

JavaScript-mancy: Object-Oriented
Programming

Mastering the Arcane Art of Summoning Objects in
JavaScript for C# Developers

Jaime González García

This book is for sale at http://leanpub.com/javascript-mancy-object-oriented-
programming

This version was published on 2017-09-15

* * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

* * * * *

© 2016 - 2017 Jaime González García
ISBN for EPUB version: 978-1976459238

http://leanpub.com/javascript-mancy-object-oriented-programming
http://leanpub.com
http://leanpub.com/manifesto

ISBN for MOBI version: 978-1976459238

To my beautiful wife Malin and my beloved son Teo

Table of Contents

About The Author
About the Technical Reviewers
Prelude

A Note to the Illustrious Readers of JavaScript-mancy: Getting Started
A Story About Why I Wrote This Book
Why Should You Care About JavaScript?
What is the Goal of This Book?
What is the Goal of The JavaScript-mancy Series?
Why JavaScript-mancy?
Is This Book For You?
How is The Book Organized?
How Are The JavaScript-mancy Series Organized? What is There in the Rest of the
Books?
Understanding the Code Samples in This Book
A Note About ECMAScript 5 (ES5) and ES6, ES7, ES8 and ESnext within The Book
A Note Regarding the Use of var, let and const
A Note About the Use of Generalizations in This Book
Do You Have Any Feedback? Found Any Error?
A Final Word From the Author

Once Upon a Time…

Tome II. JavaScriptmancy and OOP: The Path of The
Summoner

Introduction to the Path of Summoning and Commanding Objects (aka OOP)
Let me Tell You About OOP in JavaScript
C# Classes in JavaScript
OOP Beyond Classes
Combining Classes with Object Composition
The Path of the Object Summoner Step by Step
Concluding

Summoning Fundamentals: Encapsulation and Information Hiding
Let’s get Started With The Basics of OOP!
Encapsulation: Creating Objects in JavaScript
Object Initializers
Constructor Functions and the New Operator
Data Hiding in JavaScript
Object Initializers vs Constructor Functions

Object Factories vs Constructor Functions
Concluding
Exercises

Summoning Fundamentals: Prototypical Inheritance
You Don’t Repeat Yourself. Inheritance!
Classical Inheritance vs Prototypical Inheritance
JavaScript Prototypical Inheritance
Object Prototypes
Object Prototypes with Object.Create or OLOO
Defining Prototypes with Constructor Functions
Creating Longer Prototype Chains
What About Concatenative Protypical Inheritance?
Object Initializers vs Object.create vs Constructor Functions
Concluding
Exercises

Summoning Fundamentals: Polymorphism
Polymorphism Means Many Forms
Polymorphism in C#
Polymorphism in JavaScript
Concluding
Exercises

White Tower Summoning: Mimicking C# Classical Inheritance in JavaScript
Ever Heard of Classical Inheritance?
Emulating a C# Class in JavaScript
Constructor Function + Prototype = Class
Mimicking Classical Inheritance in JavaScript
Simplifying Classical Inheritance in ES5
Concluding
Exercises

White Tower Summoning Enhanced: The Marvels of ES6 Classes
Create These Units Faster with ES6 Classes!
From ES5 “Classes” to ES6 Classes
Prototypical Inheritance via Extends
Overriding Methods in ES6 Classes
Static Members and Methods
ES6 Classes and Information Hiding
ES6 Classes Behind the Curtain
Concluding
Exercises

Black Tower Summoning: Objects Interweaving Objects with Mixins
The Problem With Classes and Classical Inheritance…
Free Yourself From Classes With Object Composition and Mixins
Limitations of Mixins as Objects
Functional Mixins
Combining Mixins with ES6 Classes

Object.assign in Depth
Object.assign Alternatives for ES5 JavaScript-mancers
Concluding
Exercises

Black Tower Summoning: Safer Object Composition with Traits
An Improvement Over Mixins
Traits
Traits with traits.js
Composing Traits
What Happens When You Miss Required Properties?
Resolving Name Conflicts
Traits and Data Privacy
High Integrity Objects With Immutable Traits
Traits vs Mixins
Concluding
Exercises

Black Tower Summoning: Next Level Object Composition With Stamps
I Call Them Stamps
What are Stamps?
Stamps OOP Embraces JavaScript
Stamps By Example
Stamp Composition
Stamp Fluent API
Concluding: Stamps vs Mixins vs Traits
Exercises

Object Internals: The Secrets of Objects
A Nifty Trick… Object Internals
All your Objects Are Belong to Object
Defining Properties with Object.defineProperty
Defining Multiple Properties with Object.defineProperties
Beautiful Property Manipulation with ESnext Decorators
Class And Method Decorators
Create Objects With Object.create And Property Descriptors
Metaprogramming
Other Useful Object Methods
Concluding
Exercises

More Metaprogramming with Reflect, Proxies and Symbols
How Good Are You at Reflection?
ES6 Reflect
Reflection? What is reflection?
ES6 Proxies
ES6 Symbols and Meta-programming
Concluding
Exercises

TypeScript
You Shall Only Use Types!
JavaScript + Types = Awesome Dev Productivity
Any JavaScript is Valid TypeScript
So, What Are The Advantages and Disadvantages of TypeScript?
Setting up a Simple TypeScript project
Cool TypeScript Features
Type Annotations In TypeScript
Working with TypeScript in Real World Applications
Concluding
Exercises

Tome II. Epilogue
Thank you!

References and Appendix
Appendix A. On the Art of Summoning Servants and Critters, Or
Understanding The Basics of JavaScript Objects

An Army of Objects
Object Initializers (a.k.a. Object Literals)
Creating Objects With Factories
Data Privacy in JavaScript
ES6 Improves Object Initializers
ES6 Symbols and Data Privacy
Concluding
Exercises

Appendix B. Mysteries of the JavaScript Arcana: JavaScript Quirks
Demystified

A Couple of Tips About JavaScript Quirks and Gotchas
A Quick Refresher of the JavaScript Arcana 101
This, Your Most Dangerous Foe
Global Scope by Default and Namespacing in JavaScript
Type Coercion Madness
Using JavaScript in Strict Mode
Concluding
Exercises

Appendix C. More Useful Function Patterns: Function Overloading
Have you Heard About The Marvels Of Overloading?
The Problem with Function Overloading in JavaScript
How Do We Do Function Overloading Then?
Function Overloading by Inspecting Arguments
Using an Options Object
Relying on ES6 Defaults

Taking Advantage of Polymorphic Functions
Concluding
Exercises

Appendix D. Setting Up Your Developing Environment For ES6
Using ES6 with Node.js
ES6 and Modern Browsers
Real-World ES6 Development Environments

Appendix E. Fantasy Glossary
References

Specifications
Books
White papers
Articles

Notes

About The Author

Jaime González García

Jaime González García (@Vintharas) Software Developer and UX guy, speaker,
author & nerd

Jaime is a full stack web developer and UX designer who thinks it’s weird to write
about himself in the third person. During the past few years of his career he has been
slowly but surely specializing in front-end development and user experience, and
somewhere and some time along the way he fell in love with JavaScript. He still
enjoys developing in the full stack though, bringing ideas to life, building things
from nothingness, beautiful things that are a pleasure and a delight to use.

Jaime works as a Technical Solutions Consultant at Google helping publishers be
great. He spends part of his time as a Developer Relations for Angular and Google in
the Nordics developer community. He speaks at conferences, writes articles, runs
workshops and talks to developers and companies about how they can do cool things
with Angular and JavaScript. He also arranges developer community events at the
Google Office in Stockholm as a way to support and encourage the thriving local dev
ecosystem and put it in contact with other Googlers.

In his spare time he builds his own products and blogs at barbarianmeetscoding.com
(long story that one). He loves spending time with his beloved wife Malin and son

https://twitter.com/Vintharas

Teo, drawing, writing, reading fantasy and sci-fi, and lifting heavy weights

About the Technical Reviewers

Artur Mizera

Artur Mizera (@arturmizera) Web developer

Artur is a passionate software developer who has built various web applications for
small as well as enterprise companies.

Sometimes he recollects the good, old times when jQuery was in beta, just about to
be released as 1.0 and nobody even knew what the word SPA stood for… Everyday
he tries to get better with modern front-end development and software craftsmanship.

Currently he works as Senior Applications Developer at Oracle. When he gets home
he plays around with side projects, open source or gets outside and does some
running.

http://twitter.com/arturmizera

Prelude

It was during the second age
that the great founder of our order Branden Iech,

first stumbled upon the arcane REPL,
and learnt how to bend the fabric of existence to his very will,

then was that he discovered
there was a mechanism to alter the threads
being woven into The Pattern,

then that we started experiencing the magic of JavaScript

 - Irec Oliett,
 The Origins of JavaScript-Mancy
 Guardian of Chronicles, 7th Age

Imagine… imagine you lived in a world were you could use JavaScript to change the
universe around you, to tamper with the threads that compose reality and do anything
that you can imagine. Well, welcome to the world of JavaScript-mancy, where
wizards, also known as JavaScriptmancers, control the arcane winds of magic
wielding JavaScript to and fro and command the very fabric of reality.

We, programmers, sadly do not live in such a world. But we do have a measure of
magic 1 in us, we have the skills and power to create things out of nothingness.
And even if we cannot throw fireballs or levitate (yet), we can definitely
change/improve/enhance reality and the universe around us with our little creations.
Ain’t that freaking awesome?

Well, I hope this book inspires you to continue creating, and using this beautiful skill
we share, this time, with JavaScript.

A Note to the Illustrious Readers of JavaScript-mancy:
Getting Started
If you are a reader of JavaScript-mancy: Getting Started then let me start this book
by thanking you. When I started writing the JavaScript-mancy series little did I know
about the humongous quest I was embarking in. Two years later, I have written more
than a thousand pages, loads of code examples, hundreds of exercises, spent an
insane amount of time reviewing the drafts, reviewing the reviews, etc… But all of
this work is meaningless without you, the reader. Thank you for trusting in me and in
this series, I hope you enjoy this book more than you enjoyed the first one. Go forth
JavaScript-mancer!

A Story About Why I Wrote This Book
I was sitting at the back of the room, with my back straight and fidgetting with my
fingers on the table. I was both excited and nervous. It was the first time I had
ventured myself to attend to one of the unfrequent meetings of my local .NET user
group. Excited because it was beyond awesome to be in the presence of so many
like-minded individuals, people who loved to code like me, people who were so
passionate about software development that were willing to sacrifice their free time
to meet and talk about programming. Nervous because, of course, I did not want to
look nor sound stupid in such a distinguished group of people.

The meetup started discussing TypeScript the new superset of JavaScript that
promised Nirvana for C# developers in this new world of super interactive web
applications. TypeScript here, TypeScript there because writing JavaScript sucked…
JavaScript was the worst… everybody in the room started sharing their old war
stories about writing JavaScript, how bad it was in comparison to C#, and so on…

“Errr… the TypeScript compiler writes beautiful JavaScript” I adventured to say…
the room fell silent. People looking astonishingly at each other, uncomprehending,
unbelieving… Someone had dared use beautiful and JavaScript in the same
sentence.

This was not the first, nor will be the last time I have encountered such a reaction
and feelings towards JavaScript as predominant in the .NET community. JavaScript
is not worthy of our consideration. JavaScript is a toy language. JavaScript is
unreliable and behaves in weird and unexpected ways. JavaScript developers don’t
know how to program. JavaScript tooling is horrible…

And every single time I sat muted, thinking to myself, reflecting, racking my brains
pondering… How to show and explain that JavaScript is actually awesome? How to
share that it is a beautiful language? A rich language that is super fun to write?
That’s how this book came about.

And let me tell you one little secret. Just some few years ago I felt exactly the same
way about JavaScript. And then, all of the sudden, I started using it, with the mind of
a beginner, without prejudices, without disdain. It was hard at first, being so fluent in
C# I couldn’t wrap my head around how to achieve the same degree of fluency and
expressiveness in JavaScript. Nonetheless I continued forward, and all of the sudden
I came to love it.

The problem with JavaScript is that it looks too much like C#, enough to make you
confident that you know JavaScript because you know C#. And just when you are all
comfortable, trusting and unsuspecting JavaScript smacks you right in the face with
a battle hammer, because, in many respects, JavaScript is not at all like C#. It just
looks like it on the surface.

JavaScript is indeed a beautiful language, a little rough on the edges, but a beautiful
language nonetheless. Trust me. You’re in for a treat.

Why Should You Care About JavaScript?
You may be wondering why you need to know JavaScript if you already grok C#.

Well, first and foremost, JavaScript is super fun to write. Its lack of ceremony and
super fast feedback cycles make it a fun language to program in and ideal for quick
prototyping, quick testing of things, tinkering, building stuff and getting results fast.
If you haven’t been feeling it for programming lately, JavaScript will help you
rediscover your passion and love for programming.

JavaScript is the language of the web, if you are doing any sort of web development,
you need to understand how to write great JavaScript code and how JavaScript itself
works. Even if you are writing a transpiled language like TypeScript or CoffeeScript,
they both become JavaScript in the browser and thus knowing JavaScript will make
you way more effective.

But JavaScript is not limited to the web, during the past few years JavaScript has
taken the world by storm, you can write JavaScript to make websites, in the backend,
to build mobile applications, games and even to control robots and IoT devices,
which makes it a true cross-platform language.

JavaScript is a very approachable language, a forgiving one, easy to learn but hard
to master. It is minimalistic in its contructs, beautiful, expressive and supports many
programming paradigms. If you reflect about JavaScript features you’ll see how it is
built with simplicity in mind. Ideas such as type coercion (are “44” and 44 so
different after all?) or being able to declare strings with either single or double
quotes are great expressions of that principle.

JavaScript’s openness and easy extensibility are the perfect foundations to make it a
fast-evolving language and ecosystem. As the one language for the web, the
language that browsers can understand, it has become the perfect medium for cross-
pollination across all software development communities, where .NET developers
ideas can meet and intermingle with others from the Ruby and Python communities.
This makes knowledge, patterns and ideas spread accross boundaries like never
before.

Since no one single entity really controls JavaScript2, the community has a great
influence in how the language evolves. With a thriving open source community, and
openness and extensibility built within the language, it is the community and the
browsers the ones that develop the language and the platform, and the standard
bodies the ones that follow and stabilize the trends. When people find JavaScript
lacking in some regard, they soon rush to fill in the gap with powerful libraries,
tooling and techniques.

http://githut.info/

But don’t just take my word for it. This is what the book is for, to show you.

What is the Goal of This Book?
This book is the second installment of the JavaScript-mancy series and its goal is to
provide a great and smooth introduction to JavaScript Object-Oriented Programming
to C# developers. Its goal is to teach you how you can bring and reuse all your C#
knowledge into JavaScript and, at the same time, boost your OOP skills with new
paradigms that take advantage of JavaScript dynamic nature.

What is the Goal of The JavaScript-mancy Series?
The goal of the JavaScript-mancy series is to make you fluent in JavaScript, able to
express your ideas instantly and build awesome things with it. You’ll not only learn
the language itself but how to write idiomatic JavaScript. You’ll learn both the most
common patterns and idioms used in JavaScript today, and also all about the latest
versions of JavaScript: ECMAScript 6 (also known ES6 and ES2015) , ES7
(ES2016), ES2017 and beyond.

You can use ECMAScript as a synonym for JavaScript. It is true that we often use ES
(short for ECMAScript) and a version number to refer to a specific version of
JavaScript and its related set of new features. Particularly when these features haven’t
yet been implemented by all major browsers vendors. But for all intents and purposes
ECMAScript is JavaScript. For instance, you will rarely hear explicit references to ES5.

But we will not stop there because what is a language by itself if you cannot build
anything with it. I want to teach you everything you need to be successful and have
fun writing JavaScript after you read this series. And that’s why we will take one
step further and take a glance at the JavaScript ecosystem, the JavaScript
community, the rapid prototyping tools, the great tooling involved in building
modern JavaScript applications, JavaScript testing and building an app in a modern
JavaScript framework: Angular 3.

Why JavaScript-mancy?
Writing code is one of my favorite past times and so is reading fantasy books. For
this project I wanted to mix these two passions of mine and try to make something
awesome out of it.

In fantasy we usually have the idea of magic, usually very powerful, very obscure
and only at the reach of a few dedicated individuals. There’s also different schools or
types of magic: pyromancy deals with fire magic, allomancy relates to magic
triggered by metals, necromancy is all about death magic, raising armies of skeletons
and zombies, immortality, etc.

I thought that drawing a parallel between magic and what we programmers do daily
would be perfect. Because it is obscure to the untrained mind and requires a lot of
work and study to get into, and because we have the power to create things out of
nothing.

And therefore, JavaScript-mancy, the arcane art of writing awesome JavaScript.

Is This Book For You?
I have written this book for you C# developer:

you that hear about the awesome stuff that is happening in the realm of
JavaScript and are curious about it. You who would like to be a part of it, a part
of this fast evolving, open and thriving community.
you that have written JavaScript before, perhaps even do it daily and have been
frustrated by it, by not been able to express your ideas in JavaScript, by not
being able to get a program do what you wanted it to do, or struggling to do so.
After reading this book you’ll be able to write JavaScript as naturally as you
write C#.
you that think JavaScript a toy language, a language not capable of doing real
software development. You’ll come to see an expressive and powerful
multiparadigm language suitable for a multitude of scenarios and platforms.

This book is specifically for C# developers because it uses a lot of analogies from
the .NET world, C# and static typed languages to teach JavaScript. As a C#
developer myself, I understand where the pain points lie and where we struggle the
most when trying to learn JavaScript and will use analogies as a bridge between
languages. Once you get a basic understanding and fluency in JavaScript I’ll expand
into JavaScript specific patterns and constructs that are less common in C# and that
will blow your mind.

That being said, a lot4 of the content of the book is useful beyond C# and regardless
of your software development background.

How is The Book Organized?
The goal of this book is to provide a smooth ride in learning OOP to C# developers
that start developing in JavaScript. Since we humans like familiarity and analogy is
super conductive to learning, the first part of the book is focused on helping you
learn how to bring your OOP knowledge from C# into JavaScript.

We’ll start examining the pillars of object oriented programming: encapsulation,
inheritance and polymorphism and how they apply to JavaScript and its prototypical
inheritance model.

We will continue with how to emulate classes in JavaScript prior to ES6 which will
set the stage perfectly to demonstrate the value of ES6 classes.

After that we will focus on alternative object-oriented paradigms that take advantage
of the dynamic nature of JavaScript to achieve great flexibility and composablity in a
fraction of the code.

Later we’ll move onto object internals and the obscure art of meta-programming in
JavaScript with the new Reflect API, proxies and symbols.

Finally, we’ll complete our view of object-oriented programming in JavaScript with
a deep dive into TypeScript, a superset of JavaScript that enhances your developer
experience with new features and type annotations.

How Are The JavaScript-mancy Series Organized? What is
There in the Rest of the Books?
The rest of the books are organized in 3 parts focused in the language, the ecosystem
and building your first app in JavaScript.

After this introductory book Part I. Mastering the Art of JavaScript-mancy
continues by examining object oriented programming in JavaScript, studying
prototypical inheritance, how to mimic C# (classic) inheritance in JavaScript. We
will also look beyond class OOP into mixins, multiple inheritance and stamps where
JavaScript takes you into interesting OOP paradigms that we rarely see in the more
conventional C#.

We will then dive into functional programming in JavaScript and take a journey
through LINQ, applicative programming, immutability, generators, combinators and
function composition.

Organizing your JavaScript applications will be the next topic with the module
pattern, commonJS, AMD (Asynchronous module definition) and ES6 modules.

Finally we will take a look at Asynchronous programming in JavaScript with
callbacks, promises and reactive programming.

Since adoption of ES6 will take some time to take hold, and you’ll probably see a lot
of ES5 code for the years to come, we will start every section of the book showing
the most common solutions and patterns of writing JavaScript that we use nowadays
with ES5. This will be the perfect starting point to understand and showcase the new
ES6 features, the problems they try to solve and how they can greatly improve your
JavaScript.

In Part II. Welcome to The Realm Of JavaScript we’ll take a look at the
JavaScript ecosystem, following a brief history of the language that will shed some
light on why JavaScript is the way it is today, continuing with the node.js revolution
and JavaScript as a true cross-platform, cross-domain language.

Part II will continue with how to setup your JavaScript development
environment to maximize your productivity and minimize your frustration. We will
cover modern JavaScript and front-end workflows, JavaScript unit testing, browser
dev tools and even take a look a various text editors and IDEs.

We will wrap Part II with a look at the role of transpiled languages. Languages like
TypeScript, CoffeeScript, even ECMAScript 6, and how they have impacted and will
affect JavaScript development in the future.

Part III. Building Your First Modern JavaScript App With Angular 2 will wrap
up the book with a practical look at building modern JavaScript applications.
Angular 2 is a great framework for this purpose because it takes advantage of all
modern web standards, ES6 and has a very compact design that makes writing
Angular 2 apps feel like writing vanilla JavaScript. That is, you won’t need to spend
a lot of time learning convoluted framework concepts, and will focus instead in
developing your JavaScript skills to build a real app killing two birds with one stone
(Muahahaha!).

In regards to the size and length of each chapter, aside from the introduction, I have
kept every chapter small. The idea being that you can learn little by little, acquire a
bit of knowledge that you can apply in your daily work, and get a feel of progress
and completion from the very start.

Understanding the Code Samples in This Book

How to Run the Code Samples in This Book
For simplicity, I recommend that you start running the code samples in the browser.
That’s the most straightforward way since you won’t need to install anything in your
computer. You can either type them as you go in the browser JavaScript console
(F12 for Chrome if you are running windows or Opt-CMD-J in a Mac) or with
prototyping tools like JsBin, jsFiddle, CodePen or Plunker. Any of these tools is
excellent so you can pick your favorite.

If you don’t feel like typing, all the examples are available in jsFiddle/jsBin
JavaScriptmancy library: http://bit.ly/javascriptmancy-samples.

For testing ECMAScript 6 examples I recommend JsBin, jsFiddle or the Babel
REPL at https://babeljs.io/repl/. Alternatively there’s a very interesting Chrome
plugin that you can use to run both ES5 and ES6 examples called ScratchJS.

If you like, you can download all the code samples from GitHub and run them
locally in your computer using node.js.

Also keep an eye out for javascriptmancy.com where I’ll add interactive exercises
in a not too distant future.

A Note About Conventions Used in the Code Samples
The book has three types of code samples. Whenever you see a extract of code like
the one below, where statements are preceded by a >, I expect you to type the
examples in a REPL.

The REPL is Your Friend!
One of the great things about JavaScript is the REPL (Read-Eval-Print-Loop), that is a
place where you can type JavaScript code and get the results immediately. A REPL lets
you tinker with JavaScript, test whatever you can think of and get immediate feedback
about the result. Awesome right?

A couple of good examples of REPLs are a browser’s console (F12 in
Chrome/Windows) and node.js (take a look at the appendix to learn how to install node
in your computer).

http://jsbin.io
https://jsfiddle.net/
http://codepen.io
http://plnkr.co/
http://bit.ly/javascriptmancy-samples
http://jsbin.io
https://jsfiddle.net/
https://babeljs.io/repl/
https://bit.ly/javascriptmancy-scratchjs
http://bit.ly/javascriptmancy-code-samples
http://www.nodejs.org
http://www.javascriptmancy.com

The code after > is what you need to type and the expression displayed right
afterwards is the expected result:

1 > 2 + 2
2 // => 4

Some expressions that you often write in a REPL like a variable or a function
declaration evaluate to undefined:

1 > var hp = 100;
2 // => undefined

Since I find that this just adds unnecessary noise to the examples I’ll omit these
undefined values and I’ll just write the meaningful result. For instance:

1 > console.log('yippiiiiiiii')
2 // => yippiiiiiiii
3 // => undefined <==== I will omit this

When I have a multiline statement, I will omit the > so you can more easily copy and
paste it in a REPL or prototyping tool (jsBin, CodePen, etc). That way you won’t
need to remove the unnecessary > before running the sample:

1 let createWater = function (mana){
2 return `${mana} liters of water`;
3 }

I expect the examples within a chapter to be run together, so sometimes examples
may reference variables from previous examples within the same section. I will
attempt to show smallish bits of code at a time for the sake of simplicity.

For more advanced examples the code will look like a program, there will be no > to
be found and I’ll add a filename for reference. You can either type the content of the
files in your favorite editor or download the source directly from GitHub.
CrazyExampleOfDoom.js
 1 export class Doom {
 2 constructor(){
 3 /* Oh no! You read this...
 4 /
 5 / I am sorry to tell you that in 3 days
 6 / at midnight the most horrendous apparition
 7 / will come out from your favorite dev machine
 8 / and it'll be your demise
 9 / that is...
10 / unless you give this book as a gift to

11 / other 3 developers, in that case you are
12 / blessed for ever and ever
13 */
14 }
15 }

A Note About the Exercises
In order to encourage you to experiment with the different things that you will learn
in each chapter I wrap every single one of them with exercises.

It is important that you understand that there is almost no wrong solution. I invite
you to let your imagination free and try to experiment and be playful with your new
found knowledge to your heart’s content. I do offer a solution for each exercise but
more as a guidance and example that as the one right solution.

In some of the exercises you may see the following pattern:

1 // mooleen.weaves('some code here');
2 mooleen.weaves('teleport("out of the forest", mooleen, randalf)');

This is completely equivalent to:

1 // some code here
2 teleport("out of the forest", mooleen, randalf);

I just use a helper function weaves to make it look like Moolen, the mighty wizard is
casting a spell (in this case teleport).

A Note About ECMAScript 5 (ES5) and ES6, ES7, ES8 and
ESnext within The Book
Everything in programming has a reason for existing. That hairy piece of code that
you wrote seven months ago, that feature that went into an application, that syntax or
construct within a language, all were or seemed like good ideas at the time. ES6,
ES7 and future versions of JavaScript all try to improve upon the version of
JavaScript that we have today. And it helps to understand the pain points they are
trying to solve, the context in which they appear and in which they are needed.
That’s why this book will show you ES5 in conjunction with ES6 and beyond. For it
will be much easier to understand new features when you see them as a natural
evolution of the needs and pain points of developers today.

How will this translate into the examples within the book? - you may be wondering.
Well I’ll start in the beginning of the book writing ES5 style code, and slowly but
surely, as I go showing you ES6 features, we will transform our ES5 code into ES6.
By the end of the book, you yourself will have experienced the journey and have
mastered both ES5 and ES6.

Additionally, it is going to take some time for us to start using ES6 to the fullest, and
there’s surely a ton of web applications that will never be updated to using ES6
features so it will be definitely helpful to know ES5.

A Note Regarding the Use of var, let and const
Since this book covers both ES5, ES6 and beyond the examples will intermingle the
use of the var, let and const keywords to declare variables. If you aren’t familiar
with what these keywords do here is a quick recap:

var: use it to declare variables with function scope. Variables declared with var
are susceptible to hoisting which can result in subtle bugs in your code.
let: use it to declare variables with block scope. Variables declared with let
are not hoisted. Thanks to this, let allows you to declare variables nearer to
where they are used.
const: like let, but in addition, it declares a one-time binding. That is, a
variable declared with const can’t be bound to any other value. Attempting to
assign the value of a const variable to something else will result in an error.

The examples for ES5 patterns like mimicking classes before the advent of ES6 (and
the new let and const) will use var. The examples for post ES6 features like ES6
classes and onwards will use let and const. Of these two we will prefer the latter
that offers a safer alternative to let, and we will use let in those cases where we
need or want to allow assigning a variable multiple times. That being said there may
be occasions where I won’t follow these rules when a particular example escapes
mine and my reviewer’s watchful eye.

If you want to learn more about JavaScript scoping rules and the var, let and const
keywords then I recommend you to take a look at JavaScript-mancy: Getting Started
the first book of this series.

A Note About the Use of Generalizations in This Book

https://www.javascriptmancy.com/

Some times in the course of the book I will make generalizations for the sake of
simplicity and to provide a better and more continuous learning experience. I will
make statements such as:

In JavaScript, unlike in C#, you can augment objects with new properties at any
point in time

If you are experienced in C# you may frown at this, cringe, raise your fist to the sky
and shout: Why!? oh Why would he say such a thing!? Does he not know C#!?. But
bear with me. I will write the above not unaware of the fact that C# has the dynamic
keyword and the ExpandoObject class that offer that very functionality, but because
the predominant use of C# involves the use of strong types and compile-time type
checking. The affirmation above provides a much simpler and clearer explanation
about JavaScript than writing:

In JavaScript, unlike in C# where you use classes and strong types in 99% of
the situations and in a similar way to the use of dynamic and ExpandoObject,
you can augment objects with new properties at any point in time

So instead of focusing on being correct 100% of the time and diving into every little
detail, I will try to favor simplicity and only go into detail when it is conductive to
understanding JavaScript which is the focus of this book. Nonetheless, I will provide
footnotes for anyone that is interested in exploring these topics further.

Do You Have Any Feedback? Found Any Error?
If you have any feedback or have found some error in this book that you would like
to report, then don’t hesitate to drop me an email at jaime@vintharas.com or reach
me on twitter @vintharas.

A Final Word From the Author
The goal for this series of books is to be holistic. Holistic enough to give a good
overview of the JavaScript language and ecosystem, yet contain enough detail to
impart real knowledge about how JavaScript really works. That’s a fine line to tread
and sometimes I will probably cover too little or too much. If so don’t hesitate to let
me know. The beauty of a lean published book is that I have much more room to
include improvements suggested by you.

https://twitter.com/Vintharas

There is a hidden goal as well, that is to make it as fun and enjoyable as possible.
Therefore the fantasy theme of the whole book, the conversational style, the jokes
and the weird sense of humor. Anyways, I have put my heart and soul into this book
and hope you really enjoy it!

Jaime, 2017

Once Upon a Time…

Once upon a time, in a faraway land, there was a beautiful hidden island with
captivating white sandy beaches, lush green hills and mighty white peaked
mountains. The natives called it Asturi and, if not for an incredible and unexpected
event, it would have remained hidden and forgotten for centuries.

Some say it was during his early morning walk, some say that it happened in the
shower. Be that as it may, Branden Iech, at the time the local eccentric and today
considered the greatest Philosopher of antiquity, stumbled upon something that
would change the world forever.

In talking to himself, as both his most beloved companions and his most bitter
detractors would attest was a habit of his, he stumbled upon the magic words of
JavaScript and the mysterious REPL.

In the years that followed he would teach the magic word and fund the order of
JavaScriptmancers bringing a golden age to our civilization. Poor, naive
philosopher. For such power wielded by mere humans was meant to be misused, to
corrupt their fragile hearts and bring their and our downfall. It’s been ten thousand
years, ten thousand years of wars, pain and struggle.

It is said that, in the 12th day of the 12th month of the 12th age a hero will rise and
bring balance to the world. That happens to be today.

12th Age, Guardian of Chronicles

This book has a story in it. It is a story of a fantasy5 world where some people can
wield JavaScript to affect the world around them, to essentially program the world
and bend it to their will. Cool right? The story follows the step of a heroine that
comes to this hypothetical world to save it from evil, but of course, she needs to
learn JavaScript first. Care to join her in her quest to learn JavaScript and save
the world?

TOME II. JAVASCRIPTMANCY AND OOP: THE

PATH OF THE SUMMONER

Path of Summoning and Commanding Objects (Also Known as Object Oriented
Programming)

Introduction to the Path of Summoning and
Commanding Objects (aka OOP)

Many ways to build a Golem there are,

cast its blueprint in clay
then recite the instantiation chants,

or put together the parts
that'll made the whole alive,

or bring it forth at once
with no prior thought required.

Many ways to build a Golem there are,
in JavaScript.

 - KeDo,
 Master Artificer,
 JavaScript-mancy poems

/*
Mooleen sits in a dark corner of a tavern sipping a jug of
the local brew.

She flinches. The local brew surely must have fire wyvern's
blood in it.

She silently observes the villagers around her.

They seem unhappy and nervous. As if they were expecting
something terrible was about to befall them any second.
*/

mooleen.says("A month has passed since we dispatched Great");
mooleen.says("You would think they would be happier");

rat.says("Well, people don't like change or surprises");
rat.says("They're expecting that someone worse will take control");
rat.says("Better the devil you know...");

/*
A maid stops by Mooleen's table confused
*/
maid.says("Are you feeling alright, sir? Speaking to yourself?");

rat.movesOutOfTheShadows();
maid.shrikes();

villager.shouts("A demon!!!");

rat.says("Great");
mooleen.says("That's just plain mean");

/*
The villagers quickly surround the dark corner with clubs, bottles
and whichever crude weapon they can muster.
*/
villager.shouts("Kill the demon!!");

mooleen.weaves("teleport('Caves of Infinity')");

/*
Mooleen and rat blink out of existence just as various pointy weapons
blink into existence precisely where they were sitting a second
earlier.
*/

randalf.says("There you are!");
mooleen.says("here I am!");
rat.says("A demon!?");

randalf.exclaims("A demon? Where!!");
bandalf.says("Yes where!")
zandalf.looksWorriedAllAround();

mooleen.says("There's no demon");
randalf.asks("Are you sure?");

randalf.says("We need to be on our toes");
mooleen.asks("You too?");

randalf.says("Yes, it's been a month, they must be about to attack");
mooleen.says("They? Who!");

randalf.says("Could be anyone really... The Dark Brootherhood, " +
 "The Clan, The Silver Guild, The Red Hand... " +
 "They'll want to control Asturi");
randalf.says("You need to summon an army");

mooleen.says("An army?");
randalf.says("An army indeed, n' bigger than the one you had before"\
);

mooleen.says("Really? Cause that took a looooong time to summon");
randalf.says("Well, That's because you're a novice");

mooleen.says("That's encouraging");
randalf.says("Oh, don't you worry, " +
 "We'll take care of your ignorance");
mooleen.says("Ouch");

randalf.says("Let me tell you about OOP in JavaScript");

Let me Tell You About OOP in JavaScript
Welcome to the Path of Summoning 1 and Commanding Objects! In this part of this
ancient manuscript you’ll learn how you can work with objects in JavaScript, how to
define them, create them and even how to interweave them. By the end of it you’ll
have mastered Object Oriented Programming in JavaScript and you’ll be ready to
command your vast armies of objects into eternal glory.

JavaScript OOP story is pretty special. When I started working seriously with
JavaScript some years ago, one of my first concerns as a C# developer coming to
JavaScript was to find out how to write a class. I had a lot of prowess in C# and I
wanted to bring all my knowledge and abilities into the world of JavaScript, so my
first approach was to try to map every C# concept into JavaScript. I saw classes,
which are such a core construct in C# and which were such an important part of my
programming style at the time, as my secret weapon to being proficient in
JavaScript.

Well, for the life of me I couldn’t find a good reference to this-is-how-you-write-a-
class-in-JavaScript. It took me a long while to understand how to mimic classical
inheritance. But it was time well spent because, along the way, I learnt a lot about
JavaScript and about the many different ways in which it supports object-oriented

programming. Moreover, this quest helped me look beyond classical inheritance into
other OOP styles more akin to JavaScript where flexibility and expressiveness reign
supreme over the strict and fixed taxonomies of classes.

In this part of the series I will attempt to bring you with me, hand in hand, through
the same journey that I experienced. We will start with how to achieve classical
inheritance in JavaScript, so you can get a basic level of proficiency by translating
your C# skills into JavaScript. And then we will move beyond that into new patterns
that truly leverage JavaScript as a language and which will blow your mind.

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Let’s have a taste of what is in store for you by getting a high level overview 2 of
object-oriented programming in JavaScript. Don’t worry if you feel you can’t follow
the examples. In the upcoming chapters we will dive deeper into each of the
concepts and techniques used, and we will discuss them separately at a much slower
pace.

C# Classes in JavaScript
A C# class is more or less equivalent to a JavaScript constructor function and
prototype pair:

 1 // Here we have a Minion constructor function
 2 function Minion(name, hp){
 3 // The constructor function usually defines
 4 // the data within a "class", the properties
 5 // contained within a constructor function
 6 // will be part of each object created with it
 7 this.name = name;
 8 this.hp = hp;
 9 }
10
11 // The prototype usually defines the methods
12 // within a "class". It is shared across all
13 // Minion instances
14 Minion.prototype.toString = function(){
15 return this.name;
16 };

http://bit.ly/javascriptmancy-oop-introduction
https://github.com/vintharas/javascriptmancy-code-samples

The constructor function represents how an object should be constructed (or created)
while the prototype represents bits of reusable behavior. In practice, the constructor
function usually defines the data members within a “class” while the prototype
defines its methods.

You can instantiate a new Minion object by using the new operator on the constructor
function:

 1 var orc = new Minion('orc', 100);
 2 console.log(orc);
 3 // => [object Object] {
 4 // hp: 100,
 5 // name: "orc",
 6 // toString: function () {
 7 // return this.name;
 8 // }
 9 // }
10
11 console.log(orc.toString())
12 // => orc
13
14 console.log('orc is a Minion: ' + (orc instanceof Minion));
15 // => true

As a result of instantiating an orc we get a new Minion object with two properties hp
and name. The Minion object also has a hidden property called [[prototype]] that
points to its prototype which is an object that has a method toString. This
prototype and its toString method are shared across all instances of the Minion
class.

When you call orc.toString the JavaScript runtime checks whether or not the orc
object has a toString method and if it can’t find it, like in this case, it goes down the
prototype chain until it does. The prototype chain is established by the object itself,
its prototype, its prototype’s prototype and so on. In this case, the prototype chain
leads to the Minion.prototype object that has a toString method. This method will
then be called and evaluated as this.name (whose value is orc in this example).

The prototypical chain

We can mimic classical inheritance by defining a new “class” Wizard and making it
inherit from Minion:

 1 // Behold! A Wizard!
 2 function Wizard(name, element, hp, mana){
 3 // the constructor function calls its parent constructor function
 4 // using [Function.prototype.call] (or apply)
 5 Minion.call(this, name, hp);
 6 this.element = element;
 7 this.mana = mana;
 8 }
 9
10 // the prototype of the Wizard is a Minion object
11 Wizard.prototype = Object.create(Minion.prototype);
12 Wizard.prototype.constructor = Wizard;

We achieve classical inheritance by:

1. Calling the Minion constructor function from the Wizard constructor.
2. Creating a new object that has Minion as its prototype (via Object.create) and

assigning it to be the Wizard prototype. This is how you establish a prototypical
chain between Wizard and Minion.

Wizard object => Wizard Prototype => Minion Prototype => Object Prot\
otype

By following these two steps we achieve two things:

1. With the constructor delegation we ensure that a Wizard object has all the
properties of a Minion object.

2. With the prototype chain we ensure that all the methods in the Minion prototype
are available to a Wizard object.

We can also augment the Wizard prototype with new methods like this castsSpell
method that allows the wizard to cast powerful spells:

1 // we can augment the prototype with a new method to
2 // cast mighty spells
3 Wizard.prototype.castsSpell = function(spell, target){
4 console.log(this + ' casts ' + spell + ' on ' + target);
5 this.mana -= spell.mana;
6 spell(target);
7 };

Or even override or extend existing methods within its base “class” Minion:

1 // we can also override and extend methods
2 Wizard.prototype.toString = function(){
3 return Minion.prototype.toString.apply(this, arguments) +
4 ", the " + this.element +" Wizard";
5 };

Finally, we can verify that everything works as expected by instantiating our very
own powerful wizard:

1 var gandalf = new Wizard(/* name */ "Gandalf",
2 /* element*/ "Grey",
3 /* hp */ 50,
4 /* mana */ 50);

The gandalf object is both an instance of Wizard and Minion which makes sense:

1 console.log('Gandalf is a Wizard: ' + (gandalf instanceof Wizard));
2 // => Gandalf is a Wizard: true
3 console.log('Gandalf is a Minion: ' + (gandalf instanceof Minion));
4 // => Gandalf is a Minion: true

The toString method works as defined in our overridden version:

1 console.log(gandalf.toString());
2 // => Gandalf, the Grey Wizard

And our great Grey wizard can cast potent spells:

 1 // A lightning spell
 2 var lightningSpell = function(target){
 3 console.log('A bolt of lightning electrifies ' + target + '(-10hp)\
 4 ');
 5 target.hp -= 10;
 6 };
 7 lightningSpell.mana = 5;
 8 lightningSpell.toString = function(){ return 'lightning spell';};
 9
10 gandalf.castsSpell(lightningSpell, orc);

11 // => Gandalf, the Grey Wizard casts lightning spell on orc
12 // => A bolt of lightning electrifies orc (-10hp)

As you can see from these previous examples, writing “classes” prior to ES6 was no
easy feat. It required a lot of moving parts and a lot of code. That’s why ES6 brings
classes along which provide a much nicer syntax to what you’ve seen thus far.
Instead of having to handle constructor functions and prototypes yourself, you get
the new class keyword that nicely wraps both into a more coherent and developer
friendly syntax:

 1 // this is the equivalent of the Minion
 2 class ClassyMinion{
 3 constructor(name, hp){
 4 this.name = name;
 5 this.hp = hp;
 6 }
 7 toString(){
 8 return this.name;
 9 }
10 }
11
12 const classyOrc = new ClassyMinion('classy orc', 50);
13 console.log(classyOrc);
14 // => [object Object] {
15 // hp: 100,
16 // name: "classy orc"
17 //}
18
19 console.log(classyOrc.toString());
20 // => classy orc
21
22 console.log('classy orc is a ClassyMinion: ' +
23 (classyOrc instanceof ClassyMinion));
24 // => classy orc is a ClassyMinion: true

ES6 classes also provide the extend and super keywords which improve how
classes can relate and interact with parent classes. extend lets you establish class
inheritance in a readable, declarative fashion and super lets you access methods
from parent classes:

 1 // and this is the equivalent of the Wizard
 2 class ClassyWizard extends ClassyMinion{
 3 constructor(name, element, hp, mana){
 4 // super lets you access the parent class methods
 5 // like the parent class constructor
 6 super(name, hp);
 7 this.element = element;
 8 this.mana = mana;
 9 }
10 toString(){
11 // or any other method
12 return super.toString() + ", the " + this.element +" Wizard";
13 }
14 castsSpell(spell, target){

15 console.log(this + ' casts ' + spell + ' on ' + target);
16 this.mana -= spell.mana;
17 spell(target);
18 }
19 }

Again, we can verify that it works just like it did before by instantiating a classy
wizard:

 1 const classyGandalf = new Wizard(/* name */ "Classy Gandalf",
 2 /* element */ "Grey",
 3 /* hp */ 50,
 4 /* mana */ 50);
 5 console.log('Classy Gandalf is a ClassyWizard: ' +
 6 (classyGandalf instanceof ClassyWizard));
 7 // => Classy Gandalf is a ClassyWizard: true
 8
 9 console.log('Classy Gandalf is a ClassyMinion: ' +
10 (classyGandalf instanceof ClassyMinion));
11 // => Classy Gandalf is a ClassyMinion: true
12
13 console.log(classyGandalf.toString());
14 // => Classy Gandalf, the Grey Wizard
15
16 classyGandalf.castsSpell(lightningSpell, classyOrc);
17 // => Classy Gandalf, the Grey Wizard casts lightning spell
18 // on classy orc
19 // => A bolt of lightning electrifies classy orc(-10hp)

With ES6 classes we can achieve the same result than before with less code and
better code at that. It is important to highlight though that ES6 classes are just
syntactic sugar3. Under the hood, these ES6 classes that you have just seen are
equivalent to constructor function/prototype pairs.

