
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Java® Programming
Interviews Exposed

Noel Markham

www.allitebooks.com

http://www.allitebooks.org

Java® Programming Interviews Exposed

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-72286-2
ISBN: 978-1-118-72292-3 (ebk)
ISBN: 978-1-118-72288-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a
CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958289

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Java is a registered
trademark of Oracle America, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc. is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport
http://www.wiley.com
http://www.allitebooks.org

For my wife and best friend, Rebecca.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Noel Markham is a developer with almost 15 years’ experience using Java across financial, tech-
nology, and gaming industries. Most recently, he has been working for startups in social gaming and
digital entertainment. He has hosted interviews for all experienced levels of developer, from gradu-
ates to technical leaders, and has set up assessment centers in the UK and overseas to set up full
development teams.

About the Contributing Author

Greg Milette is a programmer, author, consultant and entrepreneur who loves implementing great
ideas. He’s been developing Android apps since 2009 when he released a voice controlled recipe app
called Digital Recipe Sidekick. In between chatting with his Android device in the kitchen, Greg
co-authored Professional Android Sensor Programming in 2012. Currently, he is the founder of
Gradison Technologies, Inc, where he continues to develop great apps.

About the Technical Editors

Ivar Abrahamsen is a Software Engineer/Architect with over 15 years of experience working
mostly with Java and more recently with Scala. He has worked for small and very large banks, tele-
coms, and consultancy companies in several countries. Ivar is currently a passionate and opinion-
ated Tech Lead at a startup in Shoreditch, London. For more see flurdy.com.

Rheese Burgess is a Technical Lead, working closely with recruitment to fill positions in his cur-
rent workplace. He has worked with a number of languages and technologies, and has experience
working in social, gaming, and financial products, ranging from startups to investment banks.

www.allitebooks.com

http://www.allitebooks.org

Executive Editor
Robert Elliott

Project Editor
Ed Connor

Technical Editors
Ivar Abrahamsen
Rheese Burgess

Senior Production Editor
Kathleen Wisor

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive Group
Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Compositor
Maureen Forys,
Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Image
©iStockphoto.com/RapidEye

Cover Designer
Wiley

Credits

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

Thank you to James Summerfield for putting me in touch with Wiley to make this book happen.

The team at Wiley has been so encouraging and supportive all through the writing process: Thank
you to editors Ed Connor and Robert Elliott, and to the many others behind the scenes.

Thank you to Greg Milette for writing the Android chapter.

Thanks to my colleagues Rheese Burgess and Ivar Abrahamsen for taking the time to edit and
review the book.

Thank you to many of my other colleagues at Mind Candy, who have helped in some way: Sean
Parsons, Olivia Goodman, Amanda Cowie, and to my good friend, Luca Cannas.

My family: I thank my parents for their unending help and support with everything I’ve ever done.

Finally, my wife, Rebecca: Thank you for putting up with seeing so little of me for these last few
months, and for bringing me all of those cups of tea and other little treats, always smiling. Quite
simply, it wouldn’t have happened without you.

www.allitebooks.com

http://www.allitebooks.org

Contents

Introduction	 xi

Part I: Navigating the Interview Process

Chapter 1: Dissecting Interview Types	 3

Looking at the Phone Screening Process	 4
Reviewing Technical Tests	 5
Handling Face-to-Face Interviews	 7
Making the Decision	 8
Summary	 9

Chapter 2: Writing a Noticeable Resume	 11

How to Write a Resume and Cover Letter	 11
Writing a Cover Letter	 14
Summary	 15

Chapter 3: Technical Test and Interview Basics	 17

Technical Written Tests	 17
At-Computer Tests	 18
Face-to-Face Technical Interviews	 19
Summary	 21

Chapter 4: Writing Core Algorithms	 23

Looking at Big O Notation	 23
Sorting Lists	 24
Searching Lists	 32
Summary	 33

Chapter 5: Data Structures	 35

Lists	 35
The Relationship between Arrays and Lists	 36

Trees	 39
Maps	 45
Sets	 48
Summary	 49

www.allitebooks.com

http://www.allitebooks.org

viii

CONTENTS

Chapter 6: Design Patterns	 51

Investigating Example Patterns	 51
Commonly Used Patterns	 60
Summary	 64

Chapter 7: Implementing Popular Interview Algorithms	 65

Implementing FizzBuzz	 65
Demonstrating the Fibonacci Sequence	 67
Demonstrating Factorials	 71
Implementing Library Functionality	 72
Using Generics	 80
Summary	 83

Part II: Core Java

Chapter 8: Java Basics	 87

The Primitive Types 	 88
Using Objects	 91
Java’s Arrays	 98
Working with Strings	 98
Understanding Generics	 101
Autoboxing and Unboxing	 107
Using Annotations	 109
Naming Conventions	 111

Classes	 111
Variables and Methods	 111
Constants	 111

Handling Exceptions	 112
Using the Standard Java Library	 115
Looking Forward to Java 8	 119
Summary	 120

Chapter 9: Testing with JUnit	 123

The JUnit Test Life Cycle	 125
Best Practices for Using JUnit	 127
Eliminating Dependencies with Mocks	 138
Creating System Tests with Behavior-Driven Development	 143
Summary	 146

www.allitebooks.com

http://www.allitebooks.org

ix

CONTENTS

Chapter 10: Understanding the Java Virtual Machine	 147

Garbage Collection	 147
Memory Tuning	 149
Interoperability between the JVM and the Java Language	 152
Summary	 157

Chapter 11: Concurrency	 159

Using Threads	 159
Working with Concurrency	 165
Actors	 169
Summary	 174

Part III: Components and Frameworks

Chapter 12: �Integrating Java Applications
with Databases	 177

SQL: An Introduction	 177
JDBC: Combining Java and the Database	 191
Testing with In-Memory Databases	 198
Summary	 199

Chapter 13: Creating Web Applications	 201

Tomcat and the Servlet API	 201
Jetty	 207
Play Framework	 213
Summary	 218

Chapter 14: Using HTTP and REST	 221

The HTTP Methods	 221
HTTP Clients	 224
Creating HTTP Services Using REST	 226
Summary	 230

Chapter 15: Serialization	 231

Reading and Writing Java Objects	 231
Using XML	 234
JSON	 240
Summary	 243

x

CONTENTS

Chapter 16: The Spring Framework	 245

Core Spring and the Application Context	 245
Spring JDBC	 255
Integration Testing	 259
Spring MVC	 262
Summary	 269

Chapter 17: Using Hibernate	 271

Using Hibernate
Summary	 284

Chapter 18: Useful Libraries	 287

Removing Boilerplate Code with Apache Commons	 287
Developing with Guava Collections	 290
Using Joda Time	 296
Summary	 300

Chapter 19: Developing with Build Tools	 301

Building Applications with Maven	 301
Ant	 309
Summary	 311

Chapter 20: Android	 313

Basics	 314
Components	 314
Intents	 315
Activities	 318
BroadcastReceivers	 321
Services	 322

User Interface	 326
Persistence	 333
Android Hardware	 336
Summary	 340

Appendix: Introducing Scala	 341

Index	 353

Contents

Introduction

Interviews can be overwhelming for some, especially when you are being examined, one to
one, on your technical abilities.

This book has been designed to give you guidance and preparation for finding your next job as a
Java developer. It has been written to help you overcome any sense of fear or worry around Java pro-
gramming interviews by giving you enough material to practice with so that you can feel confident
about any questions you might be asked.

Overview of the Book and Technology

This book is based on Java SE 7. If you are an experienced Java developer, but not up to date with
Java 7, following are some new language features and APIs that have been introduced.

The Diamond Operator
Where possible, the compiler can infer the type of a generic instance. This means you can
write List<Integer> numbers = new ArrayList<>() instead of
List<Integer> numbers = new ArrayList<Integer>(). This can greatly reduce the amount
of boilerplate code when with working with collections, and especially nested collections of
collections.

Using Strings in switch Statements
The initial switch statement in Java could only deal with numeric types in a switch statement.
The introduction of enumerated types in Java 5 allowed them to be used in a switch. From Java 7,
String objects can be used in a switch statement.

A New File I/O Library
Java 7 introduces a new I/O library, with the focus on platform independence and non-blocking I/O.

Many more features have been introduced, including automatic resource management and the repre-
sentation of binary literals. This book uses Java 7 throughout. You should expect any interviewer to
be using the most up-to-date version of Java that is available, so you should aim to keep your skills
in line as new versions of the language are released.

Some Java frameworks and libraries are not fully compatible with Java 7 yet, so check with the most
current documentation when you use a particular component.

xii

INTRODUCTION

How This Book Is Organized

This book has been split into three distinct parts.

Part I: Navigating the Interview Process
The chapters on the interview process cover two main topics: how to present yourself to the inter-
viewer, and some general topics that are not specific to Java, but are likely to come up in a technical
interview.

Chapter 1: Dissecting Interview Types
This chapter covers how employers often break down the recruitment process, from phone screen
interviews, to face-to-face technical tests, to talking with hiring managers.

Chapter 2: Writing a Noticeable Resume
Your resume and cover letter are the first chance to make an impression on what could potentially
be your next employer. This chapter covers how to make your resume stand out, with tips on the
appropriate language to use and some pointers on what recruiters look for.

Chapter 3: Technical Test and Interview Basics
Any potential employer will want to examine your technical skills, and will try to do so as effi-
ciently as possible. This chapter discusses the different ways programming and technical tests can be
applied, and how best to be prepared for each scenario.

Chapter 4: Writing Core Algorithms
Popular topics for technical tests are some core computer science concepts, including sorting and
searching. This chapter guides you through some different algorithms around sorting and searching,
and discusses the pros and cons of each approach.

Chapter 5: Data Structures
Often paired with the computer science problems of sorting and searching, efficient storage and
representation of data is another popular topic for interviews. Chapter 5 discusses lists, trees, maps,
and sets, and their representation and use.

Chapter 6: Design Patterns
This chapter covers several object-oriented design patterns, and also shows some example usage
within Java’s library classes.

xiii

INTRODUCTION

Chapter 7: Implementing Popular Interview Algorithms
This chapter takes some popular interview questions, and steps through an implementation in
Java. Many of the questions have been taken from the popular technical interview website,
interviewzen.com.

Part II: Core Java
The chapters in this section cover most areas that any interviewer would expect to see in an experi-
enced candidate for a Java developer position.

Chapter 8: Java Basics
This chapter covers many of the language features of Java, and can be treated as a recap for any
experienced Java developer.

Chapter 9: Testing with JUnit
A core theme throughout the book is the use and focus on unit testing. This chapter introduces
JUnit and describes how to use it to check any assumptions and assertions.

Chapter 10: Understanding the Java Virtual Machine
All competent developers have an understanding of the platform they use, and Java is no excep-
tion. This chapter covers some features of the JVM, and interaction between the JVM and the Java
language.

Chapter 11: Concurrency
This chapter examines Java’s threading model and how to use it. It also introduces actors, a more
recent approach to concurrent execution.

Part III: Components and Frameworks
This part inspects different domains in which Java is used, from databases to web servers, from
some popular frameworks, such as Hibernate and Spring, to the tools to build and distribute
enterprise-level applications. It is likely that when interviewing for a particular role, the interviewer
will expect you to have specific knowledge presented in some of these chapters, and that would
often be part of a job specification, which may have attracted you initially to apply for the role.

Chapter 12: Integrating Java Applications with Databases
Many sufficiently large Java applications will have a database component. This chapter introduces
SQL, the language standard for manipulating database data, and how Java and SQL work together.

xiv

INTRODUCTION

Chapter 13: Creating Web Applications
Java is a popular language for creating applications to serve data over HTTP. This chapter looks at
three popular frameworks: Tomcat, Jetty, and Play.

Chapter 14: Using HTTP and REST
This chapter looks at another use for HTTP: creating and using web services, using a style known as
Representational State Transfer, or REST.

Chapter 15: Serialization
Serialization is the method for transmitting structured data. This chapter covers three methods:
Java’s own serialization mechanism, and platform-independent methods using XML or JSON.

Chapter 16: The Spring Framework
One of the more popular application frameworks, Spring is used by many employers for some, if not
all, of their application setup. This chapter looks at several components of the Spring Framework,
including the core application context, database integration, and integration testing.

Chapter 17: Using Hibernate
Hibernate is a framework for mapping relational database data into Java objects. This chapter intro-
duces Hibernate, and how to use it to create and manipulate objects.

Chapter 18: Useful Libraries
Java has many useful, reusable libraries. Chapter 18 examines three of the more popular libraries:
Apache Commons, Guava, and Joda Time.

Chapter 19: Developing with Build Tools
Any large Java application, particularly one with several developers, will need a well-managed pro-
cess for building and packaging the application. This chapter covers Maven and Ant, the two most
popular tools for building Java applications.

Chapter 20: Android
This final chapter introduces a more modern use of the Java language: developing mobile applica-
tions on Android. This chapter looks at the Android SDK, its key components, and how they are
integrated.

Appendix: Introducing Scala
This appendix introduces Scala, a new language gaining in popularity with Java development teams
because it uses the JVM as its platform. This chapter introduces some language basics, functional
programming concepts, and some conventions around immutability.

xv

INTRODUCTION

Who Should Read This Book

This book has been written for a Java developer with some experience: You know the language
and have been using it for some time, but some of the topics in the chapters may be unfamiliar or
completely new to you. If you have never used Java at all, this book may be helpful, especially the
chapters in Part II, although you should probably read this in tandem with some more dedicated
introductory material.

You may even find this book of some use if you sit on the other side of the interviewer’s table: Please
use it to take inspiration for some questions to ask in an interview.

Tools You Will Need

You can download the latest Java JDK from http://www.oracle.com/technetwork/java/
javase/downloads/index.html. Most professional developers will write Java source code using an
Integrated Development Environment, or IDE. Two of the more popular IDEs are IntelliJ (the free
Community Edition is available at http://www.jetbrains.com/idea/download/index.html),
and Eclipse (available at http://www.eclipse.org/downloads/). Some of the more experienced
interviewers will provide you with a computer and IDE for any technical part of your test, so you
should familiarize yourself with the basics of both of these IDEs.

Downloading the Example Source Code

All of the example code throughout this book is available on the Internet at www.wiley.com/go/
javaprogramminginterviews. You may find it helpful to download, edit, and compile this source
code, especially for some of the topics you are less familiar with.

Summary

This book is not a shortcut for getting a job as a Java developer, but should be treated as a compan-
ion for finding your next role. It should help with some common topics that interviewers often use to
help with their recruitment process.

Experience is very helpful in an interview situation, both with the subject of the interview, and also
with the alien, often daunting, interview itself. You must practice and practice the skills and tech-
niques, and your skills will improve as you spend more time as a developer. Gaining experience in
an interview situation can be tough. Every employer performs the interview process differently, and
the whole process isn’t perfect. A potential employer must consider many variables other than the
question “is this candidate good enough?” before making a job offer. Budget constraints, team fit,
and even the mood of the interviewers all have a part to play.

http://www.oracle.com/technetwork/java/
http://www.jetbrains.com/idea/download/index.html
http://www.eclipse.org/downloads/
http://www.wiley.com/go/

xvi

INTRODUCTION

If you are turned down for a role, try not to get too down about it, but instead try to draw on the
experience and consider what will be asked when you have your next interview.

Remember, too, that an interview is a two-way process: Ask about the role, the colleagues, and life
in the office. Do not be afraid to turn a job down if it doesn’t feel right to you.

Good luck with navigating the interview process, and try to enjoy the ride! Hopefully this book can
help you land that dream job.

Part I
Navigating the Interview Process

Part I covers many of the essentials for a technical developer interview, from writing an appro-
priate resume to more technical topics, regardless of any language specifics.

�Chapter 1 discusses the different types of interviews that are used for assessing
candidates.

�Chapter 2 explains how to write an appropriate resume and cover letter, and high-
lights the points that interviewers often look for when reading resumes.

�Chapter 3 describes how to approach the different interview types.

�Chapter 4 covers some basic algorithms, such as sorting and searching. These are
popular topics for an interview and are essential for understanding in a day-to-day
programming job.

�Chapter 5 covers some important data structures. These too are often discussed in
interviews, and knowledge of these is essential in most development roles.

�Chapter 6 is on design patterns. Design patterns are often a favorite interview topic.

�Chapter 7 looks at some useful interview questions, which are often used across a
variety of programming languages, not just for Java interviews.

www.allitebooks.com

http://www.allitebooks.org

Dissecting Interview Types
Simply put, employers conduct interviews to recruit new talent, or to fill a necessary gap to
improve a team’s productivity. Within a development team or department, you will find a
wide range of skills, and on the whole, this is key to making a team gel. It is simply not pos-
sible for one person to develop and manage a professional-grade application, there is too much
to manage: developing feature requests for product owners, maintaining test environments,
and answering any ad-hoc queries from the operations team are all daily tasks for the team
managing the development of an application. Development teams will often need one or sev-
eral application developers. They may even have dedicated front-end developers and database
developers. Some teams are even lucky enough to have a dedicated build manager.

Varying ranges of experience are important, too. Having developers who have put several
applications live and supported them is key to any new project’s success. Graduates, or devel-
opers with a couple of years’ experience, are also vital: These employees can often bring a dif-
ferent perspective and approach to developing an application, and the more experienced team
members can mentor and coach them in the delicate process of developing large enterprise-
scale applications within a team of many people.

When it comes to interviewing for new talent, the process and experience for the interviewee
can be quite different from company to company. Understandably, it falls on the shoulders of
the team’s developers to interview for new developers. First and foremost, a developer’s day
job is to write and produce tested, working applications, and not to interview people. As a
result, a developer interviewing people for additional roles may often be under-prepared, and
perhaps even uninterested in performing an interview. In a face-to-face interview, this is going
to be one of the first hurdles to cross: You need to make the interviewer interested in you.

Companies, and especially technology and digital companies, are getting much better at real-
izing how important the recruitment process is. Some of the more progressive employers often
put emphasis on recruitment within internal company objectives. This puts the responsibility
on the employees to make the company an attractive place to work, with the hope that this
will attract the top talent, which in turn will bring productivity, success, and profitability.

1

4  ❘  CHAPTER 1  Dissecting Interview Types

The first impression for an interviewer will be the resume, sometimes called a curriculum vitae, or
CV. How to make an eye-catching resume is covered in the next chapter.

As you move through the interview process for a particular role or company, you will encounter
different styles and methods of interviews. Generally, the “interview pipeline” for a candidate is
designed to be as efficient as possible for the employer, with the face-to-face interviews coming late
in the process.

The interview pipeline will usually start with a phone screening, followed by one or more technical
tests, and finally some face-to-face interviews.

Looking at the Phone Screening Process

Companies often start the interview process with a telephone screening. This is advantageous from
the company’s side, because it can take a lot of people to organize a face-to-face interview: finding
available times for all the interviewers, HR, and possibly a recruitment team, meeting rooms, and so
on. This is also helpful for you, because you won’t need to take much time away from work. Many
people like to keep it quiet from their current employer that they are looking for jobs, so it shouldn’t
be too hard to find a quiet corner of the office or a meeting room for an hour to take a phone
interview.

If you do an interview over the telephone, make sure you are prepared well before the time of the
interview. If you have to take the call while at work, book a quiet meeting room or find a quiet cor-
ner of the office. If that is not possible, you could go to a local coffee shop. Make sure beforehand
that the noise level is appropriate: You don’t want to be distracted by baristas calling across the café
or loud music playing in the background.

If you are expecting to do a remote live-coding exercise, make sure you have Internet access wher-
ever you are. Have a pen and paper handy in case you want to make notes during the call for
questions to ask later. Use a hands-free kit when typing: It will make the call much clearer for
the interviewer. You don’t want to waste precious time repeating questions or re-explaining your
answers—this is very frustrating for all involved.

It might not even hurt to have a few notes in front of you for any topics that may come up during
the call. This is not cheating; it can help calm any nerves and get you settled into the uncomfortable,
alien experience of having to convey technical explanations over the phone to someone you have
never met before. Note, however, that if and when you have an interview face-to-face with the team,
you won’t be able to have any notes in front of you.

Usually a phone screen lasts for 30 to 60 minutes, and you should expect some very high-level ques-
tions. The kinds of questions that come up in a telephone interview are often about language-agnostic
algorithms. You may be asked to verbally describe these, or you may even be asked to attempt some
live-coding challenges in a shared, collaborative document editor, such as Google Docs, or perhaps a
bespoke interview-hosting website, such as Interview Zen (www.interviewzen.com).

At any point in the interview process you should know the basics about a company. Look at the
“about us” page on their website. Read their blog; find out if they have a Twitter account. If you
are applying for a small company or a startup, try to find out some more about the senior members

http://www.interviewzen.com

Reviewing Technical Tests  ❘  5

of the company, such as the CEO and CTO. They can often be quite active in a local development
community.

At the end of any interview, the interviewer will often ask if you have any questions for them.
Answering no to this question will leave a bad impression; it will show that you do not care enough
about the role. Considering you now know that this question will more than likely come up, think
about what questions you want to ask long before you even go for the interview. Think about what
you want to know about the team dynamic, how the team works together, and what the office envi-
ronment is like. Only you can come up with these questions. This is not the time to talk about the
salary or anything else to do with the package that comes with the job. There will be plenty of time
to talk about that once you have been offered the role.

Reviewing Technical Tests

A technical test can be used as a supplement to or instead of a phone-screen interview. This may
even happen as part of a phone screening, or you may be invited to the office for a technical test.

A technical test often consists of some simple questions covering a multitude of areas related to the
nature of the role. If the role is for working on a web application, you could expect questions about
the Servlet API and perhaps some frameworks such as Spring MVC or Tomcat. You should be aware
of the nature of the role, and any languages and frameworks used.

These tests are usually performed alone, and can take a variety of approaches. Some interviewers
rely on a pen-and-paper test, often asking some simple definite-answer questions, or others may ask
you to write a simple algorithm, often around 10 to 20 lines long.

If you find yourself writing code on paper, you should take extra effort to make sure the code is
understandable. Any decent employer should understand that you may make some elementary mis-
takes around method naming, or miss a semicolon, but you should always aim to give no excuse to
an interviewer to not ask you back for any further interviews.

Another popular technique is to provide a coding test on a computer with a functioning IDE. This is
a fairer way of testing, because it is a similar environment to how candidates work when doing their
day job. They may not provide Internet access, but may provide offline Java documentation instead.

When you are tested with a fully functioning IDE, or even just a compiler, you have no excuse for
producing code that does not compile.

Whatever you are asked to do, write unit tests. Write them first. Although this may take additional
time, it will ensure that the code you do write is correct. Even if a test makes no mention of writing
unit tests, this will show to anyone examining your test that you are diligent and have an eye for
detail. It will show that you take pride in your work, and that you think for yourself.

For example, method names in JUnit 4 and onward are free from any kind of naming convention (as
discussed in Chapter 9), so if you saw a question similar to the following: Write a simple algorithm
to merge two sorted lists of integers, you could quickly start by writing a list of test cases, and these
will then become the method names for your JUnit tests.

6  ❘  CHAPTER 1  Dissecting Interview Types

Covered in depth in Chapter 9, method names in JUnit 4 and onward are free from any kind of
naming convention, so you could quickly start by writing a list of test cases, making them method
names for JUnit tests. Some example test cases for the given question include:

twoEmptyLists
oneEmptyListOneSingleElementList
oneEmptyListOneMultipleElementList
twoSingleElementLists
oneListOfOddNumbersOneListOfEvenNumbers
oneListOfNegativeNumbersOneListOfPositiveNumbers
twoMultipleElementLists

The contents of each of these test cases should be easy to understand from the name. Given a well-
defined API, writing the test cases should take no more than five to ten minutes, and you can run
these tests as a frequent sanity check when implementing the actual merge. This will keep you on
track as you are writing and refactoring your real code.

These given test cases probably do not cover every possible code path for merging two sorted lists,
but should give you and the interviewer confidence in your actual implementation.

Most modern IDEs allow you to automatically import the JUnit JAR without needing any Internet
access at all; it comes bundled with the IDE. Make sure you know how to do this for a few IDEs,
because you may not get a choice of which one to use in a test situation. At a bare minimum, you
should be able to do this for Eclipse and IntelliJ. They are both smart enough to recognize the @Test
annotation and prompt you to import the JUnit JAR.

Try to write test cases concisely and quickly. Any reasonable interviewer will not mind the odd
missed test case, understanding that you want to show the range of your abilities in the time given.

If you are ever given a paper test and a test on a computer, you have the advantage of being able to
check your code on paper by writing it on the laptop! Some companies do take this approach—they
will provide some simple, exploratory Java questions on paper, and then ask you to write a more
in-depth, small application.

Considering you are applying for a job as a developer, it is reasonable to expect to demonstrate
your technical ability during the interview process. It is worth noting that this is not always the
case—interview standards can be so varying that it is not unheard of to have a brief chat with a hir-
ing manager, and that is all. This approach does not normally work out well for the employer, and
thankfully this does not happen as often as it used to.

Like all parts of the interview process, you must be prepared. The job specification page should con-
tain a lot of technical information about what languages, technologies, and frameworks are used.
A job specification page should be available on the company’s recruitment website pages, or if you
cannot find it, you should ask the company for it. You should not be expected to know every bullet
point on a job specification inside and out, but the more you can show, the better. Employers will
be looking for a willingness to learn and adapt, so make sure you convey this in an interview. Most
importantly, you must want to learn the technologies the company uses.

Again, understand what the company does; you may even be asked specifically for what you under-
stand about the company, or specific applications developed by the team you are interviewing for. If

Handling Face-to-Face Interviews  ❘  7

the company has a public-facing website, make sure you have used it. If the role is part of a game,
make sure you have played it. Some employers have a rule that candidates are a definite “no” if they
have not used the product developed by the team.

Handling Face-to-Face Interviews

Following a successful technical test, you should be asked for a more personal interview, meet-
ing members of the immediate team you would be working with as well as a hiring manager, and
perhaps some members of a recruitment team or human resources. This can often happen over the
course of half a day, or a full day. It may even be set over several meetings on several days, usually
depending on the office location—how easy it is for you to keep returning for more interviews—the
availability of the interviewers, and your availability, too.

As a rule, the interviews will get less technical as the process progresses. A typical set of interviews
may be as follows:

➤➤ A technical interview, covering any work done in a pre-screening or an individual test

➤➤ Several more technical interviews, covering more topics and questions of interest to the
hiring team

➤➤ You may be expected to write some code on a whiteboard or to do some pair programming.

➤➤ An interview with one or several members of the business side of the team, typically a
product manager or project manager

➤➤ An interview with a hiring manager. This will cover some softer skills, away from the
technical side. This is to see if you are a good fit for the team.

➤➤ A final debrief from an in-house recruiter or HR representative. Salary expectations and other
contractual conversations may happen here, as well as any information about next steps.

In preparation for any upcoming interview, try to think about possible questions that will be asked.
If you are expecting to cover any code you wrote in a phone screening, online, or in a previous tech-
nical test, try to remember what you actually wrote. It may help to try to write out from memory
any small applications that you wrote as part of your test. It does not matter if it is not exactly as
you submitted it the first time, but it will help jog your memory, and you may find some improve-
ments to discuss in the interview.

When doing any face-to-face interview, be prepared to be stretched to the limit of your ability.
Answering with “I don’t know” is not an admission of failure; it is simply that the interviewer is try-
ing to understand the limits of your knowledge. Of course, the later you reach that point, the better.
However, you cannot expect to be an expert in all domains, so there should not be much concern
if you can demonstrate a deep understanding of, say, Spring and Hibernate, but your knowledge of
database transactions and concurrency is not up to the same level.

The interview process itself is not perfect. This is not an examination; just knowing the right answer
is not enough. The interview team is checking to see if you will be a valuable addition, perhaps

8  ❘  CHAPTER 1  Dissecting Interview Types

looking to see if you would be a suitable mentor if you are interviewing for a more senior role, or if
you show drive, determination, and passion if you are trying for a junior role.

Sometimes even this is not enough; perhaps the interviewer is in a bad mood, or having a bad day.
The interviewer could even be mentally distracted from a broken build that happened just minutes
before stepping into the interview. Unfortunately there is not much you can do in these circum-
stances. Always be polite and try not to upset the interviewer during any discussions.

Often late in the process, once the developers are happy that your ability matches their expectations,
you will meet with the hiring manager. The role of this interview is to discuss your fit within the
team, talk about some of the expectations and softer skills that are required for the role, and discuss
your own career development within the company.

Like in all steps of the process, your manner and engagement are being examined here. The hiring
manager wants to see that you are keen, smart, and able to hold a decent conversation. It is very rare
that a developer sits alone and writes code all day with no interaction with anyone else. Talking to
other developers, product managers, and many other people is necessary on a daily basis, and one
of the main points of this conversation is to ensure that your communication with others is at an
acceptable level.

Sometimes, if the interviewing team feels that you are not quite the right fit, they may terminate the
interview early, informing you that they are not going to pursue the role any further. If this happens,
it can be quite a shock, especially if you are not expecting it. Be assured that it is nothing personal,
and is not a slight against your ability; it is purely that your skills do not match up with what they
need. Try not to let this affect your confidence, and ask yourself if there is anything you need to
brush up on before any interviews with a different employer.

Making the Decision

Being offered a role is not the end of the process. First, you must be absolutely sure that you want
the role. If you have any doubts, even after an offer stage, approach the hiring manager or recruit-
ment agent. They can often allay any fears you may have, or fill in the answers to any questions you
didn’t ask during the interview process.

Even after any further discussions, if you still feel that the role is not right for you, do not take it.
You would be better to carry on looking rather than taking the job, being unmotivated, and then
looking to move soon after, or worse, not making it through any probationary period.

If you are happy with the role, you will be offered a salary and perhaps other benefits as part of
your employment package, such as stock options, a pension, and medical benefits. You may have
some room to negotiate on the package at this point. Remember, the hiring manager and the rest of
the team now want you to work for them. They have invested a lot of time and effort in examining
you, and if they cannot provide you with an attractive offer now, they will have to start the process
all over again. Do not push your luck, though: A developer salary and package will fall only within
a certain range in the team’s budget.

Summary  ❘  9

Summary

If you are inexperienced with interviews, they can be quite daunting. The best way to remove any
fear is simply with experience; the more interviews you have under your belt—successful or other-
wise—the more you understand exactly what interviewers are looking for, and how to tackle the
questions given. Although the questions in this book will provide a good insight into the types and
styles of questions you might encounter during an interview, the actual execution of answering these
questions effectively will only come with practice and experience.

Remember at all times that interviews are a two-way process. Although the interviewing team dic-
tates how and when the interview process happens, you are interviewing the team, too. It is solely
up to you to decide if you actually want to work for this team. Make sure you answer that question
before you commit and move jobs.

People can find rejection hard from interviews, especially when they have had much success in aca-
demic life. Interviewing for a job is not the same as taking a university or college exam; getting the
question right is not always sufficient. Every single aspect of you is being examined, from your per-
sonality to your skills, but also whether your skills match with what the hiring team needs. There is
no shame in being rejected for a role. Getting the questions right is only half of the battle.

The biggest key to acing any interview is preparation. Make sure you understand the domain prop-
erly, and try to visualize what exactly the interviewers are going to want from the interview. Think
about the questions they may ask, and make sure you have some questions of your own to ask them.

Chapter 3 visits the different interview types discussed in this chapter, and delves a little deeper into
your conduct and how to produce good and relevant answers. Before that, however, Chapter 2 looks
at the very first stage of the hiring process, before any interview takes place: how to write an appro-
priate resume and cover letter to get noticed by the recruiting team.

Writing a Noticeable Resume
A common joke amongst recruiters and interviewers is that they always throw half of the
resumes in the trash without reading them, because they do not want unlucky people working
for them.

Getting your resume noticed can be quite hard, and may involve a little luck. The advice and
writing technique shown in this chapter will hopefully reduce the reliance on luck as much as
possible.

How to Write a Resume and Cover Letter

The written part of a job application generally consists of two parts: a resume and a cover
letter. A resume is an account of your professional qualifications and other relevant skills,
whereas a cover letter is a personal letter to the interviewer that describes how the specific role
you are applying for suits you, and what extra qualities you can bring to the team along with
the role.

Even though your resume should appear generic, you should tailor it to a particular job. When
you submit your resume, make sure you tweak it in favor of the job you are applying for,
focusing on your most prominent skills that match the job specification.

A resume should never be more than two pages in length. Most interviewers are developers in
their day job, and simply do not have time to trawl through pages and pages of a career his-
tory. Keep it concise and relevant, and concentrate on your most recent roles.

With this in mind, you should make sure that any key information you definitely want an
interviewer to see is toward the top of the first page. Focus on the key strengths you want
to convey here. Do not waste space by adding a title that says “Resume” or “Curriculum
Vitae”—everyone reading this document knows what it is. One of the most important things
you want the interviewer to remember is your name; make this as your heading, and make it
the largest font on the page.

Some candidates now put a small headshot photograph on their resume. This can help inter-
viewers put a face to a name when discussing candidates after performing several interviews,

2

12  ❘  CHAPTER 2  Writing a Noticeable Resume

but it is up to you whether you want to include a photo; it will not have any overriding positive or
negative effect on your chances of a job offer.

A common approach nowadays is to have a developer profile at the top of the page. This is a short
paragraph, perhaps three or four lines, that sums up your aspirations and career to date, and
describes what you are looking for from your next role. An example profile might say:

An experienced Java developer with four years experience in the retail and
banking industries. Always keen to learn new technologies, and looking to take
more leadership over project delivery.

By placing this toward the top of the page, the likelihood of an interviewer reading this statement is
high. The profile shown here is written in the third person. It is purely a matter of preference if you
write it in the first or third person, but, like the rest of your resume, make sure you are consistent.

Something else to include early in the document is a section on key skills. This can be a list, perhaps
a set of bullet points that you see as your most employable traits.

Whatever you write here, make sure you cover as much ground as possible. If you have experience
in languages other than Java, mention them. Say what operating systems you are experienced with.
Mention which tools you use, such as the IDEs you prefer, as well as other aids to your role as a
developer such as source control systems.

Do not just write a list of acronyms. Do not just write a list of every library and tool you have ever
touched. Interviewers will not pay much attention to several lines of acronyms—“SQL, XML,
JDBC, HTTP, FTP, JMS, MQ,” and so on. It is much better, and more engaging for the interviewer,
if you describe your key skills as:

Expert with Spring JMS and the HTTP protocol, some experience with Apache
Cassandra.

Whatever you decide to include in this list, make sure the items are appropriate. Any key skills you
list should be reflected elsewhere on your resume, such as in your description of previous roles.

Include a small section on your education and qualifications. Start with your most recent qualifi-
cation. Include the dates you attended the institutions. If you have a university or college degree,
include the titles of any theses, dissertations, or papers you submitted. You do not need to be too
detailed about your high-school qualifications. Include a single line highlighting when you attended
the school, and any key examinations.

If you do not have a university qualification, be a little more detailed about your grades in key sub-
jects, such as math or English.

As you gain more experience, you can place less emphasis on the education section in your resume.
If you are applying for senior or leadership roles, employers will be much more interested in seeing
evidence of what you have achieved in the workplace. Regardless, you should always include your
highest qualification.

Unless you have just left school, the majority of your resume will be made up of your work experi-
ence. Treat each role as a different section, and for each role, include the dates and locations of

www.allitebooks.com

http://www.allitebooks.org

How to Write a Resume and Cover Letter  ❘  13

where you worked. You should include a brief description of your responsibilities and what you
achieved. Where appropriate, mention any technologies or libraries you used. Similar to your key
skills section, summarizing your experience with bullet points is fine: Any interviewer will want to
read and understand your experience as quickly as possible.

Remember that the interviewers are interested in what you have achieved, what your role was in any
team success. Rather than describing a role as:

I worked on the team that released the game XXX. It received two million daily
active users within the first month.

It would be much more informative to say:

I was responsible the development of the server for game XXX, focusing on its
stability. It handled two million daily active users within the first month, with no
downtime.

This way, you have made it clear what your role was on the team, what your responsibilities were,
and what was achieved thanks to your input.

Where appropriate, try to use powerful adjectives when describing your work. By describing your-
self as a “lead” developer, or having the “sole responsibility,” or being a “core team member,” you
are emphasizing your value to any work within a development team. Remember that you must be
able to validate your descriptions.

If you have any gaps between employment dates in your resume, you must be prepared to talk about
them in an interview. If you decided to take some time off and go travelling, that is fine; if you were
made redundant or were laid off and it took you several months to find a new job, that is fine, too. But
employers will be interested in knowing what you did with your time off. Prospective employers will
be looking for candidates who are productive, forward thinking, and proactive. If you can truthfully
say you were helping with some open-source projects or doing some kind of charitable work, this will
put you in a lot better favor over someone who cannot explain what he or she did with any time off.

Even if you tried to start your own business and it failed, there is no shame in this at all. In fact,
most employers would see this as a positive personality trait.

If you have any appropriate online presence, providing links is often attractive to employers. If you
have a Github profile, a link to it will give employers additional insight into how you work. If you
write a blog, include a link to that, too. If you answer questions on question-and-answer sites such
as Stack Overflow (stackoverflow.com), provide links to some of your popular answers or to your
profile page. This is very informative as to how you work and think in a “real-world” environment,
rather than the strange, alien environment of a set of interviews.

You should expect any interviewers to perform an online search for you. If you have a Twitter
account or Facebook account, or similar account that is easily traceable to you, make sure the con-
tent posted is something you are comfortable sharing in an interview. If it is not, make sure you have
the privacy settings configured appropriately.

Candidates often include a small section toward the end of a resume of some personal interests. This
can have very little bearing on a decision to call someone in for an interview. Although it can show

14  ❘  CHAPTER 2  Writing a Noticeable Resume

that you are an interesting individual who does more than just work, a decision to interview some-
one will be made on the relevant professional credentials on a resume. If you are struggling to fit the
contents of your resume into the hard two-page limit, leave this off.

Some candidates also include one or two references with their contact details. There is no issue if
your resume makes no mention of references, but if you choose to include them, make sure they are
up to date. Speak to your references beforehand, and make sure they are prepared to expect a call
and talk about your best qualities. Failure to do so will reflect poorly on your reliability.

Writing a Cover Letter

The cover letter is a chance to show that you have done your homework about the role you are
applying for. It should be relatively brief, much less than one page, with the aim of persuading a
recruiter or interviewer to invite you in for an interview.

Use this letter to highlight any key entries on your resume that you feel are relevant for the role.
Also mention your most recent role and what you did there. If a current employee referred you, men-
tion him or her by name: Many companies offer a referral bonus for any successful hire. You want
to make sure to follow through on this—if you are hired, you might even get a cut of the bonus!

If you are not currently employed, the cover letter is an ideal place to say what you have been doing
since you left your most recent role.

You should also state why you want to join the company you are applying to. If it is in a different
industry, explain why you would like to move industries, too.

Say why you are looking for a new role. There is nothing wrong with wanting to leave to develop
yourself and your career, but you must be able to articulate that in the letter and in any subsequent
interviews. You should also mention any softer skills you feel you would bring to the role.

Even if you have contact details on your resume, include a line in your cover letter explaining how
best to get in touch with you. You want to leave no excuse for not being invited in for an interview.

The body of an example cover letter could look like:

Please find my resume attached for the software developer role.

My current role is as a server-side Java developer for Company X. I have been
at the company for three years and worked on two different teams as a Java
developer in that time.

I feel that both Company X and I have gained a lot from my employment there,
and I feel it is time for me to move on and apply my technology skills in a
different industry, and hopefully gain some new ones too.

I am confident I can bring my enthusiasm and experience to Company Y and to
this role. I look forward to hearing from you soon.

Summary  ❘  15

It is these small attentions to detail that may differentiate your job application from another
candidate’s.

Summary

Your resume is the first thing that any prospective employer will see about you. It is an advertise-
ment, your brand. You have full control over this document, and so you should make every effort to
make sure it is perfect.

There should be no mistakes at all on your resume. Double-check all the dates, make sure there are
no spelling mistakes, and make sure the grammar is correct. Simple errors on your resume will give
the impression that you do not care, and, therefore, can’t be trusted to produce professional-grade,
properly tested applications.

Keep the formatting consistent. Your resume does not need to have fancy headings and several type-
faces: You are not applying to be a graphic designer. Keep your formatting clean, simple, concise,
and easy to read.

Get others to check your resume, and take any feedback from them constructively. Read and re-read
it several times; you will always find minor adjustments and other small changes to make.

Schedule a small amount of time every two to six months to keep your resume up to date. You will
find it easier to remember any key points you want to highlight. Also, updating your resume more
frequently means you will be making fewer changes at any one time, so the chances of making an
obvious error or typo are limited.

Always try to keep your resume to two pages at maximum. This allows an interviewer to print it on
a single piece of paper, double-sided. Over time, as your experience grows, you will have to be judi-
cious in what you decide to keep and what you decide to remove to keep the document under a two-
page limit. This can be hard at times, and you may find yourself fiddling with margin widths and
font sizes to fit on as much as possible, but sticking to a two-page limit is key. Interviewers simply
do not have the time or the interest to read an eight-page resume.

If you take only one thing from this chapter, be aware that anything you write on your resume is
fair game for an interviewer. Do not lie; do not say you have skills or experience where you do not.
If, or perhaps, when, any falsehoods are uncovered in an interview, you can almost be certain you
will not be receiving a job offer. Even if you manage to get through an interview with a false resume,
most employers will perform thorough background checks, and any wrong qualifications or false
roles will be uncovered there.

The next chapter looks at how to handle assessments once an interviewing team is happy with your
resume, and would like to find out if you would be a good fit in terms of skills, knowledge, and
personality.

Technical Test and
Interview Basics

Undertaking an interview for a Java developer will inevitably require an employer to test your
technical ability.

This chapter covers some of the testing formats used by interviewers to see if your program-
ming skills match what is required for the role they are trying to fill.

The questions provided throughout this book will usually be asked within one of the inter-
view formats discussed here. If you have never had to do a technical interview, or it has been
a while since you last did one, this chapter should set an expectation of how recruiters assess
candidates.

Technical Written Tests

Technical written tests are often used as a screening technique for interview candidates, and
are usually done before any face-to-face interview. Candidates will be asked to take a short,
written test so that the interviewing team can assess whether they are worth interviewing.

This is beneficial to the interviewing team, because they can get a good idea about the ability
of the candidate without having to put in much effort. Quite often, interviewers can find it
hard to differentiate candidates from the resume alone, because many resumes consist solely
of lists of technologies used in previous roles. This should be a motivator to make sure your
resume stands out from the list of average resumes a recruiter receives.

Offline, written-on-paper tests are not very good ways of assessment, because this is not the
way you would usually write code. You have no IDE, no compiler, no Internet access to rely
on; it is purely reliant on what is in your head.

Although it is not a very good method of assessment, it is still a popular recruitment tech-
nique, because of the minimal investment needed from the development team.

3

18  ❘  CHAPTER 3  Technical Test and Interview Basics

Whenever you are asked to take a written test, try to follow the same advice and guidelines you were
given when taking exams at school. Make sure you read and understand the entire question before
attempting to answer it.

Take a look at all of the questions first, so that you don’t get any nasty surprises as you are running
out of time. The better written tests will have questions that increase in difficulty, meaning you
should be spending more time on the later questions.

Sometimes, a written test will have more questions to answer than is physically possible in the time
allowed. Don’t feel too deflated if you cannot answer all the questions. The assessors want to see
just how quickly you work and figure out the answers, to understand the speed of your problem-
solving ability.

Write legibly. It is highly unlikely that you will be hired for the quality of your prose, so if you
are asked questions that require an explanation, do not be afraid to be terse and to the point with
your answers. Use bullet points if necessary; just make sure you answer a question as completely as
possible.

Writing code on paper is hard. It is very simple to forget a semicolon, the ordering of arguments to a
method, or similar things you take for granted. Refactoring involves scribbling out method or vari-
able names, or perhaps starting again with whatever you have written. Hopefully your interviewer
will take this into account and accept that code written on paper will never be perfect.

If you are asked to sketch an algorithm on paper, try to think it through in your head first, before
committing pen to paper. Do not be afraid to make a few attempts before being happy with your
implementation: After all, that is how many developers write code in the real world.

At-Computer Tests

A slightly more professional approach used by interview teams is to ask you to complete a test by
writing real, compiled code. Sometimes a recruiter will send you some questions to do at home, or
perhaps ask you to come into the office to take a test.

This method should be a little closer to how you write code in real life, and so, any interview nerves
aside, you should feel a little more comfortable with this type of assessment.

If you are asked to perform the written test at home, try to mimic your own working conditions
as much as possible. You will have full Internet access for any documentation, and you will have,
within reason, much more time to do the test than you would in a one- or two-hour interview slot in
the offices of the company you are interviewing for.

If you are asked to go in to the office, and, if you are lucky, the computer you are using for any test
will be connected to the Internet, you will be able to look up any Java API documentation if neces-
sary. If you do have Internet access, resist the urge to rely on search engines or question-and-answer
websites—try to attempt the questions using your own ability as much as possible.

Some at-computer tests are performed offline, but they will give you access to Java API documenta-
tion stored on the computer’s hard drive.

Face-to-Face Technical Interviews  ❘  19

Hopefully an at-computer test will make use of an IDE, although you may not get a choice, so
make sure you are familiar with the basics of the more popular IDEs, including Eclipse and IntelliJ.
Most IDEs are also shipped with the Java API documentation for the standard Java libraries, so you
should be able to look up how certain methods work directly in the code.

Of course, the best thing about using a modern IDE is that it will check and compile your code as
you type, so you can fix any trivial issues quickly.

Sometimes a test will ask a series of questions, and you will be provided with an interface, or
method signature. You will not be able to change this interface because it is likely your code will be
part of a larger application that needs that interface to run, such as a web application server.

Alternatively, the reason for not being able to change any method definitions will be because the
interview team may have a suite of unit tests to run against your code. This is another practi-
cal approach from the interviewers—they are able to see if your code meets the test requirements
quickly, without much input from them.

From their point of view, making the tests pass is not the full story. They will also check any suc-
cessful code for its quality, making sure the code is professionally formatted, any reasonable com-
ments included, and just to get a general feel for how you write code.

You may be asked a less rigid question, where you have no predefined method template or interface
to work from, such as writing a small application from scratch. It can be a lot more daunting to
get started when faced with an empty file, rather than filling in the blanks on a template with the
method name, return type, and parameters filled in.

If you are not sure how to start, some people find it helpful to draw some diagrams of the compo-
nents of the application, and how they expect it to work and fit together. This can then trigger the
creation of any domain objects and the application logic of how they all fit together.

Regardless of your approach, make sure you write tests. Even if you have not been told to write
tests, you should do it anyway. Tests will guide the writing of your application, and you will find
that as you are pressed for time, the tests will keep checking that all your code fits together as you
expect. If any refactoring prompts test failures, you can quickly roll that change back, rather than
carrying on obliviously and then having recruiters reject your test straight away because it didn’t
work as expected.

Most IDEs have the JUnit jar packaged within the application and the ability to auto-import the jar
into the project when it sees you are writing a JUnit test case, so do use that if you can. Most inter-
viewers will be impressed, especially if you have not been explicitly asked to write tests.

Face-to-Face Technical Interviews

Often after some solo technical assessment, you will have one (or several) interviews face-to-face
with other developers. Often, they will ask you some technical questions, and will ask you to answer
by writing out what you would do on paper, or perhaps on a whiteboard.

This can be quite a strange environment if it is not something you have ever done before, or if you
are used to the comfort of an IDE and compiler.

20  ❘  CHAPTER 3  Technical Test and Interview Basics

Interviewers will often ask you to write in a specific language, or perhaps in pseudocode.

Writing Pseudocode

If you are unfamiliar with pseudocode, it is a high-level language that is supposed
to mimic how an application or algorithm would be written in an imperative style.
The actual syntax does not matter too much; it is used for discussion, or to write
ideas down before implementing them in a real language.

For example, writing an algorithm to find the maximum value in a list of positive
numbers may look like this:

int largest = -1
for i in 1 to length of list
 if list(i) > largest then largest = list(i)

if (largest == -1) print "No positive numbers found in the list"
else print "Largest number in the list: " + largest

There are no semicolons, and there is no formal syntax; the use of for and if state-
ments rely on the reader having some experience as a programmer.

This example could have been written in a number of different ways, but the most
important thing is that everyone who reads it understands the intention.

Pseudocode is used in situations other than interviews. Technical specifications
may use it to provide an outline of how an algorithm should work, or some-
times blog posts or technical articles may use pseudocode to keep any examples
language-independent.

If you are asked to sketch out an algorithm on paper or on a whiteboard during an interview, and
you are asked to write in Java (or a different language, for that matter), try to get the syntax as cor-
rect as possible. Try to remember all semicolons, and try to get any API library method names cor-
rect. However, the interviewer should not expect this to be perfect; after all, that is why you use a
compiler in the first place.

Usually the approach for an active offline coding interview is that the interviewer will give you the
requirements for an algorithm, and will then leave it to you to solve.

One useful approach is effectively to think out loud. Build up your answer, providing a commentary
as you do. The interviewer will usually be involved, so treat it as a conversation. If you are not sure
about a certain approach, make this clear. There is no harm in going down a wrong path, if as soon
as you realize, you can explain why and what changes you are making because of it.

More often than not, an interviewer is interested in your thought process just as much as the correct
answer. If you are asked a question you have had before, and you write out a perfect solution in 60
seconds, the interviewer won’t able to measure your problem-solving ability. It would be much bet-
ter to let an interviewer know that you know the solution to the given problem.

Summary  ❘  21

Do not be afraid to ask questions. When the interviewers asked the question at the start of the inter-
view, they were merely setting the problem in motion. Often there is more than one acceptable solu-
tion to a given problem, so asking appropriate, well-thought-out questions can help guide you to an
acceptable solution.

When fleshing out an algorithm on a whiteboard or on paper, write quickly, and again, be sure to be
legible, too. If the interview team looks at your code after interviewing other candidates all day, and
they cannot read what you have written, they won’t be able to make a positive decision about your
interview.

Summary

Whenever you are writing code for an interview, you will often be under pressure from the clock.
This is for several reasons: It is simply practical for the interviewer, and for you, to have the inter-
view process time boxed. They will have other people to interview, as well as their day jobs. You
may have other interviews, or other things to do in your daily life. More importantly, interviews and
coding tests are conducted within a time limit to see just what you are capable of achieving in the
time given.

You can find several online resources for practicing test questions. Look around on the Internet for
some sample tests to do in a restricted time frame to get yourself in the mindset. You may even find
the challenges fun!

Whenever discussing a technical test implementation with an interviewer, one question to always
expect is, “Does the code you have written work?” If you don’t explicitly write tests as part of the
interview, try to think of some test cases for your code as you write it, because this will form a pro-
ductive discussion toward the end of the interview.

Think through the code you have written, think about any improvements you would make, and be
prepared to talk about those in an interview. Think about any limitations of the code, even limita-
tions supplied by the given questions. One common question is to ask what you would change in
your code to scale to several million users.

Preparation is key: Try to put yourself in the shoes of the interviewer. What would you ask?

The next chapter covers algorithm basics, sorting and searching in particular. These core computer
science topics are often the basis for common technical interview questions.

www.allitebooks.com

http://www.allitebooks.org

Writing Core Algorithms
Many of the algorithms you are asked to define or demonstrate in interviews are operations
on lists, usually sorting or searching. This chapter examines several ways to assemble a list
into an ordered list, and discusses the advantages of each approach. It also looks at a common
approach to searching lists for a given value.

The algorithms described here are often covered in a core computer science course, so if
you have ever studied computer science you will probably be able to treat this chapter as a
refresher.

Looking at Big O Notation

A formal approach to describing the performance or complexity of an algorithm is called
Big O Notation. This describes how an algorithm performs as its input changes.

For instance, an algorithm described as having a worst-case performance of O(n2) means that
as the size of the input doubles, the algorithm takes four times longer to run. An O(n2) algo-
rithm is often not the most efficient implementation, although this is entirely dependent on the
exact goal of the algorithm.

Big O tends to be applicable for larger values of n. When n is small, the running time or space
consumption of an algorithm is often negligible. Regardless, for any algorithm you do write, it
is always worth considering Big O notation, even for small values of n, as, over time, you may
find you are running your algorithm with larger and larger input.

An algorithm often has three values of complexity: best-case, worst-case, and average-case.
As you would expect, a best-case performance is how the algorithm performs when the input
given means the algorithm does as little work as possible.

The performance descriptions here are often called the time complexity of the algorithm.
Algorithms have a space complexity, too; that is, how much extra space the algorithm needs
to do its work.

4

24  ❘  CHAPTER 4  Writing Core Algorithms

There is often a trade-off. You may find that the best performing algorithm uses much more space
than you can afford, or that the algorithm that uses only one extra piece of memory is much less
efficient than alternatives that use more space.

With any algorithm you write, try to think in terms of both time and space complexity. Although
computer memory is cheap nowadays and often large enough that it is not a concern, it is a good
exercise to understand what exactly your algorithm is doing.

Sorting Lists

A common operation on collections—lists in particular—is to rearrange the list into some kind of
sorted order. Lists are often sorted using natural ordering, such as sorting numbers from lowest
to highest or sorting characters into alphabetical order. However, you may have different require-
ments for your sorting. Java provides two interfaces for helping with sorting: Comparable and
Comparator.

What is the difference between the Comparable and Comparator interfaces?

Because these interfaces are public, they can be put to any use. By convention, the Comparable inter-
face is used for natural ordering, and Comparator is used to give exact control over the ordering.

When sorting an array, you generally use a built-in library, such as the implementation included in
the Arrays and Collections classes. However, for an interview you may be asked to write your
own implementation.

The Arrays and Collections classes have several overloaded sort methods, which can broadly
be split into two: one that takes an array as a parameter, and one that takes an array and a
Comparator object. The method is overloaded for each of the primitive types and one for the refer-
ence type (Object).

For the implementation without a Comparator object, the type is sorted by its natural ordering.
Listing 4-1 shows this for ints, sorting the array from low to high.

Listing 4-1:  Naturally sorting an array of ints

@Test
public void sortInts() {
 final int[] numbers = {-3, -5, 1, 7, 4, -2};
 final int[] expected = {-5, -3, -2, 1, 4, 7};

 Arrays.sort(numbers);
 assertArrayEquals(expected, numbers);
}

For an array of Objects, the type being sorted must implement the Comparable interface, as shown
in Listing 4-2.

Sorting Lists  ❘  25

Listing 4-2:  Sorting objects naturally

@Test
public void sortObjects() {
 final String[] strings = {"z", "x", "y", "abc", "zzz", "zazzy"};
 final String[] expected = {"abc", "x", "y", "z", "zazzy", "zzz"};

 Arrays.sort(strings);
 assertArrayEquals(expected, strings);
}

The String class implements the Comparable interface, so the sorting works as you would expect.
If the type being sorted does not implement Comparable, this will throw a ClassCastException.

For your own class definitions, you will need to implement Comparable, such as the implementation
described in Listing 4-3.

Listing 4-3:  Sorting without a Comparable interface

private static class NotComparable {
 private int i;
 private NotComparable(final int i) {
 this.i = i;
 }
}

@Test
public void sortNotComparable() {
 final List<NotComparable> objects = new ArrayList<>();
 for (int i = 0; i < 10; i++) {
 objects.add(new NotComparable(i));
 }

 try {
 Arrays.sort(objects.toArray());
 } catch (Exception e) {
 // correct behavior – cannot sort
 return;
 }

 fail();
}

It is not possible to use the Collections.sort method because the compiler expects the type of the
parameter to be an implementation of Comparable. The method signature is:

public static <T extends Comparable<? super T>> void sort(List<T> list)

If you want to provide your own ordering, you provide an implementation of the Comparator
interface to the sort method. This interface has two methods: int compare(T o1, T o2) for the

26  ❘  CHAPTER 4  Writing Core Algorithms

implementing type T, and boolean equals(Object o). The compare method returns an int in one
of three states: negative if the first argument is sorted before the second, zero if the two are equal, or
positive if the second argument is sorted first.

If you were to provide a reverse numerical order Comparator, the implementation may look like
Listing 4-4.

Listing 4-4:  A reverse numerical order Comparator

public class ReverseNumericalOrder implements Comparator<Integer> {
 @Override
 public int compare(Integer o1, Integer o2) {
 return o2 - o1;
 }
 // equals omitted
}

Listing 4-5 uses this Comparator.

Listing 4-5:  Using a custom ordering

@Test
public void customSorting() {
 final List<Integer> numbers = Arrays.asList(4, 7, 1, 6, 3, 5, 4);
 final List<Integer> expected = Arrays.asList(7, 6, 5, 4, 4, 3, 1);

 Collections.sort(numbers, new ReverseNumericalOrder());
 assertEquals(expected, numbers);
}

For the examples in this chapter, a simple natural ordering is assumed.

How would you implement a bubble sort algorithm?

The bubble sort algorithm is extremely simple to describe and implement. Here is an example in
pseudocode, assuming a zero-indexed array:

for i between 0 and (array length – 2):
 if (array(i + 1) < array(i)):
 switch array(i) and array(i + 1)

repeat until a complete iteration where no elements are switched.

Following is a simple example with a small list:

6, 4, 9, 5 -> 4, 6, 9, 5: When i = 0, the numbers 6 and 4 are switched
4, 6, 9, 5 -> 4, 6, 5, 9: When i = 2, the numbers 9 and 5 are switched

Sorting Lists  ❘  27

4, 6, 5, 9: The first iteration switched numbers, so iterate again

4, 6, 5, 9 -> 4, 5, 6, 9: When i = 1, the numbers 6 and 5 are switched
4, 5, 6, 9: The second iteration swiched numbers, so iterate again

4, 5, 6, 9: No more numbers to switch, so this is the sorted list.

Listing 4-6 shows an implementation of the bubble sort in Java.

Listing 4-6:  A bubble sort implementation

public void bubbleSort(int[] numbers) {
 boolean numbersSwitched;
 do {
 numbersSwitched = false;
 for (int i = 0; i < numbers.length - 1; i++) {
 if (numbers[i + 1] < numbers[i]) {
 int tmp = numbers[i + 1];
 numbers[i + 1] = numbers[i];
 numbers[i] = tmp;
 numbersSwitched = true;
 }
 }
 } while (numbersSwitched);
}

Although this implementation is simple, it is extremely inefficient. The worst case, when you want
to sort a list that is already sorted in reverse order, is a performance of O(n2): For each iteration, you
are only switching one element. The best case is when a list is already sorted: You make one pass
through the list, and because you have not switched any elements, you can stop. This has a perfor-
mance of O(n).

How would you implement the insert sort algorithm?

The insert sort algorithm is another simple algorithm to describe:

Given a list l, and a new list nl
for each element originallistelem in list l:
 for each element newlistelem in list nl:
 if (originallistelem < newlistelem):
 insert originallistelem in nl before newlistelem
 else move to the next element
 if originallistelem has not been inserted:
 insert at end of nl

Listing 4-7 shows an implementation.

28  ❘  CHAPTER 4  Writing Core Algorithms

Listing 4-7:  An insert sort implementation

public static List<Integer> insertSort(final List<Integer> numbers) {
 final List<Integer> sortedList = new LinkedList<>();

 originalList: for (Integer number : numbers) {
 for (int i = 0; i < sortedList.size(); i++) {
 if (number < sortedList.get(i)) {
 sortedList.add(i, number);
 continue originalList;
 }
 }
 sortedList.add(sortedList.size(), number);
 }

 return sortedList;
}

There are several points to note about this implementation. Notice that the method returns a new
List unlike the bubble sort, which sorted the elements in place. This is mainly the choice of the
implementation. Because this algorithm created a new List, it made sense to return that.

Also, the list implementation returned is a LinkedList instance. A linked list is very efficient in
adding elements in the middle of the list, simply by rearranging the pointers of the nodes in the list.
If an ArrayList had been used, adding elements to the middle would be expensive. An ArrayList
is backed by an array, so inserting at the front or middle of the list means that all subsequent ele-
ments must be shifted along by one to a new slot in the array. This can be very expensive if you
have a list with several million rows, especially if you are inserting early in the list. If the difference
between list data structures, such as array lists and linked lists, are new to you, look at Chapter 5
on data structures and their implementations.

Finally, the outer loop in the implementation is labeled originalList. When an appropriate place
to insert the element has been found, you can move on to the next element in the original array.
Calling continue inside a loop will move on to the next iteration of the enclosing loop. If you want
to continue in an outer loop, you need to label the loop and call continue with its identifier.

As hinted at with the outer loop labeling and the continue statement, once the element has suc-
cessfully been placed, the algorithm moves on to the next element. This is an advantage over bubble
sort: Once the list to return has been constructed, it can be returned immediately; there are no
redundant cycles to check that the list is in order.

The worst-case performance for this algorithm is still O(n2), though: If you attempt to sort an
already-sorted list, you need to iterate to the end of the new list with each element to insert.
Conversely, if you sort a reverse-order list, you will be putting each element into the new list at the
head of the list, which is O(n).

The algorithm described here uses twice as much space to sort the list because a new list is returned.
The bubble sort algorithm only uses one extra slot in memory, to hold the value temporarily while
being swapped.

Sorting Lists  ❘  29

How would you implement the quicksort algorithm?

The description for the quicksort algorithm is:

method quicksort(list l):
 if l.size < 2:
 return l

 let pivot = l(0)
 let lower = new list
 let higher = new list
 for each element e in between l(0) and the end of the list:
 if e < pivot:
 add e to lower
 else add e to higher

 let sortedlower = quicksort(lower)
 let sortedhigher = quicksort(higher)
 return sortedlower + pivot + sortedhigher

This algorithm is recursive. The base case is when a list is provided with zero or one element. You
can simply return that list because it is already sorted.

The second part of the algorithm is to pick an arbitrary element from the list, called the pivot. In
this case the first element in the list was used, but any element could have been picked. The remain-
ing elements are separated into two: those lower than the pivot, and those equal to or larger than
the pivot.

The method is then called on each of the two smaller lists, which will return in each segment being
sorted. The final list is the smaller elements, now sorted, followed by the pivot, and then the higher
sorted elements.

Listing 4-8 is an implementation in Java.

Listing 4-8:  Quicksort

public static List<Integer> quicksort(List<Integer> numbers) {
 if (numbers.size() < 2) {
 return numbers;
 }

 final Integer pivot = numbers.get(0);
 final List<Integer> lower = new ArrayList<>();
 final List<Integer> higher = new ArrayList<>();

 for (int i = 1; i < numbers.size(); i++) {
 if (numbers.get(i) < pivot) {
 lower.add(numbers.get(i));
 } else {
 higher.add(numbers.get(i));

continues

30  ❘  CHAPTER 4  Writing Core Algorithms

 }
 }

 final List<Integer> sorted = quicksort(lower);

 sorted.add(pivot);
 sorted.addAll(quicksort(higher));

 return sorted;
}

If you ever write a recursive algorithm, you must make sure that it terminates. The algorithm in
Listing 4-8 is guaranteed to terminate, because each recursive call is made with a smaller list, and
the base case is on a zero- or one-element list.

The performance of Listing 4-8 is much more efficient than the bubble sort and insertion sort algo-
rithms. The separation of the elements into two separate lists is O(n), and each recursive call hap-
pens on half of each list, resulting in O(n log n). This is an average performance. The worst case is
still O(n2). The choice of the pivot can make a difference: For the implementation given here, if you
always pick the first element as the pivot, and the list is ordered in reverse, then the recursive steps
only reduce by one each time.

It is worth noting that each division of the list and the subsequent recursive call is independent of
any other sorting necessary, and could be performed in parallel.

How would you implement the merge sort algorithm?

The final sorting algorithm to examine in this chapter is the merge sort algorithm. The following
pseudocode describes this recursive algorithm:

method mergesort(list l):
 if list.size < 2:
 return l

 let middleIndex = l.size / 2
 let leftList = elements between l(0) and l(middleIndex - 1)
 let rightList = elements between l(middleIndex) and l(size – 1)

 let sortedLeft = mergesort(leftList)
 let sortedRight = mergesort(rightList)

 return merge(sortedLeft, sortedRight)

method merge(list l, list r):
 let leftPtr = 0
 let rightPtr = 0
 let toReturn = new list

 while (leftPtr < l.size and rightPtr < r.size):

Listing 4-8  (continued)

Sorting Lists  ❘  31

 if(l(leftPtr) < r(rightPtr)):
 toReturn.add(l(leftPtr))
 leftPtr++
 else:
 toReturn.add(r(rightPtr))
 rightPtr++

 while(leftPtr < l.size):
 toReturn.add(l(leftPtr))
 leftPtr++

 while(rightPtr < r.size):
 toReturn.add(r(rightPtr))
 rightPtr++

 return toReturn

This is another divide-and-conquer algorithm: Split the list into two, sort each sublist, and then
merge the two lists together.

The main code is in merging the two lists efficiently. The pseudocode holds a pointer to each sublist,
adds the lowest value pointed to, and then increments the appropriate pointer. Once one pointer
reaches the end of its list, you can add all of the remaining elements from the other list. From the
second and third while statements in the preceding merge method, one while statement will imme-
diately return false, because all the elements will have been consumed from that sublist in the origi-
nal while statement.

Listing 4-9 shows an implementation.

Listing 4-9:  A merge sort implementation

public static List<Integer> mergesort(final List<Integer> values) {
 if (values.size() < 2) {
 return values;
 }

 final List<Integer> leftHalf =
 values.subList(0, values.size() / 2);
 final List<Integer> rightHalf =
 values.subList(values.size() / 2, values.size());

 return merge(mergesort(leftHalf), mergesort(rightHalf));
}

private static List<Integer> merge(final List<Integer> left,
 final List<Integer> right) {
 int leftPtr = 0;
 int rightPtr = 0;

 final List<Integer> merged =

continues

32  ❘  CHAPTER 4  Writing Core Algorithms

 new ArrayList<>(left.size() + right.size());

 while (leftPtr < left.size() && rightPtr < right.size()) {
 if (left.get(leftPtr) < right.get(rightPtr)) {
 merged.add(left.get(leftPtr));
 leftPtr++;
 } else {
 merged.add(right.get(rightPtr));
 rightPtr++;
 }
 }

 while (leftPtr < left.size()) {
 merged.add(left.get(leftPtr));
 leftPtr++;
 }

 while (rightPtr < right.size()) {
 merged.add(right.get(rightPtr));
 rightPtr++;
 }

 return merged;
}

There should be no surprise here; it is very similar to the pseudocode. Note that the subList
method on List takes two parameters, from and to: from is inclusive, and to is exclusive.

A common question in interviews is often to ask you to merge two sorted lists, as was shown in the
merge method in the preceding listing.

Again, merge sort has a performance of O(n log n). Each merge operation is O(n), and each recur-
sive call works on only half of the given list.

Searching Lists

How would you implement a binary search?

When searching through a list, unless the list is sorted in some fashion, the only sure way to find a
given value is to look at every value in the list.

But if you are given a sorted list, or if you sort the list before searching, a binary search is a very effi-
cient method to see if a given value is in the list:

method binarySearch(list l, element e):
 if l is empty:
 return false

 let value = l(l.size / 2)

Listing 4-9  (continued)

www.allitebooks.com

http://www.allitebooks.org

Summary  ❘  33

 if (value == e):
 return true

 if (e < value):
 return binarySearch(elements between l(0) and l(l.size / 2 - 1)
 else:
 return binarySearch(elements between l(l.size / 2 + 1) and l(l.size)

The beauty of this algorithm is that you use the property of the sorted list to your advantage. You
can throw away many elements without even examining them, because you know they definitely
cannot be equal to the given element. If you have a list with one million elements, you can find a
given element in as little as twenty comparisons. This algorithm has the performance of O(n).

Listing 4-10 shows an implementation of a binary search.

Listing 4-10:  Binary search

public static boolean binarySearch(final List<Integer> numbers,
 final Integer value) {
 if (numbers == null ||_numbers.isEmpty()) {
 return false;
 }

 final Integer comparison = numbers.get(numbers.size() / 2);
 if (value.equals(comparison)) {
 return true;
 }

 if (value < comparison) {
 return binarySearch(
 numbers.subList(0, numbers.size() / 2),
 value);
 } else {
 return binarySearch(
 numbers.subList(numbers.size() / 2 + 1, numbers.size()),
 value);
 }
}

Summary

For many interviews, the core of the assessment is often around implementing algorithms and
understanding the performance. Make sure you understand how the core sorting and searching
algorithms work and how they perform, because this will prepare you for any complex algorithms
you are asked to perform during an interview.

Some of the algorithms shown here are recursive. Make sure you understand the implications
of a recursive algorithm: They can look elegant, but can have surprising side effects due to the

34  ❘  CHAPTER 4  Writing Core Algorithms

practicalities of calling a new method. The call stack has new values added, and if your call stack is
too deep, you run the risk of a StackOverflowException.

Outside of an interview situation, whenever you need to sort a collection, use a library implementa-
tion. A tried and tested algorithm will almost always be more efficient than your own ad-hoc imple-
mentation. Any performance and memory concerns will have been examined. In fact, some of the
sorting algorithms inside the Java standard libraries are implemented differently depending on the
size of the list: Small lists are sorted in place using insert sort, but after a defined threshold, a merge
sort is used.

The next chapter complements this chapter by providing an examination of some basic data struc-
tures, including lists, maps, and sets.

Data Structures
Every application uses data structures—lists of usernames, maps of query parameters, and
so on. They are unavoidable, and are a core part of all of the Java APIs and most third-party
APIs, as well.

This chapter examines the four most commonly used data structures: lists, trees, maps, and
sets. You learn how they are implemented in Java, and how to use them depending on how you
intend to read and write your data. If you only ever write to the front element of your list, you
will find your application will perform much better with one list implementation over another.

Throughout the book, and for any serious development in Java, you will use the implementa-
tions discussed here. In any interview, you will be expected to understand the Java Collections
API data structures, so make sure you fully understand the classes and interfaces presented in
this chapter.

Lists

Lists are sequential, ordered collections of values of a certain type. In Java, you will generally
work with either LinkedLists or ArrayLists.

Lists differ from Java’s built-in primitive collection type of arrays in that they are unbounded,
so you do not need to specify the size of the array before using it.

At times it is more appropriate to use an ArrayList than a LinkedList, and vice versa. The
use case for which of the lists to use will vary, but make sure you think it through, because it
can have serious implications on your application’s performance or its memory usage.

Whenever you are working with a list, you should always work to the List interface where
possible. Method and constructor parameters should be the List interface, as should field
definitions. This will make it much easier to swap implementing types depending on the
scenario—although it may make sense to use an ArrayList in production code, you may be
able to use an alternative implementation for tests. For example, seeding tests with dummy
code from the asList method on the Arrays utility class in the standard Java library returns a
list, compliant to the List interface, from the given parameters.

5

36  ❘  CHAPTER 5  Data Structures

The Relationship between Arrays and Lists
Before investigating how different implementations of lists work, it is worth making sure you under-
stand exactly how arrays work in Java. An array is defined as a type suffixed with square brackets.
Listing 5-1 shows some array types and their definitions.

Listing 5-1:  Defining arrays

@Test
public void arrayDefinitions() {
 final int[] integers = new int[3];
 final boolean[] bools = {false, true, true, false};
 final String[] strings = new String[]{"one", "two"};

 final Random r = new Random();
 final String[] randomArrayLength = new String[r.nextInt(100)];
}

When defining an array, you must provide its size, either explicitly as a count, such as the int array
in Listing 5-1, or implied, such as the boolean array. The compiler can calculate the length of that
array for you.

You can use a computed value, such as the second String array. The JVM must know the size of the
array when it is constructed.

You can access the element of an array directly by its index value. This is known as random access.

If you fill an array, and want to continue adding elements, you need to make the array larger.
In effect, you need to create a new, larger array, copy all of the current elements into that array,
and reassign the new array to the original reference. The JVM provides help with this operation,
enabling you to copy the elements in bulk. The static arrayCopy method on the System object
enables you to copy all or part of the array to a new array. Listing 5-2 shows how to use this method
to extend the length of an array by one.

Listing 5-2:  Extending the size of an array

@Test
public void arrayCopy() {
 int[] integers = {0, 1, 2, 3, 4};

 int[] newIntegersArray = new int[integers.length + 1];
 System.arraycopy(integers, 0, newIntegersArray, 0, integers.length);
 integers = newIntegersArray;
 integers[5] = 5;

 assertEquals(5, integers[5]);
}

You cannot use the final modifier on the integers array, because you need to reassign the value.

Lists  ❘  37

One alternative to using arrays is to use the List interface. The ArrayList class is an implementa-
tion of the List interface that uses an array internally to store the data as a list representation.

Considering the interface is backed by an array, the class behaves similarly to an array. Directly
accessing a specific element by its index is quick, because the array access is direct to a memory
location.

When you construct an ArrayList, you have the option to specify the initial size of the underlying
array. If you specify no value, the initial array size is ten. Whenever you attempt to add an element,
and the underlying array is full, the ArrayList class will automatically reallocate your list into a
larger array before continuing. This reallocation takes time and can use a large amount of memory,
so if you know you are going to have a large collection when you construct the ArrayList, it makes
sense to use a large number in the constructor. This will avoid making many costly array realloca-
tions as your list grows.

If you want to add new elements at the beginning or middle of an ArrayList, all subsequent ele-
ments will need to shuffle along by one element to make room, which can be quite an expensive
task for large arrays, especially if you are adding values closer to the start. This will be even more
expensive if your new element requires the underlying array to be reallocated to a larger size.

Be aware that the array size reallocation is one-way; the array does not shrink if you remove many
elements. If you have a list that oscillates between many and a few elements, an ArrayList might
not be the best implementation for you; due to its memory requirements, a LinkedList might be
more appropriate.

The LinkedList is the other main implementation of the List. Rather than having an array store
the list elements, you use an internal object, which points to another object of the same type for the
next element in the list. Listing 5-3 shows a simplified version of how to set up a LinkedList.

Listing 5-3:  A sample LinkedList

public class SimpleLinkedList<E> {
 private static class Element<E> {
 E value;
 Element<E> next;
 }

 private Element<E> head;
}

The LinkedList instance contains a reference to the head of the list, represented as an Element.
The Element inner class is a recursive data type, with the next field pointing to the next element in
the list. This enables you to traverse the list easily, visiting and processing each element in order.

