
ptg12441863

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Java SE 8 for the Really Impatient

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Java SE 8
for the Really Impatient

Cay S. Horstmann

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and the publisher was aware of a trademark claim, the designations have been printed

with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors

or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained

herein.

For information about buying this title in bulk quantities, or for special sales

opportunities (which may include electronic versions; custom cover designs; and

content particular to your business, training goals, marketing focus, or branding

interests), please contact our corporate sales department at corpsales@pearsoned.com

or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is

protected by copyright, and permission must be obtained from the publisher prior

to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise.

To obtain permission to use material from this work, please submit a written request

to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle

River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-92776-7

ISBN-10: 0-321-92776-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, January 2014

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

To Greg Doench, my editor for two decades, whose patience, kindness,

and good judgment I greatly admire

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg12441863Preface xiii

About the Author xv

LAMBDA EXPRESSIONS 11
Why Lambdas? 21.1

The Syntax of Lambda Expressions 41.2

Functional Interfaces 61.3

Method References 81.4

Constructor References 91.5

Variable Scope 101.6

Default Methods 141.7

Static Methods in Interfaces 161.8

Exercises 18

THE STREAM API 212
From Iteration to Stream Operations 222.1

Stream Creation 242.2

The filter, map, and flatMap Methods 252.3

Extracting Substreams and Combining Streams 262.4

Contents

vii

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Stateful Transformations 272.5

Simple Reductions 282.6

The Optional Type 292.7

2.7.1 Working with Optional Values 29

2.7.2 Creating Optional Values 30

2.7.3 Composing Optional Value Functions with flatMap 30

Reduction Operations 312.8

Collecting Results 332.9

Collecting into Maps 342.10

Grouping and Partitioning 362.11

Primitive Type Streams 392.12

Parallel Streams 402.13

Functional Interfaces 422.14

Exercises 44

PROGRAMMING WITH LAMBDAS 473
Deferred Execution 483.1

Parameters of Lambda Expressions 493.2

Choosing a Functional Interface 503.3

Returning Functions 533.4

Composition 543.5

Laziness 563.6

Parallelizing Operations 573.7

Dealing with Exceptions 583.8

Lambdas and Generics 613.9

Monadic Operations 633.10

Exercises 64

JAVAFX 694
A Brief History of Java GUI Programming 704.1

Hello, JavaFX! 714.2

Event Handling 724.3

JavaFX Properties 734.4

Bindings 754.5

Contentsviii

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Layout 804.6

FXML 864.7

CSS 904.8

Animations and Special Effects 914.9

Fancy Controls 944.10

Exercises 97

THE NEW DATE AND TIME API 1015
The Time Line 1025.1

Local Dates 1045.2

Date Adjusters 1075.3

Local Time 1085.4

Zoned Time 1095.5

Formatting and Parsing 1125.6

Interoperating with Legacy Code 1155.7

Exercises 116

CONCURRENCY ENHANCEMENTS 1196
Atomic Values 1206.1

ConcurrentHashMap Improvements 1236.2

6.2.1 Updating Values 124

6.2.2 Bulk Operations 126

6.2.3 Set Views 128

Parallel Array Operations 1286.3

Completable Futures 1306.4

6.4.1 Futures 130

6.4.2 Composing Futures 130

6.4.3 The Composition Pipeline 131

6.4.4 Composing Asynchronous Operations 132

Exercises 134

THE NASHORN JAVASCRIPT ENGINE 1377
Running Nashorn from the Command Line 1387.1

Running Nashorn from Java 1397.2

ixContents

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Invoking Methods 1407.3

Constructing Objects 1417.4

Strings 1427.5

Numbers 1437.6

Working with Arrays 1447.7

Lists and Maps 1457.8

Lambdas 1467.9

Extending Java Classes and Implementing Java Interfaces 1467.10

Exceptions 1487.11

Shell Scripting 1487.12

7.12.1 Executing Shell Commands 149

7.12.2 String Interpolation 150

7.12.3 Script Inputs 151

Nashorn and JavaFX 1527.13

Exercises 154

MISCELLANEOUS GOODIES 1578
Strings 1588.1

Number Classes 1588.2

New Mathematical Functions 1598.3

Collections 1608.4

8.4.1 Methods Added to Collection Classes 160

8.4.2 Comparators 161

8.4.3 The Collections Class 162

Working with Files 1638.5

8.5.1 Streams of Lines 163

8.5.2 Streams of Directory Entries 165

8.5.3 Base64 Encoding 166

Annotations 1678.6

8.6.1 Repeated Annotations 167

8.6.2 Type Use Annotations 169

8.6.3 Method Parameter Reflection 170

Miscellaneous Minor Changes 1718.7

8.7.1 Null Checks 171

Contentsx

ptg12441863

8.7.2 Lazy Messages 171

8.7.3 Regular Expressions 172

8.7.4 Locales 172

8.7.5 JDBC 174

Exercises 174

JAVA 7 FEATURES THAT YOU MAY HAVE MISSED 1799
Exception Handling Changes 1809.1

9.1.1 The try-with-resources Statement 180

9.1.2 Suppressed Exceptions 181

9.1.3 Catching Multiple Exceptions 182

9.1.4 Easier Exception Handling for Reflective Methods 183

Working with Files 1839.2

9.2.1 Paths 184

9.2.2 Reading and Writing Files 185

9.2.3 Creating Files and Directories 186

9.2.4 Copying, Moving, and Deleting Files 187

Implementing the equals, hashCode, and compareTo Methods 1889.3

9.3.1 Null-safe Equality Testing 188

9.3.2 Computing Hash Codes 189

9.3.3 Comparing Numeric Types 189

Security Requirements 1909.4

Miscellaneous Changes 1939.5

9.5.1 Converting Strings to Numbers 193

9.5.2 The Global Logger 193

9.5.3 Null Checks 194

9.5.4 ProcessBuilder 194

9.5.5 URLClassLoader 195

9.5.6 BitSet 195

Exercises 196

Index 199

xiContents

ptg12441863

This page intentionally left blank

ptg12441863This book gives a concise introduction to the many new features of Java 8 (and

a few features of Java 7 that haven’t received much attention) for programmers

who are already familiar with Java.

This book is written in the “impatient” style that I first tried out in a book called

Scala for the Impatient. In that book, I wanted to quickly cut to the chase without

lecturing the reader about the superiority of one paradigm over another. I pre-

sented information in small chunks organized to help you quickly retrieve it

when needed. The approach was a big success in the Scala community, and I am

employing it again in this book.

With Java 8, the Java programming language and library receive a major refresh.

Lambda expressions make it possible to write “snippets of computations” in a

concise way, so that you can pass them to other code. The recipient can choose

to execute your computation when appropriate and as often as appropriate. This

has a profound impact on building libraries.

In particular, working with collections has completely changed. Instead of spec-

ifying how to compute a result (“traverse from the beginning to the end, and if

an element matches a condition, compute a value from it, and add that value

to a sum”), you specify what you want (“give me the sum of all elements that

match a condition”). The library is then able to reorder the computation—for

example, to take advantage of parallelism. Or, if you just want to have the first

hundred matches, it can stop the computation without you having to maintain

a counter.

xiii

Preface

ptg12441863

The brand-new stream API of Java 8 puts this idea to work. In the first chapter,

you learn all about the syntax of lambda expressions, and Chapter 2 gives a

complete overview of streams. In Chapter 3, I provide you with tips on how to

effectively design your own libraries with lambdas.

With Java 8, developers of client-side applications need to transition to the JavaFX

API since Swing is now in “maintenance mode.” Chapter 4 gives a quick intro-

duction to JavaFX for a programmer who needs to put together a graphical

program—when a picture speaks louder than 1,000 strings.

Having waited for far too many years, programmers are finally able to use a

well-designed date/time library. Chapter 5 covers the java.time API in detail.

Each version of Java brings enhancements in the concurrency API, and Java 8 is

no exception. In Chapter 6, you learn about improvements in atomic counters,

concurrent hash maps, parallel array operations, and composable futures.

Java 8 bundles Nashorn, a high-quality JavaScript implementation. In Chapter 7,

you will see how to execute JavaScript on the Java Virtual Machine, and how to

interoperate with Java code.

Chapter 8 collects miscellaneous smaller, but nevertheless useful, features of

Java 8. Chapter 9 does the same for Java 7, focusing on improved exception

handling, the “new I/O” enhancements for working with files and directories,

and other library enhancements that you may have missed.

My thanks go, as always, to my editor Greg Doench, who had the idea of a short

book that brings experienced programmers up to speed with Java 8. Dmitry

Kirsanov and Alina Kirsanova once again turned an XHTML manuscript into

an attractive book with amazing speed and attention to detail. I am grateful to

the reviewers who spotted many embarrassing errors and gave excellent sugges-

tions for improvement. They are: Gail Anderson, Paul Anderson, James Denvir,

Trisha Gee, Brian Goetz (special thanks for the very thorough review), Marty

Hall, Angelika Langer, Mark Lawrence, Stuart Marks, Attila Szegedi, and Jim

Weaver.

I hope that you enjoy reading this concise introduction to the new features of

Java 8, and that it will make you a more successful Java programmer. If you find

errors or have suggestions for improvement, please visit http://horstmann.com/

java8 and leave a comment. On that page, you will also find a link to an archive

file containing all code examples from the book.

Cay Horstmann

San Francisco, 2013

Prefacexiv

http://horstmann.com/java8
http://horstmann.com/java8

ptg12441863Cay S. Horstmann is the author of Scala for the Impatient (Addison-Wesley, 2012),

is principal author of Core Java™, Volumes I and II, Ninth Edition (Prentice Hall,

2013), and has written a dozen other books for professional programmers and

computer science students. He is a professor of computer science at San Jose State

University and is a Java Champion.

About the Author

xv

ptg12441863Topics in This Chapter

1.1 Why Lambdas? — page 2

1.2 The Syntax of Lambda Expressions — page 4

1.3 Functional Interfaces — page 6

1.4 Method References — page 8

1.5 Constructor References — page 9

1.6 Variable Scope — page 10

1.7 Default Methods — page 14

1.8 Static Methods in Interfaces — page 16

Exercises — page 18

Lambda Expressions

ptg12441863Java was designed in the 1990s as an object-oriented programming language,

when object-oriented programming was the principal paradigm for software

development. Long before there was object-oriented programming, there were

functional programming languages such as Lisp and Scheme, but their benefits

were not much appreciated outside academic circles. Recently, functional pro-

gramming has risen in importance because it is well suited for concurrent and

event-driven (or “reactive”) programming. That doesn’t mean that objects are

bad. Instead, the winning strategy is to blend object-oriented and functional

programming. This makes sense even if you are not interested in concurrency.

For example, collection libraries can be given powerful APIs if the language has

a convenient syntax for function expressions.

The principal enhancement in Java 8 is the addition of functional programming

constructs to its object-oriented roots. In this chapter, you will learn the basic

syntax. The next chapter shows you how to put that syntax to use with Java col-

lections, and in Chapter 3 you will learn how to build your own functional

libraries.

The key points of this chapter are:

• A lambda expression is a block of code with parameters.

• Use a lambda expression whenever you want a block of code executed at a

later point in time.

• Lambda expressions can be converted to functional interfaces.

1Chapter

1

ptg12441863

• Lambda expressions can access effectively final variables from the enclosing

scope.

• Method and constructor references refer to methods or constructors without

invoking them.

• You can now add default and static methods to interfaces that provide

concrete implementations.

• You must resolve any conflicts between default methods from multiple

interfaces.

1.1 Why Lambdas?
A “lambda expression” is a block of code that you can pass around so it can be

executed later, once or multiple times. Before getting into the syntax (or even the

curious name), let’s step back and see where you have used similar code blocks

in Java all along.

When you want to do work in a separate thread, you put the work into the run
method of a Runnable, like this:

class Worker implements Runnable {
 public void run() {
 for (int i = 0; i < 1000; i++)
 doWork();
 }
 ...
}

Then, when you want to execute this code, you construct an instance of the Worker
class. You can then submit the instance to a thread pool, or, to keep it simple,

start a new thread:

Worker w = new Worker();
new Thread(w).start();

The key point is that the run method contains code that you want to execute in a

separate thread.

Or consider sorting with a custom comparator. If you want to sort strings by

length instead of the default dictionary order, you can pass a Comparator object to

the sort method:

class LengthComparator implements Comparator<String> {
 public int compare(String first, String second) {
 return Integer.compare(first.length(), second.length());
 }
}

Chapter 1 Lambda Expressions2

ptg12441863

Arrays.sort(strings, new LengthComparator());

The sort method keeps calling the compare method, rearranging the elements if

they are out of order, until the array is sorted. You give the sort method a snippet

of code needed to compare elements, and that code is integrated into the rest of

the sorting logic, which you’d probably not care to reimplement.

NOTE: The call Integer.compare(x, y) returns zero if x and y are equal, a
negative number if x < y, and a positive number if x > y. This static method
has been added to Java 7 (see Chapter 9). Note that you shouldn’t compute
x - y to compare x and y since that computation can overflow for large
operands of opposite sign.

As another example for deferred execution, consider a button callback. You put

the callback action into a method of a class implementing the listener interface,

construct an instance, and register the instance with the button. That happens so

often that many programmers use the “anonymous instance of anonymous class”

syntax:

button.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Thanks for clicking!");
 }
});

What matters is the code inside the handle method. That code is executed

whenever the button is clicked.

NOTE: Since Java 8 positions JavaFX as the successor to the Swing GUI
toolkit, I use JavaFX in these examples. (See Chapter 4 for more information
on JavaFX.) Of course, the details don’t matter. In every user interface toolkit,
be it Swing, JavaFX, or Android, you give a button some code that you want
to run when the button is clicked.

In all three examples, you saw the same approach. A block of code was passed

to someone—a thread pool, a sort method, or a button. The code was called at

some later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You couldn’t

just pass code blocks around. Java is an object-oriented language, so you had to

construct an object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java

designers have resisted adding this feature for a long time. After all, a great

31.1 Why Lambdas?

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

strength of Java is its simplicity and consistency. A language can become an un-

maintainable mess if it includes every feature that yields marginally more concise

code. However, in those other languages it isn’t just easier to spawn a thread or

to register a button click handler; large swaths of their APIs are simpler, more

consistent, and more powerful. In Java, one could have written similar APIs that

take objects of classes implementing a particular function, but such APIs would

be unpleasant to use.

For some time now, the question was not whether to augment Java for functional

programming, but how to do it. It took several years of experimentation before

a design emerged that is a good fit for Java. In the next section, you will see how

you can work with blocks of code in Java 8.

1.2 The Syntax of Lambda Expressions
Consider again the sorting example from the preceding section. We pass code

that checks whether one string is shorter than another. We compute

Integer.compare(first.length(), second.length())

What are first and second? They are both strings. Java is a strongly typed language,

and we must specify that as well:

(String first, String second)
 -> Integer.compare(first.length(), second.length())

You have just seen your first lambda expression. Such an expression is simply a

block of code, together with the specification of any variables that must be passed

to the code.

Why the name? Many years ago, before there were any computers, the logician

Alonzo Church wanted to formalize what it means for a mathematical function

to be effectively computable. (Curiously, there are functions that are known to

exist, but nobody knows how to compute their values.) He used the Greek letter

lambda (λ) to mark parameters. Had he known about the Java API, he would

have written

λfirst.λsecond.Integer.compare(first.length(), second.length())

NOTE: Why the letter λ? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ^ accent to denote
free variables, which inspired Church to use an uppercase lambda Λ for
parameters. But in the end, he switched to the lowercase version. Ever since,
an expression with parameter variables has been called a lambda expression.

Chapter 1 Lambda Expressions4

ptg12441863

You have just seen one form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn’t fit

in a single expression, write it exactly like you would have written a method:

enclosed in {} and with explicit return statements. For example,

(String first, String second) -> {
 if (first.length() < second.length()) return -1;
 else if (first.length() > second.length()) return 1;
 else return 0;
}

If a lambda expression has no parameters, you still supply empty parentheses,

just as with a parameterless method:

() -> { for (int i = 0; i < 1000; i++) doWork(); }

If the parameter types of a lambda expression can be inferred, you can omit them.

For example,

Comparator<String> comp
 = (first, second) // Same as (String first, String second)
 -> Integer.compare(first.length(), second.length());

Here, the compiler can deduce that first and second must be strings because the

lambda expression is assigned to a string comparator. (We will have a closer look

at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the

parentheses:

EventHandler<ActionEvent> listener = event ->
 System.out.println("Thanks for clicking!");
 // Instead of (event) -> or (ActionEvent event) ->

NOTE: You can add annotations or the final modifier to lambda parameters
in the same way as for method parameters:

(final String name) -> ...
(@NonNull String name) -> ...

You never specify the result type of a lambda expression. It is always inferred

from context. For example, the expression

(String first, String second) -> Integer.compare(first.length(), second.length())

can be used in a context where a result of type int is expected.

51.2 The Syntax of Lambda Expressions

ptg12441863

NOTE: It is illegal for a lambda expression to return a value in some branches
but not in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

1.3 Functional Interfaces
As we discussed, there are many existing interfaces in Java that encapsulate

blocks of code, such as Runnable or Comparator. Lambdas are backwards compatible

with these interfaces.

You can supply a lambda expression whenever an object of an interface with a

single abstract method is expected. Such an interface is called a functional interface.

NOTE: You may wonder why a functional interface must have a single
abstract method. Aren’t all methods in an interface abstract? Actually, it has
always been possible for an interface to redeclare methods from the Object
class such as toString or clone, and these declarations do not make the
methods abstract. (Some interfaces in the Java API redeclare Object methods
in order to attach javadoc comments. Check out the Comparator API for an
example.) More importantly, as you will see in Section 1.7, “Default Methods,”
on page 14, in Java 8, interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface with

a single method. Simply supply a lambda:

Arrays.sort(words,
 (first, second) -> Integer.compare(first.length(), second.length()));

Behind the scenes, the Arrays.sort method receives an object of some class that

implements Comparator<String>. Invoking the compare method on that object executes

the body of the lambda expression. The management of these objects and classes

is completely implementation dependent, and it can be much more efficient than

using traditional inner classes. It is best to think of a lambda expression as a

function, not an object, and to accept that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling.

The syntax is short and simple. Here is another example:

button.setOnAction(event ->
 System.out.println("Thanks for clicking!"));

That’s a lot easier to read than the alternative with inner classes.

Chapter 1 Lambda Expressions6

ptg12441863

In fact, conversion to a functional interface is the only thing that you can do with

a lambda expression in Java. In other programming languages that support

function literals, you can declare function types such as (String, String) -> int,
declare variables of those types, and use the variables to save function expres-

sions. However, the Java designers decided to stick with the familiar concept of

interfaces instead of adding function types to the language.

NOTE: You can’t even assign a lambda expression to a variable of type
Object—Object is not a functional interface.

The Java API defines a number of very generic functional interfaces in the

java.util.function package. (We will have a closer look at these interfaces in

Chapters 2 and 3.) One of the interfaces, BiFunction<T, U, R>, describes functions

with parameter types T and U and return type R. You can save our string

comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp
 = (first, second) -> Integer.compare(first.length(), second.length());

However, that does not help you with sorting. There is no Arrays.sort method that

wants a BiFunction. If you have used a functional programming language before,

you may find this curious. But for Java programmers, it’s pretty natural. An in-

terface such as Comparator has a specific purpose, not just a method with given

parameter and return types. Java 8 retains this flavor. When you want to do

something with lambda expressions, you still want to keep the purpose of the

expression in mind, and have a specific functional interface for it.

The interfaces in java.util.function are used in several Java 8 APIs, and you will

likely see them elsewhere in the future. But keep in mind that you can equally

well convert a lambda expression into a functional interface that is a part of

whatever API you use today.

NOTE: You can tag any functional interface with the @FunctionalInterface an-
notation. This has two advantages. The compiler checks that the annotated
entity is an interface with a single abstract method. And the javadoc page
includes a statement that your interface is a functional interface.

It is not required to use the annotation. Any interface with a single
abstract method is, by definition, a functional interface. But using the
@FunctionalInterface annotation is a good idea.

Finally, note that checked exceptions matter when a lambda is converted to an

instance of a functional interface. If the body of a lambda expression may throw

71.3 Functional Interfaces

ptg12441863

a checked exception, that exception needs to be declared in the abstract method

of the target interface. For example, the following would be an error:

Runnable sleeper = () -> { System.out.println("Zzz"); Thread.sleep(1000); };
 // Error: Thread.sleep can throw a checked InterruptedException

Since the Runnable.run cannot throw any exception, this assignment is illegal. To

fix the error, you have two choices. You can catch the exception in the body of

the lambda expression. Or assign the lambda to an interface whose single abstract

method can throw the exception. For example, the call method of the Callable
interface can throw any exception. Therefore, you can assign the lambda to a

Callable<Void> (if you add a statement return null).

1.4 Method References
Sometimes, there is already a method that carries out exactly the action that you’d

like to pass on to some other code. For example, suppose you simply want to

print the event object whenever a button is clicked. Of course, you could call

button.setOnAction(event -> System.out.println(event));

It would be nicer if you could just pass the println method to the setOnAction
method. Here is how you do that:

button.setOnAction(System.out::println);

The expression System.out::println is a method reference that is equivalent to the

lambda expression x -> System.out.println(x).

As another example, suppose you want to sort strings regardless of letter case.

You can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method name

from the name of an object or class. There are three principal cases:

• object::instanceMethod

• Class::staticMethod

• Class::instanceMethod

In the first two cases, the method reference is equivalent to a lambda expres-

sion that supplies the parameters of the method. As already mentioned,

System.out::println is equivalent to x -> System.out.println(x). Similarly, Math::pow is
equivalent to (x, y) -> Math.pow(x, y).

In the third case, the first parameter becomes the target of the method. For ex-

ample, String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).

Chapter 1 Lambda Expressions8

ptg12441863

NOTE: When there are multiple overloaded methods with the same name,
the compiler will try to find from the context which one you mean. For example,
there are two versions of the Math.max method, one for integers and one for
double values. Which one gets picked depends on the method parameters of
the functional interface to which Math::max is converted. Just like lambda
expressions, method references don’t live in isolation.They are always turned
into instances of functional interfaces.

You can capture the this parameter in a method reference. For example,

this::equals is the same as x -> this.equals(x). It is also valid to use super. The method

expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given method.

Here is an artificial example that shows the mechanics:

class Greeter {
 public void greet() {
 System.out.println("Hello, world!");
 }
}

class ConcurrentGreeter extends Greeter {
 public void greet() {
 Thread t = new Thread(super::greet);
 t.start();
 }
}

When the thread starts, its Runnable is invoked, and super::greet is executed, calling

the greet method of the superclass.

NOTE: In an inner class, you can capture the this reference of an enclosing
class as EnclosingClass.this::method or EnclosingClass.super::method.

1.5 Constructor References
Constructor references are just like method references, except that the name of

the method is new. For example, Button::new is a reference to a Button constructor.

Which constructor? It depends on the context. Suppose you have a list of strings.

Then you can turn it into an array of buttons, by calling the constructor on each

of the strings, with the following invocation:

91.5 Constructor References

ptg12441863

List<String> labels = ...;
Stream<Button> stream = labels.stream().map(Button::new);
List<Button> buttons = stream.collect(Collectors.toList());

We will discuss the details of the stream, map, and collect methods in Chapter 2.

For now, what’s important is that the map method calls the Button(String) construc-

tor for each list element. There are multiple Button constructors, but the compiler

picks the one with a String parameter because it infers from the context that the

constructor is called with a string.

You can form constructor references with array types. For example, int[]::new
is a constructor reference with one parameter: the length of the array. It is

equivalent to the lambda expression x -> new int[x].

Array constructor references are useful to overcome a limitation of Java. It is not

possible to construct an array of a generic type T. The expression new T[n] is an

error since it would be erased to new Object[n]. That is a problem for library au-

thors. For example, suppose we want to have an array of buttons. The Stream
interface has a toArray method that returns an Object array:

Object[] buttons = stream.toArray();

But that is unsatisfactory. The user wants an array of buttons, not objects. The

stream library solves that problem with constructor references. Pass Button[]::new
to the toArray method:

Button[] buttons = stream.toArray(Button[]::new);

The toArray method invokes this constructor to obtain an array of the correct type.

Then it fills and returns the array.

1.6 Variable Scope
Often, you want to be able to access variables from an enclosing method or class

in a lambda expression. Consider this example:

public static void repeatMessage(String text, int count) {
 Runnable r = () -> {
 for (int i = 0; i < count; i++) {
 System.out.println(text);
 Thread.yield();
 }
 };
 new Thread(r).start();
}

Chapter 1 Lambda Expressions10

ptg12441863

Consider a call

repeatMessage("Hello", 1000); // Prints Hello 1,000 times in a separate thread

Now look at the variables count and text inside the lambda expression. Note that

these variables are not defined in the lambda expression. Instead, these are

parameter variables of the repeatMessage method.

If you think about it, something nonobvious is going on here. The code of the

lambda expression may run long after the call to repeatMessage has returned and

the parameter variables are gone. How do the text and count variables stay

around?

To understand what is happening, we need to refine our understanding of a

lambda expression. A lambda expression has three ingredients:

1. A block of code

2. Parameters

3. Values for the free variables, that is, the variables that are not parameters and

not defined inside the code

In our example, the lambda expression has two free variables, text and count. The

data structure representing the lambda expression must store the values for these

variables, in our case, "Hello" and 1000. We say that these values have been captured
by the lambda expression. (It’s an implementation detail how that is done. For

example, one can translate a lambda expression into an object with a single

method, so that the values of the free variables are copied into instance variables

of that object.)

NOTE: The technical term for a block of code together with the values of the
free variables is a closure. If someone gloats that their language has closures,
rest assured that Java has them as well. In Java, lambda expressions are
closures. In fact, inner classes have been closures all along. Java 8 gives
us closures with an attractive syntax.

As you have seen, a lambda expression can capture the value of a variable

in the enclosing scope. In Java, to ensure that the captured value is well-defined,

there is an important restriction. In a lambda expression, you can only reference

variables whose value doesn’t change. For example, the following is illegal:

111.6 Variable Scope

ptg12441863

public static void repeatMessage(String text, int count) {
 Runnable r = () -> {
 while (count > 0) {
 count--; // Error: Can’t mutate captured variable

 System.out.println(text);
 Thread.yield();
 }
 };
 new Thread(r).start();
}

There is a reason for this restriction. Mutating variables in a lambda expression

is not threadsafe. Consider a sequence of concurrent tasks, each updating a shared

counter.

int matches = 0;
for (Path p : files)
 new Thread(() -> { if (p has some property) matches++; }).start();
 // Illegal to mutate matches

If this code were legal, it would be very, very bad. The increment matches++ is not

atomic, and there is no way of knowing what would happen if multiple threads

execute that increment concurrently.

NOTE: Inner classes can also capture values from an enclosing scope. Before
Java 8, inner classes were only allowed to access final local variables. This
rule has now been relaxed to match that for lambda expressions. An inner
class can access any effectively final local variable—that is, any variable
whose value does not change.

Don’t count on the compiler to catch all concurrent access errors. The prohibition

against mutation only holds for local variables. If matches is an instance or static

variable of an enclosing class, then no error is reported, even though the result

is just as undefined.

Also, it’s perfectly legal to mutate a shared object, even though it is unsound.

For example,

List<Path> matches = new ArrayList<>();
for (Path p : files)
 new Thread(() -> { if (p has some property) matches.add(p); }).start();
 // Legal to mutate matches, but unsafe

Note that the variable matches is effectively final. (An effectively final variable is a

variable that is never assigned a new value after it has been initialized.) In our

Chapter 1 Lambda Expressions12

ptg12441863

case, matches always refers to the same ArrayList object. However, the object is

mutated, and that is not threadsafe. If multiple threads call add, the result

is unpredictable.

There are safe mechanisms for counting and collecting values concurrently. In

Chapter 2, you will see how to use streams to collect values with certain proper-

ties. In other situations, you may want to use threadsafe counters and collections.

See Chapter 6 for more information on this important topic.

NOTE: As with inner classes, there is an escape hatch that lets a lambda
expression update a counter in an enclosing local scope. Use an array of
length 1, like this:

int[] counter = new int[1];
button.setOnAction(event -> counter[0]++);

Of course, code like this is not threadsafe. For a button callback, that doesn’t
matter, but in general, you should think twice before using this trick.You will
see how to implement a threadsafe shared counter in Chapter 6.

The body of a lambda expression has the same scope as a nested block. The same

rules for name conflicts and shadowing apply. It is illegal to declare a parameter

or a local variable in the lambda that has the same name as a local variable.

Path first = Paths.get("/usr/bin");
Comparator<String> comp =
 (first, second) -> Integer.compare(first.length(), second.length());
 // Error: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and

therefore, you can’t introduce such variables in a lambda expression either.

When you use the this keyword in a lambda expression, you refer to the this
parameter of the method that creates the lambda. For example, consider

public class Application() {
 public void doWork() {
 Runnable runner = () -> { ...; System.out.println(this.toString()); ... };
 ...
 }
}

The expression this.toString() calls the toString method of the Application object,

not the Runnable instance. There is nothing special about the use of this in a lambda

expression. The scope of the lambda expression is nested inside the doWork method,

and this has the same meaning anywhere in that method.

131.6 Variable Scope

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

1.7 Default Methods
Many programming languages integrate function expressions with their collec-

tions library. This often leads to code that is shorter and easier to understand

than the loop equivalent. For example, consider a loop

for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));

There is a better way. The library designers can supply a forEach method that

applies a function to each element. Then you can simply call

list.forEach(System.out::println);

That’s fine if the collections library has been designed from the ground up. But

the Java collections library has been designed many years ago, and there is a

problem. If the Collection interface gets new methods, such as forEach, then

every program that defines its own class implementing Collection will break until

it, too, implements that method. That is simply unacceptable in Java.

The Java designers decided to solve this problem once and for all by allowing

interface methods with concrete implementations (called default methods). Those

methods can be safely added to existing interfaces. In this section, we’ll look into

default methods in detail.

NOTE: In Java 8, the forEach method has been added to the Iterable interface,
a superinterface of Collection, using the mechanism that I will describe in this
section.

Consider this interface:

interface Person {
 long getId();
 default String getName() { return "John Q. Public"; }
}

The interface has two methods: getId, which is an abstract method, and the default

method getName. A concrete class that implements the Person interface must, of

course, provide an implementation of getId, but it can choose to keep the

implementation of getName or to override it.

Default methods put an end to the classic pattern of providing an interface and

an abstract class that implements most or all of its methods, such as

Collection/AbstractCollection or WindowListener/WindowAdapter. Now you can just

implement the methods in the interface.

Chapter 1 Lambda Expressions14

ptg12441863

What happens if the exact same method is defined as a default method in one

interface and then again as a method of a superclass or another interface? Lan-

guages such as Scala and C++ have complex rules for resolving such ambiguities.

Fortunately, the rules in Java are much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods

with the same name and parameter types are simply ignored.

2. Interfaces clash. If a superinterface provides a default method, and another

interface supplies a method with the same name and parameter types (default

or not), then you must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider another interface with a getName method:

interface Named {
 default String getName() { return getClass().getName() + "_" + hashCode(); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named {
 ...
}

The class inherits two inconsistent getName methods provided by the Person and

Named interfaces. Rather than choosing one over the other, the Java compiler reports

an error and leaves it up to the programmer to resolve the ambiguity. Simply

provide a getName method in the Student class. In that method, you can choose one

of the two conflicting methods, like this:

class Student implements Person, Named {
 public String getName() { return Person.super.getName(); }
 ...
}

Now assume that the Named interface does not provide a default implementation

for getName:

interface Named {
 String getName();
}

Can the Student class inherit the default method from the Person interface? This

might be reasonable, but the Java designers decided in favor of uniformity. It

doesn’t matter how two interfaces conflict. If at least one interface provides an

implementation, the compiler reports an error, and the programmer must resolve

the ambiguity.

151.7 Default Methods

ptg12441863

NOTE: Of course, if neither interface provides a default for a shared method,
then we are in the pre-Java 8 situation, and there is no conflict.An implement-
ing class has two choices: implement the method, or leave it unimplemented.
In the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class

that extends a superclass and implements an interface, inheriting the same

method from both. For example, suppose that Person is a class and Student is

defined as

class Student extends Person implements Named { ... }

In that case, only the superclass method matters, and any default method from

the interface is simply ignored. In our example, Student inherits the getName method

from Person, and it doesn’t make any difference whether the Named interface

provides a default for getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with Java 7. If you add default

methods to an interface, it has no effect on code that worked before there were

default methods.

CAUTION: You can never make a default method that redefines one of the
methods in the Object class. For example, you can’t define a default method
for toString or equals, even though that might be attractive for interfaces such
as List. As a consequence of the “classes win” rule, such a method could
never win against Object.toString or Object.equals.

1.8 Static Methods in Interfaces
As of Java 8, you are allowed to add static methods to interfaces. There was

never a technical reason why this should be outlawed. It simply seemed to be

against the spirit of interfaces as abstract specifications.

Up to now, it has been common to place static methods in companion classes.

You find pairs of interfaces and utility classes such as Collection/Collections or

Path/Paths in the standard library.

Have a look at the Paths class. It only has a couple of factory methods. You can

construct a path from a sequence of strings, such as Paths.get("jdk1.8.0", "jre",
"bin"). In Java 8, one could have added this method to the Path interface:

Chapter 1 Lambda Expressions16

ptg12441863

public interface Path {
 public static Path get(String first, String... more) {
 return FileSystems.getDefault().getPath(first, more);
 }
 ...
}

Then the Paths class is no longer necessary.

When you look at the Collections class, you will find two kinds of methods. A

method such as

public static void shuffle(List<?> list)

would work well as a default method of the List interface

public default void shuffle()

You could then simply call list.shuffle() on any list.

For a factory method that doesn’t work since you don’t have an object on which

to invoke the method. That is where static interface methods come in. For

example,

public static <T> List<T> nCopies(int n, T o)
 // Constructs a list of n instances of o

could be a static method of the List interface. Then you would call List.nCopies(10,
"Fred") instead of Collections.nCopies(10, "Fred") and it would be clear to the reader

that the result is a List.

It is unlikely that the Java collections library will be refactored in this way, but

when you implement your own interfaces, there is no longer a reason to provide

a separate companion class for utility methods.

In Java 8, static methods have been added to quite a few interfaces. For example,

the Comparator interface has a very useful static comparing method that accepts a “key

extraction” function and yields a comparator that compares the extracted keys.

To compare Person objects by name, use Comparator.comparing(Person::name).

In this chapter, we have compared strings by length with the lambda ex-

pression (first, second) -> Integer.compare(first.length(), second.length()). But with

the static compare method, we can do much better and simply use Comparator.
compare(String::length). This is a fitting way of closing this chapter because it

demonstrates the power of working with functions. The compare method turns a

function (the key extractor) into a more complex function (the key-based com-

parator). We will examine such “higher order functions” in more detail in

Chapter 3.

171.8 Static Methods in Interfaces

ptg12441863

Exercises
1. Is the comparator code in the Arrays.sort method called in the same thread as

the call to sort or a different thread?

2. Using the listFiles(FileFilter) and isDirectory methods of the java.io.File class,

write a method that returns all subdirectories of a given directory. Use a

lambda expression instead of a FileFilter object. Repeat with a method

expression.

3. Using the list(FilenameFilter) method of the java.io.File class, write a method

that returns all files in a given directory with a given extension. Use a lambda

expression, not a FilenameFilter. Which variables from the enclosing scope does

it capture?

4. Given an array of File objects, sort it so that the directories come before the

files, and within each group, elements are sorted by path name. Use a lambda

expression, not a Comparator.

5. Take a file from one of your projects that contains a number of ActionListener,
Runnable, or the like. Replace them with lambda expressions. How many lines

did it save? Was the code easier to read? Were you able to use method

references?

6. Didn’t you always hate it that you had to deal with checked exceptions in a

Runnable? Write a method uncheck that catches all checked exceptions and turns

them into unchecked exceptions. For example,

new Thread(uncheck(
 () -> { System.out.println("Zzz"); Thread.sleep(1000); })).start();
 // Look, no catch (InterruptedException)!

Hint: Define an interface RunnableEx whose run method may throw any excep-

tions. Then implement public static Runnable uncheck(RunnableEx runner). Use a

lambda expression inside the uncheck function.

Why can’t you just use Callable<Void> instead of RunnableEx?

7. Write a static method andThen that takes as parameters two Runnable instances

and returns a Runnable that runs the first, then the second. In the main method,

pass two lambda expressions into a call to andThen, and run the returned

instance.

8. What happens when a lambda expression captures values in an enhanced

for loop such as this one?

String[] names = { "Peter", "Paul", "Mary" };
List<Runnable> runners = new ArrayList<>();
for (String name : names)
 runners.add(() -> System.out.println(name));

Chapter 1 Lambda Expressions18

ptg12441863

Is it legal? Does each lambda expression capture a different value, or do they

all get the last value? What happens if you use a traditional loop for (int i = 0;
i < names.length; i++)?

9. Form a subclass Collection2 from Collection and add a default method void
forEachIf(Consumer<T> action, Predicate<T> filter) that applies action to each

element for which filter returns true. How could you use it?

10. Go through the methods of the Collections class. If you were king for a day,

into which interface would you place each method? Would it be a default

method or a static method?

11. Suppose you have a class that implements two interfaces I and J, each of

which has a method void f(). Exactly what happens if f is an abstract, default,

or static method of I and an abstract, default, or static method of J? Repeat

where a class extends a superclass S and implements an interface I, each

of which has a method void f().

12. In the past, you were told that it’s bad form to add methods to an interface

because it would break existing code. Now you are told that it’s okay to add

new methods, provided you also supply a default implementation. How safe

is that? Describe a scenario where the new stream method of the Collection
interface causes legacy code to fail compilation. What about binary

compatibility? Will legacy code from a JAR file still run?

19Exercises

ptg12441863Topics in This Chapter

2.1 From Iteration to Stream Operations — page 22

2.2 Stream Creation — page 24

2.3 The filter, map, and flatMap Methods — page 25

2.4 Extracting Substreams and Combining Streams — page 26

2.5 Stateful Transformations — page 27

2.6 Simple Reductions — page 28

2.7 The Optional Type — page 29

2.8 Reduction Operations — page 31

2.9 Collecting Results — page 33

2.10 Collecting into Maps — page 34

2.11 Grouping and Partitioning — page 36

2.12 Primitive Type Streams — page 39

2.13 Parallel Streams — page 40

2.14 Functional Interfaces — page 42

Exercises — page 44

The Stream API

ptg12441863Streams are the key abstraction in Java 8 for processing collections of values and

specifying what you want to have done, leaving the scheduling of operations to

the implementation. For example, if you want to compute the average of the

values of a certain method, you specify that you want to call the method on each

element and get the average of the values. You leave it to the stream library to

parallelize the operation, using multiple threads for computing sums and counts

of each segment and combining the results.

The key points of this chapter are:

• Iterators imply a specific traversal strategy and prohibit efficient concurrent

execution.

• You can create streams from collections, arrays, generators, or iterators.

• Use filter to select elements and map to transform elements.

• Other operations for transforming streams include limit, distinct, and sorted.

• To obtain a result from a stream, use a reduction operator such as count, max,
min, findFirst, or findAny. Some of these methods return an Optional value.

• The Optional type is intended as a safe alternative to working with null values.

To use it safely, take advantage of the ifPresent and orElse methods.

2Chapter

21

ptg12441863

• You can collect stream results in collections, arrays, strings, or maps.

• The groupingBy and partitioningBy methods of the Collectors class allow you to

split the contents of a stream into groups, and to obtain a result for each

group.

• There are specialized streams for the primitive types int, long, and double.

• When you work with parallel streams, be sure to avoid side effects, and

consider giving up ordering constraints.

• You need to be familiar with a small number of functional interfaces in order

to use the stream library.

2.1 From Iteration to Stream Operations
When you process a collection, you usually iterate over its elements and do some

work with each of them. For example, suppose we want to count all long words

in a book. First, let’s put them into a list:

String contents = new String(Files.readAllBytes(
 Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string

List<String> words = Arrays.asList(contents.split("[\\P{L}]+"));
 // Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;
for (String w : words) {
 if (w.length() > 12) count++;
}

What’s wrong with it? Nothing really—except that it is hard to parallelize the

code. That’s where the Java 8 bulk operations come in. In Java 8, the same

operation looks like this:

long count = words.stream().filter(w -> w.length() > 12).count();

The stream method yields a stream for the words list. The filter method returns an-

other stream that contains only the words of length greater than twelve. The count
method reduces that stream to a result.

A stream seems superficially similar to a collection, allowing you to transform

and retrieve data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying

collection or generated on demand.

Chapter 2 The Stream API22

ptg12441863

2. Stream operations don’t mutate their source. Instead, they return new streams

that hold the result.

3. Stream operations are lazy when possible. This means they are not executed

until their result is needed. For example, if you only ask for the first five long

words instead of counting them all, then the filter method will stop filtering

after the fifth match. As a consequence, you can even have infinite streams!

In this chapter, you will learn all about streams. Many people find stream expres-

sions easier to read than the loop equivalents. Moreover, they can be easily

parallelized. Here is how you count long words in parallel:

long count = words.parallelStream().filter(w -> w.length() > 12).count();

Simply changing stream into paralleStream allows the stream library to do the

filtering and counting in parallel.

Streams follow the “what, not how” principle. In our stream example, we describe

what needs to be done: get the long words and count them. We don’t specify

in which order, or in which thread, this should happen. In contrast, the loop at

the beginning of this section specifies exactly how the computation should work,

and thereby forgoes any chances of optimization.

When you work with streams, you set up a pipeline of operations in three stages.

1. You create a stream.

2. You specify intermediate operations for transforming the initial stream into

others, in one or more steps.

3. You apply a terminal operation to produce a result. This operation forces the

execution of the lazy operations that precede it. Afterwards, the stream can

no longer be used.

In our example, the stream was created with the stream or parallelStream method.

The filter method transformed it, and count was the terminal operation.

NOTE: Stream operations are not executed on the elements in the order in
which they are invoked on the streams. In our example, nothing happens until
count is called. When the count method asks for the first element, then the
filter method starts requesting elements, until it finds one that has length
> 12.

In the next section, you will see how to create a stream. The subsequent three

sections deal with stream transformations. They are followed by five sections on

terminal operations.

232.1 From Iteration to Stream Operations

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

2.2 Stream Creation
You have already seen that you can turn any collection into a stream with the

stream method that Java 8 added to the Collection interface. If you have an array,

use the static Stream.of method instead.

Stream<String> words = Stream.of(contents.split("[\\P{L}]+"));
 // split returns a String[] array

The of method has a varargs parameter, so you can construct a stream from any

number of arguments:

Stream<String> song = Stream.of("gently", "down", "the", "stream");

Use Arrays.stream(array, from, to) to make stream from a part of an array.

To make a stream with no elements, use the static Stream.empty method:

Stream<String> silence = Stream.empty();
 // Generic type <String> is inferred; same as Stream.<String>empty()

The Stream interface has two static methods for making infinite streams. The

generate method takes a function with no arguments (or, technically, an object of

the Supplier<T> interface—see Section 2.14, “Functional Interfaces,” on page 42).

Whenever a stream value is needed, that function is called to produce a value.

You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate(Math::random);

To produce infinite sequences such as 0 1 2 3 ..., use the iterate method instead.

It takes a “seed” value and a function (technically, a UnaryOperator<T>), and

repeatedly applies the function to the previous result. For example,

Stream<BigInteger> integers
 = Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE));

The first element in the sequence is the seed BigInteger.ZERO. The second element

is f(seed), or 1 (as a big integer). The next element is f(f(seed)), or 2, and so on.