And that is how you mimic classical inheritance in JavaScript. Now let’s look
beyond.

OOP Beyond Classes
There are a lot of people in the JavaScript community who claim that the cause of
JavaScript not having a nice way to mimic classical inheritance, not having classes,
is that you were not meant to use them in the first place. You were meant to embrace
prototypical inheritance, the natural way of working with inheritance in JavaScript,
instead of perverting it to make it behave sort of like classical inheritance.

In the world of prototypical inheritance you only have objects, and particularly
objects that are based upon other objects which we call prototypes. Prototypes lend

behaviors to other objects by means of delegation (via the prototype chain) or by the
so called concatenative inheritance which consists in copying behaviors.

Let’s illustrate the usefulness of this type of inheritance with an example. Imagine
that, in addition to wizards, we also need to have some thieves for those occasions
when we need to use a more gentle/shrew hand against our enemies.

A ClassyThief class could look something like this:

 1 class ClassyThief extends ClassyMinion{
 2 constructor(name, hp){
 3 super(name, hp);
 4 }
 5 toString(){
 6 return super.toString() + ", the Thief";
 7 }
 8 steals(target, item){
 9 console.log(`${this} steals ${item} from ${target}`);
10 }
11 }

And let’s say that a couple of weeks from now, we realize that it would be nice to
have yet another type of minion, one that can both cast spells and steal, and why not?
Play some music. Something like a Bard. In pseudo-code we would describe it as
follows:

1 // class Bard
2 // should be able to:
3 // - cast powerful spells
4 // - steals many items
5 // - play beautiful music

Well, we’ve put ourselves in a pickle here. Classical inheritance tends to build rigid
taxonomies of types where something is a Wizard, something is a Thief but it cannot
be both. How would we solve the issue of the Bard using classical inheritance in C#?
Well…

We could move both castsSpell and steals methods to a base class
SpellCastingAndStealingMinion that all three types could inherit. The
ClassyThief would throw an exception when casting spell and so would the
ClassyWizard when stealing. Not a very good solution (goodbye Liskov
principle 4)
We could create a SpellCastingAndStealingMinion that duplicates the
functionality in ClassyThief and ClassyWizard and make the Bard inherit
from it. This solution would imply code duplication and thus additional
maintenance.

We could define interfaces for these behaviors ICanSteal, ICanCastSpells and
make each class implement these interfaces. Nicer but we would need to
provide an specific implementation in each separate class. No so much code
reuse here.
We could do as in the previous solution, but delegate the implementation of
stealing and casting to another class that could be reused by wizards, thieves
and bards. This would achieve more code reuse but it’d require a lot of extra
artificial plumbing to do the delegation.

So none of these solutions are very attractive: They involve bad design, code
duplication or both. Can JavaScript help us achieve a better solution to this
problem? Yes! It can!

Imagine that we broke down all these behaviors and encapsulated them inside
separate objects (canCastSpells, canSteal and canPlayMusic):

 1 const canCastSpells = {
 2 castsSpell(spell, target){
 3 console.log(this + ' casts ' + spell + ' on ' + target);
 4 this.mana -= spell.mana;
 5 spell(target);
 6 }
 7 };
 8
 9 const canSteal = {
10 steals(target, item){
11 console.log(`${this} steals ${item} from ${target}`);
12 }
13 };
14
15 const canPlayMusic = {
16 playsMusic(){
17 console.log(`${this} grabs his ${this.instrument} ` +
18 `and starts playing music`);
19 }
20 };
21

22 // Bonus behavior to identify a character by name!
23 const canBeIdentifiedByName = {
24 toString(){
25 return this.name;
26 }
27 };

Now that we have encapsulated each behavior in a separate object we can compose
them together to provide the necessary functionality to a wizard, a thief and a bard:

 1 // And now we can create our objects by composing
 2 // these behaviors together
 3 function TheWizard(element, mana, name, hp){
 4 const wizard = {element,
 5 mana,
 6 name,
 7 hp};
 8 Object.assign(wizard,
 9 canBeIdentifiedByName,
10 canCastSpells);
11 return wizard;
12 }
13
14 function TheThief(name, hp){
15 const thief = {name,
16 hp};
17 Object.assign(thief,
18 canBeIdentifiedByName,
19 canSteal);
20 return thief;
21 }
22
23 function TheBard(instrument, mana, name, hp){
24 const bard = {instrument,
25 mana,
26 name,
27 hp};
28 Object.assign(bard,
29 canBeIdentifiedByName,
30 canSteal,
31 canCastSpells,
32 canSteal);
33 return bard;
34 }

And in a very expressive way we can see how a wizard is someone than can cast
spells, a thief is someone that can steal and a bard someone that not only can cast
spells and steal but can also play music. By stepping out of the rigid limits of
classical inheritance and static typing, we get to a place where we can easily reuse
behaviors and compose new objects in a very flexible and extensible manner.

We can verify that indeed this approach works beautifully. The Wizard casts
powerful spells:

1 const wizard = TheWizard('fire', 100, 'Randalf, the Red', 10);
2
3 wizard.castsSpell(lightningSpell, orc);
4 // => Randalf, the Red casts lightning spell on orc
5 // => A bolt of lightning electrifies orc(-10hp)

The Thief sneaks on you and steals:

1 const thief = TheThief('Locke Lamora', 100);
2
3 thief.steals('orc', /*item*/ 'gold coin');
4 // => Locke Lamora steals gold coin from orc

And the Bard, truly gifted Bard, casts spells, steals and plays music:

 1 const bard = TheBard('lute', 100, 'Kvothe', 100);
 2
 3 bard.castsSpell(lightningSpell, orc);
 4 // => Kvothe casts lightning spell on orc
 5 // =>A bolt of lightning electrifies orc(-10hp)
 6
 7 bard.steals('orc', /*item*/ 'sandwich');
 8 // => Kvothe steals sandwich from orc
 9
10 bard.playsMusic();
11 // => Kvothe grabs his lute and starts playing music

The Object.assign in the examples is an ES6 method that lets you extend an object
with other objects. This is effectively the concatenative prototypical inheritance we
mentioned previously.

We usually call these objects mixins. A mixin in JavaScript is just an object that you
compose with other objects to provide them with additional behavior or state. In the
simplest example of mixins you just have a single object extending another object, but
there’re also functional mixins, where you use functions instead. We will cover all these
mixin patterns in detail later in the book with a deep dive into Object.assign and
possible alternatives in ES5.

This object composition technique constitutes a very interesting and flexible
approach to object-oriented programming that isn’t available in C#. But in JavaScript
we can use it even with ES6 classes!

Combining Classes with Object Composition

Do you remember that ES6 classes are just syntactic sugar over the existing
prototypical inheritance model? They may look like classical inheritance but they
are not. This means that the following mix of ES6 classes and object composition
would work:

 1 class ClassyBard extends ClassyMinion{
 2 constructor(instrument, mana, name, hp){
 3 super(name, hp);
 4 this.instrument = instrument;
 5 this.mana = mana;
 6 }
 7 }
 8
 9 Object.assign(ClassyBard.prototype,
10 canSteal,
11 canCastSpells,
12 canPlayMusic);

In this example we extend the ClassyBard prototype with new functionality that will
be shared by all future instances of ClassyBard. If we instantiate a new bard we can
verify that it can steal, cast spells and play music:

 1 const anotherBard = new ClassyBard('guitar', 100, 'Jimmy Hendrix', 1\
 2 00);
 3
 4 anotherBard.steals('orc', /*item*/ 'silver coin');
 5 // => Jimmy Hendrix steals silver coin from orc
 6
 7 anotherBard.castsSpell(lightningSpell, orc);
 8 // => Jimmy Hendrix casts lightning spell on orc
 9 // => A bolt of lightning electrifies orc(-10hp)
10
11 anotherBard.playsMusic();
12 // => Jimmy Hendrix grabs his lute and starts playing music

This is an example of delegation-based prototypical inheritance in which methods
such as steals, castsSpell and playsMusic are delegated to a single prototype
object (instead of being appended to each object individually).

So far you’ve seen classical inheritance mimicked in JavaScript, ES6 classes and
object composition via mixin objects, but there’s much more to learn and in greater
detail! Take a sneak peak at what you’ll learn in each of the upcoming chapters and
get excited!

The Path of the Object Summoner Step by Step
In Summoning Fundamentals: an Introduction to Object Oriented
Programming in JavaScript you’ll start by understanding the basic constructs

needed to define and instantiate objects in JavaScript. In this chapter, constructor
functions and the new operator will join what you’ve discovered thus far about object
initializers. You’ll review how to achieve information hiding, you’ll learn the
basics of JavaScript’s prototypical inheritance model and how you can use it to
reuse code/behaviors and improve your memory footprint. You’ll complete the
foundations of JavaScript OOP by understanding how JavaScript achieves
polymorphism.

In White Tower Summoning or Emulating Classical Inheritance in JavaScript
you’ll use constructor functions in conjunction with prototypes to create the
equivalent of C# classes in JavaScript. You’ll then push the boundaries of JavaScript
inheritance model further and emulate C# classical inheritance building inheritance
chains with method extension and overriding just like in C#.

In White Tower Summoning Enhanced: the Marvels of ES6 Classes you’ll learn
about the new ES6 Class syntax and how it provides a much better class
development experience over what it was possible prior to ES6.

In Black Tower Summoning: Objects Interweaving Objects with Mixins we’ll go
beyond classical inheritance into the arcane realm of object composition with mixins.
You’ll learn about the extreme extensibility of object-oriented programming based
on object composition. How you can define small pieces of reusable behavior and
properties that combined together can create powerful objects (effectively achieving
multiple inheritance).

In Black Tower Summoning: Safer Object Composition with Traits you’ll learn
about an object composition alternative to mixins called traits. Traits are as reusable
and composable as mixins but are even more flexible and safe as they let you define
required properties and resolve conflicts.

In Black Tower Summoning Enhanced: Next Level Object Composition With
Stamps you’ll find out about a new way to work with objects in JavaScript called
Stamps that brings object composability to the next level.

You’ll then dive into the depths of Object Internals and meta-programming in
JavaScript. You’ll discover the mysteries of the low level JavaScript Object APIs,
the new ESnext decorators, ES6 proxies, ES6 Reflection APIs and symbols.

Finally, we will complete the path of the Summoner by taking a look at TypeScript.
TypeScript offers the nearest experience to C# that you can find on the web. It is a
superset of JavaScript that enhances your developer experience with new features

and type annotations. These type annotations bring static typing to JavaScript but
they are flexible enough not to sacrifice JavaScript’s dynamic nature.

Concluding
JavaScript is a very versatile language that supports a lot of programming paradigms
and different styles of Object-Oriented Programming. In the next chapters you’ll see
how you can combine a small number of primitive constructs and techniques to
achieve a variety of OOP styles.

JavaScript, like in any other part of the language, gives you a lot of freedom when
working with objects, and sometimes you’ll feel like there are so many options and
things you can do that you won’t know what’s the right path. Because of that, I’ll try
to provide you with as much guidance as I can and highlight the strengths and
weaknesses of each of the options available.

Get ready to learn some JavaScript OOP!

randalf.says("See? There's a lot of stuff for you to learn");
mooleen.says("Is any of that going to help me get home?");

randalf.says("Most definitely.");
randalf.says("I have scourged our library and found nothing " +
 "about this 'earth' you speak of. And now that I think about " +
 "it, what a weird name for a kingdom...");
randalf.says("Anyway, the only other option is the golden " +
 "library of Orrile...");

mooleen.says("Awesome! Then just show me the way");

randalf.says("... in Tates, guarded by The Deadly Seven... ");
mooleen.says("I can take care of them");

randalf.says("... and the vast host of armies " +
 "of the most powerful sorcerer alive");
mooleen.says("I see");
rat.says("downer");

mooleen.says("You were saying something about OOP techniques?...");

Summoning Fundamentals: Encapsulation and
Information Hiding

Encapsulation means drawing a boundary.
There's something in the inside,
there's something in the outside.

Information Hiding means hiding details,
avoiding unintended coupling,

the first is a capability,
the second a design decision

 - Dacun Whirnnmar
 Keeper of the Sacred Index

randalf.says(`Follow me! ` +
 `We're gonna need some space for your practice`);
randalf.says(`One does not simply go and summon an army ` +
 `in a library`);

/*
 * Mooleen follows Randalf into the depths of the caves.
 * Down and down they travel through the darkest corners
 * deep in the earth until a tiny speck of reddish
 * light illuminates the path ahead.
 */

randalf.stopsSuddenly();
mooleen.runsInto(randalf);

/*
 * Mooleen almost succeeds in killing both herself and Randalf by
 * deadly fall continued by diving into a river of molten lava.
 */

randalf.says('That nearly solved all of our problems');

rat.says(`The fate of the world would've fallen on my shoulders`);
rat.says(`Rat, the hero of ages... like the way it sounds`);

mooleen.says('You should probably signal ' +
 '*"Deadly fall to molten lava ahead"*');

randalf.says(`Good idea! But I'm afraid it'd lose its charm`);
randalf.asks(`See that immense plateau in the middle?`);

mooleen.responds(`The one surrounded by rivers ` +
 `of incandescent lava?`);
randalf.says('Yes...');

mooleen.asks(`The one with no apparent way to get onto?`)
randalf.says('Exactly, if nothing gets in, nothing gets out');

mooleen.says('Nothing like what?');
randalf.says('Nothing deadly that wicked mind of yours ' +
 'decides to bring forth into existence');

mooleen.says('Oh come on... those were just drawings!!');

randalf.says(`Let's get Started With the Basics of OOP!`);

Let’s get Started With The Basics of OOP!
Time to start raising your own army of objects! In these introductory chapters you’ll
learn the fundamentals of object-oriented programming in JavaScript. In each

chapter we’ll traverse each one of the classical pillars of OOP: encapsulation,
inheritance and polymorphism.

We’ll start by taking a look at the principle of encapsulation and how to create
objects through both object initializers and constructor functions. You’ll also refresh
the techniques that you have at your disposal to achieve information hiding. We will
wrap the chapter with a comparison between object initializers, factories and
constructor functions in a attempt to understand their strengths and weaknesses.

In the coming chapters you’ll learn about JavaScript’s prototypical inheritance and
polymorphism, and understand how both differ from what we are accustomed to in
C#.

Encapsulation: Creating Objects in JavaScript
The principle of encapsulation consists in putting data and the functions that
operate it together into a single component. In some definitions it includes the
principle of information hiding (or data hiding), that is, the ability to hide
implementation details from consumers by defining a clear boundary or interface
that is safe to use from a consumer perspective.

Information hiding allows the author to change hidden implementation details
without breaking the contract established by the public interface of a component.
Thus both author and consumer can continue developing without getting in the way
of each other: The author can tweak its implementation and the consumer can rest
assured that the author won’t break her code.

In this chapter, we will separate encapsulation from data hiding because JavaScript
uses different approaches to solve each one of these problems.

Let’s start with encapsulation. JavaScript provides different strategies for achieving
encapsulation:

object initializers
constructor functions
ES6 classes

We will now take a look at the first two, and we will devote a whole chapter to ES6
classes later in the book.

Object Initializers

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

In JavaScript-mancy: Getting Started (the first book of the series) you learned the
intricacies of using object initializers (also known as object literals).

Didn’t Read JavaScript-mancy: Getting Started?
Don’t you worry, I got you covered. I have added the whole chapter of object
initializers including the ES2015 features in the first appendix of this book. So if you
haven’t read it jump to the end of the book for a refresher of the basics of objects in
JavaScript followed by a chapter of the quirky behavior of this.

Regardless, this section gives you a quick reminder of how to use object initializers.

Using object initializers to create new objects is dead easy:

1 // creating a simple object
2 let object = {};
3 console.log(object);
4 // => [object Object] { ... }

And so is defining any number of properties and methods within your objects:

 1 // you can create objects with any number
 2 // of properties and methods
 3 let minion = {
 4 hp: 10,
 5 name: 'minion',
 6 toString(){ return this.name;}
 7 };
 8
 9 console.log(minion);
10 // => [object Object] {
11 // hp: 10,
12 // name: "minion",
13 // toString: function toString() {
14 // return this.name;

http://bit.ly/javascriptmancy-oop-fundamentals-encapsulation
https://github.com/vintharas/javascriptmancy-code-samples

15 // }
16 // }

You can even augment objects after they have been created:

1 minion.armor = 'chain mail';
2 console.log(minion.armor);
3 // => chain mail

And use factory functions to aid object creation:

1 // we can use factories to ease object creation
2 function createMinion(name, hp=10){
3 return {
4 hp: hp,
5 name: name,
6 toString: function(){ return this.name;}
7 };
8 }

Relying on the new ES6 short-hand syntax, we can rewrite our factory functions in a
more concise manner:

1 // we can use factories to ease object creation
2 function createMinion(name, hp=10){
3 return {
4 hp,
5 name,
6 toString(){ return this.name;}
7 };
8 }

After you are sasistified with your factory function you can just call it to create a
new object and use it as you please:

1 let orc = createMinion(/* name */ 'orc', /* hp */ 100);
2
3 console.log(orc);
4 // => [object Object] {
5 // hp: 100,
6 // name: "orc",
7 // etc...
8 // }

In addition to object initializers, there’s another way to create objects in JavaScript
that will feel more familiar to a C# developer: constructor functions and the new
operator.

Constructor Functions and the New Operator

In the previous section we saw how to create an object using an object initializer:

1 let object = {};

We can achieve the same result by applying the new operator to a constructor
function. An equivalent statement to the one above using this approach would look
like this:

1 let anotherObject = new Object();
2
3 console.log(anotherObject);
4 // => [object Object] { ... }

While the Object function let’s you create empty objects, you can apply the new
operator on any function in JavaScript to instantiate new objects of your own devise.

Functions that are called with the new operator are known as constructor functions:

 1 function Minion(name='minion', hp=10){
 2 this.hp = hp;
 3 this.name = name;
 4 this.toString = () => this.name;
 5 };
 6
 7 let anotherMinion = new Minion();
 8 console.log(anotherMinion);
 9 // => [object Object] {
10 // hp: 10,
11 // name: "minion",
12 // toString: () => this.name
13 // }

The first thing to highlight in this example is that, while in C# we use the new
operator on classes to instantiate new objects, in JavaScript we use it on constructor
functions. The constructor function is, in a way, acting as a custom type and a class
definition since it defines the properties and methods of the object that will be
created when we invoke it.

We can bring this point home using the instaceof operator. instanceof lets you
verify whether an object has a given type5. Using the anotherMinion from the
previous example we can quickly verify that it is indeed of type Minion:

1 console.log(`anotherMinion is a Minion: ` +
2 ` ${anotherMinion instanceof Minion}`);
3 // => anotherMinion is a Minion: true
4
5 console.log(`anotherMinion is an Object: ` +
6 `${anotherMinion instanceof Object}`);
7 // => anotherMinion is an Object: true

Now take a moment to examine the Minion constructor function and compare it with
the factory function from the previous section. You will notice that they are a little
bit different. In the factory function we create an object via an object initializer and
then return it. In this example, however, there is no object being created nor returned
as far as we can see. What is going on here? How does an object get created then?

It all comes down to the new operator. When you use the new operator on a function
there are several things happening in the background that are hidden from our sight:

1. First an empty object is created and set as this for the function being
executed. That is, the this keyword refers to a new object that has just been
created.

2. If the constructor function has a prototype the new object is given that prototype
(more about prototypes in the next chapter).

3. After that, the function body is invoked. In the example above, we augment the
object with some properties: hp, name and toString.

4. Finally the value of this is returned. This is done implicitly without us
needing to do anything. And, as you can see from our examples above, the
object is created successfully.

But what happens if we return something explicitly from a constructor function?
Well, it depends on what you return. Let’s say that we try to return a primitive type
like a string:

 1 // if you try to return a primitive it is ignored
 2 function MinionOrBanana(name='minion', hp=10){
 3 this.hp = hp;
 4 this.name = name;
 5 return 'banana';
 6 }
 7
 8 let isItAMinionOrIsItABanana = new MinionOrBanana();
 9 console.log(isItAMinionOrIsItABanana)
10 // => [object Object] {
11 // hp: 10,
12 // name: "minion"
13 //}

In this example above we can see how if we try to return a string explicitly the
JavaScript runtime will completely ignore it an return the constructed object (this).
This is also applicable to all primitive types.

What happens if we return an object?

 1 // if you try to return an object it is returned
 2 // instead of the `this` object

 3 function MinionOrBanana(name='minion', hp=10){
 4 this.hp = hp;
 5 this.name = name;
 6 return {name: 'banana'};
 7 }
 8
 9 let isItAMinionOrIsItABanana = new MinionOrBanana();
10 console.log(isItAMinionOrIsItABanana)
11 // => [object Object] {
12 // name: "banana"
13 //}

If you try to return an object explicitly (like the {name: 'banana'} above) this
object will be returned and your original object (the one injected as this to the
constructor function) will be ignored.

JavaScript Arcana: Returning Explicitly from Constructor Functions
Returning expressions explicitly from constructor functions behaves in mysterious and
hidden ways. If you return a primitive type such as a string or a number it will be ignored.
If you return an object it will be returned from the constructor function and the original
object (the one injected as this in the function) will be lost in the fringes between space
and time. In general, if you want your constructor functions to behave in a way akin to
constructors in classical inheritance, prefer not to return anything from them.

You may have noticed that I called the constructor function Minion using uppercase
instead of following the common JavaScript naming convention of using camel case
(minion). Why is that?. Using uppercase to name constructor functions is a popular
convention in the JavaScript community as a means to differentiate them from other
functions. This convention is a way to tell the consumers of an API that they should
use the new operator when calling these functions instead of just calling them
outright. But why do we need to differentiate them? Aren’t all of them functions
anyway?

Well, consider what happens if we call a constructor function without the new
operator:

1 let yetAnotherMinion = Minion();
2 console.log(yetAnotherMinion);
3 // => undefined

Hmm, no object is being returned… But why? Can you remember what happened
with this when a function is called without a context? Yes! That’s right! Whenever
we call a function without a context the value of this is set to the Window object
(unless you are in strict mode in which case it will be undefined). What is
happening here then? By calling a constructor function without the new operator the
function is evaluated in the context of the Window object and instead of creating a
new object, we have just extended the Window object with two new properties hp
and name. Ouch!

1 console.log(window.hp);
2 // => 10
3 console.log(window.name);
4 // => 'minion'

If we had made the same mistake in strict mode we would’ve immediately received
an error that would’ve alerted us much faster that something was terribly wrong:

1 let yetAnotherMinion = Minion();
2 // => TypeError: Cannot set property 'hp' of undefined
3 // wat

JavaScript Arcana: Calling a Constructor Function Without The New
Operator
When you call a constructor function without the new operator you run the risk of
evaluating it in the context of the Window object or undefined in the case of strict mode.

So this is the reason why we usually use the uppercase notation when writing
constructor fuctions. We want to avoid unsuspecting developers from forgetting the
new operator and causing weird side-effects or errors in their programs.

But conventions are not a very reliable thing, are they? Wouldn’t it be better to have
a foolproof way to protect our constructor functions so that even if we forget to use
the new operator they’ll still work?

We humans are prone to errors. Whenever you find your colleagues or yourself
making mistakes consider how you can prevent these from happening by providing a
path of least resistance to the right solution. This can be done by automating

repetitive tasks, setting up tools to highlight problems early in the development
process, etc…

In this particular case we can make our constructor functions more sturdy by
following this pattern:

1 function MinionSafe(name='minion', hp=10){
2 'use strict';
3 if (!this) return new MinionSafe(name, hp);
4
5 this.name = name;
6 this.hp = hp;
7 }

And now it doesn’t matter how we call the constructor function. Call it with new:

1 console.log('using new operator: ', new MinionSafe());
2 // => [object Object] {
3 // hp: 10,
4 // name: "minion"
5 //}

Call it without:

1 console.log('using function call: ', MinionSafe());
2 // => [object Object] {
3 // hp: 10,
4 // name: "minion"
5 //}

And it will work as expected. Great! But can we improve it? Wouldn’t it be nice if
we didn’t have to write the guard clause for every single constructor function we
create?

Functional programming to the rescue! We can define a safeConstructor function
that represents an abstraction of the guard clause and which can be composed with
any constructor function of our choosing:

1 function safeConstructor(constructorFn) {
2 return function() {
3 return new constructorFn(...arguments); // ES6
4 // return new (constructorFn.bind.apply(null, arguments); // ES5
5 }
6 }

The safeConstructor function takes a constructor as argument (constructorFn)
and returns a new function that ensures that the new operator is always called

regardless of the circumstances. You can think of this new function as an improved
or augmented constructor.

From now on we can reuse this function to guard any of the constructor functions in
our application:

1 // function Minion(name='minion', hp=10){
2 // etc...
3 // }
4 let SafeMinion = safeConstructor(Minion);

By composing safeConstructor with the Minion constructor function we obtain a
new function SafeMinion that will work even if we forget to use the new operator:

1 console.log(`using function: ${SafeMinion('orc', 110)}`);
2 // => using function: [object Object] etc...
3 console.log(`using new operator: ${new SafeMinion('pirate', 50)}`);
4 // => "using new operator: [object Object] etc..."

Enjoyed the Functional Programming Bit?
Functional programming is awesome! Once you dip your feet in the forbidden fountain of
functional programming and get a feel for it you won’t be able to stop. If you’ve enjoyed
what you’ve seen thus far, then prepare for the next book in the series that will guide you
through the mystical path of the functional programeer.

ES6 Classes Protects Thy Constructors
A cool thing about ES6 classes is that they improve the developer ergonomics of writing
class-like code in JavaScript. If you use ES6 classes, the JavaScript runtime will throw an
error if you forget to use the new operator to call a constructor function. Yey!

Data Hiding in JavaScript
In JavaScript-mancy: Getting Started you learned two patterns to achieve data
hiding in JavaScript: closures and ES6 symbols. Of these two, only closures provide
real data privacy whilst ES6 symbols make accessing “private” data less convenient.

Can’t Quite Remember How Data Hiding Works?
It’s OK! Take a look at the appendix towards the end of the book for a refresher of the
basics of objects and data hiding in JavaScript.

Since constructor functions are just functions, you can take advantage of both
closures and ES6 symbols to create private properties and methods. Using closures is
as easy as declaring variables in your function constructor body and referencing
them from the methods that you want to expose:

 1 // just like with factory methods you can implement data privacy
 2 // using closures with constructor functions
 3 function WalkingMinion(name='minion', hp=10){
 4 let position = {x: 0, y: 0};
 5
 6 this.hp = hp;
 7 this.name = name;
 8 this.toString = () => this.name;
 9
10 // this function is a closure
11 // that encloses the position variable
12 this.walksTo = (x,y) => {
13 console.log(`${this} walks from (${position.x}, ${position.y}) `\
14 +
15 ` to (${x}, ${y})`);
16 position.x = x;
17 position.y = y;
18 };
19
20 };

In this example we have a WalkingMinion constructor function that we can use to
create many teeny tiny walking minions. Within it, we declare a variable position
that represents the minion position in a two-dimensional space and a walksTo
method that allows the minion to move around in this space. The walksTo method is
a closure because it encloses the value of the position variable.

If you take a close look at the constructor function you’ll realize that the position
variable is not a property of the object being created. That is, we never augment the
this object with the position property. As a result, the minions that we create using
this function will, for all intents and purposes, have a private property position and
limit any consumer interaction with it to using the walksTo method. The beauty of
encapsulation lets us call this method to command each minion to walk without

revealing the actual implementation of the positioning system (which in this case
is just an object with x and y properties).

Indeed if we instantiate a walkingMinion using the above constructor we can see
how there’s no way to access the position property:

1 let walkingMinion = new WalkingMinion();
2 console.log(walkingMinion.position);
3 // => undefined

The position property is not really part of the object itself but it’s effectively part of
its internal state as the variable has been enclosed or captured by the walksTo
function. This means that the walksTo method can read or update the state of the
position property as demonstrated below:

1 walkingMinion.walksTo(2, 2)
2 // => minion walks from (0, 0) to (2, 2)
3 walkingMinion.walksTo(3,3)
4 // => minion walks from (2, 2) to (3, 3)

In addition to achieving data hiding with closures you can use ES6 symbols:

 1 function FlyingMinion(name='minion', hp=10){
 2 let position = Symbol('position');
 3
 4 this.hp = hp;
 5 this.name = name;
 6 this.toString = () => this.name;
 7
 8 this[position] = {x: 0, y: 0};
 9 this.fliesTo = (x,y) => {
10 console.log(`${this} flies like the wind from (${this[position].\
11 x}, ` +
12 `${this[position].y}) to (${x}, ${y})`);
13 this[position].x = x;
14 this[position].y = y;
15 };
16 };

And attain a similar behavior to that we saw with closures. That is, there’s no
apparent way to access the position property from outside the FlyingMinion
object:

1 // again you cannot access the position property (almost)
2 let flyingMinion = new FlyingMinion();
3 console.log(flyingMinion.position);
4 // => undefined

But we can do it through its interface via the fliesTo method:

1 flyingMinion.fliesTo(1,1);
2 // => minion flies like the wind from (0, 0) to (1, 1)
3 flyingMinion.fliesTo(3,3);
4 // => minion flies like the wind from (1, 1) to (3, 3)

Notice that even though ES6 symbols give the appearance of privacy, they don’t
offer true privacy. You can always use Object.getOwnPropertySymbols or
Reflect.ownKeys to retrieve the symbols from an object and thus its “private”
properties. Because of this, prefer using closures over symbols, you get true data
hiding with less code.

Object Initializers vs Constructor Functions
Object initializers Constructor functions

Easy to write, convenient and
readable

Little bit more complicated. They look like normal
functions but you need to implement them in a
different way since the new operator will inject a
new object as context of the function (this)

One-off creation of objects You can reuse them to create many objects

They only support information
hiding via ES6 symbols

They support information hiding via ES6 symbols
and closures

Very simple syntax to define
getters (read-only properties)
and setters

The only way to define getters and setters is using
low level Object methods like
Object.defineProperty

You don’t create subtypes and
can’t use instanceof, but it is
much better to rely on
polymorphism than checking
types

Allows the creation of custom types and enables
the use of instanceof

Calling a constructor function without the new
operator can cause bugs and unwanted side-effects
if you don’t take measures to allow it

Object Factories vs Constructor Functions
When you combine object initializers with factories you get all the benefits from
both object initializers and constructor functions with none of the weaknesses of
constructor functions:

Object Initializers + Factories Constructor functions

Easy to write, convenient and readable.
Factory functions really behave like any
other function, no need to worry about
this.

Little bit more complicated. They look
like normal functions but you need to
implement them in a different way since
the new operator will inject a new object
as context of the function (this).

You can reuse them to create many
objects.

You can reuse them to create many
objects.

They support information hiding via ES6
symbols and closures.

They support information hiding via ES6
symbols and closures.

Very simple syntax to define getters
(read-only properties) and setters.

The only way to define getters and
setters is using low level Object methods
like Object.defineProperty.

You don’t create subtypes and can’t use
instanceof, but it is much better to rely
on polymorphism than checking types.

Allows the creation of custom types and
enables the use of instanceof.

Factory functions work just like any
other function. No need to use new and
thus no need to remember to use it or
guard from forgetting it. They are very
easy to compose with other functions.

Calling a constructor function without
the new operator can cause bugs and
unwanted side-effects if you don’t take
measures to allow it.

Concluding
In this chapter you learned about the first piece of JavaScript Object Oriented
Programming, encapsulation, and how you can achieve it using object initializers,
factory functions and constructor functions.

Object initializers resemble C# object literals. They are very straightforward to use
and very readable, but you can only create one-off objects with them and they only
allow for information hiding through ES6 symbols (which is just slightly better than
convention-based information hiding).

You can enhance your object initializers by wrapping them in factory functions.
Factory functions give you the ability to create many objects of the same type and
true information hiding via closures.

Finally, you can use constructor functions as a method of encapsulation. A
constructor function lets you define custom types with properties and methods of
your own choosing. We achieve that by augmenting the object (this) that is passed
to the function when it is called with the new operator. Because constructors are

functions, they support information hiding with both ES6 symbols and closures. At
the same time, they behave slightly differently than normal functions because they
expect to be called with the new operator and have a this object to augment. This
means that if they are called as regular functions they may cause bugs and have
unexpected side-effects. We can guard against this weakness by implementing a
guard for when a constructor is called directly without the new operator.

In the next chapter you’ll discover the next piece of JavaScript Object Oriented
Programming: prototypical inheritance.

/*
 Mooleen weaves a spell that summons a malformed
 sheep with two heads and six legs of diverse lengths
*/

randalf.looksPained();
randalf.says('Great job! You almost got that sheep right!');
rat.says('Super job indeed master!');

mooleen.says('Thank you!');
mooleen.says(`It's actually a sheep 2.0`);
mooleen.says(`A better, improved sheep`);
mooleen.says(`Double the brains, double the speed`);

/*
* The sheep v2.0 speedily jumps over the plateau chasm
* into the lava below
*/
sheepV20.says('beeeeeeeeh');

mooleen.says('ehm');
mooleen.says(`let's keep practicing`);

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Create a New Sheep 3.0!!
Mooleen is about to try out a new version of the Sheep! Help her by creating the weirdest
sheep you can imagine using an object initializer. Free your creativity! At the very least it
should satisfy the following code snippet:

1 sheep.describe();
2 // => You look at what you think is a sheep
3 sheep.baa();
4 // => 'Baaaaaaaaa'
5 // => The sheep makes a wailing sound vaguely resembling bleating
6 // that gives you goose bumps
7 sheep.goesTo(1, 1);
8 // => The sheep slowly moves to position (1,1)

Solution
 1 mooleen.says(`Ok... let me see... what about this version?`);
 2

 3 var leglessSheep = {
 4 position: {x:0, y:0},
 5 toString: function(){
 6 return `You look at what you think is a sheep. ` +
 7 `It's hard to be sure though was it's a legless ` +
 8 `lump on the ground`;
 9 },
10 describe: function(){ return console.log(this.toString());
11 },
12 baa: function(){
13 console.log(`'Baaaaaaaaa'
14 The sheep makes a wailing sound vaguely resembling bleating
15 that gives you goose bumps
16 `);
17 },
18 goesTo: function(x,y){
19 this.position.x = x;
20 this.position.y = y;
21 console.log(`The sheep slowly crawls to position (${x},${y})`);

http://bit.ly/javascriptmancy-oop-fundamentals-encapsulation-exercises
https://github.com/vintharas/javascriptmancy-code-samples

22 },
23 };
24

25 mooleen.says('Voila!');
26

27 leglessSheep.describe();
28 // => You look at what you think is a sheep. It's hard to be sure
29 // though was it's a legless lump on the ground
30 leglessSheep.baa();
31 // => 'Baaaaaaaaa'
32 // The sheep makes a wailing sound vaguely resembling bleating
33 // that gives you goose bumps
34 leglessSheep.goesTo(1,1);
35 //=> The sheep slowly crawls to position (1,1)
36

37 randalf.says(`That's the saddest sheep I've ever seen`);
38 mooleen.says(`It's incredibly light and suited for stealth missions`\
39);
40 rat.says('Look at that crawl! Majestic!');

And Remember! With ES2015 You Can Use Shorthand Syntax!
You could rewrite the sheep above like this:

1 let leglessSheep = {
2 legs: 0,
3 position: {x:0, y:0},
4 // collapsed implementation which would remain the same
5 toString(){ ... },
6 describe(){ ... }
7 baa(){ ... },
8 goesTo(x, y){ ... },
9 };

Good try! But Can you Do Better!?
Now try again using a factory function. You can call it createSheep and it should return a
new version of a sheep with an arbitrary number of legs and position:

1 var sheep = createSheep(/* legs */ 5, /* x */ 1, /* y */ 2);

It should satisfy the same interface as the sheep in the previous exercise.

Solution
 1 function createSheep(legs, x, y){
 2 return {
 3 position: {x:x, y:y},
 4 legs: legs,
 5 toString: function(){
 6 return `You look at what you think is a sheep. It has ${legs} \
 7 legs`;
 8 },
 9 describe: function(){ return console.log(this.toString());},
10 baa: function(){
11 console.log(`'Baaaaaaaaa'
12 The sheep makes a wailing sound vaguely resembling bleating
13 that gives you goose bumps
14 `);
15 },
16 goesTo: function(x,y){
17 this.position.x = x;
18 this.position.y = y;
19 console.log(`The sheep slowly goes to position (${x},${y})`);
20 },
21 };
22 }
23

24 var newAbominationSheep = createSheep(50, 2, 2);
25 newAbominationSheep.describe();
26 // => You look at what you think is a sheep. It has 50 legs
27

28 randalf.says('Ok what is the purpose of a sheep having 50 legs?');
29 mooleen.says('Reliability, have you heard about ' +
30 ' the concept of fault tolerance?');
31 mooleen.says('Even wounded, this sheep will be able ' +
32 'to keep going and crush our enemies');
33 rat.says('Boooya!');

And Remember! With ES2015 You Can Use Shorthand Syntax Also
In Properties!
You could rewrite the sheep above like this:

 1 function createSheep(legs, x, y){
 2 return {
 3 // short-hand syntax for properties
 4 position: {x, y},
 5 legs,
 6 // short-hand syntax for methods
 7 toString(){ ... },
 8 describe(){ ... },
 9 baa(){ ... },
10 goesTo(x,y){ ... }

11 };
12 }

Three Sheeps’ a Charm!
Ok. And now one last time, use a constructor function to create a new custom type that
represents a sheep.

1 var sheep = new Sheep(/* legs */ 5, /* x */ 1, /* y */ 2);

It should satisfy the same interface as the sheep in the previous exercises.

Solution
 1 function Sheep(legs, x, y){
 2 this.legs = legs;
 3 this.position = {x:x, y:y};
 4 this.toString = function(){
 5 return `You look at a beautiful sheep! It has ${this.legs} legs`;
 6 };
 7 this.describe = function(){
 8 return console.log(this.toString());
 9 };
10 this.baa = function(){
11 console.log(`'Baaaaaaaaa'
12 The sheep makes a beautiful musical sound reminiscent
13 of spring and wildberries.
14 `);
15 };
16 this.goesTo = function(x,y){
17 this.position.x = x;
18 this.position.y = y;
19 console.log(`The sheep promptly goes to position (${x},${y})`);
20 };
21 }
22

23 var theUltimateSheep = new Sheep(4, 0, 0);
24 theUltimateSheep.describe();
25 // => You look at a beautiful sheep! It has 4 legs
26 theUltimateSheep.baa();
27 // => 'Baaaaaaaaa'
28 // The sheep makes a beautiful musical sound reminiscent
29 // of spring and wildberries.
30

31 mooleen.says("I think I'm starting to get the gist of it");
32 randalf.says("Excellent...");

33 rat.says("Superb!");
34 randalf.says("... but...");
35 rat.says("but!?");
36

37 randalf.says("You have all the sheep internals exposed");
38 randalf.says("Take a look at this");
39 theUltimateSheep.legs = 0;
40

41 randalf.says("Your sheep has no legs now");
42 randalf.says("And I can even make it explode");
43 theUltimateSheep.position = undefined;
44 try {
45 theUltimateSheep.goesTo(1,1);
46 } catch(e){
47 console.log("sheep explodes to teeny tiny pieces");
48 }
49 randalf.says('Oh yeah, that happened');
50 randalf.says('You have to be careful and disallow for' +
51 'malicious or ignorant javascriptmancer from ' +
52 'breaking your creations');

Protect Thy Sheep!!
Use whichever data hiding technique you want to protect your sheep from malicious or
ignorant tampering.