Like all of the differences between implementations, some trade-offs exist. If you want to get an ele-
ment by its index, you need to traverse the length of the list, keeping count until you reach the given
index. For an ArrayList, which has random access, using get is instant.

You may find that some linked list implementations also contain references to the previous element.
This allows for doubly linked lists, with traversal in either direction, and it allows for easy list reversal.

38  ❘  CHAPTER 5  Data Structures

Linked lists enable you to insert objects at the head or in the middle of the list without shuffling all
subsequent elements along, as would be required with an ArrayList. Figure 5-1 shows inserting an
element at the head, and also in the middle, of the list.

Head

Original Linked List:

1 2 4 5

0

Head

Insert a new head element

1 2 4 5

Head

Inserting a new element in the
middle of the list

1 2

3

Key

Reference to the next node
Deleted reference
New reference

4 5

Figure 5-1 

Deleting elements is also simple: The deleted element’s next becomes the previous element’s next.
Figure 5-2 shows deleting an element in the middle of the list.

Head

Original Linked List:

1 2 4 5

Head

Deleting an element

1 2 4 5

Key

Reference to the next node
Deleted reference
New reference

Figure 5-2 

It is quite clear that you have powerful reasons to use both LinkedLists and ArrayLists. As a rule
of thumb, you should use an ArrayList if you need random access to elements in the list, especially
if your use case could result in large lists.

Trees  ❘  39

If you intend to make many insertions and deletions particularly if you make them at the begin-
ning or in the middle of the list, then a LinkedList would make more sense. LinkedLists also do
not suffer from the expensive array reallocation process that occurs with ArrayLists, and as your
list shrinks, so does your memory consumption. If you were to create your own specialized data
structure, such as a stack, using a LinkedList as the underlying data structure would make sense,
because you would simply push and pop elements at the head of the list.

What is a Queue and Deque?

A Queue is a Java interface that represents a “first in, first out” data structure. The interface has the
methods add, to add a new element, remove to remove the oldest element, and peek, which returns
the oldest element, but does not remove it from the data structure. Listing 5-4 shows an example.
The LinkedList class implements the Queue interface.

Listing 5-4:  Using a queue

@Test
public void queueInsertion() {
 final Queue<String> queue = new LinkedList<>();
 queue.add("first");
 queue.add("second");
 queue.add("third");

 assertEquals("first", queue.remove());
 assertEquals("second", queue.remove());
 assertEquals("third", queue.peek());
 assertEquals("third", queue.remove());
}

A Deque (pronounced “deck”) is an extension of Queue, and allows addition and removal from
either end of the data structure.

Trees

A tree is a data structure in which an element can be succeeded by a number of different elements,
known as children. A common use of the tree data structure is a binary tree, in which each element
has a maximum of two children. Figure 5-3 shows an example tree.

With binary trees, the two children are often differentiated as left and
right, and depending on what exactly the tree structure is representing, dif-
ferent values will reside on the left or right of a given node.

One such implementation of a binary tree is a binary search tree, which
Figure 5-3 shows. With a binary search tree, elements “less than” the value
of a given node are children on the left, and elements “greater than” the
value of a given node are children on the right.

7

3 9

1 5

Figure 5-3 

40  ❘  CHAPTER 5  Data Structures

What exactly “less than” or “greater than” means depends on the use case of the actual tree, but for
most instances, elements inserted into a tree will have a natural ordering, such as numbers or dates.
Sometimes you may want to explicitly define how the ordering works; for instance, you may want to
compare strings by length before comparing character values.

Listing 5-5 shows a sample implementation of a tree.

Listing 5-5:  A sample tree definition

public class SimpleTree<E extends Comparable> {
 private E value;
 private SimpleTree<E> left;
 private SimpleTree<E> right;
... // constructors, getters and setters omitted
}

This tree is another recursive data type, with the children being SimpleTrees also. This tree defi-
nition is able to store any Comparable elements. A more complex example may be able to use a
Comparator to compare any kind of object.

When searching for a given element, you have three scenarios to consider for a given node. These are
shown in Listing 5-6.

Listing 5-6:  Finding values in a binary search tree

public boolean search(final E toFind) {
 if (toFind.equals(value)) {
 return true;
 }

 if (toFind.compareTo(value) < 0 && left != null) {
 return left.search(toFind);
 }

 return right != null && right.search(toFind);
}

If the value to find is equal, you have a match. If the value to find is less than the current node, and
the left node is not null, repeat the search on the left node. Otherwise, if the right node is not null,
repeat the search on the right node. If a child node to search is null, you have reached the bottom of
the tree, and the value to find is not in the tree.

Inserting values into a tree follows a similar structure. You follow the tree, comparing each node
with the value to insert, going left if the value to insert is less than the value at the current node, or
right otherwise. If the next node to inspect is null, this is where your new value is to be inserted.
Listing 5-7 shows how you can write this functionality.

Trees  ❘  41

Listing 5-7:  Inserting values into a binary tree

public void insert(final E toInsert) {
 if (toInsert.compareTo(value) < 0) {
 if (left == null) {
 left = new SimpleTree<>(toInsert, null, null);
 } else {
 left.insert(toInsert);
 }
 } else {
 if (right == null) {
 right = new SimpleTree<>(toInsert, null, null);
 } else {
 right.insert(toInsert);
 }
 }
}

Listing 5-8 shows a sample test, illustrating that the data is stored appropriately.

Listing 5-8:  Ensuring the properties of the binary tree are correct

@Test
public void createTree() {
 final SimpleTree<Integer> root = new SimpleTree<>(7, null, null);
 root.insert(3);
 root.insert(9);
 root.insert(10);
 assertTrue(root.search(10));
 assertEquals(Integer.valueOf(10),
 root.getRight().getRight().getValue());
}

This test confirms that the inserted value 10 is in the tree, and that it is stored in the expected
position.

Using object orientation, it is possible to simplify the methods using the Null Object Pattern, while
also removing all of the null checks. This models the tree as having two different types of nodes:
ones that have values (nodes) and ones that represent the bottom of the tree (leaves). Listing 5-9
shows how you can set this up, and how you would write the search method.

Listing 5-9:  Building trees with null objects

public interface Tree<E extends Comparable> {
 boolean search(E toFind);
 void insert(E toInsert);
}

public class Node<E extends Comparable> implements Tree<E> {

continues

42  ❘  CHAPTER 5  Data Structures

...
 @Override
 public boolean search(E toFind) {
 if (toFind.equals(value)) {
 return true;
 }
 if (toFind.compareTo(value) < 0) {
 return left.search(toFind);
 }

 return right.search(toFind);
 }
...
}

public class Leaf<E extends Comparable> implements Tree<E> {
...
@Override
 public boolean search(E toFind) {
 return false;
 }
...
}

If a search traverses to the bottom of the tree, a Leaf object will return false: This object represents
the absence of a value in the tree. You can write the insert method in a similar way. You traverse
down the tree until you hit a Leaf, and then replace that leaf with a new Node of that value, itself
having two leaves as children.

The insert method is similar to search, with each Node checking if the value to be inserted is less
than or greater than the current node, and recursively traversing in the appropriate direction. The
Leaf then sets its parent to have a new Node instance with that new value.

One concern of this approach is that it is possible to produce an unbalanced tree. Listing 5-10 shows
a sequence of insertions.

Listing 5-10:  A possible set of insertions into a binary tree

final SimpleTree<Integer> root = new SimpleTree<>(1, null, null);
root.insert(2);
root.insert(3);
root.insert(4);
root.insert(5);

This would produce a tree such as the one displayed in Figure 5-4.

This definitely respects the properties of a binary search tree, but it is not as efficient as it could be:
It is essentially a linked list. A specific implementation of a binary search tree, called an AVL Tree,

Listing 5-9  (continued)

www.allitebooks.com

http://www.allitebooks.org

Trees  ❘  43

enforces that, for any node, the difference in depth for each child is at most one. After each insertion
or deletion of a node, the tree checks if it is still balanced, and subsequently rotates the nodes of val-
ues where the property of the AVL Tree does not hold. Figure 5-5 shows the steps taken to keep the
tree in Listing 5-10 balanced.

1

2

3

4

5

Figure 5-4 

When a tree is balanced, searching, inserting, and deleting has the size O(log n).

Binary trees can be used for more than just searching. Another application of a binary tree is called
a Binary Heap, which is a balanced tree with the property that children are “greater than” their
parent, as demonstrated in Figure 5-6.

12

33 23

2

17

22 40

47 90

Figure 5-6 

Again, the “greater than” comparison is on a per-implementation basis, either by a natural ordering,
which would use a Comparable interface in Java, or a specified ordering, using a Comparator object.

The heap property defines that the smallest element in the tree is at the root. Heaps are especially
useful for priority queues, or any time you require quick access to the smallest element of a collec-
tion. The remainder of the data structure is only partially sorted; that is, each node is smaller than
its children, so it is not the most useful if you want the elements in order.

To insert elements into a heap, you start by adding the element at the next available position in the
lowest level of the tree. You then compare the inserted value with its parent, and if the new value is

3

4

5

2

1

Figure 5-5 

44  ❘  CHAPTER 5  Data Structures

lower, the two values swap. The process continues, recursively, with the new value bubbling up until
it is not necessary to swap any more elements. Figure 5-7 illustrates insertion.

12

33 23

20

23

2

17

22 40

47 90

Insert new value, 20

12

33 20

2

17

22 40

47 90

Switch with parent, heap
property now holds

Figure 5-7 

Deleting elements is a common use for heaps, especially when it is used as a priority queue. Deleting
elements from the root or from within the tree requires the property that the tree remains balanced.
When an element is removed, it is replaced with the last element in the heap. The value will be larger
than its parent because it came from the bottom of the heap, but it may need to be swapped with
one of its children to retain the heap property. The comparisons repeat until the value finds both
children are larger, or the bottom row of the heap is found. Figure 5-8 illustrates deletion.

Although binary trees are the most common implementation of any kind of tree structure, you also
can model trees with more than two children, often called n-ary trees. These trees often come up
when defining probability outcomes, or scenarios in which more than two outcomes are possible at
each choice. Figure 5-9 shows one such tree.

Note that the exact number of children for each parent can vary. Trees of this nature can still be
modeled as a binary tree. The left child is the first child of the original parent tree, and the right
child is the next sibling. Figure 5-10 shows the same tree defined in Figure 5-9, displayed as first-
child, next-sibling.

Maps  ❘  45

12

33 20

23

23

2

17

22 40

47 90

Delete number 17

12

33 20

2

23

22 40

47 90

Replace last element
at deleted node

12

33 20

2

22

23 40

47 90

Switch 22 and 23, heap
property now holds

Figure 5-8 

b c

e f

a

d

g ih

j k

Figure 5-9 

Maps

A map, sometimes called a hash, associative array or dictionary, is a key-value store. Elements
within the data structure can be queried by the key, which will return the associated value.

The Map interface is part of the Java Collections API, but, unlike List, it does not implement the
Collection interface. Similar to the List interface, the Map interface specifies most common

j

k

e

f

g

h

i

b

c

d

a

Figure 5-10 

46  ❘  CHAPTER 5  Data Structures

operations for map implementations, such as the data structure size and the ability to read, insert,
and delete key-value pairs.

One property of a map is that the value of a key can only appear once: Reinserting that key will
result in the original value being overwritten, as shown in Listing 5-11.

Listing 5-11:  Overwriting keys in maps

@Test
public void overwriteKey() {
 final Map<String, String> preferences = new HashMap<>();
 preferences.put("like", "jacuzzi");
 preferences.put("dislike", "steam room");

 assertEquals("jacuzzi", preferences.get("like"));

 preferences.put("like", "sauna");

 assertEquals("sauna", preferences.get("like"));
}

Listing 5-11 displays use of a HashMap. This is the most common implementation of Java’s Map inter-
face, but other implementations exist, each with its own performance and storage implications, but
still respecting the Map interface.

The HashMap class is Java’s implementation of the hash table. The class implementation contains an
inner class, called Entry, to represent the key-value pairs, and the elements are stored in an array of
Entry objects. This is purely an implementation decision; it could have used a List of Entry objects
instead.

The value of a particular key instance defines where the particular pair resides in the table. The
hashCode method, defined on Object, returns an int, and that value is used to determine where
exactly to place the key-value pair in the table. Chapter 8 defines the specific details for what
exactly the hashCode value can return, but in a nutshell, two equal instances must return the same
hashCode value. However, the inverse is not true: two equal hashCode values do not imply equality.

When you insert a value into the table for HashMap, the hashCode method is read, and because the
value returned could be any valid value in the int range, it is then factored to a value between zero
and one less than the size of the table; that is, a valid index for the table.

Considering unequal objects can return the same hashCode, unequal objects may be put into the
same hash table entry, so handling collisions must be taken into account.

One approach would be to have a secondary hash function, and this second hash is calculated as
an offset if you want to insert a value but an entry already exists in the given table position. This
would just delay any collisions—they would still happen, and Java objects only have one hashCode
method, so you should consider another approach.

One such alternative approach is to store a list of entries for each table element, and then all table
keys that resolve to the same table index would be added to this value. Simply traversing the table
would then perform key retrieval, checking equality on each element until a match is found.

Maps  ❘  47

If your class defines hashCode as a single value regardless of equality, then (although this meets the
contract for hashCode), any HashMap with instances of this class will perform like a linked list, los-
ing all benefits of a potential O(1) lookup time. This is also true for classes with a small range of
instance values such as Boolean or even Short.

Naturally, the size of the table will determine the frequency of possible collisions: A small table with
many entries is more likely to have a collision on insertion than a large table with few entries.

When you construct a new HashMap object, you have the opportunity to specify a load factor: a
value between 0 and 1 that represents a percentage. Once the underlying table has filled to this
capacity, the table is doubled in size.

When a table is resized, all of the elements in the table need to be redistributed, because the
hashCode value is factored to an index in the table. This also means that objects that collided in the
smaller table do not collide any more. For a table containing a large number of elements, the recal-
culation of all key-value pair table entries can be expensive and time-consuming. If you know that
you are going to have a large number of entries in a map, it may make sense to specify an initial size
for the table when constructing the map to avoid resizing the table.

An alternative Map implementation is the TreeMap, which uses a binary tree data structure to con-
form to the Map interface. Each node in the tree is a key-value pair. Chapter 4 covered sorting, and
explained the Comparable and Comparator interfaces. Those interfaces are used with a TreeMap.
Keys can either be naturally ordered, in which case they must conform to the Comparable interface,
or you can specify your own ordering with the Comparator interface.

Because the TreeMap stores the keys based on their natural ordering, the hashCode method is not
used at all. Each element put into the TreeMap rebalances the tree, so that searching, deletion, and
further insertion can always be performed as efficiently as possible: O(log n).

One main difference between a TreeMap and a HashMap is that, with a TreeMap the order of the
keys is preserved when iterating over the whole collection, because the collection is stored in order.
This isn’t possible with a HashMap, because the keys are stored dependent on the object’s hashCode.
Listing 5-12 shows that the order is preserved when iterating on a TreeMap.

Listing 5-12:  Order-preserving iteration with a TreeMap

@Test
public void treeMapTraversal() {
 final Map<Integer, String> counts = new TreeMap<>();
 counts.put(4, "four");
 counts.put(1, "one");
 counts.put(3, "three");
 counts.put(2, "two");

 final Iterator<Integer> keys = counts.keySet().iterator();
 assertEquals(Integer.valueOf(1), keys.next());
 assertEquals(Integer.valueOf(2), keys.next());
 assertEquals(Integer.valueOf(3), keys.next());
 assertEquals(Integer.valueOf(4), keys.next());
 assertFalse(keys.hasNext());
}

48  ❘  CHAPTER 5  Data Structures

A specialized Map implementation is the LinkedHashMap. This implementation works in the same
way as a HashMap, so element retrieval will be O(1), but it has the added property that iterating over
the keys will be in the same order as insertion, as Listing 5-13 shows.

Listing 5-13:  A LinkedHashMap

@Test
public void linkedHashMapTraversal() {
 final Map<Integer, String> counts = new LinkedHashMap<>();
 counts.put(4, "four");
 counts.put(1, "one");
 counts.put(3, "three");
 counts.put(2, "two");

 final Iterator<Integer> keys = counts.keySet().iterator();
 assertEquals(Integer.valueOf(4), keys.next());
 assertEquals(Integer.valueOf(1), keys.next());
 assertEquals(Integer.valueOf(3), keys.next());
 assertEquals(Integer.valueOf(2), keys.next());
 assertFalse(keys.hasNext());
}

One final implementation to consider is the ConcurrentHashMap. You should use this implementation
if you ever want to share the map instance with many threads. It is thread safe, and has been specifi-
cally designed to be able to return read values while the values are being written to the map. Only the
specified row of the table is locked during a write, leaving the rest of the map available for reading.

The contract for ConcurrentHashMap has been slightly tweaked from the original Map: The size
method returns an estimation of the map size, because it does not account for any writes currently
being applied.

Sets

A set is an unordered collection of objects that does not contain any duplicates.

The Java Collections API contains a Set interface, extending from Collection, which provides
many methods for inspecting and modifying a set. Listing 5-14 shows a small unit test that demon-
strates the properties of a set.

Listing 5-14:  Using a set

@Test
public void setExample() {
 final Set<String> set = new HashSet<>();

Summary  ❘  49

 set.add("hello");
 set.add("welcome");
 set.add("goodbye");
 set.add("bye");
 set.add("hello");

 assertEquals(4, set.size());
}

The string "hello" was added into the set twice, but because sets do not contain duplicates, only
one instance is stored in the set.

The implementation used in Listing 5-14 is a HashSet. This implementation uses an underlying
HashMap, storing the value as the key to the map, and the value is a marker object, signifying that a
value is stored.

For each of the Map implementations visited earlier, there is an equivalent Set implementation—
HashSet, TreeSet, and LinkedHashSet—although there is no Set backed by a ConcurrentHashMap.
There is, however, a static method on the Collections class, newSetFromMap, which takes a Map and
returns a Set, respecting the properties of the given map.

Summary

Be prepared for questions on data structures. An interviewer will want to know what you under-
stand about the different implementations and what implications your choice of a particular data
structure will have on the rest of your application. You should also be able to explain when it is
appropriate to use different data structures.

Try the examples in this chapter, and experiment with some of your own, too: Try to work
out where any performance issues arise, what it takes to make your JVM crash with an
OutOfMemoryError, or something similar.

Explore the Java Collections API. Take a look at the Collections class: It is a set of static methods
that works to make your life a little easier in creating and manipulating standard Java data struc-
tures. The equivalent for arrays, the Arrays class, provides some interoperability between collec-
tions and arrays.

Chapter 18 covers some third party libraries, and introduces some new collection types, such as sets
allowing duplicate elements (MultiSet) and maps allowing duplicate keys (MultiMap).

The next chapter covers object-oriented design patterns, and how to implement and notice some
commonly used implementations.

Design Patterns
Software design patterns use one or more objects together to solve a common use case. These
use cases often focus on code reuse, extensibility, or generally providing a solid foundation for
future development.

Being an object-oriented language, Java makes use of many design patterns throughout the
standard library APIs, and it is quite simple to create your own implementation of some com-
mon design patterns.

This chapter looks at several common design patterns, examining some of those found in the
standard Java APIs, as well as implementing some patterns too.

Hundreds, if not thousands, of software design patterns exist, and you may create some new
ones that work for you in your everyday job. The patterns described here are some of the more
common and well-known patterns. Interviewers often like asking questions about design pat-
terns, because they provide scope for a lot of discussion, and they have very clear definitions.

Try the examples in this chapter, think of your own scenarios, and see if you can apply the
patterns to those, too. Try to justify if a given pattern is good for a given situation, and see if
you can make other patterns fit that same situation, too. It won’t always work, but sometimes
it is possible for patterns to be interchanged in certain situations.

Investigating Example Patterns

How is the Builder Pattern useful?

When you want to create an object that has many fields, using constructors can become
unwieldy and confusing. Imagine the following class definition, which could possibly be used
for a veterinarian’s database:

public class Pet {
 private final Animal animal;

6

52  ❘  CHAPTER 6  Design Patterns

 private final String petName;
 private final String ownerName;
 private final String address;
 private final String telephone;
 private final Date dateOfBirth; // optional
 private final String emailAddress; //optional
 ...

To allow for any combination of these fields to create a valid Pet object, you need at least four con-
structors with many parameters containing all of the required fields, and all combinations of the
optional fields. If you were to add more optional fields, this would soon become hard to manage or
even understand.

One approach would be to not use a constructor at all, remove the final modifier from the fields,
and simply use setter methods on the Pet object. The main downside with this is that you can create
objects that are not valid Pet objects:

final Pet p = new Pet();
p.setEmailAddress("owners@address.com");

The definition of a Pet object is that the animal, petName, ownerName, address, and telephone
fields are all set.

Using the Builder Pattern can mitigate this. With the Builder Pattern, you create a companion object,
called a builder, which will construct domain-legal objects. It is also clearer than simply using con-
structors. Listing 6-1 shows the use of a builder to create Pet objects.

Listing 6-1:  Constructing objects with the Builder Pattern

@Test
public void legalBuild() {
 final Pet.Builder builder = new Pet.Builder();
 final Pet pet = builder
 .withAnimal(Animal.CAT)
 .withPetName("Squidge")
 .withOwnerName("Simon Smith")
 .withAddress("123 High Street")
 .withTelephone("07777777770")
 .withEmailAddress("simon@email.com")
 .build();
 // test pass - no exception thrown
}

@Test(expected = IllegalStateException.class)
public void illegalBuild() {
 final Pet.Builder builder = new Pet.Builder();
 final Pet pet = builder
 .withAnimal(Animal.DOG)
 .withPetName("Fido")
 .withOwnerName("Simon Smith")
 .build();
}

www.allitebooks.com

mailto:owners@address.com
mailto:simon@email.com
http://www.allitebooks.org

Investigating Example Patterns  ❘  53

The Builder class is part of the Pet class, and has the sole responsibility of creating Pet objects.
With a constructor, the parameter ordering determines how each parameter is used. By having an
explicit method for each parameter, you can understand exactly what each value is used for, and you
can call them in any order you like. The build method calls the actual constructor of the Pet object
and returns an actual Pet object. The constructor is now private.

Notice, too, that the convention with calls to builder methods is to chain them (builder
.withXXX().withYYY()...), which allows for a more concise definition. Listing 6-2 shows how the
Builder class for the Pet class is implemented.

Listing 6-2:  Implementing the Builder Pattern

public class Pet {
 public static class Builder {
 private Animal animal;
 private String petName;
 private String ownerName;
 private String address;
 private String telephone;
 private Date dateOfBirth;
 private String emailAddress;

 public Builder withAnimal(final Animal animal) {
 this.animal = animal;
 return this;
 }
 public Builder withPetName(final String petName) {
 this.petName = petName;
 return this;
 }
 public Builder withOwnerName(final String ownerName) {
 this.ownerName = ownerName;
 return this;
 }
 public Builder withAddress(final String address) {
 this.address = address;
 return this;
 }
 public Builder withTelephone(final String telephone) {
 this.telephone = telephone;
 return this;
 }
 public Builder withDateOfBirth(final Date dateOfBirth) {
 this.dateOfBirth = dateOfBirth;
 return this;
 }
 public Builder withEmailAddress(final String emailAddress) {
 this.emailAddress = emailAddress;
 return this;
 }
 public Pet build() {

continues

54  ❘  CHAPTER 6  Design Patterns

 if (animal == null ||
 petName == null ||
 ownerName == null ||
 address == null ||
 telephone == null) {
 throw new IllegalStateException("Cannot create Pet");
 }

 return new Pet(
 animal,
 petName,
 ownerName,
 address,
 telephone,
 dateOfBirth,
 emailAddress);
 }

 }

 private final Animal animal;
 private final String petName;
 private final String ownerName;
 private final String address;
 private final String telephone;
 private final Date dateOfBirth; // optional
 private final String emailAddress; //optional

 private Pet(final Animal animal,
 final String petName,
 final String ownerName,
 final String address,
 final String telephone,
 final Date dateOfBirth,
 final String emailAddress) {
 this.animal = animal;
 this.petName = petName;
 this.ownerName = ownerName;
 this.address = address;
 this.telephone = telephone;
 this.dateOfBirth = dateOfBirth;
 this.emailAddress = emailAddress;
 }
}

If your domain objects have default values, you can have these already set in the builder fields, and
then you can override them where necessary. This allows for even more concise construction of
objects. Listing 6-3 shows another builder, but with default values.

Listing 6-2  (continued)

Investigating Example Patterns  ❘  55

Listing 6-3:  Using default values in a builder

public class LibraryBook {
 public static class Builder {
 private BookType bookType = BookType.FICTION;
 private String bookName;

 public Builder withBookType(final BookType bookType) {
 this.bookType = bookType;
 return this;
 }

 public Builder withBookName(final String bookName) {
 this.bookName = bookName;
 return this;
 }

 public LibraryBook build() {
 return new LibraryBook(bookType, bookName);

 }
 }

 private final BookType bookType;
 private final String bookName;

 public LibraryBook(final BookType bookType, final String bookName) {
 this.bookType = bookType;
 this.bookName = bookName;
 }
}

You can then easily create fiction books without needing to specify the type:

@Test
public void fictionLibraryBook() {
 final LibraryBook.Builder builder = new LibraryBook.Builder();
 final LibraryBook book = builder
 .withBookName("War and Peace")
 .build();

 assertEquals(BookType.FICTION, book.getBookType());
}

Can you give an example of the Strategy Pattern?

The Strategy Pattern enables you to easily swap specific implementation details of an algorithm
without requiring a complete rewrite. You can even swap implementations at run time. The Strategy
Pattern is often used in conjunction with dependency injection to allow implementations to be
swapped out for test-specific code, or to allow mocked implementations to be used instead.

Listing 6-4 shows how you could write a simple logger using the Strategy Pattern.

56  ❘  CHAPTER 6  Design Patterns

Listing 6-4:  Implementing a logger with the Strategy Pattern

public interface Logging {
 void write(String message);
}

public class ConsoleLogging implements Logging {
 @Override
 public void write(final String message) {
 System.out.println(message);
 }
}

public class FileLogging implements Logging {

 private final File toWrite;

 public FileLogging(final File toWrite) {
 this.toWrite = toWrite;
 }

 @Override
 public void write(final String message) {
 try {
 final FileWriter fos = new FileWriter(toWrite);
 fos.write(message);
 fos.close();
 } catch (IOException e) {
 // handle IOException
 }
 }
}

This enables you to write code using the Logging interface, and the code you want to log does not
need to be concerned if the logging is being written to the console output or to a file. By program-
ming to the interface rather than to a specific implementation, you can use the ConsoleLogging
strategy when testing your code, and use FileLogging for production use. At a later date, you can
add more implementations of Logging, and any code written against the interface will not change
but will be able to use the new implementation.

Listing 6-5 shows how you can use the Logging interface in client code, along with three examples
of tests: two using the ConsoleLogging and FileLogging strategies, and one using a Mockito
mock. If you are not familiar with mocking, Chapter 9 shows how it works.

Listing 6-5:  Using the Logging strategy

public class Client {

 private final Logging logging;

 public Client(Logging logging) {

Investigating Example Patterns  ❘  57

 this.logging = logging;
 }

 public void doWork(final int count) {
 if (count % 2 == 0) {
 logging.write("Even number: " + count);
 }
 }
}

public class ClientTest {

 @Test
 public void useConsoleLogging() {
 final Client c = new Client(new ConsoleLogging());
 c.doWork(32);
 }

 @Test
 public void useFileLogging() throws IOException {
 final File tempFile = File.createTempFile("test", "log");
 final Client c = new Client(new FileLogging(tempFile));
 c.doWork(41);
 c.doWork(42);
 c.doWork(43);

 final BufferedReader reader
 = new BufferedReader(new FileReader(tempFile));
 assertEquals("Even number: 42", reader.readLine());
 assertEquals(-1, reader.read());
 }

 @Test
 public void useMockLogging() {
 final Logging mockLogging = mock(Logging.class);
 final Client c = new Client(mockLogging);
 c.doWork(1);
 c.doWork(2);
 verify(mockLogging).write("Even number: 2");
 }
}

Logging in Java Applications

The code used in Listings 6-3 and 6-4 is purely for the example of how to use the
Strategy Pattern; you should never implement logging this way, or ever write your
own logger. Java has many libraries dedicated to logging output, such as Log4J
and SLF4J. Look at these libraries and see if you can understand how the Strategy
Pattern has been implemented, and how you can specify different behaviors.

58  ❘  CHAPTER 6  Design Patterns

Using the Strategy Pattern enables you to defer decisions about which implementation to use until
run time. The Spring Framework uses an XML file to construct objects and their dependencies,
which are read at run time, allowing a quick change between implementations without any need for
recompilation. Chapter 16 has more information.

How can you use the Template Pattern?

The Template Pattern is used to defer or delegate some or all steps of an algorithm to a subclass.
Common behavior can be defined in a superclass, and then specific variants are written in a sub-
class. Listing 6-6 shows a possible definition for a stack, backed by a LinkedList and an interface
for filtering a Stack instance, called StackPredicate.

Listing 6-6:  A stack

public class Stack {

 private final LinkedList<Integer> stack;

 public Stack() {
 stack = new LinkedList<>();
 }

 public Stack(final LinkedList<Integer> initialState) {
 this.stack = initialState;
 }

 public void push(final int number) {
 stack.add(0, number);
 }

 public Integer pop() {
 return stack.remove(0);
 }

 public Stack filter(final StackPredicate filter) {
 final LinkedList<Integer> initialState = new LinkedList<>();
 for (Integer integer : stack) {
 if (filter.isValid(integer)) {
 initialState.add(integer);
 }
 }
 return new Stack(initialState);
 }
}

public interface StackPredicate {
 boolean isValid(int i);
}

Investigating Example Patterns  ❘  59

The StackPredicate is an implementation of the Template Pattern that allows client code to define
exactly how the filtering should work.

The filter method has specific logic: It iterates through each value in the stack, and asks the predi-
cate if that value is to be included in the filtered stack to return. The logic in the filter method is
completely isolated from the specific logic of the StackPredicate in deciding whether a given value
is valid to be filtered.

Listing 6-7 shows two possible implementations of a StackPredicate: one that only allows even
numbers, and one that has no effect:

Listing 6-7:  Implementing the StackPredicate template

public class StackPredicateTest {

 private Stack stack;

 @Before
 public void createStack() {
 stack = new Stack();
 for (int i = 1; i <= 10; i++) {
 stack.push(i);
 }
 }

 @Test
 public void evenPredicate() {
 final Stack filtered = stack.filter(new StackPredicate() {
 @Override
 public boolean isValid(int i) {
 return (i % 2 == 0);
 }
 });

 assertEquals(Integer.valueOf(10), filtered.pop());
 assertEquals(Integer.valueOf(8), filtered.pop());
 assertEquals(Integer.valueOf(6), filtered.pop());
 }

 @Test
 public void allPredicate() {
 final Stack filtered = stack.filter(new StackPredicate() {
 @Override
 public boolean isValid(int i) {
 return true;
 }
 });

 assertEquals(Integer.valueOf(10), filtered.pop());
 assertEquals(Integer.valueOf(9), filtered.pop());
 assertEquals(Integer.valueOf(8), filtered.pop());
 }
}

60  ❘  CHAPTER 6  Design Patterns

Separating the StackPredicate has numerous advantages. It allows clients of the Stack
class to filter it to their specific needs, requiring no changes to the Stack class at all. Also, the
StackPredicate implementations are single units of code, and therefore can be thoroughly tested in
isolation without needing a Stack instance.

Commonly Used Patterns

Can you describe an implementation of the Decorator Pattern?

The Decorator Pattern enables you to change or configure the functionality of a specific object, such
as adding buttons or functionality to a scrollbar, or defining exactly how to model sandwich orders
from two different customers from the same set of ingredients.

Java’s original IO classes for reading and writing to sources outside of the JVM use the Decorator
Pattern extensively. The InputStream and OutputStream classes and their subclasses use the
Decorator Pattern to read and write data in ways defined by the implementing classes, and these
implementations can often be chained together to provide effective ways of reading sources and
writing back.

Examining the abstract OutputStream class, you see it has one method that implementations must
define, which is simply how to write a byte:

public abstract void write(int b) throws IOException;

You can use a couple of other methods to write bytes in bulk, which by default call the preceding
method for each byte. Depending on the implementation, it may be more efficient to override these
methods.

Many of the OutputStream implementations perform their necessary action, and then delegate to
another OutputStream. These implementations will take another OutputStream as a constructor
argument.

The OutputStreams that actually perform the writing of data, such as a FileOutputStream or a
SocketOutputStream, will not delegate their write method to another stream, and thus will not
need another OutputStream object in their constructor arguments.

Listing 6-8 shows the Decorator Pattern in use, chaining several operations on an array of bytes
before writing them to disk.

Listing 6-8:  Using the Decorator Pattern to write to disk

@Test
public void decoratorPattern() throws IOException {
 final File f = new File("target", "out.bin");
 final FileOutputStream fos = new FileOutputStream(f);
 final BufferedOutputStream bos = new BufferedOutputStream(fos);

Commonly Used Patterns  ❘  61

 final ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeBoolean(true);
 oos.writeInt(42);
 oos.writeObject(new ArrayList<Integer>());

 oos.flush();
 oos.close();
 bos.close();
 fos.close();

 assertTrue(f.exists());
}

The first five lines of this test define the file to write to and how it will be written. The
FileOutputStream writes files to disk. A BufferedOutputStream will cache any calls to write,
and will write several bytes at once. This can be a huge efficiency gain when writing to disk. The
ObjectOutputStream is Java’s built-in serialization mechanism that writes objects and primitive
types to a stream. Serialization is covered in more detail in Chapter 15.

Notice here that the ObjectOutputStream does not know where the files are being written; it is
simply delegating to another OutputStream. The power of this pattern is that you can provide new
OutputStream implementations, and these will work with those that already exist.

If, say, you wanted to write a log of every call to a BufferedOutputStream, you could write an
implementation easily enough, and it would work with the chain defined earlier. Or if you wanted to
encrypt data before writing, you could do that as well.

If you wanted to compress the data before writing to disk, you could use the GZIPOutputStream
class provided by the Java standard library.

Remember that the order in which you define the chain of OutputStreams may be important.
When reading back data that was zipped before saving; you would definitely want to use a
GZIPInputStream to make sense of the data before using any other decorated InputStream objects.

Can you describe an implementation of the Flyweight Pattern?

The Flyweight Pattern can be a useful pattern in situations where you have several objects, and
many may represent the same value. In these instances, it can be possible to share the values as long
as the objects are immutable. Listing 6-9 shows an example from the Java standard library, taken
from Sun’s implementation of the Integer class.

Listing 6-9:  The Flyweight Pattern in action

public static Integer valueOf(int i) {
 assert IntegerCache.high >= 127;
 if (i >= IntegerCache.low && i <= IntegerCache.high)
 return IntegerCache.cache[i + (-IntegerCache.low)];
 return new Integer(i);
}

62  ❘  CHAPTER 6  Design Patterns

The valueOf method checks the value of the given parameter, and if it is a precached value, the
method returns the constructed instance rather than creating a new copy. The default range of the
cache is -128 to 127. The cache is initialized in a static block, and so is created the first time an
Integer is referenced in a running JVM:

static {
 // setup of the cache size omitted
 for(int k = 0; k < cache.length; k++)
 cache[k] = new Integer(j++);
}

Listing 6-10 proves the cache uses the Flyweight Pattern, because the test checks that the two
instances are actually the same instance and not just equal objects.

Listing 6-10:  Proving Integer.valueOf uses the Flyweight Pattern

@Test
public void sameIntegerInstances() {
 final Integer a = Integer.valueOf(56);
 final Integer b = Integer.valueOf(56);

 assertSame(a, b);

 final Integer c = Integer.valueOf(472);
 final Integer d = Integer.valueOf(472);

 assertNotSame(c, d);
}

This property only holds because Integer objects are immutable. If you could change the value
of the Integer object after it was constructed, then when it was used with the Flyweight Pattern,
changing one value would have a knock-on effect to every other reference to that object.

If you are ever creating Integer objects, always use the valueOf method to take advantage of
the Flyweight Pattern. If you call new, then new instances will always be
created, even if they are within the threshold of the cached values.

A Flyweight Pattern is applicable in many situations; another implementa-
tion of the Flyweight Pattern is called the Null Object Pattern. This pattern
uses a flyweight object to represent null.

When creating data structures such as a binary tree, the tree leaves will
have no children. Depending on your implementation, it may be sufficient
to simply use null references, or you may want to use a null object. This
would be imagined as each leaf having its own null object, but in practice,
you may be able to use a single flyweight object. Figure 6-1 shows the
object references for a binary tree using the Null Object Pattern.

Null

Figure 6-1 

Commonly Used Patterns  ❘  63

How can you use the Singleton Pattern?

A singleton is a class that allows only one instance to be created. It is often used to create a single
point of entry to a third party, such as a database or web service, so that the number of connections
can be easily managed and configured in one place.

Restricting clients of a singleton class to only one instance can prove challenging. Listing 6-11 shows
a naïve first attempt.

Listing 6-11:  A problematic singleton

public class Singleton {

 private static Singleton INSTANCE;

 public static Singleton getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new Singleton();
 }

 return INSTANCE;
 }

 public void singletonMethod() {
 // operations here
 }
}

The approach here is called lazy initialization: The Singleton instance is only created when it is
first needed. At first glance, it looks like any other calls to getInstance() will return that same
instance. If, however, INSTANCE is null, and a thread is switched after the if statement but before
INSTANCE is initialized, then a second (or more) thread calling getInstance() will also have the if
statement return true and create a new object. This can result in strange, erratic behavior or worse,
memory leaks resulting in the JVM eventually crashing.

Java 5 introduced the Enum type. If you create the Singleton as a single-element Enum, the JVM
guarantees that only one instance will ever be created, as shown in Listing 6-12.

Listing 6-12:  Using Enum for a Singleton

public enum SingletonEnum {
 INSTANCE;

 public void singletonMethod() {
 // operations here
 }
}

64  ❘  CHAPTER 6  Design Patterns

Be aware that using the Singleton Pattern can lead to other issues: It can be very difficult to test in
isolation, especially if the Singleton performs heavyweight operations, such as writing to a data-
base. It is often better to simply manage any “singleton-like” object as a dependency on a class, and
use a dependency injection framework to construct only one object.

Singletons work best in specialized applications, such as a GUI on a desktop or mobile application,
or when you know you will not have many concurrent users. If you are building large, scalable
server applications, then singleton objects are often the source of any performance bottlenecks.

Summary

This chapter has been a non-exhaustive look at some common object-oriented software design pat-
terns. Make sure you understand how they work and why they are used. Other patterns within
the Java language and libraries have not been discussed here, such as the Iterator Pattern, Factory
Pattern, and many more. Once you are familiar with these patterns, you should be able to easily see
them throughout the language and libraries.

Take the time to read and investigate more design patterns. Many free online resources describe
more design patterns with example implementations. The original design patterns book, Design
Patterns: Elements of Reusable Object-Oriented Software, (Ralph Johnson, John Vlissides, Richard
Helm, and Erich Gamma: Addison-Wesley, October 1994) is a fantastic resource for this topic,
although the examples given are not in Java.

Once you are comfortable with object-oriented patterns, you should examine where else you see pat-
terns in software. Another, more modern, book on software patterns, covering the patterns found
across full systems is Enterprise Integration Patterns (Gregor Hohpe and Bobby Woolf: Addison-
Wesley Signature, October 2003).

The more experience you get with using design patterns, the more you will spot them when review-
ing code or even API documentation. This allows you to get up to speed quicker when understand-
ing and learning new APIs and functionality.

The next chapter looks at a different kind of pattern: some commonly occurring questions that are
often favorites with interviewers.

Implementing Popular
Interview Algorithms

This chapter looks at some popular questions used in interviews. Although these questions
will probably not come up in the exact form presented here, they serve as a good introduction
to the level and approach that interviewers take.

Many of the questions here have been taken from the website Interview Zen, (www
.interviewzen.com) where they have been used in real interviews for real developers.

When you are asked in an interview to write or develop an algorithm, you should be focusing on
how efficient the algorithm is. Efficiency can take several forms: The running time of an algorithm
is usually the main point of focus, but it is also important to consider the space an algorithm uses.
Quite often, you will need to strike a balance between these two depending on your requirements.

A common method for describing the efficiency of an algorithm is called Big O Notation. This
is used to describe how an algorithm reacts to a change to its input.

An algorithm with O(n) is said to have linear complexity: As the size of the input, n, increases,
the performance of the algorithm increases by a proportional amount.

An O(n2) complexity is said to be quadratic: if you tripled the size of the input, the algorithm
would take nine times longer to run. As you would expect, quadratic, or worse, exponential
(O(nn)) algorithms should be avoided where possible.

Implementing FizzBuzz

Write an algorithm that prints all numbers between 1 and n, replacing multiples
of 3 with the String Fizz, multiples of 5 with Buzz, and multiples of 15 with
FizzBuzz.

This question is extremely popular, and definitely one of the most used on Interview Zen. The
implementation should not be too hard, and is shown in Listing 7-1.

7

66  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

Listing 7-1:  A simple implementation of the “FizzBuzz” interview question

public static List<String> fizzBuzz(final int n) {
 final List<String> toReturn = new ArrayList<>(n);
 for (int i = 1; i <= n; i++) {
 if(i % 15 == 0) {
 toReturn.add("FizzBuzz");
 } else if (i % 3 == 0) {
 toReturn.add("Fizz");
 } else if (i % 5 == 0) {
 toReturn.add("Buzz");
 } else {
 toReturn.add(Integer.toString(i));
 }
 }

 return toReturn;
}

The one catch is to check for the FizzBuzz case before the others, because values divisible by 15 are
also divisible by 3 and 5. You would miss this if you checked the 3 and 5 cases first.

Interviewers often look for examples of code reuse, and logical abstraction. Listing 7-1 does not do
this particularly well.

It should be possible to provide an abstraction over the different cases for Fizz, Buzz, and
FizzBuzz. This would allow for the different cases to be easily tested in isolation, and even changed
to return different words for different values, should you wish. This is shown in Listing 7-2.

Listing 7-2:  Abstraction with FizzBuzz

public static List<String> alternativeFizzBuzz(final int n) {
 final List<String> toReturn = new ArrayList<>(n);
 for (int i = 1; i <= n; i++) {
 final String word =
 toWord(3, i, "Fizz") + toWord(5, i, "Buzz");

 if(StringUtils.isEmpty(word)) {
 toReturn.add(Integer.toString(i));
 }
 else {
 toReturn.add(word);
 }
 }
 return toReturn;
}

private static String toWord(final int divisor,
 final int value,
 final String word) {
 return value % divisor == 0 ? word : "";
}

Demonstrating the Fibonacci Sequence  ❘  67

When the toWord method does not return a match, it returns an empty String. This allows you
to check for 3 and 5 together: if a number is divisible by 3 but not 5, then the 5 case will return an
empty String, and so Fizz will be concatenated with an empty String. When a number is divis-
ible by 15, that is, divisible by both 3 and 5, then Fizz will be concatenated with Buzz, giving
FizzBuzz.

A check is still required to see if either check was successful: An empty String denotes neither
check was divisible.

Write a method that returns a Fibonacci sequence from 1 to n.

Demonstrating the Fibonacci Sequence
The Fibonacci sequence is a list of numbers, where the next value in the sequence is the sum of the
previous two. The sequence defines that the first number is zero, and the next is one.

Such an algorithm will have a method signature like:

public static List<Integer> fibonacci(int n)

That is, given a value n, the method will return a list, in order, of the Fibonacci sequence to n. The
method can be static, because it does not rely on any object state or an instance to be constructed.

The parameter has one main constraint: n must be greater than or equal to zero. Due to the defini-
tion of the sequence, there is also some efficiency that can be applied when the parameter is 0, 1, or
2. If the parameter is zero, return an empty list. If the parameter is 1, return a list containing a soli-
tary zero, and if the parameter is 2, you can return a list containing 0 and 1 in that order.

For any other value of n, you can build the list one value at a time, simply adding the last two values
in the list, starting with a list containing 0 and 1. Listing 7-3 shows a working, iterative approach.

Listing 7-3:  An iterative Fibonacci sequence

public static List<Integer> fibonacci(int n) {
 if (n < 0) {
 throw new IllegalArgumentException(
 "n must not be less than zero");
 }

 if (n == 0) {
 return new ArrayList<>();
 }

 if (n == 1) {
 return Arrays.asList(0);
 }

 if (n == 2) {
 return Arrays.asList(0, 1);

 }
continues

68  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

 final List<Integer> seq = new ArrayList<>(n);
 seq.add(0);
 n = n - 1;
 seq.add(1);
 n = n - 1;

 while (n > 0) {
 int a = seq.get(seq.size() - 1);
 int b = seq.get(seq.size() - 2);
 seq.add(a + b);
 n = n - 1;
 }

 return seq;
}

By decreasing the value of n each time a value is added, once n has reached zero, you have added
enough values to the list. Retrieval of the previous two values in the array is guaranteed not to
throw an ArrayIndexOutOfBoundsException, because you always start with a list containing at
least two values.

You can write a simple unit test to verify that the algorithm works, as shown in Listing 7-4.

Listing 7-4:  Testing the Fibonacci sequence

@Test
public void fibonacciList() {
 assertEquals(0, fibonacci(0).size());
 assertEquals(Arrays.asList(0), fibonacci(1));
 assertEquals(Arrays.asList(0, 1), fibonacci(2));
 assertEquals(Arrays.asList(0, 1, 1), fibonacci(3));
 assertEquals(Arrays.asList(0, 1, 1, 2), fibonacci(4));
 assertEquals(Arrays.asList(0, 1, 1, 2, 3), fibonacci(5));
 assertEquals(Arrays.asList(0, 1, 1, 2, 3, 5), fibonacci(6));
 assertEquals(Arrays.asList(0, 1, 1, 2, 3, 5, 8), fibonacci(7));
 assertEquals(Arrays.asList(0, 1, 1, 2, 3, 5, 8, 13), fibonacci(8));
}

You should test that a negative parameter would throw an exception, too.

Write a method that returns the nth value of the Fibonacci sequence.

This is a variation on the previous question. Rather than returning the whole Fibonacci sequence,
this method only returns the value at position n. This algorithm would likely have a method signa-
ture like this:

public static int fibN(int n)

Listing 7-3  (continued)

Demonstrating the Fibonacci Sequence  ❘  69

Passing the value 0 would return 0; 1 would return 1; 2 would return 1; and so on.

A particularly naïve implementation could call the method developed in the previous question, and
return the last value in the list. This, however, consumes a large amount of memory in creating the
list, only to throw all but one value away. If you were to look for the millionth entry, this would
take an unacceptable amount of time to run, and would need a lot of memory.

One better approach could be a recursive solution. From the algorithm definition:

Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

there are two base cases:

Fibonacci(1) = 1
Fibonacci(0) = 0

This recursive definition will make an attractive recursive algorithm, as defined in Listing 7-5.

Listing 7-5:  A recursive algorithm for finding the nth Fibonacci number

public static int fibN(int n) {
 if (n < 0) {
 throw new IllegalArgumentException(
 "n must not be less than zero");
 }
 if (n == 1) return 1;
 if (n == 0) return 0;
 return (fibN(n - 1) + fibN(n - 2));
 }

As elegant as this solution appears, it is extremely inefficient. If you were calculating, for instance,
the 45th value, this is made from the sum of Fibonacci(43) and Fibonacci(44). Fibonacci(44)
itself is made from the sum of Fibonacci(42) and Fibonacci(43). This algorithm would calculate
Fibonacci(43) on both occasions here, and this would happen many times throughout the whole
calculation. This is more apparent in Figure 7-1.

+ + Fibonacci(43)

Fibonacci(43) +

Fibonacci(45)

Fibonacci(44)

Fibonacci(41) Fibonacci(42) Fibonacci(42)

Figure 7-1 

70  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

Using return with if Statements

Whenever you have a return statement inside an if statement, you do not need
to provide an else clause. If an if statement condition is false, the code execution
continues after the block. If the statement is true, the method execution will finish
with the return statement.

This has the advantage that your code does not need an extra level of indentation
due to the redundant else block:

if (condition) {
 // code for condition == true
 return valueIfTrue;
}

// more code for condition == false
return valueIfFalse;

By caching any calculated results, only unknown Fibonacci numbers would be calculated on a par-
ticular run. The results can be stored locally in a map. Listing 7-6 shows an improved approach to
Listing 7-5.

Listing 7-6:  Caching previously computed Fibonacci numbers

private Map<Integer, Integer> fibCache = new HashMap<>();

public int cachedFibN(int n) {
 if (n < 0) {
 throw new IllegalArgumentException(
 "n must not be less than zero");
 }
 fibCache.put(0, 0);
 fibCache.put(1, 1);
 return recursiveCachedFibN(n);
}

private int recursiveCachedFibN(int n) {
 if (fibCache.containsKey(n)) {
 return fibCache.get(n);
 }

 int value = recursiveCachedFibN(n - 1) + recursiveCachedFibN(n - 2);
 fibCache.put(n, value);
 return value;
}

Demonstrating Factorials  ❘  71

Note here that the recursive method was split into a separate method, to detach the calculation from
the setup of the map. Listing 7-7 shows a small unit test to measure the decrease in calculation time
due to this optimization.

Listing 7-7:  Measuring the performance increase

@Test
public void largeFib() {
 final long nonCachedStart = System.nanoTime();
 assertEquals(1134903170, fibN(45));
 final long nonCachedFinish = System.nanoTime();
 assertEquals(1134903170, cachedFibN(45));
 final long cachedFinish = System.nanoTime();

 System.out.printf(
 "Non cached time: %d nanoseconds%n",
 nonCachedFinish - nonCachedStart);
 System.out.printf(
 "Cached time: %d nanoseconds%n",
 cachedFinish - nonCachedFinish);
}

At the time of writing, it produced the following output:

Non cached time: 19211293000 nanoseconds
Cached time: 311000 nanoseconds

Quite an improvement: from 19 seconds to 0.000311 seconds.

When the result of a method call is cached to save recalculating the result again later, this is called
memoization.

The Big O Notation for the original implementation to calculate the nth Fibonacci number, is O(nn),
and thus is extremely inefficient; too inefficient for anything useful than very low values of n. The
memoized implementation has O(n), with the additional stipulation that it must store each value
between 0 and n.

Demonstrating Factorials

Write a factorial implementation that does not use recursion.

A factorial method would be another good candidate for using recursion. The general algorithm for
a factorial is:

Factorial(n) = n × Factorial(n – 1)

If you decide not to implement this in a recursive fashion, you can simply loop up to n, keeping track
of the value to return, as shown in Listing 7-8.

72  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

Listing 7-8:  An iterative implementation of a factorial

public static long factorial(int n) {
 if (n < 1) {
 throw new IllegalArgumentException(
 "n must be greater than zero");
 }

 long toReturn = 1;
 for (int i = 1; i <= n; i++) {
 toReturn *= i;
 }

 return toReturn;
}

Be aware that with factorials the calculated value grows large extremely quickly, which is why this
method returns a long. You could even make a case for returning a BigInteger instance here.
BigInteger objects have no upper bound; they allow for numerical integer values of any size.

Implementing Library Functionality

Given a list of words, produce an algorithm that will return a list of all anagrams
for a specific word.

An anagram is a word that, when the letters are rearranged, produces another word. No letters can
be removed or taken away.

A first attempt at writing an algorithm for this question could be something like the following
pseudocode:

given a word a, and a list of words ws
given an empty list anagrams
for each word w in ws:
 if (isAnagram(w, a)) add w to anagrams
return anagrams

method isAnagram(word1, word2):
 for each letter letter in word1:
 if (word2 contains letter):
 remove letter from word2
 continue with the next letter
 else return false

 if (word2 is empty) return true
 else return false

This pseudocode would definitely work. It examines each word in the given list and compares that
word to the one to check. If all the letters match and there are no more, or fewer letters, it’s a match.

Implementing Library Functionality  ❘  73

This algorithm is very inefficient. For a list of length m, and an average word length of n, the algo-
rithm scans each word n times, one for each letter to check. This is measured as O(m × n!), which
is simply O(n!), because as n grows large, it will dominate the performance over m. Each letter in
each word must be scanned for each letter in the word to check against. With a small amount of
preparation, it is possible to slash the running time of this algorithm.

Every word can be thought to have an “algorithm signature.” That is, for all anagrams of a given
word, they will all have the same signature. That signature is simply the letters of the word rearranged
into alphabetical order.

If you store each word in a map against its signature, when you are presented with a word you
calculate its signature and return the map entry of the list of words indexed at that signature.
Listing 7-9 shows this implementation.

Listing 7-9:  An efficient anagram finder

public class Anagrams {

 final Map<String, List<String>> lookup = new HashMap<>();

 public Anagrams(final List<String> words) {

 for (final String word : words) {
 final String signature = alphabetize(word);
 if (lookup.containsKey(signature)) {
 lookup.get(signature).add(word);
 } else {
 final List<String> anagramList = new ArrayList<>();
 anagramList.add(word);
 lookup.put(signature, anagramList);
 }
 }
 }

 private String alphabetize(final String word) {
 final byte[] bytes = word.getBytes();
 Arrays.sort(bytes);
 return new String(bytes);
 }

 public List<String> getAnagrams(final String word) {
 final String signature = alphabetize(word);
 final List<String> anagrams = lookup.get(signature);
 return anagrams == null ? new ArrayList<String>() : anagrams;
 }
}

The alphabetize method creates the signature for use in storing the word, and also for lookup
when querying for any anagrams. This method makes use of the sorting algorithm in Java’s stan-
dard library, which was covered in Chapter 4 if you want to write a sort yourself.

74  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

The trade-off here is that you need to take time to preprocess the list into the different buckets of
anagrams, and you will also need extra storage space. However, lookup times will drop from a
potential O(n!) to O(1) for a list of length m with an average word length of n. It is O(1) because
the hash function is able to directly locate the list of anagrams stored in the map. Don’t forget, there
is the overhead to create the lookup in the first place, so the whole lookup algorithm has a Big O
Notation of O(m).

Write a method to reverse a String.

In Java, a String is immutable, so once it has been constructed it is not possible to change the
contents. So when you are asked to reverse a String, you are actually being asked to produce a new
String object, with the contents reversed:

public static String reverse(final String s)

One approach to reversing a String is to iterate over the contents in reverse, populating a new con-
tainer such as a StringBuilder as you go, as shown in Listing 7-10.

Listing 7-10:  Reversing a String using a StringBuilder

public static String reverse(final String s) {
 final StringBuilder builder = new StringBuilder(s.length());
 for (int i = s.length() - 1; i >= 0; i--) {
 builder.append(s.charAt(i));
 }
 return builder.toString();
}

Using Built-in Reverse Methods

The StringBuilder class has a reverse method, which you should use if neces-
sary when programming in your day job.

If you are ever asked to implement an algorithm that is also provided by the Java
standard libraries, such as the String reversal, sorting, or searching, then you
should not use these methods: The interviewer is assessing how you attempt these
problems.

If the algorithm you need to use is secondary, or otherwise auxiliary in whatever
you are writing, such as the String sorting in Listing 7-9, then do use the built-in
methods so you can concentrate on the details of your application.

This approach, while fine, does require a large amount of memory. It needs to hold the original
String and the StringBuilder in memory. This could be problematic if you were reversing some
data of several gigabytes in size.

Implementing Library Functionality  ❘  75

It is possible to reverse the String in place, by loading the whole String instance into a
StringBuilder, traversing the characters from one end, and swapping with the character the same
length away from the other end of the String. This only requires one extra character of memory to
facilitate the swapping of characters. Listing 7-11 shows this.

Listing 7-11:  Reversing a String in place

public static String inPlaceReverse(final String s) {
 final StringBuilder builder = new StringBuilder(s);
 for (int i = 0; i < builder.length() / 2; i++) {
 final char tmp = builder.charAt(i);
 final int otherEnd = builder.length() - i - 1;
 builder.setCharAt(i, builder.charAt(otherEnd));
 builder.setCharAt(otherEnd, tmp);
 }

 return builder.toString();
}

A common mistake with this approach is to traverse the whole String, rather than stopping half-
way. If you traverse the whole String, you switch each character twice, and it returns to its original
position! Simple errors like this can be easily mitigated with a small number of unit tests.

How do you reverse a linked list in place?

Following from String reversal, it is also possible to reverse a generic linked list in place. Given a
linked list class definition:

public class LinkedList<T> {
 private T element;
 private LinkedList<T> next;

 public LinkedList(T element, LinkedList<T> next) {
 this.element = element;
 this.next = next;
 }

 public T getElement() {
 return element;
 }

 public LinkedList<T> getNext() {
 return next;
 }
}

This recursive class definition takes other LinkedList instances, and assumes null to represent the
end of the list.

76  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

This being a recursive definition, it makes sense to use a recursive algorithm to reverse the list. You
would expect a method to perform the reversal to have a signature like the following:

public static <T> LinkedList<T> reverse(final LinkedList<T> original)

This may look like it is returning a new copy of the elements in the original list, but actually, it is
returning a reference to the last element in the structure, with next pointing to the LinkedList
instance that was originally immediately before that.

The base case for this algorithm is when the next reference is null. If you have a one-element list,
reversing that list is simply the same list.

The recursive step for this algorithm is to remove the link to the next element, reverse that next
element, and then set the next element’s own next to be the current element—the original param-
eter. Listing 7-12 shows a possible implementation.

Listing 7-12:  Reversing a linked list recursively

public static <T> LinkedList<T> reverse(final LinkedList<T> original) {
 if (original == null) {
 throw new NullPointerException("Cannot reverse a null list");
 }

 if(original.getNext() == null) {
 return original;
 }
 final LinkedList<T> next = original.next;
 original.next = null;

 final LinkedList<T> othersReversed = reverse(next);

 next.next = original;

 return othersReversed;
}

Figure 7-2 shows a linked list constructed in the unit test in Listing 7-13.

Three øTwoOne

Figure 7-2 

Listing 7-13:  Testing the linked list reversal

 @Test
 public void reverseLinkedList() {
 final LinkedList<String> three = new LinkedList<>("3", null);
 final LinkedList<String> two = new LinkedList<>("2", three);

Implementing Library Functionality  ❘  77

 final LinkedList<String> one = new LinkedList<>("1", two);

 final LinkedList<String> reversed = LinkedList.reverse(one);

 assertEquals("3", reversed.getElement());
 assertEquals("2", reversed.getNext().getElement());
 assertEquals("1", reversed.getNext().getNext().getElement());
 }

How do you test if a word is a palindrome?

A palindrome is a word, or phrase, that when the letters are reversed, the spelling is the same. Some
examples include, “eve,” “level,” or, ignoring the space, “top spot.”

An algorithm to check for palindromes is similar to that for reversing a String, although you need to
take non-letter characters into account. Listing 7-14 is an example.

Listing 7-14:  A palindrome checker

public static boolean isPalindrome(final String s) {
 final String toCheck = s.toLowerCase();
 int left = 0;
 int right = toCheck.length() - 1;

 while (left <= right) {
 while(left < toCheck.length() &&
 !Character.isLetter(toCheck.charAt(left))) {
 left++;
 }
 while(right > 0 && !Character.isLetter(toCheck.charAt(right))) {
 right--;
 }
 if (left > toCheck.length() || right < 0) {
 return false;
 }

 if (toCheck.charAt(left) != toCheck.charAt(right)) {
 return false;
 }

 left++;
 right--;
 }

 return true;
}

This implementation comprises two pointers: one looking at the left half of the String, and one look-
ing at the right. As soon as the pointers cross, the check is complete.

78  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

By ignoring any characters that are not letters, each pointer needs to be individually checked until
it is pointing to the next letter in the String. A successful comparison between two characters does
not automatically imply the word is a palindrome, because another pair of letters may not match. As
soon as one comparison fails, you know that the String does not read the same in reversed form.

If you do care about Strings being exactly the same in reverse, taking all punctuation into account,
Listing 7-15 shows a much simpler approach using the reverse method from Listing 7-10.

Listing 7-15:  A strict palindrome checker

public static boolean strictPalindrome(final String s) {
 return s.equals(reverse(s));
}

You can reuse your reverse method, leading to a one-line method: The fewer lines of code you need
to write, the fewer places you can introduce bugs. Assuming the reverse method is fully tested,
writing unit tests for this method will be very, very simple.

Write an algorithm that collapses a list of Iterators into a single Iterator.

Such an algorithm would have a signature like the following:

public static <T> Iterator<T> singleIterator(
 final List<Iterator<T>> iteratorList)

The Iterator interface has the following definition:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

This algorithm will implement the Iterator interface, creating a new implementation that will treat
the underlying list of Iterators as a single Iterator.

You will use the Iterators one at a time, and once one has been exhausted, you move on to the
next Iterator.

The hasNext method can be a particular red herring, because when your current Iterator has been
exhausted, it will return false, but you may still have Iterators to consume. Once all Iterators
have been consumed, this method will return false.

Listing 7-16 shows the constructor for a ListIterator class, along with the hasNext method.

Implementing Library Functionality  ❘  79

Listing 7-16:  Creating an Iterator of Iterators

public static class ListIterator<T> implements Iterator<T> {

 private final Iterator<Iterator<T>> listIterator;
 private Iterator<T> currentIterator;

 public ListIterator(List<Iterator<T>> iterators) {
 this.listIterator = iterators.iterator();
 this.currentIterator = listIterator.next();
 }

 @Override
 public boolean hasNext() {
 if(!currentIterator.hasNext()) {
 if (!listIterator.hasNext()) {
 return false;
 }

 currentIterator = listIterator.next();
 hasNext();
 }

 return true;
 }
... // see below for the remaining implementation

The class holds two fields: the complete Iterator of Iterators, and the current Iterator.

When the hasNext method is called, it checks to see if the current Iterator has any more elements.
If so, the method simply returns true. If it is false, the method checks to see if the Iterator of
Iterators has any more elements. If that, too, is exhausted, there are no more elements at all.

If the Iterator of Iterators does have more elements, then the currentIterator is set to the
next iterator, and the hasNext method is called recursively. This means that the currentIterator
reference could potentially advance several iterators before finding one where the hasNext method
returns true, but the recursion will take care of that.

For the next and remove methods on the Iterator interface, these too pose problems. It is
possible for the current Iterator to be exhausted, and therefore calling next would return
a NoSuchElementException, but one of the following Iterators does have elements. Before
calling next, the currentIterator reference needs to be updated. The code to update the
currentIterator reference to the correct reference was written in the hasNext method, so you
can simply call hasNext, and ignore the result. It is exactly the same for the remove method:
Simply update the currentIterator reference before actually calling remove. Listing 7-17 shows
the implementation.

Listing 7-17:  The next and remove methods for the Iterator of Iterators

@Override
public T next() {

continues

80  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

 hasNext();
 return currentIterator.next();
}

@Override
public void remove() {
 hasNext();
 currentIterator.remove();
}

Listing 7-18 shows a sample unit test to verify the implementation.

Listing 7-18:  Testing the Iterator of Iterators

@Test
public void multipleIterators() {
 final Iterator<Integer> a = Arrays.asList(1, 2, 3, 4, 5).iterator();
 final Iterator<Integer> b = Arrays.asList(6).iterator();
 final Iterator<Integer> c = new ArrayList<Integer>().iterator();
 final Iterator<Integer> d = new ArrayList<Integer>().iterator();
 final Iterator<Integer> e = Arrays.asList(7, 8, 9).iterator();

 final Iterator<Integer> singleIterator =
 Iterators.singleIterator(Arrays.asList(a, b, c, d, e));

 assertTrue(singleIterator.hasNext());
 for (Integer i = 1; i <= 9; i++) {
 assertEquals(i, singleIterator.next());
 }
 assertFalse(singleIterator.hasNext());
}

Using Generics

Write a method that replicates a list of Integers, with 1 added to each element.

On examination, this question appears trivially easy, as shown in Listing 7-19.

Listing 7-19:  Adding one to a list of numbers

public static List<Integer> addOne(final List<Integer> numbers) {
 final ArrayList<Integer> toReturn = new ArrayList< >(numbers.size());

 for (final Integer number : numbers) {
 toReturn.add(number + 1);

Listing 7-17  (continued)

Using Generics  ❘  81

 }

 return toReturn;
}

Even adding a parameter to the method to allow you to add a different value rather than 1 is just as
simple. But what if the question is modified to allow you to perform any operation on each element
in the list?

Providing any client code with the facility to perform any operation can be particularly powerful.
To allow any Integer operation, you can define a new interface, IntegerOperation, which has one
method, taking an Integer, and returning an Integer:

public interface IntegerOperation {
 Integer performOperation(Integer value);
}

An implementation of this to add one would simply be as follows:

public class AddOneOperation implements IntegerOperation {
 @Override
 public Integer performOperation(Integer value) {
 return value + 1;
 }
}

Listing 7-20 modifies the original addOne method to accept the IntegerOperation interface, and
gives it a more appropriate name.

Listing 7-20:  Performing any Integer operation on a list

public static List<Integer> updateList(final List<Integer> numbers,
 final IntegerOperation op) {
 final ArrayList<Integer> toReturn = new ArrayList<>(numbers.size());
 for (final Integer number : numbers) {
 toReturn.add(op.performOperation(number));
 }

 return toReturn;
}

Listing 7-21 shows a unit test, with an anonymous implementation of IntegerOperation.

Listing 7-21:  Testing the updateList method

@Test
public void positiveList() {
 final List<Integer> numbers = Arrays.asList(4, 7, 2, -2, 8, -5, -7);
 final List<Integer> expected = Arrays.asList(4, 7, 2, 2, 8, 5, 7);

 final List<Integer> actual =

continues

82  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

 Lists.updateList(numbers, new IntegerOperation() {
 @Override
 public Integer performOperation(Integer value) {
 return Math.abs(value);
 }
 });

 assertEquals(expected, actual);
}

This IntegerOperation implementation makes all values in the list positive.

The power of abstracting this operation should be clear. The updateList method has the ability to
do anything to a list of Integers, such as ignoring whatever the value in the list is and replacing it
with a constant, or even something more exotic such as printing the value to the console, or making
a call to a URL with that number.

It would be even better if the updateList could be even more abstract; currently it only works with
Integers. What if it could work with a list of any type, and return a list of a different type?

Take the following interface:

public interface GenericOperation<A, B> {
 B performOperation(A value);
}

This interface uses Java generics on the method performOperation to map the value passed into a
different type, such as turning a String parameter into an Integer:

public class StringLengthOperation
 implements GenericOperation<String, Integer> {
 @Override
 public Integer performOperation(String value) {
 return value.length();
 }
}

Listing 7-22 shows an implementation mapping the list from one of a certain type into a list of
another.

Listing 7-22:  Mapping a list into a different type

public static <A, B> List mapList(final List<A> values,
 final GenericOperation<A, B> op) {
 final ArrayList toReturn = new ArrayList<>(values.size());
 for (final A a : values) {
 toReturn.add(op.performOperation(a));
 }

 return toReturn;
}

Listing 7-21  (continued)

Summary  ❘  83

Listing 7-23 shows how you can use this in conjunction with the StringLengthOperation class.

Listing 7-23:  Testing the list mapping functionality

@Test
public void stringLengths() {
 final List<String> strings = Arrays.asList(
 "acing", "the", "java", "interview"
);
 final List<Integer> expected = Arrays.asList(5, 3, 4, 9);
 final List<Integer> actual =
 Lists.mapList(strings, new StringLengthOperation());
 assertEquals(expected, actual);
}

Providing a generic abstraction such as this is something that functional languages, such as Scala
provide within the language itself. Treating a function as a value, such as a String or an Integer
allows them to be passed directly to functions. For more information about this, the appendix looks
at Scala, and how to use functions as values.

Summary

The final question in this chapter shows that even remarkably simple questions can often expand
into longer discussions, and this is often an approach taken in face-to-face interviews. Interviewers
will start with simple questions, and will probe deeper and deeper to try to find the extent of your
knowledge.

To prepare for answering questions in interviews, try to find some programming exercises to do at
home. The questions in this chapter are some of the more popular questions taken from Interview
Zen, but other common programming questions are some of the core computer science topics, such
as sorting and searching, and algorithms around data structures, such as lists and maps.

This chapter has attempted to strike a balance between recursive and iterative implementa-
tions. Often, a recursive approach can appear simpler, and perhaps more elegant, although this
comes at a price. Particular algorithms that perform a high number of recursive calls can throw a
StackOverflowException, and may even be slower in performance over their iterative counterparts
due to the extra setup in stack allocation for calling a method.

Tail recursive calls can sometime be optimized into iterative approaches. Tail recursion is when the
recursive step is the final step of the method: The compiler can replace the stack variables for the
current method with those for the next method call, rather than creating a new stack frame. The
JVM itself cannot handle this directly, but some compilers can do this for Java and other JVM-
supported languages.

Regardless of a recursive or iterative implementation, always consider the performance of your algo-
rithm. Many algorithms asked in interviews may have a simple, yet inefficient answer, and a more
effective approach may become clearer with a little thought.

84  ❘  CHAPTER 7  Implementing Popular Interview Algorithms

The reason for interviewers asking questions like the ones in this chapter is to examine your ability
to write legible, reusable, clean code. There are plenty of other sources around for refactoring and
writing code that is testable. Speaking with colleagues, and performing active code reviews is a great
way to take feedback from anything you have written and to lean on the experience of others.

The next section of the book looks at core Java topics, covering the basics of the language and its
libraries, as well as focusing strongly on unit testing.

Part II
Core Java

This part concentrates on fundamentals of Java, which are relevant for any Java interview,
independent of the specifics of any job application.

Chapter 8 covers essentials of the language, and how the Java language interacts with
the JVM. It highlights techniques and corner-cases that all Java developers should
know and make use of regularly.

Chapter 9 is about unit testing, using JUnit. It discusses why unit testing is important,
and how to use JUnit to demonstrate an upper hand in any assessment.

Chapter 10 complements Chapter 8, concentrating on the JVM, rather than the
language, illustrating how you can demonstrate a thorough understanding of the
platform.

Chapter 11 is about concurrency, which is often a favorite topic for interview ques-
tions: Most server-side development roles need to deal with concerns around scaling
and parallel processing. This chapter looks at the tools available in the Java standard
library, and also at some third-party tools.

Java Basics
This chapter covers the main elements of the Java ecosystem, including the core parts of the
language, specific conventions to follow, and the use of core libraries. In any interview, as a
bare minimum, an interviewer would expect you to thoroughly understand these topics. Any
questions similar to the ones here should be seen as introductory, and would usually be used
early in an interview session, or perhaps even used as pre-interview screening questions.

A Note on the Code Samples

All Java code is written as small, independent JUnit tests.

This is a good discipline to carry through for any small coding interview questions
and is generally a good technique for understanding how code works. Rather than
polluting classes with a main() method to execute test code, writing JUnit tests pro-
vides isolated, independent snippets of code. On a project managed by Maven, or
something similar, this code would not be loaded into a live production system either.

While attempting to understand the code, rather than scattering plenty of
System.out.println() or logger.debug() lines, you can make assertions, and
use the JUnit framework to test these assertions. A passing test means your asser-
tions are correct.

These small exploratory snippets of code become tests in their own right: As long
as the tests are consistently passing, you have created the beginnings of a test suite.

The more tests you write, the better you become at reasoning about existing code,
and it also helps to break down code into small, atomic, isolated chunks.

Any time you are asked to do a small programming assignment as part of an inter-
view, you should always write tests, whether you were asked to or not. It demon-
strates that you are disciplined; have mature reasoning for how to understand and
test code; and also provides a level of documentation, which is an aid to any inter-
viewer to how you were thinking at the time.

8

continues

88  ❘  CHAPTER 8  Java Basics

If you are unfamiliar with JUnit, or unit testing in general, feel free to look ahead
to Chapter 9, but do make sure you return to this chapter. Alternatively, try to
understand what JUnit is doing with the simple code samples in this chapter.

Only the test method is included each listing. The class definition, package defini-
tion, and any imports are omitted, unless it is relevant to the listing.

The Primitive Types

Name some of Java’s primitive types. How are these handled by the JVM?

The basic types in Java such as boolean, int, and double are known as primitive types. The JVM
treats these differently from reference types, otherwise known as objects. Primitives always have a
value; they can never be null.

When you are defining a variable for ints and longs, the compiler needs to be able to differentiate
between the two types. You do this by using the suffix L after long values. The absence of L implies
an int. The L can be either in upper- or lowercase, but it is recommended to always use uppercase.
This way, anyone reading your code can easily tell the difference between the L and the number 1!
This is also used with floats and doubles: floats can be defined with F, and doubles with D. The
suffix is optional for doubles; its omission implies a double. Table 8-1 shows the primitive types
and their sizes.

Table 8-1:  Primitive Types and Their Sizes

Primitive Size (bits)

boolean 1

short 16

int 32

long 64

float 32

double 64

char 16

(continued)

The Primitive Types   ❘  89

Be aware that char is unsigned. That is, the range of values a char can take is from 0 to 65,535,
because chars represent Unicode values.

If a primitive type is not set to a value when a variable is defined, it takes a default value. For
boolean values, this is false. For the others, this is a representation of zero, such as 0 for ints or
0.0f for floats.

The compiler can promote values to their appropriate type when necessary, as shown in Listing 8-1.

Listing 8-1:  Implicit upcasting to wider types

int value = Integer.MAX_VALUE;
long biggerValue = value + 1;

With the exception of chars, the compiler can automatically use a wider type for a variable, because
it is not possible to lose any precision, for instance, when stepping up from an int to a long, or a
float to a double. The reverse is not true. When trying to assign a long value to an int, you must
cast that value. This tells the compiler this is actually what you intend, and you are happy to lose
precision, as shown in Listing 8-2.

Listing 8-2:  Explicit downcasting to narrower types

long veryLargeNumber = Long.MAX_VALUE;
int fromLargeNumber = (int) veryLargeNumber;

Only in the rarest of cases would you actually want to downcast. If you find yourself downcasting
variables regularly, you are probably not using the correct type.

Why is there no positive equivalent for Integer.MIN_VALUE?

The storage of the binary values of short, int, and long use a representation in memory called
Two’s Complement. For zero and positive binary numbers, Table 8-2 shows that the notation is as
you would expect.

