensure that it works as
expected.

To run this type of script, you must either be logged in as the root user account or use the sudo command to run the

script as the root user account.

Before the script is tested, the appropriate permissions are set on the script’s fi le:

$ chmod u+x Delete_User.sh
$
$ ls -l Delete_User.sh
-rwxr--r--. 1 Christine Christine 6413 Sep 2 14:20 Delete_User.sh
$

The script is tested by removing an account, Consultant, that was set up for a temporary
consultant on this system:

$ sudo ./Delete_User.sh
[sudo] password for Christine:
Step #1 - Determine User Account name to Delete

Please enter the username of the user
account you wish to delete from system: Consultant

Is Consultant the user account
you wish to delete from the system? [y/n]
Please answer the question.

Is Consultant the user account
you wish to delete from the system? [y/n] y

I found this record:
Consultant:x:504:506::/home/Consultant:/bin/bash

Is this the correct User Account? [y/n] yes

Step #2 - Find process on system belonging to user account

Consultant has the following processes running:

672

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 672

 PID TTY TIME CMD
 5443 pts/0 00:00:00 bash
 5444 pts/0 00:00:00 sleep

Would you like me to kill the process(es)? [y/n] Yes

Killing off process(es)...

Process(es) killed.

Step #3 - Find files on system belonging to user account

Creating a report of all files owned by Consultant.

It is recommended that you backup/archive these files,
and then do one of two things:
 1) Delete the files
 2) Change the files' ownership to a current user account.

Please wait. This may take a while...

Report is complete.
Name of report: Consultant_Files_140902.rpt
Location of report: /home/Christine

Step #4 - Remove user account

Remove Consultant's account from system? [y/n] y

User account, Consultant, has been removed

$
$ ls Consultant*.rpt
Consultant_Files_140902.rpt
$
$ cat Consultant_Files_140902.rpt
/home/Consultant
/home/Consultant/Project_393
/home/Consultant/Project_393/393_revisionQ.py
/home/Consultant/Project_393/393_Final.py
[...]
/home/Consultant/.bashrc
/var/spool/mail/Consultant
$
$ grep Consultant /etc/passwd
$

673

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 673

24

That worked great! Notice the script was run using sudo, because super-user privileges are
needed for deleting accounts. Also notice that the read timeout was tested, by delaying
answering the following question:

Is Consultant the user account
you wish to delete from the system? [y/n]
Please answer the question.

Note that several different versions of “yes” answers were used for the various questions
to ensure that the case statement test was working correctly. And fi nally, notice that the
Consultant user’s fi les were found and put into a report fi le, and the account was deleted.

Now you have a script utility that assists you when you need to delete user accounts. Even
better, you can modify it to meet your organization’s needs!

Monitoring Disk Space
One of the biggest problems with multi-user Linux systems is the amount of available disk
space. In some situations, such as in a fi le-sharing server, disk space can fi ll up almost
immediately just because of one careless user.

If you have a production Linux system, you should not depend upon disk space reports to protect your server from its

disk space fi lling up. Instead, consider setting disk quotas. If the quota package is installed, you can fi nd out more

information about managing disk quotas by typing man -k quota at the shell prompt. If the quota package is

not currently installed on your system, use your favorite search engine instead to locate further information.

This shell script utility helps you determine the top ten disk space consumers for desig-
nated directories. It produces a date-stamped report that allows disk space consumption
trends to be monitored.

Obtaining the required functions
The fi rst tool you need to use is the du command (see Chapter 4). This command displays
the disk usage for individual fi les and directories. The -s option lets you summarize totals
at the directory level. This comes in handy when calculating the total disk space used by
an individual user. Here’s what it looks like to use the du command to summarize each
user’s $HOME directory for the /home directory contents:

$ sudo du -s /home/*
[sudo] password for Christine:

674

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 674

4204 /home/Christine
56 /home/Consultant
52 /home/Development
4 /home/NoSuchUser
96 /home/Samantha
36 /home/Timothy
1024 /home/user1
$

The -s option works well for users’ $HOME directories, but what if we wanted to view disk
consumption in a system directory such as /var/log?

$ sudo du -s /var/log/*
4 /var/log/anaconda.ifcfg.log
20 /var/log/anaconda.log
32 /var/log/anaconda.program.log
108 /var/log/anaconda.storage.log
40 /var/log/anaconda.syslog
56 /var/log/anaconda.xlog
116 /var/log/anaconda.yum.log
4392 /var/log/audit
4 /var/log/boot.log
[...]
$

The listing quickly becomes too detailed. The -S (capital S) option works better for our pur-
poses here, providing a total for each directory and subdirectory individually. This allows
you to pinpoint problem areas quickly:

$ sudo du -S /var/log/
4 /var/log/ppp
4 /var/log/sssd
3020 /var/log/sa
80 /var/log/prelink
4 /var/log/samba/old
4 /var/log/samba
4 /var/log/ntpstats
4 /var/log/cups
4392 /var/log/audit
420 /var/log/gdm
4 /var/log/httpd
152 /var/log/ConsoleKit
2976 /var/log/
$

Because we are interested in the directories consuming the biggest chunks of disk space,
the sort command (see Chapter 4) is used on the listing produced by du:

$ sudo du -S /var/log/ | sort -rn
4392 /var/log/audit

675

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 675

24

3020 /var/log/sa
2976 /var/log/
420 /var/log/gdm
152 /var/log/ConsoleKit
80 /var/log/prelink
4 /var/log/sssd
4 /var/log/samba/old
4 /var/log/samba
4 /var/log/ppp
4 /var/log/ntpstats
4 /var/log/httpd
4 /var/log/cups
$

The -n option allows you to sort numerically. The -r option lists the largest numbers fi rst
(reverse order). This is perfect for fi nding the largest disk consumers.

The sed editor brings more clarity to this listing. To focus on the top ten disk space con-
sumers, when line 11 is reached, sed is set to delete the rest of the listing. The next step
is to add a line number for each line in the listing. Chapter 19 shows you how to accom-
plish this by adding an equal sign (=) to the sed command. To get those line numbers on
the same line as the disk space text, combine the text lines using the N command, as was
shown in Chapter 21. The sed commands needed look like this:

sed '{11,$D; =}' |
sed 'N; s/\n/ /' |

Now the output can be cleaned up using the gawk command (see Chapter 22). The out-
put from the sed editor is piped into the gawk command and printed using the printf
function.

gawk '{printf $1 ":" "\t" $2 "\t" $3 "\n"}'

After the line number, a colon (:) is added, and tab (\t) characters are put between the
individual fi elds for each text line’s output row. This produces a nicely formatted listing of
the top ten disk space consumers.

$ sudo du -S /var/log/ |
> sort -rn |
> sed '{11,$D; =}' |
> sed 'N; s/\n/ /' |
> gawk '{printf $1 ":" "\t" $2 "\t" $3 "\n"}'
[sudo] password for Christine:
1: 4396 /var/log/audit
2: 3024 /var/log/sa
3: 2976 /var/log/
4: 420 /var/log/gdm
5: 152 /var/log/ConsoleKit
6: 80 /var/log/prelink
7: 4 /var/log/sssd

676

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 676

8: 4 /var/log/samba/old
9: 4 /var/log/samba
10: 4 /var/log/ppp
$

Now you’re in business! The next step is to use this information to create the script.

Creating the script
To save time and effort, the script creates a report for multiple designated directories. A
variable to accomplish this called CHECK_DIRECTORIES is used. For our purposes here, the
variable is set to just two directories:

CHECK_DIRECTORIES=" /var/log /home"

The script contains a for loop to perform the du command on each directory listed in the
variable. This technique is used (see Chapter 13) to read and process values in a list. Each
time the for loop iterates through the list of values in the variable CHECK_DIRECTORIES,
it assigns to the DIR_CHECK variable the next value in the list:

for DIR_CHECK in $CHECK_DIRECTORIES
do
[...]
 du -S $DIR_CHECK
[...]
done

To allow quick identifi cation, a date stamp is added to the report’s fi lename, using the date
command. Using the exec command (see Chapter 15) the script redirects its output to the
date stamped report fi le:

DATE=$(date '+%m%d%y')
exec > disk_space_$DATE.rpt

Now to produce a nicely formatted report, the script uses the echo command to put in a
few report titles:

echo "Top Ten Disk Space Usage"
echo "for $CHECK_DIRECTORIES Directories"

So let’s see what this script looks like all put together:

#!/bin/bash
#
Big_Users - Find big disk space users in various directories
###
Parameters for Script
#
CHECK_DIRECTORIES=" /var/log /home" #Directories to check
#

677

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 677

24

############## Main Script #################################
#
DATE=$(date '+%m%d%y') #Date for report file
#
exec > disk_space_$DATE.rpt #Make report file STDOUT
#
echo "Top Ten Disk Space Usage" #Report header
echo "for $CHECK_DIRECTORIES Directories"
#
for DIR_CHECK in $CHECK_DIRECTORIES #Loop to du directories
do
 echo ""
 echo "The $DIR_CHECK Directory:" #Directory header
#
Create a listing of top ten disk space users in this dir
 du -S $DIR_CHECK 2>/dev/null |
 sort -rn |
 sed '{11,$D; =}' |
 sed 'N; s/\n/ /' |
 gawk '{printf $1 ":" "\t" $2 "\t" $3 "\n"}'
#
done #End of loop
#
exit

And there you have it. This simple shell script creates a date stamped report of the top ten
disk space consumers for each directory you choose.

Running the script
Before having the Big_Users script run automatically, you want to test it a few times
manually to ensure that it does what you think it should do. And as you know by now,
before you test it, you must set the proper permissions. However, in this case, the bash
command was used, so the chmod u+x command was not needed prior to running the
script:

$ ls -l Big_Users.sh
-rw-r--r--. 1 Christine Christine 910 Sep 3 08:43 Big_Users.sh
$
$ sudo bash Big_Users.sh
 [sudo] password for Christine:
$
$ ls disk_space*.rpt
disk_space_090314.rpt
$
$ cat disk_space_090314.rpt
Top Ten Disk Space Usage

678

Part IV: Creating Practical Scripts

c24.indd 12/05/2014 Page 678

for /var/log /home Directories

The /var/log Directory:
1: 4496 /var/log/audit
2: 3056 /var/log
3: 3032 /var/log/sa
4: 480 /var/log/gdm
5: 152 /var/log/ConsoleKit
6: 80 /var/log/prelink
7: 4 /var/log/sssd
8: 4 /var/log/samba/old
9: 4 /var/log/samba
10: 4 /var/log/ppp

The /home Directory:
1: 34084 /home/Christine/Documents/temp/reports/archive
2: 14372 /home/Christine/Documents/temp/reports
3: 4440 /home/Timothy/Project__42/log/universe
4: 4440 /home/Timothy/Project_254/Old_Data/revision.56
5: 4440 /home/Christine/Documents/temp/reports/report.txt
6: 3012 /home/Timothy/Project__42/log
7: 3012 /home/Timothy/Project_254/Old_Data/data2039432
8: 2968 /home/Timothy/Project__42/log/answer
9: 2968 /home/Timothy/Project_254/Old_Data/data2039432/answer
10: 2968 /home/Christine/Documents/temp/reports/answer
$

It worked! Now you can set up the shell script to execute automatically as needed. You do
this using the cron table (see Chapter 16). It’s a good idea to have it run early Monday
morning. If you do this, you can have your coffee and review your weekly disk consump-
tion report fi rst thing Monday morning!

Summary
This chapter put some of the shell-scripting information presented in the book to good use
for creating Linux utilities. When you’re responsible for a Linux system, whether it’s a large
multi-user system or your own system, you need to watch lots of things. Instead of manu-
ally running commands, you can create shell script utilities to do the work for you.

The fi rst section walked you through using shell scripts for archiving and backing up data
fi les on the Linux system. The tar command is a popular command for archiving data. The
chapter showed you how to use it in shell scripts to create archive fi les and how to manage
the archive fi les in an archive directory.

The next section covered using a shell script for the four steps needed to delete user
accounts. Creating functions for shell code that is repeated within a script makes the code
easier to read and modify. This script combined many of the different structured commands,

679

Chapter 24: Writing Simple Script Utilities

c24.indd 12/05/2014 Page 679

24

such as the case and while commands. The chapter demonstrated the difference in script
structure for a script destined for the cron tables versus an interactive script.

The chapter ended with how to use the du command to determine disk space consumption.
The sed and gawk commands were then used to retrieve specifi c information from the
data. Passing the output from a command to sed and gawk to parse data is a common
function in shell scripts, so it’s a good idea to know how to do it.

Next, more advanced shell scripts are covered. These scripts cover database, web, and
e-mail topics.

681

c25.indd 12/12/2014 Page 681

CHAP T ER

25
Producing Scripts for Database,
Web, and E-Mail

IN THIS CHAPTER

Writing database shell scripts

Using the Internet from your scripts

E-mailing reports from scripts

S
o far we’ve covered many different features of shell scripts. However, there’s still more! You
can also utilize advanced applications outside your shell scripts to provide advanced features,
such as accessing databases, retrieving data from the Internet, and e-mailing reports. This

chapter shows how to use these three common features found in Linux systems all from within your
shell scripts.

Using a MySQL Database
One of the problems with shell scripts is persistent data. You can store all the information you want
in your shell script variables, but at the end of the script, the variables just go away. Sometimes,
you’d like for your scripts to be able to store data that you can use later.

In the old days, to store and retrieve data from a shell script required creating a fi le, reading data
from the fi le, parsing the data, and then saving the data back into the fi le. Searching for data
in the fi le meant reading every record in the fi le to look for your data. Nowadays with databases
being all the rage, it’s a snap to interface your shell scripts with professional-quality open source
databases. Currently, the most popular open source database used in the Linux world is MySQL. Its
popularity has grown as a part of the Linux-Apache-MySQL-PHP (LAMP) server environment, which
many Internet web servers use for hosting online stores, blogs, and applications.

This section describes how to use a MySQL database in your Linux environment to create database
objects and how to use those objects in your shell scripts.

682

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 682

Using MySQL
Most Linux distributions include the MySQL server and client packages in their software
repositories, making it a snap to install a full MySQL environment on your Linux system.
Figure 25-1 demonstrates the Add Software feature in the Ubuntu Linux distribution.

FIGURE 25-1

Installing MySQL server on an Ubuntu Linux system

After searching for the mysql-server package, just select the mysql-server entry that
appears, and the Package Manager downloads and installs the complete MySQL server (and
client) software. It doesn’t get any easier than that!

Once installed, the portal to the MySQL database is the mysql command line interface
program. This section describes how to use the mysql client program to interact with your
database.

Connecting to the server

The mysql client program allows you to connect to any MySQL database server anywhere
on the network, using any user account and password. By default, if you enter the mysql
program on a command line without any parameters, it attempts to connect to a MySQL
server running on the same Linux system, using the Linux login username.

683

Chapter 25: Producing Scripts for Database, Web, and E-Mail

c25.indd 12/12/2014 Page 683

25

Most likely, this isn’t how you want to connect to the database though. It’s usually safer
to create a special user account for the application to use, rather than using your standard
user account in the MySQL server. That way, you can limit access to the application user,
and if the application is compromised, you can easily delete and recreate it if necessary.

You use the -u command line parameter to specify the user name to log in as:

$ mysql -u root –p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 42
Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

The -p parameter tells the mysql program to prompt for a password to use with the user
account to log in. Enter the password that you assigned to the root user account, either
during the installation process, or using the mysqladmin utility. After you’re logged in to
the server, you can start entering commands.

The mysql commands

The mysql program uses two different types of commands:

 ■ Special mysql commands

 ■ Standard SQL statements

The mysql program uses its own set of commands that let you easily control the environ-
ment and retrieve information about the MySQL server. The mysql commands use either a
full name (such as status) or a shortcut (such as \s).

You can use either the full command or the shortcut command directly from the mysql
command prompt:

mysql> \s

mysql Ver 14.14 Distrib 5.5.38, for debian-linux-gnu (i686) using readline 6.3

Connection id: 43

684

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 684

Current database:
Current user: root@localhost
SSL: Not in use
Current pager: stdout
Using outfile: ''
Using delimiter: ;
Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)
Protocol version: 10
Connection: Localhost via UNIX socket
Server characterset: latin1
Db characterset: latin1
Client characterset: utf8
Conn. characterset: utf8
UNIX socket: /var/run/mysqld/mysqld.sock
Uptime: 2 min 24 sec

Threads: 1 Questions: 575 Slow queries: 0 Opens: 421 Flush tables: 1
 Open tables: 41 Queries per second avg: 3.993

mysql>

The mysql program implements all the standard Structured Query Language (SQL) com-
mands supported by the MySQL server. One uncommon SQL command that the mysql pro-
gram implements is the SHOW command. Using this command, you can extract information
about the MySQL server, such as the databases and tables created:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.04 sec)

mysql> USE mysql;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |

685

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 685

| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
17 rows in set (0.00 sec)
mysql>

In this example, we used the SHOW SQL command to display the databases currently confi g-
ured on the MySQL server and the USE SQL command to connect to a single database. Your
mysql session can be connected to only one database at a time.

You’ll notice that we added a semicolon after each command. The semicolon indicates the
end of a command to the mysql program. If you don’t use a semicolon, it prompts for more
data:

mysql> SHOW
 -> DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

mysql>

This feature can come in handy when you’re working with long commands. You can enter
part of the command on a line, press the Enter key, and continue on the next line. This can
continue for as many lines as you like until you use the semicolon to indicate the end of
the command.

Throughout this chapter, we use uppercase letters for SQL commands. This has become a common way to write SQL

commands, but the mysql program allows you to specify SQL commands using either uppercase or lowercase.

Creating a database

The MySQL server organizes data into databases. A database usually holds the data for
a single application, separating it from other applications that use the database server.

686

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 686

Creating a separate database for each shell script application helps eliminate confusion and
data mix-ups.

Here’s the SQL statement required to create a new database:

CREATE DATABASE name;

That’s pretty simple. Of course, you must have the proper privileges to create new databases
on the MySQL server. The easiest way to do that is to log in as the root user account:

$ mysql -u root –p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 42
Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE mytest;
Query OK, 1 row affected (0.02 sec)

mysql>

You can see whether the new database was created by using the SHOW command:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| mytest |
+--------------------+
3 rows in set (0.01 sec)

mysql>

Yes, it was successfully created. Now you can create a user account to access the new
database.

687

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 687

Creating a user account

So far, you’ve seen how to connect to the MySQL server using the root administrator
account. This account has total control over all the MySQL server objects (much like how
the root Linux account has complete control over the Linux system).

It’s extremely dangerous to use the root MySQL account for normal applications. If there
were a breach of security and someone fi gured out the password for the root user account,
all sorts of bad things could happen to your system (and data).

To prevent that, it’s wise to create a separate user account in MySQL that has privileges
only for the database used in the application. You do this with the GRANT SQL statement:

mysql> GRANT SELECT,INSERT,DELETE,UPDATE ON test.* TO test IDENTIFIED
by 'test';
Query OK, 0 rows affected (0.35 sec)

mysql>

That’s quite a long command. Let’s walk through the pieces and see what it’s doing.

The fi rst section defi nes the privileges the user account has on the database(s). This state-
ment allows the user account to query the database data (the select privilege), insert new
data records, delete existing data records, and update existing data records.

The test.* entry defi nes the database and tables to which the privileges apply. This is
specifi ed in the following format:

database.table

As you can see from this example, you’re allowed to use wildcard characters when specify-
ing the database and tables. This format applies the specifi ed privileges to all the tables
contained in the database named test.

Finally, you specify the user account(s) to which the privileges apply. The neat thing about
the grant command is that if the user account doesn’t exist, it creates it. The
identified by portion allows you to set a default password for the new user account.

You can test the new user account directly from the mysql program:

$ mysql mytest -u test –p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 42

688

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 688

Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

The fi rst parameter specifi es the default database to use (mytest), and as you’ve already
seen, the -u parameter defi nes the user account to log in as, along with the -p to prompt
for the password. After entering the password assigned to the test user account, you’re con-
nected to the server.

Now that you have a database and a user account, you’re ready to create some tables for the
data.

Creating a table

The MySQL server is considered a relational database. In a relational database, data is orga-
nized by data fi elds, records, and tables. A data fi eld is a single piece of information, such as
an employee’s last name or a salary. A record is a collection of related data fi elds, such as
the employee ID number, last name, fi rst name, address, and salary. Each record indicates
one set of the data fi elds.

The table contains all the records that hold the related data. Thus, you’ll have a table called
Employees that holds the records for each employee.

To create a new table in the database, you need to use the CREATE TABLE SQL command:

$ mysql mytest -u root -p
Enter password:
mysql> CREATE TABLE employees (
 -> empid int not null,
 -> lastname varchar(30),
 -> firstname varchar(30),
 -> salary float,
 -> primary key (empid));
Query OK, 0 rows affected (0.14 sec)

mysql>

First, notice that to create the new table, we needed to log in to MySQL using the root user
account because the test user doesn’t have privileges to create a new table. Next, notice
that we specifi ed the mytest database on the mysql program command line. If we hadn’t
done that, we would need to use the USE SQL command to connect to the test database.

689

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 689

It’s extremely important to make sure you’re in the right database before creating the new table. Also, make sure

you’re logged in using the administrative user account (root for MySQL) to create the tables.

Each data fi eld in the table is defi ned using a data type. The MySQL database supports lots
of different data types. Table 25-1 shows some of the more popular data types you may need.

TABLE 25-1 MySQL Data Types

Data Type Description

char A fi xed-length string value

varchar A variable-length string value

int An integer value

fl oat A fl oating-point value

boolean A Boolean true/false value

date A date value in YYYY-MM-DD format

time A time value in HH:mm:ss format

timestamp A date and time value together

text A long string value

BLOB A large binary value, such as an image or video clip

The empid data fi eld also specifi es a data constraint. A data constraint restricts what type
of data you can enter to create a valid record. The not null data constraint indicates that
every record must have an empid value specifi ed.

Finally, the primary key defi nes a data fi eld that uniquely identifi es each individual
record. This means that each data record must have a unique empid value in the table.

After creating the new table, you can use the appropriate command to ensure that it’s cre-
ated. In mysql, it’s the show tables command:

mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| employees |
+----------------+
1 row in set (0.00 sec)

mysql>

690

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 690

With the table created, you’re now ready to start saving some data. The next section covers
how to do that.

Inserting and deleting data

Not surprisingly, you use the INSERT SQL command to insert new data records into the
table. Each INSERT command must specify the data fi eld values for the MySQL server to
accept the record.

Here’s the format of the INSERT SQL command:

INSERT INTO table VALUES (...)

The values are in a comma-separated list of the data values for each data fi eld:

$ mysql mytest -u test -p
Enter password:

mysql> INSERT INTO employees VALUES (1, 'Blum', 'Rich', 25000.00);
Query OK, 1 row affected (0.35 sec)

The example uses the –u command line prompt to log in as the test user account that was
created in MySQL.

The INSERT command pushes the data values you specify into the data fi elds in the table.
If you attempt to add another record that duplicates the empid data fi eld value, you get an
error message:

mysql> INSERT INTO employees VALUES (1, 'Blum', 'Barbara', 45000.00);
ERROR 1062 (23000): Duplicate entry '1' for key 1

However, if you change the empid value to a unique value, everything should be okay:

mysql> INSERT INTO employees VALUES (2, 'Blum', 'Barbara', 45000.00);
Query OK, 1 row affected (0.00 sec)

You should now have two data records in your table.

If you need to remove data from your table, you use the DELETE SQL command. However,
you need to be very careful with it.

Here’s the basic DELETE command format:

DELETE FROM table;

where table specifi es the table to delete records from. There’s just one small problem with
this command: It removes all the records in the table.

691

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 691

To just specify a single record or a group of records to delete, you must use the WHERE
clause. The WHERE clause allows you to create a fi lter that identifi es which records to
remove. You use the WHERE clause like this:

DELETE FROM employees WHERE empid = 2;

This restricts the deletion process to all the records that have an empid value of 2. When
you execute this command, the mysql program returns a message indicating how many
records matched the fi lter:

mysql> DELETE FROM employees WHERE empid = 2;
Query OK, 1 row affected (0.29 sec)

As expected, only one record matched the fi lter and was removed.

Querying data

After you have all your data in your database, it’s time to start running reports to extract
information.

The workhorse for all your querying is the SQL SELECT command. The SELECT command is
extremely versatile, but with versatility comes complexity.

Here’s the basic format of a SELECT statement:

SELECT datafields FROM table

The datafields parameter is a comma-separated list of the data fi eld names you want the
query to return. If you want to receive all the data fi eld values, you can use an asterisk as a
wildcard character.

You must also specify the specifi c table you want the query to search. To get meaningful
results, you must match your query data fi elds with the proper table.

By default, the SELECT command returns all the data records in the specifi ed table:

mysql> SELECT * FROM employees;
+-------+----------+------------+--------+
| empid | lastname | firstname | salary |
+-------+----------+------------+--------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+--------+
4 rows in set (0.00 sec)

mysql>

692

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 692

You can use one or more modifi ers to defi ne how the database server returns the data
requested by the query. Here’s a list of commonly used modifi ers:

 ■ WHERE: Displays a subset of records that meet a specifi c condition

 ■ ORDER BY: Displays records in a specifi ed order

 ■ LIMIT: Displays only a subset of records

The WHERE clause is the most common SELECT command modifi er. It allows you to specify
conditions to fi lter data from the result set. Here’s an example of using the WHERE clause:

mysql> SELECT * FROM employees WHERE salary > 40000;
+-------+----------+-----------+--------+
| empid | lastname | firstname | salary |
+-------+----------+-----------+--------+
| 2 | Blum | Barbara | 45000 |
| 4 | Blum | Jessica | 52340 |
+-------+----------+-----------+--------+
2 rows in set (0.01 sec)

mysql>

Now you can see the power of adding database access to your shell scripts! You can easily
control your data management needs just with a few SQL commands and the mysql pro-
gram. The next section describes how you can incorporate these features into your shell
scripts.