Solution
 1 function SuperSheep(legs, x, y){
 2 var legs = legs,
 3 position = {x: x, y: y};
 4

 5 this.toString = function(){
 6 // this is a closure that encloses the leg variable
 7 return `You look at a beautiful sheep! It has ${legs} legs`;
 8 };
 9 this.describe = function(){
10 return console.log(this.toString());
11 };
12 this.baa = function(){
13 console.log(`'Baaaaaaaaa'
14 The sheep makes a beautiful musical sound reminiscent
15 of spring and wildberries.
16 `);
17 };
18 this.goesTo = function(x,y){
19 // this is a closure that encloses the position variable

20 position.x = x;
21 position.y = y;
22 console.log(`The sheep promptly goes to position (${x},${y})`);
23 };
24 }
25

26 var superSheep = new SuperSheep(4, 0, 0);
27

28 mooleen.says('What about this one?');
29 randalf.says('Hmm let me see...');
30

31 superSheep.legs = 100;
32 superSheep.describe();
33 // => You look at a beautiful sheep! It has 4 legs
34 randalf.says('Good job...');
35

36 superSheep.position = undefined;
37 superSheep.goesTo(1,1);
38 // => The sheep promptly goes to position (1,1)
39 randalf.says('Good. Solid. Job');
40

41 mooleen.says('haha hell yeah');
42 rat.applaudes();

Summoning Fundamentals: Prototypical
Inheritance

Don't Repeat Yourself

 - Tunh Ynad
 Guildmaster School of Pragmatics,
 Principles

 1 /*
 2 * The world. We dive into it through a sea of clouds,
 3 * a majestic endless mountain range,
 4 * a white peaked mountain, down into the rock, into the
 5 * entrails of the earth. Magma, the world's own blood and
 6 * life essence surrounds you, magma and... Sheep?!
 7 */
 8

 9 randalf.says("And that's the 999 sheep... Excellent!
10 You've clearly mastered the principle
11 of encapsulation");
12 randalf.says("Now let's say that you want to expand
13 your army to minions other than sheep");
14

15 rat.says('Something mighty like a badger');
16 mooleen.says('... A badger?');
17 rat.says('Yeah, a badger, they can be awfully mean');
18

19 randalf.says("Well the more creatures you command,
20 the more similarities you'll find between them.
21 And since you have a limited amount of breaths left
22 on this rock, you'll want to save them for what's
23 truly important");
24

25 mooleen.says('like eating chocolate...')
26 rat.says('...or going to a spa');
27 randalf.says('... or pondering about the life,
28 the universe and everything...')
29

30 mooleen.says('So, how do you that?')
31

32 randalf.says("You Don't repeat yourself.
33 Inheritance!");

You Don’t Repeat Yourself. Inheritance!
In the last chapter you learned how you can achieve encapsulation in JavaScript by
using object initializers, factory functions and constructor functions. Object
initializers should be pretty familiar to you because C# has object literals, factory
functions are comparable to C# factory methods and constructor functions are not so
different from a class constructor. Things started getting a little bit strange when you
discovered how to achieve data hiding through closures and ES6 symbols both
concepts pretty foreign to C# 6. The next step towards OOP badassery is inheritance
and beware because things are about to become even weirder.

In C#, you can achieve inheritance by deriving from a concrete class, an abstract
class or by implementing an interface. Either way, inheritance is a mechanism of

code reuse and polymorphism. On one hand you use inheritance any time you want
to share a piece of behavior across several classes to avoid code duplication. On the
other, you use it to achieve flexible and extensible object oriented designs where a
specific interface 7 is replaced at runtime by a concrete implementation.

Inheritance in JavaScript differs greatly from what you are accustomed to in C# and
that’s mainly due to two reasons:

*First, JavaScript doesn’t depend on inheritance to implement polymorphism. It is a
dynamic language after all, and gets by with duck typing8. This means that, in
JavaScript, inheritance is mainly a technique for code reuse9. * Second, and even
more important, JavaScript supports another flavor of inheritance very different from
traditional or class-based inheritance: Prototypical Inheritance.

Prototypical Inheritance you say?

Yes! JavaScript exhibits a special kind of inheritance where the blueprint for an
object is actually - drumroll - another object. This role of acting like a blueprint is
traditionally played by the almighty class in C# and other statically typed languages.
In languages with prototypical inheritance like JavaScript, it is performed by the
humble object. Within the context of prototypical inheritance everything is about
objects being modeled after other objects which are henceforth called prototypes. In
this universe of objects, any single object can be based on a prototype, inherit all its
properties and methods, and then have its own specific properties and methods on
top. There’s no need for classes.

So, if you only need objects, how does JavaScript prototypical inheritance stack
against C# classical inheritance?

Classical Inheritance vs Prototypical Inheritance
At a high level, this is how C# classical inheritance compares to JavaScript
prototypical inheritance:

C# Classical Inheritance JavaScript - Prototypical Inheritance
Focuses on classes Focuses on objects
Classes cannot be modified at
runtime: You define a class with a
series of methods and properties and
you cannot add new methods or

Prototypes are more flexible and extensible
than classes. They can be immutable but
you also have the option to extend them or
modify them at runtime. When you do so,

properties, nor modify the existing
ones at runtime.

you affect all objects that inherit that
prototype.

You have classes, abstract classes,
interfaces, objects, override, virtual,
sealed, etc.

You have mainly objects. Depending on
your preferences you may have classes,
constructor functions, factories, etc. But
overall it is a simpler model that requires
less elements and rules.

C# classes promote rigid taxonomies.
This requires a lot of additional code
and artifice to come to good designs.

JavaScript prototypical inheritance is more
flexible. Composing objects is very
straightforward.

C# doesn’t support multiple
inheritance

JavaScript lets you compose an object with
as many prototypes as you want achieving
something similar to multiple inheritance.

C# has great support for information
hiding

JavaScript does information hiding via
closures and symbols.

Where C# focuses on classes and creating taxonomies, JavaScript focuses on objects
and can achieve a class-free inheritance that is more flexible and extensible than its
C# counterpart. Where C# classes are immutable at runtime, JavaScript prototypes
can be augmented or modified at any point in time. Where C# provides a lot of
keywords and constructs that let you be very thorough and explicit about how
someone can interact with a class of your creation, JavaScript does away with these
concepts in favor of a simpler inheritance model. And where C# provides a pretty
clear and opinionated path on how to do inheritance, JavaScript gives you so much
freedom that it can be daunting at times.

Now that we’ve seen the differences between the inheritance models in C# and
JavaScript, let’s dive into prototypical inheritance and find out what it means in
terms of actual code.

What About ES6 Classes?
If you have had the opportunity to look at ES6 classes you may be wondering: This looks
like class-based inheritance, doesn’t it? Well the syntax is a little bit deceptive because
although ES6 classes really look like C# classes the reality is very different: ES6 Classes
are just syntactic sugar over the existing prototypical inheritance model.

We will dive deeper into ES6 classes later in the book and you’ll also be able to learn the
equivalent of a ES6 class in plain class-less JavaScript code.

JavaScript Prototypical Inheritance
We can distinguish between two types of prototypical inheritance:

The first one and most common is delegation-based inheritance. In delegation-
based inheritance object and prototype establish what is known as a prototypical
chain or prototype chain where property or method calls are dispatched or
delegated from the object to the prototype.

The second is concatenative inheritance. With this brand of inheritance an object is
merged with a prototype and thus gains its properties and methods. The merging of
object and prototype consists in copying or concatenating the properties of the
prototype into the object.

But, what are object prototypes?

Object Prototypes
Any object can be a prototype. What makes an object a prototype is just another
object that specifies it as its prototype. It is as simple as that.

The way that you specify that an object is a prototype depends on the method you
use to create new objects:

Object initializers
Object.create

Constructor functions

Let’s review each of these methods in turn:

Object Prototypes with Object Initializers

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

When you use object initializers you can define a prototype via the __proto__
property. If you set this property in an object O to another object P, P effectively
becomes a prototype.

For instance, if we have the minion from previous examples:

1 let minion = {
2 hp: 10,
3 name: 'minion',
4 toString(){
5 return this.name;
6 }
7 };

And then we devise a new spell to summon a giantScorpion. We can set minion as
a prototype of giantScorpion by using its __proto__ property (available from ES6
10):

1 let giantScorpion = {
2 // here we set the minion as prototype
3 '__proto__': minion,
4 name: 'scorpion',
5 stings() {
6 console.log(`${this} pierces your shoulder with its venomous sti\
7 ng`);
8 }
9 }

And TaDa! Now minion is the prototype of giantScorpion, that is, there is a
prototypical inheritance relationship between them. If we try to access properties
that only exist in minion via giantScorpion we will be able to see the prototypical
chain in action:

http://bit.ly/javascriptmancy-oop-fundamentals-inheritance
https://github.com/vintharas/javascriptmancy-code-samples

1 // access a prototype property via prototype chain
2 console.log(`giant scorpion has ${giantScorpion.hp} hit points`);
3 // => giant scorpion has 10 hit points

Indeed we can see how giantScorpion, which doesn’t have an hp property itself, is
accessing the hp property of its prototype. And what happens with the name property
that is shared by both?

1 // if a property is shared between an object and its prototype
2 // there's no need to traverse the prototype chain
3 // the nearest property wins
4 giantScorpion.stings();
5 // => scorpion pierces your shoulder with its venomous sting

In this example above, we call the stings method that, in turn, calls the toString
method which returns this.name. Because the name variable exists in the
giantScorpion object, there’s no need to traverse the prototypical chain. As a result,
the property giantScorpion.name is used to generate the string representation of
giantScorpion and we get "scorpion pierces your shoulder..." (instead of
"minion pierces your shoulder...").

From here on you have two options in regards to how to use your prototype: You can
use one prototype instance per object instance or share a prototype across many
objects. While there’s nothing stopping you from having one prototype per object,
the real benefits of inheritance in terms of code reuse come from sharing the same
prototype across several objects:

 1 let smallScorpion = {
 2 // here we set the minion as prototype
 3 '__proto__': minion,
 4 name: 'small scorpion',
 5 stings() {
 6 console.log(`${this} pierces your shoulder with its tiny venomou\
 7 s sting`);
 8 }
 9 };
10
11 let giantSpider = {
12 // here we set the minion as prototype
13 '__proto__': minion,
14 name: 'giant spider',
15 launchWeb() {
16 console.log(`${this} launches a sticky web and immobilizes you`)\
17 ;
18 }
19 };

In these examples, the properties and methods in the minion prototype are contained
within a single object. These properties are shared between the giantScorpion,

smallScorpion and giantSpider objects by virtue of the prototypical chain.
Whereas if we ignored inheritance we would need to define and allocate them in
each specific derived object with the additional memory footprint.

You may be wondering, wait, the minion object had a property hp, doesn’t that
mean that all derived objects are coupled? That if I change hp in one object it will
affect all others?

Well spotted! When you use the same prototype with several objects you want to
avoid storing state in your prototype. While having properties with primitive values
such as numbers or strings won’t couple your objects, having properties with arrays
or objects will definitely couple them. This can be better illustrated with an example.

First, if you try to set the value of a property located in your prototype you’ll just
create a new property in the derived object. This newly created property will shadow
that of the prototype. This is why properties with primitive values in prototypes act
sort of as initial or default values:

1 console.log(`Small scorpion has ${smallScorpion.hp} hp`);
2 // => Small scorpion has 10 hp
3 smallScorpion.hp = 22;
4
5 console.log(`Small scorpion has ${smallScorpion.hp} hp`);
6 // => Small scorpion has 22 hp
7
8 console.log(`Giant Spider *still* has ${giantSpider.hp}`);
9 // => Giant spider still has 10 hp

If you however try to interact with prototype properties holding objects or arrays, all
objects that share that prototype will be affected.

Imagine that you have a minion prototype with a stomach property represented by an
array where your evil minion will digest its victims. Since all derived objects share
minion as prototype all of them will hold the same reference to the stomach
property. As a result, if giantScorpion eats an elf all of the sudden the
giantSpider (and the smallScorpion) will show the same side-effect:

 1 // Imagine that a minion had a stomach
 2 // what a wonderful thing stomachs are
 3 minion.stomach = [];
 4
 5 // if a giant scorpion eats an elf
 6 giantScorpion.stomach.push('elf')
 7 // we can verify that yeah, it has eaten an elf
 8 console.log(`giant scorpion stomach: ${giantScorpion.stomach}`);
 9 // => giant scorpion stomach: elf
10

11 // but so has the spider
12 console.log(`giant spider stomach: ${giantSpider.stomach}`);
13 // => giant spider stomach: elf
14 // Waaaat!?

So the most common practice when you share a prototype across many objects
is to only place methods in the prototype, and keep the state in the object itself.

By the by, did you notice something special in the previous example? We added a
stomach property to minion and magically all objects with that prototype got access
to that property.

A very interesting characteristic of prototypical inheritance is that it allows you to
augment all objects that share a prototype at runtime by augmenting the
prototype itself. This means that if we add a new method eats to minion:

1 // A cool thing is that if you augment a prototype
2 // you automatically augment all its derived objects
3 minion.eats = function(food){
4 console.log(`${this} eats ${food} and gains ${food.hp} health`);
5 this.hp += food.hp;
6 };

All objects that have minion as prototype will automatically gain that method by
virtue of the prototype chain:

 1 giantScorpion.eats({name: 'hamburger', hp: 10, toString(){return thi\
 2 s.name}});
 3 // => scorpion eats hamburger and gains 10 health
 4
 5 smallScorpion.eats({name: 'ice cream', hp: 1, toString(){return this\
 6 .name}});
 7 // => scorpion eats ice cream and gains 11 health
 8
 9 giantSpider.eats({name: 'goblin', hp: 100, toString(){return this.na\
10 me}});
11 // => giant spider eats hamburger and gains 100 health

Awesome right?

Object Prototypes with Object.Create or OLOO
__proto__ is in an Annex of the ECMA standard and only works in browsers. If you
don’t feel comfortable with this, or you are working with JavaScript in another
environment like node.js then you can use ES5 Object.create.

Object.create lets you create a new object that will have as prototype another
object of your choice. It works like a factory function for creating objects with a
given prototype.

For instance, if we adapt this example from the previous section:

1 let giantScorpion = {
2 // here we set the minion as prototype
3 '__proto__': minion,
4 name: 'scorpion',
5 stings() {
6 console.log(`${this} pierces your shoulder with its venomous sti\
7 ng`);
8 }
9 }

To use Object.create instead of __proto__ it would look like this:

1 // 1) create new object with minion as prototype
2 let newGiantScorpion = Object.create(minion);
3
4 // 2) augment object with desired properties
5 newGiantScorpion.name = 'scorpion';
6 newGiantScorpion.stings = function(){
7 console.log(`${this} pierces your shoulder with its venomous sti\
8 ng`);
9 };

Just like in the case of the __proto__ property, the result of this snippet of code is a
new object newGiantScorpion that has two properties (name and stings) and the
minion object as prototype.

You can achieve a more compact syntax if you use ES6 Object.assign:

 1 // 1) create new object with minion as prototype
 2 let newGiantScorpion = Object.create(minion);
 3
 4 // 2) augment object with desired properties
 5 Object.assign(newGiantScorpion,
 6 /* new giant scorpion properties */
 7 {
 8 name: 'scorpion',
 9 stings(){
10 console.log(`${this} pierces your shoulder with its venomous sti\
11 ng`);
12 }
13 };

Object.assign copies the properties from one (or several) objects into a target
object of your choice (in this case newGiantScorpion).

Defining Prototypes with Constructor Functions
Defining prototypes with constructor functions works in a slightly different way than
what we’ve seen thus far. Let’s illustrate these differences with an example.

Imagine that we have a TeleportingMinion that can teletransport itself wherever it
desires and is represented by a constructor function:

 1 function TeleportingMinion(){
 2 let position = {x: 0, y: 0};
 3
 4 this.teleportsTo = function(x, y){
 5 console.log(`${this} teleports from ` +
 6 `(${position.x}, ${position.y}) to (${x}, ${y})`);
 7 position.x = x;
 8 position.y = y;
 9 };
10
11 this.healthReport = function(){
12 console.log(`${this} has ${this.hp} health. It looks healthy.`);
13 };
14 }

In this case, instead of using the __proto__ property, we assign the prototype minion
to the prototype property of the constructor function:

1 // Remember, the minion object looked like this:
2 // let minion = {
3 // hp: 10,
4 // name: 'minion',
5 // toString(){ return this.name;}
6 // };
7
8 TeleportingMinion.prototype = minion;
9 TeleportingMinion.prototype.constructor = TeleportingMinion;

From this point forward, every object that we create with this constructor function
will have the minion object as prototype:

1 let oneCrazyTeleportingMinion = new TeleportingMinion();
2 oneCrazyTeleportingMinion.healthReport();
3 // => minion has 10 health. It looks healthy.
4
5 let anotherCrazyTeleportingMinion = new TeleportingMinion();
6 anotherCrazyTeleportingMinion.healthReport();
7 // => minion has 10 health. It looks healthy.

As you can appreciate in the example above, the healthReport method of these
teleporting minions accesses the hp property of the original minion object through
the prototypical chain.

You Can Also Use a New Object As Prototype
A common practice when setting the prototype of a constructor is to use a completely
new object:

1 TeleportingMinion.prototype = Object.create(minion);

That is, instead of using minion directly, we create a new object that has minion as
prototype. This object will now become the prototype of any new TeleportingMinion
that we create in the future.

But why follow this approach? What do we gain? The advantage of this technique is
that we still have the minion object in our prototypical chain (so we can inherit all its
methods) and, additionally, we gain the ability to augment the TeleportingMinion
prototype without affecting the original minion prototype or any of its descendants.

If we want to add a new behavior to all teleporting minions that normal minions
shouldn’t have, we only need to augment the teleporting minion prototype. If we want
to add a new behavior to all minions regardless of their teleporting nature we can
augment the original minion prototype as usual.

Creating Longer Prototype Chains
You should know that you are not limited to a one level deep prototype chain with
just an object and a prototype. You can create big inheritance structures just like in
C#.

Let’s say that we want to create a wizard. We can make it inherit from the
TeleportingMinion using the __proto__ property:

1 let wizard = {
2 '__proto__': new TeleportingMinion(),
3 name: 'Evil wizard',
4 castsFireballSpell(target){
5 console.log(`${this} casts fireball spell `+
6 `and obliterates ${target}`);
7 }
8 };

Effectively establishing a prototype chain that looks like this:

1 wizard => teleportingMinion => minion

Where our new object wizard now inherits the behavior of both a
teleportingMinion and a minion as you can appreciate in this example below:

 1 // The wizard can cast fireballs
 2 wizard.castsFireballSpell('sandwich');
 3 // => Evil wizard casts fireball spell and obliterates sandwich
 4 // damn that was my last sandwich
 5
 6 // It can teleport
 7 wizard.teleportsTo(1,2);
 8 // => Evil wizard teleports from (0, 0) to (1, 2)
 9
10 // And it has hit points
11 wizard.healthReport();
12 // => Evil wizard has 10 health. It looks healthy.

And we can do the same with constructor functions like with this Druid:

1 function Druid(){
2 this.name = 'Druid of the Forest';
3 this.changesSkinIntoA = function(skin){
4 console.log(`${this} changes his skin into a ${skin}`);
5 }
6 }

Since this time we have a construction function in our hands, instead of using the
__proto__ property we use Druid.prototype:

1 Druid.prototype = new TeleportingMinion();
2 Druid.prototype.constructor = Druid;

And create a prototype chain like this:

1 Druid => teleportingMinion => minion

Now any druid object that we instantiate using the Druid constructor function will
inherit all its mighty abilities from teleportingMinion and minion:

 1 let druid = new Druid();
 2
 3 // the druid can change skin
 4 druid.changesSkinIntoA('wolf');
 5 // => Druid of the Forest changes his skin into a wolf
 6
 7 // it can teleport
 8 druid.teleportsTo(2,2);
 9 // => Druid of the Forest teleports from (0, 0) to (2, 2)
10
11 // and has hit points
12 druid.healthReport();
13 // => Druid of the Forest has 10 health. It looks healthy.

What About Concatenative Protypical Inheritance?
In this first dive into OOP we are going to follow the most natural path for a C#
developer coming to JavaScript. We have begun at the beginning: with prototypical
inheritance. We’ll continue by mimicking classical inheritance and from there we’ll
jump to ES6 classes. The flavor of prototypical inheritance that enables having a
similar inheritance flow to that of classes is the delegation-based inheritance and
that’s why we have focused on it first.

We will come back to concatenative inheritance and object composition after we’ve
reviewed ES6 classes. Stay tuned!

Let’s wrap this chapter by comparing prototypical inheritance with object
initializers, Object.create and constructor functions.

Object Initializers vs Object.create vs Constructor Functions
Object initializers
__proto__ Object.create OLOO Contructor Functions

Very simple and
readable way to
setup prototypical
inheritance.

Simple way to setup prototypical
inheritance. Less terse than
initializers. You can use
Object.assign to make it more
terse.

Less straightforward as
you set the prototype on
the constructor function
and not an object.

Need to set it every
time you create an
object unless you use
a factory function.

Need to set it every time you
create an object unless you use a
factory function.

Set it once on the
constructor function and
is reused for all
instances created
afterwards.

It is only reliable in
ES6 and on web
browsers.

Available from ES5 (all modern
browsers and other JS
environments)

Supported in any
environment.

Simple syntax for
defining getters and
setters.

Can only define getters and setters
via defineProperty.

Can only define getters
and setters via
defineProperty.

Concluding
Let’s summarize what you’ve learned so far about prototypical inheritance.
JavaScript doesn’t have the concept of traditional class-based inheritance since it
doesn’t have real classes. Instead JavaScript inheritance revolves around objects, just
simple objects. You can use any object as a prototype and create new objects that are
based on this prototype and inherit properties and methods from it.

In order to establish an inheritance relationship between an object and a prototype
you can either use the __proto__ property within an object initializer,
Object.create or the prototype property within a constructor function. The two
first methods, which completely prescind of functions, are also called OLOO
(Objects Linked to Other Objects). They provide a simpler approach to prototypical
inheritance as there’s one less element you need to think about (the constructor
function). You can have an inheritance tree with many levels of depth where an
object has a prototype which in turn has a prototype, and so on.

Whenever you try to access a property or method of an object that has a prototype
the JavaScript runtime will try to find that property or method within the object
itself, if it can’t find it, it will continue down the prototypical chain until it finds it.
This is known as delegation-based inheritance and is the most common flavor of
prototypical inheritance in JavaScript. If you use the same prototype object for
several objects in this delegating fashion you should avoid storing state in the
prototype since it may couple all your “derived” objects.

There’s also another flavor of prototypical inheritance called concatenative
inheritance. It consists on copying properties from a prototype to an object and leads
to object composition. We will take a look at it later within the book.

 1 randalf.says("And those were the basics of prototypes");
 2

 3 mooleen.says('Great! ');
 4 "Now I should be able to encapsulate common behaviors" +
 5 "inside prototypes and reuse them across your minions");
 6

 7 randalf.says("Exactly!");
 8 randalf.says("Let's expand your mighty armies with cows" +
 9 "and goats");
10 rat.says("And badgers!");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsBin or
downloading the source code from GitHub.

A Cow and __proto__
Remember the sheep from the previous chapter?

 1 var sheep = {
 2 position: {x:0, y:0},
 3 legs: 0,
 4 toString: function(){
 5 return "You look at what you think is a sheep. It's " +
 6 "hard to be sure though was it's a legless lump on the ground";
 7 },
 8 describe: function(){ return console.log(this.toString());},
 9 baa: function(){
10 console.log(`'Baaaaaaaaa'
11 The sheep makes a wailing sound vaguely resembling bleating
12 that gives you goose bumps
13 `);
14 },
15 goesTo: function(x,y){
16 this.position.x = x;
17 this.position.y = y;
18 console.log(`The sheep slowly crawls to position (${x},${y})`);
19 },
20 };

Create a new minion cow, extract the common behaviors between sheep and cow inside a
prototype minion and take advantage of prototypical inheritance to reuse these behaviors in
sheep and cow.

Tip: Use the __proto__ property inside an object initializer.

Solution

http://bit.ly/javascriptmancy-oop-fundamentals-inheritance-exercises
https://github.com/vintharas/javascriptmancy-code-samples

 1 // the minion prototype
 2 // encapsulates the common behaviors
 3 // of describing a minion and moving
 4 var minion = {
 5 describe: function(){
 6 console.log(this.toString());
 7 },
 8 goesTo: function(x,y){
 9 this.position.x = x;
10 this.position.y = y;
11 console.log(`The ${this.name} slowly crawls to `+
12 ` position (${x},${y})`);
13 }
14 };
15

16 var sheep = {
17 "__proto__": minion,
18 name: "sheep",
19 position: {x:0, y:0},
20 legs: 0,
21 toString: function(){
22 return "You look at what you think is a sheep. "+
23 "It's hard to be sure though was it's a legless "+
24 "lump on the ground";
25 },
26 baa: function(){
27 console.log(`'Baaaaaaaaa'
28 The sheep makes a wailing sound vaguely resembling `+
29 A. `bleating that gives you goose bumps`);
30 }
31 };
32

33 var cow = {
34 "__proto__": minion,
35 name: "cow",
36 position: {x:0, y:0},
37 legs: 0,
38 toString: function(){
39 return "You look at what you think is a cow. " +
40 "It's hard to be sure though was it's a big " +
41 "legless lump on the ground";
42 },
43 moo: function(){
44 console.log(`'Moooooooo'
45 The cow makes a torturing sound vaguely resembling mooing.`);
46 }
47 };
48

49 sheep.describe();
50 // => You look at what you think is a sheep.
51 // It's hard to be sure though was it's a legless
52 // lump on the group
53 sheep.goesTo(1,1);
54 // => The sheep slowly crawls to position (1,1)
55

56 cow.describe();
57 // => You look at what you think is a cow.
58 // It's hard to be sure though was it's a big
59 // legless lump on the ground
60 cow.goesTo(2,2);
61 // => The cow slowly crawls to position (2,2)

62

63 randalf.says('Take a look at that!');
64 mooleen.says('Yes haha see how I reuse those two ' +
65 'behaviors in the sheep and the cow');
66 rat.says('Marvellous!');

A Goat and Object.create
Now let’s review the sheep factory function from the previous chapter.

 1 function createSheep(legs, x, y){
 2 return {
 3 position: {x:x, y:y},
 4 legs: legs,
 5 toString: function(){
 6 return `You look at what you think is a sheep. ` +
 7 `It has ${legs} legs`;
 8 },
 9 describe: function(){ return console.log(this.toString());},
10 baa: function(){
11 console.log(`'Baaaaaaaaa'
12 The sheep makes a wailing sound vaguely resembling bleating
13 that gives you goose bumps
14 `);
15 },
16 goesTo: function(x,y){
17 this.position.x = x;
18 this.position.y = y;
19 console.log(`The sheep slowly goes to position (${x},${y})`);
20 },
21 };
22 }

Create a new factory function createGoat and take advantage of prototypical inheritance to
reuse the behaviors defined by the minion prototype in both sheep and goats.

Tip: Take advantage of Object.create inside the factory function.

Solution
 1 function createSheep(legs, x, y){
 2 var sheep = Object.create(minion);
 3
 4 return Object.assign(sheep, {
 5 name: 'sheep',
 6 position: {x:x, y:y},

 7 legs: legs,
 8 toString: function(){
 9 return `You look at what you think is a ${this.name}.`+
10 ` It has ${legs} legs`;
11 },
12 baa: function(){
13 console.log(`'Baaaaaaaaa'
14 The ${this.name} makes a wailing sound vaguely resembling bleating
15 that gives you goose bumps
16 `);
17 }});
18 }
19

20 function createGoat(legs, x, y){
21 var goat = Object.create(minion);
22
23 return Object.assign(goat, {
24 name: 'goat',
25 position: {x:x, y:y},
26 legs: legs,
27 toString: function(){
28 return `You look at what you think is a ${this.name}.`+
29 ` It has ${legs} legs`;
30 },
31 scream: function(){
32 console.log(`'Waaaaaaa'
33 The ${this.name} makes a wailing sound resembling`+
34 ` a person being tortured.
35 `);
36 }});
37 }
38

39 var newSheep = createSheep(4, 0, 0);
40 newSheep.describe();
41 // => You look at what you think is a sheep. It has 4 legs
42 newSheep.goesTo(1,1);
43 // => The sheep slowly crawls to position (1,1)
44

45 var goat = createGoat(4, 2, 2);
46 goat.describe();
47 // => You look at what you think is a goat. It has 4 legs
48 goat.goesTo(1, 1);
49 // => The goat slowly crawls to position (1,1)
50

51

52 randalf.says('Great! See how Object.create works ' +
53 'perfectly and how `describe` and `goesTo` ' +
54 'are delegated to the prototype?');
55 mooleen.says('Yes!');

The Mighty Badger
Ok and now it’s time for the mighty and mean badger. Remember this constructor function
from the previous chapter?

 1 function Sheep(legs, x, y){
 2 this.legs = legs;
 3 this.position = {x:x, y:y};
 4 this.toString = function(){
 5 return `You look at a beautiful sheep!`+
 6 ` It has ${this.legs} legs`;
 7 };
 8 this.describe = function(){
 9 return console.log(this.toString());
10 };
11 this.baa = function(){
12 console.log(`'Baaaaaaaaa'
13 The sheep makes a beautiful musical sound reminiscent
14 of spring and wildberries.
15 `);
16 };
17 this.goesTo = function(x,y){
18 this.position.x = x;
19 this.position.y = y;
20 console.log(`The sheep promptly goes to position (${x},${y})`);
21 };
22 }

Rewrite this function and create a new constructor function Badger that takes advantage of
prototypical inheritance to reuse the behaviors defined by the minion prototype.

Hint: Remember constructorFunction.prototype.

Solution
 1 function Sheep(legs, x, y){
 2 this.name = "sheep";
 3 this.legs = legs;
 4 this.position = {x:x, y:y};
 5 this.toString = function(){
 6 return `You look at a beautiful sheep!`+
 7 `It has ${this.legs} legs`;
 8 };
 9 this.baa = function(){
10 console.log(`'Baaaaaaaaa'
11 The sheep makes a beautiful musical sound reminiscent
12 of spring and wildberries.
13 `);

14 };
15 }
16 Sheep.prototype = Object.create(minion);
17 Sheep.prototype.constructor = Sheep;
18

19 function Badger(legs, x, y){
20 this.name = "badger";
21 this.legs = legs;
22 this.position = {x:x, y:y};
23 this.toString = function(){
24 return `You look at a mighty mean badger!`+
25 `It has ${this.legs} legs`;
26 };
27 this.growl = function(){
28 console.log(`'Grrrrrrr'
29 The badger growls fiercely.
30 `);
31 };
32 }
33 Badger.prototype = Object.create(minion);
34 Badger.prototype.constructor = Badger;
35

36 var beautySheep = new Sheep(4, 2, 2);
37 beautySheep.describe();
38 // => You look at a beautiful sheep! It has 4 legs
39 beautySheep.goesTo(1, 1);
40 // => The sheep slowly crawls to position (1,1)
41

42 var badger = new Badger(4, 1, 1);
43 badger.describe();
44 // => You look at a mighty mean badger! It has 4 legs
45 badger.goesTo(2, 2);
46 // => The badger slowly crawls to position (2,2)
47

48 randalf.says('Good job! You have mastered it!');
49 mooleen.says('Thanks!');
50 rat.says('Wait... Why is the mighty badger crawling?');

Wait! Why is my badger crawling??
The badger from the previous example doesn’t move at the speed it befits a mighty badger.
Take advantage of the prototypical chain to add a goesTo method that is only used with
badgers. The result should be like this:

1 var yetAnotherBadger = new Badger(4, 0, 0);
2 yetAnotherBadger.goesTo(4, 4);
3 // => swift like the wind the mighy badger goes to (4,4)

No sheep should be affected by this change:

1 beautySheep.goesTo(2, 2);
2 // => The sheep slowly crawls to position (2,2)

Solution
 1 Badger.prototype.goesTo = function(x,y){
 2 this.position.x = x;
 3 this.position.y = y;
 4 console.log(`Swift like the wind the mighy badger`+
 5 ` goes to (${x},${y})`);
 6 }
 7

 8 var yetAnotherBadger = new Badger(4, 0, 0);
 9 yetAnotherBadger.goesTo(4, 4);
10 // => Swift like the wind the mighy badger goes to (4,4)
11

12 beautySheep.goesTo(2, 2);
13 // => The sheep slowly crawls to position (2,2)
14

15 mooleen.says("And that's it!");
16 randalf.says('Exactly, now that you have implemented ' +
17 'a new method in the badger prototype this method gets ' +
18 'called instead of the one within the minion prototype');
19

20 mooleen.says('Yep the chain goes ' +
21 'badger object => badger prototype => minion prototype');
22

23 randalf.says('Btw, did you notice that now all badgers are swift?');
24 rat.says('Yes! Even the ones created before augmenting the prototype\
25 !');

You may be wondering. Ey! Now we needed to re-implement the whole method!
Shouldn’t we be able to reuse at least part of the functionality of the method in the

minion prototype?? And the answer is yes!!. We’ll take a look into how to achieve that
within a couple of chapters. Stay put!

Did You Notice That All Badgers Are Swift?
An interesting property of the prototypical chain is that when you augment a prototype all
objects that share it automatically get access to the new behavior. Take a look at the
original badger:

1 badger.goesTo(1, 1)
2 // => Swift like the wind the mighy badger goes to (4,4)

Take advantage of this property to gift all your minions with the ability to fly. Hell yeah!
Volaaareee!

Solution
 1 badger.goesTo(1,1);
 2 // => Swift like the wind the mighy badger goes to (4,4)
 3

 4 mooleen.says(`Wo... it's true!`);
 5 mooleen.says(`Hmm this gives me an idea... `+
 6 `that'll make this army unstoppable`);
 7

 8 minion.fly = function(x, y){
 9 this.position.x = x;
10 this.position.y = y;
11 console.log(`The ${this.name} takes off suddenly `+
12 `and flights soaring like an eagle until it `+
13 `gets to position (${x},${y})`);
14 };
15

16 sheep.fly(1,1);
17 // => The sheep takes off suddenly and flights
18 // soaring like an eagle until it gets to position (1,1)
19 goat.fly(1, 1);
20 // => The goat takes off ...
21 badger.fly(2, 2);
22 // => The badger takes off ...
23

24 mooleen.says('Amazing!');
25 rat.says('Superb!');
26 randalf.says('Indeed it is!');
27

28 /*

29 The entrails of the earth, up into the rock, onto the top
30 of a white peaked mountain, and a majestic endless mountain range.
31 Up into a sea of clouds, the world... and a freaking goat breaching
32 into the stratosphere...
33 */

Summoning Fundamentals: Polymorphism

If it flights like a dragon,
breathes fire like a dragon,
eats peasants like a dragon,
then, my friend,
that is a dragon.

 - KinnLar Sane,
 Dragon Hunter, 8th Age

/*
* Mooleen, Randalf and rat, 900 cows, 728 sheep and 200 goats stand
* on the top of a cliff. This sounds like the beginning of a joke,
* yet it is true as water is clear and the sky is blue. Although
* in this part of the world, there's no water but sweat, and no sky
* just blackness.
*/

randalf.says("All right, you're starting to become pretty good" +
 "at the summoning arts");
mooleen.says("Thank you!");

randalf.says("The next step is to understand one very " +
 "interesting property of the REPL. Many of us have " +
 "pondered about this for centuries yet haven't " +
 "discovered the reason, the fact of the matter is that " +
 "you don't really need to tell the REPL what things are " +
 "for things to just work");
mooleen.says("Alright?");

randalf.laughs();
randalf.says("I know! I'm not making a lot of sense, right? " +
 "Well, imagine that you want to make these creatures that " +
 "you have summoned attack each other.");
mooleen.says("Yeah?");

randalf.says("You don't need to teach a cow how to attack " +
 "a sheep and a goat. You just tell them how to attack " +
 "and everything just works");
mooleen.says("Really? That sounds very convenient");

randalf.says("Indeed it is. We haven't found a very good name " +
 "for it yet. We just call it polymorphism. " +
 "'Poly' for the javascriptmancer that discovered it " +
 "and 'morphism' for an ancient word that means shape");

rat.coughsSlightly();
randalf.looks("little bewildered");
rat.coughsVeryStrongly();

rat.says("Sorry for breaking your mood dear Randalf but I can't stan\
d the bullshit. Polymorphism means 'many forms'");
randalf.says("Oh yeah, that was it");
mooleen.says("Really? Poly the JavaScriptmancer?");

Polymorphism Means Many Forms

Polymorphism allows a function to be written to take an object of a type Minion, but
also work correctly if passed an object that belongs to a type Troll that is a subtype of
Minion.

Polymorphism is a mechanism we often find in static and strongly typed languages.
In these languages, we take advantage of polymorphism to reuse algorithms or
computation with different types that have a common ancestor. These types will
either derive from a shared base class or implement the same interface.

Let’s refresh how you can take advantage of polymorphism in C#.

Polymorphism in C#
Imagine that you are building an army to rule the known world. You have a diverse
host of minions in this army of the undead (undead are cheaper to maintain:
skeletons need no food, and ghouls are not very picky about what they choose to
eat).

Behold! A Skeleton!

 1 public class Skeleton{
 2 public int Health {get;set;}
 3 private Position position;
 4
 5 public Skeleton(){
 6 Health = 50;
 7 position = new Position();
 8 }
 9
10 public void MovesTo(int x, int y){
11 position.X = x;
12 position.Y = y;
13 }
14 }

A skeleton that can only move is not a very useful weapon. You’ll need to give it the
ability to attack your enemies:

 1 public class Skeleton{
 2 public int Health {get;set;}
 3 private int damage;
 4 private Position position;
 5
 6 public Skeleton(){
 7 Health = 50;
 8 damage = 10;
 9 position = new Position();
10 }
11
12 public void MovesTo(int x, int y){
13 position.X = x;
14 position.Y = y;
15 }

16
17 public void Attacks(Skeleton enemySkeleton){
18 enemySkeleton.Health -= damage;
19 }
20 }

Ok. Now you have a skeleton that can attack other skeletons! Yippi! Let’s imagine
that your most bitter enemy has a vast army of goblins:

1 public class Goblin{
2 public int Hp {get;set;}
3
4 public void MovesTo(int x, int y){
5 position.X = x;
6 position.Y = y;
7 }
8 }

A Goblin is not a Skeleton and therefore your skeletons, as deadly as they are, will
have a hard time beating that army. So you decide to be one step ahead of your
enemy and teach your skeletons how to deal with goblins. You add a new Attacks
method just for goblins:

1 public void Attacks(Skeleton enemySkeleton){
2 enemySkeleton.Health -= damage;
3 }
4
5 public void Attacks(Goblin goblin){
6 goblin.Health -= damage;
7 }

And then you find out that not only does he have goblins, but also orcs, trolls, wargs
and wyrms. Ok, easy enough, you just add multiple Attacks methods and make sure
that you have all bases covered:

 1 public void Attacks(Skeleton enemySkeleton){
 2 enemySkeleton.Health -= damage;
 3 }
 4
 5 public void Attacks(Goblin goblin){
 6 goblin.Health -= damage;
 7 }
 8
 9 public void Attacks(Orc orc){
10 orc.Health -= damage;
11 }
12
13 public void Attacks(Troll troll){
14 troll.Health -= damage;
15 }
16
17 public void Attacks(Warg warg){
18 warg.Health -= damage;

19 }
20
21 public void Attacks(Wyrm wyrm){
22 wyrm.Health -= damage;
23 }

You’ll agree with me that this whole thing got out of hand reaaaally fast. This is one
scenario in which polymorphism could come in handy. We can take advantage of
polymorphism by defining a common base class for all these creatures. This class
Monster would encapsulate the contract needed for being attacked which, based on
the examples that we’ve seen thus far, consists in the Health property:

1 public class Monster{
2 public int Health {get;set;}
3 }
4
5 public class Skeleton : Monster {}
6 public class Goblin : Monster {}
7 public class Orc : Monster {}
8 public class Troll: Monster {}
9 // etc

Now we can redefine the Attacks method in terms of that new type:

1 public void Attacks(Monster monster){
2 monster.Health -= damage;
3 }

Of course, we would also like our minions to be able to attack defensive structures
like towers, or walls, or even fences which are most definitely not monsters. So after
reflecting about it, perhaps it would be more appropriate to use an interface
IAttackable instead of the Monster base class.

This new interface would represent the contract of something very generic that can
be attacked:

 1 public interface IAttackable {
 2 int Health {get;set;}
 3 }
 4 public class Monster : IAttackable{
 5 public int Health {get;set;}
 6 }
 7 public class Skeleton : Monster {}
 8 public class Goblin : Monster {}
 9 // etc
10 public class Tower: IAttackable {}
11 public class Fence: IAttackable {}
12 // etc

We redefine the Attacks method to be even more abstract and applicable to any type
that implements the IAttackable interface: be it a creature, a tower or a mailbox.

1 public void Attacks(IAttackable target){
2 target.Health -= damage;
3 }

Let’s summarize what we’ve achieved thus far. We rewrote the Attacks method to
take advantage of polymorphism so that our Skeleton could attack anything that
implements the IAttackable interface. From being able to attack Skeletons alone,
we went to attacking many types of monsters implemented with many many
functions, and finally we reduced it into a single function thanks to polymorphism.

Notice that the benefits of our new solution don’t come only from the fact that we
have a single function instead of many. The biggest advantage from our new design
is the increased extensibility. Thanks to polymorphism the new Attacks function
will work with new creatures, defensive structures, and virtually anything that hasn’t
even been thought of yet. As long as that anything implements the contract defined
by the IAttackable interface everything will work just fine. We’ve succeeded in
future-proofing our domain model for this specific use case. Congrats!

Polymorphism in JavaScript

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Polymorphism in JavaScript is much simpler than in C#. As a dynamically typed
language, JavaScript exhibits what is known as duck typing. With duck typing an
object’s semantics are based on the object’s own methods and properties and not on
the inheritance chain or interface implementations (like in C#). This means that, in
JavaScript, we don’t really care about inheritance. As long as an object has the
interface required by a function everything will just work. Magic!

