
JavaScript
Next

Your Complete Guide to the New Features
Introduced in JavaScript, Starting from
ES6 to ES9
—
Raju Gandhi

JavaScript Next
Your Complete Guide to the New

Features Introduced in JavaScript,
Starting from ES6 to ES9

Raju Gandhi

JavaScript Next

ISBN-13 (pbk): 978-1-4842-5393-9			 ISBN-13 (electronic): 978-1-4842-5394-6
https://doi.org/10.1007/978-1-4842-5394-6

Copyright © 2019 by Raju Gandhi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253939. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Raju Gandhi
Columbus, OH, USA

https://doi.org/10.1007/978-1-4842-5394-6

IN MEMORIAM

My Baa

(1932–2018)

v

About the Author�� xi

About the Technical Reviewers�� xiii

Acknowledgments��xv

Introduction��xvii

Chapter 1: let and const — The New Declarations on the Block������������������������������� 1

The Dangers of Variable Scoping��� 1

let��� 4

const��� 10

The Case for var in ES6 and Beyond�� 11

Summary��� 12

Chapter 2: Lambdas with Arrow Functions��� 13

Reevaluating the Verbosity of Function Definition��� 13

Arrow Functions��� 16

Syntax��� 17

Regular Functions Dynamically Set this��� 19

Lexically Bound this�� 21

Other Caveats��� 22

Use-cases��� 23

Summary��� 26

Chapter 3: Effective Function Signatures with Default and Rest Parameters��������� 27

Unintentionally Obscuring Intent with Arguments��� 27

Default Parameters�� 29

Qualifying and Skipping Defaults��� 31

Usage Considerations��� 32

Table of Contents

vi

Rest Parameters�� 33

The Argument Against arguments�� 33

The New ... Syntax�� 36

The rest of the Details (or is it the Details of rest?)�� 38

Summary��� 39

Chapter 4: Divide and Conquer with Object and Array Destructuring��������������������� 41

Seeking Symmetry Between Structuring and Destructuring��� 42

Spread Operator for Arrays�� 44

“Expanding” Upon the Nuances of the Spread Operator�� 45

Spread Operator for Objects�� 49

Object.defineProperties�� 49

Spreading Objects�� 53

Destructuring��� 54

Array Destructuring�� 55

Object Destructuring�� 61

Using Array and Object Destructuring in Combination��� 64

Caveats�� 65

A Small Distinction��� 65

Summary��� 66

Chapter 5: Formatted Strings Using Template Strings�� 67

Introduction�� 67

The Trouble with Forming Formed Strings��� 68

Template literals�� 70

Tagged Literals��� 73

Summary��� 80

Chapter 6: Maps and Sets—The New Data-structures on the Block����������������������� 81

Why Objects are Not Enough�� 81

Maps�� 83

Caveats��� 87

WeakMaps��� 90

Table of Contents

vii

Sets�� 92

Caveats��� 95

WeakSets��� 95

Summary��� 98

Chapter 7: Bright Shiny Object(s) using Enhanced Object Literals�������������������������� 99

The Limitations of the Object Literal�� 100

Getter/setters vs. Methods��� 100

Defining Computed Properties on Object Literals��� 102

Defining Object Properties Using Variables�� 103

Enhanced Object Literal Syntax��� 104

Method Definition Shorthand�� 104

Computed Values�� 105

Property Value Shorthand��� 106

The Case of the Trailing Comma�� 108

Summary��� 109

Chapter 8: Hiding Behind Symbols�� 111

Introduction�� 111

The Inability to Enforce a Contract��� 111

Symbols to the Rescue�� 114

Symbols and Switch-cases�� 117

Global Registry��� 119

Well-known Symbols��� 121

Not so Private��� 124

Summary��� 125

Chapter 9: Iterable Sequences with Generators and Iterators������������������������������ 127

The Drawbacks of Lacking an Iteration Protocol��� 128

The for-of Loop��� 131

Iterables and Iterators�� 133

Cleaning Up�� 135

Other Benefits��� 137

Table of Contents

viii

Generators��� 138

Generators as Consumers�� 140

Cleaning Up�� 141

Other Benefits��� 143

Additional Syntactic Considerations��� 144

Summary��� 145

Chapter 10: Avoiding Callbacks with Promises��� 147

The Broken Promises of Promises��� 147

Using Promises��� 149

Using Promises��� 151

All or Nothing�� 153

Caveats��� 155

The Benefits of a Native API��� 156

Summary��� 157

Chapter 11: Many of a Kind with Classes�� 159

The Difficulties of Building Classes and Inheritance in JavaScript�� 159

Modeling Using Classes��� 167

Caveats�� 171

Summary��� 171

Chapter 12: Namespacing Code Using Modules�� 173

The Lack of Namespacing in JavaScript�� 173

How to Run Modularized JavaScript�� 176

Declaring Modules��� 177

Aliasing Exports�� 182

A Quick Summary��� 182

Importing�� 183

Aliasing Imports�� 186

Caveats and Implications��� 188

Summary��� 189

Table of Contents

ix

Chapter 13: Metamorphosis with Proxy and Reflect��� 191

The Perils of Monkey-patching�� 191

Metaprogramming with Proxy and Reflect�� 195

Enforcing Singletons�� 201

Building a DSL�� 203

Summary��� 210

Chapter 14: Seemingly Imperative with async and await������������������������������������� 211

The Shortcomings of the Promise DSL�� 211

async/await�� 214

Nuances and Caveats�� 220

Summary��� 222

Chapter 15: Asynchronous Iterators and Generators—A Meeting of the Minds�����223

The Impedance Mismatch Between Generators/Iterators and Asynchronous Operations��������� 223

Asynchronous Iterators�� 227

Cleaning Up�� 230

Being Imperative�� 231

Comingling with Synchronous Iterables��� 232

Generators��� 233

Parity with Synchronous Iterators and Generators�� 234

Benefits�� 235

Summary��� 235

Index�� 237

Table of Contents

xi

About the Author

Raju Gandhi is a programmer with over 20 years of experience in the software industry.

He believes that the key to writing software users will cherish lies in having a keen

understanding of the problem, as well as intricate knowledge of the tools available to

solve those problems. He has been a core speaker on the No Fluff, Just Stuff symposium

series for over 7 years, along with other conferences like DevNexus, Connect.Tech, and

GIDS, India. In both his careers as a software developer and teacher, he believes the

key is to keep things simple, and in the words of Rich Hickey, “de-complected.” This

approach seems to scale well, for both maintainable software and happy audience

members.

xiii

About the Technical Reviewers

Toby Jee is a software programmer currently located in Sydney, Australia. He loves

Linux and open source projects. He programs mainly in Java, JavaScript, Typescript, and

Python. In his spare time, Toby enjoys walkabouts, reading, and playing guitar.

Venkat Subramaniam is an internationally recognized polyglot programmer, author,

entrepreneur, and a regularly invited speaker at various international conferences. When

not hiking the mountains of Colorado, Venkat spends his time as a software consultant

for companies around the world, helping them adapt to various technologies and

sustainable agile practices.

xv

Acknowledgments

Writing a book is a solitary pursuit. However, we sit on the shoulders of giants—past,

present, and future. This includes our families, teachers, and mentors who have

demonstrated to us the value of hard work and discipline, the technologists that came

before us who built what we sometimes take for granted, and finally, those who presently

work tirelessly to push the envelope and improve the status quo. I know that I have been

blessed to have had a chance to be influenced by many such greats—to every one of you

reading this book, you know who you are, and what you mean to me. Thank you.

I have had the privilege of speaking at many conferences, though one name in

particular stands out, namely, the No Fluff Just Stuff (NFJS) conference circuit. I am

indebted to Jay Zimmerman, the director of NFJS, for giving me a shot, as well as the

other speakers on the circuit as they continue to provide inspiration and share their

experiences. This book is the result of my having the chance to speak on this subject for a

while, but the meat of it comes from the interactions I have had with hundreds of smart,

talented developers around the world who made me question my own understanding of

the concepts, and forced me to dig deeper.

To Brian and Anne Sam-Bodden—my long-time employers, and more importantly,

friends—you have always had more faith in my capabilities than I did. You egged me

on to become a speaker and encouraged me to write a book. You provided me an

environment where I could experiment, and eventually flourish and thrive. I will always

remain indebted to you.

A special shout-out to my friend and mentor Dr. Venkat Subramaniam. Venkat is

someone I have come to lean on for everything between advice and camaraderie, both

personal and professional, and who, despite his frenetic schedule, always manages to

find the time to listen to me and provide a fair and unbiased perspective (often using

Dad jokes, but they get the job done).

To all the folks at Apress who made this book a reality, including Louise Corrigan,

Nancy Chen, and James Markham—thank you for your patience and hard work. It has

been a pleasure.

Despite the best efforts of all those involved in reviewing, editing, and proofreading

this book, any and all omissions and mistakes are mine, and mine alone.

xvi

I would like to express my love and appreciation toward my significantly better half,

Michelle. She patiently took care of everything our lives threw at us, including taking

care of our boys, Mason and Micah, as I played recluse to work on this book. Of course,

I would be remiss if I did not mention our other two “children”—Buddy, our yorkie-

poodle, and Skye, our labradoodle—for providing unflinching companionship and

endless amounts of entertainment. Special thanks to my parents and sisters, who will

never admit to it but have been the catalyst in forming me into who I am.

Last, but certainly not the least, I tip my hat off to you, the reader. Your attention

is a scarce resource, and I appreciate the time you will spend with this book. Happy

learnings.

Acknowledgments

xvii

Introduction

JavaScript is everywhere—it runs single-page applications on the client side, is used

on the server side (with technologies like Node.js), helps build desktop applications

with Electron,1 and can be used to work with single-board computers like Raspberry

Pi.2 JavaScript is even used to train machine-learning models in the browser using

technologies like TensorFlow.js.3 All this to say, JavaScript is (arguably) the most

deployed language in the world—every desktop and laptop and every phone with an

embedded browser can run JavaScript. As it stands today, JavaScript exhibits many of the

features that one would expect from a language with this large a footprint.

But that wasn’t always the case.

JavaScript has a long history, spanning 24 years at the time of this writing. In this

time, JavaScript went from being a scripting language used to animate web pages to

one that is being used everywhere, and for everything. JavaScript’s reputation, however,

preceded itself—it was deemed quirky and error-prone, and not all the criticisms

were without merit. And everyone, including the TC39,4 the central committee that is

responsible for evolving JavaScript, took notice.

In 2015, ES6 was announced, which introduced a slew of new features and syntactic

changes to the language. The aim was simple—to usher JavaScript into the modern

Web era—armed with the features that developers were vying for, and provide the basis

for future editions of the language.

The result? A language that aims to improve developer experience, with constructs

that seem familiar to developers coming in from other languages. Alongside, a yearly

cadence for releasing future editions was announced, ensuring that JavaScript continues

to evolve and mature.

1�https://electronjs.org
2�www.raspberrypi.org/
3�www.tensorflow.org/js
4�https://tc39.es/

https://electronjs.org/
https://www.raspberrypi.org/
https://www.tensorflow.org/js
https://tc39.es/

xviii

Features like default parameters, support for variadic functions, destructuring

syntax, and fat-arrow functions make it easier to lean into JavaScript’s functional nature,

allowing for code that is concise and elegant. Simultaneously, the newly added class

syntax makes it possible to build inheritance hierarchies easily, allowing for library and

framework authors to provide the necessary “trellis” to hook into, and extend.

Asynchronous programming is a natural consequence of JavaScript’s inherent

design, and once again, the new additions to JavaScript make things easier. Promises are

now a native API, opening the door for a whole new level of abstractions, that we, the

developers, can build on. Two such abstractions are async/await, which use promises

and help make writing asynchronous code seem almost imperative.

And there is much more! All put together, JavaScript today feels like a very different

language—one that acts and behaves like other languages that developers might be

used to.

This book aims to introduce you to all of these features, endeavoring to provide a

nuanced view of the “what” and the “why” for every inclusion. However, we cannot learn

without doing—so this book provides a slew of examples, each one catered to highlight

a specific feature. So, let’s put our developer hats on, fire up our editors, and write some

code.

Ready? Set? Go!

�Who should read this book
This book is directed toward programmers, developers, technical leads, architects,

programming hobbyists, or anyone interested in learning about how JavaScript has

evolved over the past 5 years. If you are someone who dreads JavaScript development

because you have been burnt one too many times by the language, then perhaps this

book will demonstrate how the language has been transformed to be more familiar

(to programmers comfortable with other languages) and less idiosyncratic.

�What you’ll find in this book
This book aims to be a comprehensive resource on all the enhancements that were

introduced in Ecmascript (ES) 6, 7, 8, and 9. Every chapter starts with highlighting a

deficiency or defect in the language, and its implications. It then introduces a new feature

or addition to the language, and how the change addresses the specific problem area.

Introduction

xix

This book does not aim to introduce new features chronologically (starting with

edition 6 all the way through 9); rather, I aim to collate features from multiple editions, as

long as they logically “reside” together. However, I do highlight which edition the feature

was introduced.

Many technical books give you a play-by-play, chapter-by-chapter breakdown of

what you are to find in the book. Truth be told, I have always found myself skipping over

the listing, preferring to stick to the table of contents, or heading straight for the index to

find what I am looking for. Consequently, I am going to save myself a few keystrokes, and

you a little time. I do hope you will understand, and perhaps forgive this omission.

�What you won’t find in this book
This book does not intend to be a comprehensive resource to programming, or

JavaScript, the language. It assumes that you, the reader, have a background in

programming and a certain familiarity with the language. However, there are parts to the

language that many of us may not have explored in the past, and for those aspects, I do

provide a richer discourse if I deem it necessary.

JavaScript also regularly sees modifications, additions, and the occasional

deprecation to existing APIs, and this trend continues in the newer editions of the

language. Again, this book does not cover any of these; rather, it focuses on syntactic

enhancements to the language.

Finally, there exist several options to run modern JavaScript. These include

transpilers like Babel.5 This book makes no attempt to cover how to use any such tooling,

or document the associated configurations.

�How to use this book
The examples in this book are written with two mandates—they should be bite-sized

and should build on previously learned material. In this regard, I believe I have (mostly)

succeeded. You can find all the examples in this book in our online repository located

at https://github.com/Apress/javascript-next. Feel free to clone or download this

repository, and then follow the instructions on usage in the README contained therein.

5�https://babeljs.io/

Introduction

https://github.com/Apress/javascript-next
https://babeljs.io/

xx

Alternatively, the path of least resistance is to simply use your browser console. Most

modern browsers, like Chrome6 and Firefox,7 come equipped with a console.8 You can

simply copy and paste the examples found in this book in the console and experiment to

your heart’s desire.

Personally, I prefer to experiment in my text editor. If you are anything like me, and

prefer using a familiar medium, you will need Node.js installed. Follow the instructions

on their web site9 to install Node. If you already have Node installed and do not wish

to introduce a conflict, investigate “Node Version Manager”10 or “nvm-windows”11 that

allow you to install multiple versions of Node simultaneously.

Once Node is installed, create a scratch directory anywhere on your computer and

navigate to it. Then create a new file named hello-world.js with the following contents:

console.log('Hello JavaScript!');

Switch to the terminal, navigate to your scratch directory, and execute the following

command:

node hello-world.js

You should see the following output:

Hello JavaScript!

You can run all the examples in this book in this manner. This modus operandi will

serve you well, except for Chapter 12, where we talk about modules, wherein I provide

additional instructions.

Most editors allow for a way to execute code from within the editor itself using

extensions, plugins, or via a build system. Be sure to read the documentation of your

favorite editor to see how to enable this to allow for a quick feedback loop. Regardless of

the mechanism you employ, ensure that you are always using the correct version of Node.

Let’s write some modern JavaScript!

6�www.google.com/chrome/
7�www.mozilla.org/en-US/firefox/
8�In Google Chrome this can be found under View ➤ Developer ➤ JavaScript Console. In Mozilla
Firefox use Tools ➤ Web Developer ➤ Web Console.

9�https://nodejs.org/en/
10�https://github.com/nvm-sh/nvm
11�https://github.com/coreybutler/nvm-windows

Introduction

http://www.google.com/chrome/
http://www.mozilla.org/en-US/firefox/
https://nodejs.org/en/
https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows

1
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_1

CHAPTER 1

let and const — The New
Declarations on the Block
The use of variables in JavaScript, like in many other languages, is pervasive.

Assignments, arguments to function calls, and results of computations; variables are

everywhere. Simply put, they allow us to store the “state” of a program.

JavaScript only offers one mechanism to declare variables, the ubiquitous var.

However, as we will see in this chapter, var presents us with several semantic potholes.

We will also see how the introduction of two new keywords, namely let and const, to

declare variables helps us avoid subtle bugs, and often unintended side effects, as well as

makes the intent of our code clearer.

By the end of this chapter, we will have seen why let and const are not only the

preferred way to declare and initialize variables, but also have a strong argument in

favor of deprecating var. We will also learn how to refactor our existing code to reap the

benefits that let and const offer and recognize the best use-case for each.

�The Dangers of Variable Scoping
JavaScript supports both statements and expressions, and typically, to capture the

value that results from an evaluation, we use variables. There are times though when a

variable, despite its name, isn’t a variable, but designated to be a constant. That is, once

set, we intend for the value of the variable to not change over time.

However, up until now, JavaScript provided us with only one keyword, namely

var, to initialize variables, regardless of whether they were to see their values change

(consider the index in a for loop), or be constant. For the latter, developers resorted to

a naming convention, typically upper-snake-case, like SOUTH_WEST, alluding that it be

treated like a constant, with no runtime support from the language.

2

Thus, not only was the use of var overloaded, to add insult to the injury, it presented

us with a few stumbling blocks. Variables declared with var are automatically hoisted to

the top of the current scope. Furthermore, redeclaring two vars with the same name in

the same scope does not throw an error. Combine these two, and the result can prove to

be rather insidious as demonstrated here:

function insidious() {

 var functionScoped = 'Outer declaration'; ①
 if (true) {

 var functionScoped = 'Inner declaration'; ②
 }

 console.log(functionScoped); ③
 return functionScoped;

}

// prints 'Inner declaration'

insidious();

①  A top level variable declaration

②  Seemingly “shadows” the outer declaration

③  Turns out, the two variables are one and the same!

One may assume that the inner nested functionScoped is scoped within the if block,

which is not true! In fact, the second declaration of functionScoped is a no-op. However,

this does not prevent JavaScript from declaring the variable once (at the top) and then

reassigning the value of the variable further down, as reflected in the output. To avoid

any confusion, JavaScript developers tend to declare all the variables that are to be used

within a function upfront.

This notion of vars not being block scoped is certainly surprising, since many

languages scope variables lexically. That is, the variable in these languages is scoped

textually within the enclosing parentheses, and not visible outside of the scope created

by the block. This might lean one to believe that vars are scoped, when in reality they are

not, and can have inexplicable outcomes. Consider the following example:

function simulateDom() {

 var pseudoDom = {

 button1: {},

Chapter 1 let and const — The New Declarations on the Block

3

 button2: {},

 button3: {},

 }; ①

 for (var i = 1; i <= 3; i++) {

 var element = pseudoDom['button' + i];

 element.click = function () {

 return 'Item ' + i + ' is clicked.'; ②
 };

 }

 console.log(pseudoDom.button1.click());

 console.log(pseudoDom.button2.click());

 console.log(pseudoDom.button3.click()); ③
 return pseudoDom;

}

// prints 'Item 4 is clicked.' 3 times

simulateDom();

①  Simulate the DOM with three buttons

②  For each button, add a click handler

③  All print Item 4 is clicked

Since the variable i is hoisted outside the for loop, and is not local to the for loop

itself, every click handler “sees” the same i. At the end of the loop, the value of i is

predictably 4, which is reported on any button click.

Summarizing, any var declared within a function is scoped to that function, even if it

is defined within a block.

WHAT ABOUT STRICT MODE?

ES5 introduced strict mode as an opt-in feature as a way to restrict some JavaScript

behavior. This was done in part to make the transition to future versions of JavaScript easier,

by changing the semantics of the code and in particular disallowing some behaviors. While

strict mode does help prevent some rather nasty errors from occurring, for example,

inadvertently declaring “global” variables (variables declared within functions without the var

keyword), it does not change the scoping rules that we have discussed so far.

Chapter 1 let and const — The New Declarations on the Block

4

Using strict mode with ES5 code is highly encouraged, and as we embark on a journey to

understand and adopt ES6+, it would be prudent to incrementally introduce strict mode in

our existing scripts. This will certainly make converting them to ES6 easier. The documentation

for strict mode is available at https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Strict_mode.

In summary, if all the above makes your head spin, then you are not alone.

Navigating JavaScripts scoping rules is hard enough; combining that with var-iable

hoisting further muddies the waters. In order to address some of the concerns

surrounding vars, ES6 activated1 let. let addresses many of the scoping deficits that

come with var as we will see in the following sections.

Why let instead of simply fixing var you might ask. Well, we wouldn’t want to go

about breaking the Internet, would we?

�let
As you might have surmised, most of the confusion around vars exist because vars

do not respect “block” scope. A block in JavaScript is a way to collect one or more

statements; in other words, they allow us to create a compound statement. Blocks are

delimited by a pair of curly brackets, and if you are thinking, “Wait. Looping constructs

(like for and while) and conditional statements (like if and else) use curly brackets.

Are those blocks?” then you are right.

Blocks do not introduce scope. However, ES6 introduces block scope for variables

that are defined using the let keyword. A variable defined with the let keyword will be

scoped within the closest enclosing block. In other words, variables defined with the let

keyword are lexically scoped to the closest enclosing block:

function letFunction() {

 // console.log('Before defining block', scopedLet); ①

 if (true) {

 let scopedLet = 'I am scoped within a block!'; ②
 }

1�I say activated vs. introduced because let was always a reserved keyword in JavaScript.

Chapter 1 let and const — The New Declarations on the Block

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

5

 // console.log('After defining block', scopedVar); ③
}

// invoke it

letFunction();

① � A variable declared within a block cannot be referenced

outside of the block

②  A variable declared with the let syntax

③ � Like before, the variable is not visible outside of the scope

defined by the if block

We can breathe a sigh of relief! Variables declared with the let keyword seem to

follow the rules of scoping that you are used to coming from other languages, and they

do reduce the contextual overhead associated with vars.

Many of the issues (and potential bugs) that arise from the broad-reaching var scope

can be averted by using let instead. Let us revisit our earlier example of a simulated

DOM and see the effect of using let:

function simulateDom() {

 let pseudoDom = {

 button1: {},

 button2: {},

 button3: {},

 };

 for (let i = 1; i <= 3; i++) { ①
 let element = pseudoDom['button' + i];

 element.click = function() {

 return 'Item ' + i + ' is clicked.'; ②
 };

 }

 console.log(pseudoDom.button1.click());

 console.log(pseudoDom.button2.click());

 console.log(pseudoDom.button3.click()); ③

Chapter 1 let and const — The New Declarations on the Block

6

 return pseudoDom;

}

// prints 'Item 1 is clicked.', 'Item 2 is clicked.', 'Item 3 is clicked.'

simulateDom();

①  i is local to the for loop

② � Since i is a local variable, each handler sees the correct value of i

③  Predictably all the click handlers report the correct message

As we can see, variables declared with let do respect the scope of the enclosing

block, thus making the code a lot easier to reason about.

Although let does simplify the scoping rules for variables, they too come with a few

caveats, as we will see in the following section.

�Let Variables are Hoisted

It turns out that variables declared with let do get hoisted to the top of their enclosing

block. However, an attempt to reference such a variable before it is defined will result in

an error. This is a departure from the behavior of var, where we can indeed “see” the

variable prior to its definition (except that it evaluates to undefined).

Consider the following example:

var foo;

{ ①
 foo = function() {

 console.log('I am', bar); ②
 };

 let bar = 'Bar'; ③
 // invoke it

 // foo(); ④
}

①  Introduce an artificial block

②  foo references bar before it is declared

③  We define bar

④  We then invoke foo

Chapter 1 let and const — The New Declarations on the Block

7

We can surmise what happened here. The declaration of bar moved to the top of the

enclosing block, allowing it to be used prior to its declaration.

In and of itself, this feature (?) might not seem too troublesome. However, there is

another constraint that let presents us with. That is, you are not allowed to define two

variables in the same scope with the same name (this again is a departure from the

behavior of vars). JavaScript will throw a SyntaxError in that scenario.

Perhaps the following example will clarify things:

function determineFavoriteDrink(profession) {

 switch (profession) {

 case 'Programmer':

 let drink = 'coffee'; ①
 break

 case 'Yoga instructor':

 let drink = 'tea'; ②
 break;

 default:

 let drink = 'water'; ③
 break;

 }

 return drink;

}

// results in a 'SyntaxError'

console.log(determineFavoriteDrink('Programmer'));

①  Introduce a variable

②  This will throw an error!

③  This too will throw an error

Invocation of the function results in a SyntaxError! The reason is that let

simultaneously hoists and prevents redefinition of the same variable. This example

demonstrates a cautionary tale as we start to migrate our code from using var to let—

we cannot simply replace var with let. var may have permitted us to get away with

sloppy code; however, let correctly tightens things up, and we must exercise caution to

ensure that all is well after refactoring. However, this is also to our benefit—let exhibits

reasonable semantics, and this alone should prove sufficient for us to never use var again.

Chapter 1 let and const — The New Declarations on the Block

8

�No More IEFEs

JavaScript’s lack of scoping for vars often led to the use of creative solutions to create

private variables. One of these solutions was the use of an “Immediately Executing

Function Expression” or IEFE. Let us take a before and after version of the same

functionality, one using vars with an IEFE and one using let with blocks:

const counter = (function createCounter() { ①
 var steps = 0; ②
 function increment() {

 steps++;

 }

 function getCount() {

 return steps;

 }

 return {

 increment: increment,

 getCount: getCount,

 }; ③
}());

// use it

// console.log(steps); ④
counter.increment(); ⑤
console.assert(counter.getCount() === 1); ⑥

①  Introduce artificial block by creating an anonymous function

②  This var will be scoped within the declared function

③  Expose a public API by return-ing an object

④  This will result in a ReferenceError

⑤  You can use the public API

⑥  Invoke the public getter

With let we no longer have to use an IEFE because we can simply surround our code

with curly brackets to create an enclosing scope!

let counter;

Chapter 1 let and const — The New Declarations on the Block

9

{ ①
 let steps = 0; ②
 let increment = function () { ③
 console.log('increment');

 steps++;

 };

 let getCount = function () {

 return steps;

 };

 counter = {

 increment: increment,

 getCount: getCount,

 }; ④
}

// use it

// console.log(steps); ⑤
counter.increment(); ⑥
console.assert(counter.getCount() === 1); ⑦

①  Introduce artificial block using curly brackets

②  This variable is automatically scoped within the block

③  Convert a function statement to a function expression

④  Simply assign a variable to be available outside of the block

⑤  We still cannot “see” the let-ted variable

⑥  But you can use the public API

⑦  Invoke the public getter

Both these examples attempt to limit the visibility of the increment and getCount

functions. However, leveraging let allows us to eliminate all the ceremony involved with

using vars.

Chapter 1 let and const — The New Declarations on the Block

10

�const
ES6 activates another keyword, namely const. As the name suggests, this will define a

constant. In other words, it defines a variable whose value cannot be changed once they

have been declared.

Other than the fact that consts cannot be reassigned, everything we have discussed

so far about let applies to const as well—they have block scope, and will be hoisted to

the top of the enclosing block, and we cannot declare two consts with the same name in

the same scope.

It is important for us to bear in mind that it is the binding of a const variable that

cannot be changed. This has significance because JavaScript objects (such as Object and

Array) are inherently mutable. Which is to say, if a const were assigned a reference to an

object, it is that reference that cannot be changed; the object itself could change, and the

const would see that change. Perhaps this is easier seen in code.

const VALUE_REFERENCE = 'This cannot be re-assigned'; ①
const ARRAY_REFERENCE = ['I', 'am', 'mutable']; ②

// attempt re-assignment

// VALUE_REFERENCE = false ③
// ARRAY_REFERENCE = {}

// Mutate the array object

ARRAY_REFERENCE.push('!'); ④
// prints ['I', 'am', 'mutable', '!']

console.log(ARRAY_REFERENCE);

①  A value reference

②  An object reference

③  Reassignment fails with a TypeError

④  We can however mutate the referenced object

Chapter 1 let and const — The New Declarations on the Block

11

WHAT ABOUT IMMUTABLE OBJECTS?

const constraints itself to make the binding of a variable immutable. If we want to

make an object type in JavaScript immutable, we should consider “freezing” it with say

Object.freeze, or consider using a library like Immutable.js.2

Another point of note is declaring a const with no initial value also results in a

SyntaxError. Essentially declaring such a const will permanently assign the constant

to undefined, which is redundant considering JavaScript already has the undefined

keyword for such situations.

Finally, the JavaScript community has converged around the convention of naming

constant variables using upper case with underscores. This makes it easier to identify

constants within the codebase.

�The Case for var in ES6 and Beyond
We now know that we can use let anywhere we use var and get some added benefits

like clearer scoping rules. consts allow us to declaratively define immutable bindings.

Considering we have block scope, we can move away from ceremony like IEFEs for

encapsulation. All this to say that for any code written using ES6+, we should not be

using vars anymore.

I suggest we take this a step further—we should be finding ways to write our code

in a manner that uses const more than let. Reassigning variables makes it hard to

read, understand, and reason about our code. Given a choice between let and const,

I highly encourage to pick the latter, and you will soon realize how clearer and cleaner

the result is.

Tools like ESLint can be configured3 to error when linting ES6+ code, and it is highly

recommended that we do so. var will forever remain a part of JavaScript’s history;

however, it is time for us to move on to using only let and const in our codebases.

2�https://immutable-js.github.io/immutable-js/
3�https://eslint.org/docs/rules/no-var

Chapter 1 let and const — The New Declarations on the Block

https://immutable-js.github.io/immutable-js/
https://eslint.org/docs/rules/no-var

12

�Summary
ES6 gives us several new constructs to declare and use variables in our code. let and

const allow us to use a declaration style which are more in tune with what we may be

used to in other languages. Their scoping rules permit easier reasoning of the code,

preventing bugs that often get introduced due to vars. As browser vendors offer us better

support for ES6 and beyond, it behooves us to embrace these new constructs. Going

forward, there is no reason to favor var anymore. let and const give us everything we

need, with the appropriate checks baked into the runtime. We should leverage linting

tools that allow us to enforce this, both at development time and during our continuous

builds.

In the next chapter, we will see another revolutionary change that landed in ES6,

namely a new syntax to define functions.

Chapter 1 let and const — The New Declarations on the Block

13
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_2

CHAPTER 2

Lambdas with Arrow
Functions
Functions are used everywhere in JavaScript. A face-lift to make their syntax succinct,

and consequently easier to use and understand, was long overdue.

JavaScript is, at its core, a functional programming language. It supports functions as

first-class citizens, in that they are like any other type in the language. Functions can be

assigned to variables, supplied as arguments to other functions, and be return-ed

from functions just like we would any other type in JavaScript. JavaScript is also single-

threaded. Well-designed APIs and libraries that involve long-running operations

work asynchronously, typically accepting a callback which is to be invoked when the

(asynchronous) task is complete. These callbacks happen to be functions as well. Finally,

the mechanism to define methods on objects also happen to be functions.

In this chapter we will get acclimated with a new syntax for function expressions, also

referred to as “arrow” functions that was introduced in ES6. We will see how our code can

be made eloquent with shorter syntax, thereby allowing us to express our intent clearly.

Our discussion will include how arrow functions’ behaviors differ from regular functions,

allowing us to discern when best to use arrow functions. By the end of this chapter, you

will be raring to return to your codebase knowing that you can confidently eliminate any

unnecessary verbosity, leaving behind, well …​ let’s just call it poetry, shall we?

�Reevaluating the Verbosity of Function Definition
In ES5 we can define functions using several constructs, the two primary mechanisms

being function statements and expressions. The focus of this chapter will be on function

expressions; however, it behooves me to elaborate on the syntactical difference between

the two. Consider the following function statement.

14

function identity(n) { ①
 return n;

}

// invoke it

console.assert(identity(42) === 42);

// inspect it

console.assert((typeof identity) === 'function'); ②
console.assert(identity.name === 'identity'); ③

① A function statement

② Prints function

③ Prints identity

The function statement requires that a name be provided to the newly created

function; otherwise, how would we invoke it later? As we can see from our inspection

of the newly defined function, it is of type function. Functions are objects of type

Function, and correspondingly have properties we can interrogate, such as their names

and length.1

Now we will take a look at the same function, this time defined using a function

expression.

const identity = function(n) { ①
 return n;

};

// invoke it

console.assert(identity(42) === 42);

// inspect it

console.assert((typeof identity) === 'function'); ②
console.assert(identity.name === 'identity'); ③

① A function expression

② Prints function

③ Prints identity

1�length being the number of arguments that the function expects.

Chapter 2 Lambdas with Arrow Functions

15

As we can see, this too defines a function that behaves identical to the one we

defined using a statement. Rather than supplying a name to the function, we assign the

value of the expression to a variable, or in this case, a const. This function is identical to

and consequently behaves identically to a function defined using a statement.

The difference, however, lies in how they are loaded. Function statements are loaded

before any of the code is executed. This means that you can define a function statement

anywhere, and use it anywhere—you can even invoke the function before defining it as

a function statement. On the other hand, function expressions involve assignments to

variables, which, as we know from a previous chapter, are subject to hoisting rules. Therefore,

using the variable before it is assigned to a function expression will result in an error. Observe:

 // invoke it before defining it

fnStatement(); ①
function fnStatement() { ②
 console.log('I am a function statement');

}

// invoke it

fnStatement();

// fnExpression(); ③

const fnExpression = function () { ④
 console.log('I am a function expression');

};

// invoke it

fnExpression();

① Using a function defined as a statement before it is actually

defined is allowed

② A function statement

③ Using a function defined as an expression before it is actually

defined results in an error

④ A function expression

Choosing between defining functions as statements and expressions is largely

a matter of taste. But considering function expressions permit us to omit the

function name they tend to be a little less verbose than their statement counterparts.

Chapter 2 Lambdas with Arrow Functions

16

However, at times even this relatively succinct function expression syntax can often

prove to be rather verbose. Consider a scenario wherein we attempt a series of

operations on the elements of Array to derive a final value:

const nums = [1, 2, 3, 4, 5];

const result = nums

 .map(function(n) {

 return n * 3; ①
 })

 .filter(function(n) {

 return (n % 2) === 0; ②
 })

 .reduce(function(acc, n) {

 return acc + n; ③
 }, 0);

① Triple every number in the array

② Filter out even numbers only

③ Reduce the result to its sum

This example may be trite; however, it does highlight the ceremony involved in

writing even the simplest of functions. As a result, it becomes difficult to parse out what

we are actually attempting to accomplish. This often leads developers to extracting the

callbacks into (named) function statements, which are not only more verbose, but end

up dispersing the code, making it even harder to understand what it is we are trying to

accomplish.

Arrow functions to the rescue!

�Arrow Functions
Arrow functions (sometimes referred to as “fat” arrow functions—you will see these

terms used synonymously) present us with a much more concise syntax for function

definitions. Let us start by exploring the syntax of arrow functions.

Chapter 2 Lambdas with Arrow Functions

17

�Syntax
Arrow functions eliminate a lot of the verbosity that function expressions present. Let us

whet our appetite with a simple example:

const doubleIt = n => n * 2;

// invoke it

console.assert(doubleIt(8) === 16);

Let us feast our eyes on the elegance of arrow functions prior to delving into the

weeds. Gone is the function keyword, the parentheses, the curly brackets, and the

return keyword. (The last true are not entirely true, as we will see in the following

discussion.) All that remains is the true intent of the function.

As we can see, much like function expressions, we do not provide a name for the

function itself. Rather we assign the result of evaluating the expression to a variable so

that we can reference it later.

Now that we have had a taste of arrow functions, let us discuss some syntactical

details.

�Parentheses or No Parentheses?

Arrow functions have their parameters listed to the left of the fat arrow. It is permitted

to skip the parentheses if and only if the function signature has one parameter.2

The following snippet offers the various permutations allowed for arrow function

parameters:

const noop = () => {}; ①
const identity = n => n; ②
const get = (obj, k) => obj[k]; ③

① Zero-parameter list requires parenthesis

② Single-parameter list makes the parenthesis optional

③ Two or more parameters require the parenthesis

2�Though strictly speaking this is the only time we can skip the parentheses. The use of default
and variable arguments which we will see soon also forces us to use parentheses with arrow
functions.

Chapter 2 Lambdas with Arrow Functions

18

This discussion begs the question, does skipping the parenthesis for single-

parameter arrow functions buy us anything? The convention adopted widely across the

JavaScript community is one where we should skip the parenthesis if we can. In other

words, while it may seem to go against the notion that single-argument arrow statements

should be syntactically consistent (with no-arg and multi-arg arrow functions), it does

reduce the verbosity especially in the case of higher-order functions as we will see soon.

The right-hand side of the arrow function syntax offers a little more subtlety as we

will see now.

�Expression and Statement Bodies

All the examples we have seen so far have had single-line bodies. What if our function

had to do a little more work?

It turns out we can indeed use curly brackets to define the function body. However,

as you might recall, curly brackets create blocks in JavaScript, which are statements, not

expressions! In other words, every example we have seen so far used an expression as its

body, thus alleviating the need to explicitly return from the function. If we are to switch

to using blocks (which is a statement and therefore is not evaluated), then we are forced

to explicitly return from the function. (Otherwise, the function, like any regular function,

returns an implicit undefined.) Let us define a multiline-bodied arrow function:

const reducer = (acc, n) => { ①
 acc.push(n);

 return acc; ②
};

// invoke it

console.log(reducer([2, 3], 1)); // prints '[2, 3, 1]'

① Use curly brackets to start body

② Explicit return required

It is recommended that if we are to use curly brackets, we should have explicit

returns in the body. Not doing so can prove to be rather baffling. Observe:

const confuser = () => { profession: 'JS Ninja' };

// invoke it

console.log(confuser());

Chapter 2 Lambdas with Arrow Functions

19

Quick! What does the function return upon invocation? Is it an object with one key,

or is that a block with a label and therefore returns undefined? As you can see, the

overloaded nature of curly brackets to define blocks and objects causes confusion in

conjunction with the arrow syntax.

It turns out that if JavaScript “sees” curly brackets in an arrow function definition it

treats it as if it were a block body. This means that upon invocation, this function will

return undefined.

What if we indeed wanted to return an object? We have two options—explicitly use a

block with a return or wrap the body in parenthesis, like so:

const confuserOne = () => ({ profession: 'JS Ninja' });

// prints '{ profession: 'JS Ninja' }'

console.log(confuserOne());

// alternatively

const confuserTwo = () => {

 return { profession: 'JS Ninja' };

};

// prints '{ profession: 'JS Ninja' }'

console.log(confuserTwo());

That sums up all the syntactical nuances of arrow functions. Now let us consider the

semantic differences between arrow functions and regular functions. But before we go

there, we must take a brief digression into regular functions, and how they work with this.

�Regular Functions Dynamically Set this
When a regular function (defined using function statements or expressions) references

this, that reference is resolved dynamically based on the invocation pattern used:

'use strict';

const returnsThis = function () {

 return this;

};

Chapter 2 Lambdas with Arrow Functions

20

var obj1 = {

 name: 'obj1',

 method: returnsThis, ①
};

console.assert(obj1.method() === obj1); ②

var obj2 = {

 name: 'obj2',

};

console.assert(returnsThis.apply(obj2) === obj2); ③
console.assert(returnsThis() === undefined); ④

① Set a property that references a local function in scope

② Invoke the function using the “method invocation” pattern

③ Use the “apply invocation” pattern

④ Invoke the function using the “function invocation” pattern

I must emphasize that we are running the code in strict mode to avoid the

automatic boxing that “nonsecure” environments tend to enforce.3 That said, we then

invoke the same function using three different invocation patterns4 to see the value of

this be different in each case!

We first assign a property on an object to point to the local function, and then invoke

it like we would any other function property on that object using the “dot” operator.

As we might expect, this points to whatever is on the left of the “dot” at invocation time.

In other words, it points to the “current context.”

We then use the apply (or its cousin call) which effectively sets the this inside the

function prior to invoking it. Another way to think about it is that this line is equivalent to

the method invocation pattern, except we are setting this using apply instead of being

forced to tack on a new property on the object.