NOTE: A number of methods that yield streams have been added to the API
with the Java 8 release. For example, the Pattern class now has a method
splitAsStream that splits a CharSequence by a regular expression.You can use
the following statement to split a string into words:

Stream<String> words
 = Pattern.compile("[\\P{L}]+").splitAsStream(contents);

Chapter 2 The Stream API24

ptg12441863

The static Files.lines method returns a Stream of all lines in a file. The Stream
interface has AutoCloseable as a superinterface. When the close method is
called on the stream, the underlying file is also closed.To make sure that this
happens, it is best to use the Java 7 try-with-resources statement:

try (Stream<String> lines = Files.lines(path)) {
Do something with lines

}

The stream, and the underlying file with it, will be closed when the try block
exits normally or through an exception.

2.3 The filter, map, and flatMap Methods
A stream transformation reads data from a stream and puts the transformed

data into another stream. You have already seen the filter transformation that

yields a new stream with all elements that match a certain condition. Here, we

transform a stream of strings into another stream containing only long words:

List<String> wordList = ...;
Stream<String> words = wordList.stream();
Stream<String> longWords = words.filter(w -> w.length() > 12);

The argument of filter is a Predicate<T>—that is, a function from T to boolean.

Often, you want to transform the values in a stream in some way. Use the map
method and pass the function that carries out the transformation. For example,

you can transform all words to lowercase like this:

Stream<String> lowercaseWords = words.map(String::toLowerCase);

Here, we used map with a method expression. Often, you will use a lambda

expression instead:

Stream<Character> firstChars = words.map(s -> s.charAt(0));

The resulting stream contains the first character of each word.

When you use map, a function is applied to each element, and the return values

are collected in a new stream. Now suppose that you have a function that returns

not just one value but a stream of values, such as this one:

public static Stream<Character> characterStream(String s) {
 List<Character> result = new ArrayList<>();
 for (char c : s.toCharArray()) result.add(c);
 return result.stream();
}

252.3 The filter, map, and flatMap Methods

ptg12441863

For example, characterStream("boat") is the stream ['b', 'o', 'a', 't']. Suppose you

map this method on a stream of strings:

Stream<Stream<Character>> result = words.map(w -> characterStream(w));

You will get a stream of streams, like [... ['y', 'o', 'u', 'r'], ['b', 'o', 'a', 't'],
...] To flatten it out to a stream of characters [... 'y', 'o', 'u', 'r', 'b', 'o', 'a',
't', ...], use the flatMap method instead of map:

Stream<Character> letters = words.flatMap(w -> characterStream(w))
 // Calls characterStream on each word and flattens the results

NOTE: You may find a flatMap method in classes other than streams. It is a
general concept in computer science. Suppose you have a generic type G
(such as Stream) and functions f from some type T to G<U> and g from U to G<V>.
Then you can compose them, that is, first apply f and then g, by using flatMap.
This is a key idea in the theory of monads. But don’t worry—you can use
flatMap without knowing anything about monads.

2.4 Extracting Substreams and Combining Streams
The call stream.limit(n) returns a new stream that ends after n elements (or when

the original stream ends if it is shorter). This method is particularly useful for

cutting infinite streams down to size. For example,

Stream<Double> randoms = Stream.generate(Math::random).limit(100);

yields a stream with 100 random numbers.

The call stream.skip(n) does the exact opposite. It discards the first n elements.

This is handy in our book reading example where, due to the way the split
method works, the first element is an unwanted empty string. We can make it

go away by calling skip:

Stream<String> words = Stream.of(contents.split("[\\P{L}]+")).skip(1);

You can concatenate two streams with the static concat method of the Stream class:

Stream<Character> combined = Stream.concat(
 characterStream("Hello"), characterStream("World"));
 // Yields the stream ['H', 'e', 'l', 'l', 'o', 'W', 'o', 'r', 'l', 'd']

Of course, the first stream should not be infinite—otherwise the second wouldn’t

ever get a chance.

Chapter 2 The Stream API26

ptg12441863

TIP: The peek method yields another stream with the same elements as the
original, but a function is invoked every time an element is retrieved. That is
handy for debugging:

Object[] powers = Stream.iterate(1.0, p -> p * 2)
 .peek(e -> System.out.println("Fetching " + e))
 .limit(20).toArray();

When an element is actually accessed, a message is printed. This way you
can verify that the infinite stream returned by iterate is processed lazily.

2.5 Stateful Transformations
The stream transformations of the preceding sections were stateless. When an el-

ement is retrieved from a filtered or mapped stream, the answer does not depend

on the previous elements. There are also a few stateful transformations. For ex-

ample, the distinct method returns a stream that yields elements from the original

stream, in the same order, except that duplicates are suppressed. The stream

must obviously remember the elements that it has already seen.

Stream<String> uniqueWords
 = Stream.of("merrily", "merrily", "merrily", "gently").distinct();
 // Only one "merrily" is retained

The sorted method must see the entire stream and sort it before it can give out

any elements—after all, the smallest one might be the last one. Clearly, you can’t

sort an infinite stream.

There are several sorted methods. One works for streams of Comparable elements,

and another accepts a Comparator. Here, we sort strings so that the longest ones

come first:

Stream<String> longestFirst =
 words.sorted(Comparator.comparing(String::length).reversed());

Of course, you can sort a collection without using streams. The sorted method is

useful when the sorting process is a part of a stream pipeline.

NOTE: The Collections.sort method sorts a collection in place, whereas
Stream.sorted returns a new sorted stream.

272.5 Stateful Transformations

ptg12441863

2.6 Simple Reductions
Now that you have seen how to create and transform streams, we will finally get

to the most important point—getting answers from the stream data. The methods

that we cover in this section are called reductions. They reduce the stream to a

value that can be used in your program. Reductions are terminal operations. After

a terminal operation has been applied, the stream ceases to be usable.

You have already seen a simple reduction: the count method that returns the

number of elements of the stream.

Other simple reductions are max and min that return the largest or smallest value.

There is a twist—these methods return an Optional<T> value that either wraps the

answer or indicates that there is none (because the stream happened to be empty).

In the olden days, it was common to return null in such a situation. But that can

lead to null pointer exceptions when an unusual situation arises in an incom-

pletely tested program. In Java 8, the Optional type is the preferred way of indicat-

ing a missing return value. We discuss the Optional type in detail in the next

section. Here is how you can get the maximum of a stream:

Optional<String> largest = words.max(String::compareToIgnoreCase);
if (largest.isPresent())
 System.out.println("largest: " + largest.get());

The findFirst returns the first value in a nonempty collection. It is often useful

when combined with filter. For example, here we find the first word that

starts with the letter Q, if it exists:

Optional<String> startsWithQ
 = words.filter(s -> s.startsWith("Q")).findFirst();

If you are okay with any match, not just the first one, then use the findAny method.

This is effective when you parallelize the stream since the first match in any of

the examined segments will complete the computation.

Optional<String> startsWithQ
 = words.parallel().filter(s -> s.startsWith("Q")).findAny();

If you just want to know there is a match, use anyMatch. That method takes a

predicate argument, so you won’t need to use filter.

boolean aWordStartsWithQ
 = words.parallel().anyMatch(s -> s.startsWith("Q"));

There are also methods allMatch and noneMatch that return true if all or no elements

match a predicate. These methods always examine the entire stream, but they

still benefit from being run in parallel.

Chapter 2 The Stream API28

ptg12441863

2.7 The Optional Type
An Optional<T> object is either a wrapper for an object of type T or for no object. It

is intended as a safer alternative than a reference of type T that refers to an object

or null. But it is only safer if you use it right.

The get method gets the wrapped element if it exists, or throws a

NoSuchElementException if it doesn’t. Therefore,

Optional<T> optionalValue = ...;
optionalValue.get().someMethod()

is no safer than

T value = ...;
value.someMethod();

As you saw in the preceding section, the isPresent method reports whether an

Optional<T> object has a value. But

if (optionalValue.isPresent()) optionalValue.get().someMethod();

is no easier than

if (value != null) value.someMethod();

In the next section, you will see how you should really work with Optional values.

2.7.1 Working with Optional Values
The key to using Optional effectively is to use a method that either consumes the
correct value or produces an alternative.

There is a second form of the ifPresent method that accepts a function. If the op-

tional value exists, it is passed to that function. Otherwise, nothing happens.

Instead of using an if statement, you call

optionalValue.ifPresent(v -> Process v);

For example, if you want to add the value to a set if it is present, call

optionalValue.ifPresent(v -> results.add(v));

or simply

optionalValue.ifPresent(results::add);

When calling this version of ifPresent, no value is returned. If you want to process

the result, use map instead:

Optional<Boolean> added = optionalValue.map(results::add);

Now added has one of three values: true or false wrapped into an Optional, if

optionalValue was present, or an empty optional otherwise.

292.7 The Optional Type

ptg12441863

NOTE: This map method is the analog of the map method of the Stream interface
that you have seen in Section 2.3, “The filter, map, and flatMap Methods,” on
page 25. Simply imagine an optional value as a stream of size zero or one.
The result again has size zero or one, and in the latter case, the function has
been applied.

You have just seen how to gracefully consume an optional value when it is

present. The other strategy for working with optional values is to produce an

alternative if no value is present. Often, there is a default that you want to use

when there was no match, perhaps the empty string:

String result = optionalString.orElse("");
 // The wrapped string, or "" if none

You can also invoke code to compute the default,

String result = optionalString.orElseGet(() -> System.getProperty("user.dir"));
 // The function is only called when needed

Or, if you want to throw another exception if there is no value,

String result = optionalString.orElseThrow(NoSuchElementException::new);
 // Supply a method that yields an exception object

2.7.2 Creating Optional Values
So far, we have discussed how to consume an Optional object that someone

else created. If you write a method that creates an Optional object, there are

several static methods for that purpose. Either create an Optional.of(result) or

Optional.empty(). For example,

public static Optional<Double> inverse(Double x) {
 return x == 0 ? Optional.empty() : Optional.of(1 / x);
}

The ofNullable method is intended as a bridge from the use of null values to op-

tional values. Optional.ofNullable(obj) returns Optional.of(obj) if obj is not null, and

Optional.empty() otherwise.

2.7.3 Composing Optional Value Functions with flatMap
Suppose you have a method f yielding an Optional<T>, and the target type T has a

method g yielding an Optional<U>. If they were normal methods, you could compose

them by calling s.f().g(). But that composition doesn’t work here, since s.f()
has type Optional<T>,has not T. Instead, call

Optional<U> = s.f().flatMap(T::g);

Chapter 2 The Stream API30

ptg12441863

If s.f() is present, then g is applied to it. Otherwise, an empty Optional<U> is

returned.

Clearly, you can repeat that process if you have more methods or lambdas that

yield Optional values. You can then build a pipeline of steps that succeeds only

when all parts do, simply by chaining calls to flatMap.

For example, consider the safe inverse method of the preceding section. Suppose

we also have a safe square root:

public static Optional<Double> squareRoot(Double x) {
 return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
}

Then you can compute the square root of the inverse as

Double result = inverse(x).flatMap(MyMath::squareRoot);

or, if you prefer,

Double result = Optional.of(-4.0).flatMap(Test::inverse).flatMap(Test::squareRoot);

If either the inverse method or the squareRoot returns Optional.empty(), the result is

empty.

NOTE: You have already seen a flatMap method in the Stream interface (see
Section 2.3, “The filter, map, and flatMap Methods,” on page 25).That method
was used to compose two methods that yield streams, by flattening out the
resulting stream of streams. The Optional.flatMap method works in the same
way if you consider an optional value to be a stream of size zero or one.

2.8 Reduction Operations
If you want to compute a sum, or combine the elements of a stream to a result

in another way, you can use one of the reduce methods. The simplest form takes

a binary function and keeps applying it, starting with the first two elements. It’s

easy to explain this if the function is the sum:

Stream<Integer> values = ...;
Optional<Integer> sum = values.reduce((x, y) -> x + y)

In this case, the reduce method computes v0 + v1 + v2 + . . . , where the vi are the

stream elements. The method returns an Optional because there is no valid result

if the stream is empty.

NOTE: In this case, you can write values.reduce(Integer::sum) instead of
values.reduce((x, y) -> x + y).

312.8 Reduction Operations

ptg12441863

In general, if the reduce method has a reduction operation op, the reduction yields

v0 op v1 op v2 op . . . , where we write vi op vi + 1 for the function call op(vi, vi + 1).

The operation should be associative: It shouldn’t matter in which order you com-

bine the elements. In math notation, (x op y) op z = x op (y op z). This allows

efficient reduction with parallel streams.

There are many associative operations that might be useful in practice, such as

sum and product, string concatenation, maximum and minimum, set union and

intersection. An example of an operation that is not associative is subtraction.

For example, (6 − 3) − 2 ≠ 6 − (3 − 2).

Often, there is an identity e such that e op x = x, and you can use that element

as the start of the computation. For example, 0 is the identity for addition. Then

call the second form of reduce:

Stream<Integer> values = ...;
Integer sum = values.reduce(0, (x, y) -> x + y)
 // Computes 0 + v0 + v1 + v2 + . . .

The identity value is returned if the stream is empty, and you no longer need to

deal with the Optional class.

Now suppose you have a stream of objects and want to form the sum of some

property, such as all lengths in a stream of strings. You can’t use the simple form

of reduce. It requires a function (T, T) -> T, with the same types for the argu-

ments and the result. But in this situation, you have two types. The stream

elements have type String, and the accumulated result is an integer. There is a

form of reduce that can deal with this situation.

First, you supply an “accumulator” function (total, word) -> total + word.length().
That function is called repeatedly, forming the cumulative total. But when the

computation is parallelized, there will be multiple computations of this kind,

and you need to combine their results. You supply a second function for that

purpose. The complete call is

int result = words.reduce(0,
 (total, word) -> total + word.length(),
 (total1, total2) -> total1 + total2);

NOTE: In practice, you probably won’t use the reduce method a lot. It is usually
easier to map to a stream of numbers and use one of its methods to compute
sum, max, or min. (We discuss streams of numbers in Section 2.12, “Primitive
Type Streams,” on page 39.) In this particular example, you could have called
words.mapToInt(String::length).sum(), which is both simpler and more efficient,
since it doesn’t involve boxing.

Chapter 2 The Stream API32

ptg12441863

2.9 Collecting Results
When you are done with a stream, you often just want to look at the results in-

stead of reducing them to a value. You can call the iterator method, which yields

an old-fashioned iterator that you can use to visit the elements. Or you can call

toArray and get an array of the stream elements.

Since it is not possible to create a generic array at runtime, the expression

stream.toArray() returns an Object[] array. If you want an array of the correct type,

pass in the array constructor:

String[] result = words.toArray(String[]::new);
 // words.toArray() has type Object[]

Now suppose you want to collect the results in a HashSet. If the collection is paral-

lelized, you can’t put the elements directly into a single HashSet because a HashSet
object is not threadsafe. For that reason, you can’t use reduce. Each segment needs

to start out with its own empty hash set, and reduce only lets you supply one

identity value. Instead, use collect. It takes three arguments:

1. A supplier to make new instances of the target object, for example, a

constructor for a hash set

2. An accumulator that adds an element to the target, for example, an add method

3. An combiner that merges two objects into one, such as addAll

NOTE: The target object need not be a collection. It could be a StringBuilder
or an object that tracks a count and a sum.

Here is how the collect method works for a hash set:

HashSet<String> result = stream.collect(HashSet::new, HashSet::add, HashSet::addAll);

In practice, you don’t have to do that because there is a convenient Collector inter-

face for these three functions, and a Collectors class with factory methods for

common collectors. To collect a stream into a list or set, you can simply call

List<String> result = stream.collect(Collectors.toList());

or

Set<String> result = stream.collect(Collectors.toSet());

If you want to control which kind of set you get, use the following call instead:

TreeSet<String> result = stream.collect(Collectors.toCollection(TreeSet::new));

Suppose you want to collect all strings in a stream by concatenating them. You

can call

332.9 Collecting Results

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

String result = stream.collect(Collectors.joining());

If you want a delimiter between elements, pass it to the joining method:

String result = stream.collect(Collectors.joining(", "));

If your stream contains objects other than strings, you need to first convert them

to strings, like this:

String result = stream.map(Object::toString).collect(Collectors.joining(", "));

If you want to reduce the stream results to a sum, average, maximum, or mini-

mum, then use one of the methods summarizing(Int|Long|Double). These methods

take a function that maps the stream objects to a number and yield a result of type

(Int|Long|Double)SummaryStatistics, with methods for obtaining the sum, average,

maximum, and minumum.

IntSummaryStatistics summary = words.collect(
 Collectors.summarizingInt(String::length));
double averageWordLength = summary.getAverage();
double maxWordLength = summary.getMax();

NOTE: So far, you have seen how to reduce or collect stream values. But
perhaps you just want to print them or put them in a database. Then you can
use the forEach method:

stream.forEach(System.out::println);

The function that you pass is applied to each element. On a parallel stream,
it’s your responsibility to ensure that the function can be executed concurrently.
We discuss this in Section 2.13, “Parallel Streams,” on page 40.

On a parallel stream, the elements can be traversed in arbitrary order. If you
want to execute them in stream order, call forEachOrdered instead. Of course,
you might then give up most or all of the benefits of parallelism.

The forEach and forEachOrdered methods are terminal operations.You cannot
use the stream again after calling them. If you want to continue using the
stream, use peek instead—see Section 2.4, “Extracting Substreams and
Combining Streams,” on page 26.

2.10 Collecting into Maps
Suppose you have a Stream<Person> and want to collect the elements into a map so

that you can later look up people by their ID. The Collectors.toMap method has two

function arguments that produce the map keys and values. For example,

Chapter 2 The Stream API34

ptg12441863

Map<Integer, String> idToName = people.collect(
 Collectors.toMap(Person::getId, Person::getName));

In the common case that the values should be the actual elements, use Function.
identity() for the second function.

Map<Integer, Person> idToPerson = people.collect(
 Collectors.toMap(Person::getId, Function.identity()));

If there is more than one element with the same key, the collector will throw an

IllegalStateException. You can override that behavior by supplying a third function

argument that determines the value for the key, given the existing and the new

value. Your function could return the existing value, the new value, or a

combination of them.

Here, we construct a map that contains, for each language in the available locales,

as key its name in your default locale (such as "German"), and as value its localized

name (such as "Deutsch").

Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());
Map<String, String> languageNames = locales.collect(
 Collectors.toMap(
 l -> l.getDisplayLanguage(),
 l -> l.getDisplayLanguage(l),
 (existingValue, newValue) -> existingValue));

We don’t care that the same language might occur twice—for example, German

in Germany and in Switzerland, and we just keep the first entry.

However, suppose we want to know all languages in a given country. Then we

need a Map<String, Set<String>>. For example, the value for "Switzerland" is the set

[French, German, Italian]. At first, we store a singleton set for each language.

Whenever a new language is found for a given country, we form the union of

the existing and the new set.

Map<String, Set<String>> countryLanguageSets = locales.collect(
 Collectors.toMap(
 l -> l.getDisplayCountry(),
 l -> Collections.singleton(l.getDisplayLanguage()),
 (a, b) -> { // Union of a and b
 Set<String> r = new HashSet<>(a);
 r.addAll(b);
 return r; }));

You will see a simpler way of obtaining this map in the next section.

If you want a TreeMap, then you supply the constructor as the fourth argument.

You must provide a merge function. Here is one of the examples from the

beginning of the section, now yielding a TreeMap:

352.10 Collecting into Maps

ptg12441863

Map<Integer, Person> idToPerson = people.collect(
 Collectors.toMap(
 Person::getId,
 Function.identity(),
 (existingValue, newValue) -> { throw new IllegalStateException(); },
 TreeMap::new));

NOTE: For each of the toMap methods, there is an equivalent toConcurrentMap
method that yields a concurrent map. A single concurrent map is used in the
parallel collection process. When used with a parallel stream, a shared map
is more efficient than merging maps, but of course, you give up ordering.

2.11 Grouping and Partitioning
In the preceding section, you saw how to collect all languages in a given country.

But the process was a bit tedious. You had to generate a singleton set for each

map value, and then specify how to merge the existing and new values. Forming

groups of values with the same characteristic is very common, and the groupingBy
method supports it directly.

Let’s look at the problem of grouping locales by country. First form this map:

Map<String, List<Locale>> countryToLocales = locales.collect(
 Collectors.groupingBy(Locale::getCountry));

The function Locale::getCountry is the classifier function of the grouping. You can

now look up all locales for a given country code, for example

List<Locale> swissLocales = countryToLocales.get("CH");
 // Yields locales [it_CH, de_CH, fr_CH]

NOTE: A quick refresher on locales: Each locale has a language code (such
as en for English) and a country code (such as US for the United States). The
locale en_US describes English in the United States, and en_IE is English in
Ireland. Some countries have multiple locales. For example, ga_IE is Gaelic
in Ireland, and, as the preceding example shows, my JVM knows three locales
in Switzerland.

When the classifier function is a predicate function (that is, a function returning

a boolean value), the stream elements are partitioned into two lists: those where

the function returns true and the complement. In this case, it is more efficient to

use partitioningBy instead of groupingBy. For example, here we split all locales

into those that use English, and all others:

Chapter 2 The Stream API36

ptg12441863

Map<Boolean, List<Locale>> englishAndOtherLocales = locales.collect(
 Collectors.partitioningBy(l -> l.getLanguage().equals("en")));
List<Locale>> englishLocales = englishAndOtherLocales.get(true);

NOTE: If you call the groupingByConcurrent method, you get a concurrent map
that, when used with a parallel stream, is concurrently populated. This is
entirely analogous to the toConcurrentMap method.

The groupingBy method yields a map whose values are lists. If you want to process

those lists in some way, you supply a “downstream collector.” For example, if

you want sets instead of lists, you can use the Collectors.toSet collector that you

saw in the preceding section:

Map<String, Set<Locale>> countryToLocaleSet = locales.collect(
 groupingBy(Locale::getCountry, toSet()));

NOTE: In this example, as well as the remaining examples of this chapter,
I assume a static import of java.util.stream.Collectors.* to make the
expressions easier to read.

Several other collectors are provided for downstream processing of grouped

elements:

• counting produces a count of the collected elements. For example,

Map<String, Long> countryToLocaleCounts = locales.collect(
 groupingBy(Locale::getCountry, counting()));

counts how many locales there are for each country.

• summing(Int|Long|Double) takes a function argument, applies the function to the

downstream elements, and produces their sum. For example,

Map<String, Integer> stateToCityPopulation = cities.collect(
 groupingBy(City::getState, summingInt(City::getPopulation)));

computes the sum of populations per state in a stream of cities.

• maxBy and minBy take a comparator and produce maximum and minimum of

the downstream elements. For example,

Map<String, City> stateToLargestCity = cities.collect(
 groupingBy(City::getState,
 maxBy(Comparator.comparing(City::getPopulation))));

produces the largest city per state.

372.11 Grouping and Partitioning

ptg12441863

• mapping applies a function to downstream results, and it requires yet another

collector for processing its results. For example,

Map<String, Optional<String>> stateToLongestCityName = cities.collect(
 groupingBy(City::getState,
 mapping(City::getName,
 maxBy(Comparator.comparing(String::length)))));

Here, we group cities by state. Within each state, we produce the names of

the cities and reduce by maximum length.

The mapping method also yields a nicer solution to a problem from the

preceding section, to gather a set of all languages in a country.

Map<String, Set<String>> countryToLanguages = locales.collect(
 groupingBy(l -> l.getDisplayCountry(),
 mapping(l -> l.getDisplayLanguage(),
 toSet())));

In the preceding section, I used toMap instead of groupingBy. In this form, you

don’t need to worry about combining the individual sets.

• If the grouping or mapping function has return type int, long, or double,
you can collect elements into a summary statistics object, as discussed in

Section 2.9, “Collecting Results,” on page 33. For example,

Map<String, IntSummaryStatistics> stateToCityPopulationSummary = cities.collect(
 groupingBy(City::getState,
 summarizingInt(City::getPopulation)));

Then you can get the sum, count, average, minimum, and maximum of the

function values from the summary statistics objects of each group.

• Finally, the reducing methods apply a general reduction to downstream

elements. There are three forms: reducing(binaryOperator), reducing(identity,
binaryOperator), and reducing(identity, mapper, binaryOperator). In the first form,

the identity is null. (Note that this is different from the forms of Stream::reduce,
where the method without an identity parameter yields an Optional result.) In

the third form, the mapper function is applied and its values are reduced.

Here is an example that gets a comma-separated string of all city names

in each state. We map each city to its name and then concatenate them.

Map<String, String> stateToCityNames = cities.collect(
 groupingBy(City::getState,
 reducing("", City::getName,
 (s, t) -> s.length() == 0 ? t : s + ", " + t)));

As with Stream.reduce, Collectors.reducing is rarely necessary. In this case, you

can achieve the same result more naturally as

Chapter 2 The Stream API38

ptg12441863

Map<String, String> stateToCityNames = cities.collect(
 groupingBy(City::getState,
 mapping(City::getName,
 joining(", "))));

Frankly, the downstream collectors can yield very convoluted expressions. You

should only use them in connection with groupingBy or partitioningBy to process the

“downstream” map values. Otherwise, simply apply methods such as map, reduce,
count, max, or min directly on streams.

2.12 Primitive Type Streams
So far, we have collected integers in a Stream<Integer>, even though it is clearly in-

efficient to wrap each integer into a wrapper object. The same is true for the

other primitive types double, float, long, short, char, byte, and boolean. The stream li-

brary has specialized types IntStream, LongStream, and DoubleStream that store primitive

values directly, without using wrappers. If you want to store short, char, byte, and

boolean, use an IntStream, and for float, use a DoubleStream. The library designers

didn’t think it was worth adding another five stream types.

To create an IntStream, you can call the IntStream.of and Arrays.stream methods:

IntStream stream = IntStream.of(1, 1, 2, 3, 5);
stream = Arrays.stream(values, from, to); // values is an int[] array

As with object streams, you can also use the static generate and iterate methods.

In addition, IntStream and LongStream have static methods range and rangeClosed that

generate integer ranges with step size one:

IntStream zeroToNinetyNine = IntStream.range(0, 100); // Upper bound is excluded

IntStream zeroToHundred = IntStream.rangeClosed(0, 100); // Upper bound is included

The CharSequence interface has methods codePoints and chars that yield an IntStream
of the Unicode codes of the characters or of the code units in the UTF-16 encod-

ing. (If you don’t know what code units are, you probably shouldn’t use the

chars method. Read up on the sordid details in Core Java, 9th Edition, Volume 1,

Section 3.3.3.)

String sentence = "\uD835\uDD46 is the set of octonions.";
 // \uD835\uDD46 is the UTF-16 encoding of the letter , unicode U+1D546

IntStream codes = sentence.codePoints();
 // The stream with hex values 1D546 20 69 73 20 . . .

When you have a stream of objects, you can transform it to a primitive type

stream with the mapToInt, mapToLong, or mapToDouble methods. For example, if you have

a stream of strings and want to process their lengths as integers, you might as

well do it in an IntStream:

392.12 Primitive Type Streams

ptg12441863

Stream<String> words = ...;
IntStream lengths = words.mapToInt(String::length);

To convert a primitive type stream to an object stream, use the boxed method:

Stream<Integer> integers = Integer.range(0, 100).boxed();

Generally, the methods on primitive type streams are analogous to those on object

streams. Here are the most notable differences:

• The toArray methods return primitive type arrays.

• Methods that yield an optional result return an OptionalInt, OptionalLong, or

OptionalDouble. These classes are analogous to the Optional class, but they have

methods getAsInt, getAsLong, and getAsDouble instead of the get method.

• There are methods sum, average, max, and min that return the sum, average,

maximum, and minimum. These methods are not defined for object streams.

• The summaryStatistics method yields an object of type IntSummaryStatistics,
LongSummaryStatistics, or DoubleSummaryStatistics that can simultaneously report

the sum, average, maximum, and minimum of the stream.

NOTE: The Random class has methods ints, longs, and doubles that return
primitive type streams of random numbers.

2.13 Parallel Streams
Streams make it easy to parallelize bulk operations. The process is mostly auto-

matic, but you need to follow a few rules. First of all, you must have a parallel

stream. By default, stream operations create sequential streams, except for

Collection.parallelStream(). The parallel method converts any sequential stream into

a parallel one. For example:

Stream<String> parallelWords = Stream.of(wordArray).parallel();

As long as the stream is in parallel mode when the terminal method executes,

all lazy intermediate stream operations will be parallelized.

When stream operations run in parallel, the intent is that the same result is re-

turned as if they had run serially. It is important that the operations are stateless
and can be executed in an arbitrary order.

Here is an example of something you cannot do. Suppose you want to count all

short words in a stream of strings:

Chapter 2 The Stream API40

ptg12441863

int[] shortWords = new int[12];
words.parallel().forEach(
 s -> { if (s.length() < 12) shortWords[s.length()]++; });
 // Error—race condition!

System.out.println(Arrays.toString(shortWords));

This is very, very bad code. The function passed to forEach runs concurrently in

multiple threads, updating a shared array. That’s a classic race condition. If you

run this program multiple times, you are quite likely to get a different sequence

of counts in each run, each of them wrong.

It is your responsibility to ensure that any functions that you pass to parallel

stream operations are threadsafe. In our example, you could use an array of

AtomicInteger objects for the counters (see Exercise 12). Or you could simply use

the facilities of the streams library and group strings by length (see Exercise 13).

By default, streams that arise from ordered collections (arrays and lists), from

ranges, generators, and iterators, or from calling Stream.sorted, are ordered. Results

are accumulated in the order of the original elements, and are entirely predictable.

If you run the same operations twice, you will get exactly the same results.

Ordering does not preclude parallelization. For example, when computing

stream.map(fun), the stream can be partitioned into n segments, each of which is

concurrently processed. Then the results are reassembled in order.

Some operations can be more effectively parallelized when the ordering require-

ment is dropped. By calling the Stream.unordered method, you indicate that you

are not interested in ordering. One operation that can benefit from this is

Stream.distinct. On an ordered stream, distinct retains the first of all equal elements.

That impedes parallelization—the thread processing a segment can’t know which

elements to discard until the preceding segment has been processed. If it is ac-

ceptable to retain any of the unique elements, all segments can be processed

concurrently (using a shared set to track duplicates).

You can also speed up the limit method by dropping ordering. If you just want

any n elements from a stream and you don’t care which ones you get, call

Stream<T> sample = stream.parallel().unordered().limit(n);

As discussed in Section 2.10, “Collecting into Maps,” on page 34, merging maps

is expensive. For that reason, the Collectors.groupingByConcurrent method uses a

shared concurrent map. Clearly, to benefit from parallelism, the order of the map

values will not be the same as the stream order. Even on an ordered stream, that

collector has a “characteristic” of being unordered, so that it can be used effi-

ciently without having to make the stream unordered. You still need to make

the stream parallel, though:

412.13 Parallel Streams

ptg12441863

Map<String, List<String>> result = cities.parallel().collect(
 Collectors.groupingByConcurrent(City::getState));
 // Values aren’t collected in stream order

CAUTION: It is very important that you don’t modify the collection that is
backing a stream while carrying out a stream operation (even if the modifica-
tion is threadsafe). Remember that streams don’t collect their own data—the
data is always in a separate collection. If you were to modify that collection,
the outcome of the stream operations would be undefined. The JDK docu-
mentation refers to this requirement as noninterference. It applies both to
sequential and parallel streams.

To be exact, since intermediate stream operations are lazy, it is possible to
mutate the collection up to the point when the terminal operation executes.
For example, the following is correct:

List<String> wordList = ...;
Stream<String> words = wordList.stream();
wordList.add("END"); // Ok
long n = words.distinct().count();

But this code is not:

Stream<String> words = wordList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));
 // Error—interference

2.14 Functional Interfaces
In this chapter, you have seen many operations whose argument is a function.

For example, the Streams.filter method takes a function argument:

Stream<String> longWords = words.filter(s -> s.length() >= 12);

In the javadoc of the Stream class, the filter method is declared as follows:

Stream<T> filter(Predicate<? super T> predicate)

To understand the documentation, you have to know what a Predicate is. It is an

interface with one nondefault method returning a boolean value:

public interface Predicate {
 boolean test(T argument);
}

In practice, one usually passes a lambda expression or method reference, so the

name of the method doesn’t really matter. The important part is the boolean return

Chapter 2 The Stream API42

ptg12441863

type. When reading the documentation of Stream.filter, just remember that a

Predicate is a function returning a boolean.

NOTE: When you look closely at the declaration of Stream.filter, you will note
the wildcard type Predicate<? super T>. This is common for function para-
meters. For example, suppose Employee is a subclass of Person, and you have
a Stream<Employee>.You can filter the stream (where T is Employee) with a
Predicate<Employee>, a Predicate<Person>, or a Predicate<Object>. This flexibility
is particularly important for supplying method references. For example, you
may want to use Person::isAlive to filter a Stream<Employee>. That only works
because of the wildcard in the parameter of the filter method.

Table 2–1 summarizes the functional interfaces that occur as parameters of the

Stream and Collectors methods. You will see additional functional interfaces in

the next chapter.

Table 2–1 Functional Interfaces Used in the Stream API

DescriptionReturn TypeParameter
Types

Functional Interface

Supplies a value of type TTNoneSupplier<T>

Consumes a value of type TvoidTConsumer<T>

Consumes values of types T
and U

voidT, UBiConsumer<T, U>

A Boolean-valued functionbooleanTPredicate<T>

An int-, long-, or double-valued

function

int
long
double

TToIntFunction<T>
ToLongFunction<T>
ToDoubleFunction<T>

A function with argument of

type int, long, or double
Rint

long
double

IntFunction<R>
LongFunction<R>
DoubleFunction<R>

A function with argument of

type T
RTFunction<T, R>

A function with arguments of

types T and U
RT, UBiFunction<T, U, R>

A unary operator on the type TTTUnaryOperator<T>

A binary operator on the type TTT, TBinaryOperator<T>

432.14 Functional Interfaces

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Exercises
1. Write a parallel version of the for loop in Section 2.1, “From Iteration to

Stream Operations,” on page 22. Obtain the number of processors. Make that

many separate threads, each working on a segment of the list, and total up

the results as they come in. (You don’t want the threads to update a single

counter. Why?)

2. Verify that asking for the first five long words does not call the filter method

once the fifth long word has been found. Simply log each method call.

3. Measure the difference when counting long words with a parallelStream instead

of a stream. Call System.currentTimeMillis before and after the call, and print the

difference. Switch to a larger document (such as War and Peace) if you have

a fast computer.

4. Suppose you have an array int[] values = { 1, 4, 9, 16 }. What is

Stream.of(values)? How do you get a stream of int instead?

5. Using Stream.iterate, make an infinite stream of random numbers—not by

calling Math.random but by directly implementing a linear congruential generator.

In such a generator, you start with x0 = seed and then produce xn + 1 =

(a xn + c) % m, for appropriate values of a, c, and m. You should implement a

method with parameters a, c, m, and seed that yields a Stream<Long>. Try out a =

25214903917, c = 11, and m = 248.

6. The characterStream method in Section 2.3, “The filter, map, and flatMap Methods,”

on page 25, was a bit clumsy, first filling an array list and then turning it

into a stream. Write a stream-based one-liner instead. One approach is to

make a stream of integers from 0 to s.length() - 1 and map that with the

s::charAt method reference.

7. Your manager asks you to write a method public static <T> boolean
isFinite(Stream<T> stream). Why isn’t that such a good idea? Go ahead and

write it anyway.

8. Write a method public static <T> Stream<T> zip(Stream<T> first, Stream<T> second)
that alternates elements from the streams first and second, stopping when

one of them runs out of elements.

9. Join all elements in a Stream<ArrayList<T>> to one ArrayList<T>. Show how to do

this with the three forms of reduce.

10. Write a call to reduce that can be used to compute the average of a Stream<Double>.
Why can’t you simply compute the sum and divide by count()?

11. It should be possible to concurrently collect stream results in a single ArrayList,
instead of merging multiple array lists, provided it has been constructed with

Chapter 2 The Stream API44

ptg12441863

the stream’s size, since concurrent set operations at disjoint positions

are threadsafe. How can you achieve that?

12. Count all short words in a parallel Stream<String>, as described in Section 2.13,

“Parallel Streams,” on page 40, by updating an array of AtomicInteger. Use

the atomic getAndIncrement method to safely increment each counter.

13. Repeat the preceding exercise, but filter out the short strings and use the

collect method with Collectors.groupingBy and Collectors.counting.

45Exercises

ptg12441863Topics in This Chapter

3.1 Deferred Execution — page 48

3.2 Parameters of Lambda Expressions — page 49

3.3 Choosing a Functional Interface — page 50

3.4 Returning Functions — page 53

3.5 Composition — page 54

3.6 Laziness — page 56

3.7 Parallelizing Operations — page 57

3.8 Dealing with Exceptions — page 58

3.9 Lambdas and Generics — page 61

3.10 Monadic Operations — page 63

Exercises — page 64

Programming with Lambdas

ptg12441863In the first two chapters, you saw the basic syntax and semantics of lambda ex-

pressions as well as the stream API that makes extensive use of them. In this

chapter, you will learn how to create your own libraries that make use of lambda

expressions and functional interfaces.

The key points of this chapter are:

• The main reason for using a lambda expression is to defer the execution of

the code until an appropriate time.

• When a lambda expression is executed, make sure to provide any required

data as inputs.

• Choose one of the existing functional interfaces if you can.

• It is often useful to write methods that return an instance of a functional

interface.

• When you work with transformations, consider how you can compose them.

• To compose transformations lazily, you need to keep a list of all pending

transformations and apply them in the end.

• If you need to apply a lambda many times, you often have a chance to split

up the work into subtasks that execute concurrently.

• Think what should happen when you work with a lambda expression that

throws an exception.

3Chapter

47

ptg12441863

• When working with generic functional interfaces, use ? super wildcards for

argument types, ? extends wildcards for return types.

• When working with generic types that can be transformed by functions,

consider supplying map and flatMap.

3.1 Deferred Execution
The point of all lambdas is deferred execution. After all, if you wanted to execute

some code right now, you’d do that, without wrapping it inside a lambda. There

are many reasons for executing code later, such as

• Running the code in a separate thread

• Running the code multiple times

• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)

• Running the code when something happens (a button was clicked, data has

arrived, and so on)

• Running the code only when necessary

It is a good idea to think through what you want to achieve when you set out

programming with lambdas.

Let us look at a simple example. Suppose you log an event:

logger.info("x: " + x + ", y: " + y);

What happens if the log level is set to suppress INFO messages? The message string

is computed and passed to the info method, which then decides to throw it away.

Wouldn’t it be nicer if the string concatenation only happened when necessary?

Running code only when necessary is a use case for lambdas. The standard idiom

is to wrap the code in a no-arg lambda:

() -> "x: " + x + ", y: " + y

Now we need to write a method that

1. Accepts the lambda

2. Checks whether it should be called

3. Calls it when necessary

To accept the lambda, we need to pick (or, in rare cases, provide) a functional

interface. We discuss the process of choosing an interface in more detail in Sec-

tion 3.3, “Choosing a Functional Interface,” on page 50. Here, a good choice is a

Supplier<String>. The following method provides lazy logging:

Chapter 3 Programming with Lambdas48

ptg12441863

public static void info(Logger logger, Supplier<String> message) {
 if (logger.isLoggable(Level.INFO))
 logger.info(message.get());
}

We use the isLoggable method of the Logger class to decide whether INFO messages

should be logged. If so, we invoke the lambda by calling its abstract method,

which happens to be called get.

NOTE: Deferring logging messages is such a good idea that the Java 8 library
designers beat me to it. The info method, as well as the other logging meth-
ods, now have variants that accept a Supplier<String>.You can directly call
logger.info(() -> "x: " + x + ", y:" + y). However, see Exercise 1 for a
potentially useful refinement.

3.2 Parameters of Lambda Expressions
When you ask your user to supply a comparator, it is pretty obvious that the

comparator has two arguments—the values to be compared.

Arrays.sort(names,
 (s, t) -> Integer.compare(s.length(), t.length())); // Compare strings s and t

Now consider a different example. This method repeats an action multiple times:

public static void repeat(int n, IntConsumer action) {
 for (int i = 0; i < n; i++) action.accept(i);
}

Why an IntConsumer and not a Runnable? We tell the action in which iteration it oc-

curs, which might be useful information. The action needs to capture that input

in a parameter

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Another example is an event handler

button.setOnAction(event -> action);

The event object carries information that the action may need.

In general, you want to design your algorithm so that it passes any required in-

formation as arguments. For example, when editing an image, it makes sense to

have the user supply a function that computes the color for a pixel. Such a func-

tion might need to know not just the current color, but also where the pixel is

in the image, or what the neighboring pixels are.

493.2 Parameters of Lambda Expressions

ptg12441863

However, if these arguments are rarely needed, consider supplying a second

version that doesn’t force users into accepting unwanted arguments:

public static void repeat(int n, Runnable action) {
 for (int i = 0; i < n; i++) action.run();
}

This version can be called as

repeat(10, () -> System.out.println("Hello, World!"));

3.3 Choosing a Functional Interface
In most functional programming languages, function types are structural. To

specify a function that maps two strings to an integer, you use a type that

looks something like Function2<String, String, Integer> or (String, String) -> int. In
Java, you instead declare the intent of the function, using a functional interface

such as Comparator<String>. In the theory of programming languages this is called

nominal typing.

Of course, there are many situations where you want to accept “any function”

without particular semantics. There are a number of generic function types for

that purpose (see Table 3–1), and it’s a very good idea to use one of them when

you can.

For example, suppose you write a method to process files that match a certain

criterion. Should you use the descriptive java.io.FileFilter class or a Predicate<File>?
I strongly recommend that you use the standard Predicate<File>. The only reason

not to do so would be if you already have many useful methods producing

FileFilter instances.

NOTE: Most of the standard functional interfaces have nonabstract methods
for producing or combining functions. For example, Predicate.isEqual(a) is the
same as a::equals, provided a is not null. And there are default methods and,
or, negate for combining predicates. For example, Predicate.isEqual(a).
or(Predicate.isEqual(b)) is the same as x -> a.equals(x) || b.equals(x).

Consider another example. We want to transform images, applying a Color ->
Color function to each pixel. For example, the brightened image in Figure 3–1 is

obtained by calling

Image brightenedImage = transform(image, Color::brighter);

Chapter 3 Programming with Lambdas50

ptg12441863

Table 3–1 Common Functional Interfaces

Other
Methods

DescriptionAbstract
Method
Name

Type
ReturnParameter

Types
Functional Interface

Runs an action

without

arguments or

return value

runvoidnoneRunnable

Supplies a

value of type T
getTnoneSupplier<T>

chainConsumes a

value of type T
acceptvoidTConsumer<T>

chainConsumes

values of types

T and U

acceptvoidT, UBiConsumer<T, U>

compose,

andThen,

identity

A function with

argument of

type T

applyRTFunction<T, R>

andThenA function with

arguments of

types T and U

applyRT, UBiFunction<T, U,
R>

compose,

andThen,

identity

A unary

operator on the

type T

applyTTUnaryOperator<T>

andThenA binary

operator on the

type T

applyTT, TBinaryOperator<T>

and, or,

negate,

isEqual

A

Boolean-valued

function

testbooleanTPredicate<T>

and, or,

negate
A

Boolean-valued

function with

two arguments

testbooleanT, UBiPredicate<T,
U>

513.3 Choosing a Functional Interface

ptg12441863

Figure 3–1 The original and transformed image

There is a standard functional interface for this purpose: UnaryOperator<Color>. That

is a good choice, and there is no need to come up with a ColorTransformer interface.