Let’s see JavaScript’s duck typing in action using the same example from the
previous section. Everything started with a skeleton:

http://bit.ly/javascriptmancy-oop-fundamentals-polymorphism
https://github.com/vintharas/javascriptmancy-code-samples
http://en.wikipedia.org/wiki/Duck_typing

 1 let skeleton = {
 2 health: 50,
 3 damage: 10,
 4 position: {x: 0, y: 0},
 5
 6 toString() {
 7 return 'Skeleton';
 8 },
 9
10 movesTo(x, y){
11 this.position.x = x;
12 this.position.y = y;
13 },
14
15 attacks(monster){
16 monster.health -= this.damage;
17 console.log(`${this} attacks ${monster} fiercely!`);
18 }
19 }

When we define the attacks method as illustrated above, the only thing JavaScript
cares about in what regards to monster is that it has a health property:

 1 // An orc, a goblin and a tower...
 2 let orc = {
 3 name: 'orc',
 4 health: 100,
 5 toString(){return this.name;}
 6 };
 7 let goblin = {
 8 health: 10,
 9 toString(){return 'goblin';}
10 };
11 let tower = {
12 health: 1000,
13 toString(){ return 'fortified tower';}
14 };
15
16 skeleton.attacks(orc);
17 // => Skeleton attacks orc fiercely!
18 skeleton.attacks(goblin);
19 // => Skeleton attacks goblin fiercely!
20 skeleton.attacks(tower);
21 // => Skeleton attacks tower fiercely!

JavaScript doesn’t care about the type of creature or thing that you pass into the
function. It only cares about the object exposing a matching interface, which in this
case is the health property.

We can push this point even further by doing something crazy. In the example below
we augment the function skeleton.attacks itself with a health property, and now
the skeleton can attack it!

1 skeleton.attacks.health = 50;
2 skeleton.attacks(skeleton.attacks);

3 // => Skeleton attacks function attacks(monster) { ...
4 // OMG that was sooo meta
5
6 console.log(skeleton.attacks.health);
7 // => 40

So as long as an object has a health property, it will behave as something that can
be attacked as defined by the attacks method regardless of inheritance. And thus the
popular saying regarding duck typing…

If it walks like a duck, swims like a duck and quacks like a duck, I call it a
duck.

If it has a health property, then it is something that can be attacked. This is the
reason why I’ve claimed that inheritance is not a means of polymorphism in
JavaScript like it is in C#.

Let’s see a summary of the differences between C# polymorphism and JavaScript
duck tiping:

C# Polymorphism JavaScript Duck Typing
Deriving from a base class or implementing an
interface is going to determine whether or not
you can use polymorphism with a particular
type.

In JavaScript it all comes down to
having the expected properties or
methods when an object is
evaluated.

In C# you establish an explicit expectation
about which type can be used within a function
in the function’s signature.

In JavaScript the expectation is
determined by how an object is
used within a function
implementation.

In order to take advantage of polymorphism
you need to be very intentional about it since it
requires a specific architecture in your
application. In practice, it means that you’ll
need to create additional classes or interfaces.

JavaScript duck typing gives you
the most granular level of
polymorphism with no additional
investment. You don’t need to
create additional classes or
equivalents.

The intent of the author of the code is very
clear since polymorphism only works if the
right structures are in place. The extensibility
points are very explicit in C#

In JavaScript any point is
extensible.

Concluding
In this chapter we did a short review of the concept of polymorphism in C# and how
you can use it as a mechanism of code reuse and as a means of creating extensible
applications.

Next you learned how polymorphism works in JavaScript with the concept of duck
typing, the idea that an object is not defined by what it is but by what it can do.
Thus if something walks like a duck, swims like a duck and quacks like a duck then
you treat it as a duck.

We wrapped the chapter with a brief comparison between C# polymorphism and
JavaScript duck typing and how the latter can achieve everything C# can, with far
less code and a simpler design.

/*
* Asturi hadn't seen a battle as terrible as this one in ages.
* Many dead. Many more fatherless and motherless sons that would
* live to grief their loved ones. The scene of the conflict,
* terrible, devastating to look at. Corpses lay here and there,
* blood everywhere, the horrible spoils of war no one remembers
* to talk about in the stories. No glory to be gained this day.
*
* No party had won, all of them had lost, the cow armies had decimat\
ed
* their bitter enemies, the goat and sheep alliance and vice versa.
* No one ever knew livestock could be so bloodthirsty.
*/

mooleen.says("And that got out of hand very quickly");
randalf.says("Yeah, that teaches you to beware of the arts of magic"\
);

mooleen.asks("Where is rat?");
randalf.says("I don't know, last time I saw it, it was " +
 "trying to hold a charge of cows on the left flank");
mooleen.says("Oh yeah I remember that, you looked very " +
 "funny running away before that angry cow berserker");

/*
* Picture a middle aged man, in long robes, lifting his skirts
* to show two spindly and very white legs finished in pink
* slippers, running for his live followed by an angry looking cow.
*/

randalf.says("haha Yeah that was fun. " +
 "I should've worn my traveling attires");

rat.shouts("aaaaaaaaaah Freeeedoooooom");
/*
* A tiny piece of red fur appears from out of nowhere
* charging at the two wizards. Then it stops.

*/
rat.says("Oh... it's you");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsBin or
downloading the source code from GitHub.

The Secrets of Polymorphic Functions
Imagine that you have a legion of undead cows, sheep and goats. Brrrr! Horrible! I’m
getting goosebumps only thinking about it… Create a single polymorphic function to
exorcise all these evil undead creatures given that they look as follows:

 1 var undeadCow = {
 2 position: {x: 0, y:0},
 3 legs: 1,
 4 toString: function(){ return 'undeadCow'; }
 5 describe: function(){
 6 return "A terrible sight unfolds before you. " +
 7 " A half eaten, half rotten cow, half standing, " +
 8 "half crawling looks at you with sightless eerie eyes";
 9 },
10 charge: function (target){
11 console.log('UndeadCow charges ' + target + ' with cold rage');
12 target.hp -= 50;
13 },
14 soulPoints: 100
15 };
16

17 var undeadSheep = {
18 position: {x: 2, y:10},
19 legs: 4,
20 wings: 2,
21 toString: function() { return 'undeadSheep'; },
22 describe: function(){ return "blablabla"; },
23 bite: function(target){
24 console.log('UndeadSheep bites ' + target + ' meanly');
25 target.hp -= 60;
26 },
27 soulPoints: 70
28 };
29

30 var undeadGoat = {
31 position: {x: 0, y:0},
32 legs: 1,
33 toString: function() { return 'undeadGoat'; },
34 describe: function(){ return "blablabla"; },
35 soulPoints: 80,
36 jumpAttack: function(target){
37 console.log('UndeadGoat jumps on ' + target +
38 ' with its full weight');
39 target.hp -= 70;
40 }

http://bit.ly/javascriptmancy-oop-fundamentals-polymorphism-exercises
https://github.com/vintharas/javascriptmancy-code-samples

40 }
41 };

The function should reduce the soulPoints of all the diverse undead host to 0

Solution
 1 function exorcise(undead){
 2 undead.soulPoints = 0;
 3 console.log(`You exorcise ${undead} freeing its soul from the dark\
 4 plane.`);
 5 }
 6

 7 mooleen.weaves('exorcise(undeadCow)');
 8 // => You exorcise undeadCow freeing its soul from the dark plane.
 9

10 mooleen.weaves('exorcise(undeadSheep)');
11 // => You exorcise undeadSheep freeing its soul from the dark plane.
12

13 mooleen.weaves('exorcise(undeadGoat)');
14 // => You exorcise undeadGoat freeing its soul from the dark plane.
15

16 mooleen.says('yep, it was that easy');

White Tower Summoning: Mimicking C#
Classical Inheritance in JavaScript

Life is like a stream,
you can never touch the same water twice.
The water that has flowed will never flow again.
So enjoy every second of life.

Life is not a stream
but now you know more about life.

 - Kinvalso Immax
 JavaScript-mancer 2nd Age,
 The Principles of Teaching

someone.shouts("The ships have arrived!!");
/*
 A voice in the distance
*/

mooleen.asks("Did you hear anything?");
randalf.says("Nope");
rat.says("Sorry, that was me");

mooleen.says('Not that. I think I heard a voice');
bandalf.shouts("The ships have arrived!!!")

randalf.says("Oh he must be confused to think " +
 "that the *sheep are alive*");

/* Bandalf arrives beside the group panting heavily */
bandalf.says("The ships...");
bandalf.says("The ships have arrived");

mooleen.says('The ships?');

randalf.says("Yeah, no javascriptmancer would allow a " +
 "rival near his or her territory. We can only teleport " +
 "to places we've already been to, you see?");
mooleen.says("I see, a rival could then attack you by surprise" +
 "whenever and wherever he pleased");

rat.says("Precisely!");
randalf.says("Come on we need to stop them " +
 "before they take a foothold on the island");

/*
 Randalf, Rat, Bandalf and Mooleen teleport
 on top of a hill overseeing the vast ocean.
 Nearing the island they see...
 a teeny tiny rowboat with a red clad figure atop.
*/

mooleen.says("I don't know what I was expecting...
 but that wasn't it");
rat.says("Very anti-climatic");

randalf.says("Would you build an armada if you could
 just teleport a whole army?");
randalf.says("Quickly! They'll be here in no time" +
 "There's one last thing I need to teach you. " +
 "Have you ever heard of classical inheritance?");

Ever Heard of Classical Inheritance?
In this chapter we are going to take a deep-dive into how you can emulate classical
inheritance in JavaScript arriving to the nearest equivalent of what you can do with

C#. We will focus on the alternatives we had prior to ES6 classes so that you can
work with classes even if you are stuck in ES5. And even better, so that you can
understand the underlying implementation of ES6 classes which are just syntactic
sugar over JavaScript’s prototypical inheritance model.

We will start by emulating a single C# class in JavaScript and attempt to find
equivalents to C# constructs like access modifiers, static classes and method
overloading. We will then continue by expanding our knowledge from a single class
to many, in order to arrive to something similar to C# classical inheritance. A
technique that will allow you to work in JavaScript just like you usually do in C#,
building your domain models using class taxonomies and working with instances of
classes.

Can I Just Jump Over to the ES6 Class Chapter Directly?
In this chapter we are going to focus completely in learning how you can implement
classes and classical inheritance in JavaScript without using ES6 classes. This is
important because it will teach you how to do a class equivalent in ES5, what lies
behind ES6 classes and how ES6 classes relate to the rest of JavaScript.

If you are working on a project where you only use ECMAScript 6 then you can jump
to the next chapter, learn everything about classes and then come back if you are
curious of how classes work under the hood.

Emulating a C# Class in JavaScript
In order to create the equivalent of a class in JavaScript you need to combine a
constructor function with a prototype. Let’s do a quick review of each of these
constructs and see how combining them results in something similar to a C# class.

In this chapter I am going to be using the word class a lot and I am going to be
referring to a constructor function and prototype pair, the equivalent to C# classes in
JavaScript prior to ES6. I won’t refer to ES6 classes unless I say ES6 classes.

Constructor Functions

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Constructor functions allow us to create objects that share the same properties. They
work as a recipe for object creation and represent a custom type:

 1 function Barbarian(name){
 2 this.name = name;
 3 this["character class"] = "barbarian";
 4 this.hp = 200;
 5 this.weapons = [];
 6
 7 this.talks = function(){
 8 console.log("I am " + this.name + " !!!");
 9 };
10
11 this.equipsWeapon = function(weapon){
12 weapon.equipped = true;
13 this.weapons.push(weapon);
14 };
15
16 this.toString = function(){
17 return this.name;
18 };
19 }

Notice how the constructor, not only initializes an object with a set of values like in
C#, but also determines which properties an object is going to have. This means that
a constructor function works effectively as both a constructor and a class
definition 11.

After having defined a constructor function, you can create a new object using the
new keyword just like in C#:

1 let conan = new Barbarian("Conan, the Barbarian");

This new instance is of type Barbarian as revealed by the instanceof operator:

1 console.log(`Conan is a Barbarian: ${conan instanceof Barbarian}`);
2 // => Conan is a Barbarian: true
3
4 console.log(`Conan is an Object: ${conan instanceof Object}`);
5 // => Conan is an Object: true

http://bit.ly/javascriptmancy-oop-classical-inheritance
https://github.com/vintharas/javascriptmancy-code-samples

And all its properties are publicly available:

 1 conan.talks();
 2 // => I am Conan, the Barbarian!!!
 3
 4 console.log(conan.name);
 5 // => Conan, The Barbarian"
 6
 7 conan.equipsWeapon({
 8 name: "two-handed sword",
 9 type: "sword",
10 damage: "2d20+10",
11 material: "cimmerian steel",
12 status: "well maintained"
13 });
14
15 console.log(`Conan has these weapons: ${conan.weapons}`);
16 // => Conan has these weapons: two-handed sword

Prototypical Inheritance
In previous chapters we saw how inheritance in JavaScript is slightly different than
in C#. For one, there are no classes. Furthermore, inheritance doesn’t play as big a
part in polymorphism since JavaScript is a dynamically typed language that relies on
duck typing.

JavaScript is all about objects, and achieves inheritance not via class inheritance but
via prototypical inheritance, that is, objects that inherit from other objects called
prototypes.

Prototypes
Every constructor function (and every function) in JavaScript has a prototype
property. This property holds an object that will act as a prototype - will provide
shared properties - for all objects created by calling the constructor function with the
new keyword.

1 // every function has a prototype property
2 console.log(`Barbarian.prototype: ${Barbarian.prototype}`);
3 // => Barbarian.prototype: [object Object]

And the prototype object also has a constructor property that points back to the
constructor function:

1 // and the prototype has a constructor property
2 // that points back to the function
3 console.log(`Barbarian.prototype.constructor:
4 ${Barbarian.prototype.constructor}`);

5 // => Barbarian.prototype.constructor:
6 // function Barbarian(name) {...}

We can easily verify how all objects instantiated using that constructor function will
inherit properties and methods from the prototype object. If we take the prototype
from the previous example, extend it with a simple saysHi function:

1 Barbarian.prototype.saysHi = function() {
2 console.log("Hi! I am " + this.name);
3 }

And then we instantiate two rough barbarians:

1 var krull = new Barbarian("krull");
2 var conan = new Barbarian("Conan");

We can appreciate how both objects krull and conan expose the saysHi method
even though it wasn’t part of the Barbarian constructor function (which only had
the talks, equipsWeapon and toString methods):

1 krull.saysHi();
2 // => Hi! I am krull
3
4 conan.saysHi();
5 // => Hi! I am Conan

This is possible due to the prototype chain existing between instance (krull) and
prototype (Barbarian.prototype) which allows the instance to delegate method
calls to the prototype.

A common idiom to avoid the need to write:

1 ConstructorFunction.prototype.property = ...;

each time you want to augment the prototype is to assign the prototype to a new
object:

 1 // like this:
 2 var barbarianPrototype = {
 3 constructor: Barbarian
 4 saysHi: function(){console.log("Hi! I am " + this.name);}
 5 }
 6 Barbarian.prototype = barbarianPrototype;
 7
 8 // or simply:
 9 Barbarian.prototype = {
10 constructor: Barbarian
11 saysHi: function(){console.log("Hi! I am " + this.name);}
12 }

This pattern saves you from typing more code and also provides a more consistent
and unified view of the properties that belong to the prototype.

Now that we have reviewed both constructor functions and prototypes let’s see how
putting them together brings us nearer to C# inheritance model.

Constructor Function + Prototype = Class
The nearest equivalent to a C# class in JavaScript is a constructor function and a
prototype pair:

The constructor function defines a custom type with a series of properties.
It will determine which specific properties an instance of that custom type is
going to have. Typically it will contain the members of a class.
The prototype provides a series of methods that are shared across all
instances of a given type. Typically it will contain the methods of a class. It
is also the bridge between classes and the means to achieve class inheritance by
connecting them together through a prototype chain.

Putting constructor and prototype together we can define a ClassyBarbarian class
similar to our first Barbarian as follows:

 1 // The constructor function:
 2 // - defines the ClassyBarbarian type
 3 // - defines the properties a ClassyBarbarian
 4 // instance is going to have
 5 //
 6 function ClassyBarbarian(name){
 7 this.name = name;
 8 this["character class"] = "barbarian";
 9 this.hp = 200;
10 this.weapons = [];
11 }
12
13 // The prototype:
14 // - defines the methods shared across
15 // all ClassyBarbarian instances
16 //
17 ClassyBarbarian.prototype = {
18 constructor: ClassyBarbarian,
19 talks: function(){
20 console.log("I am " + this.name + " !!!");
21 },
22 equipsWeapon: function(weapon){
23 weapon.equipped = true;
24 this.weapons.push(weapon);
25 console.log(`${this.name} grabs a ` +
26 `${weapon.name} from the cavern floor`);
27 },
28 toString: function(){

29 return this.name;
30 },
31 saysHi: function (){
32 console.log("Hi! I am " + this.name);
33 }
34 };

We can use this new class just like we would use a class in C#. We instantiate it with
the new operator:

1 var logen = new ClassyBarbarian('Logen Ninefingers');

And interact with it as we please:

 1 logen.saysHi();
 2 // => Hi! I am Logen Ninefingers
 3
 4 logen.talks();
 5 // => I am Logen Ninefingers !!!
 6
 7 logen.equipsWeapon({name:'very large axe'});
 8 // => Logen Ningefingers grabs a very large
 9 // axe from the cavern floor
10
11 console.log(logen.weapons.map(w => w.name));
12 // => ["very large axe"]

What is the difference between this and our previous example with the constructor
function? Both work exactly the same from a consumer perspective but the
constructor and prototype pair improves our original example in two ways:

1. All methods within the prototype are shared amongst all instances of
ClassyBarbarian. This reduces the memory footprint of your application.

2. This technique opens the way to more advanced features that take advantage of
prototypical inheritance and which we’ll see throughout this chapter.

Access Modifiers
Unfortunately, we don’t have the concept of built-in access modifiers in
JavaScript12: public, protected and private do not exist. Every property that you add
to an object is public and accessible by anyone that has access to that object.

That being said there are two patterns that you can use to achieve something similar
to private variables and methods and the benefits of information hiding. You’ve
learned about them in previous chapters:

Closures: You can use them to capture the value of variables from outer scopes
(in this case the methods of a class are closures that capture variables defined
within a constructor function). These variables are not part of the object itself,
they are just captured by the object methods, and therefore are not directly
accessible through the object API.
ES6 Symbols: When you use symbols to index properties and methods in your
objects, because a symbol is unique, you can only access these properties or
methods if you have access to the symbol. When using a symbol the object has a
property indexed by that symbol that is public, but even if you have access to
the object, because you don’t have a reference to the symbol, you cannot access
the property. 13

Let’s see how we can use each of these approaches with our JavaScript classes and
the implications of either choice.

Classes and Information Hiding with Closures

In order to use closures to achieve data privacy you need to have a function that
encloses a variable. This poses a small problem if we want to follow the constructor
function for state plus prototype for behavior pattern. That’s because the prototype
methods are defined outside of the constructor function and therefore cannot enclose
any of the variables defined within it.

As a result, if we want to use closures to manage data privacy we need to move our
methods from the prototype into the constructor function. Imagine that we no longer
want to expose the weapons property of our barbarian class:

 1 // constructor function
 2 function PrivateBarbarian(name){
 3 // private members
 4 var weapons = [],
 5 hp = 200;
 6
 7 // public members
 8 this.name = name;
 9 this["character class"] = "private barbarian";
10 this.equipsWeapon = function(weapon){
11 weapon.equipped = true;
12 // this function encloses the weapons variable
13 weapons.push(weapon);
14 console.log(`${this.name} grabs a ${weapon.name}
15 from the cavern floor`);
16 };
17 this.toString = function(){
18 if (weapons.length > 0)
19 return `${this.name} looks angry and
20 wields a ${weapons.find(w => w.equipped).name}`;
21 else

22 return `${this.name} looks peaceful`;
23 }
24 }
25
26 // the prototype:
27 PrivateBarbarian.prototype = {
28 constructor: PrivateBarbarian,
29 talks: function(){
30 console.log("I am " + this.name + " !!!");
31 },
32 saysHi: function (){
33 console.log("Hi! I am " + this.name);
34 }
35 };

In this snippet of code we’ve done the following changes:

We have modified the constructor function so that the weapons variable is no
longer a property of a Barbarian instance but a simple variable inside the
function itself.
We have moved the equipsWeapon function from the prototype to the
constructor function and updated its body so that it encloses the weapons
variable.

As a result, if we create a new PrivateBarbarian instance, it will not expose any
weapons property to the outside world:

1 var privateBarbarian = new PrivateBarbarian('krox');
2
3 console.log(`Barbarian weapons: ${privateBarbarian.weapons}`);
4 // => Barbarian weapons: undefined
5 // we cannot access the weapons of the barbarian because
6 // they are not part of the object

The variable weapons will still exist and act as if it was a private member of the
object. Indeed you can easily verify that the equipsWeapon, which encloses this
variable, still works:

1 privateBarbarian.equipsWeapon({name:'Two-handed Hammer'});
2 // => krox grabs a Two-handed Hammer from the cavern floor
3
4 console.log(privateBarbarian.toString());
5 // => krox looks angry and wields a Two-handed Hammer

In the same way that you have private members you can have private methods.
Imagine that we had some formatting functions for our barbarian that we don’t want
to expose to the public. We can make them private by following the same pattern
that we used before:

Keep your APIs Small!
APIs should be kept small to minimize cognitive load and ease of learning and use. When
possible try to keep your APIs surface small and hide the methods that are not meant to be
used by a consumer. This will make your code more intentional and guide the consumer of
your classes towards the right way to use them.

 1 function PrivateBarbarian(name){
 2 // unchanged code from previous example
 3
 4 this.toString = function(){
 5 if (weapons.length > 0) return formatWeaponizedBarbarian();
 6 else return formatPeacefulBarbarian();
 7 }
 8
 9 // "private" method
10 function formatWeaponizedBarbarian(){
11 return `${name} looks angry and wields
12 a ${weapons.find(w => w.equipped).name}`;
13 }
14
15 // "private" method
16 function formatPeacefulBarbarian(){
17 return `${name} looks peaceful`;
18 }
19 }

The formatWeaponizedBarbarian and formatPeacefulBarbarian functions are
now private and enclosed by the toString method that is part of the barbarian public
interface.

In summary, if you want to use closures to manage data privacy with classes you are
going to need to define your methods inside the constructor function and not the
prototype. This has one additional caveat that may not be immediately apparent:
Each single instance of a class will have its own method property, and therefore
these won’t be shared by all instances via the prototype. As a result, using closures
as your information hiding strategy will force you to incur in a bigger memory
footprint than the alternative.

Classes and Information Hiding With ES6 Symbols

Using ES6 symbols allows you to achieve data privacy and keep your methods in the
prototype. The trick is to keep your symbols private as well.

In order to do that we are going to define a very simple module. JavaScript modules
let you wrap pieces of related functionality and expose them to the rest of your
application as you choose, so they work perfectly to keep our symbols private. We’ll
create a simple characters module to store our characters using this pattern:

1 // A simple module
2 (function(characters){
3 characters.SymbolicBarbarian = SymbolicBarbarian;
4
5 // etc...
6 }(window.characters = window.characters || {}))
7
8 // outside world only has access to whatever we expose
9 // via the characters object

Where we use a function - a new variable scope - to represent the module itself. We
pass a characters object to the module function that will augment it with
functionality that can later be used by the rest of the application.

JavaScript Modules
In this example we use the module pattern to create a simple module implementation via an
IIFE, an immediately invoked function expression. An IIFE is just a function that you
execute immediately. By virtue of being a function it creates a new scope where any
variable that you define remains contained and therefore unaccessible to the outside world.

This used to be the most common pattern followed by developers to write modules in
JavaScript before the advent of more complex systems like CommonJS, AMD, UMD and
ES6 modules. ES6 modules attempt to provide a native module implementation for
JavaScript so that we, developers, don’t need to roll out our own custom implementation.
We’ll take a deep dive into modules later within this series. In the meantime, the only thing
that you need to know is that you can use modules as a way to package and distribute
pieces of related functionality.

With the creation of this module we will achieve one thing: We are going to have a
place where to keep our symbols hidden from the outside world (the function scope).
We will only expose a new SymbolicBarbarian class that will use these symbols to
obtain data privacy:

 1 (function(characters){
 2 characters.SymbolicBarbarian = SymbolicBarbarian;
 3
 4 // private within this module

 5 let weapons = Symbol('weapons');
 6
 7 // the constructor function:
 8 function SymbolicBarbarian(name){
 9 this.name = name;
10 this["character class"] = "barbarian";
11 this.hp = 200;
12 this[weapons] = [];
13 }
14
15 // the prototype:
16 SymbolicBarbarian.prototype = {
17 constructor: SymbolicBarbarian,
18 talks: function(){
19 console.log("I am " + this.name + " !!!");
20 },
21
22 equipsWeapon: function(weapon){
23 weapon.equipped = true;
24 this[weapons].push(weapon);
25 console.log(`${this.name} grabs a ${weapon.name}
26 from the cavern floor`);
27 },
28
29 saysHi: function (){
30 console.log("Hi! I am " + this.name);
31 },
32
33 toString: function(){
34 if (this[weapons].length > 0)
35 return `${this.name} looks angry and wields a
36 ${this[weapons].find(w => w.equipped).name}`;
37 else
38 return `${this.name} looks peaceful`;
39 }
40 };
41
42 }(window.characters = window.characters || {}))

Using the weapons symbol we can create a weapons property that can only be
indexed if you have access to the symbol itself. Because the symbol is part of the
characters module scope it’s only accessible to that function scope and therefore to
the SymbolicBarbarian class that also lives within it.

As a result the weapons property behaves like a private property of the
SymbolicBarbarian class:

1 var symbolicBarbarian = new characters.SymbolicBarbarian('khaaarg');
2 symbolicBarbarian.equipsWeapon({name: 'katana sword'});
3 // => khaaarg grabs a katana sword from the cavern floor
4
5 console.log(`khaaarg weapons: ${symbolicBarbarian.weapons}`);
6 // => khaaarg weapons: undefined
7
8 console.log(symbolicBarbarian.toString());
9 // => khaaarg looks angry and wields a katana sword

Closures vs Symbols with Classes
Closures ES6 Symbols

Closures let you achieve true privacy.

You cannot achieve true privacy with
symbols. A client can use the
Object.getOwnPropertySymbols() or
Reflect.ownKeys() methods to get
access to the symbols of a class and
therefore access to its private
members.

Because you need to enclose variables with
your methods, using closures forces you to
move your methods from the prototype to
the constructor function. This requires
more memory since these methods are no
longer shared by all instances.

With symbols you can keep your
methods in the prototype and therefore
consume less memory.

Static Classes, Members and Methods
Static members and methods in C# are shared across all instances of a given class.
They can only access other static members and methods, and are accessed by using
the class name followed by the name of the member or method
Class.staticProperty. They are often used to collect related utility methods that
don’t require shared state and therefore an instance of class to operate.

You can mimic static members and methods in JavaScript by augmenting the
constructor functions with new properties. For instance, we could create several
factory methods in our ClassyBarbarian as a convenience to create barbarians with
often used presets:

 1 // we extend the ClassyBarbarian constructor
 2 // function from previous examples
 3 // with two new properties
 4 ClassyBarbarian.default = function(){
 5 return new Barbarian('default barbarian');
 6 };
 7
 8 ClassyBarbarian.swordWieldingBarbarian = function(){
 9 var barbarian = new Barbarian('sword wielding barbarian');
10 barbarian.equipsWeapon({name: 'sword'});
11 return barbarian;
12 };

Because these are properties of the constructor function and not of any instance in
particular, they’ll only be accessible by having a reference to the constructor
function.

1 var defaultBarbarian = ClassyBarbarian.default();
2 console.log(defaultBarbarian.name);
3 // => default barbarian
4
5 var swordWieldingBarbarian =
6 ClassyBarbarian.swordWieldingBarbarian();
7 console.log(swordWieldingBarbarian.name);
8 // => sword wielding barbarian

Additionally, these members or methods will only be able to access other static
members and methods since they are not tied to any instance in particular.

Static Classes

A static class is that which has only static members and methods, is sealed and
cannot be instantiated. In a similar way to what you’ve seen in these examples, you
can define a static class as a constructor function that only has static members and
methods - that is, properties assigned to the constructor function itself.

This is going to give you a similar feeling to using static classes in C# but it is a little
bit of a stretch. That’s because you can still instantiate objects with that constructor
function and have it be part of an inheritance chain. You can solve both of these
problems by throwing an error when the constructor function is called:

1 function DateHelpers(){ throw Error('static class'); };
2 DateHelpers.ToJavaScriptMonth = function(month){
3 // JavaScript months are 0 based
4 return month - 1;
5 }

Although this may be trying to bring C# into JavaScript way too far and you might
enjoy a better solution by using a simple object initializer.

Method overloading
In JavaScript-mancy: Getting Started we learned how JavaScript doesn’t have built-
in support for overloading methods. Attempting to overload a method by providing a
different implementation of the same method with different arguments only results in
overwriting the original method with the overloaded version. There are, however,
different patterns that we can follow to achieve the same effect:

Argument inspection: Inspect how many arguments are passed to a function
and which are their types then decide what to do.
Options object: Provide an options object that contains the arguments to the
method. You get the benefits of named parameters and high extensibility.
ES6 defaults and destructuring: Defaults let you provide different signatures
as default values will be used if some arguments are not passed into the
function. Destructuring let’s you unwrap options objects in a very
straightforward fashion.
Function Programming and Polymorphic Functions: Define polymorphic
functions by composing several functions that will be called in turn until you
get a result from any of them. This solution is extremely extensible.

You can use any of these approaches with the classes that we have defined in this
chapter so take a look at Appendix C. Function Overloading if you need to refresh
them.

Mimicking Classical Inheritance in JavaScript
Let’s make a summary of what you’ve learned up to this point:

We can mimic a single C# class with a constructor function and prototype
pair.
The constructor function often defines the members of each instance and the
prototype its methods.
JavaScript doesn’t have built-in access modifiers but you can get private
members by using closures and ES6 symbols. Closures force you to move
methods from the prototype to the constructor function before you can use
them.
You can add static members and methods to a class by augmenting its
constructor function.
JavaScript doesn’t have built-in method overloading but there are several
techniques that you can use to implement method overloading yourself.

So now we’re at this point where we are able to represent a class in JavaScript. But
how do you go from a single class to an inheritance tree and to emulate classical
inheritance?

You can mimic classical inheritance by following these two steps when creating your
classes:

1. Call base constructor functions: Make sure that each constructor function
calls its base type constructor function using call or apply. This will ensure
that any instance of a class contains all properties defined in each and every
base class (as they are defined in each constructor function)

2. Use prototypical inheritance: Use prototypical inheritance to ensure that any
instance of a class inherits methods from every base class (as they are contained
within each prototype)

Let’s see how to achieve classical inheritance with an example. Imagine that we
were to develop a magic battle simulator to hone our skills as a general and
strategist. We could design this battle simulator as a game that would have the
following domain model:

1 Creature -> MovingGameObject -> DrawableGameObject -> GameObject

Where the different objects in this inheritance tree would have different
responsibilities:

GameObject: Represents any game object within a game scene. It provides
functionality to update the status of a game object every game tick of the game
loop.
DrawableGameObject: Represents a subset of game objects that are visible
within a game scene, like troops within our army. It provides functionality to
draw these objects in the screen.
MovingGameObject: Represents a subset of drawable game objects that can
move within the screen. It provides functionality to move these objects in the
screen.
Creature: A specific creature within your armies. It provides specific
properties, functionality, graphics, etc… for each creature (a barbarian, a
wizard, a shaman, troll, goblin and who knows what else)

In addition to this domain we would have a GameEngine class that would control the
game loop, gather user input and update and draw a collection of GameObject
objects that would represents troops, projectiles, terrain, weather conditions, etc…

A simplified version of part of this domain would look roughly like this. Starting
with the DrawableGameObject:

 1 // Inheritance Hierarchy:
 2 // MovingGameObject -> DrawableGameObject -> GameObject
 3
 4 function DrawableGameObject(sprite){

 5 // call base type constructor function
 6 GameObject.call(this);
 7 this.sprite = sprite;
 8 }
 9
10 // establish prototypical inheritance
11 // between DrawableGameObject and GameObject
12 DrawableGameObject.prototype =
13 Object.create(GameObject.prototype);
14 DrawableGameObject.prototype.constructor = DrawableGameObject;
15
16 // specific DrawableGameObject prototype methods
17 DrawableGameObject.prototype.draw = function(){
18 console.log("drawing sprite: " + this.sprite);
19 // draw sprite
20 };

And continuing with the MovingGameObject:

 1 // Helper Position class
 2 function Position(x,y){
 3 this.x = x;
 4 this.y = y;
 5 }
 6 Position.prototype.toString = function(){
 7 return "[" + this.x + "," + this.y + "]";
 8 }
 9
10 // GameObject class
11 function MovingGameObject(position, sprite) {
12 // call base type constructor function
13 DrawableGameObject.call(this, sprite);
14 this.position = position;
15 }
16
17 // establish prototypical inheritance
18 // between MovingGameObject and DrawableGameObject
19 MovingGameObject.prototype =
20 Object.create(DrawableGameObject.prototype);
21 MovingGameObject.prototype.constructor = MovingGameObject;
22
23 MovingGameObject.prototype.movesTo = function(newPosition){
24 this.position = newPosition;
25 console.log(`${this} moves to ${newPosition}`);
26 }

In this example you have two classes, a DrawableGameObject which is some object
that can be drawn in a screen via a sprite (an image) and a MovingGameObject that
represents some type of object that can move in a two-dimensional space. You can
verify how:

1. The MovingGameObject constructor function calls the parent class constructor
via DrawableGameObject.apply(this, sprite);. This will ensure that a
moving game object will have both a sprite and position properties.

2. The MovingGameObject.prototype object is a new object that in turn has a
DrawableGameObject.prototype as prototype. This will ensure that a moving
game object will have access to both MovingGameObject and
DrawableGameObject prototype methods.

We can extend our inheritance tree with yet another class, the wise Shaman:

 1 // Inheritance Hierarchy:
 2 // Shaman -> MovingGameObject -> DrawableGameObject
 3
 4 function Shaman(name, position, sprite){
 5 // call base type constructor function
 6 MovingGameObject.call(this, position, sprite);
 7 this.name = name;
 8 }
 9
10 // establish prototypical inheritance
11 // between Shaman and MovingGameObject
12 Shaman.prototype = Object.create(MovingGameObject.prototype);
13 Shaman.prototype.constructor = Shaman;
14
15 // Shaman specific methods
16 Shaman.prototype.toString = function(){
17 return this.name;
18 };
19 Shaman.prototype.heals = function(target){
20 console.log(`${this} heals ${target} (+ 50hp)`);
21 target.hp += 50;
22 }

And we can verify that the Shaman works as it is supposed to by creating an instance
and taking it for a test drive:

 1 var koloss = new Shaman("Koloss", new Position(0,0), "koloss.jpg");
 2
 3 koloss.movesTo(new Position(5,5))
 4 // => Koloss moves to [5,5]
 5
 6 koloss.draw()
 7 // => drawing sprite: koloss.jpg
 8
 9 koloss.heals(conan);
10 // => Koloss heals Conan, the Barbarian

Method overriding
You can follow a similar pattern to the one you used in the constructor function to
override or extend any method defined in a base class. That is, in order to override
a method, you call the method from a base class using call or apply.

Let’s override the heals method within a new type of shaman, the mysterious
WhiteShaman who, in addition to healing wounds, can remove all ailments from a
comrade like curses, poisons and diseases:

 1 // constructor function
 2 function WhiteShaman(name, position, sprite){
 3 // call base type constructor function
 4 Shaman.call(this, name, position, sprite);
 5 }
 6
 7 // prototype
 8 WhiteShaman.prototype = Object.create(Shaman.prototype);
 9 WhiteShaman.prototype.constructor = WhiteShaman;
10
11 // WhiteShaman specific methods
12 WhiteShaman.prototype.castsSlowCurse = function(target){
13 console.log(`${this} casts slow on ${target}.
14 ${target} seems to move slower`);
15 if (target.curses) target.curses.push('slow');
16 else target.curses = ['slow'];
17 };
18 WhiteShaman.prototype.heals = function(target){
19 // call base class heals method
20 Shaman.prototype.heals.call(this, target);
21
22 console.log(`${this} cleanses all negatives
23 effects in ${target}`);
24 target.curses = [];
25 target.poisons = [];
26 target.diseases = [];
27 }

In this example, the WhiteShaman.prototype.heals method overrides
Shaman.prototype.heals and extends it with new functionality to remove curses,
poisons and diseases. This bit of code:

1 Shaman.prototype.heals.call(this, target);

executes the Shaman.prototype.heals method in the context of the current object
(represented by this) and therefore makes sure that the base class implementation is
taken into account before WhiteShaman specific code is executed.

Let’s see how the WhiteShaman fares when healing a convalescent patient:

 1 var khaaar = new WhiteShaman('Khaaar', new Position(0,0),
 2 "khaaar.png");
 3
 4 khaaar.castsSlowCurse(conan);
 5 // => Khaaar casts slow on Conan, the Barbarian.
 6 // Conan, the Barbarian seems to move slower
 7
 8 khaaar.heals(conan);
 9 // => Khaaar heals Conan, the Barbarian (from Shaman)

10 // => Khaaar cleanses all negatives effects in Conan, the Barbarian
11 // (from WhiteShaman)

Notice how you are not forced to extend a method. You can also overwrite it
completely by merely shadowing it. This takes advantage of the fact that the
JavaScript runtime will not call a method in a prototype if it exists in the current
object.

Imagine that you want to completely replace the toString method for white
shamans. You can write a new toString method like this:

1 // you don't need to overwrite and extend a method
2 // you can completely replace it
3 // the JavaScript runtime will make sure to call the right method:
4 WhiteShaman.prototype.toString = function(target){
5 return `${this.name} the White Shaman`;
6 }

Below you can appreciate how the toString method no longer returns Khaaar but
Khaaar the White Shaman:

1 khaaar.castsSlowCurse(conan);
2 // => Khaaar the White Shaman casts slow on Conan, the Barbarian.
3 // Conan, the Barbarian seems to move slower

Simplifying Classical Inheritance in ES5
Now that you’ve arrived at the end of this chapter you may be thinking that writing
classes in JavaScript is a ton of work. And you are completely right. That’s why
it’s helpful to write a helper to make things easier for you and remove the boilerplate
code.

Ideally, we would define a helper function that would let us create a class by
providing all the moving pieces at once:

a constructor function
a prototype
optionally, a class to extend or derive from

This function newClass is a possible implementation of such a helper:

 1 function newClass({constructor,
 2 methods:prototype,
 3 extends:BaseClass=Object}){
 4
 5 // helper function that creates a new constructor function

 6 // that calls the base class constructor function
 7 function extendConstructor(ctor, ctorToExtend){
 8 return function newCtor(...args){
 9 ctorToExtend.apply(this, args)
10 ctor.apply(this, args);
11 return this;
12 };
13 }
14
15 // make sure constructor calls base class constructor
16 let extendingConstructor = extendConstructor(constructor, BaseClas\
17 s);
18
19 // set the class prototype to an object that has
20 // the base class prototype as prototype
21 extendingConstructor.prototype = Object.create(BaseClass.prototype\
22);
23 extendingConstructor.prototype.constructor = extendingConstructor;
24
25 // extend the prototype with the *class* methods
26 Object.assign(extendingConstructor.prototype, prototype);
27
28 return extendingConstructor;
29 }

The newClass function takes the three ingredients for a class: constructor, prototype
and base class and assembles them all together for you. It will:

1. Make sure to create a new constructor function that calls the base constructor
before your own class constructor.

2. Assemble an appropriate prototype by creating an object with the base class
prototype and combining it with your own class prototype.

If you don’t provide a base class to extend it will use the Object class as default.

Let’s see the newClass function in action and define a new Berserker class:

 1 var Berserker = newClass({
 2 constructor: function(name, position, sprite, animalSpirit){
 3 this.animalSpirit;
 4 },
 5 methods: {
 6 rageAttack: function(target){
 7 console.log(`${this} screams and hits ${target}
 8 with a terrible blow`);
 9 target.hp -= 100;
10 }
11 },
12 extends: ClassyBarbarian
13 });

Much better right? Now you can start using your Berserker class to fill your army
ranks with fearless (and crazy) warriors:

 1 var dwarfBerserker = new Berserker(
 2 'Gloin',
 3 new Position(0,0),
 4 'gloin.png',
 5 'badger');
 6
 7 dwarfBerserker.rageAttack("conan");
 8 // => Gloin screams and hits conan with a terrible blow
 9
10 dwarfBerserker.equipsWeapon({name: 'Double bearded Axe'});
11 // => Gloin grabs a Double bearded Axe from the cavern floor

Concluding
In this chapter you learned how to mimic C# classes and classical inheritance in
JavaScript.

You saw how combining a constructor function and a prototype object let’s you
create something comparable to a class, where the constructor function defines your
class members and the prototype defines your class methods. You then learned about
data privacy with closures and symbols and how to write static members, methods
and classes in JavaScript.

We continued extending the scope from a single class to multiple classes and you
discovered how to achieve an equivalent experience to C# classical inheritance. We
could do this by following two steps:

1. Calling a base class constructor function for a derived class constructor and by,
2. Establishing a prototypical chain between each class prototype

We wrapped the chapter discussing how to override and extend class methods, and
how to simplify class inheritance in JavaScript using a helper function of our own
devise.