3�https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
#Securing_JavaScript

4�The fourth invocation pattern is the “constructor invocation” pattern. However, these three
invocations suffice to make our case here.

Chapter 2 Lambdas with Arrow Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode#Securing_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode#Securing_JavaScript

21

Finally, we simply invoke the function without any context—that is, we do not invoke

the function on any object; in strict mode the function simply returns undefined,

which is what one would expect.

As we can see, this within a function expression (or statement) is set at the time of

invocation, not at the time of definition. This is where the behavior of “regular” functions

diverges from that of arrow functions. While regular functions dynamically set the

meaning of this at invocation time, arrow functions bind it lexically; in other words,

arrow functions bind this at definition time.

�Lexically Bound this
Arrow functions do not set the meaning of this upon invocation. Rather they set or

“cement” it to whatever this evaluates to when they are created. Consider the following:

'use strict';

const GLOBAL_OBJECT = this; ①
const returnMe = () => this; ②

var obj1 = {

 name: 'obj1',

 method: returnMe,

};

console.assert(obj1.method() === GLOBAL_OBJECT); ③

var obj2 = {

 name: 'obj2',

};

console.assert(returnMe.apply(obj2) === GLOBAL_OBJECT); ④
console.assert(returnMe() === GLOBAL_OBJECT); ⑤

① Grab a handle to the global object in scope so we assert against it

② Define an arrow function that simply returns this

③ Trying to use it as a method does not change the context

④ Neither does apply

⑤ Regular functions would have returned undefined here (as we

have seen)

Chapter 2 Lambdas with Arrow Functions

22

Defining an arrow function seems to be the same as defining a regular function, and

bind-ing this to whatever is this at definition time! And indeed, this is the case.

Let us look at some more caveats that apply to arrow functions.

�Other Caveats
Arrow functions differ from regular functions in other subtle ways. Due to the internal

implementation of arrow functions, they cannot be used as constructor functions. If we

wish to define a constructor function, we must continue using regular functions.

Another difference is that this is not the only thing that is lexically bound. When

a function defined as an expression or statement is invoked, JavaScript creates an

object that captures all of the arguments supplied to the function at invocation time.

This object, named arguments, is available within the function body. However, arrow

functions do not get an arguments object. However, strict mode restricted the API

surface area of arguments, and ES6 provides us with variable arguments (which we will

see soon), further reducing the need for arguments so this does not present itself as

much of a caveat. Let us take a look at a quick example to see how this works:

function PersonAsRegularFunction(name) { ①
 this.name = name;

}

const nate = new PersonAsRegularFunction('Nate'); ②
// prints { name: 'Nate' }

console.log(nate);

const PersonAsArrowFunction = (name) => { ③
 this.name = name;

};

// const neal = new PersonAsArrowFunction('Neal'); ④

function regularFunction() {

 return arguments;

}

// prints { '0': 10, '1': 'a', '2': true, '3': false }

console.log(regularFunction(10, 'a', true, false)); ⑤

Chapter 2 Lambdas with Arrow Functions

23

const arrowFunction = () => arguments;

// prints 'ReferenceError: arguments is not defined'

// console.log(arrowFunction(10, 'a', true, false)); ⑥

① Define a function using a statement

② Invoke a function statement as a constructor which returns

successfully

③ Define a function as an arrow function

④ Invoking an arrow function as a constructor throws an error

⑤ Regular functions get an arguments object upon invocation

⑥ Arrow functions on the other hand do not

Let us step back and think about what this means—regular functions dynamically

set the value of this at invocation time. Simultaneously, the arguments object is created

to capture all of the arguments supplied at invocation time. That is to say, both this and

the arguments object when used inside of a function body are contextual—they rely on

the invocation context so that they can be defined correctly. However, arrow functions

cement the value of this at definition time, and are not provided the arguments object at

all. In other words, arrow functions are specifically designed to use as little of the context

around them as possible. If our function implementation needs to use context defined at

runtime, we will be best served using regular functions.

�Use-cases
One might wonder, with all the subtle changes that we must now be aware of, are arrow

functions worth it? JavaScript as we have seen is a functional programming language.

Using functions as arguments and returning functions from higher-order functions is

a very common paradigm in JavaScript. In fact, most Array iteration and manipulation

functions tend to be higher-order functions, and present the perfect opportunity for

arrow function. Let us revisit our earlier example of map-ing and reduce-ing over an array

and see how we can use arrow functions instead.

Chapter 2 Lambdas with Arrow Functions

24

const nums = [1, 2, 3, 4, 5];

const result = nums

 .map(n => n * 3) ①
 .filter(n => (n % 2) === 0) ②
 .reduce((acc, n) => acc + n, 0); ③

① Triple every number in the array

② Filter out even numbers only

③ Reduce the result to its sum

First, let us stop for a minute, and consider the elegance of the code. As we can see,

gone is all the ceremony, and what remains is the essence of what it is we are trying to

accomplish. It is almost as if arrow functions were designed with this intent in mind!

Another use-case is when we know for certain what this represents when the arrow

function is defined.

const neo = {

 friends: [

 'Morpheus',

 'Brian',

 'Switch',

],

 addFriends: function () {

 const args = Array.prototype.slice.call(arguments);

 args.forEach(f => this.friends.push(f)); ②
 },

};

// invoke addFriends

neo.addFriends('Niobe', 'Tank'); ①
// prints '['Morpheus', 'Brian', 'Switch', 'Niobe', 'Tank']'

console.log(neo.friends);

① Set the “context”

② Arrow function works as expected

Chapter 2 Lambdas with Arrow Functions

25

Here we know that this inside addFriends will point to the object referenced by

the const neo because addFriends is invoked as a method on neo. Therefore, within

addFriends, we can define an arrow function which can use this because this points

to the owner object when that arrow function is defined. However, we cannot make

addFriends itself an arrow function, since at the time the function is defined; this

points to the global object! As we might conclude, it is best to be certain what this

points to when referencing it inside an arrow functions, or simply consider using

function expressions.

Let us consider another example of using higher-order functions to build a

mini domain-specific language (DSL). In this example we will be working with pure

functions—that is, functions that only use the arguments supplied to them. That is, they

are “stateless,” and thus serve as great candidates for us to use arrow functions. This will

give us a great opportunity to see how the terseness of arrow functions can serve us.

const and = (a, b) => arg => a(arg) && b(arg); ①

const gt10 = n => n > 10; ②
const even = n => n % 2 === 0; ③

const gt10AndEven = and(gt10, even); ④

console.assert(gt10AndEven(15) === false);

console.assert(gt10AndEven(22) === true);

① Define a higher-order predicate function

② Test to see if the argument supplied is greater than 10

③ Test to see if the number is an even number

④ Create a function that tests two conditions

Here we define the and function, a higher-order predicate function5 that given two

functions, returns a new function. This new function expects one argument, args, that is

tested against both predicates and returns true if and only if both predicates are satisfied.6

5�A predicate function is a function that returns true or false.
6�Note that this function delegates to the in-built && operator, which short-circuits. In other words,
the order of arguments matters.

Chapter 2 Lambdas with Arrow Functions

26

We then define two predicates, and use and to create a new function to test if its

supplied argument is both greater than 10 and is even.

Once again, we observe that arrow functions allow us to keenly express our

intentions, leaving out any superfluous ceremony associated with function expressions.

�Summary
While arrow functions have a passing resemblance to their expression and statement

cousins, their role in the new world of JavaScript remains undisputed. They enable

us to leverage JavaScripts inherent functional nature, making code more concise, and

readable, and unlike regular functions rein in any attempts to make them stateful.

In this chapter we explored the new syntax for fat-arrow functions. We saw how their

semantics differ from that of regular functions, and learned the appropriate use-cases

where fat-arrow functions best serve us. As long as we remain mindful of the differences

in their behavior, arrow functions will serve us well.

In the next chapter we will explore a new mechanism to define function signatures

that allow our code to be more expressive, while reducing the amount of error checking

that we are so accustomed to doing within our functions.

Chapter 2 Lambdas with Arrow Functions

27
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_3

CHAPTER 3

Effective Function
Signatures with Default
and Rest Parameters
We all realize the pervasive use of functions in JavaScript. Consequently, defining

functions and laying out function signatures is one thing we do a lot. Default parameters,

a new feature introduced in ES6, provide us the power to improve how we detail

our function signatures. They allow us to specify what the value of a parameter to a

function ought to be if no value is passed in at invocation time. Along the same vein,

rest parameters allow us to express that a function (or method) has no expectation to

the number of arguments you can supply it—in other words, they allow us to explicitly

declare variadic functions.

In this chapter we will explore the new syntax for both default and rest parameters.

We will see how we can write function signatures that provide our consumers incredible

flexibility in how they use them, while simultaneously reducing the amount of error

checking we have to do internally. By the end of this chapter, we will be left wondering

how we ever managed to work with functions as we know them today!

�Unintentionally Obscuring Intent with Arguments
JavaScript function signatures only include the name of the function. This diverges

from many other languages where the signature includes the return type and the

parameter list. Since JavaScript is dynamically typed, functions do not declare their

return type. However, the part that is most relevant to our discussion here is that the

parameter list does not participate in the function signature either. This is the reason

28

why we do not have overloaded functions in JavaScript. Two functions with the same

name even with different parameter lists will collide, with the one defined later

overwriting the previous one.

Furthermore, JavaScript allows functions to be invoked with as few or as many

arguments as the caller wishes to supply. This means that despite a functions formal

signature, also referred to as its “arity,” every function in JavaScript is a multi-arity

function. We can inspect the same as follows:

const sayHello = name => 'Hello ' + name;

const buildUrl = (site, protocol) => protocol + '://' + site;

function add(/**args*/) { ①
 let result = 0;

 for (const i in arguments) {

 result += arguments[i];

 }

 return result;

}

console.assert(sayHello.length === 1);

console.assert(buildUrl.length === 2);

console.assert(add.length === 0);

// prints 'Hello undefined'

console.log(sayHello()); ②
// prints 'https://jsrocks.com'

console.log(buildUrl('jsrocks.com', 'https', 'non-required argument')); ③
// prints 42

console.log(add(12, 22, 8)); ④

① Recall that arrow functions do not have an arguments object

created upon invocation. This forces us to use a function statement

② Invoke sayHello with zero arguments

③ Invoke buildUrl with more arguments than the function

expects

④ Invoke add correctly

Chapter 3 Effective Function Signatures with Default and Rest Parameters

29

Here, we define three functions with differing arities. Officially, all three functions

report an arity via the length property that is available on function objects.

However, as demonstrated, we can invoke any of those functions with as many or as

few arguments as we like, and as the outputs suggest, we may or may not get the desired

results. It turns out that JavaScript functions can declare the number of arguments they

expect to be supplied by formally listing them in their parameter lists. However, there

is no check at runtime to ascertain if indeed the function is invoked with the correct

number of arguments. Essentially, we can either assume that the function will be invoked

correctly or be prepared by installing appropriate checks in the implementation in case

we don’t get all that we expect.

Lastly, in our example add is a function that is attempting to be multi-arity—that is,

it is a function that can indeed consume as many arguments as we supply it. But with

no first-class construct in the language to declare this as part of the function signature,

we are forced to provide a hint (typically via documentation or a comment as shown) to

clients that they can provide additional arguments if they do wish to do so.

Enter default and rest parameters.

�Default Parameters
Default parameters provide us with a mechanism to highlight what a function really

needs, and a way to assume some parameters if they are not supplied. Recall that

JavaScript does not have any runtime enforcement to ensure that a function is invoked

with the correct number of arguments. Therefore, we, the developers, are forced to

accommodate for missing arguments in our implementations. Observe:

/**
 * Builds a url

 *
 * @param {site} the url (required)

 * @param {protocol} can be http or https (optional) - defaults to http

 * @returns {string}

 */

const buildUrl = (site, protocol) => {

 if (!site) { ①
 throw new Error('site is required');

 }

Chapter 3 Effective Function Signatures with Default and Rest Parameters

30

 const p = protocol || 'http'; ②
 return p + '://' + site;

};

① Enforce that site is required by throwing a runtime error

② We can default protocol

Here, we attempt to build a more resilient implementation of the buildUrl function.

However, the fact that site is required and protocol is optional is now hidden within

the confines of its implementation. Documentation can act as an aid—however, as we all

know, it is often at best incomplete, and at worst, nonexistent.

Default parameters allow us to express the same like so:

const buildUrl = (site, protocol = 'http') => {

 if (!site) {

 throw new Error('site is required');

 }

 return protocol + '://' + site;

};

The default value for protocol is now explicitly stated in the method signature,

signaling what it will be if the client decided to skip it. Admittedly the fact that site is

required still remains implicit; however the fact that the function author could not find a

suitable default for it might in itself be telling.

In other words, a quick glance at the signature of this function reveals far more,

which previously would have forced the client to peek at the implementation (if that was

even possible), look at the docs (if they were available), or play Russian roulette with

argument combinations to see what is or isn’t possible.

Now that we have default parameters as a first-class construct in the language, tools

like EsDocs1 can even parse out default parameters and automatically highlight them in

generated documentation. This makes using this feature even more enticing.

Let us now look at some subtleties of default parameters.

1�https://esdoc.org/

Chapter 3 Effective Function Signatures with Default and Rest Parameters

https://esdoc.org/

31

�Qualifying and Skipping Defaults
We can default parameters to be the result of any expression—assignments, function

calls, and even ternary expressions are all fair game. This is particularly useful if the

default value is the result of a configuration or environment lookup:

const getDefaultConn = () => {

 // look up ENV config

 // return appropriate connection

 // as a default assume localhost

 return {

 host: 'localhost',

 user: 'me',

 password: 'secret',

 database: 'my_db',

 };

};

const query = (sql, conn = getDefaultConn()) => {

 // use connection string and sql here to query db

 // conn.connect();

 // conn.query(sql);

 // conn.close();

 return conn;

};

One thing that might not be obvious is that the defaulted parameter gets its default

value evaluated upon invocation of the function, rather than when the function is actually

defined. This, as we can see, lets us defer the value of conn till we actually invoke it.

Another nuance here is that parameters can see previous parameters declared in the

function signature, and use them when assigning their own defaults. This is particularly

useful especially when we are thinking of polymorphic implementations. Consider the

following:

const rectangle = (x, y = x) => [x, y]; ①

// prints '[2, 2]'

console.log(rectangle(2)); ②

Chapter 3 Effective Function Signatures with Default and Rest Parameters

32

// prints '[5, 12]'

console.log(rectangle(5, 12)); ③

① Parameters seeing previous parameters

② Supply only one side to create a square

③ Supply both sides to create a rectangle

Of course, we can mix and match all of these in interesting ways:

const triangle = (a, b = a, c = Math.hypot(a, b)) => [a, b, c];

// prints '[6, 4, 7.211102550927979]'

console.log(triangle(6, 4));

// prints '[10, 10, 14.142135623730951]'

console.log(triangle(10));

We must consider what triggers the use of a default parameter. Obviously not passing

in a parameter triggers it. In other words, passing in “nothing” causes JavaScript to

use the default value. If we think about it, undefined in JavaScript is the equivalent of

nothing.2 Thus, given a function, if we do wish to use the default value for a particular

argument, passing in undefined in that position is equivalent to “skipping” it.

�Usage Considerations
JavaScript’s parser allows any combination of default parameters. We might wish to

make the default the first parameter of a function leaving the rest to be filled in at

invocation time, or alternate between regular and defaulted parameters. While this

might seem interesting, its utility for development is rather limited:

const filter = (coll = [], predFn) => coll.filter(predFn);

// prints '[30]'

console.log(filter([10, 20, 30], n => n > 25));

2�Consider a function that does not have an explicit return statement—therefore it returns
nothing. Similarly looking up a nonexistent property on an object returns undefined.
Alternatively, null implies something is defined, but is explicitly set to be empty.

Chapter 3 Effective Function Signatures with Default and Rest Parameters

33

We default the coll to be an empty array if it is not supplied. However, a filter

function that does not have a predicate function to filter with is rather meaningless.

Furthermore, if we wish to pass in the absolutely necessary predicate function, we

are forced to pass in the first argument since we can’t skip arguments during function

invocation. Of course, one might argue that we could pass in undefined as the first

argument thus triggering the default, but that only goes to cement the point; that is, the

order of parameters in a function signature still matters!

By convention, a function’s mandatory, and most “important” parameters are

listed to the left, followed by those that may be optional. This convention is in no way

lessened by the use of default parameters. The fact that default parameters can only see

parameters to their left underscores this argument.

In short, keep required (and potentially those that cannot be assumed) arguments

to the left, followed by defaulted ones to the right. This helps highlight the fact that

some parameters are absolutely necessary, while allowing us to default others based on

their values at invocation time. Win–win. Following this convention helps us make our

function signatures more descriptive, reducing or even eliminating any guesswork on the

behalf of our consumers.

�Rest Parameters
Default parameters work exceptionally well if and when the function expects a

fixed number of parameters. We can choose to highlight those that are required,

while defaulting some. But what if a function wishes to express that it can accept an

indeterminate number of parameters, and that it is indeed able to use them all? This is

where rest parameters come into play.

�The Argument Against arguments
JavaScript has always had the arguments object available within the invocation context

to account for “extra” arguments. Let us revisit our earlier example that adds all of the

arguments supplied to it:

function add(/**args*/) {

 let result = 0;

 for (const i in arguments) {

Chapter 3 Effective Function Signatures with Default and Rest Parameters

34

 result += arguments[i];

 }

 return result;

}

// prints '20'

console.log(add(2, 3, 5, 10));

This function expects n arguments, and it consumes all of them to return a result.

Does it accomplish what we set out to do? Absolutely. However, in order to express that

the function is indeed multi-arity, we must resort to using a comment block, thus hiding

this fact in its implementation.

There remain two more palpable drawbacks to using arguments. While arguments

respond to the length property, and allow us to use the subscript ([]) operator to reach

a specific argument that was supplied, it just so happens that the arguments object is not

really an array! If we wish to manipulate the supplied arguments, for example, sort or

filter them, we have no choice but to coerce arguments into an array.3

The second issue is that the arguments object includes all arguments supplied to the

function. If the desire is to treat some parameters differently than others, we are required

to separate those from everything else.

We can see both these deficiencies highlighted in a simple example that attempts

to simulate the boarding of a plane. The plane in our example has a pilot, a crew

member, and n-number of passengers. However, we must be sure to treat our most loyal

customers first, so we must board them first. Every passenger has a status, and those

with higher status should be invited to board before those with other statuses. Let us

start by writing a simple comparator function that compares two passengers using their

statuses, like so:

const byStatus = (a, b) => {

 let ret;

 if (a.status === 'platinum' && b.status !== 'platinum') {

 ret = -1;

 } else if (a.status === 'platinum' && b.status === 'platinum') {

 ret = 0;

3�We could avoid the use of arguments altogether by forcing our clients to pass in an array, but
that is simply passing the buck. Not to mention that the clients still need to be aware that this is
indeed a requirement.

Chapter 3 Effective Function Signatures with Default and Rest Parameters

35

 } else if (a.status !== 'platinum' && b.status === 'platinum') {

 ret = 1;

 }

 return ret;

};

With the comparator function out of the way, we can write our plane boarding

algorithm. Notice that we represent our plane as an array, first push-ing the pilot, who

boards first, followed by the crew member, followed by the passengers sorted by their

individual status:

function boardPlane(pilot, crewMember /** , passengers */) {

 const plane = [];

 plane.push(pilot); ①
 plane.push(crewMember); ②
 const toArr = Array.prototype.slice.call(arguments); ③
 const passengers = toArr.slice(2, toArr.length); ④
 plane.push(passengers.sort(byStatus)); ⑤
 return plane;

}

const passengerOne = {

 name: 'James',

 status: 'silver',

};

const passengerTwo = {

 name: 'Joseph',

 status: 'platinum',

};

// invoke it

const plane = boardPlane('Amelia', 'Rosemary', passengerOne, passengerTwo);

console.assert(Array.isArray(plane));

// verify pilots and crew board first

console.assert(plane[0] === 'Amelia');

console.assert(plane[1] === 'Rosemary');

Chapter 3 Effective Function Signatures with Default and Rest Parameters

36

// verify that passengers board by status

console.assert(Array.isArray(plane[2]));

console.assert(plane[2][0] === passengerTwo);

console.assert(plane[2][1] === passengerOne);

① Pilot boards first

② Followed by the crew member

③ Coerce arguments to an array

④ Discard the first two items since they are already accounted for

⑤ Sort the remaining items in the array using a custom sort

function

This works; however, it feels clumsy. All of the drawbacks we have discussed so far

rear their ugly heads. First, we have to coerce the arguments object into an array so we

can eventually sort the passengers. Second, the arguments object includes all of the

arguments supplied to boardPlane, so in order to get to the passengers, we are forced to

drop the first two (namely the pilot and the crew member) since they have already been

accounted for. The arguments object does not account for arguments that already have

placeholders provided via function parameter names, shifting the onus to the developer

to discern between the arguments that have already been captured, and those that

represent the “rest” of the arguments.

Alas! If only there was a way to auto-box all “unaccounted for” arguments into an

array …

�The New ... Syntax
Rest parameters use a new syntax, namely ...argName in the parameter list. This

parameter will collect any arguments supplied in the function invocation that are not
already accounted for, and wrap them in an Array object.

We can now refactor our example to use rest parameters like so:

const boardPlane = (pilot, crewMember, ...passengers) => { ①
 const plane = [];

 plane.push(pilot);

 plane.push(crewMember);

Chapter 3 Effective Function Signatures with Default and Rest Parameters

37

 plane.push(passengers.sort(byStatus)); ②
 return plane;

};

const passengerOne = {

 name: 'James',

 status: 'silver',

};

const passengerTwo = {

 name: 'Joseph',

 status: 'platinum',

};

// invoke it

const plane = boardPlane('Amelia', 'Rosemary', passengerOne, passengerTwo);

console.assert(Array.isArray(plane));

// verify pilots and crew board first

console.assert(plane[0] === 'Amelia');

console.assert(plane[1] === 'Rosemary');

// verify that passengers board by status

console.assert(Array.isArray(plane[2]));

console.assert(plane[2][0] === passengerTwo);

console.assert(plane[2][1] === passengerOne);

① Explicitly declare a rest parameter

② Directly invoke array methods on only the remainder arguments

Almost magically, the code is shorter, with its intent clear. There is no unnecessary

coercion, and since we no longer have to account for extras like we did for arguments,

errors like off-by-one are completely eliminated. Instead we get a real array holding

all the arguments supplied that make up the “rest” of the arguments. A glance at the

function signature tells us all we need to know—this is a multi-arity function, that needs

at least two arguments that are aptly named, and potentially a list of passengers.4

4�Here’s us hoping that there is indeed a list. It’s not going to be a very profitable flight otherwise!

Chapter 3 Effective Function Signatures with Default and Rest Parameters

38

Also, we get one added benefit. It is subtle, but let us see if we can spot one more

difference between the original and refactored version. See it yet?

Recall that arrow functions do not get an arguments object created upon invocation.

If we need to use arguments, we are forced to use a regular function expression or

statement. However, in this case, we can go back to using the more succinct arrow

function for boardPlane. Yay!

�The rest of the Details (or is it the Details of rest?)
Rest parameters are far less nuanced than some of the other features we have discussed

so far. If a function uses rest parameters, then this parameter needs to be the last one in

the argument list. This makes sense, since it acts as a greedy operator, gobbling up any

and all arguments that have not already been accounted for. Declaring a parameter after

a rest parameter in a function signature will result in a SyntaxError.

A rest parameter unlike regular parameters cannot have a default value assigned to

it. Rest parameters have an implicit default value, that being an empty array. In other

words, if there are no parameters left for the rest parameter to consume, it will default

being an array of length 0. This plays out well, since we do not have to do undefined

checks.

Given that a rest parameter allows us to define a multi-arity function, let us see

how it plays with the length property of functions. Recall that the length property

on functions return the formal arity as defined in its signature. Turns out that rest

parameters do not participate in the arity count for functions.

Functions also do not expose an API to ascertain if a particular function is indeed

using rest parameters. While this bodes well with JavaScript’s original design of every

function being implicitly multi-arity, it also leaves us with no way to programmatically

discover if the last parameter is a rest parameter.

Finally, we come to rest parameters and the arguments object. While arrow functions

do not get an arguments object, regular functions still do. As you might expect, the

arguments object works just as expected—it gathers up all the arguments supplied to a

function without considering the fact that the last parameter is a rest parameter.

Let us quickly explore all of this with a trite example:

function fnExpression(a, b, ...c) {

 console.log(arguments.length);

}

Chapter 3 Effective Function Signatures with Default and Rest Parameters

39

const fnArrow = (a, b, ...c) => {

 // do not get an arguments object

};

console.assert(fnExpression.length === 2); ①
console.assert(fnArrow.length === 2); ②
// prints '6'

fnExpression(1, 2, 3, 4, 5, 6); ③

① Arity does not include the rest parameter for function

expressions

② As well as for arrow functions

③ arguments.length reports the total arguments supplied at

invocation

�Summary
Default parameters allow us to be more expressive when defining function signatures.

They replace superfluous checks with appropriate defaults, thus making our code’s

intent clearer. Default parameter values are evaluated at invocation time, allowing us

to defer the parameter being set within the runtime context of our programs. Since

parameters can “see” parameters defined to the left in the function signature, we can

make an attempt to make polymorphic functions, and enable the notion of “overloaded”

methods as might be used in other languages.

Rest parameters eliminate the need to use the arguments object when writing multi-

arity functions, with the added benefit of explicit function signature support. This helps

remove unnecessary coercions in our code, and provide a mechanism to cleanly capture

all arguments not accounted for by parameters.

Neither default nor rest parameters eliminate the need for good API design; in fact they

have just the opposite effect. By putting emphasis on parameters that appear on the left

with decreasing precedence to the right, they compel us to discern between parameters

that are necessary and need be supplied, vs. those that we might be able to default.

Chapter 3 Effective Function Signatures with Default and Rest Parameters

40

All of this combined lessens the contextual overheard clients have to bear when

using our API. Now, isn’t that worth celebrating?

In the next chapter we will look at an improvement targeting JavaScript’s inherent

mechanism for querying elements of arrays, or values in objects, using the new spread

operator and destructuring syntax. These in tandem with default parameters allow us to

be even more expressive in our function signatures.

Chapter 3 Effective Function Signatures with Default and Rest Parameters

41
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_4

CHAPTER 4

Divide and Conquer
with Object and Array
Destructuring
JavaScript lets us easily create “bags of data” using objects and arrays, permitting us the

ability to fluidly wrap data and ship it around in our code. However, the syntax afforded

to us to “reach” into these data structures tends to be verbose, imperative, and error-

prone. In ES6 and ES9, JavaScript adopts yet another functional construct in the form of

the destructuring syntax to improve our experience with unwrapping data, bringing it to

parity with how we wrap data in the first place.

In this chapter we will see how the new destructuring syntax for both objects and

arrays provide an elegant mechanism to reach into data structures. We will also learn

to couple this with our understanding of default and rest parameters, and how these

two features work hand in hand to define functions that eloquently express their

expectations while being more flexible. By the end of this chapter, we will be safely

querying objects and arrays using a clear, succinct, and highly expressive syntax, while

improving the way we detail out function signatures.

42

�Seeking Symmetry Between Structuring
and Destructuring
JavaScript offers us two collection-like objects—arrays and objects that are key-value

pairs.1 Objects created using the Object constructor, Object.create, or the literal

object syntax (namely {}) are instances of Object. They can be thought of as an

associative array, or dictionary objects. Objects are essentially a set of key-value pairs.

If an object is asked to look up the value of a key, it will return the value associated with

that key, or undefined if that key does not exist in the object.

Arrays on the other hand offer a sequential data structure, with efficient random

lookup of elements. Arrays in JavaScripts are instances of the Array type, and they too

are associative, except their keys are integers, and can only be integers that serve as the

index of the item they point to.

Both objects and arrays give us ways to reach into them. Objects offer us the “dot”

notation that allow us to fetch the value associated with a key within itself, as well as the

“bracket” (or “subscript”) notation (namely []) to the same effect. Arrays on the other

hand offer only the bracket notation as a means to look up an element at a particular

index within the array. Much like objects, looking up an index that does not exist within

the array returns undefined.

Both objects and arrays can be nested, often one inside another. This can lead to

rather convoluted lookups, forcing developers to inline variables to explain what they are

trying to achieve. Observe:

const user = {

 name: 'douglas',

 profession: 'developer',

 address: {

 street1: '1 Ad Infinitum Drive',

 street2: ",

 city: 'Cupertino',

 state: 'CA',

 zip: [

1�ES6 offers us two more data structures, namely Maps and Sets which we will see soon

Chapter 4 Divide and Conquer with Object and Array Destructuring

43

 '95014',

 '1234',

],

 },

};

const zipCode = user.address.zip[0] + '-' + user.address.zip[1]; ①
console.assert(zipCode === '95014-1234');

// refactored version

const zip = user.address.zip; ②
const code = zip[0]; ③
const extended = zip[1];

const final = code + '-' + extended;

console.assert(final === '95014-1234');

① Use the obvious syntax

② Refactor it to make the intent clearer

③ What were to happen if the address object did not have a zip

property?

Consider how we ascertained what the original object looks if we had not created

it, but rather handed a reference to it. We would have to do some mental gymnastics to

“rebuild” the structure of the original object by reverse parsing the lookup. This proves to

be even more frustrating when functions expect an object or an array—as a client there

is no way to tell which “parts” of the argument the function is really interested in without

looking at its implementation or reading the docs.

To add salt to the wound, the syntax offers no provisions for undefined checks

along the way! If an intermediate property fails the lookup, this failure cascades down to

everything that relies on that property’s value. Some languages offer a “safe navigation”

operator, or a way to default a look up if it fails, but alas, we had no support for either in

JavaScript.

The central tenet is the lack of symmetry between how we define objects and arrays

(create the structure), and how we reach into them (destructure them) to get to particular

values. If the lookup syntax mirrored the construction syntax, then “reassembling” the

original object (or array) becomes trivial since the left-hand side of the assignment

would be as expressive as the right-hand side.

Chapter 4 Divide and Conquer with Object and Array Destructuring

44

Another aspect in the lack of destructuring support is the inability to spread or

“splat” objects; in other words, get to all entries of a collection, be that elements of an

array or key-value pairs in objects. Developers resort to imperatively iterating through

whole collections, be that explicitly using for loops, or implicitly using methods like

forEach, both of which leave much room for improvement.

Enter spread operator, and the new destructuring syntax. We will start with the

spread operator, followed by the destructuring syntax.

�Spread Operator for Arrays
Consider a simple use-case—a function that calculates the perimeter of a triangle and an

array that stores the lengths of the individual sides. Let us see how we would use the two

together:

const perimeter = (a, b, c) => a + b + c;

const sides = [9, 8, 3]; ①

// prints 20

console.log(perimeter(sides[0], sides[1], sides[2])); ②

① We start with an array

② We extract every element of the array to supply to the function

Given that the function expects three arguments, we are forced to tease apart the

values from the array using the subscript notation. This feels cumbersome. What would

be nice is a way for us to “apply” the individual elements of the array as arguments to the

function.

Well, now we can! We can now use the spread operator that expresses itself using the

…​ syntax. Observe how the same example morphs into the following:

const perimeter = (a, b, c) => a + b + c;

const sides = [9, 8, 3]; ①

// prints 20

console.log(perimeter(...sides)); ②

Chapter 4 Divide and Conquer with Object and Array Destructuring

45

① We start with an array

② We use the spread operator to supply all the elements of the

array to the function

The spread operator syntax as demonstrated uses ...​ as its syntactic construct.

It takes an array, and “explodes” it into its individual elements, passing each one as

individual arguments to the function. Right off the bat this eliminates our having to

extract the elements imperatively using the subscript syntax.

There are a handful of places in our code where we are allowed to use the spread

operator—first, as we have seen, is upon function invocation, and the second, array

construction, which we will see in the next section.

�“Expanding” Upon the Nuances of the Spread Operator
It will serve us best to first explore the spread operator in isolation. Consider our good

friend console.log. log is a multi-arity function, in that, given n arguments it writes

each value to the console delimited by whitespace. Let us simply use it to see the effects

of the spread operator:

const arr = [12, -3, 15, 44, 15, 36]; ①

// prints '[12, -3, 15, 44, 15, 36]'

console.log(arr); ②
// prints '12 -3 15 44 15 36'

console.log(...arr); ③

// to get the same result as we did with the spread operator

let temp = ";

for (const i in arr) {

 temp += arr[i];

 if (i != (arr.length - 1)) {

 temp += ' ';

 }

}

console.assert(temp === '12 -3 15 44 15 36'); ④

Chapter 4 Divide and Conquer with Object and Array Destructuring

46

① We start with an array

② Simply print out the array—displays [12, -3, 15,

44, 15, 36]

③ Use the spread operator—displays 12 -3 15 44 15 36

④ Simulate what the spread operator does for us with console.log

As we might conclude, invoking console.log with an array is invoking it with one

argument. However, invoking it with the spread operator acting on an array invokes with

n arguments, where n is the length of the array.

The contrast is even more stark when we consider how we would have gone about

printing each element of array to a space delimited string. Without the spread operator,

we have no choice but to imperatively loop over the array, each time concatenating to a

temporary string, which we would then pass to console.log.

The spread operator allows us to shift from an imperative mindset, where our intent

is often lost amidst for loops and ceremony, to expressing our intent in a clear manner.

A pervasive use-case for the spread operator is one of concatenating arrays. Bear in

mind that arrays have a push method available on them which adds items to the end of

the array. Turns out push too is a multi-arity function. However, much like some of the

Math operators, and console.log, this method is of little use if we wished to concatenate

all the elements of one array to that of another.2

Another use-case for the spread operator is that of creating new arrays from existing

ones. Let us study both these use-cases now:

const one = [12, -3, 15];

const otherOne = [...one]; ①
const two = [44, 15, 36]; ②

// mutation

one.push(...two); ③
console.log(one);

// alternatively inline the concatenation

const concatenated = [12, -3, 15, ...two]; ④
// prints '[12, -3, 15, 44, 15, 36]'

2�We are back to imperatively taking each value out of the array, and then invoking push with each
element one at a time.

Chapter 4 Divide and Conquer with Object and Array Destructuring

47

console.log(concatenated);

// create a new array

const newArr = [...otherOne, ...two]; ⑤
// prints '[12, -3, 15, 44, 15, 36]'

console.log(newArr);

① Use the spread operator to copy an array into a new array

② We start with three arrays

③ push mutates the array in place

④ Create a new array concatenating elements, and an array

⑤ Create another array concatenating two arrays

We start with an array, and create a new one by exploding the first one inside

the literal array notation ([]) of a new array. In other words, otherOne is a new array

containing the same elements as our initial one.

The push method on Array, like console.log, happens to be a multi-arity method.

So, we can easily push multiple elements from one array onto another, once again, using

the spread operator. However, push performs a mutation, in that it changes the original

array. However, functional programming encourages immutability, and if that is our

intent, the spread operator is an ally.3

One nuance of the spread operator is that is does not perform a “flatten.” If we

spread an array of arrays, the end result will be the individual constituent arrays. The

spread operator does not recursively explode the nested arrays.

The underlying machinery that makes the spread operator work relies on arrays

being “iterable.” We will cover iterables and iterators shortly; however it suffices to say

that arrays abide by the iterator contract, thus enabling them to be used with the spread

operator. Strings, Maps, and Sets (we will see those shortly as well) are also iterables, and

thus can be spread.4

The biggest benefit of using the spread operator to construct new arrays is often the

most overlooked one, in that, its syntax forces us to explode existing arrays into a new

3�Libraries like Redux (https://redux.js.org/) urge us to adopt immutability for updates.
Frameworks like Angular use a change detection strategy, and this can be further optimized by
the use of immutable references.

4�The utility of spreading a String is most certainly iffy; however it exists if you wish to use it.

Chapter 4 Divide and Conquer with Object and Array Destructuring

https://redux.js.org/

48

array. We could achieve the same behavior by push-ing existing arrays onto an empty

array, but that is not the intent of the push API. Rather, it is to mutate an existing array,

which goes against the grain of functional programming.

�Spread vs. Rest—Polar Opposite Twins

One will have observed that the syntax for the rest parameter and the spread operator

is identical, but their behavior is the exact opposite of one another. The rest parameter

“collects” all the unaccounted arguments supplied to a function into an array, while the

spread operator extracts all the elements out of an array. What differentiates what the ...

syntax does depends on the invocation context. ... only acts as the rest parameter when

an assignment happens, and if not, then it acts as a spread operator. This contradiction

can be both interesting and disconcerting at the same time:

const onlyRest = (teacher, ...students) => {

 return [teacher, students.sort()]; ①
};

const restAndSpread = (teacher, ...students) => {

 return [teacher, ...students.sort()]; ②
};

// prints '['Ada', ['Carol', 'Grace', 'Mary']]'

console.log(onlyRest('Ada', 'Mary', 'Carol', 'Grace'));

// prints '['Ada', 'Carol', 'Grace', 'Mary']'

console.log(restAndSpread('Ada', 'Mary', 'Carol', 'Grace'));

① Sort the rest arguments prior to appending the whole array in

the return value

② Sort the rest arguments, and explode it to append its elements

in the return value

We start by defining two multi-arity functions, both of which expect the name of the

teacher, followed by n-number of names of students. Given that both functions declare

a rest parameter, all arguments past the teacher are automatically bundled into an array.

Both functions also proceed to sort the students’ array prior to constructing the return

value, which also happens be an array. However, it is here that the implementations

depart from one another. In the case of the first function, we simply construct a new

Chapter 4 Divide and Conquer with Object and Array Destructuring

49

array with the name of the teacher, and the result of sort-ing the student array, which

returns an array. The result as one might expect is an array of two elements—the name of

the teacher followed by an array with the student names sorted.

However, in the second case, we spread the result of sort into the return value,

thereby simply returning an array of strings, starting with the name of the teacher,

followed by the names of the students sorted alphabetically. The difference between the

two implementations is subtle; however the effect is profound.

We will see another place where the rest parameter is applicable, namely in array

destructuring—but first, spreading objects.

�Spread Operator for Objects
Introduced in ES9, the …​ operator is also available for “spreading” objects. Much like

the …​ operator we have seen for indexed collections, the …​ operator “explodes” an

object into its individual key-value pairs. However, before we get into the details of the

spreading objects, we must talk about the characteristics of object properties, specifically

the enumerable descriptor.

�Object.defineProperties
JavaScript developers are accustomed to constructing objects literally using the

{} syntax, and tacking on arbitrary key-value pairs. These keys are by default

enumerable, in that they will be listed if we were to use the for-in loop to iterate over

the keys in the object.

Simultaneously, the Object class also provides us various (programmatic)

mechanisms to create objects, as well as conveniences to configure them. One of

these APIs is defineProperties which can be used along with a “descriptor” object

to define functions and even getters/setters for existing objects.5 The role of Object.

defineProperties is to inject properties onto an existing object (hereon referred to as

the “target”) using the descriptor.

5�There is also its cousin defineProperty that is useful if we are to only define one property at a
time.

Chapter 4 Divide and Conquer with Object and Array Destructuring

50

The descriptor acts as a placeholder to contain the configuration for each key that we

wish to introduce onto the target. The descriptor object is a plain-old JavaScript object,

whose keys will be installed on the target. Let’s see how this is used with a simple example:

const michelle = {};

Object.defineProperties(michelle, { ①
 name: {

 value: 'Michelle', ②
 },

 hobby: {

 value: 'Gardening',

 },

});

// prints 'Michelle'

console.log(michelle.name);

// prints 'Gardening'

console.log(michelle.hobby);

① Invoke defineProperties with a target and descriptor object

② Define the name key with the value Michelle

The first argument is the object we wish to modify and the second argument

happens to be the descriptor object, which as we can see is a JavaScript object with

two keys. The value of every key in the descriptor object is the configuration for that

property, and determines what form it will take in the target. That is, we are asking

defineProperties to install two properties on the target object, namely name and hobby,

with their associated values.

This aforementioned property, value is not arbitrary; it is a member of a select

few that we are allowed to use as elucidated in https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperties.

These properties not only allow us to define a resultant property on the target as a value

(remember, functions are values too in JavaScript), but also getter/setters and if the keys

are enumerable, writable, and configurable.