Table 8-2:  Binary Representation of Positive Numbers

Decimal Representation Binary Representation

0 0000 0000

1 0000 0001

2 0000 0010

90  ❘  CHAPTER 8  Java Basics

In Two’s Complement notation, the negative equivalent of a positive value is calculated by applying
a binary NOT and then adding 1.

If Two’s Complement is an unfamiliar or new concept, it may seem a little alien. It may even appear
counter-intuitive, because negation now requires two instructions. The one main advantage to a
Two’s Complement representation is that there is only one value for zero: There is no concept of a
“negative zero.” This, in turn, means the system can store one extra negative value.

The most negative number available to be stored, according to Table 8-3, has a most significant bit
of 1, and all remaining bits are zeros. Negating this by flipping all bits (0111 1111), and then adding
one (1000 0000) brings you back to the original value; there is no positive equivalent! If it were nec-
essary to make this value positive, you would have to use a wider type, such as a long, or possibly
the more complex reference type of BigInteger, which is effectively unbounded.

If you try to perform a calculation that will result in a value larger than Integer.MAX_VALUE, or
lower than Integer.MIN_VALUE, then only the least significant 32 bits will be used, resulting in an
erroneous value. This is called overflow. Try this yourself—create a small unit test that adds one to
Integer.MAX_VALUE, and see what the result is.

Listing 8-3 is a useful investigation, showing you cannot use an int to represent the absolute value
of Integer.MIN_VALUE.

Table 8-3:  Binary Representation of Some Negative Numbers

Decimal Representation Binary Representation

-1 1111 1111

-2 1111 1110

...

-127 1000 0001

-128 1000 0000

Listing 8-3:  Attempting to find the absolute value of the most negative int

@Test
public void absoluteOfMostNegativeValue() {
 final int mostNegative = Integer.MIN_VALUE;
 final int negated = Math.abs(mostNegative);
 assertFalse(“No positive equivalent of Integer.MIN_VALUE”, negated > 0);
}

This particular quirk is something to bear in mind if you are ever asked to implement a method for
calculating the absolute value of an int, or indeed anything involving negative numbers.

Using Objects  ❘  91

Using Objects

What is a Java object?

An object can be defined as a collection of variables, which when viewed collectively represents
a single, complex entity, and a collection of methods providing operations relevant to that entity.
Concisely, objects encapsulate state and behavior.

After primitive types, all other variables in the Java programming language are reference types, bet-
ter known as objects. Objects differ from primitives in many ways, but one of the most important
distinctions is that there is a notation for the absence of an object, null. Variables can be set to
null, and methods can return null too. Attempting to call a method on a null reference throws a
NullPointerException. Listing 8-4 illustrates a NullPointerException being thrown. Exceptions
are covered in more depth in the “Handling Exceptions” section later in this chapter.

Listing 8-4:  Dealing with NullPointerExceptions

@Test(expected = NullPointerException.class)
public void expectNullPointerExceptionToBeThrown() {
 final String s = null;
 final int stringLength = s.length();
}

Objects are reference types. What exactly does this mean? With primitive types, when declaring a
variable, int i = 42, this is being assigned to a location in memory, with the value 42. If, later in the
program, another variable is assigned to hold the value currently represented by i, say, int j = i,
then another location in memory has been assigned to that same value. Subsequent changes to i do
not affect the value of j, and vice versa.

In Java, a statement such as new ArrayList(20), requests an area in memory to store that data.
When that created object is assigned to a variable, List myList = new ArrayList(20), then it
can be said that myList points to that memory location. On the surface, this appears to act the same
as a primitive type assignment, but it is not. If several variables are assigned to that same created
object, known as an instance, then they are pointing to the same memory location. Making any
changes to one instance will be reflected when accessing the other. Listing 8-5 shows this in action.

Listing 8-5:  Several variables referencing the same instance in memory

@Test
public void objectMemoryAssignment() {
 List<String> list1 = new ArrayList<>(20);

 list1.add(“entry in list1”);

continues

92  ❘  CHAPTER 8  Java Basics

 assertTrue(list1.size() == 1);

 List list2 = list1;
 list2.add(“entry in list2”);
 assertTrue(list1.size() == 2);
}

What effect does the final keyword have on object references?

The final keyword works in exactly the same way for objects as it does for primitive types. The
value is set on variable definition, and after that, the value stored in that memory location cannot
change. As previously discussed, variable definition and memory allocation are quite different
between primitives and objects. Although the object reference cannot change, the values held within
that object can change, unless they themselves are final. Listing 8-6 explores the final keyword.

Listing 8-6:  The final keyword on object references

@Test
public void finalReferenceChanges() {
 final int i = 42;
 // i = 43; <- uncommenting this line would result in a compiler error

 final List<String> list = new ArrayList<>(20);
 // list = new ArrayList(50); <- uncommenting this line will result in an error
 assertEquals(0, list.size());

 list.add("adding a new value into my list");
 assertEquals(1, list.size());

 list.clear();
 assertEquals(0, list.size());
}

How do the visibility modifiers work for objects?

The visibility modifiers control access to the encapsulated state of the class and the methods control-
ling the instance’s behavior. A variable encapsulated within an object, or a method on that object,
can have its visibility restricted by one of four definitions as shown in Table 8-4.

Remember that private member variables are available only to that class, not even to any subclasses:
Private variables are deemed to be necessary for only that type and no other.

One common misconception about the private modifier is that private means a variable is only
accessible to the instance. In reality, any other instance of that same type can access private member
variables.

Listing 8-5  (continued)

Using Objects  ❘  93

Table 8-4:  Visibility Modifiers

Visibility Modifier Scope

Least private Visible to any instance of that same class, not to subtypes

 <none> Visible to any class in the same package

protected Visible to any subclasses

Most public Visible anywhere

Listing 8-7 shows two cases of accessing private member variables of the same type, but a different
instance. Most reputable integrated development environments (IDEs) will provide assistance in gen-
erating correct hashCode and equals methods: Usually these will be accessing the private member
variables of the other instance when determining equality.

Listing 8-7:  Accessing private member variables

public class Complex {
 private final double real;
 private final double imaginary;

 public Complex(final double r, final double i) {
 this.real = r;
 this.imaginary = i;
 }

 public Complex add(final Complex other) {
 return new Complex(this.real + other.real,
 this.imaginary + other.imaginary);
 }

 // hashCode omitted for brevity

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 Complex complex = (Complex) o;

 if (Double.compare(complex.imaginary, imaginary) != 0) return false;
 if (Double.compare(complex.real, real) != 0) return false;

 return true;
 }
}

@Test
public void complexNumberAddition() {

continues

94  ❘  CHAPTER 8  Java Basics

 final Complex expected = new Complex(6, 2);

 final Complex a = new Complex(8, 0);
 final Complex b = new Complex(-2, 2);

 assertEquals(a.add(b), expected);
}

For methods and variables, what does static mean?

Static methods and variables are defined as belonging to the class and not specifically to an instance.
They are common to all instances, and are usually accessed through the class name rather than a
specific instance.

Listing 8-8 shows that class member variables can be manipulated either from an instance or by
referencing the class itself. It is only recommended to access static methods and variables through
the class name, because access through an instance can lead to confusion: Other programmers unfa-
miliar with the class definition may expect it to be a member of the instance, and will experience
strange behavior in other instances after modifying the value.

Listing 8-8:  Accessing class member variables

public class ExampleClass {
 public static int EXAMPLE_VALUE = 6;
}

@Test
public void staticVariableAccess() {
 assertEquals(ExampleClass.EXAMPLE_VALUE, 6);

 ExampleClass c1 = new ExampleClass();
 ExampleClass c2 = new ExampleClass();
 c1.EXAMPLE_VALUE = 22; // permitted, but not recommended
 assertEquals(ExampleClass.EXAMPLE_VALUE, 22);
 assertEquals(c2.EXAMPLE_VALUE, 22);
}

What are polymorphism and inheritance?

Polymorphism and inheritance are two of the core idioms of object-oriented development.

Polymorphism allows you to make a definition for a certain type of behavior, and have many differ-
ent classes implement that behavior. Inheritance allows you to derive the behavior and definition of
a class from a superclass.

When defining a new class, it is possible to inherit definitions and state from a previously defined
class, and then add new specific behavior, or override behavior for the new type.

Listing 8-7  (continued)

Using Objects  ❘  95

From Listing 8-9, the Square class inherits from Rectangle (you can say a square is-a rectangle).
For the Square definition, the specific variables storing the length of the sides have been reused, and
the Square type is enforcing that the width and height are the same.

Listing 8-9:  Creating shapes using inheritance

public class Rectangle {

 private final int width;
 private final int height;

 public Rectangle(final int width, final int height) {
 this.width = width;
 this.height = height;
 }

 public int area() {
 return width * height;
 }
}

public class Square extends Rectangle {

 public Square(final int sideLength) {
 super(sideLength, sideLength);
 }
}

Considering the is-a relationship defined previously, polymorphism can be thought of as using a sub-
class when a superclass has been asked for. The behavior of the subclass will remain, but the user of
the polymorphic type is none the wiser.

Listing 8-10 explores the use of the Square and Rectangle classes with polymorphism. As far as
the ArrayList is concerned, it is only dealing with Rectangles; it does not understand, nor does it
need to understand, the difference between a Rectangle and a Square. Considering a Square is-a
Rectangle, the code works fine. Had any specific methods been defined on the Square class, these
would not have been available to any users of the rectangles list, because that method is not avail-
able on the Rectangle class.

Listing 8-10:  Use of polymorphism with the Java collections

@Test
public void polymorphicList() {
 List<Rectangle> rectangles = new ArrayList<>(3);
 rectangles.add(new Rectangle(5, 1));
 rectangles.add(new Rectangle(2, 10));
 rectangles.add(new Square(9));

 assertEquals(rectangles.get(0).area(), 5);
 assertEquals(rectangles.get(1).area(), 20);
 assertEquals(rectangles.get(2).area(), 81);
}

96  ❘  CHAPTER 8  Java Basics

Explain how some of the methods on the Object class are used when overridden.

Every class running on a JVM inherits from java.lang.Object, and thus, any non-final public or
protected method can be overridden.

The method equals(Object other) is used for testing that two references are logically equal. For
collection classes, such as java.util.TreeSet or java.util.HashMap, these classes make use of an
object’s equals method to determine if an object already exists in the collection. The implementa-
tion of equals on Object compares the memory location of the objects, meaning that if two objects
have the same memory location, they are actually the same object, so they must be equal. This is
usually not much use, nor is it intended for testing equality, so overriding the method is a must for
any need for testing equality.

The rule for hashCode is that two equal objects must return the same value. Note that the
reverse is not required: that if two objects return the same hashCode, they are not necessarily
equal. This is a nice feature to have, but not required: The more variance in the hashCode between
different instances, the more distributed those instances will be when stored in a HashMap. Note
that hashCode returns an int—this means that if unequal hashCodes meant unequal objects, there
would only be a maximum of 232 unique variations of a specific instance. This would be quite a
limitation, especially for objects like Strings!

The reason for the relationship between hashCode and equals is in the way collection classes such
as java.util.HashMap are implemented. As discussed in Chapter 5, the data structure backing
a HashMap is some sort of table, like an array or a List. The hashCode value is used to determine
which index in the table to use. Because the hashCode returns an int, this means that the value
could be negative, or perhaps a value larger than the size of the table. Any HashMap implementation
will have to manipulate this value to a meaningful index for the table.

Like equals, hashCode also uses the memory location to generate the hashCode value on the
Object class. This means that two separate instances that are logically equal will be in different
memory locations, and therefore will not return the same hashCode.

The behavior of Set in Listing 8-11 is not performing as expected. The set does not know how to
compare the Person objects properly, because Person does not implement equals. This can be fixed
by implementing an equals method, which compares the name string and the age integer.

Listing 8-11:  Breaking Sets due to poor implementation

public class Person {

 private final String name;
 private final int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;

Using Objects  ❘  97

 }

 @Override
 public int hashCode() {
 return name.hashCode() * age;
 }

}

@Test
public void wrongSetBehavior() {
 final Set<Person> people = new HashSet< >();

 final Person person1 = new Person("Alice", 28);
 final Person person2 = new Person("Bob", 30);
 final Person person3 = new Person("Charlie", 22);

 final boolean person1Added = people.add(person1);
 final boolean person2Added = people.add(person2);
 final boolean person3Added = people.add(person3);

 assertTrue(person1Added && person2Added && person3Added);

 // logically equal to person1
 final Person person1Again = new Person("Alice", 28);
 // should return false, as Alice is already in the set
 final boolean person1AgainAdded = people.add(person1Again);

 // But will return true as the equals method has not been implemented
 assertTrue(person1AgainAdded); assertEquals(4, people.size());
}

Given the relationship between hashCode and equals, the golden rule is: Whenever overriding
hashCode or equals, you MUST override both methods. In fact, IDEs such as IntelliJ or Eclipse do
not allow you to auto-generate one method without the other.

Even though equal objects must return the same hashCode, the reverse is not true. Listing 8-12 is a
legal implementation of hashCode.

Listing 8-12:  Overriding hashCode()

@Override
public int hashCode() {
 return 42;
}

This approach, however, is not advisable. As you now know, HashMaps (and therefore HashSets,
which are backed by HashMaps) use the hashCode method as an index to the table storing the refer-
ences. Should unequal objects have the same hashCode, then both are stored at that index, using a
LinkedList data structure.

If you were to have every object return the same hashCode, and those are stored in a HashMap, then
the performance of your HashMap has degraded to that of a linked list: All values will be stored in

98  ❘  CHAPTER 8  Java Basics

the same row of the HashMap implementation. Any search for a particular value will traverse all the
values, testing each one by one for equality.

Java’s Arrays

How are arrays represented in Java?

The most important thing to remember about arrays in Java is that they are objects. They can be
treated as objects. It is possible (though not very useful) to call toString() on arrays, or use them
in a polymorphic sense, such as holding arrays in a container of Objects, illustrated in Listing 8-13.

Listing 8-13:  Treating arrays as objects (I)

@Test
public void arraysAsObjects() {
 Map<String, Object> mapping = new HashMap<>();
 mapping.put("key", new int[] {0, 1, 2, 3, 4, 5});

 assertTrue(mapping.get("key") instanceof (int[]));
}

Because arrays are objects, this means arrays are passed by reference, so anything holding a refer-
ence to that array can mutate it in some way. Listing 8-14 demonstrates this. This can be a cause of
great confusion, especially when the references are being mutated in completely separate areas of the
code, or even different threads.

Listing 8-14:  Treating arrays as objects (II)

@Test
public void arrayReferences() {
 final int[] myArray = new int[] {0, 1, 2, 3, 4, 5};
 int[] arrayReference2 = myArray

 arrayReference2[5] = 99;

 assertFalse(myArray[5] == 5);
}

Working with Strings

How are Strings held in memory?

Working with Strings  ❘  99

One of the great advantages to working with Java is that all of the library implementations are avail-
able to view and inspect. Looking at the implementation of String in Java 1.7 in Listing 8-15 is not
a great surprise. The value represented by the String is held as an array of chars.

Listing 8-15:  String definition

public final class String implements
 java.io.Serializable,
 Comparable<String>,
 CharSequence {

 private final char[] value;
 ...

The String class is so core to the Java language, and is so widely used, that although it is simply a
defined class in a Java library, the JVM and the compiler treats Strings in special ways under cer-
tain circumstances. String can almost be treated as a primitive type.

When creating a String literal, it is not necessary, or even advisable, to call new. At compile time,
String literals—that is, any characters between a pair of quotations—will be created as a String.

The two Strings created in Listing 8-16 are the same, and can be treated as the same value in any
running program. Looking at the construction of helloString2 first, when the compiler sees the
sequence of characters ",H,e,...,!,", it knows that this is to create a String literal of the value
enclosed in the quotes.

Listing 8-16:  String creation

 @Test
 public void stringCreation() {
 String helloString1 = new String("Hello World!");
 String helloString2 = "Hello World!";

 assertEquals(helloString1, helloString2);
 }

When helloString1 sees the characters in quotes, it also makes a String object for that value.
This String literal is enclosed in a constructor, so that is passed to whatever the constructor does.
As you will see, Strings are immutable, so this constructor can take a copy of the value passed.
But the String(char[]) constructor will make a full copy of that array. Most IDEs will generate a
warning when attempting to pass a String literal to a String constructor—it is just not necessary.

Is it possible to change the value of a string?

On inspection of the methods on String, all the methods that appear to mutate the String actually
return a String instance themselves.

100  ❘  CHAPTER 8  Java Basics

Although the code in Listing 8-17 isn’t exactly surprising, it does highlight the important behavior
of Strings: The value of the String can never change. It is immutable.

Listing 8-17:  Changing String values

 @Test
 public void stringChanges() {
 final String greeting = "Good Morning, Dave";
 final String substring = greeting.substring(4);

 assertTrue(substring.equals("Good"));
 assertFalse(greeting.equals(substring));
 assertTrue(greeting.equals("Good Morning, Dave"));
 }

The listing shows that the “mutable” methods, such as substring (used in the listing), or others like
replace or split, will always return a new copy of the string, changed appropriately.

Safe in the knowledge that the value represented by an instance can never change, immutability
gives many advantages. Immutable objects are thread-safe: They can be used in many concurrent
threads, and each thread is confident that the value will never change. No locking or complex thread
coordination is necessary.

String is not the only immutable class in the standard Java library. All of the number classes, such
as Integer, Double, Character, and BigInteger, are immutable.

What is interning?

Following the String literal and immutable discussions, literals get even more help and special
treatment from the JVM at run time. When the class is loaded by the JVM, it holds all the literals in
a constants pool. Any repetition of a String literal can be referenced from the same constant in the
pool. This is known as String interning.

Naturally, because the constants in this pool can be referenced from any running class in the JVM,
which could easily run into the thousands, the immutable nature of Strings is an absolute necessity.

The String intern pool is not just open to compile-time String literals; any String instance can
be added to this pool with the intern() method. One valid use for String interning could be when
parsing a large amount of data from a file or a network connection, and that data could contain
many duplicates. Imagine something like a large banking statement, which could contain many
credits or debits from a single party, or many similar actions such as multiple purchases of the same
product over time. If these entities are interned when they are read, there will only be one unique
instance taking up memory inside the JVM. The equals method on the String class also checks if
the two compared instances are the same reference in memory, which makes the comparison much
faster if they are the same.

Be aware that the intern() method does not come for free: Although the Strings are not stored on
the heap, they do need to be stored somewhere, and that’s the PermGen space (covered in Chapter 10).

Understanding Generics  ❘  101

Also, liberal use of intern(), if the constant pool had, say, several million entries, can affect the run-
time performance of the application due to the cost of lookups for each entry.

The String constant pool is an implementation of the Flyweight Pattern, and similar occurrences
of this pattern exist within the standard Java libraries. For instance, Listing 8-18 illustrates that the
method Integer.valueOf(String) will return the same instance of the Integer object for values
between –128 and 127.

Listing 8-18:  The Flyweight Pattern in the Java libraries

@Test
public void intEquality() {
 // Explicitly calling new String so the instances
 // are in different memory locations
 final Integer int1 = Integer.valueOf(new String("100"));
 final Integer int2 = Integer.valueOf(new String("100"));

 assertTrue(int1 == int2);
}

By using an equality check, this code makes sure these objects refer to the same instance in memory.
(JUnit’s Assert.assertSame() could do that here, but assertTrue() with == makes this abso-
lutely explicit.)

Understanding Generics

Explain how to use generics with the Collections API.

Generics are also known as parameterized types. When you use generics with the collections classes,
the compiler is being informed to restrict the collection to allow only certain types to be contained.

The code in Listing 8-19 is perfectly legal: It’s adding Strings to a List instance, and accessing
Strings from that same instance. When calling get, the object needs to be cast to a String. The
get method returns an Object, because List is polymorphic; the List class needs to be able to deal
with any type possible.

Listing 8-19:  Use of a list without generics

private List authors;

private class Author {
 private final String name;
 private Author(final String name) { this.name = name; }
 public String getName() { return name; }
}

@Before

continues

102  ❘  CHAPTER 8  Java Basics

public void createAuthors() {
 authors = new ArrayList();

 authors.add(new Author("Stephen Hawking"));
 authors.add(new Author("Edgar Allan Poe"));
 authors.add(new Author("William Shakespeare"));
}

@Test
public void authorListAccess() {
 final Author author = (Author) authors.get(2);
 assertEquals("William Shakespeare", author.getName());
}

Because the list is not constrained to allow only instances of the Author class, the code in
Listing 8-20 is allowed, possibly a simple mistake for a developer to make.

Listing 8-20:  Erroneously using a list without generics

@Test
public void useStrings() {
 authors.add("J. K. Rowling");

 final String authorAsString = (String) authors.get(authors.size() - 1);
 assertEquals("J. K. Rowling", authorAsString);
}

There is no constraint on the type of instance used in the list. You can probably spot several issues
with the code. Is it an absolute certainty that only these types will be in the list? If not, then a
ClassCastException will be thrown at run time. The cast itself is messy, boilerplate code.

By using generics, any potential exceptions at run time are moved to actual compiler errors. These
are spotted much earlier in the development life cycle, which, in turn, leads to faster fixes and
cleaner code. Listing 8-21 shows this.

Listing 8-21:  Using generics

 private List<Author> authors;

 private class Author {
 private final String name;
 private Author(final String name) { this.name = name; }
 public String getName() { return name; }
 }

 @Before
 public void createAuthors() {

Listing 8-19  (continued)

Understanding Generics  ❘  103

 authors = new ArrayList<>();

 authors.add(new Author("Stephen Hawking"));
 authors.add(new Author("Edgar Allan Poe"));
 authors.add(new Author("William Shakespeare"));
 }

 @Test
 public void authorListAccess() {
 final Author author = authors.get(2);
 assertEquals("William Shakespeare", author.getName());
 }

The cast for access has disappeared, and reading this code feels more natural: “Get the third author
from the list of authors.”

The authors instance is constrained to take only objects of type Author. The other test,
useStrings, now doesn’t even compile. The compiler has noticed the mistake. Making this test
use an Author class rather than a String is an easy fix.

All of the classes in the collections API make use of generics. As you have seen, the List interface
and its implementations take one type parameter. The same goes for Sets. As you should expect,
Maps take two type parameters: one for the key and one for the value.

Generic types can be nested, too. It is legal for a Map to be defined as HashMap<Integer,
List<String>>: a HashMap that has an Integer as its key, mapped to Lists of type String.

Amend the given Stack API to use generics.

Imagine Listing 8-22 was required to use generics.

Listing 8-22:  An API for stack manipulation

public class Stack {

 private final List values;

 public Stack() {
 values = new LinkedList();
 }

 public void push(final Object object) {
 values.add(0, object);
 }

 public Object pop() {
 if (values.size() == 0) {
 return null;

continues

104  ❘  CHAPTER 8  Java Basics

 }

 return values.remove(0);
 }
}

Implementations of a stack are very popular in interviews. They have a relatively small set of opera-
tions, usually push, pop, and perhaps peek. Stacks are easily implemented using the Java collec-
tions API; no extra libraries are necessary. Take a moment to make sure you understand why a
LinkedList is used here—would an ArrayList have worked too? What is the difference?

For the given implementation, this is a fully functioning stack, although it has not been developed
for use with generics. If suffers from all the issues discussed in the previous question.

To migrate this class to use generics, you can use the compiler as your guide. First, the Stack class
must be declared to take a parameterized type:

public class GenericStack<E> {
...

E is the parameterized type variable. Any symbol could have been used. E here stands for “element,”
mirroring its use in the collections API.

The contained List can now use this generic type:

private final List<E> values;

This immediately throws up a compiler error. The push method takes Objects, but now it needs to
take objects of type E:

public void push(final E element) {
 values.add(0, element);
}

Changing values to List<E> also threw up a compiler warning in the Stack constructor. When cre-
ating the values LinkedList, this should be parameterized too:

public GenericStack() {
 values = new LinkedList<E>();
}

One change the compiler was not aware of is a change to the pop method. The last line of the pop
method, values.remove(0), now returns a value of type E. Currently, this method returns Object.
The compiler has no reason to error or even to throw up a warning, because Object is a supertype
of all classes, regardless of what E is. This can be changed to return the type E:

public E pop() {
 if (values.size() == 0) {
 return null;

Listing 8-22  (continued)

Understanding Generics  ❘  105

 }

 return values.remove(0);
}

How does type variance affect generics?

Given the following class hierarchy:

class A {}
class B extends A {}

B is a subtype of A. But List is not a subtype of List<A>. Known as covariance, Java’s generics
system has no way to model this.

When dealing with generic types, at certain times you may want to accept subtypes of a class. Using
the GenericStack class from the previous question, imagine a utility method, which creates a new
GenericStack from a List of A:

public static GenericStack<A> pushAllA(final List<A> listOfA) {
 final GenericStack<A> stack = new GenericStack<>();
 for (A a : listOfA) {
 stack.push(a);
 }

 return stack;
}

This compiles and works exactly as expected for Lists of A:

@Test
public void usePushAllA() {
 final ArrayList<A> list = new ArrayList<>();
 for (int i = 0; i < 10; i++) {
 list.add(new A());
 }

 final GenericStack<A> genericStack = pushAllA(list);

 assertNotNull(genericStack.pop());
 }
}

But when trying to add a List of B, it doesn’t compile:

@Test
public void usePushAllAWithBs() {
 final ArrayList listOfBs = new ArrayList<>();
 for(int i = 0; i < 10; i++) {
 listOfBs.add(new B());
 }

106  ❘  CHAPTER 8  Java Basics

 final GenericStack<A> genericStack = pushAllA(listOfBs);

 assertNotNull(genericStack.pop());
}

Although B is a subclass of A, List is not a subtype of List<A>. The method signature of
pushAllA needs to change to explicitly allow A, and any subclass of A:

public static GenericStack<A> pushAllA(final List<? extends A> listOfA) {

The question mark is called a wildcard, and it is telling the compiler to allow any instance of a class
extending A.

What does reified mean?

Essentially, being reified means being available at run time. Java’s generic types are not reified.
This means all the type information the compiler uses to check that any implementing code is using
generic parameters correctly is not part of the .class file definition.

Listing 8-23 makes use of generics.

Listing 8-23:  A simple use of generics

import java.util.ArrayList;
import java.util.List;

public class SimpleRefiedExample {

 public void genericTypesCheck() {
 List<String> strings = new ArrayList<>();
 strings.add("Die Hard 4.0");
 strings.add("Terminator 3");
 strings.add("Under Siege 2");

 System.out.println(strings.get(2) instanceof String);
 }
}

Decompiling the class file using JAD (a Java decompiler) produces the code in Listing 8-24.

Listing 8-24:  Decompiled code from Listing 8-23

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;

public class SimpleRefiedExample

Autoboxing and Unboxing  ❘  107

{

 public void genericTypesCheck() {
 ArrayList arraylist = new ArrayList();
 arraylist.add("Die Hard 4.0");
 arraylist.add("Terminator 3");
 arraylist.add("Under Siege 2");
 System.out.println(arraylist.get(2) instanceof String);
 }
}

All type information has been lost. This means that if you were to pull in this list from a class file
that had already been compiled, you must assume that it respects the generic parameter information
it was compiled with.

You can see from this example that it would be quite simple to construct a small use case where an
instance of a List with a generic type is used, but the dynamically loaded instances are of a differ-
ent type.

An Interesting Point about Listing 8-24

It is also worth noting that, as expected, the compiler has produced a default con-
structor because the code did not provide one. All classes must have at least one
constructor.

Autoboxing and Unboxing

Is it possible for access to a primitive type to throw a NullPointerException?

The correct answer to this question is no, but it can certainly appear so. Take Listing 8-25; there
are several points of note here. When assigning intObject to 42, you are attempting to assign the
primitive value 42 to an object. This shouldn’t be legal, and before Java 5, this certainly would
have produced a compiler error. However, the compiler is using a technique called autoboxing. The
compiler knows that the reference type equivalent of int is Integer, and so this is allowed. If the
compiler was not aware that these two types were related (as was the case before Java 5), and if a
reference to an Integer object was needed, then you would need to manage this manually, either
using new Integer(42) or, more efficiently, Integer.valueOf(42).

The reason Integer.valueOf(42) is more efficient is because small values are cached. This was
discussed in Chapter 6 on Design Patterns and is known as the Flyweight Pattern.

108  ❘  CHAPTER 8  Java Basics

Listing 8-25:  Demonstration of autoboxing and unboxing

@Test
public void primitiveNullPointer() {
 final Integer intObject = 42;
 assert(intObject == 42);

 try {
 final int newIntValue = methodWhichMayReturnNull(intObject);
 fail("Assignment of null to primitive should throw NPE");
 } catch (NullPointerException e) {
 // do nothing, test passed
 }
}

private Integer methodWhichMayReturnNull(Integer intValue) {
 return null;
}

The Difference between autoboxing and boxing

Java 5 introduced the notion of autoboxing. That is, the automatic transformation
from a primitive type to its reference type, such as boolean to Boolean, or int to
Integer.

Before Java 5, you had to perform this operation manually, known as box-
ing. To turn an int into an Integer, you would have had to construct one, (new
Integer(42)), or use the factory method (Integer.valueOf(42)).

The process of converting from a boxed reference type, such as Float, Integer, or Boolean to their
primitive counterparts, float, int, or boolean is called unboxing. Again, this is an operation the
compiler provides. However, as you will be very aware by now, whenever working with reference
types, you must always be prepared for a reference being null, and this is true for the boxed types.
When the compiler converts from Integer to int, it assumes that the value is not null, so should
it be null, this will immediately throw a NullPointerException. The initial line of code in the
try block assigns the return type of the method, Integer to an int primitive type. In this case, the
method always returns null, so when this line is run, a NullPointerException is thrown, because
it is not possible to assign null to a primitive type.

This can cause frustration and confusion when trying to debug or fix issues, especially when it is not
explicitly clear that boxing and unboxing is happening.

Primitive types cannot be used in generic type definitions—you cannot have a List<int>. In this
case, the reference type should be used.

Using Annotations  ❘  109

Using Annotations

Give an example of a use of annotations.

Annotations were introduced in Java 5, and the JUnit library made full use of these annotations fol-
lowing the JUnit 4 release.

Listing 8-26 shows how JUnit tests worked prior to JUnit 4. Test suites were written using specific
conventions for naming tests, and also steps to run before and after the tests were run. The JUnit run-
ner would inspect any subclass of TestCase compiled tests, using reflection. If it found the method
signature public void setUp(), this would be run before each test, and public void tearDown()
would be run after. Any public methods with a void return type, and the method name starting with
test, would be treated as a test.

Listing 8-26:  Anatomy of a JUnit 3 test

public class JUnit3Example extends TestCase {

 private int myInt;

 public void setUp() {
 myInt = 42;
 }

 public void testMyIntValue() {
 assertEquals(42, myInt);
 }

 public void tearDown() {
 myInt = -1;
 }
}

Mistyping the prefix test, or setUp, or tearDown would result in the tests not running, without
any indication why; or worse, the tests would fail.

With the introduction of annotations, this brittle naming convention could be tossed aside, and
instead, use annotations to mark the appropriate methods, allowing tests to be more expressive in
their definition. Listing 8-27 shows the same test using annotations.

Listing 8-27:  Anatomy of a JUnit 4 test

public class Junit4Example {

 private int myInt;

 @Before

continues

110  ❘  CHAPTER 8  Java Basics

 public void assignIntValue() {
 myInt = 42;
 }

 @Test
 public void checkIntValueIsCorrect() {
 Assert.assertEquals(42, myInt);
 }

 @After
 public void unsetIntValue() {
 myInt = -1;
 }
}

Even if you have no experience with JUnit, it should be quite apparent that using annotations makes
for better tests: Methods can have better names, and methods can have multiple annotations.
Feasibly, one method could have a @Before and @After annotation on it, eliminating code duplica-
tion. For more details on JUnit, see Chapter 9.

What does the @Override annotation give us?

The @Override annotation is an extremely useful compile-time check. It is an instruction to the
compiler that a superclass method is being overridden. If there is no matching method signature on
any superclass, this is an error and should not compile.

In general, it is a great way to make sure you don’t make mistakes when overriding methods.

public class Vehicle {

 public String getName() {
 return "GENERIC VEHICLE";
 }
}

public class Car extends Vehicle {

 public String getname() {
 return "CAR";
 }
}

It appears that getName() has been overridden to return something slightly more descriptive, but
the code:

Car c = new Car();
System.out.println(c.getName());

Listing 8-27  (continued)

Naming Conventions  ❘  111

will actually print GENERIC VEHICLE. The method in class Car has a typo: It is getname() rather
than getName(). All identifiers in Java are case-sensitive. Trying to track down bugs like this can be
extremely painful.

Annotating the attempt at overriding getName() with @Override would have flagged a compiler
error. This could have been fixed immediately.

As always, you should be using a professional-grade IDE, and leaning on it for as much help as pos-
sible. Both IntelliJ and Eclipse provide wizard dialog boxes for overriding methods, allowing you to
pick exactly which method you want to override. These wizards will add the @Override annotation
for you, making it very hard to get this wrong.

Naming Conventions

When interviewers look at sample code, whether from a test or a candidate’s sample code, perhaps
from Github or a similar site, they often look for the quality of the code, from the use of the final
keyword to the conventions used in variable naming. IDE support for naming conventions is excel-
lent, and there are few, if any, reasons not to follow these conventions. They make the code much
more legible to a colleague or interviewer.

Classes
Classes always start with a capital letter, and are CamelCase:

➤➤ Boolean

➤➤ AbstractJUnit4SpringContextTests

➤➤ StringBuilder

Variables and Methods
Variables and methods always start with a lowercase letter, and are camelCase too:

➤➤ int myInteger = 56;

➤➤ public String toString();

Constants
static final instance variables can never change, and are therefore constant. The convention for
constants is to be all uppercase, with any breaks between words represented by an underscore:

➤➤ public static final int HTTP_OK = 200;

➤➤ private static final String EXPECTED_TEST_RESPONSE = "YES";

112  ❘  CHAPTER 8  Java Basics

One element of debate is how to represent acronyms properly with camel casing. The most
accepted variant is to capitalize the first letter, and lowercase the rest, such as HttpClient or
getXmlStream().

This isn’t even consistent within the Java’s own standard libraries. For example,
HttpURLConnection uses both styles in one class name!

It is this author’s opinion that the capitalized first letter approach is favorable: It is much easier to
see where the acronym ends and the next word begins. With many IDEs nowadays, it is possible to
search for classes merely by entering the first letter of each word in the camel case.

Handling Exceptions

Describe the core classes in Java’s exception hierarchy.

Figure 8-1 illustrates the exception hierarchy, with examples of each type.

NullPointerException

RuntimeException IOException OutOfMemoryError

Exception Error

Throwable

Figure 8-1 

Any class that can be thrown extends from Throwable. Throwable has two direct subclasses:
Error and Exception. As a rule, it is usually the responsibility of the programmer to address
and fix Exceptions where necessary. Errors are not something you can recover from, such as an
OutOfMemoryError or a NoClassDefFoundError.

Exceptions themselves are split into two definitions: An exception is either a runtime exception or a
checked exception. A runtime exception is any subclass of RuntimeException. A checked exception
is any other exception.

When using a method (or constructor) that may throw a checked exception, that exception must be
explicitly defined on the method definition. Any caller to the code must be prepared to handle that

Handling Exceptions  ❘  113

exception, by either throwing it back to any caller of that method, or surrounding the method call in
a try/catch/finally block, and deal with the exceptional case appropriately.

Are runtime exceptions or checked exceptions better?

Another area of great debate is whether checked or runtime exceptions are better. Arguments cer-
tainly exist for both sides.

With checked exceptions, you are being explicit to any user of your code about what could possibly go
wrong. When writing a method that may throw a checked exception, be as explicit as possible. A method
definition such as public String getHostName() throws Exception does not give much clue to what
may go wrong. If it were defined as public String getHostName() throws UnknownHostException,
the client code would know what may go wrong, and it also would give some more insight as to how
exactly the method works.

With runtime exceptions, defining the exception on the method, rethrowing the exception, or using
a try/catch/finally block are all optional. As a general rule, RuntimeExceptions are exceptions
that a diligent programmer should already have mitigated: problems such as accessing an array
index value larger than the size of the array—ArrayIndexOutOfBoundsException—or trying to
call methods on a null reference—NullPointerException.

When defining an API and deciding whether to use runtime or checked exceptions, this author’s
opinion is to favor runtime exceptions and be explicit in any documentation as to what exactly may
be thrown to any clients calling that method. Using try/catch/finally blocks adds a significant
amount of boilerplate code to even the simplest of method calls, and makes life very difficult for
any future maintainer of the code. Just examine any non-trivial use of JDBC, and you will often
see try/finally blocks inside try/catch/finally blocks. Modern languages such as Scala have
stepped away from checked exceptions, and have only runtime exceptions.

What is exception chaining?

When catching an exception to deal with an error case, it is entirely possible you would want to
rethrow that exception, or even throw an exception of a different type.

Reasons to do this include “laundering” an exception from a checked exception to a runtime one, or
perhaps performing some logging of the exception and then rethrowing it. When throwing a previ-
ously caught exception, it is advisable to throw a new exception and add a reference on that new
exception. This technique is called exception chaining.

This mindset is the same for throwing a new exception within a catch block. Add a reference to the
old exception in the new exception’s constructor.

The reason for doing this is that these exception chains are extremely valuable for debugging
should the exception not be handled at all, and the stack trace make it all the way to the application
console.

114  ❘  CHAPTER 8  Java Basics

The chains are referenced in the stack trace by a “caused by” line. This refers to the original excep-
tion prior to being wrapped in a new exception or rethrown.

Listing 8-28 shows how to create a chained exception. The exception instance in the catch block is
chained to the new IllegalStateException instance, by passing that reference to the constructor
of the IllegalStateException.

Listing 8-28:  Handling chained exceptions

public class Exceptions {

 private int addNumbers(int first, int second) {
 if(first > 42) {
 throw new IllegalArgumentException("First parameter must be small");
 }

 return first + second;
 }

 @Test
 public void exceptionChaining() {
 int total = 0;

 try {
 total = addNumbers(100, 25);
 System.out.println("total = " + total);
 } catch (IllegalArgumentException e) {
 throw new IllegalStateException("Unable to add numbers together", e);
 }
 }
}

All standard Java library exceptions can take a throwable as a constructor parameter, and should
you ever create any new Exception classes, make sure you adhere to this.

When this (admittedly contrived) test is run, it demonstrates that the IllegalStateException was
indeed caused by the first parameter to addNumbers being too high:

java.lang.IllegalStateException: Unable to add numbers together
 at com.wiley.acinginterview.chapter08.Exceptions.exceptionChaining(Exceptions.java:23)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
...
<Exeption truncated>
...
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at com.intellij.rt.execution.application.AppMain.main(AppMain.java:120)
Caused by: java.lang.IllegalArgumentException: First parameter must be small
 at com.wiley.acinginterview.chapter08.Exceptions.addNumbers(Exceptions.java:9)
 at com.wiley.acinginterview.chapter08.Exceptions.exceptionChaining(Exceptions.java:20)
 ... 26 more

Using the Standard Java Library  ❘  115

Had the exceptions not been chained, and the code inside the try block much larger, trying to work
out where the original exception had been thrown from could have been a time-wasting chore.

If you ever see an exception being thrown in a catch block, and it does not chain the original excep-
tion, add a reference there and to that original exception. You’ll thank yourself later!

What is a try-with-resources statement?

Java 7 introduced some syntactic sugar for the try/catch/finally statement. If a class implements
the AutoCloseable interface, you do not need to worry about closing any resources, which is shown
in Listing 8-29.

Listing 8-29:  try-with-resources

@Test
public void demonstrateResourceHandling() {
 try(final FileReader reader = new FileReader("/tmp/dataFile")) {
 final char[] buffer = new char[128];
 reader.read(buffer);
 } catch (IOException e) {
 // .. deal with exception
 }
}

Before try-with-resources was introduced, the reader instance would have had to be explicitly
closed, which itself could have caused an exception, or unspecified behavior if the close failed, or
even if the close was forgotten altogether.

The AutoCloseable interface specifies one method, close(), and this is called after the try block,
as if it were in the finally part of the block.

Using the Standard Java Library

The APIs available as part of the standard Java library cover a wide range of domains, from data-
base access to optimized sorting and searching algorithms, from concurrency APIs to two user inter-
face frameworks.

Why do fields that are private also need to be marked as final to make them
immutable?

If you had a final class with no accessible setters, and all fields were private, you could be inclined to
think that the class is immutable, such as that in Listing 8-30.

116  ❘  CHAPTER 8  Java Basics

Listing 8-30:  An almost-immutable class

public final class BookRecord {

 private String author;
 private String bookTitle;

 public BookRecord(String author, String bookTitle) {
 this.author = author;
 this.bookTitle = bookTitle;
 }

 public String getAuthor() {
 return author;
 }

 public String getBookTitle() {
 return bookTitle;
 }
}

Unfortunately this is not the case. The fields can still be manipulated using the Reflection API.
Reflection has the ability to access and mutate all fields, regardless of their visibility. The final
modifier instructs the JVM that no modifications are allowed on that field at all. Though it may
seem slightly underhanded to allow access to state that has genuinely been marked as inaccessible
to the outside world, there actually are a few legitimate cases. With Spring’s Inversion of Control
container, private fields with an @Autowired annotation have these fields set when the container is
initializing at run time.

Listing 8-31 shows how you can mutate private fields from outside of a class definition.

Listing 8-31:  Mutating private fields with the Reflection API

@Test
public void mutateBookRecordState() throws NoSuchFieldException,
 IllegalAccessException {
 final BookRecord record = new BookRecord("Suzanne Collins",
 "The Hunger Games");

 final Field author = record.getClass().getDeclaredField("author");
 author.setAccessible(true);
 author.set(record, "Catching Fire");

 assertEquals("Catching Fire", record.getAuthor());
}

Unless you are writing your own framework, very few reasons exist to change the value of a private
field, especially in classes you own or that are under your control.

Using the Standard Java Library  ❘  117

Which classes do all other collections API classes inherit from?

The framework can be broadly split into three main definitions: Sets, Lists, and Maps. Take
another look at Chapter 5 if you need a refresher on how these collections work. There is also the
specialized interface of Queue, which provides simple operations for adding, removing and exam-
ining queued elements. The ArrayList class is both a List and a Queue.The Java Collections
framework is contained in the package java.util. All single-element collections implement the
Collection interface, which specifies some very broad methods, such as clear() for removing all
elements and size() for determining how many entries are in the collection. Map implementations
do not implement Collection. Instead, Java prefers a distinction between mappings and collec-
tions. Of course, Collections and Maps are intricately linked: the Map interface contains the meth-
ods entrySet(), keySet(), and values, giving access to the Map components as Collections.

Figure 8-2 shows the collections hierarchy, and where some common implementations fit in.

LinkedList TreeSet

Interface
List

Interface
Set

HashMap

Interface
Map

Interface
Collection

Figure 8-2 

What is a LinkedHashMap?

A LinkedHashMap has a confusing name—is it a HashMap? Linked in what way?

A LinkedHashMap has all the properties of a HashMap—that is, quick lookup on a key index—
but it also preserves the order of entry into the map. Listing 8-32 demonstrates how to use a
LinkedHashMap.

Listing 8-32:  Usage of a LinkedHashMap

@Test
public void showLinkedHashmapProperties() {
 final LinkedHashMap<Integer, String> linkedHashMap = new LinkedHashMap<>();

 linkedHashMap.put(10, "ten");

continues

118  ❘  CHAPTER 8  Java Basics

 linkedHashMap.put(20, "twenty");
 linkedHashMap.put(30, "thirty");
 linkedHashMap.put(40, "forty");
 linkedHashMap.put(50, "fifty");

 // works like a map
 assertEquals("fifty", linkedHashMap.get(50));

 // Respects insertion order
 final Iterator<Integer> keyIterator = linkedHashMap.keySet().iterator();

 assertEquals("ten", linkedHashMap.get(keyIterator.next()));
 assertEquals("twenty", linkedHashMap.get(keyIterator.next()));
 assertEquals("thirty", linkedHashMap.get(keyIterator.next()));
 assertEquals("forty", linkedHashMap.get(keyIterator.next()));
 assertEquals("fifty", linkedHashMap.get(keyIterator.next()));

 // The same is not true for HashMap
 final HashMap<Integer, String> regularHashMap = new HashMap<>();
 regularHashMap.put(10, "ten");
 regularHashMap.put(20, "twenty");
 regularHashMap.put(30, "thirty");
 regularHashMap.put(40, "forty");
 regularHashMap.put(50, "fifty");

 final ArrayList hashMapValues = new ArrayList<>(regularHashMap.values());
 final ArrayList linkedHashMapValues = new ArrayList<>(linkedHashMap.values());

 // the lists will have the same values, but in a different order
 assertFalse(linkedHashMapValues.equals(hashMapValues));
}

Why was HashMap introduced when Hashtable already existed?

The Collections framework and the collections interfaces (Collection, Map, List, and so on) first
appeared in the 1.2 release, but the Hashtable class, and the list-equivalent Vector, has been part
of Java since its initial release. These classes were not written with a framework in mind. When the
Collections framework was included, Hashtable was retrofitted to match the Collection interface.

The Hashtable class is synchronized, which, though effective for parallel work, provides a
significant performance hit due to this overhead for any single-threaded work. HashMap is not
synchronized, so the developer has the power to tailor the use of this class to any particular con-
current needs. It is advisable, for any serious use of a Map interface in a parallel environment, to
make use of ConcurrentHashMap (introduced in Java 5). See Chapter 11 for more details.

Listing 8-32  (continued)

Looking Forward to Java 8  ❘  119

Looking Forward to Java 8

What new features are to be expected in Java 8?

At the time of writing, two key new features in Java 8 are default implementations on interfaces,
and lambdas.

It is now possible to define a default implementation on interfaces. Any implementer of an interface
does not need to provide an implementation if the default is sufficient, such as in Listing 8-33.

Listing 8-33:  Java 8 interfaces

public interface Java8Interface {
 void alpha();
 int beta default { return 6; };
 String omega final { return "Cannot override"; };
}

As well as a default implementation, interfaces can have a final implementation too. This now works
in a very similar way to abstract classes.

The past few years have seen an explosion of new languages that are capable of being compiled
into code that is runnable on the JVM. Some of these languages, such as Scala and Groovy, have
lambdas—that is, functions that are treated as first-class citizens; they can be passed into other
functions and methods as variables. Lambdas are anonymous functions, such as the example in
Listing 8-34. A lambda can be used in any situation where an interface with only one method is
required. They are written inline, in place of a full interface implementation. Note the new syntax:
parameters, an arrow, and then the method body.

Listing 8-34:  Lambdas in Java 8

public void run() {
 List<Integer> ints = new ArrayList<>();
 ints.add(1);
 ints.add(2);
 ints.add(3);

 List<Integer> newInts = new ArrayList<>();
 ints.forEach(i -> { newInts.add(i+10); });

 for(int i = 0; i < ints.size(); i++) {
 assert ints.get(i) + 10 == newInts.get(i);
 }

 assert ints.size() == newInts.size();
 System.out.println("Validated");
}

120  ❘  CHAPTER 8  Java Basics

The List interface, or more specifically, the Iterable interface, has had a new method added:
forEach. Had a default implementation not been allowed on interfaces, this would have needed to
be added to every implementation of Iterable—not only in the standard Java library, but all third-
party code too!

The parameter to forEach is an instance of the new interface Consumer. This interface has one
method, accept, which has a void return type, and it takes one parameter. Because there is only
one method, a lambda can be used here. When forEach is called, the parameter to the method is an
instance of Consumer, and the parameter to that method is the same type as that of the list. The list
is iterated over, and each element is passed to the implementation of Consumer. Consumer returns
void, so the lambda cannot return anything to the calling method. Here, the lambda takes each
element, adds ten, and puts that value in a new List instance. The Java 4 assert keyword is being
used here to check that, first, the original List has not been modified in any way; second, that the
new List has the correct values in it; and third, that there are no extra elements in either List.

For another take on lambdas, see the appendix.

The most important thing to take away from this is that the Java landscape is always changing, and
these implementation details may change before Java 8 is released. It is extremely important to keep
on top of what is happening in the industry, not just with Java releases.

Summary

Many of the questions and discussions covered in this chapter should be familiar to you, especially
if you have a few years’ experience working with Java and the JVM. Hopefully while reading this
chapter you have experimented and run the code. If not, try it now. Change the variables, and see
what effect it has on the tests. Make the tests pass again based on your changes.

It really is important that you understand this chapter; everything else in this book and in an inter-
view situation will assume this is well understood, and will build on the concepts here.

The topics covered here are not exhaustive. While running these examples, if you have areas you
don’t understand, use the unit tests to try out hypotheses, and take advantage of many of the useful
resources on the Internet to see if others have asked similar questions. Have discussions with your
peers and colleagues—learning from those around you is often the most productive and useful.

If you are not using an IDE, now is the time to start. More and more interviewers today expect you
to write real code on a real computer using real tools. If you already know how to use an IDE pre-
sented to you in an interview, this can help you with a lot of the heavy lifting: filling in getters and
setters, providing practical hashCode and equals, to name but a few. But IDEs also provide great
refactoring tools, which are extremely helpful for making large-scale changes in a time-pressured
situation like a coding test. If IDEs are unfamiliar to you in an interview situation, you will lose a
lot of time fighting against the tool to write your code.

Make sure you are familiar with the Collections framework. Open up their implementations in
an IDE (most have the Java library source automatically loaded). Look at how common code is
implemented—hashCode on the primitives’ reference type equivalents (Boolean.hashCode() is

Summary  ❘  121

interesting); look at how HashSet is implemented in terms of HashMap. See how many object-
oriented patterns you can find.

But most of all, do not treat this chapter, or this book, as a quick fix, how-to guide for beating a
Java interview. By implementing best practices, and receiving peer review of your code and prac-
tices, you will learn and improve. There will be less chance of you falling foul to a tricky corner-case
in an interview. Experience is key.

Chapter 9 focuses on JUnit, the unit test library. Writing unit tests can often be a way to stand out
and impress an interviewer, as not every candidate, surprisingly, will write unit tests.

Testing with JUnit
Testing is the cornerstone of any professional software product. Testing itself comes in many
forms, at many different levels. Software is tested as a whole, complete artifact, but when bro-
ken down, each of the individual components should be tested, and therefore be testable, too.

By thinking of testing at the start of the development process, the software as a whole becomes
easier to test, both for any full testing teams, if you are lucky enough to have one, and also
for any automated tests. Plenty of rich, full-featured, complete testing solutions are available
for testing code written for Java. One of the most ubiquitous and well-understood libraries for
this is JUnit. JUnit provides a lightweight and simple interface for creating tests on any level,
including unit tests, integration tests, system tests, or something more exotic like user interface
tests. JUnit itself is properly integrated into many build tools such as Ant and Maven, and the
more up-to-date ones such as Gradle and SBT. These tools automatically stop builds and flag
errors should any test fail.

By writing tests first and making sure the tests are fully integrated into a build means that the
tests will run any time a build is created, such as before code is checked in, or when a release
artifact is built. This, in turn, builds confidence that the system is working correctly. Any time
a test fails for a seemingly unknown reason; this can often be due to new code introducing
bugs elsewhere in the system. This is known as a regression.

Development using JUnit is helped by the fact that the library is well integrated in most IDEs,
allowing single tests or even multiple suites to be run within a couple of clicks. This gives
extremely quick feedback from small changes as to whether the test passes. The smaller the
change made between test runs, the more confidence you can have that your change made a
test pass, rather than some environmental change or even a change in a seemingly unrelated
piece of code.

This chapter covers how to use JUnit for several areas of the development life cycle, from unit
testing small, isolated pieces, to combining these pieces with integration tests, to testing full
running systems using unit tests.

9

124  ❘  CHAPTER 9  Testing with JUnit

Unit tests are a great way to show intent in any kind of assessment. As you will see, the JUnit
Assert class provides a great way to open a dialogue with anyone else reading the code, showing
exactly the intent for writing a test and any expectation or assumption made.

What value do JUnit tests give?

JUnit tests are often used with the development approach known as Test-Driven Development
(TDD). The process of TDD is to perform short, iterative loops: You write a test based on expecta-
tions and assertions about what your code should do. Considering you would not yet have written
the code for these tests, they should not pass. You then write the code to make the tests pass. Once
the test passes, you repeat the process for a new piece of functionality. If your tests completely cover
a specification of what you are trying to achieve, then once all the tests pass, you have the confi-
dence that your code works and is correct.

The tests do not need to be confined to making sure functionality is correct: You can specify non-
functional requirements, and only pass tests once those requirements are met. Some examples could
be making sure a server under load responds to requests within a certain time, or that certain secu-
rity parameters are met.

For any reasonable-sized project, you will probably be using a build system, such as Maven or Ant.
The tests you have written can, and should, be integrated into your build, so that any changes to
the underlying code that break the tests means your build halts, and you must fix the code before
your build works again. This saves you from introducing bugs once the code has been released.
For Maven, the tests are automatically run as part of the build. For Ant, tests are integrated with a
single command.

Confidence in your code being correct means you can put increased reliance in automated tools.
For developing server-side architectures, you can move toward a continuous delivery model, where
fully tested code is automatically released to a production server with no human intervention after
check-in.

How are JUnit tests run?

As previously mentioned, JUnit is well integrated into many build tools, but it is still possible to
invoke it manually on the command line.

In the JUnit library, the class JUnitCore contains the main method used for starting the tests from
the command line. The arguments are a list of classes to test:

$ /path/to/java –cp /path/to/junit.jar:. [classes to test]

For Maven, which works with project layouts following a specific convention, simply running
mvn test in the root directory of the project will find and run all tests in the project. Maven itself is
highly configurable, and specifying only a dependency on the JUnit library will specifically use JUnit
for testing. Chapter 19 describes how to set up Maven and declare project dependencies.

The JUnit Test Life Cycle  ❘  125

You can run Maven with a declaration of which tests to run. If you set the system property test,
only the tests set in that property will be run:

mvn test –Dtest=SystemTest

The test parameter can take wildcards, so setting the system property to a value such as
-Dtest=*IntegrationTest would run any test suffixed with IntegrationTest.

The JUnit Test Life Cycle

When you run a test suite, each test follows a prescribed set of steps. These steps can help you
modularize your tests and reuse as much code as possible.

What happens when running a JUnit test?

A test suite is usually confined to a class. Before annotations arrived in JUnit 4, you would need
your class to extend TestSuite.

You can define a method, or set of methods, to run once, before the whole suite is run. These may
do some long-running computations, such as preparing the filesystem for the upcoming tests, or
some kind of pretesting notification to a build server or similar.

To run some code once as the test suite is started, you specify a public static method that returns
void, and annotate it with @BeforeClass. The method is static, so you do not have access to a fully
constructed instance of the test suite class, such as the instance variables or instance methods.

Mirroring this annotation is @AfterClass. Methods with this annotation are run after all tests have
completed.

As soon as the @BeforeClass annotated methods have completed successfully, the test runner per-
forms the following steps for each test in the suite:

	 1.	 A new instance of the suite is constructed. As with all Java classes, any code in the construc-
tor is run. Test suite classes may only declare a single constructor with no arguments.

	 2.	 Immediately following the object construction, any public methods with a @Before annotation
and with a void return type are run. These usually set up anything common across all tests,
such as mock objects or objects with state. Because this is run before each test, you can use this
to return stateful objects to their correct state, or perhaps set the filesystem to a state expected
for your test. Because both the constructor and @Before annotated methods are run before
each test, you can do any test setup in either of these positions. The convention is to perform
the setup in the @Before methods, to keep symmetry with the equivalent @After method.

	 3.	 The test is then run. Tests that are defined with the @Test annotation, are public, and again,
have a void return type.

	 4.	 Following a successful, or unsuccessful, run of the test, the @After annotated (again,
public void) methods are called. This will tidy up anything the test may have dirtied, such
as a database or filesystem, or perhaps perform some post-test logging.

126  ❘  CHAPTER 9  Testing with JUnit

The order in which the @Before, @After, and @Test methods run is not guaranteed, so you cannot do
some partial setup in one @Before method, and expect another @Before method written later in the
source file to finish that setup. This is the heart of JUnit: Your tests should be independent and atomic.

Listing 9-1 shows all of the steps for a suite with two tests, using a counter to verify the order in
which all the components are run.

Listing 9-1:  The life cycle of a JUnit test

public class JUnitLifecycle {

 private static int counter = 0;

 @BeforeClass
 public static void suiteSetup() {
 assertEquals(0, counter);
 counter++;
 }

 public JUnitLifecycle() {
 assertTrue(Arrays.asList(1, 5).contains(counter));
 counter++;
 }

 @Before
 public void prepareTest() {
 assertTrue(Arrays.asList(2, 6).contains(counter));
 counter++;
 }

 @Test
 public void peformFirstTest() {
 assertTrue(Arrays.asList(3, 7).contains(counter));
 counter++;
 }

 @Test
 public void performSecondTest() {
 assertTrue(Arrays.asList(3, 7).contains(counter));
 counter++;
 }

 @After
 public void cleanupTest() {
 assertTrue(Arrays.asList(4, 8).contains(counter));
 counter++;
 }

 @AfterClass
 public static void suiteFinished() {
 assertEquals(9, counter);
 }
}

Best Practices for Using JUnit  ❘  127

The counter used in the code is a static variable, because for this test suite to run, the test runner
instantiates JUnitLifecycle twice, one for each @Test.

Any test methods annotated with @Ignore are ignored. The @Ignore annotation is often used for
tests that are known to fail and would break a continuous integration build. This is often a sign of
code smell: The code backed by the tests has changed, but the tests have not. Code smell is a symp-
tom that usually points to a deeper problem. This can lead to code not covered by tests, and reduces
the confidence of a correct codebase. Any @Ignored tests in code submitted for an interview would
be treated with concern.

Should you ever find yourself with a justifiable reason for annotating some tests with @Ignore, be
sure to include a comment with a date as to why the test is ignored, describing how and when this
will be rectified.

You can also use the @Ignore annotation at the class level, instructing the JUnit runner to skip a
whole suite of tests.

Best Practices for Using JUnit

The near-ubiquity of JUnit nowadays and the expressiveness of the library give you great power to
show your potential in an interview.

How do you verify that your tests are successful?

One of the core classes in the JUnit library is the Assert class. It contains many static methods for
expressing an assumption, which then verifies that assumption is true. Some of the key methods and
their function are:

➤➤ assertEquals—Two objects are equal according to their equals method.

➤➤ assertTrue and assertFalse—The given statement matches the Boolean expectation.

➤➤ assertNotNull—An object is not null.

➤➤ assertArrayEquals—The two arrays contain the same values, checking equality by
equals if comparing Object arrays.

If the assertion does not hold, an exception is thrown. Unless that exception is expected, or caught,
that exception will fail the JUnit test.

There is also the fail method, which you can use if your test has reached a failing state. Most of
the assertXXX methods call fail when necessary.

Take a look at the Assert class, and see what other assertion methods exist and how you can make
use of them.

Each of the assertXXX methods are overloaded in pairs, with an extra String parameter available:

public static void assertTrue(String message, boolean condition)
public static void assertTrue(boolean condition)

128  ❘  CHAPTER 9  Testing with JUnit

This String parameter is a message that is displayed when assertion fails. Listing 9-2 shows a sim-
ple example of its usage.

Listing 9-2:  Assertion with a failure message

@Test
public void assertionWithMessage() {
 final List<Integer> numbers = new ArrayList<>();
 numbers.add(1);

 assertTrue("The list is not empty", numbers.isEmpty());
}

junit.framework.AssertionFailedError: The list is not empty

Listing 9-3 shows what happens if you use the assertTrue method without a message string.

Listing 9-3:  Assertion without a failure message

@Test
public void assertionWithoutMessage() {
 final List<Integer> numbers = new ArrayList<>();
 numbers.add(1);

 assertTrue(numbers.isEmpty());
}

junit.framework.AssertionFailedError: null

The message is merely the statement null. In a larger test with several assertTrue or assertFalse
assertions, this can often lead to confusion as to why exactly a certain assertion is failing. If you use
assertEquals without a message, then you are notified as to the difference when comparing two
unequal values, but the error message has no explanation.

There are very few situations in which you would not provide this message parameter; especially
when your code is being assessed for an interview.

However, it is possible to go one better. Although these messages are only ever printed for failing
situations, when casually reading the code, these can be read as expectations rather than failure
explanations.

This confusion, admittedly wrong, can be mitigated with the language used for writing the test. If
you use that error message to say what should happen, then the code reads well, and when it is dis-
played as an error message, it still makes sense. Take the assertion from Listing 9-2:

assertTrue("The list is not empty", numbers.isEmpty());

This can be casually seen as a contradiction. The first parameter says "The list is not empty", but
the second parameter says numbers.isEmpty—these are opposites. Had this been written instead as

assertTrue("The numbers list should not be empty", numbers.isEmpty());

Best Practices for Using JUnit  ❘  129

the message on the top of a failed assertion stack trace would still make sense, and the code would
be clearer for anyone, whether it’s a peer reviewing your code or an interviewer assessing a coding
test.

For brevity, the convention of this book is to not include the failure message string parameter in any
JUnit tests, because the intention should be clear from the discussion.

How can you expect certain exceptions?

If you are testing a failing situation in your code, and you expect an exception to occur, you can
notify the test of your expected exception type. If that exception is thrown in the test, it passes.
Completion of the test without that exception being thrown is a failure. Listing 9-4 shows this in
action.

Listing 9-4:  Expecting exceptions

@Test(expected = NoSuchFileException.class)
public void expectException() throws IOException {
 Files.size(Paths.get("/tmp/non-existent-file.txt"));
}

The parameter to the @Test annotation provides an indication to the test runner that this test
should throw an exception. The method still needs to declare throws IOException here because
IOException is a checked exception.

Had the test in Listing 9-4 been longer than one line, and the expected exception had been some-
thing more general, such as RuntimeException or even Throwable, it would be very hard to dif-
ferentiate between the expected exception and a problem elsewhere, such as the test environment, as
Listing 9-5 shows.

Listing 9-5:  A poorly defined test for expecting exceptions

@Test(expected = Exception.class)
public void runTest() throws IOException {
 final Path fileSystemFile = Paths.get("/tmp/existent-file.txt");

 // incorrect usage of Paths.get
 final Path wrongFile = Paths.get("http://example.com/wrong-file");

 final long fileSize = Files.size(fileSystemFile);
 final long networkFileSize = Files.size(wrongFile);

 assertEquals(fileSize, networkFileSize);
}

Every single line in this test has the possibility for throwing an exception, including the assertion
itself. In fact, if the assertion fails, it throws an exception, and therefore the test incorrectly passes!

http://example.com/wrong-file

130  ❘  CHAPTER 9  Testing with JUnit

It is advisable to use the expected parameter on the @Test annotation sparingly. The most reliable
tests using this parameter have only one line in the method body: the line that should throw the
exception. Therefore, it is crystal clear to see how and why a test could start failing, such as shown
in Listing 9-4 earlier.

Of course, methods can throw exceptions, and you should still be able to test for those exceptions.
Listing 9-6 details a clearer way to handle this. Imagine a utility method, checkString, which
throws an exception if the String passed to the method is null.

Listing 9-6:  Explicitly expecting exceptions

@Test
public void testExceptionThrowingMethod() {
 final String validString = "ValidString";
 final String emptyValidString = "";
 final String invalidString = null;

 ParameterVerifications.checkString(validString);
 ParameterVerifications.checkString(emptyValidString);
 try {
 ParameterVerifications.checkString(invalidString);
 fail("Validation should throw exception for null String");
 } catch (ParameterVerificationException e) {
 // test passed
 }
}

This is explicitly testing which line should throw an exception. If the exception is not thrown, the
next line is run, which is the fail method. If a different type of exception is thrown than the one
expected by the catch block, this is propagated to the calling method. Because there is no expecta-
tion of an exception leaving the method, the test fails. The comment in the catch block is necessary
because it informs anyone reading the code that you intended to leave it blank. This is advisable for
any time you leave a code block empty.

How can a test fail if it does not complete quickly enough?

The @Test annotation can take two parameters. One is expected (which you have already seen),
which allows tests to pass when a certain type of exception is thrown. The other parameter is a
timeout, which takes a value of type long. The number represents a number of milliseconds, and if
the test is running for longer than that time, the test fails.

This test condition can help meet certain non-functional conditions. For example, if you were writ-
ing a service that had a requirement to respond within a second, you would write an integration test
to make sure this requirement was met. Listing 9-7 demonstrates this.

Best Practices for Using JUnit  ❘  131

Listing 9-7:  Failing long-running tests

@Test(timeout = 1000L)
public void serviceResponseTime() {
 // constructed against a real service
 final HighScoreService realHighScoreService = ...
 final Game gameUnderTest = new Game(realHighScoreService);
 final String highScoreDisplay = gameUnderTest.displayHighScores();
 assertNotNull(highScoreDisplay);
}

This integration test calls out to a real-world high score service, and if the test does not complete
within a second, an exception is thrown with the notification that the test timed out.

Of course, this timeout is for the whole test to complete, not the specific long-running method call.
Similar to the exception expectation, if you want to explicitly check that a method call took less
than a certain amount of time, you can either have that single method call in the test, or run the
method call in a separate thread, as shown in Listing 9-8.

Listing 9-8:  Explicitly timing tests

@Test
public void manualResponseTimeCheck() throws InterruptedException {
 final HighScoreService realHighScoreService =
 new StubHighScoreService();

 final Game gameUnderTest = new Game(realHighScoreService);

 final CountDownLatch latch = new CountDownLatch(1);
 final List<Throwable> exceptions = new ArrayList<>();

 final Runnable highScoreRunnable = new Runnable() {
 @Override
 public void run() {
 final String highScoreDisplay =
 gameUnderTest.displayHighScores();
 try {
 assertNotNull(highScoreDisplay);
 } catch (Throwable e) {
 exceptions.add(e);
 }
 latch.countDown();
 }
 };

 new Thread(highScoreRunnable).start();
 assertTrue(latch.await(1, TimeUnit.SECONDS));

 if(!exceptions.isEmpty()) {
 fail("Exceptions thrown in different thread: " + exceptions);
 }
}

132  ❘  CHAPTER 9  Testing with JUnit

Managing the timing has added quite a lot of code. If you are not familiar with threads or
CountDownLatches, these are covered in Chapter 11. What happens here is that the main executing
thread waits for the thread running the test to complete, and if that takes longer than a second, the
assertion surrounding latch.await returns false, so the test fails.

Also, JUnit will only fail a test for any failed assertions on the thread running the test, so you need
to capture and collate any exceptions from assertions (or otherwise) from the spawned thread, and
fail the test if any exceptions were thrown.

How does the @RunWith annotation work?

The @RunWith annotation is a class-level annotation, and it provides a mechanism for changing
the default behavior of the test runner. The parameter to the annotation is a subclass of Runner.
JUnit itself comes with several runners, the default being JUnit4, and a common alternative is the
Parameterized class.

When a JUnit test is annotated with @RunWith(Parameterized.class), several changes are made
to the life cycle of the test and the way the test is run. A class-level method providing the test data is
expected, and this returns an array of data to use for testing. This data could be hard-coded in the
test, or for more sophisticated tests, this could be dynamically produced, or even pulled in from a
filesystem, database, or another relevant storage mechanism.

However this data is generated, each element in the array from this method is passed into the con-
structor for the test suite, and all tests run with that data.

Listing 9-9 shows a test suite run with the Parameterized runner. It provides a layer of abstraction
over the tests; all of the tests are run against each of the data sets.

Listing 9-9:  Using the Parameterized test runner

@RunWith(Parameterized.class)
public class TestWithParameters {

 private final int a;
 private final int b;
 private final int expectedAddition;
 private final int expectedSubtraction;
 private final int expectedMultiplication;
 private final int expectedDivision;

 public TestWithParameters(final int a,
 final int b,
 final int expectedAddition,
 final int expectedSubtraction,
 final int expectedMultiplication,
 final int expectedDivision) {
 this.a = a;
 this.b = b;
 this.expectedAddition = expectedAddition;

Best Practices for Using JUnit  ❘  133

 this.expectedSubtraction = expectedSubtraction;
 this.expectedMultiplication = expectedMultiplication;
 this.expectedDivision = expectedDivision;
 }

 @Parameterized.Parameters
 public static List<Integer[]> parameters() {
 return new ArrayList<Integer[]>(3) {{
 add(new Integer[] {1, 2, 3, -1, 2, 0});
 add(new Integer[] {0, 1, 1, -1, 0, 0});
 add(new Integer[] {-11, 2, -9, -13, -22, -5});
 }};
 }

 @Test
 public void addNumbers() {
 assertEquals(expectedAddition, a + b);
 }

 @Test
 public void subtractNumbers() {
 assertEquals(expectedSubtraction, a - b);
 }

 @Test
 public void multiplyNumbers() {
 assertEquals(expectedMultiplication, a * b);
 }

 @Test
 public void divideNumbers() {
 assertEquals(expectedDivision, a / b);
 }
}

This listing introduces some new concepts. First, a new annotation, @Parameterized.Parameters,
needs to be placed on a public class method, and it returns a list of arrays. The objects in each array
are passed to the constructor of the test, with the same ordering in the array as the ordering to the
constructor.

One thing to bear in mind is that for test suites that require many parameters, it can be unwieldy or
unclear as to which position in the provided array matches which constructor argument.

For this listing, the parameters() class method returns a readily constructed instance of an
ArrayList.

What can you do if you want to customize the running of your tests?

At times it may be appropriate to create your own test runner.

One property of a good suite of unit tests is that they should be atomic. This means that they should
be able to be run in any sequence, with no dependency on any other test in the suite.

mailto:@Parameterized.Parameters
mailto:@Parameterized.Parameters

134  ❘  CHAPTER 9  Testing with JUnit

Using Double Braces

The parameters for the test in Listing 9-9 use syntactic sugar, with double braces
following the constructor. Inside the double braces, instance methods are called.
What is happening here is that an anonymous subclass of ArrayList has been cre-
ated, and inside that implementation, a block of code is defined to be run after the
object has been constructed. Because the anonymous block is not defined as static,
it is at the instance level, and so instance methods and variables can be called. The
following code shows the logical, but more verbose, equivalent of that code, which
should highlight exactly what is happening if it is not yet clear:

public class ListOfIntegerArraysForTest
 extends ArrayList<Integer[]> {
 {
 this.add(new Integer[]{1, 2, 3, -1, 2, 0});
 this.add(new Integer[]{0, 1, 1, -1, 0, 0});
 this.add(new Integer[]{-11, 2, -9, -13, -22, -5});
 }

 public ListOfIntegerArraysForTest() {
 super(3);
 }
}

@Parameterized.Parameters
public static List<Integer[]> parameters() {
 return new ListOfIntegerArraysForTest();
}

If you are still unsure of how this works, try running the code with some logging
statements, or step through it in a debugger in your favorite IDE.

It is not advisable to use this double-curly-bracket technique for production code,
because it creates a new anonymous class for each declaration, which will take up
space in the PermGen area of the JVM’s memory for each new anonymous class.
There will also be the overhead actually loading the class, such as verification
and initializing the class. But for testing, this provides a neat and concise way of
creating immutable objects, with the object declaration and construction all held
together. Be wary that this can be confusing to people who are not familiar with
the construct, so perhaps include a comment, or talk directly with your team to
make them aware of this.

Though this is generally an implied rule, there is nothing within the JUnit library to enforce this.
However, it should be possible to write your own test runner that runs the test methods in a random
order. Should any test be dependent on any other, running the tests in a different order could expose this.

The JUnit runners are concrete implementations of the Runner abstract class. Listing 9-10 shows the
class structure, along with the methods, that must be implemented for a custom runner.

mailto:@Parameterized.Parameters

Best Practices for Using JUnit  ❘  135

Listing 9-10:  The Runner class

public abstract class Runner implements Describable {
 public abstract Description getDescription();
 public abstract void run(RunNotifier notifier);

 public int testCount() {
 return getDescription().testCount();
 }
}

In your implementation of the Runner, there is just one convention to follow: You must provide a
single argument constructor, which takes a Class object. JUnit will call this constructor once, pass-
ing in the class of the test suite. You are then free to do whatever you require with that class.

The Runner abstract class shows two methods that must be implemented: getDescription, which
informs which methods to run and in which order, and run, which actually runs the test.

Given a class of the test suite and these two methods, it should be clear that this gives total flexibil-
ity as to what is run, how it is run, and how to report the outcome.

The Description class is a relatively straightforward class that defines what exactly is to be run,
and the order of the run. To create a Description instance for running a set of JUnit tests, you
call the static method createSuiteDescription. To add actual tests, you add child Description
objects with the addChild method. You create the actual test description instances with another
static method, createTestDescription. Considering that Description objects themselves contain
Descriptions, you can create a tree of Descriptions several instances deep. In fact, this is what
the Parameterized runner does: For a test suite, it creates a child for each of the parameters, and
for each of those children, it creates a child for each test.

Given that the getDescription method on the Runner interface has no parameters, you need to
create the instance to return before the method is called: on construction of the runner. Listing 9-11
shows the construction and the getDescription method of the RandomizedRunner.

Listing 9-11:  The RandomizedRunner description generation

public class RandomizedRunner extends Runner {

 private final Class<?> testClass;
 private final Description description;

 private final Map<String, Method> methodMap;

 public RandomizedRunner(Class<?> testClass)
 throws InitializationError {

 this.testClass = testClass;
 this.description =

continues

136  ❘  CHAPTER 9  Testing with JUnit

 Description.createSuiteDescription(testClass);

 final List<Method> methodsUnderTest = new ArrayList<>();

 for (Method method : testClass.getMethods()) {
 if (method.isAnnotationPresent(Test.class)) {
 methodsUnderTest.add(method);
 }
 }

 Collections.shuffle(methodsUnderTest);

 methodMap = new HashMap<>();

 for (Method method : methodsUnderTest) {
 description.addChild(Description.createTestDescription(
 testClass,
 method.getName())
);

 System.out.println(method.getName());
 methodMap.put(method.getName(), method);
 }
 }

 @Override
 public Description getDescription() {
 return description;
 }

 @Override
 public void run(RunNotifier runNotifier) {
 // not yet implemented
 }

 public static void main(String[] args) {
 JUnitCore.main(RandomizedRunner.class.getName());
 }
}

Reflection is used to find all of the methods from the given testClass suite; each is tested for the
presence of the @Test annotation, and if so, is captured for running as a test later.