Using the database in your scripts
Now that you have a working database going, it’s fi nally time to turn our attention back to
the shell scripting world. This section describes what you need to do to interact with your
databases using shell scripts.

Logging into the server

If you’ve created a special user account in MySQL for your shell scripts, you need to use it
to log in with the mysql command. There are a couple ways to do that. One method is to
include the password on the command line using the -p parameter:

mysql mytest -u test –p test

This, however, is not a good idea. Anyone who has access to your script will know the user
account and password for your database.

To solve this problem, you can use a special confi guration fi le used by the mysql program.
The mysql program uses the $HOME/.my.cnf fi le to read special startup commands and
settings. One of those settings is the default password for mysql sessions started by the
user account.

693

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 693

To set the default password in this fi le, just create the following:

$ cat .my.cnf
[client]
password = test
$ chmod 400 .my.cnf
$

The chmod command is used to restrict the .my.cnf fi le so only you can view it. You can
test this now from the command line:

$ mysql mytest -u test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 44
Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Perfect! Now you don’t have to include the password on the command line in your shell
scripts.

Sending commands to the server

After establishing the connection to the server, you’ll want to send commands to interact
with your database. There are two methods to do this:

 ■ Send a single command and exit.

 ■ Send multiple commands.

To send a single command, you must include the command as part of the mysql command
line. For the mysql command, you do this using the -e parameter:

$ cat mtest1
#!/bin/bash
send a command to the MySQL server

MYSQL=$(which mysql)

$MYSQL mytest -u test -e 'select * from employees'

694

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 694

$./mtest1
+-------+----------+------------+---------+
| empid | lastname | firstname | salary |
+-------+----------+------------+---------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+---------+
$

The database servers return the results from the SQL commands to the shell scripts, which
display them in STDOUT.

If you need to send more than one SQL command, you can use fi le redirection (see Chapter
15). To redirect lines in the shell script, you must defi ne an end of file string. The end of
fi le string indicates the beginning and end of the redirected data.

This is an example of defi ning an end of fi le string, with data in it:

$ cat mtest2
#!/bin/bash
sending multiple commands to MySQL

MYSQL=$(which mysql)
$MYSQL mytest -u test <<EOF
show tables;
select * from employees where salary > 40000;
EOF
$./mtest2
Tables_in_test
employees
empid lastname firstname salary
2 Blum Barbara 45000
4 Blum Jessica 52340
$

The shell redirects everything with the EOF delimiters to the mysql command, which
executes the lines as if you typed them yourself at the prompt. Using this method, you
can send as many commands to the MySQL server as you need. You’ll notice, however,
that there’s no separation between the output from each command. In the next section,
“Formatting data,” you’ll see how to fi x this problem.

695

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 695

You should also notice that the mysql program changed the default output style when you used the redirected input

method. Instead of creating the ASCII symbol boxes around the data, the mysql program detected that the input

was redirected, so it returned just the raw data. This comes in handy when you need to extract the individual data

elements.

Of course, you’re not limited to just retrieving data from the tables. You can use any type
of SQL command in your script, such as an INSERT statement:

$ cat mtest3
#!/bin/bash
send data to the table in the MySQL database

MYSQL=$(which mysql)

if [$# -ne 4]
then
 echo "Usage: mtest3 empid lastname firstname salary"
else
 statement="INSERT INTO employees VALUES ($1, '$2', '$3', $4)"
 $MYSQL mytest -u test << EOF
 $statement
EOF
 if [$? -eq 0]
 then
 echo Data successfully added
 else
 echo Problem adding data
 fi
fi
$./mtest3
Usage: mtest3 empid lastname firstname salary
$./mtest3 5 Blum Jasper 100000
Data added successfully
$
$./mtest3 5 Blum Jasper 100000
ERROR 1062 (23000) at line 1: Duplicate entry '5' for key 1
Problem adding data
$

This example demonstrates a few things about using this technique. When you specify the
end of fi le string, it must be the only thing on the line, and the line must start with the

696

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 696

string. If we had indented the EOF text to match the rest of the if-then indentation, it
wouldn’t work.

Inside the INSERT statement, notice that there are single quotes around the text values
and double quotes around the entire INSERT statement. It’s important not to mix up the
quotes used for the string values with the quotes used to defi ne the script variable text.

Also, notice how we used the special $? variable to test the exit status of the mysql pro-
gram. This helps you determine whether the command failed.

Just sending output from the commands to STDOUT is not the easiest way to manage and
manipulate the data. The next section shows you some tricks you can use to help your
scripts capture data retrieved from the database.

Formatting data

The standard output from the mysql command doesn’t lend itself to data retrieval. If you
need to actually do something with the data you retrieve, you need to do some fancy data
manipulation. This section describes some of the tricks you can use to help extract data
from your database reports.

The fi rst step in trying to capture database data is to redirect the output from the mysql
and psql commands in an environment variable. This allows you to use the output infor-
mation in other commands. Here’s an example:

$ cat mtest4
#!/bin/bash
redirecting SQL output to a variable

MYSQL=$(which mysql)

dbs=$($MYSQL mytest -u test -Bse 'show databases')
for db in $dbs
do
 echo $db
done
$./mtest4
information_schema
test
$

697

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 697

This example uses two additional parameters on the mysql program command line. The -B
parameter specifi es for the mysql program to work in batch mode, and in combination with
the -s (silent) parameter, the column headings and formatting symbols are suppressed.

By redirecting the output of the mysql command to a variable, this example is able to step
through the individual values of each returned record.

The mysql program also supports an additional popular format, called Extensible Markup
Language (XML). This language uses HTML-like tags to identify data names and values.

For the mysql program, you do this using the -X command line parameter:

$ mysql mytest -u test -X -e 'select * from employees where empid = 1'
<?xml version="1.0"?>

<resultset statement="select * from employees">
<row>
 <field name="empid">1</field>
 <field name="lastname">Blum</field>
 <field name="firstname">Rich</field>
 <field name="salary">25000</field>
</row>
</resultset>
$

Using XML, you can easily identify individual rows of data, along with the individual
data values in each record. You can then use standard Linux string handling functions to
extract the data you need!

Using the Web
Often when you think of shell script programming, the last thing you think of is the
Internet. The command line world often seems foreign to the fancy, graphical world of the
Internet. There are, however, several different utilities you can easily use in your shell
scripts to gain access to data content on the web, as well as on other network devices.

Almost as old as the Internet itself, the Lynx program was created in 1992 by students at
the University of Kansas as a text-based browser. Because it’s text-based, the Lynx program
allows you to browse websites directly from a terminal session, replacing the fancy graphics
on web pages with HTML text tags. This allows you to surf the Internet from just about any
type of Linux terminal. A sample Lynx screen is shown in Figure 25-2.

698

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 698

FIGURE 25-2

Viewing a web page using Lynx

Lynx uses the standard keyboard keys to navigate around the web page. Links appear as
highlighted text within the web page. Using the right-arrow key allows you to follow a link
to the next web page.

You may be wondering how you can use a graphical text program in your shell scripts. The
Lynx program also provides a feature that allows you to dump the text contents of a web
page to STDOUT. This feature is great for mining for data contained within a web page. This
section describes how to use the Lynx program within your shell scripts to extract data
from websites.

Installing Lynx
Even though the Lynx program is somewhat old, it’s still in active development. At the
time of this writing, the latest version of Lynx is version 2.8.8, released in June 2010, with
a new release in development. Because of its popularity among shell script programmers,
many Linux distributions install the Lynx program in their default installations.

If you’re using an installation that doesn’t provide the Lynx program, check your distribu-
tion’s installation packages. Most likely you’ll fi nd it there for easy installation.

If your distribution doesn’t include the Lynx package, or if you just want the latest version,
you can download the source code from the lynx.isc.org website and compile it yourself

699

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 699

(assuming that you’ve got the C development libraries installed on your Linux system). See
Chapter 9 for information on how to compile and install source code distribution packages.

The Lynx program uses the curses text-graphics library in Linux. Most distributions have this installed by default. If

your distribution doesn’t, consult your particular distribution’s instructions on installing the curses library before try-

ing to compile Lynx.

The next section describes how to use the lynx command from the command line.

The lynx command line
The lynx command line command is extremely versatile in what information it can retrieve
from the remote website. When you view a web page in your browser, you’re only seeing
part of the information that’s transferred to your browser. Web pages consist of three types
of data elements:

 ■ HTTP headers

 ■ Cookies

 ■ HTML content

HTTP headers provide information about the type of data sent in the connection, the server
sending the data, and the type of security used in the connection. If you’re sending special
types of data, such as video or audio clips, the server identifi es that in the HTTP headers.
The Lynx program allows you to view all the HTTP headers sent within a web page session.

If you’ve done any type of web browsing, no doubt you’re familiar with web page cookies.
Websites use cookies to store data about your website visit for future use. Each individual
site can store information, but it can only access the information it sets. The lynx com-
mand provides options for you to view cookies sent by web servers, as well as reject or
accept specifi c cookies sent from servers.

The Lynx program allows you to view the actual HTML content of the web page in three dif-
ferent formats:

 ■ In a text-graphics display on the terminal session using the curses graphical library

 ■ As a text fi le, dumping the raw data from the web page

 ■ As a text fi le, dumping the raw HTML source code from the web page

For shell scripts, viewing the raw data or HTML source code is a gold mine. After you
capture the data retrieved from a website, you can easily extract individual pieces of
information.

700

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 700

As you can see, the Lynx program is extremely versatile in what it can do. However, with
versatility comes complexity, especially when it comes to command line parameters. The
Lynx program is one of the more complex programs you’ll run into in the Linux world.

Here’s the basic format of the lynx command:

lynx options URL

where URL is the HTTP or HTTPS destination you want to connect to, and options are one
or more options that modify the behavior of Lynx as it interacts with the remote website.
There are options for just about any type of web interaction required by Lynx. Use the man
command to view all the options available for Lynx.

Many of the command line parameters defi ne behaviors that control Lynx when you’re using
it in full-screen mode, allowing you to customize the behavior of Lynx as you’re traversing
web pages.

There are often groups of command line parameters that you fi nd useful in your normal
browsing environment. Instead of having to enter these parameters on the command line
every time you use Lynx, Lynx provides a general confi guration fi le that defi nes the base
behavior when you use Lynx. This confi guration fi le is discussed in the next section.

The Lynx confi guration fi le
The lynx command reads a confi guration fi le for many of its parameter settings. By
default, this fi le is located at /usr/local/lib/lynx.cfg, although you’ll fi nd that many
Linux distributions change this to the /etc directory (/etc/lynx.cfg) (the Ubuntu dis-
tribution places the lynx.cfg file in the /etc/lynx-cur folder).

The lynx.cfg confi guration fi le groups related parameters into sections to make fi nding
parameters easier. Here’s the format of an entry in the confi guration fi le:

PARAMETER:value

where PARAMETER is the full name of the parameter (often, but not always in uppercase
letters) and value is the value associated with the parameter.

Perusing this fi le, you’ll fi nd many parameters that are similar to the command line param-
eters, such as the ACCEPT_ALL_COOKIES parameter, which is equivalent to setting the
-accept_all_cookies command line parameter.

There are also a few confi guration parameters that are similar in function but different in
name. The FORCE_SSL_COOKIES_SECURE confi guration fi le parameter setting can be over-
ridden by the -force_secure command line parameter.

However, you’ll also fi nd quite a few confi guration parameters that don’t match with com-
mand line parameters. These values can be set only from the confi guration fi le.

701

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 701

The most common confi guration parameters that you can’t set on the command line are
for the proxy servers. Some networks (especially corporate networks) use a proxy server as
a middleman between the client’s browser and the destination website server. Instead of
sending HTTP requests directly to the remote web server, client browsers must send their
requests to the proxy server. The proxy server in turn sends the requests to the remote web
server, retrieves the results, and forwards them back to the client browser.

This may seem like a waste of time, but it’s a vital function in protecting clients from dan-
gers on the Internet. A proxy server can fi lter inappropriate content and malicious coding,
or even detect sites used for Internet data phishing schemes (rogue servers pretending
to be someone else in order to capture customer data). Proxy servers can also help reduce
Internet bandwidth usage, because they cache commonly viewed web pages and return
them to clients instead of having to download the original page again.

These are the confi guration parameters used to defi ne proxy servers:

http_proxy:http://some.server.dom:port/
https_proxy:http://some.server.dom:port/
ftp_proxy:http://some.server.dom:port/
gopher_proxy:http://some.server.dom:port/
news_proxy:http://some.server.dom:port/
newspost_proxy:http://some.server.dom:port/
newsreply_proxy:http://some.server.dom:port/
snews_proxy:http://some.server.dom:port/
snewspost_proxy:http://some.server.dom:port/
snewsreply_proxy:http://some.server.dom:port/
nntp_proxy:http://some.server.dom:port/
wais_proxy:http://some.server.dom:port/
finger_proxy:http://some.server.dom:port/
cso_proxy:http://some.server.dom:port/
no_proxy:host.domain.dom

You can defi ne a different proxy server for any network protocol supported by Lynx. The
NO_PROXY parameter is a comma-separated list of websites that you prefer to have direct
access to without using the proxy server. These are often internal websites that don’t
require fi ltering.

Capturing data from Lynx
When you use Lynx in a shell script, most likely you’re trying to obtain a specifi c piece (or
pieces) of information from a web page. The technique to accomplish this is called screen
scraping. In screen scraping, you’re trying to programmatically fi nd data in a specifi c loca-
tion on a graphical screen so you can capture it and use it in your shell script.

The easiest way to perform screen scraping with lynx is to use the -dump option. This
option doesn’t bother trying to display the web page on the terminal screen. Instead, it
displays the web page text data directly to STDOUT:

http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port
http://some.server.dom:port

702

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 702

$ lynx -dump http://localhost/RecipeCenter/
The Recipe Center
 "Just like mom used to make"
Welcome
 [1]Home
 [2]Login to post
 [3]Register for free login

 [4]Post a new recipe

Each link is identifi ed by a tag number, and Lynx displays a listing of all the tag references
after the web page data.

After you have all the text data from the web page, you probably know what tools we’re
going to get out of the toolbox to start work on extracting data. That’s right, our old
friends the sed and gawk programs (see Chapter 19).

First, let’s fi nd some interesting data to collect. The Yahoo! weather web page is a great
source for fi nding the current weather conditions anywhere in the world. Each location
uses a separate URL to display weather information for that city (you can fi nd the specifi c
URL for your city by going to the site in a normal browser and entering your city’s informa-
tion). Here’s the lynx command for fi nding the weather in Chicago, Illinois:

 lynx -dump http://weather.yahoo.com/united-states/illinois/chicago-2379574/

This command dumps lots and lots of data from the web page. The fi rst step is to fi nd the
precise information you want. To do that, redirect the output from the lynx command to a
fi le, and then search the fi le for your data. After doing that with the preceding command,
we found this text in the output fi le:

Current conditions as of 1:54 pm EDT
Mostly Cloudy

 Feels Like:
 32 °F

 Barometer:
 30.13 in and rising

 Humidity:
 50%

 Visibility:
 10 mi

 Dewpoint:
 15 °F

 Wind:
 W 10 mph

http://localhost/RecipeCenter
http://weather.yahoo.com/united-states/illinois/chicago-2379574

703

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 703

That’s all the information about the current weather you really need. There’s just one small
problem with this output. You’ll notice that the numbers are on a line below the heading.
Trying to just extract individual numbers will be diffi cult. Chapter 19 discusses how to deal
with a problem just like this.

The key to solving this is to write a sed script that can search for the data heading fi rst.
When you fi nd it, you can then go to the correct line to extract the data. We’re fortunate in
this example in that all the data we need are on lines by themselves. We should be able to
solve this with just the sed script. If there had also been other text on the same line, we’d
need to get out the gawk tool to fi lter out just the data we needed.

First, you need to create a sed script that looks for the location text and then skips to the
next line to get the text that describes the current weather condition and prints it. Here’s
what that looks like for the Chicago weather page:

$ cat sedcond
/IL, United States/{
n
p
}
$

The address specifi es to look for the line with the desired text. If the sed command fi nds
it, the n command skips to the next line, and the p command prints the contents of the
line, which is the text describing the current weather conditions of the city.

Next, you’ll need a sed script that can search for the Feels Like text and then go to the
next line to print the temperature:

$ cat sedtemp
/Feels Like/{
p
}
$

Perfect. Now, you can use these two sed scripts in a shell script that fi rst captures the
lynx output of the web page to a temporary fi le, and then applies the two sed scripts to
the web page data to extract only the data you’re looking for. Here’s an example of how to
do that:

$ cat weather
#!/bin/bash
extract the current weather for Chicago, IL

URL="http://weather.yahoo.com/united-states/illinois/chicago-2379574/"
LYNX=$(which lynx)
TMPFILE=$(mktemp tmpXXXXXX)
$LYNX -dump $URL > $TMPFILE

http://weather.yahoo.com/united-states/illinois/chicago-2379574

704

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 704

conditions=$(cat $TMPFILE | sed -n -f sedcond)
temp=$(cat $TMPFILE | sed -n -f sedtemp | awk '{print $4}')
rm -f $TMPFILE
echo "Current conditions: $conditions"
echo The current temp outside is: $temp
$./weather
Current conditions: Mostly Cloudy
The current temp outside is: 32 °F
$

The weather script connects to the Yahoo! weather web page for the desired city, saves the
web page to a temporary fi le, extracts the appropriate text, removes the temporary fi le, and
then displays the weather information. The beauty of this is that after you’ve extracted
the data from a website, you can do whatever you want with it, such as create a table of
temperatures. You can then create a cron job (see Chapter 16) that runs every day to track
daily temperatures.

The Internet is a dynamic place. Don’t be surprised if you spend hours working out the precise location of data on a

web page, only to fi nd that it’s moved a couple of weeks later, breaking your scripts. In fact, it’s quite possible that

this example won’t work by the time you read this book. The important thing is to know the process for extracting

data from web pages. You can then apply that principle to any situation.

Using E-Mail
With the popularity of e-mail, these days just about everyone has an e-mail address.
Because of that, people often expect to receive data via e-mail instead of seeing fi les or
printouts. That’s no different in the shell scripting world. If you generate any type of
report from your shell script, most likely at some point you’ll be asked to e-mail the results
to someone.

The main tool you have available for sending e-mail messages from your shell scripts is the
Mailx program. Not only can you use it interactively to read and send messages, but you can
also use the command line parameters to specify how to send a message.

Some Linux distributions require that you also install a mail server package (such as sendmail or Postfi x) before you

can install the mailutils package that includes the Mailx program.

Here’s the format for the Mailx program’s command line for sending messages:

mail [-eIinv] [-a header] [-b addr] [-c addr] [-s subj] to-addr

705

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 705

The mail command uses the command line parameters shown in Table 25-2.

TABLE 25-2 The Mailx Command Line Parameters

Parameter Description

-a Specifi es additional SMTP header lines

-b Adds a BCC: recipient to the message

-c Adds a CC: recipient to the message

-e Doesn’t send the message if it’s empty

-i Ignores TTY interrupt signals

-I Forces Mailx to run in interactive mode

-n Doesn’t read the /etc/mail.rc startup fi le

-s Specifi es a Subject line

-v Displays details of the delivery on the terminal

As you can see from Table 25-2, you can pretty much create an entire e-mail message just
from the command line parameters. You just need to add the message body.

To do that, you need to redirect text to the mail command. Here’s a simple example of how
to create and send an e-mail message directly from the command line:

$ echo "This is a test message" | mailx -s "Test message" rich

The Mailx program sends the text from the echo command as the message body. This
provides an easy way for you to send messages from your shell scripts. Here’s a quick
example:

$ cat factmail
#!/bin/bash
mailing the answer to a factorial

MAIL=$(which mailx)

factorial=1
counter=1

read -p "Enter the number: " value
while [$counter -le $value]
do
 factorial=$[$factorial * $counter]
 counter=$[$counter + 1]

706

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 706

done

echo The factorial of $value is $factorial | $MAIL -s "Factorial
answer" $USER
echo "The result has been mailed to you."

This script does not assume that the Mailx program is located in the standard location. It
uses the which command to determine just where the mail program is.

After calculating the result of the factorial function, the shell script uses the mail com-
mand to send the message to the user-defi ned $USER environment variable, which should
be the person executing the script.

$./factmail
Enter the number: 5
The result has been mailed to you.
$

You just need to check your mail to see if the answer arrived:

$ mail
"/var/mail/rich": 1 message 1 new
>N 1 Rich Blum Mon Sep 1 10:32 13/586 Factorial answer
?
Return-Path: <rich@rich-Parallels-Virtual-Platform>
X-Original-To: rich@rich-Parallels-Virtual-Platform
Delivered-To: rich@rich-Parallels-Virtual-Platform
Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
 id B4A2A260081; Mon, 1 Sep 2014 10:32:24 -0500 (EST)
Subject: Factorial answer
To: <rich@rich-Parallels-Virtual-Platform>
X-Mailer: mail (GNU Mailutils 2.1)
Message-Id: <20101209153224.B4A2A260081@rich-Parallels-Virtual-Platform>
Date: Mon, 1 Sep 2014 10:32:24 -0500 (EST)
From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

The factorial of 5 is 120
?

It’s not always convenient to send just one line of text in the message body. Often, you’ll
need to send an entire output as the e-mail message. In those situations, you can always
redirect text to a temporary fi le and use the cat command to redirect the output to the
mail program.

Here’s an example of sending a larger amount of data in an e-mail message:

$ cat diskmail
#!/bin/bash

707

Chapter 25: Producing Scripts for Database, Web, and E-Mail

25

c25.indd 12/12/2014 Page 707

sending the current disk statistics in an e-mail message

date=$(date +%m/%d/%Y)
MAIL=$(which mailx)
TEMP=$(mktemp tmp.XXXXXX)

df -k > $TEMP
cat $TEMP | $MAIL -s "Disk stats for $date" $1
rm -f $TEMP

The diskmail program gets the current date using the date command (along with some
special formatting), fi nds the location of the Mailx program, and creates a temporary fi le.
After all that, it uses the df command to display the current disk space statistics (see
Chapter 4), redirecting the output to the temporary fi le.

It then redirects the temporary fi le to the mail command, using the fi rst command line
parameter for the destination address and the current date in the Subject header. When
you run the script, you don’t see anything appear on the command line output:

$./diskmail rich

But if you check your mail, you should see the sent message:

$ mail
"/var/mail/rich": 1 message 1 new
>N 1 Rich Blum Mon Sep 1 10:35 19/1020 Disk stats for 09/01/2014
?
Return-Path: <rich@rich-Parallels-Virtual-Platform>
X-Original-To: rich@rich-Parallels-Virtual-Platform
Delivered-To: rich@rich-Parallels-Virtual-Platform
Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
 id 3671B260081; Mon, 1 Sep 2014 10:35:39 -0500 (EST)
Subject: Disk stats for 09/01/2014
To: <rich@rich-Parallels-Virtual-Platform>
X-Mailer: mail (GNU Mailutils 2.1)
Message-Id: <20101209153539.3671B260081@rich-Parallels-Virtual-Platform>
Date: Mon, 1 Sep 2014 10:35:39 -0500 (EST)
From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 63315876 2595552 57504044 5% /
none 507052 228 506824 1% /dev
none 512648 192 512456 1% /dev/shm
none 512648 100 512548 1% /var/run
none 512648 0 512648 0% /var/lock
none 4294967296 0 4294967296 0% /media/psf
?

Now you just need to schedule the script to run every day using the cron feature, and you
can get disk space reports automatically e-mailed to your inbox! System administration
doesn’t get much easier than that!

mailto:20101209153539.3671B260081@rich-Parallels-Virtual-Platform

708

Part IV: Creating Practical Scripts

c25.indd 12/12/2014 Page 708

Summary
This chapter walked through how to use some advanced features within your shell scripts.
First, we discussed how to use the MySQL server to store persistent data for your applica-
tions. Just create a database and unique user account in MySQL for your application, and
grant the user account privileges to only that database. You can then create tables to store
the data that your application uses. The shell script uses the mysql command line tool to
interface with the MySQL server, submit SELECT queries, and retrieve the results to display.
Next we discussed how to use the lynx text-based browser to extract data from websites on
the Internet. The lynx tool can dump all the text from a web page, and you can use stan-
dard shell programming skills to store that data and search it for the content you’re look-
ing for. Finally, we walked through how to use the standard Mailx program to send reports
using the Linux e-mail server installed on your Linux system. The Mailx program allows
you to easily send output from commands to any e-mail address.

In the next chapter we fi nish up by looking at some more shell script examples that show
you just what you can do with your shell scripting knowledge.

709

c26.indd 12/08/2014 Page 709

CHAP T ER

26
Creating Fun Little Shell Scripts

IN THIS CHAPTER

Sending a message

Getting inspiration

Sending a text

T
he primary reason for learning to write bash shell scripts is to be able to create your own Linux
system utilities. Understanding how to write useful and practical script utilities is important.
However, sometimes it helps to do something fun to learn a concept or skill. The scripts in this

chapter are not necessarily practical, but they can be lots of fun! And they help solidify script-
writing concepts.

Sending a Message
Messages can be sent in many ways in an offi ce or a home environment — text message, e-mail,
and even making a phone call. One method, not commonly used any more, is sending a message
directly to a fellow system user’s terminal. Because this technique is largely unknown, it can be
fun to communicate with someone with this method.