If you reflect a little bit about what you’ve learned in this chapter you’ll probably
come to wonder: Really? Does writing a class in JavaScript need to be this hard?.
That’s exactly what ES6 classes are trying to remedy by providing a much more
familiar, simpler and nicer syntax to writing classes in JavaScript. Very
conveniently, the topic of our next chapter is non other than ES6 classes.

randalf.says("And that's how you emulate classical " +
 "inheritance in a nutshell");

mooleen.snores();
rat.elbows(mooleen);

mooleen.says("Whaaat? Wha What?");
randalf.says("Did you just fall asleep?");

mooleen.says("What? Oh no, I was pondering that last bit");
randalf.says("I know right, classical inheritance " +
 "is a little un-idiomatic");

rat.says("I hate to stop your dissertation but... " +
 "can you take a look at the beach?");
mooleen.says("Sweet mother of Jesus");
randalf.says("Mother of Who? What?");
randalf.whistles();

/*
 Where moments ago there were just sand and pebbles a
 humongous army of reddish brutes assembles for battle.

 As their commander shouts a charge and rows after rows
 of warriors start trotting and then running, more and
 more soldiers pour out of two wide portals seemingly
 floating over the beach.
*/

randalf.says("I suggest that you start building an army");
rat.says("Right now");
randalf.says("Bandalf will buy you us some time?");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Take Advantage of the High Terrain With Archers!
Thanks to Bandalf we have some time to prepare a surprise for this host of angry enemies.
Create an army of archers to decimate their ranks from the advantageous position on top of
the hills.

Create an Archer class that inherits from this minion:

 1 function Minion(name, hp){
 2 this.name = name;
 3 this.hp = hp;
 4 this.position = {x: 0, y: 0};
 5 }
 6 Minion.prototype = {
 7 constructor: Minion,
 8 toString: function(){
 9 return this.name;
10 },
11 goesTo: function (x, y){
12 console.log(this + " goes to position (" + this.position.x +
13 "," + this.position.y +")");
14 }
15 };

The archer should have a method firesArrowTo to target an enemy:

1 archer.firesArrowTo(redBrute);
2 // => archer fires arrow to red brute causing 10 damage

Solution
 1 // archer -> Minion
 2 function Archer(){
 3 Minion.call(this, 'archer', 100);
 4 }
 5 Archer.prototype = Object.create(Minion.prototype);

http://bit.ly/javascriptmancy-oop-classical-inheritance-exercises
https://github.com/vintharas/javascriptmancy-code-samples

 6 Archer.prototype.constructor = Archer;
 7 Archer.prototype.firesArrowTo = function(target){
 8 console.log(this + " fires arrow to " + target + " causing 10 dama\
 9 ge");
10 target.hp -= 10;
11 }
12

13 // red brutes are coming!!
14 var redBrute = {
15 hp: 100,
16 toString: function(){ return 'red brute';}
17 };
18

19 mooleen.says("I'm almost ready!!!");
20

21 var archer = new Archer();
22 archer.firesArrowTo(redBrute);
23 // => archer fires arrow to red brute causing 10 damage
24

25 randalf.says("Keep them coming!!");
26 randalf.says("There are more coming up the hill!");
27

28 var anotherArcher = new Archer();
29 anotherArcher.firesArrowTo(redBrute);
30 // => archer fires arrow to red brute causing 10 damage

Hold Their Charge!! Build a Phalanx!
It looks like your archers have stirred a hornet’s nest. A huge column of angry reddish
brutes is charging up the hill wielding axes, clubs and humongous double-edged swords.
We need to stop their advance before they reach the archers and cut them to pieces. Build a
Phalanx unit to form an impenetrable and inhospitable wall with shields and lances.

The Phalanx unit should inherit from Minion and have these methods:

1 phalanx.formsShieldWall();
2 // => Phalanx adopts the shield wall stance +100 defence
3 // (+100 defence per extra unit in the formation)
4 phalanx.attacksWithLance(redBrute);
5 // => Phalanx pierces red brute with the sharp end of
6 // her lance causing 50 damage

Solution

 1 function Phalanx(){
 2 Minion.call(this, 'Phalanx', 500);
 3 this.defense = 100;
 4 }
 5 Phalanx.prototype = Object.create(Minion.prototype);
 6 Phalanx.prototype.constructor = Phalanx;
 7 Phalanx.prototype.formsShieldWall = function(){
 8 console.log("Phalanx adopts the shield wall stance " +
 9 "+100 defense (+100 defense per extra unit in the formation)");
10 this.defense += 100;
11 }
12 Phalanx.prototype.attacksWithLance = function(target){
13 console.log(this + " pierces " + target + " with the " +
14 "sharp end of her lance causing 50 damage");
15 target.hp -= 50;
16 }
17

18 var phalanx = new Phalanx();
19 phalanx.formsShieldWall();
20 // => Phalanx adopts the shield wall stance +100 defense
21 // (+100 defense per extra unit in the formation)
22 phalanx.attacksWithLance(redBrute);
23 // => Phalanx pierces red brute with the sharp end of
24 // her lance causing 50 damage
25

26 randalf.says("Excellent! Form a complete wall! More phalanxes");
27

28 rat.says("errr... guys?");
29 /*
30 A 12 foot tall four-legged horned beast crosses the portal
31 into the beach and roars a blood freezing roar. As it walks
32 each step makes the earth rumble.
33 */
34 mooleen.says('No phalanx is going to stop that');

Magic Archers for Magic Beasts
Our archers and phalanxes will be no match for that mighty creature from hell. Create a
new MagicArcher unit that will be able to enchant and shoot magic arrows at the beast.

The MagicArcher should inherit from the Archer unit and extend its firesArrowTo method.
It should also have an enchantArrow method to produce magic arrows.

1 var fireArrow = magicArcher.enchant('fire', /* damage */ 100);
2 // => Magic archer enchats arrow with fire magic
3 // (+100 magical damage)
4 magicArcher.firesArrowTo(hellBeast, fireArrow);
5 // => Magic archer fires arrow to hell beast causing 10 damage
6 // The arrow is a fire arrow that causes additional
7 // 100 magical damage

Solution
 1 function MagicArcher(){
 2 Archer.call(this);
 3 this.name = 'magic archer';
 4 this.mana = 100;
 5 }
 6 MagicArcher.prototype = Object.create(Archer.prototype);
 7 MagicArcher.prototype.constructor = MagicArcher;
 8 MagicArcher.prototype.enchant = function(magicType, magicalDamage) {
 9 return {
10 magicType: magicType,
11 magicalDamage: magicalDamage,
12 toString: function(){ return magicType + " arrow";}
13 };
14 }
15 MagicArcher.prototype.firesArrowTo = function(target, arrow){
16 Archer.prototype.firesArrowTo.call(this, target);
17 console.log('The arrow is a ' + arrow + ' that causes ' +
18 'additional ' + arrow.magicalDamage + ' magical damage');
19 }
20

21 var hellBeast = {
22 hp: 20000,
23 toString: function(){ return 'hell beast';}
24 };
25

26 var magicArcher = new MagicArcher();
27 var fireArrow = magicArcher.enchant('fire', 500);
28 // => magic archer fires arrow to hell beast causing 10 damage
29 magicArcher.firesArrowTo(hellBeast, fireArrow);
30 // => The arrow is a fire arrow that causes additional
31 // 500 magical damage

32

33 narrate(`
34 As the arrow impacts the beast, it roars in pain and rage
35 and charges up the hill to be welcomed by a shower of magical
36 arrows that succeed it slowing it and help the phalanx hold
37 it a bay.
38 `);
39

40 mooleen.says('Uff, that was close');
41 randalf.says('Great job student!');
42

43 rat.says('Hate to be the bearer of bad news, but I think ' +
44 'that guy in red just opened two more portals');
45 mooleen.says('Damn! These spells are to slow to craft, ' +
46 'too complicated, too intricate...');
47 randalf.says("Let me think...");
48

49 randalf.says(`Yes! There's another way, a little bit unproved
50 since it was discovered in the later years but...
51 it might just work. How was it called...
52 Yes! I remember! ES6 classes!`);

White Tower Summoning Enhanced: The
Marvels of ES6 Classes

Classes are useful in that they
let us represent the world around us
in a simplified abstract manner,
reducing an infinite complex world
to the problem at hand.

Writing summoning spells
for your all-mighty army?
You probably don't need to model
your creatures digestive tract

 - RaezIm Rurat
 Oracle of Kwarok

/*
The battle rages on and no group seems to have the upper hand.
Brutes and beasts keep pouring out of four great portals
but the advantage of the terrain lets Mooleen defend the hill
with a smaller force.
*/

mooleen.weaves(`new Phalanx()`);
/*
A phalanx materializes and takes his place
reinforcing the third rank.
*/

mooleen.says("Won't they stop coming?");
mooleen.says("I'm starting to get tired");
rat.says("Looks like they're doing a very serious " +
 "attempt at invading the island." +
 "One would say, an effort out of proportion...");

randalf.says("Well, this island is quite a jewel");
randalf.says("It's small, easy to defend and
 a tremendous source of mana");

mooleen.says("Mana?");
randalf.says("Yeah, that's the mysterious energy you " +
 "need to cast spells.")

randalf.says("The more sources of mana you command " +
 "the bigger the armies you can summon " +
 "and the more powerful spells you can cast.");

mooleen.says("That makes sense. I remember feeling a " +
 "sort of euphoria when we vanquised Great.");
randalf.says("Yes, that was the island opening to you.");

mooleen.says("Aha! How can we use that extra power " +
 "to turn the tide of the battle? ");

randalf.says("Hmm, mimicking classical inheritance won't work");
randalf.says("You need to create these units faster " +
 "with ES6 classes!");

Create These Units Faster with ES6 Classes!
In the last chapter you learned how to implement classes in JavaScript without
relying on ES6 classes. This puts you in a wonderful position to learn ES6 classes:

1. Now you have a deep understanding about the underlying implementation of
ES6 classes which are just syntactic sugar over constructor functions and

prototypes. This will help you understand not only how ES6 classes work but
also how they relate to the rest of JavaScript.

2. You have experienced first-hand the tediousness of writing lots of boilerplate
code to achieve the equivalent of both classes and classical inheritance. With
this context, the value proposition of ES6 classes becomes very clear as they
bring a much nicer syntax and developer experience to using classes and
classical inheritance in JavaScript.

Because ES6 classes provide a great class developer experience, they are a perfect
entry point for developers coming from static typed languages like C#. You can start
your JavaScript journey using classes just like you would in C#, and little by little
learn more about the specific capabilities that JavaScript has to offer.

From ES5 “Classes” to ES6 Classes

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

In the previous chapter you learned how to obtain a class equivalent by combining a
constructor function and a prototype:

 1 // the constructor function:
 2 // - defines the ClassyBarbarian type
 3 // - defines the properties a ClassyBarbarian instance
 4 // is going to have
 5 function ClassyBarbarian(name){
 6 this.name = name;
 7 this["character class"] = "barbarian";
 8 this.hp = 200;
 9 this.weapons = [];
10 }
11
12 // the prototype:
13 // - defines the methods shared across all instances
14 ClassyBarbarian.prototype = {
15 constructor: ClassyBarbarian,
16 talks: function(){
17 console.log("I am " + this.name + " !!!");
18 },
19 equipsWeapon: function(weapon){
20 weapon.equipped = true;
21 this.weapons.push(weapon);
22 console.log(`${this.name} grabs a ${weapon.name}`+

http://bit.ly/javascriptmancy-oop-es6-classes
https://github.com/vintharas/javascriptmancy-code-samples

23 ` from the cavern floor`);
24 },
25 toString: function(){
26 return this.name;
27 },
28 saysHi: function (){
29 console.log("Hi! I am " + this.name);
30 }
31 };

The transformation between this class equivalent to a full blown ES6 class is very
straightforward. Behold! The mighty Barbarian class!

 1 class Barbarian {
 2
 3 constructor(name){
 4 this.name = name;
 5 this["character class"] = "barbarian";
 6 this.hp = 200;
 7 this.weapons = [];
 8 }
 9
10 talks(){
11 console.log("I am " + this.name + " !!!");
12 }
13
14 equipsWeapon(weapon){
15 weapon.equipped = true;
16 this.weapons.push(weapon);
17 console.log(`${this.name} grabs a ${weapon.name} from ` +
18 `the cavern floor`);
19 }
20
21 toString(){
22 return this.name;
23 }
24
25 saysHi(){
26 console.log("Hi! I am " + this.name);
27 }
28 };

The class keyword followed by the class name now act as a container for the whole
class. The syntax for the body is very reminiscent of the shorthand method syntax of
object initializers that you learned in JavaScript-mancy: Getting Started (also
available in appendix A if you need to take a quick sneak peek):

The constructor function becomes the constructor method inside the class
The prototype methods become methods within the body of the class. They are
separated by new lines and not by commas like in an object initializer.
Instead of writing a method with the function keyword as in saysHi:
function(){} we use the shorthand version nearer to C# method syntax
saysHi(){.

In addition to methods you can also define getters and setters just like you
would within object literals.

Once defined, you can create class instances using the new keyword:

1 const conan = new Barbarian('Conan');
2
3 console.log(`Conan is a barbarian: ` +
4 `${conan instanceof Barbarian}`);
5 // => Conan is a barbarian: true
6
7 conan.equipsWeapon('steel sword');
8 // => Conan grabs a undefined from the cavern floor

Prototypical Inheritance via Extends
Expressing inheritance is equally straightforward when you use ES6 classes. The
extends keyword provides a more declarative approach than the equivalent in ES5.

Where in ES5 we would need to:

1. Make sure to call the base class constructor function and,
2. Set the prototype property of a constructor function

like in this example:

 1 function Berserker(name, animalSpirit){
 2 // 1) Call base class constructor
 3 Barbarian.call(this, name);
 4 this.animalSpirit = animalSpirit;
 5 };
 6
 7 // 2) Set prototype imperatively
 8 Berserker.prototype = Object.create(Barbarian.prototype);
 9 Berserker.prototype.constructor = Berserker;
10 Berserker.prototype.rageAttack = function(target){
11 console.log(`${this} screams and hits ` +
12 `${target} with a terrible blow`);
13 target.hp -= 100;
14 };

With ES6 classes we use the extends keyword in the class declaration:

 1 class Berserker extends Barbarian {
 2
 3 constructor(name, animalSpirit){
 4 super(name);
 5 this.animalSpirit = animalSpirit;
 6 }
 7
 8 rageAttack(target){

 9 console.log(`${this} screams and hits ${target} ` +
10 `with a terrible blow`);
11 target.hp -= 100;
12 }
13 }

The extends keyword ensures that the Berserker class extends (inherits from) the
Barbarian class. The super keyword within the constructor let’s you call the base
class constructor.

If we now instantiate a new maddened Berserker you’ll appreciate how it has both
Berserker and Barbarian types:

1 const logen = new Berserker('Logen, the Bloody Nine', 'wolf');
2 console.log(`Logen is a barbarian: ${logen instanceof Barbarian}`);
3 // => Logen is a barbarian: true
4 console.log(`Logen is a berserker: ${logen instanceof Berserker}`);
5 // => Logen is a berserker: true

And contains methods from both classes:

1 logen.equipsWeapon({name:'huge rusty sword'});
2 // => Logen, the Bloody Nine grabs a huge rusty sword
3 // from the cavern floor
4 logen.rageAttack(conan);
5 // => Logen, the Bloody Nine screams and hits Conan with
6 // a terrible blow

Infinitely better, isn’t it?

Overriding Methods in ES6 Classes
You can also use the super keyword to override and extend class methods.
Remember the Shaman and WhiteShaman we used in the previous chapter to illustrate
method overriding? The example below shows how you can achieve the same thing
with ES6 classes. We have taken the original classes, transformed them into very
concise ES6 classes and used the super keyword to override the heals method.

Here is the Shaman class:

 1 class Shaman extends Barbarian{
 2 constructor(name){
 3 super(name);
 4 }
 5
 6 heals(target){
 7 console.log(`${this} heals ${target} (+ 50hp)`);
 8 target.hp += 50;

 9 }
10 }

And here the WhiteShaman that overrides and extends the heals method with new
and improved functionality:

 1 class WhiteShaman extends Shaman {
 2
 3 castsSlowCurse(target){
 4 console.log(`${this} casts slow on ${target}.` +
 5 ` ${target} seems to move slower`);
 6 if (target.curses) target.curses.push('slow');
 7 else target.curses = ['slow'];
 8 }
 9
10 heals(target){
11 // instead of Shaman.prototype.heals.call(this, target);
12 // you can use super
13 super.heals(target);
14 console.log(`${this} cleanses all negatives effects ` +
15 `in ${target}`);
16 target.curses = [];
17 target.poisons = [];
18 }
19 }

The super keyword provides a great improvement from the ES5 approach where you
were required to call the method on the base class prototype:

1 WhiteShaman.prototype.heals = function(target){
2 // calling base class implementation
3 // omg really?
4 Shaman.prototype.heals.call(this, target);
5
6 // etc...
7 }

You can verify how the overridden heals method works just as you’d expect:

1 const khaaar = new WhiteShaman('Khaaar');
2
3 khaaar.castsSlowCurse(conan);
4 // => Khaaar casts slow on Conan, the Barbarian.
5 // Conan seems to move slower
6
7 khaaar.heals(conan);
8 // => Khaaar cleanses all negatives effects in Conan

Static Members and Methods
In addition to per-instance 14 methods, ES6 classes provide a syntax to declare static
methods. Just prepend the static keyword to a method declaration inside a class.

Imagine that we have a Sword class to represent swords of different shapes and sizes:

 1 class Sword {
 2 constructor(material, damage, weight){
 3 this.material = material;
 4 this.damage = damage;
 5 this.weight = weight;
 6 }
 7
 8 toString(){
 9 return `${this.material} sword (+${this.damage})`;
10 }
11 }

Within this class we could define a getRandom() static method that would allow us
to easily forge new swords with random characteristics:

 1 class Sword {
 2 constructor(material, damage, weight){
 3 this.material = material;
 4 this.damage = damage;
 5 this.weight = weight;
 6 }
 7
 8 toString(){
 9 return `${this.material} sword (+${this.damage})`;
10 }
11
12 // new static method
13 static getRandom(){
14 const randomMaterial = 'iron',
15 damage = Math.random(Math.random()*10),
16 randomWeight = '5 stones';
17 return new Sword(randomMaterial, damage, randomWeight);
18 }
19 }

You can call a static method using the class name followed by the method like you
would in C#. Voila a new sword!

1 const randomSword = Sword.getRandom();
2
3 console.log(randomSword.toString());
4 // => iron sword (+4)

Unlike with methods, ES6 classes don’t offer a declarative syntax to declare static
members. Fortunately, you can still use the approach you learned in the previous
chapter, that is, you can augment the constructor function (the class identifier) with
the static member.

Let’s say that we want to make our previous sword generator algorithm a little bit
more configurable by providing a list of available materials. We can store this list of

allowed materials in a static member:

1 Sword.materials = ['wood', 'iron', 'steel'];
2
3 console.log(Sword.materials);
4 // => ['wood', 'iron', 'steel']

Now we can update the getRandom static method to use this list of allowed materials.
Since they are both static they can freely access each other:

1 static getRandom(){
2 // super complex randomness algorithm
3 // to pick a material :) cheater!
4 const randomMaterial = Sword.materials[0],
5 damage = Math.random(Math.random()*10),
6 randomWeight = '5 stones';
7
8 return new Sword(randomMaterial, damage, randomWeight);
9 }

ES6 Classes and Information Hiding
When it comes to ES6 classes and information hiding we are in the same place15 as
we were prior to ES6: Every property inside the constructor of a class and every
method within the class declaration body is public. You need to rely on closures
or ES6 symbols to achieve data privacy.

Just like with ES5 classes, if you want to use closures to declare private members or
methods you’ll need to move the method consuming these private members inside
the class constructor. This will ensure that the method can enclose the private
member or method.

For instance, we can make the weapons member private just like we did in the
previous chapter:

 1 class PrivateBarbarian {
 2
 3 constructor(name){
 4 // private members
 5 const weapons = [];
 6
 7 // public members
 8 this.name = name;
 9 this["character class"] = "barbarian";
10 this.hp = 200;
11
12 this.equipsWeapon = function (weapon){
13 weapon.equipped = true;
14
15 // the equipsWeapon method encloses

16 // the weapons variable
17 weapons.push(weapon);
18
19 console.log(`${this.name} grabs a ${weapon.name} ` +
20 `from the cavern floor`);
21 };
22
23 this.toString = function(){
24 if (weapons.length > 0) {
25 return `${this.name} wields a ` +
26 `${weapons.find(w => w.equipped).name}`;
27 } else return this.name
28 };
29 }
30
31 talks(){
32 console.log("I am " + this.name + " !!!");
33 }
34
35 saysHi(){
36 console.log("Hi! I am " + this.name);
37 }
38 };

In the example above we have defined weapons as a normal variable inside the
constructor scope. We have then moved the equipsWeapon and toString methods
inside the constructor and rewritten them to enclose the weapons variable. Now we
can verify how weapons effectively becomes a private member of the
PrivateBarbarian class:

1 const privateBarbarian = new PrivateBarbarian('timido');
2 privateBarbarian.equipsWeapon({name: 'mace'});
3 // => timido grabs a mace from the cavern floor
4
5 console.log(`Barbarian weapons: ${privateBarbarian.weapons}`);
6 // => Barbarian weapons: undefined
7
8 console.log(privateBarbarian.toString())
9 // => timido wields a mace

Alternatively, you can use symbols just like with ES5 classes:

 1 // this should be placed inside a module
 2 // so only the SymbolicBarbarian has access to it
 3 const weapons = Symbol('weapons');
 4
 5 class SymbolicBarbarian {
 6
 7 constructor(name){
 8 this.name = name;
 9 this["character class"] = "barbarian";
10 this.hp = 200;
11 this[weapons] = [];
12 }
13
14 talks(){

15 console.log("I am " + this.name + " !!!");
16 }
17
18 equipsWeapon(weapon){
19 weapon.equipped = true;
20 this[weapons].push(weapon);
21 console.log(`${this.name} grabs a ` +
22 `${weapon.name} from the cavern floor`);
23 }
24
25 toString(){
26 if(this[weapons].length > 0) {
27 return `${this.name} wields a ` +
28 `${this[weapons].find(w => w.equipped).name}`;
29 } else return this.name;
30 }
31
32 saysHi(){
33 console.log("Hi! I am " + this.name);
34 }
35 };

Which also results in weapons being private 16:

1 const symbolicBarbarian = new SymbolicBarbarian('simbolo');
2 symbolicBarbarian.equipsWeapon({name: 'morning star'});
3 // => timido grabs a mace from the cavern floor
4
5 console.log(`Barbarian weapons: ${symbolicBarbarian.weapons}`);
6 // => Barbarian weapons: undefined
7
8 console.log(symbolicBarbarian.toString())
9 // => timido wields a morning star

Which to choose? That depends on what style you prefer. Just know that closures
and symbols have the same trade-offs with ES6 classes than with ES5 classes:

Closures ES6 Symbols

Let’s you achieve true privacy.

You cannot achieve true
privacy because a client could
use getOwnPropertySymbols
to obtain to your symbols and
therefore your private
variables.

Because you need to enclose variables with your
methods, using closures forces you to move your
methods from the prototype to the constructor
function. This requires more memory since these
methods are no longer shared by all instances.

With symbols you can keep
your methods in the prototype
and therefore consume less
memory.

ES6 Classes Behind the Curtain
If you’ve been attentive during this chapter about ES6 classes you may have noticed
one thing. Because ES6 classes are just syntactic sugar over JavaScript existing OOP
constructs, we can fill in the gaps left by lacking features using vanilla ES5 solutions
like we did with static members or data privacy.

This is a hint that we can use ES6 classes just like we would use a constructor
function and a prototype pair. For instance, we can augment an ES6 class prototype
at any time with new capabilities and all instances of that class will get instant access
to those features (via the prototype chain).

For instance, let’s bless all our barbarians with a mysterious god mode:

1 Barbarian.prototype.entersGodMode = function(){
2 console.log(`${this} enters GOD MODE!!!!`);
3 this.hp = 99999;
4 this.damage = 99999;
5 this.speed = 99999;
6 this.attack = 99999;
7 };

After executing this bit of code, the instances that we created earlier like conan the
Barbarian, logen the Berserker and khaaar the Shaman all obtain the new ability to
enter god mode:

1 conan.entersGodMode();
2 // => Conan enters GOD MODE!!!!
3 logen.entersGodMode();
4 // => Logen, the Bloody Nine enters GOD MODE!!!!
5 khaaar.entersGodMode();
6 // => Khaaar enters GOD MODE!!!!

Freaky.

Concluding
ES6 classes are a result of the natural evolution of JavaScript’s object oriented
programming paradigm. The evolution from the rudimentary class support we had in
ES5 where we needed to write a lot of boilerplate code to the much better native
support in ES6.

They resemble C# classes and can be created using the class keyword. They have a
constructor function where you declare the class members and have a very similar
syntax to that of shorthand object initializers.

ES6 classes provide support for method overriding via the super keyword, static
methods via the static keyword and they can easily express inheritance trees
(prototype chains) in a declarative way by using the extends keyword.

It is important that you understand that ES6 classes are just syntactic sugar over the
existing inheritance model. Wielding that knowledge you can take advantage of what
you learned in previous chapters to implement static members, data privacy via
closures and symbols, augment a class prototype at runtime, and anything you can
imagine.

Now that you know how to write OOP in JavaScript using a C# style it’s time to
move beyond classical inheritance and embrace JavaScript’s dynamic nature and
flexibility. Up next! Mixins and Object Composition!

/*
 A new portal appears on top of the hill flanking
 Mooleen, Randalf and rat's position. In the blink
 of an eye, a throng of brutes charge from within
 the portal.
*/

mooleen.says("When I thought things couldn't " +
 "get any worse...");
rat.says("Things can and will always get worse");
mooleen.says("Yeah but can't we ever have the " +
 "upper hand? Just once?");

randalf.says("You know? Imminent death is approaching" +
 " and the only thing I can think of is... damn! "
 " These people sweat profusely. What a reek!");
rat.says('That was mean Randalf. Shame on you');

mooleen.says("Imminent death?! Not if I can prevent it!");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Prevent Imminent Death!
Quick! There are seconds separating us from the Netherworld. Create a SandGolem class
that inherits from the same Minion from the previous chapter.

 1 function Minion(name, hp){
 2 this.name = name;
 3 this.hp = hp;
 4 this.position = {x: 0, y: 0};
 5 }
 6 Minion.prototype = {
 7 constructor: Minion,
 8 toString: function(){
 9 return this.name;
10 },
11 goesTo: function (x, y){
12 this.position.x = x;
13 this.position.y = y;
14 console.log(this + " goes to position (" +
15 this.position.x + "," + this.position.y + ")");
16 }
17 };

The SandGolem should have two methods bash and absorb, the first one to bash enemies
heads and the second one to stop them in their tracks by absorbing their attacks inside its
body of sand.

1 sandGolem.bash(redBrute);
2 // => Sand golem bashes red brute with
3 // terrible force causing 30 damage
4 sandGolem.absorb(redBrute);
5 // => Sand golem absorbs red brute into its body of sand.
6 // The red brute can't move

Solution

http://bit.ly/javascriptmancy-oop-es6-classes-exercises
https://github.com/vintharas/javascriptmancy-code-samples

 1 function Minion(name, hp){
 2 this.name = name;
 3 this.hp = hp;
 4 this.position = {x: 0, y: 0};
 5 }
 6 Minion.prototype = {
 7 constructor: Minion,
 8 toString: function(){
 9 return this.name;
10 },
11 goesTo: function (x, y){
12 this.position.x = x;
13 this.position.y = y;
14 console.log(this + " goes to position (" +
15 this.position.x + "," + this.position.y + ")");
16 }
17 };
18

19 var redBrute = {
20 hp:100,
21 toString(){ return 'red brute';}
22 };
23

24 class SandGolem extends Minion {
25 constructor(name='Sand Golem', hp=200){
26 super(name, hp);
27 }
28 bash(target){
29 console.log(`${this} bashes ${target} with ` +
30 `terrible force causing 30 damage`);
31 target.hp -= 30;
32 }
33 absorb(target){
34 console.log(`${this} absorbs ${target} into its ` +
35 `body of sand. The ${target} can't move`);
36 }
37 }
38

39 const sandGolem = new SandGolem();
40 sandGolem.goesTo(1, 1)
41 // => sand golem goes to position (1,1)
42 sandGolem.bash(redBrute);
43 // => sand golem bashes red brute with terrible
44 // force causing 30 damage
45 sandGolem.absorb(redBrute);
46 // => Sand golem absorbs red brute into its body.
47 // The red brute can't move
48

49 mooleen.says('Aha! Look how I combined the sand golem' +
50 'with my old Minion!');
51 rat.says('Majestic!');
52 randalf.says("And it looks like it's working to stop " +
53 "the tide of barbarians! Awesome!");
54

55 mooleen.says("And now for the final number... GIANTS!!");

GIANTS!!!!
Let’s deliver our last blow to this army of red barbarians. Create a SandGiant that extends
the SandGolem with two new methods: A bash method that destroys enemies and a stomp
method that makes the earth shake.

1 sandGiant.bash(redBrute);
2 // => Sand giant bashes brute and turns it into a pulp
3 sandGiant.stomp();
4 // => Sand giant stomps the ground in fury. The earth
5 // shakes stopping everyone around the giant.

Solution
 1 class SandGiant extends SandGolem {
 2 constructor(name='Sand giant', hp=9999){
 3 super(name, hp)
 4 }
 5 bash(target){
 6 console.log(`${this} bashes ${target} ` +
 7 `and turns it into a pulp`);
 8 target.hp = 0;
 9 }
10 stomp(){
11 console.log(`${this} stomps the ground in fury. ` +
12 `The earth shakes stopping everyone around the giant.`);
13 }
14 }
15

16 const sandGiant = new SandGiant();
17 sandGiant.goesTo(2,2);
18 // => Sand giant goes to position (2,2)
19 sandGiant.bash(redBrute);
20 // => Sand giant bashes red brute and turns it into a pulp
21 sandGiant.stomp();
22 // => Sand giant stomps the ground in fury. The earth
23 // shakes stopping everyone around the giant.
24

25 /*
26

27 The sudden appearance of the sand giants turns the
28 battlefield into chaos. The brute army tries to
29 rally and mount an attack but they are overwhelmed.
30

31 One by one the portals start fading and disappear.
32

33 */
34

35 mooleen.says('Enemies! Tremble upon my wrath!');

36 rat.says('moahahaha');
37 randalf.says('moahahaha');
38 bandalf.says('moahahaha');
39 mooleen.says('moahahaha');
40

41 mooleen.says('Wait, where have you been all this time?');
42 bandalf.says("I was entertaining the red wizard, in an " +
43 "epic insult sword fighting duel");
44 mooleen.says("Insult sword fighting... " +
45 "that sounds vaguely familiar...");

Black Tower Summoning: Objects Interweaving
Objects with Mixins

I used to think that the important
innovation of JavaScript was prototypal inheritance.

Upon more reflection, I think that it is
class free object oriented programming.

It is JavaScript's gift to humanity.

 - Glas Ford,
 JavaScript-Mancy: A missunderstood art, Meditations

/* The wind blows atop a sandy hill, a deep thick silence
 envelops everything, as if there was nothing left alive
 walking the world. Bodies piled on top of more bodies.
 The sick aftermath of a terrible battle.

 Suddenly a muffled sound. A ever so slight shift within
 a pile. A vibration. Something definitely alive.
 */

redBrute.shouts("aaaaarrghhhh!");

/*
 From a pile of bodies raises a huge red figure muscles bulging.
 In his right hand a monstruous two handed longsword that may
 or may not have impaled two or more bodies on its way up.
*/

redBrute.coughsWithAnUncharacteristiclyHighPitchCough();

/*
 With his left hand he reaches inside his furs and takes a
 pair of thin-framed glasses that he carefully places in his
 face over his nose.
*/

redBrute.says("That was most inconvenient");

/*
 If you were an inhabitant of a planet called Earth you
 may have compared the accent of this barbarian to that
 of a British aristocrat.

 The red brute is quickly surrounded by a circle of lances.
*/

redBrute.says("Dear gentlemen, I appreciate your consideration " +
 "but I'm not in the need of a toothpick." +
 "I'd be delighted if you'd be so kind to " +
 "bring your general.");

mooleen.says("That happens to be me");

redBrute.says("Aha!");

/*
The barbaric figure lunges towards Mooleen with a warcry
wielding the immense sword and...

...smashes it into a rock breaking it into pieces

...that is, the sword not the rock
*/

redBrute.kneels();
mooleen.looksPuzzled();
randalf.looksPerplexed();
bandalf.looksAmused();
rat.looksLikeRatsLook();

redBrute.says("Milady. As the ancient laws of my people demand" +
 " and having being utterly defeated by your superior " +
 " commanding prowess, I hereby pledge fealty to you " +
 " until I can prove myself and gain my honor back ");

mooleen.says("wat");
mooleen.says("Wait, how do I know that you won't stab me" +
 " in the back at the slightest chance?");

redBrute.says("Oh, that's easy, if anything were to happen " +
 "to you before I regained my honor I'd never be able to " +
 "gain entrance to Walhala. I'd be a pariah condemned " +
 "to walk the darklands for eternity, my innards " +
 "chewed by rats and my flesh and eyes picked by crows.");

rat.says("yum");
randalf.says("I'm not convinced...");

redBrute.says("I also happen to know where you can find that " +
 "twat of the Red Hand and how you can crush him " +
 "and all his chronies before they rally their " +
 "unending hosts and exterminate you.");

mooleen.says("I'm listening");

redBrute.says("The problem with classes and classical inheritance...\
")

The Problem With Classes and Classical Inheritance…
The world we live in is unbelievably complex. Creating software that handles this
infinite degree of complexity and detail is a futile endeavor. Object Oriented
Programming attempts to solve this problem by abstracting the world inside a
problem space and creating representations of reality that are simplified and that let
us solve very specific problems. Thus turning the impossible into something, if not
simple, at least manageable.

These OOP representations are usually done with the aid of classes and objects. A
class represents a blueprint of something, some entity in reality that we want to
abstract and use in our programs. It determines the properties that we will use to
represent this entity and which actions it can perform. An object represents a
particular instance of that blueprint, of that class, something that exists, has a
particular state and can be operated on.

This is all well and good. We live in a complex world and OOP helps us manage that
complexity through simplified versions of reality called classes and objects.

A side effect of using classes is that it creates a taxonomy or a classification of the
entities in the world around us. This classification, because of the nature of classes
and inheritance, tends to be a very rigid one that doesn’t tolerate change well.
Change not strictly in the sense of adding a new property to a class but in
accommodating the system of classes to new knowledge about the domain at hand.

We saw an example of this particular problem in the introduction to this book where
we defined these three classes Minion, Wizard and Thief:

 1 class Minion {
 2 constructor(name, hp){
 3 this.name = name;
 4 this.hp = hp;
 5 }
 6 toString(){
 7 return this.name;
 8 }
 9 }
10
11 class Wizard extends Minion {
12 constructor(element, mana, name, hp){
13 super(name, hp);
14 this.element = element;
15 this.mana = mana;
16 }
17 toString(){
18 return super.toString() + ", the " + this.element +" Wizard";
19 }
20 castsSpell(spell, target){
21 console.log(this + ' casts ' + spell + ' on ' + target);
22 this.mana -= spell.mana;
23 spell(target);
24 }
25 }
26
27 class Thief extends Minion {
28 constructor(name, hp){
29 super(name, hp);
30 }
31 toString(){
32 return super.toString() + ", the Thief";
33 }
34 steals(target, item){
35 console.log(`${this} steals ${item} from ${target}`);
36 }
37 }

Our problem space was represented by a world in which we have a Wizard as
someone who can cast spells, and a Thief as someone who can steal. Within this
context we learned something new about our domain: The existence of Bards as
creatures of myth and legend that could both casts spells, steal, and even play an
instrument!

But the system of classes that we had created, our current taxonomy that represents
our view of the world right now doesn’t accommodate very well the idea of a Bard…
is it a Wizard? Is it a Thief? Is it something else? It cannot be both! Can it!?

And so in order to bring this knowledge into our system, we need to do a major
redesign of our classes, redefine our whole taxonomy, or duplicate code and forsake
the benefits that could come from polymorphism.

So classes create taxonomies. Taxonomies are rigid and don’t tolerate change well.
Is there anything else we need to take into account? Well there’s also a problem with
the when, when do we create these classes and taxonomies? And how does that
affect how we work?

A very wise person 17 reflected over this and realized that we build these taxonomies
when we start a project, which is the moment when we least know about our domain
and problem space. We are creating these very rigid systems to represent a domain
we are usually not familiar with. Systems that will inevitably need to change as we
find out more about the domain, but which are not well suited to adapt to that
change.

Is there a better way?

Well, yes sir/madam there is. It is class-free object oriented programming and this
gentleman calls it the single most important contribution of JavaScript to humanity.
In this and the upcoming chapters we will focus in how you can achieve this
approach to object oriented programming, where classes disappear and we just focus
on objects. Sounds exciting doesn’t it?

Free Yourself From Classes With Object Composition and
Mixins

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

http://bit.ly/javascriptmancy-oop-object-composition-mixins
https://github.com/vintharas/javascriptmancy-code-samples

In the introduction to this book you had a taste of class-free inheritance when you
learned how to compose objects with each other using Object.assign. In that
particular implementation of class-free inheritance we defined behaviors as objects
canBeIdentifiedByName, canCastSpells, canSteal and canPlayMusic:

 1 const canBeIdentifiedByName = {
 2 toString(){
 3 return this.name;
 4 }
 5 };
 6
 7 const canCastSpells = {
 8 castsSpell(spell, target){
 9 console.log(this + ' casts ' + spell + ' on ' + target);
10 this.mana -= spell.mana;
11 spell(target);
12 }
13 };
14
15 const canSteal = {
16 steals(target, item){
17 console.log(`${this} steals ${item} from ${target}`);
18 }
19 };
20
21 const canPlayMusic = {
22 playsMusic(){
23 console.log(`${this} grabs his ${this.instrument} and starts pla\
24 ying music`);
25 }
26 };

And we composed them together to build more complex objects:

 1 // and now we can create our objects by composing this behaviors tog\
 2 ether
 3 function Wizard(element, mana, name, hp){
 4 const wizard = {element,
 5 mana,
 6 name,
 7 hp};
 8 Object.assign(wizard,
 9 canBeIdentifiedByName,
10 canCastSpells);
11 return wizard;
12 }
13
14 function Thief(name, hp){
15 const thief = {name,
16 hp};
17 Object.assign(thief,
18 canBeIdentifiedByName,
19 canSteal);
20 return thief;
21 }
22
23 function Bard(instrument, mana, name, hp){

24 const bard = {instrument,
25 mana,
26 name,
27 hp};
28 Object.assign(bard,
29 canBeIdentifiedByName,
30 canCastSpells,
31 canSteal,
32 canPlayMusic);
33 return bard;
34 }

That work just like you would expect of a wizard:

 1 const lightningSpell = (target) => {
 2 console.log(`A bolt of lightning electrifies ` +
 3 `${target} (-10hp)`);
 4 target.hp -= 10;
 5 };
 6 lightningSpell.mana = 5;
 7 lightningSpell.toString = () => 'lightning spell';
 8
 9 const orc = {
10 name: 'orc',
11 hp: 100,
12 toString(){ return this.name }
13 };
14
15 const wizard = Wizard('fire', 100, 'Randalf, the Red', 10);
16 wizard.castsSpell(lightningSpell, orc);
17 // => Randalf, the Red casts lightning spell on orc
18 // => A bolt of lightning electrifies orc(-10hp)

A thief:

1 const thief = Thief('Locke Lamora', 100);
2 thief.steals('orc', /*item*/ 'gold coin');
3 // => Locke Lamora steals gold coin from orc

And a bard:

 1 const bard = Bard('lute', 100, 'Kvothe', 100);
 2 bard.playsMusic();
 3 // => Kvothe grabs his lute and starts playing music
 4
 5 bard.steals('orc', /*item*/ 'sandwich');
 6 // => Kvothe steals sandwich from orc
 7
 8 bard.castsSpell(lightningSpell, orc);
 9 // => Kvothe casts lightning spell on orc
10 // =>A bolt of lightning electrifies orc(-10hp)

The objects that encapsulate a piece of reusable behavior (canSteal, canPlayMusic,
etc) are what we call mixins. We compose them, or mix them, with other objects to

augment them with additional behavior.

Note that you don’t need to use a factory function like in the previous examples, you
can compose a simple object if so you wish:

1 const orcMagician = Object.assign(
2 {name: 'orc mage', hp: 100, mana: 50},
3 canBeIdentifiedByName,
4 canCastSpells);
5
6 orcMagician.castsSpell(lightningSpell, wizard);
7 // => orc mage casts lightning spell on Randalf, the Red
8 // => A bolt of lightning electrifies Randalf, the Red(-10hp)
9 // sweet vengeance moahahahaha

The factory function just adds that extra level of convenience to create many objects.

Let’s continue strengthening this idea of object composition and flexibility with a
new example. Imagine that you want to be able to see your legions displayed on a
map so that you can take better strategic decisions in your path to ruling the known
universe.