Notice that there is no constraint on using the @Test annotation for marking the methods to be
run as tests. You could have used any annotation, or indeed any kind of representation, such as a
prefix of test on any relevant method. (This was the standard before JUnit 4, before annotations
were part of the Java language.) In fact, as you will see in the section “Creating System Tests with
Behavior-Driven Development” later in this chapter, these tests are run without using the @Test
annotation.

Listing 9-11  (continued)

Best Practices for Using JUnit  ❘  137

For brevity, this Runner implementation is more limited than the default implementation in JUnit. It
assumes that all methods annotated with @Test will be runnable as a test. There is no understand-
ing of any other annotation such as @Before, @After, @BeforeClass, and @AfterClass. Also note
that @Ignore is not checked either: Merely the presence of @Test will mark that method for testing.

As each method on the class is checked for the @Test annotation, it is placed into a holding collec-
tion, and is then randomly sorted using the utility method Collections.shuffle.

The methods are added to the Description object in that random order. The description uses the
method name to keep track of the test to run. So, for convenience, the method object is added to a
mapping against its name for later lookup by the description’s method name.

The Description object itself informs the JUnit framework of what is going to be run; it’s still up
to the runner to actually run the tests and decide if the test suite has succeeded, or if not, what has
failed. When the framework is ready to run the tests, it calls the Runner’s run method. Listing 9-12
is the RandomizedRunner class’s implementation.

Listing 9-12:  The RandomizedRunner’s run method

@Override
public void run(RunNotifier runNotifier) {
 runNotifier.fireTestStarted(description);
 for (Description descUnderTest : description.getChildren()) {
 runNotifier.fireTestStarted(descUnderTest);
 try {
 methodMap.get(descUnderTest.getMethodName())
 .invoke(testClass.newInstance());

 runNotifier.fireTestFinished(descUnderTest);
 } catch (Throwable e) {
 runNotifier.fireTestFailure(
 new Failure(descUnderTest, e.getCause()));
 }
 }
 runNotifier.fireTestFinished(description);
}

The run method has one parameter: a RunNotifier object. This is the hook back to the JUnit
framework to say whether each test has succeeded or failed, and if it has failed, what exactly
happened.

Remember that for the RandomizedRunner, the Description object had two levels: a top level for
the suite, and then a child for each test. The run method needs to notify the framework that the
suite has started running. It then calls each of the children, in turn. These children were added to
the description in the random order.

For each of these children, a new instance of the test suite class is created, and the test method is
invoked using reflection. Before the invocation, the framework is notified that the test is about to
be run.

138  ❘  CHAPTER 9  Testing with JUnit

JUnit and IDEs

You may recognize that IDEs such as IntelliJ and Eclipse have very tight integration
with JUnit: during a test run, their interfaces show exactly what test is running,
what has already run, what has passed, and what has failed. The IDEs are using the
calls to the RunNotifier to update their own test runner display.

If and when the test passes, the RunNotifier is told that the test has completed. But if the invoca-
tion throws any kind of exception, the catch block updates the RunNotifier of the failure. One
point to note here is that the Failure object takes two parameters: the description object that has
failed and the exception instance causing the failure. Considering this method was invoked using
reflection, any exception caught will be a java.lang.reflect.InvocationTargetException,
with the causing exception chained to that exception. It is therefore much clearer to any user of the
RandomizedRunner to display the cause, ignoring the exception from reflection.

Now, any test suites marked with @RunWith(RandomizedRunner.class) can take advantage of
having the test methods run in a non-specific order. Should multiple runs of the suite result in flick-
ering tests, this will show an issue with one or more of the tests: They may depend on being run in a
certain order, or the tests may not be cleaning their environment before or after their run.

A couple of possible extensions to this runner could be to try and figure out which test is causing
a problem. When creating the Description object, you could add each method under test several
times before the list of all methods is shuffled. Another approach could be to perform a binary
search on the tests. Should any test fail, you could split the test list in two and rerun each list run. If
all the tests in that sublist pass, the problematic test is most likely in the other half. You could fur-
ther split the list in a similar manner until the test causing problems has been isolated.

Eliminating Dependencies with Mocks

What is the difference between a unit test and an integration test?

JUnit has something of an unfortunate name, in that it can be used for both unit testing and integra-
tion testing, among other things. The usual definition for a unit test is a test that purely tests a single
unit of functionality. It will have no side effects. A well-defined unit test, run several times with no
other changes, will produce exactly the same result each time.

Integration tests are a more complex beast. As their name suggests, integration tests examine several
parts of a system to make sure that when integrated, these parts behave as expected. These tests often
cover things like calling and reading from a database, or even involving calls to another server. There
can often be dummy data inserted into a database, which will be expected for the test. This can lead
to brittle tests, should database schemas or URL endpoints change. It is possible to use in-memory
databases to test database interaction within integration tests. This is covered in Chapter 12.

Eliminating Dependencies with Mocks  ❘  139

For any non-complex system, testing single classes in isolation can be difficult, because they will
have dependency on external factors, or other classes, which in turn can have dependency on exter-
nal factors, and so on. After all, any running application that has no external dependencies cannot
affect the outside world—it is essentially useless!

To break down the dependencies between classes and the outside world, you have two main things
to follow: the use of dependency injection and mocking. The two go hand in hand. Dependency
injection and specifically how to use that with integration testing is covered in more detail in
Chapter 16, but Listing 9-13 highlights a small example.

Listing 9-13:  A game with a dependency on a high score service

public interface HighScoreService {
 List<String> getTopFivePlayers();
 boolean saveHighScore(int score, String playerName);
}

public class Game {

 private final HighScoreService highScoreService;

 public Game(HighScoreService highScoreService) {
 this.highScoreService = highScoreService;
 }

 public String displayHighScores() {
 final List<String> topFivePlayers =
 highScoreService.getTopFivePlayers();
 final StringBuilder sb = new StringBuilder();

 for (int i = 0; i < topFivePlayers.size(); i++) {
 String player = topFivePlayers.get(i);
 sb.append(String.format("%d. %s%n", i+1, player));
 }

 return sb.toString();
 }
}

You could imagine an implementation of the HighScoreService class calling a database, which
would sort results before returning the list for the top players, or perhaps the class calling a web
service to get the data.

The Game class depends on the HighScoreService—it should not care how and where the high
scores come from.

To test the algorithm in the displayHighScores() method, an instance of the HighScoreService
is needed. If the implementation used in testing is configured to call an external web service, and
that service is down for one of any number of reasons, then the test will fail, and you can do little to
rectify it.

140  ❘  CHAPTER 9  Testing with JUnit

However, if a special instance is created, especially for testing, that reacts exactly as expected, this
instance could be passed to the object when it is constructed, and it would allow testing of the
displayHighScores() method. Listing 9-14 is one such implementation.

Listing 9-14:  Testing the Game class with a stub

public class GameTestWithStub {

 private static class StubHighScoreService
 implements HighScoreService {
 @Override
 public List<String> getTopFivePlayers() {
 return Arrays.asList(
 "Alice",
 "Bob",
 "Charlie",
 "Dave",
 "Elizabeth");
 }

 @Override
 public boolean saveHighScore(int score, String playerName) {
 throw new UnsupportedOperationException(
 "saveHighScore not implemented for this test");
 }
 }

 @Test
 public void highScoreDisplay() {
 final String expectedPlayerList =
 "1. Alice\n" +
 "2. Bob\n" +
 "3. Charlie\n" +
 "4. Dave\n" +
 "5. Elizabeth\n";

 final HighScoreService stubbedHighScoreService =
 new StubHighScoreService();
 final Game gameUnderTest = new Game(stubbedHighScoreService);

 assertEquals(
 expectedPlayerList,
 gameUnderTest.displayHighScores());
 }
}

Using a stub implementation of the HighScoreService means that the Game class will return the
same list every time, with no latency from a network or database processing, and no issues around
if a given high score service is running at the time of the test. This is not a silver bullet, though.
You would want to verify other properties of this call to the high score service; for instance, that
the service is called once and only once to generate this list, and not that the Game instance is doing

Eliminating Dependencies with Mocks  ❘  141

something inefficient, such as calling the service once for each of the five players, or that it’s not
called at all and somehow the Game is using a stale cached value.

Introducing a mock object can take care of these criteria. You can think of a mock as a smarter
stub. It has the capability to respond differently to different method calls, regardless of the argu-
ments passed, and it can record each call to assert that the calls were actually made as expected.

One such Java library is called Mockito. Listing 9-15 expands on Listing 9-14, testing the Game class
more thoroughly.

Listing 9-15:  Testing the Game class with a mock

import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;

public class GameTestWithMock {

 private final Game gameUnderTest;
 private final HighScoreService mockHighScoreService;

 public GameTestWithMock() {
 final List<String> firstHighScoreList = Arrays.asList(
 "Alice",
 "Bob",
 "Charlie",
 "Dave",
 "Elizabeth");
 final List<String> secondHighScoreList = Arrays.asList(
 "Fred",
 "Georgia",
 "Helen",
 "Ian",
 "Jane");

 this.mockHighScoreService = mock(HighScoreService.class);

 Mockito.when(mockHighScoreService.getTopFivePlayers())
 .thenReturn(firstHighScoreList)
 .thenReturn(secondHighScoreList);

 this.gameUnderTest = new Game(mockHighScoreService);
 }

 @Test
 public void highScoreDisplay() {
 final String firstExpectedPlayerList =
 "1. Alice\n" +
 "2. Bob\n" +
 "3. Charlie\n" +
 "4. Dave\n" +

continues

142  ❘  CHAPTER 9  Testing with JUnit

 "5. Elizabeth\n";

 final String secondExpectedPlayerList =
 "1. Fred\n" +
 "2. Georgia\n" +
 "3. Helen\n" +
 "4. Ian\n" +
 "5. Jane\n";

 final String firstCall = gameUnderTest.displayHighScores();
 final String secondCall = gameUnderTest.displayHighScores();

 assertEquals(firstExpectedPlayerList, firstCall);
 assertEquals(secondExpectedPlayerList, secondCall);

 verify(mockHighScoreService, times(2)).getTopFivePlayers();
 }
}

This test can be broadly split into three parts: The test and mock are set up (which is done in the test
suite constructor), the test itself is run, and then the assertions are checked.

In the constructor, a mock HighScoreService class is created, using Mockito’s mocking framework.
This creates the special instance, which is an implementation of the HighScoreService interface.
Following this mock generation, the mock is instructed how to react to the getTopFivePlayers()
call. It is told to give different responses to its first and second call, simulating the data from the
service changing between calls. It is not relevant for this test, but for any subsequent calls to
getTopFivePlayers(), the mock will return the second list repeatedly. Once the mock has been
configured, this instance is passed to the constructor of the Game class.

The test is then executed. The displayHighScores() method is called twice, and an expectation
has been made that for each call to displayHighScores(), a call is made to getTopFivePlayers()
on the HighScoreService instance. The responses from each call are captured by the mock itself.

The responses are then asserted against the expectation of how the Game will format the top five
players. Finally, the test checks with Mockito that the mock was used in the correct way. This test
expected the getTopFivePlayers() method on the mock to be called twice. If this verification is
not correct, an appropriate Mockito exception is thrown, failing the test.

Take a moment to make sure you fully understand how the mock interacts with the Game class.
Note that, for the high scores, the Game class has been verified to work properly, at least for the test
cases presented, without any thought given to the implementation of the HighScoreService. Any
future change to a HighScoreService implementation that does not change the interface defini-
tion will have no effect on this test. A clear separation has been made between the Game and the
HighScoreService.

The mocks that Mockito provides are extremely flexible. Other libraries can only mock interfaces, but
Mockito mocks can mock concrete implementations too. This is extremely useful for working with leg-
acy code, where perhaps dependency injection wasn’t used properly, or interfaces were not used at all.

Listing 9-15  (continued)

Creating System Tests with Behavior-Driven Development  ❘  143

Mockito cannot mock final classes, due to the way they are stored and constructed in the JVM. The
JVM takes precautionary measures for security to make sure a final class is not replaced.

How expressive can you make your tests?

You can use the Hamcrest matcher library in conjunction with JUnit to help articulate assertions
and improve readability of tests. The construction of an assertion using Hamcrest matchers is a
form of Domain-Specific Language (DSL). Listing 9-16 shows a simple example.

Listing 9-16:  Using the Hamcrest matchers

import static org.hamcrest.MatcherAssert.*;
import static org.hamcrest.Matchers.*;

public class HamcrestExample {

 @Test
 public void useHamcrest() {
 final Integer a = 400;
 final Integer b = 100;

 assertThat(a, is(notNullValue()));
 assertThat(a, is(equalTo(400)));
 assertThat(b - a, is(greaterThan(0)));
 }
}

These assertion lines attempt to read like English. The library has several methods that return
an instance of Matcher. When the matcher is evaluated, if it is not true, the assertThat method
throws an exception. Similar to the Assert class methods in JUnit, the assertThat method can
take an extra String parameter, which is displayed on the assertion failing. Again, try to make the
reason read well in the code, and also highlight an error by describing what should happen.

The is method is more syntactic sugar. Although it does not add any functional value, it provides
help to the programmer, or anyone reading the code. Because the is method merely delegates to the
matcher inside the method, it is optional, serving only to make the code more legible.

The use of Hamcrest matchers often divides opinion. If you like them, use them. If not, then unless
you are specifically asked to use them, nobody will expect you to.

Creating System Tests with Behavior-Driven
Development

What is Behavior-Driven Development?

144  ❘  CHAPTER 9  Testing with JUnit

In relation to unit testing, Behavior-Driven Development (BDD) is a much newer concept. BDD
tests are composed of two components: the test script, which is written in as close to natural lan-
guage as possible, and the code backing the test script to run.

A general motivator behind these tests is to provide a very high-level test, independent of any imple-
menting code, essentially treating a system as a black box. These tests are often called system tests.
Listing 9-17 is a script, called a feature, for use in a BDD test.

Listing 9-17:  A feature for a BDD test

Feature: A simple mathematical BDD test

 Scenario Outline: Two numbers can be added
 Given the numbers <a> and
 When the numbers are added together
 Then the result is <result>

 Examples:
 | a | b | result |
 | 1 | 10 | 11 |
 | 0 | 0 | 0 |
 | 10 | -5 | 5 |
 | -1 | 1 | 0 |

This has been written to run with the Cucumber library. Cucumber originated as a BDD framework
for the Ruby language, and was later rewritten to run natively on the JVM. Other BDD frame-
works, such as JBehave, work in a similar way.

It is quite easy to imagine that a non-technical user of the system, perhaps the product owner or a
major stakeholder, could write scripts like this, or perhaps even a customer, if that is relevant.

The script follows a prescribed set of instructions, called steps. The steps are split into three: Given,
When, and Then.

➤➤ The Given steps prime the system into a known state, which is necessary for the following
steps.

➤➤ The When steps perform the action under test. This will, or at least should, have a measur-
able effect on the system under test.

➤➤ The Then steps measure that the When steps were performed successfully.

The ordering of the steps is important. Given is followed by When, which is followed by Then. It is
possible to have multiple steps performed for each of these keywords; but rather than having mul-
tiple Given/When/Then, you use And instead:

Given a running web server
And a new user is created with a random username
... etc

Creating System Tests with Behavior-Driven Development  ❘  145

Of course, this script needs to be backed up by actual running code in order to verify that the test
passes. Listing 9-18 is a possible implementation for the feature in Listing 9-17.

Listing 9-18:  Cucumber steps

public class CucumberSteps {

 private int a;
 private int b;
 private int calculation;

 @Given("^the numbers (.*) and (.*)$")
 public void captureNumbers(final int a, final int b) {
 this.a = a;
 this.b = b;
 }

 @When("^the numbers are added together$")
 public void addNumbers() {
 this.calculation = a + b;
 }

 @Then("^the result is (.*)$")
 public void assertResult(final int expectedResult) {
 assertEquals(expectedResult, calculation);
 }
}

@RunWith(Cucumber.class)
public class CucumberRunner { }

Each of the steps is defined in its own method, with an annotation for that method. The annotation
has a string parameter, which itself is a regular expression. When the test is run, the runner searches
the methods with the correct annotation to find a regular expression match for that step.

Listing 9-17 parameterized the scenario, with what is called a scenario outline. This means that
each step can be called with a variable input. This input can be captured with the regular expres-
sion grouping. A parameter of the appropriate type is then required on the method, giving the code
access to the different test inputs.

Note that the implementation of Cucumber scenarios requires a specific JUnit runner, provided
by the Cucumber jar. The @RunWith annotation must reside on a separate class definition than the
steps. Even though the Cucumber tests are run through the JUnit library, using this runner means
that no @Test annotations are necessary.

If a method can be used by more than one of steps classifications, then merely adding a new annota-
tion to the method will allow that code to be run for that step.

Once you have written a few tests, a small vocabulary will be available, and you can reuse these
Given/When/Then lines to make new tests, requiring minimal new coding effort (or perhaps none
at all). Designing tests this way gives plenty of scope for those writing the test scripts to think up

146  ❘  CHAPTER 9  Testing with JUnit

their own scenarios, and writing tests from steps already implemented. Following on from the addi-
tion example, imagine a new requirement to be able to subtract numbers. You could write the new
scripts, and you would need to add only one new method:

@When("^the first number is subtracted from the second$")
public void subtractAFromB() {
 this.calculation = b - a;
}

For multiple steps where And is used, the correct Given/When/Then annotation is used.

BDD tests are a useful vehicle for managing a test over several changes in state. This could work
very well with database interaction. The Given step could prime the database ready for the test,
checking for or inserting necessary data. The When step performs the test, and the Then step asserts
that the test was successful. As with the regular JUnit runner, you can provide @Before and @After
annotated methods that are run before each scenario.

Summary

If you are not writing tests when you write code, now is the time to start. You will find that the
more experience you get writing tests, the easier it is to write your production code. You will break
down problems into manageable, testable chunks. Any future changes that break existing code will
be spotted sooner rather than later. Eventually, writing tests will become second nature.

Try to break up any tests that you do write into logical units. Write unit tests for single pieces of
functionality, which have no side effects. Any dependencies will be mocked. Write integration tests
for any test code that has a side effect, such as writing to a filesystem or database, and clean up any
side effects when the test completes, whether it passes or fails. One convention is to suffix any inte-
gration test class with IntegrationTest, and unit tests simply with Test.

When faced with a technical test for an interview, writing tests is an ideal way to help express why
you wrote code in a certain way. Even in a time-limited test, writing even basic tests first will help
structure your code, and help avoid errors in any last-minute refactoring.

The error message parameter on the Assert class methods is a perfect way to open a dialogue with
anyone reading your code; it is a space to write exactly what you are thinking, and exactly what
your code should do. Use this space to communicate your thoughts.

Importing the JUnit jar is very simple in IntelliJ and Eclipse. Both these IDEs recognize when you
are writing test code, and will give you the option to import the library directly: no need for editing
Maven POMs and reimporting whole projects.

The technical interview we use with my current employer does not advise writing tests at all, but
whenever a completed interview is received, the first thing we do is check what tests have been writ-
ten. If there are no tests at all, it is highly unlikely that candidate will be asked in for a face-to-face
interview.

Chapter 10 looks at the Java Virtual Machine, how the Java language interacts with it, and what an
interviewer may ask about how to optimize its performance and memory footprint.

Understanding the Java
Virtual Machine

The Java virtual machine (JVM) is the platform upon which your programs run. It is built for
that specific operating system and architecture, and sits between the operating system and any
compiled programs or applications you write, making it platform agnostic. Java programs are
compiled (using javac) into bytecode. This is interpreted by the JVM into the specific instruc-
tions for that architecture and operating system.

Other compiled languages such as C++ or Objective-C need to be compiled to run with a
defined host architecture and operating system, but this is not the case with Java. Regardless
of the platform on which your Java code was compiled, it can run on any JVM of the same or
later version.

Considering this is where your code runs, it is important to understand how the JVM works,
and how you can tweak certain parameters to obtain optimum performance for your code.

This chapter covers the particulars around the JVM’s memory model, such as how that memory
is allocated to your objects, and how the JVM reclaims that memory once you no longer need
it. It then reviews the different memory areas and how the JVM uses them. Finally, this chapter
looks at certain language hooks to allow executing code to interact with a running JVM.

Garbage Collection

How is memory allocated?

The new keyword allocates memory on the Java heap. The heap is the main pool of memory,
accessible to the whole of the application. If there is not enough memory available to allocate for
that object, the JVM attempts to reclaim some memory from the heap with a garbage collection.
If it still cannot obtain enough memory, an OutOfMemoryError is thrown, and the JVM exits.

10

148  ❘  CHAPTER 10  Understanding the Java Virtual Machine

The heap is split into several different sections, called generations. As objects survive more garbage
collections, they are promoted into different generations. The older generations are not garbage col-
lected as often. Because these objects have already proven to be longer lived, they are less likely to be
garbage collected.

When objects are first constructed, they are allocated in the Eden Space. If they survive a garbage
collection, they are promoted to Survivor Space, and should they live long enough there, they are
allocated to the Tenured Generation. This generation is garbage collected much less frequently.

There is also a fourth generation, called the Permanent Generation, or PermGen. The objects that
reside here are not eligible to be garbage collected, and usually contain an immutable state neces-
sary for the JVM to run, such as class definitions and the String constant pool. Note that the
PermGen space is planned to be removed from Java 8, and will be replaced with a new space called
Metaspace, which will be held in native memory.

Using the PermGen Space

For most applications, the PermGen area contains traditional class definitions,
String constants, and not much else. Newer languages running on the JVM, such
as Groovy, have the capability to create dynamic class definitions, and when used
under load, this can fill up the PermGen space easily. You must be careful when
creating many dynamic class definitions; and you may need to tweak the default
memory allocation for PermGen space.

What is garbage collection?

Garbage collection is the mechanism of reclaiming previously allocated memory, so that it can be
reused by future memory allocations. In most languages, garbage collection is automated; you do
not need to free up the memory yourself. In Java, whenever a new object is constructed, usually by
the new keyword, the JVM allocates an appropriate amount of memory for that object and the data
it holds.

When that object is no longer needed, the JVM needs to reclaim that memory, so that other con-
structed objects can use it.

With languages such as C and C++, it is necessary to manage these memory allocations manually,
usually through function calls to malloc and free. More modern languages, such as Java and C#,
have an automatic system for this, taking the effort, and any potential mistakes, away from the
programmer.

Several different algorithms for garbage collection exist, but they all have the same goal of finding
allocated memory that is no longer referenced by any live code, and returning that to a pool of avail-
able memory for future allocations.

Memory Tuning  ❘  149

The traditional garbage collection algorithm in Java is called mark-and-sweep. Each object reference
in running code is marked as live, and each reference within that object is traversed and also marked
as live, and so on, until all routes from live objects have been traced.

Once this is complete, each object in the heap is visited, and those memory locations not marked as
live are made available for allocation. During this process, all of the threads in the JVM are paused
to allow the memory to be reclaimed, known as stop-the-world. Naturally, the garbage collector
tries to minimize the amount of time this takes. There have been several iterations of the garbage
collection algorithm since Java was first released, with as much of the work done in parallel as
possible.

Java 6 introduced a new algorithm, called Garbage First (G1). It was approved for test use in Java
6, and production use in Java 7. G1 still concentrates on a mark-and-sweep algorithm, running in
parallel, but it concentrates on areas of mainly empty memory first in an attempt to keep large areas
of free space available.

Other operations are also performed during garbage collection, such as promotion to different gen-
erations, and grouping frequently accessed objects together by moving the objects around within
memory to try to retain as much free space as possible. This is called compaction. Compaction takes
place while the JVM is in its stop-the-world phase, as live objects are potentially moving to different
physical memory locations.

Memory Tuning

What is the difference between the stack and the heap?

Memory is split into two major parts, the stack and the heap. Most discussion so far in this chapter
has been about object allocation, which is what the heap is used for.

The stack is the place where any primitive values, references to objects, and methods are stored. The
lifetime of variables on the stack is governed by the scope of the code. The scope is usually defined
by an area of code in curly brackets, such as a method call, or a for or while loop. Once the execu-
tion has left that scope, those variables declared in the scope are removed from the stack.

When you call a method, those declared variables are placed on top of the stack. Calling another
method within that stack pushes the new method’s variables onto the stack.

A recursive method is a method that, directly or indirectly, calls itself again. If a method calls itself
too many times, the stack memory fills up, and eventually any more method calls will not be able to
allocate their necessary variables. This results in a StackOverflowError. The stack trace from the
resultant exception usually has dozens of calls to the same method. If you are writing a recursive
method, it is important that you have a state within the method known as the base case, where no
more recursive calls will be made.

Recursive methods usually use much more stack space, and therefore more memory, than an itera-
tive counterpart. Although a recursive method can look neat and elegant, be aware of possible

150  ❘  CHAPTER 10  Understanding the Java Virtual Machine

out-of-memory errors due to stack overflow. Listing 10-1 shows the same algorithm written in both
a recursive and an iterative style.

Listing 10-1:  Using the stack for loops

@Test
public void listReversals() {
 final List<Integer> givenList = Arrays.asList(1, 2, 3, 4, 5);
 final List<Integer> expectedList = Arrays.asList(5, 4, 3, 2, 1);

 assertEquals(expectedList.size(), reverseRecursive(givenList).size());
 assertEquals(expectedList.size(), reverseIterative(givenList).size());
}

private List<Integer> reverseRecursive(List<Integer> list) {
 if (list.size() <= 1) { return list; }
 else {
 List<Integer> reversed = new ArrayList<>();
 reversed.add(list.get(list.size() - 1));
 reversed.addAll(reverseRecursive(list.subList(0, list.size() - 1)));
 return reversed;
 }
}

private List<Integer> reverseIterative(final List<Integer> list) {
 for (int i = 0; i < list.size() / 2; i++) {
 final int tmp = list.get(i);
 list.set(i, list.get(list.size() - i - 1));
 list.set(list.size() - i - 1, tmp);
 }

 return list;
}

Compare the two algorithms for reversing an array. How much space does each algorithm need? For
the recursive definition, each time the method is recursively called, a new list is created. These lists
from each method call must be held in memory until the list has been completely reversed. Although
the actual lists will be held on the heap (because that is where objects are stored), each method call
needs stack space.

For the iterative version, the only space needed is a variable to hold one value while it is being
swapped with its counterpart at the other end of the list. There are no recursive calls, so the stack
will not grow very deep. No new objects are allocated, so no extra space is taken on the heap.

Experiment with the number of elements in the list. Can you make the recursive method throw a
StackOverflowError?

How can you define the size of the heap for the JVM?

Memory Tuning  ❘  151

The JVM provides several command-line arguments for defining the size of the memory allocated to
the different memory areas.

When starting up the JVM, you can specify the maximum heap size with the command-line flag
-Xmx and a size. For example, starting the JVM with java -Xmx512M <classname> creates a JVM
with a maximum heap size of 512 megabytes. Suffixes for the memory size are G for gigabytes, M for
megabytes, or K for kilobytes. It is important to note that the JVM will not allocate this memory
in its entirety on startup; it will grow to a maximum of that size only if needed. Before the JVM
expands its memory allocation, it will try to perform as much garbage collection as possible.

To specify the initial amount of memory allocated to the JVM, use the -Xms argument. It works
in the same way as -Xmx. This argument is advisable if you know you are going to need a certain
amount of memory for your function, as it will save your application from excessive slow garbage
collections before expanding to your required size.

If both arguments are set to the same value, the JVM will ask the operating system for that full
memory allocation on startup, and it will not grow any larger.

For the initial memory allocation, the default value is 1/64 of the memory on the computer, up to
1 GB. For the maximum default, it is the smaller of 1 GB and a quarter of the computer’s physical
memory. Considering that these can vary wildly from computer to computer, you should specify the
values explicitly for any code running in a production environment, and make sure your code per-
forms to satisfaction for these values.

Similar to setting initial and maximum heap sizes, you have JVM startup arguments for setting the
size of the stack, too. For most running programs, you should avoid setting these. If you find your-
self running into StackOverflowExceptions on a regular basis, you should examine your code and
replace as many recursive methods with iterative counterparts as possible.

Other relevant JVM arguments include -XX:Permsize and -XX:MaxPermSize for the permanent
generation. You may want to set this if you have a large number of classes or string constants, or if
you are creating many dynamic class definitions using a non-Java language.

Is it possible to have memory leaks in Java?

A common misconception with the Java language is that, because the language has garbage col-
lection, memory leaks are simply not possible. Admittedly, if you are coming from a C or C++
background you will be relieved that you do not need to explicitly free any allocated memory, but
excessive memory usage can occur if you are not careful. Listing 10-2 is a simple implementation of
a stack that can be exposed to memory leaks.

Listing 10-2:  A collection with a memory leak

public class MemoryLeakStack<E> {

 private final List<E> stackValues;

continues

152  ❘  CHAPTER 10  Understanding the Java Virtual Machine

 private int stackPointer;

 public MemoryLeakStack() {
 this.stackValues = new ArrayList<>();
 stackPointer = 0;
 }

 public void push(E element) {
 stackValues.add(stackPointer, element);
 stackPointer++;
 }

 public E pop() {
 stackPointer--;
 return stackValues.get(stackPointer);
 }
}

Ignoring any concurrency issues or elementary exceptions, such as calling pop on an empty stack,
did you manage to spot the memory leak? When popping, the stackValues instance keeps a refer-
ence to the popped object, so it cannot be garbage collected. Of course, the object will be overwrit-
ten on the next call to push, so the previously popped object will never be seen again; but until that
happens, it cannot be garbage collected.

If you are not sure why this is a problem, imagine that each element on this stack is an object hold-
ing the contents of a large file in memory; that memory cannot be used for anything else while it is
referenced in the stack. Or imagine that the push method is called several million times, followed by
the same number of pops.

A better implementation for the pop method would be to call the remove method on the
stackValues list; remove still returns the object in the list, and also takes it out of the list
completely, meaning that when any client code has removed all references to the popped object,
it will be eligible for garbage collection.

Interoperability between the JVM and the
Java Language

This section covers special methods and classes.

What is the lifecycle from writing a piece of Java code to it actually running on
the JVM?

When you wish for some of your Java code to be run on a JVM, the first thing you do is compile it.
The compiler has several roles, such as making sure you have written a legal program and making
sure you have used valid types. It outputs bytecode, in a .class file. This is a binary format similar

Listing 10-2  (continued)

Interoperability between the JVM and the Java Language  ❘  153

to executable machine instructions for a specific architecture and operating system, but this is for
the JVM.

The operation of bringing the bytecode for a class definition into the memory of a running JVM
is called classloading. The JVM has classloaders, which are able to take binary .class files and
load them into memory. The classloader is an abstraction; it is possible to load class files from disk,
from a network interface, or even from an archived file, such as a JAR. Classes are only loaded on
demand, when the running JVM needs the class definition.

It is possible to create your own classloader, and start an application that uses your loader to find
classes from some location. Naturally, there are some security implications with this, so that an
arbitrary application cannot be started with a malicious classloader. For instance, Java applets are
not allowed to use custom classloaders at all.

Once a class has been loaded, the JVM itself verifies the bytecode to make sure it is valid. Some of
the checks include making sure the bytecode does not branch to a memory location outside of its
own class bytes, and all of the code instructions are complete instructions.

Once the code has been verified, the JVM can interpret the bytecode into the relevant instruction
code for the architecture and operating system it is running on. However, this can be slow, and
some of the early JVMs were notoriously slow, especially when working with GUIs for this exact
reason. However, the Just In Time compiler (JIT) dynamically translates the running bytecode into
native instructions so that interpreting the bytecode is not necessary. As this is performed dynami-
cally, it is possible for the JIT to create highly optimized machine code based directly on what the
state of the application is while it is running.

Can you explicitly tell the JVM to perform a garbage collection?

The static gc method on the System class is the method to call to tell the JVM to run a garbage col-
lection, but calling this does not guarantee that a garbage collection will happen. The documenta-
tion for the gc method says:

Calling the gc method suggests that the Java Virtual Machine expend effort
toward recycling unused objects in order to make the memory they currently
occupy available for quick reuse. When control returns from the method call, the
Java Virtual Machine has made a best effort to reclaim space from all discarded
objects.

It is not possible to enforce a garbage collection, but when you call gc, the JVM will take your
request into account, and will perform a garbage collection if it can. Calling this method may
make your code slower, putting your whole application in a stop-the-world state during garbage
collection.

Explicit calls to System.gc are usually another form of code smell; if you are calling this in an
effort to free memory, it is more than likely you have a memory leak, and you should try to address
that, rather than attempting to sprinkle your code with explicit requests to the garbage collector.

154  ❘  CHAPTER 10  Understanding the Java Virtual Machine

What does the finalize method do?

The finalize method is a protected method, inherited from Object. When the JVM is about to
garbage collect the object, this finalize method is called first. The rationale for this method is to
tie off any loose ends, to close off any resources that the garbage-collected object was dependent
upon.

One overriding concern with this method is that you have no control over when it is called: It is
called if, and only if, the JVM decides to garbage collect the object. If you were to use this method
for closing a database connection or a file handle, you could not be sure when exactly this event
would happen. If you have many objects configured in this manner, you run the risk of exhausting a
database connection pool, or perhaps even having too many files open at once.

If you are writing code that depends on an external resource that needs to be closed explicitly, like
a database, filesystem, or network interface, you should aim to close your resources as soon as pos-
sible. When appropriate, use Java 7’s new try-with-resources construct; and keep resources open for
as little time as possible.

What is a WeakReference?

A WeakReference is a generic container class, and when the contained instance has no strong refer-
ences, it is eligible for garbage collection.

An alternative approach to the stack implementation in Listing 10-1 would have been to hold a
list of WeakReferences of the elements. Then, upon garbage collection, any elements that have no
other references would be set to null. Listing 10-3 shows a possible declaration with an additional
method, peek.

Listing 10-3:  A stack implementation with WeakReference objects

public class WeakReferenceStack<E> {

 private final List<WeakReference<E>> stackReferences;
 private int stackPointer = 0;

 public WeakReferenceStack() {
 this.stackReferences = new ArrayList<>();
 }

 public void push(E element) {
 this.stackReferences.add(
 stackPointer, new WeakReference<>(element));
 stackPointer++;
 }

 public E pop() {
 stackPointer--;

Interoperability between the JVM and the Java Language  ❘  155

 return this.stackReferences.get(stackPointer).get();
 }

 public E peek() {
 return this.stackReferences.get(stackPointer-1).get();
 }
}

When the new element is pushed in the stack, it is stored as a WeakReference, and when it is popped,
the WeakReference is retrieved, and get is called to get that object. Now, when any client code has
no more pointers to that object, it will be eligible for removal in the next garbage collection.

The peek method simply returns the top element on the stack, without removing it.

Listing 10-4 shows that the reference in the stack is set to null when all strong references to the
value are removed. The ValueContainer class used merely holds a string, but its finalize method
has been overridden to highlight this method being called by the garbage collector. If you remove
the System.gc() line, the test will fail.

Listing 10-4:  Using a stack with WeakReferences

@Test
public void weakReferenceStackManipulation() {
 final WeakReferenceStack<ValueContainer> stack = new WeakReferenceStack<>();

 final ValueContainer expected = new ValueContainer("Value for the stack");
 stack.push(new ValueContainer("Value for the stack"));

 ValueContainer peekedValue = stack.peek();
 assertEquals(expected, peekedValue);
 assertEquals(expected, stack.peek());
 peekedValue = null;
 System.gc();
 assertNull(stack.peek());
}

public class ValueContainer {
 private final String value;

 public ValueContainer(final String value) {
 this.value = value;
 }

 @Override
 protected void finalize() throws Throwable {
 super.finalize();
 System.out.printf("Finalizing for [%s]%n", toString());
 }

 /* equals, hashCode and toString omitted */
}

156  ❘  CHAPTER 10  Understanding the Java Virtual Machine

This test demonstrates some quite complex concepts. It is important to note that the reference
expected and the reference passed to the stack is different. Had the push to the stack looked like
stack.push(expected), a strong reference would have been kept at all times during this test,
meaning it would not have been garbage collected, causing the test to fail.

The test inspects the stack with the peek method, confirming that the value is on the stack as
expected. The peekedValue reference is then set to null. There are no references to this value, other
than inside the WeakReference in the stack, so at the next garbage collection, the memory should
be reclaimed.

After instructing the JVM to perform a garbage collection, that reference is no longer available in
the stack. You should also see a line printed to the standard out saying that the finalize method
has been called.

Using This Example Stack

If you were to need this kind of functionality from a stack, calling the pop method
should decrement the stack pointer until it finds a non-null value. Any stack opti-
mizations due to WeakReferences being garbage collected have been omitted for
brevity.

What is a native method?

Regular Java class definitions are compiled to bytecode, held in class files. This bytecode is platform
independent, and is translated into specific instructions for the architecture and operating system
running the bytecode at run time.

At times, however, you need to run some platform-specific code, perhaps referencing a platform-
specific library, or making some operating system–level calls, such as writing to disk or a network
interface. Fortunately, the most common cases have been implemented for each platform on which
the JVM is available.

For those other times, it is possible to write a native method; that is, a method with a well-defined
header in C or C++, identifying the class name, the Java method name, as well as its parameters and
return type. When your code is loaded into the JVM, you need to register your native code so that it
knows exactly what needs to be run when your native method is called.

What are shutdown hooks?

When the JVM terminates, it is possible to have some code run before it exits, similar to the
finalize method running before an object is garbage collected. Shutdown hooks are references to
Thread objects; you can add a new reference by calling the addShutdownHook method on the cur-
rent Runtime instance. Listing 10-5 shows a simple example.

Summary  ❘  157

Listing 10-5:  Adding a shutdown hook

@Test
public void addShudownHook() {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 System.err.println(
 "Shutting down JVM at time: " + new Date());
 }
 });
}

The shutdown hook is run on a successful or unsuccessful exit code. Although the code in
Listing 10-5 merely logs what time the JVM terminated, you can imagine this facility could be
used for notifying a support team of any JVM termination, particularly if that termination is not
expected.

Summary

The JVM is an extremely versatile piece of software. It is used in many, many different ways, from
desktop applications to online real-time trading systems.

For any non-trivial application, you will need to examine how it interacts with the JVM, and
whether it runs as expected under many different conditions. Optimization of a running JVM is
often more art than science, and use of the relevant command-line arguments are rarely taught.
Read the documentation for the JVM, the java command-line application on a Mac or UNIX, or
java.exe on Windows. Experiment with the command-line arguments; see what effect they have on
your program, and try to break your application.

Be aware that different JVM vendors provide different command-line arguments. As a rule, any
argument prefixed with -XX: is usually a non-standard option, so their usage or even their presence
will differ from vendor to vendor.

The next chapter is on concurrency, looking at how Java and the JVM helps to make this as simple
as possible. The chapter also covers a new approach to asynchronous execution, using actors.

Concurrency
This chapter covers some of the basics of working with concurrency, from creating your own
threads to asking the JVM to create them for you.

This chapter also introduces the Akka framework. It is a relatively new approach to working
with concurrent programming that focuses on creating and processing messages, and allows
the framework to manage the processing in parallel.

Using Threads

How do you run code in parallel?

Java code is run in threads. When you start a simple application, such as a traditional Hello
World application, the code is run in the main thread. As you would expect, an application
needs at least one thread to run.

It is possible to create your own threads. Whenever you create a new thread, the code provided
to run in that thread will run immediately. Considering that it is not physically possible to run
more than one piece of code on a single CPU core at any one time, it is the job of the JVM to
manage these threads and schedule which thread to run and when.

Listing 11-1 shows a very simple example of running code in a separate thread.

Listing 11-1:  Running two blocks of code simultaneously

public class Threads {

 public static void main(String[] args) throws InterruptedException {

 final Thread separateThread = new Thread(new ThreadPrinter());
 separateThread.start();
 for(int i = 0; i < 5; i++) {

11

continues

160  ❘  CHAPTER 11  Concurrency

 System.out.println("From the main thread: "
 + Thread.currentThread().getName());
 Thread.sleep(1000);
 }
 }
}

public class ThreadPrinter implements Runnable {
 @Override
 public void run() {
 for(int i = 0; i < 5; i++) {
 System.out.println("From the new thread: "
 + Thread.currentThread().getName());
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

To create a new thread, you construct a new Thread object. This object takes an instance of the
Runnable interface. The Runnable interface has one method, public void run(). Notice that to
start the thread, you do not ever call this run method. You call start on the thread object, which in
turn will call run once the JVM has created the new thread in order to run the code.

The Thread class is special, because it calls out to the JVM to create new threads to allow for paral-
lel execution. If you look at the source code for the start method, you will see that it eventually
calls a private method called start0, which itself is a native method: It is implemented in the Java
Native Interface, specific to the host operating system.

A closer inspection of Listing 11-1 shows that it is doing three main operations: creating a new
thread, starting that thread, and then in both threads it is printing the name of the thread every sec-
ond for five seconds. If you run this code a few times, you will see that the ordering between the two
threads may change: Sometimes the printed line from the main thread is first, and sometimes the
printed lined from the new thread is first. The JVM is deciding which thread to schedule to run.

The Try/Catch Block

Notice that you cannot add a throws declaration to the run method on the
ThreadPrinter code in Listing 11-1, so the call to Thread.sleep must be sur-
rounded in a try/catch block. The Runnable interface does not have a throws decla-
ration, so neither can any implementing classes.

When the Callable interface was introduced in Java 5, the call method was
defined to throw any exception, so this means that the code can throw an exception
itself rather than managing it in a try/catch block.

Listing 11-1  (continued)

Using Threads  ❘  161

What is the difference between a Thread and an Executor?

Introduced in Java 5, the concurrency framework provided a set of classes for working with concur-
rent code, helping you to work with Java’s thread model.

Creating a running thread in Java is an expensive operation, and an operating system may limit the
number of threads provided to a running application at any one time. By using a thread pool, you
can create threads when needed, and, rather than creating new threads, you can reuse a thread after
it has completed running previous code.

Thankfully, Java’s concurrency framework provides a set of thread pools for common use cases,
and it is possible to extend this for your own needs. Listing 11-2 shows an example, using the same
ThreadPrinter class from Listing 11-1.

Listing 11-2:  Using Executors

public class UsingExecutor {

 public static void main(String args[]) {
 final Executor executor = Executors.newCachedThreadPool();
 executor.execute(new ThreadPrinter());
 executor.execute(new ThreadPrinter());
 executor.execute(new ThreadPrinter());
 }
}

The boilerplate code around creating and starting threads has been removed; this is taken care of in
the Executor instance for a cached thread pool.

The Executor class is an abstraction over parallel computation. It allows concurrent code to be run
in a managed way. The interface has one method, void execute(Runnable). Any implementation
can manage which threads to run the particular Runnable.

You should see that the output of Listing 11-2 logs lines from three different threads. The cached
thread pool manages the creation of these threads.

In actuality, Executors.newCachedThreadPool does not return an Executor, but an
ExecutorService. The main advantage of the ExecutorService is that the parallel computa-
tion can return a result, unlike the Executor, where the Runnable has a void return type. An
ExecutorService also has the ability to be shutdown unlike the Executors in Listing 11-2. In
fact, the code from Listing 11-2 does not terminate. Listing 11-3 shows an example of how to use
an ExecutorService.

162  ❘  CHAPTER 11  Concurrency

Listing 11-3:  Calculating pi in a separate thread

public class UsingExecutorService {

 public static void main(String[] args) throws InterruptedException,
 ExecutionException,
 TimeoutException {
 final ExecutorService executorService =
 Executors.newCachedThreadPool();
 final long startTime = System.currentTimeMillis();
 final Future<Double> future =
 executorService.submit(new PiCalculator());

 final double pi = future.get(10, TimeUnit.SECONDS);

 final long stopTime = System.currentTimeMillis();
 System.out.printf("Calculated Pi in %d milliseconds: %10.9f%n",
 stopTime - startTime,
 pi);

 executorService.shutdown();
 }

 private static class PiCalculator implements Callable<Double> {

 public Double call() throws Exception {
 double currVal = 1.0;
 double nextVal = 0.0;
 double denominator = 1.0;

 for(int i = 0;
 Math.abs(nextVal - currVal) > 0.000000001d;
 denominator += 2.0, i++) {
 currVal = nextVal;
 if(i % 2 == 1) {
 nextVal = currVal - (1 / denominator);
 } else {
 nextVal = currVal + (1 / denominator);
 }
 }

 return currVal * 4;
 }
 }
}

This listing uses the inefficient Leibniz method for generating pi, and uses an ExecutorService to
run the calculation in a separate thread. The PiCalculator class implements the parameterized
Callable interface, which has one method, call, that returns the parameterized value.

Using Threads  ❘  163

Once you have submitted the value, you can perform any other tasks and call get on the Future as
late as possible.

How do you test concurrent code?

Look at Listing 11-4.

Listing 11-4:  A test with a separate thread

@Test
public void executorExample() {
 final ExecutorService executor = Executors.newCachedThreadPool();
 final Runnable threadNamePrinter = new InfiniteThreadNamePrinter();

 System.out.println("Main thread: " +
 Thread.currentThread().getName());
 executor.execute(threadNamePrinter);
}

private static class InfiniteThreadNamePrinter implements Runnable {
 @Override
 public void run() {
 while (true) {
 System.out.println("Run from thread: " +
 Thread.currentThread().getName());
 }
 }
}

Examining this code, you would be forgiven for saying that this code never terminates. The code
prints the thread name forever in a single thread.

However, on running this code, you should see it terminate rather quickly, after maybe 7–10 lines
are printed to the console.

In JUnit, when the code in the main thread has completed, the test finishes. In this example, the
final line of the executorExample method passes the Runnable to the Executor. When that opera-
tion has completed, JUnit assumes that the test is complete. It does not wait for any other threads
to complete. This can be a surprise if you have more complicated tests and your expectation is com-
puted in a separate thread.

Even using a singleThreadedExecutor rather than a cachedThreadPool does not fix this problem.
The singleThreadedExecutor still runs in a separate thread, though that Executor can only have
one thread.

Essentially you have two options: You need your Executor to run in the same thread, or you need
to wait for your thread to complete. Listing 11-5 is an example of waiting for your supporting
thread to complete.

164  ❘  CHAPTER 11  Concurrency

Listing 11-5:  Waiting for a supporting thread to complete

@Test
public void waitToComplete() throws InterruptedException {
 final ExecutorService executor = Executors.newCachedThreadPool();
 final CountDownLatch latch = new CountDownLatch(1);
 executor.execute(new FiniteThreadNamePrinterLatch(latch));
 latch.await(5, TimeUnit.SECONDS);
}

private static class FiniteThreadNamePrinterLatch implements Runnable {
 final CountDownLatch latch;

 private FiniteThreadNamePrinterLatch(final CountDownLatch latch) {
 this.latch = latch;
 }

 @Override
 public void run() {
 for (int i = 0; i < 25; i++) {
 System.out.println("Run from thread: " +
 Thread.currentThread().getName());
 }
 latch.countDown();
 }
}

This code uses the CountDownLatch instance to hold the thread on the final line until the other
thread counts down to zero.

Listing 11-6 runs the Runnable code in the same thread.

Listing 11-6:  Providing an executor to run code in the same thread

@Test
public void sameThread() {
 final Executor executor = new Executor() {
 @Override
 public void execute(final Runnable command) {
 command.run();
 }
 };

 System.out.println("Main thread: " +
 Thread.currentThread().getName());
 executor.execute(new FiniteThreadNamePrinter());
}

private static class FiniteThreadNamePrinter implements Runnable {
 @Override

Working with Concurrency  ❘  165

 public void run() {
 for (int i = 0; i < 25; i++) {
 System.out.println("Run from thread: " +
 Thread.currentThread().getName());
 }
 }
}

There is no need to use the Executors library; it is simple enough to provide an Executor
implementation that simply runs the Runnable. When you run this test, you will see that the
FiniteThreadNamePrinter code is run in the same thread name as that which kicks off the test.

The beauty with providing your own Executor here is that your test is simpler to read, there is no
overhead or boilerplate code from anything like the CountDownLatch example in Listing 11-5.

If you need to provide Executors to your production code as constructor arguments and make them
a dependency of the class, you can change the Executor implementation for tests with no change to
any production code.

Waiting for Other Jobs to Complete

Whenever you want to block a thread until another unit of work completes, such as
the CountDownLatch example in Listing 11-5, you should never block infinitely.

The await method, like the Future.get method, is overloaded to take either no
parameters, or a pair of parameters to determine how long to wait. If you use the
option of waiting for a specific time, an InterruptedException will be thrown if
no response has come in the specified time.

If you use the option with no parameters, the method will block forever. So if the
operation you are waiting on has crashed, and will never return, your application
will never progress.

Whenever you are waiting on a parallel operation to complete, whether that is in
another thread, or, for instance, on a web service to return you some data, you
should consider how to react if that operation never returns.

Working with Concurrency

How do you manage shared state between threads?

Examine Listing 11-7.

166  ❘  CHAPTER 11  Concurrency

Listing 11-7:  Sharing state

public class SharedState {

 @Test
 public void sharedState() {
 final ExecutorService executorService =
 Executors.newCachedThreadPool();

 final SimpleCounter c = new SimpleCounter();
 executorService.execute(new CounterSetter(c));

 c.setNumber(200);
 assertEquals(200, c.getNumber());
 }

 private static class CounterSetter implements Runnable {
 private final SimpleCounter counter;

 private CounterSetter(SimpleCounter counter) {
 this.counter = counter;
 }

 @Override
 public void run() {
 while(true) {
 counter.setNumber(100);
 }
 }
 }
}

public class SimpleCounter {

 private int number = 0;

 public void setNumber(int number) {
 this.number = number;
 }

 public int getNumber() {
 return number;
 }
}

This interesting test creates a new thread, which takes a Counter object, and continually sets that
value to 100. In the main thread, it takes that same Counter object, and sets the value to 200. The
test then asserts that the value is indeed 200.

If you run this test a few times, you will find that sometimes it passes, and sometimes it doesn’t.
Again, this is because of allowing the JVM to schedule when threads are run. If the main thread
does the set and get on the counter object before the JVM interrupts that thread to allow the
CounterSetter to run, the value will still be set to 100.

Working with Concurrency  ❘  167

To make sure that any shared state is not modified while another thread is trying to read or
write to it, you must lock that shared state. Listing 11-8 improves on this test to make sure the
CounterSetter cannot interfere with the main thread for the test assertions.

Listing 11-8:  Locking shared state

public class LockedSharedState {

 @Test
 public void lockedSharedState() {
 final ExecutorService executorService =
 Executors.newCachedThreadPool();

 final SimpleCounter c = new SimpleCounter();
 executorService.execute(new CounterSetter(c));

 synchronized (c) {
 c.setNumber(200);
 assertEquals(200, c.getNumber());
 }
 }

 private static class CounterSetter implements Runnable {
 private final SimpleCounter counter;

 private CounterSetter(SimpleCounter counter) {
 this.counter = counter;
 }

 @Override
 public void run() {
 while(true) {
 synchronized (counter) {
 counter.setNumber(100);
 }
 }
 }
 }
}

Every Java object has the capability to hold a lock on it. By surrounding code with
synchronized(object), only one running thread is allowed to execute inside that block at any one
time. The object marked on the synchronized block is used as the lock. In Listing 11-8, the actual
counter object itself is used.

Any reads and writes involving that counter instance have been surrounded in a synchronized block,
so while the main thread is updating and then re-reading the counter’s value, the CounterSetter
code cannot interfere with that value. You will find now that the test always passes.

Of course, there is a trade-off for this locking. The threads will need to wait for others while they
are locked, so you may see a performance impact. It is therefore advisable to only lock the reads and
writes, and no more, releasing the lock as soon as possible.

168  ❘  CHAPTER 11  Concurrency

What do the atomic classes provide?

The Java concurrency framework added the Atomic classes, which wrap all of the primitive types,
such as AtomicInteger, AtomicBoolean, and also one for reference types, AtomicReference.

These classes all provide guaranteed atomic operations. That is, any other thread will not modify
the underlying references backed by these classes until your method call completes. Listing 11-9 has
updated the original test from Listing 11-7 to use an AtomicInteger as the counter. It is continually
setting the counter to the same value. The test manages to get the value from the counter, add one to it,
and get that same value, without the CounterSetter class able to reset the value during that period.

Listing 11-9:  Using AtomicIntegers

public class AtomicSharedState {

 @Test
 public void atomicSharedState() {
 final ExecutorService executorService =
 Executors.newCachedThreadPool();

 final AtomicCounter c = new AtomicCounter();
 executorService.execute(new CounterSetter(c));

 final int value = c.getNumber().incrementAndGet();
 assertEquals(1, value);
 }

 private static class CounterSetter implements Runnable {
 private final AtomicCounter counter;

 private CounterSetter(AtomicCounter counter) {
 this.counter = counter;
 }

 @Override
 public void run() {
 while(true) {
 counter.getNumber().set(0);
 }
 }
 }
}

public class AtomicCounter {

 private final AtomicInteger number = new AtomicInteger(0);

 public AtomicInteger getNumber() {
 return number;
 }
}

Actors  ❘  169

The synchronized blocks are no longer necessary, because the AtomicInteger class makes sure that
the value is not changed during a read or write, performing the incrementAndGet as one operation.

AtomicIntegers are often used as counters, rather than using the primitive pre- or post-increment.

Using The Increment and Decrement Operators

Be aware that when x++ and x-- are compiled, the bytecode is three operations:
get from memory the value stored in x, increment that value by 1, and set the value
of x back into memory. It is possible for the JVM to interrupt a thread midway
through these three operations, and the thread it switches to may also change the
value of x. If this is the case, then when the JVM switches back to the other thread,
the value set back to memory will be invalid, and wrong for the interrupted thread.

Why should you use immutable objects?

In Chapter 8, Listings 8-30 and 8-31 examined how to create immutable objects.

One main advantage for using immutable objects is that, because the values cannot ever change,
they can be freely passed from thread to thread without ever needing locking.

This means that, because there is no locking with synchronized blocks, there is no bottleneck where
multiple threads need to wait for a single mutable value to be available.

Usually when you have a need to update the value in an immutable object, you make a new copy of
the object with the updated value.

Actors

What is Akka?

Akka is a framework that provides a different approach to writing and working with concurrent
code. It uses an actor model, and was inspired by the approach taken from the functional program-
ming language, Erlang. Akka itself is written in Scala, but it also has a complete Java API avail-
able. It is available for download from www.akka.io, or can be included in your Maven project as a
dependency:

<dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-actor_2.10</artifactId>
 <version>2.2.3</version>
</dependency>

http://www.akka.io

170  ❘  CHAPTER 11  Concurrency

Actors are designed to process messages, and the Akka framework concentrates on distributing and
delivering these messages. This means that you can design your application around the flow of mes-
sages rather than having to focus on concurrency with threads and locking.

Listing 11-10 is a simple example.

Listing 11-10:  Using actors in Java

public class Message implements Serializable {
 private final String message;

 public Message(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

public class MessageActor extends UntypedActor {

 @Override
 public void onReceive(Object message) {
 if (message instanceof Message) {
 Message m = (Message) message;
 System.out.printf("Message [%s] received at %s%n",
 m.getMessage(),
 new Date().toString());
 }
 }

 public static void main(String[] args) {
 final ActorSystem system = ActorSystem.create("actorSystem");
 final ActorRef actorRef = system.actorOf(
 Props.create(MessageActor.class),
 "messageProcessor");

 actorRef.tell(new Message("Hello actor system"), null);
 }
}

The MessageActor class is an actor. Actors implement an onReceive method, which is called by the
actor system when a message is dispatched to that actor.

The actor is created by the actor system, not by the client code, using the method call ActorSystem
.actorOf. This allows the system to manage the actor, and keep a reference to it at all times. If
you try to create an instance of an actor using a regular new constructor call, this will throw an
exception.

Actors  ❘  171

The actor system itself deals with how to run code. It will often spawn new threads, because that is
Java’s primitive approach for running concurrent code. Within each thread, Akka will interleave dif-
ferent blocks of execution to give the effect of many concurrent blocks running at once.

What advantage does working with ActorRefs instead of Actors give?

This level of indirection, letting the actor system create the actor and you dealing with an ActorRef
object instead, means that should your actor crash, the actor system can create a new actor for a
given ActorRef. In fact, the client code with the actorRef does not even know that the actor has
crashed, and can still send messages under the assumption it is running. Listing 11-11 shows this in
action, while introducing how to return values to the calling code.

Listing 11-11:  Letting actors crash

public class ActorCrash extends UntypedActor {

 public static void main(String[] args) {
 final ActorSystem system = ActorSystem.create("actorSystem");

 final ActorRef crashRef =
 system.actorOf(Props.create(ActorCrash.class));
 final ActorRef dividingActorRef =
 system.actorOf(Props.create(DividingActor.class));

 dividingActorRef.tell(5, crashRef);
 dividingActorRef.tell(0, crashRef);
 dividingActorRef.tell(1, crashRef);
 }

 @Override
 public void onReceive(Object message) {
 System.out.printf("Received result: [%s]%n", message);
 }
}

public class DividingActor extends UntypedActor {
 @Override
 public void onReceive(Object message) {
 if(message instanceof Integer) {
 Integer number = (Integer) message;
 int result = 10 / number;
 this.getSender().tell(result, getSelf());
 }
 }

 @Override
 public SupervisorStrategy supervisorStrategy() {
 return new OneForOneStrategy(
 10,

continues

172  ❘  CHAPTER 11  Concurrency

 Duration.Inf(),
 new Function<Throwable, SupervisorStrategy.Directive>() {
 @Override
 public SupervisorStrategy.Directive apply(Throwable t) {
 return SupervisorStrategy.restart();
 }
 });
 }
}

This actor system has two classes. When the DividingActor receives an integer message, it
simply divides ten by the received value. Of course, if zero is received, then this results in an
ArithmeticException, for division by zero.

By default, the actor is not restarted, although in this case, the SupervisorStrategy is defined to
always restart.

The code in the ActorCrash actor is oblivious to the crash. It simply sends messages to the actor,
and is able to receive messages because it is an actor itself. This decoupling of sending and receiv-
ing messages allows much flexibility because there is no blocking for a result; the actor’s onReceive
method is simply called when the result is returned.

By developing your application to deal with message processing rather than the imperative approach
of call and then block until you receive a response, you can create highly responsive systems.

How can you achieve parallel message processing?

By allowing the actor system to manage and create actors, you can configure it to create multiple
actors when necessary. Because actors are message processors, instances of these can usually be con-
sidered to be standalone. Consider Listing 11-12.

Listing 11-12:  Processing multiple messages

public class MultiActors {

 public static void main(String[] args) {
 final ActorSystem system = ActorSystem.create("actorSystem");
 final ActorRef ref = system
 .actorOf(Props.create(LongRunningActor.class)

 System.out.println("Sending m1");
 ref.tell("Message 1", null);
 System.out.println("Sending m2");
 ref.tell("Message 2", null);
 System.out.println("Sending m3");
 ref.tell("Message 3", null);

Listing 11-11  (continued)

mailto:@OverridepublicSupervisorStrategy.Directiveapply
mailto:@OverridepublicSupervisorStrategy.Directiveapply

Actors  ❘  173

 }

}

class LongRunningActor extends UntypedActor {
 @Override
 public void onReceive(Object message) {
 System.out.printf("Being run on ActorRef: %s%n", getSelf());
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.printf("Received %s%n", message);
 }
}

This code should give an output similar to the following:

Sending m1
Sending m2
Sending m3
Being run on ActorRef: Actor[akka://actorSystem/user/$a#-1672686600]
Received Message 1
Being run on ActorRef: Actor[akka://actorSystem/user/$a#-1672686600]
Received Message 2
Being run on ActorRef: Actor[akka://actorSystem/user/$a#-1672686600]
Received Message 3

The output of this code shows that all three messages to send are sent at once, and then each mes-
sage is processed individually by the same actor instance. Given that the actor takes ten seconds to
process each message, this is not the most efficient.

By introducing a router, the system can create multiple actors, and can then distribute messages to
each of the instances. This all takes place inside the actor system, so your code does not need to
manage this at all.

Simply changing the actor creation line to

final ActorRef ref = system
 .actorOf(Props.create(LongRunningActor.class)
 .withRouter(new RoundRobinRouter(3)));

creates three instances of the actor, and sends messages to each actor in a round-robin approach.

It should provide output similar to the following:

Sending m1
Sending m2
Sending m3
Being run on ActorRef: Actor[akka://actorSystem/user/$a/$a#-644282982]
Being run on ActorRef: Actor[akka://actorSystem/user/$a/$c#-1755405169]
Being run on ActorRef: Actor[akka://actorSystem/user/$a/$b#-935009175]
Received Message 1

akka://actorSystem/user/$a#-1672686600]
akka://actorSystem/user/$a#-1672686600]
akka://actorSystem/user/$a#-1672686600]
akka://actorSystem/user/$a/$a#-644282982]
akka://actorSystem/user/$a/$c#-1755405169]
akka://actorSystem/user/$a/$b#-935009175]

174  ❘  CHAPTER 11  Concurrency

Received Message 2
Received Message 3

The ActorRefs have new names, and all three messages are being processed at the same time.

By coupling the routing of messages to different actor instances, along with the capabilities to
automatically restart, it is possible to build a highly concurrent, fault-tolerant message processing
system. Note that the small systems built in this section needed no code for creating threads or man-
aging shared state. By providing immutable objects as messages, and allowing the actor system to
create and manage concurrent pieces of work, your own code becomes more streamlined, with less
boilerplate, making it easier to understand and maintain.

Summary

Every useful application will run its code in parallel, whether it is a web server or a standalone
application with its own user interface.

Understanding the interaction between different blocks of code running in parallel is key, and it is
not always clear how and where different threads of execution meet.

In modern web applications, you can often believe that because each request is in its own thread,
you do not need to worry about concurrency. This is simply not true. You will have interactions
with a database or filesystem. Also, if you use any kind of dependency injection framework, such as
Spring or Guice, it is likely that you will create singleton objects for services and data access objects,
and these will be shared across all running code in the application.

Try to mitigate the effects of concurrency as much as possible. Always work with immutable objects
where possible, even if you aren’t going to use them in a concurrent way. Set up your IDE to warn
when a variable can be marked as final. If it starts to become second nature, these traits will come
across well in an interview.

The next section of the book looks at some common libraries and frameworks that most Java devel-
opers will use at some point in their careers and will be expected to know and understand. It also
covers programming applications to talk to the outside world, either through the Internet on HTTP,
or to a database using JDBC or SQL.

PART III
Components and Frameworks

There is more to acing a Java interview than understanding the language. For most roles,
knowing the syntax and how to run a Java application is assumed; it is the knowledge of how
to use the language to interact, manipulate, and display data.

Many reusable pieces of code, such as algorithms, code to connect to the Internet, or writing
to disk have been modularized and abstracted into their own libraries. One of Java’s main
strengths is that it is mature enough that most common scenarios have their own library,
saving you the time and effort of writing and rewriting the functionality from scratch every
time. This part focuses on common libraries and application frameworks to help you produce
professional, robust applications capable of communicating with the outside world, whether
that is by producing a server that displays web pages, or an application that is used to persist
information to a database.

Chapter 12 covers databases, introducing the concept of a database store and how
Java can interact with the database.

Chapter 13 introduces different web application servers, explaining how to set them
up and provide dynamic content to web pages.

Chapter 14 talks about HTTP and REST: how Java applications can communicate
with other services over the Internet.

Chapter 15 is about serialization, and how Java objects are represented outside of
the JVM.

176  ❘  PART III ﻿  ﻿ Components and Frameworks

Chapter 16 covers the Spring Framework, a hugely popular library that helps integrate many
components and services, from databases to web applications, while concentrating on test-
able code.

Chapter 17 covers Hibernate, an object-relational mapper. Hibernate allows your applica-
tion to convert from Java objects to database tables, and vice versa.

Chapter 18 covers some useful libraries that are often usable in many situations, from help-
ing with I/O to time and date manipulation. You can think of these libraries as valuable
functionality that could have been included as part of the standard Java libraries.

Chapter 19 is about the build tools of Maven and Ant. These help manage and integrate
your application into a production-ready binary artifact when your application is too large
to manage with javac.

Chapter 20, the final chapter of this part, takes a brief look at development for Android.
Developing mobile phone applications has grown enormously with the rise of powerful
smartphones. Although Android phones do not run a JVM, the development is done in Java.

Integrating Java Applications
with Databases

Object-oriented languages have the capability to model real-world objects in a rich way.
Relational databases persist data into tables, which are usually a flatter structure and a more
limited representation of these same objects.

This chapter explains how to connect to and work with a relational database, and how to per-
sist Java data types into the database. MySQL is used for all of the examples in this chapter,
either from the MySQL console (represented by the mysql> prompt), or through Java’s inter-
face to the database.

SQL: An Introduction

SQL is an abstract, declarative language used to perform queries and data manipulation on
a relational database. It is a standard, and not tied to a particular database implementation.
Most, if not all, mature relational database products in use today support SQL.

How can you retrieve data from a relational database with SQL?

The data in a relational database is stored across many tables comprised of rows and columns.
Each table usually describes a logical entity, or relation—for instance, a person, an address, or
an inventory item. Each row in a database is a record, which can be uniquely identified. The
unique identifier is called a primary key. Imagine Table 12-1 is an excerpt from a database
table for staff records.

12

178  ❘  CHAPTER 12  Integrating Java Applications with Databases

Table 12-1:  The employees Table

employee_

number name title

home_

address hire_date

office_

location_id

1 Bob Smith CEO 1, Pine Drive 2010-01-25 1

2 Alice Smith CTO 1, Pine Drive 2010-01-25 1

3 Cassandra
Williams

Developer 336, Cedar
Court

2010-02-15 2

4 Dominic
Taylor

Receptionist 74A, High
Road

2011-01-12 2

5 Eric Twinge Developer 29, Acacia
Avenue

2012-07-29 1

You can see that each record can be identified from the employee_number column. This table stores
only information relating to employees.

SQL gives a flexible language to interpret and manipulate relational database data to provide a rep-
resentation that is meaningful to your domain. To query a particular table, you use the SQL SELECT
statement:

SELECT name, office_location_id FROM employees;

This query returns all the rows from the employees table, but only the name and office_
location_id columns:

mysql> SELECT name, office_location_id FROM employees;
+--------------------+--------------------+
| name | office_location_id |
+--------------------+--------------------+
Bob Smith	1
Alice Smith	1
Cassandra Williams	2
Dominic Taylor	2
Eric Twinge	1
+--------------------+--------------------+
5 rows in set (0.00 sec)

SQL Statements Are Case Insensitive

As a rule, SQL statements are case insensitive. This applies to the keywords of the
statements (such as SELECT, FROM, and WHERE), and also the objects in the query,
such as the columns and table names.

One usual convention is to write SQL keywords in uppercase and the objects in
lowercase. This helps anyone reading your code to logically break up the query
based on the case changes.

SQL: An Introduction  ❘  179

You may be interested in retrieving only a specific row, or a certain set of rows. To do this, you can
add a WHERE clause to the SELECT statement. This clause will evaluate to a boolean expression, and
will be evaluated for each row. If the expression holds true for the row, it is included in the result set:

mysql> SELECT name, office_location_id FROM employees WHERE employee_number > 2;
+--------------------+--------------------+
| name | office_location_id |
+--------------------+--------------------+
Cassandra Williams	2
Dominic Taylor	2
Eric Twinge	1
+--------------------+--------------------+
3 rows in set (0.00 sec)

Notice here that the WHERE clause was evaluating on a column that was not included in the resulting
data set: You can access any column in the query, even if it is not included in the final result.

If you want to return all the columns for a query, you can use the wildcard * to represent all
columns:

SELECT * FROM employees WHERE employee_number = 1;

If you add, remove, or otherwise change the columns for the table, this query will still work; how-
ever, you will receive different results.

If this table were part of a larger database for a company, you could imagine other tables represent-
ing different entities, such as information about all the company offices and who works where, or
even a line-management structure. The real appeal and power of databases lie in the interaction
between these relations.

Table 12-2 defines another table for this company database, called office_locations.

Table 12-2:  The office_locations Table

office_location_id location_name Address lease_expiry_date

1 New York Union Plaza NULL

2 Paris Revolution Place NULL

3 London Piccadilly Square 2014-05-30

Although this information is logically separate from the employees table, there is definitely a rela-
tionship between the two. If you were to select from both tables:

mysql> select employees.name, office_locations.location_name
 -> from employees, office_locations;
+--------------------+---------------+
| name | location_name |
+--------------------+---------------+
Bob Smith	New York
Bob Smith	Paris
Bob Smith	London

180  ❘  CHAPTER 12  Integrating Java Applications with Databases

Alice Smith	New York
Alice Smith	Paris
Alice Smith	London
Cassandra Williams	New York
Cassandra Williams	Paris
Cassandra Williams	London
Dominic Taylor	New York
Dominic Taylor	Paris
Dominic Taylor	London
Eric Twinge	New York
Eric Twinge	Paris
Eric Twinge	London
+--------------------+---------------+
15 rows in set (0.00 sec)

This data isn’t quite as expected. What has happened here? The database isn’t quite sure how the
rows fit together, so it took each row from the employees table and paired it with each row from the
office_locations table. For a more meaningful result, you must inform the database of how the
tables fit together, as shown in Listing 12-1.

Listing 12-1:  Joining two tables

SELECT *
 FROM employees
 JOIN office_locations
 ON employees.office_location_id = office_locations.office_location_id;

This query returns the expected data set:

mysql> select employees.name, office_locations.location_name
 -> from employees
 -> join office_locations
 -> on employees.office_location_id = office_locations.office_location_id;
+--------------------+---------------+
| name | location_name |
+--------------------+---------------+
Bob Smith	New York
Alice Smith	New York
Cassandra Williams	Paris
Dominic Taylor	Paris
Eric Twinge	New York
+--------------------+---------------+
5 rows in set (0.00 sec)

Performing a query over two or more tables is known as a join. There is an alternative syntax for
performing joins. You can simply list the tables in the FROM part of the statement and join the tables
in a WHERE clause:

SELECT *
 FROM employees, office_locations
WHERE employees.office_location_id = office_locations.office_location_id;

SQL: An Introduction  ❘  181

This may not seem like a particularly big difference, but the original query, known as an ANSI Join,
has a clear separation for the relationship. If that query had a WHERE clause, then all the parts of that
clause would have been specifically for filtering rows, and not for defining the relationship between
the tables.

The office_location_id column on the employees table references the column with the same
name in the office_locations table. This is known as a foreign key, and is the term given to a
column referencing another table. Informing the database of foreign key relationships is optional;
however, it does help to optimize queries because it will expect queries to be joined and filtered on
that specific column.

Defining foreign keys also enables you to enforce referential integrity: It is not possible to have a value
for an office_location_id in the employees table that does not exist in the office_locations
table. Conversely, it is not possible to delete rows from office_locations while there is still an entry
for that location in the employees table: An employee must have a valid office to work in.

Omitting the foreign key relationship when defining tables means there is no referential integrity
between the tables: The referencing column can contain data that is not referenced in a joined table.
Sometimes this is what you want.

What are inner and outer joins?

By default, rows from both tables that meet the matching criteria are included in the join. It is pos-
sible to specify that all the rows from one or either table from a join are included, filling a missing
match with NULLs.

The office_locations table includes some rows that are not referenced at all in the employees
table. This implies that, for some reason, the company has an office that is currently empty. The
results of Listing 12-1 show no mention of that location.

In the JOIN clause of the query, if you specify LEFT OUTER JOIN instead, the result will include all
rows from the left side of the query, filling in NULLs for no matches on the right, and vice versa for
RIGHT OUTER JOIN. Listing 12-2 shows a query with a right outer join for matching the employees
and office_locations.

Listing 12-2:  A right outer join

SELECT *
 FROM employees
 RIGHT OUTER JOIN office_locations
 ON employees.office_location_id = office_locations.office_location_id;

This query returns an entry for every location_name, regardless of whether there is an employee
based at that location:

mysql> select employees.name, office_locations.location_name
 -> from employees
 -> right outer join office_locations

182  ❘  CHAPTER 12  Integrating Java Applications with Databases

 -> on employees.office_location_id = office_locations.office_location_id;
+--------------------+---------------+
| name | location_name |
+--------------------+---------------+
Bob Smith	New York
Alice Smith	New York
Eric Twinge	New York
Cassandra Williams	Paris
Dominic Taylor	Paris
NULL	London
+--------------------+---------------+
6 rows in set (0.00 sec)

It is also possible to perform a left and right join simultaneously; filling in NULLs from both tables
where no match occurs, with the syntax FULL OUTER JOIN. This is not applicable to the join
between employees and office_locations, because office_location_id is a foreign key rela-
tionship: It is not possible to have an employee working in a location that does not exist in the
database.

Figure 12-1 visualizes the difference between the joins on two tables.

Inner Join

L R

Outer Join

L R

Left Outer Join

L R

Right Outer Join

L R

Figure 12-1 

Does SQL have the capability to perform analysis of the data in a database?

SQL includes many functions that enable you to perform calculations on columns. If you have any
experience of working with a relational database, more than likely you will have used the COUNT
function to count the number of rows in a table:

SELECT COUNT(*) from employees;

This query returns the number of rows in the employees table.

Table 12-3 defines a table for employees’ salary details.

SQL: An Introduction  ❘  183

Table 12-3:  The salaries Table

employee_number annual_salary last_update_date

1 20000 2013-06-29

2 12000 2013-06-29

3 6000 2012-06-10

4 6000 2013-06-16

5 12000 2013-05-26

The SUM function adds all the rows for a specified column. Applying this to the annual_salary in
Listing 12-3 would allow the finance team to calculate their annual sum spent on wages.

Listing 12-3:  Calculating the sum total for a column

mysql> select sum(annual_salary) from salaries;
+--------------------+
| sum(annual_salary) |
+--------------------+
| 56000 |
+--------------------+
1 row in set (0.00 sec)

You can also use these functions to perform calculations on a certain column, but grouping com-
mon rows together. For instance, if you want to see the average salary for each role in the com-
pany, you need to use the AVG function, and group your data by the employees’ titles, as shown in
Listing 12-4.