Here is the implementation of the transform method. Note the call to the apply
method.

public static Image transform(Image in, UnaryOperator<Color> f) {
 int width = (int) in.getWidth();
 int height = (int) in.getHeight();
 WritableImage out = new WritableImage(width, height);
 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++)
 out.getPixelWriter().setColor(x, y,
 f.apply(in.getPixelReader().getColor(x, y)));
 return out;
}

NOTE: This method uses the Color and Image classes from JavaFX, not from
java.awt. See Chapter 4 for more information on JavaFX.

Table 3–2 lists the 34 available specializations for primitive types int, long, and

double. Use the specializations when you can to reduce autoboxing.

Sometimes, you need to supply your own functional interface because there is

nothing in the standard library that works for you. Suppose you want to modify

colors in an image, allowing users to specify a function (int, int, Color) -> Color
that computes a new color depending on the (x, y) location in the image. In that

case, you can define your own interface:

Chapter 3 Programming with Lambdas52

ptg12441863

Table 3–2 Functional Interfaces for Primitive Types
p, q is int, long, double;
P, Q is Int, Long, Double

Abstract Method NameReturn TypeParameter TypesFunctional Interface

getAsBooleanbooleannoneBooleanSupplier

getAsPpnonePSupplier

acceptvoidpPConsumer

acceptvoidT, pObjPConsumer<T>

applyTpPFunction<T>

applyAsQqpPToQFunction

applyAsPpTToPFunction<T>

applyAsPpT, UToPBiFunction<T, U>

applyAsPppPUnaryOperator

applyAsPpp, pPBinaryOperator

testbooleanpPPredicate

@FunctionalInterface
public interface ColorTransformer {
 Color apply(int x, int y, Color colorAtXY);
}

NOTE: I called the abstract method apply because that is used for the majority
of standard functional interfaces. Should you call the method process or
transform or getColor instead? It doesn’t matter much to users of the color
manipulation code—they will usually supply a lambda expression. Sticking
with the standard name simplifies the life of the implementor.

3.4 Returning Functions
In a functional programming language, functions are first-class citizens. Just like

you can pass numbers to methods and have methods that produce numbers, you

can have arguments and return values that are functions. This sounds abstract,

but it is very useful in practice. Java is not quite a functional language because

it uses functional interfaces, but the principle is the same. You have seen many

533.4 Returning Functions

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

methods that accept functional interfaces. In this section, we consider methods

whose return type is a functional interface.

Consider again image transformations. If you call

Image brightenedImage = transform(image, Color::brighter);

the image is brightened by a fixed amount. What if you want it even brighter, or

not quite so bright? Could you supply the desired brightness as an additional

parameter to transform?

Image brightenedImage = transform(image,
 (c, factor) -> c.deriveColor(0, 1, factor, 1), // Brighten c by factor
 1.2); // Use a factor of 1.2

One would have to overload transform:

public static <T> Image transform(Image in, BiFunction<Color, T> f, T arg)

That can be made to work (see Exercise 6), but what if one wants to supply two

arguments? Or three? There is another way. We can make a method that returns

the appropriate UnaryOperator<Color>, with the brightness set:

public static UnaryOperator<Color> brighten(double factor) {
 return c -> c.deriveColor(0, 1, factor, 1);
}

Then we can call

Image brightenedImage = transform(image, brighten(1.2));

The brighten method returns a function (or, technically, an instance of a functional

interface). That function can be passed to another method (here, transform) that

expects such an interface.

In general, don’t be shy to write methods that produce functions. This is useful

to customize the functions that you pass to methods with functional interfaces.

For example, consider the Arrays.sort method with a Comparator argument. There

are many ways of comparing values, and you can write a method that yields a

comparator for your needs—see Exercise 7. Then you can call Arrays.sort(values,
comparatorGenerator(customization arguments)).

NOTE: As you will see in Chapter 8, the Comparator class has several methods
that yield or modify comparators.

3.5 Composition
A single-argument function transforms one value into another. If you have two

such transformations, then doing one after the other is also a transformation.

Chapter 3 Programming with Lambdas54

ptg12441863

Figure 3–2 First, the image is brightened, and then grayscale is applied.

Consider image manipulation: Let’s first brighten an image, then turn it to

grayscale (see Figure 3–2).

NOTE: In the printed book, everything is in grayscale. Just run the program
in the companion code to see the effect.

That is easy to do with our transform method:

Image image = new Image("eiffel-tower.jpg");
Image image2 = transform(image, Color::brighter);
Image finalImage = transform(image2, Color::grayscale);

But this is not very efficient. We need to make an intermediate image. For large

images, that requires a considerable amount of storage. If we could compose the

image operations and then apply the composite operation to each pixel, that

would be better.

In this case, the image operations are instances of UnaryOperator<Color>. That type

has a method compose that, for rather depressing reasons that are explored in

Exercise 10, is not useful for us. But it is easy to roll our own:

553.5 Composition

ptg12441863

public static <T> UnaryOperator<T> compose(UnaryOperator<T> op1,
 UnaryOperator<T> op2) {
 return t -> op2.apply(op1.apply(t));
}

Now we can call

Image finalImage = transform(image, compose(Color::brighter, Color::grayscale));

That is much better. Now the composed transformation is directly applied to

each pixel, and there is no need for an intermediate image.

Generally, when you build a library where users can carry out one effect after

another, it is a good idea to give library users the ability to compose these effects.

See Exercise 11 for another example.

3.6 Laziness
In the preceding section, you saw how users of an image transformation method

can precompose operations to avoid intermediate images. But why should they

have to do that? Another approach is for the library to accumulate all operations

and then fuse them. This is, of course, what the stream library does.

If you do lazy processing, your API needs to distinguish between intermediate

operations, which accumulate the tasks to be done, and terminal operations which

deliver the result. In the image processing example, we can make transform lazy,

but then it needs to return another object that is not an Image. For example,

LatentImage latent = transform(image, Color::brighter);

A LatentImage can simply store the original image and a sequence of image

operations.

public class LatentImage {
 private Image in;
 private List<UnaryOperator<Color>> pendingOperations;
 ...
}

This class also needs a transform method:

LatentImage transform(UnaryOperator<Color> f) {
 pendingOperations.add(f);
 return this;
}

To avoid duplicate transform methods, you can follow the approach of the stream

library where an initial stream() operation is required to turn a collection into a

Chapter 3 Programming with Lambdas56

ptg12441863

stream. Since we can’t add a method to the Image class, we can provide a LatentImage
constructor or a static factory method.

LatentImage latent = LatentImage.from(image)
 .transform(Color::brighter).transform(Color::grayscale);

You can only be lazy for so long. Eventually, the work needs to be done. We can

provide a toImage method that applies all operations and returns the result:

Image finalImage = LatentImage.from(image)
 .transform(Color::brighter).transform(Color::grayscale)
 .toImage();

Here is the implementation of the method:

public Image toImage() {
 int width = (int) in.getWidth();
 int height = (int) in.getHeight();
 WritableImage out = new WritableImage(width, height);
 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++) {
 Color c = in.getPixelReader().getColor(x, y);
 for (UnaryOperator<Color> f : pendingOperations) c = f.apply(c);
 out.getPixelWriter().setColor(x, y, c);
 }
 return out;
}

CAUTION: In real life, implementing lazy operations is quite a bit harder.
Usually you have a mixture of operations, and not all of them can be applied
lazily. See Exercises 12 and 13.

3.7 Parallelizing Operations
When expressing operations as functional interfaces, the caller gives up control

over the processing details. As long as the operations are applied so that the

correct result is achieved, the caller has nothing to complain about. In particular,

the library can make use of concurrency. For example, in image processing we

can split the image into multiple strips and process each strip separately.

Here is a simple way of carrying out an image transformation in parallel. This

code operates on Color[][] arrays instead of Image objects because the JavaFX

PixelWriter is not threadsafe.

573.7 Parallelizing Operations

ptg12441863

public static Color[][] parallelTransform(Color[][] in, UnaryOperator<Color> f) {
 int n = Runtime.getRuntime().availableProcessors();
 int height = in.length;
 int width = in[0].length;
 Color[][] out = new Color[height][width];
 try {
 ExecutorService pool = Executors.newCachedThreadPool();
 for (int i = 0; i < n; i++) {
 int fromY = i * height / n;
 int toY = (i + 1) * height / n;
 pool.submit(() -> {
 for (int x = 0; x < width; x++)
 for (int y = fromY; y < toY; y++)
 out[y][x] = f.apply(in[y][x]);
 });
 }
 pool.shutdown();
 pool.awaitTermination(1, TimeUnit.HOURS);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 return out;
}

This is, of course, just a proof of concept. Supporting image operations that

combine multiple pixels would be a major challenge.

In general, when you are given an object of a functional interface and you need

to invoke it many times, ask yourself whether you can take advantage of

concurrency.

3.8 Dealing with Exceptions
When you write a method that accepts lambdas, you need to spend some thought

on handling and reporting exceptions that may occur when the lambda

expression is executed.

When an exception is thrown in a lambda expression, it is propagated to the

caller. There is nothing special about executing lambda expressions, of course.

They are simply method calls on some object that implements a functional

interface. Often it is appropriate to let the expression bubble up to the caller.

Chapter 3 Programming with Lambdas58

ptg12441863

Consider, for example:

public static void doInOrder(Runnable first, Runnable second) {
 first.run();
 second.run();
}

If first.run() throws an exception, then the doInOrder method is terminated, second
is never run, and the caller gets to deal with the exception.

But now suppose we execute the tasks asynchronously.

public static void doInOrderAsync(Runnable first, Runnable second) {
 Thread t = new Thread() {
 public void run() {
 first.run();
 second.run();
 }
 };
 t.start();
}

If first.run() throws an exception, the thread is terminated, and second is never

run. However, the doInOrderAsync returns right away and does the work in a sep-

arate thread, so it is not possible to have the method rethrow the exception. In

this situation, it is a good idea to supply a handler:

public static void doInOrderAsync(Runnable first, Runnable second,
 Consumer<Throwable> handler) {
 Thread t = new Thread() {
 public void run() {
 try {
 first.run();
 second.run();
 } catch (Throwable t) {
 handler.accept(t);
 }
 }
 };
 t.start();
}

Now suppose that first produces a result that is consumed by second. We can still

use the handler.

593.8 Dealing with Exceptions

ptg12441863

public static <T> void doInOrderAsync(Supplier<T> first, Consumer<T> second,
 Consumer<Throwable> handler) {
 Thread t = new Thread() {
 public void run() {
 try {
 T result = first.get();
 second.accept(result);
 } catch (Throwable t) {
 handler.accept(t);
 }
 }
 };
 t.start();
}

Alternatively, we could make second a BiConsumer<T, Throwable> and have it deal with

the exception from first—see Exercise 16.

It is often inconvenient that methods in functional interfaces don’t allow checked

exceptions. Of course, your methods can accept functional interfaces whose

methods allow checked exceptions, such as Callable<T> instead of Supplier<T>. A
Callable<T> has a method that is declared as T call() throws Exception. If you want

an equivalent for a Consumer or a Function, you have to create it yourself.

You sometimes see suggestions to “fix” this problem with a generic wrapper,

like this:

public static <T> Supplier<T> unchecked(Callable<T> f) {
 return () -> {
 try {
 return f.call();
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }
 catch (Throwable t) {
 throw t;
 }
 };
}

Then you can pass a

unchecked(() -> new String(Files.readAllBytes(
 Paths.get("/etc/passwd")), StandardCharsets.UTF_8))

to a Supplier<String>, even though the readAllBytes method throws an IOException.

Chapter 3 Programming with Lambdas60

ptg12441863

That is a solution, but not a complete fix. For example, this method cannot gen-

erate a Consumer<T> or a Function<T, U>. You would need to implement a variation of

unchecked for each functional interface.

3.9 Lambdas and Generics
Generally, lambdas work well with generic types. You have seen a number of

examples where we wrote generic mechanisms, such as the unchecked method

of the preceding section. There are just a couple of issues to keep in mind.

One of the unhappy consequences of type erasure is that you cannot construct

a generic array at runtime. For example, the toArray() method of Collection<T> and

Stream<T> cannot call T[] result = new T[n]. Therefore, these methods return Object[]
arrays. In the past, the solution was to provide a second method that accepts

an array. That array was either filled or used to create a new one via reflection.

For example, Collection<T> has a method toArray(T[] a). With lambdas, you have a

new option, namely to pass the constructor. That is what you do with streams:

String[] result = words.toArray(String[]::new);

When you implement such a method, the constructor expression is an

IntFunction<T[]>, since the size of the array is passed to the constructor. In your

code, you call T[] result = constr.apply(n).

In this regard, lambdas help you overcome a limitation of generic types. Unfor-

tunately, in another common situtation lambdas suffer from a different limitation.

To understand the problem, recall the concept of type variance.

Suppose Employee is a subtype of Person. Is a List<Employee> a special case of a

List<Person>? It seems that it should be. But actually, it would be unsound.

Consider this code:

List<Employee> staff = ...;
List<Person> tenants = staff; // Not legal, but suppose it was

tenants.add(new Person("John Q. Public")); // Adds Person to staff!

Note that staff and tenants are references to the same list. To make this type error

impossible, we must disallow the conversion from List<Employee> to List<Person>.
We say that the type parameter T of List<T> is invariant.

If List was immutable, as it is in a functional programming language, then the

problem would disappear, and one could have a covariant list. That is what is

done in languages such as Scala. However, when generics were invented, Java

had very few immutable generic classes, and the language designers instead

embraced a different concept: use-site variance, or “wildcards.”

A method can decide to accept a List<? extends Person> if it only reads from the list.

Then you can pass either a List<Person> or a List<Employee>. Or it can accept a

613.9 Lambdas and Generics

ptg12441863

List<? super Employee> if it only writes to the list. It is okay to write employees into

a List<Person>, so you can pass such a list. In general, reading is covariant (subtypes

are okay) and writing is contravariant (supertypes are okay). Use-site variance

is just right for mutable data structures. It gives each service the choice which

variance, if any, is appropriate.

However, for function types, use-site variance is a hassle. A function type is al-
ways contravariant in its arguments and covariant in its return value. For example,

if you have a Function<Person, Employee>, you can safely pass it on to someone who

needs a Function<Employee, Person>. They will only call it with employees, whereas

your function can handle any person. They will expect the function to return a

person, and you give them something even better.

In Java, when you declare a generic functional interface, you can’t specify that

function arguments are always contravariant and return types always covariant.

Instead, you have to repeat it for each use. For example, look at the javadoc for

Stream<T>:

void forEach(Consumer<? super T> action)
Stream<T> filter(Predicate<? super T> predicate)
<R> Stream<R> map(Function<? super T, ? extends R> mapper)

The general rule is that you use super for argument types, extends for return

types. That way, you can pass a Consumer<Object> to forEach on a Stream<String>. If it
is willing to consume any object, surely it can consume strings.

But the wildcards are not always there. Look at

T reduce(T identity, BinaryOperator<T> accumulator)

Since T is the argument and return type of BinaryOperator, the type does not vary.

In effect, the contravariance and covariance cancel each other out.

As the implementor of a method that accepts lambda expressions with generic

types, you simply add ? super to any argument type that is not also a return type,

and ? extends to any return type that is not also an argument type.

For example, consider the doInOrderAsync method of the preceding section.

Instead of

public static <T> void doInOrderAsync(Supplier<T> first,
 Consumer<T> second, Consumer<Throwable> handler)

it should be

public static <T> void doInOrderAsync(Supplier<? extends T> first,
 Consumer<? super T> second, Consumer<? super Throwable> handler)

Chapter 3 Programming with Lambdas62

ptg12441863

3.10 Monadic Operations
When you work with generic types, and with functions that yield values

from these types, it is useful to supply methods that let you compose these

functions—that is, carry out one after another. In this section, you will see a

design pattern for providing such compositions.

Consider a generic type G<T> with one type parameter, such as List<T> (zero or

more values of type T), Optional<T> (zero or one values of type T), or Future<T> (a
value of type T that will be available in the future).

Also consider a function T -> U, or a Function<T, U> object.

It often makes sense to apply this function to a G<T> (that is, a List<T>, Optional<T>,
Future<T>, and so on). How this works exactly depends on the nature of the

generic type G. For example, applying a function f to a List with elements e1, . . . , en

means creating a list with elements f(e1), . . . , f(en).

Applying f to an Optional<T> containing v means creating an Optional<U> contain-

ing f(v). But if f is applied to an empty Optional<T> without a value, the result is an

empty Optional<U>.

Applying f to a Future<T> simply means to apply it whenever it is available. The

result is a Future<U>.

By tradition, this operation is usually called map. There is a map method for Stream
and Optional. The CompletableFuture class that we will discuss in Chapter 6 has an

operation that does just what map should do, but it is called thenApply. There is no

map for a plain Future<V>, but it is not hard to supply one (see Exercise 21).

So far, that is a fairly straightforward idea. It gets more complex when you look

at functions T -> G<U> instead of functions T -> U. For example, consider getting

the web page for a URL. Since it takes some time to fetch the page, that is a

function URL -> Future<String>. Now suppose you have a Future<URL>, a URL that will

arrive sometime. Clearly it makes sense to map the function to that Future. Wait

for the URL to arrive, then feed it to the function and wait for the string to arrive.

This operation has traditionally been called flatMap.

The name flatMap comes from sets. Suppose you have a “many-valued”

function—a function computing a set of possible answers. And then you have

another such function. How can you compose these functions? If f(x) is the set

{y1, . . . , yn}, you apply g to each element, yielding {g(y1), . . . , g(yn)}. But each of

the g(yi) is a set. You want to “flatten” the set of sets so that you get the set of all

possible values of both functions.

633.10 Monadic Operations

ptg12441863

There is a flatMap for Optional<T> as well. Given a function T -> Optional<U>, flatMap
unwraps the value in the Optional and applies the function, except if either the

source or target option was not present. It does exactly what the set-based flatMap
would have done on sets with size 0 or 1.

Generally, when you design a type G<T> and a function T -> U, think whether it

makes sense to define a map that yields a G<U>. Then, generalize to functions T ->
G<U> and, if appropriate, provide flatMap.

NOTE: These operations are important in the theory of monads, but you don’t
need to know the theory to understand map and flatMap. The concept of map-
ping a function is both straightforward and useful, and the point of this section
is to make you aware of it.

Exercises
1. Enhance the lazy logging technique by providing conditional logging. A

typical call would be logIf(Level.FINEST, () -> i == 10, () -> "a[10] = " + a[10]).
Don’t evaluate the condition if the logger won’t log the message.

2. When you use a ReentrantLock, you are required to lock and unlock with the

idiom

myLock.lock();
try {

some action
} finally {
 myLock.unlock();
}

Provide a method withLock so that one can call

withLock(myLock, () -> { some action })

3. Java 1.4 added assertions to the language, with an assert keyword. Why were

assertions not supplied as a library feature? Could they be implemented as

a library feature in Java 8?

4. How many functional interfaces with Filter in their name can you find in the

Java API? Which ones add value over Predicate<T>?

5. Here is a concrete example of a ColorTransformer. We want to put a frame around

an image, like this:

Chapter 3 Programming with Lambdas64

ptg12441863

First, implement a variant of the transform method of Section 3.3, “Choosing

a Functional Interface,” on page 50, with a ColorTransformer instead of an

UnaryOperator<Color>. Then call it with an appropriate lambda expression to put

a 10 pixel gray frame replacing the pixels on the border of an image.

6. Complete the method

public static <T> Image transform(Image in, BiFunction<Color, T> f, T arg)

from Section 3.4, “Returning Functions,” on page 53.

7. Write a method that generates a Comparator<String> that can be normal or re-

versed, case-sensitive or case-insensitive, space-sensitive or space-insensitive,

or any combination thereof. Your method should return a lambda expression.

8. Generalize Exercise 5 by writing a static method that yields a ColorTransformer
that adds a frame of arbitrary thickness and color to an image.

9. Write a method lexicographicComparator(String... fieldNames) that yields a com-

parator that compares the given fields in the given order. For example, a

lexicographicComparator("lastname", "firstname") takes two objects and, using

reflection, gets the values of the lastname field. If they are different, return the

difference, otherwise move on to the firstname field. If all fields match, return 0.

10. Why can’t one call

UnaryOperator op = Color::brighter;
Image finalImage = transform(image, op.compose(Color::grayscale));

Look carefully at the return type of the compose method of UnaryOperator<T>.
Why is it not appropriate for the transform method? What does that say about

65Exercises

ptg12441863

the utility of structural and nominal types when it comes to function

composition?

11. Implement static methods that can compose two ColorTransformer objects, and

a static method that turns a UnaryOperator<Color> into a ColorTransformer that ig-

nores the x- and y-coordinates. Then use these methods to add a gray frame

to a brightened image. (See Exercise 5 for the gray frame.)

12. Enhance the LatentImage class in Section 3.6, “Laziness,” on page 56, so that it

supports both UnaryOperator<Color> and ColorTransformer. Hint: Adapt the former

to the latter.

13. Convolution filters such as blur or edge detection compute a pixel from

neighboring pixels. To blur an image, replace each color value by the average

of itself and its eight neighbors. For edge detection, replace each color value

c with 4c – n – e – s – w, where the other colors are those of the pixel to the

north, east, south, and west. Note that these cannot be implemented lazily,

using the approach of Section 3.6, “Laziness,” on page 56, since they require

the image from the previous stage (or at least the neighboring pixels) to have

been computed. Enhance the lazy image processing to deal with these opera-

tions. Force computation of the previous stage when one of these operators

is evaluated.

14. To deal with lazy evaluation on a per-pixel basis, change the transformers so

that they are passed a PixelReader object from which they can read other pixels

in the image. For example, (x, y, reader) -> reader.get(width - x, y) is a mirror-

ing operation. The convolution filters from the preceding exercises can be

easily implemented in terms of such a reader. The straightforward operations

would simply have the form (x, y, reader) -> reader.get(x, y).grayscale(), and

you can provide an adapter from UnaryOperation<Color>. A PixelReader is at a

particular level in the pipeline of operations. Keep a cache of recently read

pixels at each level in the pipeline. If a reader is asked for a pixel, it looks in

the cache (or in the original image at level 0); if that fails, it constructs a

reader that asks the previous transform.

15. Combine the lazy evaluation of Section 3.6, “Laziness,” on page 56, with the

parallel evaluation of Section 3.7, “Parallelizing Operations,” on page 57.

16. Implement the doInOrderAsync of Section 3.8, “Dealing with Exceptions,” on

page 58, where the second parameter is a BiConsumer<T, Throwable>. Provide

a plausible use case. Do you still need the third parameter?

17. Implement a doInParallelAsync(Runnable first, Runnable second, Consumer<Throwable>)
method that executes first and second in parallel, calling the handler if

either method throws an exception.

Chapter 3 Programming with Lambdas66

ptg12441863

18. Implement a version of the unchecked method in Section 3.8, “Dealing with

Exceptions,” on page 58, that generates a Function<T, U> from a lambda that

throws checked exceptions. Note that you will need to find or provide a

functional interface whose abstract method throws arbitrary exceptions.

19. Look at the Stream<T> method <U> U reduce(U identity, BiFunction<U,? super T,U>
accumulator, BinaryOperator<U> combiner). Should U be declared as ? super U in the

first type argument to BiFunction? Why or why not?

20. Supply a static method <T, U> List<U> map(List<T>, Function<T, U>).

21. Supply a static method <T, U> Future<U> map(Future<T>, Function<T, U>). Return an

object of an anonymous class that implements all methods of the Future
interface. In the get methods, invoke the function.

22. Is there a flatMap operation for CompletableFuture? If so, what is it?

23. Define a map operation for a class Pair<T> that represents a pair of objects of

type T.

24. Can you define a flatMap method for Pair<T>? If so, what is it? If not, why not?

67Exercises

ptg12441863Topics in This Chapter

4.1 A Brief History of Java GUI Programming — page 70

4.2 Hello, JavaFX! — page 71

4.3 Event Handling — page 72

4.4 JavaFX Properties — page 73

4.5 Bindings — page 75

4.6 Layout — page 80

4.7 FXML — page 86

4.8 CSS — page 90

4.9 Animations and Special Effects — page 91

4.10 Fancy Controls — page 94

Exercises — page 97

JavaFX

ptg12441863JavaFX is the recommended user interface toolkit for writing rich client applica-

tions with Java. JavaFX is now bundled with all supported versions of Oracle’s

Java platform. In this chapter, you will learn the basics of JavaFX development.

If you develop rich client user interface platforms, you will see how to transition

from Swing to JavaFX. If you don’t, skim over the chapter anyway so you can

understand the sample applications we use elsewhere when it is convenient to

illustrate a concept with a graphical program.

The key points of this chapter are:

• A scene graph is made up of nodes which may contain other nodes.

• A scene is displayed on a stage (a top-level window, the surface of an applet,

or the full screen).

• Some controls (such as buttons) emit events, but most JavaFX events come

from property changes.

• JavaFX properties emit change and invalidation events.

• When you bind a property to another, it is updated when the other one

changes.

• JavaFX uses layout panes that work similar to layout managers in Swing.

• You can specify layout with the FXML markup language.

• You can use CSS to change the visual appearance of your application.

4Chapter

69

ptg12441863

• It is easy to implement animations and special effects.

• JavaFX provides some advanced controls out of the box, such as charts, an

embedded WebKit browser, and a media player.

4.1 A Brief History of Java GUI Programming
When Java was born, the Internet was in its infancy and personal computers

were on every desktop. Business applications were implemented with “fat

clients”—programs with lots of buttons and sliders and text fields that commu-

nicated with a server. This was considered a lot nicer than the “dumb terminal”

applications from an even earlier era. Java 1.0 included the AWT, a toolkit for

graphical user interfaces, that had the distinction of being cross-platform. The

idea was to serve up the fat clients over the nascent Web, eliminating the cost of

managing and updating the applications on every desktop.

The AWT had a noble idea: provide a common programming interface for the

native buttons, sliders, text fields, and so on of various operating systems. But it

didn’t work very well. There were subtle differences in the functionality of the

user interface widgets in each operating system, and what should have been

“write once, run anywhere” turned into “write many times, debug everywhere.”

Next came Swing. The central idea behind Swing was not to use the native wid-

gets, but to paint its own. That way, the user interface would look and feel the

same on every platform. Or, if users preferred, they could ask for the native look

and feel of their platform, and the Swing widgets would be painted to match

the native ones. Of course, all that painting was slow, and users complained.

After a while, computers got faster, and users complained that Swing was

ugly—indeed, it had fallen behind the native widgets that had been spruced up

with animations and fancy effects. More ominously, Flash was increasingly used

to create user interfaces with even flashier effects that didn’t use the native

controls at all.

In 2007, Sun Microsystems introduced a new technology, called JavaFX, as a

competitor to Flash. It ran on the Java VM but had its own programming lan-

guage, called JavaFX Script. The language was optimized for programming ani-

mations and fancy effects. Programmers complained about the need to learn a

new language, and they stayed away in droves. In 2011, Oracle released a new

version, JavaFX 2.0, that had a Java API and no longer needed a separate pro-

gramming language. As of Java 7 update 6, JavaFX 2.2 has been bundled with

the JDK and JRE. Since it wouldn’t be a true part of Java if it didn’t have crazy

jumps in version numbers, the version accompanying Java 8 is called JavaFX 8.

Of course, Flash is now a bad memory, and most user interfaces live in a browser

or a mobile device. Still, there are situations where a “fat client” on a desktop

makes users more productive. Also, Java now runs on ARM processors, and

Chapter 4 JavaFX70

ptg12441863

there are embedded systems that need user interfaces, such as kiosks and

in-car displays. JavaFX is what Oracle wants us to use for those applications.

Why didn’t Oracle just put the good parts of JavaFX into Swing? Swing would

have to be redesigned from the ground up to run efficiently on modern

graphics hardware. Oracle decided that it wasn’t worth the trouble and declared

that Swing will not be further developed.

In this chapter, we go over the basics of writing user interfaces in JavaFX, focusing

on boring business applications with buttons, sliders, and text fields, not the

flashy effects that were the original motivation behind JavaFX.

4.2 Hello, JavaFX!
Let’s start with a simple program that shows a message (see Figure 4–1). Like in

Swing, use a label:

Label message = new Label("Hello, JavaFX!");

NOTE: Note that there are no unsightly J prefixes. In Swing, the equivalent
control was called JLabel to distinguish it from the AWT Label.

We increase the font size:

message.setFont(new Font(100));

This Font constructor makes a font object representing the default font at

100 points.

In JavaFX, you put everything you want to show onto a scene. There, you can

decorate and animate your “actors”—that is, your controls and shapes. In our

program, we won’t do any decorating or animating, but we still need the scene.

And the scene must reside in a stage. That is a top-level window if the program

runs on a desktop, or a rectangular area if it runs as an applet. The stage is passed

as a parameter to the start method that you must override in a subclass of the

Application class.

Figure 4–1 The “Hello, World” program for JavaFX

714.2 Hello, JavaFX!

ptg12441863

public class HelloWorld extends Application {
 public void start(Stage stage) {
 Label message = new Label("Hello, JavaFX!");
 message.setFont(new Font(100));
 stage.setScene(new Scene(message));
 stage.setTitle("Hello");
 stage.show();
 }
}

NOTE: As you see from this example, no main method is required to launch
a JavaFX application. In previous versions of JavaFX, you were required to
include a main method of the form

public class MyApp extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 ...
}

4.3 Event Handling
Graphical user interfaces are event driven. Users click on buttons, adjust sliders,

and so on. As they carry out these actions, the UI reacts and updates itself.

As in Swing, you add an event handler to a button so you can be notified when

it is clicked. Lambda expressions make this very simple:

Button red = new Button("Red");
red.setOnAction(event -> message.setTextFill(Color.RED));

When the button is clicked, the lambda is called. In this case, it sets the text color

to red.

However, with most JavaFX controls, event handling is different. Consider a

slider, as shown in Figure 4–2. When the slider is adjusted, its value changes.

However, you shouldn’t listen to the low-level events that the slider emits to in-

dicate those changes. Instead, the slider has a JavaFX property called value, and

the property emits events when it changes. We will discuss properties in detail

in the next section, but here is how you can listen to the property’s events and

adjust the font size of the message:

slider.valueProperty().addListener(property
 -> message.setFont(new Font(slider.getValue())));

Chapter 4 JavaFX72

ptg12441863

Figure 4–2 Processing slider events

Listening to properties is very common in JavaFX. For example, if you want to

change a part of the user interface as a user enters text into a text field, add a

listener to the text property.

NOTE: Buttons are special. Clicking a button doesn’t change one of its
properties.

4.4 JavaFX Properties
A property is an attribute of a class that you can read or write. Commonly, the

property is backed by a field, and the property getter and setter simply read and

write that field. But the getter and setter can also take other actions, such as

reading values from a database or sending out change notifications. In many

programming languages, there is convenient syntax for invoking property getters

and setters. Typically, using the property on the right-hand side of an as-

signments calls the getter, and using it on the left-hand side calls the setter.

value = obj.property;
 // In many languages (but not Java), this calls the property getter

obj.property = value; // And this calls the property setter

Sadly, Java does not have such syntax. But it has supported properties by con-

vention since Java 1.1. The JavaBeans specification states that a property should

be inferred from a getter/setter pair. For example, a class with methods String
getText() and void setText(String newValue) is deemed to have a text property. The

Introspector and BeanInfo classes in the java.beans package let you enumerate all

properties of a class.

The JavaBeans specification also defines bound properties, where objects emit

property change events when the setters are invoked. JavaFX does not make use

of this part of the specification. Instead, a JavaFX property has a third method,

734.4 JavaFX Properties

ptg12441863

besides the getter and setter, that returns an object implementing the Property
interface. For example, a JavaFX text property has a method Property<String>
textProperty(). You can attach a listener to the property object. That’s different

from old-fashioned JavaBeans. In JavaFX, the property object, not the bean, sends

out notifications. There is a good reason for this change. Implementing bound

JavaBeans properties required boilerplate code to add, remove, and fire listeners;

in JavaFX it’s much simpler because there are library classes that do all that work.

Let’s see how we can implement a property text in a class Greeting. Here is the

simplest way to do that:

public class Greeting {
 private StringProperty text = new SimpleStringProperty("");
 public final StringProperty textProperty() { return text; }
 public final void setText(String newValue) { text.set(newValue); }
 public final String getText() { return text.get(); }
}

The StringProperty class wraps a string. It has methods for getting and setting the

wrapped value and for managing listeners. As you can see, implementing a

JavaFX property requires some boilerplate code, and there is unfortunately no

way in Java to generate the code automatically. But at least you won’t have

to worry about managing listeners.

It is not a requirement to declare property getters and setters as final, but the

JavaFX designers recommend it.

NOTE: With this pattern, a property object is needed for each property,
whether anyone listens to it or not. Exercise 2 explores a useful optimization
for the pattern, creating the property objects lazily.

In the preceding example, we defined a StringProperty. For a primitive type

property, use one of IntegerProperty, LongProperty, DoubleProperty, FloatProperty, or

BooleanProperty. There are also ListProperty, MapProperty, and SetProperty classes. For

everything else, use an ObjectProperty<T>. All these are abstract classes with concrete

subclasses SimpleIntegerProperty, SimpleObjectProperty<T>, and so on.

NOTE: If all you care about is managing listeners, your property methods can
return objects of type ObjectProperty<T>, or even the Property<T> interface.The
more specialized classes are useful to make computations with the properties,
as explained in Section 4.5, “Bindings,” on page 75.

Chapter 4 JavaFX74

ptg12441863

NOTE: The property classes have methods getValue and setValue in addition
to the get and set methods. In the StringProperty class, get is identical to
getValue, and set to setValue. But for primitive types, they are different. For
example, in an IntegerProperty, getValue returns an Integer, and get returns
an int. Generally, use get and set unless you write generic code that needs
to work with properties of any type.

There are two kinds of listeners that can be attached to a property. A ChangeListener
is notified when the property value has changed, and an InvalidationListener is
called when the property value may have changed. The distinction matters if a

property is evaluated lazily. As you will see in the next section, some properties

are computed from others, and the computation is only done when necessary.

The ChangeListener callback tells you the old and new value, which means it has

to compute the new value. The InvalidationListener doesn’t compute the new value,

but that means you might get a callback when the value hasn’t actually changed.

In most situations, that difference is immaterial. It doesn’t matter much whether

you get the new value as a callback parameter or from the property. And usually,

it is not worth worrying about computed properties that happen to stay un-

changed even though one of their inputs changed. In the preceding section, I

used an InvalidationListener because it made the code simpler.

CAUTION: It is a bit tricky to use the ChangeListener interface for numeric
properties. One would like to call

slider.valueProperty().addListener((property, oldValue, newValue)
 -> message.setFont(new Font(newValue)));

But that does not work. DoubleProperty implements Property<Number> and not
Property<Double>. Therefore, the type for oldValue and newValue is Number and
not Double, so you have to manually unbox:

slider.valueProperty().addListener((property, oldValue, newValue)
 -> message.setFont(new Font(newValue.doubleValue())));

4.5 Bindings
The raison d’être for JavaFX properties is the notion of binding: automatically

updating one property when another one changes. Consider, for example, the

application in Figure 4–3. When the user edits the top address, the bottom

one is updated as well.

754.5 Bindings

ptg12441863

Figure 4–3 The bound text property updates automatically.

This is achieved by binding one property to the other:

billing.textProperty().bind(shipping.textProperty());

Under the hood, a change listener is added to the text property of shipping that

sets the text property of billing.

You can also call

billing.textProperty().bindBidirectional(shipping.textProperty());

If either of the properties changes, the other is updated.

To undo a binding, call unbind or unbindBidirectional.

The binding mechanism solves a common problem in user interface program-

ming. For example, consider a date field and a calendar picker. When the user

picks a date from the calendar, the date field should be automatically updated,

as should be the date property of the model.

Of course, in many situations, one property depends on another, but the relation-

ship is more complex. Consider Figure 4–4. We always want the circle centered

in the scene. That is, its centerX property should be one half of the width property

of the scene.

To achieve this, we need to produce a computed property. The Bindings class has

static methods for this purpose. For example, Bindings.divide(scene.widthProperty(),
2) is a property whose value is one half of the scene width. When the scene width

Chapter 4 JavaFX76

ptg12441863

Figure 4–4 The center of this circle is bound to half the width and height of the scene.

changes, so does that property. All that remains is to bind that computed property

to the circle’s centerX property:

circle.centerXProperty().bind(Bindings.divide(scene.widthProperty(), 2));

NOTE: Alternatively, you can call scene.widthProperty().divide(2). With more
complex expressions, the static Bindings methods seems a bit easier to read,
particularly if you use

import static javafx.beans.binding.Bindings.*;

and write divide(scene.widthProperty(), 2).

Here is a more realistic example. We want to disable the Smaller and Larger buttons

when the gauge is too small or large (Figure 4–5).

smaller.disableProperty().bind(Bindings.lessThanOrEqual(gauge.widthProperty(), 0));
larger.disableProperty().bind(Bindings.greaterThanOrEqual(gauge.widthProperty(), 100));

When the width is ≤ 0, the Smaller button is disabled. When the width is ≥ 100,

the Larger button is disabled.

Table 4–1 lists all operators that the Bindings class provides. One or both of the

arguments implement the Observable interface or one of its subinterfaces.

The Observable interface provides methods for adding and removing an

InvalidationListener. The ObservableValue interface adds ChangeListener management

and a getValue method. Its subinterfaces provide methods to get the value in the

appropriate type. For example, the get method of ObservableStringValue returns a

String and the get method of ObservableIntegerValue returns an int. The return types

774.5 Bindings

ptg12441863

Figure 4–5 When the gauge reaches either end, a button is disabled.

of the methods of the Bindings are subinterfaces of the Binding interface, itself a

subinterface of the Observable interface. A Binding knows about all properties on

which it depends.

In practice, you don’t need to worry about all of these interfaces. You combine

properties and you get something that you can bind to another property.

Table 4–1 Operators Supplied by the Bindings Class

ArgumentsMethod Name

Two of ObservableNumberValue, int, long, float,

double
add, subtract, multiply, divide, max,

min

An ObservableNumberValuenegate

Two of ObservableNumberValue, int, long, float,

double or two of ObservableStringValue, String
greaterThan, greaterThanOrEqual,

lessThan, lessThanOrEqual

Two of ObservableObjectValue,

ObservableNumberValue, int, long, float, double,

Object

equal, notEqual

Two of ObservableStringValue, StringequalIgnoreCase, notEqualIgnoreCase

An Observable(List|Map|Set|StringValue)isEmpty, isNotEmpty

An ObservableObjectValueisNull, isNotNull

An ObservableStringValuelength

An Observable(List|Map|Set)size

Two ObservableBooleanValueand, or

An ObservableBooleanValuenot

Chapter 4 JavaFX78

ptg12441863

Table 4–1 Operators Supplied by the Bindings Class (Continued)

ArgumentsMethod Name

An ObservableValue that is converted to a

string binding

convert

A sequence of objects whose toString values

are concatenated. If any of the objects is an

ObservableValue that changes, the

concatenation changes too.

concat

An optional locale, a MessageFormat string, and

a sequence of objects that are formatted. If

any of the objects is an ObservableValue that

changes, the formatted string changes too.

format

An ObservableList and an index, or an

ObservableMap and a key

valueAt
(double|float|integer|long)ValueAt
stringValueAt

A Callable and a list of dependenciescreate(Boolean|Double|Float|Integer|
Long|Object|String)Binding

An Object or ObservableValue and a sequence

of public property names, yielding the

property obj.p1.p2.pn

select
select(Boolean|Double|Float|

Integer|Long|String)

Yields a builder for a conditional operator.

The binding when(b).then(v1).otherwise(v2)
yields v1 or v2, depending on whether the

ObservableBooleanValue b is true or not. Here,

v1 or v2 can be regular or observable values.

The conditional value is recomputed

whenever an observable value changes.

when

Building up a computed property with the methods of the Bindings class can get

quite baroque. There is another approach for producing computed bindings that

you may find easier. Simply put the expression that you want to have computed

into a lambda, and supply a list of dependent properties. When any of the

properties changes, the lambda is recomputed. For example,

larger.disableProperty().bind(
 createBooleanBinding(
 () -> gauge.getWidth() >= 100, // This expression is computed . . .

 gauge.widthProperty())); // . . . when this property changes

Exercise 5 suggests a slightly more elegant way of lazily evaluating bindings

with lambda expressions.

794.5 Bindings

ptg12441863

NOTE: In the JavaFX Script language, the compiler analyzed binding
expressions and automatically figured out the dependent properties.You just
declared disable bind gauge.width >= 100, and the compiler attached a listener
to the gauge.width property. Of course, in Java, the programmer needs to
supply this information.

4.6 Layout
When a graphical user interface contains multiple controls, they need to be ar-

ranged on the screen in a functional and attractive way. One way to obtain a

layout is with a design tool. The tool’s user, often a graphics designer, drags im-

ages of the controls onto a design view and arranges, resizes, and configures

them. However, this approach can be problematic when the sizes of the elements

change, for example, because labels have different lengths in international

versions of a program.

Alternatively, the layout can be achieved programmatically, by writing code in

a setup method that adds the user interface controls to specific positions. That is

what was done in Swing, using layout manager objects.

Another approach is to specify the layout in a declarative language. For example,

web pages are laid out with HTML and CSS. Similarly, Android has an XML

language for specifying layouts.

JavaFX supports all three approaches. The JavaFX SceneBuilder is a visual GUI

builder. You can download it from www.oracle.com/technetwork/java/javafx/

overview. Figure 4–6 shows a screenshot.

We won’t discuss the SceneBuilder program further. When you understand the

concepts of this section, you will find it straightforward to use.

Programmatic layout is very similar to Swing. However, instead of layout man-

agers that are added to arbitrary panels, one uses panes—containers with a layout

policy. For example, a BorderPane has five areas: North, West, South, East, and

Center. Here we place a button into each:

BorderPane pane = new BorderPane();
pane.setTop(new Button("Top"));
pane.setLeft(new Button("Left"));
pane.setCenter(new Button("Center"));
pane.setRight(new Button("Right"));
pane.setBottom(new Button("Bottom"));
stage.setScene(new Scene(pane));

Figure 4–7 shows the result.

Chapter 4 JavaFX80

http://www.oracle.com/technetwork/java/javafx/overview
http://www.oracle.com/technetwork/java/javafx/overview

ptg12441863

Figure 4–6 The JavaFX SceneBuilder

Figure 4–7 The BorderPane layout

NOTE: With the Swing BorderLayout, buttons were expanded to fill each region
of the layout. In JavaFX, a button does not expand past its natural size.

Now suppose you want more than one button in the South area. Use an HBox (see

Figure 4–8):

HBox box = new HBox(10); // ten pixels between controls

box.getChildren().addAll(yesButton, noButton, maybeButton);

814.6 Layout

ptg12441863

Figure 4–8 Laying out buttons with an HBox

Of course, there is a VBox for laying out controls vertically. The layout in Figure 4–8

was achieved like this:

VBox pane = new VBox(10);
pane.getChildren().addAll(question, buttons);
pane.setPadding(new Insets(10));

Note the padding property. Without it, the label and the buttons would touch the

window border.

CAUTION: In JavaFX, dimensions are specified in pixels. In our example, we
use ten pixels for the box spacing and padding. This is not really appropriate
nowadays, when pixel densities can vay widely. One way to overcome this is
to compute dimensions in rem, as you would do in CSS3. (A rem or “root em”
is the height of the default font of the document root.)

final double rem = new Text("").getLayoutBounds().getHeight();
pane.setPadding(new Insets(0.8 * rem));

There is only so much you can achieve with horizontal and vertical boxes. Just

as Swing had the GridBagLayout as “the mother of all layout managers,” JavaFX has

the GridPane. Think of a GridPane as an equivalent of an HTML table. You can

set the horizontal and vertical alignment of all cells. If desired, cells can span

multiple rows and columns. Consider the login dialog in Figure 4–9.