You can define a canBePositioned object that encapsulates this new behavior of
positioning stuff:

 1 const canBePositioned = {
 2 x : 0,
 3 y : 0,
 4 movesTo(x, y) {
 5 console.log(`${this} moves from ` +
 6 `(${this.x}, ${this.y}) to (${x}, ${y})`);
 7 this.x = x;
 8 this.y = y;
 9 }
10 };

And augment all of our minions with that functionality:

1 Object.assign(wizard, canBePositioned);
2 Object.assign(thief, canBePositioned);
3 Object.assign(bard, canBePositioned);
4 Object.assign(orcMagician, canBePositioned);

All of the sudden we can position and move them to our heart’s content. And if we
define a very simple ASCII two-dimensional map like this one:

 1 function Map(width, height, creatures){
 2
 3 function paintPoint(x,y){
 4 const creatureInPosition = creatures

 5 .find(c => c.x === x && c.y === y);
 6 if (creatureInPosition)
 7 return creatureInPosition.name[0];
 8 return '_';
 9 }
10
11 return {
12 width,
13 height,
14 creatures,
15 paint() {
16 let map = '';
17 for(let y = 0; y < height; y++) {
18 for (let x = 0; x < width; x++)
19 map += paintPoint(x,y);
20 map += '\n';
21 }
22 return map;
23 }
24 }
25 }

We can combine the Map capability of drawing stuff and the minions capability of
positioning themselves and moving around to get a tactical representation of our
army:

 1 wizard.movesTo(10,10);
 2 // => Randalf, the Red moves from (0, 0) to (10, 10)
 3 thief.movesTo(5,5);
 4 // => Locke Lamora moves from (0, 0) to (5, 5)
 5 bard.movesTo(15,15);
 6 // => Kvothe moves from (0, 0) to (15, 15)
 7
 8 const worldMap = Map(50, 20, [wizard, thief, bard, orcMagician]);
 9 console.log(worldMap.paint());
10
11 /* =>
12 o___
13 __
14 __
15 __
16 __
17 _____L__
18 __
19 __
20 __
21 __
22 __________R_______________________________________
23 __
24 __
25 __
26 __
27 _______________K__________________________________
28 __
29 __
30 __
31 __
32 */

You may be thinking… Well, I can do this with C# and classical inheritance any
day. And indeed you can, but some interesting ideas about the object composition
approach are that:

We don’t need any upfront design effort to make our application
extensible. In C# you need to define the extensibility points of a system
because you need to use the right artifacts like interfaces, composition over
inheritance, design patterns like strategy, etc. In JavaScript we don’t need to
over-architect our solution, or carefully design our application for extensibility
purposes. You get a new feature, you define a new behavior, compose it with
your existing objects and start using it.
Object composition happens at runtime. You have your program running,
your objects doing whatever objects do and all of the sudden BOOM! Object
composability and your objects get new features and can do new interesting
things. New things like changing from a text representation to a 2D
representation or a 3D representation and who knows what more.
It doesn’t need to affect the original objects at all. You can keep your objects
as they are, clone them and apply the composition on the clones. This can
enable interesting approaches like having different bounded contexts (like in
DDD18) with slightly diverse domain models adapted to a particular context
needs and goals.
You can compose an object with many other objects representing different
behaviors (like a multiple inheritance of sorts). This tends to be harder to do in
classical inheritance based languages like C# where you are limited to a single
base class or to a flavor of composition that requires a lot of boilerplate code,
forward planning and design.

With object composition we achieve this true plug and play solution where you
can combine domain objects with behaviors in very interesting and flexible
ways. This type of object composition is another type of prototypical inheritance
that we introduced as the mysterious concatenative inheritance earlier in the book.

Limitations of Mixins as Objects
As wonderful as mixin objects are they have some severe limitations:

They don’t support data privacy
They can create undesired coupling between objects
They are subject to name collisions

Let’s take a closer look at each of these.

Mixin objects don’t support true data privacy because they don’t support
closures. An alternative is to use ES6 symbols and keep your symbols tucked away
within a module where you define your mixins. This won’t give you true privacy but
will at least give you the appareance of it.

If you are not careful, mixin objects can create undesired coupling between
disparate objects. For instance, if you use the same mixin to extend several other
objects, because the extending consists in copying properties, you can end up having
several objects that have a reference to the same object property. This will result in
undesired side-effects and possibly a horrible source of bugs.

You can clearly appreciate this problem when we do a small tweak in the
canBePositioned mixin that we used in previous examples. Instead of describing a
position using two separate properties x and y we will use a position object that’ll
contain these very same properties:

1 const canBePositionedWithGotcha = {
2 position: {x: 0, y: 0},
3 movesTo(x, y) {
4 console.log(`${this} moves from (${this.position.x}, ${this.\
5 position.y}) to (${x}, ${y})`);
6 this.position.x = x;
7 this.position.y = y;
8 }
9 };

This change may seem harmless and inocuous but it is not! If you now compose the
wizardOfOz and tasselhof with this mixin the position object is shared between
them both. This results in any minion moving affecting the other, a characteristic that
you most definitely want to avoid:

 1 const wizardOfOz = Wizard('oz', 100, 'Wizard of Oz', 10);
 2 const tasselhof = Thief('Tasshelhof B.', 20);
 3
 4 Object.assign(wizardOfOz, canBePositionedWithGotcha);
 5 Object.assign(tasselhof, canBePositionedWithGotcha);
 6
 7 wizardOfOz.movesTo(2,2);
 8 // => Wizard of Oz moves from (0, 0) to (2, 2)
 9
10 tasselhof.movesTo(6,6);
11 // => Tasshelhof B. moves from (2, 2) to (6, 6)
12 // wait... from (2,2)?????

Object mixins are also subject to property name collisions. Trying to compose an
object with two mixins with the same properties but different interfaces can lead to
errors:

 1 const canBePositionedIn3Dimensions = {
 2 x: 0,
 3 y: 0,
 4 z: 0,
 5 movesTo(x, y, z) {
 6 console.log(`${this} moves from (${this.x}, ${this.y}, ${thi\
 7 s.z}) to (${x}, ${y}, ${z})`);
 8 this.x = x;
 9 this.y = y;
10 this.z = z;
11 }
12 };
13
14 const raist = Wizard('death', /*mana*/ 1000, 'Raistlin', /*hp*/ 1);
15 Object.assign(raist, canBePositioned, canBePositionedIn3Dimensions);
16
17 // we used the movesTo method thinking about the canBePositioned mix\
18 in
19 // and we get an unexpected result z becomes undefined
20 raist.movesTo(10, 20);
21 // => Raistlin moves from (0, 0, 0) to (10, 20, undefined)

Is there a way to surpass these limitations? Indeed there is! Behold! Functional
mixins!

Functional Mixins
Functional mixins are mixins that are implemented as functions instead of objects.
Because they are functions they:

naturally support data privacy through closures and,
can easily avoid undesired coupling between objects by working as factories of
mixins

Let’s see how we can turn our previously defined behaviors from mixin objects to
functional mixins:

 1 const canCastSpellsFn = (state) => ({
 2 castsSpell(spell, target){
 3 console.log(`${state.name} casts ${spell} on ${target}`);
 4 state.mana -= spell.mana;
 5 spell(target);
 6 }
 7 });
 8
 9 const canStealFn = (state) => ({
10 steals(target, item){

11 console.log(`${state.name} steals ${item} from ${target}`);
12 }
13 });
14
15 const canPlayMusicFn = (state) => ({
16 playsMusic(){
17 console.log(`${state.name} grabs his ${state.instrument} and sta\
18 rts playing music`);
19 }
20 });

In this example the canCastSpell mixin and its companions have been rewritten as
functions. These functions take a state argument that represents the state of the
object that the mixins are going to extend and use it to augment it with new
functionality. This functional implementation comes with two advantages:

Because the state object is passed as a argument to the mixin it can remain
private between object and mixin.
Because each time the functional mixin object is called it returns a new object
we solve the problem of coupling state between objects.

Having redefined our behaviors we can also redefine the wizards, thiefs and bards in
terms of them:

 1 function TheWizard(element, mana, name, hp){
 2 // private state
 3 const state = {element,
 4 mana,
 5 name,
 6 hp};
 7
 8 // public API
 9 return Object.assign({},
10 canBeIdentifiedByNameFn(state),
11 canCastSpellsFn(state));
12 }
13
14 function TheThief(name, hp){
15 const state = {name,
16 hp};
17
18 return Object.assign({},
19 canBeIdentifiedByNameFn(state),
20 canStealFn(state));
21 }
22
23 function TheBard(instrument, mana, name, hp){
24 const state = {instrument,
25 mana,
26 name,
27 hp};
28
29 return Object.assign({},
30 canBeIdentifiedByNameFn(state),

31 canCastSpellsFn(state),
32 canStealFn(state),
33 canPlayMusicFn(state));
34 }

And use them as we have done in previous examples:

 1 const landaf = TheWizard('light', 100, 'Landaf the light', 100);
 2 landaf.castsSpell(lightningSpell, orc);
 3 // => Landaf the light casts lightning spell on orc
 4 // => A bolt of lightning electrifies orc(-10hp)
 5
 6 const lupen = TheThief('Lupen', 200);
 7 lupen.steals(orc, 'rusty copper ring');
 8 // => Lupen steals rusty copper ring from orc
 9
10 const bart = TheBard('lute', 200, 'Bart', 100);
11 bart.playsMusic();
12 // => Bart grabs his lute and starts playing music
13 bart.steals(lupen, 'rusty copper ring');
14 // => Bart steals rusty copper ring from Lupen
15 bart.castsSpell(lightningSpell, landaf);
16 // => Bart casts lightning spell on Landaf the light
17 // => A bolt of lightning electrifies Landaf the light(-10hp)
18 // Wow Bart is mean!

In this use case for functional mixins we have separated the internal state of every
object, represented by the state object, from its public API which is returned by the
factory function.

The internal state of the object is passed as an argument to the different functional
mixins so that they can access it thereafter.

The public API is defined by extending an empty object with the objects resulting
from applying the different functional mixins to the state object. This empty object
could also include a subset or all of the variables contained in state and, in that
case, they would become public:

 1 function TheBard(instrument, mana, name, hp){
 2 // internal state
 3 const state = {instrument,
 4 mana,
 5 name,
 6 hp};
 7
 8 // public API
 9 // exposing entire state publicly
10 return Object.assign(state,
11 canBeIdentifiedByNameFn(state),
12 canCastSpellsFn(state),
13 canStealFn(state),
14 canPlayMusicFn(state));
15 }

As you’ve appreciated in these examples, functional mixins solve the limitations of
mixin objects in terms of data privacy and coupling between extended objects.

There’s still one limitation to contend with which are name collisions, that is, the
possibility that two mixins provide behaviors with the same name. You can handle
name collisions in two ways: live with them or use namespacing.

Since Object.assign works overwriting object properties from right to left you can
be aware of this feature when working with mixins and even embrace it and take
advantage of it when you need to replace behaviors with new ones:

 1 const canCastSpellsOnMany = {
 2 castsSpell(spell, ...many){
 3 many.forEach(target => {
 4 console.log(this + ' casts ' + spell + ' on ' + target);
 5 this.mana -= spell.mana;
 6 spell(target);
 7 });
 8 }
 9 }
10
11 Object.assign(bard, canCastSpellsOnMany);
12 bard.castsSpell(lightningSpell, orc, orcMagician, landaf);
13 // => Kvothe casts lightning spell on orc
14 // => A bolt of lightning electrifies orc (-10hp)
15 // => Kvothe casts ligtning spell on orcmag
16 // => A bolt of lightning electrifies orcmag (-10hp)
17 // => Kvothe casts lightning spell on Landaf the light
18 // => A bolt of lightning electrifies Landaf the light(-10hp)

Alternatively, you can prevent name collisions from happening by namespacing each
mixin that is composed with an object. This will result in a less natural and more
verbose API for the resulting objects:

 1 const canEat = {
 2 food: {
 3 eats(foodItem) {
 4 console.log(`${this} eats ${foodItem}`);
 5 this.hp += foodItem.recoverHp;
 6 }
 7 }
 8 };
 9 // bard.food.eats({
10 // name: 'banana', recoverHp: 10,
11 // toString(){return this.name;}
12 // });
13
14 const canEatMany = {
15 foods: {
16 eats(...foodItems) {
17 foodItems.forEach(f => {
18 console.log(`${this} eats ${f}`);
19 this.hp += f.recoverHp;

20 });
21 }
22 }
23 };
24
25 // bard.foods.eats({
26 // name: 'banana', recoverHp: 10,
27 // toString(){return this.name;}
28 // }, {
29 // name: 'sandwich', recoverHp: 20,
30 // toString(){return this.name;}
31 // });

Combining Mixins with ES6 Classes
If you are still not convinced about the usefulness and simplicity of vanilla objects
and mixins you can continue using ES6 classes and combine them with mixins. That
way you get a comfortable path from C# into JavaScript, a familiar pattern for
defining your domain model and additionally you gain a fantastic way to reuse
code and behaviors via mixins.

You have two options when combining ES6 classes with mixins. You can either
compose your already instantiated objects with a mixin on a per-case basis, or you
can compose your class prototype with a mixin and automatically provide all existing
and future instances of that class with new behaviors.

Let’s imagine we have a Warrior class to help us illustrate this with an example:

 1 class Warrior {
 2
 3 constructor(name, hp=500) {
 4 this.name = name;
 5 this.hp = hp;
 6 this.weapons = [];
 7 }
 8
 9 equipsWeapon(weapon) {
10 weapon.isEquipped = true;
11 this.weapons.push(weapon);
12 console.log(`${this} picks ${weapon} from the ground ` +
13 `and looks at it appreciatively`);
14 }
15
16 attacks(target) {
17 if (this.weapons.length === 0) {
18 console.log(`${this} attacks ${target} with ` +
19 `his bare arms`);
20 } else {
21 console.log(`${this} attacks ${target} with ` +
22 `${this.weapons.find(w => w.isEquipped)}`);
23 }
24 }
25

26 toString() {
27 return this.name;
28 }
29
30 }

The first option is very straightforward because we are just composing an object with
another object. We can instantiate a new fearful warrior caramon:

1 const caramon = new Warrior('Caramon', 1000);

And now, if we want this specific warrior to be able to steal, we compose it with the
canSteal mixin from previous examples:

1 Object.assign(caramon, canSteal);
2
3 caramon.steals(bard, 'lute');
4 // => Caramon steals lute from Kvothe

Alternatively, we can compose the Warrior class prototype with a mixin and provide
all existing and future instances of this class with new functionality. This is an
excellent way to define a series of reusable behaviors and compose them with our
domain model classes as we see fit.

For instance, let’s make all warriors capable of being positioned in a map via the
canBePositioned mixin:

1 Object.assign(Warrior.prototype, canBePositioned);

We can easily verify how indeed both already defined warriors like caramon and new
warriors like riverwind can move around in a two dimensional space:

1 // existing instances of Warrior now can be positioned
2 caramon.movesTo(10,10);
3 // => Caramon moves from (0, 0) to (10, 10)
4 // Crazy!
5
6 // and new ones as well
7 const riverwind = new Warrior('Riverwind', 300);
8 riverwind.movesTo(20,20);
9 // => Riverwind moves from (0, 0) to (20, 20)

Object.assign in Depth
We’ve used Object.assign a lot during this chapter and even in previous chapters.
We know that it copies properties from several source objects into a target object.
But does it copy all properties? What about the properties within an object

prototype? Does it do a deep copy of the source objects? Or just a shallow copy?
That’s what we’ll answer to in this section.

The Object.assign method is a new Object static method in ES6 that lets you copy
all enumerable own properties from one or several source objects into a single
target object.

 1 // copy properties from one object to another
 2 const companyOfTheRing = { aHobbit: 'frodo'};
 3 const companyPlusOne = Object.assign(
 4 /* target */ companyOfTheRing,
 5 /*source*/ { aWizard: 'Gandalf'}
 6);
 7 console.log(companyOfTheRing);
 8 // => [object Object] {
 9 // aHobbit: "frodo", aWizard: "Gandalf"
10 // }
11
12 // merge serveral objects into one
13 Object.assign(companyOfTheRing,
14 {anElf: 'Legolas'},
15 {aDwarf: 'Gimli'}
16);
17 console.log(companyOfTheRing);
18 // => [objetc Object] {
19 // aHobbit: "frodo", ... anElf: "Legolas", aDwarf: "Gimli"
20 // }

The target object is the first argument passed to Object.assign but it is also
returned by it:

1 // the returned object is the same as the target object
2 console.log(`companyPlusOne and companyOfTheRingt ` +
3 `are the same: ${companyPlusOne === companyOfTheRing}`);
4 // => companyPlusOne and companyOfTheRing are the same: true

If you don’t want to mutate any of your existing objects, you can use a new object {}
as target:

1 // clone an object (shallow-copy)
2 const clonedCompany = Object.assign(
3 /*target*/ {},
4 /*source*/ companyOfTheRing
5);
6 console.log(clonedCompany);
7 // => [objetc Object] {
8 // aHobbit: "frodo", ... anElf: "Legolas", aDwarf: "Gimli"
9 // }

Object.assign only copies properties from the source object itself and not from its
prototype:

 1 const newCompanyWithPrototype = Object.assign({
 2 '__proto__': {
 3 destroyTheRing(){
 4 console.log('The mighty company of the ring successfully' +
 5 'destroys the ring and saves Middle Earth');
 6 }
 7 }}, companyOfTheRing);
 8
 9 const companyOfTheBracelet = Object.assign(
10 /* target */ {},
11 /* source */ newCompanyWithPrototype);
12 console.log(`companyOfTheBracelet.destroyTheRing: ` +
13 `${companyOfTheBracelet.destroyTheRing}`);
14 // => companyOfTheBracelet.destroyTheRing: undefined
15 // prototype method was not assigned!

It performs a shallow copy of the source object properties. That is, if your source
object has a property that is an object, the target object will gain a new property that
will reference that same object.

1 companyOfTheRing.equipment = ['bread', 'rope', 'the one ring'];
2
3 const companyOfTheSash = Object.assign({}, companyOfTheRing);
4 companyOfTheSash.equipment.push('sash');
5
6 console.log(companyOfTheRing.equipment);
7 // => ["bread", "rope", "the one ring", "sash"]
8 // ooops!

Enumerable Properties?
Enumerability is an internal characteristic of object properties in JavaScript. It
determines whether or not an object property can be enumerated via the for/in loop.
When you create an object with an object initializer or a constructor function all
properties are enumerable.

You’ll learn more about enumerability in the Object Internals chapter later within the
book.

Object.assign Alternatives for ES5 JavaScript-mancers
This chapter has relied heavily in the use of Object.assign, a new method in ES6
that lets you extend an target object with many other objects. Does that mean that
you cannot use mixins and object composition if you are not using ES6? No! You
can definitely use object composition and mixins if you haven’t made the jump to
ES6 yet.

Chances are that you are already using a library that offers a similar functionality to
Object.assign. For instance, jQuery has the $.extend method, underscore the
_.extend and _.assign methods and so does lodash:

jQuery extend ($.extend): Copies all properties even from prototypes. It can
perform deep-copy by using a flag (the source objects is traversed recursively
and copied over the target object, this avoids coupling source and target objects)
underscore extend (_.extend): Copies all enumerable properties even from
prototypes
underscore assign (_.assign): Copies only own enumerable properties (not
properties inherited from prototypes)
lodash extend and assign (_.extend, _.assign): Copies only own enumerable
properties

If you are not using any of these libraries don’t worry, you can also implement your
own version of Object.assign using this code example below:

 1 function assign(){
 2 const args = Array.prototype.slice.call(arguments, 0),
 3 target = args[0],
 4 sources = args.slice(1);
 5
 6 return sources.reduceRight(assignObject, target);
 7
 8 function assignObject(target, source){
 9 for (let prop in source)
10 if (source.hasOwnProperty(prop))
11 target[prop] = source[prop];
12
13 return target;
14 }
15 }

This new assign method works just like Object.assign:

1 const thor = new Warrior('Thor', 2000);
2 assign(thor, canCastSpells);
3 thor.castsSpell(lightningSpell, orc);
4 // => Thor casts lightning spell on orc
5 // => A bolt of lightning electrifies orc (-10hp)
6 // poor orc

Not familiar with the reduceRight function yet? Worry not! We will take a look at
this method and others in the functional programming tome later in the series. The
only thing you need to know right now is that reduceRight:

1. traverses the sources array from right to left,

2. it applies the assignObject function to each item within the array,
3. accumulates the results in the target object which is fed back into the

assignObject function for the next item.

Concluding
Developing software is a complex trade. We try to model the world around us by
creating abstractions and simplifications that only have enough detail to solve the
problem at hand. Object-Oriented Programming attempts to help reduce the
complexities of developing software by defining classes that represent simplified
versions of real world entities. However, using classes result in rigid taxonomies that
aren’t well suited to absorbing change.

Class-free object oriented programming appears as an alternative solution to classic
OOP that is more adaptable to change and more flexible. An example of class-free
OOP is object composability through mixins. Mixins are objects or functions that
encapsulate a reusable piece of functionality or behavior. You can apply these mixins
to your domain model objects by using Object.assign and what is known as
concatenative inheritance (the second type of prototypical inheritance we discussed
in earlier chapters of the book).

You can represent mixins as objects or functions. Function mixins are better than
object mixins because they support data privacy and prevent coupling via shared
references. Both types of mixins have problems with name collisions because object
composition consists in copying properties from one object to the next.

Object.assign is a new Object method in ES6 that lets you copy enumerable own
properties from one or several source objects into a target object. If you are not
using ES6, you can use alternatives from popular JavaScript libraries like jQuery or
underscore, or write your own implementation of Object.assign.

In the next chapters we will look at other interesting approaches to achieving class-
free object oriented programming: traits and stamps.

redBrute.says("And that's how you can elengantly" +
 "share behaviors amongst many objects");

randalf.says("That's very interesting");
mooleen.says("Yeah I can think of a thousand ways to " +
 "use that");

mooleen.says("Wait... " +

 "How do you know so much about javascriptmancy?" +
 "You didn't use a scrap of magic in the battle");

redBrute.says("You insult me?");
redBrute.says("Magic is for tinfers");

randalf.says("tinder?");
redBrute.says("tinfers!... the inferior races");
redBrute.says("Weaklings whose natural biological " +
 "limits force them to cheat and rely on external " +
 "help... like magic");

mooleen.says("Why learn magic then?");
redBrute.says("The pursue of knowledge is a virtue." +
 "An excellent mental exercise." +
 "We Turians hone our superior natural talents " +
 "in the pursuit of perfection... and honor");

mooleen.says("Well, if you are so superior," +
 "Why serve The Red Hand?");
/*
 A flash of anger transfixes the otherwise cold
 expression of the barbarian for just a fraction
 of a second
*/
redBrute.says("That's a long and unfortunate story " +
 "that I may share with you in the future...");
redBrute.says("Now let's get you to The Red Stronghold!" +
 "In the clouds of the Everstorm");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Volareeee Oh oH!
The Red Stronghold stands in the depths of Everstorm within crimson clouds, fire and
lightning. To get there you’ll need to fly, moreover your army will need to fly as well.

Create a canFly functional mixin that encapsulates the flying behavior and which can be
used to give the wondrous ability of flying to your now summoned army. It should provide
the following API.

1 sandGolem.raise(10);
2 // => Sand Golem raises 10 feet into the air
3 sandGolem.dive(10);
4 // => Sand Golem dives 10 feet down through the air
5 sandGolem.fliesTo(100)
6 // => Sand Golem flies to 100 feet above sea level
7 sandGolem.position.z
8 // => 100

Tip: Use the SandGolem class from the previous chapter to create sand golems that you can
extend with this new mixin canFly

Solution
 1 /* Creature classes */
 2 class Minion {
 3 constructor(name, hp){
 4 this.name = name;
 5 this.hp = hp;
 6 this.position = {x: 0, y: 0};
 7 }
 8 toString(){
 9 return this.name;
10 }
11 goesTo(x, y){
12 this.position.x = x;
13 this.position.y = y;

http://bit.ly/javascriptmancy-oop-mixins-exercises
https://github.com/vintharas/javascriptmancy-code-samples

14 console.log(`${this} goes to position (` +
15 `${this.position.x},${this.position.y})`);
16 }
17 }
18

19

20 class SandGolem extends Minion {
21 constructor(name="Sand golem", hp=200){
22 super(name, hp);
23 }
24 bash(target){
25 console.log(`${this} bashes ${target} with terrible ` +
26 `force causing 30 damage`);
27 target.hp -= 30;
28 }
29 absorb(target){
30 console.log(
31 `${this} absorbs ${target} into its body of sand.` +
32 `The ${target} can't move`);
33 }
34 }
35

36 /* Mixin */
37 function canFlyFn(state){
38 const canFly = {
39 fliesTo(height){
40 this.position.z = height;
41 console.log(`${this} flies to ${height} feet above sea level`);
42 },
43 raise(height){
44 this.position.z += height;
45 console.log(`${this} raises ${height} feet into the air`);
46 },
47 dive(height){
48 this.position.z -= height;
49 console.log(`${this} dives ${height} feet through the air`);
50 }
51 }
52 Object.assign(state, canFly);
53 // assuming the target object has a position property
54 state.position.z = 0;
55 }
56

57

58 let sandGolem = new SandGolem();
59 canFlyFn(sandGolem);
60

61 sandGolem.raise(10);
62 // => Sand Golem raises 10 foot into the air
63 sandGolem.dive(10);
64 // => Sand Golem dives 10 foot down through the air
65 sandGolem.fliesTo(100)
66 // => Sand Golem flies to 100 foot above sea level
67 sandGolem.position.z
68 // => 100
69

70 mooleen.says("haha! Look at that, there they fly!");
71 rat.says("Yippie!");
72

73 redBrute.says("Sloppy work...");
74 randalf.says("but it works");

75 redBrute.says("What if the golem didn't have a position?");
76

77 mooleen.says("What if you were a mighty warrior " +
78 "of a vast superior race and you " +
79 "had lost a battle and a complete army " +
80 "in the process?");
81

82 redBrute.says('...');
83 redBrute.says('still sloppy work')

Labeling and Tactics!
As your army grows you’ll need to group your soldiers into companies, batallions, brigades
and divisions to better control them and guide them into battle. A way to keep order into
chaos is to label these groupings and give them colors that they can display in their armor,
flag and standards.

Create a new functional mixin canBeLabeled that allows you to label your troops with a
name and color for their company. It should provide the following API:

1 sandGolem.companyName
2 // => "Scarlett salamanders"
3 sandGolem.companySymbol
4 // => "s"
5 sandGolem.companyColor
6 // => "red"

Bonus! As a bonus exercise you can update the map generator in this chapter to display
companies instead of individual soldiers

Solution
 1 function canBeLabeledFn(state, name, symbol, color){
 2 const canBeLabeled = {
 3 companyName: name,
 4 companySymbol: symbol,
 5 companyColor: color
 6 };
 7 return Object.assign(state, canBeLabeled);
 8 }
 9

10 canBeLabeledFn(sandGolem, "Scarlett salamanders", "s", "red");
11

12 console.log(sandGolem.companyName);

13 // => "Scarlett salamanders"
14 console.log(sandGolem.companySymbol);
15 // => "s"
16 console.log(sandGolem.companyColor);
17 // => "red"
18

19 // bonus
20 console.log(`
21

22 === Bonus Exercise: Generate map of labels ===
23

24 `);
25 function LabeledMap(width, height, creatures){
26
27 function paintPoint(x,y){
28 var creatureInPosition = creatures
29 .find(c => c.position.x === x && c.position.y === y);
30 if (creatureInPosition)
31 return creatureInPosition.companySymbol;
32 return '_';
33 }
34
35 return {
36 width,
37 height,
38 creatures,
39 paint() {
40 console.log("Generating map of companies...")
41 let map = '';
42 for(let y = 0; y < height; y++) {
43 for (let x = 0; x < width; x++)
44 map += paintPoint(x,y);
45 map += '\n';
46 }
47 return map;
48 }
49 }
50 }
51

52 const anotherSandGolem = new SandGolem();
53 canBeLabeledFn(anotherSandGolem, "Dark Fiends", "d", "black");
54 anotherSandGolem.goesTo(2, 2);
55

56 const myLabeledMap = new LabeledMap(10,10,
57 [sandGolem, anotherSandGolem]);
58 console.log(myLabeledMap.paint());
59 /*
60 Generating map of companies...
61 s_________
62 __________
63 __d_______
64 __________
65 __________
66 __________
67 __________
68 __________
69 __________
70 __________
71 */
72

73 mooleen.says("good... now I'll have a better " +

74 "control of my batallions");
75 mooleen.says("I think everything's ready");
76 mooleen.says("All that remains is to fly");
77 mooleen.says("How long will it take us to get " +
78 "to the Red Stronhold?");
79

80 redBrute.says("Hmm...");
81 redBrute.slicksTheTopOfAFingerAndRaisesItToTheAir();
82 redBrute.says("It'll take between... 2 to 3 weeks");
83

84 randalf.says("And we'll be flying all the time");
85 bandalf.says("And eating, sleeping...");
86 redBrute.says("Who needs to eat? Sleep? You weaklings...");
87

88 rat.says("Doing ...the thing you know... no toilet");
89 redBrute.says("Gravity will take care of it, " +
90 "just don't fly atop each other");
91

92 mooleen.says("Hmm showering");
93 redBrute.says("Now, that is something!" +
94 "I can relate to the magic properties of a bubble bath");
95

96 mooleen.says("Yeah, we'll need a transport, a big one");

Conquest in Comfort with a Zeppelin!
Flying is awesome but it can be impractical and inconvenient at times. Like when you need
to use a toilet or take a bubble bath. When forced to conquer why not conquer in the
comfort of a giant flying fortress in the shape of a Zeppelin? With the basics for
transporting a huge army with provisions while including all the amenities of a first-class
ticket?

Write a factory function that creates Zeppelins by composing a state object with the
mixins from previous exercises canFlyFn, canBeLabeledFn and a new one canTransportFn.
The canTransportFn mixin should provide the following API:

 1 zeppelin.load(mooleen);
 2 // => The zeppelin is loaded with Mooleen
 3 zeppelin.load(randalf);
 4 // => The zeppelin is loaded with Randalf
 5 zeppelin.showLoad();
 6 // => The zeppelin is loaded with: Mooleen, Randalf
 7 let load = zeppelin.unload();
 8 // => The zeppelin unloads Mooleen and Randalf
 9 console.log(load)
10 // ["Mooleen", "Randalf"]

Solution
 1 function Zeppelin(name, hp=1000){
 2 let state = {
 3 name,
 4 hp,
 5 position: {x: 0, y: 0},
 6 toString(){
 7 return `Zeppelin "${this.name}"`
 8 },
 9 floatsTo(x,y){
10 this.position.x = x;
11 this.position.y = y;
12 console.log(`${this} floats to position ` +
13 `(${this.position.x},${this.position.y})`);
14 }
15 };
16
17 return Object.assign(state,
18 canFlyFn(state),
19 canBeLabeledFn(state, 'Armada', 'a', 'black'),
20 canTransportFn(state))
21 }
22

23 function canTransportFn(state){
24 const canTransport = {
25 contents: [],
26 load(...newContent){
27 this.contents.push(...newContent);
28 console.log(`${this} is loaded with ${newContent}`);
29 },
30 showLoad(){
31 console.log(`${this} is loaded with: ${this.contents}`);
32 },
33 unload(){
34 console.log(`${this} unloads ${this.contents.join(' and ')}`);
35 const contents = [...this.contents];
36 this.contents = [];
37 return contents;
38 }
39 };
40
41 return Object.assign(state, canTransport);
42 }
43

44 let zeppelin = Zeppelin("HMS Intrepid");
45 zeppelin.fliesTo(20);
46 // => Zeppelin "HMS Intrepid" flies to 20 feet above sea level
47

48 zeppelin.floatsTo(9, 9);
49 // => Zeppelin "HMS Intrepid" floats to position (10,10)
50 myLabeledMap.creatures.push(zeppelin);
51 console.log(myLabeledMap.paint());
52 /*
53 Generating map of companies...
54 s_________
55 __________
56 __d_______
57 __________

58 __________
59 __________
60 __________
61 __________
62 __________
63 _________a
64 */
65

66 zeppelin.load(mooleen, redBrute);
67 // => Zeppelin "HMS Intrepid" is loaded with Mooleen,Red brute
68 zeppelin.load(randalf);
69 // => Zeppelin "HMS Intrepid" is loaded with Randalf, the Red
70 zeppelin.showLoad();
71 // => Zeppelin "HMS Intrepid" is loaded with:
72 // Mooleen,Red brute,Randalf, the Red
73 zeppelin.unload();
74 // => Zeppelin "HMS Intrepid" unloads
75 // Mooleen and Red brute and Randalf, the Red
76

77 randalf.says("And now we're ready");
78 mooleen.says('Assemble the Army!');
79 mooleen.says('To the Zeppelin!');
80

81 rat.standsOnTwoLegsAndStartsMarching();

Black Tower Summoning: Safer Object
Composition with Traits

Humans are flawed.
Take that into consideration
when designing a tool.

Within your tool, create a path
to guide your user to success.
Her failure is your failure.

 - Iamnos Ydad
 Spellsmith, 1st Age

/*
 The sunset as viewed from the zeppelin is a sight to behold.
 A crimson ball of incandescent fire that ever so slowly
 creeps into the horizon and bathes the world in a mystical
 orange light.

 At this very moment, the world consists on a teeny tiny
 zeppelin surrounded in all directions by a seemingly infinite
 ocean.

 On the bridge of the flying ship two figures confer.
*/

redBrute.says("The Red Hand's armies are vast as" +
 " this ocean that surround us");
mooleen.says("That's... encouraging");

redBrute.says("...as the sky that extends in every direction");
mooleen.says("I get it");

mooleen.says("I need to expand our force. It looks like " +
 "lady luck finally smiles upon me because we have " +
 "several weeks ahead of us before we arrive to that " +
 "dreaded Red Stronghold of yours");
redBrute.says("Then you better get started");

mooleen.says("I know, I know... it is just that " +
 "sometimes I wonder how the hell I got here");
rat.says("You summoned a zeppelin, then jumped on it");

mooleen.says("ehr... How I got to this world, " +
 "How I saved the people of Asturi from Great," +
 "How I ended up commanding an army to conquer " +
 "The Red Hand..." +
 "I just wanted to find my way back home");
redBrute.says("Well, if what the old man says " +
 "is true you may find some answers in the " +
 "library of Orrile. But to ever get a chance " +
 "to get there you'll need to become stronger. " +
 "The Tatians are fierce enemies".);

mooleen.says("Then let's better get started");
mooleen.says("I've been experimenting with something new");
mooleen.says("An improvement over mixins...");

An Improvement Over Mixins
In the last chapter you learned about mixins and how you can use them to
encapsulate reusable units of behavior that you can later compose with your domain
objects or classes.

Mixins, while awesome, have some limitations. In particular, conflicting mixin
methods and properties are overwritten when using Object.assign. To add insult to
injury, you don’t get any warning when this happens. Updating a mixin with new
functionality at some point in time can inadvertently change the behavior of some of
your objects and lead to unexpected results.

Traits offer a solution to this problem by providing a safer and more structured way
to do object composition.

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Traits
The idea of Traits appeared as a natural response to the problems and limitations that
exist in more traditional OOP practices like classical inheritance, multiple
inheritance and mixins. Let’s examine these issues one by one before we round back
to Traits and their characteristics.

The Problem with Classes
Classes in classical inheritance perform two distinct functions with conflicting
goals. They work as:

1. Factories that create objects
2. A mechanism of code reuse through inheritance

The first goal of object creation requires a class to be complete so that you use it to
instantiate objects. The second goal of code reuse truly shines when you have small
reusable units. These goals conflict with each other as complete classes beget large
reusable units, and small reusable units beget incomplete classes.

As a result of this dichotomy designing a domain model using classes leaves you
with few options as we’ve seen in earlier chapters: You can use inheritance as a
method of code reuse where you inherit everything, you can incur in code

http://bit.ly/javascriptmancy-oop-traits
https://github.com/vintharas/javascriptmancy-code-samples

duplication between different classes, or you require a lot of boilerplate to delegate
behaviors to other classes.

The Issue With Multiple Inheritance
Multiple inheritance improves the code reuse factor from the single-class
inheritance approach but comes with its own host of problems.

With multiple inheritance you can define smaller classes and make new classes reuse
functionality from these smaller units. However, problems arise as several paths of
the inheritance tree can provide conflicting functionality and overriding features with
super can be ambiguous: Which super class where you referring to, my dear?.

The Plight Of Mixins
Mixins excel at code reuse by defining small reusable units that you can compose
with your existing classes and objects. Unlike classes a mixin doesn’t have the goal
of being a factory for objects and therefore can be incomplete (and small and
focused).

On the minus side, because of the mechanism used to compose classes and objects
with mixins, there are no guarantees that the resulting objects will be correct:

The target class or object may not meet a mixin requirements, i.e. the composed
class may lack a property the mixin depends upon
Mixins may conflict with each other in unexpected ways, i.e. when two mixins
provide methods with the same name

Furthermore, there are no warnings when we fail at composing objects or when
mixin features conflict with each other.

Traits to The Rescue
Traits attempt to solve all these problems existing in previous techniques. They do so
by providing a way to reuse code and behavior just like we do with mixins but in a
safer fashion that will let us:

handle conflicts between traits and be warned when conflicts occur
define requirements in our traits that must be satisfied before certain features
can be used

Let’s see how you can get started using traits in JavaScript.

Traits with traits.js

Open Source Alert!
We are going to be using traits.js, a traits JavaScript library for the remainder of the article.
Note that there are other trait implementations in JavaScript like light-traits and simple-
traits so you can pick the one you like the most when you are ready to experiment yourself.

Trait.js is an open source library that brings the beauty of traits into JavaScript.
Using traits.js we can define reusable pieces of behavior - traits - and then compose
them together to build objects.

Let’s imagine that we want to represent the ability of being positioned in a two-
dimensional space using a trait TPositionable. Traits.js lets us define a new trait by
using a factory function (Trait) and passing in an object that contains the behavior
that we’re interested in:

1 const TPositionable = Trait({
2 x: 0,
3 y: 0,
4 location(){
5 console.log(`${this} is calmly resting ` +
6 `at (${this.x}, ${this.y})`);
7 }
8 });

Much in the same way that we use the letter I in front of interfaces in C#, it is common
to use the letter T as a convention when defining traits.

In this particular case, the TPositionable trait is composed by two properties x and
y that represent a position, and a method location which prints the current position.

Now that we have defined our first trait we can start creating new objects that are
expressed in terms of that trait. Behold a very sparse minion!

 1 function MinionWithPosition(){
 2 const methods = {

https://github.com/traitsjs/traits.js
https://github.com/Gozala/light-traits
https://github.com/YR/simple-traits
http://soft.vub.ac.be/~tvcutsem/traitsjs/

 3 toString(){ return 'minion';}
 4 };
 5
 6 const minion = Object.create(
 7 /* prototype */ methods,
 8 /* traits (object properties) */ TPositionable);
 9 return minion;
10 }

In this example we have a factory function MinionWithPosition that creates
minions with the ability of being positioned.

We use Object.create to create an instance of a minion that will have the following
characteristics:

A prototype that contains a single method toString
A set of properties reflected by the TPositionable trait

This is interesting because it highlights the fact that we can combine JavaScript’s
prototypical inheritance with traits. We can verify that the resulting minion works as
we would expect:

1 const minionWithPosition = MinionWithPosition();
2
3 minionWithPosition.location();
4 // => minion is calmly resting at (0, 0)

A minion that rests in the same place for eternity is not very useful. Let’s see how we
can truly tap into the power of traits by giving this minion more behaviors.

Composing Traits
Let’s define a new trait that will represent the behavior of moving from one place to
another TMovable:

 1 const TMovable = Trait({
 2 // required properties
 3 x: Trait.required,
 4 y: Trait.required,
 5
 6 movesTo(x,y){
 7 console.log(`${this} moves from ` +
 8 `(${this.x}, ${this.y}) to (${x}, ${y})`);
 9 this.x = x;
10 this.y = y;
11 }
12 });

This new trait is going to be composed of two parts:

The moving behavior represented by the movesTo method that will allow our
minions to perform the actual moving around.
A set of requirements that the target object needs to fulfill for the movesTo
method to work. In this case, these will be two properties x and y since it
doesn’t make sense for someone to move if you cannot be in any position in the
first place.

Notice how Trait.js lets us define required properties by using the static property
Trait.required. These required properties will be factored in when we try to
instantiate a new object later on.

Now that we have two traits let’s compose them to create a more useful minion. You
can compose traits together using the Traits.compose method which will result in a
new composite trait:

1 function MovingMinion(){
2 const methods = {
3 toString() { return 'moving minion';}
4 };
5
6 const minion = Object.create(/* prototype */ methods,
7 Trait.compose(TPositionable, TMovable));
8 return minion;
9 }

Now we can see how a moving minion can be positioned and also move around:

1 const movingMinion = MovingMinion();
2
3 movingMinion.location();
4 // => moving minion is calmly resting at (0, 0)
5
6 movingMinion.movesTo(2,2);
7 // => moving minion moves from (0, 0) to (2, 2)
8 movingMinion.location();
9 // => moving minion is calmly resting at (2, 2)

In the previous example, we used the new composite trait directly within the
Object.create method which made it pass by a little bit unnoticed. Notice that you
can save composite traits for later, compose them further and build richer and more
detailed traits like we illustrate in this example:

1 const TPositionableAndMovable =
2 Trait.Compose(TPositionable, TMovable);
3
4 const TDrawable = Trait({...drawing behavior...});
5
6 const T2DCapable =
7 Trait.Compose(TPositionableAndMovable, TDrawable);

8
9 // etc

What Happens When You Miss Required Properties?
Let’s try creating a new object with the TMovable trait that doesn’t meet its
requirements. We’ll devise a ConfusedMinion who can move around but doesn’t
know where it is exactly:

 1 function ConfusedMinion(){
 2 const methods = {
 3 toString() { return 'confused minion'; }
 4 };
 5
 6 const minion = Object.create(/* prototype */ methods,
 7 /* properties */ TMovable);
 8 return minion;
 9 }
10
11 const confusedMinion = ConfusedMinion();
12 confusedMinion.movesTo(1,1);
13 // => confused minion moves from
14 // (undefined, undefined) to (1, 1);
15 // => TypeError: Cannot assign to
16 // read only property 'x' of [object Object]

As you can appreciate in this example when the requirements of a specific trait
haven’t been met you get some nice feedback.