Listing 12-4:  Using the GROUP BY clause

mysql> select e.title, avg(s.annual_salary)
 -> from employees e
 -> join salaries s
 -> on e.employee_number = s.employee_number
 -> group by e.title;
+--------------+----------------------+
| title | avg(s.annual_salary) |
+--------------+----------------------+
CEO	20000.0000
CTO	12000.0000
Developer	9000.0000
Receptionist	6000.0000
+--------------+----------------------+
4 rows in set (0.00 sec)

184  ❘  CHAPTER 12  Integrating Java Applications with Databases

By including the title column, you need to specify the GROUP BY clause; otherwise the database is not
sure how to collate the data for each of the different titles. Omitting that clause produces nonsense
data, calculating the average for the annual salary column and including the original first row for
the title column, CEO.

NOTE  The collection of tables and columns used in the examples here includes
some long, verbose names. Listing 12-4 uses aliases for the tables, which allows
you to rename tables for the purpose of a query, in this case to a shorter name.

If you ever join a table on to itself, you will need to create an alias for each table
so that the database understands which exact instance of the table you are refer-
ring to when joining or using a WHERE clause.

How do you persist data to a database?

The uses of SQL so far have only looked at how to examine data already present in tables. You can
insert data into a table using an INSERT statement, modify current rows using UPDATE, and remove
rows using DELETE.

An INSERT statement contains the data to be inserted into a particular table:

INSERT INTO employees VALUES (1, "Bob Smith", "CEO", "1, Pine Drive", CURDATE(), 1);

You can insert multiple rows this way, too, by providing a comma-separated list of row tuples:

INSERT INTO employees VALUES
 (2, "Alice Smith", "CTO", "1, Pine Drive", CURDATE(), 1),
 (3, "Cassandra Williams", "Developer", "336, Cedar Court", CURDATE(), 2),
 (4, "Dominic Taylor", "Receptionist", "74A, High Road", CURDATE(), 2),
 (5, "Eric Twinge", "Developer", "29, Acacia Avenue", CURDATE(), 1);

It is also possible to insert partial rows, as long as the constraints on the table allow for the omitted
columns to be NULL, or have a default value. You need to specify the columns to update:

INSERT INTO employees (employee_number, name, title, office_location_id)
VALUES (6, "Frank Roberts", "Developer", "2");

For updating data, you specify which column to change, the new value, and optionally, the match-
ing criteria for which rows to update:

UPDATE employees
set home_address = "37, King Street"
where employee_number = 6;

If you use the primary key to match the rows, by definition you are only updating one row, because
the primary key uniquely identifies a row. Also, the table will have an index against the primary key,
so the database should be able to locate the row to update instantly.

SQL: An Introduction  ❘  185

If you do not provide a WHERE clause on an UPDATE statement, the update is applied to all rows.

Deleting rows also takes a WHERE clause, specifying which rows to remove:

DELETE FROM employees WHERE name = "Frank Roberts";

Be careful! If you omit a WHERE clause, all rows are deleted:

mysql> select count(*) from employees;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

mysql> delete from employees;
Query OK, 5 rows affected (0.00 sec)

Whenever you are changing data in a table, you should always use a transaction. This will enable
you to ROLLBACK any mistakes before you commit the transaction.

What is a view?

As a convenience, it is possible to capture a particular query or join that is used often and present
that as a “virtual table,” known as a view. Views can often provide help to developers or operations
staff who are running several queries directly on a database console.

If a query were used often to find employees and their work addresses, the following statement
would create a relevant view:

CREATE VIEW employees_and_locations AS
SELECT employee_number, name, location_name, address
 FROM employees
 JOIN office_locations
 ON employees.office_location_id = office_locations.office_location_id;

You would be able to select from this view as if it were a regular table:

mysql> select * from employees_and_locations;
+-----------------+--------------------+---------------+------------------+
| employee_number | name | location_name | address |
+-----------------+--------------------+---------------+------------------+
1	Bob Smith	New York	Union Plaza
2	Alice Smith	New York	Union Plaza
3	Cassandra Williams	Paris	Revolution Place
4	Dominic Taylor	Paris	Revolution Place
5	Eric Twinge	New York	Union Plaza
+-----------------+--------------------+---------------+------------------+
5 rows in set (0.00 sec)

186  ❘  CHAPTER 12  Integrating Java Applications with Databases

It is possible to delete rows from a view. Of course, the usual rules about referential integrity apply. You
can insert rows, too. Any columns missing from the view definition will have a NULL value applied. If
the column is not allowed to have a NULL value, it is not possible to insert into that particular view.

As a rule of thumb, it is advisable not to delete from views. Views are so lightweight that it is very
easy to change their definition, which can have knock-on effects on inserting NULLs when a column
definition is removed from a view.

What are DDL and DML?

So far the examples discussed have only been relevant to data manipulation. SQL is also used for
creating, removing, and altering tables. Data Manipulation Language (DML) uses the SELECT,
INSERT, UPDATE, and DELETE keywords to manipulate data. Data Definition Language (DDL) is
used to create and manipulate table structures.

Tables are created with a CREATE TABLE statement. The statement contains a list of columns and the
data types for each column:

CREATE TABLE meeting_rooms (
 meeting_room_id INT,
 office_location_id INT,
 meeting_room_name VARCHAR(100)
);

This creates a table with three columns, two of type INT and one of type VARCHAR(100), a string of
up to 100 characters. Be aware that the valid data types can vary between different databases. You
will need to check the up-to-date documentation from your database’s vendor for which types are
allowed.

Although there is a column called office_location_id, there is no reference to the office_
locations table; there is no referential integrity over the data allowed in this column.

As you should expect, DDL is able to do more than create tables. It can change the table definitions
too, such as adding a column:

ALTER TABLE meeting_rooms ADD COLUMN telephone_extension VARCHAR(100);

Performing a SELECT on the meeting_rooms table displays that column as if it was there all along. If
the table already had data, the column would be blank, with a NULL value. You can specify a default
value on the ALTER TABLE statement.

To remove, or drop a column, run the statement as:

ALTER TABLE meeting_rooms DROP COLUMN telephone_extension;

You can also modify the definition of a column in place. For instance, you can add a foreign key
constraint to the table:

ALTER TABLE meeting_rooms
ADD FOREIGN KEY (office_location_id)
REFERENCES office_locations(office_location_id);

SQL: An Introduction  ❘  187

Once this constraint is added, only valid office_location_ids will be allowed in that column for
the meeting_rooms table. The statement will be rejected if there is already data in the column that
does not meet the constraint.

You can add arbitrary constraints, too, such as defining a column as not allowing NULL values, or
allowing only a certain range of integer values.

How can you speed up an inefficient query?

Looking at the original employees table, the records will be stored sequentially on disk, most likely
in the order of the employee_number column, so employee number 101 will follow 100, and so on.

For most purposes, storing the data in this fashion does not make much sense; very few cases exist
when you would want to list the employees in the order of their employee number.

One possible query over this data would be to find all the employees who work in a particular office:

SELECT * FROM employees WHERE office_location_id = 2;

This query will need to examine every row sequentially to see if the WHERE predicate matches. If
the table has several thousand rows, this query could take a while, especially if no rows meet the
criteria.

By adding an index for this column, the database will provide a direct lookup for that column; giv-
ing a direct reference to the row locations. Figure 12-2 illustrates how this works.

4

employee_number

1

2

3

5

2

o�ce_loc_idx

1

1

1

2

. . .

2

o�ce_location_id

1

1

2

1

. . .

Figure 12-2 

The grouping of office_location_ids will be stored alongside this table, and the database will use
this to look up rows based on office location. The trade-off is that more disk space is needed to store
the index. Listing 12-5 shows how to create this index.

Listing 12-5:  Creating an index

create index office_loc_idx on employees (office_location_id);

188  ❘  CHAPTER 12  Integrating Java Applications with Databases

Once in place, an insert into the employees table will also result in an entry in the index, possibly
making insertion time longer. The trade-off is that lookups will be much quicker, especially once the
table has grown to several thousand rows in size.

What can you do when SQL is not enough?

Stored procedures give you the opportunity to do more than the simple create, read, update, and
delete functionality that SQL provides. You have the ability to make more procedural steps.

One such example could be to create a procedure that grants pay raises to employees who have
not had a pay increase for more than a year. Listing 12-6 shows how you could implement this in
MySQL.

Listing 12-6:  Creating a stored procedure

CREATE PROCEDURE annual_salary_raise (
 IN percent INT,
 OUT total_updated INT
)
BEGIN
 SELECT COUNT(*)
 INTO total_updated
 FROM salaries
 WHERE last_update_date > DATE_SUB(CURDATE(), INTERVAL 1 YEAR);

 UPDATE salaries
 SET annual_salary = annual_salary * ((100 + percent) / 100),
 last_update_date = CURDATE()
 WHERE last_update_date > DATE_SUB(CURDATE(), INTERVAL 1 YEAR);
END;

The procedure takes two parameters: an IN parameter, which is a value for the percentage pay
increase; and an OUT parameter, which you can think of as a return value from the procedure. You
pass a handle here, the procedure sets its value, and you can read from that handle after you have
run the procedure. In this case, the OUT parameter holds the number of rows updated. You can have
as many IN and OUT parameters as you require.

The SELECT statement also takes a new form, applying the result of the COUNT into the total_
updated OUT parameter. The query will fail if your SELECT statement returns zero or more than
one row.

The procedure applies the percentage increase to those rows that have not been updated for more
than a year. MySQL provides a DATE_SUB function for manipulating DATE data types—in this
case, the function calculates the date a year ago from CURDATE, which is today’s date. The update
statement also sets the updated date to CURDATE, so that the updated rows will not be updated for
another year. Listing 12-7 shows this procedure in action on the MySQL console, applying a 4 per-
cent pay raise.

SQL: An Introduction  ❘  189

Listing 12-7:  Calling MySQL stored procedures

mysql> select curdate();
+------------+
| curdate() |
+------------+
| 2013-06-29 |
+------------+
1 row in set (0.00 sec)

mysql> select * from salaries;
+-----------------+---------------+------------------+
| employee_number | annual_salary | last_update_date |
+-----------------+---------------+------------------+
1	20000	2013-06-29
2	12000	2013-06-29
3	6000	2012-06-09
4	6000	2013-06-15
5	12000	2013-05-25
+-----------------+---------------+------------------+
5 rows in set (0.00 sec)

mysql> call annual_salary_raise(4, @updated_count);
Query OK, 1 row affected (0.05 sec)

mysql> select * from salaries;
+-----------------+---------------+------------------+
| employee_number | annual_salary | last_update_date |
+-----------------+---------------+------------------+
1	20000	2013-06-29
2	12000	2013-06-29
3	6240	2013-06-29
4	6000	2013-06-15
5	12000	2013-05-25
+-----------------+---------------+------------------+
5 rows in set (0.00 sec)

mysql> select @updated_count;
+----------------+
| @updated_count |
+----------------+
| 1 |
+----------------+
1 row in set (0.00 sec)

Stored procedures are useful for “batching up” series of statements that affect the data in some
bespoke way, like the procedure shown here. Another use is in triggers. When certain database
events happen, such as removing or updating a row, you can configure procedures to be run before,
after, or instead of that action.

One practical use for triggers is in logging database events. Whenever a sensitive table is updated,
such as financial records like an employee’s salary, you can set a procedure to run that inserts the
data as it was before and after the update into an auxiliary audit table, which can be examined at a
later date for any discrepancies.

190  ❘  CHAPTER 12  Integrating Java Applications with Databases

What are transactions?

A problem with the stored procedure presented in Listing 12-6 is that it is possible for the number
of updated rows returned in the OUT parameter to be different than the actual number of updated
rows. The statement performs two actions: First, it gathers a count of the number of rows that will
be updated, and then it performs that update. If a client runs the annual_salary_raise procedure,
and at the same time another client updates the salaries table with data that will be affected by
the update statement, it is possible that the second client’s update will happen after the first client’s
SELECT to count the rows and the UPDATE to change the salary information.

By making the procedure transactional, this race condition can be avoided.

A transaction, in any domain, whether a database or not, needs to comply with four properties, col-
lectively known as ACID:

➤➤ Atomic—The contents of the transaction are done as a whole, or not at all. It is not possible
to view the database in a state where only half of the transaction is applied.

➤➤ Consistent—After the transaction, the database meets all the requirements for your domain.
For instance, when making a payment between two parties, the amount debited from one
party should match the amount credited to the other.

➤➤ Isolated—Transactions running in parallel should each behave as though they are the only
transaction running on the database.

➤➤ Durable—Once the transaction has been committed, it is committed permanently. Any sub-
sequent database change, such as an update or a crash, will have no effect on the committed
transaction.

To make the stored procedure in Listing 12-6 transactional, you must open a transaction
with START TRANSACTION, and successfully commit the transaction with COMMIT, as shown in
Listing 12-8.

Listing 12-8:  Using transactions

CREATE PROCEDURE annual_salary_raise_transactional (
 IN percent INT,
 OUT total_updated INT
)
BEGIN
 START TRANSACTION;
 SELECT COUNT(*)
...
... <AS LISTING 12-6>
...
 WHERE last_update_date < DATE_SUB(CURDATE(), INTERVAL 1 YEAR);
 COMMIT;
END;

JDBC: Combining Java and the Database  ❘  191

When this transaction is run, any other connection trying to update the salaries table will be
blocked until the transaction completes.

It is also possible to abort a transaction yourself, if, while running a stored procedure, you find your
database in an inconsistent state, or perhaps if some criteria for your procedure haven’t been met.
You abort transactions with the ROLLBACK statement.

A rollback is usually managed with a database log, and all log entries are reversed from the start of
the transaction. It is possible that other running transactions are dependent on the result of a trans-
action that is rolled back—in this situation, those dependent transactions would be rolled back too.

What is NoSQL?

NoSQL is an umbrella term given to databases that do not necessarily follow the relational database
model. They often rely on denormalized data and are stored as key-value pairs, whole documents,
or graphs in order to make retrieval as quickly as possible, to make applications responsive, particu-
larly when working with huge amounts of data, such as terabytes or even petabytes of storage.

There is no SQL equivalent standard for access to a NoSQL database, as each database stores data
in its own way. One drawback to this is that you are often tied in to a particular vendor once you
start to use a particular NoSQL database, as migration will be a bespoke and laborious process,
requiring you to map between the models of different databases.

Some popular NoSQL databases are:

➤➤ MongoDB–Data is stored as JSON objects, and may not share all of the same fields as other
similar objects.

➤➤ Cassandra–Data is stored in column families, similar to tables, but rows do not need to
share the same columns.

➤➤ Memcached–A distributed key-value store cache

➤➤ Redis–A clustered, persistent key-value store

JDBC: Combining Java and the Database

How do you use Java to connect to a relational database?

Java Database Connectivity, or JDBC, is the mechanism built into the standard Java libraries to
connect to a database. When using JDBC to connect to your database, you must make sure that
the vendor’s JDBC implementation is on the classpath. Before Java 6, you needed to make sure
that your database vendor’s driver for JDBC had been loaded by the classloader, by calling Class
.forName("<Vendor class>"). This has now been automated with the service provider mecha-
nism, which provides a lookup inside the META-INF/services directory of the JAR.

192  ❘  CHAPTER 12  Integrating Java Applications with Databases

To get a connection, you need to provide JDBC with the relevant connection parameters, in the form
of a URL, as shown in Listing 12-9.

Listing 12-9:  Confirming an active database connection

@Test
public void connectToDb() throws SQLException {
 final Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/company_db", "nm", "password");
 assertFalse(connection.isClosed());
 connection.close();
 assertTrue(connection.isClosed());
}

The connection string to DriverManager.getConnection passes in a full URL to the database,
called company_db, which is running on a local server, on the default port of 3306, with the user-
name nm and the password password. The test confirms it can create the connection, verifies it is
connected, and then closes the connection.

How do you use Java to perform SQL queries?

Once a connection has been established, you will want to perform SQL operations to retrieve and
manipulate data. Listing 12-10 shows a simple query against that database, populating the results
into regular Java types.

Listing 12-10:  Querying a database with JDBC

@Test
public void retrieveRows() throws SQLException {
 final Connection connection = DriverManager
 .getConnection(
 "jdbc:mysql://localhost:3306/company_db",
 "nm",
 "password");
 final Statement stmt = conn.createStatement();
 final ResultSet rs = stmt.executeQuery(
 "select employee_number, name from employees");

 final Map<Integer, String> employeeMap = new HashMap<>();

 while (rs.next()) {
 final int employeeNumber = rs.getInt("employee_number");
 final String name = rs.getString("name");
 employeeMap.put(employeeNumber, name);
 }

 final Map<Integer, String> expectedMap = new HashMap<Integer, String>() {{
 put(1, "Bob Smith");

mysql://localhost:3306/company_db
mysql://localhost:3306/company_db

JDBC: Combining Java and the Database  ❘  193

 put(2, "Alice Smith");
 }};

 assertEquals(expectedMap, employeeMap);

 rs.close();
 stmt.close();
}

A database connection provides statements, and statements run queries, which return result sets.

The ResultSet interface has an Iterator-like approach. While the ResultSet instance is open,
the database has an open cursor, and each call to next moves the cursor on to the next row. The
method returns a boolean, returning false if there are no more rows from the query.

Each database vendor provides its own implementation of the JDBC classes, such as Statement,
ResultSet, and Connection. As a result, it is up to the vendor to provide a mapping from the data-
base data types to the Java types. Ordinarily, this does not pose much of a problem, because most
data types have a logical equivalent. In the case of Listing 12-10, the employee_number column is
an Integer in the MySQL database, and so calling getInt on the ResultSet will convert to a Java
int. Similarly, for the name column, this is a VARCHAR, which can be mapped to a String.

The getXXX methods are overloaded, and can take either a string, representing the column name, or
an int, representing the column ordering, indexed from 1.

How can you avoid SQL injection attacks?

If you have a specific query that is run repeatedly, the database can assist in the query preparation,
which will result in a faster, and actually more secure, query.

The use of query parameters allows the database to compile and prepare the query, and then you
can execute the actual query by providing the parameters. Listing 12-11 shows how this can work.

Listing 12-11:  Using query parameters

@Test
public void queryParameters() throws SQLException {
 final PreparedStatement pStmt = conn.prepareStatement(
 "insert into office_locations values (?, ?, ?, NULL)");

 final Map<String, String> locations = new HashMap<String, String>() {{
 put("London", "Picadilly Square");
 put("New York", "Union Plaza");
 put("Paris", "Revolution Place");
 }};

 int i = 1;
 for (String location : locations.keySet()) {
 pStmt.setInt(1, i);
 pStmt.setString(2, location);

continues

194  ❘  CHAPTER 12  Integrating Java Applications with Databases

 pStmt.setString(3, locations.get(location));
 pStmt.execute();
 i++;
 }

 pStmt.close();

 final Statement stmt = conn.createStatement();
 final ResultSet rs = stmt.executeQuery(
 "select count(*) from office_locations " +
 "where location_name in ('London', 'New York', 'Paris')");
 assertTrue(rs.next());
 assertEquals(3, rs.getInt(1));

 rs.close();
 stmt.close();
}

In Listing 12-10, the query was performed using a Statement object, but in this case, the query uses
a PreparedStatement object. When you create a PreparedStatement, you need to provide the
query you want to run. Parameters that you intend to vary over the different query invocations are
presented as question marks.

For each query execution, you set the parameters using setXXX methods, identifying the type of the
data for the query. You can see that this is the mirror of the getXXX methods on the ResultSet.
Again, be aware that the parameters are indexed from 1, not from zero.

Using the setXXX methods with a particular data type rather than hard-coding the parameter values
as a String gives a certain level of safety from attacks such as SQL injection.

Imagine you had a web service that displayed the contents of a database table, depending on the
ID of a certain column. You could expect the URL to look something like /showResults?id=3.
A simple implementation of this could take the parsed query parameter, and pass it straight to the
database in a query:

stmt.executeQuery("select * from records where id = " + queryParameters.get("id"));

However, a malicious user could replace the id parameter value with 3; DROP TABLE USERS;. This
would have the previous code run two queries:

SELECT * FROM records WHERE id = 3; DROP TABLE users;

If you are unlucky enough to have a table called users, it will have just been deleted.

Instead, if this query had been executed with a PreparedStatement:

final PreparedStatement ps = conn.prepareStatement("select * from records where id = ?);
ps.setInt(1, queryParameters.get("id"));
ps.execute();

Listing 12-11  (continued)

JDBC: Combining Java and the Database  ❘  195

when the query parameter attempts to set the value to an int, it will fail with an exception at run
time, because the malicious string is not an int.

You should always sanitize your database inputs, and you should always use the type system where
you can.

How do you run stored procedures from Java?

Calling stored procedures follows a similar pattern to that of creating prepared statements. You can
run the previous salary_update procedure using the test in Listing 12-12.

Listing 12-12:  Calling a stored procedure

@Test
public void callStoredProc() throws SQLException {
 final CallableStatement stmt = conn.prepareCall("{call annual_salary_raise(?, ?)}");
 stmt.setInt(1, 4);
 stmt.registerOutParameter(2, Types.INTEGER);

 stmt.execute();

 int updatedEmployees = stmt.getInt(2);
 assertEquals(1, updatedEmployees);
}

For this test, it is assumed that before running, there is only one employee in the database who is
eligible for a pay raise, as per the data in Table 12-3.

A CallableStatement is created with the prepareCall on the Connection object. Similar to the
PreparedStatement object, the statement to run on the database is presented here, with the param-
eters set as question marks.

All the different parameters are set, along with their data types. Note here that JDBC differentiates
the output parameters. These are collected after the statement has been executed.

The string to call the stored procedure is database-specific:

{call ANNUAL_SALARY_RAISE(?, ?)}

The structure of this string varies from vendor to vendor. Be aware that the way you initiate the call
can be different between the vendors. For instance, a call to a stored procedure of the same name in
Oracle PL/SQL would look like this:

conn.prepareCall("BEGIN ANNUAL_SALARY_RAISE(?, ?); END;");

The call is surrounded by a BEGIN...END block instead of curly braces. The parameters are still set
by question marks.

196  ❘  CHAPTER 12  Integrating Java Applications with Databases

How can you manage database connections?

A connection to the database is a limited resource and the process of creating a connection is
extremely time-consuming, especially when the connection must be negotiated over a network.
Quite often, the creation of a database connection can take longer than the operation on the data-
base itself.

In a similar approach to working with thread pools, applications often manage database connection
pools.

Several open source libraries create and work with connection pools. They all follow a similar
approach: You provide the library with details of how to make a connection, and when you require
a connection, the library provides it. It will either create one for you, or reuse a previously created
connection, sparing you the time taken to set it up.

One open source project for managing connections is C3P0. Listing 12-13 shows an example of how
to acquire a connection.

Listing 12-13:  Using a connection pool

@Test
public void connectionPools() throws SQLException {
 final ComboPooledDataSource cpds = new ComboPooledDataSource();
 cpds.setJdbcUrl("jdbc:mysql://localhost:3306/company_db");
 cpds.setUser("nm");
 cpds.setPassword("password");

 final Connection conn = cpds.getConnection();
 final Statement stmt = conn.createStatement();
 final ResultSet rs = stmt.executeQuery(
 "select count(*) from office_locations " +
 "where location_name in ('London', 'New York', 'Paris')");
 assertTrue(rs.next());
 assertEquals(3, rs.getInt(1));

 DataSources.destroy(cpds);
}

You do not close the connection when you have finished. The connection pool keeps a reference to
any connections it creates, and periodically checks the health of the connection by running a simple
query, such as SELECT 1 or SELECT 1 FROM DUAL, depending on the database.

This has the added benefit of making your application more resilient to a database outage. Should
your database crash and restart, all your connections are lost, so any references to those connec-
tions are invalid. When your application makes new requests for connections, brand new con-
nections will be created against the restarted database, because the pool will verify that the old
connections are stale.

mysql://localhost:3306/company_db

JDBC: Combining Java and the Database  ❘  197

How can you manage database releases for your application?

When releasing a Java application, generally you build and deploy the application as a single unit,
and any upgrades are also performed as a whole entity, replacing any existing binary.

This is not always possible for databases, because the data stored in the database must be preserved
across releases.

Luckily, several tools are available that integrate well with current build systems for managing and
performing database deployments and upgrades.

DBDeploy is one such tool, and works directly with Maven and Ant (if you are unfamiliar with
these tools, look at Chapter 19: “Developing with Build Tools”).

Every time you want to change your database in an upcoming release, you add a numbered file to
your build, numbered one higher than your last database change file. DBDeploy manages a table
on your database, holding a list of the run scripts in a table called changelog. If DBDeploy finds
any files that have not been recorded in the changelog table, it will run those in numerical order, as
shown in Listing 12-14.

Listing 12-14:  Running DBDeploy with new database changes

update-database:
 [dbdeploy] dbdeploy 3.0M3
 [dbdeploy] Reading change scripts from directory /javainterviews/chapter12...
 [dbdeploy] Changes currently applied to database:
 [dbdeploy] (none)
 [dbdeploy] Scripts available:
 [dbdeploy] 1, 2
 [dbdeploy] To be applied:
 [dbdeploy] 1, 2
 [dbdeploy] Applying #1: 001_database_creation.sql...
 [dbdeploy] Applying #2: 002_stored_proc.sql...
 [dbdeploy] -> statement 1 of 2...
 [dbdeploy] -> statement 2 of 2...

Any re-run of DBDeploy will ignore those files, because they will be recorded as having been suc-
cessfully applied, as shown in Listing 12-15.

Listing 12-15:  Running DBDeploy with no new database changes

update-database:
 [dbdeploy] dbdeploy 3.0M3
 [dbdeploy] Reading change scripts from directory /javainterviews/chapter12...
 [dbdeploy] Changes currently applied to database:
 [dbdeploy] 1, 2
 [dbdeploy] Scripts available:
 [dbdeploy] 1, 2
 [dbdeploy] To be applied:
 [dbdeploy] (none)

198  ❘  CHAPTER 12  Integrating Java Applications with Databases

Testing with In-Memory Databases

Is it possible to maintain a consistent environment for developing against a
database?

When doing active development against an application that needs access to a database, keeping the
database in a maintainable state can sometimes be problematic. One approach is to use a different
database distribution than the one you use in your production and integration environments: an in-
memory database.

As you would expect, the contents of an in-memory database are lost whenever the JVM shuts
down. This makes them useful for working with test data, where you don’t actually care about
the persistence of the data, but more that the interaction between the application and the database
works as expected. The in-memory database is run on your local machine too, so there will be no
network traffic to manage and the database does not need to deal with complicated connection
management from multiple clients.

A few open-source relational databases have an in-memory option, which are SQL-compliant. H2
is one such database. It has been developed in such a way that you need no special lines of code to
get the database running. Listing 12-16 shows just how simple it is to create and connect to an H2
database.

Listing 12-16:  Creating and using an in-memory database

@Test
public void connectToH2() throws SQLException {
 final Connection conn = DriverManager.getConnection(
 "jdbc:h2:mem:test;MODE=MySQL", "nm", "password");
 final Statement stmt = conn.createStatement();
 stmt.executeUpdate("create table teams (id INTEGER, name VARCHAR(100))");
 stmt.executeUpdate("insert into teams values (1, 'Red Team')");
 stmt.executeUpdate("insert into teams values (2, 'Blue Team')");
 stmt.executeUpdate("insert into teams values (3, 'Green Team')");

 final ResultSet rs = stmt.executeQuery("select count(*) from teams");
 assertTrue(rs.next());
 assertEquals(3, rs.getInt(1));
}

The connection string jdbc:h2:mem:test is enough for H2 to create an in-memory database, called
test, which will act like any other JDBC connection. The teams table is available only while the
test is running—it is not stored anywhere, so this test will run successfully every time. When con-
necting to a live database, you would need to find out the current state of the teams database before
running any tests against the table. The username and password parameters are irrelevant.

You can customize the behavior of the database by applying some settings as part of the connection
string. The string jdbc:h2:mem:test;MODE=MySQL indicates that H2 should understand the MySQL

Summary  ❘  199

specifics; that is, the MySQL data types and any other SQL and language differences that are spe-
cific to the MySQL platform.

By coupling this with DBDeploy, before your test suite runs, you can load your DBDeploy scripts
into a fresh H2 database, and your tests will act as if they are connecting to a regular MySQL
database.

Another approach is to run tests on a real relational database inside an open transaction, and roll-
back after the test is run, on success or failure. This can be an effective, but risky way to test. If
what you are testing commits a transaction, then you cannot do it this way. You are also dependent
on the database being in the correct state.

Summary

Java has a well-understood, and well-used, interface between Java objects and their representation
in a database. This chapter has tackled some of the hurdles around connecting to and manipulating
databases, including regular, vanilla SQL, and more expressive stored procedures.

Although SQL is the standard for database querying and manipulation, database distributions from
separate vendors still behave differently: They use their own data types, they have their own exten-
sions, and they even approach the use of stored procedures differently.

Any interview for an experienced Java developer will most likely include an element of database
interaction. Quite often, applications in industry, particularly in finance, concentrate the majority of
their efforts on the database and its performance. A Java application is then a presentation of that
database. It is important to understand the database you are connecting to—understanding JDBC
and SQL is not enough.

The next chapter complements this one by looking at how to use Java to produce web applications.
More often than not, web applications are backed by some kind of persistent data store. For more
about the interaction between Java and databases, you can jump to Chapter 17, which looks at
object-relational mapping with Hibernate.

Creating Web Applications
This chapter covers Tomcat and Jetty, two of the main applications used to serve web pages,
and it also covers a more recent framework, Play. Both Tomcat and Jetty implement the Java
Servlet API. This API is part of Java Enterprise Edition, a platform covering many applications
and services often used in developing software for the enterprise. As well as the Servlet API,
this includes topics such as Java’s Messaging Service and some advanced topics around data-
base transaction management and persistence.

Tomcat and Jetty are quite similar, in that they both follow the Servlet API. In fact, some
teams often use both within their development cycle for creating a single application: using
Jetty for active day-to-day development, and using Tomcat for deployment for use with mul-
tiple users, whether that’s a QA for testing or live production deployment.

The relevant sections in this chapter try to differentiate between Tomcat and Jetty, and where
they can be appropriately used.

Play is a newer application server inspired by other frameworks, such as Rails, that concen-
trates on rapid prototyping and fast development, iterating development on top of a barebones,
but functional, application.

Tomcat and the Servlet API

Java’s Servlet API defines a set of interfaces and file definitions for building web applications
for use on the JVM.

How are web applications defined within the Servlet API?

The Servlet API defines that a web application uses a deployment descriptor named web.xml,
which is located on the classpath at /webapp/WEB-INF/web.xml. This file defines the servlets,
and how they are configured and served by a servlet container.

13

202  ❘  CHAPTER 13  Creating Web Applications

The web.xml file is used to determine which servlet handles a certain request, based on the path of
the request. Listing 13-1 shows an example deployment descriptor holding multiple servlets.

Listing 13-1:  An example web.xml deployment descriptor

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 metadata-complete="false"
 version="3.0">

 <filter>
 <filter-name>HeaderFilter</filter-name>
 <filter-class>com.example.HeaderFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>HeaderFilter</filter-name>
 <servlet-name>AdminConsole</servlet-name>
 </filter-mapping>

 <servlet>
 <servlet-name>Application</servlet-name>
 <servlet-class>com.example.ApplicationServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>AdminConsole</servlet-name>
 <servlet-class>com.example.AdminConsoleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>AdminConsole</servlet-name>
 <url-pattern>/admin/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

This descriptor has two main parts: the filter definitions and mappings, and the servlet definitions
and mappings.

Examining the servlet definitions and mappings first, this descriptor has two servlets, the classes
com.example.ApplicationServlet and com.example.AdminConsoleServlet. These classes are
implementations of javax.servlet.http.HttpServlet.

These servlets are mapped to URL patterns. If a client makes a request to anything on /admin,
that request will be handled by the AdminConsoleServlet. The ApplicationServlet handles any
other request.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

Tomcat and the Servlet API  ❘  203

Listing 13-2 defines a very simple implementation of HttpServlet.

Listing 13-2 An example HTTP servlet

public class TimeServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final String now = new Date().toString();

 response.setContentType("text/html");
 response.setStatus(HttpServletResponse.SC_OK);

 final String responseString = String.format("<html>" +
 "<head>" +
 "<title>Time</title>" +
 "</head>" +
 "<body>The time is %s</body>" +
 "</html>", now);

 response.getWriter().print(responseString);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

HttpServlet provides Java methods to be called for the corresponding HTTP methods. If a GET
request is forwarded to this servlet, the doGet method will be called. Similarly, a POST request would
be forwarded to doPost. The servlet in Listing 13-2 has been defined to handle POSTs and GETs in the
same way. If you were to make a request using a different HTTP method, say, PUT, the response code
would be a HTTP 405 – Method Not Allowed, or HTTP 400 – Bad Request. These codes are the
default behavior on HttpServlet if you do not override the appropriate doXXX method.

The HTML Response of Listing 13-2

Listing 13-2 responds directly with a chunk of HTML advising the requestor of
the current time on the server. Explicitly writing the response in this manner is not
advisable, because it can become hard to manage and maintain very quickly as your
application grows.

Libraries are dedicated to managing text manipulation for dynamic responses
inside HTML. Additionally, it is good practice to separate the business logic from
how those results are displayed. The Model-View-Controller (MVC) pattern is a
popular implementation to take care of this, and several frameworks implement
this pattern for handling the interaction between the data and its display. Spring’s
implementation, Spring MVC, is covered in Chapter 16.

204  ❘  CHAPTER 13  Creating Web Applications

How can requests to a particular servlet be securely managed?

The deployment descriptor from Listing 13-1 also defines a filter, and it maps this filter to the
AdminConsole servlet. Classes defined inside a filter-class tag implement the javax.servlet
.Filter class. Listing 13-3 is such an implementation.

Listing 13-3:  Filtering HTTP requests

public class HeaderFilter implements Filter {
 @Override
 public void init(FilterConfig filterConfig) throws ServletException {
 // do nothing
 }

 @Override
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 if (request.getParameter("requiredParameter") != null) {
 chain.doFilter(request, response);
 } else {
 ((HttpServletResponse) response).sendError(
 HttpServletResponse.SC_UNAUTHORIZED);
 }

 }

 @Override
 public void destroy() {
 // do nothing
 }
}

The Filter class defines three methods—init, doFilter and destroy—and these methods are called
at appropriate times during the lifetime of the application server. init is called when the filter is first ini-
tialized, doFilter is called before every request, and destroy is called when the server is shutting down.

For this example, no additional setup is needed once the class is instantiated, so the init method
does nothing. The FilterConfig parameter holds additional metadata such as the name for this
filter in the deployment descriptor (in the filter-name tag).

The destroy method gives the filter the opportunity to do any necessary housekeeping, such as clos-
ing connections and cleaning file systems, before it is destroyed for good.

The doFilter is called on every request, and it gives the filter the opportunity to inspect the
request, and decide whether to reject the request or allow it to pass before it is forwarded to the
servlet for execution.

It is possible to have more than one filter defined for a servlet, known as a filter chain; the order of
the filter-mapping tags in the deployment descriptor defines the order of the chain for execution.

Tomcat and the Servlet API  ❘  205

When a filter has finished processing the request, it should forward the request to the next filter in
the chain. Calling doFilter on the FilterChain object parameter does this. Omission of this call
inside your filter means the request will not be processed by the servlet. Figure 13-1 illustrates the
filter chain.

Request

More filters

Filter Filter Servlet
Response

Figure 13-1 

The example in Listing 13-3 inspects the request’s query parameters, and if requiredParameter
is not set, the client is returned the status code HTTP 401 – Unauthorized and the request is not
forwarded to the servlet. Naturally, checking the existence of a required parameter is not a secure
approach to authenticating clients of a web application, but it should serve to explain how the fil-
ter is operating.

Note that the Filter interface is not part of the javax.servlet.http package, and the request
and response parameters passed to doFilter are ServletRequest and ServletResponse, not
the HttpServletRequest and HttpServletResponse subclasses. This Filter interface has been
designed for use with any kind of request/response servlet, not just HTTP servlet containers. The
sendError method is only on the HttpServletResponse class, which is why a cast is necessary to
return an error to the client.

It is safe to perform this cast here, because this filter is only going to be used inside an HTTP serv-
let container for servicing HTTP requests.

Filters are not just for determining if a request is to be handled. They can provide additional value
to requests. Some examples of filter use include:

➤➤ Logging all requests—The filter logs the request and immediately passes the request to the
next filter in the chain.

➤➤ Authentication—A stronger form than that described in Listing 13-3: If a user is not
authenticated, the request could be redirected to a login page first.

➤➤ Serving static content—Images or other content such as JavaScript or CSS files could be
loaded without the servlet needing to be called.

What is a WAR file?

A Web Archive file, or WAR, file is built in the same way as Java’s JAR files. It is specifically used
for bundling up web applications. It contains all the compiled class files needed to run the applica-
tion, as well as any provided properties and other configuration files.

206  ❘  CHAPTER 13  Creating Web Applications

Most importantly, a WAR file contains the deployment descriptor—the web.xml file—which is
the main definition of how the web application is set up. It serves as instructions to the application
server of how to deploy and serve the application.

Most IDEs such as IntelliJ and Eclipse can create WAR files within a couple of clicks for a given
project. If you want to automatically build and deploy WARs, you will need your build tool to cre-
ate them for you. For Maven, setting the top-level packaging tag to war will instruct your build to
create a WAR artifact over a JAR. If Maven is new to you, it may help to fast-forward to Chapter 19
on build tools to understand how to build Java projects using Maven.

How are web applications managed within Tomcat?

Tomcat is designed to run more than one web application at a time. A web application is defined as
a WAR file that contains a deployment descriptor, web.xml.

Usually a server will be running one Tomcat instance, and the relevant WAR files are installed under
the webapps directory of the Tomcat instance. Naturally, this is a default choice, and it is possible to
configure this location.

Tomcat’s Components

Tomcat is built from several components, including one for the servlet container,
and one for processing JSPs. The servlet container component is called Catalina,
and the JSP component is called Jasper.

Be aware that when reading documentation for Tomcat usage, it is not uncommon
to see references to these names—for example, the default name for the output log
file is catalina.out, or the environment variable for Tomcat’s home directory is
called $CATALINA_HOME.

By default, a running Tomcat instance is listening for any changes to the webapps directory. Should
a new WAR file be saved to this directory, Tomcat will extract it into a directory matching the WAR
filename, and serve the application on the context matching that name.

For example, if you deployed a WAR file called BookingApplication.war to the webapps direc-
tory, this would be extracted to a directory called BookingApplication. Tomcat would then read
the web.xml hosted under WEB-INF and serve the application from this definition. The application
would be served as /BookingApplication to clients.

This approach is extremely useful for rapid turnarounds on development. You can include the deploy-
ment in a continuous delivery pipeline, automatically deploying a built and unit-tested WAR file to an
accessible server, ready to be integration tested. You could even deploy it automatically to a live envi-
ronment, if your test coverage is good enough and your team’s development process allows it.

How do you handle request parameters with the Servlet API?

Jetty  ❘  207

The HttpServletRequest class has a method, getParameterMap. This method returns a map of
each pair of parameters that formed the request.

Given the key may appear more than once on an HTTP request, the type of the map is
Map<String, String[]>. That is, each key has an array for all the values that were part of the
request with that same key.

Consider the following code:

final StringBuffer output = new StringBuffer();

final Map<String, String[]> parameterMap = request.getParameterMap();
for (String parameterName : parameterMap.keySet()) {
 output.append(
 String.format("%s: %s
",
 parameterName,
 Arrays.asList(parameterMap.get(parameterName))));
}

IOUtils.write(output, response.getOutputStream());

If you were to send a request with the query string a=123&b=asdf&a=456, then this would produce
the output:

b: [asdf]
a: [123, 456]

Notice how the values for the a key were collated, as that key appeared more than once.

As this functionality is part of the Servlet API, it is available to any application container that sup-
ports the Servlet API. This includes Tomcat, and Jetty.

Jetty

Jetty has been designed to be lightweight and easy to use. You can even create and run servers
purely in Java code, with no configuration.

How can you create a running web application inside a Java class?

You can configure Jetty to run in several lines of code. Listing 13-4 shows two classes: one to start a
server and the other to define how that server responds to requests.

Listing 13-4:  Defining a Jetty server in code

public class JettyExample {

 public static void main(String args[]) throws Exception {
 final Server jettyServer = new Server(8080);
 jettyServer.setHandler(new EchoHandler());
 jettyServer.start();

continues

208  ❘  CHAPTER 13  Creating Web Applications

 jettyServer.join();
 }
}

class EchoHandler extends AbstractHandler {

 @Override
 public void handle(String target,
 Request baseRequest,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/plain");
 response.setStatus(HttpServletResponse.SC_OK);
 baseRequest.setHandled(true);

 final ServletInputStream requestInputStream =
 request.getInputStream();
 final ServletOutputStream responseOutputStream =
 response.getOutputStream();

 IOUtils.copy(requestInputStream, responseOutputStream);
 }
}

This code configures a server to respond to any client with the same body of the request. The HTTP
POST and PUT methods have bodies, so requests with these methods will respond appropriately.

Performing HTTP Requests

A web browser is fine for performing requests, but to make a POST, PUT, or any-
thing other than a GET request will require you to write a small amount of HTML,
and perhaps use the help of a JavaScript library such as JQuery.

You will find that using a dedicated HTTP client will make it easier to create and
debug HTTP requests. UNIX operating systems (including Mac OS X) ship with
the command-line client curl. The following line demonstrates its use for the server
created in Listing 13-4:

> curl -X PUT -d "Hello World" http://localhost:8080

This will respond with the same “Hello World.” It will not have a trailing newline.

For a graphical HTTP client, the Google Chrome plug-in called Postman has a rich
feature set and an intuitive user interface.

Chapter 14 covers using HTTP clients within Java code, and also looks at the
HTTP methods.

Listing 13-4  (continued)

http://localhost:8080Thiswillrespondwiththesame%E2%80%9CHelloWorld.%E2%80%9DItwillnothaveatrailingnewline.ForagraphicalHTTPclient
http://localhost:8080Thiswillrespondwiththesame%E2%80%9CHelloWorld.%E2%80%9DItwillnothaveatrailingnewline.ForagraphicalHTTPclient
http://localhost:8080Thiswillrespondwiththesame%E2%80%9CHelloWorld.%E2%80%9DItwillnothaveatrailingnewline.ForagraphicalHTTPclient

Jetty  ❘  209

The final line of the handle method in the EchoHandler is a utility method from the Apache
Commons IO library for connecting InputStreams to OutputStreams. The Apache Commons
library is covered in Chapter 18.

Extending the AbstractHandler class is a Jetty-specific implementation, and though this may be
fine for your needs, it also ties your code to the Jetty platform. Rather than using Jetty’s handlers,
you can implement your specific behavior as a servlet. Listing 13-5 shows two classes: the Jetty con-
figuration in code and the implementation of the HttpServlet class.

Listing 13-5:  Using Jetty with the Servlet API

public class JettyServletExample {

 public static void main(String[] args) throws Exception {
 final Server jettyServer = new Server(8080);
 final ServletHandler servletHandler = new ServletHandler();
 jettyServer.setHandler(servletHandler);
 servletHandler.addServletWithMapping(EchoServlet.class, "/*");
 jettyServer.start();
 jettyServer.join();
 }
}

public class EchoServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 response.setStatus(HttpServletResponse.SC_OK);

 final ServletInputStream requestInputStream =
 request.getInputStream();
 final ServletOutputStream responseOutputStream =
 response.getOutputStream();

 IOUtils.copy(requestInputStream, responseOutputStream);
 }
}

Jetty’s API has a specific handler for dealing with servlets. This means that it is possible to use both
Jetty-specific handlers and servlet implementations in the same code. The following snippet shows
an example:

final HandlerList handlers = new HandlerList();
handlers.setHandlers(new Handler[] { jettyHandler, servletHandler });
jettyServer.setHandler(handlers);

Note that this implementation of the same functionality is more restricted than the implementation
using only Jetty’s handlers: it will only respond to POST requests. To perform the same action for
another method, say PUT, the doPut method should be overridden too:

210  ❘  CHAPTER 13  Creating Web Applications

@Override
protected void doPut(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doPost(request, response);
}

You can see from the main method that different servlets can be mapped to different contexts, much
like you would do inside a web.xml deployment descriptor:

servletHandler.addServletWithMapping(AppServlet.class, "/app");
servletHandler.addServletWithMapping(AdminServlet.class, "/admin");

How can you perform integration tests against a running web server?

The simplicity and flexibility of Jetty and its capability to configure and run within Java code
makes it an ideal candidate as a server for use within integration tests, even if your production serv-
let container is different. Listing 13-6 is a JUnit test running against the EchoServlet defined in
Listing 13-5.

Listing 13-6:  Testing servlets with Jetty and JUnit

public class JettyJUnitTest {

 private static Server jettyServer;

 @BeforeClass
 public static void startJetty() throws Exception {
 jettyServer = new Server(8080);
 final ServletHandler servletHandler = new ServletHandler();
 jettyServer.setHandler(servletHandler);
 servletHandler.addServletWithMapping(EchoServlet.class, "/echo/*");
 jettyServer.start();
 }

 @Test
 public void postRequestWithData() throws IOException {
 final HttpClient httpClient = new DefaultHttpClient();
 final HttpPost post = new HttpPost("http://localhost:8080/echo/");
 final String requestBody = "Hello World";
 post.setEntity(new StringEntity(requestBody));

 final HttpResponse response = httpClient.execute(post);
 final int statusCode = response.getStatusLine().getStatusCode();

 final InputStream responseBodyStream = response.getEntity().getContent();
 final StringWriter stringWriter = new StringWriter();

 IOUtils.copy(responseBodyStream, stringWriter);
 final String receivedBody = stringWriter.toString();

 assertEquals(200, statusCode);

http://localhost:8080/echo/

Jetty  ❘  211

 assertEquals(requestBody, receivedBody);
 }

 @AfterClass
 public static void stopJetty() throws Exception {
 jettyServer.stop();
 }
}

A new server is started when this test suite is created, and the server is stopped once all the tests are
run. For this implementation, the server holds no state, so it is not necessary to create a new server
for each test run. Should you require a new server for each test run, the server could be started in
a @Before annotated method.

Note that inside the test method, there are no references to Jetty, nor any code related to the server
implementation; this is only testing the behavior of the server over the HTTP protocol. Apache’s
HTTP client API is used here, and again, Apache’s Commons IO API simplifies reading the response
InputStream and converting to a string.

Although only one test has been defined here, you can certainly think of more test cases for this
servlet, such as different HTTP methods, or making requests with no data.

How can you perform active development against a local application server?

Jetty has a Maven plug-in, which allows for easy running of web applications built from a Maven
project.

You can set the Maven Jetty plug-in for the project by adding the plug-in to the project’s POM:

<plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.0.3.v20130506</version>
</plugin>

You invoke the plug-in by running mvn jetty:run. This will compile and package the project first.
By Maven’s main rule of following convention over configuration, the plug-in will look in the default
location for the deployment descriptor: /src/main/webapp/WEB-INF/web.xml. Aside from defining
the plug-in in your POM, you do not need any Jetty-specific configuration; the presence of this file
will be enough for Maven to load a Jetty server with the configured servlets. Listing 13-7 loads the
previous EchoServlet.

Listing 13-7:  Running Jetty through Maven

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

continues

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance

212  ❘  CHAPTER 13  Creating Web Applications

 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 metadata-complete="false"
 version="3.0">

 <servlet>
 <servlet-name>Echo</servlet-name>
 <servlet-class>
 com.wiley.javainterviewsexposed.chapter13.EchoServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Echo</servlet-name>
 <url-pattern>/echo/*</url-pattern>
 </servlet-mapping>

</web-app>

Running mvn jetty:run loads the server on your local host, on port 8080 by default. The
port configuration is not part of the web.xml deployment descriptor, so if you require your server
to run on a different port, this is specified by the jetty.port property: Running mvn -Djetty
.port=8089 jetty:run starts it on port 8089.

Another huge advantage to this approach is that you need no bespoke software to get a fully func-
tional application server running locally. Aside from Java and Maven, you do not need to download
and install any other applications from the Internet. Any newcomers to your team can simply check
out your code, and run mvn jetty:run.

Any specific application settings are set inside the plugin tag in your POM. For example, to set
some specific system properties, the configuration in your POM would look like Listing 13-8.

Listing 13-8:  Setting specific properties for the maven-jetty-plugin

<plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.0.3.v20130506</version>
 <configuration>
 <systemProperties>
 <systemProperty>
 <name>environment</name>
 <value>development</value>
 </systemProperty>
 </systemProperties>
 </configuration>
</plugin>

Listing 13-7  (continued)

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

Play Framework  ❘  213

Using the Maven Jetty plug-in in this fashion is often a popular choice for active development. You
can have a local web server running quickly with minimal setup needed, and the server is running
with the same deployment configuration inside the web.xml, which will be deployed to the live pro-
duction environment, perhaps even on a different application server, such as Tomcat.

The use of system properties to determine which environment you are running against enables you
to provide different configurations for different environments at run time, with no code changes
needed to switch between the environments.

Play Framework

Play is a relatively new player in the web application space. It takes a fresh approach to developing
web applications, and does not make use of Java’s Servlet API.

How do you create a new Play application?

Play has a different approach to developing web applications. Rather than creating a new project
yourself, using Maven or similar, you ask Play to create it for you.

After downloading and unzipping Play, you run the play UNIX script or play.bat Windows batch
file from a fresh empty directory, instructing it to create a new project. You also provide the name of
the project:

> play new echo-server

This will take you through a very short process to create the project for you. Play asks you for the
name of the project. You can keep it as echo-server for this project:

What is the application name?
> echo-server

You then have the option of creating a new Java or Scala project, or a completely blank project.
Choose the Java project:

Which template do you want to use for this new application?

 1 - Create a simple Scala application
 2 - Create a simple Java application
 3 - Create an empty project

> 2

This has created a skeleton project for you, in a directory called echo-server.

Before inspecting the code, you can check that the application actually runs. The play application
works slightly differently compared to more traditional applications you may have come across, such
as Maven or Ant. Inside the echo-server directory, running play with no parameters takes you to

214  ❘  CHAPTER 13  Creating Web Applications

a console, which enables you to interactively specify build steps you want to run. On execution, you
should see a prompt and some welcoming text similar to the following:

> play
[info] Loading global plugins from /Users/noel/.sbt/plugins
[info] Loading project definition from /playProjects/echo-server/project
[info] Set current project to echo-server (in build file:/playProjects/echo-server)
 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.0, http://www.playframework.org

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[echo-server] $

At this prompt, you can type run. This may take some time while Play downloads dependencies, but
eventually you should see confirmation that the application is running:

[info] play - Listening for HTTP on port 9000...

(Server started, use Ctrl+D to stop and go back to the console...)

At this point, you can visit http://localhost:9000 in your favorite web browser. The page dis-
played should be a boilerplate page informing you that the server is up and running, with some links
for next steps.

Pressing Ctrl+D in your Play console stops the server and takes you back to the command prompt.

What are the different components of a Play application?

Figure-13-2 shows the default layout of a Play application.

The app directory contains two subdirectories: controllers and views. This should be familiar if
you are aware of the Model-View-Controller pattern. The controllers directory is where you will
place Java classes for dealing with processing incoming requests. The views directory holds tem-
plates for displaying the results of requests.

The conf directory is where you store configuration for your web application: application.conf is
a traditional Java properties file, containing key-value pairs. This is where you would configure any
logging for your application, as well as database configuration. You can also specify your own prop-
erties here, which will be available to the running application.

The routes file instructs Play what to do with incoming requests. The file contains three columns.
The first defines the HTTP method. The second is the path of the request. If Play receives a request
that matches these two entries, it will execute the method defined in the third column. Listing 13-9
shows an example entry in a routes file.

http://www.playframework.org
http://localhost:9000

Play Framework  ❘  215

<project
root>

app

controllers

views

conf

logs

project

public

Figure 13-2 

Listing 13-9:  An example entry in Play’s routes file

GET /time controllers.Application.time()

When a client makes a GET request to the /time path, the time() method on the Application class
will be called.

The logs directory contains any logging output from your application. You have the ability to con-
trol the logging from the conf/application.conf file. The setup is the same as the standard Log4J
format.

The project directory contains any build-specific setup, such as any necessary library dependen-
cies, or specific build steps, such as deploying builds to an artifact server like Nexus or Artifactory.

The public directory contains any static files to be served, such as images, JavaScript, or CSS. Note
that access to these assets is still controlled through the routes file, and is included in the default
project setup.

Remember, Play applications are not designed to work with Java’s Servlet API; Play does not cre-
ate WAR files. When your project is complete and ready to be run outside of the play console, you
can run the dist command. This will create a new top-level directory called dist, and put a zipped
build of your application there. Inside the zip is a start script. Running this script will start your
server in the same fashion as calling run inside the play console.

216  ❘  CHAPTER 13  Creating Web Applications

How is Java code executed as a result of an HTTP request?

The controllers directory underneath app is where any Java classes will be placed. This is actually
a top-level package, so if you are more comfortable with your organization’s package structure here,
you use that here.

For the new application created earlier in this section, you will need a small amount of code to
mimic an echo server. Create a new class, called Echo, which extends play.mvc.Controller. This
class will have one method, echoReply, which takes no parameters. Listing 13-10 contains this
method.

Listing 13-10:  The Play controller for an echo service

public class Echo extends Controller {

 public static Result echoReply() {
 RequestBody messageBody = request().body();
 return ok(messageBody.asText());
 }
 }

The Result object generated by the ok method contains all the necessary metadata for Play to
understand how to respond to the client. The ok method specifies the HTTP 200 – OK response
code. It is a static import from the Results.Status class, and as you would expect, this contains
methods for most response codes: notFound() for HTTP 404, internalServerError() for
HTTP 500, and so on.

This method is extracting the message body as text, due to the messageBody.asText() method
call. This expects the request to have the Content-Type: text/plain HTTP header set.
This RequestBody object can create different types for the message body depending on the
Content-Type header, such as a rich JSON object for requests coming in as application/json,
or even an XML DOM Document for those requests received as text/xml.

You need to instruct Play to call this method when a valid request comes in. Listing 13-11 instructs
the server to respond with this echo whenever a POST or PUT is called on /echo.

Listing 13-11:  The routes for the echo service

POST /echo controllers.Echo.echoReply()
PUT /echo controllers.Echo.echoReply()

As you are executing plain Java code, you do not need to do anything special to test it: You can sim-
ply write unit and integration tests as usual, using JUnit or something similar.

Play Framework  ❘  217

How is the Java code separated from the HTML generation with Play?

The echo service created is an extremely useful approach for creating applications like Web Services
and REST APIs, though if you are creating web pages to be viewed by a human being in a web
browser, you will still need an approach to make them legible.

Rather than generating an HTML response by hand, Play has tight integration with its own tem-
plate framework. You can do the hard processing inside the regular Java class, and then hand off to
the template to display your response in a pleasing way.

Extend the Echo class to process requests containing query parameters. These parameters will be
parsed by the controller, and then passed to the template to generate the HTML. Listing 13-12
shows the new method on the Echo class, Listing 13-13 shows the new entry in the routes file, and
Listing 13-14 is the template for displaying the output as HTML.

Listing 13-12:  The echo service controller for displaying request parameters

public static Result echoParameters() {
 final Map<String, String[]> queryString = request().queryString();

 final String timestamp = new Date().toString();

 return ok(paramPrintout.render(queryString, timestamp));
}

Listing 13-13:  The new routes entry

GET /echo/parameters controllers.Echo.echoParameters()

Listing 13-14:  The template for displaying the request parameters

@(queryString: Map[String, Array[String]])(timestamp: String)

<html>
 <head><title>Query Parameters</title></head>
 <body>
 <h1>The request parameters for this page:</h1>

 @for((param, values) <- queryString) {

 @param : @for(value <- values) { @value }

 }

 This page was generated at: @timestamp
 </body>
</html>

218  ❘  CHAPTER 13  Creating Web Applications

The template file is called paramPrintout.scala.html. This name is important, because during
the process of building the site, Play will convert this template into compiled Scala code, an instance
called paramPrintout.

Scala code is used here, because the Play Framework itself is written in Scala. Don’t be alarmed if
you’ve not seen any Scala code before, this template language is similar to many of the other tem-
plate languages in use, such as Freemarker or Velocity.

If you launch this application using the run command from within the play console, and you visit
the URL http://localhost:9000/echo/parameters?a=123&b=456&a=abc, then hopefully you
can see how this request fits into the human-readable response.

If you are particularly skilled with HTML, JavaScript, and CSS, you can see how Play would make
a useful back end allowing rapid turnaround for development.

How can you use Play to interact with a JDBC database?

Inside the application.conf file, you configure a set of properties for working with a database.
For simplicity, this setup is with an in-memory database, which was covered in Chapter 12.

The properties db.default.driver and db.default.url should be set if you use a database:

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:testDatabase"

Inside your controller, you can get a regular JDBC connection with the static method call play.
db.DB.getConnection(). Once you have a reference to the java.sql.Connection object, which
this method returns, the code for accessing and manipulating database objects is exactly the same,
as shown in Listing 13-15.

Listing 13-15:  Accessing a JDBC database inside a Play application

final Connection conn = play.db.DB.getConnection();
final Statement stmt = conn.createStatement();
stmt.executeQuery("select * from ...")

Remember, this is just a regular Java class, so you can use any libraries that you are comfortable with
to help with database access, such as Spring’s JDBCTemplate (covered in Chapter 16) or even some-
thing more advanced, such as an object-relational mapper like Hibernate (covered in Chapter 17).

Summary

This chapter has provided a tour of the different flavors of HTTP servers available to Java develop-
ers. The Java Servlet API has been in existence almost as long as Java itself, just as the Internet and
applications on the World Wide Web were starting to take off.

http://localhost:9000/echo/parameters?a=123&b=456&a=abc

Summary  ❘  219

By looking at the Play framework as well, this should show that using Java servlets is not the only
way to create web servers on the JVM. The uses of libraries and technologies is always changing,
and hopefully by taking a look at Play, you should understand that staying on top of the current
trends and applications in use is imperative to staying competitive in the job market.

A large number, if not the majority, of jobs available to Java developers will include some kind of
web component. Companies tend toward developing products for their clients with a web interface,
and every desktop has a web browser: Companies can get their product to their clients without the
need for creating custom installers, or creating and delivering a boxed product. Be aware that if you
are going to have an interview with a company that has any kind of presence on the Internet—for
instance, an online shopping site, or even a social gaming company—any reputable employer will
test you on your understanding of how a Java application communicates with the outside world.

The next chapter continues using Play for servicing HTTP requests, taking a deeper look at the
HTTP methods and how they relate to the popular REST services, as well as how to call out as a
client to other HTTP services.

Using HTTP and REST
HTTP is one of the core ways for requesting and receiving data over the Internet. It is used
for communication over the World Wide Web. HTTP servers, such as Apache’s HTTPD,
Microsoft’s IIS, and Tomcat, are configured to listen for structured incoming requests, and
respond appropriately.

The HTTP Methods

What is HTTP?

A good exercise in understanding how the HTTP protocol works is to perform an HTTP
request outside of a browser using an application such as Telnet which is provided with most
modern operating systems.

To make a request to a site, such as Wikipedia, open a Telnet connection to port 80. You
should see output similar to Listing 14-1.

Listing 14-1:  Initiating an HTTP request using Telnet

> telnet en.wikipedia.org 80
Trying 91.198.174.225...
Connected to wikipedia-lb.esams.wikimedia.org.
Escape character is '^]'.

Your command prompt should be on a blank new line. The server hosting your request is now
waiting for you to make your request for a certain page. Type GET / HTTP/1.1, followed by
new lines. Your Telnet session should respond with a set of HTTP headers, followed by some
HTML, and will then close the connection and take you back to the command line, like in
Listing 14-2.

14

222  ❘  CHAPTER 14  Using HTTP and REST

Listing 14-2:  Creating an HTTP request using Telnet

GET / HTTP/1.1

HTTP/1.0 200 OK
Server: Apache
X-Content-Type-Options: nosniff
Cache-Control: s-maxage=3600, must-revalidate, max-age=0
Last-Modified: Mon, 13 May 2013 17:07:15 GMT
Vary: Accept-Encoding
Content-Length: 6071
Content-Type: text/html; charset=utf-8
Connection: close

<!DOCTYPE html>
<html lang="mul" dir="ltr">

... WEB PAGE CONTENT ...

</body>
</html>Connection closed by foreign host.
>

Typing GET / HTTP/1.1 instructs the server of three key instructions: Use the GET method, get
the page /, and use version 1.1 of the HTTP protocol. This example sent no HTTP headers to the
server; any headers in the form Key: Value would have been included on the lines underneath the
GET line. These headers often include metadata about your request, such as how you would like the
format of the response, or what browser you are using. This is why you need a completely blank line
to complete the request, because the server will be expecting many lines for the request.

The server responds in a similar fashion. The initial line, HTTP/1.0 200 OK, informs the client
that the response is using version 1.0 of the protocol (this server is clearly backward compatible, to
accept a version 1.1 request, and reply with a 1.0 response), and informs the client that the request
resulted in a 200 OK response, which is a successful response.

The following lines are the response headers, which contain some metadata about the response.
These can help clients make judgments about how to parse the body of the response, indicating
details such as the language of the body and its length.

Again, a blank line signifies the end of the headers, and the start of the body of the response. For a
rich HTML web page such as the one requested from Wikipedia, this response will be several hun-
dred lines long. Following the end of the HTML, the connection is closed, and the Telnet client is
closed, returning you to the command line.

HTML is not the only data that can be sent as a response to an HTTP request. Any plain text or
binary data can be received. The format of the content is usually included in the Content-Type
header.

Take time to explore HTTP requests and responses this way. Make requests to some of your favor-
ite sites. Try requesting different pages and other resources within that site. Look at the response

The HTTP Methods  ❘  223

content, the different headers and their values, and the content of any response. The Telnet client is
an extremely valuable tool for understanding exactly how a server is responding. It can be very use-
ful in debugging connection and response issues.

What are the HTTP methods?

The HTTP methods, sometimes called verbs, are instructions to the web server about what to do
with the resource you are requesting. Listing 14-2 used the GET method. This instructs the server to
find the resource requested, and serve it to the client without any modifications. This is the method
used when requesting web pages in a browser.

The common methods implemented by servers are GET, POST, PUT, DELETE and HEAD. Only GET and
HEAD are required to be implemented, although POST is usually implemented too; this is the method
used when submitting forms from a web page.

➤➤ GET—Serve the requested resource; no changes should be made.

➤➤ POST—Update the resource to the content of the request.

➤➤ PUT—Set the content of the resource to the content of the request.

➤➤ DELETE—Remove the requested resource.

➤➤ HEAD—Mimic a GET request, but only return the response code and headers. This can be
used to verify that a very large resource exists without the need to download it. If the client
has previously downloaded the resource, it can check the Last-Modified header, which will
allow the client to see if it has the most up-to-date copy.

The difference between POST and PUT can sometimes be confusing. As a rule, you use PUT to set new
content, and POST to overwrite content that already exists.

The HTTP specification also advises that the OPTIONS method is implemented. This method is a
way for clients to discover which other HTTP methods are available.

What do HTTP response codes signify?

The first line of an HTTP response includes a response code, and a short description of what that
code means. The example in Listing 14-2 responded with 200 OK. This is the code for a successful
HTTP request and response. The codes are broken up into several sections, with the first digit repre-
senting the classification of the response. Any 2xx code represents a successful request and response:

➤➤ 201 Created—Often returned from PUT requests, noting that the request was successful
and the resource was created

➤➤ 204 No Content—The request was successful; the server has no more information to tell
the client. This, too, is often used for successful PUT, POST, or DELETE requests.

224  ❘  CHAPTER 14  Using HTTP and REST

The 4xx classification indicates a client error, with the server instructing the client that it did not
make a valid request. Some common codes include:

➤➤ 400 Bad Request—The client did not send a well-formed request. You can often trigger
this from a Telnet request, and send a junk string as the first line of a request.

➤➤ 403 Forbidden—This is often a response for a client that has provided a valid login, but
they are not permitted to request the given resource.

➤➤ 404 Not Found—The requested resource does not exist.

➤➤ 405 Method Not Allowed—A resource has been requested with the wrong HTTP method.

Some servers may reply with 404 rather than 405 when making a request with the wrong HTTP
method, for instance making a GET request when the server is only configured to listen for POST.

The 5xx classification indicates that there was an issue on the server side. It is not usually possible
for a client to recover from these exceptions without changes happening on the server. Some com-
mon codes include:

➤➤ 500 Internal Server Error—This is a generic message. Note that this may be for a spe-
cific resource, or set of resources, rather than the entire server being unavailable.

➤➤ 503 Service Unavailable—The server is currently unavailable; this code signifies that the
outage is only temporary.

The error codes can include a response body, usually in HTML or plain text, which may explain the
reason for the code in more detail.

HTTP Clients

How can you make HTTP requests in a Java class?

Listing 14-3 shows a simple example of performing a GET request using the standard classes with the
Java library.

Listing 14-3:  Making a barebones HTTP request

@Test
public void makeBareHttpRequest() throws IOException {
 final URL url = new URL("http", "en.wikipedia.org", "/");
 final HttpURLConnection connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");

 final InputStream responseInputStream = connection.getInputStream();

 final int responseCode = connection.getResponseCode();

HTTP Clients  ❘  225

 final String response = IOUtils.toString(responseInputStream);

 responseInputStream.close();

 assertEquals(200, responseCode);
 System.out.printf("Response received: [%s]%n", response);
}

This approach is Java’s equivalent to using Telnet to make requests. A better approach would be to
use a dedicated Java HTTP client library. One of the most popular libraries for this use is Apache’s
HttpClient. Listing 14-4 shows the same request issued in Listing 14-3.

Listing 14-4:  Requests with Apache HttpClient

@Test
public void makeApacheHttpClientRequest() throws IOException {
 final CloseableHttpClient client = HttpClients.createDefault();
 HttpGet get = new HttpGet("http://en.wikipedia.org/");
 final HttpResponse response = client.execute(get);
 final int responseCode = response.getStatusLine().getStatusCode();

 final HttpEntity entity = response.getEntity();
 final InputStream responseBody = entity.getContent();

 assertEquals(200, responseCode);
 System.out.printf("Response received: [%s]%n", IOUtils.toString(responseBody));
}

For a small example like this, it may not appear to have saved much effort: The number of lines
of code is similar, you still need to consume an input stream to read the response body, and the
response code is now hidden inside a StatusLine object.

By wrapping the HTTP method inside a corresponding class, you are less likely to make a mistake
in defining the method you want to use. A typo in the HTTP request method in the barebones
example will not be spotted until run time. With the HttpClient example, your code will only com-
pile with a correct HTTP method class. Using types rather than strings where appropriate is one of
the main reasons for using a statically typed, compiled language. It makes sense to take advantage
of that where possible.

What are the advantages of using a dedicated HTTP client library rather than
using Java’s built-in classes?

By using a dedicated client rather than a facility to make HTTP requests, you get an extra amount
of functionality, which you would otherwise have to build in yourself.

For example, if your HTTP requests are required to run through a proxy, then for a request
going through the barebones HttpURLConnection class, the system properties http.proxyHost
and http.proxyPort are set. If you have a more complex setup, such as local area network

http://en.wikipedia.org/

226  ❘  CHAPTER 14  Using HTTP and REST

requests not using a proxy but external requests do need one, it is not possible without modify-
ing these properties at run time. For HttpClient, you can attach your own implementation of its
AuthenticationStrategy interface, which can specify the need for a proxy on a request-by-request
basis.

Cookies are another component that is not handled by the HttpURLConnection class. If you want
to manage cookies, automatically providing the correct cookies to the correct sites, with the correct
validity, all obeying the correct specification, then that is something you would need to implement
yourself. Alternatively, you can use the CookieStore object attached to the DefaultHttpClient
object.

Creating HTTP Services Using REST

Representational State Transfer, or REST for short, is a style of using HTTP to provide remote API
calls between systems.

One of the goals of using REST is to leverage the ubiquity of the HTTP protocol, in both clients and
servers, to allow systems and devices to communicate easily regardless of their implementation.

How are REST URIs designed?

REST URIs point to resources, and these URIs will either point to a single resource, or a collection
of resources. For example, you would expect /user/1234 to contain the details of user ID 1234,
and /users would contain a list of all users.

The HTTP verbs signify the action to take for that resource. Using GET on /user/1234 would
return a representation of that user. Using PUT on /user/2500 would create a new user, with ID
2500. POST would modify an existing user; DELETE would remove that user from the system. For
POST and PUT requests, the representation would be in the body of the request.

The relationships between entities in a given system are built with these URIs. /user/1234/
rentals would return a list of “rental” items appropriate to user 1234.

Using the HTTP status codes can inform the client as to the success or failure of specific requests:
calling GET on a nonexistent item should return 404 Not Found. Creating a new item with PUT
could realistically return 204 No Content. The code signifies success (the item was created), and the
server has no new information to tell you about it.

How can you implement a REST service in Java?

Any of the well-known applications to create web applications, such as those shown in Chapter 13,
can be used to create REST services. Libraries such as Spring MVC from version 3.0 onward carry
the capability to extract variables from a request path, such as the example in Listing 14-5.

Creating HTTP Services Using REST  ❘  227

Listing 14-5:  Using Spring MVC to create REST services

@RequestMapping("/user/{id}")
public String getUserId(@PathVariable int userId) {
 // id path variable extracted into the userId variable
}

However, the Play framework is ideally suited to creating REST services. The routes file provides
an ideal breakdown of the path variables, and how they map on to individual Java methods. This
file, at a glance, makes it simple to understand your application’s REST API and how it interacts
with the Java code. Listing 14-6 shows an example routes file for use in a movie rental service.

Listing 14-6:  Creating a REST API for a movie rental service

GET /users controllers.App.getAllUsers()
GET /user/:id controllers.App.getUserById(id: Int)
PUT /user/:id controllers.App.createUser(id: Int)
POST /user/:id controllers.App.updateUser(id: Int)
DELETE /user/:id controllers.App.removeUser(id: Int)
GET /user/:id/rentals/ controllers.App.showRentalsForUser(id: Int)
POST /user/:id/rental/:movie controllers.App.rentMovie(id: Int, movie: String)

GET /movies controllers.App.getAllMovies()
GET /movie/:name controllers.App.getMovie(name: String)
PUT /movie/:name controllers.App.createMovie(name: String)

GET /rentals controllers.App.showAllRentals()
DELETE /rental/:movie controllers.App.returnMovie(movie: String)

For a simple example, it is fine that all of these operations map to methods within a single class.
But for a full-scale, production-ready solution, these services would be broken down into their own
classes, each with its own services objects for interacting with a database, or something similar.

When viewed with the HTTP method, the paths describe the action to take. Calling GET /users
will return a representation of all the users in the system. Calling PUT /movie/Batman will create a
movie on the server called Batman. For this call, you can see that the movie title has been bound to
a name variable, of type String.

The more interesting path, PUT /rental/:user/:movie, links the two entities, allowing users to
rent movies.

Listing 14-7 shows some of the App class definition for creating users.

Listing 14-7:  Creating users for the movie rental service

private static List<User> users = new ArrayList<>();

public static Result getAllUsers() {

continues

228  ❘  CHAPTER 14  Using HTTP and REST

 return ok(users.toString());
}

public static Result getUserById(int id) {
 final User user = findUser(id);
 if (user == null) {
 return notFound(String.format("User ID [%s] not found", id));
 }
 return ok(user.toString());
}

public static Result createUser(int id) {
 final JsonNode jsonBody = request().body().asJson();
 final String username = jsonBody.get("name").asText();
 users.add(new User(id, username));
 return noContent();
}

When creating users, the service expects a small piece of JSON data, containing the name of the
user, for example {"name": "alice"}. For larger applications, this data would be much larger, con-
taining much more information about the created item.

One interesting point to note when creating new items is that you PUT to the resource location. This
implies that you must be able to already uniquely identify the resource (the id in this case). To find
a unique identifier, you may need to find all items (/users, which calls getAllUsers in this case),
and work out a new identifier for your creation. Not only is this tedious and inefficient, but also if
multiple clients are using the application, you may find yourself in a race condition where multiple
clients have found what they think is a unique identifier, and then try to create the resource with
that same ID.

An alternative is to have the server create the identifier for you. You can create an endpoint, PUT /
user, and then rather than that call returning 204 No Content, it could return 200 OK, and the
body of the response could contain the full URI to the created item. Note that this means that mul-
tiple calls to this endpoint would result in multiple resources being created.

The code for creating movies is very similar to that for creating users. Listing 14-8 shows the Java
code for the rental URIs.

Listing 14-8:  Creating and removing rentals

private static Map<Movie, User> rentals = new HashMap<>();

public static Result showAllRentals() {
 return ok(rentals.toString());
}

public static Result showRentalsForUser(int id) {
 final User user = findUser(id);

Listing 14-7  (continued)

Creating HTTP Services Using REST  ❘  229

 if (user == null) {
 return notFound(String.format("User ID [%s] not found", id));
 }
 final List<Movie> moviesForUser = new ArrayList<>();
 for (Map.Entry<Movie, User> entry : rentals.entrySet()) {
 if (entry.getValue().equals(user)) {
 moviesForUser.add(entry.getKey());
 }
 }

 return ok(moviesForUser.toString());
}

public static Result rentMovie(int userId, String movieName) {
 final Movie movie = findMovie(movieName);
 final User user = findUser(userId);
 final List<String> errors = new ArrayList<>();
 if (movie == null) {
 errors.add("Movie does not exist");
 }
 if (user == null) {
 errors.add("User ID does not exist");
 }
 if (movie != null && rentals.containsKey(movie)) {
 errors.add("Movie already out for rent");
 }
 if(!errors.isEmpty()) {
 return badRequest(
 String.format("Unable to rent movie. Reason: %s",
 errors.toString()));
 }

 rentals.put(movie, user);
 return noContent();
}

public static Result returnMovie(String movieName) {
 final Movie movie = findMovie(movieName);
 if (movie == null) {
 return badRequest("Movie does not exist");
 }
 rentals.remove(movie);
 return noContent();
}

These method calls are doing some basic validation of the input, such as that users and movies exist,
and that the movie is available for rent if that request has been made.

Of course, this application has plenty of issues—it is not thread-safe and it is insecure. But it does
show how to build an application that will respond to the RESTful requests.