This shell script utility helps you to quickly and easily send a message to someone who is logged
onto your Linux system. It is a rather simple script, but it can be loads of fun!

Understanding the required functions
For this simple script, only a few functions are required. Several of the commands are common and
have been covered in the book. However, a few of the commands have only been touched on, and
you may not be familiar with the primary command needed. This section looks at the commands
needed to put together this simple, but interesting script.

710

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 710

Determining who is on the system

The fi rst utility needed is the who command. The who utility allows you to see all the users
currently logged into the system:

$ who
christine tty2 2015-09-10 11:43
timothy tty3 2015-09-10 11:46
[...]
$

In this partial listing, all the information needed for sending messages is shown. By
default, the who command gives you the short version of information available. The same
information is provided, when who -s is issued:

 ■ User name

 ■ User’s terminal

 ■ Time the user logged into the system

To send a message, you only need the fi rst two items. Both the user name and the user’s
current terminal are necessary.

Allowing messages

Users can disallow anyone to send them messages via the mesg utility. Therefore, before
you start attempting to send messages, it’s a good idea to check whether messages are
allowed. For yourself, you can simply enter the mesg command as follows:

$ mesg
is n
$

The is n result shows that messaging is turned off. If the result showed is y, messages
would be allowed.

Some distributions, such as Ubuntu, come with messaging turned off by default. Other distributions, such as CentOS,

come with messaging turned on by default. Thus, you need to check your status and other user’s message status

before attempting to send a message.

To check everyone else’s message status, you can use the who command again. Keep in
mind that this checks the message status only for those who are currently logged into the
system. You use the -T option to check their message status:

$ who -T
christine - tty2 2015-09-10 12:56

711

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 711

26

timothy - tty3 2015-09-10 11:46
[...]
$

The dash (-) after each user name indicates that messaging is turned off for those users. If
it is turned on, you see a plus (+) sign.

To allow messages to be sent to you, if it is turned off, you need to use the message com-
mand with the y option:

$ whoami
christine
$
$ mesg y
$
$ mesg
is y
$

Messaging is turned on by the user christine, when the command mesg y is issued. The
user’s individual message status is checked, by issuing the mesg command. Sure enough,
the command shows is y, which indicates messages are allowed to this user.

Using the who command, other users can see how the user christine has changed her
message status. The message status is now set to a plus sign, which indicates the user is
allowing messages to be sent to her.

$ who -T
christine + tty2 2015-09-10 12:56
timothy - tty3 2015-09-10 11:46
[...]
$

For two-way communication, you need to allow messaging and one or more users also need
to allow messaging. In this example, the user timothy has also turned on his messaging:

$ who -T
christine + tty2 2015-09-10 12:56
timothy + tty3 2015-09-10 11:46
[...]
$

Now that messaging is allowed between you and at least one other user, you can try out the
command to send messages. However, the who command is also still needed, because it pro-
vides the necessary information in order to send a message.

Sending a message to another user

The primary tool for this script is the write command. As long as messaging is allowed,
the write command allows you to send a message to another logged-in user using his user-
name and current terminal.

712

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 712

The write command only allows you to successfully send messages to users logged onto a virtual console terminal

(see Chapter 2). A user logged into the graphical environment will not be able to receive messages.

In this example, a message is sent from user christine to user timothy logged on the
tty3 terminal. From christine’s terminal, the session looks as follows:

$ who
christine tty2 2015-09-10 13:54
timothy tty3 2015-09-10 11:46
[...]
$
$ write timothy tty3
Hello Tim!
$

After the message is initiated by the write command, a blank line is shown for you to
begin inputting the message text. It may be as many lines as you desire. When the Enter
key is pressed, a new line is available for more message text. After you are fi nished enter-
ing message text, the whole message is sent by pressing the Ctrl+D key combination.

The receiver of the message sees something like the following:

Message from christine@server01 on tty2 at 14:11 ...
Hello Tim!
EOF

The receiver can see which user on which terminal sent the message. A time stamp is also
included. Notice the EOF shown at the message’s bottom. It indicates End Of File, which lets
the message recipient know that the entire message is being displayed.

Often, a message recipient needs to press the Enter key in order to get a prompt to show again, after a message is

received.

Now you can send messages! The next step is to use these commands to create the script.

Creating the script
Using a script to send messages helps overcome a few potential problems. First, if you have
lots of users on the system, trying to fi nd the one user you want to send a message to can
be a pain! You must also determine whether that particular user has messaging turned on.

713

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 713

26

In addition, a script speeds things up allowing you to quickly send a message to a particu-
lar user in one easy step.

Checking if user is logged on

The fi rst issue is to let the script know to which user you want to send a message. This is
easily done by sending a parameter (Chapter 14) along with the script’s execution. For the
script to determine whether that particular user is logged on the system, the who command
is employed as shown in this bit of script code:

Determine if user is logged on:
#
logged_on=$(who | grep -i -m 1 $1 | gawk '{print $1}')
#

In the preceding code, the results of the who command are piped into the grep command
(Chapter 4). The grep command uses the -i option to ignore case, which allows the user-
name to be entered using uppercase or lowercase letters. The -m 1 option is included on
the grep command, in case the user is logged into the system multiple times. The grep
command produces either nothing, if the user is not logged on, or the username’s fi rst login
information. This output is passed to the gawk command (Chapter 19). The gawk command
returns only the fi rst item, either nothing or the username. This fi nal output from the
gawk command is stored in the variable logged_on.

Some Linux distributions, such as Ubuntu, may not have the gawk command installed by default. To install it, type

sudo apt-get install gawk. Also, you can fi nd more information about installing software packages in

Chapter 9.

When the variable, logged_on, contains either nothing (if the user is not logged on) or
the username, it can be tested and acted upon:

#
if [-z $logged_on]
then
 echo "$1 is not logged on."
 echo "Exiting script..."
 exit
fi
#

Employing the use of an if statement and a test command (Chapter 12), the logged_on
variable is tested to determine if it is a zero-length variable. If it is a zero-length variable,
the script user is informed via echo commands that the user is not currently logged onto

714

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 714

the system, and the script is exited via the exit command. If the user is logged onto the
system, the logged_on variable contains the user’s username, and the script continues.

In the following example, a username, Charlie, is passed as a parameter to the shell
script. This user is not currently logged onto the system:

$./mu.sh Charlie
Charlie is not logged on.
Exiting script...
$

The code worked perfectly! Now instead of you digging through the who command results
to determine whether a user is logged onto the system, the message script does that for
you.

Checking if user accepts messages

The next important item is to determine whether a logged on user accepts messages. This
script portion operates very closely to the script section for determining whether a user is
logged on:

Determine if user allows messaging:
#
allowed=$(who -T | grep -i -m 1 $1 | gawk '{print $2}')
#
if [$allowed != "+"]
then
 echo "$1 does not allowing messaging."
 echo "Exiting script..."
 exit
fi
#

Notice that this time, the who -T command and option are used. This displays a + next
to the username, if messaging is allowed. Otherwise, it displays a - next to the username,
if messaging is not allowed. The results from the who command are then piped into grep
and gawk to pull out only the messaging indicator. The messaging indicator is stored in
the allowed variable. Finally, an if statement is employed to test for a messaging indica-
tor not set to +. If the indicator is not set to +, the script user is informed and the script
is exited. However, if the messaging indicator shows messaging is allowed, the script
continues.

To test out this script’s section, a user who is logged into the system with messaging dis-
abled is tested. The user Samantha currently has messaging disabled:

$./mu.sh Samantha
Samantha does not allowing messaging.
Exiting script...
$

715

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 715

26

The test worked as expected. This script portion eliminates any need to manually check for
messaging being enabled or disabled.

Checking if message was included

The message to be sent is also included as a script parameter. Therefore, another needed
check is whether a message was included as a parameter to the mu.sh shell script. To test
for the message parameter, an if statement, similar to those used earlier, must be included
in the script’s code:

Determine if a message was included:
#
if [-z $2]
then
 echo "No message parameter included."
 echo "Exiting script..."
 exit
fi
#

To test out this script portion, a message was not included for a user who is both logged
into the system and allows messaging:

$./mu.sh Timothy
No message parameter included.
Exiting script...
$

This is exactly what is needed! Now that the script has performed these preliminary checks,
the primary task of sending a message can be undertaken.

Transmitting a simple message

Before a message is sent, the user’s current terminal must be identifi ed and stored in a
variable. The who, grep, and gawk commands are employed again:

Send message to user:
#
uterminal=$(who | grep -i -m 1 $1 | gawk '{print $2}')
#

To transmit the message, both the echo and the write commands are used:

#
echo $2 | write $logged_on $uterminal
#

Because write is an interactive utility, it must have the message piped into it for the
script to work properly. The echo command is used to send the message, $2, to STDOUT,

716

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 716

which in turn is piped into the write command. The logged_on variable holds the user-
name, and the uterminal variable holds the user’s current terminal.

Now, you can test sending a simple message to a designated user via the script:

$./mu.sh Timothy test
$

The user Timothy receives the following message on his terminal:

Message from christine@server01 on tty2 at 10:23 ...
test
EOF

Success! You can now send simple one word messages to other users on your system via
your script.

Transmitting a long message

Often, you want to send more than just a single word to another system user. Let’s try a
longer message using the current script:

$./mu.sh Timothy Boss is coming. Look busy.
$

The user Timothy receives the following message on his terminal:

Message from christine@server01 on tty2 at 10:24 ...
Boss
EOF

It didn’t work. Only the fi rst word of the message, Boss, was sent. This is due to the script
using parameters (Chapter 14). Recall that the bash shell considers a space to differentiate
between parameters. Thus, because there are spaces in the message, each word is treated as
a different parameter. The script must be modifi ed to fi x this problem.

The shift command (Chapter 14) and a while loop (Chapter 13) help with this long mes-
sage issue:

Determine if there is more to the message:
#
shift
#
while [-n "$1"]
do
 whole_message=$whole_message' '$1
 shift
done
#

717

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 717

26

Recall that the shift command allows you to process the various provided script param-
eters without knowing the total number of parameters. The shift command simply moves
the next parameter in line down to parameter $1. First, a primary shift must be issued
before the while loop, because the message starts in parameter $2, instead of parameter
$1.

After the while loop is initiated, it continues grabbing each message word, tacking the
word onto the whole_message variable. The loop then shifts to the next parameter. After
the fi nal parameter is processed, the while loop exits and the whole_message variable
contains the entire message to send.

One additional script modifi cation is needed to fi x this problem. Instead of just send-
ing parameter $2 to the write utility, the script is modifi ed to send the variable,
whole_message:

Send message to user:
#
uterminal=$(who | grep -i -m 1 $1 | gawk '{print $2}')
#
echo $whole_message | write $logged_on $uterminal
#

Now, again try to send that warning message about the boss coming his way to Timothy:

$./mu.sh Timothy Boss is coming
Usage: grep [OPTION]... PATTERN [FILE]...
Try 'grep --help' for more information.
$

Oops! That didn’t work either. This is because when shift was used in the script, the $1
parameter contents were removed. Thus, when the script attempts to use $1 in the grep
command, it generates an error. To fi x this problem a variable, muser, is used to capture
the $1 parameter’s value:

Save the username parameter
#
muser=$1
#

Now muser stores the username. The $1 parameter in the script’s various grep and echo
commands can be replaced by the muser variable:

Determine if user is logged on:
#
logged_on=$(who | grep -i -m 1 $muser | gawk '{print $1}')
[...]
 echo "$muser is not logged on."
[...]
Determine if user allows messaging:
#

718

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 718

allowed=$(who -T | grep -i -m 1 $muser | gawk '{print $2}')
[...]
 echo "$muser does not allowing messaging."
[...]
Send message to user:
#
uterminal=$(who | grep -i -m 1 $muser | gawk '{print $2}')
[...]

To test out the script changes, a multi-word message is sent again. In addition, some
emphasis is added to the message by tacking on exclamation points:

$./mu.sh Timothy The boss is coming! Look busy!
$

The user Timothy receives the following message on his terminal:

Message from christine@server01 on tty2 at 10:30 ...
The boss is coming! Look busy!
EOF

It worked! You can now employ the script to quickly send messages to other users on the
system. Here’s the fi nal message script with all the needed checks and changes:

#!/bin/bash
#
#mu.sh - Send a Message to a particular user
###
#
Save the username parameter
#
muser=$1
#
Determine if user is logged on:
#
logged_on=$(who | grep -i -m 1 $muser | gawk '{print $1}')
#
if [-z $logged_on]
then
 echo "$muser is not logged on."
 echo "Exiting script..."
 exit
fi
#
Determine if user allows messaging:
#
allowed=$(who -T | grep -i -m 1 $muser | gawk '{print $2}')
#

719

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 719

26

if [$allowed != "+"]
then
 echo "$muser does not allowing messaging."
 echo "Exiting script..."
 exit
fi
#
Determine if a message was included:
#
if [-z $2]
then
 echo "No message parameter included."
 echo "Exiting script..."
 exit
fi
#
Determine if there is more to the message:
#
shift
#
while [-n "$1"]
do
 whole_message=$whole_message' '$1
 shift
done
#
Send message to user:
#
uterminal=$(who | grep -i -m 1 $muser | gawk '{print $2}')
#
echo $whole_message | write $logged_on $uterminal
#
exit

Because you have made it to the last chapter in this book, you should be ready for a script-
writing challenge. Here are some suggested improvements for the message script that you
can attempt on your own:

 ■ Instead of passing the username and message as parameters, use options (see
Chapter 14).

 ■ If a user is logged into multiple terminals, allow a message to be sent to those mul-
tiple terminals. (Hint: Use multiple write commands.)

 ■ If the message to be sent is for a user who is currently only logged into the GUI,
produce a message for the script user and exit the script. (Remember the write
command can only write to virtual console terminals.)

 ■ Allow a long message stored in a fi le to be sent to a terminal. (Hint: Use the cat
command output piped into the write utility, instead of the echo command.)

720

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 720

Not only does reading through the script help solidify the script-writing concepts you are
learning, but so does modifying the script. Come up with your own creative modifi cation.
Have a little fun! It helps you learn.

Obtaining a Quote
Inspirational quotes have long been used in the business environment. You may have a few
on your offi ce wall right now. This fun little and interesting script helps you obtain a daily
inspirational quote to use as you please.

This section takes you through how to create this script. Included is a new rich utility that
has not been covered in the book yet. The script also uses some utilities that have been
covered, such as sed and gawk.

Understanding the required functions
Several great websites allow you to obtain daily inspiration quotes. Just open your favor-
ite search engine, and you can fi nd many sites. After you fi nd a site for your daily quote,
you need a utility to download that quote. For this script, the wget utility is just what’s
needed.

Learning about the wget utility

The wget utility is a fl exible tool that allows web pages to be downloaded to your local
Linux system. From these pages, you can glean your daily inspirational quote.

The wget command is an extremely rich utility. In this chapter, only a small portion of its power is used. Find out

more about wget via the man pages.

To download a web page via wget, you just need the wget command and the website’s
address:

$ wget www.quotationspage.com/qotd.html
--2015-09-23 09:14:28-- http://www.quotationspage.com/qotd.html
Resolving www.quotationspage.com... 67.228.101.64
Connecting to www.quotationspage.com|67.228.101.64|:80. connected
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

http://www.quotationspage.com/qotd.html
http://www.quotationspage.com/qotd.html
http://www.quotationspage.com
http://www.quotationspage.com|67.228.101.64|:80

721

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 721

26

Saving to: "qotd.html"

 [<=>] 13,806 --.-K/s in 0.1s

2015-09-23 09:14:28 (118 KB/s) - "qotd.html" saved [13806]

$

The website’s information is stored in a fi le named after the web page. In this case, it’s
qotd.html. And as you might have guessed by now, the fi le is full of HTML code:

$ cat qotd.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html xmlns:fb="http://ogp.me/ns/fb#">
<head>
 <title>Quotes of the Day - The Quotations Page</title>
[...]

Only a partial HTML code listing is shown here. For the script, the sed and gawk utilities
help strip out the desired inspirational quote. But before tackling the script, you need a
little more control over the wget utility’s input and output.

You can use a variable to hold the web address (URL). Simply pass the variable to wget as a
parameter. Just don’t forget to use the $ along with the variable name:

$ url=www.quotationspage.com/qotd.html
$
$ wget $url
--2015-09-23 09:24:21-- http://www.quotationspage.com/qotd.html
Resolving www.quotationspage.com... 67.228.101.64
Connecting to www.quotationspage.com|67.228.101.64|:80 connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]
Saving to: "qotd.html.3"

 [<=>] 13,806 --.-K/s in 0.1s

2015-09-23 09:24:21 (98.6 KB/s) - "qotd.html.3" saved [13806]

$

The daily inspiration quote script is eventually to be run daily via cron (Chapter 16) or
some other script automation utility. Thus, having the wget command’s session output dis-
play to STDOUT is undesirable. To store the session output to a log fi le, use the option -o.
This allows session output to be viewed at a later time:

$ url=www.quotationspage.com/qotd.html
$

http://ogp.me/ns/fb#
http://www.quotationspage.com/qotd.html
http://www.quotationspage.com/qotd.html
http://www.quotationspage.com
http://www.quotationspage.com|67.228.101.64|:80
http://www.quotationspage.com/qotd.html

722

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 722

$ wget -o quote.log $url
$
$ cat quote.log
--2015-09-23 09:41:46-- http://www.quotationspage.com/qotd.html
Resolving www.quotationspage.com... 67.228.101.64
Connecting to www.quotationspage.com|67.228.101.64|:80 connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]
Saving to: "qotd.html.1"

 0K 81.7K=0.2s

2015-09-23 09:41:46 (81.7 KB/s) - "qotd.html.1" saved [13806]

$

The wget utility now stores its session output into the log fi le as it retrieves web page
information. If desired, you can view the logged session output by using the cat command,
as shown in the preceding code.

For various reasons, you may decide that you do not want wget to produce a log fi le or display session output. In

this case, just use the -q option, and the wget command quietly performs its directed duties.

To control where the web page information is stored, use the -O option on the wget com-
mand. Thus, instead of having the web address as the storage fi le name, you can use the
fi lename of your choice:

$ url=www.quotationspage.com/qotd.html
$
$ wget -o quote.log -O Daily_Quote.html $url
$
$ cat Daily_Quote.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html xmlns:fb="http://ogp.me/ns/fb#">
<head>
[...]
$

Using the -O option allows the web page data to be stored in the designated fi le, Daily_
Quote.html. Now that the wget utility’s output is controlled, the next required function,
checking the web address’s validity, can be explored.

http://www.quotationspage.com/qotd.html
http://www.quotationspage.com
http://www.quotationspage.com|67.228.101.64|:80
http://www.quotationspage.com/qotd.html
http://ogp.me/ns/fb#

723

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 723

26

Testing a web address

Web addresses change. Sometimes, it seems this happens daily. Therefore, it is important
to test the address validity within the script. The wget utility gives the ability to conduct
such a test with the --spider option:

$ url=www.quotationspage.com/qotd.html
$
$ wget --spider $url
Spider mode enabled. Check if remote file exists.
--2015-09-23 12:45:41-- http://www.quotationspage.com/qotd.html
Resolving www.quotationspage.com... 67.228.101.64
Connecting to www.quotationspage.com|67.228.101.64|:80 connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]
Remote file exists and could contain further links,
but recursion is disabled -- not retrieving.

$

This output indicates that the URL is valid, but it’s too much to read through. You can cut
down on the output by adding the -nv option, which stands for non-verbose:

$ wget -nv --spider $url
2015-09-23 12:49:13
URL: http://www.quotationspage.com/qotd.html 200 OK
$

The -nv option allows just the web address’s status to be displayed, making the output
much easier to read. Contrary to what you may think, the OK at the non-verbose line’s end
does not indicate that the web address is valid. The indication is that the web address came
back as it was sent. This concept is a little unclear, until you see an invalid web address.

To see an invalid web address indicator, the URL variable is changed to an incorrect web
address. The wget command is reissued using this bad address:

$ url=www.quotationspage.com/BAD_URL.html
$
$ wget -nv --spider $url
2015-09-23 12:54:33
URL: http://www.quotationspage.com/error404.html 200 OK
$

Notice that the output still has an OK at its end. However, the web address ends in
error404.html. This indicates the web address is invalid.

http://www.quotationspage.com/qotd.html
http://www.quotationspage.com/qotd.html
http://www.quotationspage.com
http://www.quotationspage.com|67.228.101.64|:80
http://www.quotationspage.com/qotd.html
http://www.quotationspage.com/BAD_URL.html
http://www.quotationspage.com/error404.html

724

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 724

With the necessary wget command to grab the inspirational quote’s web page information,
and the ability to test the web page’s address, it is time to start building the script. Your
daily inspirational quote awaits retrieval.

Creating the script
To test the script as it is built, a parameter containing the website’s URL is passed to the
script. Within the script, the variable quote_url contains the passed parameter’s value:

#
quote_url=$1
#

Checking the passed URL

It is always a good idea to have checks in place within your script. The fi rst check is to
ensure that the daily inspirational quote script website’s URL is still valid.

As you would expect, the script checks the web address validity with wget and the
--spider option. However, the resulting indicator must be saved so the indicator can be
checked later with an if statement test. Thus, the resulting indicator must be saved to a
variable. This is a little tricky with the wget command.

To save the indicator output, the standard $() syntax is used around the command. But
in addition, STDERR and STDOUT redirection is needed. This is accomplished by tacking on
2>&1 to the end of the wget command:

#
check_url=$(wget -nv --spider $quote_url 2>&1)
#

Now the indicator status message is saved within the check_url variable. To carve out the
error indicator, error404, from the check_url string, parameter expansion and the echo
command can be used:

#
bad_url=$(echo ${check_url/*error404*/error404})
#

In this example, string parameter expansion allows the string stored in check_url to be
searched. Think of string parameter expansion as a quick and easy sed alternative. Using
wildcards around the search word, *error404* allows the entire string to be searched. If
the search is successful, the echo command sends the string error404 to be stored into
the bad_url variable. If the search is not successful, the bad_url variable contains the
check_url variable’s contents.

725

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 725

26

Now an if statement (Chapter 12) is employed to check the bad_url variable’s string. If
the string error404 is found, a message is displayed and the script exits:

#
if ["$bad_url" = "error404"]
then
 echo "Bad web address"
 echo "$quote_url invalid"
 echo "Exiting script..."
 exit
fi
#

An easier and shorter method can be used. This method removes the need for string param-
eter expansion and the bad_url variable altogether. A double bracket if statement allows
a search to be conducted of the check_url variable:

if [[$check_url == *error404*]]
then
 echo "Bad web address"
 echo "$quote_url invalid"
 echo "Exiting script..."
 exit
fi

The test statement within the if structure searches the check_url variable’s string. If
the string error404 is found anywhere within the variable string, a message is displayed
and the script exits. If the indicator string does not contain the error message, the script
continues. This statement saves time and effort. No need for any string parameter expan-
sion or even the bad_url variable.

Now that the check is in place, the script can be tested with an invalid web address. The
url variable is set to an incorrect URL and passed to the get_quote.sh script:

$ url=www.quotationspage.com/BAD_URL.html
$
$./get_quote.sh $url
Bad web address
www.quotationspage.com/BAD_URL.html invalid
Exiting script...
$

That works great. Just to make sure that all is well, now a valid web address is tested:

$ url=www.quotationspage.com/qotd.html
$

http://www.quotationspage.com/BAD_URL.html
http://www.quotationspage.com/BAD_URL.html
http://www.quotationspage.com/qotd.html

726

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 726

$./get_quote.sh $url
$

No error message received. The script works perfectly so far! This is the only check needed,
so the next item to be added to the script is obtaining the web page’s data.

Obtaining web page information

Grabbing the inspiration daily quote’s web page data is simple. The wget command shown
earlier in the chapter is used in the script. The only needed change is to store the log fi le
and the HTML fi le, which contains the web page information, in the /tmp directory:

#
wget -o /tmp/quote.log -O /tmp/quote.html $quote_url
#

Before moving on to the rest of the script, this code section should be tested using a valid
web address:

$ url=www.quotationspage.com/qotd.html
$
$./get_quote.sh $url
$
$ ls /tmp/quote.*
/tmp/quote.log /tmp/quote.html
$
$ cat /tmp/quote.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html xmlns:fb="http://ogp.me/ns/fb#">
<head>
[...]
</body>
</html>
$

The script still works well! The log fi le, /tmp/quote.log, and the html fi le, /tmp/quote
.html, were properly created.

If you do not want cookies to be involved when obtaining website information, you can add the --no-cookies

option to the wget command. By default, storing cookies is turned off.

The next task is to dig the daily inspirational quote out of the HTML code within the down-
loaded web page HTML fi le. This task requires both the sed and the gawk utilities.

http://www.quotationspage.com/qotd.html
http://ogp.me/ns/fb#

727

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 727

26

Parsing out the desired information

In order to pull out the actual inspirational quote, some processing must take place. This
part of the script uses sed and gawk to parse out the desired information.

This section is where the most variety is introduced when you modify this script for your own use. The sed and gawk

utilities are used to search for keywords that are specifi c for this particular quote website’s data. You may need to

use different keywords as well as different sed and gawk commands to extract the data you desire.

The script fi rst needs to remove all the HTML tags from the downloaded web page’s informa-
tion stored in the /tmp/quote.html fi le. The sed utility can provide this capability:

#
sed 's/<[^>]*//g' /tmp/quote.html
#

The preceding code should look very familiar. It was covered in Chapter 21 in the
“Removing HTML tags” section.