Calling Object.create with a trait that misses required properties results in an
object that has these requirements as read-only properties. If you try to set these
properties to a new value you will get an exception which will warn you about the
fact that your object is not composed correctly. This is a great improvement from
mixins where missing expected properties could result in unexpected side-effects.

Assigning to Read-only Properties Only Throws in Strict Mode
Notice that you need to enable strict mode for read-only properties to throw exceptions
when assigning values to them. Otherwise the assign operation will just fail silently.

Resolving Name Conflicts
Unlike mixins which only support linear composition where later mixins overwrite
the previous ones, Traits composition order is irrelevant. With traits, conflicting

methods or properties must be resolved explicitly.

Let’s imagine that we now want to be able to position our minions in a three
dimensional space. We define a TPositionable3D trait like this:

 1 const TPositionable3D = Trait({
 2 x: 0, // conflict
 3 y: 0, // conflict
 4 z: 0,
 5
 6 location(){ // conflict
 7 console.log(`${this} is calmly resting at
 8 (${this.x}, ${this.y}, ${this.z})`);
 9 }
10 });

Since we want to retain the ability to position our minion in a two dimensional space
(we want to be able to switch between a map view and a real-world view) we define
our new minion like the following:

 1 function ConflictedMinion(){
 2 const methods = {
 3 toString() { return 'conflicted minion'; }
 4 };
 5
 6 const minion = Object.create(
 7 /* prototype */ methods,
 8 /* props */ Trait.compose(TPositionable,
 9 TPositionable3D));
10 return minion;
11 }

If we now attempt to create a conflicted minion and access any of its conflicting
properties we will get an exception:

1 const conflictedMinion = ConflictedMinion();
2 conflictedMinion.location();
3 // => Error: Conflicting property: location

This will give us great feedback whenever there are name collisions between our
traits properties and methods, again an important advantage over mixins. This
behavior will be particularly helpful when updating an existing trait results in name
collisions within existing objects inside your application (which otherwise would
have gone unnoticed).

Traits provide different strategies that you can use to resolve name conflicts:

Aliasing or renaming properties: Use when you want to conserve the
functionality in either of the conflicting traits. Renaming the conflicting

properties will result in objects containing both the original properties plus the
renamed ones.
Excluding properties: Use when you don’t care about a particular trait
functionality. The excluded properties won’t be taken into account when
creating the new object
Overriding properties: Use when you want a trait to completely override
another.

Trait.js offers the Trait.resolve function to help you resolve name conflicts using
any of the strategies that we have detailed above. For instance, you can rename a
property by using Trait.resolve to map a property to another name:

 1 function AliasedMinion(){
 2 const methods = {
 3 toString() { return 'aliased minion'; }
 4 };
 5
 6 const minion = Object.create(/* prototype */ methods,
 7 Trait.compose(TPositionable,
 8 Trait.resolve(/* mappings * /{
 9 x: 'x3d',
10 y: 'y3d',
11 location: 'location3d'
12 }, TPositionable3D)));
13 return minion;
14 }

Trait.resolve takes two arguments, first an object that describes the conflicting
property mappings and second the trait whose properties we want to rename. In the
example above we have renamed x to x3d, y to y3d and the location method to
location3d.

After resolving the conflicts we can instantiate a new minion without problems:

1 const aliasedMinion = new AliasedMinion();
2
3 aliasedMinion.location3d();
4 // => aliased minion is calmly resting at (0, 0, 0)
5
6 aliasedMinion.location();
7 // => aliased minion is calmly resting at (0, 0)

Using this renaming approach the object composed from the traits will keep all the
properties from the original traits:

 1 console.log(aliasedMinion);
 2 /* => [object Object] {
 3 toString: function toString() {
 4 return 'aliased minion';

 5 },
 6 x: 0,
 7 x3d: 0,
 8 y: 0,
 9 y3d: 0,
10 z: 0,
11 }
12 */

Note how the methods defined by the traits location and location3d do not appear
when logging the object. The reason for this is that methods created through traits
are not enumerable, that is, they cannot be enumerated by using the for/in loop. This
can be helpful when you want to enumerate the properties of an object and you are
only interested about its data members (its state).

We can verify that both of these methods location and location3d are part of the
aliasedMinion object by logging them directly:

 1 console.log(aliasedMinion.location);
 2 // => function location() {
 3 // console.log(this + " is calmly resting at (" +
 4 // this.x + ", " + this.y + ")");
 5 // }
 6 console.log(aliasedMinion.location3d);
 7 // => function location() {
 8 // console.log(this + " is calmly resting at (" +
 9 // this.x + ", " + this.y + ", " + this.z + ")");
10 // }

This example above highlights something important that you may have missed:
Renaming a trait property doesn’t rename a reference to that same property within
the body of a function. You can appreciate this if you take a look at the body of
location3d which still refers to this.x and this.y. This places an important
limitation that you need to keep in mind when resolving conflicts in traits.js through
aliasing.

Alternatively you can exclude specific properties using the Trait.resolve function
and setting the value of a property mapping to undefined:

 1 function LeanMinion(){
 2 const methods = {
 3 toString() { return 'lean minion'; }
 4 };
 5
 6 const minion = Object.create(/* prototype */ methods,
 7 Trait.compose(TPositionable, TMovable
 8 Trait.resolve({
 9 x: undefined,
10 y: undefined,
11 location: 'location3d'

12 }, TPositionable3D)));
13 return minion;
14 }

This will create a lean minion where the x and y properties of the TPositionable3D
properties have been excluded. In the resulting object, the location3d method is
effectively using the x and y properties from the original TPositionable trait:

 1 const leanMinion = LeanMinion();
 2 leanMinion.location3d();
 3 // => lean minion is calmly resting at (0, 0, 0)
 4 leanMinion.location();
 5 // => lean minion is calmly resting at (0, 0)
 6
 7 console.log(leanMinion);
 8 /*
 9 [object Object] {
10 toString: function toString() {
11 return 'lean minion';
12 },
13 x: 0,
14 y: 0,
15 z: 0
16 }
17 */

Finally you can use the Trait.override method to override conflicting properties
between traits. Trait.override works in a similar way to Object.assign but the
precedence is taken from left to right - that is, in the opposite order.

Following this order the properties within the first trait will override those of the
second trait, the properties within the second trait will override those of the third trait
and so on:

 1 function OverridenMinion(){
 2 const methods = {
 3 toString() { return 'overriden minion'; }
 4 };
 5
 6 const minion = Object.create(/* prototype */ methods,
 7 Trait.compose(TMovable,
 8 Trait.override(TPositionable3D,
 9 TPositionable)));
10 return minion;
11 }

In the resulting minion all properties from TPositionable have been overwritten by
TPositionable3D:

 1 const overridenMinion = OverridenMinion();
 2 overridenMinion.location();
 3 // => overriden minion is calmly resting at (0, 0, 0)

 4
 5 overridenMinion.movesTo(1,2);
 6 // => overriden minion moves from (0, 0) to (1, 2)
 7 overridenMinion.location();
 8 // => overriden minion is calmly resting at (1, 2, 0)
 9
10 console.log(overridenMinion);
11 /* =>
12 [object Object] {
13 toString: function toString() {
14 return 'overriden minion';
15 },
16 x: 1,
17 y: 2,
18 z: 0
19 }
20
21 */

Traits and Data Privacy
Just like with other JavaScript constructs, you can achieve data privacy with traits by
taking advantage of closures.

Because traditionally, traits are just objects, you will need to wrap them inside a
function so that you can define a new scope where to place the private variables. The
resulting functions will work like trait factories.

For instance, here we have two factories of TPositionable and TMovable traits
where the position property is meant to be a private member:

 1 const TPositionableFn = function(state){
 2 const position = state.position;
 3
 4 return Trait({
 5 location(){
 6 console.log(`${this} is calmly resting at (${position.x}, ${po\
 7 sition.y})`);
 8 }
 9 });
10 }
11
12 const TMovableFn = function(state) {
13 const position = state.position;
14
15 return Trait({
16 movesTo(x,y){
17 console.log(`${this} moves from (${position.x}, ${position.y})\
18 to (${x}, ${y})`);
19 position.x = x;
20 position.y = y;
21 }
22 });
23 }

The positionable and movable traits above define a single method each: location
and movesTo. These methods enclose the variable state that is going to be passed to
either function as an argument and which will represent the private state of an object.

Having defined these trait factories we can now represent a new kind of minion in
terms of them:

1 function PrivateMinion(){
2 const state = { position: {x: 0, y: 0} },
3 methods = { toString: () => 'private minion' };
4
5 const minion = Object.create(/* prototype */ methods,
6 Trait.compose(TPositionableFn(state), TMovableFn(state)));
7 return minion;
8 }

The PrivateMinion is going to have a series of private members defined by the
state variable. When instantiating a new object, the factory method will share this
private state with the traits but it won’t let it be accessed from the outside world:

 1 const privateMinion = PrivateMinion();
 2
 3 // we can access the public API as usual
 4 privateMinion.movesTo(1,1);
 5 // => private minion moves from (0, 0) to (1, 1)
 6 privateMinion.location();
 7 // => private minion is calmly resting at (1, 1)
 8
 9 // but the private state can't be accessed
10 console.log(privateMinion.state);
11 // => undefined

Using closures with traits we get:

1. true data privacy and the ability to use private members within an object and its
traits

2. required properties and name conflict handling for the public interface of an
object

What about Symbols?
You may be wondering what happens with symbols. Unfortunately the current
implementation of traits.js does not support symbols.

High Integrity Objects With Immutable Traits
Up until this point we have instantiated our objects using the Object.create method
and passing a prototype and a trait (or a composite trait) as arguments. This results in
a new object with the following characteristics:

If all requirements are met and there are no conflicts: The resulting object
will contain all properties and methods defined within the traits and will have as
prototype whichever object we passed to Object.create
If not all requirements have been met: The resulting object has these
requirements as read-only properties. Attempting to modify these results in an
exception
If there are unresolved naming conflicts: The resulting object throws an
exception when conflicting properties or methods are accessed

We are getting much better feedback about the consistency of our composed object
than when we used mixins but it could be much better: We could get this feedback
sooner. Like directly when creating the object and not when accessing inconsistent
properties or methods.

Trait.js offers another method Trait.create that lets you instantiate high integrity
objects. Objects created using Trait.create will:

Throw an exception if there are requirements that haven’t been satisfied
Throw an exception if there are unresolved naming conflicts
Have all their methods bound to themselves
Be immutable

Let’s use Trait.create with some of the traits we defined previously in this chapter.
For instance, we can instantiate a positionable minion taking advantage of
TPositionable:

 1 function ImmutableMinionWithPosition(){
 2 const methods = {
 3 toString(){ return 'minion';}
 4 };
 5 const minion = Trait.create(/* prototype */ methods,
 6 /* traits */ TPositionable);
 7
 8 return minion;
 9 }
10
11 const immutableMinion = new ImmutableMinionWithPosition();
12 immutableMinion.location();
13 // => minion is calmly resting at (0, 0)

The resulting immutableMinion is an immutable object. Attempting to change, delete
or add new properties will result in an exception (that applies to strict mode
otherwise it will fail silently):

1 immutableMinion.x = 10;
2 // => TypeError: Cannot assign to read only property 'x
3
4 delete immutableMinion.x;
5 // => TypeError: Cannot delete property 'x'
6
7 immutableMinion.health = 100;
8 // => TypeError: Can't add property health, object is not extensible

As we introduced earlier, if we attempt to create an object with missing requirements
Trait.create will let us know immediately by throwing a composition exception.

For example, if we attempt to create a new minion with the TMovable trait which
requires the x and y properties without providing such properties:

 1 function ConfusedMinionThatThrows(){
 2 const methods = {
 3 toString() { return 'confused minion'; }
 4 };
 5
 6 // The TMovable trait requires two properties: x and y
 7 const minion = Trait.create(/* prototype */ methods, TMovable);
 8 return minion;
 9 }
10
11 const confusedMinionThatThrows = ConfusedMinionThatThrows();
12 // => Error: Missing required property: x

This will also be the case when trying to create an object with unresolved conflicts,
like when combining the TPositionable and TPositionable3D traits:

 1 function ConflictedMinionThatThrows(){
 2 const methods = {
 3 toString() { return 'conflicted minion'; }
 4 };
 5 const minion = Trait.create(/* prototype */ methods,
 6 Trait.compose(TPositionable, TPositionable3D));
 7 return minion;
 8 }
 9
10 const conflictedMinionThatThrows = ConflictedMinionThatThrows();
11 // => Error: Remaining conflicting property: location

In general, you’ll find that Trait.create offers a better developer experience than
Object.create and will help you create high integrity objects that are immutable.
But how do you build an application if all your objects are immutable? How can you
make a minion move if you cannot change its state? You have a couple of choices:

1. Separate mutable and immutable states
2. Embrace immutability

Separate Mutable and Immutable States
A straightforward way to enjoy the great developer experience Trait.create
provides and allow for the type of mutable state that is common in object oriented
programming is to separate mutable from immutable state.

You can achieve this by keeping your mutable state inside the scope of a function
and using closures to access and transform it. If mutable state needs to be accessed
by other traits or users of the final object you’ll need to make it available via getters
and setters.

Let’s redefine TPositionable to separate mutable state from public immutable state.
We’ll start by wrapping the trait inside a function that will act as a factory for
positionable traits and will allow these to have their own state:

1 function TPositionable(x, y){
2 return Trait({
3 location(){
4 console.log(`${this} is calmly resting at (${x}, ${y})`);
5 }
6 });
7 }

The next step is to make the mutable state x, y accessible to other traits using getters
and setters:

 1 function TPositionable(x, y){
 2 return Trait({
 3 // now other traits can define requirements
 4 // based on these properties
 5 // and even access them.
 6 // So can object users
 7 get x() { return x; },
 8 set x(value) { x = value; },
 9 get y() { return y; },
10 set y(value) { y = value; },
11
12 location(){
13 console.log(`${this} is calmly resting at (${x}, ${y})`);
14 }
15 });
16 }

We can now define another trait TMovable that requires the x and y properties in the
target object and provides behavior that allows any object to move via the movesTo

method:

 1 function TMovable(){
 2 return Trait({
 3 x: Trait.required,
 4 y: Trait.required,
 5
 6 movesTo(newX, newY){
 7 console.log(`${this} moves from (${this.x}, ${this.y}) to (${n\
 8 ewX}, ${newY})`);
 9 this.x = newX;
10 this.y = newY;
11 }
12 });
13 }

Finally, a StatefulMinion can be composed by using both of these traits as follows:

 1 function StatefulMinion(x, y){
 2 const methods = {
 3 toString(){ return 'minion';}
 4 };
 5
 6 const minion = Trait.create(/* prototype */ methods,
 7 /* traits */ Trait.compose(
 8 TPositionable(x,y),
 9 TMovable()));
10 return minion;
11 }

This faithful servant would now be able to be positioned and move around:

1 const statefulMinion = StatefulMinion(1, 1);
2
3 statefulMinion.location();
4 // => minion is calmly resting at (1, 1)
5 statefulMinion.movesTo(2, 2);
6 // => minion moves from (1,1) to (2,2)
7 statefulMinion.location();
8 // => minion is calmly resting at (2, 2)

Great! Now we get both the mutable state handling familiar to object oriented
programming and if we were to forget some properties or define new traits with
conflicting ones, Trait.create would warn us in an instant. Wohooo!

Embrace Immutability
Option number two is to embrace immutability. In traditional functional
programming, where this practice is common, the answer is to rewrite methods that
change state to create new objects reflecting the new state instead. In this context, a
movesTo method wouldn’t just change the position of the current object, it would re-

create a complete new object reflecting the new position. However, since traits are
not complete objects but just slivers of functionality this approach would prove
challenging as it would impose the necessity for a trait to know about the shape of its
complete composed object.

A possible solution would be to use a Redux-like 19 architecture where a trait method
wouldn’t instantiate a new object but trigger an action representing the desired
change and that would eventually result in the new state been created from scratch
with all traits being considered in a centralized repository. But that would require a
longer discourse that lies outside the scope of this chapter.

Interested in Immutability?
In another book in the series - Functional Programming: Immutability - we will do a
deep dive into immutability, its advantages, uses cases and how you can use it in your
applications.

Below you can find a summarized comparison between using Object.create and
Trait.create:

Object.create Trait.create
Can create objects even if there are
unmet requirements or unresolved
conflicts.

Cannot create objects when there are
unmet requirements or unresolved
conflicts.

Unmet requirements result in read-only
property. Read-only properties throw
when you try to change them in strict
mode.

Unmet requirements cause an exception
as soon as we try to instantiate an object.

Properties with unresolved conflicts
throw an exception when accessed.

Unresolved conflicts cause an exception
as soon as we try to instantiate an object.

The object created doesn’t have its
methods bound.

The object created has all its methods
bound.

The object created can be be modified
and augmented with new properties.

The object created is immutable. You
cannot augment it with new properties,
remove properties nor modify existing
ones.

Traits vs Mixins
Mixins Traits
Class-free inheritance based on object
composition via Object.assign. Let’s
you encapsulate functionality and
behavior, and easily reuse them.

Class-free inheritance based on trait
composition. Let’s you encapsulate
functionality and behavior, and easily
reuse them.

Mixins don’t have a way to express
requirements. A mixin may expect a
property or method in the composed
object but it doesn’t have a way to
represent it. If a requirement is not
met, unpredictable side-effects may
occur.

Traits can express that they require specific
properties or methods for functioning.
Failing to meet requirements will result in
errors being thrown either when trying to
assign to an unexisting required property
or upon object creation (Trait.create).

Only allow linear composition. Later
composed mixins overwrite previous
mixins.

Can be composed freely because they
require that you resolve any conflict
explicitly.

Conflicts can be resolved by renaming,
excluding properties, or by overriding
traits.

Unresolved conflicts will result in
exceptions being thrown when accessing
conflicting properties or methods, or on
object creation (with Trait.create)

Support data privacy with closures and
symbols.

Support data privacy with closures and
symbols. Trait.js doesn’t support symbols
but that’s more of an implementation detail
than traits themselves not supporting
symbols.

Object mixins can lead to state being
coupled between different objects
composed from the same mixin.

Traits can also lead to state being between
composed objects. In order to avoid that,
wrap your trait inside a trait factory
function. That will ensure that new objects
are composed from new state.

Functional mixins provide a solution
to this problem by doubling as an

object factory and ensuring that each
new object is composed with new
state.

Mixins usually extend existing objects
or classes.

Traits create new objects from scratch by
composing many traits together instead of
extending existing objects or classes.

 Supports the easy creation of high integrity
objects using Trait.create.

Concluding
Traits are a class-free object oriented programming alternative to mixins. Just like
mixins they encapsulate reusable pieces of behavior that can be composed together to
create complex objects. They are an improvement over mixins because they let you
express requirements within your traits and actively resolve conflicts. Both of these
features result in code that is less error prone because composition mistakes don’t
fail silently and cause unwanted side-effects like with mixins.

Traits.js is a library that brings traits to JavaScript. It lets you define traits via the
Trait factory method, compose traits with Trait.compose, define requirements
using Trait.required and resolve conflicts via Trait.resolve.

Traits.js offers two ways to instantiate objects from traits: Object.create and
Trait.create. The first one, which is native to JavaScript, creates vanilla JavaScript
objects that can be mutated and augmented. With Object.create unmet
requirements result in read-only properties and accessing properties with unresolved
conflicts results in exceptions. Trait.create offers a high integrity alternative to
Object.create that provides a shorter feedback loop. It throws on object creation
when requirements are missing or there are unresolved conflicts. Trait.create
returns immutable objects which we cannot augment with new properties and whose
properties cannot be changed nor deleted.

redBrute.says("That's an extremely interesting technique...");
mooleen.says("Thank you Red. Can I call you Red?");

red.says("Since I'm dishonored I have no name. " +
 "You can call me what you please until I reclaim my " +
 "honor and rise again as a new person with a new name.");
mooleen.says("Interesting... Who chooses your new name then?");

red.says("Destiny! A new name comes with a legendary feat. " +
 "The right name should be obvious then.");

mooleen.says("So it's basically you who choose your new name...");
red.says("Ehr... Pretty much, yes");

rat.says("So if you were to make a legendary bagel... " +
 "Could we call you **Bagel**?");
red.says("...");

/*
 An arrow lodges itself beside Mooleen stopping this completely
 nonsensical conversation before it goes too far and you stop
 reading this book.
*/

mooleen.says("We're under attack! Raise the alarm!");
rat.says("What happened to our scouts?");
mooleen.says("Well, they're no use now. Defend the bridge!");
mooleen.says("Red! You'll guard me while I cast");
/* silence */
mooleen.says("Red?");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Repel the Boarders With Ballistas!
There’s enemies on the bridge! Build several Ballistas to clean the deck before it is
overran!

You’ll need to define several traits to build a ballistas:

TNameable that represents something that can be named and described
TPlaceable that represents something that can be positioned in a two dimensional
space
TShootable that represents something that can be shot

An object composed from these traits would satisfy the following interface:

 1 let b = Ballista('vera', 1, 1);
 2

 3 // Interface provided by TNameable
 4 console.log(b.name); // => ballista 'vera'
 5 console.log(b) // => ballista 'vera'
 6

 7 // Interface provided by TPlaceable
 8 console.log(b.x); // => 1
 9 console.log(b.y); // => 1
10 console.log(b.position); // => (1,1)
11 b.place(2, 2);
12 // => You place ballista 'vera' in position (2,2)
13

14 // Interface provided by TShootable
15 b.shoot(draconianWarrior)
16 // => You shoot draconian warrior with ballista
17 // 'vera' causing 25 damage

Come on! Hurry before it’s too late!

Solution

http://bit.ly/javascriptmancy-oop-traits-exercises
https://github.com/vintharas/javascriptmancy-code-samples

 1 /* the enemy */
 2 let draconianWarrior = {
 3 hp: 50,
 4 toString(){
 5 return 'draconian warrior';
 6 }
 7 };
 8

 9 /* Traits */
10 function TNameable(name){
11 return Trait({
12 name,
13 toString(){
14 return this.name;
15 }
16 });
17 }
18

19 function TPlaceable(x=0, y=0){
20 return Trait({
21 get x(){ return x;},
22 set x(newX){ x = newX;},
23
24 get y(){ return y;},
25 set y(newY) { y = newY;},
26
27 get position(){ return `(${x}, ${y})`;},
28
29 place(x, y) {
30 this.x = x;
31 this.y = y;
32 console.log(`You place ${this} in (${this.x},${this.y})`);
33 }
34 });
35 }
36

37 function TShootable(damage){
38 return Trait({
39 shoot(target){
40 console.log(`You shoot ${target} with ${this}` +
41 ` causing ${damage} damage`);
42 target.hp -= damage;
43 }
44 });
45 }
46

47 function Ballista(name, x=0, y=0){
48 return Trait.create(
49 /* proto */ Object.prototype,
50 /* traits */ Trait.compose(
51 TNameable(`Ballista '${name}'`),
52 TPlaceable(x, y),
53 TShootable(25)));
54 }
55

56 let ballista = Ballista('Vera', 1, 1);
57 console.log(ballista.name);
58 // => Ballista 'Vera'
59 console.log(ballista.position);
60 // => (1 , 1)
61 ballista.shoot(draconianWarrior);

62 // => You shoot draconian warrior with
63 // Ballista 'Vera' causing 25 damage
64

65 mooleen.says("Yes! More ballistas! Let's kick'em out!");
66 /*
67 Mooleen summons more ballistas and you quickly drive the
68 Draconian assault from the deck of the Zeppelin
69 */
70 rat.says("Hmm... Are those draconian warriors?");
71 rat.says("They are extremely devious creatures " +
72 "perfectly adapted to air warfare");
73

74 mooleen.says("That's discomforting...");
75 rat.says("Yep... may I be so blunt as to say that all this " +
76 "has the bitter smell of betrayal?");
77 mooleen.says("... so it does, you can tell me 'I told you so' if " +
78 " we both survive");
79

80 rat.says("Oh, familiars are immortal");
81 rat.says("That's one of the perks of the job");
82 mooleen.stepsOn(rat.tail);
83 rat.says("Ouch!!");
84

85 phalanx.says("Milady they are about to board us " +
86 "with small flying vessels!");
87 /*
88 A crash, a boom, the deck of the Zeppelin lurking and the sound of
89 wood breaking and splintering. Shouts and a mass of Turians
90 jumping off the small wreckage, and hacking and slashing into
91 a disconcerted phalanx platoon.
92 */

Now Prevent More Soldiers From Boarding With Siege Ballistas!
The smaller ballistas will take care of the boarders and the draconian flying around the
Zeppelin. Now you need to build bigger ballistas to prevent the Turians, who are
formidable at close quarters, from boarding your ship.

Siege Ballistas are heavier and slower than the smaller units. In addition to using the
TNameable a TPositionable traits you’ll need two new traits:

TAimable that describes something that can be aimed at a target
TFireable that describes something that can be fired after having being aimed. This
trait requires a property target in the composed object.

An object composed from these traits would satisfy the following interface:

 1 let siegeBallista = SiegeBallista('Dora', 1, 1);
 2

 3 /* TAimable */
 4 siegeBallista.aimAt(troopTransport);
 5 // => you aim the Siege Ballista 'Dora' at troop transport
 6

 7 /* TFireable */
 8 siegeBallista.fire();
 9 // => you fire the Siege Ballista 'Dora' at troop transport
10 // causing 100 damage

Solution
 1 let troopTransport = {
 2 hp: 200,
 3 toString(){ return 'flying troop transport';},
 4 load: [
 5 /* many Turians */
 6]
 7 };
 8 let moreTuriansOnTheDeck = {
 9 toString: () => 'more turians on the deck'
10 };
11

12 function TAimable(){
13 const state = { target: undefined };
14
15 return Trait({
16 get target() { return state.target; },
17 aimAt(target) {
18 state.target = target;
19 console.log(`You aim ${this} at ${target}`);

20 }
21 });
22 }
23

24 function TFireable(damage){
25 return Trait({
26 target: Trait.required,
27 fire(){
28 if (this.target){
29 console.log(`You fire ${this} at ${this.target}` +
30 ` causing ${damage} damage`);
31 this.target.hp -= damage;
32 } else {
33 console.log(`${this} doesn't have a target`);
34 }
35 }
36 })
37 }
38

39 function SiegeBallista(name){
40 return Trait.create(
41 /* proto */ Object.prototype,
42 /* traits */ Trait.compose(
43 TNameable(`Siege Ballista '${name}'`),
44 TPlaceable(),
45 TAimable(),
46 TFireable(100)
47));
48 }
49

50 var siegeBallista = SiegeBallista('Brutus', 2, 2);
51 siegeBallista.aimAt(troopTransport);
52 // => You aim Siege Ballista 'Brutus' at flying troop transport
53 siegeBallista.fire();
54 // => You fire Siege Ballista 'Brutus' at flying troop transport
55 // causing 100 damage
56

57 mooleen.says('Good! Rally the troops!');
58

59 /*
60 The new ballistas succeed at keeping the transports at bay
61 */
62 mooleen.says("Looks like we've repelled the attack...");
63 rat.screams("Behind!");
64

65 /* Moolen turns in time to see an angry red brute
66 * wielding an axe towards her. It's way too late to cast a spell
67 */
68

69 red.shields(mooleen);
70

71 /*
72 The axe falls down for what it feels like an eternity
73 and it suddenly comes to a halt. All of the sudden, Red stands
74 between Mooleen and the brute, muscles bulging, roars, lifts the
75 opposing Turian from the ground and throws him off the deck of
76 the ship.
77 */
78

79 red.laughs();
80 red.charges(moreTuriansOnTheDeck);

81

82 rat.says("Hmmm... that whole thing was very odd");
83

84 /*
85 * An explosion above, the flying ship lurks and starting
86 * losing altitude
87 */
88

89 mooleen.says("Damn... If they can't board us they'll sink us...");

Protect the Zeppelin From the Heights!
The draconian force has started attacking the Zeppelin itself in an effort to sink it into
oblivion. You must summon floating ballistas that can protect the Zeppelin from all
heights.

Given a trait TPlaceable3D that looks like this:

 1 function TPlaceable3D(z=0){
 2 return Trait({
 3 x: Trait.required,
 4 y: Trait.required,
 5 get z() { return z;},
 6 set z(value) { z = value; },
 7 place(x, y, z){
 8 this.x = x;
 9 this.y = y;
10 this.z = z;
11 console.log(
12 `You place ${this} in (${this.x},${this.y}, ${this.z})`);
13 }
14 })
15 }

Define a FloatingBallista composed using the following traits TNameable, TPlaceable,
TPlaceable3D, TShootable.

Tip: You’ll need to explicitly handle the conflict with the place method. The resulting
object sould be able to be placed at an arbitrary height.

Solution
 1 function TPlaceable3D(z=0){
 2 return Trait({

 3 x: Trait.required,
 4 y: Trait.required,
 5 get z() { return z;},
 6 set z(value) { z = value; },
 7 place(x, y, z){
 8 this.x = x;
 9 this.y = y;
10 this.z = z;
11 console.log(`You place ${this} in position ` +
12 `(${this.x},${this.y}, ${this.z})`);
13 }
14 });
15 }
16

17 function FloatingBallista(name, x=0, y=0, z=0){
18 return Trait.create(
19 Object.prototype,
20 Trait.compose(
21 TNameable(`Floating Ballista '${name}'`),
22 Trait.override(TPlaceable3D(z), TPlaceable(x,y)),
23 TShootable(50)
24)
25);
26 }
27

28 let floatingBallista = FloatingBallista("Ursa", 1, 1, 20);
29 floatingBallista.shoot(draconianWarrior);
30 // => You shoot draconian warrior with Floating Ballista 'Ursa'
31 // causing 50 damage
32 floatingBallista.place(1, 2, 50);
33 // => You place Floating Ballista 'Ursa' in position (1,2, 50)
34

35 /*
36 * The last enemy forces retreats as the sun
37 * raises in the sky again announcing a new beautiful day.
38 */
39

40 mooleen.says('Did we fight all night?');
41 red.says('Yes! And it was glorious!');
42 rat.says('Epic!');
43 red.says('Legendary');
44

45 randalf.yawns();
46 randalf.says('What a beautiful morning!');
47

48 mooleen.says("Don't tell me you slept through everything...");
49 randalf.says("everything?");
50

51 bandalf.yawns();
52 bandalf.says('What a beautiful day!');
53

54 randalf.says("Bandalf... don't tell me you slept " +
55 "through everything...");
56 bandalf.says("everything?");
57

58 mooleen.facepalms();
59 // => mooleen epicly facepalms

Black Tower Summoning: Next Level Object
Composition With Stamps

Favor composition
over inheritance

 - Gill Of Fyra
 Designer of the Pattern

/*
 A broken Zeppelin flies slightly sideways in a desolated
 cloudless sky. A countless number of ropes fall down
 from the board as the crew hurriedly repairs the hull
 and the rigging of the flying vessel. On the bridge several
 figures discuss heatedly and decide what will be the
 future of the expedition.
*/

randalf.says("I think we need to go back to Asturi");
bandalf.says("Yes, we have a strong position there");
rat.says("The villagers really love us...");

red.says("That is utter nonsense. You need to strike... " +
 "Strike now they're weak and demoralized after " +
 "been defeated twice.");

mooleen.says("Hmm... I don't know. This last attack " +
 "has me worried. They may have expected us to attack. " +
 "But how did they know where to find us " +
 "in all the unending miles of sky that surround us?");

red.says("Well either they got lucky... " +
 "or someone stabbed you in the back.");

mooleen.says("Disturbing... No one knew this route " +
 "but you Red");
randalf.says("You deceitful imp... She spared your life!");
bandalf.says("Phalanx put this man in shackles!!");

/*
 The soldiers surround Red fearfuly but he doesn't
 seem to react to their approach. One gathers the
 courage to hit him in the head with the butt of his
 spear and Red drops to the ground. They shackle him
 and bring him beneath.
*/

randalf.says("Now we can stop this nonsense and go back");
bandalf.says("Regroup");
randalf.says("Strengthen our position");

mooleen.says("No");
mooleen.says("If we go back I'll never get home. " +
 "I'll just get trapped in that teeny tiny island for ever.");
mooleen.says("We're pushing through.");

randalf.says("but...");

mooleen.says("Don't worry. I have a trick down my sleeve");
mooleen.says("Our troops will be unstoppable!!")
mooleen.says("I've been adapting this object composition " +
 "technique to make extra weapons, armors and potions.");
mooleen.says("I call them stamps");

I Call Them Stamps
In the last two chapters you learned about two great alternatives to classical object
oriented programming: mixins and traits. Both techniques embrace the dynamic
nature of JavaScript. Both encourage creating small reusable components that you
can either mix with your existing objects or compose together to create new objects
from scratch.

Object and functional mixins are the simplest approach to object composition.
Together with Object.assign they make super easy to create small units of reusable
behavior and augment your domain objects with them.

Traits continue the tradition of composability of mixins adding an extra layer of
expressiveness and safety on top. They let you define required properties, resolve
naming conflicts and they warn you whenever you’ve failed to compose your traits
properly.

In this chapter you’ll learn a new technique to achieve class-free inheritance through
object composition. This particular technique embraces not only the dynamic nature
of JavaScript but also its many ways to achieve code reuse: prototypes, mixins and
closures. Behold! Stamps20!

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Open Source Alert! Stampit!
We are going to be using stampit (version 3) for the remainder of the article. Stampit is a
library that follows the stamp specification and allows you to use stamps in JavaScript. If
you’re curious and eager to learn more about it, I encourage you to visit the GitHub page
and the stamp specification.

http://bit.ly/javascriptmancy-oop-stamps
https://github.com/vintharas/javascriptmancy-code-samples
https://github.com/stampit-org/stampit
https://github.com/stampit-org/stampit
https://github.com/stampit-org/stamp-specification

What are Stamps?
Stamps are composable factory functions. Just like regular factory functions they
let you create new objects but, lo and behold, they also have the earth shattering
ability to compose themselves with each other. Factory composition unlocks a world
of possibilities and a whole new paradigm of class-free object oriented programming
as you’ll soon see.

Imagine that you have a factory function to create swords that you can wield:

 1 const Sword = () =>
 2 ({
 3 description: 'common sword',
 4 toString(){ return this.description;},
 5 wield(){
 6 console.log(`You wield ${this.description}`);
 7 }
 8 });
 9
10 const sword = new Sword();
11 sword.wield();
12 // => You wield the common sword

And another one that creates deadly knives that you can throw:

 1 const Knife = () =>
 2 ({
 3 description: 'rusty knife',
 4 toString(){ return this.description},
 5 throw(target){
 6 console.log(`You throw the ${this.description} ` +
 7 `towards the ${target}`);
 8 }
 9 });
10
11 const knife = new Knife();
12 knife.throw('orc');
13 // => You throw the rusty knife towards the orc

Wouldn’t it be great to have a way to combine that wielding with the throwing so
you can wield a knife? Or throw a sword? That’s exactly what stamps let you do.
With stamps you can define factory functions that encapsulate pieces of behavior and
later compose them with each other.

Before we start composing, let’s break down both Sword and Knife into the separate
behaviors that define them. Each of these behaviors will be represented by a separate
stamp that we’ll create with the aid of the stampit function, the core API of the
stampit library.

https://github.com/stampit-org/stampit

So, we create stamps for something that can be wielded:

1 // wielding something
2 const Wieldable = stampit({
3 methods: {
4 wield(){
5 console.log(`You wield ${this.description}`);
6 }
7 }
8 });

Something that can be thrown:

1 // throwing something
2 const Throwable = stampit({
3 methods: {
4 throw(target){
5 console.log(`You throw the ${this.description} ` +
6 `towards the ${target}`);
7 }
8 }
9 });

And something that can be described:

 1 // or describing something
 2 const Describable = stampit({
 3 methods: {
 4 toString(){
 5 return this.description;
 6 }
 7 },
 8 // default description
 9 props: {
10 description: 'something'
11 },
12 // let's you initialize description
13 init({description=this.description}){
14 this.description = description;
15 }
16 });

In the examples above, we use the stampit function to create three different stamps:
Wieldable, Throwable and Describable. The stampit function takes a
configuration object that represents how objects should be created and produces a
factory that uses that configuration to create new objects.

In our example we use different properties of the configuration object to create our
stamps:

methods: allows us to define the methods that an object should have like wield,
throw and toString

props: lets us set a default value for an object description
init: allows stamp consumers initialize objects with a given description

As a result, the Wieldable stamp creates objects that have a wield method, the
Throwable stamp creates objects with a throw method and so on.

Once you have defined these stamps you can compose them together into yet another
stamp that represents a weapon by using the compose method:

1 const Weapon = stampit()
2 .compose(Describable, Wieldable, Throwable);

Now you can use this stamp Weapon, that works just like a factory, to create (or
stamp) new mighty weapons that you’ll be able to wield, throw and describe.

Let’s start with a mighty sword:

1 const anotherSword = Weapon({description: 'migthy sword'});
2
3 anotherSword.wield();
4 // => You wield the mighty sword
5 anotherSword.throw('ice wyvern');
6 // => You throw the mighty sword towards the ice wyvern

Notice how we pass an object with a description property to the stamp? This is the
description that will be forwarded to the init method of the Describable stamp
we defined earlier.

And what about a sacrificial knife?

1 const anotherKnife = Weapon({description: 'sacrificial knife'});
2
3 anotherKnife.wield();
4 // => You wield the sacrificial knife
5 anotherKnife.throw('heart of the witch');
6 // => You throw the sacrificial knife towards the heart of the witch

Yey! We did it! Using stamps we were able to create factories for stuff that can be
wielded, thrown and described, and compose them together to create a sword and a
knife that can be both wielded and thrown. These examples only scratch the surface
of the capabilities of stamps. There’s much more in store for you. Let’s continue!

Stamps OOP Embraces JavaScript

A very interesting feature of stamps that differentiates them from other existing
approaches to object composition is that they truly embrace JavaScript strengths and
idioms. Stamps use:

Prototypical inheritance so that you can take advantage of prototypes to share
methods between objects.
Mixins so that you can compose pieces of behavior with your stamps, use
defaults, initialize or override properties.
Closures so that you can achieve data privacy and only expose it through the
interface of your choice.

Moreover, stamps wrap all of this goodness in a very straightforward declarative
interface:

 1 const stamp = stampit({
 2 // methods inherited via prototypical inheritance
 3 methods: {...},
 4
 5 // properties and methods mixed in via Object.assign (mixin)
 6 props: {...},
 7
 8 // properties and methods mixed in through a recursive algorithm
 9 // (deeply cloned mixin)
10 deepProps: {...}
11
12 // closure that can contain private members
13 init: function(arg0, context){...},
14 });

Stamps By Example
Let’s continue with the example of the swords and the knives - we need to arm our
army after all if we want to defeat The Red Hand - and go through each of the
different features provided by stamps.

In the upcoming sections, we will define the weapon stamp from scratch using new
stamp options as the need arises and showcasing how stamps take advantage of
different JavaScript features.

Prototypical Inheritance and Stamps
We will start by defining some common methods that could be shared across all
weapons and therefore it makes sense to place them in a prototype. In order to do
that we use the methods property you saw in previous examples:

 1 const AWeapon = stampit({
 2 methods: {
 3 toString(){
 4 return this.description;
 5 },
 6 wield(target){
 7 console.log(`You wield the ${this} ` +
 8 `and attack the ${target}`);
 9 },
10 throw(target){
11 console.log(`You throw the ${this} ` +
12 `at the ${target}`);
13 }
14 }
15 });

We now have a AWeapon stamp with three methods toString, wield and throw that
we can use to instantiate new weapons like this sword:

1 const aSword = AWeapon({description: 'a sword'});
2 aSword.wield('giant rat');
3 // => You wield the sword and attack the giant rat

You can verify that all these methods that we include within the methods property
are part of the aSword object prototype using Object.getPrototypeOf():

1 console.log(Object.getPrototypeOf(aSword));
2 // => [object Object] {
3 // throw:....
4 // toString:...
5 // wield:...}

The Object.getPrototypeOf method returns the prototype of the aSword object
which, as we expected, includes all the methods we are looking for: throw, wield
and toString.

Mixins and Stamps
The props and deepProps properties let you define the properties or methods that
will be part of each object created via stamps 21. Both properties define an object
mixin that will be composed with the object being created by the stamp:

Properties within the props object are merged using Object.assign and thus
copied over the new object as-is.
Properties within the deepProps object are deeply cloned and then merged
using Object.assign which guarantees that no state is shared between objects
created via the stamp. This is very important if you have properties with objects

or arrays since you don’t want state changes in one object affecting other
objects.

We can expand the previous weapon example using props and deepProps to add
new functionality to our weapon. The abilities to:

1. obtain a detailed description when under thorough examination (examine)
2. enchant the weapon with powerful spells and enchantments (enchant)

 1 const AWeightedWeapon = stampit({
 2 props: {
 3 // 1. props part of examining ability
 4 weight: '4 stones',
 5 material: 'iron',
 6 description: 'weapon'
 7 },
 8 deepProps: {
 9 // 2. deep props part of the enchanting ability
10 enchantments: []
11 },
12 methods: {
13 /*
14 // collapsed to save space
15 toString(){...},
16 wield(target){...},
17 throw(target){...},
18 */
19 examine(){
20 console.log(`You examine the ${this}.
21 It's made of ${this.material} and ${this.examineWeight()}.
22 ${this.examineEnchantments()}.`)
23 },
24 examineWeight(){
25 const weight = Number.parseInt(this.weight);
26 if (weight > 5) return 'it feels heavy';
27 if (weight > 3) return 'it feels light';
28 return 'it feels surprisingly light';
29 },
30 examineEnchantments(){
31 if (this.enchantments.length === 0)
32 return 'It is not enchanted.';
33 return `It seems enchanted: ${this.enchantments}`;
34 },
35 enchant(enchantment){
36 console.log(`You enchant the ${this} with ${enchantment}`);
37 this.enchantments.push(enchantment)
38 }
39 },
40 init({description = this.description}){
41 this.description = description;
42 }
43 });

Now we can examine our weapons that, from this moment forward, will have a
weight and be made of some material:

1 const aWeightedSword = AWeightedWeapon({
2 description: 'sword of iron-ness'
3 });
4
5 aWeightedSword.examine();
6 // => You examine the sword of iron-ness.
7 // It's made of iron and it feels light.
8 // It is not enchanted.