Of these, enumerable is of particular interest to our soon-to-be-had discussion on

Object.assign, so let us take a moment to explore its usage and meaning. Just like we

set the value for a particular key using the descriptor object, and tack it on using Object.

Chapter 4 Divide and Conquer with Object and Array Destructuring

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperties

51

defineProperties, we can also supply it the enumerable setting. If the enumerable

setting is not supplied alongside the value key in the descriptor object, its default is

false. This is in stark contract with the default settings for keys installed in literal ({})

object, which as we have discussed, happens to be true. This means that any property

created using a descriptor object will not show up if were to iterate over the keys of the

resultant object, unless we explicitly set the enumerable property to true:

const michelle = {};

Object.defineProperties(michelle, {

 name: {

 value: 'Michelle',

 enumerable: true, ①
 },

 hobby: {

 value: 'Gardening', ②
 },

});

for (const k in michelle) {

 if (Object.prototype.hasOwnProperty.call(michelle, k)) {

 // only prints 'name'

 console.log(k); ③
 }

}

① Set the enumerable key to true

② Since we are not setting enumerable here, it defaults to false

③ Only name shows up

The thing to note here is that any property that does not have the enumerable

property set is invisible to the for-in loop. If we wanted to make all the keys visible, we

could just as easily have used the literal object syntax to construct the object! That is to

say, the role of Object.defineProperties is to allow us to limit how the world sees or

affects the keys in our objects.

To return to the subject at hand, setting the enumerability of certain keys affects any

algorithm that requires to interrogate an object for its keys, such as JSON.stringify,

Chapter 4 Divide and Conquer with Object and Array Destructuring

52

as well as the two new facilities that ES6 introduced, namely the newly added Object.

assign as well as the object spread operator.

We will look at both Object.assign, introduced in ES6, and the spread operator

for objects, introduced in ES9 in the following sections. At first glance they seem to do

similar things, but as we will see, their intent is certainly different.

�Object.assign

ES6 gives us Object.assign as a means to copy all the enumerable keys of one object

into another. assign takes a “target” object, followed by any number of “source” objects,

and copies over all the enumerable keys of the source objects onto the target object.

Consider the following example:

const michelle = { ①
 name: 'Michelle',

 hobby: 'Gardening',

};

const rachael = Object.assign({}, michelle, { ②
 name: 'Rachael',

 profession: 'Auditor',

});

// prints '{ name: 'Rachael', hobby: 'Gardening', profession: 'Auditor' }'

console.log(rachael);

① Initialize an object literally

② Use Object.assign to construct a new object that merges all the

source objects

We start with creating an object literally with two keys. Recall that all such properties

defined on an object are by default enumerable. We could have achieved the same effect

if we had using Object.defineProperties, setting the enumerable descriptor for each of

those keys to true.

Then we invoke Object.assign with a (blank) target, along with michelle and

another (inlined) object literal. The thing to note here is that both michelle and the

inline object have a property with the same name, which in case happens to be name.

Chapter 4 Divide and Conquer with Object and Array Destructuring

53

Therefore, if a single object were to copy over both (in order from left-to-right) then the

last one wins. Right?

As the console.log demonstrates, the clone indeed has the union of the properties

in the individual source objects. However, the name happens to be Rachael, which tells

us that properties are indeed copied from left to right; in other words, both michelle and

the inline object passed in as the sources have the same property, but it’s the latter one

that won.

One way to think about Object.assign is that is “explodes” the source objects

into the target object, and if there happens to be a key collision, the last one wins.

Furthermore, we can cleverly use this to create new objects from existing ones simply by

targeting an empty object, as demonstrated.

Seemingly, Object.assign seems to do for objects what the spread operator does for

iterables—it can help “spread” the key-value pairs of one object into another. However,

it falls short on two accounts—the mechanisms to spread objects (Object.assign),

and that for iterables (the spread operator) are not at par, in that they are syntactically

different. Secondly, Object.assign is to objects what Array.push is to arrays, in that

they both mutate the target object. Granted that we can supply an empty object as the

target, however the intention of the API is to change the target.

Object.assign has a place in our toolkit; however, if we are to adopt a functional

mindset and embrace immutability, then we need another ally. Allow me to introduce

you to the spread operator for objects.

�Spreading Objects
ES96 brings the same operator that we use to spread iterables, namely …​, and makes

them available for objects. This can be demonstrated by revisiting our earlier example:

const michelle = {

 name: 'Michelle',

 hobby: 'Gardening',

};

const rachael = {

 ...michelle, ①

6�That is not a typo. Between ES6 and ES9 objects were not spread-able. The ability to spread
objects landed 3 years later after it came in for iterables.

Chapter 4 Divide and Conquer with Object and Array Destructuring

54

 ...{

 name: 'Rachael',

 profession: 'Auditor',

 },

};

// prints '{ name: 'Rachael', hobby: 'Gardening', profession: 'Auditor' }'

console.log(rachael);

① Use the spread operator

We start with a simple object, and attempt to construct a new object by spreading

one or more objects into a new object. This example does not differ significantly from

our earlier attempt except for the use of the spread operator instead of Object.assign.

However, the new ...​ syntax for objects does bring us to parity with how we spread

iterables. Once again, the spread operator only copies over the enumerable properties of

the object being spread.

Also note that the spread operator, just like Object.assign, respects the order in

which we supply its sources. If two or more objects being spread happen to have the

same key, the last key wins.

As we discussed in the previous section, the important distinction between Object.

assign and the spread operator is the potential for side effects. Object.assign takes

one target (as its first argument), followed by any number of sources. It then proceeds to

mutate the target, copying the enumerable keys of sources into the target, and return-s

the target object. If the target supplied happens to be an existing object, it is that object

that will be endowed with the keys from the sources, thus changing that object.

On the flip side, the spread operator syntax offers us no such avenue. The very syntax

of the spread operator forces us to spread existing objects into a new object. Putting it

another way, the spread operator syntax encourages immutability.

�Destructuring
In an earlier discussion we deliberated upon the lack of symmetry between structuring

(creation) and destructuring (reaching into) for arrays and objects. We touched upon

several limitations of the existing approach, including the verbose syntax, the inability to

default for “missing” parts, and lack of expressiveness in function signatures to advertise

Chapter 4 Divide and Conquer with Object and Array Destructuring

55

how they are to use their arguments. Now let us consider the new destructuring syntax,

and how it addresses all of these concerns, followed by some of the caveats.

�Array Destructuring
The destructuring syntax for arrays reflects their sequential idiom. Observe.

const rgba = [239, 15, 255, 0.9]; ①
const [r, g, b, a, nonExistent] = rgba; ②
console.assert(r === 239);

console.assert(g === 15);

console.assert(b === 255);

console.assert(a === 0.9);

console.assert(nonExistent === undefined); ③

const [, , blue] = rgba; ④
const blueAgain = rgba[2];

console.assert(blue === b);

console.assert(blueAgain === b);

① We start with an array depicting the rgba value of the color pink

② We reach into the array using the destructuring syntax

③ Reaching for an element that the array does not have an index

for returns undefined

④ If we wish to only reach a particular item in the array, we ignore

other indexes

The destructuring syntax for arrays uses the [] syntax on the left hand, that is,

assignment side of an expression. As we can see, the destructuring assignment permits

us to assign variables in scope positionally just as we would define elements for an array.

Now, the left-hand side of the assignment looks symmetric to the right-hand side. The

syntax also allows us to skip indexes that may not be needed.

We can argue that the value of array destructuring when reaching for just one

element is rather dubious when we could simply make use of the bracket notation, and it

is a valid argument. However, the return of investment when interrogating for more than

one element from an array certainly makes it worthwhile. Regardless, we can accede that

Chapter 4 Divide and Conquer with Object and Array Destructuring

56

operators like the bracket notation, or length still remain relevant, and should be used

as and when deemed appropriate.

Furthermore, looking at the assignment we can attempt to infer7 what the array on

the right-hand side looks like.

Destructuring elements from an array does not violate the semantics that we are

used to when working with the bracket notation. Just as asking an array for an element at

an index that exceeds its size returns undefined, so does destructuring.

Consequently, any attempt to destruct undefined will result in an error. In fact,

destructuring uses the same iterable machinery that the spread operator uses. Therefore,

destructing anything that does not abide by the iterator interface (which we will see

shortly) will result in an error.8

Much like default parameters, we can also default variable assignments in case an

index of interest does not exist within the array like so:

const quadrilateral = [10, 15, 10, 15]; ①
const [q1 = 10,

 q2 = 20,

 q3 = q1,

 q4 = q2] = quadrilateral; ②

console.assert(q1 === 10);

console.assert(q2 === 15);

console.assert(q3 === 10);

console.assert(q4 === 15);

const [sq1 = 10,

 sq2 = sq1,

 sq3 = sq1,

 sq4 = sq1] = []; ③

console.assert(sq1 === 10);

console.assert(sq2 === 10);

7�I must emphasize this. If we had an array with a thousand items in it, but only used destructuring
to ask for the first three elements, all we can infer is the array is at least of length 3, and nothing
more.

8�Since maps and sets are iterables as we discussed before, these too can be destructured just like
arrays, as we will see in a future chapter.

Chapter 4 Divide and Conquer with Object and Array Destructuring

57

console.assert(sq3 === 10);

console.assert(sq4 === 10);

① Start with an array representing a quadrilateral

② Destructure with defaults assuming a rhombus

③ Destructure with defaults assuming a square

Just like default parameters in function arguments, not only can we default a variable

if it does not exist in the originating array, but variables to the right can default to the

values of previously extracted elements!

A function invocation in JavaScript also performs assignment; parameters in the

method signature are assigned to each item in the argument list in turn. Turns out, we

can destructure arrays directly in the method signature, along with defaulting them if

they are not available in the array:

const perimeter = ([s1 = 10,

 s2 = s1,

 s3 = s1,

 s4 = s2] = []) => { ①
 return s1 + s2 + s3 + s4;

};

console.assert(perimeter() === 40); ②
console.assert(perimeter([]) === 40); ③
console.assert(perimeter([15]) === 60); ④
console.assert(perimeter([15, 20]) === 70); ⑤
console.assert(perimeter([15, 20, 18, 23]) === 76); ⑥

① Default the whole array as well as each element in the array

② No argument invocation triggering the default

③ Effectively the same as above

④ Calculate the perimeter of a square

⑤ Calculate the perimeter of a rectangle

⑥ Calculate the perimeter of a trapezium

Everything we learned about default parameters applies here. We can default our

parameters as a whole just like we would with the default parameter syntax, but if the

Chapter 4 Divide and Conquer with Object and Array Destructuring

58

parameter happens to be an array, we can destruct inline, as well as provide defaults to

every element that we are interested in.

The clear upside is that the function signature is much more expressive, at the cost of

being verbose. Formatting certainly helps here, and breaking down individual pieces of

the parameters using new-lines is a well-adopted technique.

Finally, we can leverage the rest parameters as well with array destructuring.9

This allows us to reach into an array to grab all the elements we are interested in, while

simultaneously slurping the rest of the elements into another array.

const movies = ['Momento', 'Batman Begins', 'The Dark Knight'];

const [first, ...rest] = movies; ①
console.assert(first === 'Momento');

console.assert(Array.isArray(rest));

const [head, ...tail] = rest; ②
console.assert(head === 'Batman Begins');

console.assert(Array.isArray(tail));

① rest here is an array containing any unaccounted-for elements

② Recurse into the remaining elements

Like rest parameters for function signatures, usage of the rest pattern for

destructuring must be the last assignment.

As we can see, this proves to be extremely useful in recursive algorithms10:

const or = (...args) => {

 if (args.length === 0) return null;

 if (args.length === 1) return args[0]; ①
 const [first, ...rest] = args; ②
 return first || or(...rest); ③
};

console.assert(or(null, undefined, true, false, '1'));

9�Reginald “Raganwald” Braithwaite has a brilliant article http://raganwald.com/2015/02/02/
destructuring.html that explores destructuring and recursion.

10�This is an instructive exercise in recursion; however, we must be careful when working in this
paradigm with large arrays. If we are to work with large arrays, we might still have to consider
imperatively operating over the array, thus eliminating any chance to blow the stack.

Chapter 4 Divide and Conquer with Object and Array Destructuring

http://raganwald.com/
http://raganwald.com/2015/02/02/destructuring.html
http://raganwald.com/2015/02/02/destructuring.html

59

console.assert(!or(null, undefined, false));

① Edge case detection

② Extract the elements we are interested in

③ Recurse if we need to

Finally, array destructuring can be used with nested arrays. Again, we can remark

upon the symmetry between assignment and construction:

const ticTacToe = [

 ['x', 'o', 'x'],

 ['o', 'x', 'o'],

 ['x', 'o', 'x'],

];

const [

 [cell01] = [],

 [, cell11] = [],

 [, , cell22] = [], ①
] = ticTacToe; ②

console.assert(cell01 === 'x');

console.assert(cell11 === 'x');

console.assert(cell22 === 'x');

① Default an internal array look up in case the index lookup fails

② Nested destructuring

This example highlights a tripping hazard. If we are to recall our earlier discussion,

looking up an index that an array does not possess results in an undefined. This may be

acceptable if the value we seek is at the top level; however, this will result in an error if

this is a nested lookup. Considering we are attempting to destruct undefined, this makes

sense. The sanity check here might be to default the value of the entire (nested) lookup

prior to destructuring it as demonstrated here.

One use-case for destructuring arrays is allow us to pretend that a function returns

more than one value:

const distanceAndSlope = ([x1, y1], [x2, y2]) => {

 const distance = Math.hypot(x2 - x1, y2 - y1);

Chapter 4 Divide and Conquer with Object and Array Destructuring

60

 const slope = (y2 - y1) / (x2 - x1);

 return [distance, slope]; ①
};

const [dist, slope] = distanceAndSlope([4, 3], [10, 12]); ②

console.assert(Number.parseFloat(dist.toFixed(2)) === 10.82);

console.assert(slope === 1.5);

① return an array (or a tuple in this case)

② Destructure to get multiple values out from the return

There are many methods in JavaScript that return an array (RegExp.split comes

to mind), and array destructuring gives us a convenient and an eloquent way to use the

result set of such functions.

Array destructuring is often used for destructing rest parameters. As we have seen,

rest parameters capture all the “extra” arguments into an array, which is spreadable. This

is particularly useful if we wish to treat the first element in the rest parameters arrays

separately from the others. We often see this in recursive solutions, as seen here:

const flatten = ([first, ...rest]) => {

 if (first === undefined) return []; ①
 return !Array.isArray(first)

 ? [first, ...flatten(rest)]

 : [...flatten(first), ...flatten(rest)]; ②
};

const flattened = flatten([

 [1, 2],

 [3], 4, 5, [6, 7],

]);

console.assert(flattened.length === 7);

console.assert(flattened.join() === '1,2,3,4,5,6,7');

① Terminating case

② The essence of “flatten”-ing an array

Chapter 4 Divide and Conquer with Object and Array Destructuring

61

We leverage the fact that if there are no rest parameters supplied, then destructuring

will result in all elements being evaluated as undefined. That acts as the terminating

case for recursion, else we continue with the recursion.

Aside from the clever use of destructuring and the spread operator, this example

highlights how the new syntax introduced in ES6 allows us to approach functional

programming idiomatically in JavaScript. Given a situation to flatten an array, our logical

approach would be look at the first element in the array; if it happens to be an array

itself, start by flattening that array, followed by flattening the remaining elements of

the original array. This algorithm is revealed as-is in our approach. Without imperative

loops, and unnecessary counters, our true intent is revealed in plain sight.

�Object Destructuring
The assignment operator, as one might expect, for objects is {}. Arrays are indexed by

position; however, objects are key-value pairs. Consequently, the lookup mandates that

we specify the keys we are interested in within the assignment. Observe:

const paip = {

 name: 'Paradigms of Artificial Intelligence Programming',

 author: 'Peter Norvig',

 isbn: 1558601910,

}; ①

const {

 name: n,

 isbn: id,

} = paip; ②

console.assert(n === 'Paradigms of Artificial Intelligence Programming');

console.assert(id === 1558601910);

const {

 name,

 isbn,

} = paip; ③

console.assert(name === 'Paradigms of Artificial Intelligence

Programming');

console.assert(isbn === 1558601910);

Chapter 4 Divide and Conquer with Object and Array Destructuring

62

① We start with an object

② The long form of object destructuring

③ The short form of object destructuring

Object destructuring offers us two variants of the syntax. The longer version is useful

when the variables we introduce in scope have names that do not line up with the

keys in the object being destructured. The short form is useful if the names of the new

variables are identical to the keys that they are interrogating.

Syntactically and semantically there is no sharp departure from that of array

destructuring except that for objects we cannot positionally index, but rather we must

specify the keys we are looking for.

Everything that is available to us in array destructuring is available to us

here—undefined returns for nonexistent keys, default values, nested lookups,

and destructuring support in method signatures are all up for grabs using object

destructuring.

One aspect that is not available is the ability for new variables to see previously

declared variables since “previous” implies an ordering, which does not exist for

associative hashes.

Let us explore all of these facets:

const config = {

 size: 200,

 transitionMs: 750,

 clip: {

 width: 200,

 },

}; ①

const {

 size,

 transitionMs,

 clip: { ②
 width: w = 100, ③
 height = 100,

 } = {}, ④
} = config;

Chapter 4 Divide and Conquer with Object and Array Destructuring

63

console.assert(size === 200);

console.assert(transitionMs === 750);

console.assert(w === 200);

console.assert(height === 100);

const drawChart = ({

 size = 200,

 transitionMs = 1000,

 clip: {

 width: w = 100,

 height = 100,

 } = {},

} = {}) => { ⑤
 return [size, transitionMs, w, height];

};

// invoke it

drawChart();

① We start with an object

② Using nested destructuring

③ Defaulted values using both long and short destructuring

format

④ Default the entire nested lookup with a default in case the

original object does not have the key

⑤ Destructuring in function parameters with defaults

Like arrays, objects return undefined if we attempt to look up a key that does not

exist within the object. Once again, it is prudent to default a nested lookup in its entirety

prior to looking up keys within it.

Chapter 4 Divide and Conquer with Object and Array Destructuring

64

�Using Array and Object Destructuring in Combination
Of course, we can mix and match object and array destructuring. Let us revisit our earlier

example to see how we can use a combination of the two to extract the parts we are

interested in:

const user = {

 name: 'douglas',

 profession: 'developer',

 address: {

 street1: '1 Ad Infinitum Drive',

 street2: ",

 city: 'Cupertino',

 state: 'CA',

 zip: [

 '95014',

 '1234',

],

 },

};

const { ①
 address: { ②
 zip: [③
 zip, ④
 extended,

],

 },

} = user;

const final = zip + '-' + extended;

console.assert(final === '95014-1234');

① Destruct the outer object

② Since address is an object itself, we destruct that as well

③ zip happens to be an array

④ Reach for both indexes within zip simultaneously

Chapter 4 Divide and Conquer with Object and Array Destructuring

65

Our intent is to extract the full zip code of the user, the elements of which happen

to be inside an array, nested inside the address object, which in turn is a property

inside a literal JavaScript object. Hence, we must exercise our nested destructuring

skills, carefully peeling apart the original structure to surgically retrieve exactly what

it is that we want. We start by destructuring the outer object, which in turn leads us to

the address key, which we must destruct again to fetch the zip array. Finally, we can

use the array destructuring syntax to fetch the elements that constitute the zip code by

index. Phew!

We have come full circle. Gone are the convoluted lookups and the unnecessary

variables. What remains is simply what we seek. And once again, the symmetry between

structuring and destructuring is revealed.

�Caveats
There remains one final limitation that is specific to destructuring in function signatures.

It just so happens that if we destructure an argument supplied to a function, we lose the

reference to the whole object (or array). In other words, we have a choice—we either

destructure to get the parts we need or we grab the whole object and destructure within

the implementation of the function allowing us to use the whole object further on. While

this may sound like an edge-case, there are times when we need to use parts of an object,

and then send the whole object downstream for further processing. Languages like

Clojure offer the use of the :as keyword as a means to destruct and hold a reference to

the whole object. Unfortunately, JavaScript offers us no such recourse.

�A Small Distinction
The spread and rest operator that works for iterables is different than the one that applies

to objects in that objects are not iterable! While the spread and rest operator look and

behave the same for both iterables and objects, the underlying mechanisms used for the

two are very different. We should treat the spread and rest operator that works for objects

as new syntax vs. treating it as an extension of the operators we work for iterables.

This disparity also reveals itself when we attempt to use the spread operator in

conjunction with multi-arity functions like console.log. Recall that if we have an

iterable (like an array) and wish to supply the contents of the array to console.log,

Chapter 4 Divide and Conquer with Object and Array Destructuring

66

we can simply invoke it using console.log(...​arr). This will “explode” the array,

supplying the items of the array as individual arguments to log. This will not work for

objects, once again a gentle reminder that objects are not iterable, and do not lend

themselves to all of the use-cases that work for iterables.

�Summary
The spread operator as we have seen provides us with a very powerful mechanism to

get at all the elements of an array in one fell swoop. This proves particularly useful when

working with multi-arity functions, as well as when creating and/or concatenating arrays

from other arrays.

The destructuring syntax on the other hand provides us a means to interrogate data

using a domain-specific language (DSL) that resembles the syntax that we use to create

objects in the first place. Consequently, this DSL proves to be just as expressive, and with

additional functionality such as defaulting missing properties (and indexes), this is yet

another useful tool in our JavaScript toolkit.

In the next chapter, we will shift directions, and look at a new mechanism to define

strings that helps simplify creating both dynamic and multiline strings.

Chapter 4 Divide and Conquer with Object and Array Destructuring

67
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_5

CHAPTER 5

Formatted Strings Using
Template Strings
�Introduction
Ever tried to create a dynamic string in JavaScript that involved interpolating more

than one variable at a time? I always seem to mess up the + and the quotes somehow.

And heaven forbid we must format it in a particular way with new-lines and

indentation. Also, let’s not talk about ever changing that once we get it written out,

shall we?

In this chapter we will forever forgo string concatenation in lieu of template strings

which allow us to lay out strings that interpolate variables and expressions in a clear and

declarative manner. We will also explore tag functions, which can be used to create DSLs

in JavaScript. I assure you that by the end of this chapter, you will be itching to refactor

every string in your codebase to use template strings. You might even walk away with

some ideas on how you can whip up your own DSL!

68

�The Trouble with Forming Formed Strings
JavaScript has the String primitive, and supports constructing strings literally using

single quotes or double quotes.1 However, while this works for constructing strings

that are static, they prove to be rather cumbersome to work with when building strings

programmatically. Consider the following:

const salutation = 'Mr.';

const name = 'Edgar';

const middle = 'Allen';

const last = 'Poe';

const fullName = (salutation ? salutation + ' ' : ") ①
 + name + ' ' + middle.trim() + ' ' + last; ②
// prints 'Mr. Edgar Allen Poe'

console.log(fullName);

① Ensure we need to put in a salutation if provided

② Compose the full name ensuring no middle name if there

isn’t one

As we can see, the intent of what it is we are trying to accomplish is lost as we attempt

to distinguish between the “static,” or fixed pieces of the string, and the “dynamic,”

or variable pieces of the string. This problem, of course, is further accentuated if the

dynamic pieces happen to contain function or method calls, conditionals, or looping

constructs.

Many modern JavaScript (and single-page application) frameworks like Angular

allow us to embed HTML in the same files as JavaScript (or TypeScript). HTML, like our

JavaScript code, is best written and more importantly maintained if it is formatted correctly.

1�Idiomatically the JavaScript community has leaned toward using single quotes, leaving double
quotes for usage scenarios like writing JSON, and situations where we might write HTML in
JavaScript. This pattern has found itself codified in popular linters, such as Airbnb’s (https://
github.com/airbnb/javascript/blob/96317f8c79d6c5a6e9478a49eb89770863c4e6e1/README.
md#strings%E2%80%94%E2%80%8Bquotes).

Chapter 5 Formatted Strings Using Template Strings

https://github.com/airbnb/javascript/blob/96317f8c79d6c5a6e9478a49eb89770863c4e6e1/README.md#strings%E2%80%94%E2%80%8Bquotes
https://github.com/airbnb/javascript/blob/96317f8c79d6c5a6e9478a49eb89770863c4e6e1/README.md#strings%E2%80%94%E2%80%8Bquotes
https://github.com/airbnb/javascript/blob/96317f8c79d6c5a6e9478a49eb89770863c4e6e1/README.md#strings%E2%80%94%E2%80%8Bquotes

69

Given that our only available option is string concatenation, we are forced to participate in

interpolation and indentation machinations2:

const title = 'Section Title'; ①
function HelloComponent() { };

HelloComponent.annotations = [new ng.core.Component({

 selector: 'app-hello-world',

 template: '<article class="content">' + ②
 '<section class="section">' +

 '<div class="col-md-12">' +

 '<div class="card">' +

 '<div class="card-block">' +

 '<div class="card-title-block">' +

 '<h3 class="title">' + title + '</h3>' + ③
 '</div>' +

 '</div>' +

 '</div>' +

 '</div>' +

 '</section>' +

 '</article>'

})];

① Declare a variable

② Attempt to construct a rather elaborate string using string

concatenation

③ Use the variable inline

Good programmers do not let their friends review badly formatted code. Thus,

we are not only forced to break up lines using the + operator, we also need to ensure

that our code is correctly indented. However, in this case, our editor assumes this to

be JavaScript, not realizing that it is actually HTML embedded in JavaScript and will

2�Angular 6+ strongly enforces the use of TypeScript as the lingua franca. TypeScript is a super-set
of JavaScript and supports everything we speak of in this book. However, this example reveals
how one would write a component for Angular using plain old ES5 JavaScript. Although this
practice is now discouraged, the essence of the problem remains untarnished, thus serving as a
good illustration of the limitations of JavaScript strings.

Chapter 5 Formatted Strings Using Template Strings

https://www.typescriptlang.org/

70

proceed to re-indent all of the code if asked to do so (if it does not do it automatically!).

Of course, this concern extends itself to almost any embedded DSL, wherein we have a

conflation of interpolated variables, and formatting.

Given what we have, we resort to string concatenation, an archaic interpolation

mechanism, all while painstakingly hitting the Enter key at appropriate line lengths in

the hope that our linting tool will not fail our build because we left one too many lines

badly formatted.

Well, our worries are over. ES6 introduces template literals, and as an extension,

tagged template literals.

�Template literals
Template literals introduce more syntax, namely the back-tick, or ` as a mechanism

to declare strings, and additionally, placeholder syntax, namely ${}, to support

interpolation of variables and expressions. Template literals make it easier to compose

strings consisting of both literal strings and expressions in-line that are to be evaluated

as part of the string creation. Consider the following:

const greeting = 'Hola'; ①
const name = 'Daniel';

const msg = `${greeting}! My name is ${name}`; ②

① Introduce some constant placeholders

② Compose a string using a template literal with variable

interpolation

The template literal literally lays out a string, minus the hoops one has to jump

through with meticulously placed + operators. Appropriately named variables used in

interpolation within the ${} can aid in furthering readability.

The interpolation syntax accepts any expression—be that function calls, math

operations, or even ternary expressions.3

3�Recall that an expression always evaluates to something. Statements, such as if conditions, for/
while loops, and switch-case, on the other hand, do not evaluate to anything, and thus do not
qualify to be used in template literals.

Chapter 5 Formatted Strings Using Template Strings

71

Template literals can also be used to lay out multiline strings. If used in this manner,

they retain the layout upon evaluation. Given that many modern editors and IDEs

already support ES6 syntax, having them auto-format your code means that we no

longer lose our layout. Let us see how this were to look if we were to revisit our Angular

component example:

const title = 'Section Title'; ①
function HelloComponent() { };

HelloComponent.annotations = [new ng.core.Component({

 selector: 'app-hello-world',

 template: `

 <article class="content"> ②
 <section class="section">

 <div class="col-md-12">

 <div class="card">

 <div class="card-block">

 <div class="card-title-block">

 <h3 class="title">${title}</h3> ③
 </div>

 </div>

 </div>

 </div>

 </section>

 </article>`

})];

① Declare a variable

② Use a template literal to compose a string

③ Interpolate a variable inline

Template literals retain all the formatting we introduce within the back-ticks. In our

example our string starts with a newline character, with every line following it indented

with two spaces. If we were to simply print it out using console.log, we will see that the

template literal remains true to its word. Again, aided by the fact that most editors now

support ES6 syntax, it is easy to spot where we are laying out strings literally, as opposed

to where we are using the interpolation syntax.

Chapter 5 Formatted Strings Using Template Strings

72

There is one limitation of the interpolation syntax, and that is, we cannot nest

interpolations. Let us look at an example:

// for illustrative purposes _ marks a whitespace

{

 const name = 'Edgar';

 const middle = 'Allen';

 const last = 'Poe';

 // prints 'Edgar_Allen_Poe'

 console.log(`${name} ${middle} ${last}`); ①
}

{

 const name = 'Emily';

 const middle = ";

 const last = 'Dickinson';

 // prints 'Emily__Dickinson'

 console.log(`${name} ${middle} ${last}`);

 // prints 'Emily__Dickinson' ②
 console.log(`${name} ${middle.trim()} ${last}`);

 // console.log(`${${name} ${middle}}.trim() ${last}`); ③
 // prints Emily_Dickinson

 console.log(`${`${name} ${middle}`.trim()} ${last}`); ④
}

① Works in an ideal case

② Oops! One too many whitespaces

③ Attempting to nest interpolations will not work

④ We can take advantage of the fact that template literals evaluate

to strings

In our ideal case, every candidate has a first, middle, and last name. However, in the

case where we do not have a middle name, blindly concatenating strings without a trim

in the right places results in one too many spaces. Also, note that our attempt to trim the

middle name is also misplaced—trimming the middle name aids in reducing redundant

whitespace if the name itself consisted of trailing whitespace. However, it does nothing

for the space around an empty middle name.

Chapter 5 Formatted Strings Using Template Strings

73

What we would like to do is concatenate the first and middle name, trim to eliminate

any redundant whitespace, and only then tack on the last name.

Since we cannot nest interpolations, we are forced to take a different tack. We can

leverage the fact that template literals evaluate to their resultant strings—thus we can

nest template strings within template strings—and in a slightly convoluted way, nest

interpolations.

While one might object to the readability of nested template strings, and that

objection is well justified, it is not uncommon to see it, especially in light of tagged

literals, as we will see soon.

Another limitation is the interpolation syntax is ${}, in that, the $ and the {} are

required. Many languages like Ruby allow you to skip the {} if simply evaluating a

variable, whereas mandate them when evaluating any expression.

What if we wanted to have a back-tick, or a $ sign as a literal? Simple enough. Just

escape them using a backslash, as shown here:

const escapingLiterals = `Template strings introduce \`\` and use $\{} for

interpolation`;

// prints 'Template strings introduce `` and use ${} for interpolation'

console.log(escapingLiterals);

Template literals solve the problem of composing strings quite elegantly—allowing

us to express how a string is to be formed and formatted succinctly. But there is even

more good news! ES6 affords us yet another facility that works with template strings,

namely tagged literals. Let us look into these next.

�Tagged Literals
Tagged literals allow us to use “tags,” or tag functions, in conjunction with template

literals, so that we can affect the resulting string and produce more than what we might

be able to accomplish with template literals alone.

Let us take a step back and see how template literals work. There are two aspects of

a template literal that we can use to change the resultant string—how we concatenate

and what we can do with the variables that we interpolate within the template. Consider

a situation in which we interpolate string variables within a template string—the

manner in which we affect the result depends on what the string object is capable of.

Chapter 5 Formatted Strings Using Template Strings

74

For example, we could invoke the toUpperCase method and have a rather effervescent

message displayed, like so:

const greeting = 'Hello';

const name = 'Sylvia';

const msg = `${greeting.toUpperCase()}! My name is ${name}!`;

If we were to tease apart the constituent parts of a template string, we see that there

are two parts to the equation—the “static” pieces of the string and the “dynamic” pieces

of the string. We can envision these as two arrays, like so:

Static vs. dynamic pieces of template strings

const greeting = 'Hello';

const name = 'Sylvia';

const msg = `${greeting}! My name is ${name}!`; ①
// ___________-------------_______- ②

const fixedStrings = [", '! My name is ', '!']; ③
const values = ['Hello', ' Sylvia']; ④

① A template string interpolating just two variables

② - denote fixed parts, _ represent dynamic parts

③ The parts of the string that are fixed represented as an array

④ The dynamic, or evaluated pieces of the template string

Just like we did here, we can take any template string, and splice it neatly into two

arrays. Furthermore, if we interleaved these two arrays—taking the first item from the

fixedStrings array, concatenating it with the first value from the values array, and

proceeding till we run out of items—we can reconstitute the template strings ourselves!

Tag functions allow us to do exactly this. They let us intercept the evaluation of the

template string by giving us a reference to the constituent parts of the template—the

fixed and dynamic pieces, and whatever the return value of the tag function happens to

be, is neatly slotted in where we invoked it.

We will start with a simple example, in which we will implement the functionality

offered to us by template strings themselves. This will give us an opportunity to

understand how to use tag functions, and inspect their signature:

Chapter 5 Formatted Strings Using Template Strings

75

const handler = (strings, ...values) => { ①
 const interleave = (arr1, arr2) =>

 arr1.reduce((arr, v, i) => arr.concat(v, arr2[i]), []);

 return interleave(strings, values).join(");

};

const greeting = 'Hello';

const name = 'Ernest';

const msg = handler`${greeting}! My name is ${name}.`; ②
// prints 'Hello! My name is Ernest.'

console.log(msg);

① Declare a tag function

② Invoke the tag function, handing it a template string

Tag functions have a unique invocation pattern, in that, unlike regular functions

that must wrap their arguments in parenthesis, tag functions simply accept a template

string in-line. JavaScript splits the template string into its fixed and dynamic parts,

passing them into the tag function separately—all of the fixed parts are sent in as the

first argument as an array, with the interpolated values sent in consecutively in the same

order as they appear in the original template. Thus, in our example, strings is an array

of the fixed parts, and we simply capture all of the remaining arguments into an array

using the variable arguments syntax.

The rest is simple—simply interleave the two arrays, starting with the first item of the

strings array, followed by one from the values array, and proceed till we reach the end

of the strings array, and return the result.

If you were to try this out in the console, you will see that you can supply it any

template string, and it will return the string just as if were evaluated by JavaScript.

So far, we have implemented something that JavaScript already does for us, so

perhaps you are not convinced why tag functions are a good idea. Let us attempt a

slightly more elaborate example—there is a very popular extension for many editors

called Emmet.4 Once installed, it allows one to write HTML (and CSS) incredibly fast by

providing a highly abbreviated syntax that unfolds into valid HTML code. Emmet goes

one step further, placing the cursor in the right position after expansion, allowing us the

4�https://emmet.io/

Chapter 5 Formatted Strings Using Template Strings

https://emmet.io/
https://emmet.io/

76

type in the inner HTML. Consider the following examples, where the comments express

what a developer would type in their editor that supports Emmet, followed by the Tab

key, to see what Emmet would convert the text into (with the _ revealing where the

cursor would be placed by Emmet):

<!-- h3.title -> TAB -->

<h3 class="title">_</h3>

<!-- h3.title.content -> TAB -->

<h3 class="title content">_</h3>

<!-- h3.title.content#main -> TAB -->

<h3 class="title content" id="main"></h3>

Emmet syntax is obviously inspired by CSS selectors, such as those that are accepted

by document.querySelector and jQuery. Emmet is an interactive medium, in that it

can place the cursor at the appropriate spot for the developer to type in the text that

represent the innerHTML for the element.

What if we wanted to do something similar programmatically, wherein we could

supply Emmet inspired syntax, and our code would expand it into the appropriate

HTML? Of course, we need a way to express the innerHTML of the element, since we

are going to actually write out all the HTML and don’t have the luxury of appropriately

placing a cursor, so we are going to pull a fast one. We will use template literals and

tag functions, with one restriction—the innerHTML to the element has to be supplied

as an interpolated variable at the end of the template string. In other words, h1.

title${someVar} is valid, but h1.title.content${someVar}#main is not. This will

let us know which parts compose the HTML element, and what text to place in as the

innerHTML.

Finally, given h1.title${someVar} where someVar evaluates to some text the tag

function should return <h1 class="title">some text</h1>. Ready?

function ele([strings], ...values) { ①
 const str = strings.trim();

 // assume anything before the FIRST . or # to be the name of the element

 const [element] = str.split(/[.#]/); ②

 // �split the remainder of the string into parts using . or # as the

delimiter

 // this will grab everything between a '.' or '#' and the next '.' or '#'

Chapter 5 Formatted Strings Using Template Strings

77

 const attrs = str.match(/[.#](?:[^.#]+)/g); ③

 let idStr = ";

 let classStr = ";

 if (attrs) { ④
 // find all ids supplied

 // if multiple ids were supplied just use the last one

 const id = attrs

 .filter(a => a.startsWith('#'))

 .pop(); ⑤
 // do not compose id string if no ids were supplied

 idStr = id

 ? `id="${id.substring(1, id.length)}"` ⑥
 : ";

 // find all classes supplied

 const classes = attrs

 .filter(a => a.startsWith('.'))

 .map(v => v.substring(1, v.length)); ⑦
 // do not compose class string if no classes were supplied

 classStr = (classes.length > 0)

 ? `class="${classes.reduce((acc, v) => `${acc}${v} `, ").trim()}"` ⑧
 : ";

 }

 const adornedElement = [element, idStr, classStr]

 .reduce((acc, v) => `${acc} ${v}`.trim(), "); ⑨
 return `<${adornedElement}>${values.join(")}</${element}>`; ➉
}

const heading = 'Hello Template Handlers';

// prints '<h1>Hello Template Handlers</h1>'

console.log(ele`h1 ${heading}`);

// prints '<h1 id="main">Hello Template Handlers</h1>'

console.log(ele`h1#main ${heading}`);

// prints '<h1 class="title">Hello Template Handlers</h1>'

console.log(ele`h1.title ${heading}`);

Chapter 5 Formatted Strings Using Template Strings

78

// prints '<h1 id="main" class="title content">Hello Template Handlers</h1>'

console.log(ele`h1.title.content#main ${heading}`);

// prints '<h1 id="main" class="title content"><div>Hello Template

Handlers</div></h1>'

console.log(ele`h1.title.content#main ${ele`div${heading}`}`);

// prints '<h1 id="main" class="title content"><div class="banner">Hello

Template Handlers</div></h1>'

console.log(ele`h1.title.content#main ${ele`div.banner${heading}`}`);

① Our Emmet compliant tag function

② Assume the name of the element to be the first thing in the

supplied string

③ Use a regular expression to get all class/Ids markers

④ Nothing to do if it just a plain element with no attributes

⑤ Get the id, and if multiple ids were supplied, take the last one

⑥ Build the id="" string

⑦ Filter for all attributes starting with .

⑧ Build the class="" string

⑨ Build the opening tag string with id/class specified

➉ Write out the full element including its innerHTML and return it

There is a lot going on here, so let us take it one step at a time. Given the constraints

we have placed on the usage of our tag functions, we know that the array containing the

element description will be a single element array. Hence, we destructure the same to

get that one and only element and trim it to eliminate any superfluous whitespace.

We also know that the string consists of an element name followed by class (.) and id (#)

selectors, so we can use split to get anything before the first appearance of a selector

and treat that as the name of the HTML element we are to produce.

Next, some regular expression magic to grab every selector that was supplied after

the element name into an array. So, if the user were to supply h1.title.content#main

then the regular expression would split this into an array that looks like ['.title',

'.content', '#main']. We first filter this array to find all the IDs supplied by the user,

Chapter 5 Formatted Strings Using Template Strings

79

and if there were more than one (which is illegal), we simply take the last one supplied,

thereby emulating the behavior of Emmet, and compose the id= string. However,

multiple classes are allowed, so we filter our array for all the supplied classes and

compose the class= string.

The rest is easy—simply bring together the name of the element, the id, and class

string, ensuring we are interjecting the innerHTML content (supplied as interpolated

variables), and return the fully composed element.

We must highlight a few things about our implementation. First, we use template

strings within our function to construct other strings. In so far as a tag function is

concerned, other than having an explicit signature, they are just like regular functions.

Secondly, as we can see in the examples, we can nest other (tag) function invocations,

allowing us to create nested element structures. Since JavaScript has to first evaluate

every interpolated expression prior to composing the string, in effect, nested calls to our

tag function cause the final string to be built inside out—with the innermost invocation

happening first, then moving outward.