Though it may appear obvious, it is worth pointing out that the clients of this service are completely
platform independent. By agreeing on an interface for the HTTP calls, any platform capable of

230  ❘  CHAPTER 14  Using HTTP and REST

making HTTP calls—such as a web browser, mobile phone, or command-line client that has access
to the server, either over the Internet or a local intranet—can make use of it.

Another feature that is important to a REST service is the notion of idempotency. For REST ser-
vices, PUT and DELETE should be idempotent, and it is implied that a GET request is idempotent too.
A REST call can be defined as idempotent if multiple requests have the same effect as one. When
you call PUT on a resource, you are creating a new resource on the server, so making that same call
again should result in that exact same resource being created. The same is true for DELETE: After
DELETE has been called, the resource is no longer available. If you call DELETE again, that resource is
still not available. With GET, all that should happen is a specified resource is returned to the client,
no changes made; so making that same GET should result in the same data being returned.

The advantage of an idempotent API is that if a client cannot be sure that a request was successful,
submitting the request again will be fine. This can be extremely useful with mobile phone applica-
tions, which may lose a network connection at any time, even halfway through making a request, or
after a request has been made, but before the response is received.

The definition of POST is that an update is made to an existing resource. For instance, if you had a
service endpoint that updated the value of the resource by 1, then multiple calls to that will result in
the resource having a different new value after every call.

Summary

This chapter has covered several uses of the HTTP protocol and its interaction with Java, both as a
client and as a service.

Using HTTP is a well-understood, known way for different applications to interact with each other.
More often than you realize, clients will be communicating with services over HTTP. REST and
HTTP APIs in general can often be split into public and private APIs. Be aware that most implemen-
tations are private, and are specific to an organization or even a specific application, and are used
for such an application to talk to its own servers. These are a lot more prevalent than public APIs,
such as Twitter’s API or services such as the Weather Channel’s API.

Considering that most APIs are not open to the outside world, they are used a lot more than people
appreciate. It is very important to have a good understanding of how HTTP and REST work,
regardless of whether you would be interviewing for a server-side or front-end developer role,
because the interoperability between the two is key. REST serves as a language and vocabulary that
both sides understand, so it is important that you do too.

The movie rental service described in this chapter included a small amount of JSON, or JavaScript
Object Notation. This is a way of taking an instance of an object, and creating a representation of
the state held in its fields. This representation can be transmitted somehow to another application,
and that application can reconstruct the same object. This technique is known as serialization, and
is common whenever two or more applications or services talk to each other. The next chapter cov-
ers the concept of serialization in more depth.

Serialization
Interoperation between a client and server can be separated into two distinct parts: how the
data is transmitted, and what is transmitted. The previous chapter gave one method for how
to transmit and receive data, and this chapter explains different methods for representing your
data over that transmission.

The methods here are not specific to network communication. Object serialization is simply a
way of “exporting” Java objects from the JVM: The serialized data can be written to disk or
another I/O interface rather than to the network.

For convenience, most of the listings in this chapter read and write serialized data to and from
the filesystem, using FileInputStreams and FileOutputStreams. These can be substituted
for any InputStream and OutputStream, such as the ones provided by HttpServletRequest
and HttpServletResponse if you wanted to use the data in an HTTP server.

Reading and Writing Java Objects

What does the JVM provide for writing objects to a third party?

The standard Java libraries provide a pair of classes for writing and reading Java objects:
ObjectOutputStream and ObjectInputStream. These are part of the InputStream and
OutputStream family of classes.

For writing objects, ObjectOutputStreams are constructed using the Decorator
Pattern, and require another OutputStream to physically write the serialized data. The
ObjectOutputStream class has methods for all the primitive types, as well as a method for
reference types, for writing these values to the stream. Listing 15-1 shows the use of the
ObjectOutputStream.

15

232  ❘  CHAPTER 15  Serialization

Listing 15-1:  Writing Java types to a file

public class Pair implements Serializable {
 private final int number;
 private final String name;

 public Pair(int number, String name) {
 this.number = number;
 this.name = name;
 }

 public int getNumber() {
 return number;
 }

 public String getName() {
 return name;
 }
}

@Test
public void writeData() throws IOException {
 final FileOutputStream fos = new FileOutputStream("/tmp/file");
 final ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeInt(101);
 oos.writeBoolean(false);
 oos.writeUTF("Writing a string");

 final Pair pair = new Pair(42, "Forty two");
 oos.writeObject(pair);

 oos.flush();
 oos.close();
 fos.close();
}

If you take a look at the data written to the file /tmp/file, you will see that it is binary data.
This has been written using a form that the JVM understands and is able to read back, too, as
Listing 15-2 shows.

Listing 15-2:  Reading from an ObjectInputStream

@Test
public void readData() throws IOException, ClassNotFoundException {
 final FileInputStream fis = new FileInputStream("/tmp/file");
 final ObjectInputStream ois = new ObjectInputStream(fis);

 final int number = ois.readInt();
 final boolean bool = ois.readBoolean();
 final String string = ois.readUTF();

Reading and Writing Java Objects  ❘  233

 final Pair pair = (Pair) ois.readObject();

 assertEquals(101, number);
 assertFalse(bool);
 assertEquals("Writing a string", string);
 assertEquals(42, pair.getNumber());
 assertEquals("Forty two", pair.getName());
}

It is important to read the data in the same order in which you wrote it! If you, for instance, try to
call readObject when the next type in the stream is an int, you will get an exception.

There are two important things of note for the small Pair class created for this example. Notice
that the readData test can possibly throw a ClassNotFoundException. If you are reading this file
in a different JVM than the one in which it was written, and the Pair class is not on the classpath,
the JVM will not be able to construct the object.

Also, the Pair class must implement the Serializable interface. This is a marker interface, which
signals to the JVM that this class can be serialized.

What does the transient keyword do?

If you have a Serializable object, but have fields that you do not want to be serialized when writ-
ing the data to a stream, you can apply the transient modifier to the field declaration. When a
transient field is deserialized, that field will be null. Listing 15-3 shows an example.

Listing 15-3:  Using transient fields

public class User implements Serializable {
 private String username;
 private transient String password;

 public User(String username, String password) {
 this.username = username;
 this.password = password;
 }

 public String getUsername() {
 return username;
 }

 public String getPassword() {
 return password;
 }
}

@Test
public void transientField()
 throws IOException, ClassNotFoundException {

continues

234  ❘  CHAPTER 15  Serialization

 final User user = new User("Noel", "secret321");

 final FileOutputStream fos = new FileOutputStream("/tmp/user");
 final ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(user);

 oos.flush();
 oos.close();
 fos.close();

 final FileInputStream fis = new FileInputStream("/tmp/user");
 final ObjectInputStream ois = new ObjectInputStream(fis);

 final User deserialized = (User) ois.readObject();

 assertEquals("Noel", deserialized.getUsername());
 assertNull(deserialized.getPassword());
}

The main use cases for creating transient fields are when you are holding a private field as a cache,
so you can simply regenerate the cache after deserializing, or when data can be reconstructed after it
has been deserialized, such as a field created from other fields:

private String firstName = "Bruce";
private String lastName = "Springsteen";
private String fullName = String.format("%s %s", firstName, lastName);

As Listing 15-3 shows, you can hold secure or sensitive data in a transient field, and be confident
that it will not be written to an ObjectOutputStream.

Using XML

Is it possible for applications written in different languages to communicate?

Rather than delegating the representation of objects to the JVM and the mechanics of
ObjectInputStream and ObjectOutputStream, you could define the format yourself.

One huge advantage of doing this is that once the object has been serialized, it can be read by any
process that understands your format, whether that is another JVM or perhaps a different setup
altogether.

A popular notation for defining domain objects is XML. It allows for a well-structured representa-
tion of data, and most languages have well-established libraries for parsing and writing XML.

A meta-language, called XML Schema Definition (XSD), enables you to define a domain object
using XML markup, which is used to create XML documents. Java has a library called JAXB,

Listing 15-3  (continued)

Using XML  ❘  235

which understands XSD notation and can create Java objects from these documents. This library is
often used within other libraries to serialize and deserialize objects, for use in SOAP applications, or
similar.

Listing 15-4 shows an XSD for representing players on a sports team.

Listing 15-4:  A sample XML Schema document

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Team">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="DateFounded" type="xs:date"/>
 <xs:element name="Players">
 <xs:complexType>
 <xs:sequence minOccurs="2" maxOccurs="11">
 <xs:element name="Player">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Position" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This schema allows the creation of Team types, and among the attributes of that type, it has a col-
lection of Player types. This allows for the creation of sample XML documents such as the one in
Listing 15-5.

Listing 15-5:  A Team XML document

<?xml version="1.0" encoding="utf-8"?>
<Team xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="team.xsd">
 <Name>AllStars</Name>
 <DateFounded>2001-09-15</DateFounded>
 <Players>
 <Player>
 <Name>Adam Smith</Name>
 <Position>Goal</Position>
 </Player>
 <Player>

continues

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

236  ❘  CHAPTER 15  Serialization

 <Name>Barry Jenkins</Name>
 <Position>Defence</Position>
 </Player>
 </Players>
</Team>

By including the schema location in the Team definition, any software you use that understands XSD
can validate this document. This includes parsers such as JAXB, which you will see next, or even
IDEs with smart XML and XSD support. These can provide smart auto-completion to help you gen-
erate the document.

Can XSD documents be used to create Java domain objects?

JAXB is run through a separate compiler, which parses XSD content and creates Java source files.
The xjc command is distributed as part of the JDK. If you run

xjc -p com.wiley.acinginterview.chapter15.generated /path/to/team.xsd

you should see the following output:

parsing a schema...
compiling a schema...
com/wiley/acinginterview/chapter15/generated/ObjectFactory.java
com/wiley/acinginterview/chapter15/generated/Team.java

If you inspect the Team.java file, you can see that it is a regular Java class. This class is a repre-
sentation of the team.xsd created in Listing 15-5, and can be used as any Java object, such as that
shown in Listing 15-6.

Listing 15-6:  Using JAXB-generated Java objects

@Test
public void useJaxbObject() {
 final Team team = new Team();
 team.setName("Superstars");

 final Team.Players players = new Team.Players();

 final Team.Players.Player p1 = new Team.Players.Player();
 p1.setName("Lucy Jones");
 p1.setPosition("Striker");

 final Team.Players.Player p2 = new Team.Players.Player();
 p2.setName("Becky Simpson");
 p2.setPosition("Midfield");
 players.getPlayer().add(p1);

Listing 15-5  (continued)

Using XML  ❘  237

 players.getPlayer().add(p2);

 team.setPlayers(players);

 final String position = team
 .getPlayers()
 .getPlayer()
 .get(0)
 .getPosition();

 assertEquals("Striker", position);
}

The point of interest with this generated object is that the rich Player and Players objects are
static inner classes of the Team object, because these were created as nested complex types in the
original XSD. These could have been created as top-level objects if you wanted to use them else-
where, as shown in Listing 15-7.

Listing 15-7:  Top-level XSD types

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Player">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Position" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Players">
 <xs:complexType>
 <xs:sequence minOccurs="2" maxOccurs="11">
 <xs:element ref="Player"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
...
</xs:schema>

You can see here that generated types are included with the ref attribute, rather than type.

This then creates Java objects, which can be used as shown in Listing 15-8.

Listing 15-8:  Using top-level XSD types

@Test
public void useTopLevelJaxbObjects() {
 final Team team = new Team();

continues

http://www.w3.org/2001/XMLSchema

238  ❘  CHAPTER 15  Serialization

 team.setName("Superstars");

 final Players players = new Players();

 final Player p1 = new Player();
 p1.setName("Lucy Jones");
 p1.setPosition("Striker");

 final Player p2 = new Player();
 p2.setName("Becky Simpson");
 p2.setPosition("Midfield");
 players.getPlayer().add(p1);
 players.getPlayer().add(p2);

 team.setPlayers(players);

 final String position = team
 .getPlayers()
 .getPlayer()
 .get(0)
 .getPosition();

 assertEquals("Striker", position);
}

Clearly, this is much easier to read and work with.

One point that often surprises new users is that you do not need to create, or set, a collection type,
such as the Players in this example. Rather, you call get to get the collection instance, and then
you can add or remove from that collection.

Can XSD and JAXB be used to serialize a Java object?

Once the JAXB bindings have been created using xjc, parsing an XML document that conforms to
an XSD is relatively simple, as shown in Listing 15-9.

Listing 15-9:  Reading XML into a Java object

@Test
public void readXml() throws JAXBException {
 final JAXBContext context =
 JAXBContext.newInstance(
 "com.wiley.javainterviewsexposed.chapter15.generated2");
 final Unmarshaller unmarshaller = context.createUnmarshaller();
 final Team team = (Team) unmarshaller
 .unmarshal(getClass()
 .getResourceAsStream("/src/main/xsd/teamSample.xml"));

 assertEquals(2, team.getPlayers().getPlayer().size());
}

Listing 15-8  (continued)

Using XML  ❘  239

Although this XML document was provided as a resource on the classpath, it could easily have
come from any source, such as a messaging queue or an HTTP request.

Similarly, writing Java objects as XML is also simple, as Listing 15-10 demonstrates.

Listing 15-10:  Using JAXB to serialize a Java object

@Test
public void writeXml() throws JAXBException, FileNotFoundException {
 final ObjectFactory factory = new ObjectFactory();
 final Team team = factory.createTeam();
 final Players players = factory.createPlayers();
 final Player player = factory.createPlayer();
 player.setName("Simon Smith");
 player.setPosition("Substitute");
 players.getPlayer().add(player);

 team.setName("Megastars");
 team.setPlayers(players);

 final JAXBContext context =
 JAXBContext.newInstance(
 "com.wiley.javainterviewsexposed.chapter15.generated2");
 final Marshaller marshaller = context.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
 marshaller.marshal(team, new FileOutputStream("/tmp/team.xml"));
}

Listing 15-10 produces the following XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Team>
 <Name>Megastars</Name>
 <Players>
 <Player>
 <Name>Simon Smith</Name>
 <Position>Substitute</Position>
 </Player>
 </Players>
</Team>

It is important that the Marshaller was created from a specific JAXBContext, which was configured
to the package where xjc created the Java objects. If you use a different package for your automati-
cally generated objects, the Marshaller will not be able to parse your Java objects into XML.

What approach can be used to make sure the XSD definitions and your source
code are kept in sync?

It is possible to have your Java sources compiled as part of your build. Listing 15-11 shows the
plugin tag for the Maven POM for the examples used in this section.

240  ❘  CHAPTER 15  Serialization

Listing 15-11:  Automatically generating JAXB objects

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jaxb2-maven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <id>xjc</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>xjc</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <packageName>
 com.wiley.javainterviewsexposed.chapter15.generated3
 </packageName>
 </configuration>
</plugin>

This assumes that your XSD files are contained in src/main/xsd. This plug-in will fire with the
generate-sources phase of the build, meaning that any XSD objects will be re-created before the
main source of the project is compiled.

Having your domain objects generated by the build is an extremely useful feature, because any
breaking changes to the model will also break your build, and the tests will not likely work, either.
Fixing your code following a breaking change gives you confidence that your serialization and dese-
rialization routines are working properly.

JSON

What is JSON?

JavaScript Object Notation, or JSON, is another serialization approach, similar to using XML with
XSD. It uses a human-readable approach, which can be parsed and processed by a number of lan-
guages. Indeed, JSON originated as part of JavaScript, and has been adopted by libraries for other
languages as a lightweight, less verbose approach over XML.

Listing 15-12 illustrates the team model in JSON, previously used in earlier examples in this chapter.

JSON  ❘  241

Listing 15-12:  A JSON example

{
 "name": "AllStars",
 "dateFounded": "2001-09-15",
 "players": [
 {
 "name": "Adam Smith",
 "position": "Goal"
 },
 {
 "name": "Barry Jenkins",
 "position": "Defence"
 }
]
}

For JSON, there is a meta-language called JSON Schema, but it is not widely used. A JSON docu-
ment is loosely defined, but is still well structured. There are very few types: A string is text sur-
rounded by quotes, there is no differentiation between floating point and integral numbers, and you
can use the boolean values true and false. A list is a comma-separated list, surrounded by square
brackets, like the list of players in Listing 15-12. An object is a collection of key-value pairs sur-
rounded by curly braces. The keys are always strings; the value is any type. Any type can be null.

How can JSON be read in a Java application?

An implementation of JSON parsing and processing is contained in a library called Jackson. It upholds
JSON’s simplicity by being straightforward to use. Listing 15-13 contains sample domain objects for
the Team and Players, and Listing 15-14 illustrates how to parse the JSON into these objects.

Listing 15-13:  Sample domain objects for Team and Players

public class Team {

 private String name;
 private String dateFounded;
 private List<Player> players;

... // include getters and setters
}

public class Player {

 private String name;
 private String position;
... // include getters and setters
}

242  ❘  CHAPTER 15  Serialization

Listing 15-14:  Parsing JSON into rich domain objects

@Test
public void readJson() throws IOException {
 final ObjectMapper mapper = new ObjectMapper();
 final String json =
 "/com/wiley/javainterviewsexposed/chapter15/team.json";
 final Team team = mapper.readValue(
 getClass().getResourceAsStream(json),
 Team.class);

 assertEquals(2, team.getPlayers().size());
}

This code makes heavy use of reflection to make sure the JSON data will fit into the given domain
object, so make sure you are thorough with your testing if you use this approach.

Can JSON be used to serialize a Java object?

The Jackson library can also be used to create JSON from a domain object, which works exactly as
you would expect, as shown in Listing 15-15.

Listing 15-15:  Writing domain objects to JSON

@Test
public void writeJson() throws IOException {
 final Player p1 = new Player();
 p1.setName("Louise Mills");
 p1.setPosition("Coach");

 final Player p2 = new Player();
 p2.setName("Liam Turner");
 p2.setPosition("Attack");

 final Team team = new Team();
 team.setPlayers(Arrays.asList(p1, p2));

 final ObjectMapper mapper = new ObjectMapper();
 mapper.writeValue(new File("/tmp/newteam"), team);

}

This code produces the following JSON:

{
 "name": null,
 "dateFounded": null,
 "players": [
 {
 "name": "Louise Mills",

Summary  ❘  243

 "position": "Coach"
 },
 {
 "name": "Liam Turner",
 "position": "Attack"
 }
]
}

Note that name and dateFounded are null, because these were not set on the Team object.

Summary

Creating Java applications and servers that can communicate with other services and devices is
often one of the main talking points in interviews. Being able to create stable and robust services is
extremely important; however, defining how the services talk to each other can have a major influ-
ence on application performance, as well as architectural choices made early in a project.

Many development teams, particularly ones that work heavily in cross-platform communication,
such as between a mobile device and server, are turning to JSON for their communications over the
wire. It is much less verbose than XML, which is useful when taking volumes of data into account.
But it is also less strict because there is no document definition as there is with XSD, so be aware of
this trade-off: You will need to be sure that your document is correct before parsing or sending to a
recipient.

Several serialization technologies not covered here communicate using a binary protocol rather than
the plaintext approaches of XML and JSON. However, unlike Java’s own serialization techniques,
the binary protocols such as Google’s Protocol Buffers or Apache Thrift are designed to be cross-
platform, and work over a multitude of languages and devices.

The next chapter covers the Spring Framework, including a section on creating web services using
Spring MVC. The techniques used in this chapter can be applied to Spring MVC in defining exactly
what is transmitted when querying or receiving responses from a web server.

The Spring Framework
The Spring Framework is designed to be a lightweight, non-intrusive framework, providing
you with tools and facilities to write standalone, testable components for use in many common
applications and scenarios.

Spring enables you to write Plain Old Java Objects, or POJOs, and then connect them together
using dependency injection, through a central core component called the application context.
POJOs are classes that have no unnecessary restriction, such as implementing an interface for a
persistence framework, or extending an abstract class for use in a web application.

The notion of POJOs comes as a reaction from the early approaches to Enterprise Java Beans
(EJBs), where your simple domain object needed to follow complicated patterns and implement
several interfaces in order to be used within application servers. This code was often brittle
and untestable. In turn, this led to a rise in popularity of frameworks such as Spring, which
concentrated on simple approaches around application configuration and focused on writing
testable code.

This chapter covers several core areas of the Spring Framework: the application context, data-
base programming with the JdbcTemplate, the integration testing classes, and a section on
producing web applications using Spring MVC.

Core Spring and the Application Context

How do you use dependency injection with Spring?

Chapter 9 showed a brief example of what dependency injection is, and what advantage it
gives. However, the management of the dependencies was completely manual: If you wanted to
provide another implementation of a particular dependent interface, you would need to make
the changes in the actual code, and recompile and repackage your new built artifact.

16

246  ❘  CHAPTER 16  The Spring Framework

Dependency Injection is one of Spring’s core features. It enables you to remove any specific depen-
dencies a class may have on other classes or third party interfaces, and load these dependencies into
the class at construction time. The benefit is that you can change the implementation of your depen-
dencies without having to change the code in your class, which allows for easier, isolated testing.
You can even rewrite implementations of your dependencies without having to change your class, as
long as the interface does not change.

Using the Spring’s mechanism for dependency injection mitigates some of these issues, and can pro-
vide a useful framework for writing robust, tested, flexible code. Listing 16-1 is a possible applica-
tion as a simple spell checker. The checkDocument method returns a list of numbers: the list indices
of the misspelled words.

Listing 16-1:  A simple spell checker

public class SpellCheckApplication {

 private final Dictionary dictionary;

 public SpellCheckApplication(final Dictionary dictionary) {
 this.dictionary = dictionary;
 }

 public List<Integer> checkDocument(List<String> document) {
 final List<Integer> misspelledWords = new ArrayList<>();

 for (int i = 0; i < document.size(); i++) {
 final String word = document.get(i);
 if (!dictionary.validWord(word)) {
 misspelledWords.add(i);
 }
 }

 return misspelledWords;
 }
}

You should recognize this pattern from Chapter 9: The spell checker depends on the dictionary; it
calls the boolean validWord(String) method from the Dictionary interface to check whether
a given word is spelled correctly. This spell checker doesn’t know, or even need to care about, the
language of the document, or if it should be using a specific dictionary with particularly difficult or
technical words, or even if there is a valid difference between a capitalized word and one that is not.
This can be configured when the class is actually running.

You should recognize that you don’t even need a concrete Dictionary implementation for testing;
the validWord method can be easily mocked to allow all the code paths of the checkDocument
method to be tested properly.

But what happens when it comes to running this code for real? Listing 16-2 provides a naïve, but
working implementation.

Core Spring and the Application Context  ❘  247

Listing 16-2:  A class to run the spell checker

public class SpellCheckRunner {

 public static void main(String[] args) throws IOException {
 if(args.length < 1) {
 System.err.println("Usage java SpellCheckRunner <file_to_check>");
 System.exit(-1);
 }

 final Dictionary dictionary =
 new FileDictionary("/usr/share/dict/words");
 final SpellCheckApplication checker =
 new SpellCheckApplication(dictionary);
 final List<String> wordsFromFile = getWordsFromFile(args[0]);

 final List<Integer> indices = checker.checkDocument(wordsFromFile);

 if (indices.isEmpty()) {
 System.out.println("No spelling errors!");
 } else {
 System.out.println("The following words were spelled incorrectly:");
 for (final Integer index : indices) {
 System.out.println(wordsFromFile.get(index));
 }
 }
 }

 static List<String> getWordsFromFile(final String filename) {
 /* omitted */
 }
}

The specifics of the FileDictionary class do not matter; from its use here, you can visualize that
the constructor takes a String argument to a location on disk of a list of valid words.

This implementation is completely inflexible. If the location of the dictionary file changes, or per-
haps a requirement comes to use a third-party online dictionary, you will need to edit this code,
potentially making other mistakes as you update it.

An alternative is to use a dependency injection framework, such as Spring. Rather than constructing
the objects and injecting the necessary dependencies, you can let Spring do it for you. Listing 16-3
shows a definition of a Spring application context represented in XML.

Listing 16-3:  A Spring context for the spell checker

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=" http://www.springframework.org/schema/beans

continues

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

248  ❘  CHAPTER 16  The Spring Framework

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="dictionary"
 class="com.wiley.javainterviewsexposed.chapter16.FileDictionary">
 <constructor-arg value="/usr/share/dict/words"/>
 </bean>

 <bean id="spellChecker"
 class="com.wiley.javainterviewsexposed.chapter16.SpellCheckApplication">
 <constructor-arg ref="dictionary"/>
 </bean>

</beans>

This XML file defines two beans, one for the dictionary, and one for the spell checker. Values for
the constructors are provided here, too: The FileDictionary class takes a String, and this is
defined inside the bean definition with the constructor-arg tag.

As well as providing configuration to Spring beans with the constructor-arg tag, you can also
use the property tag. These call setters on that class. For instance, having a property such as
<property name="location" value="London"/> will call the method setLocation with the
parameter London.

Of course, this will fail if such a method does not exist, and that failure will not happen until run
time.

The SpellCheckApplication class uses the constructed dictionary bean in its own constructor.
The constructor-arg tag uses the ref attribute to reference another Spring bean.

Now that you have defined the relationship between these classes, you still need a running applica-
tion to do your spell checking. Listing 16-4 uses the application context defined in Listing 16-3.

Listing 16-4:  Using the Spring application context

public class SpringXmlInjectedSpellChecker {

 public static void main(String[] args) {
 if(args.length < 1) {
 System.err.println("Usage java SpellCheckRunner <file_to_check>");
 System.exit(-1);
 }

 final ApplicationContext context =
 new ClassPathXmlApplicationContext(
 "com/wiley/javainterviewsexposed/" +
 "chapter16/applicationContext.xml");

 final SpellCheckApplication checker =

Listing 16-3  (continued)

http://www.springframework.org/schema/beans/spring-beans.xsd

Core Spring and the Application Context  ❘  249

 context.getBean(SpellCheckApplication.class);

 final List<String> wordsFromFile = getWordsFromFile(args[0]);

 final List<Integer> indices = checker.checkDocument(wordsFromFile);

 if (indices.isEmpty()) {
 System.out.println("No spelling errors!");
 } else {
 System.out.println("The following words were spelled wrong:");
 for (final Integer index : indices) {
 System.out.println(wordsFromFile.get(index));
 }
 }
 }
}

Following some boilerplate code checking the program arguments, an ApplicationContext
object is created. There are several implementations of ApplicationContext; the one used here,
ClasspathXmlApplicationContext, examines the JVM classpath for the given resource, and
parses that XML document.

The construction of the application context will instantiate the objects defined in that XML file.

Following the construction of the application context, you can ask it to return the bean instances it
has constructed, using the getBean method.

The remaining code in this class is the same as the simple SpellCheckRunner in Listing 16-2.

If you want to make changes to the way the dictionary implementation and the spell checker are
set up, you can make these changes without touching the code that has already been written. If you
were to use a different file location for the dictionary, updating the constructor-ref of the diction-
ary bean is all that is necessary. If you add a new Dictionary implementation, once you have writ-
ten your class, you add the definition to your context, and make sure your SpellCheckApplication
instance is referring to the correct bean. Listing 16-5 shows a possible application context for this
case.

Listing 16-5:  Swapping Dictionary implementations

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <bean id="dictionary"
 class="com.wiley.javainterviewsexposed.chapter16.FileDictionary">
 <constructor-arg value="/usr/share/dict/words"/>
 </bean>

 <bean id="thirdPartyDictionary"
 class="com.wiley.javainterviewsexposed.chapter16.OnlineDictionary">
 <constructor-arg value="http://www.example.org/api/dictionary"/>

continues

http://www.example.org/api/dictionary"/

250  ❘  CHAPTER 16  The Spring Framework

 </bean>

 <bean id="spellChecker"
 class="com.wiley.javainterviewsexposed.chapter16.SpellCheckApplication">
 <constructor-arg ref="thirdPartyDictionary"/>
 </bean>

</beans>

One concern with using a plain-text XML document for constructing Spring beans and defining
dependencies is that you lose the value of compile-time type checking; any issues such as using the
wrong type in a constructor, or even the wrong number of arguments in a constructor, are not
found until the application context is constructed at run time. If you have good integration test cov-
erage, which is run as part of your regular application build, this is one way to mitigate that risk.
Another approach is not to use XML definitions at all.

How do you define an application context in Java code?

Introduced in Spring 3.0, it is now possible to have Spring scan the classpath for a configuration.

If you provide a class annotated with @Configuration, then any methods in that class that are
annotated with @Bean will be treated in the same manner as those defined in XML with the <bean>
tag. Listing 16-6 illustrates the same configuration as that in Listing 16-3.

Listing 16-6:  A Spring context defined in Java

@Configuration
public class SpringJavaConfiguration {

 @Bean
 public Dictionary dictionary() throws IOException {
 return new FileDictionary("/usr/share/dict/words");
 }

 @Bean
 public SpellCheckApplication spellCheckApplication() throws IOException {
 return new SpellCheckApplication(dictionary());
 }
}

There is one extra change to make; you still need to initialize the application con-
text. You can do this one of two ways: Either instantiate the application with the
AnnotationConfigApplicationContext class, which takes a list of classes annotated with
@Configuration:

final ApplicationContext context =
 new AnnotationConfigApplicationContext(SpringJavaConfiguration.class);

Listing 16-5  (continued)

Core Spring and the Application Context  ❘  251

or you can still use the original method, loading the application context from an XML file. In that
case, you need to give a scope for which packages to look for the @Configuration annotation, by
including this line:

<context:component-scan
 base-package="com.wiley.javainterviewsexposed.chapter16"/>

The beauty of this method is that you can mix both annotated configuration and XML configura-
tion. This may seem silly, and a potential nightmare to manage two different systems for managing
dependencies, but it does give you the scope to migrate from one to the other at your own pace.

What are scopes?

On examination of Listing 16-6, you see that the dependency between the SpellCheckApplication
and Dictionary is made explicit, by calling dictionary() in the constructor to the
SpellCheckApplication class.

It is important to note here that a class defined with an @Configuration annotation is not an
application context. It defines how that context is created and managed. This is exactly the same
for the XML configuration, too. Taking any of the Spring-managed application contexts from this
chapter, you can make multiple calls to getBean on the ApplicationContext instance, and it will
always return the same instance. By default, Spring beans are created when the application context
is instantiated, called eager instantiation. Additionally, only one instance of a Spring bean is created
for a given definition. This is called singleton scope.

When a singleton bean is provided from the context, it is important to note that several concurrent
threads may be using that instance at the same time. Therefore, it is very important that any opera-
tions are thread-safe.

It is possible for the application context to return a new instance on each invocation of getBean.
Listing 16-7 shows such an example for a bean defined as <bean id="date" class="java.util
.Date" scope="prototype"/>.

Listing 16-7:  Using the prototype scope

@Test
public void differentInstanceScope() {
 final ApplicationContext context =
 new ClassPathXmlApplicationContext(
 "com/wiley/javainterviewsexposed/chapter16/applicationContext.xml");
 final Date date1 = context.getBean(Date.class);
 final Date date2 = context.getBean(Date.class);

 assertNotSame(date1, date2);
}

Having the context return a new instance of a bean on each call to getBean is called prototype
scope.

252  ❘  CHAPTER 16  The Spring Framework

Other scope types exist, too, such as request, where a bean lives for the life of a particular HTTP
request, or session, where the bean lives for the life of the HTTP session.

How can environment-specific properties be set in a manageable way?

The class PropertyPlaceholderConfigurer is a simple and easy way to set properties external
from a build. It is good practice to keep any environment-specific configuration outside of a regular
build, and loaded at run time, rather than building a per-environment artifact for each of the envi-
ronments you test for.

Rebuilding Your Application for Different Environments

Some applications are deployed to several environments for different rounds of test-
ing, before eventually being released to a “production,” or “live” environment.

Sometimes, the configuration for each environment is pulled in to the applica-
tion binary as part of the build, and is subsequently rebuilt for each environment.
This is a risky approach, because this means that the actual compiled binary arti-
fact you deploy to production is not the same one as was deployed to your test
environments.

If you have your environment-specific configuration external to the build, and
pulled in at run time using a PropertyPlaceholderConfigurer, it means that you
are testing the exact binary artifact you will eventually deploy to your live environ-
ment. You have more confidence in your release, because you will not have intro-
duced the risk of creating the binary in a different way for your live environment as
to the other environments.

Indeed, if you compile one binary on your computer, and your colleague issues the
same build instruction on his or her computer, these could differ in many ways,
such as different compiler versions, different operating systems, or even different
environment variables set.

Listing 16-8 is a sample application context, which uses the PropertyPlaceholderConfigurer,
and then uses the properties to set up other Spring beans.

Listing 16-8:  Using the PropertyPlaceholderConfigurer

<bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property
 name="location"
 value="/com/wiley/javainterviewsexposed/chapter16/environment.properties"/>
 <property name="placeholderPrefix" value="$property{"/>
 <property name="placeholderSuffix" value="}"/>

Core Spring and the Application Context  ❘  253

</bean>

<bean class="com.wiley.javainterviewsexposed.chapter16.ServerSetup">
 <constructor-arg value="$property{server.hostname}"/>
</bean>

The PropertyPlaceholderConfigurer class includes several useful properties. In Listing 16-8,
the location property is set to a specific property file, and the class parses that file. The
PropertyPlaceholderConfigurer expects the environment.properties file to hold the proper-
ties as key-value pairs.

This file is parsed on the startup of the application context, and these properties can be used as con-
figuration parameters for other beans. The property in the file as server.hostname is used to create
a ServerSetup bean.

It should be quite clear that, for this application, it is possible to change the values stored in
environment.properties, restart the application, and the ServerSetup bean will be configured
with a different value to its constructor. This is a simple but powerful way to separate environment-
specific configuration from the actual code.

What is autowiring?

Autowiring is the process of letting the application context figure out the dependencies for you. If
you are trying to construct a bean with dependencies, sometimes you do not need to explicitly define
that link. Listing 16-9 and Listing 16-10 illustrate.

Listing 16-9:  XML configuration for autowiring

<bean id="dictionary" class="com.wiley.javainterviewsexposed.chapter16.FileDictionary">
 <constructor-arg value="/usr/share/dict/words"/>
 </bean>

 <bean id="spellChecker"
 class="com.wiley.javainterviewsexposed.chapter16.SpellCheckApplication"
 autowire="constructor"/>

Listing 16-10:  Using autowiring

@Test
public void getAutowiredBean() {
 final ApplicationContext context =
 new ClassPathXmlApplicationContext(
 "com/wiley/javainterviewsexposed/" +
 "chapter16/applicationContextAutowiring.xml");
 final SpellCheckApplication bean =
 context.getBean(SpellCheckApplication.class);
 assertNotNull(bean);
}

254  ❘  CHAPTER 16  The Spring Framework

The XML configuration has instructed the application context to find types that can be used in
the constructor of the SpellCheckApplication class, that is, a class of type Dictionary. Because
the only other class in this application context is a FileDictionary—an implementation of
Dictionary—this is used to construct the SpellCheckApplication class.

Had there not been a Dictionary implementation in the context, an error would have been thrown
when trying to construct the application context: NoSuchBeanDefinitionException.

Had there been multiple Dictionary beans, the context would have tried to match the beans
by name, that is, match the name given by the ID in the XML definition to the name of the
parameter in the constructor. If there were no match, an exception would be thrown; again, a
NoSuchBeanDefinitonException.

Again, it cannot be stressed enough that if you are using the XML configuration approach, you
must have a good suite of integration tests to ensure that your beans are constructed properly.

Listing 16-9 and Listing 16-10 illustrated a common pattern for everyday use of the Spring applica-
tion context: using XML context to define the beans, and then autowiring to integrate these beans.

Another use of autowiring is to annotate dependency to be autowired. Listing 16-11 shows how this
looks on the SpellCheckApplication constructor.

Listing 16-11:  Using the @Autowired annotation on a constructor

@Autowired
public SpellCheckApplication (final Dictionary dictionary) {
 this.dictionary = dictionary;
}

Using the annotation in this way, you do not need to have an autowired attribute on the XML bean
definition.

You can even autowire fields within a class, without a publicly accessible constructor or setter
method. Listing 16-12 autowires the Dictionary instance on to a private field. There is no setter for
the Dictionary in the class, and the constructor can be removed.

Listing 16-12:  Using @Autowired on fields

@Autowired
private Dictionary dictionary;

Note that this field cannot be final anymore. The application context will access and set this field
after it has been constructed, using reflection.

If your context contains more than one bean of the same type, you can still use the @Autowired anno-
tation, but you need to be explicit as to which bean you mean. A second annotation, @Qualifier, is
used for this. The annotation’s constructor takes a string, the name of the bean you require for wiring:

@Autowired
@Qualifier("englishDictionary")
private Dictionary dictionary;

Spring JDBC  ❘  255

These annotations are specific to Spring. Should you ever decide to change containers for a differ-
ent provider, such as Google’s Guice, then, although the concepts for your application code do not
change, you would need to re-implement your dependency injection and bean creation code to work
with their implementation. A specification called JSR-330 worked to standardize the annotations
across different providers. Instead of using @Autowired, you can use @Inject instead.

About Java Specification Requests (JSRs)

JSRs are requests from the Java development community, and other interested par-
ties, to add new functionality to upcoming releases of the Java platform.

Past JSRs have included the introduction of the assert keyword in Java 1.4, the
specification of the Java Message Service (JMS), and JavaServer Pages (JSPs).

However you decide to construct your beans and manage their dependencies, it is important to
remain consistent. As your application grows, it can be hard to manage these dependencies if they
are set up in several different ways, especially if you do not have good test coverage.

Spring JDBC

How does Spring improve the readability of JDBC code?

Listing 16-13 is an example of how to use JDBC using APIs shipped as part of the Java Development
Kit. Database access and JDBC in general are covered in Chapter 12.

Listing 16-13:  Using the JDK APIs for database access

@Test
public void plainJdbcExample() {
 Connection conn = null;
 PreparedStatement insert = null;
 PreparedStatement query = null;
 ResultSet resultSet = null;
 try {
 Class.forName("com.mysql.jdbc.Driver");

 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/springtrans?" +
 "user=nm&" +
 "password=password");

 insert = conn.prepareStatement("insert into user values (?, ?)");

 final List<String> users = Arrays.asList("Dave", "Erica", "Frankie");

 for (String user : users) {
 insert.setString(1, UUID.randomUUID().toString());

continues

mysql://localhost:3306/springtrans?

256  ❘  CHAPTER 16  The Spring Framework

 insert.setString(2, user);

 insert.executeUpdate();
 }

 query = conn.prepareStatement("select count(*) from user");
 resultSet = query.executeQuery();

 if (!resultSet.next()) {
 fail("Unable to retrieve row count of user table");
 }

 final int rowCount = resultSet.getInt(1);

 assertTrue(rowCount >= users.size());
 } catch (ClassNotFoundException | SQLException e) {
 fail("Exception occurred in database access: " + e.getMessage());
 } finally {
 try {
 if (resultSet != null) {
 resultSet.close();
 }
 if (query != null) {
 query.close();
 }
 if (insert != null) {
 insert.close();
 }
 if (conn != null) {
 conn.close();
 }
 } catch (SQLException e) {
 fail("Unable to close Database connection: " + e.getMessage());
 }
 }
}

The prevalent matter in this listing is how much code is necessary to insert some data, and
verify that the data is there. All of the heavyweight classes needed for database access, such as
Connection, PreparedStatement, and ResultSet can all throw checked SQLExceptions on their
creation, use, and destruction. These exceptions cannot simply be ignored: Should a close method
throw a SQLException, then that connection to the database may still exist. If this happens several
times, all of the connections in the database connection pool will be in use, and any subsequent
requests for database access will fail, bringing your entire application to a messy halt.

So using the java.sql.* classes results in a pattern of surrounding all your database access in a
try block, and closing the database statements, result sets, and connections inside a finally block.
But because these close statements inside the finally block can fail too, they need to be in a try
block. If that close fails, there isn’t really much you can do, besides being aware that it has hap-
pened, and manually killing the database connection to the running program.

Listing 16-13  (continued)

Spring JDBC  ❘  257

Moreover, because the database resource objects need to be initialized inside the try block but
closed inside the finally block, the reference variables cannot be assigned as final variables, which
runs the risk (through programming error) of reassigning to these variables before any chance of
calling their close method.

Thankfully, Spring provides some utilities for taking care of some of this boilerplate approach.
Listing 16-14 provides an alternative finally block for Listing 16-13.

Listing 16-14:  A friendlier way to close database resources

try {
 // as Listing 16-13
} catch (ClassNotFoundException | SQLException e) {
 // as Listing 16-13
} finally {
 JdbcUtils.closeResultSet(resultSet);
 JdbcUtils.closeStatement(query);
 JdbcUtils.closeStatement(insert);
 JdbcUtils.closeConnection(conn);
}

You are encouraged to take a look at the implementation of these utility functions. They contain the
same code as the finally block in Listing 16-13, but throw no checked exceptions. This is a huge
reduction in necessary boilerplate code; they make your own code shorter and much easier to read
and reason what is happening.

The JdbcUtils class provides some other useful functions, too, such as extracting results from a
ResultSet, or even converting from a database naming convention (that is, separated_by_
underscores) to Java’s naming convention (definedWithCamelCase).

Using the try-with-resources statement, introduced in Java 8 and discussed in Chapter 8, can also
reduce the boilerplate code here, however you must still have a catch block for a SqlException, as
that can be thrown when creating the resource.

How can Spring remove most boilerplate JDBC code?

The JdbcUtils class is intended for use as an enhancement to plain old JDBC code. If you are
starting any new development in Java code that needs JDBC access, you should use Spring’s
JdbcTemplate.

Spring’s approach to using JDBC abstracts much of the necessary setup to your application context,
and therefore removes it from polluting any program logic. Once the template is set up, for execut-
ing queries, for instance, you only need to provide functionality for converting each row from a
ResultSet to a specific domain object. As its name suggests, this is an application of the Template
design pattern, which was covered in a more abstract sense in Chapter 6.

Listing 16-15 and Listing 16-16 show how the JdbcTemplate can be used for everyday database
manipulations.

258  ❘  CHAPTER 16  The Spring Framework

Listing 16-15:  Configuring a database in an application context

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver" />
 <property name="url" value="jdbc:mysql://localhost:3306/springtrans" />
 <property name="username" value="nm" />
 <property name="password" value="password" />
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
 <constructor-arg ref="dataSource"/>
</bean>

Listing 16-16:  Using the SimpleJdbcTemplate

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(
 "classpath:com/wiley/javainterviewsexposed /chapter16/jdbcTemplateContext.xml")
public class JdbcTemplateUsage {

 @Autowired
 private JdbcTemplate jdbcTemplate;

 @Test
 public void retrieveData() {
 final int rowCount =
 jdbcTemplate.queryForInt("select count(*) from user");

 final List<User> userList = jdbcTemplate.query(
 "select id, username from user",
 new RowMapper<User>() {

 @Override
 public User mapRow(ResultSet rs, int rowNum) throws SQLException {
 return new User(rs.getString("id"), rs.getString("username"));
 }
 });

 assertEquals(rowCount, userList.size());
 }

}

This code accesses the database twice. The method queryForInt expects the given query to return
one row, with one column, and the type of that column is some kind of numerical type, which can
be interpreted as an int. Therefore, you do not need to worry about creating a statement, performing
the query, and obtaining the ResultSet, making sure the ResultSet has one row and one column,
and closing all resources afterwards.

mysql://localhost:3306/springtrans

Integration Testing  ❘  259

The second query shows a slightly more complex approach, where each row in the database is
translated into a User domain object. The template is able to perform the query and iterate over
the results. The only thing it does not know how to do is to transform each row into the object you
desire. You provide an anonymous implementation of the RowMapper interface, and the mapRow
is called for each row in the database. You have access to the data and metadata (by calling the
method ResultSet.getMetaData), and also the row number.

Each object returned from the mapRow call is collected by the template and collated in a List of
those mapped instances.

Using the JdbcTemplate in Java 8

Because the RowMapper interface has only one method, this fits nicely with the new
Lambda functionality, which should appear in Java 8 (see the section “Looking
Forward to Java 8” in Chapter 8). This will make the query method even clearer
and more concise than it already is:

jdbcTemplate.query(queryString, (rs, rowNum) -> {
 return new User(rs.getString(“id”), rs.getString(“username”));
});

This requires no change to any Spring library code.

Again, you do not need to deal with opening database connections or any of the heavy database
resource objects, and you do not need to close any resources after your query—the template does all
this for you. It should be clear that this code is more concise, clearer, and much more maintainable
than the approach shown earlier in Listing 16-13.

Integration Testing

How do you test that an application context is configured correctly?

In the earlier section on using the application context, having to load the ApplicationContext
object manually for each test was becoming unwieldy and distracting, taking the focus away from
the test.

Spring has a good integration for using application contexts in integration tests. Listing 16-17 revis-
its the spell-checking application, showing how Spring helps write integration tests.

Listing 16-17:  Using Spring’s integration testing

@ContextConfiguration(
 "classpath:com/wiley/javainterviewsexposed/chapter16/applicationContext.xml")
@RunWith(SpringJUnit4ClassRunner.class)

continues

260  ❘  CHAPTER 16  The Spring Framework

public class SpringIntegrationTest {

 @Autowired
 private SpellCheckApplication application;

 @Test
 public void checkWiring() {
 assertNotNull(application);
 }

 @Test
 public void useSpringIntegrationTests() {

 final List<String> words = Arrays.asList(
 "correct",
 "valid",
 "dfgluharg",
 "acceptable");
 final List<Integer> expectedInvalidIndices = Arrays.asList(2);

 final List<Integer> actualInvalidIndices =
 application.checkDocument(words);

 assertEquals(expectedInvalidIndices, actualInvalidIndices);
 }
}

The class is annotated to run with the SpringJUnit4ClassRunner, which understands how to load
a Spring application context through the @ContextConfiguration class-level annotation.

Running tests this way allows the beans under test to be autowired for use in a particular test. Any
@Autowired beans are reloaded from the application context for each test; similar to the way the
@Before annotated methods are run before each test.

If you have a sufficiently complex test, which may change the state of the application context, you
can annotate your class with @DirtiesContext, and this will reload the whole context from scratch
for each test. This can significantly increase the running time for all the tests in a defined test suite.

How do you keep databases clean when running integration tests?

The Spring integration testing functionality has a remarkably useful feature for work-
ing with databases and transactions. If you have a JUnit test suite, which extends
AbstractTransactionalJUnit4SpringContextTests, then each of the tests run inside this
suite will be run inside a database transaction, and will be rolled back at the end of each test.

Listing 16-17  (continued)

Integration Testing  ❘  261

This has the useful capability to check that your code meets any requirements specified by your
database, such as referential integrity, or any complex knock-on effects such as those specified in a
database trigger. Listing 16-18 shows a test that appears to insert data into a database. The test will
fail if the precondition of any of the usernames to insert is already in the database.

Listing 16-18:  Using Spring’s transactional support for integration tests

@ContextConfiguration(
 "classpath:com/wiley/javainterviewsexposed/" +
 "chapter16/databaseTestApplicationContext.xml")
 public class SpringDatabaseTransactionTest extends
 AbstractTransactionalJUnit4SpringContextTests {

 private int rowCount;

 @Before
 public void checkRowsInTable() {
 this.rowCount = countRowsInTable("user");
 }

 @Before
 public void checkUsersForTestDoNotExist() {
 final int count = this.simpleJdbcTemplate.queryForInt(
 "select count(*) from user where username in (?, ?, ?)",
 "Alice",
 "Bob",
 "Charlie");
 assertEquals(0, count);
 }

 @Test
 public void runInTransaction() {

 final List<Object[]> users = Arrays.asList(
 new Object[]{UUID.randomUUID().toString(), "Alice"},
 new Object[]{UUID.randomUUID().toString(), "Bob"},
 new Object[]{UUID.randomUUID().toString(), "Charlie"}
);

 this.simpleJdbcTemplate.batchUpdate(
 "insert into user values (?, ?)", users);

 assertEquals(rowCount + users.size(), countRowsInTable("user"));
 }
}

Before any of the @Before methods are run, a transaction is opened. Once the test has been run,
and all of the @After methods have completed, the transaction is rolled back, as if the data had
never been there. Naturally, you need to make sure that none of your code in the @Test method per-
forms a commit.

262  ❘  CHAPTER 16  The Spring Framework

Had this test been run outside of a transaction, it would fail on its second run, due to the insertion
of the usernames Alice, Bob, and Charlie. But because the insertion is rolled back, it can be run time
and time again with no fear of the data persisting. This makes it suitable for running as part of a
regular application build, or as part of a set of integration tests, run on a continuous delivery server.

JUnit 4.11 introduced the @FixMethodOrder annotation, which allows you to define the order your
@Test methods are run. In Listing 16-18, you could write another test that double-checks that the
transaction had indeed been rolled back and the users did not exist in the table, and have that test
run after the runInTransaction test.

Specifying the order of tests is bad practice, as you should be able to run each test in isolation. If this
test was run on a continuous delivery server, and there was a problem with the transaction rollback,
then the test would fail on its second run, which would be early in the development cycle if you have
a regular running build.

By extending AbstractTransactionalJUnit4SpringContextTests, and providing an
application context with a valid DataSource, the integration test suite gives you access to a
SimpleJdbcTemplate object, with which you can perform any relevant database operations
for your test. The test suite also provides a couple of utility methods: countRowsInTable and
deleteFromTables.

Spring MVC

The Model-View-Controller (MVC) pattern is a common approach to working with user interfaces.
As its name implies, it breaks up an application into three parts.

The model is a representation of the data your application is trying to work with.

The view presents the user with a representation of this model. Depending on the nature of the
application, this could simply be text on a screen, or perhaps a more complicated visualization using
graphics and animation.

The controller joins everything up. It is responsible for processing any input, which will govern how
the model is created, and then it passes this model on to an appropriate view.

This section demonstrates how Spring’s web applications use this pattern to provide a clean separa-
tion between these three parts and how they fit together, building a small web application for dis-
playing sports results. Listing 16-19 shows the interface to the sports results service.

Listing 16-19:  The SportsResultsService interface

public interface SportsResultsService {
 List<Result> getMostRecentResults();
}

Spring MVC  ❘  263

How does Spring serve web applications?

Spring’s MVC framework is designed to be compatible with the Java Servlet specification. Many
providers and vendors of applications use this specification, such as freely available Apache Tomcat,
and Jetty, and also commercial implementations like IBM’s Websphere Application Server. All of
these can be used with Spring MVC.

When the application server starts, it looks for the file web.xml, in the META-INF package on the
classpath. This file specifies what applications, or servlets, the server will provide. Inside web.xml
you provide a class that extends HttpServlet, and that defines how to respond to the HTTP meth-
ods such as GET and POST.

Although you can provide your own implementation, to use Spring MVC, you use its imple-
mentation, org.springframework.web.servlet.DispatcherServlet. Listing 16-20 gives
a complete definition of a sample web.xml file, passing any request starting with /mvc to the
DispatcherServlet.

Listing 16-20:  Configuring a servlet container for Spring MVC

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 metadata-complete="false"
 version="3.0">

 <servlet>
 <servlet-name>mvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>mvc</servlet-name>
 <url-pattern>/mvc/*</url-pattern>
 </servlet-mapping>

</web-app>

When control is passed to the DispatcherServlet, it immediately looks for an application context
XML definition, which is held at the classpath location WEB-INF/[servlet-name]-servlet.xml.
For Listing-16-20, it will be called mvc-servlet.xml.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

264  ❘  CHAPTER 16  The Spring Framework

This file is a regular, familiar, Spring application context. You can specify any Spring beans here, and
they will be instantiated when the server starts. Listing 16-21 is a very simple application context.

Listing 16-21:  An application context for a sample Spring MVC application

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan
 base-package="com.wiley.javainterviewsexposed.chapter16.mvc"/>

 <bean id="freemarkerConfig"
 class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
 </bean>

 <bean
 id="viewResolver"
 class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
 <property name="prefix" value=""/>
 <property name="suffix" value=".ftl"/>
 </bean>

 <bean
 class="com.wiley.javainterviewsexposed.chapter16.mvc.DummySportsResultsService"/>

</beans>

There are three main actions here. Most Spring MVC controllers are defined using annotations, so
the context:component-scan tag informs the application context of which packages to scan for
classes annotated with @Controller. There is the setup of the view resolver, which is used to render
and display the results of any request; Spring MVC will request the bean of type ViewResolver
when it needs to display the output of a request. Finally, this application has one application-specific
bean, an instance of DummySportsResultsService.

This is just a regular application context. You can use it outside of an MVC application if you need
to, such as with Spring’s integration testing framework.

How can you create easily testable web controllers with Spring MVC?

Controllers in Spring are lightweight, Plain Old Java Objects. By having very few dependencies, they
have been designed to be easily testable, and the framework gives many options for their behavior

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/p
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

Spring MVC  ❘  265

to fit in with your way of working. Listing 16-22 is the simple example for Spring’s controllers in its
MVC framework.

Listing 16-22:  A simple Spring controller

@Controller
@RequestMapping("/results")
public class ResultsController {

 private final SportsResultsService resultsService;

 @Autowired
 public ResultsController(final SportsResultsService resultsService) {
 this.resultsService = resultsService;
 }

 @RequestMapping(value = "/recent")
 public String getMostRecentResults(final Model model) {
 model.addAttribute("results", resultsService.getMostRecentResults());
 return "resultsView";
 }

 @RequestMapping("/recent/{team}")
 public String getMostRecentResultsForTeam(
 @PathVariable("team") final String team,
 final Model model) {
 final List<Result> results = resultsService.getMostRecentResults();
 final List<Result> resultsForTeam = new ArrayList<Result>();
 for (Result result : results) {
 if (Arrays.asList(
 result.getHomeTeam(),
 result.getHomeTeam()
).contains(team)) {
 resultsForTeam.add(result);
 }
 }

 if (resultsForTeam.isEmpty()) {
 return "teamNotFound";
 } else {
 model.addAttribute("results", resultsForTeam);
 return "resultsView";
 }
 }

}

This controller provides GET access to two URLs, /results/recent and /results/
recent/<team>, for a specific team.

Before looking at the mechanics of how this controller integrates with a servlet engine, it should
be clear that this class is easily testable as a unit test. Listing 16-23 shows a test for the method
getMostRecentResultsForTeam.

266  ❘  CHAPTER 16  The Spring Framework

Listing 16-23:  A unit test for the ResultsController

@Test
public void specificTeamResults() throws Exception {
 final SportsResultsService mockService = mock(SportsResultsService.class);

 final List<Result> results = Arrays.asList(
 new Result("Home", "Away", 1, 2),
 new Result("IgnoreHome1", "IgnoreAway1", 0, 0)
);

 when(mockService.getMostRecentResults()).thenReturn(results);

 final List<Result> expectedResults = Arrays.asList(
 new Result("Home", "Away", 1, 2));

 final ResultsController controller = new ResultsController(mockService);
 final Model model = new ExtendedModelMap();

 controller.getMostRecentResultsForTeam("Home", model);

 assertEquals(expectedResults, model.asMap().get("results"));
}

Examining Listing 16-22, the class is annotated with the @Controller annotation, so the
component-scan directive in the servlet’s application context picks it up.

This controller is specific for any URL starting in /results, so that, too, can be annotated at the
class level, with the @RequestMapping annotation. Any method-level @RequestMapping annotations
will be relative to this.

The getMostRecentResultsForTeam method has a parameter annotated with @PathVariable,
given the value team. This value corresponds to the {team} binding in the @RequestMapping anno-
tation. This allows for a RESTful approach if you so wish; it is very simple to parameterize your
request URLs. This is type-safe too; Spring can interpret the value as any simple type, such as the
primitive types Strings and Dates, and it is possible for you to provide your own conversion from
the String in the request path to your own complex type.

Methods on controllers have the single role of providing the view technology with the model to
render.

The two methods have similar signatures. Both take at least one parameter, of a Model object, and
both return Strings.

The Model parameter is passed to the controller method by the framework. At its core, the Model
object is a mapping from Strings to Objects. The controller performs the necessary work, such as
retrieving data from a service accessing a database or third-party web application, and populates the
given Model. Remember, Java objects are references, so the framework can still reference the model
instance after you have updated it, meaning you do not need to return your updated model from the
method.

Spring MVC  ❘  267

This allows the method to return another necessary component, the name of the view to render. You
have the ability to configure Spring’s MVC framework so that it understands how to map a String
to a particular view; look ahead to the next question for how this works.

To allow for as much flexibility as possible, and to fit with your own preference of how to define
your own controller, the Spring MVC framework understands many different configurations for
your method definition. You can specify several annotations on the method parameters, such as
@RequestPart, for multipart form uploads, or @RequestHeader, for assigning a specific header to a
variable.

You can also specify many different parameter types for the method signature, including:

➤➤ InputStream, providing access to the raw HTTP request stream

➤➤ OutputStream, allowing you to write directly to the HTTP response stream

➤➤ HttpServletRequest, for the exact request object itself

➤➤ ServletResponse, another facility for writing directly to the response

Additionally, you have several options for your return type, such as ModelAndView, an object con-
taining both the model for the view and the view name, all contained in one object. You can even
use a void return type if you have written directly to the response stream.

Be Smart: Keep Your Code Simple and Easy to Test

Remember to use tests as often as you can in any interview situation. Like all Java
classes, it is advisable to keep your controllers simple and easily testable. It can be
quite difficult to create testable controller methods if you are writing directly to the
response output stream, and your method has a void return type.

How is the server-side logic kept separate from presenting the results of a
request?

Views are how the work done by the controller, represented by the model, is displayed.

The view should simply be displaying the output; the controller should have done all meaningful
work before passing the model to the view. This includes operations such as sorting lists or filtering
any unwanted content from a data structure.

In essence, most view technologies that work with Spring follow a very similar pattern: They work
as templates, with placeholders for dynamic data. Spring integrates tightly with several implementa-
tions so that their own integration with Spring’s controllers stays the same.

The usual format is for the controller to populate a mapping, consisting of a name to either a
“bean” or data structure. For the bean, the properties, defined on the Java class by getXXX meth-
ods, are then directly accessible in the view technology. For data structures, such as a Map or List,

268  ❘  CHAPTER 16  The Spring Framework

the template provides ways to iterate over the collection and access each element, again as a bean.
Listing 16-24 is a very simple controller, and Listing 16-25 is a possible view for displaying that
data. The view implementation here is called Freemarker.

Listing 16-24:  A simple controller for use with Listing 16-25

@RequestMapping("/planets")
public String createSimpleModel(final Model model) {

 model.addAttribute("now", new Date());

 final Map<String, String> diameters = new HashMap<>();
 diameters.put("Mercury", "3000 miles");
 diameters.put("Venus", "7500 miles");
 diameters.put("Earth", "8000 miles");

 model.addAttribute("diameters", diameters);

 return "diameters";
}

Listing 16-25:  Using a view template to display the output from a controller

<html>
<head>
 <title>Planet Diameters</title>
</head>
<body>
<#list diameters?keys as planet>
 ${planet}: ${diameters[planet]}

</#list>
This page was generated on <i>${now?datetime}</i>
</body>
</html>

The controller has added two elements to the model: now, a representation of the current time, and
diameters, the map of planet names to a description of their diameter.

Listing 16-25 is written as HTML, with slots for the dynamic content to fit. This has several advan-
tages, including a clear separation between the server-side processing and the front-end display. Also,
notice that the template is not restricted to HTML: Anything at all could have been displayed, per-
haps an XML or comma-separated values (CSV) document, or even a template for use in an e‑mail.

The <#list> tag is known as a macro; Freemarker has many of these for different situations.
It is being used here to iterate through the keys in the diameters map. Other examples include
bool?string("yes", "no"), which is used to map the value bool onto one of two strings; yes or
no, and number?round, which will display a rounded version of the value number.

Summary  ❘  269

How can Spring be configured to work with different view template engines?

Listing 16-25 uses the Freemarker engine. The controller in Listing 16-24 references the view by the
name diameters. The mapping from name to template file is set up in the application context, and
is highly dependent on the implementation of ViewResolver. For this application, which was origi-
nally set up in Listing 16-21, the view resolver was set as:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
 <property name="prefix" value=""/>
 <property name="suffix" value=".ftl"/>
</bean>

This specifies that the view template files are stored in the default location, and have the file
extension .ftl. When using Freemarker, the diameters view should be found on the classpath as
/WEB-INF/freemarker/diameters.ftl.

A similar, older view technology is Velocity, and Spring’s view resolver bean uses similar bean
properties:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
 <property name="prefix" value=""/>
 <property name="suffix" value=".vm"/>
</bean>

Convention follows that Velocity templates have a .vm suffix.

Summary

Whatever parts of Spring you do and do not use, the core concept for most approaches is the use of
the application context. Understanding dependency injection and how components fit together is
extremely important, and any interview involving Spring will cover Spring beans, how they are cre-
ated, and how they interact among themselves.

This chapter has not been an exhaustive look at the Spring Framework. Do take the time to write
some code with Spring, and see how the concepts here translate to other parts, such as how to inter-
act with Hibernate using the HibernateTemplate, or how the application context is used in more
complicated scenarios with Spring Integration.

Make sure that anything you write in Spring is tested, especially if you are configuring your applica-
tions in XML. Spring gives you good support for creating comprehensive tests. Eclipse or IntelliJ
have good plug-ins for Spring; they can often highlight any errors in Spring configuration straight
away—this may not always be apparent until you run the code and attempt to construct the applica-
tion context.

Chapter 17 covers Hibernate, a framework that is often paired with Spring. Hibernate enables you
to convert database tables directly into a Java object, and vice-versa. The chapter looks at the basics
of Hibernate’s different approaches that you can take to configure and use it.

Using Hibernate
Hibernate is a tool built specifically for managing the mapping between Java objects and data-
base tables, usually referred to as Object/Relational Mapping, or ORM.

This chapter builds upon a sample database schema for a box office application. The applica-
tion manages tickets for customers for different events, at different venues. Figure 17-1 shows
the structure of the database.

Event

VenueTicket

*

*

*

*

1

1

1

1

Person_Ticket

Person

Figure 17-1 

Using Hibernate

How do you create Java objects using Hibernate?

Hibernate is a tool for mapping database relations to objects, so it makes sense to have domain
objects for these entities. The classes are simple Plain Old Java Objects, or POJOs, and they
simply match their corresponding database table. For instance, Listing 17-1 shows the class for
the people table.

17

272  ❘  CHAPTER 17  Using Hibernate

Listing 17-1:  The Person class

public class Person {

 private int id;
 private String name;
 private String address;

 public Person() {
 // default no-arg constructor
 }

 public Person(int id, String name, String address) {
 this.id = id;
 this.name = name;
 this.address = address;
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 @Override
 public String toString() {
 return "Person{" +
 "name='" + name + '\'' +
 ", address='" + address + '\'' +
 '}';
 }

 // equals and hashCode omitted
}

Using Hibernate  ❘  273

Note the name of the class: Person. This refers to the people table. The convention is for database
tables to have the pluralized form of the word, and the class definition to have the singular form.
The class represents a single person.

A couple of other points to note here are that you must include a default, no-arg constructor. When
Hibernate is building objects for you, it creates the objects using this constructor. If there were no
default, it would be simply not possible for Hibernate to decide which constructor to use. Hibernate
will populate the instance using the setter methods, so you will need a default constructor, and the
fields of the Person class must be non-final.

You need to specify a mapping between the class and the table. Listing 17-2 shows this for the
Person class.

Listing 17-2:  The mapping for the Person entity

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.wiley.acinginterview.chapter17">

 <class name="Person" table="PEOPLE">
 <id name="id" column="ID"/>
 <property name="name"/>
 <property name="address"/>
 </class>

</hibernate-mapping>

The naming convention for this file is <Entity>.hbm.xml, so this file would be called Person.hbm
.xml. For this simple example, the fields of the class match the columns of the database table, so this
mapping merely names the properties of the Person entity, and describes that the id field works as
the unique identifier for the different objects.

You also need to tell Hibernate what database you are using and its location. By convention, this is
stored in the root of the classpath, in a file called hibernate.cfg.xml. This file also contains a ref-
erence to the mapping file shown in Listing 17-2. Listing 17-3 shows a simple configuration file.

Listing 17-3:  A sample hibernate.cfg.xml file

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="connection.driver_class">
 com.mysql.jdbc.Driver

continues

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd

274  ❘  CHAPTER 17  Using Hibernate

 </property>
 <property name="connection.url">
 jdbc:mysql://localhost:3306/ticketoffice
 </property>
 <property name="connection.username">nm</property>
 <property name="connection.password">password</property>

 <property name="dialect">
 org.hibernate.dialect.MySQLDialect
 </property>

 <property name="show_sql">true</property>

 <mapping
 resource="com/wiley/javainterviewsexposed/chapter17/Person.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

This file is where you define the properties about the connection to the database, such as the size of
your connection pool, or if you want to use a cache.

If the rows in the people table looked like this:

mysql> select * from people;
+----+----------------+-------------------+
| id | name | address |
+----+----------------+-------------------+
1	Eric Twinge	29, Acacia Avenue
2	Dominic Taylor	74A, High Road
3	Alice Smith	1, Pine Drive
+----+----------------+-------------------+
3 rows in set (0.00 sec)

Listing 17-4 shows how your configuration is then used to extract rows from that table into Person
objects.

Listing 17-4:  Querying the database with Hibernate

@Test
public void retrievePeople() {
 final SessionFactory sessionFactory =
 new Configuration()
 .configure()
 .buildSessionFactory();

 final Session session = sessionFactory.openSession();
 final List<Person> actual = session
 .createQuery("from Person")

Listing 17-3  (continued)

mysql://localhost:3306/ticketoffice

Using Hibernate  ❘  275

 .list();

 final List<Person> expected = Arrays.asList(
 new Person(1, "Eric Twinge", "29, Acacia Avenue"),
 new Person(2, "Dominic Taylor", "74A, High Road"),
 new Person(3, "Alice Smith", "1, Pine Drive"));

 assertEquals(expected, actual);
}

Notice, too, that once the Person objects have been populated by Hibernate, there is no dependency
on Hibernate or the database; they are just regular POJOs.

How do you insert data into a database using Hibernate?

Inserting data into a database using Hibernate is just as simple. Listing 17-5 inserts data using
Hibernate. Verification that the row is actually in the database is done using regular SQL.

Listing 17-5:  Persisting data using Hibernate

@Test
public void storePerson() throws SQLException {
 final Session session = sessionFactory.openSession();
 final Transaction transaction = session.beginTransaction();

 final Person newPerson =
 new Person(4, "Bruce Wayne", "Gotham City");
 session.save(newPerson);
 transaction.commit();

 final Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/ticketoffice",
 "nm",
 "password");

 final Statement stmt = conn.createStatement();

 final ResultSet rs = stmt.executeQuery(
 "select name from people where id = 4");
 assertTrue(rs.next());
 assertEquals("Bruce Wayne", rs.getString(1));

 rs.close();
 stmt.close();
 conn.close();
}

By simply calling save on the Hibernate session with a Person object, that Person object is per-
sisted to the database.

mysql://localhost:3306/ticketoffice

276  ❘  CHAPTER 17  Using Hibernate

Note that this code is still dependent on the id field of the Person object being unique. Trying to
insert another Person object with an id of 4 will fail. A couple of small changes will make your
code less dependent on any persistence mechanism.

If your table is set to automatically generate identifiers, and Hibernate is aware of this, you do not
need to supply the id when persisting objects. Listing 17-6 shows the DDL statement for a MySQL
database for the people table.

Listing 17-6:  An auto-incrementing identifier

CREATE TABLE people (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(100),
 address VARCHAR(100)
);

The AUTO_INCREMENT attribute will create the identifier for you.

You also need to provide a generator in your Person.hbm.xml Hibernate mapping, as shown in
Listing 17-7.

Listing 17-7:  Adding a generator to the Hibernate mapping

<class name="Person" table="PEOPLE">
 <id name="id" column="ID">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="address"/>
</class>

The attribute chosen here is native; that is, it is expected that the database will automatically insert
an identifier. Other generator classes exist, such as one for creating UUIDs or allowing Hibernate to
keep track of the identifiers itself.

With these changes, the generated SQL will change. If you have kept the show_sql property
switched on in your hibernate.cfg.xml file, you will see the following log line:

Hibernate: insert into PEOPLE (name, address) values (?, ?)

There is no reference to the id column. This means that you do not need an id field in your Person
class at all, as shown in Listing 17-8.

Listing 17-8:  A cleaner Person class

public class Person {

 private String name;
 private String address;

... the rest as before, without the id getters and setters

Using Hibernate  ❘  277

This has resulted in a clearer domain object, with no notion at all of persistence.

How do you join database tables with Hibernate?

When trying to implement the schema provided in Figure 17-1, having the Person class on its own
isn’t very useful. The diagram stipulates that the relationship between tickets and people is many-
to-many, and as such, a join table is used.

For the following examples, the data in tickets and person_ticket is as follows:

mysql> select * from tickets;
+----+----------+
| id | event_id |
+----+----------+
1	1
2	1
3	2
4	2
5	3
6	3
7	4
8	5
9	5
10	6
+----+----------+
10 rows in set (0.00 sec)

mysql> select * from person_ticket;
+-----------+-----------+
| person_id | ticket_id |
+-----------+-----------+
1	1
2	4
1	7
3	10
+-----------+-----------+
4 rows in set (0.00 sec)

You can see here that one person has tickets to many events, (person_id 1), and events can have
more than one ticket (event_ids 1, 2, 3, and 5).

It would be useful to modify the Person class to hold a collection of tickets. That way, a person
retrieved from the database will hold a list of Ticket objects, which may be useful if the person ever
needs to ask the ticket office which events he has tickets for.

You will need to create a Ticket class. It has not been written out here, because there is nothing
unexpected in this class. It will hold two fields—id and eventId—and will have a no-arg construc-
tor, as well as getters and setters for all the fields. Listing 17-9 shows two Hibernate mapping files: a
new Ticket.hbm.xml and a modified Person.hbm.xml.

278  ❘  CHAPTER 17  Using Hibernate

Listing 17-9:  Hibernate mappings for associating tickets and people

<hibernate-mapping package="com.wiley.javainterviewsexposed.chapter17">

 <class name="Ticket" table="TICKETS">
 <id name="id" column="ID"/>
 <property name="eventId" column="event_id"/>
 </class>

</hibernate-mapping>

<hibernate-mapping package="com.wiley.javainterviewsexposed.chapter17">

 <class name="Person" table="PEOPLE">
 <id name="id" column="ID">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="address"/>

 <set name="tickets" table="PERSON_TICKET" cascade="all">
 <key column="person_id"/>
 <many-to-many column="ticket_id"
 unique="true"
 class="Ticket"/>
 </set>

 </class>

</hibernate-mapping>

The Ticket Hibernate mapping is pretty much as you would expect. The only new piece of informa-
tion is that you need to map the eventId field to the event_id column—all the examples previously
had the exact same names. This mapping enables you to keep the appropriate naming conventions
for both Java and SQL.

The Person Hibernate mapping holds one new piece of information, a set for the tickets field.
This references the person_ticket table. The key-column tag instructs Hibernate how to perform
its SQL join—the person_id column of person_ticket is the join criteria, and the many-to-many
tag references the identifier of the Ticket entity.

You need to reference the new Ticket.hbm.xml file in your hibernate.cfg.xml Hibernate configu-
ration file, and then you have one more change to make: You need to add a collection field to your
Person class, as shown in Listing 17-10.

Listing 17-10:  Additions to the Person class

public class Person {

 private int id;
 private String name;

Using Hibernate  ❘  279

 private String address;
 private Set<Ticket> tickets;

 public Person() {
 // default no-arg constructor
 }

 public Person(int id,
 String name,
 String address,
 Set<Ticket> tickets) {
...

The rest of the class is as expected. The tickets field has appropriate getters and setters, the
equals and hashCode methods take the collection into account, and the toString method makes
sure to include the values in the set.

Listing 17-11 shows an updated test confirming that retrieving Person objects now includes a set of
tickets.

Listing 17-11:  Testing joining entities using Hibernate

@Test
public void retrievePeople() {
 final SessionFactory sessionFactory =
 new Configuration()
 .configure()
 .buildSessionFactory();

 final Session session = sessionFactory.openSession();
 final List<Person> actual = session
 .createQuery("from Person")
 .list();

 final Set<Ticket> ericTickets = new HashSet<Ticket>(2) {{
 add(new Ticket(1, 1));
 add(new Ticket(7, 4));
 }};

 final Set<Ticket> dominicTickets = new HashSet<Ticket>(1) {{
 add(new Ticket(4, 2));
 }};

 final Set<Ticket> aliceTickets = new HashSet<Ticket>(1) {{
 add(new Ticket(10, 6));
 }};

 final List<Person> expected = Arrays.asList(
 new Person(1, "Eric Twinge", "29, Acacia Avenue", ericTickets),
 new Person(2, "Dominic Taylor", "74A, High Road", dominicTickets),
 new Person(3, "Alice Smith", "1, Pine Drive", aliceTickets));

 assertEquals(expected, actual);
}

280  ❘  CHAPTER 17  Using Hibernate

Of course, working with just identifiers isn’t much use. The pattern to include Tickets on the
Person class can be repeated to include Events on the Ticket class, but this time the relationship
is many-to-one: A ticket can only be for one event, though a single event will clearly sell more than
one ticket.

You must create both a new Event class containing the fields from the event table, and a vanilla
Events.hbm.xml Hibernate mapping to map columns to class fields. Modify the Ticket.hbm.xml
file to have a many-to-one field, which matches with the event table, as shown in Listing 17-12.

Listing 17-12:  A many-to-one relationship

<hibernate-mapping package="com.wiley.acinginterview.chapter17">

 <class name="Ticket" table="TICKETS">
 <id name="id" column="ID"/>
 <many-to-one name="event" class="Event"
 column="event_id" cascade="all" not-null="true"/>
 </class>

</hibernate-mapping>

Listing 17-13 shows the change to the test, now that the Ticket class constructor takes an int id
and an Event object.

Listing 17-13:  Testing the many-to-one relationship

final Set<Ticket> dominicTickets = new HashSet<Ticket>(1) {{
 add(new Ticket(4,
 new Event(
 2,
 1,
 "The Super Six",
 new DateTime(2013, 8, 1, 0, 0).toDate())));
}};

The test should still pass; it will populate the Ticket objects with Events equal to those defined for
the test.