Figure 4–9 A GridPane can arrange the controls for this login dialog.

Chapter 4 JavaFX82

ptg12441863

Note the following:

• The labels “User name:” and “Password:” are right aligned.

• The buttons are in an HBox that spans two rows.

When you add a child to a GridPane, specify its column and row index (in that

order; think x- and y-coordinates).

pane.add(usernameLabel, 0, 0);
pane.add(username, 1, 0);
pane.add(passwordLabel, 0, 1);
pane.add(password, 1, 1);

If a child spans multiple columns or rows, specify the spans after the positions.

For example, the button panel spans two columns and one row:

pane.add(buttons, 0, 2, 2, 1);

If you want a child to span all remaining rows or columns, you can use

GridPane.REMAINING.

To set the horizontal alignment of a child, use the static setHalignment method,

and pass the child reference and a constant LEFT, CENTER, or RIGHT from the HPos
enumeration.

GridPane.setHalignment(usernameLabel, HPos.RIGHT);

Similarly, for vertical alignment, call setValignment and use TOP, CENTER, or BOTTOM from

the VPos enumeration.

NOTE: These static calls look rather inelegant in Java code, but they make
sense in the FXML markup language—see the next section.

CAUTION: Do not center the HBox with the buttons inside the grid. That box
has expanded to the full horizontal size, and centering will not change its
position. Instead, tell the HBox to center its contents:

buttons.setAlignment(Pos.CENTER);

You will also want to provide some spacing around the rows and columns and

some padding around the table:

pane.setHgap(0.8 * em);
pane.setVgap(0.8 * em);
pane.setPadding(new Insets(0.8 * em));

834.6 Layout

ptg12441863

TIP: For debugging, it can be useful to see the cell boundaries (see
Figure 4–10). Call

pane.setGridLinesVisible(true);

If you want to see the borders of an individual child (for example, to see
whether it has grown to fill the entire cell), set its border. This is most easily
done with CSS:

buttons.setStyle("-fx-border-color: red;");

Figure 4–10 Use visible grid lines when debugging a GridPane.

These layout panes should suffice for the majority of applications. Table 4–2

shows all layouts that come with JavaFX.

Table 4–2 JavaFX Layouts

DescriptionPane Class

Lines up children horizontally or vertically.HBox, VBox

Lays out children in a tabular grid, similar to the Swing GridBagLayout.GridPane

Lays out children in a grid, giving them all the same size, similar to

the Swing GridLayout.

TilePane

Provides the areas North, East, South, West, and Center, similar to the

Swing BorderLayout.

BorderPane

Flows children in rows, making new rows when there isn’t sufficient

space, similar to the Swing FlowLayout.

FlowPane

Children can be positioned in absolute positions, or relative to pane’s

boundaries. This is the default in the SceneBuilder layout tool.

AnchorPane

Stacks children above each other. Can be useful for decorating

components, such as stacking a button over a colored rectangle.

StackPane

Chapter 4 JavaFX84

ptg12441863

NOTE: In this section, we built up user interfaces by manually nesting panes
and controls. JavaFX Script had a “builder” syntax for describing such nested
structures (called the “scene graph”). JavaFX 2 used builder classes to imitate
that syntax. Here is how to build up the login dialog:

GridPane pane = GridPaneBuilder.create()
 .hgap(10)
 .vgap(10)
 .padding(new Insets(10))
 .children(
 usernameLabel = LabelBuilder.create()
 .text("User name:")
 .build(),
 passwordLabel = LabelBuilder.create()
 .text("Password:")
 .build(),
 username = TextFieldBuilder.create().build(),
 password = PasswordFieldBuilder.create().build(),
 buttons = HBoxBuilder.create()
 .spacing(10)
 .alignment(Pos.CENTER)
 .children(
 okButton = ButtonBuilder.create()
 .text("Ok")
 .build(),
 cancelButton = ButtonBuilder.create()
 .text("Cancel")
 .build())
 .build())
 .build();

That’s amazingly verbose, and it’s not even the full story—one still needed to
specify the grid constraints. Builders have been deprecated in JavaFX 8, not
because they are so verbose, but because of an implementation issue. To
save code, builders have an inheritance tree that parallels the inheritance of
the corresponding nodes. For example, GridPaneBuilder extends PaneBuilder
because GridPane extends Pane. But now you have a problem. What should
PaneBuilder.children return? If it only returns a PaneBuilder, then the user has
to be very careful to first configure the subclass properties, then the super-
class properties. The JavaFX designers tried to solve this problem with gen-
erics. The methods of a PaneBuilder return a B, so that a GridPaneBuilder
can extend PaneBuilder<GridPaneBuilder>.Wait, that can’t work—GridPaneBuilder
is itself generic, so that would have to be a GridPaneBuilder<GridPaneBuilder>,
or really a GridPaneBuilder<GridPaneBuilder<something>>. This circularity was

854.6 Layout

ptg12441863

overcome with some tricks, but those tricks are unsound, and they won’t work
in future versions of Java. Thus, builders were withdrawn.

If you like builders, you can use Scala or Groovy and their JavaFX bindings
(https://code.google.com/p/scalafx, http://groovyfx.org).

4.7 FXML
The markup language that JavaFX uses to describe layouts is called FXML. I

discuss it in some detail because the concepts are interesting beyond the needs

of JavaFX, and the implementation is fairly general.

Here is the FXML markup for the login dialog of the preceding section:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<GridPane hgap="10" vgap="10">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 <children>
 <Label text="User name:" GridPane.columnIndex="0" GridPane.rowIndex="0"
 GridPane.halignment="RIGHT" />
 <Label text="Password: " GridPane.columnIndex="0" GridPane.rowIndex="1"
 GridPane.halignment="RIGHT" />
 <TextField GridPane.columnIndex="1" GridPane.rowIndex="0"/>
 <PasswordField GridPane.columnIndex="1" GridPane.rowIndex="1" />
 <HBox GridPane.columnIndex="0" GridPane.rowIndex="2"
 GridPane.columnSpan="2" alignment="CENTER" spacing="10">
 <children>
 <Button text="Ok" />
 <Button text="Cancel" />
 </children>
 </HBox>
 </children>
</GridPane>

Have a closer look at the FXML file. Note the “processing instructions” <?import
...?> for importing Java packages. (In general, XML processing instructions are

an “escape hatch” for application-specific processing of XML documents.)

Chapter 4 JavaFX86

https://code.google.com/p/scalafx
http://groovyfx.org

ptg12441863

Now look at the structure of the document. First off, the nesting of the GridPane,
the labels and text fields, the HBox and its button children reflects the nesting that

we built up with Java code in the preceding section.

Most of the attributes correspond to property setters. For example,

<GridPane hgap="10" vgap="10">

means “construct a GridPane and then set the hgap and vgap properties.”

When an attribute starts with a class name and a static method, that method is

invoked. For example,

<TextField GridPane.columnIndex="1" GridPane.rowIndex="0"/>

means that the static methods GridPane.setColumnIndex(thisTextField, 1) and GridPane.
setRowIndex(thisTextField, 0) will be called.

NOTE: Generally, an FXML element is constructed with its default constructor
and then customized by calling property setters or static methods, in the spirit
of the JavaBeans specification. There are a few exceptions that we will
consider later.

When a property value is too complex to express as a string, one uses nested

elements instead of attributes. Consider, for example,

<GridPane hgap="10" vgap="10">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 ...

The padding property has type Insets, and the Insets object is constructed with an

<Insets ...> child element that specifies how to set its properties.

Finally, there is a special rule for list properties. For example, children is a list

property, and calling

<HBox ...>
 <children>
 <Button text="Ok" />
 <Button text="Cancel" />
 </children>
 </HBox>

adds the buttons to the list returned by getChildren.

You can write FXML files by hand, or you can use the SceneBuilder program that

I mentioned in the preceding section. Once you have such a file, load it like this:

874.7 FXML

ptg12441863

public void start(Stage stage) {
 try {
 Parent root = FXMLLoader.load(getClass().getResource("dialog.fxml"));
 stage.setScene(new Scene(root));
 stage.show();
 } catch (IOException ex) {
 ex.printStackTrace();
 System.exit(0);
 }
}

Of course, this is not yet useful by itself. The user interface is displayed, but the

program cannot access the values that the user provides. One way of establishing

a connection between the controls and the program is to use id attributes, as you

would in JavaScript. Provide the id attributes in the FXML file:

<TextField id="username" GridPane.columnIndex="1" GridPane.rowIndex="0"/>

In the program, look up the control:

TextField username = (TextField) root.lookup("#username");

But there is a better way. You can use the @FXML annotation to “inject” the control

objects into a controller class. The controller class must implement the Initializable
interface. In the controller’s initialize method, you wire up the binders and event

handlers. Any class can be the controller, even the FX application itself.

For example, here is a controller for our login dialog:

public class LoginDialogController implements Initializable {
 @FXML private TextField username;
 @FXML private PasswordField password;
 @FXML private Button okButton;

 public void initialize(URL url, ResourceBundle rb) {
 okButton.disableProperty().bind(
 Bindings.createBooleanBinding(
 () -> username.getText().length() == 0
 || password.getText().length() == 0,
 username.textProperty(),
 password.textProperty()));
 okButton.setOnAction(event ->
 System.out.println("Verifying " + username.getText()
 + ":" + password.getText()));
 }

Chapter 4 JavaFX88

ptg12441863

In the FXML file, provide the names of the controller’s instance variables to the

corresponding control elements in the FXML file, using the fx:id (not id) attribute:

<TextField fx:id="username" GridPane.columnIndex="1" GridPane.rowIndex="0"/>
<PasswordField fx:id="password" GridPane.columnIndex="1" GridPane.rowIndex="1" />
<Button fx:id="okButton" text="Ok" />

In the root element, you also need to declare the controller class, using the

fx:controller attribute:

<GridPane xmlns:fx="http://javafx.com/fxml" hgap="10" vgap="10"
fx:controller="LoginDialogController">

Note the namespace attribute to introduce the FXML namespace.

NOTE: If your controller doesn’t have a default constructor (perhaps, because
it is being initialized with a reference to a business service), you can set it
programmatically:

FXMLLoader loader = new FXMLLoader(getClass().getResource(...));
loader.setController(new Controller(service));
Parent root = (Parent) loader.load();

CAUTION: If you set the controller programmatically, really use the code from
the preceding note. The following code will compile, but it will invoke the
static FXMLLoader.load method, ignoring the constructed loader:

FXMLLoader loader = new FXMLLoader();
loader.setController(...);
Parent root = (Parent) loader.load(getClass().getResource(...));
 // Error—calls static method

When the FXML file is loaded, the scene graph is constructed, and references to

the named control objects are injected into the annotated fields of the controller

object. Then its initialize method is called.

It is even possible do much of the initialization in the FXML file. You can define

simple bindings, and you can set annotated controller methods as event listeners.

The syntax is documented at http://docs.oracle.com/javafx/2/api/javafx/

fxml/doc-files/introduction_to_fxml.html. However, let’s not dwell on these

features. It seems better to separate the visual design from the program behavior,

so that a user interface designer can produce the design and a programmer can

implement the behavior.

894.7 FXML

http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-.les/introduction_to_fxml.html
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-.les/introduction_to_fxml.html

ptg12441863

NOTE: It is also possible to add scripts in JavaScript or another scripting
language to an FXML file. We will discuss this briefly in Chapter 7.

4.8 CSS
JavaFX lets you change the visual appearance of the user interface with CSS,

which is usually more convenient than supplying FXML attributes or calling Java

methods.

You can load a CSS style sheet programmatically and have it applied to a scene

graph:

Scene scene = new Scene(pane);
scene.getStylesheets().add("scene.css");

In the style sheet, you can reference any controls that have an ID. For example,

here is how you can control the appearance of a GridPane. In the code, set the ID:

GridPane pane = new GridPane();
pane.setId("pane");

Don’t set any padding or spacing in the code. Instead, use CSS.

#pane {
 -fx-padding: 0.5em;
 -fx-hgap: 0.5em;
 -fx-vgap: 0.5em;
 -fx-background-image: url("metal.jpg")
}

Unfortunately, you can’t use the familiar CSS attributes but need to know

FX-specific attributes that start with -fx-. The attribute names are formed by

changing the property names to lowercase and using hyphens instead of camel

case. For example, the textAlignment property turns into -fx-text-alignment. You can

find all supported attributes in the JavaFX CSS reference at http://docs.ora-

cle.com/ javafx/2/api/javafx/scene/doc-files/cssref.html.

Using CSS is nicer than cluttering up the code with layout minutiae. Moreover,

you can easily use resolution-independent em units. Of course CSS can be used

both for good and for evil (see Figure 4–11), and I hope you will resist the

temptation to apply gratuitous background textures to your login dialogs.

Instead of styling by individual IDs, you can use style classes. Add the class to

the node object:

HBox buttons = new HBox();
buttons.getStyleClass().add("buttonrow");

Then style it, using the CSS class notation:

Chapter 4 JavaFX90

http://docs.oracle.com/javafx/2/api/javafx/scene/doc-.les/cssref.html
http://docs.oracle.com/javafx/2/api/javafx/scene/doc-.les/cssref.html

ptg12441863

Figure 4–11 Using CSS to style a user interface

.buttonrow {
 -fx-spacing: 0.5em;
}

Every JavaFX control and shape class belongs to a CSS class whose name is the

decapitalized Java class name. For example, all Label nodes have class label. Here

is how you can change the font for all labels to Comic Sans:

.label {
 -fx-font-family: "Comic Sans MS";
}

But please don’t.

You can also use CSS with FXML layouts. Attach the stylesheet to the root pane:

<GridPane id="pane" stylesheets="scene.css">

Supply id or styleClass attributes in the FXML code. For example,

<HBox styleClass="buttonrow">

Then you can specify most styling in CSS, and use FXML only for layout. Unfor-

tunately, you can’t completely remove all styling from the FXML. For example,

there is currently no way to specify grid cell alignment in CSS.

NOTE: You can also apply a CSS style programmatically, such as

buttons.setStyle("-fx-border-color: red;");

That can be handy for debugging, but in general, it seems better to use an
external stylesheet.

4.9 Animations and Special Effects
When JavaFX was born, special effects were all the rage, and JavaFX makes it

easy to produce shadows, blurs, and movement. You will find dozens of pretty

914.9 Animations and Special Effects

ptg12441863

Figure 4–12 Buttons that grow, fade, and turn

demos on the Web with swirling bubbles moving aimlessly, text jumping

nervously, and so on. I thought you’d enjoy some useful tips on how to bring

these animations to the world of business applications. Figure 4–12 shows an

application where the Yes button increases in size while the No button fades into

the background and the Maybe button rotates.

JavaFX defines a number of transitions that, over a period of time, vary a property

of a node. Here is how you grow a node by 50% in both x and y directions over

three seconds:

ScaleTransition st = new ScaleTransition(Duration.millis(3000));
st.setByX(1.5);
st.setByY(1.5);
st.setNode(yesButton);
st.play();

The node can be any node in a scene graph, such as a circle in an animation of

soap bubbles or the ever more enticing Yes button in our example.

As set up, the transition will end when its goal is met. You can cycle it indefinitely

like this:

st.setCycleCount(Animation.INDEFINITE);
st.setAutoReverse(true);

Now the node will get bigger, then smaller, then bigger again, and so on.

The FadeTransition changes the opacity of a node. Here is how the No button fades

into the background:

FadeTransition ft = new FadeTransition(Duration.millis(3000));
ft.setFromValue(1.0);
ft.setToValue(0);
ft.setNode(noButton);
ft.play();

All JavaFX nodes can be rotated around their center. The RotateTransition changes

the node’s rotate property. The following code animates the rotation of the Maybe

button:

Chapter 4 JavaFX92

ptg12441863

RotateTransition rt = new RotateTransition(Duration.millis(3000));
rt.setByAngle(180);
rt.setCycleCount(Animation.INDEFINITE);
rt.setAutoReverse(true);
rt.setNode(maybeButton);
rt.play();

You can compose transitions with the ParallelTransition and SequentialTransition
combinators, performing them in parallel or one after the other. If you need to

animate multiple nodes, you can place them into a Group node and animate that.

When you need to create this kind of behavior, the JavaFX classes are a joy to

work with.

Special effects are also very easy to do. If you need a drop shadow for a spiffy

caption, make a DropShadow effect and set it as the effect property of a node.

Figure 4–13 shows the result with a Text node. Here is the code:

 DropShadow dropShadow = new DropShadow();
 dropShadow.setRadius(5.0);
 dropShadow.setOffsetX(3.0);
 dropShadow.setOffsetY(3.0);
 dropShadow.setColor(Color.GRAY);

 Text text = new Text();
 text.setFill(Color.RED);
 text.setText("Drop shadow");
 text.setFont(Font.font("sans", FontWeight.BOLD, 40));
 text.setEffect(dropShadow);

Figure 4–13 JavaFX effects

934.9 Animations and Special Effects

ptg12441863

To set a glow or a blur effect is just as simple:

 text2.setEffect(new Glow(0.8));
 text3.setEffect(new GaussianBlur());

Admittedly, the glow effect looks a bit cheesy and the blur effect doesn’t seem

to have many applications in the world of business, but it is impressive how easy

it is to produce these effects.

4.10 Fancy Controls
Of course, JavaFX has combo boxes, tab panes, trees, and tables, just like Swing

does, as well as a few user interface controls that Swing never got, such as a date

picker and an accordion. It would take an entire book to describe these in detail.

In this section, I want to dispel any remaining Swing nostalgia by showing you

three fancy controls that are far beyond what Swing had to offer.

Figure 4–14 shows one of many charts that you can make with JavaFX, out of the

box, without having to install any third-party libraries.

Figure 4–14 A JavaFX pie chart

Chapter 4 JavaFX94

ptg12441863

And it’s easy as pie:

ObservableList<PieChart.Data> pieChartData =
 FXCollections.observableArrayList(
 new PieChart.Data("Asia", 4298723000.0),
 new PieChart.Data("North America", 355361000.0),
 new PieChart.Data("South America", 616644000.0),
 new PieChart.Data("Europe", 742452000.0),
 new PieChart.Data("Africa", 1110635000.0),
 new PieChart.Data("Oceania", 38304000.0));
final PieChart chart = new PieChart(pieChartData);
chart.setTitle("Population of the Continents");

Altogether, there are half a dozen chart types that you can use and custom-

ize. See http://docs.oracle.com/javafx/2/charts/chart-overview.htm for more

information.

In Swing, you could show HTML in a JEditorPane, but the rendering was poor for

most real-world HTML. That’s understandable—implementing a browser is hard

work. In fact, it is so hard that most browsers are built on top of the open

source WebKit engine. JavaFX does the same. A WebView displays an embedded

native WebKit window (see Figure 4–15).

Here is the code to show a web page:

String location = "http://horstmann.com";
WebView browser = new WebView();
WebEngine engine = browser.getEngine();
engine.load(location);

The browser is live—you can click on links in the usual way. JavaScript works

as well. However, if you want to display status line or popup messages from

JavaScript, you need to install notification handlers and implement your own

status line and popups.

NOTE: WebView does not support any plugins, so you cannot use it to show
Flash animations or PDF documents. It also doesn’t show applets.

Prior to JavaFX, media playback was pitiful in Java. A Java Media Framework

was available as an optional download, but it did not get much love from the

developers. Of course, implementing audio and video playback is even harder

than writing a browser. Therefore, JavaFX leverages an existing toolkit, the open

source GStreamer framework.

To play a video, construct a Media object from an URL string, construct a MediaPlayer
to play it, and a MediaView to show the player:

954.10 Fancy Controls

http://docs.oracle.com/javafx/2/charts/chart-overview.htm

ptg12441863

Figure 4–15 Browsing the Web

Path path = Paths.get("moonlanding.mp4");
String location = path.toUri().toString();
Media media = new Media(location);
MediaPlayer player = new MediaPlayer(media);
player.setAutoPlay(true);
MediaView view = new MediaView(player);
view.setOnError(e -> System.out.println(e));

As you can see in Figure 4–16, the video is played—but, unfortunately, there are

no video controls. You can add your own (see http://docs.oracle.com/javafx/

2/media/playercontrol.htm, but it would have been nice to supply a default set

of controls.

NOTE: Ever so often, GStreamer can’t handle a particular video file.The error
handler in the code sample displays GStreamer messages so that you can
diagnose playback problems.

Chapter 4 JavaFX96

http://docs.oracle.com/javafx/2/media/playercontrol.htm
http://docs.oracle.com/javafx/2/media/playercontrol.htm

ptg12441863

Figure 4–16 Playing a video

That brings us to the end of this quick tour through JavaFX. JavaFX is the future

of desktop Java. It has a few rough edges, mostly due to a hurried transformation

from the original scripting language. But it is certainly no harder to use than

Swing, and it has many more useful and attractive controls than Swing ever had.

Exercises
1. Write a program with a text field and a label. As with the Hello, JavaFX pro-

gram, the label should have the string Hello, FX in a 100 point font. Initialize

the text field with the same string. Update the label as the user edits the text

field.

2. Consider a class with many JavaFX properties, such as a chart or table.

Chances are that in a particular application, most properties never have lis-

teners attached to them. It is therefore wasteful to have a property object per

property. Show how the property can be set up on demand, first using a

regular field for storing the property value, and then using a property object

only when the xxxProperty() method is called for the first time.

97Exercises

ptg12441863

3. Consider a class with many JavaFX properties, most of which are never

changed from a default. Show how the property can be set up on demand,

when it is set to a nondefault value or when the xxxProperty() method is called

for the first time.

4. Enhance the program in Section 4.5, “Bindings,” on page 75 so that the circle

stays centered and always touches at least two of the sides of the scene.

5. Write methods

public static <T, R> ObservableValue<R> observe(
 Function<T, R> f, ObservableValue<T> t)
public static <T, U, R> ObservableValue<R> observe(
 BiFunction<T, U, R> f, ObservableValue<T> t, ObservableValue<U> u)

that return observable values whose getValue method returns the value of the

lambda expression, and whose invalidation and change listeners are fired

when any of the inputs become invalid or change. For example,

larger.disableProperty().bind(observe(
 t -> t >= 100, gauge.widthProperty()));

6. Center the top and bottom buttons in Figure 4–7.

7. Find out how to set the border of a control without using CSS.

8. Since there is no JavaFX-specific knowledge in parsing FXML files, come up

with an example where you load an object that has nothing to do with JavaFX,

with some nested objects, and set the properties in FXML syntax. Extra

credit if you use injection.

9. Animate a circle, representing a planet, so it travels along an elliptical orbit.

Use a PathTransition.

10. Using the web viewer, implement a browser with a URL bar and a back

button. Hint: WebEngine.getHistory().

Chapter 4 JavaFX98

ptg12441863

This page intentionally left blank

ptg12441863Topics in This Chapter

5.1 The Time Line — page 102

5.2 Local Dates — page 104

5.3 Date Adjusters — page 107

5.4 Local Time — page 108

5.5 Zoned Time — page 109

5.6 Formatting and Parsing — page 112

5.7 Interoperating with Legacy Code — page 115

Exercises — page 116

The New Date and Time API

ptg12441863Time flies like an arrow, and we can easily set a starting point and count forward

and backwards in seconds. So why is it so hard to deal with time? The problem

is humans. All would be easy if we could just tell each other: “Meet me at

1371409200, and don’t be late!” But we want time to relate to daylight and the

seasons. That’s where things get complicated. Java 1.0 had a Date class that was,

in hindsight, unbelievably naïve, and had most of its methods deprecated in

Java 1.1 when a Calendar class was introduced. Its API wasn’t stellar, its instances

were mutable, and it didn’t deal with issues such as leap seconds. The third time

is a charm, and the java.time API that is introduced in Java 8 has remedied the

flaws of the past and should serve us for quite some time. In this chapter, you

will learn what makes time computations so vexing, and how the new Date and

Time API solves these issues.

The key points of this chapter are:

• All java.time objects are immutable.

• An Instant is a point on the time line (similar to a Date).

• In Java time, each day has exactly 86,400 seconds (i.e., no leap seconds).

• A Duration is the difference between two instants.

• LocalDateTime has no time zone information.

• TemporalAdjuster methods handle common calendar computations, such as

finding the first Tuesday of a month.

5Chapter

101

ptg12441863

• ZonedDateTime is a point in time in a given time zone (similar to GregorianCalendar).

• Use a Period, not a Duration, when advancing zoned time, in order to account

for daylight savings time changes.

• Use DateTimeFormatter to format and parse dates and times.

5.1 The Time Line
Historically, the fundamental time unit, the second, was derived from Earth’s

rotation around its axis. There are 24 hours or 24 × 60 × 60 = 86400 seconds in a

full revolution, so it seems just a question of astronomical measurements to pre-

cisely define a second. Unfortunately, Earth wobbles slightly, and a more precise

definition was needed. In 1967, a new precise definition of a second, matching

the historical definition, was derived from an intrinsic property of atoms of

caesium-133. Since then, a network of atomic clocks keeps the official time.

Ever so often, the official time keepers synchronize the absolute time with the

rotation of Earth. At first, the official seconds were slightly adjusted, but starting

in 1972, “leap seconds” were occasionally inserted. (In theory, a second might

need to be removed once in a while, but that has not yet happened.) There is talk

of changing the system again. Clearly, leap seconds are a pain, and many com-

puter systems instead use “smoothing” where time is artificially slowed down

or sped up just before the leap second, keeping 86,400 seconds per day. This

works because the local time on a computer isn’t all that precise, and computers

are used to synchronizing themselves with an external time service.

The Java Date and Time API specification requires that Java uses a time scale that

• Has 86,400 seconds per day

• Exactly matches the official time at noon each day

• Closely matches it elsewhere, in a precisely defined way

That gives Java the flexibility to adjust to future changes in the official time.

In Java, an Instant represents a point on the time line. An origin, called the epoch,

is arbitrarily set at midnight of January 1, 1970 at the prime meridian that passes

through the Greenwich Royal Observatory in London. This is the same conven-

tion used in the Unix/POSIX time. Starting from that origin, time is measured

in 86,400 seconds per day, forwards and backwards, in nanosecond precision.

The Instant values go back as far as a billion years (Instant.MIN). That’s not quite

enough to express the age of the universe (around 13.5 billion years), but it should

be enough for all practical purposes. After all, a billion years ago, the earth was

covered in ice and populated by microsocopic ancestors of today’s plants and

animals. The largest value, Instant.MAX, is December 31 of the year 1,000,000,000.

The static method call Instant.now() gives the current instant. You can compare

Chapter 5 The New Date and Time API102

ptg12441863

two instants with the equals and compareTo methods in the usual way, so you can

use instants as timestamps.

To find out the difference between two instants, use the static method

Duration.between. For example, here is how you can measure the running time of

an algorithm:

Instant start = Instant.now();
runAlgorithm();
Instant end = Instant.now();
Duration timeElapsed = Duration.between(start, end);
long millis = timeElapsed.toMillis();

A Duration is the amount of time between two instants. You can get the length of

a Duration in conventional units by calling toNanos, toMillis, toSeconds, toMinutes, toHours,
or toDays.

Durations require more than a long value for their internal storage. The number

of seconds is stored in a long, and the number of nanoseconds in an additional

int. If you want to make computations in nanosecond accuracy, and you actually

need the entire range of a Duration, then you can use one of the methods in

Table 5–1. Otherwise, you can just call toNanos and do your calculations with long
values.

NOTE: It takes almost 300 years of nanoseconds to overflow a long.

Table 5–1 Arithmetic Operations for Time Instants and Durations

DescriptionMethod

Adds a duration to, or subtracts a duration

from, this Instant or Duration.

plus, minus

Adds a number of the given time units to this

Instant or Duration.

plusNanos, plusMillis, plusSeconds,

plusMinutes, plusHours, plusDays

Subtracts a number of the given time units

from this Instant or Duration.

minusNanos, minusMillis, minusSeconds,

minusMinutes, minusHours, minusDays

Returns a duration that is obtained by

multiplying or dividing this Duration by a

given long, or by –1. Note that you can scale

only durations, not instants.

multipliedBy, dividedBy, negated

Checks whether this Duration is zero or

negative.

isZero, isNegative

1035.1 The Time Line

ptg12441863

For example, if you want to check whether an algorithm is at least ten times faster

than another, you can compute

Duration timeElapsed2 = Duration.between(start2, end2);
boolean overTenTimesFaster =
 timeElapsed.multipliedBy(10).minus(timeElapsed2).isNegative();
 // Or timeElapsed.toNanos() * 10 < timeElapsed2.toNanos()

NOTE: The Instant and Duration classes are immutable, and all methods,
such as multipliedBy or minus, return a new instance.

5.2 Local Dates
Now let us turn from absolute time to human time. There are two kinds of human

time in the new Java API, local date/time and zoned time. Local date/time has a

date and/or time of day, but no associated time zone information. A local date

is, for example, June 14, 1903 (the day on which Alonzo Church, inventor of the

lambda calculus, was born). Since that date has neither a time of day nor time

zone information, it does not correspond to a precise instant of time. In contrast,

July 16, 1969, 09:32:00 EDT (the launch of Apollo 11) is a zoned date/time,

representing a precise instant on the time line.

There are many calculations where time zones are not required, and in some

cases they can even be a hindrance. Suppose you schedule a meeting every week

at 10:00. If you add 7 days (that is, 7 × 24 × 60 × 60 seconds) to the last zoned time,

and you happen to cross the daylight savings time boundary, the meeting will

be an hour too early or too late!

For that reason, the API designers recommend that you do not use zoned time

unless you really want to represent absolute time instances. Birthdays, holidays,

schedule times, and so on are usually best represented as local dates or times.

A LocalDate is a date, with a year, month, and day of the month. To construct one,

you can use the now or of static methods:

LocalDate today = LocalDate.now(); // Today’s date

LocalDate alonzosBirthday = LocalDate.of(1903, 6, 14);
alonzosBirthday = LocalDate.of(1903, Month.JUNE, 14);
 // Uses the Month enumeration

Unlike the irregular conventions in Unix and java.util.Date, where months are

zero-based and years are counted from 1900, you supply the usual numbers for

the month of year. Alternatively, you can use the Month enumeration.

Table 5–2 shows the most useful methods for working with LocalDate objects.

Chapter 5 The New Date and Time API104

ptg12441863

Table 5–2 LocalDate Methods

DescriptionMethod

These static methods construct a LocalDate, either from the

current time or from a given year, month, and day.

now, of

Adds a number of days, weeks, months, or years to this

LocalDate.

plusDays, plusWeeks,

plusMonths, plusYears

Subtracts a number of days, weeks, months, or years from

this LocalDate.

minusDays, minusWeeks,

minusMonths, minusYears

Adds a Duration or Period.plus, minus

Returns a new LocalDate with the day of month, day of year,

month, or year changed to the given value.

withDayOfMonth,

withDayOfYear,

withMonth, withYear

Gets the day of the month (between 1 and 31).getDayOfMonth

Gets the day of the year (between 1 and 366).getDayOfYear

Gets the day of the week, returning a value of the DayOfWeek
enumeration.

getDayOfWeek

Gets the month as a value of the Month enumeration, or as

a number between 1 and 12.

getMonth, getMonthValue

Gets the year, between –999,999,999 and 999,999,999.getYear

Gets the Period, or the number of the given ChronoUnits,

between two dates.

until

Compares this LocalDate with another.isBefore, isAfter

Returns true if the year is a leap year—that is, if it is

divisible by 4 but not by 100, or divisible by 400. The

algorithm is applied for all past years, even though that is

historically inaccurate. (Leap years were invented in the

year –46, and the rules involving divisibility by 100 and

400 were introduced in the Gregorian calendar reform of

1582. The reform took over 300 years to become universal.)

isLeapYear

For example, Programmer’s Day is the 256th day of the year. Here is how you can

easily compute it:

LocalDate programmersDay = LocalDate.of(2014, 1, 1).plusDays(255);
 // September 13, but in a leap year it would be September 12

1055.2 Local Dates

ptg12441863

Recall that the difference between two time instants is a Duration. The

equivalent for local dates is a Period, which expresses a number of elapsed

years, months, or days. You can call birthday.plus(Period.ofYears(1)), to get the

birthday next year. Of course, you can also just call birthday.plusYears(1). But

birthday.plus(Duration.ofDays(365)) won’t produce the correct result in a leap year.

The until method yields the difference between two local dates. For example,

independenceDay.until(christmas)

yields a period of 5 months and 21 days. That is actually not terribly useful

because the number of days per month varies. To find the number of days, use

independenceDay.until(christmas, ChronoUnit.DAYS) // 174 days

CAUTION: Some methods in Table 5–2 could potentially create nonexistent
dates. For example, adding one month to January 31 should not yield
February 31. Instead of throwing an exception, these methods return the last
valid day of the month. For example,

LocalDate.of(2016, 1, 31).plusMonths(1)

and

LocalDate.of(2016, 3, 31).minusMonths(1)

yield February 29, 2016.

The getDayOfWeek yields the weekday, as a value of the DayOfWeek enumeration.

DayOfWeek.MONDAY has the numerical value 1, and DayOfWeek.SUNDAY has the value 7. For

example,

LocalDate.of(1900, 1, 1).getDayOfWeek().getValue()

yields 1. The DayOfWeek enumeration has convenience methods plus and minus
to compute weekdays modulo 7. For example, DayOfWeek.SATURDAY.plus(3) yields

DayOfWeek.TUESDAY.

NOTE: The weekend days actually come at the end of the week. This is
different from java.util.Calendar, where Sunday has value 1 and Saturday
value 7.

In addition to LocalDate, there are also classes MonthDay, YearMonth, and Year to describe

partial dates. For example, December 25 (with the year unspecified) can be

represented as a MonthDay.

Chapter 5 The New Date and Time API106

ptg12441863

5.3 Date Adjusters
For scheduling applications, you often need to compute dates such as “the first

Tuesday of every month.” The TemporalAdjusters class provides a number of static

methods for common adjustments. You pass the result of an adjustment method

to the with method. For example, the first Tuesday of a month can be computed

like this:

LocalDate firstTuesday = LocalDate.of(year, month, 1).with(
 TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY));

As always, the with method returns a new LocalDate object without modifying the

original. Table 5–3 shows the available adjusters.

You can also roll your own adjuster by implementing the TemporalAdjuster interface.

Here is an adjuster for computing the next weekday.

TemporalAdjuster NEXT_WORKDAY = w -> {
 LocalDate result = (LocalDate) w;
 do {
 result = result.plusDays(1);
 } while (result.getDayOfWeek().getValue() >= 6);
 return result;
};

LocalDate backToWork = today.with(NEXT_WORKDAY);

Note that the parameter of the lambda expression has type Temporal, and it must

be cast to LocalDate. You can avoid this cast with the ofDateAdjuster method that

expects a lambda of type UnaryOperator<LocalDate>.

Table 5–3 Date Adjusters in the TemporalAdjusters Class

DescriptionMethod

Next or previous date that falls on the

given weekday

next(weekday), previous(weekday)

Next or previous date that falls on the

given weekday, starting from the given

date

nextOrSame(weekday),

previousOrSame(weekday)

The nth weekday in the monthdayOfWeekInMonth(n, weekday)

The last weekday in the monthlastInMonth(weekday)

The date described in the method namefirstDayOfMonth(), firstDayOfNextMonth(),

firstDayOfNextYear(), lastDayOfMonth(),

lastDayOfPreviousMonth(), lastDayOfYear()

1075.3 Date Adjusters

ptg12441863

TemporalAdjuster NEXT_WORKDAY = TemporalAdjusters.ofDateAdjuster(w -> {
 LocalDate result = w; // No cast

 do {
 result = result.plusDays(1);
 } while (result.getDayOfWeek().getValue() >= 6);
 return result;
});

5.4 Local Time
A LocalTime represents a time of day, such as 15:30:00. You can create an instance

with the now or of methods:

LocalTime rightNow = LocalTime.now();
LocalTime bedtime = LocalTime.of(22, 30); // or LocalTime.of(22, 30, 0)

Table 5–4 shows common operations with local times. The plus and minus
operations wrap around a 24-hour day. For example,

LocalTime wakeup = bedtime.plusHours(8); // wakeup is 6:30:00

Table 5–4 LocalTime Methods

DescriptionMethod

These static methods construct a LocalTime, either from

the current time, or from the given hours, minutes,

and optionally, seconds and nanoseconds.

now, of

Adds a number of hours, minutes, seconds, or

nanoseconds to this LocalTime.

plusHours, plusMinutes,

plusSeconds, plusNanos

Subtracts a number of hours, minutes, seconds, or

nanoseconds from this LocalTime.

minusHours, minusMinutes,

minusSeconds, minusNanos

Adds a Duration.plus, minus

Returns a new LocalTime with the hour, minute,

second, or nanosecond changed to the given value.

withHour, withMinute,

withSecond, withNano

Gets the hour, minute, second, or nanosecond of this

LocalTime.

getHour, getMinute, getSecond,

getNano

Returns the number of seconds or nanoseconds

between midnight and this LocalTime.

toSecondOfDay, toNanoOfDay

Compares this LocalTime with another.isBefore, isAfter

Chapter 5 The New Date and Time API108

ptg12441863

NOTE: LocalTime doesn’t concern itself with AM/PM. That silliness is left to a
formatter—see Section 5.6, “Formatting and Parsing,” on page 112.

There is a LocalDateTime class, representing a date and time. That class is suitable

for storing points in time in a fixed time zone, for example, for a schedule of

classes or events. However, if you need to make calculations that span the day-

light savings time, or if you need to deal with users in different time zones, you

should use the ZonedDateTime class that we discuss next.

5.5 Zoned Time
Time zones, perhaps because they are an entirely human creation, are even

messier than the complications caused by the earth’s irregular rotation. In a ra-

tional world, we’d all follow the clock in Greenwich, and some of us would eat

our lunch at 02:00, others at 22:00. Our stomachs would figure it out. This is ac-

tually done in China, which spans four conventional time zones. Elsewhere, we

have time zones with irregular and shifting boundaries, and, to make matters

worse, the daylight savings time.

As capricious as the time zones may appear to the enlightened, they are a fact of

life. When you implement a calendar application, it needs to work for people

who fly from one country to another. When you have a conference call at 10:00

in New York, but happen to be in Berlin, you expect to be alerted at the correct

local time.

The Internet Assigned Numbers Authority (IANA) keeps a database of all known

time zones around the world (https://www.iana.org/time-zones), which is up-

dated several times per year. The bulk of the updates deals with the changing

rules for daylight savings time. Java uses the IANA database.

Each time zone has an ID, such as America/New_York or Europe/Berlin. To find out all

available time zones, call ZoneId.getAvailableIds. At the time of this writing, there

were almost 600 IDs.

Given a time zone ID, the static method ZoneId.of(id) yields a ZoneId object. You

can use that object to turn a LocalDateTime object into a ZonedDateTime object by calling

local.atZone(zoneId), or you can construct a ZonedDateTime by calling the static method

ZonedDateTime.of(year, month, day, hour, minute, second, nano, zoneId). For example,

ZonedDateTime apollo11launch = ZonedDateTime.of(1969, 7, 16, 9, 32, 0, 0,
 ZoneId.of("America/New_York"));
 // 1969-07-16T09:32-04:00[America/New_York]

This is a specific instant in time. Call apollo11launch.toInstant to get the Instant.
Conversely, if you have an instant in time, call instant.atZone(ZoneId.of("UTC")) to

1095.5 Zoned Time

https://www.iana.org/time-zones

ptg12441863

get the ZonedDateTime at the Greenwich Royal Observatory, or use another ZoneId
to get it elsewhere on the planet.

NOTE: UTC stands for “coordinated universal time,” and the acronym is a
compromise between the aforementioned English and the French “temps
universel coordiné,” having the distinction of being incorrect in either language.
UTC is the time at the Greenwich Royal Observatory, without daylight
savings time.

Many of the methods of ZonedDateTime are the same as those of LocalDateTime (see

Table 5–5). Most are straightforward, but daylight savings time introduces some

complications.

When daylight savings time starts, clocks advance by an hour. What happens

when you construct a time that falls into the skipped hour? For example, in 2013,

Central Europe switched to daylight savings time on March 31 at 2:00. If you try

to construct nonexistent time March 31 2:30, you actually get 3:30.

ZonedDateTime skipped = ZonedDateTime.of(
 LocalDate.of(2013, 3, 31),
 LocalTime.of(2, 30),
 ZoneId.of("Europe/Berlin"));
 // Constructs March 31 3:30

Conversely, when daylight time ends, clocks are set back by an hour, and there

are two instants with the same local time! When you construct a time within that

span, you get the earlier of the two.

ZonedDateTime ambiguous = ZonedDateTime.of(
 LocalDate.of(2013, 10, 27), // End of daylight savings time

 LocalTime.of(2, 30),
 ZoneId.of("Europe/Berlin"));
 // 2013-10-27T02:30+02:00[Europe/Berlin]
ZonedDateTime anHourLater = ambiguous.plusHours(1);
 // 2013-10-27T02:30+01:00[Europe/Berlin]

An hour later, the time has the same hours and minutes, but the zone offset has

changed.

You also need to pay attention when adjusting a date across daylight savings

time boundaries. For example, if you set a meeting for next week, don’t add a

duration of seven days:

ZonedDateTime nextMeeting = meeting.plus(Duration.ofDays(7));
 // Caution! Won’t work with daylight savings time

Chapter 5 The New Date and Time API110

ptg12441863

Instead, use the Period class.

ZonedDateTime nextMeeting = meeting.plus(Period.ofDays(7)); // OK

Table 5–5 ZonedDateTime Methods

DescriptionMethod

These static methods construct a ZonedDateTime from

the current time, or from a year, month, day, hour,

minute, second, nanosecond (or a LocalDate and

LocalTime), and ZoneId, or from an Instant and ZoneId.

now, of, ofInstant

Adds a number of temporal units to this ZonedDateTime.plusDays, plusWeeks,

plusMonths, plusYears,

plusHours, plusMinutes,

plusSeconds, plusNanos

Subtracts a number of temporal units from this

LocalDate.

minusDays, minusWeeks,

minusMonths, minusYears,

minusHours, minusMinutes,

minusSeconds, minusNanos

Adds a Duration or Period.plus, minus

Returns a new ZonedDateTime, with one temporal unit

changed to the given value.

withDayOfMonth, withDayOfYear,

withMonth, withYear, withHour,

withMinute, withSecond,

withNano

Returns a new ZonedDateTime in the given time zone,

either representing the same instant or the same local

time.

withZoneSameInstant,

withZoneSameLocal

Gets the day of the month (between 1 and 31).getDayOfMonth

Gets the day of the year (between 1 and 366).getDayOfYear

Gets the day of the week, returning a value of the

DayOfWeek enumeration.

getDayOfWeek

Gets the month as a value of the Month enumeration,

or as a number between 1 and 12.

getMonth, getMonthValue

Gets the year, between –999,999,999 and 999,999,999.getYear

Gets the hour, minute, second, or nanosecond of this

ZonedDateTime.

getHour, getMinute, getSecond,

getNano

(Continues)

1115.5 Zoned Time

ptg12441863

Table 5–5 ZonedDateTime Methods (Continued)

DescriptionMethod

Gets the offset from UTC, as a ZoneOffset instance.

Offsets can vary from –12:00 to +14:00. Some time

zones have fractional offsets. Offsets change with

daylight savings time.

getOffset

Yields the local date or local time, or the

corresponding instant.

toLocalDate, toLocalTime,

toInstant

Compares this ZonedDateTime with another.isBefore, isAfter

CAUTION: There is also an OffsetDateTime class that represents times with
an offset from UTC, but without time zone rules. That class is intended for
specialized applications that specifically require the absence of those rules,
such as certain network protocols. For human time, use ZonedDateTime.