Admittedly our implementation is not going to win any awards any time soon.

It cannot handle sibling elements (which Emmet supports with the + operator) or

creating n number of elements simultaneously (Emmet does this with the ∗ operator).

However, it does allow us to get some insight into the power of template literals and tag

functions, and what they are truly capable of.

Tag functions, along with template strings offer a variety of use-cases, including

aiding with internationalization and localization, language translation, and sanitation

of user input, where the core essence is transforming a string from one form into

another. We could even extend our emmet tag function to emulate behavior exhibited

by template languages like JSX5 from React. Libraries like styled-component6 and html-

tagged-template7 offer great ideas and incentives for us to consider template literals for

many common day-to-day use-cases.

Can you think of any situation where you can eliminate redundancy in your code by

introducing such a DSL? How about times where you might be pretty-printing objects for

debugging purposes? Or displaying data in a particular format, like locale-specific dates

and/or currencies?

5�https://reactjs.org/docs/introducing-jsx.html
6�https://github.com/styled-components/styled-components
7�https://github.com/straker/html-tagged-template

Chapter 5 Formatted Strings Using Template Strings

https://reactjs.org/docs/introducing-jsx.html
https://github.com/styled-components/styled-components
https://github.com/straker/html-tagged-template

80

�Summary
Generating strings that interpolate variables has always been a tedious affair, and

template strings aim to alleviate the pain by providing a literal that not only makes it

easier, but also has support for multiline strings. Tag functions, on the other hand, allow

us to intercept how construction of template strings, allowing for some rather interesting

use-cases.

In the next chapter we will switch our attention back to objects and arrays. Objects

and arrays have served us well so far, but those of us who come from other languages, we

often reminisce about data-structures such as maps and sets, and the lack of such data-

structures in JavaScript. That is to be the topic of our next chapter. Alongside we will see

how the spread operator and destructuring work hand in hand with these as well.

Chapter 5 Formatted Strings Using Template Strings

81
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_6

CHAPTER 6

Maps and Sets—The New
Data-structures on
the Block
A programming language must provide us with all of the necessary constructs that

empower developers to model their domain and problem space clearly and efficiently.

Till date, JavaScript lacked support for two fundamental types that most other languages

offer, namely maps and sets. This changes in ES6.

In this chapter we will explore the use-cases for two new data-structures introduced

in ES6, namely Maps and Sets. We will start with their construction and understand their

API, and even take a look under the hood to see how they are implemented. By the end

of this chapter, we will have a complete understanding of how and when we can leverage

maps and sets in our code, and when it is best to avoid them.

�Why Objects are Not Enough
JavaScript offers us two “collection”-like objects—objects (represented via the {} literal)

and arrays (represented using the [] literal). Objects, often referred to as associative

arrays, or dictionaries provide lookup via keys. Arrays on the other hand provide a

sequential data-structure that provide efficient random lookup via indexes.

82

Objects and arrays, while useful, do not prove to be sufficient for all use-cases.

One limitation of objects serving as a true key-value store is that object keys are strings.

In other words, the “type” of the key is not retained when used in an object. This can be

trivially demonstrated:

const obj1 = {

 'true': 'String',

 true: 'Boolean',

}; ①

console.assert(obj1[true] === 'Boolean'); ②

const obj2 = {

 true: 'Boolean',

 'true': 'String',

}; ③

console.assert(obj2[true] === 'String'); ④

① Create an object with two seemingly different keys

② Interrogate the object for a key with a type

③ Swap the order of key value pairs with no other change

④ The same lookup is now different

This is patently clear to anyone (which is all of us) who has ever serialized a

JavaScript object to JSON.

Given this limitation, if we needed to retain the type of the key we had no recourse.1

ES6 in response offers us maps and sets. Maps, much like objects, are key-value

stores; however, they retain the types of their keys, proving to be closer to maps offered

in other languages. Sets on the other hand fill in a role that prior to ES6 had developers

resorting to lots of === checks against entries in arrays, resigning to using only strings as

“unique entries” in objects, or if all failed, reaching out for third-party libraries2 to fulfill

their needs.

Our quest ends here. We start by exploring maps, followed by sets.

1�Arrays too store their indexes as strings.
2�http://code.google.com/p/jshashtable

Chapter 6 Maps and Sets—The New Data-structures on the Block

http://code.google.com/p/jshashtable

83

�Maps
Maps, much like objects, present a lookup via a key, with the difference being that maps

retain the type of the key (vs. coercing them into strings like objects do). Maps offer us a

constructor as a means to create new maps. Unlike arrays and objects, they do not offer

us a literal for construction, which has an implication on their serializability (which we

will see soon). Maps also offer us a comprehensive API to add, update, and delete key-

value pairs within the map, all of which are demonstrated here:

Map key-value API

const obj = {};

const map = new Map(); ①

map.set('string', 'is a string'); ②
map.set(true, 'is a boolean');

map.set(1, 'is a number').set(obj, 'is an object'); ③

console.assert(map.has(1)); ④
console.assert(map.get(obj) === 'is an object'); ⑤

map.set(1, 'overrides first'); ⑥
console.assert(map.get(1) === 'overrides first'); ⑦

console.assert(map.delete('string')); ⑧
console.assert(map.has('string') === false);

console.assert(map.delete({}) === false); ⑨

① Constructor to create a map

② set a key

③ set is a fluent API returning the map itself

④ has implies possession

⑤ get is the interrogation API

⑥ Forcing a collision causes the previous value to be overwritten

⑦ Last one wins

⑧ If an existing key is deleted then the map returns true

⑨ Deletion of a nonexistent key

Chapter 6 Maps and Sets—The New Data-structures on the Block

84

The Map API provides us with all we need to work with keys and values. The set API

being fluent certainly proves to be a worthy ally, allowing to avoid some of the verbosity

that results if that were not the case. Collisions are handled as we might expect, and

finally, we can use the delete API to remove a key-value pair from the map, which

returns true if the key was indeed deleted from the map (delete will return a false if the

key did not exist, thereby having nothing to delete).

At a higher level there are APIs that let us work with the map as a whole, allowing us

to get all entries, the count of entries, even clear the map if we wish to do so:

const map = new Map([①
 ['s', 'is a string'], ②
 [true, 'is a boolean', 'willBeIgnored'], ③
 [1], ④
 [], ⑤
]);

console.assert(map.size === 4); ⑥

console.assert(map.get('s') === 'is a string');

console.assert(map.get(true) === 'is a boolean');

console.assert(map.get(1) === undefined);

console.assert(map.get(undefined) === undefined);

console.assert(map.has(undefined));

map.forEach((v, k) => console.log(v, k)); ⑦

console.log(map.entries());

console.log(map.keys());

console.log(map.values()); ⑧
map.clear(); ⑨
console.assert(map.size === 0);

① Alternative constructor taking an iterable

② Tuple representing key-value pairs

③ Extra elements in tuples are discarded

④ Only key, so value is set to undefined

Chapter 6 Maps and Sets—The New Data-structures on the Block

85

⑤ Both key-value pairs are missing

⑥ Slightly discombobulating property to interrogate for count

⑦ Functional API to iterate over key-value pairs

⑧ All of these return iterators

⑨ An API to clear the map and set its size to zero

Maps offer another helpful constructor that can use any “iterable” to create maps

out of. A common idiom is to supply the constructor with an array of arrays. Each nested

array is assumed to be a two-value tuple, representing key and value. If the nested array

contains only one item, then the value is set to undefined. If the array contains more

than two items, then all extra elements are ignored. Finally, if the array is empty then

both key and value are set to undefined. If the supplied array produces no collisions,

then the resulting map will have its keys ordered in the same manner as the array, and

the size of the resulting map will be equal to the length of the array.

Interestingly maps retain the insertion order of their entries, specifically the order

in which the keys were added. However, if there happens to be a collision, then the new

value overrides the previous value at the location where the key exists. That is, they act

very much like arrays except their “indexes” happen to be of any type.

Since maps maintain order, they allow us to iterate over their entries with methods

like forEach, as well as the entries API which returns one key-value pair at a time,

wrapped in an array of length 2 represented as [key, value]. Maps also expose a keys

and a values API, which, as their names suggest, return an array of the keys and values

in the map, in insertion order.

Maps, like arrays abide by the “iterator” contract, which as we have discussed earlier,

allows maps to be spreadable using the … operator, and consequently be destructured.

Maps as we have seen can be created using an array of arrays; conversely spreading a

map, as one might deduce, explodes a map into an array of arrays, with each array being

a tuple of key and value, and the encompassing array reflecting the order of insertion,

and its length being the size of the map.

const firstQuarter = new Map([

 [1, 'Jan'],

 [2, 'Feb'],

 [3, 'Mar'],

 [4, 'Apr'],

]); ①

Chapter 6 Maps and Sets—The New Data-structures on the Block

86

const mapToStr = [...firstQuarter].join(':'); ②
console.assert(mapToStr === '1,Jan:2,Feb:3,Mar:4,Apr');

const [

 ,

 [n2, m2],

 [n3, m3],

] = firstQuarter; ③

console.assert(n2 === 2);

console.assert(m2 === 'Feb');

console.assert(n3 === 3);

console.assert(m3 === 'Mar');

① Create a map

② Explode a map into an array

③ Destruct for the second and third entries

Given that maps are iterable, and that the Map constructor expects an iterable, proves

to be very convenient when we attempt to create new maps from existing maps. This is

even handier when creating new maps that happen to be the union of other maps:

const nihar = new Map([

 ['car', 'mazda'],

 ['residence', 'apartment'],

]);

const ericka = new Map([

 ['pet', 'oscar'],

 ['residence', 'house'],

]);

const union = new Map([...nihar, ...ericka]); ①

console.assert(union.get('car') === 'mazda');

console.assert(union.get('residence') === 'house'); ②
console.assert(union.get('pet') === 'oscar');

Chapter 6 Maps and Sets—The New Data-structures on the Block

87

① Union of two maps

② “last one in” mantra

We start with two separate maps, and then attempt to construct a new one by

leveraging the fact that maps are “spreadable”, and that the map constructor can utilize

an array to construct a new map. Notice that in this case, the array that is passed to the

constructor has four entries; however, as the map attempts to add each entry to the new

map, it detects a collision when encountering the residence key. Thus, the resulting

array will have house as the value for the residence key.

To round out maps, let us answer the pertinent question that still remains to be

answered—what deems two keys to be the same? The answer lies in the === operator.

If upon a set any existing key in the map returns true for a === test against any of its

keys, that is deemed a collision, and the value for that key will be set to the new value.

Otherwise, a new key-value entry is inserted at the end of the map.

�Caveats
There aren’t too many caveats associated with maps. The API is comprehensive and does

all we expect a map to do.

However, the first strike is the lack of a literal. This forces us to use the constructor,

and seems to be against the grain of how we usually work with objects and arrays. There

are many reasons not to use constructors in JavaScript3 but alas, no recourse for us here.

Let us observe this dichotomy with a simple example:

const kiran = { ①
 name: 'kiran',

 profession: 'pharmacist',

};

const favFruits = [②
 'mango',

 'guava',

 'pineapple',

];

3�JavaScript Patterns by Stoyan Stefanov [O’Reilly, 2010].

Chapter 6 Maps and Sets—The New Data-structures on the Block

88

const numbersInHindi = new Map(); ③
numbersInHindi.set(1, 'ek').set(2, 'do').set(3, 'teen');

① Objects offer us the literal {} syntax

② Similarly arrays offer us the [] literal

③ We are forced to use the constructor

The second concern involves serializing (and deserializing) to (and from) JSON. The

JSON specification4 accommodates only two data-structures—objects and arrays.

Consequently, using JSON.stringify on any map does not do what one would expect.

Turns out, the closest we can get to a serialized version of a map is to treat it as an

array of arrays. On the other end, we can simply JSON.parse the string we receive, and

hand it to the map constructor to create a new map out of it. Observe:

const nihar = new Map([

 ['car', 'mazda'],

 ['residence', 'apartment'],

]);

const mapToJson = map => JSON.stringify([...map]); ①
const jsonToMap = mapStr => new Map(JSON.parse(mapStr)); ②

const serialized = mapToJson(nihar);

// prints '[["car","mazda"],["residence","apartment"]]'

console.log(serialized);

const deserialized = jsonToMap(serialized);

// prints 'Map { 'car' => 'mazda', 'residence' => 'apartment' }'

console.log(deserialized);

① Handy function to serialize a map

② The converse of serializing

Wrapping the serializing/deserializing logic into utility functions can prove to be

beneficial as we will see soon. Also, turns out, maps “iterability” proves once again to be

our friend.

4�http://json.org/

Chapter 6 Maps and Sets—The New Data-structures on the Block

http://json.org/

89

However, if this has you a tad concerned, then you are not alone. The lack of support

for maps at the data-exchange layer shifts the onus of knowing what is or isn’t a map to

the application layer. In other words, simply looking at the JSON in no way suggests that

something should be read in as a map vs. simply being an array of arrays.

Furthermore, we can no longer simply use JSON.stringify on an object or an array

if there is a chance that it contains a map! We are now forced to interrogate all the values

and if it happens to be a map, use our handy functions to first serialize that value, and

only then serialize the parent. Alternatively we could try to use a third-party library5 to

do the conversion for us.6

The catch here is that keys for maps can be of any type, including references. Let us

contrast this with serializing objects; keys in objects are always strings, which evaluate to

themselves. Therefore, serializing an object key simply distills down to putting the string

itself in JSON. Not so much with maps! If we were to use an object reference as a key in a

map, and that reference were to be serialized, upon deserialization that reference is lost!

Consider the following:

const obj = {

 name: 'some object',

};

const map = new Map([

 [obj, 'value against an object key'],

]);

const mapToJson = m => JSON.stringify([...m]);

const jsonToMap = mapStr => new Map(JSON.parse(mapStr));

const serialized = mapToJson(map); ①
// prints '[[{"name":"some object"},"value against an object key"]]'

console.log(serialized);

const deserialized = jsonToMap(serialized); ②
// prints 'Map { { name: 'some object' } => 'value against an object key'

}'

5�https://github.com/JSON8/JSON8#ooserialize
6�Even this does not quite do it for us. At the time of writing, this JSON can only serialize maps if
their keys are strings. The reason for this I will explain next.

Chapter 6 Maps and Sets—The New Data-structures on the Block

https://github.com/JSON8/JSON8#ooserialize

90

console.log(deserialized);

console.assert(deserialized.get(obj) === undefined); ③

① Serialize a map containing an object reference as a key

② Deserialize it back into a map

③ Lookup for the object reference fails

The only way to get back a reference to a key that itself happens to be an object

reference after deserializing from JSON is to iterate over the keys of the map and grab a

reference to it. Which completely defeats the purpose of a key lookup!

So, is there a real use-case for maps? Absolutely. As long as we do not intend to

serialize the map, they are useful. They give the flexibility that otherwise is not permitted

in plain old JavaScript objects (POJOs). Of course, if you do plan on serializing, then it

best be that all the keys are themselves serializable (in other words, strings) so that we

can “refind” them. If that is not a viable option, then you are better off just using POJOs.

�WeakMaps
ES6 introduces another variant of maps, namely WeakMaps. We won’t spend too much

time with weakmaps, except to highlight how they differ from regular maps.

The first difference is that keys in WeakMaps have to be objects; primitives are not

allowed.7

The second difference lies in how weakmaps hold on to their keys. (Regular) Maps

maintain a “hard” reference to their keys. For expository purposes, let us assume we

had an object, and we used that object as key in a regular map. If we were maintaining a

reference count of the number of references to that object, we would have to increment

it by one. In other words, even if every other reference to that object were lost, the object

cannot be garbage collected because the reference count stands at one—the one being

the one the map holds on to. In order to make that key and its associated value available

for garbage collection, we have to explicitly delete it from the map. Consider the

following:

7�Symbols, a new data type introduced in ES6 which we will cover soon are also not allowed.

Chapter 6 Maps and Sets—The New Data-structures on the Block

91

let obj = {

 name: 'some object',

}; ①

const map = new Map([

 [obj, 'value against an object key'], ②
]);

console.assert(map.has(obj));

obj = null; ③

console.assert(map.size === 1); ④

① A reference to an object

② Use that reference as the key in a map

③ Drop the reference to the object

④ Map continues to hold the reference

On the other hand, weakmaps do not hold a hard reference to any of their keys.

Instead, they hold on to their keys “weakly.” One way to think about weak references is

that they are too weak to force the “reference” object to stay in memory. This allows for the

objects that act as their keys to be garbage collected if all other references to the key are lost.

Let us break this down. Let’s say we have a DOM element we wish to associate some

additional data with using an array. Sounds like an ideal place for a map, right? So, we

use the DOM element as the key in a map, and the associated array as its value. Now

anytime we want to retrieve the data we simply get the DOM element from the map and

voilà, we have what we need. Perfect.

Now, some user interaction causes the element to be deleted from the DOM thus

eliminating the need to hold on to the array. With the map holding a (hard) reference to

that DOM element, the garbage collector cannot collect it, leaving it incumbent on us,

the developers, to remember to delete the key from the map. If we were to forget, well

there’s our memory leak!

This is an ideal scenario for a weakmap. If instead we had used a weakmap to store

the DOM to array key-value pair, upon deletion of the DOM element, the weakmap

would allow the garbage collector to sweep away the key, and consequently the array

associated with it. We are freed from having to remove the reference and its associated

data from the map.

Chapter 6 Maps and Sets—The New Data-structures on the Block

92

The weakmap API is rather sparse, for the simple reason that the weakmap could

lose a key (and its associated value) at any point. Thus, any API that forces the weakmap

to look at all of its entries, such as size and any iterative APIs, is simply impossible.

Weakmaps only allow for set-ing, get-ing, and delete-ing keys and checking to see if

the weakmap has an entry for a key. The weakmap constructor interface mirrors that

of maps, and can take an iterable if we have one handy to hydrate the weakmap at

construction time.

WeakMaps are primarily targeted toward library and framework authors. Think of

jQuery’s data API that lets you attach arbitrary data to any element, or if you wish to

store some metadata about an object outside of the object itself (think canonical caches)

and you will find a use-case for weakmaps. I am certain that we are going to see other

interesting uses of weakmaps as ES6 adoption grows.

�Sets
Sets allow us to store unique items. If we attempt to add a value to a set that it already

contains, then the value is simply rejected. From an implementation perspective, sets are

maps under the covers, except that the key and value happen to be one and the same,

that is, the value. This means that all of the characteristics (and caveats) of maps apply to

sets as well. Maps and sets being so alike, our journey in the world of sets is going to be

pretty concise.

Like maps, sets also do not offer us a literal, rather just a constructor. The set API is

thorough, allowing us to work with sets just as we would expect.

We will start with construction, and working with values:

const obj = {};

const set = new Set(); ①

set.add('string'); ②
set.add(true);

set.add(1).add(obj); ③

console.assert(set.size === 4);

console.assert(set.has(1)); ④

Chapter 6 Maps and Sets—The New Data-structures on the Block

93

set.add(1); ⑤
console.assert(set.size === 4); ⑥

console.assert(set.delete('string')); ⑦
console.assert(set.has('string') === false);

console.assert(set.delete({}) === false); ⑧

① Constructor to create a set

② add a value

③ add is a fluent API returning the map itself

④ has implies possession

⑤ Force a collision …

⑥ Leaving the set unchanged

⑦ If an existing value is deleted then the map returns true

⑧ Deletion of a nonexistent value returns false

There are no surprises here, and much like maps, sets offer us a complete API to

work with values, providing the fluency that we have in maps as well. Of course, we must

note the lack of a get which for a set is equivalent to a has (since the keys are the values).

Sets also offer a higher-level API that allows us to work with the set as a whole. There

is a complementary constructor that accepts an iterable, with each value in the iterable

representing a value in the set (assuming no collisions). The construction via an iterable

should be an indicator that, like maps, sets to maintain the order of insertion (assuming

no conflicts) thereby supporting iterative APIs such as ‘forEach’:

const set = new Set([①
 'string',

 true,

 1, ②
]);

console.assert(set.size === 3); ③

console.assert(set.has('string'));

console.assert(set.has(true));

Chapter 6 Maps and Sets—The New Data-structures on the Block

94

console.assert(set.has(1));

set.forEach(k => console.log(k)); ④

console.log(set.entries());

console.log(set.keys()); ⑤
console.log(set.values()); ⑥

set.clear(); ⑦
console.assert(set.size === 0);

① Constructor to create a set using an iterable

② Array representing values of the set

③ Again, slightly discombobulating property to interrogate for

count

④ Functional API to iterate over values

⑤ Interestingly, there is a keys API that is the same as values

⑥ All of the above return iterators

⑦ An API to clear the map and set its size to zero

Sets, like maps, act like arrays, where the “index” and the value at that index are the

same. We can pass a two-argument callback to forEach on a set like so to confirm this:

set.forEach((k, v) => console.assert(k === v))

Sets also offer an entries API representing the entries in the map. Since the values in

a set act as the keys, this is simply a two-length array that can be represented as [value,

value]. Similarly there exist the keys and values API; however, unsurprisingly, the keys

API is simply an alias for values.

Since sets are iterable, they are also spreadable. Keeping in mind that we have a

constructor that takes an iterable, we have a convenient way to create new sets from

existing sets, or find the union between multiple sets.

const colorsOne = new Set([

 'red',

 'blue',

]);

Chapter 6 Maps and Sets—The New Data-structures on the Block

95

const colorsTwo = new Set([

 'yellow',

 'blue',

]);

const union = new Set([...colorsOne, ...colorsTwo]); ①

console.assert(union.has('red'));

console.assert(union.has('blue')); ②
console.assert(union.has('yellow'));

① Union of two sets

② Duplicates are discarded

Finally, equality is established via the === operator, just like for maps. In other words,

if we were to add a value that returned true for an === check against any existing value in

the set, it simply isn’t added to the set.

�Caveats
Sets are maps under the covers, so to go further would only belabor the point: everything

that we discussed for maps applies to sets. The lack of a literal forces us to use the

constructor, and since there is no support in JSON for sets, going to and from JSON might

cause us to lose some fidelity.

The only difference between serializing sets vs. maps is that sets serialize to simply

an array of distinct values.

�WeakSets
WeakSets are to sets as weakmaps are to maps. They provide a means for us to hold on to

references “weakly,” allowing their values to be garbage collected if no other references

to that particular value exist.

Weaksets offer no iterative APIs as one would expect leaving only the ability to add

and delete values, and check for possession via the has method. Their constructors

mirror that of sets, in that they are capable of taking an iterable at construction time.

Chapter 6 Maps and Sets—The New Data-structures on the Block

96

One use-case for weaksets is that of “tagging” objects. Let’s say we had to serialize

a JavaScript object that contained circular references. JSON.stringify will result in us

blowing the stack. In a situation like this, we have to manually recurse through the object

and its references—each time “recording” if we have seen a particular object before, and

if so, not serializing that reference. A weakmap can be used to tag already seen objects,

and we can be certain that there will not be any lingering references to clean up after the

fact. Observe:

let weakSet = new WeakSet();

const replacer = (key, value) => {

 if (typeof value === 'object' && value !== null) {

 if (weakSet.has(value)) {

 // Circular reference found, discard key

 return; ①
 }

 // Store value in our collection

 weakSet.add(value);

 }

 return value;

}; ②

const rootObj = {

 name: 'rootObj',

};

rootObj.children = [{

 parent: rootObj,

 name: 'childOne',

 children: [],

 }, {

 parent: rootObj,

 name: 'childTwo',

 children: [],

}]; ③

// console.log(JSON.stringify(rootObj)); ④
console.log(JSON.stringify(rootObj, replacer, 2)); ⑤

Chapter 6 Maps and Sets—The New Data-structures on the Block

97

// prints

// {

// "name": "rootObj",

// "children": [

// {

// "name": "childOne",

// "children": []

// },

// {

// "name": "childTwo",

// "children": []

// }

//]

// }

① If we have already encountered the key, we simply return here

② Create a replacer function for JSON.stringify

③ Create a circular reference object

④ This will fail with a stack overflow error

⑤ Use the replacer function that discards any previously seen

entries

We start by writing our “replacer” function that will be invoked by JSON.stringify.

As JSON.stringify recurses through the object supplied to it as the first argument to

stringify, it will invoke our function, passing it the key and value that it is currently

attempting to convert to a string representation. Our first check is to see if we have

already “seen” that key before, by asking our internal weakset if it has that key—if it

does, we simply return. Otherwise, we first add the key to our weakset, then proceed to

return the “value.” Of course, we could simply use an array to keep a list of references

that we have seen previously, but then we would have to clear the array, or deference it

completely, in order to ensure that we don’t leak memory.

Chapter 6 Maps and Sets—The New Data-structures on the Block

98

�Summary
JavaScript seems to have finally grown up. We now have at our disposal the four data-

structures that we are used to in many other languages. Maps and sets fulfill a role that

was previously hard to accomplish natively in JavaScript.

Both maps and sets come with some limitations. However, these limitations exist

to preserve the semantics of the language (and JSON). Despite these, they prove to

be a great addition to the language, allowing us, the developers, to better express our

intentions in code.

In the next chapter we will look at the enhanced object literals, and explore some of

the new Object APIs that were introduced in ES6.

Chapter 6 Maps and Sets—The New Data-structures on the Block

99
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_7

CHAPTER 7

Bright Shiny Object(s)
using Enhanced Object
Literals
The literal object syntax ({}) in JavaScript is a powerful mechanism that allows us to

describe objects literally in code. This {} syntax is rather elegant, and succinct; however,

there remain a few warts—defining methods can be a tad verbose, and tacking on

computed properties is at best clumsy. ES6 supercharges this syntax, giving us a way to

initialize properties and methods even more concisely, while simultaneously elevating

the ability to define computed properties to a first-class citizen.

In this chapter we will see how these enhancements make building objects in

JavaScript far less verbose. We will also examine the new syntax that is permitted for

adding computed properties on objects, making meta-programming in JavaScript a little

easier to work with. Finally, we will look at the benefits of using trailing commas, and the

recent addition in ES7 that expands the use of this feature for function definitions and

invocations. By the end of this chapter, we will have added some more tools in our toolkit

to make our code more consistent, and less verbose.

100

�The Limitations of the Object Literal
The use of the object literal syntax {} in idiomatic JavaScript code is pervasive. However,

there are, in particular, three shortcomings that we will be discussing:

	 1.	 The lack of symmetry between getters/setters and object methods

	 2.	 The inability to list a computed property within the literal syntax

	 3.	 The verbosity that often accompanies defining object properties

using variables

Let us examine each of these separately.

�Getter/setters vs. Methods
Objects in JavaScript are permitted to have get-ters and set-ters defined alongside

methods. The difference between the two happens to be the invocation pattern—getters

and setters while being functions are not invoked as such. Rather, their behavior is in

line with how we work with properties. Consider the following example that attempts to

highlight the differences in the usage patterns between the two:

const song = {

 name: 'Yellow Submarine', ①
 get duration() { ②
 console.log('Getter is invoked');

 return this._duration ? (this._duration / 60) : 0;

 },

 set duration(inMin) { ③
 if (inMin <= 0) { ④
 throw new Error('duration of song cannot be less or equal to 0 min');

 }

 console.log(`Setter is invoked with ${inMin}`);

 this._duration = inMin * 60; ⑤
 },

 getName: function () { ⑥
 return this.name;

 },

};

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

101

console.assert(song.name === 'Yellow Submarine'); ⑦

// song.duration = -1; ⑧
song.duration = 3.00; ⑨
console.assert(song.duration === 3); ➉

console.assert(song.getName() === 'Yellow Submarine'); ⑪

① Introduce a property

② Create a get method

③ A set-ter method

④ Validate the input

⑤ Store it differently

⑥ A traditional method

⑦ Property lookup

⑧ This will produce a validation error

⑨ Invokes the set method

➉ Invokes the get method

⑪ Invoke a regular method

As one might surmise, getters and setters, often referred to as “virtual attributes,”

allow us to implement hooks in what otherwise seem to be property lookups. These

hooks can be used for a variety of use-cases, including validation and sanitization

of inputs, or modifying attributes on the way out as previously demonstrated. This

difference is apparent when we compare reading (get-ting) and set-ting duration to

invoking the object method getName.

The key issue here is that although they are all defined as methods on an object,

there is a lack of symmetry between how we define getters and setters and defining

methods. While the former involves a rather elegant and perhaps even familiar syntax

to programmers coming in from other languages, the latter continues to make use of the

traditional key-value syntax.

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

102

�Defining Computed Properties on Object Literals
Objects in JavaScript also permit keys to be “computed” at runtime, allowing for some

level of meta-programming facilities in JavaScript. In order to tack on a computed

property on an object we are to use the “bracket” (or subscript) notation on an existing

object, like so:

const getterFor = (prop) => { ①
 const capitalized = prop.charAt(0).toUpperCase() + prop.slice(1); ②
 return `get${capitalized}`;

};

const song = {

 name: 'All You Need Is Love',

 album: 'Yellow Submarine',

};

song[getterFor('name')] = function() { ③
 return song['name'];

};

song[getterFor('album')] = function() {

 return song['album'];

};

console.assert(song.getName() === song.name);

console.assert(song.getAlbum() === song.album);

① A function to create a name from a property

② Capitalize the name of the supplied property

③ Use the subscript syntax to tack on the calculated method name

an object

In this example we start with a simple helper function that calculates the name of the

getter given a property name. Given the property, say name, getterFor('name') simply

returns getName.

As we can see, bracket notation provides us a way to evaluate any expression to

calculate the name of the soon-to-be object key, and attach it to the object. However,

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

103

we have to do this outside of the {} object notation, since the syntax does not afford us a

means to do that inline, like we do other properties. This forces us to have the “complete”

object definition scattered in several different places.

�Defining Object Properties Using Variables
Idiomatic JavaScript leverages object literals everywhere, from encapsulating private

members and exposing public APIs using the “revealing module pattern” to Node

exports. There is often a large amount of duplication that results from using object

literals in this manner. Observe:

const greeter = (function () {

 let greeting = 'Hello'; ①

 const exclaim = msg => `${msg}!`; ②

 const greet = name => exclaim(`${greeting} ${name}`);

 const salutation = (newGreeting) => {

 greeting = newGreeting;

 };

 return {

 greet: greet,

 salutation: salutation,

 }; ③
}()); ④

console.assert(greeter.greet('Mason') === 'Hello Mason!');

greeter.salutation('Hola');

console.assert(greeter.greet('Micah') === 'Hola Micah!');

① A private member variable

② A private function

③ Expose a specific public API on the object literal

④ Wrap the object creation in an IEFE to encapsulate private

members within function scope

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

104

The revealing module pattern leverages the fact that functions introduce scope.

We start with an “Immediately Executing Function Expression” (IEFE). Within the

IEFE we are free to define any number of “private” members and functions, which are

scoped to the enclosing function. At the end of the IEFE, we simply create a new object

via the literal syntax, and have its properties point to the members that are to be part

of the public API. As we observe there is a fair amount of duplication, for example,

greet: greet that stems out of this implementation. If this were a far more elaborate

implementation, it proves to be not only verbose, but error-prone as well.

Now that we have seen some use-cases for the literal object, let us explore how ES6

attempts to overcome these using the “enhanced” object literal syntax.

�Enhanced Object Literal Syntax
The enhancements to the object literal syntax in ES6 simply aims to simplify how we

define properties and methods within our literal object definitions.

�Method Definition Shorthand
The object literal syntax introduces a shorthand for method definitions within the literal

syntax, bringing it to parity with getter/setter definitions. We revisit our earlier example,

except this time using the shortcut:

const song = {

 name: 'Yellow Submarine', ①
 get duration() { ②
 console.log('Getter is invoked');

 return this._duration ? (this._duration / 60) : 0;

 },

 set duration(inMin) { ③
 if (inMin <= 0) { ④
 throw new Error('duration of song cannot be less or equal to 0 min');

 }

 console.log(`Setter is invoked with ${inMin}`);

 this._duration = inMin * 60; ⑤
},

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

105

 getName() { ①
 return this.name;

 },

 setName(name) { ②
 this.name = name;

 },

};

console.assert(song.getName() === 'Yellow Submarine');

song.setName('All You Need Is Love');

console.assert(song.getName() === 'All You Need Is Love');

① Use the method shorthand to define a regular function

② Define a method that takes an argument

This example is no different than our earlier stab at the same—however, the

definition of getName (and setName) is significantly less verbose. Gone is the : and

the function keyword; all that remains is the method implementation. We now find

symmetry between any method definition on a literal, be that getters/setters or regular

methods.

�Computed Values
The computed values enhancement lets us move the definition of computed properties

within the literal syntax, avoiding scattering the definition of literals in different

places within the codebase. We come back to our earlier example except to use inline

computed values this time around:

const getterFor = (prop) => { ①
 const capitalized = prop.charAt(0).toUpperCase() + prop.slice(1); ②
 return `get${capitalized}`;

};

const song = {

 name: 'All You Need Is Love',

 album: 'Yellow Submarine',

 [getterFor('name')]() { ③

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

106

 return song.name;

 },

 [getterFor('album')]() {

 return song.album;

 },

};

console.assert(song.getName() === song.name);

console.assert(song.getAlbum() === song.album);

① A function to create a name from a property

② Split the name to get the first character

③ Inline the computed definition

This enhancement lets us define a computed property just as we would have, that

is, using the bracket notation, except that the brackets find themselves inside the literal,

making them first class like any other property definition. The new syntax also adapts

the symmetry introduced by the method definition shorthand, allowing us to avoid the

superfluous function keyword. Likewise, if we were defining a property vs. a method,

the familiar key:value syntax applies here just as it does for traditional keys except the

computation of the key name would still be enclosed within square brackets. Therefore,

the equivalent for computed properties would be [computedKey]:value.

�Property Value Shorthand
The value shorthand, rather than being a new way to define properties (and methods),

provides a way to reduce the verbosity often seen in the revealing module pattern, or

Node exports. It lets us condense the definition of a key-value pair in an object literal

only if the name of the key matches an existing variable in scope.

We revisit our revealing module pattern definition, but this time using the value

shorthand:

const greeter = (function() {

 let greeting = 'Hello';

 const exclaim = msg => `${msg}!`;

 const greet = name => exclaim(`${greeting} ${name}`);

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

107

 const salutation = (newGreeting) => {

 greeting = newGreeting;

 };

 return {

 greet, ①
 salutation,

 };

 // equivalent to

 /*
 return {

 greet: greet,

 salutation: salutation

 }

 */

}());

console.assert(greeter.greet('Mason') === 'Hello Mason!');

greeter.salutation('Hola');

console.assert(greeter.greet('Micah') === 'Hola Micah!');

① Use the property value shorthand

In this example, the properties (keys) introduced in the (returned) module have

the same name as their values—we are now allowed to eliminate the duplication using

the shorthand syntax. Of course, we are allowed to mix and match the property value

shorthand alongside the familiar key:value notation we are used to if need be. This is

handy if the names of certain keys in the object being returned do not line up with the

name of any variables in scope.

This may seem like a small win, but if we were to extrapolate the gains for large

modules, perhaps we can see how much repetition we can avoid, thus embracing DRY

and avoiding potential bugs introduced by typos.

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

108

�The Case of the Trailing Comma
JavaScript has permitted “trailing commas” in array and object literals for a while now:

const friedmanBooks = [

 'The Little Schemer',

 'The Seasoned Schemer',

 'The Reasoned Schemer', ①
];

const hoyteBook = {

 name: 'Let Over Lambda',

 author: 'Doug Hoyte',

 isbn10: '1435712757', ②
};

① The trailing comma in array literals

② The trailing comma in object literals

Trailing commas as a feature might seem trite, but they pack a powerful punch.

They make our code consistent, in that every line in an array or object definition looks

the same. This makes it easy to reorder items in literals, and produces cleaner diffs in

version control systems if items are added or removed, particularly at the end of literals.

ES7 brought trailing commas to function parameter lists, and function invocations:

const rate = (

 book,

 starCount, ①
) => `You rated '${book}' ${starCount} stars`;

const rating = rate(

 'Practical Common Lisp',

 5, ②
);

// prints 'You rated 'Practical Common Lisp' 5 stars'

console.log(rating);

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

109

① The trailing comma in function parameter list

② The trailing comma in function invocations

This addition aims to bring parity, and consequently all the benefits of trailing

commas to function definitions and invocations.

Ostensibly trailing commas only add value if the elements are listed on new-lines. As

a result, it is preferred to enforce trailing commas only if the element (or object property)

is on a line of its own. Most linters like ESLint1 can be configured to flag missing trailing

commas only on multiline declarations.

�Summary
ES6 introduces a slew of new syntax and APIs that make creating new objects, both

literally, and from existing objects easier, less verbose, and less error-prone.

In the next chapter we will explore Symbols, a new primitive type introduced in

ES6, that are typically used in conjunction with the enhanced literal syntax, both as a

mechanism to introduce “unique” keys in an object and modifying the behavior of your

objects via metaprogramming.

1�https://eslint.org/docs/rules/comma-dangle

Chapter 7 Bright Shiny Object(s) using Enhanced Object Literals

https://eslint.org/docs/rules/comma-dangle

111
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_8

CHAPTER 8

Hiding Behind Symbols
�Introduction
Property naming in JavaScript objects presents one major obstacle, especially when

working with third-party libraries or frameworks, which is, property name collisions.

We have surrendered to the idea that we will be constrained in how we can or cannot

name our variables and properties. Warning such as “Do not use $ prefix for the names

of variables, properties and methods. This prefix is reserved for <INSERT FRAMEWORK/

LIBRARY NAME HERE> usage” are common, and something we just take in stride.

Well no more!

In this chapter, we will see how a new data type introduced in ES6, namely Symbol,

helps us eliminate this obstacle, freeing us from this constraint, and allowing us to lay

out our objects as we wish, knowing that we will not in any way be limited with what

or how we can use them in whatever setting that we wish to. We will also see how

we can modify the behavior of built-in operations like String.match and String.

split using Symbols. By the end of this chapter we will have freed ourselves from the

tyranny of enforced naming conventions, leaving us dancing alongside all libraries and

frameworks, not to mention JavaScript itself, as one happy family.

�The Inability to Enforce a Contract
Let’s say we are making use of a third-party library in our code, and it exposes a function

that expects the objects you supply it to have a property with a specific name. Consider a

simple example:

const LOG_LEVEL = 'log'; ①
const DEBUG = 'DEBUG';

const INFO = 'INFO';

const ERROR = 'ERROR';

112

const simpleLogger = (obj, msg) => {

 let returnMsg;

 switch (obj[LOG_LEVEL]) { ②
 case DEBUG:

 returnMsg = `DEBUG: ${msg}`;

 break;

 case INFO:

 returnMsg = `INFO: ${msg}`;

 break;

 case ERROR:

 returnMsg = `ERROR: ${msg}`;

 break;

 default:

 throw new Error('Invalid LOG_LEVEL');

 }

 console.log(returnMsg);

 return returnMsg;

};

const loggableObj = {

 [LOG_LEVEL]: INFO, ③
};

simpleLogger(loggableObj, 'this is a test');

const someOtherObject = {

 log: 'this is just an ordinary property', ④
};

// simpleLogger(someOtherObject, 'some message') ⑤

① Convenient const to make things easier

② Look up the property the implementation expects to find on the

supplied object

③ Tack a property on a simple object so it can be used by

simpleLogger

Chapter 8 Hiding Behind Symbols

113

④ Another object that just happens to have a log property

⑤ Now what do we do?

In this example, the library function expects that any object supplied to it must have

a property called log. The library conveniently gives us a const we can use along with

the enhanced literal syntax to tack the appropriate property on our objects. Internally,

the simpleLogger function interrogates the log property to establish the logging level,

and then prints out the appropriate message.

But what if our object already has a name property called log that serves a

completely different purpose? That is, our intention with the log property collides

with how the function expects it to be used. So, we can either choose to replace ours to

accommodate the needs of the library or choose not to use the library altogether. None

of those seem like great options.

The issue here is although we have const, which allows us to safely reference a

“name” that we will always get the right value, strings and consequently object keys

(be that property or method) can collide! This is the reason why often libraries

that introduce and/or expect “special” properties on other objects use a naming

convention—like prefixing the injected properties with a _ or a $, and decreeing that

developers that use that library should not use the same prefix within their code.

Consider the AngularJS style guide,1 which explicitly states the following:

Do not use $ prefix for the names of variables, properties and methods. This prefix is
reserved for AngularJS usage.