Hibernate and Dates

The event table has a DATE data type for when the event is taking place.
Conveniently, this automatically maps to a java.util.Date object. For conciseness
in the test in Listing 17-13, the eventDate object is created using the Joda Time
library, and converted to a java.util.Date object. For more on Joda Time and
other helpful Java libraries, see Chapter 18.

Using Hibernate  ❘  281

How do you use HQL?

HQL is Hibernate’s query language. You have already seen an example in Listing 17-4; the line
session.createQuery("from Person").list() uses the string from Person to pull all Person
entities from the database.

The language is similar in some respects to SQL; you request data from somewhere, which may need
to meet some criteria. Listing 17-14 shows some HQL to retrieve a single user.

Listing 17-14:  Being specific with HQL

@Test
public void hqlSinglePerson() {
 final Session session = sessionFactory.openSession();
 final List<Person> singleUser = session
 .createQuery("from Person where name like 'Dominic%'")
 .list();
 assertEquals(1, singleUser.size());
}

The HQL here, "from Person where name like 'Dominic%'", limits the data to only people
whose name starts with Dominic. For the data set for the test, only one person meets those criteria.

If you were more interested in Tickets that a particular Person had, you can query for those enti-
ties instead, as shown in Listing 17-15.

Listing 17-15:  Querying for fields on an entity

@Test
public void hqlSpecificTickets() {
 final Session session = sessionFactory.openSession();
 final List<Ticket> actual = session.createQuery("" +
 "select person.tickets " +
 "from Person person " +
 "where person.name = 'Eric Twinge'").list();

 assertEquals(2, actual.size());
}

Because this query is retrieving a specific field from an entity, you need to start your query with
select.

Listing 17-16 shows how to find the events a particular person was visiting.

282  ❘  CHAPTER 17  Using Hibernate

Listing 17-16:  Extracting data from multiple levels of Hibernate objects

@Test
public void hqlVenuesForPerson() {
 final Session session = sessionFactory.openSession();
 final List actual = session.createQuery("" +
 "select event.eventName " +
 "from Person person " +
 "inner join person.tickets as tickets " +
 "inner join tickets.event as event " +
 "where person.name = 'Eric Twinge'").list();

 assertEquals(Arrays.asList("The Super Six", "David Smith"), actual);
}

This test retrieves strings, not a special domain object managed by Hibernate. The HQL query reads
naturally for someone who has some experience with SQL.

What performance impact can Hibernate have?

By default, Hibernate entities are retrieved eagerly; that is, when you retrieve an object from a
database, any dependent objects are also retrieved at the same time. In the case of the ticket office,
retrieving a Person object will also retrieve its relevant Ticket objects and Event objects.

This can be quite an expensive, time-consuming operation. For a real ticketing system, which may
hold thousands of events, each of which can have tens of thousands of tickets, retrieving all of these
objects does not make much sense.

Thankfully, Hibernate enables you to lazily load objects; that is, the query will happen if and when
it needs to. Listing 17-17 shows how this is done for the Ticket object. If you set tickets and events
to be lazily loaded, then when you retrieve Person objects, their tickets and events will only be
loaded from the database if you try to access the Ticket set reference or the Event reference.

To make an object lazily loaded, you need to add a lazy="true" attribute to the relevant property
in the Hibernate mapping.

Listing 17-17:  Lazily loading Events

<hibernate-mapping package="com.wiley.acinginterview.chapter17">

 <class name="Ticket" table="TICKETS">
 <id name="id" column="ID"/>
 <many-to-one name="event"
 class="Event"
 column="event_id"
 cascade="all"
 not-null="true"
 lazy="true"/>

Using Hibernate  ❘  283

 </class>

</hibernate-mapping>

To prove this is actually happening, whenever you access the Ticket object of a person, you will see
Hibernate log the query if you still have the show_sql property switched on.

However, it is possible to go one better in proving this. By keeping a count of when Event objects
are created, you can determine that they are being created at the correct time. Listing 17-18 shows
some temporary changes you could make to the Event class.

Listing 17-18:  Counting instantiations of a Hibernate class

public class Event {

 private int id;
 private int venueId;
 private String eventName;
 private Date eventDate;

 public static AtomicInteger constructedInstances =
 new AtomicInteger(0);

 public Event() {
 constructedInstances.getAndIncrement();
 }

... the rest of the class as before

If the AtomicInteger class is unfamiliar to you, it is covered in Chapter 11, but in a nutshell, it is a
holder for an integer that can be accessed for reading and writing in a thread-safe way.

By adding a static counter, this can be referenced globally and checked at the appropriate time. It
is worth emphasizing that this is not good design, or particularly safe code, but it is useful here to
prove the point.

You only need to increment the counter in the no-arg constructor; because this is the only construc-
tor Hibernate will use when constructing Events.

Listing 17-19 shows how to determine that the Events were lazily loaded.

Listing 17-19:  Determining lazy instantiation of Hibernate objects

@Test
public void lazyLoading() {
 final SessionFactory sessionFactory =
 new Configuration()
 .configure()
 .buildSessionFactory();

 final Session session = sessionFactory.openSession();

continues

284  ❘  CHAPTER 17  Using Hibernate

 Event.constructedInstances.set(0);
 final Person person = (Person) session.createQuery("" +
 "select person " +
 "from Person person " +
 "where person.name = 'Eric Twinge'").uniqueResult();

 assertEquals(0, Event.constructedInstances.get());

 final Set<Ticket> tickets = person.getTickets();

 for (Ticket ticket : tickets) {
 System.out.println("Ticket ID: " + ticket.getId());
 System.out.println("Event: " + ticket.getEvent());
 }

 assertEquals(2, Event.constructedInstances.get());

}

You should note several points about this test. First, the constructedInstances variable is reset
to zero before calling Hibernate, even though it is set to zero when initialized in the class. This is
because Hibernate would have re-created these objects as the test was starting, to ensure that the
mappings were correct.

If the System.out.println was removed, and the retrieved Person object was never referenced,
it is possible that the compiler would remove the retrieval completely, because the Person object
would never have been used.

After the Person object has been retrieved, the counter should still be zero, even though Hibernate
has collected the Person from the database, and, it seems, the Ticket set is accessible.

Once the Tickets have been retrieved and their Event object referenced, the Events are created.
This is verified by the fact that the counter has been incremented by the Event constructor.

You should be able to see that the lines printed with the test are intertwined with the Hibernate log-
ging to extract the Event details from the database.

If you remove the lazy attribute from the Tickets.hbm.xml mapping, the test will fail, as you
would expect.

Summary

Hibernate is an extremely useful tool to aid in persistence of your domain objects. You should not
treat it as a silver bullet; any experienced Java developer must be able to understand and write SQL.
If you ever need to debug or understand how the objects are being mapped from the database into
rich objects, Hibernate can provide logging to show exactly what SQL it creates to interact with the
database.

Listing 17-19  (continued)

Summary  ❘  285

It is often said that you should treat Hibernate as a framework rather than a library. That is,
you need to develop your application around the way Hibernate works, rather than mixing the
Hibernate JAR into your application and expecting it to play nicely with your already-established
database schema and mature application. You may find that if you stray from the patterns provided
by Hibernate for access and retrieval, you may have some headaches in getting Hibernate to under-
stand what you require.

That said, Hibernate is extremely valuable in getting projects moving quickly, removing any worry
about database interaction and different vendor dialects. For the ticket office schema built in this
chapter, Hibernate was extremely flexible in working with the provided schema. Early in the chap-
ter, when only the Person class existed, Hibernate was content to not try to understand the relation-
ship between People and Tickets, until it was made explicit. Notice, too, that for this application,
no concept of a venue was ever created, even though the table existed, had relevant data, and even
had a foreign key reference in the event table.

The next chapter covers some functionality missing from Java’s standard libraries, and looks at
some common useful libraries and their use.

Useful Libraries
This chapter examines some utilities from three commonly used Java libraries: Apache
Commons, Guava, and Joda Time. All three libraries attempt to provide extra, useful func-
tionality that the developers believed was missing from the Standard Java APIs, but was com-
mon enough to be written into a reusable library.

What kinds of problems these libraries and their functions alleviate can often be asked as
interview questions, but it is also important for experienced developers to know what is imple-
mented in common libraries so that they do not need to reinvent the wheel every time they
come across the same pattern.

For any mature project, it is not uncommon for all three of these libraries to appear in some
way, but many more libraries are available than just the three shown here.

Removing Boilerplate Code with Apache Commons

How do you properly escape Strings?

The Commons Lang library complements the functionality found in the java.lang package,
including several libraries for manipulating Strings.

Many systems work over many platforms and interfaces. It is common to see a Java server that
serves HTML pages and receives input from HTML forms, or you can use a Java application
to read and write a comma-separated values file. The StringEscapeUtils class provides the
facility to represent a String in that environment. Listing 18-1 shows an example of how you
could use the StringEscapeUtils class to provide some HTML formatting.

18

288  ❘  CHAPTER 18  Useful Libraries

Listing 18-1:  Escaping Strings with Apache Commons

@Test
public void escapeStrings() {
 final String exampleText = "Left & Right";
 final String escapedString =
 StringEscapeUtils.escapeHtml4(exampleText);
 assertEquals("Left & Right", escapedString);
}

The class can also escape Strings for JavaScript, XML, and Java itself. This can be useful if you ever
need to write Java source code programmatically.

How do you write an InputStream to an OutputStream?

The Apache Commons IO library has several operations for streams that significantly reduce the
amount of boilerplate code you need to write.

One common pattern is the need to connect an InputStream to an OutputStream. For example,
you may want to write the contents of an incoming HTTP request straight to disk for a file upload
form or something similar.

Listing 18-2 shows the copy method on the IOUtils class.

Listing 18-2:  Connecting an InputStream to an OutputStream

@Test
public void connectStreams() throws IOException {
 final String exampleText = "Text to be streamed";
 final InputStream inputStream =
 new ByteArrayInputStream(exampleText.getBytes());

 final OutputStream outputStream = new ByteArrayOutputStream();

 IOUtils.copy(inputStream, outputStream);

 final String streamContents = outputStream.toString();
 assertEquals(exampleText, streamContents);
 assertNotSame(exampleText, streamContents);
}

The assertNotSame method confirms that a brand new String was constructed, and that the copy
method transferred each byte to the OutputStream.

Listing 18-2 used a ByteArrayInputStream and ByteArrayOutputStream to demonstrate this
functionality, but both streams were declared against the interface. In practice, you will more than
likely use different streams and rely on reading from or writing to a third party, such as the disk or
the network interface.

Removing Boilerplate Code with Apache Commons  ❘  289

The copy method on the IOUtils class is heavily overloaded to give you as much flexibility as pos-
sible in copying a source of bytes from one location to another. You can use it to connect Readers to
Writers, to connect a Reader to an OutputStream, or to connect an InputStream to a Writer.

Be aware, too, that the toString method on an OutputStream will not necessarily give the contents
of the stream, because these could have been written to disk, or the network, or some other irre-
trievable place. Some OutputStream implementations do not override toString at all.

IOUtils provides a way to consume an InputStream to convert it to a String, as shown in Listing 18-3.

Listing 18-3:  From an InputStream to a String

@Test
public void outputStreamToString() throws IOException {
 String exampleText = "An example String";
 final InputStream inputStream =
 new ByteArrayInputStream(exampleText.getBytes());

 final String consumedString = IOUtils.toString(inputStream);

 assertEquals(exampleText, consumedString);
 assertNotSame(exampleText, consumedString);
}

Again, the toString method is heavily overloaded, and can convert Readers, too.

How can you split an OutputStream into two streams?

Similar to the tee command in UNIX, Apache Commons provides a TeeOutputStream; its con-
structor takes two OutputStream instances, and writes to both. This can be useful for auditing out-
put from an application, such as logging responses. Listing 18-4 shows an example.

Listing 18-4:  Splitting an OutputStream

@Test
public void outputStreamSplit() throws IOException {
 final String exampleText = "A string to be streamed";
 final InputStream inputStream = IOUtils.toInputStream(exampleText);

 final File tempFile = File.createTempFile("example", "txt");
 tempFile.deleteOnExit();
 final OutputStream stream1 = new FileOutputStream(tempFile);
 final OutputStream stream2 = new ByteArrayOutputStream();

 final OutputStream tee = new TeeOutputStream(stream1, stream2);

 IOUtils.copy(inputStream, tee);

 final FileInputStream fis = new FileInputStream(tempFile);

continues

290  ❘  CHAPTER 18  Useful Libraries

 final String stream1Contents = IOUtils.toString(fis);
final String stream2Contents = stream2.toString();

 assertEquals(exampleText, stream1Contents);
 assertEquals(exampleText, stream2Contents);
}

Listing 18-4 writes to only one location, but the TeeOutputStream takes care of writing the data to
both streams.

This code uses the Apache Commons IO extensively. As well as the TeeOutputStream class under
test, the test text is turned into an InputStream using IOUtils.toInputStream; the data is copied
between streams using the previously seen copy method; and the FileInputStream is consumed
with IOUtils.toString. A useful exercise would be to rewrite this test using only the standard Java
libraries, and see just how much extra code you need to write.

Developing with Guava Collections

Guava is a set of libraries originally developed by Google for use in its own Java projects. It concen-
trates on collections, I/O, and math, as well as some crossover with the Apache Commons libraries.
It can be seen as an extension to the data structures included as part of the Java Collections API,
which was covered in Chapter 5.

Are any types of collections missing from Java’s standard library?

Guava adds a collection called a Multiset. It enables you to have a set that allows multiple, equal
elements. Additional methods on the Multiset class enable you to count the number of a particular
element, and to turn it into a regular set. Similar to the Collections library, several Multiset imple-
mentations exist, such as a HashMultiset, a TreeMultiset, and a ConcurrentHashMultiset.

Listing 18-5 shows Multiset in use.

Listing 18-5:  Using a Multiset

@Test
public void multiset() {
 final Multiset<String> strings = HashMultiset.create();

 strings.add("one");
 strings.add("two");
 strings.add("two");
 strings.add("three");
 strings.add("three");

Listing 18-4  (continued)

Developing with Guava Collections  ❘  291

 strings.add("three");

 assertEquals(6, strings.size());
 assertEquals(2, strings.count("two"));

 final Set<String> stringSet = strings.elementSet();

 assertEquals(3, stringSet.size());
}

This keeps a running total of the count of each element. It can be helpful to think of a Multiset
as a Map between that element and an integer to keep the count. Though it is definitely possible to
implement the notion of a MultiSet this way, the Guava implementation is more powerful because
the size method returns the element count, whereas the Map implementation returns the number of
unique elements. Additionally, an Iterator over the Map returns each element only once, regardless
of how many are in the collection.

A Multimap is similar to a Multiset—it is possible to have a key appear more than once in the Map.

A common pattern when using a Map to store multiple values against a key is to store a mapping
from a key to a List, or Collection, of values. You then often see the following pseudocode when
attempting to add value against a particular key:

method put(key, value):
 if (map contains key):
 let coll = map(key)
 coll.add(value)
 else:
 let coll = new list
 coll.add(value)
 map.put(key, coll)

This is brittle, prone to errors, and you also need to make sure the code is thread-safe. Guava’s
Multimap takes care of this for you.

Listing 18-6 shows an example of its use.

Listing 18-6:  A Multimap address book

@Test
public void multimap() {
 final Multimap<String, String> mapping = HashMultimap.create();

 mapping.put("17 High Street", "Alice Smith");
 mapping.put("17 High Street", "Bob Smith");
 mapping.put("3 Hill Lane", "Simon Anderson");

 final Collection<String> smiths = mapping.get("17 High Street");
 assertEquals(2, smiths.size());
 assertTrue(smiths.contains("Alice Smith"));
 assertTrue(smiths.contains("Bob Smith"));

 assertEquals(1, mapping.get("3 Hill Lane").size());
}

292  ❘  CHAPTER 18  Useful Libraries

The get method does not return an instance of the value type of the map; it returns a Collection
of that type.

The Multimap differs from Java’s Map interface in several ways. The get method never returns
null—when getting a nonexistent key, an empty collection will be returned. Another difference is
that the size method returns the number of entries, not the number of keys.

Similar to the Multiset, you can convert your Multimap into a Java Map using the asMap method.
This returns Map<Key, Collection<Value>>.

Another type of map provided by Guava is the BiMap interface. This provides a two-way lookup:
Keys can look up values, and values can look up keys. Implementing this using Java’s Map is particu-
larly tricky; you need to keep two maps, one for each direction, and ensure that a particular value is
never duplicated, regardless of which key it is associated with.

Listing 18-7 shows an example of mapping stocks to their company name.

Listing 18-7:  Using a BiMap

@Test
public void bimap() {
 final BiMap<String, String> stockToCompany = HashBiMap.create();
 final BiMap<String, String> companyToStock =
 stockToCompany.inverse();

 stockToCompany.put("GOOG", "Google");
 stockToCompany.put("AAPL", "Apple");
 companyToStock.put("Facebook", "FB");

 assertEquals("Google", stockToCompany.get("GOOG"));
 assertEquals("AAPL", companyToStock.get("Apple"));
 assertEquals("Facebook", stockToCompany.get("FB"));
}

The inverse method is a reference to the original BiMap, so any additions in the originally created
map are reflected in the inverted map, and vice versa.

How do you create an immutable collection?

The Collections utility class in the Java Collections API provides some utility methods for creating
unmodifiable collections, as shown in Listing 18-8.

Listing 18-8:  Creating an unmodifiable collection

@Test
public void unmodifiableCollection() {
 final List<Integer> numbers = new ArrayList<>();
 numbers.add(1);
 numbers.add(2);

Developing with Guava Collections  ❘  293

 numbers.add(3);

 final List<Integer> unmodifiableNumbers =
 Collections.unmodifiableList(numbers);

 try {
 unmodifiableNumbers.remove(0);
 } catch (UnsupportedOperationException e) {
 return; // test passed
 }

 fail();
}

This can be useful because any reference to unmodifiableNumbers simply cannot mutate the under-
lying list. If references to the original list still exist, the collection referenced in the unmodifiable col-
lection can change, as shown in Listing 18-9.

Listing 18-9:  Changing the underlying values of an unmodifiable collection

@Test
public void breakUnmodifiableCollection() {
 final List<Integer> numbers = new ArrayList<>();
 numbers.add(1);
 numbers.add(2);
 numbers.add(3);

 final List<Integer> unmodifiableNumbers =
 Collections.unmodifiableList(numbers);

 assertEquals(Integer.valueOf(1), unmodifiableNumbers.get(0));

 numbers.remove(0);

 assertEquals(Integer.valueOf(2), unmodifiableNumbers.get(0));
}

Guava focuses on providing utilities to create unmodifable collections that are also immutable.
Listing 18-10 shows how this works.

Listing 18-10:  Creating immutable collections

@Test
public void immutableCollection() {
 final Set<Integer> numberSet = new HashSet<>();
 numberSet.add(10);
 numberSet.add(20);
 numberSet.add(30);

 final Set<Integer> immutableSet = ImmutableSet.copyOf(numberSet);

 numberSet.remove(10);

continues

294  ❘  CHAPTER 18  Useful Libraries

 assertTrue(immutableSet.contains(10));

 try {
 immutableSet.remove(10);
 } catch (Exception e) {
 return; // test passed
 }

 fail();
}

Of course, this is very different from the unmodifiable approach, because this will make a full copy
of the collection, so if you intend to use this approach, you should be aware of any memory con-
straints that could become a concern.

The unmodifiable approach from the Java Collections API simply delegates to the underlying collec-
tion, but intercepts calls to any mutating methods and throws an exception instead. This means that
any optimizations that are made for thread safety on the underlying collection are still part of the
unmodifiable approach, even though an unmodifiable collection cannot be mutated, and is therefore
thread-safe.

Because using Guava’s copyOf returns a copied collection, it is optimized for immutability; it does
not need to ensure thread safety when accessing the elements. They simply cannot change.

Is it possible to create an Iterator over several Iterators?

Making your own “iterator of iterators” can be especially difficult to do by hand. You need to keep
a reference to your most recent iterator, and when calling hasNext or next you may need to move to
the next iterator, or even beyond that, if the next iterator has no elements at all.

Being asked to make this implementation can be a common interview question, but it is also pro-
vided out of the box by Guava, as shown in Listing 18-11.

Listing 18-11:  Iterating over iterators

@Test
public void iterators() {
 final List<Integer> list1 = new ArrayList<>();
 list1.add(0);
 list1.add(1);
 list1.add(2);
 final List<Integer> list2 = Arrays.asList(3, 4);
 final List<Integer> list3 = new ArrayList<>();
 final List<Integer> list4 = Arrays.asList(5, 6, 7, 8, 9);

 final Iterable<Integer> iterable = Iterables.concat(
 list1, list2, list3, list4);

Listing 18-10  (continued)

Developing with Guava Collections  ❘  295

 final Iterator<Integer> iterator = iterable.iterator();

 for (int i = 0; i <= 9; i++) {
 assertEquals(Integer.valueOf(i), iterator.next());
 }

 assertFalse(iterator.hasNext());
}

The Iterables.concat method takes implementers of the Iterable interface.

Can you find the intersection of two Sets?

Surprisingly, many operations you would expect to see on the Set interface are not there: There is
no clear way when dealing with Sets to perform a union, subtraction, or difference without modify-
ing the provided Set. The Collection interface provides the addAll method to perform a union,
removeAll for difference, and retainAll for intersection. All of these methods modify the collec-
tion on which you called the method.

An alternative is to use the Sets class from Guava. This is a class with several static methods for
manipulating sets. Listing 18-12 shows how it is used.

Listing 18-12:  Set operations with Guava

@Test
public void setOperations() {
 final Set<Integer> set1 = new HashSet<>();
 set1.add(1);
 set1.add(2);
 set1.add(3);

 final Set<Integer> set2 = new HashSet<>();
 set2.add(3);
 set2.add(4);
 set2.add(5);

 final SetView<Integer> unionView = Sets.union(set1, set2);
 assertEquals(5, unionView.immutableCopy().size());

 final SetView<Integer> differenceView = Sets.difference(set1, set2);
 assertEquals(2, differenceView.immutableCopy().size());

 final SetView<Integer> intersectionView =
 Sets.intersection(set1, set2);
 set2.add(2);
 final Set<Integer> intersection = intersectionView.immutableCopy();
 assertTrue(intersection.contains(2));
 assertTrue(intersection.contains(3));
}

296  ❘  CHAPTER 18  Useful Libraries

The union, difference, and intersection methods all return a SetView object, which is reliant
on the underlying sets. SetView has a method that can return an immutable set of the elements that
meet that SetView’s requirements. SetView is a view over the sets, so if the underlying sets change,
the properties of SetView may change, too. This is what happened with the intersection call in
Listing 18-12: after that intersection call, another element was added to the set2 object, and that
value was in set1, so it was to be returned in the intersection of the two sets.

Utility classes for the core Java Collections interfaces include Maps, Sets, and Lists, and utility
classes for the Guava interfaces include Multisets and Multimaps.

Using Joda Time

Joda Time is intended as a replacement for Java’s Date and Calendar classes. It provides much more
functionality, and is generally considered easier to use. Java 8 will provide a new and improved date
and time API based on Joda Time.

How do you use the DateTime class?

The Calendar class has traditionally been used for working with dates in Java. It has a strange
access pattern, and can be slightly uncomfortable for newcomers to use. Listing 18-13 shows a sim-
ple operation that subtracts a month from the current date using the Calendar class.

Listing 18-13:  Using Java’s Calendar class

@Test
public void javaCalendar() {
 final Calendar now = Calendar.getInstance();
 final Calendar lastMonth = Calendar.getInstance();
 lastMonth.add(Calendar.MONTH, -1);

 assertTrue(lastMonth.before(now));
}

The add method takes two integer parameters, and unless you are familiar with the API, you may
not realize that the first parameter is intended to be a constant, one of a many special constant inte-
gers on the Calendar class.

This is partially a hangover from before Java 5, before it was possible to have enumerated types.

The DateTime class replaces Java’s Calendar class, and provides many clearer methods for retriev-
ing and modifying a representation of time and date. Listing 18-14 shows how to use DateTime.

Listing 18-14:  Using the DateTime object

@Test
public void dateTime() {

Using Joda Time  ❘  297

 final DateTime now = new DateTime();
 final DateTime lastWeek = new DateTime().minusDays(7);

 assertEquals(now.getDayOfWeek(), lastWeek.getDayOfWeek());
}

The DateTime class has many methods for getting the appropriate information about a date, such as
the day of the month, the week of the year, and even to check for a leap year.

DateTime objects are immutable, so any “mutating” operation, such as minusDays in Listing 18-14,
actually returns a new DateTime instance. Similar to String, if you do call any mutating methods
remember to assign the result to a variable!

How can you work with Java’s Date object when using Joda Time?

When working with a third-party or legacy API, you may be constricted to using Date objects as
method parameters or return types. Joda Time tries to make it as easy as possible to interact with
Java’s Date and Calendar objects. The DateTime class can take both Date and Calendar instances
as constructor parameters, and it has a toDate method that returns the DateTime representation as
a Date. Listing 18-15 shows taking a Calendar instance, converting it to a DateTime, modifying the
time, and converting it to a Java Date.

Listing 18-15:  Converting to and from a DateTime object

@Test
public void withDateAndCalendar() {
 final Calendar nowCal = Calendar.getInstance();
 final DateTime nowDateTime = new DateTime(nowCal);

 final DateTime tenSecondsFuture = nowDateTime.plusSeconds(10);

 nowCal.add(Calendar.SECOND, 10);
 assertEquals(tenSecondsFuture.toDate(), nowCal.getTime());
}

What is the difference between a duration and a period in Joda Time?

The representation of amounts of time is a feature that is not part of Java’s Date and Calendar
classes, and it is the simplicity of working with these in Joda Time that makes the library so
popular.

A DateTime instance represents an instant; that is, a measurement of time exact to the millisecond.
Joda Time also provides APIs for working with an amount of time between two instants.

A duration is an amount of time in milliseconds. If you add a duration to a DateTime, you will get a
new DateTime instance. Listing 18-16 shows how this works.

298  ❘  CHAPTER 18  Useful Libraries

Listing 18-16:  Using a duration

@Test
public void duration() {
 final DateTime dateTime1 = new DateTime(2010, 1, 1, 0, 0, 0, 0);
 final DateTime dateTime2 = new DateTime(2010, 2, 1, 0, 0, 0, 0);

 final Duration duration = new Duration(dateTime1, dateTime2);

 final DateTime dateTime3 = new DateTime(2010, 9, 1, 0, 0, 0, 0);
 final DateTime dateTime4 = dateTime3.withDurationAdded(duration, 1);

 assertEquals(2, dateTime4.getDayOfMonth());
 assertEquals(10, dateTime4.getMonthOfYear());
}

The Duration instance is calculated as the difference between two DateTime instances; in this case
midnight January 1, 2010, and midnight February 1, 2010. Internally, this is represented as a num-
ber of milliseconds, and in this case it will be equal to the number of milliseconds in 31 days.

This duration is then added, once, to another DateTime, representing midnight on September 1,
2010, and a new DateTime is returned. Because September has 30 days, the DateTime returned rep-
resents October 2, 2010.

With the irregularity of calendars—differing lengths of months and even years—you may still want
to perform operations such as “the same day of the month, in two months’ time,” or “the same date
next year.” You cannot simply add 60 or so days for two months and get the same date next year.
You need to check if there is a February 29 between now and then, and add one if so.

The Period class removes all of these headaches for you. A period is a quantity of time; it is relative
to the starting date, and can only be resolved once the start date is known. Listing 18-17 shows how
this works.

Listing 18-17:  Using a period

@Test
public void period() {
 final DateTime dateTime1 = new DateTime(2011, 2, 1, 0, 0, 0, 0);
 final DateTime dateTime2 = new DateTime(2011, 3, 1, 0, 0, 0, 0);

 final Period period = new Period(dateTime1, dateTime2);

 final DateTime dateTime3 = new DateTime(2012, 2, 1, 0, 0, 0, 0);
 final DateTime dateTime4 = dateTime3.withPeriodAdded(period, 1);

 assertEquals(1, dateTime4.getDayOfMonth());
 assertEquals(3, dateTime4.getMonthOfYear());
}

Using Joda Time  ❘  299

The Period in Listing 18-17 was calculated as the interval between February 1, 2011 and March 1,
2011. The Period was then applied to February 1, 2012, giving a new DateTime for March 1, 2012.
A Period inspects the difference in each field between two DateTime instances, that is, the difference
in months, days, hours, and so on. Although the number of days between the first two dates was 28
days, it was represented as a period of “one month.” When this period is applied to a leap year, that
extra day is still part of that “one month,” so March 1, 2012 was returned. Had this interval been
a Duration rather than a Period, the DateTime instance returned would have been the last day of
February.

How do you convert a specific date into a human-readable representation?

As part of the Java API, the SimpleDateFormat class is commonly used to construct custom,
human-readable dates. You provide a template for the date, and when given a Date instance, it
returns a String representation of that date. Listing 18-18 shows this in use.

Listing 18-18:  Using SimpleDateFormat

@Test
public void simpleDateFormat() {
 final Calendar cal = Calendar.getInstance();
 cal.set(Calendar.MONTH, Calendar.JULY);
 cal.set(Calendar.DAY_OF_MONTH, 17);

 final SimpleDateFormat formatter =
 new SimpleDateFormat("'The date is 'dd MMMM");

 assertEquals(
 "The date is 17 July",
 formatter.format(cal.getTime()));
}

The format string is hard to use, and can often lead to confusion: Lowercase m represents milli-
seconds and uppercase M represents months, for instance. Plaintext must be surrounded by single
quotes. Any nontrivial case for using the SimpleDateFormat class is often accompanied by some
time with the Java API documentation and some fiddling to get the format exactly right. Also, the
SimpleDateFormat class is not thread-safe as the format String can change after the object has been
created. DateTimeFormatter is immutable, which implies thread safety, as once it has been created
it can never be changed.

The DateTimeFormatter can parse similar Strings that you would give to the SimpleDateFormat
class, but Joda Time also provides a builder class, giving clearer meaning to each element of
the string you are building. Listing 18-19 shows how to construct the same String as that in
Listing 18-18.

300  ❘  CHAPTER 18  Useful Libraries

Listing 18-19:  Formatting dates with Joda Time

@Test
public void jodaFormat() {
 final DateTime dateTime = new DateTime()
 .withMonthOfYear(7)
 .withDayOfMonth(17);

 final DateTimeFormatter formatter = new DateTimeFormatterBuilder()
 .appendLiteral("The date is ")
 .appendDayOfMonth(2)
 .appendLiteral(' ')
 .appendMonthOfYearText()
 .toFormatter();

 assertEquals("The date is 17 July", formatter.print(dateTime));
}

Summary

Java is mature enough that it has a large number of robust, well-supported libraries, from full appli-
cation frameworks such as Tomcat, Spring, and Hibernate, all the way through to lower-level librar-
ies that make the day-to-day work of a developer a little easier.

If you are writing the same pattern in code repeatedly, you may find that someone has encapsulated
it into a library. When a well-known, established library has the same functionality as whatever you
have written, it is often better to use the library. The chances are it will have been well tested, both
with unit tests and also out in production of many other applications.

Even better: If you find you’re writing the same code over and over again, and there is no library
for it, you could write one yourself. Make it open source, publish it on GitHub, and maintain it.
Potential employers love to see interview candidates who have written and maintained open source
code, and it also gives them a chance to examine how you write code outside of an interview
environment.

The next chapter steps away from writing Java code and looks at how to build nontrivial Java proj-
ects using build tools such as Maven and Ant.

Developing with Build Tools
There is much more to creating a usable application than writing Java source code.
Applications comprise many different artifacts, XML configuration, and environment-specific
properties, and even images or embedded code for other languages.

This chapter looks at two applications that focus on pulling all your project’s resources
together into a coherent bundle. Maven and Ant are possibly the two most-used and best-
understood build tools for Java projects.

Any non-trivial professional application will need something other than the Java compiler
to create distributable applications—sometimes you can use a simple shell script—but the
chances are that something will be Maven or Ant.

Building Applications with Maven

What is Maven?

Maven is an all-encompassing build tool. It is used to compile, test, and deploy Java projects.

It has been designed to favor convention over configuration. For the most part, builds for
Java applications can be defined in a very similar manner, and if you define the layout of your
source code in the same way, Maven knows where to find all the resources it needs and can
perform many different build tasks.

Maven has built-in defaults for most settings, so whether your application will be deployed as a
Web Archive (WAR) file or as a JAR file, Maven has defined tasks for how to build these properly.

A non-trivial Java application will have dependencies on many other libraries, such as unit-
testing frameworks like JUnit or TestNG, or utility libraries such as Apache Commons or
Google’s Guava. Maven provides a facility for defining these dependencies, and you can down-
load these JARs directly from a repository such as www.maven.org on the Internet, or perhaps
from a repository set up local to your organization such as Artifactory or Nexus.

19

http://www.maven.org

302  ❘  CHAPTER 19  Developing with Build Tools

Maven’s plug-in system enables you to add some more specific operations to your build. Similar to
the dependency setup, these plug-ins are served remotely, and Maven has the capability to find these
at build time and perform whatever operation the plug-in provides. An example of a common plug-
in is maven-jetty-plugin, which runs the current build as a web application. This plug-in finds
the appropriate web.xml file by assuming your project is following the convention that the file lives
in the src/main/webapp/WEB-INF directory. Another such plug-in is the maven-release-plugin,
which performs complex operations in conjunction with source control such as Subversion and Git
to cut code for a release build and change the version number of the application, ready for the next
development iteration.

A specific unit of work to run is called a goal. Specific goals are bound to the phases of the build life
cycle, such as compile, test, and install. For example, when you run mvn compile, you are actually
running the compile phase of the compiler plug-in. If your project has not changed the default behav-
ior of the compile phase, you can achieve exactly the same effect by running mvn compiler:compile.

How do you structure your project for use in Maven?

Figure 19-1 displays the default directory structure for a Maven build.

<project
root>

src

main

resources

<non-Java files>

test

resources

<non-Java files>

java

<package root>

java

<package root>

Figure 19-1 

Building Applications with Maven  ❘  303

If you are new to Maven, what might surprise you here is that there are several source roots in the
project. All of your production package structure lives under the src/main/java directory (if you
have other languages, such as Scala, these would be housed in src/main/scala). Any classes living
in this structure will be on your classpath at run time.

You also have the opportunity to add other files to the classpath; these live in the src/main/
resources directory. Typically you would place any configuration here, such as your Spring applica-
tion context configuration, as well as any properties files.

You can access any files in either of these directories at run time by calling getClass()
.getResource(name).

You also can add test code, such as unit tests and test-specific configuration. These are held in test/
main/java and test/main/resources, respectively. When Maven runs any tests as part of its
build, the classes and files in these locations are also added to the classpath. These are kept separate
so that they are not bundled with any built artifact for production deployment.

What is the life cycle of a Maven build?

A Maven build consists of a chain of phases, called the life cycle. Each phase is bound to a specific
goal. Each phase is dependent on the ones before—should a specific goal fail for whatever reason,
the whole build fails. Figure 19-2 shows the basic phases for a build.

Any built artifacts are put in a directory called target, at the project root. The
clean goal removes any files from a previous build by deleting this target direc-
tory. This is not run before any subsequent phases, unless you specifically initiate
this build phase with mvn clean or define it to run always in your Project Object
Model (POM).

The validate phase checks that the pom.xml file is a correct build file, checking
that it conforms to the XML specification for Maven’s build files. If your pom.xml
is not even correct XML—for instance, if you are missing any closing tags, or your
tags are not properly nested—then your build will fail before the Maven applica-
tion is even properly initialized, displaying an error about a non-parseable POM or
something similar.

The compile phase pulls in any defined dependencies and performs compilation of
your code, building any class files into the target/classes directory.

The next phase is test. This compiles the classes under the test directory and runs
any tests code here, such as unit or integration tests. By default, any failing unit
tests will cause the build to fail.

The package phase is run after a successful test phase. This creates an artifact,
such as a WAR or JAR file. This file is stored in the root of your target directory. Note that this is
not a standalone file; by default it does not have any dependent libraries built in, so the dependencies
still need to be included on the classpath. The goal that is bound to this phase is dependent on the
packaging tag: If it is set to jar, the jar:jar goal is run; if it is set to war, the war:war goal is run.

clean

validate

compile

test

package

install

deploy

Figure 19-2 

304  ❘  CHAPTER 19  Developing with Build Tools

The install step publishes the built artifact to your local maven repository. This is usually held in
the directory $HOME/.m2/repository. If you have more than one Maven build running locally, your
new artifact is now available to those builds.

The final step is deploy. This step usually needs a small amount of extra configuration, defining
exactly where to deploy the finished artifact. This deployment is usually to an artifact repository
such as Artifactory or Nexus.

These repositories are typically where you would download dependent artifacts for your own build,
but these repositories often act as a holding place for installing builds onto full test environments or
a live environment.

The life-cycle phases here are the most basic steps; several more, such as generate-test-sources,
pre-integration-test, and post-integration-test, can be used to provide more granularity to
a build.

How is a specific application build defined in Maven?

The definition of a Maven build is held in a file called pom.xml, which lives in the root directory of
the project. Maven uses this file as the instructions for how to build your application. Listing 19-1
shows a very simple example.

Listing 19-1:  A simple Maven build file

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.wiley</groupId>
 <artifactId>acing-java-interview-example-pom</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.4</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>3.0.0.RELEASE</version>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
 <dependency>

Building Applications with Maven  ❘  305

 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.9.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <showDeprecation>true</showDeprecation>
 <showWarnings>true</showWarnings>
 <fork>true</fork>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The POM can be broadly split into three sections: the project definition, the dependencies for a
build, and any build-specific plug-ins.

An exact artifact can be specified by the groupId, artifactId, and version. These are called
coordinates, or often casually referred to as GAV. If your project is a library for use in other pro
jects, those other projects will use these attributes to define their dependency on this build. The
build tag here informs Maven what type of artifact to build in the package life-cycle step. Valid
steps include war and jar, or even maven-plugin if you write your own extension to Maven. The
groupId usually refers to your own organization, and the artifactId is your application name.

The dependencies tag is where you would define any dependent libraries for your build. This can
often be other libraries built by your own organization, perhaps available on an intranet repository,
or a third-party library. The exact groupId, artifactId, and version are usually found in the
project’s documentation, usually on the project website. Alternatively, a Google search for popular
libraries or Maven repository search engines such as mvnrepository.com can be useful, though the
usual caveats should be clear for downloading any unknown executable code from the Internet.

Dependent artifacts can have different scopes. These define how they are used within the project,
and when they are pulled into the build. Listing 19-1 had the scopes for junit and mockito-core
as test. This means they are available while building the test source, which is by default any code
under the src/test root, and also for running the tests. The test scoped dependencies are not
available to the main source, by default under src/main.

That is, test scoped artifacts are specific for testing, and are not necessary for the main code of the
application.

Not providing a specific scope defaults to compile. For this scope, an artifact is resolved for the
compilation step, and is also provided to the classpath as a runtime dependency.

306  ❘  CHAPTER 19  Developing with Build Tools

If a library is needed at compile time, but not at run time, this has the scope provided. The Servlet
API JAR is a common example of this: At run time, the JAR is not provided by Maven but by the
application container, but you still need the class definitions to compile your source in the first place.

If you have a specific library that is not available through a Maven repository, you can provide
local filesystem libraries with the system scope. You should use this only as a last resort; the use of
Maven repositories means that your build should be reproducible across any number of machines—
yours, your colleague’s, your build server, and so on. Having local-only libraries can lead to a con-
fusing dependency nightmare later on in your build cycle.

The build tag of the POM defines any build plug-ins, and any specific configuration for those
plug-ins. Listing 19-1 defined some specific configuration for the maven-compiler-plugin, used
in the compile stage, defining that the compiler should expect Java 7 source, and can output Java
7–specific class files.

As with the maven-compiler-plugin, any of the build defaults can be altered using this build sec-
tion to define how a particular step should behave. One common pattern is to separate the tests:
The unit tests are run as part of the test step, and the expensive, slow integration tests are run later
after the package step, during the integration-test step. Some projects use a naming conven-
tion to differentiate unit and integration tests:Any class ending in IntegrationTest.java will be
filtered out of the test step and run in the integration-test step instead. Listing 19-2 shows how
you can do this.

Listing 19-2:  Separating unit and integration tests

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>**/*IntegrationTest.java</exclude>
 </excludes>
 </configuration>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>test</goal>
 </goals>
 <phase>integration-test</phase>
 <configuration>
 <excludes>
 <exclude>none</exclude>
 </excludes>
 <includes>
 <include>**/*IntegrationTest.java</include>
 </includes>
 </configuration>
 </execution>
 </executions>
</plugin>

Building Applications with Maven  ❘  307

The maven-surefire-plugin is the default plug-in for running unit tests; this is providing specific
configuration to the plug-in, instructing it what to run and when.

If you do not need any specific configuration when using a particular plug-in, you do not need
to define the plug-in at all. For example, when you run mvn jetty:run using the maven-jetty-
plugin, this plug-in will look in src/main/webapp/WEB-INF for the web.xml file, and start a web
application with that configuration. Of course, if your application holds the web.xml file somewhere
else, you would need to provide the appropriate configuration to allow the plug-in to find it.

How can you share built artifacts between applications?

If you were to create a reusable component, you may want to reuse that component between proj-
ects. One such example would be to provide a high-level API to connect to a specific service within
your organization, such as an API for connecting to a high-score service for several games, or pro-
viding real-time trading prices across several applications.

If you have a Maven repository configured for your organization, you need to configure your POM
to check this repository for when it resolves dependencies, and also for publishing your successful
builds. Listing 19-3 shows a snippet of a pom.xml file configured for a custom Maven repository.
This is a top-level tag within the <project> tag.

Listing 19-3:  Configuring a repository for deployment

<distributionManagement>
 <repository>
 <id>deployment</id>
 <name>Internal Releases</name>
 <url>
 http://intranet.repo.com/content/repositories/releases/
 </url>
 </repository>
 <snapshotRepository>
 <id>deployment</id>
 <name>Internal Snapshots</name>
 <url>
 http://intranet.repo.com/content/repositories/snapshots/
 </url>
 </snapshotRepository>
</distributionManagement>

Note that two endpoints are configured: one for releases and one for snapshots. The differentiation
between the two is important. For active development, the version tag will have a -SNAPSHOT suffix.
This indicates that the artifact is still under development and may not be stable. When the deploy
goal is run, if the build is a snapshot build, this will be deployed to the snapshotRepository URL.

For more stable builds, which are feature complete and pass your application’s full testing criteria,
such as User Acceptance Testing or exploratory QA testing, the version will have the -SNAPSHOT suffix
removed, so when the deploy goal is run, this will be deployed to the URL inside the repository tag.

http://intranet.repo.com/content/repositories/releases/
http://intranet.repo.com/content/repositories/snapshots/

308  ❘  CHAPTER 19  Developing with Build Tools

Some continuous delivery systems are set up to automatically release any new artifacts deployed to
this URL. The releases URL usually defines that an artifact is ready for release.

Of course, you need to make sure your organization’s local Maven repository has the correct per-
missions configured so you can deploy artifacts to these URLs.

How can you bind different goals to a specific Maven phase?

Although the default build model may be enough for your application, for a significantly advanced
project, you will probably find that you want to do something different than the usual.

For example, in the package phase when the packaging tag is set to jar, this, by default, creates a
JAR containing only the code from your project and no dependencies. If you had a class with a main
method inside this JAR, you would need to create a command-line application manually, with refer-
ence to all dependent library JARs to run your application.

Luckily, this problem is so common that a plug-in has been made for this situation. The
maven-assembly-plugin has the capability to create a JAR with dependencies. The resultant arti-
fact will be much larger because it contains all the class files from your dependent JARs, but will
be runnable as a single file. This is especially useful as a solution for technical interviews or tests,
where you may be asked to write some Java code to solve a particular problem and submit a run-
nable application as well as source code. This Maven plug-in is a particularly neat and professional
way to submit any runnable application to a potential employer; they will not have to waste any
time getting your application to run because all the dependencies are built in. Listing 19-4 shows
some sample configuration for using this plug-in.

Listing 19-4:  Changing the behavior of a specific phase

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <finalName>standalone-application</finalName>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>
 com.wiley.javainterviewsexposed.chapter19.MainClass
 </mainClass>
 </manifest>
 </archive>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>

Ant  ❘  309

 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The plug-in has some configuration that is specific to making it work for your needs. The
finalName tag defines exactly how your final JAR will be named.

The executions section defines what exactly to run and when to run it. The <goal>single</goal>
tag defines that the single goal defined in the maven-assembly-plugin is to be run. The single
goal creates a JAR that can be run as a command-line application. This is bound to the package
phase. This could easily have been a different phase, perhaps post-integration-test, when you
know that your packaged artifact has passed all of your integration tests.

With this plug-in defined in your pom.xml, if you run mvn package, you will find two JARs in
your target directory: the original JAR as part of the default Maven build, and a second, called
standalone-application-with-dependencies.jar. It should be possible to run the class defined
as mainClass with this command:

java –jar standalone-application-with-dependencies.jar

Ant

How do you set up a build with Ant?

Ant does not follow the same model of convention over configuration like Maven does. As such, you
need to explicitly specify every step of your build. There is no default directory structure. Although
this may appear to be more work, and often it is, you have ultimate flexibility for how your build
operates and what exactly needs to happen for your application to be built successfully.

Ant works with two main concepts, targets and tasks. A target is quite similar to Maven’s idea of
a goal: It is a high-level action that your build performs, such as compiling code, running tests, or
packaging your application into a JAR.

Tasks are the actual actions that comprise a target. For instance, there is a javac task to compile
your code, a java task to run an application, and even a zip task to bundle a selection of files into a
zip file. You can even create your own tasks.

When you run an Ant build from the command line, the tool automatically looks for a build.xml
file. You do have the opportunity to specify a different name if you want. Listing 19-5 shows an
example build.xml file, which compiles the project and then bundles the files into a JAR.

310  ❘  CHAPTER 19  Developing with Build Tools

Listing 19-5:  An example Ant build file

<project name="ExampleAntBuildFile" default="package-jar" basedir=".">

 <target name="init">
 <mkdir dir="ant-output"/>
 <mkdir dir="ant-test-output"/>
 </target>

 <target name="compile" depends="init">
 <javac srcdir="src/main/java" destdir="ant-output"/>
 <javac srcdir="src/test/java" destdir="ant-test-output"/>
 </target>

 <target name="package-jar" depends="compile">
 <jar jarfile="Example.jar" basedir="ant-output"/>
 </target>

</project>

This build has three targets, which correspond to the high-level tasks required for this application.
You can run this build by simply typing ant on the command line. This will attempt to run the
build for the default target (the target package-jar) to build the JAR.

Notice that each task can specify a dependency. If one or more dependencies are specified, Ant will
execute those targets before continuing. If a target fails, such as on a compilation error or a unit test
failure, the build will stop.

A target can constitute many different tasks. The compile task contains two executions of the
javac task—one for the production code and one for test code. Each compilation is given a separate
output because only the production classes are needed for the package-jar target.

When you run an Ant build, you can explicitly specify the target you want to run. The build will
stop when this target and any targets it depends on are finished. Running ant compile stops after
creating the output directories and compiling the source files.

Is it possible to integrate Ant and Maven together?

Within a Maven build is a plug-in called the maven-antrun-plugin, which enables you to run Ant
tasks as part of a Maven build. One common use for this is to run an operating system command
or shell script using Ant’s exec target. There is no equivalent within the Maven world to do this.
Listing 19-6 is an example of how this works.

Listing 19-6:  Using Ant tasks within Maven

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.7</version>
 <executions>

Summary  ❘  311

 <execution>
 <phase>deploy</phase>
 <configuration>
 <tasks>
 <exec dir="scripts"
 executable="scripts/notify-chat-application.sh"
 failonerror="false">
 </exec>
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This has been attached to Maven’s deploy phase, and you can imagine that this script could send an
alert to the team’s chat server that a deployment is about to happen.

Summary

Java has several mature and stable products for helping you turn your source code into a useful, exe-
cutable binary artifact. For anything more than a simple program, using a build tool such as Maven
or Ant will help you produce professional, standard builds in a relatively short amount of time.

Maven is a fantastic way to get a project running very quickly. By following convention, you need
very little input to get a build working. It also has the added benefit that any new colleagues or
team members who are already experienced with Maven can get up to speed with your project very
quickly, because the build will work in the same way as other projects.

Ant has the ultimate flexibility. For projects that do not or cannot follow convention, Maven can
often be problematic to get working. Although an Ant build may need more supervision, your builds
will often be faster and much better understood, because the build will only be performing tasks
that are relevant to your application.

Whichever build technology you decide to use, making the decision to actually use a build tool is the
best decision of all. Many projects are often blighted with bespoke operating system scripts, which
maybe only one or very few team members understand properly. Both Maven and Ant are well sup-
ported within the Java community.

The final chapter on the book focuses on the use of Java in writing mobile phone applications for
the Android operating system.

Android
Increasingly, more and more mobile devices are being sold as sales of laptops and desktop
computers have declined. While mobile websites perform reasonably well, native mobile apps
still may yield superior user experience. Additionally, with the decline of J2ME, Android has
become the preferred way to run Java code on mobile devices. In short, Android development
skills are important for any developer to be familiar with because there may be no desktop
to run them on someday, and right now a good portion of the users for any product may be
mobile users.

Fortunately, Android programming skills are a specialization of Java skills. Hence, a Java
developer can transition smoothly to an Android developer. Android apps are written in the
same programming language as Java programs, but they run under Android OS and make
heavy use of the Android SDK in addition to a standard Java SDK. Another difference is that
Java programs can run on many different platforms, but they most likely run on powerful
desktops or servers. In contrast, devices that run Android apps have limited computational
resources, but a rich set of sensing capabilities. They are also highly mobile and keep a near
constant Internet connection. Thus, Android apps are like Java programs, but they take full
advantage of the device’s capabilities while running within the constraints of the Android OS.

This chapter reviews major concepts from the Android SDK and shows the code that apps
need to accomplish common tasks. It does not cover all of the Android SDK, but instead aims
to focus on the most commonly used parts. Specifically, this chapter covers the following:

➤➤ The components of an Android app, how they communicate, and what they are for

➤➤ Using layouts to create various user interfaces and organizing them with Fragments

➤➤ Storing different kinds of data

➤➤ Using Location Services as an example of accessing hardware on Android devices

NOTE  This source code for this book includes an Android App that executes
some of the example code in this chapter.

20

314  ❘  CHAPTER 20  Android

Basics

Android apps are made up of several types of objects and communicate using Intents. As an Android
developer, you need to be familiar with each of these components and what they are used for.

Components

What are the main components of Android apps and what are their main
functions?

The four main components in Android are Activity, Service, BroadcastReceiver, and
ContentProvider. The first three communicate with each other using Intents, and apps use
ContentResolvers to communicate with ContentProviders. Each component has different uses,
and all follow their own life cycle controlled by Android.

What is an Activity?

An Activity represents a screen with a user interface. Each Activity runs independently, and
internal and external apps can start them directly to control how an app changes screens. For
example, an app might start up an Activity to display a list of recipes, and then another Activity
to show the recipe details. A third search Activity might also activate the same recipe detail
Activity when the user selects a search result.

What is a BroadcastReceiver?

A BroadcastReceiver receives system-wide or internally broadcasted Intents.
BroadcastReceivers might show a notification, activate another component, or perform other
short work. An app might use a BroadcastReceiver to subscribe to many system broadcasts, such
as acting on startup or when the network connection changes.

What is a Service?

A Service represents long-running or persistent code that runs in the background. For example,
an app might run a Service that executes a recipe backup task, so that the user can continue to do
other things within the app and even switch apps without interrupting the backup. Another Service
might run continuously, recording the user’s location every few moments for later analysis.

What is a ContentProvider?

Basics  ❘  315

A ContentProvider stores shared data between components and makes it available through
an API. Apps use it to share data publicly and also sometimes to share data privately within an
app. One example is the ContentProvider Android exposes to give access to a user’s contacts.
ContentProviders have the advantage of abstracting away the details of the storage mechanism
used from the method of reading and writing the data. They also encapsulate data access. You can
change the internal method of storage without changing the external interface.

Intents

How do Android components communicate?

Android components can send Intents to activate each other and pass data between them. Intents
specify what components Android should deliver them to and contain any necessary data. If an
Intent specifies a class name it is called explicit because Android directs it to a particular class and
if an Intent specifies an action string it is called implicit because Android directs them to any class
that knows the action string.

How does an Activity send an Intent to another Activity?

To send an Intent to a particular Activity, an app first constructs an explicit Intent by specify-
ing a class name. For example, in Listing 20-1 the code specifies that the RecipeDetail class should
receive the Intent just created. Second, an app might add some data, such as a recipeId. Finally,
the app calls startActivity() to send the Intent.

Listing 20-1:  Code to send an Intent containing String data

 private void sendRecipeViewIntent(final String recipeId) {
 final Intent i = new Intent(this, RecipeDetail.class);
 i.putExtra(RecipeDetail.INTENT_RECIPE_ID, recipeId);
 startActivity(i);
 }

To receive an Intent, an Activity can call its getIntent() method. The code in Listing 20-2
shows how RecipeDetail receives the recipe detail Intent that was sent from Listing 20-1 and
extracts the recipeId from it.

Listing 20-2:  Receives an Intent and extracts a recipeId from it

public class RecipeDetail extends Activity {
 public static final String INTENT_RECIPE_ID = "INTENT_RECIPE_ID";

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

continues

316  ❘  CHAPTER 20  Android

 setContentView(R.layout.recipe_detail);
 if (getIntent() != null) {
 if (getIntent().hasExtra(INTENT_RECIPE_ID)) {
 final String recipeId = getIntent().getStringExtra(
 INTENT_RECIPE_ID);
 // access database, populate display, etc...
 loadRecipe(recipeId);
 }
 }
 }

}

How does an app send common Intents?

One of the advantages of Android is that apps can easily communicate with each other using the
Intent mechanism. Apps are free to define new Intents and allow any app to respond to them.
This enables a high level of interaction between apps.

In particular, apps can use several common Intents provided by the Android OS. One such Intent
is the share Intent. The code in Listing 20-3 creates and sends some text via the share Intent.
When sent, the user sees a list like the one in Figure 20-1. As the figure shows, many apps might
handle the Intent, and it is up to the user to decide which app will receive the Intent and do some-
thing with it. For example, users might elect to e‑mail their text or send it via text message by select-
ing the e‑mail or messaging icons.

Figure 20-1 

Listing 20-2  (continued)

Basics  ❘  317

Listing 20-3:  Sends a share Intent

 private void sendShareIntent() {
 final Intent sendIntent = new Intent();
 sendIntent.setAction(Intent.ACTION_SEND);
 sendIntent.putExtra(Intent.EXTRA_TEXT, "Share Me!");
 sendIntent.setType("text/plain");
 startActivity(sendIntent);
 }

How does an app allow an Activity to respond to an Intent?

When an app does not know the receiver of an Intent, it cannot use an explicit Intent to direct
it. Thus, instead of naming a specific class as the code in Listing 20-1 does, apps specify an action
string to send an implicit Intent. This more general approach allows any app that knows the action
string to register to receive Intents that contain it. Action strings, such as Intent.ACTION_SEND,
exist for common Intents, but apps can also create their own.

To receive such Intents, Activities need to register to receive them. They do so by add-
ing an IntentFilter in the AndroidManifest.xml file as shown in Listing 20-4. The filter
specifies that Android should send any Intents with the android.intent.action.SEND to
ShareIntentActivityReciever, shown in Listing 20-5. Apps can specify additional criteria within
the intent-filter tag to further specify which Intents to receive.

Listing 20-4:  Manifest entry for making Android send any
android.intent.action.SEND Intents to ShareIntentActivityReceiver

 <activityandroid:name=".share.ShareIntentActivityReceiver"
 android:label="@string/share_intent_receiver_label">
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="text/*"/>
 </intent-filter>
 </activity>

Listing 20-5:  Receives the android.intent.action.SEND Intent

public class ShareIntentActivityReceiver extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final String sharedText =
 getIntent().getStringExtra(Intent.EXTRA_TEXT);
 }
}

318  ❘  CHAPTER 20  Android

Activities

What is the Activity’s life cycle?

Proper handling of the Activity life cycle is essential for creating an app that behaves as users
expect. Respecting the Activity life cycle means that users can restart easily from where they left
off within an app, and that any resources used by the app are appropriately released when the user
has gone away to some other task. This makes apps easier to use and also minimizes battery usage.
Any Android developer should be familiar with the documentation and flow diagram on this site:
http://developer.android.com/reference/android/app/Activity.html. The documentation
highlights several lifetimes between life cycle stages:

➤➤ Entire lifetime—From onCreate() to onDestroy()

➤➤ Foreground lifetime—From onResume() to onPause()

➤➤ Visible lifetime—From onStart() to onStop()

Additionally, when an app needs to save state, it calls onSaveInstanceState(); and when the
app needs to restore state, it calls onCreate() with a Bundle containing the saved state. For
example, if the user gets a phone call or changes screen orientation while using an app, Android
calls onSaveInstanceState() and then calls onCreate() again after the phone call is over
or the orientation change is complete. If the app has any state to preserve it can save it in the
onSaveInstanceState() method. Following are several state-related questions to explore.

How does an app preserve dynamic state when the app temporarily is removed
from view?

Dynamic state is a set of temporary values that are relevant while the app is running. Any dynamic
state should be saved when the user switches Activities; otherwise, when the user returns to the
Activity it may appear different when the UI is reset.

A good example of state that an app might need to save is the scroll position within a ListView. If
users scroll down half the list, drill down to view one of the items, then come back to the list, they
will expect the app to keep the list in the same position. To implement this, an app needs to save the
scroll position before drilling down to the list detail. Listing 20-6 shows how the app saves the scroll
position during onSaveInstanceState() and then restores it during onCreate().

Listing 20-6:  Preserves the list scroll position and keeps a BroadcastReceiver registered only
when the Activity is active

public class RecipeList extends ListActivity {
 private BroadcastReceiver receiver;

 public static final String BUNDLE_SCROLL_POSITION = "BUNDLE_SCROLL_POSITION";

 @Override

http://developer.android.com/reference/android/app/Activity.html

Basics  ❘  319

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final List<String> recipes = getRecipes();

 // make a string adapter, then add an onclick
 final ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, recipes);
 setListAdapter(adapter);
 getListView().setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 final String recipeClicked = recipes.get(position);
 sendRecipeViewIntent(recipeClicked);
 }
 });

 if (savedInstanceState != null
 && savedInstanceState.containsKey(BUNDLE_SCROLL_POSITION)) {
 final int oldScrollPosition = savedInstanceState
 .getInt(BUNDLE_SCROLL_POSITION);
 scrollTo(oldScrollPosition);
 }
 }

 private List<String> getRecipes() {
 // get from a db, but for now just hard code
 final List<String> recipes = Arrays.asList("Pizza", "Tasty Minestrone",
 "Broccoli", "Kale Chips");
 return recipes;
 }

 private void sendRecipeViewIntent(final String recipeId) {
 final Intent i = new Intent(this, RecipeDetail.class);
 i.putExtra(RecipeDetail.INTENT_RECIPE_ID, recipeId);
 startActivity(i);
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 // which row in the recipe is the user looking at?
 // save this so the app can rescroll to that location
 // when the user returns
 final int scrollPosition = getScrollPosition();
 outState.putInt(BUNDLE_SCROLL_POSITION, scrollPosition);
 super.onSaveInstanceState(outState);
 }

 private int getScrollPosition() {
 final int scrollPosition = getListView().getFirstVisiblePosition();
 return scrollPosition;
 }

 private void scrollTo(final int scroll) {

continues

320  ❘  CHAPTER 20  Android

 // scroll the list view to the given row
 getListView().setSelection(scroll);
 }

 @Override
 protected void onResume() {
 register();
 super.onResume();
 }

 @Override
 protected void onPause() {
 unregister();
 super.onPause();
 }

 private void register() {
 if (receiver == null) {
 receiver = new NewRecipeReceiver();
 final IntentFilter filter = new IntentFilter(
 "com.wiley.acinginterview.NewRecipeAction");
 this.registerReceiver(receiver, filter);
 }
 }

 private void unregister() {
 if (receiver != null) {
 this.unregisterReceiver(receiver);
 receiver = null;
 }
 }

 private class NewRecipeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 // add to the recipe list and refresh
 }
 }
}

When should an app release resources or connections?

Apps typically release resources in the onPause() method and restore them during onResume().
For example, apps might start and stop BroadcastReceivers or start and stop listening for sensor
data. Listing 20-6 shows how an app registers and then unregisters a BroadcastReceiver during
onPause() and onResume(). Doing so ensures that the app will not get notified unnecessarily, and
saves battery power by not updating the display of a user interface that is not visible.

Listing 20-6  (continued)

Basics  ❘  321

When should an app persist data when the user is changing Activities?

Apps should store any persistent state, such as the edits made to a recipe, during onPause() and
restore them onResume(). Apps should not use onSaveInstanceState() for this purpose because
Android does not guarantee that it will call onSaveInstanceState() while shutting down an
Activity.

BroadcastReceivers

How does an app use a BroadcastReceiver to receive a system-generated event?

A typical use of a BroadcastReceiver is to receive events generated by system functions, such as
a network connection change. Implementation requires an AndroidManifest entry and a class to
implement the BroadcastReceiver.

Listing 20-7 specifies an AndroidManifest entry that makes Android call
NetworkBroadcastReciever every time Android sends an android.net.conn.CONNECTIVITY_
CHANGE. Apps can also register dynamically using code such as that shown in Listing 20-6.

Listing 20-7:  AndroidManifest parts needed to receive the connectivity change broadcast

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <receiver android:name=".receiver.NetworkBroadcastReceiver" >
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>
 </intent-filter>
 </receiver>

The code in Listing 20-8 implements a BroadcastReceiver and receives the android.net
.conn.CONNECTIVITY_CHANGE broadcast. Because the app registered previously; Android calls
onReceive() every time a network connection change occurs. An app might want to subscribe to
many other events as well, such as the BOOT_COMPLETED event.

Listing 20-8:  Receives a network connection change broadcast

public class NetworkBroadcastReceiver extends BroadcastReceiver {
 private static final String TAG = "NetworkBroadcastReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(TAG, "network connection change: " + intent.getAction());
 }
}

322  ❘  CHAPTER 20  Android

Services

How does an app execute code in the background?

Some processing could take a while. Also, by default, all processing occurs in the UI thread.
Executing lengthy operations freezes the display and can result in an ANR (Application Not
Responding) error, where the user forces the app to quit.

Because of these two reasons, an app might want to run the processing as a Service so that it exe-
cutes persistently on its own thread. Doing so allows the user to run other apps instead of waiting
for the processing to complete and prevents ANRs.

For example, a user might want to trigger a backup manually. If the user has a lot of data, he should
not have to wait several minutes for the backup to finish. Using a Service enables the user to start
the backup, and then do other things with the device while the backup is occurring.

Recipe backup is an example of one-shot processing where the Service does some work, and
then shuts down. Because this is a common pattern, Android has a special Service called an
IntentService. It handles starting a single worker thread to process each Intent it receives. It also
handles shutting down the Service when it completes.

Listing 20-9 shows how to implement the IntentService and Listing 20-10 shows the required
entry in the AndroidManifest.xml file. . To start an IntentService, apps pass an Intent to
Context.startService(). Android then passes the Intent to the IntentService.

Listing 20-9:  Backs up recipes using an IntentService

public class RecipeBackupService extends IntentService {
 private static final String TAG = "RecipeBackupService";

 private static final String BACKUP_COMPLETE = "BACKUP_COMPLETE";

 public RecipeBackupService() {
 // name service for debugging purposes
 super("RecipeBackupService");
 }

 @Override
 protected void onHandleIntent(Intent workIntent) {
 // TODO: backup recipes...
 Log.d(TAG, "Backup complete");

 // then communicate with app
 broadcastComplete();
 }

 private void broadcastComplete() {
 final Intent i = new Intent(BACKUP_COMPLETE);
 sendBroadcast(i);
 }
}

Basics  ❘  323

Listing 20-10:  AndroidManifest entry for the RecipeBackupService

 <service android:name=".service.RecipeBackupService"/>

How might a Service communicate to an app?

As discussed previously in this chapter, an app can use BroadcastReceivers to receive system
events. However, apps may use them internally as well. One useful way to use BroadcastReceivers
is to have a Service communicate with an app by sending Intents to its BroadcastReceivers.

For example, the RecipeBackupService in Listing 20-9 sends a broadcast when the backup is com-
pleted. For this, it uses the code within the broadcastComplete() method.

How does an app create a persistently running Service?

Sometimes an app needs to have a Service that runs continuously. For example, a Service such as
the one in Listing 20-11 runs continuously so it can maintain a consistent chat connection using a
ChatConnection class. Because CookingChatService extends Service instead of IntentService,
it needs to handle more of its life cycle.

One important aspect of the life cycle is how long the Service should run and what should happen
if Android needs to stop it. To control this aspect, the Service has an onStartCommand() method
that returns START_REDELIVER_INTENT. The value tells Android to restart the Service should it
need to halt it. Apps use various other return values to control how the Service is restarted.

Listing 20-11:  Cooking Chat

public class CookingChatService extends Service {
 private static final String TAG = "CookingChatService";

 private ChatConnection connection;

 private final IBinder mBinder = new CookingChatBinder();

 @Override
 public void onCreate() {
 connection = new ChatConnection();
 super.onCreate();
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 connection.connect();
 // restart in case the Service gets canceled
 return START_REDELIVER_INTENT;
 }

 @Override
continues

324  ❘  CHAPTER 20  Android

 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 public ChatConnection getConnection() {
 return connection;
 }

 @Override
 public void onDestroy() {
 Log.d(TAG, "Chat Service SHUTDOWN");
 super.onDestroy();
 }

 public class CookingChatBinder extends Binder {
 public CookingChatService getService() {
 return CookingChatService.this;
 }
 }
}

How does an app bind to a Service?

Using Intents to communicate with a Service works well when the data is simple, but sometimes
it is more convenient to call methods directly on the Service. For this an app may bind to the
Service.

For example, if a Service maintains a complicated connection object that has many methods, it
might be easier for the Service to give the app access to that object through binding rather than
having different Intents for each method in the connection object. Listing 20-12 shows how an
Activity can bind to a Service, access its connection object, and call methods on it.

Listing 20-12:  Binds to the CookingChat Service

public class CookingChatLauncher extends Activity {
 private static final String TAG = "CookingChatLauncher";

 private boolean bound;

 private CookingChatBinder binder;

 private EditText message;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.chat_layout);
 findViewById(R.id.bt_send).setOnClickListener(

Listing 20-11  (continued)

Basics  ❘  325

 new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 sendMessage();
 }
 });
 message = (EditText) findViewById(R.id.et_message);
 }

 private void sendMessage() {
 if (bound && binder != null) {
 final String messageToSend = message.getText().toString();
 binder.getService().getConnection().sendMessage(messageToSend);
 Toast.makeText(this, "Message sent: " + messageToSend,
 Toast.LENGTH_SHORT).show();
 }
 }

 // Note: use onStart and onStop so that the app doesn't spend a lot
 // of time reconnecting, but still will release the resources should
 // app terminate
 @Override
 public void onStart() {
 if (!bound) {
 Log.d(TAG, "not bound, binding to the service");
 final Intent intent = new Intent(this, CookingChatService.class);
 bindService(intent, serviceConnection, Context.BIND_AUTO_CREATE);
 }
 super.onStart();
 }

 @Override
 public void onStop() {
 if (bound) {
 Log.d(TAG, "unbinding to service");
 unbindService(serviceConnection);
 bound = false;
 }
 super.onStop();
 }

 private ServiceConnection serviceConnection = new ServiceConnection() {
 @Override
 public void onServiceConnected(ComponentName className, IBinder service) {
 Log.d(TAG, "service connected");
 binder = (CookingChatBinder) service;
 bound = true;
 }

 @Override
 public void onServiceDisconnected(ComponentName arg0) {
 bound = false;
 }
 };
}

326  ❘  CHAPTER 20  Android

User Interface

Arranging layouts can be confusing to beginning Android programmers, but intuitive for experts,
who may skip the UI designer provided by Android IDEs and edit layout files directly. This sec-
tion describes how to use the various layout mechanisms to create the user interfaces shown
in Figure 20-2. It also discusses Fragments, which are essential for properly organizing a user
interface.

Figure 20-2

How does an app overlay one View on top of another?

Apps use a FrameLayout to position one View on top of another. All the Views within a
FrameLayout fill up their entire limits. Hence, when an app puts two Views within a FrameLayout,
the first one is on the bottom and the second is on top.

Listing 20-13 shows a FrameLayout that places a camera button on top of an ImageView. An image
of the layout is shown on the left in Figure 20-2. In addition to setting the order of the Views, the
layout also needs to set the layout_width and layout_height attributes to make the ImageView
take up the whole screen and the camera icon take up just the size of its image. It also needs to posi-
tion the camera icon in the center of the FrameLayout by setting layout_gravity.

Listing 20-13:  A relative layout placing a camera button in front of an ImageView

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"

http://schemas.android.com/apk/res/android

User Interface  ❘  327

 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/iv_picture"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="fitXY"
 android:src="@drawable/android_robot"/>

 <ImageButton
 android:id="@+id/bt_take_picture"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:src="@drawable/device_access_camera"/>

</FrameLayout>

How do you put a button on the bottom of the screen below another View that
takes up the remainder of the screen?

RelativeLayout is useful for positioning Views next to each other. Similar to the FrameLayout, all
Views take up the entire space. RelativeLayouts have the extra feature of allowing apps to adjust
how Views are positioned using relative parameters such as layout_below, layout_toRightOf, or
layout_align_parent_bottom.

Several attributes must be set to achieve a layout where a button is on the bottom of the screen and
another View takes up the remainder of the space. First, the layout anchors the button to the bottom
by setting the layout_alignParentBottom attribute. Second, it sets the android:layout_above
setting to position the ImageView above the button. Otherwise, the ImageView would take up the
entire View like all Views in the RelativeLayout do and hide the button. Listing 20-14 shows how
to implement it. An image of the layout is shown in the middle of Figure 20-2.

Listing 20-14:  Layout for button a button below another View

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/iv_picture"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_above="@+id/bt_take_picture"
 android:scaleType="fitXY"
 android:src="@drawable/android_robot"/>

 <ImageButton

continues

http://schemas.android.com/apk/res/android

328  ❘  CHAPTER 20  Android

 android:id="@+id/bt_take_picture"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:src="@drawable/device_access_camera" />

</RelativeLayout>

How does an app distribute layout among components within the available
space?

Sometimes an app needs to distribute Views within the available space. One way to achieve this is to
divide up the space proportionally by using a LinearLayout, specifying the weightSum, and enter-
ing layout_weight attributes for each view within the LinearLayout Listing 20-15 shows how
to lay out two Fragments so they each contain 50 percent of the available space. The right side of
Figure 20-2 shows how this layout looks.

Listing 20-15:  Layout for splitting available space between two views

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:weightSum="100" >

 <fragment
 android:id="@+id/frag_recipe_list"
 android:layout_width="0dip"
 android:layout_height="match_parent"
 android:layout_weight="50"
 class="com.wiley.acinginterview.recipe.frag.RecipeListFragment" />

 <fragment
 android:id="@+id/frag_recipe_detail"
 android:layout_width="0dip"
 android:layout_height="match_parent"
 android:layout_weight="50"
 class="com.wiley.acinginterview.recipe.frag.RecipeDetailFragment" />

</LinearLayout>

Alternatively, the app could distribute space to a single column or row where each view takes up as
much space as it needs. For example, an app might create a vertical LinearLayout, such as the one
in Listing 20-16, which contains several TextViews with each taking up as much space as the text

Listing 20-14  (continued)

http://schemas.android.com/apk/res/android

User Interface  ❘  329

they hold. The LinearLayout specifies that the orientation is vertical so the Views inside will fill up
a column. The recipe text in the right side of Figure 20-2 shows how the recipe detail view looks.

Listing 20-16:  Positions text views vertically in a column where each TextView is below the
previous one and as big as is needed to hold its text

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:background="@android:color/darker_gray" >

 <TextView
 android:id="@+id/tv_recipe_id"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/tv_ingredients"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/tv_steps"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium" />

</LinearLayout>

What is a Fragment?

A Fragment is a portion of a user interface, and it shares a similar life cycle to an Activity. The
advantages of using Fragments include:

➤➤ Reduces complexity of the Activity class because each Fragment can handle its own state
and life cycle

➤➤ Makes it easy to reconfigure a user interface. This feature is very helpful when apps have
different layouts for different orientations or when apps need to show and hide parts of their
user interfaces.

How do apps include a Fragment in a layout?

To use Fragments, an app may need several objects. An app potentially needs to get a reference
to a Fragment, show it if it is not already shown, pass some data to it, and receive data from it.

http://schemas.android.com/apk/res/android

330  ❘  CHAPTER 20  Android

To demonstrate these concepts, consider an app that has two Fragments: one for a recipe list that
appears on the left side of the screen and another for a recipe detail screen that appears on the right.
The two Fragments need to interact to display the recipe in the detail Fragment when the user clicks
a recipe in the list. The right side of Figure 20-2 shows how this looks. An app like that requires sev-
eral components.

First, an Activity creates a layout containing the Fragments, and passes data between them, as
shown in Listing 20-17.

Listing 20-17:  Activity that manages the Fragments

public class RecipeViewAsFragments extends FragmentActivity implements
 RecipeActions {
 private RecipeDetailFragment recipeDetail;

 private RecipeListFragment recipeList;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.side_by_side);

 recipeDetail = (RecipeDetailFragment) getSupportFragmentManager()
 .findFragmentById(R.id.frag_recipe_detail);
 recipeList = (RecipeListFragment) getSupportFragmentManager()
 .findFragmentById(R.id.frag_recipe_list);
 hideRecipeDetail();
 }

 @Override
 public void showRecipe(String recipeId) {
 final FragmentTransaction ft = getSupportFragmentManager()
 .beginTransaction();
 ft.show(recipeDetail);
 ft.setCustomAnimations(android.R.anim.slide_in_left,
 android.R.anim.slide_out_right);
 ft.addToBackStack("show recipe");
 ft.commit();

 recipeDetail.loadRecipe(recipeId);
 }

 public void hideRecipeDetail() {
 final FragmentTransaction ft = getSupportFragmentManager()
 .beginTransaction();
 ft.hide(recipeDetail);
 ft.setCustomAnimations(android.R.anim.slide_in_left,
 android.R.anim.slide_out_right);
 ft.commit();
 }
}

User Interface  ❘  331

Second, two similar Fragments provide user interfaces for the recipe list and recipe detail function-
ality. Listing 20-18 shows the RecipeListFragment. It displays recipes in a ListView and receives
the RecipeActions interface during the onAttach() method. RecipeDetailFragment has a similar
implementation.