After the HTML tags are removed, the output looks like the following:

$ url=www.quotationspage.com/qotd.html
$
$./get_quote.sh $url
[...]
 >Quotes of the Day - The Quotations Page>
>
[...]
>>Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015>>
>>>Horse sense is the thing a horse has which keeps
[...]
>
$

This snipped listing shows that there is still too much unnecessary data in this fi le.
Therefore, some additional parsing must be done. Fortunately, the quote text needed is
situated right next to the current date. Therefore, the script can use the current date as a
search term!

The grep command, the $() format, and the date command can help here. The output
from the sed command is piped into the grep command. The grep command uses the

http://www.quotationspage.com/qotd.html

728

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 728

current date formatted to match the date used on the quotation’s web page. After the date
text line is found, two additional text lines are pulled with the -A2 parameter:

#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2
#

Now the script’s output looks similar to the following:

$./get_quote.sh $url
>>Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015>>
>>>Horse sense is the thing a horse has which keeps it from
 betting on people.> >>>>>>>>>>>>>>>>>>W. C. Fields> (1880 -
 1946)> >>>
>>Newspapermen learn to call a murderer 'an alleged murderer'
 and the King of England 'the alleged King of England' to
avoid libel suits.> >>>>>>>>>>>>>>>>>>Stephen Leacock> (1869
 - 1944)> >>> - More quotations on: [>Journalism>] >
$

If your Linux system’s date is set differently than the quote of the day page’s date, you get a blank line instead of a

quote. The preceding grep command assumes your system date is the same as the web page’s date.

Although the output is greatly reduced, there is still too much clutter in the text. The extra
> symbols can easily be removed with the sed utility. In the script, the output from the
grep command is piped into the sed utility, which strips off the > symbols:

#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2 |
sed 's/>//g'
#

With the new script line, the output is now a little clearer:

$./get_quote.sh $url
Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015
Horse sense is the thing a horse has which keeps it from
 betting on people. W. C. Fields (1880 - 1946)
Newspapermen learn to call a murderer 'an alleged murderer'
 and the King of England 'the alleged King of England' to
avoid libel suits. Stephen Leacock (1869 - 1944) -
More quotations on: [Journalism]
$

729

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 729

26

Now we’re getting somewhere! However, we can still remove a little more clutter from the
quotation.

You may have noticed that two quotations are listed in the output instead of one. This hap-
pens occasionally with this particular website. Some days, it may be one quote, and other
days, it may be two. Therefore, the script needs a way to pull out only the fi rst quote.

The sed utility can help again with this problem. Using the sed utility’s next and delete
commands (Chapter 21), the string is located. After it’s found, sed moves to the
next line of the data and deletes it:

#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2 |
sed 's/>//g' |
sed '/ /{n ; d}'
#

Now the script can be tested to see if the new sed addition fi xes the multiple quotation
problem:

$./get_quote.sh $url
Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015
Horse sense is the thing a horse has which keeps it from
betting on people. W. C. Fields (1880 - 1946)
$

The extra quotation is removed! One item remains for the quotation cleanup. At the quota-
tion’s end, the string is still hanging around. The script could use another sed
command to remove this pesky item, but just for variety, the gawk command is used:

#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2 |
sed 's/>//g' |
sed '/ /{n ; d}' |
gawk 'BEGIN{FS=" "} {print $1}'
#

In the preceding code, the input fi eld separator variable, FS, is used with the gawk com-
mand (Chapter 22). The string is set as a fi eld separator, which causes gawk to drop
it from the output:

$./get_quote.sh $url
Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015
Horse sense is the thing a horse has which keeps it from
betting on people. W. C. Fields (1880 - 1946)
$

730

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 730

One last needed script action is to save this quotation text to a fi le. Here the tee command
(Chapter 15) helps. Now the entire quote extraction process looks as follows:

#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2 |
sed 's/>//g' |
sed '/ /{n ; d}' |
gawk 'BEGIN{FS=" "} {print $1}' |
tee /tmp/daily_quote.txt > /dev/null
#

The extracted quote is saved to /tmp/daily_quote.txt, and any output produced by
the gawk command is redirected to /dev/null (see Chapter 15). To make the script a little
more self-directed, the URL is hard-coded into the script:

#
quote_url=www.quotationspage.com/qotd.html
#

Now these two new changes to the daily inspirational quote script can be tested:

$./get_quote.sh
$
$ cat /tmp/daily_quote.txt
Selected from Michael Moncur's Collection of Quotations
 - September 23, 2015
Horse sense is the thing a horse has which keeps it from
betting on people. W. C. Fields (1880 - 1946)
$

That works perfectly! The daily inspiration quote was extracted from the website’s data and
stored in a text fi le. You may have noticed by now that this quotation is less a traditional
inspirational quote and more a humorous quote. Just know that some people fi nd humor
inspirational!

For your review, here’s the fi nal daily inspirational quote script with all the needed checks
and changes:

#!/bin/bash
#
Get a Daily Inspirational Quote
#####################################
#
Script Variables
#
quote_url=www.quotationspage.com/qotd.html
#
Check url validity
#

http://www.quotationspage.com/qotd.html
http://www.quotationspage.com/qotd.html

731

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 731

26

check_url=$(wget -nv --spider $quote_url 2>&1)
#
if [[$check_url == *error404*]]
then
 echo "Bad web address"
 echo "$quote_url invalid"
 echo "Exiting script..."
 exit
fi
#
Download Web Site's Information
#
wget -o /tmp/quote.log -O /tmp/quote.html $quote_url
#
Extract the Desired Data
#
sed 's/<[^>]*//g' /tmp/quote.html |
grep "$(date +%B' '%-d,' '%Y)" -A2 |
sed 's/>//g' |
sed '/ /{n ; d}' |
gawk 'BEGIN{FS=" "} {print $1}' |
tee /tmp/daily_quote.txt > /dev/null
#
exit

This script is an excellent opportunity to try out some of your newly learned script writing
and command line skills. The following are a few suggested changes for the daily inspira-
tional quote script that you can attempt on your own:

 ■ Change the website to your favorite quotation or sayings website, and make the
necessary changes to the quote extraction commands.

 ■ Try different sed and gawk commands for extracting the daily quotation.

 ■ Set up the script to run daily on an automated basis via cron (see Chapter 16).

 ■ Add a command to display the quote text fi le at certain times, such as when you
fi rst log in for the day.

Reading your daily quotes can inspire you. They may just inspire you to get out of that
next business meeting. The next chapter section helps you write a script that does just
that.

Generating an Excuse
You’ve been there. That endless staff meeting that is full of unimportant information. You
would really rather be working on that fascinating bash shell script project back at your
desk. Here’s a little fun script you can use to get out of the next staff meeting.

732

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 732

Short Message Service (SMS) allows text messages to be sent between cell phones. However,
you can also use SMS to send text messages directly from e-mail or the command line. The
script in this section allows you to construct a text message to be sent at a specifi ed time
directly to your phone. Receiving a “critical” message from your Linux system is the perfect
excuse for leaving a staff meeting early.

Understanding the required functions
You can send an SMS message from the command line in several ways. One way is via your
system’s e-mail using your phone carrier’s SMS service. Another way is using the curl
utility.

Learning about curl

Similar to wget, the curl utility allows you to transfer data from a particular web server.
Unlike wget, it also allows you to transfer data to a web server. Transferring data to a par-
ticular web server is exactly what is needed here.

Some Linux distributions, such as Ubuntu, may not have the curl command installed by default. To install it, type

sudo apt-get install curl. Also, you can fi nd more information about installing software packages in

Chapter 9.

Besides the curl utility, you need a website that provides free SMS message transfer. The
one used here for this script is http://textbelt.com/text. This website allows you to
send up to 75 text messages per day for free. You need it only for one text message, so it
should be no problem.

If your company already uses an SMS provider, such as http://sendhub.com or http://eztexting.com,

you can use those sites in your script instead. Be aware that the syntax needs to change depending upon those SMS

provider’s requirements.

To use curl and http://textbelt.com/text to send yourself a text message, you need
to use the following syntax:

$ curl http://textbelt.com/text \
-d number=YourPhoneNumber \
-d "message=Your Text Message"

The -d option tells curl to send specifi ed data to the website. In this case, the web-
site needs particular data sent in order to send a text message. This data includes

http://textbelt.com/text
http://sendhub.com
http://eztexting.com
http://textbelt.com/text
http://textbelt.com/text

733

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 733

26

YourPhoneNumber, which is your cell phone number starting with the area code. And it
also includes Your Text Message, which is the text message you desire to send.

The curl utility can handle much more than simply transferring data to and from a web server. It can handle many

other network protocols, such as FTP, without any human intervention as well. Look at the man pages for curl to

discover its rich power.

When the message is sent, the website provides a success message, "success": true, if
no problems occurred:

$ curl http://textbelt.com/text \
> -d number=3173334444 \
> -d "message=Test from curl"
{
 "success": true
}$
$

Or it provides a fail message, "success": false, if data, such as the phone number, is
incorrect:

$ curl http://textbelt.com/text \
-d number=317AAABBBB \
-d "message=Test from curl"
{
 "success": false,
 "message": "Invalid phone number."
}$
$

If your cell phone carrier is not in the United States of America, it is likely that http://textbelt.com/text

will not work for you. You can try http://textbelt.com/Canada if your cell phone carrier is in Canada. If

your cell phone carrier is located elsewhere, try http://textbell.com/intl instead. For additional help, see

http://textbelt.com.

The success/fail messages are very helpful, but they are unwanted for the script. To remove
these messages, simply redirect STDOUT to /dev/null (see Chapter 15). Unfortunately,
now curl supplies undesired output:

$ curl http://textbelt.com/text \
> -d number=3173334444 \
> -d "message=Test from curl" > /dev/null

http://textbelt.com/text
http://textbelt.com/text
http://textbelt.com/text
http://textbelt.com/Canada
http://textbell.com/intl
http://textbelt.com
http://textbelt.com/text

734

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 734

 % Total % Received % Xferd Average Speed...
 Dload Upload...
 0 21 0 21 0 45 27 58 ...
$

The preceding snipped listing shows various statistics, which may be helpful when debug-
ging your curl command. However, for the script, this information must be suppressed.
Fortunately, the curl command has a -s option, which makes it silent:

$ curl -s http://textbelt.com/text \
> -d number=3173334444 \
> -d "message=Test from curl" > /dev/null

That is much better. The curl command is ready to be put into a script. However, before
looking at the script, one more topic needs to be addressed: sending text messages via
e-mail.

Choosing to use e-mail

If you choose not to use the text message relay service provided by http://textbelt
.com/text or if for some reason it doesn’t work for you, you can always substitute sending
a text message via e-mail. This section briefl y covers how to accomplish this substitution.

If your cell phone carrier is not in the United States of America, it is likely that this web service will not work for you.

Also, your cell phone carrier may block SMS messages from this site. In this case, you must attempt to use e-mail

instead.

Whether or not e-mail works as a substitute depends upon your cell phone carrier. If your
cell phone carrier has an SMS gateway, you are in luck. Contact your cell phone carrier
and fi nd out the name of the gateway. Often, it is something similar to txt.att.net or
vtext.com.

You can often fi nd out your cell phone carrier’s SMS gateway on your own via the Internet. One

great site listing various SMS gateways, along with usage tips, is http://martinfitzpatrick.name/
list-of-email-to-sms-gateways/. If you cannot fi nd your carrier there, use your favorite search engine to

locate it.

The basic syntax for sending a text message via e-mail is as follows:

mail -s "your text message" your_phone_number@your_sms_gateway

http://textbelt.com/text
http://textbelt
http://martinfitzpatrick.name

735

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 735

26

If the mail command does not work on your Linux system, you need to install the mailutils package. See

Chapter 9 for a review of installing software packages.

Unfortunately, after you enter the syntax, you must type your message and press Ctrl+D to
send the text message. This is similar to sending a regular e-mail (see Chapter 24). Using
this method doesn’t work well in a script. Instead, you can store your e-mail message in a
fi le and use it to send a text message. The basic idea for this method is as follows:

$ echo "This is a test" > message.txt
$ mail -s "Test from email" \
3173334444@vtext.com < message.txt

Now the e-mail syntax is more compatible with a script. However, be aware that many
problems may exist with this approach. First, you must have a mail server running on your
system (see Chapter 24). Secondly, your phone service provider may block SMS messages
coming from your system via e-mail. This is often true, if you are attempting this method
from your home.

If your phone service provider blocks SMS messages coming from your system, you can use a cloud-based e-mail

provider as an SMS relay. Use your favorite Internet browser and search for the words SMS relay

your_favorite_cloud_email and see what sites come up.

Although sending a text message via e-mail is a potential alternative, it can be fraught
with problems. If you can, it is much easier to use a free SMS relay website and the curl
utility. The script in the next section uses curl to send a text message to the phone of
your choice.

Creating the script
After you have the required functions, creating the script to send a text message is fairly
simple. You just need a few variables and the curl command.

You need three variables for the script. Setting up these particular data items as variables
makes it easier if any of this information changes. The variables are shown here:

#
phone="3173334444"
SMSrelay_url=http://textbelt.com/text

mailto:3173334444@vtext.com
http://textbelt.com/text

736

Part IV: Creating Practical Scripts

c26.indd 12/08/2014 Page 736

text_message="System Code Red"
#

The only other needed item is the curl utility. Thus, here is the entire send a text message
script:

#!/bin/bash
#
Send a Text Message
################################
#
Script Variables
#
phone="3173334444"
SMSrelay_url=http://textbelt.com/text
text_message="System Code Red"
#
Send text
#
curl -s $SMSrelay_url -d \
number=$phone \
-d "message=$text_message" > /dev/null
#
exit

If you see this script as simple and easy, you are right! Even more important, that means
you have learned a great deal about shell script writing. Even easy scripts need to be
tested, so be sure to test this script using your cell phone number in the phone variable
before continuing.

While you are testing your script, be aware that this website, http://textbelt.com/text, does not allow you

to send more than three text messages to the same phone number in less than three minutes.

To have a text message sent to you at a desired time, you must employ the at command. If
you need a reminder, the at command was covered in Chapter 16.

First, you can test the use of the at command with your new script. Have the at utility
execute the script by using the -f option along with the script’s fi le name, send_text
.sh, in this case. Have the script run immediately using the Now option:

$ at -f send_text.sh Now
job 22 at 2015-09-24 10:22
$

The script runs instantly. However, it may be a minute or two before you receive the text
message on your phone.

http://textbelt.com/text
http://textbelt.com/text

737

Chapter 26: Creating Fun Little Shell Scripts

c26.indd 12/08/2014 Page 737

26

To have the script run at another time, you simply use other at command options (see
Chapter 16). In the following example, the script is run 25 minutes from the current time.

$ at -f send_text.sh Now + 25 minutes
job 23 at 2015-09-24 10:48
$

Note in the example, the at command provides an informational message when the script is
submitted. The date and time listed in that message is when the script will execute.

What fun! Now you have a script utility that will be of assistance when you need an excuse
to get out of that staff meeting. Better yet, you could modify the script to send yourself
truly serious system messages that need to be addressed.

Summary
This chapter showed how to put some of the shell-scripting information presented in the
book to use for fun little shell scripts. Each script reinforced material covered in the chap-
ters along with a few new commands and ideas.

The chapter demonstrated how to send a message to another user on the Linux system. The
script checked to see whether the user was logged on to the system and whether the user
allowed messaging. After those checks were made, the passed message was sent using the
write command. Included were some suggestions for modifying this script, which improve
your shell-scripting abilities.

The next section walked you through obtaining website information using the wget utility.
The created script pulled a quote from the web. After retrieval, the script used several utili-
ties to pull out the actual quote text. These now familiar commands included sed, grep,
gawk, and the tee command. For this script, suggestions were made for how the script
could be modifi ed. These are well worth pursuing to solidify and improve your new skills.

The chapter ended with a very fun and simple script for sending yourself a text message.
We explored the curl utility, along with SMS concepts. Although this is a fun script, it can
be modifi ed and used for more serious purposes.

Thanks for joining us on this journey through the Linux command line and shell scripting.
We hope you’ve enjoyed the journey and have learned how to get around on the command
line and how to create shell scripts to save time. But don’t stop your command line educa-
tion here. There’s always something new being developed in the open source world, whether
it’s a new command line utility or a full-blown shell. Stay in touch with the Linux commu-
nity and follow along with the new advances and features.

739

bapp01.indd 12/08/2014 Page 739

Quick Guide to bash Commands

IN THIS APPENDIX

Viewing the bash built-in commands

Reviewing GNU additional shell commands

Looking at bash environment variables

A
s you’ve seen throughout this book, the bash shell contains lots of features and thus has
lots of commands available. This appendix provides a concise guide to allow you to quickly
look up a feature or command that you can use from the bash command line or from a bash

shell script.

Reviewing Built-In Commands
The bash shell includes many popular commands built into the shell. This provides for faster
processing times when using these commands. Table A-1 shows the built-in commands available
directly from the bash shell.

TABLE A-1 bash Built-In Commands

Command Description

: Expands listed arguments and redirects as specifi ed

. Reads and executes commands from a designated fi le in the current shell

alias Defi nes an alias for the specifi ed command

bg Resumes a job in background mode

bind Binds a keyboard sequence to a readline function or macro

break Exits from a for, while, select, or until loop

builtin Executes the specifi ed shell built-in command

caller Returns the context of any active subroutine call

cd Changes the current directory to the specifi ed directory

APPENDIX

A

Continues

740

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 740

Command Description

command Executes the specifi ed command without the normal shell lookup

compgen Generates possible completion matches for the specifi ed word

complete Displays how the specifi ed words would be completed

compopt Changes options for how the specifi ed words would be completed

continue Resumes the next iteration of a for, while, select, or until loop

declare Declares a variable or variable type

dirs Displays a list of currently remembered directories

disown Removes the specifi ed jobs from the jobs table for the process

echo Displays the specifi ed string to STDOUT

enable Enables or disables the specifi ed built-in shell command

eval Concatenates the specifi ed arguments into a single command, and executes
the command

exec Replaces the shell process with the specifi ed command

exit Forces the shell to exit with the specifi ed exit status

export Sets the specifi ed variables to be available for child shell processes

fc Selects a list of commands from the history list

fg Resumes a job in foreground mode

getopts Parses the specifi ed positional parameters

hash Finds and remembers the full pathname of the specifi ed command

help Displays a help fi le

history Displays the command history

jobs Lists the active jobs

kill Sends a system signal to the specifi ed process ID (PID)

let Evaluates each argument in a mathematical expression

local Creates a limited-scope variable in a function

logout Exits a login shell

mapfile Reads STDIN lines and puts them into an indexed array

popd Removes entries from the directory stack

printf Displays text using formatted strings

pushd Adds a directory to the directory stack

TABLE A-1 (continued)

741

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 741

A

The built-in commands provide higher performance than external commands, but the more
built-in commands that are added to a shell, the more memory it consumes with commands
that you may never use. The bash shell also contains external commands that provide
extended functionality for the shell. These are discussed in the following section.

Looking at Common bash Commands
In addition to the built-in commands, the bash shell utilizes external commands to allow
you to maneuver around the fi lesystem and manipulate fi les and directories. Table A-2
shows the common external commands you’ll want to use when working in the bash shell.

pwd Displays the pathname of the current working directory

read Reads one line of data from STDIN, and assigns it to a variable

readarray Reads STDIN lines, and puts them into an indexed array

readonly Reads one line of data from STDIN, and assigns it to a variable that can’t be
changed

return Forces a function to exit with a value that can be retrieved by the calling
script

set Sets and displays environment variable values and shell attributes

shift Rotates positional parameters down one position

shopt Toggles the values of variables controlling optional shell behavior

source Reads and executes commands from a designated fi le in the current shell

suspend Suspends the execution of the shell until a SIGCONT signal is received

test Returns an exit status of 0 or 1 based on the specifi ed condition

times Displays the accumulated user and system shell times.

trap Executes the specifi ed command if the specifi ed system signal is received

type Displays how the specifi ed word would be interpreted if used as a command

typeset Declares a variable or variable type

ulimit Sets a limit on the specifi ed resource for system users

umask Sets default permissions for newly created fi les and directories

unalias Removes the specifi ed alias

unset Removes the specifi ed environment variable or shell attribute

wait Waits for the specifi ed process to complete, and returns the exit status

742

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 742

TABLE A-2 The bash Shell External Commands

Command Description

bzip2 Compresses using the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding

cat Lists the contents of the specifi ed fi le

chage Changes the password expiration date for the specifi ed system user
account

chfn Changes the specifi ed user account’s comment information

chgrp Changes the default group of the specifi ed fi le or directory

chmod Changes system security permissions for the specifi ed fi le or directory

chown Changes the default owner of the specifi ed fi le or directory

chpasswd Reads a fi le of login name and password pairs and updates the passwords

chsh Changes the specifi ed user account’s default shell

clear Removes text from a terminal emulator or virtual console terminal

compress Original Unix fi le compression utility

coproc Spawns a subshell in background mode and executes the designated
command

cp Copies the specifi ed fi les to an alternate location

crontab Initiates the editor for the user’s crontable fi le, if allowed

cut Removes a designated portion of each specifi ed fi le’s lines

date Displays the date in various formats

df Displays current disk space statistics for all mounted devices

du Displays disk usage statistics for the specifi ed fi le path

emacs Invokes the emacs text editor

file Views the fi le type of the specifi ed fi le

find Performs a recursive search for fi les

free Checks available and used memory on the system

gawk Streams editing using programming language commands

grep Searches a fi le for the specifi ed text string

gedit Invokes the GNOME Desktop editor

getopt Parses command options including long options

groups Displays group membership of the designated user

groupadd Creates a new system group

groupmod Modifi es an existing system group

gzip The GNU Project’s compression using Lempel-Ziv compression

743

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 743

A

head Displays the fi rst portion of the specifi ed fi le’s contents

help Displays the help pages for bash built-in commands

killall Sends a system signal to a running process based on process name

kwrite Invokes the KWrite text editor

less Advanced viewing of fi le contents

link Creates a link to a fi le using an alias name

ln Creates a symbolic or hard link to a designated fi le

ls Lists directory contents

makewhatis Creates the whatis database allowing man page keyword searches

man Displays the man pages for the designated command or topic

mkdir Creates the specifi ed directory under the current directory

more Lists the contents of the specifi ed fi le, pausing after each screen of data

mount Displays or mounts disk devices into the virtual fi lesystem

mv Renames a fi le

nano Invokes the nano text editor

nice Runs a command using a different priority level on the system

passwd Changes the password for a system user account

ps Displays information about the running processes on the system

pwd Displays the current directory

renice Changes the priority of a running application on the system

rm Deletes the specifi ed fi le

rmdir Deletes the specifi ed directory

sed Streams line editing using editor commands

sleep Pauses bash shell operation for a specifi ed amount of time

sort Organizes data in a data fi le based on the specifi ed order

stat Views the fi le statistics of the specifi ed fi le

sudo Runs an application as the root user account

tail Displays the last portion of the specifi ed fi le’s contents

tar Archives data and directories into a single fi le

top Displays the active processes, showing vital system statistics

touch Creates a new empty fi le or updates the timestamp on an existing fi le

umount Removes a mounted disk device from the virtual fi lesystem

uptime Displays information on how long the system has been running

useradd Creates a new system user account

Continues

744

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 744

Command Description

userdel Removes an existing system user account.

usermod Modifi es an existing system user account

vi Invokes the vim text editor

vmstat Produces a detailed report on memory and CPU usage on the system

whereis Displays a designated command’s fi les, including binary, source code, and
man pages

which Finds the location of an executable fi le

who Displays users currently logged into system

whoami Displays the current user’s username

xargs Takes items from STDIN, builds commands, and executes the commands

zip Unix version of the Windows PKZIP program

You can accomplish just about any task you need to on the command line using these
commands.

Assessing Environment Variables
The bash shell also utilizes many environment variables. Although environment variables
aren’t commands, they often affect how shell commands operate, so it’s important to know
the shell environment variables. Table A-3 shows the default environment variables avail-
able in the bash shell.

TABLE A-3 bash Shell Default Environment Variables

Variable Description

* Contains all the command line parameters as a single text value

@ Contains all the command line parameters as separate text values

The number of command line parameters

? The exit status of the most recently used foreground process

- The current command line option fl ags

$ The process ID (PID) of the current shell

TABLE A-2 (continued)

745

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 745

A

! The PID of the most recently executed background process

0 The name of the command from the command line

_ The absolute pathname of the shell

BASH The full fi lename used to invoke the shell

BASHOPTS Enabled shell options in a colon-separated list

BASHPID The current bash shell’s process ID

BASH_ALIASES An array containing the currently used aliases.

BASH_ARGC The number of parameters in the current subroutine

BASH_ARGV An array containing all the command line parameters specifi ed

BASH_CMDS An array containing the internal hash table of commands

BASH_COMMAND The name of the command currently being executed

BASH_ENV When set, each bash script attempts to execute a startup fi le defi ned by
this variable before running.

BASH_EXECUTION_
STRING The command used in the -c command line option

BASH_LINENO An array containing the line numbers of each command in the script

BASH_REMATCH An array containing text elements that match a specifi ed regular
expression

BASH_SOURCE An array containing source fi le names for the declared functions in the shell

BASH_SUBSHELL The number of subshells spawned by the current shell

BASH_VERSINFO A variable array that contains the individual major and minor version num-
bers of the current instance of the bash shell

BASH_VERSION The version number of the current instance of the bash shell

BASH_XTRACEFD
When set to a valid fi le descriptor integer, trace output is generated and
separated from diagnostic and error messages. The fi le descriptor must
have set -x enabled.