5.6 Formatting and Parsing
The DateTimeFormatter class provides three kinds of formatters to print a date/time

value:

• Predefined standard formatters (see Table 5–6)

• Locale-specific formatters

• Formatters with custom patterns

To use one of the standard formatters, simply call its format method:

String formatted = DateTimeFormatter.ISO_DATE_TIME.format(apollo11launch);
 // 1969-07-16T09:32:00-05:00[America/New_York]

The standard formatters are mostly intended for machine-readable time-

stamps. To present dates and times to human readers, use a locale-specific

formatter. There are four styles, SHORT, MEDIUM, LONG, and FULL, for both date and

time—see Table 5–7.

The static methods ofLocalizedDate, ofLocalizedTime, and ofLocalizedDateTime create such

a formatter. For example:

DateTimeFormatter formatter = DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG);
String formatted = formatter.format(apollo11launch);
 // July 16, 1969 9:32:00 AM EDT

These methods use the default locale. To change to a different locale, simply use

the withLocale method.

Chapter 5 The New Date and Time API112

ptg12441863

formatted = formatter.withLocale(Locale.FRENCH).format(apollo11launch);
 // 16 juillet 1969 09:32:00 EDT

Table 5–6 Predefined Formatters

ExampleDescriptionFormatter

19690716-0500Year, month, day,

zone offset

without

separators

BASIC_ISO_DATE

1969-07-16, 09:32:00, 1969-07-16T09:32:00Separators -, :, TISO_LOCAL_DATE,

ISO_LOCAL_TIME,

ISO_LOCAL_DATE_TIME

1969-07-16-05:00, 09:32:00-05:00,

1969-07-16T09:32:00-05:00
Like

ISO_LOCAL_XXX,

but with zone

offset

ISO_OFFSET_DATE,

ISO_OFFSET_TIME,

ISO_OFFSET_DATE_TIME

1969-07-16T09:32:00-05:00[America/New_York]With zone offset

and zone ID

ISO_ZONED_DATE_TIME

1969-07-16T14:32:00ZIn UTC, denoted

by the Z zone ID

ISO_INSTANT

1969-07-16-05:00, 09:32:00-05:00,

1969-07-16T09:32:00-05:00[America/New_York]
Like

ISO_OFFSET_DATE,

ISO_OFFSET_TIME,

ISO_ZONED_DATE_TIME,
but the zone

information is

optional

ISO_DATE, ISO_TIME,

ISO_DATE_TIME

1969-197The year and day

of year, for

LocalDate

ISO_ORDINAL_DATE

1969-W29-3The year, week,

and day of week,

for LocalDate

ISO_WEEK_DATE

Wed, 16 Jul 1969 09:32:00 -0500The standard for

email timestamps,

codified in

RFC 822 and

updated to four

digits for the year

in RFC 1123

RFC_1123_DATE_TIME

1135.6 Formatting and Parsing

ptg12441863

Table 5–7 Locale-Specific Formatting Styles

TimeDateStyle

9:32 AM7/16/69SHORT

9:32:00 AMJul 16, 1969MEDIUM

9:32:00 AM EDTJuly 16, 1969LONG

9:32:00 AM EDTWednesday, July 16, 1969FULL

NOTE: The java.time.format.DateTimeFormatter class is intended as a re-
placement for java.util.DateFormat. If you need an instance of the latter for
backwards compatibility, call formatter.toFormat().

Finally, you can roll your own date format by specifying a pattern. For example,

formatter = DateTimeFormatter.ofPattern("E yyyy-MM-dd HH:mm");

formats a date in the form Wed 1969-07-16 09:32. Each letter denotes a different time

field, and the number of times the letter is repeated selects a particular format,

according to rules that are arcane and seem to have organically grown over time.

Table 5–8 shows the most useful pattern elements.

Table 5–8 Commonly Used Formatting Symbols for Date/Time Formats

ExamplesChronoField or Purpose

G: AD, GGGG: Anno Domini, GGGGG: AERA

yy: 69, yyyy: 1969YEAR_OF_ERA

M: 7, MM: 07, MMM: Jul, MMMM: July, MMMMM: JMONTH_OF_YEAR

d: 6, dd: 06DAY_OF_MONTH

e: 3, E: Wed, EEEE: Wednesday, EEEEE: WDAY_OF_WEEK

H: 9, HH: 09HOUR_OF_DAY

K: 9, KK: 09CLOCK_HOUR_OF_AM_PM

a: AMAMPM_OF_DAY

mm: 02MINUTE_OF_HOUR

Chapter 5 The New Date and Time API114

ptg12441863

Table 5–8 Commonly Used Formatting Symbols for Date/Time Formats (Continued)

ExamplesChronoField or Purpose

ss: 00SECOND_OF_MINUTE

nnnnnn: 000000NANO_OF_SECOND

VV: America/New_YorkTime zone ID

z: EDT, zzzz: Eastern Daylight TimeTime zone name

x: -04, xx: -0400, xxx: -04:00, XXX: same, but use Z for zeroZone offset

O: GMT-4, OOOO: GMT-04:00Localized zone offset

To parse a date/time value from a string, use one of the static parse methods. For

example,

LocalDate churchsBirthday = LocalDate.parse("1903-06-14");
ZonedDateTime apollo11launch =
 ZonedDateTime.parse("1969-07-16 03:32:00-0400",
 DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ssxx"));

The first call uses the standard ISO_LOCAL_DATE formatter, the second one a custom

formatter.

5.7 Interoperating with Legacy Code
As a brand-new creation, the Java Date and Time API will have to interoperate

with existing classes, in particularicular, the ubiquitous java.util.Date, java.util.
GregorianCalendar, and java.sql.Date/Time/Timestamp.

The Instant class is a close analog to java.util.Date. In Java 8, that class has two

added methods: the toInstant method that converts a Date to an Instant, and the

static from method that converts in the other direction.

Similarly, ZonedDateTime is a close analog to java.util.GregorianCalendar, and that class

has gained conversion methods in Java 8. The toZonedDateTime method converts a

GregorianCalendar to a ZonedDateTime, and the static from method does the opposite

conversion.

Another set of conversions is available for the date and time classes in the java.sql
package. You can also pass a DateTimeFormatter to legacy code that uses

java.text.Format. Table 5–9 summarizes these conversions.

1155.7 Interoperating with Legacy Code

ptg12441863

Table 5–9 Conversions between java.time Classes and Legacy Classes

From Legacy ClassTo Legacy ClassClasses

date.toInstant()Date.from(instant)Instant
↔ java.util.Date

cal.toZonedDateTime()GregorianCalendar.
from(zonedDateTime)

ZonedDateTime
↔ java.util.GregorianCalendar

timestamp.toInstant()TimeStamp.from(instant)Instant
↔ java.sql.Timestamp

timeStamp.toLocalDateTime()Timestamp.
valueOf(localDateTime)

LocalDateTime
↔ java.sql.Timestamp

date.toLocalDate()Date.valueOf(localDate)LocalDate
↔ java.sql.Date

time.toLocalTime()Time.valueOf(localTime)LocalTime
↔ java.sql.Time

Noneformatter.toFormat()DateTimeFormatter
→ java.text.DateFormat

timeZone.toZoneId()Timezone.getTimeZone(id)java.util.TimeZone
→ ZoneId

fileTime.toInstant()FileTime.from(instant)java.nio.file.attribute.FileTime
→ Instant

Exercises
1. Compute Programmer’s Day without using plusDays.

2. What happens when you add one year to LocalDate.of(2000, 2, 29)? Four years?

Four times one year?

3. Implement a method next that takes a Predicate<LocalDate> and returns an

adjuster yielding the next date fulfilling the predicate. For example,

today.with(next(w -> getDayOfWeek().getValue() < 6))

computes the next workday.

4. Write an equivalent of the Unix cal program that displays a calendar for a

month. For example, java Cal 3 2013 should display

Chapter 5 The New Date and Time API116

ptg12441863

 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

indicating that March 1 is a Friday. (Show the weekend at the end of

the week.)

5. Write a program that prints how many days you have been alive.

6. List all Friday the 13th in the twentieth century.

7. Implement a TimeInterval class that represents an interval of time, suitable for

calendar events (such as a meeting on a given date from 10:00 to 11:00).

Provide a method to check whether two intervals overlap.

8. Obtain the offsets of today’s date in all supported time zones for the current

time instant, turning ZoneId.getAvailableIds into a stream and using stream

operations.

9. Again using stream operations, find all time zones whose offsets aren’t full

hours.

10. Your flight from Los Angeles to Frankfurt leaves at 3:05 pm local time and

takes 10 hours and 50 minutes. When does it arrive? Write a program that

can handle calculations like this.

11. Your return flight leaves Frankfurt at 14:05 and arrives in Los Angeles at

16:40. How long is the flight? Write a program that can handle calculations

like this.

12. Write a program that solves the problem described at the beginning of

Section 5.5, “Zoned Time,” on page 109. Read a set of appointments in differ-

ent time zones and alert the user which ones are due within the next hour in

local time.

117Exercises

ptg12441863Topics in This Chapter

6.1 Atomic Values — page 120

6.2 ConcurrentHashMap Improvements — page 123

6.3 Parallel Array Operations — page 128

6.4 Completable Futures — page 130

Exercises — page 134

Concurrency Enhancements

ptg12441863Concurrent programming is hard, and it is harder without the right tools. Early

Java releases had minimal support for concurrency, and programmers busily

created code with deadlocks and race conditions. The robust java.util.concurrent
package didn’t appear until Java 5. That package gives us threadsafe collections

and thread pools, allowing many application programmers to write con-

current programs without using locks or starting threads. Unfortunately,

java.util.concurrent is a mix of useful utilities for the application programmer and

power tools for library authors, without much effort to separate the two. In this

chapter, we focus squarely on the needs of the application programmer.

The key points of this chapter are:

• Updating atomic variables has become simpler with the updateAndGet/
accumulateAndGet methods.

• LongAccumulator/DoubleAccumulator are more efficient than AtomicLong/AtomicDouble
under high contention.

• Updating entries in a ConcurrentHashMap has become simpler with the compute and

merge methods.

• ConcurrentHashMap now has bulk operations search, reduce, forEach, with variants

operating on keys, values, keys and values, and entries.

6Chapter

119

ptg12441863

• A set view lets you use a ConcurrentHashMap as a Set.

• The Arrays class has methods for parallel sorting, filling, and prefix operations.

• Completable futures let you compose asynchronous operations.

6.1 Atomic Values
Since Java 5, the java.util.concurrent.atomic package provided classes for lock-free

mutation of variables. For example, you can safely generate a sequence of

numbers like this:

public static AtomicLong nextNumber = new AtomicLong();
// In some thread . . .

long id = nextNumber.incrementAndGet();

The incrementAndGet method atomically increments the AtomicLong and returns the

post-increment value. That is, the operations of getting the value, adding 1, setting

it, and producing the new value cannot be interrupted. It is guaranteed that

the correct value is computed and returned, even if multiple threads access the

same instance concurrently.

There are methods for atomically setting, adding, and subtracting values, but if

you want to make a more complex update, you have to use the compareAndSet
method. For example, suppose you want to keep track of the largest value

that is observed by different threads. The following won’t work:

public static AtomicLong largest = new AtomicLong();
// In some thread . . .

largest.set(Math.max(largest.get(), observed)); // Error—race condition!

This update is not atomic. Instead, compute the new value and use compareAndSet
in a loop:

do {
 oldValue = largest.get();
 newValue = Math.max(oldValue, observed);
} while (!largest.compareAndSet(oldValue, newValue));

If another thread is also updating largest, it is possible that it has beat this thread

to it. Then compareAndSet will return false without setting the new value. In that

case, the loop tries again, reading the updated value and trying to change it.

Eventually, it will succeed replacing the existing value with the new one. This

sounds tedious, but the compareAndSet method maps to a processor operation that

is faster than using a lock.

Chapter 6 Concurrency Enhancements120

ptg12441863

In Java 8, you don’t have to write the loop boilerplate any more. Instead, you

provide a lambda expression for updating the variable, and the update is done

for you. In our example, we can call

largest.updateAndGet(x -> Math.max(x, observed));

or

largest.accumulateAndGet(observed, Math::max);

The accumulateAndGet method takes a binary operator that is used to combine the

atomic value and the supplied argument.

There are also methods getAndUpdate and getAndAccumulate that return the old value.

NOTE: These methods are also provided for the classes AtomicInteger,
AtomicIntegerArray, AtomicIntegerFieldUpdater, AtomicLongArray,
AtomicLongFieldUpdater, AtomicReference, AtomicReferenceArray, and
AtomicReferenceFieldUpdater.

When you have a very large number of threads accessing the same atomic values,

performance suffers because the optimistic updates require too many retries.

Java 8 provides classes LongAdder and LongAccumulator to solve this problem. A

LongAdder is composed of multiple variables whose collective sum is the current

value. Multiple threads can update different summands, and new summands

are automatically provided when the number of threads increases. This is efficient

in the common situation where the value of the sum is not needed until after all

work has been done. The performance improvement can be substantial—see

Exercise 3.

If you anticipate high contention, you should simply use a LongAdder instead of an

AtomicLong. The method names are slightly different. Call increment to increment a

counter or add to add a quantity, and sum to retrieve the total.

final LongAdder adder = new LongAdder();
for (...)
 pool.submit(() -> {
 while (...) {
 ...
 if (...) adder.increment();
 }
 });
...
long total = adder.sum());

1216.1 Atomic Values

ptg12441863

NOTE: Of course, the increment method does not return the old value.
Doing that would undo the efficiency gain of splitting the sum into multiple
summands.

The LongAccumulator generalizes this idea to an arbitrary accumulation operation.

In the constructor, you provide the operation, as well as its neutral element. To

incorporate new values, call accumulate. Call get to obtain the current value. The

following has the same effect as a LongAdder:

LongAccumulator adder = new LongAccumulator(Long::sum, 0);
// In some thread . . .

adder.accumulate(value);

Internally, the accumulator has variables a1, a2, …, an. Each variable is initialized

with the neutral element (0 in our example).

When accumulate is called with value v, then one of them is atomically updated as

ai = ai op v, where op is the accumulation operation written in infix form. In our

example, a call to accumulate computes ai = ai + v for some i.

The result of get is a1 op a2 op … op an. In our example, that is the sum of the

accumulators, a1 + a2 + … + an.

If you choose a different operation, you can compute maximum or minimum

(see Exercise 4). In general, the operation must be associative and commutative.

That means that the final result must be independent of the order in which the

intermediate values were combined.

There are also DoubleAdder and DoubleAccumulator that work in the same way, except

with double values.

NOTE: Another addition to Java 8 is the StampedLock class that can be used
to implement optimistic reads. I don’t recommend that application program-
mers use locks, but here is how it is done.You first call tryOptimisticRead, upon
which you get a “stamp.” Read your values and check whether the stamp
is still valid (i.e., no other thread has obtained a write lock). If so, you can use
the values. If not, get a read lock (which blocks any writers). Here is an
example.

Chapter 6 Concurrency Enhancements122

ptg12441863

public class Vector {
 private int size;
 private Object[] elements;
 private StampedLock lock = new StampedLock();

 public Object get(int n) {
 long stamp = lock.tryOptimisticRead();
 Object[] currentElements = elements;
 int currentSize = size;
 if (!lock.validate(stamp)) { // Someone else had a write lock
 stamp = lock.readLock(); // Get a pessimistic lock
 currentElements = elements;
 currentSize = size;
 lock.unlockRead(stamp);
 }
 return n < currentSize ? currentElements[n] : null;
 }
 ...
}

6.2 ConcurrentHashMap Improvements
A classic programmer’s saying is, “If you can only have one data structure, make

it a hash table.” Since Java 5, the ConcurrentHashMap has been a workhorse of concur-

rent programming. A ConcurrentHashMap is, of course, threadsafe—multiple threads

can add and remove elements without damaging the internal structure. Moreover,

it is quite efficient, allowing multiple threads to update different parts of the table

concurrently without blocking each other.

NOTE: Some applications use humongous concurrent hash maps, so large
that the size method is insufficient because it returns an int. What is one
to do with a map that has over two billion entries? Java 8 introduces a
mappingCount method that returns the size as a long.

1236.2 ConcurrentHashMap Improvements

ptg12441863

NOTE: A hash map keeps all entries with the same hash code in the same
“bucket.” Some applications use poor hash functions, and as a result all entries
end up in a small number of buckets, severely degrading performance. Even
generally reasonable hash functions, such as that of the String class, can be
problematic. For example, an attacker can slow down a program by crafting
a large number of strings that hash to the same value. As of Java 8, the con-
current hash map organizes the buckets as trees, not lists, when the key type
implements Comparable, guaranteeing O(log(n)) performance.

6.2.1 Updating Values
The original version of ConcurrentHashMap only had a few methods for atomic up-

dates, which made for somewhat awkward programming. Suppose we want to

count how often certain features are observed. As a simple example, suppose

multiple threads encounter words, and we want to count their frequencies.

Can we use a ConcurrentHashMap<String, Long>? Consider the code for incrementing

a count. Obviously, the following is not threadsafe:

Long oldValue = map.get(word);
Long newValue = oldValue == null ? 1 : oldValue + 1;
map.put(word, newValue); // Error—might not replace oldValue

Another thread might be updating the exact same count at the same time.

NOTE: Some programmers are surprised that a supposedly threadsafe data
structure permits operations that are not threadsafe. But there are two entirely
different considerations. If multiple threads modify a plain HashMap, they can
destroy the internal structure (an array of linked lists). Some of the links may
go missing, or even go in circles, rendering the data structure unusable. That
will never happen with a ConcurrentHashMap. In the example above, the code
for get and put will never corrupt the data structure. But, since the sequence
of operations is not atomic, the result is not predictable.

One remedy is to use the replace operation, replacing a known old value with

a new one, just as you have seen in the preceding section:

do {
 oldValue = map.get(word);
 newValue = oldValue == null ? 1 : oldValue + 1;
} while (!map.replace(word, oldValue, newValue));

Alternatively, you can use a ConcurrentHashMap<String, AtomicLong> or, with Java 8, a

ConcurrentHashMap<String, LongAdder>. Then the update code is:

Chapter 6 Concurrency Enhancements124

ptg12441863

map.putIfAbsent(word, new LongAdder());
map.get(word).increment();

The first statement ensures that there is a LongAdder present that we can increment

atomically. Since putIfAbsent returns the mapped value (either the existing one or

the newly put one), you can combine the two statements:

map.putIfAbsent(word, new LongAdder()).increment();

Java 8 provides methods that make atomic updates more convenient. The compute
method is called with a key and a function to compute the new value. That

function receives the key and the associated value, or null if there is none, and it

computes the new value. For example, here is how we can update a map of

integer counters:

map.compute(word, (k, v) -> v == null ? 1 : v + 1);

NOTE: You cannot have null values in a ConcurrentHashMap. There are many
methods that use a null value as an indication that a given key is not present
in the map.

There are also variants computeIfPresent and computeIfAbsent that only compute a new

value when there is already an old one, or when there isn’t yet one. A map of

LongAdder counters can be updated with

map.computeIfAbsent(word, k -> new LongAdder()).increment();

That is almost like the call to putIfAbsent that you saw before, but the LongAdder
constructor is only called when a new counter is actually needed.

You often need to do something special when a key is added for the first time.

The merge method makes this particularly convenient. It has a parameter for the

initial value that is used when the key is not yet present. Otherwise, the function

that you supplied is called, combining the existing value and the initial value.

(Unlike compute, the function does not process the key.)

map.merge(word, 1L, (existingValue, newValue) -> existingValue + newValue);

or, more simply,

map.merge(word, 1L, Long::sum);

It doesn’t get more concise than that. See Exercise 5 for another compelling

application of the merge method.

NOTE: If the function that is passed to compute or merge returns null, the
existing entry is removed from the map.

1256.2 ConcurrentHashMap Improvements

ptg12441863

CAUTION: When you use compute or merge, keep in mind that the function that
you supply should not do a lot of work. While that function runs, some other
updates to the map may be blocked. Of course, that function should also
not update other parts of the map.

6.2.2 Bulk Operations
Java 8 provides bulk operations on concurrent hash maps that can safely execute

even while other threads operate on the map. The bulk operations traverse

the map and operate on the elements they find as they go along. No effort is

made to freeze a snapshot of the map in time. Unless you happen to know that

the map is not being modified while a bulk operation runs, you should treat its

result as an approximation of the map’s state.

There are three kinds of operations:

• search applies a function to each key and/or value, until the function yields

a non-null result. Then the search terminates and the function’s result is

returned.

• reduce combines all keys and/or values, using a provided accumulation

function.

• forEach applies a function to all keys and/or values.

Each operation has four versions:

• operationKeys: operates on keys.

• operationValues: operates on values.

• operation: operates on keys and values.

• operationEntries: operates on Map.Entry objects.

With each of the operations, you need to specify a parallelism threshold. If the map

contains more elements than the threshold, the bulk operation is parallelized. If

you want the bulk operation to run in a single thread, use a threshold of

Long.MAX_VALUE. If you want the maximum number of threads to be made available

for the bulk operation, use a threshold of 1.

Let’s look at the search methods first. Here are the versions:

U searchKeys(long threshold, BiFunction<? super K, ? extends U> f)
U searchValues(long threshold, BiFunction<? super V, ? extends U> f)
U search(long threshold, BiFunction<? super K, ? super V,? extends U> f)
U searchEntries(long threshold, BiFunction<Map.Entry<K, V>, ? extends U> f)

For example, suppose we want to find the first word that occurs more than

1,000 times. We need to search keys and values:

Chapter 6 Concurrency Enhancements126

ptg12441863

String result = map.search(threshold, (k, v) -> v > 1000 ? k : null);

Then result is set to the first match, or to null if the search function returns null
for all inputs.

The forEach methods have two variants. The first one simply applies a consumer
function for each map entry, for example

map.forEach(threshold,
 (k, v) -> System.out.println(k + " -> " + v));

The second variant takes an additional transformer function, which is applied

first, and its result is passed to the consumer:

map.forEach(threshold,
 (k, v) -> k + " -> " + v, // Transformer

 System.out::println); // Consumer

The transformer can be used as a filter. Whenever the transformer returns

null, the value is silently skipped. For example, here we only print the entries

with large values:

map.forEach(threshold,
 (k, v) -> v > 1000 ? k + " -> " + v : null, // Filter and transformer

 System.out::println); // The nulls are not passed to the consumer

The reduce operations combine their inputs with an accumulation function. For

example, here is how you can compute the sum of all values.

Long sum = map.reduceValues(threshold, Long::sum);

As with forEach, you can also supply a transformer function. Here we compute

the length of the longest key:

Integer maxlength = map.reduceKeys(threshold,
 String::length, // Transformer

 Integer::max); // Accumulator

The transformer can act as a filter, by returning null to exclude unwanted inputs.

Here, we count how many entries have value > 1000:

Long count = map.reduceValues(threshold,
 v -> v > 1000 ? 1L : null,
 Long::sum);

NOTE: If the map is empty, or all entries have been filtered out, the reduce
operation returns null. If there is only one element, its transformation is
returned, and the accumulator is not applied.

1276.2 ConcurrentHashMap Improvements

ptg12441863

There are specializations for int, long, and double outputs with suffix ToInt, ToLong,
and ToDouble. You need to transform the input to a primitive value and specify a

default value and an accumulator function. The default value is returned when

the map is empty.

long sum = map.reduceValuesToLong(threshold,
 Long::longValue, // Transformer to primitive type

 0, // Default value for empty map

 Long::sum); // Primitive type accumulator

CAUTION: These specializations act differently from the object versions where
there is only one element to be considered. Instead of returning the trans-
formed element, it is accumulated with the default.Therefore, the default must
be the neutral element of the accumulator.

6.2.3 Set Views
Suppose you want a large, threadsafe set instead of a map. There is no

ConcurrentHashSet class, and you know better than trying to create your own. Of

course, you can use a ConcurrentHashMap with bogus values, but then you get a map,

not a set, and you can’t apply operations of the Set interface.

The static newKeySet method yields a Set<K> that is actually a wrapper around a

ConcurrentHashMap<K, Boolean>. (All map values are Boolean.TRUE, but you don’t actually

care since you just use it as a set.)

Set<String> words = ConcurrentHashMap.<String>newKeySet();

Of course, if you have an existing map, the keySet method yields the set of keys.

That set is mutable. If you remove the set’s elements, the keys (and their values)

are removed from the map. But it doesn’t make sense to add elements to the key

set, because there would be no corresponding values to add. Java 8 adds a second

keySet method to ConcurrentHashMap, with a default value, to be used when adding

elements to the set:

Set<String> words = map.keySet(1L);
words.add("Java");

If "Java" wasn’t already present in words, it now has a value of one.

6.3 Parallel Array Operations
The Arrays class now has a number of parallelized operations. The static

Arrays.parallelSort method can sort an array of primitive values or objects. For

example,

Chapter 6 Concurrency Enhancements128

ptg12441863

String contents = new String(Files.readAllBytes(
 Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string

String[] words = contents.split("[\\P{L}]+"); // Split along nonletters

Arrays.parallelSort(words);

When you sort objects, you can supply a Comparator. With all methods, you can

supply the bounds of a range, such as

values.parallelSort(values.length / 2, values.length); // Sort the upper half

NOTE: At first glance, it seems a bit odd that these methods have parallel
in their name, since the user shouldn’t care how the sorting happens.
However, the API designers wanted to make it clear that the sorting is paral-
lelized. That way, users are on notice to avoid comparators with side effect.

The parallelSetAll method fills an array with values that are computed from a

function. The function receives the element index and computes the value at that

location.

Arrays.parallelSetAll(values, i -> i % 10);
 // Fills values with 0 1 2 3 4 5 6 7 8 9 0 1 2 . . .

Clearly, this operation benefits from being parallelized. There are versions for

all primitive type arrays and for object arrays.

Finally, there is a parallelPrefix method that replaces each array element with the

accumulation of the prefix for a given associative operation. Huh? Here is an

example. Consider the array [1, 2, 3, 4, ...] and the × operation. After executing

Arrays.parallelPrefix(values, (x, y) -> x * y), the array contains

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, ...]

Perhaps surprisingly, this computation can be parallelized. First, join neighboring

elements, as indicated here:

[1, 1 × 2, 3, 3 × 4, 5, 5 × 6, 7, 7 × 8]

The gray values are left alone. Clearly, one can make this computation in parallel

in separate regions of the array. In the next step, update the indicated elements

by multiplying them with elements that are one or two positions below:

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, 5, 5 × 6, 5 × 6 × 7, 5 × 6 × 7 × 8]

This can again be done in parallel. After log(n) steps, the process is complete.

This is a win over the straightforward linear computation if sufficient processors

are available. On special-purpose hardware, this algorithm is commonly used,

and users of such hardware are quite ingenious in adapting it to a variety of

problems. Exercise 9 gives a simple example.

1296.3 Parallel Array Operations

ptg12441863

6.4 Completable Futures
The java.util.concurrent library provides a Future<T> interface to denote a value of

type T that will be available at some point in the future. However, up to now,

futures were rather limited. In the following sections, you will see how completable
futures make it possible to compose asynchronous operations.

6.4.1 Futures
Here is a quick refresher on futures. Consider a method

public void Future<String> readPage(URL url)

The method reads a web page in a separate thread, which is going to take a while.

When you call

Future<String> contents = readPage(url);

the method returns right away, and you hold in your hands a Future<String>. Now

suppose we want to extract all URLs from the page in order to build a web

crawler. We have a class Parser with a method

public static List<URL> getLinks(String page)

How can we apply that method to the future object? Unfortunately, there is only

one way. First, call the get method on the future to get its value when it becomes

available. Then, process the result:

String page = contents.get();
List<URL> links = Parser.getLinks(page);

But the call to get is a blocking call. We are really no better off than with a method

public String readPage(URL url) that blocks until the result is available.

Now in fairness, there has been some support for futures in java.util.concurrent,
but an essential piece was missing. There was no easy way of saying: “When the

result becomes available, here is how to process it.” This is the crucial feature

that the new CompletableFuture<T> class provides.

6.4.2 Composing Futures
Let’s change the readPage method so that it returns a CompletableFuture<String>. Unlike

a plain Future, a CompleteableFuture has a method thenApply to which you can pass

the post-processing function.

CompletableFuture<String> contents = readPage(url);
CompletableFuture<List<String>> links = contents.thenApply(Parser::getLinks);

Chapter 6 Concurrency Enhancements130

ptg12441863

The thenApply method doesn’t block either. It returns another future. When the

first future has completed, its result is fed to the getLinks method, and the return

value of that method becomes the final result.

This composability is the key aspect of the CompletableFuture class. Composing future

actions solves a serious problem in programming asynchronous applications.

The traditional approach for dealing with nonblocking calls is to use event

handlers. The programmer registers a handler for the next action after comple-

tion. Of course, if the next action is also asynchronous, then the next action after

that is in a different event handler. Even though the programmer thinks in terms

of “first do step 1, then step 2, then step 3,” the program logic becomes dispersed

in different places. It gets worse when one has to add error handling. Suppose

step 2 is “the user logs in”; then we may need to repeat that step since

the user can mistype the credentials. Trying to implement such a control flow

in a set of event handlers, or to understand it once it has been implemented, is

challenging.

With completable futures, you just specify what you want to have done, and in

which order. It won’t all happen right away, of course, but what is important is

that all the code is in one place.

6.4.3 The Composition Pipeline
In Chapter 2, you saw how a stream pipeline starts with stream creation, then

goes through one or more transformations, and finishes with a terminal operation.

The same is true for a pipeline of futures.

Start out by generating a CompletableFuture, usually with the static method

supplyAsync. That method requires a Supplier<T>, that is, a function with no parame-

ters yielding a T. The function is called on a separate thread. In our example, we

can start out the pipeline with

CompletableFuture<String> contents
 = CompletableFuture.supplyAsync(() -> blockingReadPage(url));

There is also a static runAsync method that takes a Runnable, yielding a

CompletableFuture<Void>. This is useful if you simply want to schedule one action

after another, without passing data between them.

NOTE: All methods ending in Async have two variants. One of them runs the
provided action on the common ForkJoinPool. The other has a parameter of
type java.util.concurrent.Executor, and it uses the given executor to run the
action.

1316.4 Completable Futures

ptg12441863

Next, you can call thenApply or thenApplyAsync to run another action, either in the

same thread or another. With either method, you supply a function and you get

a CompletableFuture<U>, where U is the return type of the function. For example, here

is a two-stage pipeline for reading and processing the web page:

CompletableFuture<List<String>> links
 = CompletableFuture.supplyAsync(() -> blockingReadPage(url))
 .thenApply(Parser::getLinks);

You can have additional processing steps. Eventually, you’ll be done, and you

will need to save the results somewhere. Here, we just print the result.

CompletableFuture<Void> links
 = CompletableFuture.supplyAsync(() -> blockingReadPage(url))
 .thenApply(Parser::getLinks)
 .thenAccept(System.out::println);

The thenAccept method takes a Consumer—that is, a function with return type void.

Ideally, you would never call get on a future. The last step in the pipeline simply

deposits the result where it belongs.

NOTE: You don’t explicitly start the computation.The static supplyAsync method
starts it automatically, and the other methods cause it to be continued.

6.4.4 Composing Asynchronous Operations
There is a large number of methods for working with completable futures. Let

us first look at those that deal with a single future (see Table 6–1). For each

method shown, there are also two Async variants that I don’t show. As noted in

the preceding section, one of them uses the common ForkJoinPool, and the other

has an Executor parameter. In the table, I use a shorthand notation for the

ponderous functional interfaces, writing T -> U instead of Function<? super T, U>.
These aren’t actual Java types, of course.

You have already seen the thenApply method. The calls

CompletableFuture<U> future.thenApply(f);
CompletableFuture<U> future.thenApplyAsync(f);

return a future that applies f to the result of future when it is available. The second

call runs f in yet another thread.

The thenCompose method, instead of taking a function T -> U, takes a function T ->
CompletableFuture<U>. That sounds rather abstract, but it can be quite natural. Con-

sider the action of reading a web page from a given URL. Instead of supplying

a method

public String blockingReadPage(URL url)

Chapter 6 Concurrency Enhancements132

ptg12441863

Table 6–1 Adding an Action to a CompletableFuture<T> Object

DescriptionParameterMethod

Apply a function to the result.T -> UthenApply

Invoke the function on the result and

execute the returned future.

T -> CompletableFuture<U>thenCompose

Process the result or error.(T, Throwable) -> Uhandle

Like thenApply, but with void result.T -> voidthenAccept

Like handle, but with void result.(T, Throwable) -> voidwhenComplete

Execute the Runnable with void result.RunnablethenRun

it is more elegant to have that method return a future:

public CompletableFuture<String> readPage(URL url)

Now, suppose we have another method that gets the URL from user input, per-

haps from a dialog that won’t reveal the answer until the user has clicked the

OK button. That, too, is an event in the future:

public CompletableFuture<URL> getURLInput(String prompt)

Here we have two functions T -> CompletableFuture<U> and U -> CompletableFuture<V>.
Clearly, they compose to a function T -> CompletableFuture<V> by calling the second

function when the first one has completed. That is exactly what thenCompose does.

The third method in Table 6–1 focuses on a different aspect that I have ig-

nored so far: failure. When an exception is thrown in a CompletableFuture, it is cap-

tured and wrapped in an unchecked ExecutionException when the get method is

called. But perhaps get is never called. In order to handle an exception, use the

handle method. The supplied function is called with the result (or null if none) and

the exception (or null if none), and it gets to make sense of the situation.

The remaining methods have void result and are usually used at the end of a

processing pipeline.

Now let us turn to methods that combine multiple futures (see Table 6–2).

The first three methods run a CompletableFuture<T> and a CompletableFuture<U> action

in parallel and combine the results.

The next three methods run two CompletableFuture<T> actions in parallel. As soon

as one of them finishes, its result is passed on, and the other result is ignored.

Finally, the static allOf and anyOf methods take a variable number of completable

futures and yield a CompletableFuture<Void> that completes when all of them, or any

one of them, completes. No results are propagated.

1336.4 Completable Futures

ptg12441863

Table 6–2 Combining Multiple Composition Objects

DescriptionParametersMethod

Execute both and combine the

results with the given function.

CompletableFuture<U>, (T, U) ->
V

thenCombine

Like thenCombine, but with void
result.

CompletableFuture<U>, (T, U) ->
void

thenAcceptBoth

Execute the runnable after both

complete.

CompletableFuture<?>, RunnablerunAfterBoth

When a result is available from

one or the other, pass it to the

given function.

CompletableFuture<T>, T -> VapplyToEither

Like applyToEither, but with void
result.

CompletableFuture<T>, T -> voidacceptEither

Execute the runnable after one

or the other completes.

CompletableFuture<?>, RunnablerunAfterEither

Complete with void result after

all given futures complete.

CompletableFuture<?>...static allOf

Complete with void result after

any of the given futures

completes.

CompletableFuture<?>...static anyOf

NOTE: Technically speaking, the methods in this section accept para-
meters of type CompletionStage, not CompletableFuture. That is an interface
type with almost forty abstract methods, currently implemented only by
CompletableFuture. Most programmers wouldn’t casually implement that
interface, so I don’t dwell on the distinction.

Exercises
1. Write a program that keeps track of the longest string that is observed by a

number of threads. Use an AtomicReference and an appropriate accumulator.

2. Does a LongAdder help with yielding a sequence of increasing IDs? Why or

why not?

3. Generate 1,000 threads, each of which increments a counter 100,000 times.

Compare the performance of using AtomicLong versus LongAdder.

Chapter 6 Concurrency Enhancements134

ptg12441863

4. Use a LongAccumulator to compute the maximum or minimum of the

accumulated elements.

5. Write an application in which multiple threads read all words from a collec-

tion of files. Use a ConcurrentHashMap<String, Set<File>> to track in which files

each word occurs. Use the merge method to update the map.

6. Repeat the preceding exercise, but use computeIfAbsent instead. What is the

advantage of this approach?

7. In a ConcurrentHashMap<String, Long>, find the key with maximum value (breaking

ties arbitrarily). Hint: reduceEntries.

8. How large does an array have to be for Arrays.parallelSort to be faster than

Arrays.sort on your computer?

9. You can use the parallelPrefix method to parallelize the computation of Fi-

bonacci numbers. We use the fact that the nth Fibonacci number is the top

left coefficient of Fn, where F = (1
1

1
0) . Make an array filled with 2 × 2 matri-

ces. Define a Matrix class with a multiplication method, use parallelSetAll to
make an array of matrices, and use parallelPrefix to multiply them.

10. Write a program that asks the user for a URL, then reads the web page at that

URL, and then displays all the links. Use a CompletableFuture for each stage.

Don’t call get. To prevent your program from terminating prematurely, call

ForkJoinPool.commonPool().awaitQuiescence(10, TimeUnit.SECONDS);

11. Write a method

public static <T> CompletableFuture<T> repeat(
 Supplier<T> action, Predicate<T> until)

that asynchronously repeats the action until it produces a value that is

accepted by the until function, which should also run asynchronously. Test

with a function that reads a java.net.PasswordAuthentication from the console,

and a function that simulates a validity check by sleeping for a second and

then checking that the password is "secret". Hint: Use recursion.

135Exercises

ptg12441863Topics in This Chapter

7.1 Running Nashorn from the Command Line — page 138

7.2 Running Nashorn from Java — page 139

7.3 Invoking Methods — page 140

7.4 Constructing Objects — page 141

7.5 Strings — page 142

7.6 Numbers — page 143

7.7 Working with Arrays — page 144

7.8 Lists and Maps — page 145

7.9 Lambdas — page 146

7.10 Extending Java Classes and Implementing Java Interfaces — page 146

7.11 Exceptions — page 148

7.12 Shell Scripting — page 148

7.13 Nashorn and JavaFX — page 152

Exercises — page 154

The Nashorn JavaScript Engine

ptg12441863For many years, Java bundled the Rhino JavaScript interpreter, an open source

JavaScript interpreter written in Java. It is called Rhino because a well-

regarded JavaScript book has the image of a rhinoceros on its cover. Rhino works

just fine, but it isn’t particularly fast. Oracle’s engineers realized that they could

build a much more efficient JavaScript interpreter using the new JVM instructions

designed for dynamic languages. Thus, the Nashorn project was born. Nashorn

is the German word for rhinoceros—literally, nose-horn. (You get extra karma

for pronouncing it nas-horn, not na-shorn.) Nashorn is very fast, and it lets you

integrate Java with JavaScript on a highly performant virtual machine. It is

also incredibly compliant with the ECMAScript standard for JavaScript. If

you are thinking of giving your users the ability to script your application, or

if you are intrigued by the ease of use of reactive programming environments

such as node.js, check out Nashorn in Java 8. Not only do you get the benefits of

a reasonably well-designed scripting language (i.e., JavaScript), but you have the

full power of the JVM behind it.

The key points of this chapter are:

• Nashorn is the successor to the Rhino JavaScript interpreter, with greater

performance and fidelity to the JavaScript standard.

• Nashorn is a pleasant environment for experimenting with the Java API.

• You can run JavaScript through the jjs interpreter, or from Java via the

scripting API.

7Chapter

137

ptg12441863

• Use the predefined JavaScript objects for the most common packages, or the

Java.type function to access any package.

• Beware of intricacies in the conversion of strings and numbers between

JavaScript and Java.

• JavaScript offers a convenient syntax for working with Java lists and maps,

as well as JavaBeans properties.

• You can convert JavaScript functions to Java interfaces in a way that is very

similar to using lambda expressions.

• You can extend Java classes and implement Java interfaces in JavaScript, but

there are limitations.

• Nashorn has good support for writing shell scripts in JavaScript.

• You can write JavaFX programs in JavaScript, but the integration is not as

good as it might be.

7.1 Running Nashorn from the Command Line
Java 8 ships with a command-line tool called jjs. Simply launch it, and issue

JavaScript commands.

$ jjs
jjs> 'Hello, World'
Hello, World

You get what’s called a “read-eval-print” loop, or REPL, in the world of Lisp,

Scala, and so on. Whenever you enter an expression, its value is printed.

jjs> 'Hello, World!'.length
13

NOTE: As a reminder, in JavaScript, strings can be delimited by '...' or "...".
In this chapter, I will use single quotes for JavaScript strings to give you a
visual clue that the code is JavaScript, not Java.

You can define functions and call them:

jjs> function factorial(n) { return n <= 1 ? 1 : n * factorial(n - 1) }
function factorial(n) { return n <= 1 ? 1 : n * factorial(n - 1) }
jjs> factorial(10)
3628800

You can call Java methods:

Chapter 7 The Nashorn JavaScript Engine138

ptg12441863

var input = new java.util.Scanner(
 new java.net.URL('http://horstmann.com').openStream())
input.useDelimiter('$')
var contents = input.next()

Now, when you type contents, you see the contents of the web page.

Look how refreshing this is. You didn’t have to worry about exceptions. You can

make experiments dynamically. I wasn’t quite sure whether I could read the

entire contents by setting the delimiter to $, but I tried it out and it worked. And

I didn’t have to write public static void main. I didn’t have to compile a thing. I

didn’t have to make a project in my IDE. The REPL is the easiest way to explore

an API. It is a bit odd that one drives Java from JavaScript, but it is also conve-

nient. Note how I didn’t have to define the types for the input and contents
variables.

TIP: There are two annoyances that keep the JavaScript REPL from being
as refreshing as its equivalent in Scala. The Scala REPL has command
completion.When you press the Tab key, you get a list of possible completions
of the current expression. Admittedly, that is a difficult trick to pull off for dy-
namically typed languages such as JavaScript.A more fundamental omission
is command-line recall. Pressing the ↑ key should get you the previous com-
mand. If it doesn’t, try installing rlwrap and run rlwrap jjs. Alternatively, you
can run jjs inside Emacs. Don’t worry—this won’t hurt a bit. Start Emacs and
hit M-x (i.e., Alt+x or Esc x) shell Enter, then type jjs. Type expressions as
usual. Use M-p and M-n to recall the previous or next line, and the left and
right arrow keys to move within a line. Edit a command, then press Enter to
see it executed.

7.2 Running Nashorn from Java
In the preceding section, you saw one use case for Nashorn scripting: to experi-

ment with Java APIs from the jjs REPL. Another use case is to allow users of

your programs to run scripts. In the desktop world, this is quite common. For

example, all Microsoft Office applications can be scripted with a language called

VB Script that is a descendant of the Basic language. Quite a few people write

such scripts, and this capability leads to a form of vendor lock. It is difficult

to adopt an alternate office suite that won’t run those scripts. If you want to

lock in the users of your Java desktop or server app, you can provide the same

capabilities.

Running a Nashorn script from Java uses the script engine mechanism that has

been introduced in Java 6. You can use that mechanism to execute scripts in any

1397.2 Running Nashorn from Java

ptg12441863

JVM language with a script engine, such as Groovy, JRuby, or Jython. There are

also script engines for languages that run outside the JVM, such as PHP or

Scheme.

To run a script, you need to get a ScriptEngine object. If the engine is registered,

you can simply get it by name. Java 8 includes an engine with name "nashorn".
Here is how to use it:

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");
Object result = engine.eval("'Hello, World!'.length");
System.out.println(result);

You can also read a script from a Reader:

Object result = engine.eval(Files.newBufferedReader(path));

To make a Java object available to your scripts, use the put method of the

ScriptEngine interface. For example, you can make a JavaFX stage visible, so that

you can populate it using JavaScript code:

public void start(Stage stage) {
 engine.put("stage", stage);
 engine.eval(script); // Script code can access the object as stage
}

Instead of putting variables into the global scope, you can collect them in an object

of type Bindings and pass that object to the eval method:

Bindings scope = engine.createBindings();
scope.put("stage", stage);
engine.eval(script, scope);

This is useful if a set of bindings should not persist for future calls to the eval
method.