The dilemma presented here is that in order to address our needs, we need a way

to define a name that has no chance of a collision, in other words, a truly unique name

that does not, and cannot, in any way impugn with any existing names or properties.

Furthermore, we wish to do this without being forced to enforce coding policies, or even

worse, use some arcane naming policy like the use UUIDs to avoid conflicts!

1�https://github.com/mgechev/angularjs-style-guide

Chapter 8 Hiding Behind Symbols

https://github.com/mgechev/angularjs-style-guide

114

�Symbols to the Rescue
Symbols are a new primitive type that was introduced in ES6. Much like other primitives,

symbols have a wrapper type, named Symbol, which offers a factory function to initialize

new symbols. Unlike other wrapper objects like String, we are not allowed to new a

symbol—that is, using new Symbol() will result in an error. Let us look at a snippet of

code to see how we can go about initializing symbols:

const symbol1 = Symbol();

const symbol2 = Symbol(); ①
console.assert(symbol1 !== symbol2); ②

const symbol3 = Symbol('unique'); ③
// prints Symbol(unique)

console.log(symbol3); ④

① Use the factory function to create a new symbol

② Two symbols never equal each other

③ For debugging purposes, a description can be supplied to a

symbol

④ Symbols have a toString implementation that displays the

description if provided

The Symbol initializer can be provided with a description; however, this description

has no effect on the symbol being created, other than it being useful for debugging

purposes.

Two symbols can never be equal to one another—every invocation of the Symbol

initializer returns a new and unique Symbol instance. This is true even if the description

provided is the same (because like we have discussed, the string provided to the

initializing function is merely for debugging).

So, we now have a way to create a unique “thing.” How does that help us with naming

collisions?

Well, it turns out, we can use symbols as keys in objects! Let us start with seeing how

we can use both symbols and strings to define properties on objects:

Chapter 8 Hiding Behind Symbols

115

const ITERATOR = Symbol('iterator'); ①

const iterableObject = {

 name: 'iterable',

}; ②

iterableObject[ITERATOR] = function() {

 return 'I am iterable';

}; ③

const objWithExistingKey = {

 iterator: 'some value',

}; ④

objWithExistingKey[ITERATOR] = () => 'Works!'; ⑤

① Define a symbol

② A plain JavaScript object with only a name property

③ Tack on the iterable property with no collisions

④ This object already has a property with the iterator name

⑤ We can still tack on a symbol with the description iterator with

no collision

Note that we first create a symbol—we then use that reference as the name of a

property on the object, as well as for lookup. As demonstrated, we can use the subscript

syntax to tack on a new property on an existing object just like we would have done with

any expression. Lastly, an object can have a combination of strings and symbols as its

properties, even if the name of the property matches the description of the symbol.

Using our new found knowledge, let us revisit our simpleLogger to see how we use

symbols to “sprinkle” behavior on objects where previously we would have to simply

submit to the consequences of name collisions.

const LOG_LEVEL = Symbol('log'); ①
const DEBUG = 'DEBUG';

const INFO = 'INFO';

const ERROR = 'ERROR';

Chapter 8 Hiding Behind Symbols

116

const simpleLogger = (obj, msg) => {

 let returnMsg;

 switch (obj[LOG_LEVEL]) { ②
 case DEBUG:

 returnMsg = `DEBUG: ${msg}`;

 break;

 case INFO:

 returnMsg = `INFO: ${msg}`;

 break;

 case ERROR:

 returnMsg = `ERROR: ${msg}`;

 break;

 default:

 throw new Error('Invalid LOG_LEVEL');

 }

 console.log(returnMsg);

 return returnMsg;

};

const loggableObj = {

 log: 'this is just an ordinary property',

 [LOG_LEVEL]: INFO, ③
};

simpleLogger(loggableObj, 'this is a test'); ④

① Define LOG_LEVEL as a symbol

② Look up the required property in the switch

③ Introduce a property using the symbol reference

④ Now it works!

This example highlights how we can use symbols to introduce conflict-free

properties on new or existing objects.

Using symbols to define “interface” or “contract” properties frees library and

function writers from having to mandate coding conventions, while simultaneously

Chapter 8 Hiding Behind Symbols

117

allowing clients using these libraries to design their objects as they deem fit, and yet be

able to use these libraries without fear of collisions.

Win–win!

�Symbols and Switch-cases
We can consider another use-case where having unique values (symbols) can help

mitigate potential bugs. We often use strings to identify “uniqueness,” and language

constructs like switch-case utilize this to aid in program flow. Consider the following:

const LOG_LEVEL = Symbol('log');

const DEBUG = 'DEBUG'; ①
const INFO = 'INFO';

const ERROR = 'ERROR';

const simpleLogger = (obj, msg) => {

 let returnMsg;

 switch (obj[LOG_LEVEL]) { ②
 case DEBUG:

 returnMsg = `DEBUG: ${msg}`;

 break;

 case INFO:

 returnMsg = `INFO: ${msg}`;

 break;

 case ERROR:

 returnMsg = `ERROR: ${msg}`;

 break;

 default:

 throw new Error('Invalid LOG_LEVEL');

}

 console.log(returnMsg);

 return returnMsg;

};

const MY_LEVEL = 'ERROR'; ③
const loggableObj = {

Chapter 8 Hiding Behind Symbols

118

 log: 'this is just an ordinary property',

 [LOG_LEVEL]: MY_LEVEL, ④
};

// prints 'ERROR: this is a test'

 simpleLogger(loggableObj, 'this is a test'); ⑤

① Define helper constants

② Switch case over a string property

③ Introduce a misleading constant

④ Use the misleading constant as a log level in a new object

⑤ The output is not as expected

It takes an astute reader to realize what happened here. We introduce a misleading

constant, namely MY_LEVEL which evaluates to "ERROR", and assign it as the LOG_LEVEL

to an object. This works, because within the simpleLogger function, the switch-case

evaluates for equality, matching on the ERROR case because the supplied LOG_LEVEL

just so happens to have a value that we know of. However, instead of throwing an error,

we successfully log an error message. The issue here is that while strings are values,

two separately constructed strings can be equal if they happen to have the same set of

characters with the same casing!

Ideally, we would like to be able to create truly unique values that we can use to

switch between. Well, it turns out that the switch statement in JavaScript simply uses the

=== equality operator to find a matching case! Again, symbols to the rescue.

const LOG_LEVEL = Symbol('log');

const DEBUG = Symbol('DEBUG'); ①
const INFO = Symbol('INFO');

const ERROR = Symbol('ERROR');

const simpleLogger = (obj, msg) => {

 let returnMsg;

 switch (obj[LOG_LEVEL]) { ②
 case DEBUG:

 returnMsg = `DEBUG: ${msg}`;

 break;

 case INFO:

Chapter 8 Hiding Behind Symbols

119

 returnMsg = `INFO: ${msg}`;

 break;

 case ERROR:

 returnMsg = `ERROR: ${msg}`;

 break;

 default:

 throw new Error('Invalid LOG_LEVEL');

}

 console.log(returnMsg);

 return returnMsg;

};

const loggableObj = {

 log: 'this is just an ordinary property',

 [LOG_LEVEL]: ERROR,

};

// prints 'ERROR: this is a test'

simpleLogger(loggableObj, 'this is a test'); ③

① Define helper constants as symbols instead of strings

② Notice the switch case does not change

③ This works just like it did with strings

Recall that symbols are unique, and that every call to the initializer function Symbol

creates a new and unique symbol object, which does not equal any other symbol (even

those with the same description string). In our latest iteration, we use symbols as the key

to uniquely identify the LOG_LEVEL, as well as its value, which we can now guarantee to

be unique.

�Global Registry
There is yet another facet of Symbols that we should talk about, namely the global symbol

registry. We can think of the symbol registry as a pool of symbols—you can create and

put a symbol in the pool, and retrieve it later.

Chapter 8 Hiding Behind Symbols

120

To create and or fetch a symbol from the pool, we use Symbol.for. Symbol.for

expects to be supplied a “key,” and if a symbol with that key does not exist in the registry,

then one will be created. Otherwise, a symbol with the same key is retrieved from the

registry, like so:

const global = Symbol.for('globally visible'); ①
const otherGlobal = Symbol.for('globally visible'); ②

// prints 'true'

console.log(global === otherGlobal); ③

① Define a symbol using for—In this case a symbol will be created

② Look up a symbol using the same “key”—This is simply a “get”

operation

③ They are equal

It turns out that for symbols in the global registry, it is the key that identifies the

symbol—two references will point to the same symbol if they both use the same key to

look up a symbol using for.

We can also go the other way—given a symbol, we can fetch its key using keyFor

method on Symbol.

const global = Symbol.for('a unique key'); ①
const key = Symbol.keyFor(global); ②

// prints 'true'

console.log(key === 'a unique key');

① Define a symbol using for—In this case a symbol will be created

② Look up the key for a particular symbol

You might be wondering—what’s the point? The pool is necessary if we wanted

to share symbols (which are references unlike strings, numbers, and booleans which

are primitives) across “realms.”2 A realm is a global context, such as one that exists in

an iframe. So, the JavaScript code running in a webpage runs in a different realm that

2�For other primitives an equality check is a value check. Therefore, the string “es6” in one realm
equals the string “es6” in another realm thus avoiding the need to have a registry for them.

Chapter 8 Hiding Behind Symbols

121

the code that runs in an embedded iframe, or code that runs in a service worker. If we

wanted to use symbols as global identifiers, or names of properties that crossed realms,

then the global symbol registry is your friend.

Of course, to identify a symbol in the global registry, we need a key. There is always a

chance that two disparate pieces of code (even those running in different realms) might

use the same key (for different purposes) to create a symbol. Thus it behooves us to

appropriately “namespace” any such identifiers if we are to use the global registry.

�Well-known Symbols
JavaScript ships with a set of useful symbols, tacked on as “static” properties on the

Symbol type. The primary objective of these “well-known symbols” is to allow us, the

developers, to customize how certain algorithms work with our objects.

Let us take a step back and reconsider what we learned. One, symbols allow us to

introduce collision-free properties on our objects, and two, library function authors can

now freely assemble a list of symbols that they define, and ask that we use these symbols

within our objects if we wish to use that library.

Well, with well-known symbols, JavaScript, the language is the library!

Let’s crystallize this with a concrete example. JavaScript strings have a method called

“split,” which given a separator (and an optional limit) will tokenize the string at the

separator, returning an array of individual strings.

const url = 'https://admin:supersecret@gitlab.com/looselytyped/sample-repo.

git'; ①
const split = url.match(/\w+:\w+/); ②
// prints

// [

// 'admin:supersecret',

// index: 8,

// �input: 'https://admin:supersecret@gitlab.com/looselytyped/sample-repo.

git',

// groups: undefined

//]

console.log(split);

Chapter 8 Hiding Behind Symbols

122

① Define a URL with a username and password encoded

② Use a regular expression to extract the username and password

combination

We use a simple regular expression to extract the username and password encoded

in a URL string. Except, the password is being displayed in plain text! What if we wanted

to change or augment each match prior to placing them in the array?

The obvious solution is we obfuscate the password after matching it using our

regular expression. However, this separates the act of extracting the username and

password, and the obfuscation of the password itself.

Perhaps we could obfuscate the password during the “match.” It turns out that

String.match method can be supplied an object as an argument (instead of a regular

expression), and if the supplied object implements a method with the name that

evaluates to Symbol.match, then String.match will simply forward the call to that

method. Observe:

const passwordObfuscator = { ①
 regex: /\w+:\w+/,

 [Symbol.match](str) { ②
 const creds = str.match(this.regex);

 if (creds) {

 const [username] = creds[0].split(':'); ③
 return [

 `${username}:***********`, ④
];

 }

 return creds;

 },

};

const url = 'https://admin:supersecret@gitlab.com/looselytyped/sample-repo.

git';

const credentials = url.match(passwordObfuscator); ⑤

Chapter 8 Hiding Behind Symbols

123

// prints 'obfuscated credentials ['admin:***********']'

console.log('obfuscated credentials', credentials);

① Define a custom object

② Define a method on the object using the Symbol.match

③ Extract the username from the match

④ Return a new array that holds the username while obfuscate the

password

⑤ Supply the custom matcher to the match method

We define an object, and use the enhanced object literal syntax to tack on a method

with the name that evaluates to Symbol.match.3 By implementing Symbol.match, our

object is abiding by the contract that String.match expects. match can now delegate

the act of matching to our object—rather than doing the match itself, it simply invokes

passwordObfuscator[Symbol.match]. Internal to our implementation, we first extract

the username from the string (coincidentally using match again except this time we

supply it with a regular expression4), obfuscate the password, and return it.

Granted this example is nowhere near production grade, it does serve to highlight

how we can use these well-known symbols to modify the behavior of existing APIs in

JavaScript.

The Symbol object has many more static members that serve to change how

JavaScript works with our objects. There is Symbol.iterator which we will see soon in

our discussion of generators and iterators. There is also Symbol.primitive that allows us

to define how an object should be coerced by JavaScript to a primitive. You can find a list

of all these on MDN web docs under the Symbol reference page.5

3�Note that we do not care what Symbol.match evaluates to. We simply wish that the method we
introduce has a name that String.match expects it to have.

4�Regular expression objects also implement Symbol.match.
5�https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Symbol

Chapter 8 Hiding Behind Symbols

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

124

�Not so Private
If we were to take any object, and loop over its members using Object.keys (which lists

all of the objects enumerable keys), or Object.getOwnPropertyNames (which lists all

including nonenumerable keys), we will see that any members defined using symbols

are not listed. Let us test this out with a simple demonstration:

const obj = {

 a: 'a simple property', ①
 [Symbol()]: 'a symbol property', ②
};

Object.defineProperty(obj, 'nonenumerable', { ③
 value: 'an unenumerable property',

 enumerable: false,

});

// lists only 'a'

console.log(Object.keys(obj));

// lists 'a' and 'nonenumerable'

console.log(Object.getOwnPropertyNames(obj));

// also lists only 'a'

console.log(JSON.stringify(obj)); ④

① Define an object with a string key

② Define another using a symbol

③ Define a third and unenumerable key

④ Inspect for keys

We define an object with several keys—a traditional key-value pair, another that

happens to be a symbol, and finally a third using Object.defineProperty with the

enumerable flag set to false. Running this example illustrates that we cannot see the

symbol property on the object.

While this may seem to suggest that symbol keys are private, and to the extent that

we use traditional introspection mechanisms (like JSON.stringify), they are indeed

“private.”

Chapter 8 Hiding Behind Symbols

125

However, that does not mean they are, and allowing objects to have private keys is

not the intent of symbol properties. ES6 introduces yet another API, namely Object.

getOwnPropertySymbols that lists any and all symbol properties that exist on an object.

Go ahead, try it on our example and you will see that it does list the one symbol property.

In summary, using a combination of methods on Object, we can tease out all the

properties that exist on any object.

�Summary
In this chapter we took a deep dive into a new primitive type, namely Symbols. We

investigated some limitations to using traditional keys, namely that we chance a collision

and how symbols can be used to define truly unique identifiers. We also saw that the

global symbol registry allows us to define and interrogate for symbols, even across

JavaScript realms. We took a glance at how we can modify how JavaScript (or for that

matter any API) interacts with our objects using symbols as a means to implement a

“contract” between caller and callee. Finally, we closed off with how symbols, while

seemingly private, aren’t really private.

In the next chapter we will see a mechanism for iterating over collections, as well as

how we produce and consume lazy computations and sequences.

Chapter 8 Hiding Behind Symbols

127
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_9

CHAPTER 9

Iterable Sequences
with Generators
and Iterators
Storing and manipulating data in collections in JavaScript is not only easy, but also

elegant. However, iterating is another matter. Consider arrays. In order to iterate and

fetch the elements of an array, we use contrived syntax like the for (let i = 0; i <

array.length; i++) loop, or even worse, the for-in loop. But that’s not the end of it!

Every so often we will have custom objects that might need iteration. We concede defeat,

and build (or consume) a custom API (think array.forEach) just so we can get each

element in a particular sequence.

Well those days are over.

ES6 introduces a new iteration mechanism, namely the for-of loop that makes

iteration over collections easy, and consistent. ES6 also introduces the idea of iterators,

that allow for any object to be iterated over using the for-of loop. Finally, we get a new

kind of function, namely generators that allow us to produce iterable objects with some

sweet syntactic sugar.

In this chapter we will examine the elegance, and the benefits of the for-of loop,

and explore its symbiotic relationship with iterators. We will see how we can make our

own objects iterable, thereby permitting their usage alongside the for-of loop.

By the end of this chapter, we will have understood the need and use for Symbol.

iterator and see how it plays a role in making collections and objects iterable. We will

also see how generators can be used to create iterables, both of finite and infinite length

as well as allow us to write lazily evaluated code.

128

�The Drawbacks of Lacking an Iteration Protocol
JavaScript, up until ES5 shipped with two data-structures: the object and the array. The

object acts primarily as a key-value store, and the array as an indexed collection. ES6

introduced us to two more, namely maps and sets. JavaScript gives us some mechanisms

to consume elements of these data-structures via looping or iteration; however, it lacks

many of the facilities offered by other modern languages, in particular a standard API for

consumption.

Take, for example, arrays. Arrays give us several ways to iterate—the imperative

for(const i = 0; i < array.length) version, the forEach method that is available on

the array prototype, and finally the for-in loop. Let us briefly consider each one.

The traditional for loop, while being ubiquitous, and probably the most familiar to

most JavaScript programmers, is both verbose and error-prone. As Venkat Subramaniam

often says (and I agree), “I can never remember if it is < or <=!”. (Thank the stars for auto-

completion in our IDEs, right?) However, it does allow us to control how much of the

array we wish to iterate over, or even break out of the loop if we so desire to.

On the other hand, the forEach method that arrays offer us isn’t a syntactical

construct offered to us by the language, rather it is a method on the Array object, thereby

dismissing its usage for any other indexed collection type. The forEach loop is designed

to iterate over the entire length of the array, with no means to “break” out of the looping

(unless of course we throw an Error which is certainly not a good solution).

Finally, there is the for-in loop, whose role is to iterate over the enumerable

properties of an object. Using the for-in loop with arrays has a rather surprising

outcome:

const arr = ['a']; ①

for (const k in arr) {

 console.assert(k === '0'); ②
 console.log(arr[k]); ③
}

① Define a one-item array

② Look at the type of the key

③ Use the key to get to the actual indexed value

Chapter 9 Iterable Sequences with Generators and Iterators

129

The “key” that we get back is not a number (as one might expect for the index) but

rather a string. Furthermore, since the loop only hands us keys, we are then forced to use

the subscript or square-bracket notation to get to the element at that position in the array.

Of course, none of this solves the real problem at hand, which is that JavaScript

inherently lacks the ability for any collection to conform to a contract that allows it to

be iterated upon. We have lots of places where we get a collection of items—consider

document.querySelectorAll, which returns a NodeList, or Immutable.js1 which has an

Immutable.List object. We currently have no canonical API that we reach for to look at

all the items in these collections.

Considering we are speaking of iterating, another glaring omission from JavaScript is

the inability to write lazily evaluated code, and consequently produce infinite sequences.

Let’s pretend we are writing a math library, and we wish to write a function that

produces the Fibonacci sequence. Given what we have in ES5, and what we have learned

from our excursions into ES6 so far, our first attempt might look something like this:

Naive implementation of a Fibonacci sequence generator

const fibonacci = (n) => { ①
 const result = [];

 let start = 0;

 let next = 1;

 switch (n) {

 case 0:

 break;

 case 1:

 result.push(start);

 break;

 case 2:

 result.push(start);

 result.push(next);

 break;

 default:

 result.push(start);

 result.push(next);

1�Immutable.js is a library from Facebook that offers a set of immutable collections for JavaScript.

Chapter 9 Iterable Sequences with Generators and Iterators

130

 for (let i = 2; i < n; i++) {

 const val = start + next;

 start = next;

 next = val;

 result.push(val);

 }

 }

 return result;

};

// prints []

console.log(fibonacci(0));

// prints [0]

console.log(fibonacci(1));

// prints [0, 1]

console.log(fibonacci(2));

// prints [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

console.log(fibonacci(10));

① Define a function that expects one argument, namely n

We write a simple function that expects one argument, n that tells us how many

of the sequence to generate, and then use a rather simple algorithm to produce the

necessary Fibonacci sequence, each time pushing items into the resultant array. I

will grant you that this is a rather naive implementation, but it suffices to serve our

discussion, which centers around a rather subtle aspect, the argument to the function.

A language like Haskell is inherently lazy—in other words, code in Haskell is never

evaluated unless it absolutely has to be. Languages like Clojure, and now Java (with the

Stream API), provide us with data-structures that are lazy—in effect allowing us to work

with lazily computed collections, and consequently, infinite collections.

Coming back to the discussion at hand, the issue here is that any client code using

our library has to know upfront how many of the Fibonacci sequence numbers they

want.2 This shifts the onus from the library (or function) writers to the users! It provides

2�I realize we could get clever and write some sort of a state machine implementation, allowing the
client to move the machine to its next state if and when they choose to; however, this does not
present itself as a viable solution, simply because now the client has to use the custom API for
our state machine, vs. simply using say Arrays API.

Chapter 9 Iterable Sequences with Generators and Iterators

131

no elegant mechanism for clients to determine if they want more at runtime, or simply

stop consuming while they are iterating over the sequence.

However, if we could lazily evaluate the “next” item in the Fibonacci sequence

when and only when the client asks us to, then we would have no reason to mandate an

argument to our Fibonacci sequence generator. Instead, we would simply hand them

back a data-structure, perhaps even an array, and wait patiently for them to ask for the

next item in the sequence, calculate it, and return it!

Lazy evaluation and sequences offer a ton of benefits, from making code (potentially)

more efficient (we will never calculate any more than we need to), simplifying APIs (no

reason to ask for “how many” upfront), all while providing a very elegant solution to a

range of algorithmic problems.

�The for-of Loop
ES6 introduces a brand-new looping mechanism, namely the for-of loop, the

immediate benefit of which can be easily demonstrated:

const arr = ['a', 'b', 'c']; ①

for (const k of arr) { ②
 // prints 'a', 'b', 'c' in sequence

 console.log(k); ③
}

① Define an array

② Use the for-of loop

③ Print each of the items in the array

Let us pause and admire the elegance of the for-of loop. Gone is the imperatively

indexed for loop. No need for the for-in loop either. All that remains is true intent of the

code—iterate over an array to get each element of the array in sequence!

Chapter 9 Iterable Sequences with Generators and Iterators

132

This works because the for-of loop can iterate over anything that happens to be

“iterable,” and arrays happen to be iterable in ES6. That is, they present a canonical API

for iteration that allows the for-of loop to get every element in the array in the correct

sequence.

And it does not end there—maps, sets, and strings all happen to be iterable, so we

can use the for-of loop with all of them:

const array = [10, 20, 30, 40, 50];

for (const i of array) {

 console.log(i);

}

const set = new Set(['a', 'set', true, false]);

for (const i of set) {

 console.log(i);

}

const map = new Map([

 ['s', 'is a string'],

 [true, 'is a boolean'],

]);

for (const [k, v] of map) { ①
 console.log(`${k}->${v}`);

}

const string = 'ES6 is awesome!';

for (const i of string) {

 console.log(i);

}

① Considering we get a key-value pair back per iteration, we can

use array destructuring

Turns out, any object or collection can participate in the for-of loop, as long as it

conforms to the iterable protocol. Let us see what it means to be iterable in JavaScript.

Chapter 9 Iterable Sequences with Generators and Iterators

133

�Iterables and Iterators
Statically typed languages like Java provide us with an interface called Iterator.

An interface is a contract, that mandates that an object expose a specific API, and one

that is enforced by the runtime. In Java, any object that “implements” the Iterator

interface essentially declares to the world that it can be iterated upon. Similarly,

dynamically typed languages like Ruby have the idea of a contract, essentially via

convention.

Regardless of the type of language, whether static or dynamic, they offer a way to

mark an object as being iterable, allowing consumers to access individual elements of

that object in a standard way, and without having the need for the object to expose any of

its internal implementation details. Furthermore, since accessing the elements is using

a contract of some sort, the language itself can provide additional constructs (like Java’s

enhanced for loop) that utilizes the same mechanism for looping.

Typically, to be iterable, the object (or collection) must implement an API declaring

itself to be such (e.g., in Java the object must implement the Iterator interface), and

consequently, be able to answer two questions:

•	 Do I have any more elements?

•	 If so, what is that element?

JavaScript announced similar support for objects and collections to be made iterable

in ES6. However, JavaScript being an interpreted language has no runtime enforcement

of a contract, rather, JavaScript imposes the behavior via convention. This convention

is as follows—for any object to be iterable, it must have a method name that evaluates

to Symbol.iterator (yet another well-known symbol). The return value of this method

must be an object that has a zero arity (i.e., no arguments) next method, which in turn

returns an object with two properties:

•	 done—a boolean that answers whether there are any more elements

that could be iterated upon

•	 value—the current item

We can make things a little clearer with a simple example:

const arrayList = { ①
 data: [1, 2, 3, 4, 5],

 [Symbol.iterator]() { ②

Chapter 9 Iterable Sequences with Generators and Iterators

134

 let index = 0;

 return { ③
 next: () => { ④
 if (index === this.data.length) {

 return {

 done: true, ⑤
 };

 }

 const ret = this.data[index];

 index++;

 return {

 done: false,

 value: ret,

 }; ⑥
 },

 };

 },

};

const iterator = arrayList[Symbol.iterator](); ⑦
// prints '{ done: false, value: 1 }'

console.log(iterator.next()); ⑧

① Define a simple object

② Implement the Symbol.iterator method

③ The iterator method returns the iterable

④ The iterable implements the next method

⑤ If we are done iterating signal done as true

⑥ If we are not done, return the value

⑦ Grab a reference to the iterator

⑧ Start iterating

Chapter 9 Iterable Sequences with Generators and Iterators

135

We make an attempt to implement an iterable arraylist here. Since we are to adhere

to the iterability protocol, we implement a method with the name Symbol.iterator. The

iterator method, when invoked, returns a new object that performs the iteration for us.

Note that the return value of any invocation on next returns an object that

appropriately has the done flag set, as well as the value if needed.

Now that we have a handle on what an implementation might look like, let us tease

apart the moving parts. Iteration in JavaScript consists of two (or three depending on

how you look at it) different pieces:

•	 The object that is “iterable,” that is, the object that has the Symbol.

iterator method

•	 The object that is returned from invoking the iterator method, the

“iterator” which in turn has the next method on it

Finally, there is the result of the next invocation, which we may consider as part

of the iterator contract, or simply the iterator result. We are done! Our arrayList

successfully implements all the pieces needed to make it iterable. Now, we can make use

of the for-of loop to iterate over it, just like we can with arrays. Observe:

// use the arrayList implementation from our earlier example

for (const v of arrayList) {

 // prints // 1, 2, 3, 4, 5 in sequence

 console.log(v);

}

All this boils down to JavaScript now having a canonical API that any client can safely

use to iterate over our objects!

�Cleaning Up
We know that iterators need implement the next method. This method, upon reaching

the end of the iterable object, can do any cleanup that is necessary, just prior to signaling

the end via { done: true }.

Chapter 9 Iterable Sequences with Generators and Iterators

136

However, what happens if the consumer were to stop the iteration prematurely?

Well, iterators can (optionally) implement a return method, which will be invoked if the

consumer terminates the iteration. Consider the following:

const incrementor = {

 [Symbol.iterator]() {

 let start = 0;

 return {

 next() {

 return {

 value: start++,

 done: false,

 };

 },

 return: function () { ①
 console.log('Cleaning up ...');

 return {

 done: true,

 };

 },

 };

 },

};

for (const v of incrementor) {

 if (v > 10) {

 break; ②
 }

 console.log(v);

}

① Implement both the required next and optional return method

② Break out prematurely in a for-of loop

Here we have a simple incrementing iterable that happens to implement both the

next and the return method. We use our new friend, the for-of loop to start iterating

over our object, and conditionally break out of the loop. If we were to run this example,

Chapter 9 Iterable Sequences with Generators and Iterators

137

we will see the cleaning message show in our console. Notice that we return a done:

true to signal that the iterator is now done.

This mechanism is a side effect of the for-of loop knowing the iterator machinery—

furthermore, it’s not only break, but throw-ing an error inside the for-loop as well as

return-ing from within a for-loop that will invoke the iterator’s return method.

If we were invoking the next method explicitly, then it is required that we call return

when we are done.

�Other Benefits
Having a standard approach to iterability permits JavaScript to build additional

constructs on top of the API, while simultaneously allowing other libraries to devise

their objects to leverage the same mechanisms. In Chapter 4 we discussed the spread

operator, and learned that anything that is iterable is also spreadable. Reiterating, the

spread operator introduced in ES6 hooks into the exact same machinery that the for-of

loop does.

Furthermore, going forward, any object, including ones that we may introduce in our

applications, the collections provided by libraries like Immutable.js as well as NodeLists

(returned by document.querySelectorAll) can be both safely and correctly looped over,

as well as “spread”!3

Finally, and this is subtle, we introduce a mechanism to allow for lazy evaluation

of code! An iterable object gives the consumer back an iterator, and simply waits for

the iterator’s next method to be invoked. If and when the next method is invoked, the

object can then calculate (if necessary) the next item in the sequence, and return it! Take

that a step further, our iterables could also be infinite (within the bounds of overflow of

course).

We have discussed the iterable, and the iteration protocol in this section. Next, we

will take a look at “pausable” functions, and some use-cases.

3�Turns out, all the collections offered by immutable.js as well the NodeList are iterables.

Chapter 9 Iterable Sequences with Generators and Iterators

138

�Generators
Generator functions are a new addition in ES6 that introduce new syntax and keywords,

as well as new semantics for functions. Let us first take a look at a simple example and

then we will proceed to see how it works:

Defining a simple generator

function* generatorDemo() {

 yield 10;

 console.log('First time');

 yield 20;

 console.log('Second time');

}

const generator = generatorDemo(); // prints nothing to the log

console.assert(generator !== undefined);

// following each line is what you see in the console

console.log(generator.next());

// { value: 10, done: false }

console.log(generator.next());

// First time

// { value: 20, done: false }

console.log(generator.next());

// Second time

// { value: undefined, done: true }

// alternatively, we can just use the for-of loop

for (const i of generatorDemo()) {

 console.log(i);

}

Let us focus on the syntactic aspects here—we are introduced to the new function*

(i.e., not a typo), as well a new yield keyword.

When we invoke the generator function, we see two interesting things happen—we

see nothing in the console (if this were a regular function, we would expect to see our

console.log statement print out our messages), and we get something back from as a

return value!

Chapter 9 Iterable Sequences with Generators and Iterators

139

See, when a generator function is invoked, it immediately returns a generator object

without executing its body. Furthermore, if we are to observe the proceeding lines in our

example, we see that this returned object has a next method on it, which in turn, returns

another object with value and done keys in it. In other words, the generator object is

iterable!

What role does yield perform? If we look closely at the output of our example code,

we notice that upon invoking next on the iterator, the body of the generator function is

executed only up until the first yield statement is encountered, at which time, whatever

value is “yielded” is returned to the invoking code (wrapped in an iterator result object).

In effect, the yield statement suspends the execution of the generator function, returning

control to the invocation context.

An analogy that works is one of ping-pong (or tennis) with two players. Once we

initiate the play (i.e., we have the generator object in our hands), invoking next sends

control over to the generator function’s court. Upon a yield, the generator returns control

to the invokee with a value. We, the “consumer” can choose to stop playing by not

invoking next again at which point the generator function (if it is not “done” yet remains

in a suspended state), and the generator will end the play if it reaches the end of its

body’s definition (at which point the value returned is {done: true}).

In essence, a generator function is a function that returns an iterable object, which

in turn implements the iterator protocol. A generator function pauses (using yield), and

resumes when the invokee invokes next.

Let us convert our Fibonacci example to use a generator function:

function* fibonacci() {

 let start = 0;

 let next = 1;

 yield start;

 yield next;

 while (true) {

 const result = start + next;

 start = next;

 next = result;

 yield result;

 }

}

Chapter 9 Iterable Sequences with Generators and Iterators

140

const f = fibonacci();

console.log(f.next().value); // 0

console.log(f.next().value); // 1

console.log(f.next().value); // 1

console.log(f.next().value); // 2

console.log(f.next().value); // 3

console.log(f.next().value); // 5

console.log(f.next().value); // 8

This implementation isn’t that much different from our earlier implementation using

Symbol.iterator, except we no longer need to implement that method—the generator

function does it all for us.

�Generators as Consumers
Our exploration of generators so far has seen them as data “producers”—they yield

values per iteration. Generators, despite their name, can also act as “consumers,”

wherein we can “push” values onto them, perhaps as a seed, or a way to send data to

them for them to use.

Let us tweak our simplistic example and see how this plays out:

function* generatorWithPushDemo() {

 const first = yield 10;

 console.log('First time', first);

 const second = yield 20;

 console.log('Second time', second);

}

const generator = generatorWithPushDemo(); // prints nothing to the log

console.assert(generator !== undefined);

// following each line is what you see in the console

console.log(generator.next()); ①
// { value: 10, done: false }

console.log(generator.next('sending a value in')); ②
// First time sending a value in

// { value: 20, done: false }

Chapter 9 Iterable Sequences with Generators and Iterators

141

console.log(generator.next('sending another value in')); ③
// Second time sending another value in

// { value: undefined, done: true }

① Kick off the iteration with a next

② Push a value as an argument to the next method, effectively

setting the value of first

③ Do the same again, except this time set the value of second

We start with getting a reference to the generator object, then invoke next. Control

goes to the generator, and it yields a value back to us. At this point, the generator is

suspended.

This is where things get interesting—we invoke next again, except this time we

supply an argument. This value is assigned to the first variable, and the generator

can now use this value within its implementation. One way to think about this is that

any value we pass into the generator effectively replaces the yield in the generator. Of

course, if the yield statement was not being captured within the generator, passing values

in the generator results in a no-op—the value passed in is simply ignored.

�Cleaning Up
Custom iterators can implement a return method that can be used to clean up if the

consumer terminates the iteration prematurely (using break, throw, or return). It turns

out that the generator object returned by generator functions can do the same.

But wait, you say, we don’t implement the next method! If the caller were to invoke

return, how are we, the generator function authors, supposed to clean up?

Well, it turns out, JavaScript already has a cleanup mechanism—it’s the try-catch-

finally block! Here is how it works—if our generator implementation were to have a

try block, and the caller were to invoke return on the resultant generator, JavaScript will

execute the finally block within the generator function for us:

function* generatorFunctionWithTryCatchFinally() {

 try { ①
 console.log('Started');

 yield 'some value';

 } catch (error) {

Chapter 9 Iterable Sequences with Generators and Iterators

142

 console.log('Caught: ' + error);

 } finally {

 console.log('Finally block');

 }

}

const callee = generatorFunctionWithTryCatchFinally();

console.log(callee.next());

// Started

// { value: 'some value', done: false }

console.log(callee.return()); ②
// Finally block

// { value: undefined, done: true }

console.log('----------');

for (const looped of generatorFunctionWithTryCatchFinally()) { ③
 console.log(looped);

 // Started

 // some value

 // Finally block

}

console.log('----------');

const c = generatorFunctionWithTryCatchFinally();

console.log(c.next());

// Started

// { value: 'some value', done: false }

console.log(c.throw(new Error('Stop now!'))); ④
// Caught: Error: Stop now!

// Finally block

// { value: undefined, done: true }

① Wrap the body of the generator in a try block

② Invoke the return method on the generator

Chapter 9 Iterable Sequences with Generators and Iterators

143

③ Use the native for-of loop to drive the generator to completion

④ Use the throw method to case the generator to error out and stop

We write a simple generator that has its body wrapped in a try-catch-finally

block. We grab a reference to the generator object, and invoke return on it. The example

enumerates the output we see in the console, and we see that the finally block is

executed for us at this time.

Our next attempt uses the for-of loop to get a reference to the generator and

drive it to completion. Again, if we are to observe the output, we see that the finally

block of the generator function is invoked at the end. In other words, the for-of loop

automatically invokes the return method of the generator, just like we saw in the case of

custom iterators.

Finally, there happens to be yet another method that generator objects implement,

namely throw. Going back to the table-tennis analogy, rather than sending the ball

(a value) into the generator, we are throwing at error at it. Much like sending a value

(using next(someValue)) replaces the yield statement inside the generator, throw-ing

an error causes the generator to throw that error at the place where it was suspended.

If there were no try-catch block around that line, then the generator function would

simply report the error at that line. In our example, however, we do have a try-catch, and

appropriately, the catch block is executed, followed by the finally block.

As we can see in this example, generator functions, and the resulting generator

objects give us the same capabilities as iterators do, maintaining the symmetry between

custom iterators and automatically produced ones. The only exception here is that

generator objects also implement the throw method, which does not apply to other

iterables.

�Other Benefits
Generators allow us to write lazily evaluated code, as well as have the ability to produce

infinite sequences, both of which we see embodied in our Fibonacci sequence generator.

Leaving aside all the machinery of generators, we must always remember that they

produce iterators. Many functions that we write tend to return sequences, like arrays,

except we are forced to populate the array upfront, regardless of what the client might

need to do with it. Generators give us a mechanism for clients to proactively ask for

items, thus potentially optimizing how much work needs done.

Chapter 9 Iterable Sequences with Generators and Iterators

144

We must always bear in mind that generator functions, with the idea of suspending

and resuming, are a great fit for any situation where we see transfer of control from one

context to another, and back. One obvious candidate is asynchronous operations, where

control goes back and forth from the main execution context, to a callback, and back.

�Additional Syntactic Considerations
Consider a scenario in which one generator function (we will call this “outer”) invokes

another generator function (called “inner”) as part of its implementation. Given that our

intent is to consume all the yield-ed values of both the outer and the inner generator

functions, we need an additional mechanism to suspend the outer generator, loop over

all of the inner generator’s yielded values, and then return control back to the outer

generator thereby resuming it. This is where a new keyword, namely yield*, comes into

play. Consider the following:

function* inner() { ①
 yield 'b';

 yield 'c';

 yield 'd';

}

function* outer() { ②
 yield 'a';

 console.log('after the first outer yield');

 yield* inner(); ③
 console.log('after finishing the inner yield*');

 yield 'e';

}

for (const v of outer()) {

 console.log(v);

}

// a

// after the first outer yield

// b

Chapter 9 Iterable Sequences with Generators and Iterators

145

// c

// d

// after finishing the inner yield*
// e

① Our so-called inner generator function

② Our main or “outer” generator function

③ Using the yield* expression to invoke the inner generator and

drive it to completion

We start with two generator functions, except that the outer one delegates to the

inner one using yield*. We see from the output that the outer generator first yields a

value, then upon a next (via the for-loop), hands control over to the inner generator,

and when (if) it is done, resumes the outer generator.

A subtle aspect about yield* is that it is given the result of invoking the inner

generator (via inner()) and not a reference to it (i.e., inner). In other words, it is given

a generator object over which it can loop. It turns out that yield* can be given any

iterable—a generator object, an array, map, set, string, or even a custom iterable that we

handcrafted. Bear in mind though that while all of these implement the next and return

method, only generator objects implement the throw method.

�Summary
In this chapter, we saw how JavaScript now offers a standard mechanism for iteration,

making it possible for consumers and producers of sequences to adhere to a canonical

API for iteration. We also saw how generator functions and objects allow us to write

lazy code, and generate infinite sequences. While it may seem that the machinery

surrounding generators is complex, it will serve to remember the symmetry that iterables

and generators offer—they happen to be two sides of the same coin.

In the next chapter, we will explore the new promise API, which, thanks to ES6, is

supported natively in JavaScript. We will see how we can wrap legacy callback-based

APIs using promises, allowing us to embrace promises everywhere.

Chapter 9 Iterable Sequences with Generators and Iterators

147
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_10

CHAPTER 10

Avoiding Callbacks
with Promises
Working with asynchronous operations is tedious. For the longest time we resorted

to using callbacks which proved hard to get right especially when it came to state

management and error propagation. We then elevated the abstraction, leveraging

promises. However, those too came with their own set of problems—with different

libraries having varying implementations, leaving us frustrated and looking for a sane

way to grapple with asynchronous operations.