Listing 20-18:  Displays the recipe list

public class RecipeListFragment extends ListFragment {
 private RecipeActions recipeActions;

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setRecipes();
 }

 /**
 * create the recipe list
 */
 public void setRecipes() {
 final List<String> recipes = getRecipes();
 final ArrayAdapter<String> adapter = new ArrayAdapter<String>(
 getActivity(), android.R.layout.simple_list_item_1, recipes);
 setListAdapter(adapter);
 getListView().setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 final String recipeClicked = recipes.get(position);
 recipeActions.showRecipe(recipeClicked);
 }
 });
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 recipeActions = (RecipeActions) activity;
 }

 private List<String> getRecipes() {
 final List<String> recipes = Arrays.asList("Pizza", "Tasty Minestrone",
 "Broccoli", "Kale Chips");
 return recipes;
 }
}

Finally, the code also needs an interface to abstract away the concrete Activity and to enable com-
munication between Fragment and Activity through a generic interface. Listing 20-19 shows the
RecipeActions interface.

332  ❘  CHAPTER 20  Android

Listing 20-19:  Interface for the Activity to be used by its Fragments for communication to
each other

public interface RecipeActions {
 public void showRecipe(String recipeId);
}

The Fragments are organized with the layout in Listing 20-15. In this case, the layout is a side-by-
side layout of the RecipeListFragment on one side and the RecipeDetailFragment on the other.

How does an app manipulate a Fragment?

Once an app has a reference to a Fragment, it can animate, show, and hide it using
FragmentTransactions. Optionally, an app can also add the FragmentTransaction to the back-
stack it needs to allow the user to hit the back button to undo the transaction. All these features
reduce the code that apps need to manipulate sub-chunks of user interfaces. The showRecipe()
method from Listing 20-17 has a FragmentTransaction that shows a new Fragment with a slidein
animation and adds the showing to the backstack. If the user hits the back button, the app undoes
the transaction.

How does an Activity pass data to a Fragment?

If an Activity’s layout has multiple Fragments, it typically has the job of passing data between
them. When an Activity has a reference to a Fragment, it can then call methods directly on them
to pass data.

For example, in RecipeViewAsFragments, when the user clicks a recipe in the recipe list, the
RecipeViewAsFragments passes the new recipe ID to the recipe detail Fragment by calling
loadRecipe().

How does a Fragment pass data to an Activity?

The Android documentation recommends an approach for allowing a Fragment to pass data back to
the Activity. First, the Activity implements an interface, then in the onAttach() method, the app
stores the reference to that interface for later use.

For example, in RecipeViewAsFragments the RecipeActions interface defines some methods
the Fragments can use to coordinate. RecipeListFragment, shown in Listing 20-18,uses the
RecipeActions interface to have RecipeViewAsFragments call the RecipeDetails when the user
clicks a recipe.

Persistence  ❘  333

Persistence

Android offers various options to allow an app to persist different kinds of data. An app might use
different mechanisms for different purposes, so Android developers have to know which kinds of
persistence methods are available and how to apply them properly.

How does an app persist name/value pairs?

Name/value pairs are a convenient storage mechanism, and as such, Android provides a special sys-
tem called SharedPreferences to help apps store and retrieve them.

Apps save and retrieve SharedPreferences using the SharedPreferences API. Listing 20-20
shows how an app can access SharedPreferences, write a value, and then read the value just
written.

Listing 20-20:  Reads and writes SharedPreferences

public class SharedPreferenceTester extends AndroidTestCase {
 public void testSaveName() {
 final String PREF_NAME = "name";
 final String PREF_NAME_DEFAULT = "none";
 final String PREF_NAME_SET = "Shooting Star";
 SharedPreferences preferences = getContext().getSharedPreferences(
 "Test", Context.MODE_PRIVATE);

 // write a value
 Editor editor = preferences.edit();
 editor.putString(PREF_NAME, PREF_NAME_SET);
 editor.commit();

 // read a value
 String pref = preferences.getString(PREF_NAME, PREF_NAME_DEFAULT);
 assertTrue("pref now set", pref.equals(PREF_NAME_SET));
 }
}

How does an app persist relational data in a database?

The Android OS contains a sqlite database, and hence it is the default method for persist-
ing any relational data. To access the database in Android, apps use a helper class called
SQLiteOpenHelper. Listing 20-21 shows what an app must extend to use SQLiteOpenHelper. The
listing shows that SQLiteOpenHelper provides convenient methods to handle creating and updating
a database. The other methods in the abstract class help an app perform various database functions.

334  ❘  CHAPTER 20  Android

Listing 20-21:  The database helper with unimplemented method

public class DatabaseHelperBlank extends SQLiteOpenHelper {
 private static final String DATABASE_NAME = "WILEYDB";

 public DatabaseHelperBlank(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 }
}

To implement the SQLiteOpenHelper, an app first must be able to create a database using code such
as the code in Listing 20-22. There is nothing special about this SQL statement except that it con-
tains the BaseColumns._ID field. Android developers know to use this field in all their databases,
because certain other Android classes, such as the SQLiteCursor, require it.

Listing 20-22:  Creates the database

 @Override
 public void onCreate(SQLiteDatabase db) {
 final String createStatement = "CREATE TABLE " + TABLE_NAME + " ("
 + BaseColumns._ID + " INTEGER PRIMARY KEY AUTOINCREMENT,"
 + COLUMN_NAME + " TEXT, " + COLUMN_AGE + " INTEGER);";
 db.execSQL(createStatement);
 }

Beyond creating a database, Android apps use the functions within SQLiteOpenHelper to
access the database. Listing 20-23 shows how an app would query the database for ages. The
code gets a reference to a SQLiteDatabase from the DatabaseHelper singleton and then uses
the query() method to execute a query. It also makes sure to close the cursor using a finally
statement. DatabaseHelper contains a complete implementation of the empty methods in
DatabaseHelperBlank.

Listing 20-23:  A database query

 public int queryForAge(String name, Context context) {
 int age = -1;
 final DatabaseHelper helper = DatabaseHelper.getInstance(context);
 final SQLiteDatabase db = helper.getReadableDatabase();
 final String[] columns = new String[] { COLUMN_NAME, COLUMN_AGE };
 final String selection = COLUMN_NAME + "=?";

Persistence  ❘  335

 final String[] args = new String[] { name };

 Cursor cursor = db.query(TABLE_NAME, columns, selection, args, null,
 null, null);
 try {
 final boolean hasData = cursor.moveToFirst();
 if (hasData) {
 final int columnIndex = cursor.getColumnIndex(COLUMN_AGE);
 age = cursor.getInt(columnIndex);
 }
 } finally {
 cursor.close();
 }
 return age;
 }

How does an app store data in files?

Android presents apps with a filesystem that they can use with the familiar java.io libraries.
However, Android separates the filesystem into several internal and external areas that have differ-
ent uses.

What is the difference between internal and external file storage?

Several differences exist between internal and external file storage that deal with availability, acces-
sibility, and what happens when the user uninstalls an app:

➤➤ Availability—Internal storage is always available, whereas external storage may not be if the
users happen to remove or unmount their SD card.

➤➤ Accessibility—Files installed into internal storage are accessible only by the app, whereas
external files are readable by any app.

➤➤ Uninstalling—Android removes all internal files and removes external files only if they are
stored in a specially named directory.

Apps can access these different areas using APIs within a Context. Listing 20-24 shows some lines
of code an app might use to access the different filesystems. Notice that the code also includes a
method for checking if the external files are available. This is essential any time an app accesses
external storage.

Listing 20-24:  Accesses file directories

public class FilesTest extends AndroidTestCase {
 public void testFileStorage() {
 if (!isExternalStorageReadable()) {

continues

336  ❘  CHAPTER 20  Android

 fail("External storage not readable");
 }

 // path for the SD card
 String root = Environment.getExternalStorageDirectory()
 .getAbsolutePath();
 // path for external files that Android deletes upon uninstall
 String externalFilesDir = getContext().getExternalFilesDir("myfiles")
 .getAbsolutePath();
 assertTrue(
 externalFilesDir,
 externalFilesDir
 .contains("Android/data/com.wiley.acinginterview/files/myfiles"));
 // path to internal storage directory
 String internalFilesDir = getContext().getFilesDir().getAbsolutePath();
 assertTrue(internalFilesDir,
 internalFilesDir
 .contains("/data/data/com.wiley.acinginterview/files"));
 }

 private boolean isExternalStorageReadable() {
 boolean readable = false;
 String state = Environment.getExternalStorageState();
 if (state.equals(Environment.MEDIA_MOUNTED)
 || (state.equals(Environment.MEDIA_MOUNTED_READ_ONLY))) {
 readable = true;
 }
 return readable;
 }
}

When might an app use internal versus external file storage?

Apps should limit use of internal storage because on some devices, internal storage is separate from the
external storage and may be limited. However, internal storage is useful for storing sensitive data that
other apps should not have access to. External files are good for large files. In general, apps should uti-
lize the external files directory for any file unless they want the user to be able to manipulate them. In
such cases, apps sometimes create directories in the root of external storage. Having files stored there
would also allow users to keep their data in between installations, which may be desirable.

Android Hardware

One of the features that makes Android programming unique is access to the device’s hardware.
Apps might access hardware to do things like access the camera to help the user take a picture, sense
the device’s motion or location, activate the calling function, or access other hardware.

Listing 20-24  (continued)

Android Hardware  ❘  337

Many different kinds of hardware are available, and each has its own intricacies and APIs.
However, the APIs do have some common patterns. Any kind of hardware access requires three
things: understanding some details about how the hardware works so an app can properly use it;
accessing it through the appropriate API; and properly handling resources and battery life.

This section discusses just one kind of Android hardware called Location Services that allows apps
to know the device’s location with varying degrees of accuracy. Location Services is an important
feature of Android devices, so Android developers need to know how it works. What’s more, access-
ing location data is similar to other kinds of hardware access so it serves as a good, representative
example.

How does an app use the Location Services API within an Activity?

To access a device’s location, apps register to get updates from Google Play services. Then when
done, apps unregister. The paradigm of releasing resources when an app is done with them is com-
mon for hardware access, where the hardware in question consumes significant power or needs to be
explicitly stopped.

Using the Location Services API requires several steps to register to receive updates, receive them,
and then unregister when the app doesn’t need them anymore.

Listing 20-25 shows an example of using Location Services. It is a simplified version of the
official Google code available from http://developer.android.com/training/location/
receive-location-updates.html. It has several important parts:

➤➤ Specifies location requirements—During onCreate(), the app creates a LocationRequest. It
describes how frequently the app wants to receive updates and how accurate they need to be.

➤➤ Connects—During onStart() the Activity connects to Google Play services. When
Location Services is ready, Android calls onConnected().

➤➤ Registers to receive updates: In startPeriodicUpdates(), the app registers a
LocationListener.

➤➤ Receives location updates—Location Services passes Location objects back to
onLocationChanged().

➤➤ Release resources—When the user leaves the app, it calls onStop(), which stops further
updates and disconnects. This step is important because without it, the device would con-
tinue to collect locations forever.

Listing 20-25:  Senses location

public class LocationActivity extends Activity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener, LocationListener {
 private static final String TAG = "LocationActivity";

 // A request to connect to Location Services

continues

http://developer.android.com/training/location/

338  ❘  CHAPTER 20  Android

 private LocationRequest mLocationRequest;

 // Stores the current instantiation of the location client in this object
 private LocationClient mLocationClient;

 private TextView locationLog;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.locations);

 locationLog = (TextView) findViewById(R.id.tv_location_log);
 createLocationRequest();
 }

 private void createLocationRequest() {
 mLocationRequest = LocationRequest.create();
 mLocationRequest.setInterval(5000);
 mLocationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
 mLocationRequest.setFastestInterval(1000);

 mLocationClient = new LocationClient(this, this, this);
 }

 // control connecting and disconnecting during visible time
 // of the activity

 @Override
 public void onStop() {

 if (mLocationClient.isConnected()) {
 stopPeriodicUpdates();
 }
 mLocationClient.disconnect();

 super.onStop();
 }

 @Override
 public void onStart() {
 mLocationClient.connect();
 super.onStart();
 }

 @Override
 public void onConnected(Bundle bundle) {
 final int resultCode = GooglePlayServicesUtil
 .isGooglePlayServicesAvailable(this);
 // If Google Play services is available
 if (ConnectionResult.SUCCESS == resultCode) {
 startPeriodicUpdates();

Listing 20-25  (continued)

Android Hardware  ❘  339

 } else {
 Log.e(TAG, "cannot connect to location services");
 }
 }

 private void startPeriodicUpdates() {
 mLocationClient.requestLocationUpdates(mLocationRequest, this);
 }

 public void stopPeriodicUpdates() {
 mLocationClient.removeLocationUpdates(this);
 }

 @Override
 public void onDisconnected() {
 Log.e(TAG, "disconnected");
 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 Log.e(TAG, "failed to connect");
 }

 @Override
 public void onLocationChanged(Location loc) {
 Log.d(TAG, "LOCATION UPDATE");
 final String summary = loc.getLatitude() + ", " + loc.getLongitude()
 + " " + loc.getAccuracy();
 locationLog.setText(summary);
 }
}

What factors affect Location performance and battery usage?

The main intricacy with Location Services is conserving battery life while getting the required
accuracy and frequency of updates. Apps also may need to take into account the environment in
which the app is operating. For example, indoor or urban environments make GPS-based location
problematic; however, the network-based locations can continue to provide locations at lower accu-
racy. Hence, when working with Location Services an app needs to take these considerations into
account.

How does an app minimize battery usage?

To help an app make the trade-off between battery life and accuracy and frequency of updates, the
LocationRequest has several explicit priorities that apps can use:

➤➤ PRIORITY_HIGH_ACCURACY—For applications such as tracking the user’s location on the
screen, that require frequent, high accuracy updates

340  ❘  CHAPTER 20  Android

➤➤ PRIORITY_BALANCED_POWER_ACCURACY—For applications that want to receive locations at a
certain interval, but also want to receive locations more frequently if possible

➤➤ PRIORITY_LOW_POWER—For applications that do not need a high accuracy, where “city”
level locations are appropriate

➤➤ PRIORITY_NO_POWER—For applications that do not have a critical need for up-to-date loca-
tions, but still want to receive them. Using this setting produces no additional effect on
power usage, because it receives updates only when other apps request locations.

Summary

This chapter reviewed some important areas of Android development. Four main Android compo-
nents allow apps to show user interfaces, run background services, receive broadcast Intents, and
store shared data. The components communicate using Intents and ContentResolvers. Layouts
can be challenging, but by using FrameLayout, RelativeLayout, and LinearLayout apps can cre-
ate a number of arrangements of Views. Fragments help to isolate pieces of the user interface. Apps
can persist name/value pairs, databases, and files. Finally, apps can access the device’s hardware.
Location Services is one kind of Android hardware that requires minimizing battery usage while
achieving the best accuracy possible.

Overall, this chapter covered some of the important concepts you should be familiar with as an
Android developer. This chapter complements the skills described in the rest of this book so that
when combined, this book describes a comprehensive set of skills a successful Android developer
needs.

This final chapter illustrates that the technology landscape and specifically the Java language is
always changing: Java is being used in more innovative ways, in ways you wouldn’t always expect,
and that makes it very important to keep your skills and knowledge up to date.

If you only take one thing from reading this book, it is that you must keep your skills up to date.
With new libraries and frameworks being introduced regularly and even new technologies using
Java, your next interview may be for a role developing on a platform you have never used before.

Practice writing code regularly. You should get enough practice if you have a current day job as a
Java developer, but do try to get experience outside of your current domain, and use new libraries.
You may even be able to introduce some new concepts in your current role.

Good luck and best wishes with finding your next role as a Java developer, and hopefully this book
has helped in making your next technical interview a successful one.

Introducing Scala
Recent years have seen many new languages created with different properties than Java, but
that run on the JVM. One such language is Groovy, a dynamic language that is often used in
scripting, testing, and other places where you may want to remove a lot of Java’s verbose boil-
erplate code. Jython is a version of Python that runs on the JVM, and Clojure is a dialect of
Lisp that compiles into Java bytecode.

Scala is a functional programming language for the JVM. This chapter introduces Scala, and
provides a few questions that could possibly come up in an interview if you ever have any
exposure to the language.

Scala introduces some new concepts that may not be familiar to experienced Java program-
mers, such as functions as values, and a concise language that allows the compiler to infer the
types of variables and return types of functions.

You can download Scala from the official website at http://www.scala-lang.org/download/,
or you can include it as part of your build automatically by using a plug-in. If you use Maven,
the following plug-in will compile any Scala source in your project’s src/main/scala directory:

<plugin>
 <groupId>org.scala-tools</groupId>
 <artifactId>maven-scala-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Appendix

http://www.scala-lang.org/download/

342  ❘  Appendix   Introducing Scala

Scala Basics

Scala’s creator, Martin Odersky, describes Scala as “a blend of object-oriented and functional pro-
gramming concepts.” If Scala is new to you, a common first step is to write “Scala as Java,” using
the object-oriented techniques, and then improve on this as you understand more of the functional
elements of the language and gain more experience.

Scala source code compiles into Java class files, so any valid Scala application will run on a JVM. It
is certainly possible to have a source repository that contains both Scala and Java source.

How are classes defined in Scala?

Listing A-1 shows some of the core language features of Scala.

Listing A-1:  A sample Scala class

class ScalaIntro {

 val value: String = "This is a String"
 var variable: Int = -100

 def stringLength(s: String): Int = s.length

 def writeOutput = {
 println(s"variable is set to: $variable")
 variable = 25
 println(s"variable is now set to: $variable")

 println(s"value is set to: $value")

 println(s"The length of the string $value is: " + stringLength(value))
 }
}

This listing shows several ways of storing and manipulating data. The keyword val is what you use
to store values: These are immutable, and cannot change. The var keyword is for variables, which
are values that can change after being set. If you try to modify a val, the compiler will enforce that
this cannot happen.

A function is defined with the def keyword. Parameter lists to the function are enclosed in paren-
theses, as a comma-separated list taking the format name: Type. The return type of the function is
declared after the function parameter list. If your function has no parameters, such as writeOutput,
you can omit the parentheses completely. Even the curly braces for a function are optional if the
whole function is one line, such as stringLength. The return keyword is optional for the value
returned from a function: The last statement in the function is the value returned.

The compiler is smart enough to work out where the end of a statement is; no semicolons are neces-
sary, unless you have more than one statement on the same line.

Scala Basics  ❘  343

Scala also has a more intuitive notion of equality: The == operator will automatically run the
instance’s equals method, rather than Java’s default check that two objects are actually the same
reference. You can still check for referential equality with the eq method.

Similar to classes, Scala also introduces the object keyword, which is used to represent singleton
classes. These are classes of a single instance; and their methods can be thought of as similar to
Java’s static methods. To run code on the command line with Java, you need to define a static
method, main. Because Scala compiles to Java class files, this is the same for Scala. Listing A-2
shows how to define some runnable code.

Listing A-2:  Creating a runnable Scala singleton class

object HelloWorld {

 def main(args: Array[String]) = {
 println("Hello world!")
 println("The parameters passed were: " + args.mkString(","))
 }
}

Any code outside of a function or field declaration is run on object construction. Scala also provides
a helper class, called App, that provides a main method. These two features can be combined to pro-
duce concise, runnable applications, as shown in Listing A-3.

Listing A-3:  Extending the App object

object RunWithApp extends App {
 val pi = 3.14
 val radius = 200

 val area = pi * radius * radius

 println(s"The area of the circle is: $area")
}

This is run as if all the statements were in a main method.

The Compiler Can Infer Types

The compiler can infer many of the types of fields and functions. Notice that in
Listing A-3, none of the vals had a type declared, but pi was treated as a floating-
point number, and radius was treated as an integer.

While developing this code, if you decide to change a field—for instance, from a
Float to an Int—you do not have a type declaration to change, which makes your
development and debug cycle much faster.

344  ❘  Appendix   Introducing Scala

What is a case class?

A case class is a class definition that works just like a regular Scala class, but the compiler fills in
logical equals and toString methods, as well as immutable access to the fields of the class. You
construct case classes without using the new keyword. Listing A-4 shows a simple example.

Listing A-4:  Using case classes

case class Person(name: String, age: Int, salary: Int)

object CaseClassExample extends App {
 val firstPerson = Person("Alice", 24, 3000)
 val secondPerson = Person("Bob", 25, 2500)
 val thirdPerson = Person("Charlie", 30, 1000)

 println(s"The first person is: $firstPerson")
 println("Second person and third person are equal: " + secondPerson == thirdPerson)
}

This Person class has no extra methods or fields, and is being used here in a way similar to the way
you might use domain objects in Java. Case classes are simply the same as regular classes; they can
have methods and fields, and you can override the filled-in methods of equals, toString, or even
the fields passed as constructor parameters.

Case classes have one more powerful feature: Instances can be decomposed into their constructed
fields, and can be used in a technique called pattern matching.

What is pattern matching?

Pattern matching works in a similar way to Java’s switch statement, though you are not restricted
to a small number of types to match. Listing A-5 shows a simple example of pattern matching on an
integer.

Listing A-5:  Pattern matching

def matchInteger(i: Int): String = {
 i match {
 case 1 => "The value passed was 1"
 case 2 => "The value passed was 2"
 case x if x < 0 => s"The value passed was negative: $x"
 case _ => "The value passed was greater than 2"
 }
}

Scala Basics  ❘  345

The match keyword is used in pattern matching, and each possible outcome is set in a case state-
ment. Each case can be an explicit value, such as the first two cases in Listing A-5. It can also be
parameterized, such as the negative case, which is also combined with a conditional statement. A
default case is marked with an underscore, which in Scala often represents an ignored value.

Using case classes with pattern matching is a powerful feature. Listing A-6 is an example of how to
decompose a case class to access its values.

Listing A-6:  Pattern matching with case classes

case class NameAgePair(name: String, age: Int)

def matchNameAgePair(pair: NameAgePair): String = {
 pair match {
 case NameAgePair("Alan", 53) => "Alan is 53"
 case NameAgePair("Alan", _) => "Alan is not 53"
 case NameAgePair(name, 53) => s"Another person, $name, is 53"
 case NameAgePair(name, age) => s"This unexpected person, $name, is $age"
 }
}

Similar to Listing A-5, you can match on explicit values within the case class, assign variables for
access on the right-hand side of the case, or ignore the field completely.

How does the Scala interpreter enable faster development?

If you run the scala command from the command line with no parameters, you enter the Scala
interpreter:

$ scala
Welcome to Scala version 2.10.2 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_17).
Type in expressions to have them evaluated.
Type :help for more information.
scala>

You can type commands into the console as valid Scala statements, and the interpreter will evaluate
the statements and return values:

scala> val i = 100
i: Int = 100

scala> i < 200
res0: Boolean = true

scala> i + 34
res1: Int = 134

346  ❘  Appendix   Introducing Scala

If you want to submit a large piece of code for evaluation, you can do so with the :paste command,
which defers evaluation until you press Ctrl-D:

scala> :paste
// Entering paste mode (ctrl-D to finish)

case class Car(model: String, mileage: Int)

val c = Car("Sedan", 10000)
val d = Car("SUV", 120000)

c == d
<CTRL-D>
// Exiting paste mode, now interpreting.

defined class Car
c: Car = Car(Sedan,10000)
d: Car = Car(SUV,120000)
res2: Boolean = false

Being able to use the Scala interpreter as a scratchpad can let you work on prototypes and under-
stand specifics about the language, or even a certain domain, by running and examining small snip-
pets of code.

Functions as Values

How does Scala represent functions?

A function can be treated as a value. That is, a function can be assigned to a val or var, or even
returned from another function. Listing A-7 shows how to define the syntax for a function defini-
tion, and how to use functions as values.

Listing A-7:  Treating functions as values

object FunctionValue extends App {

 val square: (Int => Int) = x => x * x
 val threeSquared = square(3)
 val threeSquared = square(3)

 def printNumber(string: String): (Int => String) =
 number => string + “ “ + number.toString

 val numberPrinter = printNumber(“The value passed to the function is:”)
 println(numberPrinter(-100))
}

Functions as Values  ❘  347

The value held in the square field has the type Int => Int. That is, it takes an Int, and returns an
Int. You can then treat square just like a regular function, by passing parameters.

The body of the square field is a function, so it has a parameter x, and the body of that function is
defined after the => identifier.

The printNumber function takes a String, and returns a function that itself takes an Int and
returns a String. The function returned from printNumber uses the passed String parameter to
create a function that uses the given String.

What is a higher-order function?

A higher-order function is defined as a function that takes another function as a parameter. Listing
A-8 shows an example.

Listing A-8:  Using a higher-order function

case class BankAccount(accountId: String, balance: Double)

object HigherOrder extends App {

 def alterAccount(account: BankAccount, alteration: (Double => Double)):BankAccount = {
 val newBalance = alteration(account.balance)
 BankAccount(account.accountId, newBalance)
 }

 def applyMinimalInterest(amount: Double) = amount * 1.01
 def applyBonusInterest(amount: Double) = amount * 1.09

 val accountOne = BankAccount("12345", 100.00)
 println(alterAccount(accountOne, applyMinimalInterest))

 val accountTwo = BankAccount("55555", 2000000.00)
 println(alterAccount(accountTwo, applyBonusInterest))
}

The alterAccount function provides a generic way to make changes to the balance of a
BankAccount without having to provide the specifics. Both functions, applyMinimalInterest
and applyBonusInterest, have the type Double => Double, so these can be applied to the
alterAccount function.

If you need to provide different ways to change the balance of a BankAccount, you can do so with-
out needing to change the alterAccount function at all.

Many of Scala’s core libraries use higher-order functions to provide ways to manipulate the data in
their data structures. Listing A-9 shows two ways to manipulate Scala’s List object: changing each
value and filtering the list.

348  ❘  Appendix   Introducing Scala

Listing A-9:  Higher-order functions on Scala’s list type

object ListManipulations extends App {

 val list = List(-3, -2, -1, 0, 1, 2, 3, 4, 5)

 def absolute(value: Int): Int = {
 value match {
 case x if x < 0 => -value
 case _ => value
 }
 }

 def isPositive(value: Int): Boolean = {
 value >= 0
 }

 println(list.map(absolute))
 println(list.filter(isPositive))
}

Running this application produces the following output:

List(3, 2, 1, 0, 1, 2, 3, 4, 5)
List(0, 1, 2, 3, 4, 5)

The map method on the List type applies the function provided to each value in the list, returning
each value in a new list. The filter method applies the function provided to each value, and if the
predicate returns true, then that value is added to the new list to be returned.

Methods and Functions

Sometimes the words “method” and “function” are used interchangeably, but there
is a very distinct difference between the two.

A function is a statement, or set of statements, that is run when the function is
called by name. It is independent of any external factors or state. It has no associa-
tion with an instance of a particular object.

A method is a statement, or set of statements, that is associated with an instance of
a class. Running methods with the same parameters, but on a different object, may
give a different result.

Most of the examples in this appendix so far have been functions, but map and
filter in Listing A-9 are methods, because their result depends on the values con-
tained in the List instance.

In Java, a static method is a function.

Immutability  ❘  349

Immutability

Why is immutability important in Scala?

Developers are drawn toward Scala because of its ability to build highly scalable systems. One key
factor in building scalable systems is the use of immutable data. Immutable objects can be shared
freely between different executing threads without a need to provide synchronization or locks, sim-
ply because the values cannot change.

Immutability is at the heart of Scala; you have already seen that case classes are immutable. The
core data structures provided by Scala’s libraries are immutable, too. Listing A-9 showed how to
create a list; the map and filter methods demonstrated in that listing returned new List objects.
The old list values had not changed, and any other code referencing the old list would never see any
changes from the map, filter, or any other methods.

Lists in Scala are linked lists—each value points to the subsequent value in the list. Prepending a
value onto a linked list does not change any of the other values in the list, making it a very efficient
operation. Listing A-10 shows the syntax for doing so.

Listing A-10:  Prepending values onto lists

object Lists extends App {

 val listOne = List(1, 2, 3, 4, 5)
 val listTwo = 0 :: listOne
 val listThree = -2 :: -1 :: listTwo

 println(listOne)
 println(listTwo)
 println(listThree)
}

Pronounced cons, the :: operator prepends the value on the front of a list instance. Figure A-1
shows how the lists are represented in memory.

When iterating over immutable, recursive data structures, such as the List object, it can make
sense to do so using recursive functions. Listing A-11 shows how you can implement your own find
method, searching for a given value in a Scala List. Be aware that x :: xs can be used in pattern
matching, which decomposes a list into its head, x, and the remaining list, xs. Nil is an empty list.

Listing A-11:  Finding a value in a list

@tailrec
def find(value: Int, list: List[Int]): Boolean = {
 list match {
 case Nil => false
 case x :: _ if x == value => true
 case _ :: xs => find(value, xs)
 }
}

350  ❘  Appendix   Introducing Scala

–2

listThree

–1

0

1 2 3 4 5

listTwo

listOne

Figure A-1

The case statements are executed in order. The base case is evaluated first. If a given list is empty,
the value is not in the list. Otherwise, if the head of the list matches the value to find, the function
returns true. Finally, strip the head element from the list, and recursively call find again, until the
value is found or the list terminates.

What is tail recursion?

This function is annotated with @tailrec. This annotation informs the compiler that you believe
this function is tail-recursive.

A function is tail recursive if the recursive call is the last operation in the function; the method does
not rely on the result of the recursive call for any more computation. The beauty of a tail-recursive
function is that the compiler can rewrite the method in an iterative fashion, similar to a while loop,
with mutable state.. This allows long, deep recursion without the need for many stack frames, which
could result in a StackOverflowError.

Any tail-recursive function can be replaced with an iterative version, using mutable variables to con-
trol the state. Recursive methods are often much shorter and easier to understand, so allowing the
compiler to manage the state of the method is much safer.

If the compiler cannot make the function tail recursive, it will throw an error.

Summary

This has been a brief, whirlwind introductory tour to Scala and some of its features. If this is new to
you, hopefully this will serve as enough for you to take a deeper look into the language.

Summary  ❘  351

The key concepts introduced here, such as functions as values and immutability are not specific to
Scala, but to functional programming in general. If you look at other functional languages, some
have no ability to modify variables at all once they have been set.

The Scala ecosystem is growing at a rapid pace, with new features being added and new tools being
available almost on a weekly basis.

Some other tools and frameworks include the Simple Build Tool (SBT), which is a way to build and
deploy Scala applications. It is very different than tools such as Maven or Ant, but those tools will
definitely help with your understanding of how SBT works, especially around dependency manage-
ment. Play, the web application framework examined in Chapter 13, can be used with Scala source
files, and Akka, discussed in Chapter 11, works very well with Scala. Both Play and Akka are
developed as Scala applications. Slick allows you to query databases and treat the responses as plain
Scala collections.

Many companies are looking to expand from Java into Scala, and most are willing to take on expe-
rienced Java developers who are keen to learn and use Scala. If you are willing, and take some time
to learn and understand how Scala works, this could be a differentiating factor between you and
another candidate. You can find plenty of good online resources for learning Scala, and Martin
Odersky also runs free online functional programming classes.

If you cannot convince your current employer to allow you to develop your production code in
Scala, then a good way to gain experience is to write your tests in Scala. Several good test frame-
works are available, and most will integrate with modern build tools and continuous integration
environments. Specs2 and ScalaTest are two common test frameworks.

Scala is one of the more popular modern languages built to use the JVM. Many argue that the
future of development will be a move away from Java, but still take advantage of the JVM and its
tools. Make sure you keep track of what languages employers are looking for, and try to keep your
skills up to date to make yourself as employable as possible.

353

Symbols
:: (cons operator), Scala, 349
; (semi-colon), technical interviews, 20
 (curly brackets)

JDBC, 195
scope, 149

[] (double braces), syntactic sugar, 134
== (equals signs), Scala, 343
? (question mark)

JDBC, 195
wildcards, 106

Numbers
201 Created, 223
204 No Content, 223, 228
400 Bad Request, 224
403 Forbidden, 224
404 Not Found, 224
405 Method Not Allowed, 224
500 Internal Server Error, 224
503 Service Unavailable, 224

A
absolute value, Integer.MIN_VALUE, 90
AbstractHandler, 209
AbstractTransactionalJUnit4

SpringContextTests, JUnit, 260–261
ACID. See atomic, consistent, isolated, durable
acronyms

naming conventions, 112
resume, 12

Activities, 317
Activity

Android, 314, 318–321
apps, 318–320
Fragment, 329–332
Intent, 315–316
life cycle, 318
Service, 324–325

ActorCrash, 172

ActorRef, 171, 174
actors, concurrency, 169–174
ActorSystem.actorOf, 170
addAll, 295
addChild, 135
addOne, 81
AdminConsole, 204
AdminConsoleServlet, 202
@After, 110, 125–126, 137, 146, 261
@AfterClass, 125, 137
Akka, 169–171, 351
algorithms. See also interview algorithms; recursive

algorithms
average-case value, 23
best-case values, 23
Big O Notation, 23–24
bubble sort, 26–27
garbage collection, 148–149
insert sort, 27–28
language-agnostic, 4
mark-and-sweep, 149
merge sort, 30–32
n, 23
O(n2), 23
on paper, 20
pseudocode, 20
quicksort, 29–30
recursive, 30
sorted lists, 24–32
sorting, 73
space complexity, 23–24
Strategy Pattern, 55
time complexity, 23–24
worst-case value, 23
writing core, 23–34
written technical test, 18

alphabetize, 73
alterAccount, 347
anagrams, 72–74
Android, 313–340

Activity, 314, 318–321
apps

Activities, 317

Index

354

Android – BiMap

Activity, 318–320
Fragment, 332
Intents, 316–317
resources, 320–321
Service, 322–325
View, 326–328

battery, 339–340
BroadcastReceiver, 314, 318–320, 321
components, 314–315
external storage, 335–336
hardware, 336–340
Intents, 315–317
internal storage, 335–336
Location Services, 337–339
name/value pairs, 333
persistent data, 323–324, 333–336
relational databases, 333–335
Service, 314, 322–325
user interface, 326–332

AndroidManifest.xml, 317, 322
annotations, 109–111

JUnit, 109–110
Spring, 254–255

ANR. See Application Not Responding
Ant, 309–311

DBDeploy, 197
JUnit testing, 123, 124

Apache
Commons, 209, 211

boilerplate code, 287–290
InputStream, 211–289
libraries, 287–290
Maven, 301
OutputStream, 288–290
String, 288

HttpClient, 225
API library, method names, 20
App, 343
app, 214, 216
Application, 215
Application Not Responding (ANR), 322
application.conf, 214
ApplicationContext, 249, 251, 259
applications. See also web applications

context, Spring, 245–255, 264
databases, 177–199
definition, Maven, 304–307
JSON, 241–242

ApplicationServlet, 202
apps. See Android
ArithmeticException, 172
arrayCopy, 36
ArrayIndexOutOfBoundsException, 68
ArrayList, 35, 37, 117, 133

bubble sort algorithm, 28
JUnit testing, 134
LinkedList, 38–39

arrays
defining, 36
Java basics, 98
lists, 36–39
objects, 98
size reallocation, 37
toString(), 98

Arrays, 24, 35
artifactId, 305
Artifactory, 301
artifacts, Maven, 307–308
asList, 35
Assert, 124, 127
assertArrayEquals, 127
Assert.assertSame(), 101
assertEquals, 127, 128
assertFalse, 127, 128
assertNotNull, 127
assertThat, 143
assertTrue, 127, 128
at-computer technical tests, 18–19
atomic, consistent, isolated, durable (ACID), 190
Atomic, 168–169
AtomicBoolean, 168
AtomicInteger, 168–169
AtomicReference, 168
authentication, 205
AuthenticationStrategy, 226
autoboxing, 107–108
AutoCloseable, 115
AUTO_INCREMENT, 276
@Autowired, 254–255
autowiring, 253–255
average-case value, 23
AVL Tree, 42–43
await, 165

B
balanced tree, 43
base case, 149
battery, 339–340
BDD. See Behavior-Driven Development
<bean>, 250
@Before, 110, 125–126, 137, 146, 261
@BeforeClass, 125, 137
BEGIN...END, 195
Behavior-Driven Development (BDD), 143–146
best-case values, 23
Big O Notation, 23–24, 65, 71
BigInteger, 72, 90
BiMap, 292

Android (continued)

355

Binary Help – connection pools

Binary Help, 43
binary representation, positive numbers, 89–90
binary search, lists, 32–33
binary search tree, 39–41
binary tree, 39
boilerplate code

Apache Commons, 287–290
Spring JDBC, 257–259

Boolean, 47, 108
boolean, 36, 88, 108
BOOT_COMPLETED, 321
boxing, 107–108
BroadcastReceiver, 314, 318–320, 321
bubble sort algorithms, 26–27
BufferedOutputStream, 61
build, 53, 305, 306
build managers, 3
build tools, 301–311

Ant, 309–311
Maven, 301–309

Builder, 53
Builder Pattern, 51–55
build.xml, 309
ByteArrayInputStream, 288
ByteArrayOuputStream, 288
bytecode, 147, 152–153, 156

C
cache

Fibonacci sequence, 70
Flyweight Pattern, 62

cachedThreadPool, 163
Calendar, 296
call, 160
Callable, 160, 162
CallableStatement, 195
camel case, 111–112
case class, Scala, 344
case sensitivity, SQL statements, 178
Cassandra, 191
Catalina, 206
catch, 130, 138
chain

Builder Pattern, 53
exceptions, 113–115
filter, 204–205

changelog, 197
char, 88, 89, 99
checkString, 130
children, trees, 39, 44
class, case class, Scala, 344
Class, 135
.class, 152–153

ClassCastException, 25, 102
classes

bytecode, 156
dependencies, 139
immutability, 115–116
Java Collections API, 117–118
JVM, 153
naming conventions, 111
recursive class definition, LinkedList, 75
Scala, 342–343
singleton, 343
Spring, 248
web applications, 207–208

classloading, 153, 191
ClassNotFoundException, 233
ClasspathXmlApplicationContext, 249
clear(), 117
close(), 115
code smell, 127
code writing

at-computer technical tests, 19
face-to-face interviews, 7, 19–21
JUnit, 87–88
on paper, 18

Collection, 48, 117, 292, 295
Collections, 24
Collections.sort, 25
column families, Cassandra, 191
comma-separated values (CSV), 268
COMMIT, 190
company information

technical tests, 6–7
telephone screening, 4–5

Comparable, 24–25, 40
Comparator, 24, 25–26, 40
compare, 26
compile, 302, 303, 305, 310
compiler

Collections.sort, 25
Integer, 107
JIT, 153
JVM, 152
pop, 104
primitive types, 89
Scala, 343

concurrency, 159–174
actors, 169–174
testing, 164–165
threads, 159–165

ConcurrentHashMap, 48, 49
ConcurrentMultiset, 290
conf, 214
@Configuration, 250, 251
Connection, 193, 256
connection pools, JDBC, 196

356

CONNECTIVITY_CHANGE – dynamic state

CONNECTIVITY_CHANGE, 321
ConsoleLogging, 56
constant pool, String, 101
constraints, tables, 186–187
constructor-arg, 248
constructor-ref, 249
ContentProvider, 314–315
Content-Type, 222
context:component-scan, 264
@ContextConfiguration, 260
Context.startService(), 322
continue, 28
@Controller, 264
controllers, 214, 216
cookies, 226
coordinates, Maven, 305
copy, 288, 289
copyOf, 294
COUNT, 182, 188
CountDownLatch, 132, 164, 165
Counter, 166
CounterSetter, 166–167
countRowsInTable, 262
cover letter

body, 14
resume, 11–15
writing, 14–15

CREATE TABLE, 186
createSuiteDescription, 135
CSV. See comma-separated values
Cucumber, 144–146
CURDATE, 188
currentIterator, 79–80
curriculum vitae (CV). See resume
customSorting, 26

D
Data Definition Language (DDL), 186–187
Data Manipulation Language (DML), 186–187
data structures, 35–49

lists, 35–39
maps, 45–48
sets, 48–49
trees, 39–45

DatabaseHelper, 334
DatabaseHelperBlank, 334
databases

applications, 177–199
developers, 3
Hibernate, 274–275

inserting data, 275–277
integration tests, 260–261
JDBC, 191–197

releases, 197

JDK, 255–257
relational

Android, 333–335
JDBC, 191–192
SQL, 177–178

SQL, 177–191
DATA_SUB, 188
DATE, 188, 280
Date, 297
DateTime

duration, 297–298
Joda Time, 296–297
period, 298–299

DBDeploy, 197, 199
DDL. See Data Definition Language
decompiler, 106–107
Decorator Pattern, 60–61, 231–233
decrement operator, 169
def, 342
DefaultHttpClient, 226
DELETE, 186, 223, 230
deleteFromTables, 262
dependencies

classes, 139
JUnit testing, 138–143

dependencies, Maven, 305
dependency injection, Spring, 245–250
deploy, 304, 311
deployment descriptors, 201–202
Deque, 39
Description, 135
design patterns, 51–64

Builder Pattern, 51–55
commonly used, 60–64
Decorator Pattern, 60–61, 231–233
examples, 51–60
Flyweight Pattern, 61–62, 101, 107
Null Object Pattern, 41, 62
Singleton Pattern, 63–64
Strategy Pattern, 55–58
Template Pattern, 58–60

destroy, 204
difference, 296
@DirtiesContext, 260
DispatcherServlet, 263
dist, 215
DividingActor, 172
DML. See Data Manipulation Language
doFilter, 204, 205
Domain-Specific Language (DSL), 143
doPut, 209
double, 88
downcasting, 89
DSL. See Domain-Specific Language
duration, Joda Time, 297–299
dynamic state, 318–320

357

E – get

E
E, 104
eager instantiation, 251, 282
Echo, 216
/echo, 216
echoReply, 216
echo-server, 213–214
EchoServlet, 210
Eclipse, 19, 97
Eden Space, 148
EJBs. See Enterprise Java Beans
Element, 37
else, 70
Enterprise Java Beans (EJB), 245
entities

HQL, 281
REST, 226

Entry, 46
entrySet(), 117
Enum, 63
eq, 343
equals, 93, 96, 97, 127
equals(Object other), 96
Erlang, 169
Error, 112
event, 280
Exception, 112
exceptions. See also specific exceptions

call, 160
chain, 113–115
handling, 112–115
JUnit, 129–130
runtime, 113
try, 115

exec, 310
Executor, 161–163, 165
ExecutorService, 161, 162
expected, 130
external storage, Android, 335–336

F
Facebook, 13
face-to-face interviews, 7–8, 19–21
factorials, 71–72
fail, 127
Fibonacci sequence, 67–71
FileDictionary, 248
FileLogging, 56
FileOutputStream, 60, 61
Filter, 204
filter, 59, 348, 349
filter chain, 204–205
FilterChain, 205
FilterConfig, 204

filter-mapping, 204
final, 36, 92
finalize, 154, 155
finally, 256–257
finalName, 309
first child, 44
@FixMethodOrder, 262
FizzBuzz, 65–67
Float, 108
float, 88, 108
Flyweight Pattern, 61–62, 101, 107
forEach, 120
foreign keys, 181, 186–187
Fragment, 328, 329–332
FrameLayout, 326
free, 148
Freemarker, 269
FROM, 180
from, 32
front-end developers, 3
FULL OUTER JOIN, 182
functions

high-order, 347–348
methods, 348
Scala, 346–348
values, 83, 346–348

Future, 163
Future.get, 165

G
G1. See Garbage First
garbage collection, 147–149
Garbage First (G1), 149
gc, 153
generate-test-sources, 304
generations, heaps, 148
generators, Hibernate, 276
generics, 101–107

E, 104
interview algorithms, 80–83
Java Collections API, 101–103
List, 101–102
nesting, 103
performOperation, 82
Stack, 103–105
String, 101
type variance, 105–106

GenericStack, 105
GET, 203, 208, 222, 223, 226

REST, 230
time(), 215

get, 101, 292
ArrayList, 37
Future, 163

358

getBean – inheritance

getBean, 249, 251
getClass(), 303
getDescription, 135
getInstance(), 63
getIntent(), 315
getName(), 110, 111
getname(), 111
getParameterMap, 207
getResource(), 303
getXXX, 194
Github, 13
Given, 144–146
goals, Maven, 302, 308–309
Google Docs, 4
Google Play, 337
Gradle, 123
Groovy, 119, 341
GROUP BY, 183–184
groupId, 305
Guava

BiMap, 292
copyOf, 294
immutability, 292–294
Iterator, 294–295
libraries, 290–296
Maven, 301
Multimap, 291–292
Multiset, 290–291
Set, 295–296
unmodifiable collection, 292–293

GZIPOutputStream, 61

H
Hamcrest matchers, 143
hash table, 46
hashCode

equals, 96, 97
HashMap, 46, 47
IDEs, 93
overriding, 97–98

hashes. See maps
HashMap, 46, 47, 118
HashMultiset, 290
Hashtable, 118
hasNext, 78–80
HEAD, 223
heaps

generations, 148
JVM, 150–151
new, 147
stacks, 149–150
String, 100
trees, 43–45

Hibernate, 218, 271–285
database

inserting data, 275–277
queries, 274–275
table joins, 277–280

dates, 280
eager instantiation, 282
generators, 276
lazy initialization, 282–284
objects, 271–277
performance impact, 282–284

Hibernate query language (HQL), 281–282
high-order functions, 347–348
hiring manager, 7, 8
$HOME/.m2/repository, 304
HQL. See Hibernate query language
HTML, 203, 217–218, 287
HTTP, 221–230

Apache Commons, 211
clients, 224–226
methods, 223
Play, 214–215
requests

HttpClient, 225
Java code, 216
Jetty, 208
Servlet API, 207
Telnet, 221–223
XML, 239

response codes, 223–224
REST, 226–230
Spring, 252
status codes, 226

HttpClient, 225
HttpServlet, 203, 209
HttpServletRequest, 207, 267
HttpServletResponse, 205
HttpURLConnection, 225, 226

I
idempotency, 230
IDEs. See integrated development environments
if, 70
@Ignore, 127, 137
IllegalStateException, 114
ImageView, 326
immutability

classes, 115–116
Guava, 292–294
Scala, 349–350

IN, 188
increment operator, 169
index, SQL, 187–188
inheritance, 94

359

init – Java basics

init, 204
in-memory databases, 198–199
inner joins, 181–182
InputStream, 209, 231, 267

Apache Commons, 211, 288
Decorator Pattern, 60, 61
OutputStream, 288–289

INSERT, 184, 186
insert sort algorithms, 27–28
install, 302
INSTANCE, 63
instant, 297
int, 24, 96, 108, 233

arrays, 36
compare, 26
Integer.MIN_VALUE, 90
primitive types, 88

Integer, 80–83, 108
compiler, 107
Flyweight Pattern, 61–62
MySQL, 193

Integer.MIN_VALUE, 89–90
IntegerOperation, 81
integers, 36
integrated development environments (IDEs), 97

at-computer technical tests, 19
equals, 93
hashCode, 93
JUnit

JAR, 6, 19
testing, 123, 138

naming conventions, 111
technical test, 5, 6
XML, 236

integration tests
databases, 260–261
Maven, 306–307
Spring, 259–262
unit tests, 138–143

integration-test, 306
IntegrationTest.java, 306
IntelliJ, 19, 97
Intent, 315–316, 324
IntentFilter, 317
intent-filter, 317
Intents, 315–317
IntentService, 322
interfaces

Android, 326–332
Java 8, 119–120
marker, 233

intern(), 100–101
internal storage, Android, 335–336
interning, 100–101
interpreter, Scala, 345–346
InterruptedException, 165

intersection, 296
interview algorithms

anagrams, 72–74
factorials, 71–72
Fibonacci sequence, 67–71
FizzBuzz, 65–67
generics, 80–83
implementing, 65–84
Integer, 80–83
Iterator, 78–80
library functionality, 72–80
linked lists, 75–77
palindrome, 77–78
StackOverflowException, 83
String, 74–75

Interview Zen, 4, 65
interviews

decision making, 8
technical tests, 5–7
telephone screening, 4–5
types, 3–9

IOException, 129
IOUtils, 288, 289
Iterable, 120
Iterator

Guava, 294–295
interview algorithms, 78–80
Map, 291

J
JAD, 106
JAR

Ant, 309–310
finalName, 309
JUnit

at-computer technical tests, 19
IDE, 6, 19
technical tests, 6

Maven, 301, 303, 306, 308, 309
WAR, 206

jar, 305
Jasper, 206
Java 8, 119–120

JdbcTemplate, 259
Java API, 18–19, 35
Java basics, 87–121

annotations, 109–111
arrays, 98
autoboxing, 107–108
exception handling, 112–115
generics, 101–107
Java 8, 119–120
Java library, 115–118
naming conventions, 111–112
objects, 91–98

360

Java Basics – key-column

primitive types, 88–90
String, 98–101
unboxing, 107–108

Java Collections API, 48, 101–103, 117–118
Java Database Connectivity (JDBC), 113, 191–197

Play, 218
relational databases, 191–192
Spring, 255–259
SQL queries, 192–193
stored procedures, 195

Java Development Kit (JDK), 255–257
Java library, 115–118
Java Message Service (JMS), 255
Java Specification Requests (JSRS), 255
Java virtual machine (JVM), 147–157

arrays, 36
classes, 153
compiler, 152
finalize, 154
garbage collection, 147–149
heaps, 150–151
in-memory databases, 198
interoperability with Java, 152–157
memory tuning, 149–152
native method, 156
objects, 231–233
OutOfMemoryError, 49, 147
Pair, 233
PermGen, 134
Scala, 341–351
shutdown hooks, 156–157
String, 99
Thread, 160
threads, 166
WeakReference, 154–156
XML, 249

javac, 310
java.lang.Object, 96
java.lang.reflect.InvocationTargetException,

138
Javascript Object Notation (JSON), 191, 216, 240–243
JavaServer Pages (JSPs), 206, 255
java.util.Date, 280
java.util.HashMap, 96
java.util.TreeSet, 96
JAXB, 234–237
JDBC. See Java Database Connectivity
JDBCTemplate, 218
JdbcTemplate, 245, 257–259
JdbcUtils, 257
JDK. See Java Development Kit
Jetty

HTTP requests, 208
JUnit, 210–211
Maven, 211–213

Servlet API, 209–210
web applications, 207–213

jetty:run, 307
JIT. See Just In Time
JMS. See Java Message Service
job specification page, 6
Joda Time, 280

Date, 297
DateTime, 296–297
duration, 297–299
libraries, 296–300
period, 297–299
SimpleTimeFormatter, 299–300

joins, tables
Hibernate databases, 277–280
SQL, 180–182

JSON. See Javascript Object Notation
JSON Schema, 241
JSPs. See JavaServer Pages
JSRS. See Java Specification Requests
JUnit

AbstractTransactionalJUnit4
SpringContextTests, 260–261

annotations, 109–110
Assert, 124
Assert.assertSame(), 101
code writing, 87–88
exceptions, 129–130
@FixMethodOrder, 262
JAR

at-computer technical tests, 19
IDE, 6, 19
technical tests, 6

Jetty, 210–211
Maven, 301
testing, 123–146

BDD, 143–146
best practices, 127–138
dependencies, 138–143
IDEs, 123, 138
life cycle, 125–127
mocks, 138–143
@RunWith, 132–133
TDD, 124
timeouts, 130–131
verification, 127–129

junit, 305
JUnit 4, 5–6
JUnitCore, 124
JUnitLifecycle, 127
Just In Time (JIT), 153
JVM. See Java virtual machine

K
key-column, 278

Java Basics (continued)

361

keySet – memory leaks

keySet(), 117
key-value pairs, 46, 214

L
lambdas, 119–120
language-agnostic algorithms, 4
latch.await, 132
layout_gravity, 326
layout_height, 326
layout_weight, 328
layout_width, 326
lazy initialization, 63, 282–284
Leaf, 42
left children, 39
LEFT OUTER JOIN, 181
libraries, 287–300

Apache Commons, 287–290
API, 20
Guava, 290–296
interview algorithms, 72–80
Java, 115–118
Joda Time, 296–300

life cycle
Activity, 318
Maven, 303–304

linear complexity, 65
LinearLayout, 328–329
linked lists, 37–38, 75–77
LinkedHashMap, 48, 117–118
LinkedList, 35, 37, 75

ArrayList, 38–39
bubble sort algorithm, 28
Template Pattern, 58

List, 35, 37, 117
bubble sort algorithm, 28
generics, 101–102
interfaces, 120
Map, 45–46
merge sort algorithm, 32
polymorphism, 101
Scala, 347–348, 350

<#list>, 268
List<int>, 108
ListIternator, 78–79
lists

arrays, 36–39
binary search, 32–33
data structures, 35–39
Integer, 80–83
linked, 37–38
sorted, 6, 24–32
values, 350

ListView, 318
Location, 337
Location Services, Android, 337–339

LocationRequest, 339
locks, 167
logger.debug(), 87
Logging, 56
logging, Strategy Pattern, 55–58
logs, 215
long, 88, 130

M
main, 343
main thread, 159
malloc, 148
many-to-many relationship, 277, 280
Map, 117

ConcurrentHashMap, 48
HashMap, 46
Iterator, 291
LinkedHashMap, 48
List, 45–46
Set, 49
TreeMap, 47

map, Scala, 349
mapRow, 259
maps, 45–48
mark-and-sweep algorithm, 149
marker interface, 233
match, 345
Matcher, 143
Maven

Ant, 310–311
application definition, 304–307
artifacts, 307–308
build tools, 301–309
DBDeploy, 197
goals, 302, 308–309
integration tests, 306–307
Jetty, 211–213
JUnit testing, 123, 124–125
life cycle, 303–304
phases, 303, 308–309
plug-ins, 302
Scala, 341
source roots, 303
structuring project, 302–303
unit tests, 306–307
WAR, 206

maven-antrun-plugin, 310
maven-assembly-plugin, 308, 309
maven-compiler-plugin, 306
maven-jetty-plugin, 307
maven-release-plugin, 302
maven-surefire-plugin, 307
Memcached, 191
memioization, 71
memory leaks, 151–152

362

memory tuning – objects

memory tuning, JVM, 149–152
merge, 31, 32
merge sort algorithms, 30–32
MessageActor, 170
messageBody.asText(), 216
META-INF, 263
Metaspace, 148
methods

definitions, at-computer technical tests, 19
functions, 348
HTTP, 223
names, 111

API library, 20
JUnit 4, 5

native, 156, 160
recursive, 149
Scala, 348
stacks, 149
static, 94

Mockito, 56, 141, 143
mockito-core, 305
mocks, 138–143
Model, 266
Model-View-Controller (MVC)

HTML, 203
Spring, 203, 262–269

application context, 264
JdbcTemplate, 245
REST, 226–227, 266
server-side logic, 267–268
String, 266–267
technical test, 5
web controllers, 264–267

MongoDB, 191
MultiMap, 49
Multimap, 291–292
MultiSet, 49
Multiset, 290–291
MVC. See Model-View-Controller
mvn test, 124–125
mvnf compiler:compile, 302
MySQL, 177, 188, 189, 193, 198–199
mysql>, 177

N
n

algorithms, 23
Fibonacci sequence, 68
linear complexity, 65

name: Type, 342
name/value pairs, 333
naming conventions, 111–112
n-ary trees, 44
native method, 156, 160

natural ordering, 24, 25, 43
negative zero, 90
nesting, 103
new, 62, 147, 170
next, 76
next sibling, 44
Nexus, 301
NoClassDefFoundError, 112
Node, 42
<none>, 93
NoSQL, 191
NoSuchBeanDefinitionException, 254
NULL, 181, 184, 187
null, 63, 76, 156

checkString, 130
JUnit testing, 128
LinkedList, 75
NullPointerException, 108
objects, 91
primitive types, 108
WeakReference, 154, 155

Null Object Pattern, 41, 62
null objects, trees, 41–42
NullPointerException, 91, 107–108

O
O(n), 32, 71
O(n log n), 30, 32
O(n2), 23, 27

bubble sort algorithm, 28
quadratic, 65
quicksort algorithm, 30

Object, 46, 154
equals, 96, 127
get, 101
Model, 266

object, 343
ObjectInputStream, 231
ObjectOutputStream, 61, 231–233
Object/Relational Mapping (ORM), 271
objects

arrays, 98
Eden Space, 148
final, 92
hashCode, 96
Hibernate, 271–277
HQL, 282
Java basics, 91–98
JAXB, 236–237
JSON, 242–243
JVM, 231–233
locks, 167
null, 41–42
null, 91

363

Objects – project manager

polymorphism, 94–95
reading and writing, 231–234
reference types, 87, 91
serialization, 231–234
variables, 91
visibility modifiers, 92–94
XML, 238–239

Objects, 24–25, 104
Odersky, Martin, 342, 351
onAttach(), 332
onCreate(), 318, 337
onDestroy(), 318
onLocationChange(), 337
onPause(), 318, 320
onReceive, 170, 172, 321
onResume(), 318, 320
onSaveInstanceState(), 318, 321
onStart(), 318, 337
onStartCommand(), 323
onStop(), 318, 337
originalList, 28
ORM. See Object/Relational Mapping
OUT, 188
outer joins, 181–182
OutOfMemoryError, 49, 112, 147
OutputStream, 209, 231

Apache Commons, 288–290
copy, 288
Decorator Pattern, 60, 61
InputStream, 288–289
Spring MVC, 267

@Override, 110–111

P
package, 303, 306, 308
package-jar, 310
packaging, 308
packing, 206
Pair, 233
pair programming, 7
palindrome, 77–78
Parameterized, 132–133, 135
parameterized types, 101
@Parameterized.Parameters, 133
parameters

queries, 193–195
Scala, 342
Servlet API, 206–207

parameters(), 133
paramPrintout.scala.html, 218
@PathVariable, 266
pattern matching, 344–345
peek, 104, 155
peekedValue, 156

performOperation, 82
period, Joda Time, 297–299
Permanent Generation (PermGen), 100, 134, 148
persistent data

Android, 323–324, 333–336
Service, 323–324
SQL, 184–185

Person, 96–97
phases, Maven, 303, 308–309
PiCalculator, 162
pivot, 29
Plain Old Java Objects (POJOs), 245, 264, 271
Play, 351

HTML, 217–218
JDBC, 218
web applications, 213–218

play, 213–214
play.mvc.Controller, 216
plugin, 239
POJOs. See Plain Old Java Objects
polymorphism

arrays, 98
List, 101
objects, 94–95
Rectangle, 95
Square, 95

POM. See Project Object Model
pom.xml, 303, 309
pop, 104, 152
positive numbers, 89–90
POST, 203, 208, 209, 223

Play, 216
REST, 230

post-integration-test, 304, 309
pre-integration-test, 304
prepareCall, 195
PreparedStatement, 194, 256
primitive types

Atomic, 168
compiler, 89
downcasting, 89
Java basics, 88–90
null, 108
NullPointException, 107–108
variables, 89

PRIORITY_BALANCED_POWER_ACCURACY, 340
PRIORITY_HIGH_ACCURACY, 339
PRIORITY_LOW_POWER, 340
PRIORITY_NO_POWER, 340
private, 92–94
probationary period, 8
product manager, 7
project, 215
<project>, 307
project manager, 7

mailto:@Parameterized.Parameters

364

Project Object Model – routers

Project Object Model (POM), Maven, 211, 212, 239,
303, 305

property, 248
PropertyPlaceholderConfigurer, 252–253
protected, 93
prototype scope, 251
provided, 306
pseudocode, 20

anagrams, 72
merge sort algorithm, 31

public, 93, 215
public voice run(), 160
push, 104, 152
PUT, 203, 208, 209, 223, 226

Play, 216
REST, 230

Q
QA testing, 307
quadratic, 65
@Qualifier, 254
queries

Hibernate, 274–275
parameters, 193–195
SQL, 187–188

JDBC, 192–193
queryForInt, 258
questions

at-computer technical tests, 19
face-to-face interviews, 7, 21
Stack Overflow, 13
technical tests, 5, 18
telephone screening, 4, 5

Queue, 39, 117
quicksort algorithm, 29–30

R
race condition, 228
random access, 36
RandomizedRunner, 137
readData, 233
Reader, 289
readObject, 233
RecipeBackupService, 323
recipeId, 315–316
RecipeListFragment, 331–332
recruitment within, 3
Rectangle, 95
recursive algorithms, 30

factorials, 71
Fibonacci sequence, 69
linked lists, 76

recursive class definition, LinkedList, 75

recursive data type, trees, 40
recursive methods, 149
Redis, 191
reference types, 88, 91, 108, 168
referential equality, 343
referential integrity, 181
referral bonuses, 14
regression, 123
relational databases

Android, 333–335
JDBC, 191–192
SQL, 177–178

RelativeLayout, 327–328
releases, 308
remote live-coding exercise, 4
remove, 152
removeAll, 295
replace, 100
repository, 307
Representational State Transfer (REST), 226–230, 266
request, 205
@RequestMapping, 266
requiredParameter, 205
resources

Android apps, 320–321
JVM, 249
REST, 226

response, 205
REST. See Representational State Transfer
Result, 216
ResultsController, 266
ResultSet, 193, 256, 258
ResultSet.getMetaData, 259
resume, 4

acronyms, 12
developer profile, 12
education, 12
experience, 12–13
key skills, 12
length, 11
personal interests, 13–14
photography, 11–12
qualifications, 12
references, 14
tailoring to particular job, 11
technical tests, 17
writing, 11–15

retainAll, 295
return, 70, 342
reverse, 74–75, 78
reverse data types, 37
ReverseNumericalOrder, 26
right children, 39
RIGHT OUTER JOIN, 181
ROLLBACK, 191
routers, 173

365

routes – Spring

routes, 214–215
RowMapper, 259
run, 137, 160, 214
Runnable, 160, 161, 163, 165
Runner, 132, 134–137
RunNotifier, 137, 138
runtime, exceptions, 113
RuntimeException, 112, 113, 129
@RunWith, 132–133, 145

S
salary, 7, 8
SBT. See Simple Build Tool
Scala, 83, 341–351

case class, 344
classes, 342–343
compiler, 343
functions, 346–348
immutability, 349–350
interpreter, 345–346
lambdas, 119
methods, 348
parameters, 342
pattern matching, 344–345
Play, 213, 218
tail recursion, 350
values, 350
variables, 342

scope, 149
Maven, 306
Spring, 251–252

SELECT, 178, 179, 186, 188
sendError, 205
Serializable, 233–234
serialization, 231–243

JSON, 240–243
objects, 231–234
XML, 234–240

server.hostname, 253
ServerSetup, 253
server-side logic, Spring MVC, 267–268
Service

Activity, 324–325
Android, 314, 322–325
Intent, 324
persistent data, 323–324

Servlet API
HTTP requests, 207
Jetty, 209–210
Maven, 306
parameters, 206–207
technical test, 5
Tomcat, 201–207
web applications, 201–207

servlet container, 201
ServletResponse, 205, 267
servlets, Spring MVC, 263
Set, 48, 49, 96–97, 295–296
sets, 48–49
setUp, 109
SetView, 296
setXXX, 194
shared state, threads, 165–167
SharedPreferences, 333
ShareIntentActivityReceiver, 317
Short, 47
short, 88
shutdown hooks, 156–157
Simple Build Tool (SBT), 123, 351
SimpleDateFormat, 299
SimpleJdbcTemplate, 262
SimpleTimeFormatter, 299–300
SimpleTrees, 40
singleThreadedExecutor, 163
Singleton, 63
singleton classes, 343
Singleton Pattern, 63–64
singleton scope, 251
size, 48, 292
size(), 117
Slick, 351
snapshot build, 307
snapshotRepository, 307
SocketOutputStream, 60
sort, 24, 25–26
sorted lists, 6, 24–32
sorting algorithm, 73
source code, XSD, 239–240
source roots, Maven, 303
space complexity, 23–24
split, 100
Spring, 245–269

application context, 245–255
autowiring, 253–255
classes, 248
dependency injection, 245–250
finally, 256–257
integration tests, 259–262
JDBC, 255–259

boilerplate code, 257–259
JDBCTemplate, 218
MVC, 203, 262–269

application context, 264
JdbcTemplate, 245
REST, 226–227, 266
server-side logic, 267–268
String, 266–267
technical test, 5
web controllers, 264–267

366

Spring – technical test

scope, 251–252
template engines, 269
XML, 58, 247–248

SQL, 177–191
index, 187–188
in-memory databases, 198–199
persistent data, 184–185
queries

JDBC, 192–193
speeding inefficient, 187–188

relational databases, 177–178
statements, case sensitivity, 178
stored procedures, 188–189
table joins, 180–182
transactions, 190–191
views, 185–186

SQLException, 256
SQLiteCursor, 334
SQLiteDatabase, 334
SQLiteOpenHelper, 333–334
Square, 95
square, 347
src/main/webapp/WEB-INF, 302
Stack, 58, 60, 103–105
Stack Overflow, 13
stack space, 149–150
stack trace, 149
StackOverflowError, 149, 350
StackOverflowException, 34, 83
StackPredicate, 58–60
stacks, heaps, 149–150
stackValues, 152
standalone-application-with-dependencies, 309
start, 215
START TRANSACTION, 190
start0, 160
startPeriodicUpdates(), 337
START_REDELIVER_INTENT, 323
Statement, 193
static, 62, 94
steps, Cucumber, 144–146
stop-the-world, 149, 153
stored procedures

JDBC, 195
MySQL, 189
SQL, 188–189

Strategy Pattern, 55–58
String

Apache Commons, 288
arrays, 36
assertThat, 143
char, 99
checkString, 130
Comparable, 25
constant pool, 101

FileDictionary, 248
generics, 101
InputStream, 289
Intent, 315
intern(), 100–101
interning, 100–101
interview algorithms, 74–75
Java basics, 98–101
JUnit, 127–128
JVM, 99
Model, 266
palindromes, 78
performOperation, 82
PermGen, 148
reverse, 78
Spring MVC, 266–267
toWord, 67
values, 99–100

StringBuilder, 74–75
StringEscapeUtils, 287
stringLength, 342
subList, 32
substring, 100
SUM, 183
SupervisorStrategy, 172
Survivor Space, 148
switch, 344
syntactic sugar, 134
syntax, technical interviews, 20
System, 36, 153
system, 306
system tests, 144
System.gc, 153
System.out.println(), 87

T
tables

constraints, 186–187
DDL, 186
foreign keys, 186–187
hash, 46
joins

Hibernate databases, 277–280
SQL, 180–182

tail recursion, 350
@tailrec, 350
target, 303
targets, Ant, 309
tasks, Ant, 309
TDD. See Test-Driven Development
tearDown, 109
technical interviews, 7
technical test

at-computer, 18–19

Spring (continued)

367

tee – validate

company information, 6–7
face-to-face interviews, 19–21
IDE, 5, 6
interviews, 5–7
JUnit 4, 5–6
questions, 5, 18
Servlet API, 5
sorted lists, 6
Spring MVC, 5
Tomcat, 5
written, 17–18

tee, 289
TeeOutputStream, 289–290
telephone screening

company information, 4–5
hands-free kit, 4
interview, 4–5
language-agnostic algorithms, 4
notes, 4
questions, 4, 5
remote live-coding exercise, 4

Telnet, 221–223
template engines, Spring, 269
Template Pattern, 58–60
Tenured Generation, 148
test, 109

Maven, 302, 303, 305
@Test

Cucumber, 145
expected, 130
IOException, 129
JUnit testing, 125–126
JUnitLifecycle, 127
long, 130
Runner, 136–137
Spring, 261
testClass, 136

testClass, 136
Test-Driven Development (TDD), 124
testing. See also integration tests; JUnit; technical test;

unit tests
in-memory databases, 198–199
QA, 307
system, 144

TestNG, 301
TestSuite, 125
Then, 144–146
Thread, 160, 161–163
thread pool, 161
ThreadPrinter, 160
threads

concurrency, 159–165
Counter, 166
JVM, 166
Runnable, 161

shared state, 165–167
try/catch, 160

Thread.sleep, 160
Throwable, 129
throwable, 114
Throwable.Throwable, 112
time(), 215
time complexity, algorithms, 23–24
timeouts, 130–131
toDate, 297
to:from, 32
Tomcat

Servlet API, 201–207
technical test, 5
web applications, 201–207

toString(), 98
toWord, 67
transactions, SQL, 190–191
transient, 233–234
TreeMap, 47
TreeMultiset, 290
trees

balanced, 43
data structures, 39–45
heaps, 43–45
n-ary, 44
null objects, 41–42
recursive data type, 40
unbalanced, 42

triggers, 189
try, 115
try/catch, 160
try/catch/finallly, 115
try-with-resources, 115
Twitter, 13
Two's Complement, 89–90

U
unbalanced tree, 42
unboxing, 107–108
Unicode, 89
union, 296
unit tests

integration tests, 138–143
Maven, 306–307
ResultsController, 266

UPDATE, 184, 185, 186
updateList, 81–82
User Acceptance Testing, 307

V
val, 342
validate, 303

368

ValueContainer – -XX:Permsize

ValueContainer, 155
valueOf, 62
values

absolute, 90
average-case, 23
best-case, 23
CSV, 268
functions, 83, 346–348
key-value pairs, 46, 214
lists, 350
name/value pairs, 333
Scala, 350
String, 99–100
worst-case, 23, 28, 30

values, 117
var, 342
VARCHAR, 193
variables

naming conventions, 111
objects, 91
primitive types, 89
private, 92–94
Scala, 342
static, 94

Velocity, 269
verbs, 223
version, 305
View, 326–328
ViewResolver, 264, 269
views, 214
views, SQL, 185–186
visibility modifiers, 92–94
void, 125

W
WAR. See Web Archive
war, 206
WeakReference, 154–156
web applications, 201–219

classes, 207–208
Jetty, 207–213
Play, 213–218

Servlet API, 201–207
Tomcat, 201–207

Web Archive (WAR), 205–206
Maven, 301, 303
Play, 215
Tomcat, 206

web controllers, Spring MVC, 264–267
webapps, 206
web.xml, 202, 206, 263
weightSum, 328
When, 144–146
WHERE, 178, 179, 180, 185
while, 31
wildcards, 106
willingness to learn, 6
worst-case value

algorithms, 23
bubble sort algorithm, 28
quicksort algorithm, 30

write, 60
writeOutput, 342
Writer, 289
written technical tests, 17–18

X
x++, 169
x--, 169
XML

autowiring, 253–254
IDEs, 236
JVM, 249
objects, 238–239
serialization, 234–240
Spring, 58, 247–248, 268

XML Schema Definition (XSD), 234–240
source code, 239–240

-Xmx, 151
XSD. See XML Schema Definition
-XX:MaxPermSize, 151
-XX:Permsize, 151

	Acknowledgments
	Contents
	Introduction
	Part I: Navigating the Interview Process
	Chapter 1: Dissecting Interview Types
	Looking at the Phone Screening Process
	Reviewing Technical Tests
	Handling Face-to-Face Interviews
	Making the Decision
	Summary

	Chapter 2: Writing a Noticeable Resume
	How to Write a Resume and Cover Letter
	Writing a Cover Letter
	Summary

	Chapter 3: Technical Test and Interview Basics
	Technical Written Tests
	At-Computer Tests
	Face-to-Face Technical Interviews
	Summary

	Chapter 4: Writing Core Algorithms
	Looking at Big O Notation
	Sorting Lists
	Searching Lists
	Summary

	Chapter 5: Data Structures
	Lists
	Trees
	Maps
	Sets
	Summary

	Chapter 6: Design Patterns
	Investigating Example Patterns
	Commonly Used Patterns
	Summary

	Chapter 7: Implementing Popular Interview Algorithms
	Implementing FizzBuzz
	Demonstrating the Fibonacci Sequence
	Demonstrating Factorials
	Implementing Library Functionality
	Using Generics
	Summary

	Part II: Core Java
	Chapter 8: Java Basics
	The Primitive Types
	Using Objects
	Java’s Arrays
	Working with Strings
	Understanding Generics
	Autoboxing and Unboxing
	Using Annotations
	Naming Conventions
	Handling Exceptions
	Using the Standard Java Library
	Looking Forward to Java 8
	Summary

	Chapter 9: Testing with JUnit
	The JUnit Test Life Cycle
	Best Practices for Using JUnit
	Eliminating Dependencies with Mocks
	Creating System Tests with Behavior-Driven Development
	Summary

	Chapter 10: Understanding the Java Virtual Machine
	Garbage Collection
	Memory Tuning
	Interoperability between the JVM and the Java Language
	Summary

	Chapter 11: Concurrency
	Using Threads
	Working with Concurrency
	Actors
	Summary

	Part III: Components and Frameworks
	Chapter 12: Integrating Java Applications with Databases
	SQL: An Introduction
	JDBC: Combining Java and the Database
	Testing with In-Memory Databases
	Summary

	Chapter 13: Creating Web Applications
	Tomcat and the Servlet API
	Jetty
	Play Framework
	Summary

	Chapter 14: Using HTTP and REST
	The HTTP Methods
	HTTP Clients
	Creating HTTP Services Using REST
	Summary

	Chapter 15: Serialization
	Reading and Writing Java Objects
	Using XML
	JSON
	Summary

	Chapter 16: The Spring Framework
	Core Spring and the Application Context
	Spring JDBC
	Integration Testing
	Spring MVC
	Summary

	Chapter 17: Using Hibernate
	Using Hibernate
	Summary

	Chapter 18: Useful Libraries
	Removing Boilerplate Code with Apache Commons
	Developing with Guava Collections
	Using Joda Time
	Summary

	Chapter 19: Developing with Build Tools
	Building Applications with Maven
	Ant
	Summary

	Chapter 20: Android
	Basics
	User Interface
	Persistence
	Android Hardware
	Summary

	Appendix: Introducing Scala
	Scala Basics
	Functions as Values
	Immutability
	Summary

	Index