COLUMNS Contains the terminal width of the terminal used for the current instance
of the bash shell

COMP_CWORD An index into the variable COMP_WORDS, which contains the current cursor
position

Continues

746

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 746

Command Description

COMP_KEY The completion invocation character keyboard key

COMP_LINE The current command line

COMP_POINT The index of the current cursor position relative to the beginning of the
current command

COMP_TYPE The completion type integer value

COM_WORDBREAKS A set of characters used as word separators when performing word
completion

COMP_WORDS A variable array that contains the individual words on the current com-
mand line

COMPREPLY A variable array that contains the possible completion codes generated
by a shell function

COPROC A variable array that holds fi le descriptors for an unnamed coprocess’ I/O

DIRSTACK A variable array that contains the current contents of the directory stack

EMACS When set, the shell assumes it’s running in an emacs shell buffer and dis-
ables line editing.

ENV When the shell is invoked in POSIX mode, each bash script attempts to
execute a startup fi le defi ned by this variable before running.

EUID The numeric effective user ID of the current user

FCEDIT The default editor used by the fc command

FIGNORE A colon-separated list of suffi xes to ignore when performing fi le name
completion

FUNCNAME The name of the currently executing shell function

FUNCNEST The maximum level for nesting functions

GLOBIGNORE A colon-separated list of patterns defi ning the set of fi lenames to be
ignored by fi le name expansion

GROUPS A variable array containing the list of groups of which the current user is a
member

histchars Up to three characters that control history expansion

TABLE A-3 (continued)

747

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 747

A

HISTCMD The history number of the current command

HISTCONTROL Controls what commands are entered in the shell history list

HISTFILE The name of the fi le to save the shell history list (.bash_history by
default)

HISTFILESIZE The maximum number of lines to save in the history fi le

HISTIGNORE A colon-separated list of patterns used to decide which commands are
ignored for the history fi le

HISTSIZE The maximum number of commands stored in the history fi le

HISTTIMEFORMAT When set, determines the format string for the history fi le entries’ time
stamps

HOSTFILE Contains the name of the fi le that should be read when the shell needs to
complete a hostname

HOSTNAME The name of the current host

HOSTTYPE A string describing the machine the bash shell is running on

IGNOREEOF The number of consecutive EOF characters the shell must receive before
exiting. If this value doesn’t exist, the default is 1.

INPUTRC The name of the readline initialization fi le (The default is .inputrc.)

LANG The locale category for the shell

LC_ALL Overrides the LANG variable, defi ning a locale category

LC_COLLATE Sets the collation order used when sorting string values

LC_CTYPE Determines the interpretation of characters used in fi le name expansion
and pattern matching

LC_MESSAGES Determines the locale setting used when interpreting double-quoted
strings preceded by a dollar sign

LC_NUMERIC Determines the locale setting used when formatting numbers

LINENO The line number in a script currently executing

LINES Defi nes the number of lines available on the terminal

MACHTYPE A string defi ning the system type in cpu-company-system format

Continues

748

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 748

Command Description

MAILCHECK How often (in seconds) the shell should check for new mail (default is 60)

MAPFILE Array variable containing the mapfile command’s read text; used only
when no variable name is given

OLDPWD The previous working directory used in the shell

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defi ning the operating system the shell is running on

PIPESTATUS A variable array containing a list of exit status values from the processes in
the foreground process

POSIXLY_
CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell’s parent process

PROMPT_COMMAND If set, the command to execute before displaying the primary prompt

PS1 The primary command line prompt string

PS2 The secondary command line prompt string

PS3 The prompt to use for the select command

PS4 The prompt displayed before the command line is echoed if the bash -x
parameter is used.

PWD The current working directory

RANDOM Returns a random number between 0 and 32767. Assigning a value to this
variable seeds the random number generator.

READLINE_LINE The readline line buffer contents

READLINE_POINT The current readline line buffer’s insertion point position

REPLY The default variable for the read command

SECONDS The number of seconds since the shell was started. Assigning a value
resets the timer to the value.

SHELL The shell’s full pathname

SHELLOPTS A colon-separated list of enabled bash shell options

SHLVL Indicates the shell level, incremented by 1 each time a new bash shell is
started

TABLE A-3 (continued)

749

Appendix A: Quick Guide to bash Commands

bapp01.indd 12/08/2014 Page 749

A

TIMEFORMAT A format specifying how the shell displays time values

TMOUT The value of how long (in seconds) the select and read commands
should wait for input. The default of 0 indicates to wait indefi nitely.

TMPDIR When set to a directory name, the shell uses the directory as a location for
temporary shell fi les.

UID The numeric real user ID of the current user

You display the environment variables using the set built-in command. The default shell
environment variables set at boot time can and often do vary between different Linux
distributions.

751

bapp02.indd 12/08/2014 Page 751

Quick Guide to sed and gawk

IN THIS APPENDIX

The basics for using sed

What you need to know about gawk

I
f you do any type of data handling in your shell scripts, most likely you’ll need to use either the
sed program or the gawk program (and sometimes both). This appendix provides a quick refer-
ence for sed and gawk commands that come in handy when working with data in your

shell scripts.

The sed Editor
The sed editor can manipulate data in a data stream based on commands you either enter into the
command line or store in a command text fi le. It reads one line of data at a time from the input and
matches that data with the supplied editor commands, changes data in the stream as specifi ed in
the commands, and then outputs the new data to STDOUT.

Starting the sed editor
Here’s the format for using the sed command:

sed options script file

The options parameters allow you to customize the behavior of the sed command and include the
options shown in Table B-1.

TABLE B-1 The sed Command Options

Option Description

-e script Adds commands specifi ed in script to the commands run while processing the
input

-f file Adds the commands specifi ed in the fi le file to the commands run while processing
the input

-n Doesn’t produce output for each command, but waits for the print command

APPENDIX

B

752

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 752

The script parameter specifi es a single command to apply against the stream data. If
more than one command is required, you must use either the -e option to specify them in
the command line or the -f option to specify them in a separate fi le.

sed commands
The sed editor script contains commands that sed processes for each line of data in
the input stream. This section describes some of the more common sed commands you’ll
want to use.

Substitution

The s command substitutes text in the input stream. Here’s the format of the s command:

s/pattern/replacement/flags

pattern is the text to replace, and replacement is the new text that sed inserts in its
place.

The flags parameter controls how the substitution takes place. Four types of substitution
fl ags are available:

 ■ A number indicates the pattern occurrence that should be replaced.

 ■ g indicates that all occurrences of the text should be replaced.

 ■ p indicates that the contents of the original line should be printed.

 ■ w file indicates that the results of the substitution should be written to a fi le.

In the fi rst type of substitution, you can specify which occurrence of the matching pattern
the sed editor should replace. For example, you use the number 2 to replace only the sec-
ond occurrence of the pattern.

Addressing

By default, the commands you use in the sed editor apply to all lines of the text data. If
you want to apply a command to only a specifi c line, or a group of lines, you must use line
addressing.

There are two forms of line addressing in the sed editor:

 ■ A numeric range of lines

 ■ A text pattern that fi lters out a line

Both forms use the same format for specifying the address:

[address]command

753

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 753

B

When using numeric line addressing, you reference lines by their line position in the text
stream. The sed editor assigns the fi rst line in the text stream as line number 1 and con-
tinues sequentially for each new line.

$ sed '2,3s/dog/cat/' data1

The other method of restricting which lines a command applies to is a bit more compli-
cated. The sed editor allows you to specify a text pattern that it uses to fi lter lines for the
command. Here’s the format for this:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed editor applies
the command only to lines that contain the text pattern that you specify.

$ sed '/rich/s/bash/csh/' /etc/passwd

This fi lter fi nds the line that contains the text rich and replaces the text bash with csh.

You can also group more than one command together for a specifi c address:

address {
 command1
 command2
 command3 }

The sed editor applies each of the commands you specify only to lines that match the
address specifi ed. The sed editor processes each command listed on the address line(s):

$ sed '2{
> s/fox/elephant/
> s/dog/cat/
> }' data1

The sed editor applies each of the substitutions to the second line in the data fi le.

Deleting lines

The delete command, d, pretty much does what it says. It deletes any text lines that match
the addressing scheme supplied. Be careful with the delete command, because if you forget
to include an addressing scheme, all the lines are deleted from the stream:

$ sed 'd' data1

The delete command is obviously most useful when used in conjunction with a specifi ed
address. This allows you to delete specifi c lines of text from the data stream, either by line
number:

$ sed '3d' data6

754

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 754

or by a specifi c range of lines:

$ sed '2,3d' data6

The pattern-matching feature of the sed editor also applies to the delete command:

$ sed '/number 1/d' data6

Only lines matching the specifi ed text are deleted from the stream.

Inserting and appending text

As you would expect, like any other editor, the sed editor allows you to insert and append
text lines to the data stream. The difference between the two actions can be confusing:

 ■ The insert command (i) adds a new line before the specifi ed line.

 ■ The append command (a) adds a new line after the specifi ed line.

The format of these two commands can be confusing: You can’t use these commands on a
single command line. You must specify the line to insert or append on a separate line by
itself. Here’s the format for doing this:

sed '[address]command\
new line'

The text in new line appears in the sed editor output in the place you specify. Remember
that when you use the insert command, the text appears before the data stream text:

$ echo "testing" | sed 'i\
> This is a test'
This is a test
testing
$

And when you use the append command, the text appears after the data stream text:

$ echo "testing" | sed 'a\
> This is a test'
testing
This is a test
$

This allows you to insert text at the end of the normal text.

Changing lines

The change command allows you to change the contents of an entire line of text in the
data stream. It works the same as the insert and append commands, in that you must
specify the new line separately from the rest of the sed command:

$ sed '3c\
> This is a changed line of text.' data6

755

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 755

B

The backslash character is used to indicate the new line of data in the script.

Transform command

The transform command (y) is the only sed editor command that operates on a single char-
acter. The transform command uses this format:

[address]y/inchars/outchars/

The transform command performs a one-to-one mapping of the inchars and the
outchars values. The fi rst character in inchars is converted to the fi rst character
in outchars. The second character in inchars is converted to the second character in
outchars. This mapping continues throughout the length of the specifi ed characters. If
the inchars and outchars are not the same length, the sed editor produces an error
message.

Printing lines

Similar to the p fl ag in the substitution command, the p command prints a line in the sed
editor output. The most common use for the print command is for printing lines that con-
tain matching text from a text pattern:

$ sed -n '/number 3/p' data6
This is line number 3.
$

The print command allows you to fi lter only specifi c lines of data from the input stream.

Writing to a file

The w command is used to write lines to a fi le. Here’s the format for the w command:

[address]w filename

The filename can be specifi ed as either a relative or absolute pathname, but in either
case, the person running the sed editor must have write permissions for the fi le. The
address can be any type of addressing method used in sed, such as a single line number,
a text pattern, or a range of line numbers or text patterns.

Here’s an example that prints only the fi rst two lines of a data stream to a text fi le:

$ sed '1,2w test' data6

The output fi le test contains only the fi rst two lines from the input stream.

Reading from a file

You’ve already seen how to insert and append text into a data stream from the sed com-
mand line. The read command (r) allows you to insert data contained in a separate fi le.

756

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 756

Here’s the format of the read command:

[address]r filename

The filename parameter specifi es either an absolute or relative pathname for the fi le that
contains the data. You can’t use a range of addresses for the read command. You can specify
only a single line number or text pattern address. The sed editor inserts the text from the
fi le after the address.

$ sed '3r data' data2

The sed editor inserts the complete text from the data fi le into the data2 fi le, starting at
line 3 of the data2 fi le.

The gawk Program
The gawk program is the GNU version of the original awk program in Unix. The awk pro-
gram takes stream editing one step further than the sed editor by providing a program-
ming language instead of just editor commands. This section describes the basics of the
gawk program as a quick reference to its abilities.

The gawk command format
The basic format of the gawk program is as follows:

gawk options program file

Table B-2 shows the options available with the gawk program.

TABLE B-2 The gawk Options

Option Description

-F fs Specifi es a fi le separator for delineating data fi elds in a line

-f file Specifi es a fi le name to read the program from

-v var=value Defi nes a variable and default value used in the gawk program

-mf N Specifi es the maximum number of fi elds to process in the data fi le

-mr N Specifi es the maximum record size in the data fi le

-W keyword Specifi es the compatibility mode or warning level for gawk. Use the help
option to list all the available keywords.

The command line options provide an easy way to customize features in the gawk program.

757

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 757

B

Using gawk
You can use gawk either directly from the command line or from within your shell scripts.
This section demonstrates how to use the gawk program and how to enter scripts for gawk
to process.

Reading the program script from the command line

A gawk program script is defi ned by an opening and closing brace. You must place script
commands between the two braces. Because the gawk command line assumes that the
script is a single text string, you must also enclose your script in single quotation marks.
Here’s an example of a simple gawk program script specifi ed on the command line:

$ gawk '{print $1}'

This script displays the fi rst data fi eld in every line of the input stream.

Using multiple commands in the program script

A programming language wouldn’t be very useful if you could execute only one command.
The gawk programming language allows you to combine commands into a normal program.
To use multiple commands in the program script specifi ed on the command line, just place a
semicolon between commands:

$ echo "My name is Rich" | gawk '{$4="Dave"; print $0}'
My name is Dave
$

The script performs two commands: It replaces the fourth data fi eld with a different value,
and then it displays the entire data line in the stream.

Reading the program from a file

As with the sed editor, the gawk editor allows you to store your programs in a fi le and
refer to them in the command line:

$ cat script2
{ print $5 "'s userid is " $1 }
$ gawk -F: -f script2 /etc/passwd

The gawk program processes all the commands specifi ed in the fi le on the input
stream data.

Running scripts before processing data

The gawk program also allows you to specify when the program script is run. By default,
gawk reads a line of text from the input and then executes the program script on the data
in the line of text. Sometimes, you may need to run a script before processing data, such as
to create a header section for a report. To do that, you use the BEGIN keyword. This forces

758

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 758

gawk to execute the program script specifi ed after the BEGIN keyword before reading
the data:

$ gawk 'BEGIN {print "This is a test report"}'
This is a test report
$

You can place any type of gawk command in the BEGIN section, such as commands that
assign default values to variables.

Running scripts after processing data

Similar to the BEGIN keyword, the END keyword allows you to specify a program script that
gawk executes after reading the data:

$ gawk 'BEGIN {print "Hello World!"} {print $0} END {print
 "byebye"}' data1
Hello World!
This is a test
This is a test
This is another test.
This is another test.
byebye
$

The gawk program executes the code in the BEGIN section fi rst, then processes any data in
the input stream, and then executes the code in the END section.

The gawk variables
The gawk program is more than just an editor; it’s a complete programming environment.
As such, lots of commands and features are associated with gawk. This section shows the
main features you need to know for programming with gawk.

Built-in variables

The gawk program uses built-in variables to reference specifi c features within the program
data. This section describes the gawk built-in variables available for you to use in your
gawk programs and demonstrates how to use them.

The gawk program defi nes data as records and data fi elds. A record is a line of data (delin-
eated by the newline characters by default), and a data fi eld is a separate data element
within the line (delineated by a white space character, such as a space or tab, by default).

The gawk program uses data fi eld variables to reference data elements within each record.
Table B-3 describes these variables.

759

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 759

B

TABLE B-3 The gawk Data Field and Record Variables

Variable Description

$0 The entire data record

$1 The fi rst data fi eld in the record

$2 The second data fi eld in the record

$n The nth data fi eld in the record

FIELDWIDTHS A space-separated list of numbers defi ning the exact width (in spaces) of
each data fi eld

FS Input fi eld separator character

RS Input record separator character

OFS Output fi eld separator character

ORS Output record separator character

In addition to the fi eld and record separator variables, gawk provides some other built-in
variables to help you know what’s going on with your data and extract information from
the shell environment. Table B-4 shows the other built-in variables in gawk.

TABLE B-4 More gawk Built-In Variables

Variable Description

ARGC The number of command line parameters present

ARGIND The index in ARGV of the current fi le being processed

ARGV An array of command line parameters

CONVFMT The conversion format for numbers (see the printf statement), with a
default value of %.6 g

ENVIRON An associative array of the current shell environment variables and their
values

ERRNO The system error if an error occurs reading or closing input fi les

FILENAME The fi lename of the data fi le used for input to the gawk program

FNR The current record number in the data fi le

IGNORECASE If set to a non-zero value, gawk all string functions (including regular
expressions); ignore the case of characters.

NF The total number of data fi elds in the data fi le

NR The number of input records processed

Continues

760

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 760

Variable Description

OFMT The output format for displaying numbers, with a default of %.6 g

RLENGTH The length of the substring matched in the match function

RSTART The start index of the substring matched in the match function

You can use the built-in variables anywhere in the gawk program script, including the
BEGIN and END sections.

Assigning variables in scripts

Assigning values to variables in gawk programs is similar to how you assign values to vari-
ables in a shell script — using an assignment statement:

$ gawk '
> BEGIN{
> testing="This is a test"
> print testing
> }'
This is a test
$

After you assign a value to a variable, you can use that variable anywhere in your
gawk script.

Assigning variables in the command line

You can also use the gawk command line to assign values to variables for the gawk
program. This allows you to set values outside of the normal code, changing values on the
fl y. Here’s an example of using a command line variable to display a specifi c data fi eld in
the fi le:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
$ gawk -f script1 n=3 data1

This feature is a great way to process data from your shell scripts in the gawk script.

The gawk program features
Some features of the gawk program make it handy for manipulating data, allowing you to
create gawk scripts that can parse just about any type of text fi le, including log fi les.

TABLE B-4 (continued)

761

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 761

B

Regular expressions

You can use either a Basic Regular Expression (BRE) or an Extended Regular Expression
(ERE) to fi lter the lines in the data stream to which the program script applies.

When using a regular expression, the regular expression must appear before the left brace
of the program script that it controls:

$ gawk 'BEGIN{FS=","} /test/{print $1}' data1
This is a test
$

The matching operator

The matching operator allows you to restrict a regular expression to a specifi c data fi eld in
the records. The matching operator is the tilde character (~). You specify the matching
operator, along with the data fi eld variable, and the regular expression to match:

$1 ~ /^data/

This expression fi lters records where the fi rst data fi eld starts with the text data.

Mathematical expressions

In addition to regular expressions, you can also use mathematical expressions in the
matching pattern. This feature comes in handy when matching numerical values in data
fi elds. For example, if you want to display all the system users who belong to the root users
group (group number 0), you could use this script:

$ gawk -F: '$4 == 0{print $1}' /etc/passwd

This script displays the fi rst data fi eld value for all lines that contain the value 0 in the
fourth data fi eld.

Structured commands

The gawk program supports the structured commands discussed in this section.

The if-then-else statement:

 if (condition) statement1; else statement2

The while statement:

 while (condition)
{
 statements
}

762

Appendix B: Quick Guide to sed and gawk

bapp02.indd 12/08/2014 Page 762

The do-while statement:

 do {
 statements
} while (condition)

The for statement:

 for(variable assignment; condition; iteration process)

 This provides a wealth of programming opportunities for the gawk script programmer. You
can write gawk programs that rival the functions of just about any higher-level language
program.

763

bindex.indd 12/16/2014 Page 763

 Index

Symbols
/ (forward slash), 540
-- (double dash), 378–379, 382
; (semicolon), 119, 269, 270, 512
! (exclamation mark), 569–571
!! (double exclamation mark),

129
? (question mark), 550
. (dot), 66, 271

PATH environm.ent variable,
149

regular expressions, 542–543
relative fi lepaths, 58

' (closing quotation mark), 508
((expression)) (double

parentheses command),
325–326

[] (square brackets), 543–545
{} (braces), 510, 551–553
* (asterisk), 536, 548–549

default case, 480
\ (backslash character), 755
& (ampersand), 427–428, 433, 576
` (backtick character), 277
^ (caret character), 540–541
+ (plus sign), 551
< (less than), 280
<< (double less-than symbol), 281
= (equal sign)

gawk, 598–599
sed, 529

| (pipe character), 106, 553
| (vertical line), 282
~ (tilde), 56, 603–604
$(), 578–579, 727
$ (dollar sign)

anchor character, 541–542
environment variables, 137
sed, 582
special address, 570

$($#), 372–373
$?, 453, 454–455, 696

$@, 373–375
$*, 373–375
$#, 371–373
.. (double dot), relative fi lepaths,

58
(pound sign), in shell scripts,

270–271
$() format, 277, 367
$? special variable, 292
$$ variable, 432
[[expression]] (double bracket

command), 326–327
> (greater than), 279
&>, 399
>> (double greater than), 280, 397
$0, 368, 456, 511
$1, 366, 511–512
1>, 399
$2, 511
2>, 399

A
absolute directory references,

56–57, 66
access permission triplets,

176–177
accounts

creating multiple, 361–362
managing, 656–673

creating script for,
665–671

determining existence,
661–662

fi nding fi les, 664–665
getting name, 657–660
removing account, 665
removing processes,

662–664
running script for, 671–673
verifying name, 660–661

MySQL, 687–688
root, 163

changing fi le ownership,
182

/etc/shadow fi le, 164
mounting media, 97

system, 163
groups, 173

user, 161
address pattern, 574
addresses

e-mail, 558–560
range, 584
sed, 518–521, 752–753

grouping, 520–521
numeric, 519–520
text pattern fi lters, 520

web, 721, 723–726
aging passwords, 171–172
AIX Unix, 191
alias, 131–132, 157, 234
Almquist, Kenneth, 623
Almquist shell, 623
anacron, 443–445
anchor characters

^ (caret character), 540–541
$ (dollar sign), 541–542, 582
combining, 542

append command, 754
append command, 523–525
apt-cache, 212
apt-cache show, 243
apt-get, 212
apt-get install, 244
aptitude, 212

installing software packages,
215–217

main window, 213
managing packages, 212–215
repositories, 219–220
uninstalling software, 218–

219
updating software, 217–218

aptitude dist-upgrade, 218
aptitude full-upgrade, 218

764

Index

bindex.indd 12/16/2014 Page 764

aptitude install, 216
aptitude purge, 218
aptitude safe-update, 217
aptitude safe-upgrade,

217–218
aptitude search, 215
aptitude show, 213–214
archiving data, 110–111

daily archive script
creating, 649–651
running, 651–652

hourly archive script
creating, 652–655
running, 655–656

scripting, 645–656
confi guration fi le, 646–648
creating daily archive

location, 648–649
ARGC variable, 595–596
ARGV variable, 595–596
arrays

associative, 596, 600
functions, 461–464

passing, 461–463
returning, 463–464

gawk, 600–602
deleting, 601–602
iteration through, 601–602
variable assignment,

600–601
variable, 158–159

ASCII character ordering, 312
ash shell, 10, 114, 623
asort, 616
asorti, 616
assignment statement, 598
associative array, 596, 600
asterisk, 548–549
at, 438–441
atd, 438
Athena(Xaw), 25
atq, 440–441
atrm, 441
AT&T Unix, 86, 89
awk, 509. See also gawk

B
background jobs, 429–430
background mode

commands, 121–123

process lists, 123–124
scripts, 427–429

backslash character, 755
backtick character, 277
backups, 202
basename, 368
bash, 116, 677
bash calculator (bc), 288–292
bash —help, 118
bash shell, 10, 624

Bourne variables, 144
command line parameters,

118
commands

built-in, 127, 739–741
common, 741–744
environment variables,

744–749
as default shell, 113–114
environment variables,

144–148
conventions, 139
default, 744–749
types, 135

EOF key combination, 511
external commands,

742–744
hidden fi les, 60
job control, 434
line numbers, 582
manual, 49–52
mathematical operations,

287–288
referencing current directory,

271
signaling, 419–420
starting, 47–48
using prompt, 48–49

BASH_ENV environment variable,
156, 157

.bash_history, 129–130

.bash_login fi le, 445

.bash_profile fi le, 445

.bashrc fi le, 156, 445
function defi nition in,

468–470
directly defi ning, 469
sourcing function fi les,

469–470
locations, 153, 157

batch, 439

bc, 288–292
BEGIN keyword, 514–516, 602
Bell Labs, 86
Berkeley Software Distribution

(BSD), 89
bg, 435
/bin/bash, 624
/bin/sh, 114, 115, 624
bitwise manipulation, 614
block device fi les, 7
block preallocation, 190
Boolean operators, 324–325
Bourne shell, 10, 623

mathematical operations, 285,
287

brackets
double, 326–327
math, 287–288
pattern matching, 326–327
square, 543–545

branch command, 572–574
BRE. See POSIX Basic Regular

Expression engine
break command, 352–354, 378

text menus, 482
break statement, 608
broken dependencies,

225–227
BSD. See Berkeley Software

Distribution
B-tree fi lesystem, 192
Btrfs fi lesystem, 192
buffers

emacs, 248–249
scrollback, 39

built-in commands
bash, 127, 739–741
dash shell, 628–629
reviewing, 739–741
shell, 125–132
zsh, 633–638

add-in modules, 636–637
core, 634–636
viewing, adding, removing

modules, 637–638
built-in variables, gawk, 592–600,

759–760
Burrows-Wheeler block

sorting text
compression, 109

bzip2, 109

765

Index

bindex.indd 12/16/2014 Page 765

C
C shell, 114
Canonical, 13
case command, 327–329
case sensitivity

environment variables, 139
regular expressions, 538

case statement
default case, 480
menu functions, 479
menu logic, 480–481
processing options, 377, 380
removing account processes,

662–663
shell script menus, 477
zsh, 641

cat, 78–79, 391, 396, 397
cd, 55–58, 127
CDs, ejecting, 99
CentOS, 13, 14, 19, 29, 114, 710