That changes now! JavaScript introduces promises in ES6 as a native API, elevating

promises to be a first-class citizen in the language. In this chapter we will explore the

API that promises offer, so that we can start using promises in our code, doing away with

callbacks. We will also learn how we can wrap operations that intrinsically assume a

callback, so that we can consistently use promises everywhere. Given what we will learn

in this chapter, we will once and for all get rid of callbacks, while making our code easier

to write and reason about.

�The Broken Promises of Promises
JavaScript is, by design, a language that enforces an asynchronous programming

paradigm. As JavaScript developers, we are well versed in the fact that our code runs

in a single thread. Therefore, “blocking” operations—I/O, network requests, and even

periodic invocations (using setInterval)—all need to be performed asynchronously.

That is, they need to be performed in a way that does not block the main thread.

Idiomatically, this is accomplished using callbacks. Asynchronous APIs expect one,

or more “handler” functions as arguments, and these handlers are invoked with the

result (or error) of the asynchronous call. The handler encompasses what to do if and

when the asynchronous call finishes.

148

Callbacks, while idiomatic, can prove to be hard to work with. Attempts at

sequencing asynchronous calls (where the invocation of one relies on the response of a

previous call) can lead to nested callbacks (affectionately referred to as the pyramid of

doom1). This nested code style leads to higher coupling, making it harder to test. Since

the handler runs in a different “context” from the rest of your code, error reporting and

propagation require careful handling and management.

Callbacks enforce an eager programming style, in that, any asynchronous function

that expects a callback as an argument forces the client to know exactly what needs done

before the operation completes. Since the callback has to be defined prior to invoking

the asynchronous operation, one cannot defer how we consume the result of the call to

after having started, or finished the work. Conceptually, the (asynchronous) task to be

performed is tied to the work that will be done after the task finishes.

But most importantly, reading code involving callbacks involves some mental

gymnastics, and makes it hard to reason about the code, even more so when the

callbacks are nested within one another. Granted, we could refactor our callbacks to be

standalone functions, and use those instead, but that seems akin to kicking the can down

the road. There have been several strategies used when working with nested callbacks,

many of which have been captured in web sites like Callback Hell.2

So came along promises. As the name suggests, a promise represents the result of

some work that is to happen eventually. When using promises, asynchronous calls,

rather than accepting a handler, immediately return a promise object (or are wrapped

in one). This promise, which represents the result of a potential success/failure in the

future, can then be passed around to other pieces of your application, elevating the

notion of asynchronous work to being a first-class citizen just like any other object.

This promise “token” exposes a then method, which expects another handler, and

in turn returns a new promise that wraps the result of that handler in a promise. The

handler supplied to then is the work that is to be done when the promise it is chained to

completes. This allows us to defer what we wish to do with the result of an asynchronous

operation till later, in effect, decoupling where we start the work, from where we

consume the results.

Considering the then API itself returns a promise permits us to “chain” promises,

thus providing us with a mechanism to eloquently express sequencing—in effect, “Do

this, when it is done, then do this.”

1�https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)
2�http://callbackhell.com/

Chapter 10 Avoiding Callbacks with Promises

https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)
https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)
http://callbackhell.com/
https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)
http://callbackhell.com/

149

Finally, a promise object exposes a mechanism to trap any errors, usually with a

catch method, and this allows for trapping, and dealing with any errors that might occur,

anywhere in the promise chain.

Promises are a simple abstraction on top of callbacks—they simply provide a

mechanism to wrap callbacks, alleviating the need for us developers to deal with state

and error management.

However, for so long, promises were implemented as a library. Popular stand-along

implementations include Kris Kowal’s q3 and libraries like jQuery shipped with their own

internal implementations. Developers who wished to use promises were either forced to

include (explicitly or implicitly) a third-party library since the language had no support

for the same.

This leads to the second point—while there exists a community-driven specification4

to dictate how JavaScript promises are to work, there was no guarantee that an

implementation actually adhered to the specification, or how true (to the specification)

the implementation was. In other words, there was no canonical API to work with

promises that made clients agnostic of the implementation details.

Add to that the fact that many libraries and frameworks chose to adhere to native

language constructs (of which there is only one—the callback), thus creating a schism,

where often code, in one application used both callbacks and promises, furthering the

confusion.

To address these issues, ES6 introduces the promise API to JavaScript. Let us dive

into the details of this API next.

�Using Promises
Promises are created using the Promise constructor, which takes as its sole argument a

single function. This function, in turn, receives two arguments, wherein both arguments

happen to functions themselves. The first argument provides the means to signal a

successful resolution of the promise, while the second signals a failed resolution. Let us

consider a simple example to make this idea concrete:

const shouldResolve = true;

const p = new Promise((resolve, reject) => { ①

3�https://github.com/kriskowal/q
4�https://promisesaplus.com/

Chapter 10 Avoiding Callbacks with Promises

https://github.com/kriskowal/q
https://promisesaplus.com/

150

 if (shouldResolve) {

 resolve('I transitioned successfully'); ②
 } else {

 reject(new Error('I failed to resolve')); ③
 }

});

console.log(p);

① Create a promise using the constructor

② resolve it conditionally

③ Else reject it

We introduce some conditional as mechanism to mimic a real-world scenario

where the promise might successfully resolve, or fail to do so. To follow the happy path

(initially), we set the conditional to true. We then proceed to create a promise using the

constructor, conditionally “resolve”-ing with a message by invoking the first argument to

the callback handler, aptly named resolve. If we were to run this in our browser console,

we see the following:

Promise { <state>: "fulfilled", <value>: "I transitioned successfully" }

Since our conditional allowed the promise to be “resolve”-ed, the promise now in a

“fulfilled” state reports our success message.

If we were to try running the same snippet with the conditional set to false, we

notice the promise was “rejected.”

Promise { <state>: "rejected" }

The promise constructor provides a mechanism to wrap any existing functions

or operations that perform asynchronous tasks. Many legacy APIs expect a callback;

however, if we wish to use promises everywhere (which we should), it’s easy to hide this

from consumers going forward, like so:

const asyncRequest = (method, url) => ①
 new Promise((resolve, reject) => {

 const xhr = new XMLHttpRequest();

 xhr.open(method, url, true);

 xhr.onload = () => resolve(xhr.response); ②

Chapter 10 Avoiding Callbacks with Promises

151

 xhr.onerror = () => reject(new Error(xhr.statusText)); ③
 xhr.send();

 });

const req1 = asyncRequest('GET', 'https://my-json-server.typicode.com/

typicode/demo/posts');

① Wrap a XMLHttpRequest call in a function

② If the request succeeds, resolve the promise with the response

from XMLHttpRequest object

③ Else reject it, appropriately wrapping the response

We attempt to (rather naively5 I must admit) wrap requests using XMLHttpRequest in

a promise API. Now, any call to request simply returns a promise, that is, in this instance

req is a Promise object.

As one might surmise, a promise acts like a state machine. Once constructed, a

promise is in “pending” state, and eventually “transitions” to either being “fulfilled,” if

it is resolved, or to a “reject”-ed state, if it is rejected, lending the state of the promise to

“settled.” Once settled, a promise cannot revert to any of its previous states, nor can it

transition to any other state.

Onto the promise API!

�Using Promises
The Promises/A+ specification alludes to a thenable object, which is an object that acts

like a promise, and happens to have a then method. ES6 promises are Promises/A+

compliant, and correspondingly expose a then method that allows clients to access the

eventual result of a resolved promise, or the reason for it being rejected.

An interested party can express interest in the value of the promise at any time (even

after the promise has transitioned) by attaching a handler to its then method. This

callback will be invoked if the promise resolves successfully.

5�This implementation has a few shortcomings. It instantiates the XMLHttpRequest internally, thus
preventing the client from configuring the actual request. Secondly, it only rejects the promise
if the request fails, not if the response contains a non-200 status.

Chapter 10 Avoiding Callbacks with Promises

152

The then method can also take a second, optional argument which is the error

callback, and this callback will be invoked if the promise were to be rejected; however,

this is considered to be an anti-pattern.6 In order to catch errors in the promise chain,

promise objects also expose a catch method, which will trap any rejected cases. finally

is yet another method that promises expose, that allow us to do any cleanup once the

promise is settled; in other words, the handler supplied to finally will be invoked

regardless of the promise being resolved or rejected.

then, catch, and finally are all guaranteed to return promise objects. That is, we

are not required to wrap the return value of these callbacks in promises—we can simply

return any value or reference, and the underlying machinery will automatically wrap the

return value in a promise for us.

Thus, idiomatically, resolve and then method should, respectively, capture and

return values, allowing consumers downstream to continue chaining, while reject-

ion should be done using an Error object, which captures a stacktrace thus making

debugging a lot easier.

Which begs the question—what should the return value of catch be? Recall that

both then and catch return promises—so if there is a way to recover from an error, and

allow for continuation of the promise chain, then a catch handler can return a value

while simultaneously allowing for side effects (such as logging the error)! This allows

consumers downstream to remain agnostic of errors, and may continue chaining

knowing that they will get a value, albeit a default of some sort.

finally is a bit of an exception—it takes no arguments, and is simply a mechanism

that allows for any cleanup required after the promise resolves. The finally block will
be invoked regardless of a resolution or a rejection, much like any try-catch-finally

block you might be used to in other languages.

A quick demonstration is in order. We will build upon our promisified

XMLHttpRequest example, and register appropriate listeners for a result, and trap any

errors.

const req1 = asyncRequest('GET', 'https://my-json-server.typicode.com/

typicode/demo/posts');

req1

 .then(json => JSON.parse(json)) ①
 .then(resp => resp.map(item => item.id))

6�https://stackoverflow.com/a/30882722

Chapter 10 Avoiding Callbacks with Promises

https://www.datchley.name/promise-patterns-anti-patterns/
https://stackoverflow.com/a/30882722

153

 .then((ids) => {

 console.log(`Found ${ids.length} posts`);

 return ids;

 })

 .catch(err => console.log(err)); ②

① Attach several handlers using the then method

② Ensure we trap any errors using catch

The promise API, outside of being fluent, provides a very elegant mechanism to

decouple starting an asynchronous operation, from the consumption of the results of

said operation. Gone are the nested callbacks; instead the multiple thens allow us to

(better) align our code with how we think and reason about our programs. Furthermore,

since the chain correctly propagates errors, we can safely trap any error that may occur

in the promise chain.

�All or Nothing
There are scenarios in which we wish to start a multitude of (asynchronous) operations

in parallel, treating them either as a collective “whole,” insofar that we care about all

of the resolved values, or just one. This is different than us attempting to sequence

operations, which is when we would use the then method available on promises.

The promise API exposes two class level methods, namely all and race which

attempt to fulfill this requirement.

Consider a scenario where you wish to read from multiple files (on disk), or gather

information from a slew of different endpoints, and only after all the requests complete,

collate the results. We can use Promise.all to start up multiple concurrent requests and

wait for all of them to complete, like so:

const p = asyncRequest('GET', 'https://my-json-server.typicode.com/

typicode/demo/posts'); ①
const c = asyncRequest('GET', 'https://my-json-server.typicode.com/

typicode/demo/comments'); ②

Promise.all([p, c]) ③
 .then(([posts, comments]) => ({ ④
 posts: JSON.parse(posts),

Chapter 10 Avoiding Callbacks with Promises

154

 comments: JSON.parse(comments),

 }))

 .then(obj => console.log(obj))

 .catch(err => console.log(err));

① Start a lookup for all of a user’s posts

② Similarly one for all comments

③ Use all to start multiple operations in parallel

④ Receive an array of resolved values in the same order as the

supplied promises

We care to fetch all of the posts and the comments for a particular user, which are

independent requests. Promise.all takes an array of promises, and in turn, returns a

promise. If and only if all of the promises supplied to all resolve, it collects all of the

fulfilled values into an array, ordering them in the same order as the original order of

promises, and calls our then handler.

However, if one or more promises were to fail (with a rejection or an error), then the

promise that all returns is rejected as well.

Alternatively, there is Promise.race. As the name suggests, given an array of

promises, the first promise to resolve wins the race (or the first one to be rejected), and

the resolved value of the “winning” promise is the single argument supplied to the

handler (thus discarding the results of any other promises that resolve afterward).

One interesting use-case for Promise.race is when we wish to timeout an

asynchronous operation, like so:

const p = asyncRequest('GET', 'https://my-json-server.typicode.com/

typicode/demo/posts'); ①
const timer = new Promise((_, reject) => setTimeout(reject, 1000)); ②

Promise.race([p, timer]) ③
 .then(posts => ({ ④
 posts: JSON.parse(posts),

 }))

 .catch(() => ({ ⑤
 posts: [],

 }))

 .then(obj => console.log(obj));

Chapter 10 Avoiding Callbacks with Promises

155

① Start a lookup for all of a user’s posts

② Wrap setTimeout in a promise that is rejected after the set

interval

③ Use race to start multiple operations in parallel

④ Receive the array of posts if our request completes prior to our

timeout

⑤ Else catch the rejection to compose a default return value for

subsequent consumers

We leverage multiple techniques here—(naively) wrapping an asynchronous

operation like setTimeout in a promise, race-ing our actual request against one that

is rejected on a timeout, and returning defaults from a catch method so subsequent

consumers can continue chaining.7 If you wish to see how race behaves if we were to

timeout before our Ajax request is resolved, simply lower the timeout limit to perhaps ten.

Finally, the promise API exposes two additional (static) methods, namely Promise.

resolve and Promise.reject which act as handy shortcuts, particularly when testing.

�Caveats
The first limitation is that promises are eager, in that once we initiate an operation using

a promise, that work will be performed, regardless of whether there is an interested

consumer. That is, a promise will attempt to carry out its assigned duties without waiting

for a client to attach a then handler.

Consider a scenario where you attempt to resolve some data (via an Ajax call) that

is to be displayed in a widget prior to displaying the widget on the screen. Now, let’s say

that a user interaction causes it so that the widget is no longer needed. Since promises

are eager, the process that fetches the data happens regardless of whether there is a

widget to consume them. If the promise were to wait till the widget attached a then

handler, then our worries would be over. But alas!

In addition to promises being eager (or not lazy), they are also not cancelable. That

is, the promise object does not expose an API to cancel the underlying process that it

wraps. Consider a search interface that attempts to refresh the results displayed as we

type our query (much like Google’s or Netflix’s). This requires that we make an Ajax call

7�This will depend on your use-case, but it is certainly a technique worthy of remembering.

Chapter 10 Avoiding Callbacks with Promises

156

to the backend for every character typed. However, there is a good chance that we start a

backend call based on the characters in the search input box, and depending on how fast

the user types, we may have to start another query before the previous one completes. It

would be nice if we could simply cancel the previous query prior to starting a new one.

All of this boils down to one simple rule of thumb—don’t compose a promise unless

you are sure you are going to use it!

�The Benefits of a Native API
The fact that the promise API is now part of the language offers a huge advantage

over using a library, which is, we now have a standard API that unifies how browser

vendors, libraries, and frameworks can wrap asynchronous operations. For example,

window.fetch8 can now return a promise, because the language now natively supports

promises. One side effect of this is now we have one vocabulary to work with anything

asynchronous, allowing us, the developers, to develop a richer set of patterns and anti-

patterns that rally around one central construct, namely the promise. Correspondingly,

other language constructs like async/await, which we will discuss soon, can also safely

use promises.

More so, the introduction of the promise API in JavaScript is in line with other

features we have seen, like iterables, that attempt to provide a common denominator for

both library/framework writers and consumers, while not diverging away from well-

established community standards like the Promises/A+ specification.

Going forward, we, as JavaScript developers, will benefit if we rally around (native)

promises, be that in our code or in the expectations we set from the libraries and

frameworks we use. Of course, if nothing else, we might be able to finally shed our

dependency on yet another third-party library. :)

8�https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch

Chapter 10 Avoiding Callbacks with Promises

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch

157

�Summary
Promises, offered as a native API in JavaScript offer a significant advantage over using

third-party libraries, by allowing all asynchronous operations, be that native or other,

to return a promise. Granted that promises come with their own concerns, however,

they are a huge leap forward from the world we previously inhabited, wherein we had

inconsistent semantics when working with asynchronous operations.

In the next chapter we will look at a much-wanted language feature, namely the

ability to declare classes to build inheritance trees in JavaScript.

Chapter 10 Avoiding Callbacks with Promises

159
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_11

CHAPTER 11

Many of a Kind
with Classes
Building objects via classes, and organizing them in hierarchies in JavaScript, is hard.

Functions, constructors, the prototype property—combine all of these using a secret

recipe, sprinkle some magic dust, and voila, we have inheritance, assuming we get all the

wiring correct. Without having an intricate understanding of how JavaScript prototypal

inheritance works, it feels like its black magic.

In this chapter we will see how we can easily create classes and build inheritance

trees in our code using several new keywords like class, extends, and super that were

introduced in ES6, allowing us to express our intent just as we would have in other

object-oriented languages. Once we are done with this chapter, we will be confident in

our abilities to model our problem space comprehensibly. We will also walk away with a

nuanced view of when we should reach for this new feature in our codebase, and times

when we might be better off without it.

�The Difficulties of Building Classes and Inheritance
in JavaScript
JavaScript is object-oriented, where objects can act as “bags” of data, and methods,

which happen to be functions that can operate on the contained data. JavaScript

embodies prototypal inheritance, wherein objects extend from other objects, which,

when coupled with its dynamic typing, is arguably much more powerful than classical

inheritance seen in languages like Java or C#. Granted, JavaScript does not seem to lend

itself to principles that are obvious in other languages like abstraction, polymorphism,

inheritance, and encapsulation—however, with a little bit of trickery, many of these can

be achieved.

160

And herein lies the rub—while many of the aforementioned object-oriented facets

are possible in JavaScript, it is extremely hard to get right without having intimate

knowledge of everything involved to make the magic happen. One needs to understand

how functions can act as constructors, how new-ing creates objects, and how the

constructor invocation wires up the resulting objects prototype. It also requires one to

grok how the constructor and prototype property work within the instance to allow for

things like inheritance to work. Consider the following snippet:

function Person(name) { ①
 this.name = name;

}

Person.prototype.getName = function () { ②
 return this.name;

};

Person.prototype.sayHello = function (to) { ③
 return `Hello ${to.getName()}. My name is ${this.name}.`;

};

const raju = new Person('Raju');

const venkat = new Person('Venkat');

// prints 'Hello Venkat. My name is Raju'

console.log(raju.sayHello(venkat));

① A constructor function

② Tack on an instance method on the function’s prototype

③ Add another instance method

Let us break it apart, one piece at a time. Before we start, bear in mind that functions

in JavaScript are objects, and like objects, can have properties. One such property

happens to be the prototype property.

In our example, we leverage the fact that functions play a dual role in JavaScript.

That is, they can act both as regular functions, and constructors, much like constructors

we may be used to in other languages like Java or C#. The only difference between a

regular function invocation and constructor function invocation is that the latter uses

the new keyword.

Chapter 11 Many of a Kind with Classes

161

When a function is invoked with the new keyword, a new object is created that has a

hidden pointer to the prototype of the function that created it, and this is bound to this

new object inside the body of the constructor function. In other words, anytime we use

this inside the body of a (constructor) function, we are referring to this new object, that

happens to be an “instance” created by that function.

Consequently, any time we tack on a property, like this.name we are simply tacking

it on the newly created instance. However, if we wish to have “instance” methods for

all instances created by a function, then we leverage the fact that the newly created

object has a pointer to the functions prototype, so by saying Person.prototype we are

changing the prototype of the new object!

Finally, since all instances of this function have the same methods (since they belong

to the shared prototype object), we can invoke one instance method from another, for

example, we can use getName from sayHello.

Person

prototype (Person) prototype

constructor

__proto__

getName

sayHello

venkat

name: 'Venkat'

__proto__

raju

name: 'Raju'

__proto__

Figure 11-1.  Prototypal inheritance

Chapter 11 Many of a Kind with Classes

162

This picture describes how prototypal inheritance works, wherein, the newly created

instance references the prototype of the function that created it.1 If we are to look up a

property (or invoke a method) that does not exist on the instance itself, then the object

delegates to its prototype, thus “climbing” the inheritance tree. Of course, if we reach the

end of the prototype chain, and the property was not found, we would get an undefined.

The thing to bear in mind about the prototype object is that it is just a POJO—a plain

old JavaScript object! It is no different that if we had created an object using the object

literal ({}). This is precisely why it’s referred to as “prototypal” inheritance—one object

acts as the prototype of another—objects inherit from other objects.

Along the same vein, by default, all objects inherently inherit from Object.

prototype.2 This rule applies to any object we create using {} as well as to the prototype

objects that are attached by JavaScript to functions objects.

To complete the picture, Object.prototype has a few methods tacked onto it, like

toString. Keeping all this in mind, our all-pictorial representation of this becomes what

is shown in Figure 11-2.

1�In this diagram, the __proto__ property is represented as the hidden pointer to the objects
prototype. While this property does exist in some implementation, it is one we cannot assume. If
we wish to get the prototype of any object, we should use the Object.getPrototypeOf method.

2�This object, like any function’s prototype object, is simply another POJO.

Chapter 11 Many of a Kind with Classes

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getPrototypeOf

163

Extending our previous discussion, if we were to call toString on an instance of

Person, JavaScript would start with the instance, realize it does not have that method,

follow the prototype chain up to the it’s prototype, and continue to do so till it reaches

Object.prototype, and invoke that method.

We are already seeing the glimmer of how prototypal inheritance works in JavaScript.

But how do we create an inheritance hierarchy like we would in other languages? Let

us take see how we “extend” from our earlier implementation of Person to create a

SuperHero:

Person

prototype (Person) prototype

constructor

__proto__

getName

sayHello

venkat

name: 'Venkat'

__proto__

raju

name: 'Raju'

__proto__

Object

prototype (Object) prototype

constructor

toString

Figure 11-2.  Inheriting from Object

Chapter 11 Many of a Kind with Classes

164

function SuperHero(name, superpower) { ①
 // super call - can pass args

 Person.call(this, name); ②
 this.superpower = superpower;

}

SuperHero.prototype = Object.create(Person.prototype); ③

SuperHero.prototype.warCry = function () { ④
 return `My name is ${this.name}!!!`;

};

SuperHero.prototype.constructor = SuperHero; ⑤

const thor = new SuperHero('Thor', 'Mjolnir');

// prints 'My name is Thor!!!'

console.log(thor.warCry());

// prints 'Hello Venkat. My name is Thor'

console.log(thor.sayHello(venkat));

① A “sub-class” constructor

② We invoke the “super” constructor first

③ Create the sub-class prototype

④ Add a method to SuperHero.prototype

⑤ Line up the constructor property of the prototype to point back

to the constructor function Phew! A lot of moving parts. However,

most of it is simply reproducing what we already know about

prototypal inheritance in JavaScript

We start with our implementation of the Person constructor, and adding onto

Person.prototype some instance methods. We then define a SuperHero constructor,

which is supposed to extend Person. Inheritance requires that when we invoke the

subclass constructor, we first finish constructing our parents (in traditional object-

oriented languages this would be a super call), and only then continue constructing the

subclass instance. How do we emulate this in JavaScript?

Chapter 11 Many of a Kind with Classes

165

Recall that when we invoke a function like a constructor (i.e., invoking it with the

new keyword), this inside the constructor definition is the newly created instance. In

our implementation, we supply this to the Person via the call method available on

functions. The call method on function objects forces this inside the callee (in our

case Person) to be whatever is supplied as the first argument to call (in our case that is

the newly created SuperHero instance).3 The second argument to call is any arguments

that the function expects—in our case that would just be the name. Consequently, the

newly created instance gets adorned with whatever the Person constructor tacks on to it,

which is exactly what we want.

So, we can emulate a super call. Next item on the menu—align the prototypes

correctly. If we were to look back at how prototypal inheritance is implemented,

instances point to the prototype of the function that created them. For the whole

inheritance tree to work correctly, SuperHero.prototype must be an object that

points to Person.prototype. Then, and only then, instances of SuperHero will point

to SuperHero.prototype, which in turn points to Person.prototype, which by default

points to Object.prototype.

It turns out that Object.create can take an object, and returns a new object that

uses the supplied object as its prototype. Great! We swap out SuperHero.prototype

with the newly created object, then tack on an instance method (which works only for

superheroes) on it.

One final detail—since we swapped out the prototype object that JavaScript created

for the SuperHero function, we need to wire it so that it knows the function that owns

it, so we align the constructor property on SuperHero.prototype to point back to the

SuperHero function.4

Wow. That is a lot of work to get inheritance working, not to mention how intricate

the wiring is, and consequently, how easy it is to miss a step. However, after all that, our

pictorial representation transforms to what is shown in Figure 11-3.

3�Contrast this with calling the Person constructor like a function, like Person(). In this case, there
is no context; thus this has no meaningful value inside the function implementation. In strict
mode this inside a function call is actually undefined!

4�This is how instances of SuperHero can answer the instanceof question—they simply follow
their constructor property and see if anyone of their parents are of the type being asked for.

Chapter 11 Many of a Kind with Classes

166

Person

prototype (Person) prototype

constructor

__proto__

getName

sayHello

venkat

name: 'Venkat'

__proto__

raju

name: 'Raju'

__proto__

Object

prototype (Object) prototype

constructor

toString

SuperHero

prototype (SuperHero) prototype

constructor

__proto__

warCry

thor

name: 'Thor'

power: 'Mjolnir
'

__proto__

Figure 11-3.  Deeper inheritance

Chapter 11 Many of a Kind with Classes

167

It is imperative that we realize unlike class-based inheritance, inheritance in

JavaScript is achieved via prototypes. Functions act as simple facilitators that allow us

to create objects with their prototypes set correctly, thus enabling property and method

lookup.

Given that, how does one achieve “static” properties, that is, properties that are

associated with the “type” vs. the instance? Simply tack on a property to the object

type, which in JavaScript is the function that created that object. So, if we were to tack a

property SuperHero.count, we could perhaps keep track of how many superheroes we

construct in our application.

As we might conclude, while all of the above is rather elegant, the intent of

inheritance might be lost in the machinations. Furthermore, the definition of a type is

split. Granted, with enough clever code one could attempt to abstract that all to one

location, but that does little to alleviate the concern at hand, namely there is already a lot

of codes! Is there a better way to realize all this? ES6 activates the class keyword, along

with a few others to make all of this a lot easier to work with. Let us take a look.

�Modeling Using Classes
ES6 introduces us to the class keyword, allowing us to express types in a manner that

finds parity with other languages. Let us start with simply defining the Person class, and

then we will see how inheritance works following that:

class Person { ①
 constructor(name) { ②
 this.name = name;

 }

 getName() { ③
 return this.name;

 }

 sayHello(to) { ④
 return `Hello ${to.getName()}. My name is ${this.name}.`;

 }

}

Chapter 11 Many of a Kind with Classes

168

const raju = new Person('Raju');

const venkat = new Person('Venkat');

// prints 'Hello Venkat. My name is Raju'

console.log(raju.sayHello(venkat));

① Use the newly activated class keyword

② Define a constructor for our type

③ Define an instance method

④ And then another

Right off the bat, a sigh of relief!5

We introduce a “class” Person, with a single-argument constructor. JavaScript

requires that if we do need a constructor, it must be called constructor and we are only

allowed to have one constructor per class. However, if our class does not do any work at

construction time, then we do not have to write a constructor, and in that case JavaScript

will provide us with a default no-argument constructor.

We can also tack on functions to the class like regular methods. JavaScript classes

cannot have member variables—if we wish to tack on a property on the instance, we

must use this inside the constructor or any instance method.

Also, all methods in a class, constructor included, benefit from many of the features

that we have explored—default parameters, destructuring, and spread arguments are all

fair game. Using one or more of these features in unison is how we would accomplish

overloaded methods for our instances.

As our demonstration shows, the behavior is exactly like we had it working with

functions. Onto inheritance!

As we attempted earlier, we want SuperHero to inherit from Person. Let us see how

we can accomplish this using the new syntax:

class SuperHero extends Person { ①
 constructor(name, superpower) { ②
 super(name); ③
 this.superpower = superpower;

 }

5�Assuming you take my word that this actually works :)

Chapter 11 Many of a Kind with Classes

169

 warCry() { ④
 return `My name is ${this.name}!!!`;

 }

}

const thor = new SuperHero('Thor', 'Mjolnir');

// prints 'My name is Thor!!!'

console.log(thor.warCry());

// prints 'Hello Venkat. My name is Thor'

console.log(thor.sayHello(venkat));

① Use the extends keyword

② Define the constructor

③ Ensure super is invoked

④ Define a SuperHero instance method

In order to extend another class, we simply use the extends keyword, wherein we tell

what type we wish to extend. The first thing we are required to do in the subtype is to

invoke super with all of the arguments the parent needs. The rest should be no surprise.

Once again, we see that the behavior is no different than what we saw in our function-

based implementation.

Classes are allowed to have instance methods like we have seen. They are also allowed

to both instance-level and class-level (static) attributes, as well as static methods.

However, attributes cannot be introduced inside the class body, and this includes static

ones. If we wish to do so, we are forced to define them outside the class body.

A static method on the other hand is defined like an instance method except it is

prefixed with the static keyword. Such methods can only be accessed on the type, via

Classname.staticMethod(). Let us look at an example where we keep track of, and

report on the number of superheroes we have constructed:

class SuperHero extends Person {

 constructor(name, superpower) {

 super(name);

 this.superpower = superpower;

 SuperHero.internalCount += 1; ①
 }

Chapter 11 Many of a Kind with Classes

170

 static count() { ②
 return SuperHero.internalCount;

 }

}

SuperHero.internalCount = 0; ③

const thor = new SuperHero('Thor', 'Mjolnir');

const blackWidow = new SuperHero('Black Widow', 'weapons specialist');

// prints 'We have 2 superheroes!'

console.log(`We have ${SuperHero.count()} superheroes!`); ④

① Increment the static counter each time the constructor is

invoked

② Define a static method that returns the count of superheroes

③ Define an attribute to keep count

④ Invoke the static method

We can reference any static attribute or method by calling them using the class

name. However, we have to declare (and in this case initialize) the static property outside

the definition of our class. This qualification is also applicable to nonstatic, or instance-

level attributes.

Finally, JavaScript does not support modifiers, such as private or public. All

attributes and methods defined on a class are public. This again is a departure from

traditional languages like Java or C#.

Despite these limitations, I believe we can start to appreciate how this syntax

drastically reduces the amount of wiring we have to do by hand, thus reducing any subtle

bugs we might introduce when building our own inheritance trees. Admittedly, it feels

rather declarative, vs. the imperative modus operandi we adopted when using functions.

Furthermore, to folks coming in from other (class-based) languages, this syntax

is very familiar, and thus feels very empowering. This syntax, already in use by

frameworks like Angular and libraries like React, makes it far easier for designers to allow

mechanisms that allow client code to hook into the life cycle offered by the same.

Chapter 11 Many of a Kind with Classes

171

�Caveats
If the amount of time and effort it takes to explain prototypal inheritance in JavaScript

using functions is any measure, then the new syntax wins hands down. Discussing the

new syntax almost seems natural, as compared to the extremely intricate and delicate

wiring using the old syntax, while accomplishing exactly the same thing.

That said, we are not out of the woods yet. JavaScript has and will continue using

prototypal inheritance. The new syntax that ES6 offers is simply syntactic sugar on top

of the old! Hence the slightly negative news—we, as JavaScript developers, must realize

this, and take it upon ourselves to truly understand how prototypal inheritance works

under the covers. There is no escaping this, and, as JavaScript developers, it behooves us

to know how the language really works.

�Summary
JavaScript has always supported the idea of types, as well as inheritance, albeit in a

manner that was cumbersome, and one that necessitated an intimate understanding

of how (constructor) functions, prototypes, and instances interplayed with one another

to make all the magic happen. In this chapter we learned how we can use the new

keywords like class and extends to clearly elucidate what our instances are to look like.

We also shined a spotlight on the fact that under the covers this new syntax simply sugars

prototypal inheritance, and the pitfalls of always thinking in “object oriented” mode,

when perhaps thinking functionally might serve us better.

In the next chapter we will focus on modules that attempt to fill a much-needed gap

in JavaScript, namely modules, once and for all doing away with all the schemes we have

drummed up to “namespace” our code.

Chapter 11 Many of a Kind with Classes

173
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_12

CHAPTER 12

Namespacing Code
Using Modules
JavaScript’s answer to “packaging” or namespacing can be expressed rather succinctly—

it was nonexistent. This has been one of the most glaring omissions in the language

design since the beginning, and has led to a variety of attempts at modularizing code.

These ranged from homegrown solutions to full-blown specifications like AMD.1

ES6’s answer to this problem is modules. In this chapter we will learn how to

create and consume modules using the new support for the same provided in ES6. We

will be ready to do away with hacky solutions like IEFEs, and be ready to embrace a

consistent, platform agnostic mechanism to encapsulate and namespace our code into

reusable modules. By the end of this chapter, not only will we have a comprehensive

understanding of the nuanced syntax for modules, but also be ready to use the same

with any third-party libraries in our codebase.

�The Lack of Namespacing in JavaScript
In JavaScript, there exists one and only one environment, namely the global scope.

Anything we do, such as declaring variables or defining functions, ends up in this global

scope, and thus visible to all. Add to this the fact that JavaScript is dynamically typed, so

if two “things” were to be named the same, even if they were not the same type (variable

vs. function), there would be a collision, with the one that was evaluated last winning.

There happens to be only one construct that introduces scope, namely functions.2

We, the developers, quickly latched on to this idea as a mechanism to create a buffer

1�https://github.com/amdjs/amdjs-api/blob/master/AMD.md
2�We have seen how “blocks” introduce scope—however, recall that vars did not respect block
scope, thus making it a moot point.

https://github.com/amdjs/amdjs-api/blob/master/AMD.md

174

between our code and the global scope, and pretty much every idea around creating

modules leverages this idea.

We have discussed the idea of IEFEs in an earlier chapter, but to jog our memory

here is our previous example for posterity:

const counter = (function createCounter() { ①
 var steps = 0; ②
 function increment() {

 steps++;

 }

 function getCount() {

 return steps;

 }

 return {

 increment,

 getCount,

 }; ③
}());

// use it

// console.log(steps); ④
counter.increment(); ⑤
console.assert(counter.getCount() === 1); ⑥

① Introduce artificial block by creating an anonymous function

② This var will be scoped within the declared function

③ Expose a public API by return-ing an object

④ This will result in a ReferenceError

⑤ You can use the public API

⑥ Invoke the public getter

IEFEs, alongside the revealing module pattern, give us exactly what we need—a

mechanism to declare “private” members while allowing us to expose an API to the

outside world. This is the approach most libraries in the open source ecosystem use.

Chapter 12 Namespacing Code Using Modules

175

However, while this seems to have solved the problem of producing an encapsulated

construct, it does little to alleviate the problem of consuming it.

Consider jQuery as an example. jQuery wrapped all of its functionality in an IEFE,

and exposed an object to global scope, namely $. In our application code, if we wish to

use $, how do we go about doing it? Well, we have to ensure that the jQuery library is

loaded first, which would introduce $ to the global scope, and then we could go about

merrily using the same in our codebase.

This is to say, the order of loading libraries matter! If we were to reorder the library

list, the house of cards come tumbling down.

The core issue here is that we are using the global scope to share code, making

interdependencies between different pieces of the codebase implicit, rather than

explicit. Not to mention, we can just as easily have a collision if two or more “exported”

variables have the same name. This problem is further exaggerated when there are lots

of mini-libraries being loaded, with interdependencies between all of them—trying

to ascertain the order of loading, while avoiding collisions quickly becomes a case of

Russian roulette.

Summarizing, IEFEs and the revealing module pattern can help with encapsulation,

but they don’t namespace what it is they are providing, leaving it to consumers to ensure

that there are no collisions. On the other hand, consuming these libraries involves

meticulously loading libraries in the right order, since the only shared context is the

global scope.

Before we go about exploring a solution to this problem, we must consider another

facet of JavaScript, that is, JavaScript is no longer just a client-side language. Developers

have embraced JavaScript on the server using technologies like Node,3 which has a

completely different set of parameters as compared to client-side scripting.

Consider how JavaScript is loaded in the browser. This is done using script tags,

which require that the browser request a resource from the server. Needless to say, we

would not want to do this synchronously, since it would block the main thread, so this

loading is typically done asynchronously. Contrast this with server-side programming.

When one piece of the codebase “require”-s another, that script can be loaded

synchronously, since it resides right there—on disk, be that in the same project, or in the

node_modules folder.

3�https://nodejs.org/en/

Chapter 12 Namespacing Code Using Modules

https://nodejs.org/en/

176

Again, the problem here is loading the libraries we need, in the right order, and

making their public members available to us, without the risk of collisions. How these

dependencies get resolved is a separate question. In the following sections we will

discuss how ES6 tackles module declaration and usage. However, before we begin, let us

see how we can run the code snippets in this chapter.

�How to Run Modularized JavaScript
The easiest way to run the code samples in this chapter is to use Node.4 Node, at the time

of this writing, is at version 12+, and supports ES6 modules behind an experimental flag.

First, ensure that you either have Node installed, or are running a relatively recent

version of Node. Of course, if you already have a version of Node running on your

machine that you want to keep around, you can use either “Node Version Manager”5 or

“nvm-windows”6 to install and maintain multiple versions of Node simultaneously. Once

installed, open a command prompt and type the following:

node --version

on my machine I see 'v12.4.0'

If you see a valid response, then you have Node installed correctly.

In order to load and run ES6 modules in Node, there are two requirements:

•	 Node must be invoked with the --experimental-modules flag.

•	 Any source file that is to be treated as an ES6 module should have the

file extension .mjs (versus being just .js).

Let us consider a simple example to make things clearer. cd to a scratch directory,

and create a new file with the name exporter.mjs with the following contents:

// file name must end in "mjs" — like exporter.mjs

export const sayHello = name => `Hello ${name}!!`

Now create another file, in the same directory, and name it importer.mjs and

include the following:

4�https://nodejs.org/en/
5�https://github.com/nvm-sh/nvm
6�https://github.com/coreybutler/nvm-windows

Chapter 12 Namespacing Code Using Modules

https://nodejs.org/en/
https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows

177

import { sayHello } from './exporter.mjs'; ①
// prints 'Hello ES6 Modules!!'

console.log(sayHello("ES6 Modules"));

① Import members from exporter

Be sure to save both files, then in the console type the following:

node --experimental-modules importer.mjs

You should see Hello ES6 Modules!!.7

In our setup, exporter.mjs “exports” certain members, and importer.mjs uses said

members within itself. As you play along with the examples in this chapter, you may

name your files any which way, as long as the file has the .mjs file extension and you are

using Node’s experimental support for ES6 modules. The .mjs file extension is unique to

Node, which by default supports CommonJS. However, ES6 module files are no different

than regular JavaScript files, except that they declare a module, and hence should have

the .js extension. Correspondingly, the snippets in this chapter will reference any and

all files using the .js extension—simply replace those with .mjs in your workspace.

Let’s talk modules!

�Declaring Modules
A module in ES6 is simply a collection of related variables, constants, functions, and

classes. Modules allow us to split up our codebase into smaller, self-contained pieces

of functionality, which can then be consumed by other parts of our codebase, or

even published to be consumed by other applications. A module allows us to “tuck”

functionality in a namespace, thereby eliminating naming conflicts.

Modules in ES6 are encompassed in files, wherein there is a one-to-one relationship

between a file and a module. The name of the module is the (absolute or relative) path to

the file itself. Modules operate under strict mode by default, which we have discussed

briefly in Chapter 1. All members of a module are implicitly “private”—that is, they are

7�You might see a warning about the module loader being experimental. We can ignore that for the
length of this discussion.

Chapter 12 Namespacing Code Using Modules

178

not visible to anyone using this module unless they are explicitly export-ed. Consider

the following:

export const degreesToRadians = d => d * (Math.PI / 180); ①
export const gradiansToRadians = g => g * 15.707 * Math.pow(10, -3);

const calc = (fn, x, unit) => { ②
 switch (unit) {

 case 'degrees':

 return fn.call(null, degreesToRadians(x));

 case 'gradians':

 return fn.call(null, gradiansToRadians(x));

 default:

 return fn.call(null, x);

 }

};

export const sin = (x, unit = 'degrees') => calc(Math.sin, x, unit);

export const cos = (x, unit = 'degrees') => calc(Math.cos, x, unit);

export const tan = (x, unit = 'degrees') => calc(Math.tan, x, unit);

export const trig = { ③
 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

};

① Explicitly export-ing members

② These are private to the module

③ export an object wrapping all public members circa revealing

module pattern

Here we declare a bunch of trigonometry functions, exporting those we deem our

public API, and leaving the rest to be private. Note that we also export an object that holds

all the public members as properties, much like we did using the revealing module pattern.