7.3 Invoking Methods
In the preceding section, you saw how the script engine can make Java objects

accessible to JavaScript. You can then invoke methods on the provided variables.

For example, if the Java code calls

engine.put("stage", stage);

then the JavaScript code can call

stage.setTitle('Hello')

In fact, you can also use the syntax

stage.title = 'Hello'

Chapter 7 The Nashorn JavaScript Engine140

ptg12441863

Nashorn supports a convenient property syntax for getters and setters. If the

expression stage.title occurs to the left of the = operator, it is translated to an

invocation of the setTitle method. Otherwise it turns into a call stage.getTitle().

You can even use the JavaScript bracket notation to access properties:

stage['title'] = 'Hello'

Note that the argument of the [] operator is a string. In this context, that isn’t

useful, but you can call stage[str] with a string variable and thereby access

arbitrary properties.

NOTE: In JavaScript, semicolons at the end of a line are optional. Many
JavaScript programmers put them in anyway, but in this chapter, I omit them
so that you can easily distinguish between Java and JavaScript code snippets.

JavaScript has no concept of method overloading. There can be only one method

with a given name, and it can have any number of parameters of any type.

Nashorn attempts to pick the correct Java method, following the number and

types of the parameters.

In almost all cases, there is only one Java method that matches the supplied pa-

rameters. If there is not, you can manually pick the correct method with the

following rather strange syntax:

list['remove(Object)'](1)

Here, we specify the remove(Object) method that removes the Integer object 1 from

the list. (There is also a remove(int) method that removes the object at position 1.)

7.4 Constructing Objects
When you want to construct objects in JavaScript (as opposed to having them

handed to you from the script engine), you need to know how to access Java

packages. There are two mechanisms.

There are global objects java, javax, javafx, com, org, and edu that yield package and

class objects via the dot notation. For example,

var javaNetPackage = java.net // A JavaPackage object

var URL = java.net.URL // A JavaClass object

If you need to access a package that does not start with one of the above

identifiers, you can find it in the Package object, such as Package.ch.cern.

Alternatively, call the Java.type function:

var URL = Java.type('java.net.URL')

1417.4 Constructing Objects

ptg12441863

This is a bit faster than java.net.URL, and you get better error checking. (If you

make a spelling error such as java.net.Url, Nashorn will think it is a package.) But

if you want speed and good error handling, you probably shouldn’t be using a

scripting language in the first place, so I will stick with the shorter form.

NOTE: The Nashorn documentation suggests that class objects should be
defined at the top of a script file, just like you place imports at the top of a
Java file:

var URL = Java.type('java.net.URL')
var JMath = Java.type('java.lang.Math')
 // Avoids conflict with JavaScript Math object

Once you have a class object, you can call static methods:

JMath.floorMod(-3, 10)

To construct an object, pass the class object to the JavaScript new operator. Pass

any constructor parameters in the usual way:

var URL = java.net.URL
var url = new URL('http://horstmann.com')

If you aren’t concerned about efficiency, you can also call

var url = new java.net.URL('http://horstmann.com')

CAUTION: If you use Java.type with new, you need an extra set of parentheses:

var url = new (Java.type('java.net.URL'))('http://horstmann.com')

If you need to specify an inner class, you can do so with the dot notation:

var entry = new java.util.AbstractMap.SimpleEntry('hello', 42)

Alternatively, if you use Java.type, use a $, like the JVM does:

var Entry = Java.type('java.util.AbstractMap$SimpleEntry')

7.5 Strings
Strings in Nashorn are, of course, JavaScript objects. For example, consider the call

'Hello'.slice(-2) // Yields 'lo'

Here, we call the JavaScript method slice. There is no such method in Java.

Chapter 7 The Nashorn JavaScript Engine142

ptg12441863

But the call

'Hello'.compareTo('World')

also works, even though in JavaScript there is no compareTo method. (You just use

the < operator.)

In this case, the JavaScript string is converted to a Java string. In general, a

JavaScript string is converted to a Java string whenever it is passed to a Java

method.

Also note that any JavaScript object is converted to a string when it is passed to

a Java method with a String parameter. Consider

var path = java.nio.file.Paths.get(/home/)
 // A JavaScript RegExp is converted to a Java String!

Here, /home/ is a regular expression. The Paths.get method wants a String, and it

gets one, even though it makes no sense in this situation. One shouldn’t blame

Nashorn for this. It follows the general JavaScript behavior to turn anything into

a string when a string is expected. The same conversion happens for numbers

and Boolean values. For example, 'Hello'.slice('-2') is perfectly valid. The string

'-2' is silently converted to the number –2. It is features such as this one that

make programming in a dynamically typed language an exciting adventure.

7.6 Numbers
JavaScript has no explicit support for integers. Its Number type is the same as

the Java double type. When a number is passed to Java code that expects an int or

long, any fractional part is silently removed. For example, 'Hello'.slice(-2.99) is
the same as 'Hello'.slice(-2).

For efficiency, Nashorn keeps computations as integers when possible, but that

difference is generally transparent. Here is one situation when it is not:

var price = 10
java.lang.String.format('Price: %.2f', price)
 // Error: f format not valid for java.lang.Integer

The value of price happens to be an integer, and it is assigned to an Object since

the format method has an Object... varargs parameter. Therefore, Nashorn pro-

duces a java.lang.Integer. That causes the format method to fail, since the f format

is intended for floating-point numbers. In this case, you can force conversion to

java.lang.Double by calling the Number function:

java.lang.String.format('Unit price: %.2f', Number(price))

1437.6 Numbers

ptg12441863

7.7 Working with Arrays
To construct a Java array, first make a class object:

var intArray = Java.type('int[]')
var StringArray = Java.type('java.lang.String[]')

Then call the new operator and supply the length of the array:

var numbers = new intArray(10) // A primitive int[] array

var names = new StringArray(10) // An array of String references

Then use the bracket notation in the usual way:

numbers[0] = 42
print(numbers[0])

You get the length of the array as numbers.length. To iterate through all values of

the names array, use

for each (var elem in names)
Do something with elem

This is the equivalent of the enhanced for loop in Java. If you need the index

values, use the following loop instead:

for (var i in names)
Do something with i and names[i]

CAUTION: Even though this loop looks just like the enhanced for loop in
Java, it visits the index values. JavaScript arrays can be sparse. Suppose you
initialize a JavaScript array as

var names = []
names[0] = 'Fred'
names[2] = 'Barney'

Then the loop for (var i in names) print(i) prints 0 and 2.

Java and JavaScript arrays are quite different. When you supply a JavaScript array

where a Java array is expected, Nashorn will carry out the conversion. But

sometimes, you need to help it along. Given a JavaScript array, use the Java.to
method to obtain the equivalent Java array:

Chapter 7 The Nashorn JavaScript Engine144

ptg12441863

var javaNames = Java.to(names, StringArray) // An array of type String[]

Conversely, use Java.from to turn a Java array into a JavaScript array:

var jsNumbers = Java.from(numbers)
jsNumbers[-1] = 42

You need to use Java.to to resolve overload ambiguities. For example,

java.util.Arrays.toString([1, 2, 3])

is ambiguous since Nashorn can’t decide whether to convert to an int[] or Object[]
array. In that situation, call

java.util.Arrays.toString(Java.to([1, 2, 3], Java.type('int[]')))

or simply

java.util.Arrays.toString(Java.to([1, 2, 3], 'int[]'))

7.8 Lists and Maps
Nashorn provides “syntactic sugar” for Java lists and maps. You can use the

bracket operator with any Java List to invoke the get and set methods:

var names = java.util.Arrays.asList('Fred', 'Wilma', 'Barney')
var first = names[0]
names[0] = 'Duke'

The bracket operator also works for Java maps:

var scores = new java.util.HashMap
scores['Fred'] = 10 // Calls scores.put('Fred', 10)

To visit all elements in the map, you can use the JavaScript for each loops:

for (var key in scores) ...
for each (var value in scores) ...

If you want to process keys and values together, simply iterate over the entry set:

for each (var e in scores.entrySet())
Process e.key and e.value

NOTE: The for each loop works for any Java class that implements the
Iterable interface.

1457.8 Lists and Maps

ptg12441863

7.9 Lambdas
JavaScript has anonymous functions, such as

var square = function(x) { return x * x }
 // The right-hand side is an anonymous function

var result = square(2)
 // The () operator invokes the function

Syntactically, such an anonymous function is very similar to a Java lambda ex-

pression. Instead of an arrow after the parameter list, you have the keyword

function.

You can use an anonymous function as a functional interface argument of a Java

method, just like you could use a lambda expression in Java. For example,

java.util.Arrays.sort(words,
 function(a, b) { return java.lang.Integer.compare(a.length, b.length) })
 // Sorts the array by increasing length

Nashorn supports shorthand for functions whose body is a single expression.

For such functions, you can omit the braces and the return keyword:

java.util.Arrays.sort(words,
 function(a, b) java.lang.Integer.compare(a.length, b.length))

Again, note the similarity with a Java lambda expression (a, b) -> Integer.
compare(a.length, b.length).

NOTE: That shorthand notation (called an “expression closure”) is not part
of the official JavaScript language standard (ECMAScript 5.1), but it is also
supported by the Mozilla JavaScript implementation.

7.10 Extending Java Classes and Implementing Java Interfaces
To extend a Java class, or to implement a Java interface, use the Java.extend func-

tion. Supply the class object of the superclass or interface and a JavaScript object

with the methods that you want to override or implement.

For example, here is an iterator that produces an infinite sequence of random

numbers. We override two methods, next and hasNext. For each method, we

provide an implementation as an anonymous JavaScript function:

Chapter 7 The Nashorn JavaScript Engine146

ptg12441863

var RandomIterator = Java.extend(java.util.Iterator, {
 next: function() Math.random(),
 hasNext: function() true
}) // RandomIterator is a class object

var iter = new RandomIterator() // Use it to construct an instance

NOTE: When calling Java.extend, you can specify any number of super-
interfaces as well as a superclass. Place all class objects before the object
with the implemented methods.

Another Nashorn syntax extension lets you define anonymous subclasses of in-

terfaces or abstract classes. When new JavaClassObject is followed by a JavaScript

object, an object of the extended class is returned. For example,

var iter = new java.util.Iterator {
 next: function() Math.random(),
 hasNext: function() true
}

If the supertype is abstract and has only one abstract method, you don’t even

have to give the method name. Instead, pass the function as if it was a constructor

parameter:

var task = new java.lang.Runnable(function() { print('Hello') })
 // task is an object of an anonymous class implementing Runnable

CAUTION: When extending a concrete class, you cannot use that constructor
syntax. For example, new java.lang.Thread(function() { print('Hello') }) calls
a Thread constructor, in this case the constructor Thread(Runnable). The call to
new returns an object of class Thread, not of a subclass of Thread.

If you want instance variables in your subclass, add them to the JavaScript object.

For example, here is an iterator that produces ten random numbers:

var iter = new java.util.Iterator {
 count: 10,
 next: function() { this.count--; return Math.random() },
 hasNext: function() this.count > 0
}

Note that the JavaScript methods next and hasNext refer to the instance variable as

this.count.

1477.10 Extending Java Classes and Implementing Java Interfaces

ptg12441863

It is possible to invoke a superclass method when overriding a method, but it is

quite finicky. The call Java.super(obj) yields an object on which you can invoke

the superclass method of the class to which obj belongs, but you must have that

object available. Here is a way to achieve that:

var arr = new (Java.extend(java.util.ArrayList)) {
 add: function(x) {
 print('Adding ' + x);
 return Java.super(arr).add(x)
 }
}

When you call arr.add('Fred'), a message is printed before the value is added to

the array list. Note that the call Java.super(arr) requires the arr variable, which is

being set to the value returned by new. Calling Java.super(this) does not work—that

only gets the JavaScript object that defines the method, not the Java proxy. The

Java.super mechanism is only useful for defining individual objects, not subclasses.

NOTE: Instead of calling Java.super(arr).add(x), you can also use the syntax
arr.super$add(x).

7.11 Exceptions
When a Java method throws an exception, you can catch it in JavaScript in the

usual way:

try {
 var first = list.get(0)
 ...
} catch (e) {
 if (e instanceof java.lang.IndexOutOfBoundsException)
 print('list is empty')
}

Note that there is only one catch clause, unlike in Java where you can catch expres-

sions by type. That, too, is in the spirit of dynamic languages where all type

inquiry happens at runtime.

7.12 Shell Scripting
If you need to automate a repetitive task on your computer, chances are that you

have put the commands in a shell script, a script that replays a set of OS-level

commands. I have a directory ~/bin filled with dozens of shell scripts: to upload

files to my web site, my blog, my photo storage, and to my publisher’s FTP

Chapter 7 The Nashorn JavaScript Engine148

ptg12441863

site; to convert images to blog size; to bulk-email my students; to back up my

computer at two o’clock in the morning.

For me, these are bash scripts, but in the olden days when I used Windows they

were batch files. So what is wrong with that? The problem comes once you have

a need for branches and loops. For some reason, most implementors of command

shells are terrible at programming language design. The way variables, branches,

loops, and functions are implemented in bash is simply awful, and the batch

language in Windows is even worse. I have a few bash scripts that started out

modest but have over time accreted so much cruft that they are unmanageable.

This is a common problem.

Why not just write these scripts in Java? Java is quite verbose. If you call external

commands via Runtime.exec, you need to manage standard input/output/error

streams. The Nashorn designers want you to consider JavaScript as an alternative.

The syntax is comparatively lightweight, and Nashorn offers some conveniences

that are specifically geared towards shell programmers.

7.12.1 Executing Shell Commands
To use the scripting extensions in Nashorn, run

jjs -scripting

or

jrunscript

Now you can execute shell commands by including them in backquotes, for

example

`ls -al`

The standard output and standard error streams of the last command are cap-

tured in $OUT and $ERR. The exit code of the command is in $EXIT. (By convention,

an exit code of zero means success, and non-zero codes describe error conditions.)

You can also capture the standard output by assigning the result of the

backquoted command to a variable:

var output = `ls -al`

If you want to supply standard input for a command, use

$EXEC(command, input)

For example, this command passes the output of ls -al to grep -v class:

$EXEC('grep -v class', `ls -al`)

It’s not quite as pretty as a pipe, but you can easily implement a pipe if you

need it—see Exercise 6.

1497.12 Shell Scripting

ptg12441863

7.12.2 String Interpolation
Expressions inside ${...} are evaluated within doubly quoted and backquoted

strings. This is called “string interpolation.” For example,

var cmd = "javac -classpath ${classpath} ${mainclass}.java"
$EXEC(cmd)

or simply

`javac -classpath ${classpath} ${mainclass}.java`

injects the contents of the variables classpath and mainclass into the command.

You can use arbitrary expressions inside the ${...}:

var message = "The current time is ${java.time.Instant.now()}"
 // Sets message to a string such as The current time is 2013-10-12T21:48:58.545Z

As with the bash shell, string interpolation does not work inside singly quoted

strings.

var message = 'The current time is ${java.time.Instant.now()}'
 // Sets message to The current time is ${java.time.Instant.now()}

Strings are also interpolated in “here documents”—inline documents in a script.

These inline documents are useful when a command reads multiple lines from

standard input and the script author doesn’t want to put the input in a separate

file. As an example, here is how you can feed commands to the GlassFish

administration tool:

name='myapp'
dir='/opt/apps/myapp'
$EXEC("asadmin", <<END)
start-domain
start-database
deploy ${name} ${dir}
exit
END

The <<END construct means: “Insert the string that starts on the next line and is

terminated by the line END.” (Instead of END, you can use any identifier that doesn’t

appear inside the string.)

Note that the name and location of the application are interpolated.

String interpolation and here documents are only available in scripting mode.

Chapter 7 The Nashorn JavaScript Engine150

ptg12441863

7.12.3 Script Inputs
You can supply command-line arguments to a script. Since it is possible to include

multiple script files on the jjs command line, you need to separate the script files

and arguments with a --:

jjs script1.js script2.js -- arg1 arg2 arg3

NOTE: That is a little ugly. If you have only one script file, you can instead run

jrunscript -f script.js arg1 arg2 arg3

TIP: The first line of a script can be a “shebang,” the symbols #! followed by
the location of the script interpreter. For example,

#!/opt/java/bin/jjs

or

#!/opt/java/bin/jrunscript -f

Then you can make the script file executable and simply run it as
path/script.js.

When a script starts with a shebang, scripting mode is automatically activated.

CAUTION: If your script has arguments, and you use jjs in the shebang,
script users will need to supply the --: path/script.js -- arg1 arg2 arg3. Users
will not love you for that. Use jrunscript instead.

In the script file, you receive the command-line arguments in the arguments array:

var deployCommand = "deploy ${arguments[0]} ${arguments[1]}"

With jjs (but not with jrunscript), you can use $ARG instead of arguments. If you use

that variable with string interpolation, you need two dollar signs:

var deployCommand = "deploy ${$ARG[0]} ${$ARG[1]}"

In your script, you can obtain the shell’s environment variables through the ENV
object:

var javaHome = $ENV.JAVA_HOME

In scripting mode, you can prompt the user for input with the readLine function:

var username = readLine('Username: ')

1517.12 Shell Scripting

ptg12441863

CAUTION: To prompt for a password, call

var password = java.lang.System.console().readPassword('Password: ')

Finally, to exit a script, use the exit function. You can supply an optional exit code.

if (username.length == 0) exit(1)

7.13 Nashorn and JavaFX
Nashorn provides a convenient way of launching JavaFX applications. Simply

put the instructions that you would normally put into the start method of the

Application subclass into the script. Use $STAGE for the Stage parameter. You don’t

even have to call show on the Stage object—that is done for you. For example, here

is the “Hello” program from Chapter 4 in JavaScript:

var message = new javafx.scene.control.Label("Hello, JavaFX!");
message.font = new javafx.scene.text.Font(100);
$STAGE.scene = new javafx.scene.Scene(message);
$STAGE.title = "Hello";

Run the script with the -fx option, like this:

jjs -fx myJavaFxApp.js

That is all there is to it. A label with a message “Hello, JavaFX!” is displayed in

a 100-point font in a window whose title is “Hello”—see Figure 7–1.

All the boilerplate is gone, and you have the convenient property notation, that is,

message.font = new Font(100)

instead of

message.setFont(new Font(100))

Figure 7–1 The Hello JavaFX application in JavaScript

Chapter 7 The Nashorn JavaScript Engine152

ptg12441863

NOTE: If you need to override the init or stop lifecycle methods of the
Application class in addition to start, include the methods that you need in
your script, at the top level. With the -fx option, you then get a subclass of
Application with the script methods.

Now let us look at event handling. As you have seen in Chapter 4, most FX events

are handled through listeners to FX properties. Here, the JavaScript story isn’t

so pretty. Recall that an FX property has two listener interfaces, InvalidationListener
and ChangeListener, both added with the addListener method. In Java, you can call

addListener with a lambda expression, and the compiler is able to figure out from

the parameter types which of the two listeners to add. But in JavaScript, function

parameters have no types. Suppose we have a slider to control the font size. We’d

like to add a listener that updates the size when the slider value changes:

slider.valueProperty().addListener(function(property)
 message.font = new Font(slider.value))
 // Error—Nashorn can’t determine which listener type to add

That doesn’t work. Nashorn doesn’t know whether you want to add an

InvalidationListener or a ChangeListener, and it doesn’t know that you don’t

actually care.

To fix this, you need to make the choice:

slider.valueProperty().addListener(
 new javafx.beans.InvalidationListener(function(property)
 message.font = new Font(slider.value)))

That’s more heavyweight than the Java equivalent—not something one wants

to see in a lightweight scripting language. There is nobody to blame for this, re-

ally. The JavaFX designers made the decision to overload the addListener method,

which was perfectly reasonable in the context of Java 7 and mostly works with

Java 8 lambda expressions. Compatibility with scripting languages was perhaps

not their major concern, particularly since they had just abandoned another

scripting language.

But it should be a cautionary tale. When you design a Java API, remember

Atwood’s law: “Any application that can be written in JavaScript will eventually

be written in JavaScript.” Design your API so that it can be accessed nicely from

JavaScript.

And there is another sad aspect about the JavaFX support in Nashorn. Recall

how in the olden days of JavaFX Script, it was easy to describe the layout of a

scene like this:

1537.13 Nashorn and JavaFX

ptg12441863

Frame {
 title: "Hello"
 content: Label {
 text: "Hello, World!"
 }
}

Doesn’t it almost look like JavaScript? Well, Nashorn/JavaFX developers,

tear down that wall and turn it into JavaScript! Then we can write both the UI

layout and event handling in JavaScript, and Atwood’s law will be fulfilled.

Exercises
1. Pick some part of the Java API that you want to explore—for example, the

ZonedDateTime class. Run some experiments in jjs: construct objects, call meth-

ods, and observe the returned values. Did you find it easier than writing test

programs in Java?

2. Run jjs and, using the stream library, interactively work out a solution for

the following problem: Print all unique long words (> 12 characters) from a

file in sorted order. First read the words, then filter the long words, and so

on. How does this interactive approach compare to your usual workflow?

3. Run jjs. Call

var b = new java.math.BigInteger('1234567890987654321')

Then display b (simply by typing b and Enter). What do you get? What is the

value of b.mod(java.math.BigInteger.TEN)? Why is b displayed so strangely? How

can you display the actual value of b?

4. Construct a nonliteral JavaScript string by extracting a substring from another

string, and invoke the getClass method. What class do you get? Then pass the

object to java.lang.String.class.cast. What happens? Why?

5. At the end of Section 7.10, “Extending Java Classes and Implementing Java

Interfaces,” on page 146, you saw how to extend ArrayList so that every call

to add is logged. But that only worked for a single object. Write a JavaScript

function that is a factory for such objects, so that one can generate any number

of logging array lists.

6. Write a JavaScript function pipe that takes a sequence of shell commands and

pipes the output of one to the input of the next, returning the final output.

For example, pipe('find .', 'grep -v class', 'sort'). Simply call $EXEC repeatedly.

7. The solution of the preceding exercise is not quite as good as a Unix pipe

because the second command only starts when the first one has finished.

Remedy that by using the ProcessBuilder class.

Chapter 7 The Nashorn JavaScript Engine154

ptg12441863

8. Write a script that prints the values of all environment variables.

9. Write a script nextYear.js that obtains the age of the user and then prints Next
year, you will be ..., adding 1 to the input. The age can be specified on the

command line or the AGE environment variable. If neither are present, prompt

the user.

10. Write a JavaFX program in JavaScript that reads data from a source of your

choice and renders a pie chart. Was it easier or harder than developing the

program in Java? Why?

155Exercises

ptg12441863Topics in This Chapter

8.1 Strings — page 158

8.2 Number Classes — page 158

8.3 New Mathematical Functions — page 159

8.4 Collections — page 160

8.5 Working with Files — page 163

8.6 Annotations — page 167

8.7 Miscellaneous Minor Changes — page 171

Exercises — page 174

Miscellaneous Goodies

ptg12441863Java 8 is a big release with important language and library enhancements. But

there are also numerous smaller changes throughout the library that are quite

useful. I pored over all @since 1.8 notes in the API documentation and grouped

the changes into categories for easy reference. In this chapter, you will find

what is new for strings, numbers, math, collections, files, annotations, regular

expressions, and JDBC.

The key points of this chapter are:

• Joining strings with a delimiter is finally easy: String.join(", ", a, b, c) instead

of a + ", " + b + ", " + c.

• Integer types now support unsigned arithmetic.

• The Math class has methods to detect integer overflow.

• Use Math.floorMod(x, n) instead of x % n if x might be negative.

• There are new mutators in Collection (removeIf) and List (replaceAll, sort).

• Files.lines lazily reads a stream of lines.

• Files.list lazily lists the entries of a directory, and Files.walk traverses them

recursively.

• There is finally official support for Base64 encoding.

• Annotations can now be repeated and applied to type uses.

8Chapter

157

ptg12441863

• Convenient support for null parameter checks can be found in the Objects
class.

8.1 Strings
A common task is to combine several strings, separating them with a delimiter

such as ", " or "/". This has now been added to Java 8. The strings can come from

an array or an Iterable<? extends CharSequence>:

String joined = String.join("/", "usr", "local", "bin"); // "usr/local/bin"
System.out.println(joined);
String ids = String.join(", ", ZoneId.getAvailableZoneIds());
System.out.println(ids);
 // All time zone identifiers, separated by commas

Think of join as the opposite of the String.split instance method. This is the only

method added to the String class in Java 8.

NOTE: As already mentioned in Chapter 2, the CharSequence interface provides
a useful instance method codePoints that returns a stream of Unicode values,
and a less useful method chars that returns a stream of UTF-16 code units.

8.2 Number Classes
Ever since Java 5, each of the seven numeric primitive type wrappers (i.e., not

Boolean) had a static SIZE field that gives the size of the type in bits. You will be

glad to know that there is now a BYTES field that reports the size in bytes, for those

who cannot divide by eight.

All eight primitive type wrappers now have static hashCode methods that return

the same hash code as the instance method, but without the need for boxing.

The five types Short, Integer, Long, Float, and Double now have static methods sum, max,
and min, which can be useful as reduction functions in stream operations. The

Boolean class has static methods logicalAnd, logicalOr, and logicalXor for the same

purpose.

Integer types now support unsigned arithmetic. For example, instead of having

a Byte represent the range from –128 to 127, you can call the static method

Byte.toUnsignedInt(b) and get a value between 0 and 255. In general, with unsigned

numbers, you lose the negative values and get twice the range of positive values.

The Byte and Short classes have methods toUnsignedInt, and Byte, Short, and Integer
have methods toUnsignedLong.

Chapter 8 Miscellaneous Goodies158

ptg12441863

The Integer and Long classes have methods compareUnsigned, divideUnsigned, and

remainderUnsigned to work with unsigned values. You don’t need special methods

for addition, subtraction, and multiplication. The + and - operators do the right

thing already for unsigned values. Integer multiplication would overflow with

unsigned integers larger than Integer.MAX_VALUE, so you should call toUnsignedLong
and multiply them as long values.

NOTE: In order to work with unsigned numbers, you need to have a clear
understanding of base-two arithmetic and the binary representation of
negative numbers. In C and C++, mixing signed and unsigned types is a
common cause of subtle errors. Java has wisely decided to stay away from
this area, and has managed to live with only signed numbers for many years.
The primary reason to use unsigned numbers is if you work with file formats
or network protocols that require them.

The Float and Double classes have static methods isFinite. The call Double.isFinite(x)
returns true if x is not infinity, negative infinity, or a NaN (not a number). In the

past, you had to call the instance methods isInfinite and isNaN to get the same

result.

Finally, the BigInteger class has instance methods (long|int|short|byte)ValueExact
that return the value as a long, int, short, or byte, throwing an ArithmeticException
if the value is not within the target range.

8.3 New Mathematical Functions
The Math class provides several methods for “exact” arithmetic that throw an ex-

ception when a result overflows. For example, 100000 * 100000 quietly gives the

wrong result 1410065408, whereas multiplyExact(100000, 100000) throws an exception.

The provided methods are (add|subtract|multiply|increment|decrement|negate)Exact,
with int and long parameters. The toIntExact method converts a long to the

equivalent int.

The floorMod and floorDiv methods aim to solve a long-standing problem with in-

teger remainders. Consider the expression n % 2. Everyone knows that this is 0 if

n is even and 1 if n is odd. Except, of course, when n is negative. Then it is –1.

Why? When the first computers were built, someone had to make rules for how

integer division and remainder should work for negative operands. Mathe-

maticians had known the optimal (or “Euclidean”) rule for a few hundred

years: always leave the remainder ≥ 0. But, rather than open a math textbook,

those pioneers came up with rules that seemed reasonable but are actually

inconvenient.

1598.3 New Mathematical Functions

ptg12441863

Consider this problem. You compute the position of the hour hand of a clock.

An adjustment is applied, and you want to normalize to a number between 0 and

11. That is easy: (position + adjustment) % 12. But what if adjustment is negative? Then

you might get a negative number. So you have to introduce a branch, or use

((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

The new floorMod method makes it easier: floorMod(position + adjustment, 12) always

yields a value between 0 and 11.

NOTE: Unfortunately, floorMod gives negative results for negative divisors, but
that situation doesn’t often occur in practice.

The nextDown method, defined for both double and float parameters, gives the next

smaller floating-point number for a given number. For example, if you promise

to produce a number < b, but you happen to have computed exactly b, then you

can return Math.nextDown(b). (The corresponding Math.nextUp method exists since

Java 6.)

NOTE: All methods described in this section also exist in the StrictMath class.

8.4 Collections
The big change for the collections library is, of course, support for streams which

you have seen in Chapter 2. There are some smaller changes as well.

8.4.1 Methods Added to Collection Classes
Table 8–1 shows miscellaneous methods added to collection classes and interfaces

in Java 8, other than the stream, parallelStream, and spliterator methods.

You may wonder why the Stream interface has so many methods that accept

lambda expressions but just one such method, removeIf, was added to the Collection
interface. If you review the Stream methods, you will find that most of them return

a single value or a stream of transformed values that are not present in the orig-

inal stream. The exceptions are the filter and distinct methods. The removeIf
method can be thought of as the opposite of filter, removing rather than produc-

ing all matches and carrying out the removal in place. The distinct method would

be costly to provide on arbitrary collections.

The List interface has a replaceAll method, which is an in-place equivalent of map,
and a sort method that is obviously useful.

Chapter 8 Miscellaneous Goodies160

ptg12441863

Table 8–1 Methods Added to Collection Classes and Interface in Java 8

New MethodsClass/Interface

forEachIterable

removeIfCollection

replaceAll, sortList

forEach, replace, replaceAll, remove(key, value) (removes only if key
mapped to value), putIfAbsent, compute, computeIf(Absent|Present),

merge

Map

forEachRemainingIterator

streamBitSet

The Map interface has a number of methods that are particularly important

for maps accessed concurrently. See Chapter 6 for more information on these

methods.

The Iterator interface has a forEachRemaining method that exhausts the iterator by

feeding the remaining iterator elements to a function.

Finally, the BitSet class has a method that yields all members of the set as a stream

of int values.

8.4.2 Comparators
The Comparator interface has a number of useful new methods, taking advantage

of the fact that interfaces can now have concrete methods.

The static comparing method takes a “key extractor” function that maps a type T to
a comparable type (such as String). The function is applied to the objects to be

compared, and the comparison is then made on the returned keys. For example,

suppose you have an array of Person objects. Here is how you can sort them

by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

You can chain comparators with the thenComparing method for breaking ties. For

example,

Arrays.sort(people,
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

1618.4 Collections

ptg12441863

There are a few variations of these methods. You can specify a comparator to

be used for the keys that the comparing and thenComparing methods extract. For

example, here we sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
 (s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that avoid

boxing of int, long, or double values. An easier way of producing the preceding

operation would be

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

If your key function can return null, you will like the nullsFirst and nullsLast
adapters. These static methods take an existing comparator and modify it so that

it doesn’t throw an exception when encountering null values but ranks them

as smaller or larger than regular values. For example, suppose getMiddleName
returns a null when a person has no middle name. Then you can use

Comparator.comparing(Person::getMiddleName(), Comparator.nullsFirst(...)).

The nullsFirst method needs a comparator—in this case, one that compares two

strings. The naturalOrder method makes a comparator for any class implementing

Comparable. A Comparator.<String>naturalOrder() is what we need. Here is the com-

plete call for sorting by potentially null middle names. I use a static import of

java.util.Comparator.*, to make the expression more legible. Note that the type for

naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName,
 nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To reverse

any comparator, use the reversed instance method. For example, naturalOrder().
reversed() is the same as reverseOrder().

8.4.3 The Collections Class
Java 6 introduced NavigableSet and NavigableMap classes that take advantage of the

ordering of the elements or keys, providing efficient methods to locate, for any

given value v, the smallest element ≥ or > v, or the largest element ≤ or < v. Now

the Collections class supports these classes as it does other collections, with

methods (unmodifiable|synchronized|checked|empty)Navigable(Set|Map).

A checkedQueue wrapper, that has apparently been overlooked all these years, has

also been added. As a reminder, the checked wrappers have a Class parameter and

throw a ClassCastException when you insert an element of the wrong type. These

classes are intended as debugging aids. Suppose you declare a Queue<Path>, and

somewhere in your code there is a ClassCastException trying to cast a String to a Path.

Chapter 8 Miscellaneous Goodies162

ptg12441863

This could have happened because you passed the queue to a method void
getMoreWork(Queue q) with no type parameter. Then, someone somewhere inserted

a String into q. (Because the generic type was suppressed, the compiler could not

detect that.) Much later, you took out that String, thinking it was a Path, and the

error manifested itself. If you temporarily replace the queue with a CheckedQueue(new
LinkedList<Path>, Path.class), then every insertion is checked at runtime, and you

can locate the faulty insertion code.

Finally, there are emptySorted(Set|Map) methods that give lightweight instances of

sorted collections, analogous to the empty(Set|Map) methods that have been around

since Java 5.

8.5 Working with Files
Java 8 brings a small number of convenience methods that use streams for

reading lines from files and for visiting directory entries. Also, there is finally an

official way of performing Base64 encoding and decoding.

8.5.1 Streams of Lines
To read the lines of a file lazily, use the Files.lines method. It yields a stream of

strings, one per line of input:

Stream<String> lines = Files.lines(path);
Optional<String> passwordEntry = lines.filter(s -> s.contains("password")).findFirst();

As soon as the first line containing password is found, no further lines are read from

the underlying file.

NOTE: Unlike the FileReader class, which was a portability nightmare since
it opened files in the local character encoding, the Files.lines method defaults
to UTF-8.You can specify other encodings by supplying a Charset argument.

You will want to close the underlying file. Fortunately, the Stream interface extends

AutoCloseable. The streams that you have seen in Chapter 2 didn’t need to close

any resources. But the Files.lines method produces a stream whose close method

closes the file. The easiest way to make sure the file is indeed closed is to use a

Java 7 try-with-resources block:

try (Stream<String> lines = Files.lines(path)) {
 Optional<String> passwordEntry
 = lines.filter(s -> s.contains("password")).findFirst();
 ...
} // The stream, and hence the file, will be closed here

1638.5 Working with Files

ptg12441863

When a stream spawns another, the close methods are chained. Therefore, you

can also write

try (Stream<String> filteredLines
 = Files.lines(path).filter(s -> s.contains("password"))) {
 Optional<String> passwordEntry = filteredLines.findFirst();
 ...
}

When filteredLines is closed, it closes the underlying stream, which closes the

underlying file.

NOTE: If you want to be notified when the stream is closed, you can attach
an onClose handler. Here is how you can verify that closing filteredLines
actually closes the underlying stream:

try (Stream<String> filteredLines
 = Files.lines(path).onClose(() -> System.out.println("Closing"))
 .filter(s -> s.contains("password"))) { ... }

If an IOException occurs as the stream fetches the lines, that exception is wrapped

into an UncheckedIOException which is thrown out of the stream operation. (This

subterfuge is necessary because stream operations are not declared to throw any

checked exceptions.)

If you want to read lines from a source other than a file, use the BufferedReader.lines
method instead:

try (BufferedReader reader
 = new BufferedReader(new InputStreamReader(url.openStream()))) {
 Stream<String> lines = reader.lines();
 ...
}

With this method, closing the resulting stream does not close the reader. For that

reason, you must place the BufferedReader object, and not the stream object, into

the header of the try statement.

NOTE: Almost ten years ago, Java 5 introduced the Scanner class to replace
the cumbersome BufferedReader. It is unfortunate that the Java 8 API designers
decided to add the lines method to BufferedReader but not to Scanner.

Chapter 8 Miscellaneous Goodies164

ptg12441863

8.5.2 Streams of Directory Entries
The static Files.list method returns a Stream<Path> that reads the entries of a direc-

tory. The directory is read lazily, making it possible to efficiently process

directories with huge numbers of entries.

Since reading a directory involves a system resource that needs to be closed, you

should use a try block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {
 ...
}

NOTE: Under the hood, the stream uses a DirectoryStream, a construct in-
troduced in Java 7 for efficient traversal of huge directories. That interface
has nothing to do with Java 8 streams; it extends Iterable so that it can
be used in an enhanced for loop.

try (DirectoryStream stream = Files.newDirectoryStream(pathToDirectory)) {
 for (Path entry : stream) {
 ...
 }
}

In Java 8, just use Files.list.

The list method does not enter subdirectories. To process all descendants of a

directory, use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
 // Contains all descendants, visited in depth-first order

}

You can limit the depth of the tree that you want to visit by calling

Files.walk(pathToRoot, depth). Both walk methods have a varargs parameter of type

FileVisitOption..., but there is currently only one option you can supply: FOLLOW_LINKS
to follow symbolic links.

NOTE: If you filter the paths returned by walk and your filter criterion in-
volves the file attributes stored with a directory, such as size, creation time,
or type (file, directory, symbolic link), then use the find method instead of
walk. Call that method with a predicate function that accepts a path and a
BasicFileAttributes object.The only advantage is efficiency. Since the directory
is being read anyway, the attributes are readily available.

1658.5 Working with Files

ptg12441863

8.5.3 Base64 Encoding
The Base64 encoding encodes a sequence of bytes into a (longer) sequence of

printable ASCII characters. It is used for binary data in email messages and

“basic” HTTP authentication. For many years, the JDK had a nonpublic (and

therefore unusable) class java.util.prefs.Base64 and an undocumented class

sun.misc.BASE64Encoder. Finally, Java 8 provides a standard encoder and decoder.

The Base64 encoding uses 64 characters to encode six bits of information:

• 26 uppercase letters A . . . Z

• 26 lowercase letters a . . . z

• 10 digits 0 . . . 9

• 2 symbols, + and / (basic) or - and _ (URL- and filename-safe variant)

Normally, an encoded string has no line breaks, but the MIME standard used

for email requires a "\r\n" line break every 76 characters.

For encoding, request a Base64.Encoder with one of the static methods getEncoder,
getUrlEncoder, or getMimeEncoder of the Base64 class.

That class has methods to encode an array of bytes or a NIO ByteBuffer. For

example,

Base64.Encoder encoder = Base64.getEncoder();
String original = username + ":" + password;
String encoded = encoder.encodeToString(original.getBytes(StandardCharsets.UTF_8));

Alternatively, you can “wrap” an output stream, so that all data sent to it

is automatically encoded.

Path originalPath = ..., encodedPath = ...;
Base64.Encoder encoder = Base64.getMimeEncoder();
try (OutputStream output = Files.newOutputStream(encodedPath)) {
 Files.copy(originalPath, encoder.wrap(output));
}

To decode, reverse these operations:

Path encodedPath = ..., decodedPath = ...;
Base64.Decoder decoder = Base64.getMimeDecoder();
try (InputStream input = Files.newInputStream(encodedPath)) {
 Files.copy(decoder.wrap(input), decodedPath);
}

Chapter 8 Miscellaneous Goodies166

ptg12441863

8.6 Annotations
Annotations are tags inserted into the source code that some tools can process.

In Java SE, annotations are used for simple purposes, such as marking deprecated

features or suppressing warnings. Annotations have a much more important

role in Java EE where they are used to configure just about any aspect of an ap-

plication, replacing painful boilerplate code and XML customization that was

the bane of older Java EE versions.

Java 8 has two enhancements to annotation processing: repeated annota-

tions and type use annotations. Moreover, reflection has been enhanced to report

method parameter names. This has the potential to simplify annotations

on method parameters.

8.6.1 Repeated Annotations
When annotations were first created, they were envisioned to mark methods and

fields for processing, for example,

@PostConstruct public void fetchData() { ... } // Call after construction

@Resource("jdbc:derby:sample") private Connection conn;
 // Inject resource here

In this context, it made no sense to apply the same annotation twice. You can’t

inject a field in two ways. Of course, different annotations on the same element

are fine and quite common:

@Stateless @Path("/service") public class Service { ... }

Soon, more and more uses for annotations emerged, leading to situations where

one would have liked to repeat the same annotation. For example, to denote a

composite key in a database, you need to specify multiple columns:

@Entity
@PrimaryKeyJoinColumn(name="ID")
@PrimaryKeyJoinColumn(name="REGION")
public class Item { ... }

Since that wasn’t possible, the annotations were packed into a container

annotation, like this:

@Entity
@PrimaryKeyJoinColumns({
 @PrimaryKeyJoinColumn(name="ID")
 @PrimaryKeyJoinColumn(name="REGION")
})
public class Item { ... }

1678.6 Annotations

ptg12441863

That’s pretty ugly, and it is no longer necessary in Java 8.

As an annotation user, that is all you need to know. If your framework provider

has enabled repeated annotations, you can just use them.

For a framework implementor, the story is not quite as simple. After all, the

AnnotatedElement interface has a method

public <T extends Annotation> T getAnnotation(Class<T> annotationClass)

that gets the annotation of type T, if present. What should that method do if

multiple annotations of the same type are present? Return the first one only?

That could have all sorts of undesirable behavior with legacy code.

To solve this problem, the inventor of a repeatable annotation must

1. Annotate the annotation as @Repeatable

2. Provide a container annotation

For example, for a simple unit testing framework, we might define a repeatable

@TestCase annotation, to be used like this:

@TestCase(params="4", expected="24")
@TestCase(params="0", expected="1")
public static long factorial(int n) { ... }

Here is how the annotation can be defined:

@Repeatable(TestCases.class)
@interface TestCase {
 String params();
 String expected();
}

@interface TestCases {
 TestCase[] value();
}

Whenever the user supplies two or more @TestCase annotations, they are

automatically wrapped into a @TestCases annotation.

When annotation processing code calls element.getAnnotation(TestCase.class) on the

element representing the factorial method, null is returned. This is because

the element is actually annotated with the container annotation TestCases.

When implementing an annotation processor for your repeatable annota-

tion, you will find it simpler to use the getAnnotationsByType method. The call

element.getAnnotationsByType(TestCase.class) “looks through” any TestCases container

and gives you an array of TestCase annotations.

Chapter 8 Miscellaneous Goodies168

ptg12441863

NOTE: What I just described relates to processing runtime annotations with
the reflection API. If you process source-level annotations, you use the
javax.lang.model and javax.annotation.processing APIs. In those APIs, there is
no support for “looking through” a container.You will need to process both the
individual annotation (if it is supplied once) and the container (if the same
annotation is supplied more than once).

8.6.2 Type Use Annotations
Prior to Java 8, an annotation was applied to a declaration. A declaration is a part

of code that introduces a new name. Here are a couple of examples, with the

declared name in bold:

@Entity public class Person { ... }
@SuppressWarnings("unchecked") List<Person> people = query.getResultList();

In Java 8, you can annotate any type use. This can be useful in combination with

tools that check for common programming errors. One common error is throwing

a NullPointerException because the programmer didn’t anticipate that a reference

might be null. Now suppose you annotated variables that you never want to

be null as @NonNull. A tool can check that the following is correct:

private @NonNull List<String> names = new ArrayList<>();
...
names.add("Fred"); // No possibility of a NullPointerException

Of course, the tool should detect any statement that might cause names to

become null:

names = null; // Null checker flags this as an error

names = readNames(); // OK if readNames returns a @NonNull String

It sounds tedious to put such annotations everywhere, but in practice, some of

the drudgery can be avoided by simple heuristics. The null checker in the

Checker Framework (http://types.cs.washington.edu/checker-framework) as-

sumes that any nonlocal variables are implicitly @NonNull, but that local variables

might be null unless the code shows otherwise. If a method may return a null, it
needs to be annotated as @Nullable. That may not be any worse than documenting

the nullness behavior. (The Java API documentation has over 5,000 occurrences

of “NullPointerException.”)