/etc/profile, 152–153
Konsole terminal, 36

chage, 170–172
change command, 525–526
changing ownership, 181–182
character classes, 543–545

negating, 546
special, 547–548

character device fi les, 7
character mode, 409
characters

anchor
^ (caret character), 540–

541
$ (dollar sign), 541–542,

582
combining, 542

ASCII ordering, 312
dot, 542–543
EOF, 291–292, 511
escape, 286, 334, 539–540
fi eld separation, 511, 592, 729
ranges, 546–547
regular expressions, 537–549

anchor, 540–542
asterisk, 548–549
braces, 551–553
character classes, 543–545
dot character, 542–543
escape, 539–540

negating character classes,
546

pipe symbol, 553
plain text, 537–539
plus sign, 551
question mark, 550
ranges, 546–547
special, 539–540
special character classes,

547–548
replacing with sed, 518
shell escape, 286
special, 539–540

dot character, 542–543
transforming with sed, 527
wildcard, 63, 535–536

aptitude search, 215
cron tables, 442
killall command, 96
reading directory using,

339–340
replacement strings,

575–576
string parameter

expansion, 724–725
checking fi lesystems, 198–200
checklist widget, 497
chfn, 170–172
chgrp, 181–182, 184
child process

forking, 126, 127
user-defi ned local variables,

140
child shell

parent relationships, 115–125
user-defi ned variables

global, 141–142
local, 139–140

chmod, 179–181, 183, 320, 677,
693

chown, 181–182
chpasswd, 169–170
chsh, 170–172
clear command, 478, 480
CLI. See command line interface
client, 25
clone, 192
closing fi le descriptors, 407–408
combining anchors, 542
command aliases, 131–132, 157, 234
command grouping, 120

command line interface (CLI), 23,
48, 269

accessing via graphical
terminal emulation,
28–29

accessing via Linux console
terminal, 25–28

functions, 467–470
creating on, 468

gawk, 510–511
variable assignment,

599–600, 760
Lynx, 699–700
Mailx, 705
prompt, 48–49
sed, 506–508
using web from, 697–704

command line mode, 237
command line options, 376–386

getopt command, 380–384
getopts command, 381,

384–386
processing, 377

with values, 379–380
separating from parameters,

378–379
standardizing, 387
zsh, 632–633

command line parameters,
365–370

bash shell, 118
counting, 371–373
dash shell, 624–625
gawk, 598–599
getopt command, 380–384
getopts command, 381,

384–386
iterating with for statement,

373–375
reading, 366–368
script name, 368–370
shifting, 375–376
special variables, 371–375
testing, 370
useradd, 166–167
xterm, 43–44
zsh, 632–633

command modules, 632
add-in, 636–637
viewing, adding, removing,

637–638

766

Index

bindex.indd 12/16/2014 Page 766

command substitution
backtick, 282
subshells, 279
variables, 277–279

commands. See also specific
commands

background mode, 121–123
external, 125–127

bash shell, 742–744
history, 128–131
lists of, 119–121
reading values from, 336–337
shell built-in, 125–132

bash shell, 127, 739–741
dash shell, 628–629
zsh, 633–638

structured
gawk, 605–609
zsh, 640–641

comma-separated value fi les, 361
common bash commands, 741–744
Compiz, 25
compound testing, 324–325
compress, 109
compressing data, 108–110, 646
conditions, 305
configure, 230–231
consecutive blank lines, 584–585
console terminals, 24
continue command, 355–357
continue statement, 608
cookies, 699
coproc, 124–125
co-processes, 121, 124–125
copying fi les, 65–67
copy-on-write (COW), 192
copy-on-write fi lesystems, 192
coreutils, 9
COW. See copy-on-write
cp, 65–67, 70
CPU utilization, 94
CREATE DATABASE name;, 686
creating directories, 73–74
creating fi les, 64–65
creating fi lesystems, 196–198
cron, 438, 441–443, 721
cron directories, 443
cron tables, 655, 671

building, 442–443

looking at, 441–442
crontab, 442–443
csh, 114
.csv fi les, 361
curl, 732–734
curly braces, 551–553
curses, 699

D
dash, 114
dash shell, 115, 623–624

built-in commands, 628–629
command line parameters,

624–625
environment variables,

625–628
user-defi ned, 627

features, 624–629
positional parameters, 627
scripting, 629–631

arithmetic, 629–630
function command, 631
test command, 630–631

data blocks, 188–189
data constraints, 689
data fi eld variables, 511–512, 592,

603
data fi elds, 688
data fi les

archiving, 110–111, 645–656
confi guration fi le, 646–648
creating location for,

648–649
daily script, 649–652
hourly script, 652–656
scripting, 645–656

compressing, 108–110, 646
looping on, 350–351
searching, 107–108
sorting, 102–106
working with, 102–111

data mode journaling, 189, 190
data types, MySQL, 689
databases

creating, 685–686
relational, 688
using in scripts, 692–697

date, 269–270, 652, 655, 727

deb, 220
Debian, 18

dash shell, 623–624
package management, 212–220

deb-src, 220
DEC. See Digital Equipment

Corporation
default exit status, 453–454
default fi le permissions, 177–179
default group, 322
default interactive shell, 114–115
default shell program, 113
default system shell, 114
DELETE, 690–691
delete command, sed, 521–523,

729
deleting directories, 74–77
deleting fi les, 72–73
deleting lines, 584–586
dependencies, 211

broken, 225–227
desktop environment, 11–17,

25
GNOME desktop, 13
KDE, 12–13
Unity desktop, 13–14

/dev/hdx, 193
device drivers, 7
device fi les, 7
device names, hard drives, 193
/dev/sdx, 193
df, 100, 495
dialog command, 484–485

scripting, 493–495
specifying widget, 485

dialog package, 484–491
options, 491–493
output, 485
using in script, 493–495
widgets, 484–485

fselect, 490, 491
inputbox, 487–488
menu, 489–490
msgbox, 486
textbox, 488–489
yesno, 487

Dickey, Thomas, 484
Digital Equipment Corporation

(DEC), 41

767

Index

bindex.indd 12/16/2014 Page 767

directories
absolute references, 56–57, 66
common names, 54–55
counting fi les, 554–555
creating, 73–74
cron, 443
deleting, 74–77
fi le comparisons using,

314–315
HOME, 164–167, 271
$HOME/bin, 271
listing, 59–64
managing, 73–77
parent, 74
reading using wildcards,

339–340
referencing current, 271
relative references, 57–59, 66
root, 53
temporary, 413–414
/tmp, 411
traversing, 55–59
/usr/sbin, 165
virtual, 53, 57

mounting media, 98
disk blocks, 189
disk space

checking usage with du,
101–102

checking with df, 100
monitoring, 96–102

scripting, 673–678
diskmail, 707
display server, 25
displaying messages, scripting,

272–273
distribution, 17
do statement, 331–332
docking, 21
done command, 358
done statement, 331–332
dot operator, 271, 467, 469
dot special character, 542–543
double bracket command, 326–

327
double less-than symbol, 281
double line spacing, 579–580
double parentheses command,

325–326

do-while statement, 608–609
dpkg, 212, 220

package information, 214–215
du, 101–102, 673–675
dumb terminal, 23
dyne:bolic, 19, 21

E
echo $BASH_SUBSHELL, 120
echo command, 127, 272–273, 406

background process list,
123–124

-en option, 479
environment variables, 137
menu layouts, 478–479
-n parameter, 273

echo $my_variable, 139–140
editors. See also gawk; sed editor

emacs, 242–251
basics, 245–247
buffers, 248–249
on console, 245–250
copying and pasting, 247
editing, 247
in GUI, 250–251
installing, 244
searching and replacing,

248
windows, 249–250

Kate, 256–260
sessions, 257
terminal window, 257–258

nano, 240–242
stream, 505–506
vim, 233–240

basics, 235–237
copying and pasting,

238–239
editing, 238
installing, 235
modes, 236–237
searching and substituting,

239–240
visual mode, 239

elif statement, 302–304
else clause, 303–304, 606

test command, 305
emacs, 242–251

basics, 245–247
buffers, 248–249
copying and pasting, 247
editing, 247
installing, 244
searching and replacing, 248
using

on console, 245–250
in GUI, 250–251

windows, 249–250
e-mail, 704–707

SMS gateways, 734–735
e-mail addresses, parsing,

558–560
empty fi les, 318–319
END keyword, 515, 602
env, 136–137, 138
ENVIRON variable, 596
environment fi les, 150
environment variable

OPTARG, 384
OPTIND, 384, 386
PATH, 165, 271,

359
environment variables, 135–138

$ (dollar sign), 137
arrays, 158–159
bash shell, 144–148

commands, 744–749
conventions, 139
default, 744–749
types, 135

BASH_ENV, 156, 157
capturing database data,

696–697
case sensitivity, 139
dash shell, 625–628

user-defi ned, 627
echo command, 137
in gawk, 596
global, 136–137

setting, 140–142
IFS, 350–351
local, 138

setting, 139–140
LS_COLORS, 59
PAM, 151
PATH, 148–150
persisting, 157

768

Index

bindex.indd 12/16/2014 Page 768

removing, 142–143
scripting, 274–275
subshell, 142

global, 137
system, 136, 150–157

interactive shell, 156
locating, 150–157
login shell, 150–155
non-interactive shell,

156–157
types, 135
user-defi ned, 138–142

EOF text string, 291–292
bash key combination, 511
mysql scripting, 694

epoch time, 617
equal sign command, 529
ERE. See POSIX Extended Regular

Expression engine
error messages, 398
escape character, 286, 334

regular expressions, 539–540
/etc/apt/sources.list, 219
/etc/bash.bashrc, 153
/etc/cron.hourly, 444
/etc/cron.monthly, 444
/etc/fstab, 199
/etc/group fi le, 173
/etc/init.d folder, 6
/etc/inittabs fi le, 6
/etc/login.defs, umask

values, 179
/etc/lynx.cfg, 700
/etc/passwd, 113, 162–164, 168,

301–302, 661
information in comments

fi eld, 170–171
processing data in, 350–351

/etc/profile, 150–154, 157
CentOS, 152–153
Ubuntu LInux, 151
umask values, 179

/etc/profile.d, 153–154, 157
/etc/rcX.d folders, 6
/etc/shadow, 164
/etc/skel directory, 164
/etc/yum.conf, 222
/etc/yum.repos.d, 228
Eterm, 29

excuse generator, 731–737
creating script, 735–737
e-mail to SMS gateways,

734–735
sending SMS message, 732–734

exec, 402, 404, 406, 647, 676
executable fi les, 321

fi nding, 359–360
execute privilege, 651
exit, 119, 127, 421–422
exit command, 293–295
EXIT signal, 423–424
exit status

codes
checking, 292–293
dialog widget output, 485
test command, 305

default, 453–454
ps, 662

exiting scripts, 292–295
export, 141–142, 143
expr command, 285–286, 629
ext fi lesystem, 8, 188
ext2 fi lesystem, 8, 188–189
ext3 fi lesystem, 8, 190
ext4 fi lesystem, 8, 190, 201
extended fi lesystem. See ext

fi lesystem
extended partition, 195
extended regular expressions,

537, 549–554
Extensible Markup Language

(XML), 697
extents, 190
external commands, 125–127

bash shell, 742–744
eztexting.com, 732

F
Falstad, Paul, 632
fdisk, 193–196, 203

commands, 194
t command, 203–204

Fedora Linux, 17, 29, 212
package management, 221
Wayland display server, 11

fg, 435
FHS. See Filesystem Hierarchy

Standard

fi eld separation character, 511,
592, 729

fi eld separators, internal, 337–338
FIELDWIDTHS variable, 593–594
file, 77–78
fi le descriptor, 395

closing, 407–408
creating input, 405–406
creating output, 403–404
listing open, 408–410
read/write, 406–407
redirecting, 404–405

fi le descriptors, standard, 395–
398

fi le globbing, 63, 339
fi le paths, 53
fi le permissions, 161, 175–179

changing, 179–181
codes, 177–179
default, 177–179
Octal mode, 178
symbols, 176–177

fi le redirection, 416, 694
fi les

account, 664–665
comparisons

checking directories,
314–315

checking for fi le, 316–317
checking for object

existence, 315–316
date, 322–324
default group, 322
execute permission, 321
ownership, 321–322
read access, 317–318
write permission, 319–320

copying, 65–67
creating, 64–65
data, working with, 102–111
date, 322–324
default group, 322
deleting, 72–73
executable, fi nding, 359–360
handling, 64–73
hidden, 60
linking, 68–70
listing, 59–64

basic, 59–61
fi ltering output, 62–64

environment variables (continued)

769

Index

bindex.indd 12/16/2014 Page 769

long, 61–62
looping on data, 350–351
numbering lines in, 581–582
ownership, 321–322

changing, 181–182
printing last lines, 582–584
reading editor commands

from, 508–509, 755–756
reading gawk scripts from,

513–514, 757
redirecting loop output to, 358
removing, 72–73
renaming, 70–72
script, creating, 270–272
sed using, 530–533

reading, 531–533
writing, 530–531

sharing, 182–184
spacing with double lines,

579–581
startup, 445
temporary, 411–414
viewing contents, 77–83

fi le type, 77–78
parts of fi les, 81–83
whole fi le, 78–81

Filesystem Hierarchy Standard
(FHS), 55

fi lesystems, 8, 187
basic, 188–189
checking and repairing,

198–200
checking available types,

196–197
checking disk space usage,

100
copy-on-write, 192
creating, 196–198, 208–209
journaling, 189–192, 197

methods, 189–190
management, 8–9
mounting media, 97
mounting new, 197–198
navigating, 52–59

absolute directory
references, 56–57

relative directory
references, 57–59

traversing directories,
55–59

partitions
creating, 193–196
extended, 195
primary, 195

working with, 192–200
Final Term, 29
find, 665
fi nding executable fi les, 359–360
finger, 170, 171
fl ags, 752
fl oating-point math, 288–292
Fluxbox, 16
FNR variable, 596–597
folding marker, 252
for command, 331–340

changing fi eld separator,
337–338

C-style, 341–343
multiple variables, 342–343

piping output, 358–359
reading complex values in list,

333–335
reading directory using

wildcards, 339–340
reading list from variable,

335–336
reading values from command,

336–337
reading values in list, 332–333
redirecting output to fi le, 358

for loops, 640–641
nested, 347–348

for statement, 609, 620
/etc/profile, 153
iterating parameters, 373–375

forking, 126, 127
format specifi ers, 610

control letters, 610–611
modifi ers, 611

format string, 610
formatted numbers, 544–545
formatted printing, 610–613
fragmentation, 189
FreeBSD, 623
FS variable, 592, 729
fsck, 199–200
fselect widget, 490, 491
function command, 631
function keyword, 450, 617–618
function() statement, 631

functions
array variables, 461–464

passing, 463–464
returning, 463–464

command line usage, 467–470
creating, 450
creating on command line, 468
dash shell, 631
default exit status, 453–454
defi ning in .bashrc fi le,

468–470
gawk

built-in, 613–617
creating library, 619–620
defi ning, 617–618
mathematical, 613–614
string, 615–616
time, 616–617
user-defi ned, 619–620
using, 618–619

get account name, 658–660
libraries, 465–467
parameter passing to, 456–459
recursion, 464–465
return command, 454–455
returning values, 453–456
scope, 466
stub, 479
using, 450–452
using output, 455–456
variables in, 456–461

global, 459–460
local, 460–461
parameter passing,

456–459
zsh, 641–642

mathematical, 640
Fvwm, 16
fvwm95, 16

G
gawk, 509–516, 536, 727, 730,

756–762
arrays, 600–602

deleting, 601–602
iteration through, 601–602
variable assignment,

600–601
bitwise manipulation, 614

770

Index

bindex.indd 12/16/2014 Page 770

command format, 510, 756
data fi eld variables, 511–512,

759
environment variables, 596
features, 760–762
formatted printing, 610–613
functions

built-in, 613–617
creating library, 619–620
defi ning, 617–618
mathematical, 613–614
string, 615–616
time, 616–617
user-defi ned, 617–620
using, 618–619

installing, 713
intervals, 552
matching operator, 761
mathematical expressions, 761
multiple commands in program

script, 512–513, 757
options, 756
pattern matching, 602–605

matching operator, 603–
604

mathematical expressions,
604–605

regular expressions, 603,
761

print command, 593
reading program fi le, 513–514,

757
reading script from command

line, 510–511, 757
record variables, 759
running scripts

after processing data,
514–515, 758

before processing data,
514, 757–758

structured commands, 605–
609, 761–762

do-while statement,
608–609

if statement, 605–607
for statement, 609
while statement, 607–608

using, 757
variables, 511–512, 591–600

ARGC, 595–596
ARGV, 595–596

assigning in scripts,
598–599

assigning on command
line, 599–600,
760

built-in, 592–598, 758
data, 595–597
data fi eld, 592–595, 603
ENVIRON, 596
fi eld and record separator,

592–595
FIELDWIDTHS, 593–594
FNR, 596–597
FS, 592
NF, 596–597
NR, 596–597
OFS, 592–593
ORS, 594
RS, 594
user-defi ned, 598–600

gdialog, 500
gedit, 260–265

basic features, 262
plug-ins, 264–265
preferences, 262–265

Gentoo, 18
getopt command, 380–384

command format, 381
using in scripts, 382–384

getopts command, 381, 384–386
GID. See group ID
global environment variables,

136–137
setting, 140–142
subshell, 137

global variables, 135
in functions, 459–460

GNOME desktop, 13, 29
GNOME editor. See gedit
GNOME graphical environment,

500–504
GNOME Terminal, 29–35

accessing, 30–31
menu bar, 31–35

gnome-terminal, 31
GNU, 3, 9–11

gzip, 109
vim, 233

GNU bash shell, 113–114
GNU Network Object Model

Environment. See
GNOME desktop

GNU utilities, 9–11
grant command, 687
graphical interfaces, elements, 25
graphical terminals, 24–25, 28–29
grep, 107–108, 299, 727–728
group ID (GID), 172

changing, 175
system accounts, 173

groupadd, 174
grouping commands, 520–521
grouping expressions, 553–554
groupmod, 175
groups, 172–175, 648–649

changing fi le ownership,
181–182

creating, 174
default, 322
/etc/group fi le, 173
modifying, 175
passwords, 173
system accounts, 173

Guake, 29
gunzip, 109
gzcat, 109
gzip, 109–110

H
hard drives, device names, 193
hard links, 68–70
hardware management, 7–8
hdparm, 196
head, 82–83
hidden fi les, 60
history command, 128–131
hold space, 567–569
$HOME, 275, 316–317
HOME directory, 164–167, 271
$HOME startup fi les, 154–155
$HOME/.bash_login, 154–155
$HOME/.bash_profile, 154–

155
$HOME/.bashrc, 157
$HOME/bin directory, 271
$HOME/.my.cnf fi le, 692–693
$HOME/.profile, 154–155
hpfs fi lesystem, 8
HTML content, 699
HTML tags, 727

removing, 586–588
HTTP headers, 699
Huffman coding, 109

gawk (continued)

771

Index

bindex.indd 12/16/2014 Page 771

I
IBM, 191
IDE drives, 193
if statement, 605–607

archiving data fi les script,
647–648

gawk, 605–607
nested, 301–304

IFS, 337–338
IFS environment variable,

350–351
if-then statements, 574

compound testing, 324–325
continue command,

355–357
as test command alternative,

306
working with, 297–300

if-then-else statements,
300–301, 640–641

incremental search, 248
init process, 6
init run levels, 6
inline input redirection, 280–281,

291
inner loop, 348

breaking out, 353–354
inode numbers, 69–70, 188
inode table, 188, 189
inodes, 188

journaling, 189
input redirection, 291

inline, 280–281, 291
scripting, 280–281, 402–403

inputbox widget, 487–488
INSERT, 690, 695–696
insert command, 754
insert command, 523–525
insert mode, 236–237
inserting text, 523–525, 577
installing software

aptitude, 215–217
local, 224

int(), 613–614
interactive shell, 156
internal fi eld separator, 337–338
interprocess communication, 95
interrupting processes, 420–421
intervals, 551–553
IRIX Unix, 191
iso9660 fi lesystem, 8, 98

J
JFS. See Journaled File System
jfs fi lesystem, 8
job control, 432
job number, 421
job queue, 439
jobs

background, 429–430
controlling, 432–435
restarting, 434–435
scheduling, 438–441

listing pending, 440–441
output, 439–440
removing, 441

started, 421
stopped, 421–422
viewing, 432–434

jobs, 122, 432–434
Journaled File System (JFS), 191
journaling fi lesystems, 189–192,

197
methods, 189–190

JWM, 16

K
K Desktop Environment (KDE).

See KDE
Kate editor, 256–260

sessions, 257
terminal window, 257–258

KDE, 12–13, 35. See also Konsole
Terminal

editors, 251–260
Kate, 256–260
KWrite, 251–256

kdialog, 496–499
using, 498–499
widgets, 496–497

kernel, 4–9
fi lesystem management, 8–9
hardware management, 7–8
software program

management, 6–7
system memory management,

5–6
Kickoff Application

Launcher, 35
kill, 95–96, 432, 434, 664
killall, 96
Knoppix, 20

Konsole Terminal, 29, 30
accessing, 35–36
menu bar, 37–41

korn shell, 10
Kwin, 25
KWrite, 251–256

edit menu, 253–254
Find feature, 254–255
tools, 255

kwrite command, 252–253

L
label parameter, 572–573
Lam, Savio, 484
LAMP. See Linux-Apache-MySQL-

PHP
leading blank lines, 585
Lempel-Ziv coding, 109
less, 80–81
let command, 639
libraries, 465–467

function scope, 466
sourcing, 467, 469

LillyTerm, 29
line addressing, 518–521, 752

grouping, 520–521
numeric, 519–520
text pattern fi lters, 520

line numbers, 529, 581–582
lines

listing, 529–530
printing, 528–529
printing numbers, 529

linked fi les, 234
linking fi les, 68–70
links, 68–70

symbolic, 77
Linux, 3

common directory names,
54–55

desktop environment, 11–17
distributions, 17–21
fi le structure, 54
GNU utilities, 9–11
kernel, 4–9

fi lesystem management,
8–9

hardware management,
7–8

software program
management, 6–7

772

Index

bindex.indd 12/16/2014 Page 772

system memory
management, 5–6

process signals, 95
signals, 420

Linux console, 24
CLI access, 25–28

Linux LiveCD, 19–21
Linux Mint, 212, 220
Linux-Apache-MySQL-PHP

(LAMP), 681
LISP, 249
list parameter, 482
listing lines, 529–530
lists

reading complex values in,
333–335

reading from variable, 335–336
reading values in, 332–333

LiveCD, 3, 19–21
ln, 69
load average, 93, 94
local environment variables, 138

setting, 139–140
local installation, 224
local keyword, 460–461
local variables, 135

in functions, 460–461
log fi les, timestamps, 104
logging, scripting, 414–415
logging in, 26–27
logical partitions, 200
logical volume (LV), 200–201

changing size, 209
creating, 206–207
LVM2 features for, 202–203
managing, 200–209

layout, 200–201
with LVM, 203–209

Logical Volume Manager (LVM),
200, 201–209

commands, 209
mirroring, 202–203
modifying, 209
snapshots, 202
striping, 202
using, 203–209

creating fi lesystem,
208–209

creating logical volumes,
206–207

creating volume groups,
205–206

defi ning physical volumes,
203–205

versions, 202
login name, 161
login program, 163
login shell, 150–155
loops

for, 640–641
nested, 347–348

controlling, 351–357
break command, 352–354
continue command,

355–357
on fi le data, 350–351
inner, 348

breaking out, 353–354
nested, 347–350
outer, breaking out, 354
processing output, 358–359
until, 641

nested, 349–350
while, 378, 640–641

archiving data fi les script,
647

long messages, 717
menu dialog, 495
nested, 348–350
reading fi les, 391–392
text menus, 482

ls, 59–64
basic listing, 59–61
-F parameter, 59–60
fi ltering output, 62–64
-i parameter, 69
inode numbers, 69
-l parameter, 61–62
-li parameter, 70
long listing, 61–62
-R parameter, 60–61

ls -l command, 285
LS_COLORS environment

variable, 59
lsof, 408–410
LV. See logical volume
lvcreate, 206–207, 208
lvdisplay, 207
lvextend, 209
LVM. See Logical Volume Manager
lvreduce, 209

LXTerminal, 29
Lynx, 697–704

capturing data from, 701–704
command line, 699–700
confi guration fi le, 700–701
-dump option, 701–702
installing, 698–699
scripting, 699–700

lynx command, 699–700
lynx.cfg, 700–701

M
mail, 706
mailutils, 704, 735
Mailx, 704–707

command line parameters, 705
make, 231–232
man, 49–52, 197
man bash, 118
man -k keyword, 51
man pages, 49–52

accessing, 49–50
fi lesystem commands, 197
keywords, 51
section areas, 51
section names, 50

man xterm, 49, 52
managing directories, 73–77
managing packages, aptitude,

212–215
Mandriva, 212

package management, 221
matching operator, 603–604, 761
math

brackets, 287–288
expr command, 285–286
fl oating-point, 288–292
gawk

bitwise manipulation, 614
built-in functions, 613–614
pattern matching, 604–605
scripting, 285–292

mathematical comparisons,
325–326

mathematical functions, 640
Mauelshagen, Heinz, 201
media

mounting, 97–99
removable, 97, 98
unmounting, 99–100

Linux (continued)

773

Index

bindex.indd 12/16/2014 Page 773

urpm repositories, 228
user access, 98

meminfo, 495
memory management, 5–6

pages, 6
swap space, 5–6

menu scripts, 477
menu widget, 489–490
mesg, 710–711
messages. See also Short Message