This is a useful technique that gives our consumers a choice—they can pick and choose

Chapter 12 Namespacing Code Using Modules

179

the specific functionality that they are interested in, or use the wholly exported object

and have everything tucked underneath that object available to them. These exported

members, also referred to as “named” exports, will be visible to anyone using this module.

export-ing individual members may prove to be verbose, and perhaps obfuscates

what the public API actually is. An alternative syntax is offered that can help with this:

const degreesToRadians = d => d * (Math.PI / 180); ①
const gradiansToRadians = g => g * 15.707 * Math.pow(10, -3);

const calc = (fn, x, unit) => {

 switch (unit) {

 case 'degrees':

 return fn.call(null, degreesToRadians(x));

 case 'gradians':

 return fn.call(null, gradiansToRadians(x));

 default:

 return fn.call(null, x);

 }

};

const sin = (x, unit = 'degrees') => calc(Math.sin, x, unit);

const cos = (x, unit = 'degrees') => calc(Math.cos, x, unit);

const tan = (x, unit = 'degrees') => calc(Math.tan, x, unit);

const trig = {

 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

};

export { ②
 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

Chapter 12 Namespacing Code Using Modules

180

 trig,

};

① Define all of our members

② Use the alternative export syntax

Rather than explicitly exporting each member explicitly as we did earlier, we export

all public members in one fell swoop. This can help make the public API much more

explicit—however, while the public API certainly becomes obvious, maintaining the

module becomes just a tad more tedious, as one must align disparate parts of the file

while ascertaining what is public, and what isn’t.

Whether we export each member explicitly or export in one fell swoop is a matter

of taste and preference. However, it seems that the JavaScript community as a whole

seems to be tipping toward explicitly exporting each public member. Furthermore,

documentation tools like ESDoc8 intelligently only reveal exported members, thereby

making the public API obvious even with explicit exporting.

We can also export a “default” member, which is a means to express the “one single”

thing that module exports. Consider a situation where we are writing a math library,

and we happen to have a trigonometry module, wherein we are simply defining all of

our trigonometry functions. Given that this is all there is to this module, a default export

makes sense.

However, this can be confusing, because we are allowed to mix and match having a

default member, while explicitly exporting other members, like so:

export { ①
 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan, ②
};

export default trig; ③

① Explicitly export our public members

8�https://esdoc.org/

Chapter 12 Namespacing Code Using Modules

https://esdoc.org/

181

② Note that we are no longer exporting trig

③ Make trig a default export for this module

Here, we use the default keyword to export our all-inclusive trig object, which we

assume is what most of our clients will want to use anyway. However, we can still export

individual members in case our clients rather order à la carte instead of a full entrée.

(One can also use the inline named export mechanism, or use both in combination if

one so desires.) Needless to say, as the name suggests, there can only be one default

export.

While default exports seem like a good idea, default exports are a transitionary

mechanism since this is the model that CommonJs9 uses, and come with more than their

share of downsides.

Unlike named exports (as the name suggests), default exports do not expose

the name of the exported member to the outside world. This shifts the onus to

the consumers of that module, who then decide what to call that export. Consider

degreesToRadians which happens to be a named export—the world sees and uses this

member with the same name. If we were to change degreesToRadians to degToRad,

then anyone using this module will be forced to make the same change. However, trig,

being a default export, does not force a consumer to call it trig. This means that if we

were to rename trig, the client would not see that change, thus making refactoring efforts

rather tedious. Having no name also means that editors that support IntelliSense cannot

help with auto-completion of symbols or auto-importing. Finally, default exports limit

the ability for build tools to do any form of tree-shaking a.k.a dead code elimination.10

Furthermore, using named exports can help anyone using our modules (which may

include us) make our production bundle size smaller, aid development practices like

refactoring, and, as we will see soon, reduce confusion when importing the module. All

this to say, using default exports is largely considered an anti-pattern11 and we should

use this feature at a minimum, if at all.

There is one more facility that exports provide us, which is aliasing. Let us take a look

to see how this works for named exports.

9�https://requirejs.org/docs/commonjs.html
10�https://medium.com/@rauschma/note-that-default-exporting-objects-is-usually-an-
anti-pattern-if-you-want-to-export-the-cf674423ac38

11�https://humanwhocodes.com/blog/2019/01/stop-using-default-exports-javascript-
module/

Chapter 12 Namespacing Code Using Modules

https://requirejs.org/docs/commonjs.html
https://medium.com/@rauschma/note-that-default-exporting-objects-is-usually-an-anti-pattern-if-you-want-to-export-the-cf674423ac38
https://medium.com/@rauschma/note-that-default-exporting-objects-is-usually-an-anti-pattern-if-you-want-to-export-the-cf674423ac38
https://humanwhocodes.com/blog/2019/01/stop-using-default-exports-javascript-module/
https://humanwhocodes.com/blog/2019/01/stop-using-default-exports-javascript-module/

182

�Aliasing Exports
Aliasing exports allows us to rename members of the module, so that the name that

we reference a member with internally to the module is different from the name

that consumers see it as. This might prove to be valuable if one wishes to completely

decouple the module from its consumers, leaving us free to refactor names without

affecting the outside world. The syntax, as expressed here, is rather unsurprising:

// code abbreviated for brevity

export {

 degreesToRadians,

 gradiansToRadians,

 sin as sine, ①
 cos as cosine,

 tan,

 trig as trignometry, ②
};

① Explicitly export our public members

② Export our all-encompassing object as well with an alias

The as syntax works as advertised, allowing us to rename our member on the way
out. Now, we are free to rename any of our aliased members internally any which way we

want, without forcing all of our consumers to refactor as well.

Aliasing exports reveals another shortcoming of default exports, namely since default

exports are unnamed exports, aliasing them is a meaningless proposition.

�A Quick Summary
Summarizing, exporting implies making members of a module public, that is, they are

accessible to consumers of the module. We have seen two separate mechanisms for

exporting—named export, which can be inlined, and therefore individual exports, vs.

exporting all symbols in one fell swoop. Alternatively, we also saw the syntax for default

exports, and discussed some of the cons of using this approach.

Let us now turn toward the other side of the equation, namely importing or

consuming a module.

Chapter 12 Namespacing Code Using Modules

183

�Importing
ES6 introduces the import keyword that allows one module to import another. Only

modules can use other modules—modules cannot be consumed from plain old

JavaScript files. Also, recall that modules and files have a one-to-one relationship, in that,

a file contains one and only one module, and the name of the contained module is the

name of the file itself.

The import syntax consists of two parts—the name of the module and what to

import from the said module. Specifying which module is simply specifying the path

to the location of the module. The interesting bit here are the mechanisms to actually

import exported members, so let us talk about that.

How one imports members of another module depends on how those members

were exported to begin with. As we know, a module can export named and default

members. We begin with how we can work with named members.

Consuming a module that has named exports forces the consumer to use the same

name as the exported members. Consider the following:

/*
'030-named-exports' exports the following

export {

 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

 trig,

}

*/

import { ①
 sin,

 cos,

Chapter 12 Namespacing Code Using Modules

184

 tan,

} from './030-named-exports';

// use the functions

console.log(sin(0));

① Import the members required for this module

A few points of note regarding how we import the pieces we are interested in from

another module. The import syntax looks very similar to the destructuring syntax we

saw in a previous chapter. We are also allowed to pick and choose the members we are

interested in, thus permitting the import of only certain members although the module

might export a lot more.

Recall that the name of the member is whatever was exported from the module. So,

if the members being exported are aliased, then we must import the aliased names:

/*
'050-alias-exports' exports the following

export {

 degreesToRadians,

 gradiansToRadians,

 sin as sine,

 cos as cosine,

 tan,

 trig as trignometry,

};

*/

import {

 sine, ①
 cosine,

 tan,

 trignometry,

} from './050-alias-exports';

① Use the aliased names in the import

Chapter 12 Namespacing Code Using Modules

185

The module we rely on aliases its members; therefore, as far as any consuming

module is concerned, those are the public names, and therefore the only ones available

for import.

What if we wanted to import all exported members of another module? The import

syntax supports the wildcard (*) syntax with one caveat—the import must then be

namespaced as shown here:

Importing named members

/*
'050-alias-exports' exports the following

export {

 degreesToRadians,

 gradiansToRadians,

 sin as sine,

 cos as cosine,

 tan,

 trig as trignometry,

};

*/

import * as trigFns from './050-alias-exports'; ①

console.log(trigFns.sine(0)); ②

① Use the wildcard operator to import all the exported members

in one fell swoop

② Tucked under the namespace members are visible using their

public name

Using the wildcard operator increases the changes of collisions between names,

especially if a large number of other modules are being imported. The as namespacing

attempts to eliminate this possibility. Correspondingly, if we import two separate

modules accidentally with the same name, we will get an error.

Chapter 12 Namespacing Code Using Modules

186

�Aliasing Imports
There is a chance that one or more modules being imported may export members with

the same name; in which case, we need a mechanism to resolve name collisions. This is

not an issue when we use the wildcard syntax since the imports are namespaced to begin

with. However, if we are importing individual members of a module, and we have to

resolve conflicts, we can alias an import just like we can alias exports:

/*
'030-named-exports' exports the following

export {

 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

 trig,

}

*/

import {

 sin as sine, ①
 cos as cosine,

 trig as trignometry,

} from './030-named-exports';

① Alias imports

Aliasing imports, outside of aiding in avoiding collisions, also allows us to “rename”

functions that perhaps might be too long, or help them fit better with the domain we are

working with.

Default exports, once again, prove to be a problem child. Since default exports are

unnamed exports, the consuming module can call that default export anything they

want!

/*
'040-default-exports' exports the following

export {

Chapter 12 Namespacing Code Using Modules

187

 degreesToRadians,

 gradiansToRadians,

 sin,

 cos,

 tan,

};

export default trig;

*/

import myTrignometry, { ①
 sin,

 cos,

 tan,

} from './040-default-exports';

console.log(myTrignometry.sin()); ②

① Import the default giving it an arbitrary name

② Use the default import just as we would any other member

Often times, when modules export default members, since the name of the import

is not mandated, different consumers within the same project refer to the default export

using different names, making it incredibly hard to find where a member is being used.

This forces developers working with such exports to settle on a naming convention in an

attempt to bring the naming to parity with named exports.12

The syntax for importing, much like exporting, is rather flexible, and we can mix and

match any and all combinations of imports. We could, for example, import the default,

along with other named members with aliasing if we wish to do so:

/*
'040-default-exports' exports the following

export {

 degreesToRadians,

 gradiansToRadians,

12�For example, react.js exports a default (https://github.com/facebook/react/blob/659a29c
ecf74301532354261369e9048aac6e20f/packages/react/src/React.js#L71) and developers
idiomatically import it as React. However, there is no language construct to enforce it.

Chapter 12 Namespacing Code Using Modules

https://github.com/facebook/react/blob/659a29cecf74301532354261369e9048aac6e20f/packages/react/src/React.js#L71
https://github.com/facebook/react/blob/659a29cecf74301532354261369e9048aac6e20f/packages/react/src/React.js#L71

188

 sin,

 cos,

 tan,

};

export default trig;

*/

import myTrignometry, { ①
 sin as sine, ②
 cos as cosine,

 tan,

} from './040-default-exports';

console.log(myTrignometry.sin()); ③
console.log(sine(45));

① Import the default with any name

② Import named members with aliases

③ Use the imports just like we would any other time

The primary driving force behind the import style remains on how a module exports

its members. Simultaneously, features like aliasing imports in a particular module may

be driven by considerations like avoiding name collisions, or attempting to make the

imported functions seem more accommodating to the domain at hand. However, we

must persevere to refrain from using these features from a stylistic mindset, so as to not

introduce too much overhead on anyone who is attempting to maintain the codebase.

�Caveats and Implications
The syntax for ES6 modules is designed around exports and imports being “static”—

in that, they need to be top-level statements in module files. We are not allowed to

dynamically or conditionally export or import members.13

There are several benefits to having static modules, with faster lookup, smaller

bundles (if we are to use a bundling tool like Webpack or Rollup) due to deterministic

13�There is a proposal (https://github.com/tc39/proposal-dynamic-import) that allows for
dynamic imports; however, at the time this chapter was written, it remains a Stage 3.

Chapter 12 Namespacing Code Using Modules

https://github.com/tc39/proposal-dynamic-import

189

dead code elimination. You can read more about the benefits of this approach in this

exemplary blog post (http://calculist.org/blog/2012/06/29/static-module-

resolution/) by Dave Herman.

�Summary
Phew! Who thought that packaging our code to be easily consumable would be this

tricky? While it may seem that the module syntax introduced in ES6 is overkill, we must

bear in mind that JavaScript is a language that straddles both sides of the wire, in that, it

runs in the browser and on the server. Therefore, it will serve us well to remember that

any syntax added for modules needs to accommodate both ecosystems.

In the next chapter, we will explore proxies that allow us to magically adorn both new

and existing objects with additional functionality without actually modifying the objects

themselves.

Chapter 12 Namespacing Code Using Modules

http://calculist.org/blog/2012/06/29/static-module-resolution/
http://calculist.org/blog/2012/06/29/static-module-resolution/

191
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_13

CHAPTER 13

Metamorphosis with
Proxy and Reflect
No API can or should attempt to be complete. Depending on the use-case, and the

problem space, we often find that we may need to add, remove, or even constraint

behavior to an object, or a type. Historically our approach to this was leveraging

JavaScript’s dynamic nature, and simply tack on the additional behavior we wanted

to see on any object. Symbols can help in this regard, by giving us the guarantee of

collision-free keys. However, in many cases it can feel a tad hackish, especially when

we do not wish to permanently modify behavior of an object for the lifetime of our

application.

ES6 gives us proxies, which are essentially an implementation of the proxy pattern

at a language level. In this chapter we will see how we can change the behavior of both

new and existing objects without actually modifying the objects themselves, while

simultaneously giving us the ability to explicitly opt-in and opt-out if and when we

choose to do so.

�The Perils of Monkey-patching
JavaScript is a dynamically typed language, in that, it does not require us to know

or declare what the type of a variable or object is upfront. This dynamic nature can

be extended to the structure of objects, wherein, given an object, we can modify its

properties (and methods) to suit our needs. This flexibility of JavaScript, along with other

features intrinsic to the language like prototypal inheritance and first-class functions,

has proven to be one of the selling points of JavaScript, allowing developers to drum up

192

powerful yet elegant solutions like aspect-oriented programming facilities1 and Behavior

Driven Testing using mocks and spies with Sinon,2 at the risk of it being abused.3

One particular set of (ab)use-cases lies with adding behavior to existing types and

objects. Consider a scenario where anytime we get or set a property on an object, we

wish to automatically perform a side effect, like logging. This isn’t something we would

want done everywhere, since it might prove to be verbose, expensive, or both. We could,

using JavaScript’s dynamic nature, modify the behavior for a certain section of the

codebase, carefully reverting it back to its original behavior afterward, like so:

const intercept = (obj, interceptionFn) => { ①
 for (const m in obj) {

 �if ((Object.prototype.hasOwnProperty.call(obj, m)) && (obj[m]

instanceof Function)) { ②
 const method = obj[m]; ③
 obj[m] = function(...args) {

 interceptionFn.call(obj, m); ④
 return method.apply(obj, args); ⑤
 };

 }

 }

};

const logger = m => console.log(`${m} was called`); ⑥
const toBeIntercepted = { ⑦
 name: 'Jonathan',

 getName() {

 return this.name;

 },

 setName(name) {

 this.name = name;

 },

};

1�https://github.com/k1r0s/kaop
2�https://sinonjs.org/
3�Anyone remember eval??

Chapter 13 Metamorphosis with Proxy and Reflect

https://github.com/k1r0s/kaop
https://sinonjs.org/

193

intercept(toBeIntercepted, logger); ⑧

// prints 'getName was called' followed by 'Jonathan'

console.log(toBeIntercepted.getName());

// prints 'setName was called'

toBeIntercepted.setName('Johnson');

// prints 'getName was called' followed by 'Johnson'

console.log(toBeIntercepted.getName());

① Define our interceptor function

② Ensure that we only intercept the supplied objects methods

③ Grab a reference to the method

④ Call the interception function first

⑤ Then delegate to the original method

⑥ Define our “logger” function

⑦ Define a plain JavaScript object

⑧ Be sure to modify the object prior to invoking its methods

We start with writing a rather generic method-intercepting function that takes two

arguments—the object whose behavior we wish to modify and the function that is to

be invoked when any of the object’s method gets called. Then we loop over all of the

supplied objects properties, ensuring that we do not climb the inheritance tree, and

only modifying properties that happen to be methods. Finally, we define our “logger”

function and an object, and ensure we decorate the methods of the object so that our

logger function is called upon every invocation.

In this case we are modifying the behavior of an existing object for certain pieces

of functionality, namely any method invocation. That said, our implementation makes

it hard to turn off the newly introduced behavior. In order to revert the behavior to its

original behavior, we will have to store the original implementations of the methods we

modify, and then reinstall them.

Of course, we risk forgetting to turn off the behavior (assuming that we can), and suffer

the consequences, including leaking unintended behavior elsewhere, and surprising any

other unwitting clients with unexpected side effects. This technique of modifying existing

behavior is used very effectively by testing libraries like Sinon to create spies and mocks,

and present an ideal use-case—testing limits the scope in which the new behavior is visible.

Chapter 13 Metamorphosis with Proxy and Reflect

194

This argument can be extended to objects that we did not create, and therefore do

not own. Consider the use of an array. What if we wanted to make it so arrays could

be compared? They would compare their individual items, recursing if the item itself

happens to be a nested array. Here is one approach:

Object.defineProperty(Array.prototype, 'equals', { ①
 value(other) {

 if (!other) return false;

 if (!Array.isArray(other)) return false;

 if (this.length !== other.length) return false;

 const [fMe, ...rMe] = this;

 const [fOther, ...rOther] = other;

 if (fMe === fOther) {

 return true;

 }

 if ((rMe.length === 0) && (rOther.length === 0)) {

 return true;

 }

 return rMe.equals(rOther);

},

 enumerable: false,

 configurable: true,

});

const first = [1, 2, 3, [4, 5]];

const second = [1, 2, 3, [4, 5]];

const third = [1, 2, 3];

// prints 'true'

console.log(first.equals(second)); ②
// prints 'false'

console.log(first.equals(third));

① Use Object.defineProperty to add an equals method

② Voila! Now that method is available on every array

Chapter 13 Metamorphosis with Proxy and Reflect

195

In this example we use Object.defineProperty to define an equals method on

Arrays prototype. We could just as easily tacked the property using Array.prototype.

equals = function() { … }; however, using Object.defineProperty gives us a chance

to configure the visibility of this new method—setting enumerable to false hides the

property from for-in loops. At the same time, we set its configurable property to true,

thus allowing us to delete the property if we choose to do so.

Note that in this case we are augmenting Arrays, rather than modifying the behavior

of existing methods on an array.

In languages like Ruby and Python, any modification of an existing type or object at

runtime is referred to as “monkey patching.”4 This can be very useful—for example Ruby

on Rails5 uses this technique to great benefit; however, if not executed or documented

properly, it can prove to be very confusing or even pernicious.

In addition to modification and augmentation of behavior, there are other

enhancements or restrictions we might want to affect—returning reasonable defaults

for undefined properties, tacking on methods dynamically, constraining construction of

objects so we are using a singleton, the list goes on. Ideally, we should be able to modify

behavior in a manner that is unobtrusive, and namespaced, or isolated to specific parts

of our application, wherein we intentionally ask for the modified behavior, knowing

that we have in no way affected the behavior of the original object. In response, ES6

introduces Proxy, alongside Reflect. While the two offer a slew of functionality on their

own, together they make a remarkable tag team.

�Metaprogramming with Proxy and Reflect
ES6 Proxy class, as the name suggests, allows us to implement the Proxy pattern6 as a

language-level construct. It allows us to create a proxy that wraps the object we wish to

enhance or modify. However, since it has language level support, we can intercept or

proxy basic operations like getting/setting/adding/deleting properties and constructor

calls for objects and invocations for functions. In other words, Proxy lets us hook into the

internal machinery of JavaScript itself.

4�https://en.wikipedia.org/wiki/Monkey_patch
5�https://rubyonrails.org/
6�https://en.wikipedia.org/wiki/Proxy_pattern

Chapter 13 Metamorphosis with Proxy and Reflect

https://en.wikipedia.org/wiki/Monkey_patch
https://rubyonrails.org/
https://en.wikipedia.org/wiki/Proxy_pattern

196

The mechanism to intercede and thereby modify behavior is through the use of a

“handler” object that has “traps” defined. If we do not define a trap for a particular piece

of functionality, the proxy rightly forwards the call to the original object.

Let us start with a simple example of a proxy and a handler, and we will then delve

into all of the moving parts that make proxies awesome in ES6.

const toBeIntercepted = { ①
 name: 'Jonathan',

 getName() {

 return this.name;

 },

 setName(name) {

 this.name = name;

 },

};

const proxied = new Proxy(toBeIntercepted, ②
 { ③
 get(target, property) { ④
 console.log(`${property} was called`);

 return target[property];

 },

 },

);

// prints 'name was called', followed by 'Jonathan'

console.log(proxied.name); ⑤
// prints 'getName was called', followed by 'Jonathan'

console.log(proxied.getName());

① An object we wish to augment

② Construct a proxy

③ Provide the proxy with a handler

④ Define the “get” trap

⑤ Use the proxy

Chapter 13 Metamorphosis with Proxy and Reflect

197

We construct a proxy around an object using the Proxy constructor, which takes two

arguments—the object we wish to proxy and a handler object that has traps defined on

it. The traps are functions with very specific7 names and signatures, each one targeting

a specific piece of JavaScript’s internal mechanisms. The proxy invokes the appropriate

trap, passing it a reference to the original object, the name of the property that was

looked up, as well as a reference to the proxy object.

Note that the proxy makes no attempt to modify the original object! Instead it hands

us a new object, that has been adorned with the new behavior—however, we may still

hold a reference to the original object, reverting back to it if we so desire.

Our initial attempt might be rather simplistic, but we can see the beginnings of

how we can use proxies to accomplish some rather mind-altering metaprogramming

magic in JavaScript. Let us extend our proxy implementation to recreate intercepting all

method calls on an object:

const intercept = (obj, interceptionFn) => { ①
 const handler = { ②
 get(target, property) {

 if ((Reflect.has(target, property))

 && (target[property] instanceof Function)) { ③
 interceptionFn.call(target, property); ④
 }

 return Reflect.get(target, property); ⑤
 },

 };

 return new Proxy(obj, handler); ⑥
};

const logger = m => console.log(`${m} was called`); ⑦
const toBeIntercepted = { ⑧
 name: 'Jonathan',

 getName() {

 return this.name;

 },

 setName(name) {

7�https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Proxy/handler

Chapter 13 Metamorphosis with Proxy and Reflect

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler

198

 this.name = name;

 },

};

const proxied = intercept(toBeIntercepted, logger); ⑨

// prints 'getName was called' followed by 'Jonathan'

console.log(proxied.getName());

// prints 'setName was called'

proxied.setName('Johnson');

// prints 'getName was called' followed by 'Johnson'

console.log(proxied.getName());

① Define a wrapper function to create a proxy

② Our handler with the get trap

③ Ensure that we only intercept the supplied objects methods

④ Call the interception function first

⑤ Then delegate to the original method

⑥ Return the proxy

⑦ Define our “logger” function

⑧ Define a plain JavaScript object

⑨ Be sure to wrap our object with the proxy and use that going

forward

Our attempt does not depart from our earlier attempt at intercepting method calls

on objects with the exception of using proxies. However, we gain a lot of benefits—we

no longer mutate the object; instead, the proxy allows us to accomplish exactly what we

want, allowing us to revert back to the original behavior by simply switching references.

Since the proxy itself is a reference, it can be scoped in a function or a module. Leaving

this scope translates to the world never knowing that the proxy even exists!

We did subtly introduce using the Reflect API here, so you might be wondering—

what’s all that about? Reflect is a new API that landed alongside Proxy in ES6, and

serves as a mirror API to the handler for proxies. Thus, for every kind of trap we are able

Chapter 13 Metamorphosis with Proxy and Reflect

199

to install on a proxy’s handler, there exists a static property on Reflect.8 Anytime we

define a trap on a handler, and we wish to forward the same call to the original object,

we can simply use the mirrored Reflect API, passing in the target object and any

arguments that it may need. In our example we are trapping get—however, after calling

our interception function, we wish to forward the call to the original object, so we can

just use Reflect.get.

We have had a taste of how to use proxies, and the Reflect API. Now we will attempt

to recreate our earlier example of defining an equals method without monkey-patching

Array.prototype itself. Recall that in this case, we are attempting to augment arrays

with a new method, namely equals. We will start by writing a recursive function that can

compare one array (referenced by this) with another array:

const equals = function (other) {

 if (!other) return false;

 if (!Array.isArray(other)) return false;

 if (this.length !== other.length) return false;

 const [fMe, ...rMe] = this;

 const [fOther, ...rOther] = other;

 if (fMe === fOther) {

 return true;

 }

 if ((rMe.length === 0) && (rOther.length === 0)) {

 return true;

 }

 return rMe.equals(rOther);

};

Next, we will write our handler, which will intercept any calls to equals and

dispatches the call to our newly minted equals method:

const comparableArray = (arr) => { ①
 const handler = { ②

8�You can see this for yourself simply by using for(const m of Reflect.ownKeys(Reflect)) {
console.log(m); } and comparing the list with the list found at https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler.

Chapter 13 Metamorphosis with Proxy and Reflect

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler

200

 get(target, property) { ③
 if (property === 'equals') { ④
 return equals;

 }

 return Reflect.get(target, property); ⑤
 },

 };

 return new Proxy(arr, handler);

};

const first = comparableArray([1, 2, 3, [4, 5]]);

const second = comparableArray([1, 2, 3, [4, 5]]);

const third = comparableArray([1, 2, 3]);

// prints 'true'

console.log(first.equals([1, 2, 3, [4, 5]])); ②
// prints 'false'

console.log(first.equals(third));

① Define our proxy creator helper

② Define our handler

③ Trap get

④ Augment any calls for the equal method

⑤ Otherwise delegate to the original object

We once again trap a get, except this time, if the property that is being sought

out happens to be equals, we return our custom implementation; otherwise, simply

forward the call to the original object. Although our equals implementation does not in

any way differ from our earlier attempt, our approach is significantly different. We gain

new behavior via the proxy, without having to monkey-patch Array itself.

This augmentation is visible to only those who use the proxy. Furthermore, since the

proxy delegates to the original object for anything outside of get-ing the equals method,

for any other consumer of the proxy, the modification is completely transparent.

Chapter 13 Metamorphosis with Proxy and Reflect

201

�Enforcing Singletons
Perhaps now we can see how we can accomplish a many a nifty feature like adding

methods or modifying existing methods. Let us consider another use-case wherein we

use proxies to build the singleton pattern.9 In order to achieve this, we will have to trap

the construction of an object, ensuring that once we have an instance, we always return

that instance. A glance at the MDN documentation leads us to handler.construct10—

perfect! Just what we need.

const singletonFactory = (constructorFn) => { ①
 let instance; ②
 const handler = {

 construct(target, args) { ③
 if (!instance) {

 instance = Reflect.construct(constructorFn, args); ④
 }

 return instance; ⑤
 },

 };

 return new Proxy(constructorFn, handler);

};

class SuperHeroService { ⑥
 constructor() {

 this.heroes = [

 'IronMan',

 'Captain America',

 'Wasp',

 'Black Widow',

];

 }

 getHeroes() {

9�https://en.wikipedia.org/wiki/Singleton_pattern
10�https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Proxy/handler/construct

Chapter 13 Metamorphosis with Proxy and Reflect

https://en.wikipedia.org/wiki/Singleton_pattern
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler/construct
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler/construct

202

 return this.heroes;

 }

 addHero(hero) {

 this.heroes.push(hero);

 }

}

const SingletonSuperHeroService = singletonFactory(SuperHeroService); ⑦

const service1 = new SingletonSuperHeroService();

const service2 = new SingletonSuperHeroService(); ⑧
// prints 'true'

console.log(service1 === service2); ⑨

① Define our proxy helper

② A local variable to cache our instance

③ Trap the constructor call

④ If we do not have an instance, invoke the supplied constructor

⑤ Otherwise we return our cached instance

⑥ A class we wish to treat as a singleton

⑦ Create the proxy

⑧ Multiple calls to the proxy return the same instance

⑨ Ensure that the instances are the same

Our proxy creator function expects to get the constructor of the object we wish

to make a singleton as its sole argument. Our implementation, save for trapping the

construct, is rather unimpressive—we hold a local reference to the singleton if and

when we create it, and upon subsequent invocation of the constructor simply return

the same reference. As we can see, we can wrap any constructor that we wish to treat

as a singleton with this simple implementation. Multiple invocations of the proxied

constructor simply return the same instance.

Chapter 13 Metamorphosis with Proxy and Reflect

203

�Building a DSL
Finally, let us see what it takes to build a simple domain-specific language (DSL) using

proxies. We will attempt to tackle a rather popular domain, namely that of building

XML markup. However, we will have to take a shortcut; our DSL will only produce the

necessary JSON that can be consumed by a tool like FreeFormatter.com’s “JSON to

XML Converter.”11 This will allow us to keep our focus on leveraging proxies for such

scenarios.

This tool (by default) assumes that all attributes for elements are prefixed by a @, and

the element’s text be prefixed by #. Thus, given the following snippet of JSON:

{

 "books": {

 "@count": "1",

 "book": {

 "@id": "1",

 "title": {

 "@isbn": "1590592395",

 "#text": "Practical Common Lisp"

 }

 }

 }

}

The tool will produce the equivalent XML:

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <books count="1">

 <book id="1">

 <title isbn="1590592395">Practical Common Lisp</title>

 </book>

 </books>

</root>

11�www.freeformatter.com/json-to-xml-converter.html

Chapter 13 Metamorphosis with Proxy and Reflect

204

This is what our DSL12 will look like:

const books = jsonToXmlBuilder()

 .books({ count: '1' })

 .book({ id: '1' })

 .title({ isbn: '1590592395' }, 'Practical Common Lisp')

 .up()

 .up()

 .end();

console.log(books);

// prints

// {

// "books": {

// "@count": "1",

// "book": {

// "@id": "1",

// "title": {

// "@isbn": "1590592395",

// "#text": "Practical Common Lisp"

// }

// }

// }

// }

Our DSL has a few characteristics:

Elements are expressed as methods, and can be nested.

Elements can be supplied with an object that represents its

attributes, and the text of the element.

The up method takes us back up to the parent Node so we can add

additional child elements to the same parent if we desire to do so.

The end method signals the end of the chain, and produces the

requisite JSON.

12�Our DSL is heavily influenced by https://github.com/oozcitak/xmlbuilder-js/wiki.

Chapter 13 Metamorphosis with Proxy and Reflect

https://github.com/oozcitak/xmlbuilder-js/wiki

205

Excited? Let’s get started! First, we will write a one-argument helper function to

build an element. This function, in turn returns a function, that expects to be supplied

the attributes and text for an element, and simply constructs the necessary JSON to

represent that element. This function returns the proxy object itself, which will be in

scope once we are done with our implementation. Here is what our ele-ment builder

looks like:

const ele = function(target) { ①
 return function (attrs = {}, text = '') {

 for(const [k, v] of Object.entries(attrs)) {

 target[`@${k}`] = v; ②
 }

 if(text) target['#text'] = text; ③
 // this will be in scope

 return proxy;

 }

}

① Our function takes a target object

② We loop over all attributes supplied, and tack it on the target

③ If the text is supplied, tack that on as well

Our ele function is rather simple—it accepts a target object, then constructs a two-

argument function that is eventually returned. This newly constructed function expects

two (optional) arguments—an object representing the attributes for this element and the

text. We loop over the entries in the attributes object, tacking on each one on the target

with the prerequisite @ prefix. If any text is supplied, that too is tacked on to the target

prefixed with #.

Assuming we have something called proxy in scope, we can use this function like so:

const obj = {};

const builder = ele(obj); ①
builder({ isbn: '1590592395' }, 'Practical Common Lisp'); ②
// prints '{ '@isbn': '1590592395', '#text': 'Practical Common Lisp' }'

console.log(obj);

Chapter 13 Metamorphosis with Proxy and Reflect

206

① Returns the inner function

② Invoke the returned function with some attributes, and some text

As we can see here, attributes are to be supplied as an object, wherein each key-

value entry represents an attribute. This allows us to supply multiple attributes. The ele

function simply constructs a function (referenced by builder); this function in turn, when

invoked with attributes and some text, attaches the necessary metadata onto the target.

Great! Now, we will write our proxy handler function.

// 'elements' is a stack of previously constructed elements,

// initialized with an empty object (the root)

// Every time we encounter a new element, we put it at the

// top of the stack.

// Every time we encounter an 'up()', we drop the top-most entry

const handler = {

 get(target, property) {

 if (property === 'end') {

 return () => JSON.stringify(elements.pop()); ①
 }

 if (property === 'up') {

 elements.shift(); ②
 return () => proxy; ③
 }

 const [curParent] = elements; ④
 const child = {};

 elements.unshift(child); ⑤
 if(curParent[property]) { ⑥
 const existing = curParent[property];

 if(Array.isArray(existing)) {

 curParent[property] = [...existing, child];

 } else {

 curParent[property] = [existing, child];

 }

 } else {

Chapter 13 Metamorphosis with Proxy and Reflect

207

 curParent[property] = child;

 }

 return ele(child); ⑦
 },

};

① If we are at the end, simply stringify the last element in

the stack

② If we are going up, then drop the top-most element

③ Since up is a method, upon invocation return the proxy itself

④ Get the top-most element in the stack

⑤ Push the latest element on top of the stack

⑥ Cater for an element we have already seen

⑦ Return the mechanism to adorn the latest element with

attributes and text

There is a lot going on here, so let us take it one step at a time. XML allows for

nesting, permitting an element to have any number of children. In order to track the

“current” element (without losing track of all of its parents) we maintain a stack, namely

elements, that happens to be an array of previously constructed elements. That is, the

“root” element will always be the last element in the array.

When we encounter an end() we simply JSON.stringify the last element in the

array by invoking pop. Note that invoking end results in the JSON string being returned,

thereby signaling the end of our DSL chain.

Whenever the client invokes up() we simply drop the first element in the stack,

thereby making its “parent” the element that will be affected by the next operation.

Here we must be careful to return the proxy to allow for a fluent API; this allows for the

chaining to continue.

Finally, we get to the meat of our implementation. We get the first element in the

elements array using the destructuring syntax.13 We construct a placeholder for the child

element (an empty object) and insert it at the top of the elements stack, thus making it

the “current” element.

13�The elements array will be initialized with an empty object as its first entry.

Chapter 13 Metamorphosis with Proxy and Reflect

208

Next, we associate the child element to the parent using the property as its key.

However, XML allows a parent to have multiple child elements with the same name. If

that were to happen, we ensure that we wrap all of the children with the same name in

an array prior to associating it with the parent.

So now that the parent is associated with an empty child (or an array of children)

with the property as its key, we simply return the mechanism to adorn the child with

attributes and text if the user chooses to do so.

Final step, we wrap everything neatly in the jsonToXmlBuilder function. Note that

the wrapper function includes the definitions for ele and handler:

const jsonToXmlBuilder = () => {

 // truncated for brevity

 // const ele = function(target) { get(target, property) { ... } }

 // const handler = { ... }

 const root = {};

 const elements = [root];

 const proxy = new Proxy(root, handler);

 return proxy;

};

We start with an empty root element, and place it as the first element in the

elements stack. Next, we construct the proxy object by invoking the Proxy constructor,

supplying it the root object, and the handler function, and return the proxy. We are

done! Let’s give it a spin and see how we did:

const books = jsonToXmlBuilder()

 .books({ count: '2' })

 .book({ id: '1' })

 .title({ isbn: '1590592395' }, 'Practical Common Lisp')

 .up()

 .up()

 .book({ id: '2' })

 .title({ isbn: '9780133708752' }, 'ANSI Common LISP')

 .up()

 .up()

 .subject({}, "Lisp")

 .up()

Chapter 13 Metamorphosis with Proxy and Reflect

209

 .end();

console.log(books);

// prints

// {

// "books": {

// "@count": "2",

// "book": [{

// "@id": "1",

// "title": {

// "@isbn": "1590592395",

// "#text": "Practical Common Lisp"

// }

// }, {

// "@id": "2",

// "title": {

// "@isbn": "9780133708752",

// "#text": "ANSI Common LISP"

// }

// }],

// "subject": {

// "#text": "Lisp"

// }

// }

// }

// paste the output in https://www.freeformatter.com/json-to-xml-converter.

html

// and you can verify the generated XML

We have unlocked “Mastery” level with proxies. This example demonstrates the true

power of proxies—in about 50 lines of code, we implemented a powerful DSL that allows

us to express our intent in a succinct, yet declarative manner.

Chapter 13 Metamorphosis with Proxy and Reflect

210

�Summary
Proxy, along with Reflect, proves us with all of the tools we need to create “meta”

magic in our code unobtrusively. Proxies give us namespaced wrappers around the

objects we wish to enhance, ensuring that the modified behavior is only visible to

the region of code where it is applicable. Reflect mirrors the API of Proxy, while

simultaneously giving JavaScript a specific place to house reflection-specific APIs,

whereas prior to ES6, it was Object that demonstrated some reflection capabilities.

Having Reflect as part of the toolkit going forward allows JavaScript to reduce the clutter

in Object, perhaps even to the point where JavaScript can begin to deprecate the usage

of certain methods like getPrototypeOf and isExtensible. Both these classes allow us

to approach metaprogramming in JavaScript in an elegant fashion, and I am certain that

creative developers will find extremely interesting use-cases to apply these to.

Symbols allow us to sprinkle behavior onto our objects, while proxies (and reflect)

allow us to modify behavior around our objects. Between symbols and proxies, the

duality of metaprogramming is now complete. We can and should pick the right

apparatus that best serves our use-case.

In the next chapter we will look at a powerful feature introduced in ES8, namely

async and await, that magically allow us to treat asynchronous code like synchronous

code, thereby eliminating much of the syntactical overhead when using promises.

Chapter 13 Metamorphosis with Proxy and Reflect

211
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_14

CHAPTER 14

Seemingly Imperative
with async and await
When working with asynchronous operations, promises present a huge leap forward

from using callbacks. However, promises present us with a specific domain-specific

language (DSL) to work with, including but not limited to then, catch, and finally. This

DSL, while easy, and fluent to work with, does not compose well with how we typically

write code in JavaScript, which is imperative code. Consider the case of trapping errors—

JavaScript affords us language constructs like try/catch that allow us to trap errors, and

provide meaningful stack traces. Promises on the other hand, trap errors using the catch

and finally API. This departure from our traditional model of writing code introduces a

mental burden as we switch between different parts of our codebase.

In this chapter we will see how async and await can help us refactor all of our codes

so that we can begin to work with asynchronous code just like we do with synchronous

code. We will be able to express our intent more clearly, without getting lost in a maze

of callbacks, and deal with state management and error handling using concepts that

we are familiar with. We will be wiping tears of joy from our faces as we come to the end

of this chapter, rejoicing in how beautiful, simple, and most importantly, consistent our

code seems to be.

�The Shortcomings of the Promise DSL
In JavaScript, programming asynchronously is our only weapon of choice when

attempting to accomplish any long-running tasks. Promises, now a native API in ES6,

attempt to tame the complexity that callbacks yield by making state management and

error propagation easier. Promises are inherently wrappers around callbacks, and

while they do make the code easier to reason about, they come with their own set of

compromises.

212

However, it turns out that code in JavaScript that works imperatively (or blocking

code) and code that works asynchronously are distinctly different. Consider the

following snippet where we attempt to perform a rather simple operation imperatively:

const firstSyncOp = () => 10; ①
const secondSyncOp = arg => arg + 20;

const thirdSyncOp = arg => arg + 30;

const firstSyncOpResult = firstSyncOp(); ②
const secondSyncOpResult = secondSyncOp(firstSyncOpResult);

const result = thirdSyncOp(secondSyncOpResult);

// prints 'Using synchronous operations 60'

console.log('Using synchronous operations', result);

① Imperative functions

② Do some simple operations with the results

While this example may seem a tad contrived, it serves our use-case well. We start

with a couple of synchronous or blocking functions, and then proceed to do some

operation, in this case simple arithmetic with the individual results.