In the preceding example, the names variable was declared as @NonNull. That anno-

tation was possible before Java 8. But how can one express that the list elements
should be non-null? Logically, that would be

private List<@NonNull String> names;

1698.6 Annotations

http://types.cs.washington.edu/checker-framework

ptg12441863

It is this kind of annotation that was not possible before Java 8 but has now

become legal.

NOTE: These annotations are not part of standard Java. There are currently
no standard annotations that are meaningful for type use.All examples in this
section come from the Checker Framework or from the author’s imagination.

Type use annotations can appear in the following places:

• With generic type arguments: List<@NonNull String>, Comparator.<@NonNull String>
reverseOrder().

• In any position of an array: @NonNull String[][] words (words[i][j] is not null),
String @NonNull [][] words (words is not null), String[] @NonNull [] words (words[i] is
not null).

• With superclasses and implemented interfaces: class Image implements
@Rectangular Shape.

• With constructor invocations: new @Path String("/usr/bin").

• With casts and instanceof checks: (@Path String) input, if (input instanceof @Path
String). (The annotations are only for use by external tools. They have no effect

on the behavior of a cast or an instanceof check.)

• With exception specifications: public Person read() throws @Localized IOException.

• With wildcards and type bounds: List<@ReadOnly ? extends Person>, List<? extends
@ReadOnly> Person.

• With method and constructor references: @Immutable Person::getName.

There are a few type positions that cannot be annotated:

@NonNull String.class // Illegal—cannot annotate class literal

import java.lang.@NonNull String; // Illegal—cannot annotate import

It is also impossible to annotate an annotation. For example, given @NonNull String
name, you cannot annotate @NonNull. (You can supply a separate annotation, but it

would apply to the name declaration.)

The practical use of these annotations hinges on the viability of the tools. If you

are interested in exploring the potential of extended type checking, a good place

to start is the Checker Framework tutorial at http://types.cs.washington.edu/

checker-framework/tutorial.

8.6.3 Method Parameter Reflection
The names of parameters are now available through reflection. That is promising

because it can reduce annotation boilerplate. Consider a typical JAX-RS method

Chapter 8 Miscellaneous Goodies170

http://types.cs.washington.edu/checker-framework/tutorial
http://types.cs.washington.edu/checker-framework/tutorial

ptg12441863

Person getEmployee(@PathParam("dept") Long dept, @QueryParam("id") Long id)

In almost all cases, the parameter names are the same as the annotation argu-

ments, or they can be made to be the same. If the annotation processor could

read the parameter names, then one could simply write

Person getEmployee(@PathParam Long dept, @QueryParam Long id)

This is possible in Java 8, with the new class java.lang.reflect.Parameter.

Unfortunately, for the necessary information to appear in the classfile, the source

must be compiled as javac -parameters SourceFile.java. Let’s hope annotation writers

will enthusiastically embrace this mechanism, so there will be momentum to

drop that compiler flag in the future.

8.7 Miscellaneous Minor Changes
We end this chapter with miscellaneous minor changes that you might find

useful. This section covers the new features of the Objects, Logger, and Locale classes,

as well as changes to regular expressions and JDBC.

8.7.1 Null Checks
The Objects class has static predicate methods isNull and nonNull that can be useful

for streams. For example,

stream.anyMatch(Object::isNull)

checks whether a stream contains a null, and

stream.filter(Object::nonNull)

gets rid of all of them.

8.7.2 Lazy Messages
The log, logp, severe, warning, info, config, fine, finer, and finest methods of the

java.util.Logger class now support lazily constructed messages.

For example, consider the call

logger.finest("x: " + x + ", y:" + y);

The message string is formatted even when the logging level is such that it would

never be used. Instead, use

logger.finest(() -> "x: " + x + ", y:" + y);

Now the lambda expression is only evaluated at the FINEST logging level, when

the cost of the additional lambda invocation is presumably the least of one’s

problems.

1718.7 Miscellaneous Minor Changes

ptg12441863

The requireNonNull of the Objects class (which is described in Chapter 9) also has a

version that computes the message string lazily.

this.directions = Objects.requireNonNull(directions,
 () -> "directions for " + this.goal + " must not be null");

In the common case that directions is not null, this.directions is simply set to

directions. If directions is null, the lambda is invoked, and a NullPointerException is
thrown whose message is the returned string.

8.7.3 Regular Expressions
Java 7 introduced named capturing groups. For example, a valid regular

expression is

(?<city>[\p{L}]+),\s*(?<state>[A-Z]{2})

In Java 8, you can use the names in the start, end, and group methods of Matcher:

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) {
 String city = matcher.group("city");
 ...
}

The Pattern class has a splitAsStream method that splits a CharSequence along a regular

expression:

String contents = new String(Files.readAllBytes(path), StandardCharsets.UTF_8);
Stream<String> words = Pattern.compile("[\\P{L}]+").splitAsStream(contents);

All nonletter sequences are word separators.

The method asPredicate can be used to filter strings that match a regular

expression:

Stream<String> acronyms = words.filter(Pattern.compile("[A-Z]{2,}").asPredicate());

8.7.4 Locales
A locale specifies everything you need to know to present information to a user

with local preferences concerning language, date formats, and so on. For example,

an American user prefers to see a date formatted as December 24, 2013 or

12/24/2013, whereas a German user expects 24. Dezember 2013 or 24.12.2013.

It used to be that locales were simple, consisting of location, language, and

(for a few oddball cases, such as the Norwegians who have two spelling

systems) variants. But those oddball cases mushroomed, and the Internet

Engineering Task Force issued its “Best Current Practices” memo BCP 47

Chapter 8 Miscellaneous Goodies172

ptg12441863

(http://tools.ietf.org/html/bcp47) to bring some order into the chaos. Nowadays,

a locale is composed of up to five components.

1. A language, specified by two or three lowercase letters, such as en (English)

or de (German or, in German, Deutsch).

2. A script, specified by four letters with an initial uppercase, such as Latn

(Latin), Cyrl (Cyrillic), or Hant (traditional Chinese characters). This is useful

because some languages, such as Serbian, are written in Latin or Cyrillic, and

some Chinese readers prefer the traditional over the simplified characters.

3. A country, specified by two uppercase letters or three digits, such as US
(United States) or CH (Switzerland).

4. Optionally, a variant. Variants are not common any more. For example, the

Nynorsk spelling of Norwegian is now expressed with a different language

code, nn, instead of a variant NY of the language no.

5. Optionally, an extension. Extensions describe local preferences for calendars

(such as the Japanese calendar), numbers (Thai digits), and so on. The Uni-

code standard specifies some of these extensions. Such extensions start with

u- and a two-letter code specifying whether the extension deals with the cal-

endar (ca), numbers (nu), and so on. For example, the extension u-nu-thai de-

notes the use of Thai numerals. Other extensions are entirely arbitrary and

start with x-, such as x-java.

You can still construct a locale the old-fashioned way, such as new Locale("en",
"US"), but since Java 7 you can simply call Locale.forLanguageTag("en-US"). Java 8 adds

methods for finding locales that match user needs.

A language range is a string that denotes the locale characteristics that a user de-

sires, with * for wildcards. For example, a German speaker in Switzerland might

prefer anything in German, followed by anything in Switzerland. This is ex-

pressed with two Locale.LanguageRange objects specified with strings "de" and "*-CH".
One can optionally specify a weight between 0 and 1 when constructing a

Locale.LanguageRange.

Given a list of weighted language ranges and a collection of locales, the filter
method produces a list of matching locales, in descending order of match quality:

List<Locale.LanguageRange> ranges = Stream.of("de", "*-CH")
 .map(Locale.LanguageRange::new)
 .collect(Collectors.toList());
 // A list containing the Locale.LanguageRange objects for the given strings

 List<Locale> matches = Locale.filter(ranges,
 Arrays.asList(Locale.getAvailableLocales()));
 // The matching locales: de, de-CH, de-AT, de-LU, de-DE, de-GR, fr-CH, it_CH

The static lookup method just finds the best locale:

1738.7 Miscellaneous Minor Changes

http://tools.ietf.org/html/bcp47

ptg12441863

Locale bestMatch = Locale.lookup(ranges, locales);

In this case, the best match is de, which isn’t very interesting. But if locales contains

a more restricted set of locales, such as those in which a document was available,

then this mechanism can be useful.

8.7.5 JDBC
In Java 8, JDBC has been updated to version 4.2. There are a few minor changes.

The Date, Time, and Timestamp classes in the java.sql package have methods to convert

from and to their java.time analogs LocalDate, LocalTime, and LocalDateTime.

The Statement class has a method executeLargeUpdate for executing an update whose

row count exceeds Integer.MAX_VALUE.

JDBC 4.1 (which was a part of Java 7) specified a generic method getObject(column,
type) for Statement and ResultSet, where type is a Class instance. For example,

URL url = result.getObject("link", URL.class) retrieves a DATALINK as a URL. Now the

corresponding setObject method is provided as well.

Exercises
1. Write a program that adds, subtracts, divides, and compares numbers be-

tween 0 and 232 – 1, using int values and unsigned operations. Show why

divideUnsigned and remainderUnsigned are necessary.

2. For which integer n does Math.negateExact(n) throw an exception? (Hint: There

is only one.)

3. Euclid’s algorithm (which is over two thousand years old) computes the

greatest common divisor of two numbers as gcd(a, b) = a if b is zero, and

gcd(b, rem(a, b)) otherwise, where rem is the remainder. Clearly, the gcd

should not be negative, even if a or b are (since its negation would then be a

greater divisor). Implement the algorithm with %, floorMod, and a rem function

that produces the mathematical (non-negative) remainder. Which of the three

gives you the least hassle with negative values?

4. The Math.nextDown(x) method returns the next smaller floating-point number

than x, just in case some random process hit x exactly, and we promised a

number < x. Can this really happen? Consider double r = 1 - generator.
nextDouble(), where generator is an instance of java.util.Random. Can it ever yield

1? That is, can generator.nextDouble() ever yield 0? The documentation says it

can yield any value between 0 inclusive and 1 exclusive. But, given that there

are 253 such floating-point numbers, will you ever get a zero? Indeed, you

Chapter 8 Miscellaneous Goodies174

ptg12441863

do. The random number generator computes the next seed as next(s) = s · m
+ a % N, where m = 25214903917, a = 11, and N = 248. The inverse of m modulo

N is v = 246154705703781, and therefore you can compute the predecessor of

a seed as prev(s) = (s – a) · v % N. To make a double, two random numbers are

generated, and the top 26 and 27 bits are taken each time. When s is 0, next(s)

is 11, so that’s what we want to hit: two consecutive numbers whose top bits

are zero. Now, working backwards, let’s start with s = prev(prev(prev(0))).

Since the Random constructor sets s = (initialSeed ^ m) % N, offer it s =

prev(prev(prev(0))) ^ m = 164311266871034, and you’ll get a zero after two

calls to nextDouble. But that is still too obvious. Generate a million predecessors,

using a stream of course, and pick the minimum seed. Hint: You will get a

zero after 376050 calls to nextDouble.

5. At the beginning of Chapter 2, we counted long words in a list as

words.stream().filter(w -> w.length() > 12).count(). Do the same with a lambda

expression, but without using streams. Which operation is faster for a

long list?

6. Using only methods of the Comparator class, define a comparator for Point2D
which is a total ordering (that is, the comparator only returns zero for equal

objects). Hint: First compare the x-coordinates, then the y-coordinates. Do

the same for Rectangle2D.

7. Express nullsFirst(naturalOrder()).reversed() without calling reversed.

8. Write a program that demonstrates the benefits of the CheckedQueue class.

9. Write methods that turn a Scanner into a stream of words, lines, integers, or

double values. Hint: Look at the source code for BufferedReader.lines.

10. Unzip the src.zip file from the JDK. Using Files.walk, find all Java files that

contain the keywords transient and volatile.

11. Write a program that gets the contents of a password-protected web page.

Call URLConnection connection = url.openConnection();. Form the string username:
password and encode it in Base64. Then call connection.setRequestProperty(
"Authorization", "Basic " + encoded string), followed by connection.connect() and

connection.getInputStream().

12. Implement the TestCase annotation and a program that loads a class with such

annotations and invokes the annotated methods, checking whether they yield

the expected values. Assume that parameters and return values are integers.

13. Repeat the preceding exercise, but build a source-level annotation processor

emitting a program that, when executed, runs the tests in its main method.

(See Horstmann and Cornell, Core Java, 9th Edition, Volume 2, Section 10.6 for

an introduction into processing source-level annotations.)

175Exercises

ptg12441863

14. Demonstrate the use of the Objects.requireNonNull method and show how it

leads to more useful error messages.

15. Using Files.lines and Pattern.asPredicate, write a program that acts like the grep
utility, printing all lines that contain a match for a regular expression.

16. Use a regular expression with named capturing groups to parse a line

containing a city, state, and zip code. Accept both 5- and 9-digit zip codes.

Chapter 8 Miscellaneous Goodies176

ptg12441863

This page intentionally left blank

ptg12441863Topics in This Chapter

9.1 Exception Handling Changes — page 180

9.2 Working with Files — page 183

9.3 Implementing the equals, hashCode, and compareTo Methods — page 188

9.4 Security Requirements — page 190

9.5 Miscellaneous Changes — page 193

Exercises — page 196

Java 7 Features That
You May Have Missed

ptg12441863When Java 7 was released, most reviewers focused on the new language features:

strings in switch statements, binary literals, underscores in literals, improved

type inference, and so on. In this chapter, I will write about some of the library

changes that haven’t been discussed so much and that I have found far more

useful in daily work than switching on strings or binary literals. I cover one lan-

guage change that is very useful in daily work—the try-with-resources statement.

The key points of this chapter are:

• Use the try-with-resources statement with any object that implements

AutoCloseable.

• The try-with-resources statement rethrows the primary exception if closing

a resource throws another exception.

• You can catch unrelated exceptions with a single catch clause.

• The exceptions for reflective operations now have a common superclass

ReflectiveOperationException.

• Use the Path interface instead of the File class.

• You can read and write all characters, or all lines, of a text file with a single

command.

• The Files class has static methods for copying, moving, and deleting files, and

for creating files and directories.

• Use Objects.equals for null-safe equality testing.

9Chapter

179

ptg12441863

• Objects.hash makes it simple to implement the hashCode method.

• When comparing numbers in a comparator, use the static compare method.

• Applets and Java Web Start applications continue to be supported in

corporate environments, but they may no longer be viable for home users.

• Everyone’s favorite trivial change: "+1" can now be converted to an integer

without throwing an exception.

• Changes in ProcessBuilder make it simple to redirect standard input, output,

and error streams.

9.1 Exception Handling Changes
I start this chapter with the Java 7 features for exception handling, since they

have a major impact on writing reliable programs. I briefly review the

try-with-resources statement before moving on to more subtle changes.

9.1.1 The try-with-resources Statement
Java 7 provides a useful shortcut to the code pattern

open a resource
try {

work with the resource
}
finally {

close the resource
}

provided the resource belongs to a class that implements the AutoCloseable
interface. That interface has a single method

void close() throws Exception

NOTE: There is also a Closeable interface. It is a subinterface of AutoCloseable,
also with a single close method, but that method is declared to throw an
IOException.

In its simplest variant, the try-with-resources statement has the form

try (Resource res = ...) {
work with res

}

Chapter 9 Java 7 Features That You May Have Missed180

ptg12441863

When the try block exits, res.close() is called automatically. Here is a typical

example—reading all words of a file:

try (Scanner in = new Scanner(Paths.get("/usr/share/dict/words"))) {
 while (in.hasNext())
 System.out.println(in.next().toLowerCase());
}

When the block exits normally, or when there is an exception, the in.close()
method is called, exactly as if you had used a finally block.

You can specify multiple resources, for example:

try (Scanner in = new Scanner(Paths.get("/usr/share/dict/words"));
 PrintWriter out = new PrintWriter("/tmp/out.txt")) {
 while (in.hasNext())
 out.println(in.next().toLowerCase());
}

No matter how the block exits, both in and out are closed if they were con-

structed. This was surprisingly difficult to implement correctly prior to Java 7

(see Exercise 1).

NOTE: A try-with-resources statement can itself have catch clauses and a
finally clause. These are executed after closing the resources. In practice,
it’s probably not a good idea to pile so much onto a single try statement.

9.1.2 Suppressed Exceptions
Whenever you work with input or output, there is an awkward problem with

closing the resource after an exception. Suppose an IOException occurs and then,

when closing the resource, the call to close throws another exception.

Which exception will actually be caught? In Java, an exception thrown in a finally
clause discards the previous exception. This sounds inconvenient, and it is. After

all, the user is likely to be much more interested in the original exception.

The try-with-resources statement reverses this behavior. When an exception is

thrown in a close method of one of the AutoCloseable objects, the original exception

gets rethrown, and the exceptions from calling close are caught and attached as

“suppressed” exceptions. This is a very useful mechanism that would be tedious

to implement by hand (see Exercise 2).

When you catch the primary exception, you can retrieve those secondary

exceptions by calling the getSuppressed method:

1819.1 Exception Handling Changes

ptg12441863

try {
 ...
} catch (IOException ex) {
 Throwable[] secondaryExceptions = ex.getSuppressed();
}

If you want to implement such a mechanism yourself in the (hopefully rare)

situation when you can’t use the try-with-resources statement, call

ex.addSuppressed(secondaryException);

NOTE: The classes Throwable, Exception, RuntimeException, and Error have
constructors with an option for disabling suppressed exceptions and for
disabling stack traces. When suppressed exceptions are disabled, calling
addSuppressed has no effect, and getSuppressed returns a zero-length array.
When stack traces are disabled, calls to fillInStackTrace have no effect, and
getStackTrace returns a zero-length array. This can be useful for VM errors
when memory is low, or for programming languages on the VM that use
exceptions to break out of nested method calls.

CAUTION: Detecting secondary exceptions only works when it isn’t actively
sabotaged. In particular, if you use a Scanner, and if input fails, and then closing
fails, the Scanner class catches the input exception, closes the resource and
catches that exception, and then throws an entirely different exception, without
linking the suppressed exceptions.

9.1.3 Catching Multiple Exceptions
As of Java SE 7, you can catch multiple exception types in the same catch clause.

For example, suppose that the action for missing files and unknown hosts is

the same. Then you can combine the catch clauses:

try {
Code that might throw exceptions

}
catch (FileNotFoundException | UnknownHostException ex) {

Emergency action for missing files and unknown hosts
}
catch (IOException ex) {

Emergency action for all other I/O problems
}

This feature is only needed when catching exception types that are not subclasses

of one another.

Chapter 9 Java 7 Features That You May Have Missed182

ptg12441863

Catching multiple exceptions doesn’t just make your code look simpler but is

also more efficient. The generated bytecodes contain a single block for the shared

catch clause.

NOTE: When you catch multiple exceptions, the exception variable is implicitly
final. For example, you cannot assign a new value to ex in the body of the
clause catch (FileNotFoundException | UnknownHostException ex) { ... }.

9.1.4 Easier Exception Handling for Reflective Methods
In the past, when you called a reflective method, you had to catch multiple

unrelated checked exceptions. For example, suppose you construct a class and

invoke its main method:

Class.forName(className).getMethod("main").invoke(null, new String[] {});

This statement can cause a ClassNotFoundException, NoSuchMethodException,
IllegalAccessException, or InvocationTargetException.

Of course, you can use the feature described in the preceding section and combine

them in a single clause:

catch (ClassNotFoundException | NoSuchMethodException
 | IllegalAccessException | InvocationTargetException ex) { ... }

However, that is still very tedious. Plainly, it is bad design not to provide a

common superclass for related exceptions. That design flaw has been remedied

in Java 7. A new superclass ReflectiveOperationException has been introduced so that

you can catch all of these exceptions in a single handler:

catch (ReflectiveOperationException ex) { ... }

9.2 Working with Files
The try-with-resources statement is my favorite feature in Java 7, but the file

handling improvements are a close second. Operations that used to be tedious,

such as reading a file into a string, or copying a file to another, are now as easy

as they should have been all along. These are part of the “NIO2” effort, which

refreshes the NIO (“new I/O”) library introduced in 2002 with Java 1.4. (It is

never a good idea to include “new” in a product name—what is new today will

invariably become old, and the name will look silly.)

Before you can learn how to carry out these easy file operations, you have to

learn about the Path interface that replaces the File class. Next, you will see how

to read and write files. Finally, we will turn to file and directory operations.

1839.2 Working with Files

ptg12441863

9.2.1 Paths
A Path is a sequence of directory names, optionally followed by a file name. The

first component of a path may be a root component, such as / or C:\. The permis-

sible root components depend on the file system. A path that starts with a root

component is absolute. Otherwise, it is relative. For example, here we construct

an absolute and a relative path. For the absolute path, we assume a computer

running a Unix-like file system.

Path absolute = Paths.get("/", "home", "cay");
Path relative = Paths.get("myprog", "conf", "user.properties");

The static Paths.get method receives one or more strings, which it joins with the

path separator of the default file system (/ for a Unix-like file system, \ for

Windows). It then parses the result, throwing an InvalidPathException if the result

is not a valid path in the given file system. The result is a Path object.

You can also provide a string with separators to the Paths.get method:

Path homeDirectory = Paths.get("/home/cay");

NOTE: Just like a File object, a Path object does not have to correspond to a
file that actually exists. It is merely an abstract sequence of names. To create
a file, first make a path, then call a method to create the corresponding file.

It is very common to combine or resolve paths. The call p.resolve(q) returns a path

according to these rules:

• If q is absolute, then the result is q.

• Otherwise, the result is “p then q,” according to the rules of the file system.

For example, suppose your application needs to find its configuration file relative

to the home directory. Here is how you can combine the paths:

Path configPath = homeDirectory.resolve("myprog/conf/user.properties");
 // Same as homeDirectory.resolve(Paths.get("myprog/conf/user.properties"));

There is a convenience method resolveSibling that resolves against a path’s parent,

yielding a sibling path. For example, if workPath is /home/cay/myprog/work, the call

Path tempPath = workPath.resolveSibling("temp");

yields /home/cay/myprog/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q which,

when resolved with p, yields r. For example,

Paths.get("/home/cay").relativize(Paths.get("/home/fred/myprog"))

Chapter 9 Java 7 Features That You May Have Missed184

ptg12441863

yields ../fred/myprog, assuming we have a file system that uses .. to denote the

parent directory.

The normalize method removes any redundant . and .. components (or whatever

the file system may deem redundant). For example, normalizing the path

/home/cay/../fred/./myprog yields /home/fred/myprog.

The toAbsolutePath method yields the absolute path of a given path. If the path

is not already absolute, it is resolved against the “user directory”—that is,

the directory from which the JVM was invoked. For example, if you launched

a program from /home/cay/myprog, then Paths.get("config").toAbsolutePath() returns

/home/cay/myprog/config.

The Path interface has many useful methods for taking paths apart and combining

them with other paths. This code sample shows some of the most useful ones:

Path p = Paths.get("/home", "cay", "myprog.properties");
Path parent = p.getParent(); // The path /home/cay
Path file = p.getFileName(); // The last element, myprog.properties
Path root = p.getRoot(); // The initial segment / (null for a relative path)

NOTE: Occasionally, you may need to interoperate with legacy APIs that use
the File class instead of the Path interface. The Path interface has a toFile
method, and the File class has a toPath method.

9.2.2 Reading and Writing Files
The Files class makes quick work of common file operations. For example, you

can easily read the entire contents of a file:

byte[] bytes = Files.readAllBytes(path);

If you want to read the file as a string, call readAllBytes followed by

String content = new String(bytes, StandardCharsets.UTF_8);

But if you want the file as a sequence of lines, call

List<String> lines = Files.readAllLines(path);

Conversely, if you want to write a string, call

Files.write(path, content.getBytes(StandardCharsets.UTF_8));

You can also write a collection of lines with

Files.write(path, lines);

To append to a given file, use

Files.write(path, lines, StandardOpenOption.APPEND);

1859.2 Working with Files

ptg12441863

NOTE: By default, all methods of the Files class that read or write characters
use the UTF-8 encoding. In the (hopefully unlikely) case that you need a
different encoding, you can supply a Charset argument. Contrast with the String
constructor and getBytes method which use the platform default. Commonly
used desktop operating systems still use archaic 8-bit encodings that are in-
compatibe with UTF-8, so we must specify the encoding whenever converting
between strings and bytes.

When you work with text files of moderate length, it is usually simplest to process

the contents as a single string or list of strings. If your files are large or binary,

you can still use the familiar streams or readers/writers:

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);
Reader reader = Files.newBufferedReader(path);
Writer writer = Files.newBufferedWriter(path);

These convenience methods save you from having to deal with FileInputStream,
FileOutputStream, BufferedReader, or BufferedWriter.

Occasionally, you may have an InputStream (for example, from a URL) and you

want to save its contents to a file. Use

Files.copy(in, path);

Conversely,

Files.copy(path, out);

copies a file to an output stream.

9.2.3 Creating Files and Directories
To create a new directory, call

Files.createDirectory(path);

All but the last component in the path must already exist. To create intermediate

directories as well, use

Files.createDirectories(path);

You can create an empty file with

Files.createFile(path);

The call throws an exception if the file already exists. The check for existence and

the creation are atomic. If the file doesn’t exist, it is created before anyone else

has a chance to do the same.

Chapter 9 Java 7 Features That You May Have Missed186

ptg12441863

The call path.exists() method checks whether the given file or directory exists,

but of course it might cease to exist by the time the method has returned.

There are convenience methods for creating a temporary file or directory in a

given or system-specific location.

Path newPath = Files.createTempFile(dir, prefix, suffix);
Path newPath = Files.createTempFile(prefix, suffix);
Path newPath = Files.createTempDirectory(dir, prefix);
Path newPath = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For

example, the call Files.createTempFile(null, ".txt") might return a path such as

/tmp/1234405522364837194.txt.

NOTE: To read files from a directory, use the Files.list and Files.walk
methods described in Chapter 8.

9.2.4 Copying, Moving, and Deleting Files
To copy a file from one location to another, simply call

Files.copy(fromPath, toPath);

To move a file (that is, copy and delete the original), call

Files.move(fromPath, toPath);

You can also use this command to move an empty directory.

The copy or move will fail if the target exists. If you want to overwrite an existing

target, use the REPLACE_EXISTING option. If you want to copy all file attributes,

use the COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.COPY_ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that either

the move completed successfully, or the source continues to be present. Use the

ATOMIC_MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

Finally, to delete a file, simply call

Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may

want to use

boolean deleted = Files.deleteIfExists(path);

1879.2 Working with Files

ptg12441863

The deletion methods can also be used to remove an empty directory.

NOTE: There is no convenient method for removing or copying a nonempty
directory. See the API documentation of the FileVisitor interface for code
outlines that achieve these tasks.

9.3 Implementing the equals, hashCode, and compareTo Methods
Java 7 introduces several methods that make it more convenient to deal with null

values in the ubiquitous equals and hashCode, and with numeric comparisons in

compareTo.

9.3.1 Null-safe Equality Testing
Suppose you have to implement the equals method for this class:

public class Person {
 private String first;
 private String last;
 ...
}

First, there is the drudgery of casting the parameter to a Person:

public boolean equals(Object otherObject) {
 if (this == otherObject) return true;
 if (otherObject == null) return false;
 if (getClass() != otherObject.getClass()) return false;
 Person other = (Person) otherObject;
 ...
}

Unfortunately, that drudgery isn’t simplified yet. But now it gets better. Instead

of worrying that first or last might be null, just call

return Objects.equals(first, other.first) && Objects.equals(last, other.last);

The call Objects.equals(a, b) returns true if both a and b are null, false if only a is
null, and a.equals(b) otherwise.

NOTE: In general, it is a good idea to call Objects.equals(a, b) when you
would have called a.equals(b) before.

Chapter 9 Java 7 Features That You May Have Missed188

ptg12441863

9.3.2 Computing Hash Codes
Consider computing a hash code for the preceding class. The Objects.hashCode
method returns a code of 0 for a null argument, so you can implement the body

of your hashCode method like this:

return 31 * Objects.hashCode(first) + Objects.hashCode(last);

But it gets better than that. The varargs method Objects.hash, introduced in Java 7,

lets you specify any sequence of values, and their hash codes get combined:

return Objects.hash(first, last);

NOTE: Objects.hash simply calls Arrays.hash, which existed since Java 5. But
it isn’t a varargs method, making it less convenient.

NOTE: There has always been a null-safe way of calling toString as
String.valueOf(obj). If obj is null, the string "null" is returned. If you don’t like
that, you can use Object.toString and supply the value to be used for null,
for example Object.toString(obj, "").

9.3.3 Comparing Numeric Types
When you compare integers in a comparator, it is tempting to return the differ-

ence between them since you are allowed to return any negative or positive

number—only the sign matters. For example, suppose you are implementing a

Point class:

public int compareTo(Point other) {
 int diff = x - other.x; // Risk of overflow

 if (diff != 0) return diff;
 return y - other.y;
}

But that is problematic. If x is large and other.x is negative, the difference can

overflow. That makes compareTo rather tedious (see Exercise 8).

As of Java 7, use the static Integer.compare method:

public int compareTo(Point other) {
 int diff = Integer.compare(x, other.x); // No risk of overflow

 if (diff != 0) return diff;
 return Integer.compare(y, other.y);
}

1899.3 Implementing the equals, hashCode, and compareTo Methods

ptg12441863

In the past, some people used new Integer(x).compareTo(other.x), but that creates two

boxed integers. The static method has int parameters.

The static compare method has also been added to Long, Short, Byte, and Boolean. If
you need to compare two char values, you can safely subtract them because the

result will not overflow. (The same is true for short or byte, of course.)

NOTE: The static compare method existed for Double and Float since Java 1.2.

9.4 Security Requirements
When Java 1.0 was introduced in 1995 to an astounded world, the feature that

caught everyone’s imagination were applets: remotely served code that runs in-

side the user’s web browser. The designers of Java knew perfectly well that exe-

cuting remote code is a security risk, so they designed a “sandbox” model that

stopped any damaging instructions in their tracks.

Soon thereafter, academic researchers found some implementation flaws that

were promptly fixed, and other academic researchers groused in general over

the fact that the Java security model was rather complex and there was little as-

surance that its darker corners are safe from assault. At the time, I didn’t take

that very seriously because the vast majority of Java applet consumers used

Microsoft Windows, which was far less secure and far more complex.

Applets were limited to visual effects and network connections to the originating

host, which many application writers found limiting. They wanted local device

access for storage, printing, and so on. In 2001, Java Web Start delivered an ex-

tension of the sandbox that was quite powerful, comparable to today’s HTML 5

extensions for local device access. Unfortunately, Java Web Start was poorly

understood, not integrated with applets, and not maintained with any vigor.

Instead, many application developers simply signed their web-delivered pro-

grams, which gave them full permission to do anything on the user’s machine.

Signing certificates from commercial entities are within reach of anyone willing

to endure some cost and pain. It was also possible to apply a meaningless self-

signed certificate, or have users agree to run an applet without a certificate.

Warnings were toned down from one release to the next until they became

background noise. This was very bad.

Meanwhile, Microsoft, with an enormous engineering effort, got better at closing

Windows loopholes, and it became worthwhile for hackers to look at obscure

Java vulnerabilities instead. When Oracle purchased Sun in 2010, they inherited

a very limited infrastructure for dealing with such attacks and no reliable means

of updating client virtual machines. Hackers became increasingly successful in

Chapter 9 Java 7 Features That You May Have Missed190

ptg12441863

exploiting Java implementation bugs. In this regard, the early researchers who

warned of a large attack surface in the Java security model were entirely justified.

It took Oracle until 2013 to credibly respond to attacks. Management of client

VMs is still a work in progress.

As of today, Oracle signals that it is no longer focused on securing home users’

Java applets and Web Start applications (collectively called rich internet applica-

tions, or RIAs). Oracle continues to close Java vulnerabilities, and develops tools

that are suitable for corporate deployment, so that legacy RIAs can be deployed

safely. From a commercial standpoint, this makes sense. Home users are expected

to migrate away from PCs to tablets and smartphones. These devices don’t sup-

port a Java VM in the browser. And business users are a plausible revenue target

for maintaining legacy applications.

With successive Java 7 releases, Oracle has tightened the security rules. As of

January 2014, RIAs running outside the sandbox need to be signed by a commer-

cial certificate authority. Another requirement is designed to thwart “repurposing

attacks.” Currently, it is possible to grab a legitimately signed JAR file from

a third party and serve it from a hacker site, exploiting some vulnerability in

that third-party app. As of January 2014, all JARs must have a manifest entry

Permissions: sandbox

or

Permissions: all-permissions

Since the manifest entry is inside the JAR file, it is signed and cannot be modified

afterwards. The Java client will not permit sandbox execution of an all-permission
client, which prevents “drive-by” attacks where an applet runs without any user

consent. Of course, it is still possible to attack users who are habituated to agree

to any security dialogs. To make that harder, another, as yet optional, manifest

entry has been added:

Codebase: https://www.mycompany.com www.mycompany.com:8080

only allows the application to be loaded from one of the given URLs.

NOTE: It has always been possible to call applets from JavaScript—another
dubious decision from the point of view of the security minded. If you are using
that feature in your application, you can minimize the repurposing risk by
adding an entry Caller-Allowable-Codebase: https://www.mycompany.com to the
manifest before signing.

Overall, these developments are very sad. Java held great promise as a universal

execution platform for remote code. If Java had offered a more compelling

sandbox, if nonsandbox code had been more aggressively controlled, if there had

1919.4 Security Requirements

https://www.mycompany.com
http://www.mycompany.com:8080
https://www.mycompany.com

ptg12441863

been consistent response to security breaches, and if client VMs had been reliably

updated, Java might still be that universal platform. But there is no use dwelling

on what might have been. At this point, Java is no longer a viable platform for

widespread distribution of client applications over the Internet.

If you maintain an applet or Java Web Start application for home users, the

message is clear: Move away from it. If your application serves a specialized

audience (for example, software development, image editing, or document pro-

cessing), make your users install Java or bundle a JVM with your installer. If you

target a general audience—such as game players—consider using another

technology, perhaps HTML 5.

NOTE: If you decide to make your users install Java, you face another hurdle.
If you direct Windows users to the installer at http://java.com, they will receive
the widely reviled toolbar for Ask.com by default (see Figure 9–1).You have
a couple of alternatives.You could have your users install the JDK, directing
them to www.oracle.com/technetwork/java/javase/downloads and provid-
ing them with instructions for traversing that ever-changing page. Or you could
bundle a JVM, which you are then obligated to update since no effective
update mechanism is supplied by Oracle.

Figure 9–1 By default, the Windows JRE installer installs the Ask toolbar.

Chapter 9 Java 7 Features That You May Have Missed192

http://java.com
http://www.oracle.com/technetwork/java/javase/downloads

ptg12441863

In a corporate environment, you can effectively secure Java RIAs, provided you

have control over the applications and the client machines. You will need to

tightly manage the application packaging and be ready to update client VMs

when security updates become available.

NOTE: To more tightly manage corporate RIAs, you can provide deployment
rulesets on end-user machines. The process—not for the faint of heart—is
explained at http://docs.oracle.com/javase/7/docs/technotes/guides/jweb/
deployment_rules.html.

9.5 Miscellaneous Changes
As in the preceding chapter, this section describes a number of smaller features

that you may find interesting or useful.

9.5.1 Converting Strings to Numbers
Prior to JDK 1.7, what was the result of the following code segment?

double x = Double.parseDouble("+1.0");
int n = Integer.parseInt("+1");

Pat yourself on the back if you knew the answer: +1.0 has always been a valid

floating-point number, but until Java 7, +1 was not a valid integer.

This has now been fixed for all the various methods that construct int, long, short,
byte, and BigInteger values from strings. There are more of them than you may

think. In addition to parse(Int|Long|Short|Byte), there are decode methods that work

with hexadecimal and octal inputs, and valueOf methods that yield wrapper

objects. The BigInteger(String) constructor is also updated.

9.5.2 The Global Logger
In order to encourage the use of logging even in simple cases, the Logger class has

a global logger instance. It was meant to be as easy as possible to use, so that you

could always add trace statements as Logger.global.finest("x=" + x); instead of

System.out.println("x=" + x);.

Unfortunately, that instance variable has to be initialized somewhere, and if

other logging happens in the static initialization code, it was possible to cause

deadlocks. Therefore, Logger.global was deprecated in Java 6. Instead, you were

supposed to call Logger.getLogger(Logger.GLOBAL_LOGGER_NAME), which wasn’t anyone’s

idea of quick and easy logging.

In Java 7, you can call Logger.getGlobal() instead, which isn’t too bad.

1939.5 Miscellaneous Changes

http://docs.oracle.com/javase/7/docs/technotes/guides/jweb/deployment_rules.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jweb/deployment_rules.html

ptg12441863

9.5.3 Null Checks
The Objects class has methods requireNonNull for convenient null checks of

parameters. Here is the simplest one:

public void process(String directions) {
 this.directions = Objects.requireNonNull(directions);
 ...
}

If directions is null, a NullPointerException is thrown, which doesn’t seem like a huge

improvement at first. But consider working back from a stack trace. When you

see a call to requireNonNull as the culprit, you know right away what you did

wrong.

You can also supply a message string for the exception:

this.directions = Objects.requireNonNull(directions,
 "directions must not be null");

9.5.4 ProcessBuilder

Prior to Java 5, the Runtime.exec method was the only way to execute an external

command from within a Java application. Java 5 added the ProcessBuilder class

that gives more control over the generated operating system process. In

particular, with the ProcessBuilder, you can change the working directory.

Java 7 adds convenience methods to hook the standard input, output, and error

streams of the process to files. For example,

ProcessBuilder builder = new ProcessBuilder(
 "grep", "-o", "[A-Za-z_][A-Za-z_0-9]*");
builder.redirectInput(Paths.get("Hello.java").toFile());
builder.redirectOutput(Paths.get("identifiers.txt").toFile());
Process process = builder.start();
process.waitFor();

NOTE: Since Java 8, the Process class has a waitFor method with timeout:

boolean completed = process.waitFor(1, TimeUnit.MINUTES);

Also new in Java 7 is the inheritIO method of ProcessBuilder. It sets the standard

input, output, and error streams of the process to those of the Java program. For

example, when you run

Chapter 9 Java 7 Features That You May Have Missed194

ptg12441863

ProcessBuilder builder = new ProcessBuilder("ls", "-al");
builder.inheritIO();
builder.start().waitFor();

then the output of the ls command is sent to System.out.

9.5.5 URLClassLoader

Suppose you want to write a Java program that automates execution of JUnit

tests. To load the JUnitCore class, you need a class loader that reads the JUnit JAR

files:

URL[] urls = {
 new URL("file:junit-4.11.jar"),
 new URL("file:hamcrest-core-1.3.jar")
};
URLClassLoader loader = new URLClassLoader(urls);
Class<?> klass = loader.loadClass("org.junit.runner.JUnitCore");

Before Java 7, code such as this could lead to resource leaks. Java 7 simply adds

a close method to close the classloader. URLClassLoader now implements AutoCloseable,
so you can use a try-with-resources statement:

try (URLClassLoader loader = new URLClassLoader(urls)) {
 Class<?> klass = loader.loadClass("org.junit.runner.JUnitCore");
 ...
}

CAUTION: Don’t use any classes after the classloader has been closed. If
you do, and those classes need to load other classes to do their work, they
will fail.

9.5.6 BitSet

A BitSet is a set of integers that is implemented as a sequence of bits. The ith bit

is set if the set contains the integer i. That makes for very efficient set operations.

Union/intersection/complement are simple bitwise or/and/not.

Java 7 adds methods to construct bitsets.

byte[] bytes = { (byte) 0b10101100, (byte) 0b00101000 };
BitSet primes = BitSet.valueOf(bytes);
 // {2, 3, 5, 7, 11, 13}
long[] longs = { 0x100010116L, 0x1L, 0x1L, 0L, 0x1L };
BitSet powersOfTwo = BitSet.valueOf(longs);
 // {1, 2, 4, 8, 16, 32, 64, 128, 256}

1959.5 Miscellaneous Changes

ptg12441863

The inverse methods are toByteArray and toLongArray.

byte[] bytes = powersOfTwo.toByteArray();
 // [0b00010110, 1, 1, 0, 1, 0, 0, 0, 1, ...]

NOTE: As of Java 8, BitSet has a method stream that yields an IntStream.

Exercises
1. Implement a code segment that constructs a Scanner and a PrintWriter at the

end of Section 9.1.1, “The try-with-resources Statement,” on page 180, without

the try-with-resources statement. Be sure to close both objects, provided they

have been properly constructed. You need to consider the following

conditions:

• The Scanner constructor throws an exception.

• The PrintWriter constructor throws an exception.

• hasNext, next, or println throws an exception.

• in.close() throws an exception.

• out.close() throws an exception.

2. Improve on the preceding exercise by adding any exceptions thrown by

in.close() or out.close() as suppressed exceptions to the original exception, if

there was one.

3. When you rethrow an exception that you caught in a multi-catch clause, how

do you declare its type in the throws declaration of the ambient method? For

example, consider

public void process() throws ... {
 try {
 ...
 catch (FileNotFoundException | UnknownHostException ex) {
 logger.log(Level.SEVERE, "...", ex);
 throw ex;
 }
}

4. In which other parts of the Java library did you encounter situations

that would benefit from multi-catch or, even better, common exception

superclasses? (Hint: XML parsing.)

5. Write a program that reads all characters of a file and writes them out in

reverse order. Use Files.readAllBytes and Files.write.

Chapter 9 Java 7 Features That You May Have Missed196

ptg12441863

6. Write a program that reads all lines of a file and writes them out in reverse

order. Use Files.readAllLines and Files.write.

7. Write a program that reads the contents of a web page and saves it to a file.

Use URL.openStream and Files.copy.

8. Implement the compareTo method of the Point class in Section 9.3.3, “Comparing

Numeric Types,” on page 189, without using Integer.compareTo.

9. Given a class

public class LabeledPoint {
 private String label;
 private int x;
 private int y;
 ...
}

implement the equals and hashCode methods.

10. Implement a compareTo method for the LabeledPoint class of the preceding

exercise.

11. Using the ProcessBuilder class, write a program that calls grep -r to look for

credit card numbers in all files in any subdirectory of the user’s home

directory. Collect the numbers that you found in a file.

12. Turn the application of the preceding exercise into an applet or a Java Web

Start implementation. Suppose you want to offer it to users as a security scan.

Package it so that it will run on your JRE. What did you have to do? What

would your users have to do to run it from your web site?