Service
allowing, 710–711
checking if included, 715
checking if users accepting,

714–715
displaying from scripts,

272–273
error, 398
script for, 712–720
sending, 709–720
SMS, 732
transmitting

long, 716–720
simple, 715–716

metacharacter wildcards, 63, 67
Metacity, 25
Microsoft Windows, 8, 11
minix fi lesystem, 8
Mint, 19, 212, 220
Mir display server, 11, 25
mirroring, 202–203
mkdir, 73–74, 198, 654
mke2fs, 196
mkefs, 196
mkfs.btrfs, 196, 197
mkfs.ext3, 196
mkfs.ext4, 196, 197, 208
mkfs.xfs, 196
mkfs.zfs, 196
mkreiserfs, 196
mktemp, 411–413, 495
mktemp -t, 413
monitoring

disk space, 96–102
scripting, 673–678

programs, 85–96
real-time process monitoring,

92–95
more, 79–80
mount, 97–99, 198, 208
mount points, 53

mounting, 97–100
automatic, 97
manual, 97–99
new fi lesystems, 197–198
unmounting, 99–100
virtual directories, 98

moving fi les, 70–72
mrxvt, 29
msdos fi lesystem, 8
msgbox widget, 486
multiline commands, 561–567

delete, 566–567
next, 562–565
print, 567

multiple background jobs,
429–430

multiple commands, scripting,
269–270

multi-word values, 334–335
mv, 70–72
mysql, 692

default output style, 695
-e parameter, 693–694
EOF text in scripting, 694
redirecting output, 696

MySQL, 681–697
connecting to server,

682–683
creating database, 685–686
creating table, 688–690
creating user account,

687–688
data types, 689
default password, 692–693
formatting data, 696–697
inserting and deleting data,

690–691
installing in Ubuntu, 682
querying data, 691–692
startup commands, 692–693
using in scripts, 692–697

mysql client, 682–683
commands, 683–685

mysql-client package, 214
mysql-server package, 682

N
$n, 511
n command, 562–563
nano, 240–242

ncp fi lesystem, 8
negating character classes, 546
nested loops, 347–350
network browser, 25
network device fi les, 7
new line, 754
next command, 562–565, 729

multi-line, 563–565
single-line, 562–563

NF variable, 596–597
nfs fi lesystem, 8
nice, 436–437
nodes, 8
nohup, 430–431
nohup.out, 431
non-incremental search, 248
non-interactive shell, 156–157
normal mode, 236–237
NR variable, 596–597
ntfs fi lesystem, 8, 98
number manipulation. See math
numbering lines, 581–582
numeric comparisons, 307–308
numeric line addressing,

519–520

O
Octal mode, 178
OFS variable, 592–593
open source software (OSS), 9
OpenSolaris, 192
openSUSE, 12, 18, 192, 212

package management, 221
OPTARG environment variable,

384
OPTIND environment variable,

384, 386
options. See command line

options
ordered mode journaling,

189, 190
ORS variable, 594
OSS. See open source software
outer loop, breaking out, 354
output redirection, 397–398,

399–400
permanent, 401–402
scripting, 279–280, 400–402
temporary, 400–401

output suppression, 410–411

774

Index

bindex.indd 12/16/2014 Page 774

P
Package Management System

(PMS), 211–212
aptitude, 212–220

installing software
packages, 215–217

main window, 213
managing packages,

212–215
repositories, 219–220
uninstalling software,

218–219
updating software, 217–218

urpm, 221
broken dependencies, 227
installing software, 224
listing installed software,

221
package details, 222
repositories, 228
uninstalling software, 225
updating software, 225

yum, 221–228
broken dependencies,

225–227
installing software,

223–224
listing installed packages,

221–223
repositories, 227–228
uninstalling software, 225
updating software, 224–225

zypper, 221
broken dependencies, 227
installing software, 224
listing installed software,

221
package details, 222
repositories, 228
uninstalling software, 225
updating software, 225

pager, 50
pages, 6
PAM. See Pluggable

Authentication Modules
parameters. See also command

line parameters
dash shell

command line, 624–625

command-line, 624–625
positional, 627

list, 482
ls, 59–62, 69, 70
mysql, 693–694
passing arrays as, 462
passing to function, 456–459
positional, 366, 627
ps, 86–92, 116, 117

BSD-style, 89–91
GNU long, 91–92
Unix-style, 86–89

rm, 73, 76
testing, 370
useradd

change default values, 167
command line, 166–167
-D, 165, 167

parent directories, 74
parent process ID (PPID), 116
parent shell, child relationships,

115–125
parity entry, 202
partitions

changing type, 203–204
creating, 193–196
extended, 195
primary, 195

partprobe, 196
passwd, 169–170
passwords

aging, 171–172
changing, 169–170
group, 173
MySQL, 692–693
reading, 391
storage of, 163

PATH environment variable, 148–
150, 165, 271, 359

pattern matching
double bracket command,

326–327
fi ltering fi le listings, 63–64
gawk, 602–605

matching operator, 603–
604

mathematical expressions,
604–605

regular expressions, 603,
761

grep, 107–108
sed, 520, 526

pattern space, 563, 567, 570–571
/pattern/command, 753
pausing processes, 421–422
PCLinuxOS, 19

LiveCD, 20
permanent redirection, 401–402
permissions, 651

access triplets, 176–177
fi le, 175–179

changing, 179–181
codes, 177–179
comparisons by, 319–321
default, 177–179
Octal mode, 178
symbols, 176–177

group, 172
phone numbers, validating,

556–558
physical volumes (PV), 200

defi ning, 203–205
PID. See process ID
pipe character, 106, 553
pipes, 121

loop output, 358–359
reading from fi les, 391
scripting, 281–284
tee command, 414–415

PKZIP, 109
Pluggable Authentication Modules

(PAM), 151
plus sign, 551
PMS. See Package Management

System
positional parameters, 366, 627
POSIX Basic Regular Expression

engine (BRE), 537
POSIX Extended Regular

Expression engine
(ERE), 537

Postfi x, 704
PPID. See parent process ID
present working directory, 56–57
primary key, 689
primary partition, 195
print command, 593
printenv, 136, 138, 156
printf command, 610–613,

639, 675

775

Index

bindex.indd 12/16/2014 Page 775

printing
formatted, 610–613
last lines, 582–584
lines, 755

priority, 436
proc fi lesystem, 8
process, 116

background, 123–124
co-processes, 121, 124–125
examining, 85–92
forking, 126, 127
init, 6
interrupting, 420–421
pausing, 421–422
real-time monitoring, 92–95
removing for account, 662–664
signals, 95
state code, 91
stopping, 95–96
user-defi ned local variables,

140
process ID (PID), 86

background mode scripts, 428
jobs, 122
kill command, 95
open fi le descriptors, 409

process lists, 119–121
background, 123–124
co-processing, 124–125

.profile fi le, 445
profile.d, 153–154
programs

default shell, 113
gawk scripts

multiple commands, 512–
513, 757

reading fi le, 513–514, 757
login, 163
management, 6–7
monitoring, 85–96

proxy servers, 701
ps, 85–92, 126

background mode commands,
122

BSD-style parameters, 89–91
-ef parameter combination,

88
exit status, 662
-f parameter, 116, 117

—forest parameter, 117
GNU long parameters, 91–92
Unix-style parameters, 86–89

ps —forest, 129
psql, 696
Puppy Linux, 19

LiveCD, 20
Puppy Linux antiX, 16
PV. See physical volume
pvcreate, 204
pvdisplay, 204–205
pwd, 56–57, 127, 298

Q
-qa parameters, 282
question mark, 550

R
radiolist widget, 497
RAID striping, 202
rand(), 614
range address, 584
ranges, 546–547
read access, 317–318
read command, 388–389, 403,

406, 647, 657
from fi le, 391–392
menu functions, 479, 480
with no display, 391
sed, 531–533
timing out, 389–391

reading from fi le
gawk, 513–514, 757
pipes, 391
sed, 508–509, 755–756
while loop, 391–392

read-write snapshots, 202
real-time process monitoring,

92–95
records, 688–690
recovery commands, 198
recursion, 464–465
Red Hat Linux, 13, 17. See also

RHEL
package management,

221–228
Red Hat Package Management

system (RPM), 282

redirection
creating, 403–408
errors, 398–400
fi le, 416, 694

loop output, 358
fi le descriptors, 404–405
input, 291, 402–403

inline, 280–281, 291
scripting, 280–281

mysql output, 696
output, 279–280, 397–398

permanent, 401–402
in scripts, 400–402
sed scripts, 578–579
temporary, 400–401

output and errors, 399–400
regular expression engine, 537
regular expressions, 108, 520

BRE patterns, 537–549
building, 556
case sensitivity, 538
characters

anchor, 540–542
asterisk, 548–549
braces, 551–553
character classes,

543–545
dot character, 542–543
escape, 539–540
negating character classes,

546
pipe symbol, 553
plain text, 537–539
plus sign, 551
question mark, 550
ranges, 546–547
special, 539–540
special character classes,

547–548
special characters,

539–540
combining anchors, 542
counting directory fi les,

554–555
defi ning, 535–536
gawk, 603, 761
grouping expressions,

553–554

776

Index

bindex.indd 12/16/2014 Page 776

intervals, 551–553
parsing e-mail addresses,

558–560
types, 536–537
validating phone numbers,

556–558
whitespace, 539

Reiser, Hans, 190
Reiser4 fi lesystem, 191, 192
ReiserFS fi lesystem, 8, 190–191
relational database, 688
relative directory references,

57–59, 66
removable media, 97, 98
removing fi les, 72–73
removing HTML tags, 586–588
renaming fi les, 70–72
renice, 437
repairing fi lesystems, 198–200
repeat command, 641
replacement strings, 575–576
replace-string, 248
repositories, 211

aptitude, 219–220
urpm, 228
yum, 227–228
zypper, 228

restarting jobs, 434–435
return command, 454–455
RHEL, 29, 191, 192
rjs_mkfs, 196
rm, 72–73

-f option, 76
-i parameter, 73
-r option, 75–76
-R parameter, 76

rmdir, 74–75
rolling window, 582–583
root directory, 53
root drive, 53
root MySQL account, 687
root user account, 163

changing fi le ownership, 182
/etc/shadow fi le, 164
mounting media, 97

ROXTerm, 29
rpm, 212, 281–283
RPM. See Red Hat Package

Management system

rpmfusion.org, 228
rpm.list, 282
RS variable, 594
run level, 6–7
run-parts, 444
rxvt, 29
rxvt-unicode, 29

S
s command, 563–564
Sakura, 29
SATA drives, 193
scale, 289
scheduling

jobs, 438–441
regular scripts, 441–445

scheduling priority, 436
scope, function, 466
screen scraping, 701–704
script exits, trapping, 423–424
script name, reading, 368–370
scripting

archiving data fi les, 645–656
confi guration fi le, 646–648
creating daily archive

location, 648–649
daily archive script,

649–652
hourly archive script,

652–656
background mode, 427–429
bc, 289–292
comment line, 270
creating fi le, 270–272
creating multiple user

accounts, 361–362
dash shell, 629–631

arithmetic, 629–630
function command, 631
test command, 630–631

dialog command in, 493–495
displaying messages, 272–273
excuse generator, 731–737

creating script, 735–737
e-mail to SMS gateways,

734–735
sending SMS message,

732–734
exiting, 292–295
fi le descriptors

closing, 407–408
listing open, 408–410
redirection, 403–408

fi nding executable fi les,
359–360

fl oating-point math, 288–292
functions, 449–452

array variables, 461–464
command line usage,

467–470
creating, 450
creating on command line,

468
default exit status, 453–

454
defi ning in .bashrc fi le,

468–470
global variables, 459–460
libraries, 465–467
local variables, 460–461
parameter passing to,

456–459
passing arrays, 461–463
return command, 454–455
returning arrays, 463–464
returning values, 453–456
scope, 466
using, 450–452
using output, 455–456
variables in, 456–461

gawk, assigning in scripts,
598–599

getopt command in, 382–384
getting quotes, 720–731

checking web addresses,
724–726

parsing out information,
727–731

testing web addresses,
723–724

web page information, 726
input redirection, 280–281,

402–403
logging, 414–415
Lynx, 699–700
managing user accounts,

656–673
creating script for, 665–671
determining existence,

661–662
fi nding fi les, 664–665

regular expressions (continued)

777

Index

bindex.indd 12/16/2014 Page 777

getting name, 657–660
removing account, 665
removing processes,

662–664
running script for, 671–673
verifying name, 660–661

monitoring disk space,
673–678

multiple commands, 269–270
options, 376–386

processing, 377
processing with values,

379–380
separating from

parameters, 378–379
output redirection, 279–280,

400–402
parameters, 365–370

command line, 365–370
counting, 371–373
reading, 366–368
script name, 368–370
shifting, 375–376
special variables, 371–375
testing, 370

performing math, 285–292
pipes, 281–284
redirecting input and output,

279–281
running without hang-up,

430–431
scheduling, 441–445
sed commands in, 577–579

redirecting output,
578–579

wrappers, 578
starting with new shell, 445
suppressing output, 410–411
temporary fi les, 411–414
text strings, 272
user input, 388–392
using database in, 692–697

formatting data, 696–697
logging in, 692–693
sending commands,

693–696
variables, 274–278

environment, 274–275
user, 275–277

zenity in, 501–503
zsh, 638–642

scrollback buffer, 39
SCSI drives, 193
searching data, 107–108
security settings

changing, 179–182
Octal mode, 178

sed editor, 505–509, 536, 675,
727, 751–756

&, 576
address pattern, 574
addresses, 518–521
branch command, 572–574
branching, 572–574
changing lines, 525–526
characters

replacing, 518
transforming, 527

command options, 506, 751
commands

addressing, 752–753
changing lines, 754–755
defi ning, 506–507
deleting lines, 753–754
inserting and appending

text, 523–525, 754
printing lines, 755
reading from fi le, 508–509,

755–756
substitution, 752
transform command, 755
writing to fi le, 755

d command, 566–567
deleting lines, 521–523
fi les, 530–533

reading, 531–533
writing, 530–531

G command, 579–581
hold space commands,

567–569
inserting and appending text,

523–525, 754
inserting text, 577
label parameter, 572–573
line addressing, 752
multiline commands, 561–567

delete, 566–567, 729
next, 562–565, 729
print, 567

multiple commands, 507–508
n command, 562–563
N command, 563–565

negating commands, 569–572
options script fi le, 751
P command, 566–567
parsing web data, 703
printing, 517, 527–530

line numbers, 529
lines, 528–529
listing lines, 529–530

replacement via pattern,
575–577

replacing individual words,
576–577

s command, 507, 563–565
script fl ow, 572–575
in scripts, 577–579

redirecting output,
578–579

shell script wrappers, 578
starting, 751–756
substitution fl ags, 516–518
testing, 574–575
text strings, 537–538
utilities, 579–588

deleting consecutive blank
lines, 584–585

deleting leading blank
lines, 585

deleting lines, 584–586
deleting trailing blank

lines, 586
numbering lines, 581–582
printing last lines, 582–

584
removing HTML tags,

586–588
spacing fi les with blanks,

580–581
spacing with double lines,

579–580
select command, 482–483, 641
SELECT command, 691–692
self-containment, 464
semicolon, 269, 270
sendhub.com, 732
sendmail, 704
serial cable, 23
set, 138, 382, 626
set group ID (SGID), 183–184
set user ID (SUID), 183
setterm, 27–28

options, 28

778

Index

bindex.indd 12/16/2014 Page 778

setterm -background white,
27

setterm -foreground black,
27

setterm -inversescreen on,
27

SGI. See Silicon Graphics
Incorporated

SGID. See set group ID
shadow fi le, 163
sharing fi les, 182–184
shell, 10–11

built-in commands, 125–132
function scope, 466
interactive, 156
non-interactive, 156–157
parent and child relationships,

115–125
starting scripts with new, 445
types, 113–115

shell escape character, 286
shell prompt, using, 48–49
shell script, 269–270

interactive, 477
shell script wrappers, 578
shell scripts, 10, 156

multi-processing, 121
shift, 375–376, 378, 716–717
Short Message Service (SMS), 732
SHOW command, 684–685
SIGCONT, 432
SIGHUP, 420, 431, 434
SIGINT, 420–421, 422–423, 426
SIGKILL, 422
signaling, 127

bash shell, 419–420
signals, 127

EXIT, 423–424
generating, 420–422
Linux, 420
process, 95
TERM, 95
trapping, 422–423

SIGQUIT, 420
SIGTERM, 420
SIGTSTP, 421
Silicon Graphics Incorporated

(SGI), 191
single quotation marks, 333–334
single-user mode, 6
Slackware, 17, 20

Slax, 20
sleep, 121–122, 421

background process list,
123–124

smb fi lesystem, 8
SMS. See Short Message Service
SMS gateways, 734
snapshots, 202, 203
software, installing

package management, 211–228
from source code, 228–232

software program management,
6–7

sort, 102–106, 283, 674–675
sorting data, 102–106
source command, 467, 469
sourcing function fi les, 469–470
spacing fi les with blanks, 580–

581
s/pattern/replacement/

flags,
752

special character classes, 547–548
special characters, 539–540

dot character, 542–543
split, 616
SQL. See Structured Query

Language
square brackets, 543–545
st, 29
standard fi le descriptors, 395–398
standard input, 388–389
startup fi les, 150, 154, 445

$HOME, 154–155
STDERR, 398

dialog widget output, 485
redirecting, 398–400, 485
redirection

permanent, 401–402
temporary, 400–401

STDIN, 396–397
gawk input, 510
redirecting, 402–403
sed input, 506

STDOUT, 397–398
gawk output, 510
redirection

alternative fi le descriptor,
404–405

permanent, 401–402
temporary, 400–401

sed output, 506, 507
sticky bit, 178, 183
storage devices, 53
stream editor, 505
strftime, 617
string comparisons, 308–313

equality, 309–310
order, 310–312
size, 312–313

string delimiters, 518
string parameter expansion,

724–725
strings

EOF text, 291–292
bash key combination, 511
mysql scripting, 694

format, 610
gawk functions, 615–616
replacement, 575–576
scripting, 272
sed, 537–538

striping, 202
structured commands, 297

gawk, 605–609
do-while statement,

608–609
if statement, 605–607
for statement, 609
while statement, 607–608

gawk program, 761–762
zsh, 640–641

Structured Query Language (SQL),
684

stub functions, 479
su, 224
subshell, 117, 121

background mode commands,
121–123

background process lists,
123–124

command substitution, 279
environment variables, 142

global, 137
examining co-processing,

124–125
forking, 126, 127
global environment variables,

137
uses of, 121–125

substitution command,
563–565, 752

779

Index

bindex.indd 12/16/2014 Page 779

individual word replacement,
576–577

parentheses in, 576
substitution fl ags, 516–518, 752
sudo, 217, 664

mounting media, 97
SUID. See set user ID
Sun Microsystems, 192
suppressing command output,

410–411
swap space, 5–6
swapping out, 6
symbolic links, 68–70, 77, 624
sysstat, 228–229
sysstat, 231–232
system accounts, 163

groups, 173
system environment variables,

136
interactive shell, 156
locating, 150–157
login shell, 150–155
non-interactive shell, 156–157

system information, 93
system memory, status, 94
system memory management, 5–6
systime, 617
sysv fi lesystem, 8

T
tab activity, 39
tab auto-complete, 68
tab silence, 39
tables, creating in MySQL,

688–690
tac command, 572
tail, 81–82
tailpacking, 191
tar, 110–111, 646
tarball, 110–111, 228, 646
tasks, 94
tcsh, 114
tcsh shell, 10
tee, 414–415
Tektronix 4014, 41
teletypewriter, 26
temporary directory, 413–414
temporary fi les, 411–414
temporary redirection, 400–401

TERM signal, 95
terminal (TTY), 86
terminal emulation, 24–25, 28–29

color, 59
Terminator, 29
Terminology, 29
test command, 304–324, 340,

574–575, 630–631
fi le comparisons, 313–324

checking directories,
314–315

checking for fi le, 316–317
checking for object

existence, 315–316
date, 322–324
default group, 322
empty fi les, 318–319
execute permission, 321
ownership, 321–322
read access, 317–318
write permission, 319–320

numeric comparisons,
307–308

string comparisons, 308–313
equality, 309–310
order, 310–312
size, 312–313

test commands, 343–344
multiple, 344–346

testing parameters, 370
text

inserting, 577
inserting and appending with

sed, 523–525
manipulating, 505–516
removing HTML tags from,

586–588
text menus

creating, 477–483
menu functions, 479–480
menu layout, 478–479
menu logic, 480–481

text mode virtual consoles, 26
text pattern fi lters, 520, 526
text strings

EOF, 291–292
bash key combination, 511
mysql scripting, 694

scripting, 272
sed, 537–538

textbelt.com/text, 732–734

textbox widget, 488–489
tilda, 29
time

epoch, 617
gawk, functions, 616–617

timestamps
anacron, 444
hourly backups, 652–653, 655
log fi les, 104
renaming fi les, 71

/tmp directory, 411
top, 93–95
Torvalds, Linus, 4–5
touch, 64, 177
trailing blank lines, 586
transform command, 755
transform command, 527
trap, 422–423, 425
trapping script exit, 423–424
trapping signals, 422–423
traps

modifying or removing,
424–427

script exits, 423–424
tty, 26
TTY. See terminal
type, 126

fi lesystems, 196–197
typeset command, 639

U
Ubuntu Linux, 19, 212, 220

default shell, 624
/etc/profile, 151
GNOME terminal, 30
installing MySQL, 682
LiveCD, 20
ls alias, 131
Lynx confi guration fi le

location, 700
Mir display server, 11
PATH environment variable,

148
Unity desktop, 13–14

ufs fi lesystem, 8
UID. See user ID
$UID, 275
umask, 177–179
umount, 99–100
umsdos fi lesystem, 8

780

Index

bindex.indd 12/16/2014 Page 780

uninstalling software, aptitude,
218–219

Unity desktop, 13–14, 30
University of California, Berkeley,

89
unmounting media, 99–100
unset, 143
until command, 346–347
until loops, 641

nested, 349–350
updating software, aptitude,

217–218
URLs, 721

checking, 724–726
testing, 723–724

urpm, 221
broken dependencies, 227
installing software, 224
listing installed software, 221
package details, 222
repositories, 228
uninstalling software, 225
updating software, 225

USB memory sticks, 21
$USER, 275
user accounts, 161

creating multiple, 361–362
managing, 656–673

creating script for, 665–671
determining existence,

661–662
fi nding fi les, 664–665
getting name, 657–660
removing account, 665
removing processes,

662–664
running script for, 671–673
verifying name, 660–661

MySQL, 687–688
root, 163

changing fi le ownership,
182

/etc/shadow fi le, 164
mounting media, 97

user ID (UID), 161, 274
reserved, 163

user input, 388–392
user variables, 275–277
useradd, 164–168

parameters
change default values, 167

command line, 166–167
-D, 165, 167

user-defi ned variables, 138–142
dash shell, 627
gawk, 598–600
global, 140–142
local, 139–140

userdel, 168
usermod, 169

adding users to groups, 173
users

adding new, 164–168
checking if accepting

messages, 714–715
checking if logged in, 713–714
creating multiple accounts,

361–362
currently logged in, 710
fi le ownership, 181–182
media access, 98
modifying, 168–172
processes, 662–664
removing, 168

/usr/bin/batch, 439
/usr/sbin directory, 165
UXterm, 29

V
variable arrays, 158–159
${variable} format, 275
variables. See also environment

variables
command substitution,

277–279
functions

output assignment to,
455–456

using, 456–461
gawk, 511–512, 591–600

ARGC, 595–596
ARGV, 595–596
array variable assignment,

600–601
assigning in scripts,

598–599
assigning on command

line, 599–600
built-in, 592–600, 759–760
data, 595–597
data fi eld, 592

ENVIRON, 596
fi eld and record separator,

592–595
FIELDWIDTHS, 593–594
FNR, 596–597
FS, 592
NF, 596–597
NR, 596–597
OFS, 592–593
ORS, 594
RS, 594

multiple, 342–343
reading list from, 335–336
scripting, 274–278

special parameter
variables, 371–375

user, 275–277
user-defi ned, 138–142

dash shell, 627
gawk, 598–600
global, 140–142
local, 139–140

/var/spool/anacron, 444
/var/spool/at, 438
vfat fi lesystem, 8, 97, 98
VFS. See Virtual Files System
VG. See volume group
vgchange, 209
vgcreate, 205
vgdisplay, 205
vgextend, 209
vgreduce, 209
vgremove, 209
vi, 234–235
vi editor, 233
viewing fi le contents, 77–83
vim, 233–240

basics, 235–237
copying and pasting, 238–239
editing, 238
installing, 235
modes, 236–237
searching and substituting,

239–240
visual mode, 239

vim, 505
virtual consoles, 24, 25–28

appearance, 27
text mode, 26

virtual directories, 53, 57
mounting media, 98

781

Index

bindex.indd 12/16/2014 Page 781

Virtual Files System (VFS), 9
virtual memory, 5, 6
visual mode, 239
volume group (VG), 200

creating, 205–206
VT102, 41, 42
VT220, 41, 42

W
w command, 530–531
Wayland, 11
Wayland Compositor, 25
wc command, 280
web addresses, 721

checking, 724–726
testing, 723–724

web page information, 726
wget, 720–722

--spider option, 724
WHERE clause, 691, 692
which, 126, 243–244
while command, 343–346, 361

format, 343–344
multiple test commands,

344–346
while loop, 378, 640–641

archiving data fi les script, 647
long messages, 717
menu dialog, 495
nested, 348–350
reading fi les, 391–392
text menus, 482

while statement, 607–608
who, 269–270, 397, 710

-s option, 710
-T option, 710–711, 714

whoeson, 495
widgets libraries, 25

kdialog, 496–499
zenity, 500–504

wildcard characters, 63, 535–536
aptitude search, 215
cron tables, 442
killall command, 96
reading directory using,