This example, outside of being verbose, is rather simple to comprehend—we can

treat the result of our individual function much like we treat any other value, waiting to

use them and then calculate the final result.

Next, we will convert our blocking operations into nonblocking or asynchronous

operations using promises, and attempt to achieve the same result.

const firstAsyncOp = () => new Promise(res => setTimeout(res, 10, 10)); ①
const secondAsyncOp = arg => new Promise(res => setTimeout(res, 10, arg + 20));

const thirdAsyncOp = arg => Promise.resolve(arg + 30);

const result = firstAsyncOp()

 .then(secondAsyncOp) ②
 .then(thirdAsyncOp);

Chapter 14 Seemingly Imperative with async and await

213

result.then((r) => {

 console.log('Using promises', r);

 return r;

});

① A series of asynchronous operations

② A promise chain

This time, we pretend our operands are being fetched asynchronously—the first two

after a delay of a tenth of a second, while the third being resolved immediately. However,

since each operand is wrapped in a promise, we must then use the then API to chain the

operations, eventually ending up with the same result as in our previous example.

If we were to compare our two attempts, although the end result is the same, the two

approaches seem very different. While promises reduce the ceremony and verbosity

often involved with callbacks, they do little to bring parity to how we usually work with

synchronous operations. The two look nothing like one another! And this is just the tip of

the iceberg.

We are used to capturing the results of intermediate operations in variables, which

in turn can be used in conditionals, or looping constructs like a for loop. Consider

the following example where we contrast using conditionals in imperative code vs. a

promise chain:

let syncConditionalResult = firstSyncOp();

if (syncConditionalResult > 20) { ①
 syncConditionalResult = secondSyncOp(syncConditionalResult);

} else {

 syncConditionalResult = thirdSyncOp(syncConditionalResult);

}

// prints 'Imperative conditional result: 40'

console.log(`Imperative conditional result: ${syncConditionalResult}`);

const asyncConditionalResult = firstAsyncOp()

 .then((val) => {

 if (val > 20) { ②
 return secondAsyncOp(val);

 }

Chapter 14 Seemingly Imperative with async and await

214

 return val; ③
 })

 .then(thirdAsyncOp);

asyncConditionalResult.then((r) => {

 // prints 'Chained conditional result: 40'

 console.log(`Chained conditional result: ${r}`);

 return r;

});

① An imperative conditional check

② We are forced to do the conditional check inside the handler

③ We also need to account for the case where the conditional fails

It is easy to reason about our code when working imperatively—do this if true, else

do that. However, things get tricky when using the promise chain—our conditional is

embedded inside a handler, wherein we must also accommodate in case the conditional

were to fail.

The meat of the argument is that when working with asynchronous code, we are

forced to adopt a different programming model as compared to synchronous code. We

are not afforded a mechanism to work with asynchronous code in a manner that seems

imperative, and consequently, we lose out on leveraging most of the facilities that the

language offers.

Enter async and await. ES8 introduces two new keywords, with the associated

machinery to reduce the difference between synchronous and asynchronous

programming models in JavaScript.

�async/await
async, introduced in ES8, is meant to be used as a function modifier. An async function

declares to the world that the work being done by the function may be asynchronous.

Since our token for asynchronous operations (since ES6) is promises, the previous

statement boils down to this—async functions always return a promise, like so:

const implicitPromise = async () =>

['Implicitly', 'wrapped', 'in', 'a', 'promise']; ①
implicitPromise().then(console.log);

Chapter 14 Seemingly Imperative with async and await

215

const explicitPromise = async () =>

 Promise.resolve(['This', 'just', 'returns', 'the', 'promise']); ②
explicitPromise().then(console.log);

① An async function expression returning a value

② An async function returning a promise explicitly

async attempts to reduce the boilerplate by guaranteeing the return of a promise—

for functions that simply return a value, the async modifier automatically wraps the

return value in a promise. On the other hand, if the function already returns a promise,

then it is simply returned.

ES8 simultaneously introduces the await keyword, which can only be used

within async functions. The role of await is to modify the invocation of a function that

happens to return a promise (as opposed to the async keyword that modifies a function

definition). Since await applies to functions that return promises (which could be other

async functions), the role of await is to wait for the promise being returned to be settled

and then proceed to unwrap that value. Perhaps the following example will help clear

this up:

const firstAsyncOp = () => new Promise(res => setTimeout(res, 10, 10)); ①

(async () => { ②
 const result = await firstAsyncOp(); ③
 // prints '10'

 console.log(result);

 return result;

})();

① A simple function that returns a promise

② Define an anonymous async fat-arrow function

③ Use await inside the async function to resolve to a value

We start with a function that happens to do its work asynchronously, therefore

returning a promise. We then use the await keyword inside an async function to “wait”

on the promise being returned to settle and print its result.

The key benefit here is that using await avoids us having to supply a callback to

then, which we would have to do to since the result of firstAsyncOp is a promise.

Conceptually, await suspends the async function it is wrapped in till the function it is

Chapter 14 Seemingly Imperative with async and await

216

waiting on yields a result. Sounds familiar? This is the same machinery we discussed

with generator functions and the yield keyword!

Notice how the use of the await keyword converts one or more asynchronous calls

into imperative, or blocking code. Let us rewrite our earlier example using async/await

so we can compare the two approaches:

const result = (async () => { ①
 const firstAsyncOpResult = await firstAsyncOp(); ②
 const secondAsyncOpResult = await secondAsyncOp(firstAsyncOpResult); ③
 const res = await thirdAsyncOp(secondAsyncOpResult);

 return res; ④
})();

result.then((r) => { ⑤
 console.log('Using async/await', r);

 return r;

});

① Define an anonymous async fat-arrow function

② Use await inside the async function to resolve the first

operation’s value

③ Then proceed to invoke subsequent operations using await

providing the notion of sequential invocations

④ Finally return the result

⑤ Since async operations always return promises, we use then to

consume the resolved value

We start with our first operation, suspending execution till the promise resolves, and

then use that value as an argument to subsequent function calls, eventually returning

the fully calculated value. However, when we were previously using promises, we were

forced to sequence operations using then. await eliminates all the ceremony—in fact,

this implementation does not look that much different than our synchronous example.

The one time where this example does diverge from a synchronous implementation is

if we wish to use the return-ed value from our IEFE. Recall that the return value from

an async function is always wrapped in a promise—ergo, if we wish to use result, we are

then compelled to use the then API.

Chapter 14 Seemingly Imperative with async and await

217

Leveraging conditionals and looping constructs works just as would expect. Let us

return to our earlier example using conditionals, except this time with async/await:

const result = (async () => {

 let firstAsyncOpResult = await firstAsyncOp();

 if (firstAsyncOpResult > 20) { ①
 firstAsyncOpResult = await secondAsyncOp(firstAsyncOpResult);

 } else {

 firstAsyncOpResult = await thirdAsyncOp(firstAsyncOpResult);

 }

 return firstAsyncOpResult;

})();

result.then((r) => {

 // prints 'async/await conditional result: 40'

 console.log(`async/await conditional result: ${r}`);

 return r;

});

① An imperative conditional check

The fact that firstAsyncOpResult is the result of an asynchronous operation in no

way affects our code. Take away the async/await keywords and we see that this is exactly

how we would work with the results of synchronous operations.

Let us examine a more real-world use-case to highlight the uses of async and

await. In this example we will attempt to make an Ajax call using the Fetch API1 to GET

a resource, and unwrap the response. Bear in mind that fetch2 returns a promise which

results in a Response3 object, which in turn has the json4 method which too returns a

promise. We will write two implementations—one using the native promises, and one

using async and await:

const getWithPromises = url => fetch(url).then(resp => resp.json()); ①
const getWithAsyncAwait = async (url) => { ②

1�https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
2�https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch
3�https://developer.mozilla.org/en-US/docs/Web/API/Response
4�https://developer.mozilla.org/en-US/docs/Web/API/Body/json

Chapter 14 Seemingly Imperative with async and await

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Body/json

218

 const resp = await fetch(url); ③
 return await resp.json(); ④
};

const url = 'https://my-json-server.typicode.com/typicode/demo/comments';

getWithPromises(url) ⑤
 .then((json) => {

 console.log(json);

 return json;

 });

getWithAsyncAwait(url) ⑥
 .then((json) => {

 console.log(json);

 return json;

 });

// alternatively

(async () => {

 // either one works just the same

 // const json = await getWithPromises(url);

 const json = await getWithAsyncAwait(url); ⑦
 console.log(json);

})();

① Using the native API exposed by fetch

② Define an async function

③ Wait for the fetch operation to complete

④ Then wait for the JSON payload to be resolved

⑤ Invoke our promise-based implementation

⑥ Invoke our async/await-based implementation

⑦ Consume the result of a fetch operation using async/await

This example highlights two subtle but separate concerns. When attempting

to use an API (like fetch) that returns promises, using async/await can make the

Chapter 14 Seemingly Imperative with async and await

219

implementation a bit more clearer and easier to reason about. On the flip side, how we

implement our fetching functionality has no impact whatsoever on how we consume it.

Given that in either case we are always returning a promise, we can either use the

traditional then invocation, or use another (anonymous) async function. That is, we can

start to consider using async/await any place where we are using a promise chain.

What if a promise were to be rejected? Well, the intent of async/await is to make

asynchronous code seem imperative. Therefore, we trap errors (and rejections) the same

way we normally do—using our beloved try/catch. Observe:

const firstAsyncOp = () =>

 new Promise(res => setTimeout(res, 10, 10)); ①
const secondAsyncOp = arg =>

 new Promise(res => setTimeout(res, 10, arg + 20));

const thirdAsyncOp = () =>

 Promise.reject('Oops!'); ②

const result = (async () => {

 try { ③
 const firstAsyncOpResult = await firstAsyncOp();

 const secondAsyncOpResult = await secondAsyncOp(firstAsyncOpResult);

 const res = await thirdAsyncOp(secondAsyncOpResult);

 return res;

 } catch (e) {

 console.error(e); ④
 return 0;

 }

})();

result.then((r) => {

 // prints '0'

 console.log('Using async/await', r);

 return r;

}); see pg 161

① A series of asynchronous operations

② This one is rejected

Chapter 14 Seemingly Imperative with async and await

220

③ Wrap our code in a try-catch

④ Trap the error just like we would

Our example does not deviate much from our earlier attempts, except this time

one of the promises gets rejected. To accommodate for such scenarios, we can wrap

our code in a traditional try/catch block, trapping errors just like we would have if it

were blocking code. In our care our IEFE evaluates to a result, so we simply return 0 (or

whatever default makes sense in your case).

As we might conclude, await performs two tasks—it suspends the execution of

the async function till the promise it is waiting on settles, and then unwraps the value

that the promised resolved to, allowing the async function to continue execution. If the

promise were to be rejected, await appropriately throws an Error, which we can trap

using a traditional try/catch block. The combination of the two essentially reduces

the programming paradigm when working with promises from a functional style to an

imperative style. Let us discuss a few more nuances, in particular with regard to await,

that should shed some light on the best use-cases for the same.

�Nuances and Caveats
First and foremost, it is easy to forget to apply the await keyword. This will not result

in a syntactical error—however recall that we can only await on operations that return

promises. If we were to forget to apply the await keyword, then we would end up getting

a reference to the returned promise, which is not what we want.

Conversely, we can often get carried away with using await when we would be

better off simply using the promise API. Recall that await suspends the execution of the

async function which bodes well in situations where we need a promise resolved prior

to proceeding with subsequent operations. However, in the cases where we can run

operations concurrently, we will be better served by dropping down to the promise API,

such as all or race, and consume the results using await. Observe:

const redundantWaits = (async () => {

 const url = 'https://my-json-server.typicode.com/typicode/demo';

 const fetchPosts = await fetch(`${url}/posts`); ①
 const posts = await fetchPosts.json();

 const fetchComments = await fetch(`${url}/comments`);

Chapter 14 Seemingly Imperative with async and await

221

 const comments = await fetchComments.json();

 return {

 posts,

 comments,

 };

})();

redundantWaits

 .then(obj => console.log('From redundantWaits', obj));

const synchronousCalls = (async () => {

 const getJson = url => fetch(url).then(resp => resp.json()); ②

 const url = 'https://my-json-server.typicode.com/typicode/demo';

 const [posts, comments] = await Promise.all([③
 getJson(`${url}/posts`),

 getJson(`${url}/comments`),

]);

 return {

 posts,

 comments,

 };

})();

synchronousCalls

 .then(obj => console.log('From synchronousCalls', obj));

① Wait on each operation in an imperative style

② Simple helper function

③ Run multiple operations concurrently

This time we attempt to accomplish the same task, that is, populating an object with

the response from several Ajax calls. However, in this case, the operations do not depend

on the output of one another. This is a classic scenario where we should be using the

promise APIs to run these tasks concurrently. Of course, like any other function that

returns promises, we can always use await to gather up the results of Promise.all and

get back in imperative mode.

Chapter 14 Seemingly Imperative with async and await

222

Another source of potential bugs is if our async function relies on some sort of global

state.5 await suspends the execution of the function; without blocking the main thread,

the runtime can continue working. Therefore, it would be prudent to assume that the

global state does not look the same as it did prior to the function being suspended.

That’s all for gloomy news. On the sunny side, await can consume any object that is

then-able—so if we are using some sort of third-party library for promise support, async

can work with those just as if they were native promises. Go forth! await away!

�Summary
async/await, alongside promises, allow us to approach writing code in JavaScript in

a paradigm that best suits our use-case and programming style—the former being

rather imperative while the latter promoting more of a functional mindset. While the

imperative nature may seem more natural to many of us, we must keep in mind that

promises provide us mechanisms like all and race, that may allow for our code to

run faster, but also work with await, thereby permitting us to raise or lower the level

of abstraction suitable for the problem at hand. The use of promises still has its place,

but await can certainly help reduce or eliminate some of the tax associated with using

promises.

In the next chapter, we will see yet another extension, wherein iterators and

generators can now work with asynchronous operations just as easily as they do with

synchronous ones.

5�To be fair, this is not the only scenario where relying on global state will lead to bugs :)

Chapter 14 Seemingly Imperative with async and await

223
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6_15

CHAPTER 15

Asynchronous Iterators
and Generators—A
Meeting of the Minds
The idea of generators is tempting, and it tends to spoil us. We are no longer afraid to

work with large or infinite sequences and streams. However, while generators are great at

working with values, they were never designed for working with promises.

In this chapter, we will see yet another reconciliation—one that merges the syntax of

generators with async and await, to give us asynchronous generators, and iterators.

�The Impedance Mismatch Between Generators/
Iterators and Asynchronous Operations
ES6 introduced us to iterables, the well-known symbol Symbol.iterator that allows an

object to be iterable, as well as the new for-of loop that knows to iterate over an iterable.

The handshake between an iterator, and anything consuming the iterator, happens to be

an object that takes the form { value: ..., done: ...}. If the iterator is not done, then

the consumer can consume the value. Once the return value of the iterator returns done

to true, iteration stops.

ES6 also introduced another feature: generator functions. Generator functions are

functions that can be suspended using the yield (and yield*) operator. They return

generator objects that happen to be iterable, which means, they have a method that

responds to Symbol.iterator. In other words, we can loop over a generator object using

the for-of loop.

224

Whatever mechanism we employ to produce or consume iterables will work well

if we are operating with the result of synchronous operations. However, if the values

happen to be the result of asynchronous operations, or promises, then things become a

little arduous. Observe:

const randomTimeout = async (val, index) => {

 const timeout = Math.floor(Math.random() * Math.floor(42)); ①
 return new Promise(res =>

 setTimeout(res, timeout, `My value is ${val} at index: ${index}`)); ②
};

const promiseList = [

 randomTimeout(10, 1),

 randomTimeout(20, 2),

 randomTimeout(30, 3),

]; ③

// prints the following (your ordering might vary)

// My value is 20 at index: 2

// My value is 10 at index: 1

// My value is 30 at index: 3

for (const p of promiseList) {

 p.then(console.log); ④
}

① A helper function to create a randomized timeout value

② Returns a promise that resolves to a value and an index

③ An iterable that contains promises

④ We need to wait for the promise to be resolved

We start with a simple helper function that takes a value (to resolve to) and an

index so we can see the sequence in which we invoked it. The function implementation

produces a random timeout value, and uses that to return a promise that eventually

resolves to a value. We then use this helper function to produce an array of asynchronous

operations.

Let us, for a moment, ignore the fact that we are using an array of promises, and

pretend that the iterable we are working with is of unknown length, like reading all of the

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

225

lines in a file using I/O. After all, if we had a (fixed) list of promises, we could simply use

Promise.all to let them work concurrently, and gather up the results.

With that in mind, notice that while the for-of loop successfully iterates over the list

of promises, we still need to wait for each promise to be resolved. However, the astute

observer will notice that this does not fulfill our requirements. While the for-of loop

diligently returns us the promises in order, they resolve at different times. Therefore,

the output we see is not in the same order as the initial order of the promises. That’s

because the for-of loop is not aware that the values being produced by the iterator are

asynchronous.

But wait. ES8 introduced us to async/await. Can’t we use that here? Of course!

const promiseList = [

 randomTimeout(10, 1),

 randomTimeout(20, 2),

 randomTimeout(30, 3),

];

(async () => {

 for (const p of promiseList) {

 const res = await p; ①
 console.log(res);

 }

})();

① await out the returned promise prior to proceeding with the

loop

This time around, we use await to suspend the for-of loop till our promise resolves.

await suspends the execution of the for-of till each promise in succession is resolved,

thereby giving us the output we expect. We incur the cost of a little boilerplate since we

have to wrap the call to await inside an anonymous async function, but it does seem to

work.

Now let us consider the production side. We know that generator functions produce

generator objects, which are iterable. Once again, this gets the job done if the values

being yield-ed are synchronous. But yielding asynchronous data sources produces

rather surprising results:

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

226

function* asyncGenerator() { ①
 yield randomTimeout(10, 1); ②
 console.log('First time');

 yield randomTimeout(20, 2);

 console.log('Second time');

}

const generator = asyncGenerator(); ③
// prints '{ value: Promise { <pending> }, done: false }'

console.log(generator.next());

// prints '{ value: Promise { <pending> }, done: false }'

console.log(generator.next());

// prints '{ value: undefined, done: true }'

console.log(generator.next());

for (const i of asyncGenerator()) {

 console.log(i);

}

(async () => {

 for (const p of asyncGenerator()) {

 const res = await p;

 console.log(res);

 }

})();

① Define a generator

② yield promises

③ Start consuming

We define a simple generator, which yields promises, and attempt to get the values

by invoking next, then using a traditional for-of loop and finally using async/await.

Notice that in each case, we get the expected { value: ..., done: ... } tuple, except

in this case, the value happens to be a promise.

This example reveals the true issue at hand—in that, when an iterator hands us a

result, it attempts to tell us the value and whether it is done or not. In this case, we see

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

227

that the value happens to be a promise, which may or may not have resolved yet—

however, the generator continues to yield values till it’s done!

In other words, while the resolution of the value is asynchronous, the calculation

of whether the generator is done is synchronous, and therefore, incorrect. We cannot
declare the iterator to be done till the value is resolved (or rejected).

All of this adds salt to the injury—which is, the whole point of iterating over an

iterable is to get the values in sequence!

To summarize, on the consumption side, we want our for-of loops to give us the

values we expect in order, pausing for asynchronous data sources to be resolved prior to

proceeding to the next iteration.

On the production side, we want to await prior to yield-ing within a generator. But

alas! We can only await inside async functions.

ES9 introduces us to a new symbol, an asynchronous for-of loop, and the idea of

async generators, allowing us to iterate over and produce asynchronous iterables. Let’s

get started.

�Asynchronous Iterators
We understand the role of Symbol.iterator, and how it plays with the for-of loop.

ES9 introduces us to a new symbol, namely Symbol.asyncIterator, which is meant to

work for iterables that perform work asynchronously. The contract for any object willing

to implement the asynchronous iteration protocol is similar to that of Symbol.iterator,

in that upon invocation, it must return an object that has a next method.

It is here that the implementation diverges from the one for Symbol.iterator.

Instead of returning an object with the done and value keys, it should return a promise,

that resolves to such an object. Perhaps this is easier seen in code than explained in

prose.

const fetchFriends = (index) => { ①
 const friends = [

 'Matt',

 'Neal',

 'Ken',

];

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

228

 const timeout = Math.floor(Math.random() * Math.floor(42));

 if (index < friends.length) {

 return new Promise(res => setTimeout(res, timeout, friends[index])); ②
 }

 return Promise.reject(new Error('No more records'));

};

class FriendsService { ③
 [Symbol.asyncIterator]() { ④
 let index = 0;

 return { ⑤
 next: async () => { ⑥
 // Make an async call to the backend to retrieve the current

 try {

 const friend = await fetchFriends(index);

 index += 1;

 return { value: friend, done: false }; ⑦
 } catch (e) {

 index = 0;

 return { done: true }; ⑧
 }

 },

 };

 }

}

① A simple function that pretends to be a backend call

② And consequently return-s promises with randomized timeouts

③ A simple class

④ Implement Symbol.asyncIterator

⑤ Symbol.asyncIterator returns a simple object, namely

the iterator

⑥ The iterator has the next method

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

229

⑦ If we have values to return, return the value wrapped in

a promise

⑧ Else if we are done iterating return done:true wrapped in

a promise

We start by defining a mock database cursor, that uses an index to retrieve a friend

from a friends list. To mimic a real-life scenario, we simulate varying retrieval times

using a function to generate random timeout values.

This is followed by a simple class that acts a service wrapper around an

asynchronous call. In order to adhere to the asynchronous iterability contract, it

implements the Symbol.asyncIterator method, which returns the iterator. This iterator

has the next method—however, it does not return a value. Rather, it returns the value

wrapped in a promise.

The difference between implementing Symbol.asyncIterator and Symbol.

iterator is that in the case of the former, both the value and done flag are resolved

asynchronously.

ES9 also introduces us another for-of loop, namely the for-await-of loop, which

knows how to iterate over asynchronous iterables. This loop, unlike for-of loop, knows

to await out the promise that is returned from the next call, before proceeding with the

next iteration. As the name suggests, this loop utilizes the await keyword, and we know

that if we are to use await, it must be inside an async function. Let us see how we can

use this loop with our iterable:

(async () => {

 for await (const friend of new FriendsService()) { ①
 console.log(friend);

 }

})();

① Use the for-await-of loop

Once again, we bear the cost of some boilerplate to wrap the call within an

anonymous async function, but if we were to run this, we see that our friends show up

in the order that they were asked for. The for-await-loop, like its counterpart, asks an

iterable object for its iterator by invoking the Symbol.asyncIterator, then proceeds

to invoke the next method, await-ing the promise that is returned to be resolved, then

extracting the value. Note that if the promise resolves to done: true, iteration stops.

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

230

We can always choose to invoke the next method ourselves if we choose to, just

like with synchronous iterators; however, we will have to append a then call since next

invocation return promises.

�Cleaning Up
Asynchronous iterables can do any resource cleanup within its next method prior to

signaling an end to the iteration via {done: true}. This works well since it is the iterator

that knows it has reached the end.

However, what happens if the for-await-loop were to prematurely stop iteration?

Well, just like synchronous iterables, asynchronous iterables can (optionally) implement a

return method. This method will be invoked if the client terminates the iteration, like so:

class SimpleIterable {

 [Symbol.asyncIterator]() {

 let counter = 0;

 return {

 next: async () => {

 if (counter < 10) {

 counter++;

 return { value: counter, done: false };

 }

 return { done: true };

 },

 async return() { ①
 console.log('Cleaning up');

 return { done: true };

 },

 };

 }

}

(async () => {

 try {

 for await (const n of new SimpleIterable()) { ①
 console.log(n);

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

231

 return; ②
 // or break, or throw new Error()

 }

 } catch (e) {

 console.log('Error', e);

 }

})();

① Implement both the required next and optional return method

② Break out prematurely in a for-of loop

We have simplified our earlier example to return a promise that resolves to an

incrementing value. But we also implement the return method, which in case simply

logs to confirm that we indeed get called. Note that we should signal that the iterable is

done as the return value of the return method.

Once again, we find parity between for-await-loop and its peer the for-of loop,

in that invoking the return method of the iterable is a side effect of the underlying

machinery. That is, the for-await-loop knows to invoke the return method on the

iterable if we were to prematurely stop iteration. Other mechanisms to auto-invoke the

return method are throw-ing an error within a for-await-of loop, as well as simply

break-ing from it.

�Being Imperative
The for-await-of loop lives up to its promise of making asynchronous code look

imperative. This facet is accentuated by the mechanism we can use if something were to

go wrong. What if the asynchronous iterable that we are looping over were to be reject-

ed? Simple. We can wrap our for-await-loop in a traditional try-catch block. Observe:

class SimpleRejectingIterable {

 [Symbol.asyncIterator]() {

 return {

 next: () => Promise.reject('Error!'), ①
 };

 }

}

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

232

(async () => {

 try {

 for await (const n of new SimpleRejectingIterable()) {

 // we will never get here

 console.log(n);

 }

 } catch (e) {

 console.log('Error', e); ②
 }

})();

① Reject the promise

② Trap the error using the traditional try-catch block

Our iterator in this case simply reject-s the promise. If it were to run this example,

we will see that await unwraps the error, and rightly propagates the error so that the

catch block catches it. Voila!

�Comingling with Synchronous Iterables
Turns out, the for-await-of loop can work with both asynchronous and synchronous

iterators. This turns out to be rather beneficial, since we can use it to work even with

regular iterables like arrays, maps, and sets. Let us revisit our example of iterating over a

list of promises using for-await-of:

const randomTimeout = async (val, index) => {

 const timeout = Math.floor(Math.random() * Math.floor(42));

 return new Promise(res =>

 setTimeout(res, timeout, `My value is ${val} at index: ${index}`));

 };

const promiseList = [

 randomTimeout(10, 1),

 randomTimeout(20, 2),

 randomTimeout(30, 3),

]; ①

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

233

(async () => {

 for await (const p of promiseList) { ②
 console.log(p);

 }

})();

① A list of promises

② Use the for-await-of loop with a synchronous iterable

Allow me to draw your attention to the fact that an array is a synchronous iterable.

However, as advertised, the for-await-of loop can iterate over it. If the values returned

upon each iteration happen to be a promise, the loop is suspended till the value resolves,

unwrapped, and handed off to you.

�Generators
We are well aware of the introduction of generators in ES6. As previously discussed, ES6

generators are synchronous. However, what we want when working with asynchronous

operations is the ability to await prior to yielding—except we cannot await without

being in an async function.

ES9 introduces the ability to apply the async keyword to generator functions, in

effect, introducing asynchronous generators. We can await asynchronous operations

within the generator (recall that we only use await inside of async functions) just like we

would in regular generators, and once resolved, yield those values:

const randomTimeout = async (val, index) => {

 const timeout = Math.floor(Math.random() * Math.floor(42));

 return new Promise(res =>

 setTimeout(res, timeout, `My value is ${val} at index: ${index}`));

};

async function* asyncGenerator() { ①
 yield await randomTimeout(10, 1); ②
 console.log('First time');

 yield await randomTimeout(20, 2);

 console.log('Second time');

}

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

234

 console.log(typeof asyncGenerator()[Symbol.asyncIterator] === 'function');

(async () => {

 const gen = asyncGenerator();

 for await (const item of gen) { ③
 console.log('item', item);

 }

})();

① Define an async generator

② await an asynchronous operation

③ Use the for-await-of loop to iterate over the generator iterator

An async generator, much like a regular generator function, produces an iterator

object, except the generator object returned implements the Symbol.asyncIterator

method (as compared to a synchronous iterable produced by a synchronous generator).

Consequently, we can no longer use the for-of loop with the generated iterable.

However, we can use the for-await-of loop, since it indeed works with asynchronous

iterables.

The machinery for asynchronous generators does not differ from that from

synchronous generators. They are mechanisms that allow us to create iterables,

permitting for lazy-code, and as a result, create infinite sequences. The difference is

in what they return—asynchronous iterators return us iterables that implement the

Symbol.asyncIterator method, allowing them to be consumed using for-await-of

loops.

�Parity with Synchronous Iterators and Generators
We have spoken at length about synchronous iterators and generators, specifically

about the ability of iterators to implement a return method that is invoked if we

were to prematurely terminate iteration. We have also seen that generators can act

as “consumers,” wherein we can influence the next yield of the generator by passing

an argument to the next invocation. All of these apply to asynchronous generators

and iterators as well. Finally, recall that the point of async and await is to make

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

235

asynchronous operations seem imperative. This allows us to wrap the code within an

asynchronous generator in a try-catch or a try-catch-finally block to trap any

promises that might be rejected during the execution of the generator.

�Benefits
Asynchronous iterators and generators prove to be useful anytime we wish to consume

(lazily or otherwise) the results of asynchronous operations, all while reaping the

benefits of the seemingly imperative code that async/await offer us. One great example

is when reading large files (perhaps using node.js) one line at a time. Another use-case

would be consuming APIs where the data returned to us is paginated. Consider Github’s

API wherein requesting the commits for a repository—Github returns (by default) a

100 commits per response, providing us with a link to the next 100 in the response

headers. Consuming such an API fits naturally into the facilities offered by asynchronous

generators, wherein we await every fetch and process, and if needed, proceed to the

next 100 commits.

�Summary
In this chapter, we saw how ES9’s asynchronous iterators and generators allow us to

combine async and await with the on-demand processing capabilities of iterators and

generators. This new feature set brings us full circle, incorporating promises, iterators,

and generators introduced in ES6, along with async/await introduced in ES8, to allow

us to work in different contexts at a higher level of abstraction, while bringing parity to

synchronous and asynchronous operations.

Chapter 15 Asynchronous Iterators and Generators—A Meeting of the Minds

237
© Raju Gandhi 2019
R. Gandhi, JavaScript Next, https://doi.org/10.1007/978-1-4842-5394-6

Index

A, B
Arrow functions

arguments and returning functions,
23–26

arguments object, 22
binding, “this”, 21, 22
regular function, 19–21
syntax of

expression, 18, 19
function expressions, 17
parameters, 17, 18
single-line bodies, 18

use-case, 24–26
async and await function, 211

asynchronous operations, 214
imperative/blocking code, 216
implementations, 217
leveraging conditionals, 217
limitation, 220–222
promises

conditionals/looping constructs, 213
nonblocking/asynchronous

operations, 212
source code, 211

return value, 215
role of await, 215
try/catch statement, 219

Asynchronous iterators
async function, 229

benefits, 235
done and value keys, 227–229
generators/iterators

data sources, 225
ES6, 233–234
for-of loop, 225
helper function, 224
return value, 223

imperative, 231, 232
resource cleanup, 230, 231
Symbol.asyncIterator, 229
Symbol.iterator method, 229
synchronous iterables, 232
traditional try-catch block, 231

C
Callbacks, 148
Classes, 159

call method, 165
class-based inheritance, 167
constructor and prototype property, 160
data and methods, 159
function, 161
inheritance, 166
limitation, 171
modeling object, 167

Classname.staticMethod(), 169
Person class, 167
single-argument constructor, 168

https://doi.org/10.1007/978-1-4842-5394-6

238

static method, 169, 170
syntax, 168

object inheritance, 163
prototypal inheritance, 161, 162
prototype property, 160
SuperHero function, 163–167

D
Default and rest parameters, 27

buildUrl function, 30
considerations, 32, 33
formal signature, 28
intent with arguments, 27–29
missing arguments, 29
qualifying and skipping defaults, 31, 32
rest (see Rest parameters)

Destructuring syntax, 42–44, 54
array

assignment and construction, 59
default variable assignments, 56
vs. object, 64–66
parameters, 57
recursive solutions, 60
rest parameters, 58
sequential idiom, 55
tripping hazard, 59

limitation of, 65
object assignment operator, 61–63
spread and rest operator, 65

Domain-specific language (DSL), 211
characteristics, 204
elements array, 205–207
helper function, 205
jsonToXmlBuilder function, 208
JSON-XML converter, 203
root object, 208

E
Emmet syntax, 76–79

F
for-of loop, 131, 132
Function expressions, 13–16

G, H
Generator functions

asynchronous iterators, 233, 234
benefits, 143
cleaning up, 141–143
consumers, 140, 141
feature, 223
Fibonacci conversion, 139
object returns, 139
source code, 138
synchronous iterators, 234
syntactic considerations, 144, 145
syntax and keywords, 138

Getter/setters vs. methods, 100, 101
Global symbol registry, 119–121

I, J, K
Immediately Executing Function

Expression (IEFE), 8–10, 104
Iteration protocol

benefits, 137
cleaning up, 135–137
different pieces, 135
disadvantages, 128
Fibonacci sequence, 129
forEach method, 128
for-of loop, 131, 132, 135
generators (see Generator functions)

Classes (cont.)

INDEX

239

iterator, 133
properties, 133
subscript/square-bracket notation, 129

L
let keyword

block scope, 4
closest enclosing block, 4, 5
hoisted, 6, 7
IEFEs blocks, 8–10
SyntaxError, 7

M
Maps

add, update, and delete keys, 83
keys and values, 84
length array, 85
limitation, 87–90
nested array, 85
objects, 81, 82
serializing and deserializing, 88
union of, 86
WeakMaps, 90–92

Metamorphosis, see Proxy and
reflect class

Modules, 173
aliasing exports, 182, 183
benefits of, 189
declaration, 177–181
importer.mjs, 176
import function

exported members, 183
member function, 184
named members, 187
rename functions, 186–188

limitation, 188

Node version manager, 176
requirements, 176

Monkey-patching, 191
generic method-intercepting

function, 193
logger function, 193
mocks and spies, 192
nested array, 194
singleton, 195
source code, 192

N
Namespacing, 173–176

O
Object.defineProperties, 49–52
Object literal syntax

computed properties, 102–104
enhancements

computed values, 105, 106
method definition

shorthand, 104, 105
value shorthand, 106, 107

getter/setters vs. methods, 100, 101
limitation, 100
revealing module pattern, 103
trailing comma, 108, 109
variables, 103, 104

P, Q
Promises offer, 147

asynchronous operations, 153
benefits of, 156
blocking operations, 147
callbacks, 148

Index

240

catch, and finally methods, 152
catch method, 149
community-driven specification, 149
handler functions, 147
limitation, 155, 156
Promise.all, 153–155
resolution of, 149–151
then method, 151, 152
XMLHttpRequest, 152

Proxy and reflect class, 195
DSL (see Domain-specific language

(DSL))
equals method, 199, 200
proxy implementation, 197
Reflect class, 198–200
singletons, 201–203
source code, 196

R
Reflect class, 199–201
Rest parameters

arguments object, 33–36
comparator function, 35
features of, 38, 39
multi-arity function, 37

S
Sets

forEach function, 93
limitation, 95
object construction, 92
union/existing sets, 94
WeakSets, 95–97

Singleton pattern

adding/modifying existing
methods, 201

handler.construct, 201, 202
Spread operator

arrays
benefit of, 47
console.log. log, 45
multi-arity functions, 48
push method, 46
spread vs. rest, 48, 49
use-case, 44

objects
Object.assign, 52, 53
Object.defineProperties, 49–52
spreading object, 54, 55

Strict mode, 3, 4
Strings

single/double quotes, 68–70
single-page application

frameworks, 68
tagged literals

Emmet syntax, 76–79
regular expression, 78
static vs. dynamic string, 74
tags/tag functions, 73, 74
toUpperCase method, 74

template literals, 70–73
Structuring and destructuring,

see Destructuring syntax
Symbols, 114

global registry, 119–121
keyFor method, 120
library function, 113–115
nonenumerable keys, 124
objects, 114
private, 124, 125
simpleLogger function, 113, 115

Promises offer (cont.)

INDEX

241

source code, 114
switch-cases, 117–119
well-known symbols, 121–123

Synchronous iterators, 234

T, U
Template literals, 70–73
Trailing comma, 108, 109

V, W, X, Y, Z
Variables (var in JavaScript)

const, 10–12
declaration, 1–4
ES6, 11
immutable objects, 11
let (see let keyword)
strict mode, 4

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: let and const — The New Declarations on the Block
	The Dangers of Variable Scoping
	let
	Let Variables are Hoisted
	No More IEFEs

	const

	The Case for var in ES6 and Beyond
	Summary

	Chapter 2: Lambdas with Arrow Functions
	Reevaluating the Verbosity of Function Definition
	Arrow Functions
	Syntax
	Parentheses or No Parentheses?
	Expression and Statement Bodies

	Regular Functions Dynamically Set this
	Lexically Bound this
	Other Caveats
	Use-cases

	Summary

	Chapter 3: Effective Function Signatures with Default and Rest Parameters
	Unintentionally Obscuring Intent with Arguments
	Default Parameters
	Qualifying and Skipping Defaults
	Usage Considerations

	Rest Parameters
	The Argument Against arguments
	The New ... Syntax
	The rest of the Details (or is it the Details of rest?)

	Summary

	Chapter 4: Divide and Conquer with Object and Array Destructuring
	Seeking Symmetry Between Structuring and Destructuring
	Spread Operator for Arrays
	“Expanding” Upon the Nuances of the Spread Operator
	Spread vs. Rest—Polar Opposite Twins

	Spread Operator for Objects
	Object.defineProperties
	Object.assign

	Spreading Objects

	Destructuring
	Array Destructuring
	Object Destructuring
	Using Array and Object Destructuring in Combination

	Caveats
	A Small Distinction
	Summary

	Chapter 5: Formatted Strings Using Template Strings
	Introduction
	The Trouble with Forming Formed Strings
	Template literals
	Tagged Literals
	Summary

	Chapter 6: Maps and Sets—The New Data-structures on the Block
	Why Objects are Not Enough
	Maps
	Caveats

	WeakMaps
	Sets
	Caveats

	WeakSets
	Summary

	Chapter 7: Bright Shiny Object(s) using Enhanced Object Literals
	The Limitations of the Object Literal
	Getter/setters vs. Methods
	Defining Computed Properties on Object Literals
	Defining Object Properties Using Variables

	Enhanced Object Literal Syntax
	Method Definition Shorthand
	Computed Values
	Property Value Shorthand

	The Case of the Trailing Comma
	Summary

	Chapter 8: Hiding Behind Symbols
	Introduction
	The Inability to Enforce a Contract
	Symbols to the Rescue
	Symbols and Switch-cases
	Global Registry
	Well-known Symbols
	Not so Private
	Summary

	Chapter 9: Iterable Sequences with Generators and Iterators
	The Drawbacks of Lacking an Iteration Protocol
	The for-of Loop
	Iterables and Iterators
	Cleaning Up
	Other Benefits

	Generators
	Generators as Consumers
	Cleaning Up
	Other Benefits
	Additional Syntactic Considerations

	Summary

	Chapter 10: Avoiding Callbacks with Promises
	The Broken Promises of Promises
	Using Promises
	Using Promises
	All or Nothing
	Caveats
	The Benefits of a Native API

	Summary

	Chapter 11: Many of a Kind with Classes
	The Difficulties of Building Classes and Inheritance in JavaScript
	Modeling Using Classes
	Caveats
	Summary

	Chapter 12: Namespacing Code Using Modules
	The Lack of Namespacing in JavaScript
	How to Run Modularized JavaScript
	Declaring Modules
	Aliasing Exports
	A Quick Summary

	Importing
	Aliasing Imports

	Caveats and Implications
	Summary

	Chapter 13: Metamorphosis with Proxy and Reflect
	The Perils of Monkey-patching
	Metaprogramming with Proxy and Reflect
	Enforcing Singletons
	Building a DSL
	Summary

	Chapter 14: Seemingly Imperative with async and await
	The Shortcomings of the Promise DSL
	async/await
	Nuances and Caveats
	Summary

	Chapter 15: Asynchronous Iterators and Generators—A Meeting of the Minds
	The Impedance Mismatch Between Generators/Iterators and Asynchronous Operations
	Asynchronous Iterators
	Cleaning Up
	Being Imperative
	Comingling with Synchronous Iterables

	Generators
	Parity with Synchronous Iterators and Generators
	Benefits
	Summary

	Index