197Exercises

ptg12441863

This page intentionally left blank

ptg12441863Symbols
- operator, for numbers, 159

--, in shell scripts, 151

->, in lambda expressions, 4–6

; (semicolon), in JavaScript, 141

:: operator, in method references, 8

/ (slash), in Unix paths, 184

`...` (back quotes), in shell scripts, 149

^ (caret), for denoting free variables, 4

'...' and "..." (single and double quotes)

in JavaScript, 138

in shell scripts, 150

[...] (square brackets), in JavaScript, 141,

144–145

{...} (curly braces), in lambdas, 5

$ (dollar sign), in JavaScript, 142

${...}, in shell scripts, 150

* (asterisk), in locales, 173

\ (backslash), in Windows paths, 184

#!, in shell scripts, 151

+ operator, for numbers, 159

< operator, in JavaScript, 143

A
abstract methods, in functional

interfaces, 6

acceptEither method (CompletableFuture),

134

accumulate method (LongAccumulator), 122

accumulateAndGet method (AtomicXXX), 121

actions, repeating, 49

add method

of Bindings, 78

of LongAdder, 121

addExact method (Math), 159

addListener method (JavaFX), 72, 153

addSuppressed method (Throwable), 182

allOf method (CompletableFuture), 134

AnchorPane class (JavaFX), 84

and method

of Bindings, 78–79

of Predicate, 50

Android, 80

AnnotatedElement interface, getAnnotation,

getAnnotationsByType methods, 168

Index

199

ptg12441863

annotations, 167–171

container, 167

in lambdas, 5

no annotations for, 170

repeated, 167–169

type use, 169–170

anyMatch method (Stream), 28

anyOf method (CompletableFuture), 134

Apollo 11, launch of, 104, 109

applets, 190–192

Application class

init method, 153

start method, 71

stop method, 153

applyToEither method (CompletableFuture), 134

$ARG, in shell scripts, 151

ArithmeticException, 159

arrays

and generic types, 10, 61

computing values of, 129

from stream elements, 33

in Nashorn, 144–145

sorting, 128

type use annotations in, 170

Arrays class

parallelXXX methods, 128–129

sort method, 3, 6

stream method, 39

ASCII characters, printable, 166

Ask.com toolbar, 192

asPredicate method (Pattern), 172

asynchronous applications, 131

atomic values, 120–123

and performance, 121

in concurrent hash maps, 124–126

AtomicXXX classes

accumulateAndGet method, 121

compareAndSet method, 120

getAndXXX methods, 121

incrementAndGet method, 120

updateAndGet method, 121

Atwood’s law, 153

atZone method (LocalDateTime), 109

autoboxing, reducing, 52

AutoCloseable interface, 25, 163, 180–181, 195

average method (XXXStream), 40

AWT (Abstract Window Toolkit), 70

B
Base64, BASE64Encoder classes, 166

BeanInfo class, 73

between method (Duration), 103

BiConsumer interface, 43, 51

BiFunction interface, 7, 43, 51

BigInteger class, 159

constructor for, 193

BinaryOperator interface, 43, 51

bind, bindBidirectional methods (XXXProperty),

76

Binding interface, 78

bindings, 75–80

lambdas for, 79

with JavaScript, 140

Bindings class, methods of, 78–79

BiPredicate interface, 51

BitSet class, 195

constructor for, 195

stream method, 161, 196

toXXXArray methods, 196

valueOf method, 196

books, counting words in, 22

Boolean class, logicalXXX methods of, 158

BooleanProperty class, 74

BooleanSupplier interface, 53

BorderLayout control (Swing), 81

BorderPane class (JavaFX), 80–81, 84

boxed method (XXXStream), 40

BufferedReader class, lines method, 164

BufferedXXX classes, 186

buttons

disabling, at the ends of a gauge, 77

event handling for, 3, 8

Byte class

compare method, 190

decode method, 193

parseByte method, 193

toUnsignedXXX methods, 158

valueOf method, 193

BYTE static field, 158

byteValueExact method (BigInteger), 159

Index200

ptg12441863

C
C++ programming language

default methods in, 15

unsigned types in, 159

Calendar class, 101

Callable interface

call method, 8

checked exceptions in, 60

casts, type use annotations in, 170

catch statement, 181

multiple exceptions in, 182–183

certificates, signing, 190

ChangeListener interface, 75, 77, 153

charAt method (String), 25

CharSequence interface

chars, codePoints methods, 39, 158

splitting by regular expressions, 24, 172

checked exceptions, 8

checkedNavigableXXX methods (Collections),

162

checkedQueue method (Collections), 162

Checker Framework, 169–170

Church, Alonzo, 4, 104

“class wins” rule, 16

ClassCastException, 162

classes

and classloader, 195

companion, 16

extending, in JavaScript, 146–148

classifier functions, 36

clone method (Object), 6

close method (AutoCloseable), 163, 180–181

Closeable interface, 180

closures, 11

code units, 39, 158

codePoints method (CharSequence), 39, 158

collect method (Stream), 33–34

Collection interface, 160–163

parallelStream method, 23, 40

removeI methods, 160–161

stream method, 22–24

toArray method, 61

collections, 160–163

and lambda expressions, 160

processing, 22–23

sorting, 27

threadsafe, 119

vs. streams, 22

Collections class, 17, 162–163

checkedQueue method, 162

emptySortedXXX methods, 163

sort method, 27

xxxNavigableXXX methods, 162

collections library

adding forEach method to, 14

and function expressions, 1

Collector interface, 33

Collectors class, 33

counting method, 37

groupingBy method, 36–39

groupingByConcurrent method, 41

joining method, 34

mapping method, 38

maxBy, minBy methods, 37

partitioningBy method, 36–37, 39

reducing method, 38

summarizingXXX methods, 34

summingXXX methods, 37

toCollection method, 33

toConcurrentMap method, 36

toMap method, 34–36

toSet method, 33, 37

collectors, downstream, 37–39

com global object (JavaScript), 141

Comparator interface, 2, 161–162

and lambdas, 6

compare method, 17

comparing method, 17, 161–162

naturalOrder method, 162

nullXXX methods, 162

reverseOrder, reversed methods, 162

thenComparing method, 161–162

comparators, 49

chaining, 161

comparing integers in, 189–190

customizing, 54

compare method (integer types), 3–6,

189–190

compareAndSet method (AtomicXXX), 120

compareUnsigned method (Integer, Long), 159

201Index

ptg12441863

CompletableFuture class, 130–131

acceptEither, applyToEither methods, 134

allOf, anyOf methods, 134

exceptions in, 133

handle method, 133

runAfterXXX methods, 134

runAsync method, 131

supplyAsync method, 131–132

thenAccept method, 132–133

thenAcceptBoth method, 134

thenApply method, 63, 130–133

thenApplyAsync method, 131–133

thenCombine method, 134

thenCompose method, 132–133

thenRun method, 133

whenComplete method, 133

CompletionStage interface, 134

compose method (UnaryOperator), 55–56

composition pipeline, 131–132

compute, computeIfXXX methods (Map), 161

concat method

of Bindings, 79

of Stream, 26

concurrent programming, 1, 119–135

ConcurrentHashMap class, 123–128

atomic updates in, 124–126

compute, computeIfXXX methods, 125–126

forEach, forEachXXX methods, 126–128

get method, 124

mappingCount method, 123

merge method, 125–126

newKeySet, keySet methods, 128

organizing buckets as trees in, 124

put method, 124

putIfAbsent method, 125

reduce, reduceXXX methods, 126–128

replace method, 124

search, searchXXX methods, 126–128

config method (Logger), 171

constructor references, 9–10

for arrays, 10

type use annotations in, 170

Consumer interface, 43, 51

convert method (Bindings), 79

copy method (Files), 186–187

count method (Stream), 22–23, 28

counting method (Collectors), 37

createBindings method (ScriptEngine), 140

createXXX methods (Files), 186–187

createXXXBindings methods (Bindings), 79

CSS (Cascading Style Sheets), 80

using with JavaFX, 90–91

D
Date class, 115, 174

Date and Time API, 101–117

and legacy code, 115–116

dates

computing, 107–108

difference between, 104–106

formatting, 112–115

local, 104–106

local preferences for, 172

parsing, 115

DateTimeFormatter class, 112–115

and legacy classes, 116

format method, 112

ofLocalizedXXX methods, 112

ofPattern method, 114

parse method, 115

toFormat method, 114

withLocale method, 112

DayOfWeek class, 106

dayOfWeekInMonth method (TemporalAdjusters),

107

deadlocks, 119

in loggers, 193

debugging

layouts, 84, 91

streams, 27

with checked wrappers, 162

decrementExact method (Math), 159

default methods, 14–16

adding to interfaces, 16

resolving ambiguities in, 15

deferred execution, 2–4, 48–49

delete, deleteIfExists methods (Files), 187

deployment rulesets, 193

directories

checking existense of, 187

creating, 186

deleting, 188

Index202

ptg12441863

paths for, 184

streams of, 165

temporary, 187

working, changing, 194

DirectoryStream interface, 165

disableProperty method (JavaFX), 77

distinct method (Stream), 27, 41, 160

divide method (Bindings), 76, 78

dividedBy method (Instant, Duration), 103

divideUnsigned method (Integer, Long), 159

Double class

compare method, 190

decode method, 193

isXXX methods, 159

parseDouble method, 193

sum, max, min methods, 158

valueOf method, 193

DoubleAccumulator, DoubleAdder classes, 122

DoubleProperty class, 74–75

doubles method (Random), 40

DoubleStream class, 39–40

boxed method, 40

mapToDouble method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

DoubleSummaryStatistics class, 34, 40

DoubleXXX interfaces, 43, 53

downstream collectors, 37–39

DropShadow class (JavaFX), 93

Duration class

arithmetic operations, 103

between method, 103

immutable, 104

toXXX methods, 103

dynamically typed languages, 143

E
ECMAScript standard, 137, 146

edu global object (JavaScript), 141

Emacs text editor, running jjs inside, 139

emails, binary data in, 166

empty method (Optional), 30

emptyNavigableXXX methods (Collections), 162

emptySortedXXX methods (Collections), 163

<<END, in shell scripts, 150

$ENV, in shell scripts, 151

environment variables, 151

epoch, definition of, 102

equal, equalIgnoreCase methods (Bindings), 78

equals method (Object), 16, 188

$ERR, in shell scripts, 149

Error, Exception classes, disabling

suppressed exceptions in, 182

eval method (ScriptEngine), 140

event handlers

deferred execution in, 3

for asynchronous actions, 131

passing methods to, 8

event-driven programming, 1

exception specifications, type use

annotations in, 170

exceptions, 58–61

catching multiple, 182–183

checked, 7–8

in functional interfaces, 60–61

in reflective methods, 183

suppressed, 181–182

exec method (Runtime), 194

executeLargeUpdate method (Statement), 174

ExecutionException, 133

exists method (Files), 187

exit function (shell scripts), 152

$EXIT, in shell scripts, 149

expression closure, 146

extends keyword, for function types, 62

F
FadeTransition class (JavaFX), 92

fat clients, 70

File class, toPath method, 185

FileReader class, 163

files

checking existense of, 187

closing, 163

copying/moving/deleting, 187

creating, 184, 186

processing, 50

reading, 185

all words of, 181

lazily, 163–164

203Index

ptg12441863

files (continued)
redirecting standard I/O streams to,

194

saving streams into, 186

specifying encoding for, 163

temporary, 187

working with, 183–188

writing, 185

Files class, 185–188

copy method, 186–187

createXXX methods, 186–187

delete, deleteIfExists methods, 187

encodings in, 186

exists method, 187

lines method, 25, 163

list method, 165

move method, 187

newBufferedXXX, newXXXStream methods,

186

readAllXXX methods, 185

walk method, 165

write method, 185

FileTime class, and legacy classes, 116

FileVisitor interface, 188

FileXXXStream classes, 186

fillInStackTrace method (Throwable), 182

filter method

of Locale, 173

of Stream, 22–23, 25, 28, 42–43, 160

final modifier, in lambdas, 5

finally statement, 181

findXXX methods (Stream), 28

fine, finer, finest methods (Logger), 171

firstDayOfXXX methods (TemporalAdjusters),

107

Flash, 70

flatMap method

of Optional, 30–31, 64

of Stream, 26

Float class

compare method, 190

isXXX methods, 159

sum, max, min methods, 158

FloatProperty class, 74

floorXXX methods (Math), 159–160

FlowPane class (JavaFX), 84

for loop, enhanced, 165

forEach method

adding to collection library, 14

of ConcurrentHashMap, 126–128

of Iterable, 14, 161

of Map, 161

of Stream, 34

forEachOrdered method (Stream), 34

forEachRemaining method (Iterator), 161

forEachXXX methods (ConcurrentHashMap),

126–128

forLanguageTag method (Locale), 173

format method

of Bindings, 79

of DateTimeFormatter, 112

formatters, for date/time values

custom, 114

predefined, 112–113

from method (Instant, ZonedDateTime), 115

Function interface, 43, 51

identity method, 35

function keyword (JavaScript), 146

function types

generic, 50

using wildcards for, 62

functional interfaces, 6–8, 42–43

annotating, 7

as return type, 53–54

choosing, 48, 50–53

composing, 54, 63

conversion to, 6

defining, 52

exceptions in, 60–61

generic, 7

methods inabstract, 6

methods innonabstract, 50

parallelizing, 57–58

processed lazily, 56–57

functional programming, 1

@FunctionalInterface annotation, 7, 52

Future interface, 130

futures

combining multiple, 133–134

completable, 130–134

composing, 132–134

fx:id attribute (FXML), 89

Index204

ptg12441863

FXML, 86–90

constructing elements in, 87

initialization in, 89

writing files in, 87

@FXML annotation, 88

G
GaussianBlur class (JavaFX), 94

generate method (Stream), 24, 39

generic types

and arrays, 10

and lambdas, 61–62

type use annotations in, 170

generic wrappers, 60

get method

of ConcurrentHashMap, 124

of LongAccumulator, 122

of ObservableXXXValue, 78

of Path, 184–185

of property classes, 75

getAndXXX methods (AtomicXXX), 121

getAnnotation, getAnnotationsByType methods

(AnnotatedElement), 168

getAsXXX methods (OptionalXXX classes),

40

getAverage method (XXXSummaryStatistics), 34

getBytes method (String), 185–186

getEncoder, getXXXEncoder methods (Base64),

166

getFileName method (Path), 185

getGlobal, getLogger methods (Logger), 193

getMax method (XXXSummaryStatistics), 34

getObject method (ResultSet, Statement), 174

getParent, getRoot (Path), 185

getStackTrace method (Throwable), 182

getSuppressed method (Throwable), 181–182

getters/setters

in JavaFX, 73–75

in Nashorn, 141

getValue method (property classes), 75, 78

getXXX methods (Date and Time API),

105–106, 108, 111–112

GlassFish administration tool, 150

Glow class (JavaFX), 94

greaterThan, greaterThanOrEqual methods

(Bindings), 78

GregorianCalendar class, 115

toZonedDateTime method, 115

GridBagLayout control (Swing), 82

GridPane class (JavaFX), 82–84, 87

alignment in, 83

using CSS with, 90–91

Groovy programming language

executing scripts in, 140

JavaFX bindings in, 86

groupingBy method (Collectors), 36–39

groupingByConcurrent method (Collectors), 41

GStreamer framework, 95–97

H
handle method (CompletableFuture), 133

hash method (Arrays, Objects), 189

hash tables, 123

hashCode method

of Objects, 189

of primitive types, 158

hasNext method (JavaScript), 146–147

HBox class (JavaFX), 81–82, 84, 87

alignment and padding in, 83

using CSS with, 91

here documents, 150

HTML (HyperText Markup Language),

80

HTML 5, 190, 192

HTTP authentication, 166

I
IANA (Internet Assigned Numbers

Authority), 109

identity method (Function), 35

identity values, 32

ifPresent method (Optional), 29

IllegalStateException, 35

images, transforming, 49–57

parallel, 57–58

implements specification, type use

annotations in, 170

in-car displays, user interfaces for, 71

increment method (LongAdder), 121–122

incrementAndGet method (AtomicXXX), 120

incrementExact method (Math), 159

info method (Logger), 49, 171

205Index

ptg12441863

inheritIO method (ProcessBuilder), 194

init method (Application), 153

Initializable interface, 88

inner classes

capturing values in, 9, 12

vs. lambdas, 6

InputStream class, 186

instanceof keyword, and type use

annotations, 170

Instant class, 102

and legacy classes, 116

arithmetic operations, 103–104

from method, 115

immutable, 104

now method, 102

Integer class

compare method, 3–6, 189–190

decode method, 193

parseInt method, 193

sum, max, min methods, 158

toUnsignedLong method, 158

valueOf method, 193

xxxUnsigned methods, 159

integer ranges, 39

integer remainders, 159–160

IntegerProperty class, 74–75

interfaces

functional, 42–43, 48, 50–53

implemented in JavaScript, 146–148

methods in, 16–17

default, 14–16

name clashes between, 15

nonabstract, 6

Introspector class, 73

ints method (Random), 40

IntStream class, 39–40

boxed method, 40

mapToInt method, 39–40

of method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

IntSummaryStatistics class, 34, 40

intValueExact method (BigInteger), 159

IntXXX interfaces, 43, 53

InvalidationListener interface, 75, 77, 153

InvalidPathException, 184

IOException, 164

isEmpty, isNotEmpty, isNull, isNotNull methods

(Bindings), 78

isEqual method (Predicate), 50

isFinite, isInfinite, isNaN methods (Double,

Float), 159

isLoggable method (Logger), 49

isNull method (Objects), 171

isPresent method (Optional), 28–29

isXXX methods (Date and Time API), 105,

108, 112

isZero, isNegative methods (Instant, Duration),

103

Iterable interface, 165

forEach method, 14, 161

iterate method (Stream), 24, 27, 39

Iterator interface, forEachRemaining method,

161

iterators, 33

for random numbers, 146–147

J
Java Media Framework, 95

Java programming language

executing external commands from, 194

implementation bugs in, 191

simplicity and consistency of, 4

Java Web Start, 190–192

java, javax, javafx global objects (JavaScript),

141

Java.extend function (JavaScript), 146–147

Java.from function (JavaScript), 145

Java.super function (JavaScript), 148

Java.to function (JavaScript), 144–145

Java.type function (JavaScript), 141–142

java.util.concurrent package, 119, 130

java.util.concurrent.atomic package, 120

java.util.function package, 7

JavaBeans, 73

javadoc comments, redeclaring Object

methods for, 6

JavaFX, 69–98

controls in, 94–97

debugging in, 84, 91

Index206

ptg12441863

dimensions in, 82

event handling in, 72–73

getters/setters in, 73–75

labels in, 71

launching, 72

from Nashorn, 152–154

layouts in, 80–86

alignment, 83

cell styling, 84, 91

markup, 86–90

padding property, 82

panes, 80

properties in, 72–75, 153

scenes in, 71

setting fonts in, 71

sliders in, 72–73

special effects in, 91–94

stages in, 71, 140

transitions in, 92

using CSS in, 90–91

versions of, 70

JavaFX Script programming language, 85

JavaScript programming language

accessing Java applications from, 153

anonymous functions in, 146

anonymous subclasses in, 147

bracket notation in, 141, 144–145

calling applets from, 191

catching Java exceptions in, 148

constructing objects in, 141–142

delimiters in, 138

extending Java classes in, 146–148

implementing Java interfaces in,

146–148

inner classes in, 142

instance variables in, 147

invoking:

Java methods in, 140–141

superclasses in, 148

making JavaFX stages visible in, 140

Mozilla implementation of, 146

no method overloading in, 141

numbers in, 143

objects vs. strings in, 143

REPL in, 138–139

semicolons in, 141

static methods in, 142

using with Nashorn, 137–155

javax.annotation.processing package, 169

javax.lang.model package, 169

JDBC (Java Database Connectivity), 174

JDK (Java Development Kit), installed by

users, 192

JEditorPane control (Swing), 95

jjs tool, 138–139

command-line arguments in, 151

executing commands in, 149

-fx option, 152

join method (String), 158

joining method (Collectors), 34

JRuby programming language, 140

jrunscript script shell, 149, 151

JUnit test, automated execution of, 195

JUnitCore class, 195

JVM (Java Virtual Machine), installed by

users, 192

Jython programming language, 140

K
keySet method (ConcurrentHashMap), 128

kiosks, user interfaces for, 71

L
Label class, setFont method, 71

lambda expressions, 1–17, 48–49

accessing variables in, 10–13

and collections, 160

and computed bindings, 79

and functional interfaces, 6

and generics, 61–62

and JavaScript, 146

and method references, 8

annotations in, 5

capturing values by, 11

event handling with, 72

modifiers in, 5

no assigning to a variable of type Object,

7

no-arg, 48

parameter types in, 5

parameters of, 49–50

result type of, 6

207Index

ptg12441863

lambda expressions (continued)
scope of, 13

syntax of, 4–5

this keyword in, 13

throwing exceptions in, 58–61

updating counters with, 13

using with map method, 25

vs. inner classes, 6

language range, 173

lastXXX methods (TemporalAdjusters), 107

leap seconds, 102

leap years, 105

length method (Bindings), 78

lessThan, lessThanOrEqual methods (Bindings),

78

limit method (Stream), 26, 41

lines method

of BufferedReader, 164

of Files, 25, 163

lines, reading, 25, 163–164, 185

Lisp programming language, 1

list method (Files), 165

List interface, 17

replaceAll, sort methods, 160–161

ListProperty class, 74

lists

declaring non-null elements of, 169

in Nashorn, 145

LocalDate class, 174

and legacy classes, 116

methods of, 105–106

LocalDateTime class, 109, 174

and legacy classes, 116

atZone method, 109

Locale class

filter method, 173

forLanguageTag method, 173

lookup method, 173

locales, 36, 172–174

default, 112

finding, 173

formatting styles for, 114

LocalTime class, 108–109, 174

and legacy classes, 116

methods of, 108

locks, 122

Logger class

getGlobal, getLogger methods, 193

isLoggable method, 49

log, logp, severe, warning, info, config, fine,

finer, finest methods, 171

Logger.global instance, 193

logging, lazily, 48–49, 171–172

logicalXXX methods (Boolean), 158

Long class

compare method, 190

decode method, 193

parseLong method, 193

sum, max, min methods, 158

valueOf method, 193

xxxUnsigned methods, 159

LongAccumulator class, 121

accumulate, get methods, 122

LongAdder class, 121, 125

add, sum methods, 121

increment method, 121–122

LongProperty class, 74

longs method (Random), 40

LongStream class, 39–40

boxed method, 40

mapToLong method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

LongSummaryStatistics class, 34, 40

longValueExact method (BigInteger), 159

LongXXX interfaces, 43, 53

M
map method

of Optional, 29, 63

of Stream, 25, 63

Map interface, methods of, 161

mapping method (Collectors), 38

mappingCount method (ConcurrentHashMap), 123

MapProperty class, 74

maps

concurrent, 36

in Nashorn, 145

merging, 34–36, 41

mapToInt method (Stream), 32

Index208

ptg12441863

mapToXXX methods (XXXStream), 39–40

Math class, 159–160

max method

of Bindings, 78

of integer types, 158

of streams, 28, 40

maxBy method (Collectors), 37

Media, MediaXXX classes (JavaFX), 95–96

merge method (ConcurrentHashMap), 125–126

messages, constructed lazily, 171–172

method references, 8–9

this, super parameters in, 9

type use annotations in, 170

methods

abstract, in functional interfaces, 6

customizing functions passed to, 54

default, 14–16

adding to interfaces, 16

parameters of, available through

reflection, 170–171

reflective, exceptions in, 183

resolving ambiguities in, 15–16

static, adding to interfaces, 16–17

Microsoft Office, 139

min method

of Bindings, 78

of integer types, 158

of streams, 28, 40

minus, minusXXX methods (Date and Time

API), 103, 105–106, 108, 111

monads, 26, 63–64

MonthDay class, 106

move method (Files), 187

Mozilla JavaScript implementation, 146

multipliedBy method (Instant, Duration), 103

multiply method (Bindings), 78

multiplyExact method (Math), 159

N
named capturing groups, 172

Nashorn engine, 137–155

anonymous subclasses in, 147

arrays in, 144–145

catching Java exceptions in, 148

class objects in, 142

extending Java classes in, 146–148

getters/setters in, 141

implementing Java interfaces in,

146–148

instance variables in, 147

invoking:

Java methods in, 140–141

superclasses in, 148

launching JavaFX from, 152–154

lists and maps in, 145

numbers in, 143

running from:

command line, 138–139

Java, 139–140

shell scripting in, 148–152

strings in, 142–143

naturalOrder method (Comparator), 162

NavigableXXX classes, 162

negate method

of Bindings, 78

of Predicate, 50

negated method (Instant, Duration), 103

negateExact method (Math), 159

new keyword, in constructor references, 9

new operator (JavaScript), 142, 144, 147

newBufferedXXX, newXXXStream methods

(Files), 186

newKeySet method (ConcurrentHashMap), 128

next method (JavaScript), 146–147

next, nextOrSame methods (TemporalAdjusters),

107

nextXXX methods (Math), 160

NIO (New I/O) library, 183

nominal typing, 50

noneMatch method (Stream), 28

noninterference, of stream operations, 42

@NonNull annotation, 169

nonNull method (Objects), 171

normalize method (Path), 185

NoSuchElementException, 29

not method (Bindings), 78

notEqual, notEqualIgnoreCase methods (Bindings),

78

now method (Date and Time API), 102–103,

105, 108, 111

@Nullable annotation, 169

NullPointerException, 28, 169, 194

209Index

ptg12441863

null-safe equality testing, 188

nullXXX methods (Comparator), 162

Number type (JavaScript), 143

numbers, 158–159

arithmetic operations on, 158

comparing, 162, 189–190

converting from strings, 193

unsigned, 158–159

O
Object class

clone method, 6

equals method, 16

no redefining for methods of, 16

toString method, 6, 16, 189

object-oriented programming, 1

ObjectProperty class, 74

Objects class

equals method, 188

hash method, 189

hashCode method, 189

isNull, nonNull methods, 171

requireNonNull method, 172, 194

ObjXXXConsumer interfaces, 53

Observable, ObservableValue interfaces, 77

ObservableXXXValue interfaces, 78

of method

of Date and Time API, 105, 108–109–111

of IntStream, 39

of Optional, 30

of Stream, 24

ofDateAdjuster method (TemporalAdjusters), 107

OffsetDateTime class, 112

ofInstant method (ZonedDateTime), 111

ofLocalizedXXX methods (DateTimeFormatter),

112

ofNullable method (Optional), 30

ofPattern method (DateTimeFormatter), 114

Optional class, 28–31

creating values of, 30

empty method, 30

flatMap method, 30–31, 64

ifPresent method, 29

isPresent method, 28–29

map method, 29, 63

of, ofNullable methods, 30

OptionalXXX classes, 40

or method

of Bindings, 78

of Predicate, 50

org global object (JavaScript), 141

$OUT, in shell scripts, 149

P
Package object (JavaScript), 141

parallel method (Stream), 40

parallelism threshold, 126

parallelStream method (Collection), 23, 40, 160

ParallelTransition class (JavaFX), 93

parallelXXX methods (Arrays), 128–129

Parameter class, 171

parse method (DateTimeFormatter), 115

parseXXX methods (integer types), 193

partitioningBy method (Collectors), 36–37, 39

Path interface, 16–17, 184–185

get, getXXX methods, 184–185

normalize method, 185

relativize method, 184

resolve, resolveSibling methods, 184

toAbsolutePath, toFile methods, 185

paths

absolute, 185

combining, 185

for directories, 184

resolving, 184

Paths class, 16–17

Pattern class

asPredicate method, 172

splitAsStream method, 24, 172

peek method (Stream), 27, 34

performance, and atomic values, 121

Period class, 106

PHP programming language, 140

plus, plusXXX methods (Date and Time

API), 103, 105–106, 108, 110–111

Predicate interface, 42–43, 50–51

and, or, negate, isEqual methods, 50

previous, previousOrSame methods

(TemporalAdjusters), 107

primitive types

comparing, 162

specializations for, 52

Index210

ptg12441863

streams of, 39–40, 161

transforming hash map values to, 128

wrappers for, 158

println method (System.out), 8

Process class, waitFor method, 194

ProcessBuilder class, 194–195

inheritIO method, 194

redirectXXX methods, 194

Programmer’s Day, 105

properties (JavaFX), 72–80

bound, 73

computed, 76

enumerating, 73

final, 74

implementing, 74

listeners for, 72, 74, 153

numeric, using ChangeListener for, 75

updating automatically, 75–80

Property interface, 74

put method (ConcurrentHashMap), 124

putIfAbsent method

of ConcurrentHashMap, 125

of Map, 161

R
race conditions, 41, 119–120

Random class, methods of, 40

random numbers, 40, 146–147

range, rangeClosed methods (XXXStream), 39

readAllXXX methods (Files), 185

readLine function (shell scripts), 151

redirectXXX methods (ProcessBuilder), 194

reduce, reduceXXX methods (ConcurrentHashMap),

31–33, 126–128

reducing method (Collectors), 38

reductions, 28, 31–32

reflection, 170–171

reflective methods, 183

ReflectiveOperationException, 183

regular expressions, 172

relativize method (Path), 184

rem units, 82

remainderUnsigned method (Integer, Long), 159

remove method (Map), 161

removeIf method (Collection), 160–161

@Repeatable annotation, 168

REPL (“read-eval-print” loop), 138–139

replace method

of ConcurrentHashMap, 124

of Map, 161

replaceAll method

of List, 160–161

of Map, 161

repurposing attacks, 191

requireNonNull method (Objects), 172, 194

resolve, resolveSibling methods (Path), 184

ResultSet class, get/setObject methods, 174

return statement, in lambdas, 5

reverseOrder, reversed methods (Comparator), 162

Rhino engine, 137

rlwrap tool, 139

RotateTransition class (JavaFX), 92–93

runAfterXXX methods (CompletableFuture), 134

runAsync method (CompletableFuture), 131

Runnable interface, 51

and lambdas, 6

run method, 2

Runtime class, exec method, 194

RuntimeException class, disabling suppressed

exceptions in, 182

S
sandbox, 190–191

Scala programming language

covariant type parameters in, 61

default methods in, 15

JavaFX bindings in, 86

REPL in, 139

ScaleTransition class (JavaFX), 92

Scanner class, 164, 182

SceneBuilder program, 80, 87

scheduling applications

and time zones, 104, 109

computing dates for, 107–108

Scheme programming language, 1

executing scripts in, 140

ScriptEngine interface, createBindings, eval

methods, 140

search, searchXXX methods (ConcurrentHashMap),

126–128

seconds, leap, 102

security, 190–193

211Index

ptg12441863

select, selectXXX methods (Bindings), 79

SequentialTransition class (JavaFX), 93

set, setValue methods (property classes), 75

setFont method (Label), 71

setObject method (ResultSet, Statement), 174

SetProperty class, 74

sets

flattening, 26, 63

operations on, for integers, 195

threadsafe, 128

severe method (Logger), 171

shebang, 151

shell scripts, 148–152

command-line arguments in, 151

environment variables in, 151

string interpolation in, 150

Short class

compare method, 190

decode method, 193

parseShort method, 193

sum, max, min methods, 158

toUnsignedXXX methods, 158

valueOf method, 193

shortValueExact method (BigInteger), 159

SimpleXXXProperty classes, 74

size method (Bindings), 78

SIZE static field, 158

skip method (Stream), 26

sleep method (Thread), 8

slice method (JavaScript), 142

sort method

of Arrays, 3, 6

of Collections, 27

of List, 160–161

sorted method (Stream), 27

sorting

people, by name, 161–162

strings by length, 2–5

split method (String), 158

splitAsStream method (Pattern), 24, 172

spliterator method (Collection), 160

square root, computing, 31

stack traces

disabling, 182

working back from, 194

StackPane class (JavaFX), 84

$STAGE, in shell scripts, 152

StampedLock class, 122–123

start method

of Application, 71

of Thread, 2

Statement class, methods of, 174

static methods, adding to interfaces, 16–17

stop method (Application), 153

stream method

of Arrays, 39

of BitSet, 161, 196

of Collection, 22–24, 160

Stream interface

collect method, 33

concat method, 26

count method, 22–23, 28

distinct method, 27, 41, 160

filter method, 22–23, 25, 28, 42–43, 160

findXXX methods, 28

flatMap method, 26

generate method, 24, 39

iterate method, 24, 27, 39

limit method, 26, 41

map method, 25, 63

mapToInt method, 32

max, min methods, 28

of method, 24

parallel method, 40

peek method, 27, 34

skip method, 26

sorted method, 27

toArray method, 10, 33

unordered method, 41

xxxMatch methods, 28

streams, 21–43

closing, 25, 164

combining, 26

converting:

between objects and primitive types

of, 39–40

to arrays, 33

creating, 24–25

debugging, 27

empty, 32

extracting substreams from, 26

flattening, 26

Index212

ptg12441863

infinite, 23–24, 27

cutting, 26

intermediate operations for, 23

noninterference of, 42

null checks for, 171

of directory entries, 165

of primitive type values, 39–40, 161

of random numbers, 40

ordered, 41

parallel, 23, 28, 34, 40–42

pipeline of, 27

processed lazily, 23, 27, 42

reductions of, 28

sorting, 27

standard I/O, redirecting to files, 194

terminal operation for, 23

threadsafe operations on, 41

transformations of, 25–26

stateful, 27

stateless, 26–27

vs. collections, 22

with no elements, 24

StrictMath class, 160

String class

charAt method, 25

getBytes method, 185–186

join, split methods, 158

toLowerCase method, 25

valueOf method, 189

string interpolation, 150

StringProperty class, 74–75

strings

combining, 158

converting to numbers, 193

filtering by regular expressions, 172

sorting by length, 2–5

splitting, 24, 158, 172

transforming to lowercase, 25

subtract method (Bindings), 78

subtractExact method (Math), 159

sum method

of integer types, 158

of LongAdder, 121

of XXXStream, 40

summarizingXXX methods (Collectors), 34

summaryStatistics method (XXXStream), 40

summingXXX methods (Collectors), 37

super keyword

capturing in method references, 9

for function types, 62

superclasses

for related exceptions, 183

type use annotations in, 170

Supplier interface, 43, 48, 51

supplyAsync method (CompletableFuture),

131–132

Swing, 70, 80

naming controls in, 71

showing HTML in, 95

synchronizedNavigableXXX methods

(Collections), 162

T
Temporal interface, with method, 107

TemporalAdjuster interface, 107

TemporalAdjusters class, 107

thenAccept method (CompletableFuture), 132–133

thenAcceptBoth method (CompletableFuture), 134

thenApply method (CompletableFuture), 63,

130–133

thenApplyAsync method (CompletableFuture),

131–133

thenCombine method (CompletableFuture), 134

thenComparing method (Comparator), 161–162

thenCompose method (CompletableFuture),

132–133

thenRun method (CompletableFuture), 133

this keyword

capturing in method references, 9

in lambda expressions, 13

Thread class

constructor for, 147

sleep method, 8

start method, 2

threads

atomic mutations in, 120–123

concurrency enhancements for, 119–135

executing:

code in, 2

increments concurrently, 12–13

locking, 120–123

race conditions in, 41

213Index

ptg12441863

threads (continued)
reading web pages in, 130

starting new, 2, 9

terminating upon an exception, 59

updating hash tables in, 123–128

Throwable class

addSuppressed method, 182

getStackTrace, fillInStackTrace methods, 182

getSuppressed method, 181–182

TilePane class (JavaFX), 84

time

between two instants, 103

current, 102

daylight savings, 109–112

formatting, 112–115

local, 108–109

measuring, 103

parsing, 115

zoned, 109–112

Time class, 115, 174

Timestamp class, 115, 174

timestamps, 112

using instants as, 103

TimeZone class, and legacy classes, 116

toAbsolutePath method (Path), 185

toArray method

of Collection, 61

of Stream, 10, 33

of XXXStream, 40

toCollection method (Collectors), 33

toConcurrentMap method (Collectors), 36

toFile method (Path), 185

toFormat method (DateTimeFormatter), 114

toInstant method

of Date, 115

of ZonedDateTime, 109, 112

toIntExact method (Math), 159

toLocalXXX methods (ZonedDateTime), 112

toLowerCase method (String), 25

toMap method (Collectors), 34–36

toPath method (File), 185

toSet method (Collectors), 33, 37

toString method (Object), 16

null-safe calling, 189

redeclaring, 6

toUnsignedXXX methods (integer types), 158

toXXX methods (Duration), 103

toXXXArray methods (BitSet), 196

ToXXXBiFunction interfaces, 53

ToXXXFunction interfaces, 43, 53

toXXXOfDay methods (LocalTime), 108

toZonedDateTime method (GregorianCalendar),

115

tryOptimisticRead method (StampedLock),

122–123

try-with-resources statement, 180–181

closing:

files with, 163–165

streams with, 25, 164

for JUnit tests, 195

suppressed exceptions in, 181–182

type parameters, 61

type use annotations, 169–170

U
UnaryOperator interface, 43, 51–52

compose method, 55–56

unbind, unbindBidirectional methods

(XXXProperty), 76

UncheckedIOException, 164

unmodifiableNavigableXXX methods

(Collections), 162

unordered method (Stream), 41

until method (LocalDate), 105–106

updateAndGet method (AtomicXXX), 121

URLClassLoader class, 195

use-site variance. See wildcards

UTC (coordinated universal time), 110

V
valueAt, XXXValueAt methods (Bindings), 79

valueOf method

of BitSet, 196

of integer types, 193

of String, 189

valueProperty method (JavaFX), 72

values

captured:

by inner classes, 12

by lambda expressions, 11

grouping, 36–38

partitioning, 36–37

Index214

ptg12441863

variables

accessing in lambdas, 10–13

atomic mutations of, 120–123

effectively final, 12

VB Script programming language,

139

VBox class (JavaFX), 82, 84

vendor lock, 139

videos, playing, 95–97

W
waitFor method (Process), 194

walk method (Files), 165

warning method (Logger), 171

web pages

layout of, 80

reading:

from URL, 63, 132

in a separate thread, 130

WebKit engine, 95

WebView class (JavaFX), 95

whenComplete method (CompletableFuture), 133

wildcards, 61

type use annotations in, 170

with method (Temporal), 107

withLocale method (DateTimeFormatter), 112

withXXX methods (Date and Time API),

105, 108, 111

write method (Files), 185

Y
Year, YearMonth classes, 106

years, leap, 105

Z
ZonedDateTime class

and legacy classes, 115–116

methods of, 109–112, 115

215Index

ptg12441863

This page intentionally left blank

ptg12441863

Get Started Quickly

with Scala

Scala for the Impatient concisely shows developers what Scala

can do and how to do it. In this guide, Cay Horstmann offers

a rapid, code-based introduction thats completely practical.

Horstmann introduces Scala concepts and techniques in blog-

sized chunks that you can quickly master and apply. Hands-on

activities guide you through well-dened stages of competency,

from basic to expert.

PEAR SON

Available in print and eBook formats

For more information and sample content visit

informit.com/title/9780321774095

ISBN-13: 978-0-321-77409-5

9780137081899_Horstman_BoBad.indd 1 9/26/12 1:14 PM

ALWAYS LEARNING

fi

'

ptg12441863

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

ptg12441863

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg12441863

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF *

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,

digital media and professional development from O’Reilly Media,

Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,

Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts

pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new

books about your favorite topics are available, and customize your library

with favorites, highlights, tags, notes, mash-ups and more.

ptg12441863

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: VMDZGAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,

please e-mail customer-service@safaribooksonline.com

Your purchase of Java SE 8 for the Really Impatient includes access to a free online edition

for 45 days through the Safari Books Online subscription service. Nearly every Addison-Wesley

Professional book is available online through Safari Books Online, along with thousands of books

and videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media, Prentice

Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands

of technology, digital media, and professional development books and videos from leading

publishers. With one monthly or yearly subscription price, you get unlimited access to learning

tools and information on topics including mobile app and software development, tips and tricks

on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

	Contents
	Preface
	About the Author
	1 LAMBDA EXPRESSIONS
	1.1 Why Lambdas?
	1.2 The Syntax of Lambda Expressions
	1.3 Functional Interfaces
	1.4 Method References
	1.5 Constructor References
	1.6 Variable Scope
	1.7 Default Methods
	1.8 Static Methods in Interfaces
	Exercises

	2 THE STREAM API
	2.1 From Iteration to Stream Operations
	2.2 Stream Creation
	2.3 The filter, map, and flatMap Methods
	2.4 Extracting Substreams and Combining Streams
	2.5 Stateful Transformations
	2.6 Simple Reductions
	2.7 The Optional Type
	2.7.1 Working with Optional Values
	2.7.2 Creating Optional Values
	2.7.3 Composing Optional Value Functions with flatMap

	2.8 Reduction Operations
	2.9 Collecting Results
	2.10 Collecting into Maps
	2.11 Grouping and Partitioning
	2.12 Primitive Type Streams
	2.13 Parallel Streams
	2.14 Functional Interfaces
	Exercises

	3 PROGRAMMING WITH LAMBDAS
	3.1 Deferred Execution
	3.2 Parameters of Lambda Expressions
	3.3 Choosing a Functional Interface
	3.4 Returning Functions
	3.5 Composition
	3.6 Laziness
	3.7 Parallelizing Operations
	3.8 Dealing with Exceptions
	3.9 Lambdas and Generics
	3.10 Monadic Operations
	Exercises

	4 JAVAFX
	4.1 A Brief History of Java GUI Programming
	4.2 Hello, JavaFX!
	4.3 Event Handling
	4.4 JavaFX Properties
	4.5 Bindings
	4.6 Layout
	4.7 FXML
	4.8 CSS
	4.9 Animations and Special Effects
	4.10 Fancy Controls
	Exercises

	5 THE NEW DATE AND TIME API
	5.1 The Time Line
	5.2 Local Dates
	5.3 Date Adjusters
	5.4 Local Time
	5.5 Zoned Time
	5.6 Formatting and Parsing
	5.7 Interoperating with Legacy Code
	Exercises

	6 CONCURRENCY ENHANCEMENTS
	6.1 Atomic Values
	6.2 ConcurrentHashMap Improvements
	6.2.1 Updating Values
	6.2.2 Bulk Operations
	6.2.3 Set Views

	6.3 Parallel Array Operations
	6.4 Completable Futures
	6.4.1 Futures
	6.4.2 Composing Futures
	6.4.3 The Composition Pipeline
	6.4.4 Composing Asynchronous Operations
	Exercises

	7 THE NASHORN JAVASCRIPT ENGINE
	7.1 Running Nashorn from the Command Line
	7.2 Running Nashorn from Java
	7.3 Invoking Methods
	7.4 Constructing Objects
	7.5 Strings
	7.6 Numbers
	7.7 Working with Arrays
	7.8 Lists and Maps
	7.9 Lambdas
	7.10 Extending Java Classes and Implementing Java Interfaces
	7.11 Exceptions
	7.12 Shell Scripting
	7.12.1 Executing Shell Commands
	7.12.2 String Interpolation
	7.12.3 Script Inputs

	7.13 Nashorn and JavaFX
	Exercises

	8 MISCELLANEOUS GOODIES
	8.1 Strings
	8.2 Number Classes
	8.3 New Mathematical Functions
	8.4 Collections
	8.4.1 Methods Added to Collection Classes
	8.4.2 Comparators
	8.4.3 The Collections Class

	8.5 Working with Files
	8.5.1 Streams of Lines
	8.5.2 Streams of Directory Entries
	8.5.3 Base64 Encoding

	8.6 Annotations
	8.6.1 Repeated Annotations
	8.6.2 Type Use Annotations
	8.6.3 Method Parameter Reflection

	8.7 Miscellaneous Minor Changes
	8.7.1 Null Checks
	8.7.2 Lazy Messages
	8.7.3 Regular Expressions
	8.7.4 Locales
	8.7.5 JDBC
	Exercises

	9 JAVA 7 FEATURES THAT YOU MAY HAVE MISSED
	9.1 Exception Handling Changes
	9.1.1 The try-with-resources Statement
	9.1.2 Suppressed Exceptions
	9.1.3 Catching Multiple Exceptions
	9.1.4 Easier Exception Handling for Re.ective Methods

	9.2 Working with Files
	9.2.1 Paths
	9.2.2 Reading and Writing Files
	9.2.3 Creating Files and Directories
	9.2.4 Copying, Moving, and Deleting Files

	9.3 Implementing the equals, hashCode, and compareTo Methods
	9.3.1 Null-safe Equality Testing
	9.3.2 Computing Hash Codes
	9.3.3 Comparing Numeric Types

	9.4 Security Requirements
	9.5 Miscellaneous Changes
	9.5.1 Converting Strings to Numbers
	9.5.2 The Global Logger
	9.5.3 Null Checks
	9.5.4 ProcessBuilder
	9.5.5 URLClassLoader
	9.5.6 BitSet
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