339–340

replacement strings, 575–576
string parameter expansion,

724–725
wildcard metacharacters, 63, 67
window manager, 25
writable-snapshot, 192
write, 711–712, 715–716
write access, 319–320
writeback mode journaling, 189,

190, 192
writing to fi le, 755
Wterm, 29

X
X Intrinsics, 25
X Window system, 7, 11–12, 496
xargs command, 663–664
Xfce, 16
Xfce4 Terminal, 29
XFS fi lesystem, 8, 191–192
XML. See Extensible Markup

Language
Xserver, 25
xterm, 29, 41–44

accessing, 42–43
command line parameters,

43–44
man page, 49

Y
Yahoo! weather, 702–704
Yakuake, 29
yesno widget, 487
yum, 221–228

broken dependencies,
225–227

installing software,
223–224

listing installed packages,
221–223

repositories, 227–228
uninstalling software, 225
updating software,

224–225
yum clean all, 226

yum deplist, 226
yum erase, 225
yum install, 223, 244
yum list, 224, 243
yum list installed, 221
yum localinstall, 224
yum remove, 225
yum update, 224, 227

Z
z shell. See zsh
zenity, 500–504

using in scripts, 501–503
widgets, 500–501

zero, 292
ZFS fi lesystem, 192, 199
zftp, 638
zip, 109, 110
zip fi les, 108–109
zmodload command, 637–638
zsh (zshell), 10, 288

built-in commands, 633–638
add-in modules, 636–637
core, 634–636
viewing, adding, removing

modules, 637–638
options, 632–633
scripting, 638–642

calculations, 639–640
functions, 641–642
mathematical functions,

640
mathematical operations,

639–640
structured commands,

640–641
zsh/mathfunc module, 640
zypper , 221

broken dependencies, 227
installing software, 224
listing installed software,

221
package details, 222
repositories, 228
uninstalling software, 225
updating software, 225

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyight���������������
	Contents���������������
	Part I: The Linux Command Line�������������������������������������
	Chapter 1: Starting with Linux Shells��
	What Is Linux?���������������������
	Looking into the Linux kernel������������������������������������
	System memory management�������������������������������
	Software program management����������������������������������
	Hardware management��������������������������
	Filesystem management����������������������������

	The GNU utilities������������������������
	The core GNU utilities�����������������������������
	The shell����������������

	The Linux desktop environment������������������������������������
	The X Window system��������������������������
	The KDE desktop����������������������
	The GNOME desktop������������������������
	The Unity desktop������������������������
	Other desktops���������������������

	Linux Distributions��������������������������
	Core Linux distributions�������������������������������
	Specialized Linux distributions��������������������������������������
	The Linux LiveCD�����������������������

	Summary��������������

	Chapter 2: Getting to the Shell��������������������������������������
	Reaching the Command Line��������������������������������
	Console terminals������������������������
	Graphical terminals��������������������������

	Accessing CLI via a Linux Console Terminal���
	Accessing CLI via Graphical Terminal Emulation���
	Using the GNOME Terminal Emulator��
	Accessing the GNOME terminal�����������������������������������
	The menu bar�������������������

	Using the Konsole Terminal Emulator��
	Accessing the Konsole terminal�������������������������������������
	The menu bar�������������������

	Using the xterm Terminal Emulator��
	Accessing xterm����������������������
	Command line parameters������������������������������

	Summary��������������

	Chapter 3: Basic bash Shell Commands���
	Starting the Shell�������������������������
	Using the Shell Prompt�����������������������������
	Interacting with the bash Manual���������������������������������������
	Navigating the Filesystem��������������������������������
	Looking at the Linux filesystem��������������������������������������
	Traversing directories�����������������������������
	Using absolute directory references��
	Using relative directory references��

	Listing Files and Directories������������������������������������
	Displaying a basic listing���������������������������������
	Displaying a long listing��������������������������������
	Filtering listing output�������������������������������

	Handling Files���������������������
	Creating files���������������������
	Copying files��������������������
	Using tab auto-complete������������������������������
	Linking files��������������������
	Renaming files���������������������
	Deleting files���������������������

	Managing Directories���������������������������
	Creating directories���������������������������
	Deleting directories���������������������������

	Viewing File Contents����������������������������
	Viewing the file type����������������������������
	Viewing the whole file�����������������������������
	Using the cat command����������������������������
	Using the more command�����������������������������
	Using the less command�����������������������������

	Viewing parts of a file������������������������������
	Using the tail command�����������������������������
	Using the head command�����������������������������

	Summary��������������

	Chapter 4: More bash Shell Commands��
	Monitoring Programs��������������������������
	Peeking at the processes�������������������������������
	Unix-style parameters����������������������������
	BSD-style parameters���������������������������
	The GNU long parameters������������������������������

	Real-time process monitoring�����������������������������������
	Stopping processes�������������������������
	The kill command�����������������������
	The killall command��������������������������

	Monitoring Disk Space����������������������������
	Mounting media���������������������
	The mount command������������������������
	The unmount command��������������������������

	Using the df command���������������������������
	Using the du command���������������������������

	Working with Data Files������������������������������
	Sorting data�������������������
	Searching for data�������������������������
	Compressing data�����������������������
	Archiving data���������������������

	Summary��������������

	Chapter 5: Understanding the Shell���
	Exploring Shell Types����������������������������
	Exploring Parent and Child Shell Relationships���
	Looking at process lists�������������������������������
	Creatively using subshells���������������������������������
	Investigating background mode������������������������������������
	Putting process lists into the background��
	Looking at co-processing�������������������������������

	Understanding Shell Built-In Commands��
	Looking at external commands�����������������������������������
	Looking at built-in commands�����������������������������������
	Using the history command��������������������������������
	Using command aliases����������������������������

	Summary��������������

	Chapter 6: Using Linux Environment Variables���
	Exploring Environment Variables��������������������������������������
	Looking at global environment variables��
	Looking at local environment variables���

	Setting User-Defined Variables�������������������������������������
	Setting local user-defined variables���
	Setting global environment variables���

	Removing Environment Variables�������������������������������������
	Uncovering Default Shell Environment Variables���
	Setting the PATH Environment Variable��
	Locating System Environment Variables��
	Understanding the login shell process��
	Viewing the /etc/profile file������������������������������������
	Viewing the $HOME startup files

	Understanding the interactive shell process��
	Understanding the non-interactive shell process��
	Making environment variables persistent��

	Learning about Variable Arrays�������������������������������������
	Summary��������������

	Chapter 7: Understanding Linux File Permissions��
	Linux Security���������������������
	The /etc/passwd file���������������������������
	The /etc/shadow file���������������������������
	Adding a new user������������������������
	Removing a user����������������������
	Modifying a user�����������������������
	usermod��������������
	passwd and chpasswd��������������������������
	chsh, chfn, and chage����������������������������

	Using Linux Groups�������������������������
	The /etc/group file��������������������������
	Creating new groups��������������������������
	Modifying groups�����������������������

	Decoding File Permissions��������������������������������
	Using file permission symbols������������������������������������
	Default file permissions�������������������������������

	Changing Security Settings���������������������������������
	Changing permissions���������������������������
	Changing ownership�������������������������

	Sharing Files��������������������
	Summary��������������

	Chapter 8: Managing Filesystems��������������������������������������
	Exploring Linux Filesystems����������������������������������
	Understanding the basic Linux filesystems��
	Looking at the ext filesystem������������������������������������
	Looking at the ext2 filesystem�������������������������������������

	Understanding journaling filesystems���
	Looking at the ext3 filesystem�������������������������������������
	Looking at the ext4 filesystem�������������������������������������
	Looking at the Reiser filesystem���������������������������������������
	Looking at the journaled filesystem��
	Looking at the XFS filesystem������������������������������������

	Understanding the copy-on-write filesystems��
	Looking at the ZFS filesystem������������������������������������
	Looking at the Btrfs filesystem��������������������������������������

	Working with Filesystems�������������������������������
	Creating partitions��������������������������
	Creating a filesystem����������������������������
	Checking and repairing a filesystem��

	Managing Logical Volumes�������������������������������
	Exploring logical volume management layout���
	Using the LVM in Linux�����������������������������
	Taking a snapshot������������������������
	Striping���������������
	Mirroring����������������

	Using the Linux LVM��������������������������
	Defining physical volumes��������������������������������
	Creating volume groups�����������������������������
	Creating logical volumes�������������������������������
	Creating the filesystem������������������������������
	Modifying the LVM������������������������

	Summary��������������

	Chapter 9: Installing Software�������������������������������������
	Package Management Primer��������������������������������
	The Debian-Based Systems�������������������������������
	Managing packages with aptitude��������������������������������������
	Installing software packages with aptitude���
	Updating software with aptitude��������������������������������������
	Uninstalling software with aptitude��
	The aptitude repositories��������������������������������

	The Red Hat–Based Systems��������������������������������
	Listing installed packages���������������������������������
	Installing software with yum�����������������������������������
	Updating software with yum���������������������������������
	Uninstalling software with yum�������������������������������������
	Dealing with broken dependencies���������������������������������������
	Yum repositories�����������������������

	Installing from Source Code����������������������������������
	Summary��������������

	Chapter 10: Working with Editors���������������������������������������
	Visiting the vim Editor������������������������������
	Checking your vim package��������������������������������
	Exploring vim basics���������������������������
	Editing data�������������������
	Copying and pasting��������������������������
	Searching and substituting���������������������������������

	Navigating the nano Editor���������������������������������
	Exploring the emacs Editor���������������������������������
	Checking your emacs package����������������������������������
	Using emacs on the console���������������������������������
	Exploring the basics of emacs������������������������������������
	Editing data�������������������
	Copying and pasting��������������������������
	Searching and replacing������������������������������
	Using buffers in emacs�����������������������������
	Using windows in console mode emacs��

	Using emacs in a GUI���������������������������

	Exploring the KDE Family of Editors��
	Looking at the KWrite editor�����������������������������������
	Looking at the Kate editor���������������������������������

	Exploring the GNOME Editor���������������������������������
	Starting gedit���������������������
	Understanding basic gedit features���
	Setting preferences��������������������������
	Setting view preferences�������������������������������
	Setting editor preferences���������������������������������
	Setting font & color preferences���������������������������������������
	Managing plug-ins������������������������

	Summary��������������

	Part II: Shell Scripting Basics��������������������������������������
	Chapter 11: Basic Script Building��
	Using Multiple Commands������������������������������
	Creating a Script File�����������������������������
	Displaying Messages��������������������������
	Using Variables����������������������
	Environment variables����������������������������
	User variables���������������������
	Command substitution���������������������������

	Redirecting Input and Output�����������������������������������
	Output redirection�������������������������
	Input redirection������������������������

	Pipes������������
	Performing Math����������������������
	The expr command�����������������������
	Using brackets���������������������
	A floating-point solution��������������������������������
	The basics of bc�����������������������
	Using bc in scripts��������������������������

	Exiting the Script�������������������������
	Checking the exit status�������������������������������
	The exit command�����������������������

	Summary��������������

	Chapter 12: Using Structured Commands��
	Working with the if-then Statement���
	Exploring the if-then-else Statement���
	Nesting ifs������������������
	Trying the test Command������������������������������
	Using numeric comparisons��������������������������������
	Using string comparisons�������������������������������
	Looking at string equality���������������������������������
	Looking at string order������������������������������
	Looking at string size�����������������������������

	Using file comparisons�����������������������������
	Checking directories���������������������������
	Checking whether an object exists��
	Checking for a file��������������������������
	Checking for read access�������������������������������
	Checking for empty files�������������������������������
	Checking whether you can write to a file���
	Checking whether you can run a file��
	Checking ownership�������������������������
	Checking default group membership��
	Checking file date�������������������������

	Considering Compound Testing�����������������������������������
	Working with Advanced if-then Features���
	Using double parentheses�������������������������������
	Using double brackets����������������������������

	Considering the case Command�����������������������������������
	Summary��������������

	Chapter 13: More Structured Commands���
	The for Command����������������������
	Reading values in a list�������������������������������
	Reading complex values in a list���������������������������������������
	Reading a list from a variable�������������������������������������
	Reading values from a command������������������������������������
	Changing the field separator�����������������������������������
	Reading a directory using wildcards��

	The C-Style for Command������������������������������
	The C language for command���������������������������������
	Using multiple variables�������������������������������

	The while Command������������������������
	Basic while format�������������������������
	Using multiple test commands�����������������������������������

	The until Command������������������������
	Nesting Loops��������������������
	Looping on File Data���������������������������
	Controlling the Loop���������������������������
	The break command������������������������
	Breaking out of a single loop������������������������������������
	Breaking out of an inner loop������������������������������������
	Breaking out of an outer loop������������������������������������

	The continue command���������������������������

	Processing the Output of a Loop��������������������������������������
	Practical Examples�������������������������
	Finding executable files�������������������������������
	Creating multiple user accounts��������������������������������������

	Summary��������������

	Chapter 14: Handling User Input��������������������������������������
	Passing Parameters�������������������������
	Reading parameters�������������������������
	Reading the script name������������������������������
	Testing parameters�������������������������

	Using Special Parameter Variables��
	Counting parameters��������������������������
	Grabbing all the data����������������������������

	Being Shifty�������������������
	Working with Options���������������������������
	Finding your options���������������������������
	Processing simple options��������������������������������
	Separating options from parameters���
	Processing options with values�������������������������������������

	Using the getopt command�������������������������������
	Looking at the command format������������������������������������
	Using getopt in your scripts�����������������������������������

	Advancing to getopts���������������������������

	Standardizing Options����������������������������
	Getting User Input�������������������������
	Reading basics���������������������
	Timing out�����������������
	Reading with no display������������������������������
	Reading from a file��������������������������

	Summary��������������

	Chapter 15: Presenting Data����������������������������������
	Understanding Input and Output�������������������������������������
	Standard file descriptors��������������������������������
	STDIN������������
	STDOUT�������������
	STDERR�������������

	Redirecting errors�������������������������
	Redirecting errors only������������������������������
	Redirecting errors and data����������������������������������

	Redirecting Output in Scripts������������������������������������
	Temporary redirections�����������������������������
	Permanent redirections�����������������������������

	Redirecting Input in Scripts�����������������������������������
	Creating Your Own Redirection������������������������������������
	Creating output file descriptors���������������������������������������
	Redirecting file descriptors�����������������������������������
	Creating input file descriptors��������������������������������������
	Creating a read/write file descriptor��
	Closing file descriptors�������������������������������

	Listing Open File Descriptors������������������������������������
	Suppressing Command Output���������������������������������
	Using Temporary Files����������������������������
	Creating a local temporary file��������������������������������������
	Creating a temporary file in /tmp��
	Creating a temporary directory�������������������������������������

	Logging Messages�����������������������
	Practical Example������������������������
	Summary��������������

	Chapter 16: Script Control���������������������������������
	Handling Signals�����������������������
	Signaling the bash shell�������������������������������
	Generating signals�������������������������
	Interrupting a process�����������������������������
	Pausing a process������������������������

	Trapping signals�����������������������
	Trapping a script exit�����������������������������
	Modifying or removing a trap�����������������������������������

	Running Scripts in Background Mode���
	Running in the background��������������������������������
	Running multiple background jobs���������������������������������������

	Running Scripts without a Hang-Up��
	Controlling the Job��������������������������
	Viewing jobs�������������������
	Restarting stopped jobs������������������������������

	Being Nice�����������������
	Using the nice command�����������������������������
	Using the renice command�������������������������������

	Running Like Clockwork�����������������������������
	Scheduling a job using the at command��
	Understanding the at command format��
	Retrieving job output����������������������������
	Listing pending jobs���������������������������
	Removing jobs��������������������

	Scheduling regular scripts���������������������������������
	Looking at the cron table��������������������������������
	Building the cron table������������������������������
	Viewing cron directories�������������������������������
	Looking at the anacron program�������������������������������������

	Starting scripts with a new shell��

	Summary��������������

	Part III: Advanced Shell Scripting���
	Chapter 17: Creating Functions�������������������������������������
	Basic Script Functions�����������������������������
	Creating a function��������������������������
	Using functions����������������������

	Returning a Value������������������������
	The default exit status������������������������������
	Using the return command�������������������������������
	Using function output����������������������������

	Using Variables in Functions�����������������������������������
	Passing parameters to a function���������������������������������������
	Handling variables in a function���������������������������������������
	Global variables�����������������������
	Local variables����������������������

	Array Variables and Functions������������������������������������
	Passing arrays to functions����������������������������������
	Returning arrays from functions��������������������������������������

	Function Recursion�������������������������
	Creating a Library�������������������������
	Using Functions on the Command Line��
	Creating functions on the command line���
	Defining functions in the .bashrc file���
	Directly defining functions����������������������������������
	Sourcing function files������������������������������

	Following a Practical Example������������������������������������
	Downloading and installing���������������������������������
	Building the library���������������������������
	The shtool library functions�����������������������������������
	Using the library������������������������

	Summary��������������

	Chapter 18: Writing Scripts for Graphical Desktops���
	Creating Text Menus��������������������������
	Create the menu layout�����������������������������
	Create the menu functions��������������������������������
	Add the menu logic�������������������������
	Putting it all together������������������������������
	Using the select command�������������������������������

	Doing Windows��������������������
	The dialog package�������������������������
	The msgbox widget������������������������
	The yesno widget�����������������������
	The inputbox widget��������������������������
	The textbox widget�������������������������
	The menu widget����������������������
	The fselect widget�������������������������

	The dialog options�������������������������
	Using the dialog command in a script���

	Getting Graphic����������������������
	The KDE environment��������������������������
	kdialog widgets����������������������
	Using kdialog��������������������

	The GNOME environment����������������������������
	zenity widgets���������������������
	Using zenity in scripts������������������������������

	Summary��������������

	Chapter 19: Introducing sed and gawk���
	Manipulating Text������������������������
	Getting to know the sed editor�������������������������������������
	Defining an editor command in the command line���
	Using multiple editor commands in the command line���
	Reading editor commands from a file��

	Getting to know the gawk program���������������������������������������
	Visiting the gawk command format���������������������������������������
	Reading the program script from the command line���
	Using data field variables���������������������������������
	Using multiple commands in the program script��
	Reading the program from a file��������������������������������������
	Running scripts before processing data���
	Running scripts after processing data��

	Commanding at the sed Editor Basics��
	Introducing more substitution options��
	Substituting flags�������������������������
	Replacing characters���������������������������

	Using addresses����������������������
	Addressing the numeric line����������������������������������
	Using text pattern filters���������������������������������
	Grouping commands������������������������

	Deleting lines���������������������
	Inserting and appending text�����������������������������������
	Changing lines���������������������
	Transforming characters������������������������������
	Printing revisited�������������������������
	Printing lines���������������������
	Printing line numbers����������������������������
	Listing lines��������������������

	Using files with sed���������������������������
	Writing to a file������������������������
	Reading data from a file�������������������������������

	Summary��������������

	Chapter 20: Regular Expressions��������������������������������������
	What Are Regular Expressions?������������������������������������
	A definition�������������������
	Types of regular expressions�����������������������������������

	Defining BRE Patterns����������������������������
	Plain text�����������������
	Special characters�������������������������
	Anchor characters������������������������
	Starting at the beginning��������������������������������
	Looking for the ending�����������������������������
	Combining anchors������������������������

	The dot character������������������������
	Character classes������������������������
	Negating character classes���������������������������������
	Using ranges�������������������
	Special character classes��������������������������������
	The asterisk�������������������

	Extended Regular Expressions�����������������������������������
	The question mark������������������������
	The plus sign��������������������
	Using braces�������������������
	The pipe symbol����������������������
	Grouping expressions���������������������������

	Regular Expressions in Action������������������������������������
	Counting directory files�������������������������������
	Validating a phone number��������������������������������
	Parsing an e-mail address��������������������������������

	Summary��������������

	Chapter 21: Advanced sed�������������������������������
	Looking at Multiline Commands������������������������������������
	Navigating the next command����������������������������������
	Using the single-line next command���
	Combining lines of text������������������������������

	Navigating the multiline delete command��
	Navigating the multiline print command���

	Holding Space��������������������
	Negating a Command�������������������������
	Changing the Flow������������������������
	Branching����������������
	Testing��������������

	Replacing via a Pattern������������������������������
	Using the ampersand��������������������������
	Replacing individual words���������������������������������

	Placing sed Commands in Scripts��������������������������������������
	Using wrappers���������������������
	Redirecting sed output�����������������������������

	Creating sed Utilities�����������������������������
	Spacing with double lines��������������������������������
	Spacing files that may have blanks���
	Numbering lines in a file��������������������������������
	Printing last lines��������������������������
	Deleting lines���������������������
	Deleting consecutive blank lines���������������������������������������
	Deleting leading blank lines�����������������������������������
	Deleting trailing blank lines������������������������������������

	Removing HTML tags�������������������������

	Summary��������������

	Chapter 22: Advanced gawk��������������������������������
	Using Variables����������������������
	Built-in variables�������������������������
	The field and record separator variables���
	Data variables���������������������

	User-defined variables�����������������������������
	Assigning variables in scripts�������������������������������������
	Assigning variables on the command line��

	Working with Arrays��������������������������
	Defining array variables�������������������������������
	Iterating through array variables��
	Deleting array variables�������������������������������

	Using Patterns���������������������
	Regular expressions��������������������������
	The matching operator����������������������������
	Mathematical expressions�������������������������������

	Structured Commands��������������������������
	The if statement�����������������������
	The while statement��������������������������
	The do-while statement�����������������������������
	The for statement������������������������

	Formatted Printing�������������������������
	Built-In Functions�������������������������
	Mathematical functions�����������������������������
	String functions�����������������������
	Time functions���������������������

	User-Defined Functions�����������������������������
	Defining a function��������������������������
	Using your functions���������������������������
	Creating a function library����������������������������������

	Working through a Practical Example��
	Summary��������������

	Chapter 23: Working with Alternative Shells��
	What Is the dash Shell?������������������������������
	The dash Shell Features������������������������������
	The dash command line parameters���������������������������������������
	The dash environment variables�������������������������������������
	Default environment variables������������������������������������
	Positional parameters����������������������������
	User-defined environment variables���

	The dash built-in commands���������������������������������

	Scripting in dash������������������������
	Creating dash scripts����������������������������
	Things that don’t work�����������������������������
	Using arithmetic�����������������������
	The test command�����������������������
	The function Command���������������������������

	The zsh Shell��������������������
	Parts of the zsh Shell�����������������������������
	Shell options��������������������
	Built-in commands������������������������
	Core built-in commands�����������������������������
	Add-in modules���������������������
	Viewing, adding, and removing modules��

	Scripting with zsh�������������������������
	Mathematical operations������������������������������
	Performing calculations������������������������������
	Mathematical functions�����������������������������

	Structured commands��������������������������
	Functions����������������

	Summary��������������

	Part IV: Creating Practical Scripts��
	Chapter 24 Writing Simple Script Utilities���
	Performing Archives��������������������������
	Archiving data files���������������������������
	Obtaining the required functions���������������������������������������
	Creating a daily archive location��
	Creating a daily archive script��������������������������������������
	Running the daily archive script���������������������������������������
	Creating an hourly archive script��
	Running the hourly archive script��

	Managing User Accounts�����������������������������
	Obtaining the required functions���������������������������������������
	Getting the correct account name���������������������������������������
	Creating a function to get the correct account name��
	Verifying the entered account name���
	Determining whether the account exists���
	Removing any account processes�������������������������������������
	Finding account files����������������������������
	Removing the account���������������������������

	Creating the script��������������������������
	Running the script�������������������������

	Monitoring Disk Space����������������������������
	Obtaining the required functions���������������������������������������
	Creating the script��������������������������
	Running the script�������������������������

	Summary��������������

	Chapter 25: Producing Scripts for Database, Web, and E-Mail��
	Using a MySQL Database�����������������������������
	Using MySQL������������������
	Connecting to the server�������������������������������
	The mysql commands�������������������������
	Creating a database��������������������������
	Creating a user account������������������������������
	Creating a table�����������������������
	Inserting and deleting data����������������������������������
	Querying data��������������������

	Using the database in your scripts���
	Logging into the server������������������������������
	Sending commands to the server�������������������������������������
	Formatting data����������������������

	Using the Web��������������������
	Installing Lynx����������������������
	The lynx command line����������������������������
	The Lynx configuration file����������������������������������
	Capturing data from Lynx�������������������������������

	Using E-Mail�������������������
	Summary��������������

	Chapter 26: Creating Fun Little Shell Scripts��
	Sending a Message������������������������
	Understanding the required functions���
	Determining who is on the system���������������������������������������
	Allowing messages������������������������
	Sending a message to another user��

	Creating the script��������������������������
	Checking if user is logged on������������������������������������
	Checking if user accepts messages��
	Checking if message was included���������������������������������������
	Transmitting a simple message������������������������������������
	Transmitting a long message����������������������������������

	Obtaining a Quote������������������������
	Understanding the required functions���
	Learning about the wget utility��������������������������������������
	Testing a web address����������������������������

	Creating the script��������������������������
	Checking the passed URL������������������������������
	Obtaining web page information�������������������������������������
	Parsing out the desired information��

	Generating an Excuse���������������������������
	Understanding the required functions���
	Learning about curl��������������������������
	Choosing to use e-mail�����������������������������

	Creating the script��������������������������

	Summary��������������

	Appendix A Quick Guide to bash Commands
	Appendix B Quick Guide to sed and gawk
	Index
	EULA

Linux Command Line
and Shel Scrping

BIBLE