And even enchant them with powerful spells:

1 aWeightedSword.enchant('speed +1');
2 // => You enchant the sword of iron-ness with speed +1
3
4 aWeightedSword.examine();
5 // => You examine the sword of iron-ness.
6 // It's made of iron and it feels light.
7 // It seems enchanted: speed +1.

It is interesting to point out that the object passed as an argument to the stamp
function when creating a new object will be passed forward to all defined initializers
(init methods). For instance, in the example above we called the AWeightedWeapon
stamp with the object {description: 'sword of iron-ness'}. This object was
passed to the stamp init method and used to initialize the weapon description for
the resulting aWeightedSword object. Had there been more stamps with init
methods, this object would have been passed as an argument to each one of them.

In addition to using props and deepProps to define the shape of an object created via
stamps, we can use them in combination with the same mixins we saw in previous
chapters. That is, we can take advantage of previously defined mixins that represent
a behavior and compose them with our newly created stamps.

For instance, we could have defined a reusable madeOfIron mixin:

1 const madeOfIron = {
2 weight: '4 stones',
3 material: 'iron'
4 };

And passed it as part of the props object:

1 const AnIronWeapon = stampit({
2 props: madeOfIron,
3 ...
4 });

This object composition is even easier to achieve using the stamp fluent API that
we’ll examine in detail in later sections:

1 const AnHeavyIronHolyWeapon =
2 // A weighted weapon
3 AWeightedWeapon
4 // compose with madeOfIron mixin
5 .props(madeOfIron)
6 // compose with veryHeavyWeapon mixin
7 .props(veryHeavyWeapon)
8 // compose with deeply cloned version of holyEnchantments mixin
9 .deepProps(holyEnchantments);

Data Privacy and Stamps
Let’s imagine that we don’t want to expose to everyone how we have implemented
the enchanting weapons engine, so that, we can change and optimize it in the future.
Is there a way to make that information private? Yes, indeed there is. Stamps support
data privacy by using closures through the init property.

Let’s take the previous weapon example and make our enchantment implementation
private. We’ll do that by moving the enchantments property from the public API
(props) into the init function where it’ll be isolated from the outside world. Since
the manner of accessing this private enchantments property is via closures, we’ll
need to move all methods that need to have a access to the property inside the init
function as well (examineEnchantments and enchant):

 1 const APrivateWeapon = stampit({
 2 methods: {
 3 /*
 4 like in previous examples
 5 toString(){...},
 6 wield(target){...},
 7 throw(target){...},
 8 */
 9 examine(){
10 console.log(`You examine the ${this}.
11 It's made of ${this.material} and ${this.examineWeight()}.
12 ${this.examineEnchantments()}.`)
13 },
14 examineWeight(){
15 const weight = Number.parseInt(this.weight);
16 if (weight > 5) return 'it feels heavy';
17 if (weight > 3) return 'it feels light';
18 return 'it feels surprisingly light';
19 }
20 },
21 props: {
22 weight: '4 stones',
23 material: 'iron',
24 description: 'weapon'
25 },
26 init: function({description=this.description}){
27 // this private variable is the one being enclosed
28 const enchantments = [];
29 this.description = description;
30

31 // augment object being created
32 // with examineEnchantments and enchant
33 // methods
34 Object.assign(this, {
35 examineEnchantments(){
36 if (enchantments.length === 0) return 'It is not enchanted.';
37 return `It seems enchanted: ${enchantments}`;
38 },
39 enchant(enchantment){
40 console.log(`You enchant the ${this} with ${enchantment}`);
41 enchantments.push(enchantment)
42 }
43 });
44 }
45 });

The init function will be called during the creation of an object with the object itself
as context (this). This will allow us to augment the object with the
examineEnchantments and enchant methods that enclose the enchantments
property. As a result, when we create an object using this stamp, it will have a
private variable enchantments that can only be operated through these methods.

Having defined this new stamp we can verify how indeed the enchantments property
is now private:

 1 const aPrivateWeapon = APrivateWeapon({
 2 description: 'sword of privacy'
 3 });
 4
 5 console.log(aPrivateWeapon.enchantments);
 6 // => undefined;
 7
 8 aPrivateWeapon.examine();
 9 // => You examine the sword of privacy.
10 //It's made of iron and it feels light.
11 //It is not enchanted.
12
13 aPrivateWeapon.enchant('privacy: wielder cannot be detected');
14 // => You enchant the sword of privacy with privacy:
15 // wielder cannot be detected
16
17 aPrivateWeapon.examine();
18 // => You examine the sword of privacy.
19 // It's made of iron and it feels light.
20 // It seems enchanted: privacy: wielder cannot be detected.

In addition to helping you with information hiding, the init function adds an extra
degree of flexibility by allowing you to provide additional arguments that affect
object creation.

The init function takes two arguments:

1. The first argument passed to the stamp during object creation. This is generally
an options object with properties that will be used when creating an object.

2. A context object with these three properties:

1 {
2 instance, // the instance being created
3 stamp, // the stamp
4 args // arguments passed to the stamp during object creation
5 }

So we can redefine our init function to, for instance, limit the number of
enchantments allowed for a given weapon:

 1 const ALimitedEnchantedWeapon = stampit({
 2 methods: {
 3 /*
 4 // Same as in previous examples
 5 toString(){...},
 6 wield(target){...},
 7 throw(target){...},
 8 examine(){...},
 9 examineWeight(){...}
10 */
11 },
12 props: {
13 weight: '4 stones',
14 material: 'iron',
15 description: 'weapon'
16 },
17 init: function({ /* options object */
18 description = this.description,
19 maxNumberOfEnchantments = 10
20 }){
21 // this private variable is the one being enclosed
22 const enchantments = [];
23 this.description = description;
24
25 Object.assign(this, {
26 examineEnchantments(){
27 if (enchantments.length === 0) return 'It is not enchanted.';
28 return `It seems enchanted: ${enchantments}`;
29 },
30 enchant(enchantment){
31 if(enchantments.length === maxNumberOfEnchantments) {
32 console.log('Oh no! This weapon cannot ' +
33 'be enchanted any more!');
34 } else {
35 console.log(`You enchant the ${this} with ${enchantment}`);
36 enchantments.push(enchantment);
37 }
38 }
39 });
40 }
41 });

In this example we have updated the init method to unwrap the arguments being
passed to the stamp function. The method now expects the first argument to be an
options object that contains:

a description
a maxNumberOfEnchantments variable that will determine how many
enchantments a weapon can hold. If it hasn’t been defined it defaults to a value
of 10

So now, we can call the stamp passing a configuration of our choosing:

1 const onlyOneEnchanmentWeapon = ALimitedEnchantedWeapon({
2 description: 'sword of one enchanment',
3 maxNumberOfEnchantments: 1
4 });

As we mentioned earlier, this options object will be passed in to the init function
as its first argument resulting in a weapon that can only hold a single enchantment:

 1 onlyOneEnchanmentWeapon.examine();
 2 // => You examine the sword of privacy.
 3 //It's made of iron and it feels light.
 4 //It is not enchanted.
 5
 6 onlyOneEnchanmentWeapon.enchant('luck +1');
 7 // => You enchant the sword of one enchanment with luck +1
 8
 9 onlyOneEnchanmentWeapon.enchant(
10 'touch of gold: everything you touch becomes gold');
11 // => Oh no! This weapon cannot be enchanted any more!

As you could appreciate in this example, the init function adds a lot of flexibility to
your stamps as it allows you to configure them via additional parameters during
creation such as maxNumberOfEnchantments.

Stamp Composition
Stamps are great at composition. On one hand you compose prototypes, mixins
and closures to produce a single stamp. On the other, you can compose stamps with
each other just like you saw in the introduction to this chapter with the words,
knives, the wielding and the throwing.

Let’s take a closer look at stamp composition. Following the weapons example from
previous sections, imagine that all of the sudden we need a way to represent potions
and armors.

What do we do?

Well, we can start by factoring the weapon stamp into smaller reusable behaviors
also represented as stamps. We have the Throwable, Wieldable and Describable
behaviors we defined at the beginning of the chapter:

 1 const Throwable = stampit({
 2 methods: {
 3 throw(target){
 4 console.log(`You throw the ${this.description} ` +
 5 `towards the ${target}`);
 6 }
 7 }
 8 });
 9
10 // wielding something
11 const Wieldable = stampit({
12 methods: {
13 wield(target){
14 console.log(`You wield the ${this.description} ` +
15 `and attack the ${target}`);
16 }
17 }
18 });
19
20 // or describing something
21 const Describable = stampit({
22 methods: {
23 toString(){
24 return this.description;
25 }
26 },
27 props: {
28 description: 'something'
29 },
30 init({description=this.description}){
31 this.description = description;
32 }
33 });

We can define new Weighted and MadeOfMaterial stamps to represent something
that has weight and something which is made of some sort of material:

 1 const Weighted = stampit({
 2 methods: {
 3 examineWeight(){
 4 const weight = Number.parseInt(this.weight);
 5 if (weight > 5) return 'it feels heavy';
 6 if (weight > 3) return 'it feels light';
 7 return 'it feels surprisingly light';
 8 }
 9 },
10 props: {
11 weight: '4 stones'
12 },
13 init({weight=this.weight}){

14 this.weight = weight;
15 }
16 });
17
18 const MadeOfMaterial = stampit({
19 methods: {
20 examineMaterial(){
21 return `It's made of ${this.material}`;
22 }
23 },
24 props: {
25 material: 'iron'
26 },
27 init({material=this.material}){
28 this.material = material;
29 }
30 });

And finally an Enchantable stamp to represent something that can be enchanted:

 1 const Enchantable = stampit({
 2 init: function({maxNumberOfEnchantments=10}){
 3 // this private variable is the one being enclosed
 4 const enchantments = [];
 5
 6 Object.assign(this, {
 7 examineEnchantments(){
 8 if (enchantments.length === 0) return 'It is not enchanted.';
 9 return `It seems enchanted: ${enchantments}`;
10 },
11 enchant(enchantment){
12 if(enchantments.length === maxNumberOfEnchantments) {
13 console.log('Oh no! This weapon cannot be enchanted ' +
14 'any more!');
15 } else {
16 console.log(`You enchant the ${this} with ${enchantment}`);
17 enchantments.push(enchantment);
18 }
19 }
20 });
21 }
22 });

Now that we have identified all these reusable behaviors we can start composing
them together. We could wrap the most fundamental behaviors in an Item stamp:

1 const Item = stampit()
2 .compose(Describable, Weighted, MadeOfMaterial);

And define the new AComposedWeapon stamp in terms of it:

1 const AComposedWeapon = stampit({
2 methods: {
3 examine(){
4 console.log(`You examine the ${this}.
5 ${this.examineMaterial()} and ${this.examineWeight()}.

6 ${this.examineEnchantments()}.`)
7 },
8 }
9 }).compose(Item, Wieldable, Throwable, Enchantable);

This reads very nicely. A Weapon is an Item that you can Wield, Throw and
Enchant.

If we define a weapon using this new stamp we can verify how everything works just
like it did before the factoring:

 1 // now we can use the new weapon as before
 2 const swordOfTruth = AComposedWeapon({
 3 description: 'The Sword of Truth'
 4 });
 5
 6 swordOfTruth.examine();
 7 // => You examine the The Sword of Truth.
 8 // It's made of iron and it feels light.
 9 // It is not enchanted.."
10
11 swordOfTruth.enchant("demon slaying +10");
12 // => You enchant the The Sword of Truth with demon slaying +10
13
14 swordOfTruth.examine();
15 // => You examine the The Sword of Truth.
16 // It's made of iron and it feels light.
17 // It seems enchanted: demon slaying +10.

Now we can combine these behaviors together with new ones to define the Potion
and Armor stamps.

A potion would be something that can be drunk and which has some sort of effect on
the drinker. For instance, if we create a new stamp to represent something that can be
drunk:

 1 const Drinkable = stampit({
 2 methods: {
 3 drink(){
 4 console.log(`You drink the ${this}. ${this.effects}`);
 5 }
 6 },
 7 props: {
 8 effects: 'It has no visible effect'
 9 },
10 init({effects=this.effects}){
11 this.effects = effects;
12 }
13 });

We can define a potions as follows: An Item that you can Throw and Drink.

1 const Potion = stampit().compose(Item, Throwable, Drinkable);

We can verify that the potion works as we want it to:

1 const healingPotion = Potion({
2 description: 'Potion of minor healing',
3 effects: 'You heal 50 hp (+50hp)!'
4 });
5
6 healingPotion.drink();
7 // => You drink the Potion of minor healing. You heal 50 hp (+50hp)!

On the other hand, an armor would be something that you could wear and which
would offer some protection. Let’s define a Wearable behavior:

 1 const Wearable = stampit({
 2 methods: {
 3 wear(){
 4 console.log(`You wear ${this} in your ` +
 5 `${this.position} gaining +${this.protection} ` +
 6 `armor protection.`);
 7 }
 8 },
 9 props: { // these act as defaults
10 position: 'chest',
11 protection: 50
12 },
13 init({position=this.position, protection=this.protection}){
14 this.position = position;
15 this.protection = protection;
16 }
17 });

And now an Armor is an Item that you can Wear and Enchant:

1 const Armor = stampit().compose(Item, Wearable, Enchantable);

Let’s take this Armor for a test run and create a powerful steel breastplate of fire:

 1 const steelBreastPlateOfFire = Armor({
 2 description: 'Steel Breastplate of Fire',
 3 material: 'steel',
 4 weight: '50 stones',
 5 });
 6
 7 steelBreastPlateOfFire.enchant('Fire resistance +100');
 8 // => You enchant the Steel Breastplate of Fire with
 9 // Fire resistance +100
10
11 steelBreastPlateOfFire.wear();
12 // => You wear Steel Breastplate of Fire in your chest
13 // gaining +50 armor protection.

In the two previous examples we have added two behaviors - drinking and wearing
something - as part of the Potion and Armor stamps. Using this type of approach
allows us to create a rich domain model with behaviors that we reuse and compose to
our heart’s content. These stamps result in the vocabulary of a domain specific
language of sorts that allows us to express one stamp in terms of other stamps, one
idea or concept in our domain model in terms of other ones:

1 const Armor = stampit().compose(Item, Wearable, Enchantable);
2 // => an armor is an item that you can wear and that can be enchanted
3
4 const Weapon = stampit().compose(Item, Throwable, Wieldable);
5 // => a weapon is an item that you can throw or wield
6
7 const Potion = stampit().compose(Item, Drinkable, Throwable);
8 // => a potion is an item that you can drink or throw

Pretty cool right? You end up with a very declarative, readable, flexible and
extensible way to work with objects. Now imagine how much work and additional
code you would have needed to implement the same solution using classical
inheritance.

Prototypical Inheritance When Composing Stamps
You may be wondering… What happens with prototypical inheritance when you
compose two stamps? Does stampit create multiple prototypes and establish a
prototype chain between them?

The answer is no, whenever you compose stamps all the different methods assigned
to the methods property in each stamp are flattened into a singular prototype.

Let’s illustrate this with an example. Imagine that you want to define elemental
weapons that let you perform mighty elemental attacks. In order to do this you
compose the existing AComposedWeapon stamp with a new stamp that has the
elementalAttack method:

1 const ElementalWeapon = stampit({
2 methods: {
3 elementalAttack(target){
4 console.log(`You wield the ${this.description} and perform ` +
5 `a terrifying elemental attack on the ${target}`);
6 }
7 }
8 }).compose(AComposedWeapon);

When you instantiate a new sword of fire you can readily verify how the aFireSword
object does not have a prototype with a single elementalAttack method. Instead, the

prototype contains all methods defined in all stamps that have being composed to
create ElementalWeapon:

 1 const aFireSword = ElementalWeapon({
 2 description: 'magic sword of fire'
 3 });
 4
 5 console.log(Object.getPrototypeOf(aFireSword));
 6 // => [object Object] {
 7 // elementalAttack: ...
 8 // examine: ...
 9 // examineMaterial: ...
10 // examineWeight: ...
11 // throw: ...
12 // toString: ...
13 // wield: ...
14 // }

If there are naming collisions between composed stamps the last one wins and
overwrites the conflicting method, just like with Object.assign.

Data Privacy When Composing Stamps
Another interesting advantage of using closures to define private data and being able
to later compose stamps with each other is that private data doesn’t collide. If you
have a private member with the same name in two different stamps and you compose
them together they will act as two completely different variables.

Let’s illustrate this with another example (example craze!!). If you remember from
previous sections the AComposedWeapon stamp allowed weapons to be enchanted (via
the Enchanted stamp) and stored these magic spells inside a private variable called
enchantments. What would happen if we were to rewrite our elemental weapon to
also have a private property called enchantments?

 1 // We redefine the elemental weapon to store its
 2 // elemental properties as enchantments of some sort:
 3
 4 const AnElementalWeapon = stampit({
 5 init({enchantments=[]}){
 6 Object.assign(this, {
 7 elementalAttack(target){
 8 console.log(`You wield the ${this.description} and ` +
 9 `perform a terrifying elemental attack of ` +
10 `${enchantments} on the ${target}`);
11 }});
12 }
13 }).compose(AComposedWeapon);

In this example we have redefined the element weapon to store its powers like an
enchantment (that is, inside an enchantments array). We moved the
elementalAttack method from the methods properties to the init property so that it
will enclose the enchantments private member that will, from now on, store the
elemental attack.

We go ahead and create a new super elemental weapon: an igneous lance!

1 const igneousLance = AnElementalWeapon({
2 description: 'igneous Lance',
3 enchantments: ['fire']
4 });

But what happens with this lance that effectively has two enchantments private
members (from the AnElementalWeapon and Enchanted stamps)? Well, we can
easily verify that they do not affect each other by putting the lance into action:

 1 igneousLance.elementalAttack('rabbit');
 2 // => You wield the igneous Lance and perform a
 3 // terrifying elemental attack of fire on the rabbit
 4
 5 igneousLance.enchant('protect + 1');
 6 // => You enchant the igneous Lance with protect + 1
 7
 8 igneousLance.elementalAttack('goat');
 9 // => You wield the igneous Lance and perform a
10 // terrifying elemental attack of fire on the goat

Why don’t the enchantments variables collide? Even though I often use the word
private members to refer to these variables, the reality is that they are not part of the
object being created by the stamps. Different enchantments variables are enclosed
by the enchant and elementalAttack functions and it is these two different values
that are used when calling these two functions. Since they are two different variables
that belong to two completely different scopes no collision takes place even though
both variables have the same name.

Stamp Fluent API
In addition to the API that we’ve used in the previous examples where you pass a
configuration object to the stampit method:

 1 const stamp = stampit({
 2
 3 // methods inherited via prototypical inheritance
 4 methods: {...},
 5
 6 // properties and methods mixed in via Object.assign (mixin)

 7 props: {...},
 8
 9 // closure that can contain private members
10 init(options, context){...},
11
12 // properties and methods mixed in through a recursive algorithm
13 // (deeply cloned mixin)
14 deepProps: {...}
15 });

You can use the fluent interface if it is more to your liking:

 1 const stamp = stampit().
 2 // methods inherited via prototypical inheritance
 3 methods({...}).
 4
 5 // properties and methods mixed in via Object.assign (mixin)
 6 props({...}).
 7
 8 // closure that can contain private members
 9 init(function(options, context){...}).
10
11 // properties and methods mixed in through a recursive algorithm
12 // (deeply cloned mixin)
13 deepProps({...}).
14
15 // compose with other stamps
16 compose(...);

For instance, we can redefine the Armor stamp as a chain of methods using this new
interface:

 1 const FluentArmor = stampit()
 2 .methods({
 3 wear(){
 4 console.log(`You wear ${this} in your ` +
 5 `${this.position} gaining +${this.protection} ` +
 6 `armor protection.`);
 7 }})
 8 .props({
 9 // these act as defaults
10 position: 'chest',
11 protection: 50
12 })
13 .init(function init({
14 position=this.position,
15 protection=this.protection}){
16 this.position = position;
17 this.protection = protection;
18 })
19 .compose(Item, Enchantable);

Which works just like you’d expect:

1 const fluentArmor = FluentArmor({
2 description: 'leather jacket',

3 protection: 70
4 });
5
6 fluentArmor.wear();
7 // => You wear leather jacket in your chest
8 // gaining +70 armor protection

It is important to understand that each method of the fluent interface returns a new
stamp. That is, you don’t modify the current stamp but go creating new stamps with
added capabilities as you go adding more methods. This makes the fluent interface
particularly useful when you want to build on top of existing stamps or
behaviors.

Concluding: Stamps vs Mixins vs Traits
Stamps are like mixins on steroids. They offer a great declarative API to create and
compose your factories of objects (stamps) with baked in support for composing
prototypes, mixing in features, deep copying composition and private variables.

Stamps truly embrace the nature of JavaScript and take advantage of all of its object
oriented programming techniques: prototypical inheritance, concatenative
inheritance with mixins and information hiding through closures.

The only drawback in comparison with mixins is that they require that you use a
third party library whereas Object.assign is native to JavaScript.

In relation to traits, these still offer a safer composition experience with support for
required properties and proactive name conflict resolution.

Be it mixins, traits or stamps, they are all awesome techniques to make your object
oriented programming more modular, reusable, flexible and extensible, really taking
advantage of the dynamic nature of JavaScript.

This chapter wraps the different object composition techniques that I wanted to offer
to you as an alternative to classical object oriented programming. I hope you have
enjoyed learning about them and are at least a little bit curious to try them out in
your next project.

randalf.says("That's indeed an amazing technique");
bandalf.says("It could give us an edge");
randalf.says("Enough edge to conquer The Red Stronghold");

mooleen.grins();

mooleen.says("Haha not so crazy now eh?");
rat.says("Always humbled by your prowess my master");

mooleen.reddens();
mooleen.says("Ok, let's get to work");
mooleen.says("I'll be down in my cabin forging weapons");
mooleen.says("Let me know if you come up with any " +
 "crazy ideas...");

bandalf.says("What about a helmet where you can put your " +
 "mead flask so you can have your hands free " +
 "for eating? ");

mooleen.says("hmm interesting... although I fail to see " +
 "how that could tip the war to our side");

randalf.says("Well it could keep the troops hydrated " +
 "during a long hard battle");

mooleen.says("...with mead?!?");

bandalf.says("... and it would act as a normal helmet " +
 "as well, protecting the heads of our troops.");
randalf.says("You're a genious brother");
bandalf.says("You're not so bad yourself");

/*
Bandalf and Randalf continue congratulating each other
until they disappear into the hull of the ship.
*/

mooleen.says("Oh my god");
rat.says("I know. But you don't need to feel intimidated " +
 "by their brilliance. They've got far more experience " +
 "than you. You'll get there. You'll see.");

mooleen.doesAnEpicEyeRoll();

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Spells For Everyone! Scrolls of Power!
Mooleen just had a brilliant idea to vanquish The Red Hand: Scrolls of power! Imagine any
normal having the ability to cast terrible spells and inflicting chaos and destruction upon
our enemies.

A scroll of power should be something:

Describable: It has a name and can be described
Inscribable: It can be inscribed with a spell with a maximum number of charges.
Once it has been inscribed, it can be read to cast a spell and consume one charge.

And it should satisfy the following interface:

 1 var scrollOfLightning = Scroll();
 2 scrollOfLightning.describe();
 3 // => You see an ancient parchment scroll. It's empty.
 4 scrollOfLightning.read();
 5 // => You try to read the scroll but it is empty.
 6

 7 scrollOfLightning.inscribe({
 8 spell: {
 9 name: 'Lightning',
10 cast(target) {
11 console.log(`${target} is striken by lightning (50 damage)`);
12 target.hp -= 50;
13 }
14 },
15 charges: 1
16 });
17 // => You inscribe the scroll with a spell of Lightning
18

19 scrollOfLightning.describe();
20 // => You see an ancient parchment scroll.
21 // Using your knowledge in the runic language you
22 // decipher its contents, it seems to be a scroll of Lightning
23 scrollOfLightning.read("Troll");
24 // => Troll is striken by lightning (50 damage)
25 // => After you cast the spell the scroll dissolves into dust
26 scrollOfLightning.read("Troll");
27 // => You can't read dust

Tip: Define two stamps - Describable and Inscribable - and compose them to create a

http://bit.ly/javascriptmancy-oop-stamps-exercises
https://github.com/vintharas/javascriptmancy-code-samples

Tip: Define two stamps - Describable and Inscribable - and compose them to create a
Scroll stamp.

Solution
 1 // Describable
 2 const Describable = stampit({
 3 props: {
 4 name: 'scroll'
 5 },
 6 methods: {
 7 describe(){
 8 if (this.name === 'scroll'){
 9 console.log("You see an ancient parchment scroll. " +
 10 "It's empty.");
 11 } else {
 12 console.log(`You see an ancient parchment scroll. Using your\
 13 knowledge in the runic language you decipher its contents, it seems\
 14 to be a scroll of ${this.name}`);
 15 }
 16 }
 17 }
 18 });
 19

 20 // Inscribable
 21 const Inscribable = stampit({
 22 props: {
 23 spell: undefined,
 24 charges: 1
 25 },
 26 methods: {
 27 inscribe({spell, charges}){
 28 this.spell = spell;
 29 if (spell) this.name = spell.name;
 30 if (charges) this.charges = charges;
 31 console.log(`You inscribe the scroll with a ` +
 32 `spell of ${this.name}`);
 33 },
 34 read(...args){
 35 if (this.spell && this.charges) {
 36 this.charges--;
 37 console.log(`You start reading the scroll slowly ` +
 38 `entonating each rune... Klaatu barada nikto...`);
 39 this.spell.cast(...args);
 40 if (this.charges === 0)
 41 console.log('...after you cast the spell the ` +
 42 `scroll dissolves into dust');
 43 } else if(this.spell && !this.charges) {
 44 console.log("You can't read dust");
 45 } else {
 46 console.log('You try to read the scroll but it is empty');
 47 }
 48 }
 49 }

 50 });
 51

 52 // The Scroll stamp!
 53 const Scroll = stampit().compose(Describable, Inscribable);
 54

 55

 56 // Let's test that it works
 57 var scrollOfLightning = Scroll();
 58

 59 scrollOfLightning.describe();
 60 // => You see an ancient parchment scroll. It's empty.
 61

 62 scrollOfLightning.read();
 63 // => You try to read the scroll but it is empty.
 64
 65 scrollOfLightning.inscribe({
 66 spell: {
 67 name: 'Lightning',
 68 cast(target) {
 69 console.log(`${target} is striken by lightning (50 damage)`);
 70 target.hp -= 50;
 71 }
 72 },
 73 charges: 1
 74 });
 75 // => You inscribe the scroll with a spell of Lightning
 76

 77 scrollOfLightning.describe();
 78 // => You see an ancient parchment scroll.
 79 // Using your knowledge in the runic language you
 80 // decipher its contents, it seems to be a scroll of Lightning
 81

 82

 83 scrollOfLightning.read("Inkwell");
 84 // => Inkwell is striken by lightning (50 damage)
 85 // => After you cast the spell the scroll dissolves into dust
 86
 87 scrollOfLightning.read("Inkwell");
 88 // => You can't read dust
 89

 90 mooleen.says("Die you evil inkwell!!");
 91 mooleen.laughs();
 92 mooleen.says("haha I have so much fun on my own");
 93

 94 rat.says("wasn't that the inkwell I got you to celebrate" +
 95 " our monthiversary as master and familiar?");
 96 mooleen.says("Hmm... no...?");
 97 mooleen.says("I left that in the... Caves of Mist..." +
 98 "it's too valuable to bring to war.");
 99 mooleen.breathesASighOfRelieve();
100

101 rat.says('Btw, did you notice your method for ' +
102 'assigning charges is very insecure?');

Charges are Insecure!
The current definition of Inscribable is not very secure. Anyone with a pinch of
deviousness could tamper with it an create itself a scroll of power with unlimited charges
by just doing this:

1 spell.charges = 10000;
2 // moahahahahaha

Rewrite the Inscribable stamp to not allow setting charges once they’ve been defined.
Tip: use the init property in stamps.

Solution
 1 // Inscribable
 2 const SecureInscribable = stampit({
 3 init() {
 4 let _spell,
 5 chargesRemaining;
 6
 7 this.inscribe = function inscribe({spell, charges=1}){
 8 _spell = spell;
 9 if (spell) this.name = spell.name;
10 chargesRemaining = charges;
11 console.log(`You inscribe the scroll with a ` +
12 `spell of ${this.name}`);
13 };
14
15 this.read = function read(...args){
16 if (_spell && chargesRemaining) {
17 chargesRemaining--;
18 console.log(`You start reading the scroll slowly ` +
19 `entonating each rune... Klaatu barada nikto...`);
20 _spell.cast(...args);
21 if (chargesRemaining === 0)
22 console.log('...after you cast the spell the ` +
23 `scroll dissolves into dust');
24 } else if(_spell && !chargesRemaining) {
25 console.log("You can't read dust");
26 } else {
27 console.log('You try to read the scroll but it is empty');
28 }
29 };
30 }
31 });
32

33 // The Scroll stamp!
34 const ScrollOfPower = stampit()

35 .compose(Describable, SecureInscribable);
36

37

38 // Let's test that it works
39 var scrollOfLightningV2 = ScrollOfPower();
40

41 scrollOfLightningV2.describe();
42 // => You see an ancient parchment scroll. It's empty.
43

44 scrollOfLightningV2.read();
45 // => You try to read the scroll but it is empty.
46
47 scrollOfLightningV2.inscribe({
48 spell: {
49 name: 'Lightning',
50 cast(target) {
51 console.log(`${target} is striken by lightning (50 damage)`);
52 target.hp -= 50;
53 }},
54 charges: 1
55 });
56 // => You inscribe the scroll with a spell of Lightning
57

58 scrollOfLightningV2.read("Ashtray");
59 // => Ashtray is striken by lightning (50 damage)
60 // => After you cast the spell the scroll dissolves into dust
61
62 scrollOfLightningV2.read("Ashtray");
63 // => You can't read dust
64

65 scrollOfLightningV2.charges = 10000;
66

67 scrollOfLightningV2.read("Ashtray");
68 // => You can't read dust
69

70 mooleen.says('Aha!');
71 mooleen.says('No more sneaky extending scroll charges');
72 mooleen.says('Thank you rat!');
73

74 rat.says("Wasn't that the ashtray I got you for your birthday?");
75 rat.says("The one I made with my bare pawns and tail?");
76

77 mooleen.says("Errr... no...?");
78 mooleen.says("I keep that in... inside my chest of awesomeness!");
79 mooleen.says("Yes! In the Caves of Mist where I keep my most " +
80 "precious posessions! Yes!");
81

82 rat.says("That makes me so happy");
83 rat.smilesWithJoy();
84

85 mooleen.says("Ok, now let's try to formalize some spells...");

What’s a Spell?
Hmm how to define a Spell… Let’s start with the basics! It is something… a power within
the universe that you can harness, shape and cast forward to produce a desired effect in the
real world. So it’s something that:

Can be described with a name and a describe method
Can be casted into the world to produce an effect

Write a Spell stamp that fulfills the following:

 1 let spell = Spell({
 2 name: 'Fire',
 3 describe: () => 'A spell of Fire',
 4 spell: () =>
 5 console.log('A flame surges from the palm of your hand')
 6 });
 7

 8 spell.describe();
 9 // => A spell of Fire
10

11 spell.cast();
12 // => You cast spell of Fire
13 // => A flame surges from the palm of your hand

Solution
 1 // this is a more generic and configurable
 2 // Describable stamp than the one we used before
 3 const GenericDescribable = stampit({
 4 props: {
 5 name: 'something'
 6 },
 7 methods: {
 8 describe(){
 9 console.log(this.toString());
10 },
11 toString(){
12 return this.name;
13 }
14 },
15 init({name, describe}){
16 if (name) this.name = name;
17 if (describe) this.toString = describe;
18 }
19 });
20

21 const Thing = stampit().compose(GenericDescribable);

22

23 let fryingPan = Thing({name: 'A frying pan'});
24 fryingPan.describe();
25 // => A frying pan
26

27 let fork = Thing({
28 name: 'a fork',
29 describe(){ return `You see ${this.name}`;}
30 });
31 fork.describe();
32 // => You see a fork
33

34

35 // Castable
36 const Castable = stampit({
37 props: {
38 spell() { console.log('nothing happens'); }
39 },
40 methods: {
41 cast(...args) {
42 console.log(`You cast spell of ${this.name}`);
43 this.spell(...args);
44 }
45 },
46 init({spell}){
47 if (spell) this.spell = spell;
48 }
49 });
50

51 const Spell = stampit().compose(Thing, Castable);
52

53 let spell = Spell({
54 name: 'Fire',
55 describe: () => 'A spell of Fire',
56 spell: () => console.log('A flame surges from the palm of your han\
57 d')
58 });
59

60 spell.describe();
61 // => A spell of fire
62

63 spell.cast();
64 // => You cast spell of Fire
65 // => A flame surges from the palm of your hand
66

67 mooleen.says('Ok ok, that sets some basics');
68 rat.says('Indeed indeed a very good start');
69

70 mooleen.says("Now let's get serious");
71 mooleen.says("What makes a damaging spell?...");

What Makes a Damaging Spell?
Now let’s make a serious spell. Something that you can use in the heat of battle to destroy
a foe. A Damaging spell is like a normal spell that you can describe and cast but in addition
to that it should damage the target you cast it upon. For instance:

 1 const magicArrowSpell = DamagingSpell({
 2 name: 'Magic Arrow',
 3 damage: 20,
 4 incantation(target){
 5 console.log(`A magic arrow flies from your hand ` +
 6 `and impacts ${target} (${this.damage} damage)`);
 7 }
 8 })
 9 magicArrowSpell.cast('the wall');
10 // => A magic arrow flies from your hand and
11 // impacts the wall (20 damage)

Create a new stamp DamagingSpell that fulfills the example above.

Solution
 1 // Damaging
 2 const Damaging = stampit({
 3 props: {
 4 damage: 50,
 5 // default incantation
 6 inchantation(target){
 7 console.log(`You do ${this.damage} to ${target}`)
 8 },
 9 // the spell encapsulates the damaging behavior
10 spell(target){
11 this.incantation(target);
12 target.hp -= this.damage;
13 }
14 },
15 init({damage, incantation}){
16 if (damage) this.damage = damage;
17 // you can personalize the incantation for each spell
18 if (incantation) this.incantation = incantation;
19 }
20 });
21

22 const DamagingSpell = stampit().compose(Spell, Damaging);
23

24 const magicArrowSpell = DamagingSpell({
25 name: 'Magic Arrow',
26 damage: 20,
27 incantation(target){

28 console.log(`A magic arrow flies from your hand ` +
29 `and impacts ${target} (${this.damage} damage)`);
30 }
31 })
32 magicArrowSpell.cast('the wall');
33 // => A magic arrow flies from your hand and
34 // impacts the wall (20 damage)
35

36 mooleen.laughsWithGlee();
37 rat.says('Wow! That was amazing master!');
38 mooleen.says('haha Thank you!');
39

40 mooleen.says('Now for the final touch! An elemental spell ' +
41 'that we can inscribe in a powerfull scroll');
42 rat.says('uyuyuyuyuy');
43 rat.says("This is really going to turn the tides!");

An Elemental Spell and The Mighty Scroll of Fireball
Let’s take things one step further. We will build on top of the damaging spell and make an
elemental spell. A type of spell that has an element associated to it and which can inflict
double the damage to creatures that are weak to that element (or half the damage to
creatures with element resistance).

A fireball spell could look like the following:

 1 const fireballSpell = ElementalSpell({
 2 name: 'Fireball',
 3 damage: 100,
 4 element: 'fire'
 5 });
 6

 7 const waterWisp = {
 8 toString: () => 'Water Wisp',
 9 hp: 100,
10 weaknesses: ['fire']
11 };
12

13 fireballSpell.cast(waterWisp);
14 // => You cast the spell of Fireball
15 // => The Water Wisp has fire weakness!!! x2 Damage!!
16 // => The Fireball impacts the water wisp with 200 damage

Tip: Remember to inscribe a scroll of power from the previous examples with the
fireballSpell. Test one with 2 charges!

Solution
 1 // Elemental
 2 const Elemental = stampit({
 3 props: {
 4 element: 'fire',
 5 spell(target){
 6 let elementalDamage = this.calculateElementalDamage(target)
 7 target.hp -= elementalDamage;
 8 console.log(`The ${this.name} impacts the ${target}` +
 9 ` with ${elementalDamage} damage`);
10 }
11 },
12 methods: {
13 calculateElementalDamage(target){
14 if (target.resistances
15 && target.resistances.includes(this.element)){
16 console.log(`The ${target} has ${this.element}` +
17 ` resistance! /2 damage!!`);
18 return this.damage/2;
19 }
20 else if (target.weaknesses
21 && target.weaknesses.includes(this.element)){
22 console.log(`The ${target} has ${this.element} ` +
23 `weakness! x2 damage!!`)
24 return this.damage*2;
25 }
26 return this.damage;
27 }
28 },
29 init({spell, element}){
30 if (spell) this.spell = spell;
31 if (element) this.element = element;
32 }
33 });
34

35

36 const ElementalSpell = stampit().compose(Spell, Damaging, Elemental);
37

38 const fireballSpell = ElementalSpell({
39 name: 'Fireball',
40 damage: 100,
41 element: 'fire'
42 });
43

44 const waterWisp = {
45 toString: () => 'Water Wisp',
46 hp: 100,
47 weaknesses: ['fire']
48 };
49

50 fireballSpell.cast(waterWisp);
51 // => You cast the spell of Fireball
52 // => The Water Wisp has fire weakness!!! x2 Damage!!
53 // => The Fireball impacts the water wisp with 200 damage
54

55 // Put spells inside a scroll for normals to cast
56 var fireballScroll = ScrollOfPower();
57 fireballScroll.inscribe({spell: fireballSpell, charges: 2});
58 // => You inscribe the scroll with a spell of Fireball

59

60 fireballScroll.read(waterWisp);
61 // => You cast spell of Fireball
62 // The Water Wisp has fire weakness! x2 damage!!
63 // The Fireball impacts the Water Wisp with 200 damage
64

65 rat.says('Poor wisp...');
66 mooleen.says('Poor wisp indeed..');
67

68 // simultaneoulsy
69 rat.says("wait...");
70 mooleen.says("wait...")
71

72 mooleen.says("What's a water wisp doing here?");
73 rat.says('Bew....'); // gurgling sounds...
74

75 narrate(`
76 Something hard smacks Mooleen in the back of her head and she drops \
77 to the floor. Before she loses consciousness she feels a coldness sl\
78 owly enveloping her hands, her wrists, her arms...
79 `);

Object Internals: The Secrets of Objects

Shaping the world
is a noble pursuit,

Shaping the shaping,
Crafting the crafting,
is the mark of masters

 - Sylo Peskimn
 Master Artificer

/*
* A dark and damp cell in the deepest dungeon...
*/

mooleen.regainsConsciousness();
mooleen.says("Aaaaa");

rat.says('Nice to see you back!');
mooleen.says("Ooooo");

rat.says("I have some bad news for you master...");
moleen.says("Eeeee");

rat.says("We've been kidnapped, detained and shackled");
mooleen.says("Uuuuu");

rat.says("I praise your eloquence... " +
 "As always you know the right thing to say" +
 " in every situation");
mooleen.chuckles();

mooleen.says("Very... strong... headache");
rat.says("Well that would match the symptoms " +
 "of being smacked " +
 "in the head with a cudgel");

/*
 A noise comes from the least dark corner of
 this pitch black cell. A door screeches open
 and you hear steps approaching.
*/

stranger.says("Welcome to the Red Stronghold " +
 "our most esteemed guest");
stranger.says("You've been very problematic...");
stranger.says("Taking over Asturi..." +
 "Frustrating our attempts to control it... " +
 "Destroying our advanced party to Tates... ");
stranger.says("But that has come to an end...");

mooleen.says("I know... I know the drill... " +
 "now you're going to ask me to join you...");
stranger.says("What?!?");
mooleen.says("Yeah! This is the part where " +
 "you say... why oppose us when you can join us? " +
 "I'm shackled and not dead after all");

stranger.says("Oh that! We are still deciding on your " +
 "method of execution my dear. " +
 "Decapitation... Burning at the stake... " +
 "Skinning... Strangling... Hanging... " +
 "One doesn't just defy The Red Hand and live to " +
 "tell the tale.");
moolen.says("....");
stranger.says("Just sit tight, and remember, no magic");

/* The stranger leaves the room and Mooleen stupefied */

mooleen.says(`Hmm... I can't feel the winds of magic ` +
 `inside of me! `);
rat.says('Fuzz...');

randalf.says("Fortunately I've lived without magic for years");
mooleen.jumpsStartled();
rat.screeches();

randalf.says("Oh yeah... Hi! We're all here");
bandalf.says("Safe and sound");
red.says("At least for the time being");

mooleen.asks("Red?");
randalf.says("Hmm... He wasn't a traitor after all...");
bandalf.says("Oops");
randalf.says("People make mistakes");
bandalf.says("Don't be too harsh on people");

randalf.says("No magic, yes?");
randalf.says("Let me tell you about a nifty trick...");

A Nifty Trick… Object Internals
So far in this book we’ve focused a lot in how to work with objects in JavaScript and
about different paradigms of object oriented programming that are supported in this
beautiful language. In this and the upcoming chapters we’re going to do something
different. We’re going to dive into the inner workings of objects, and into different
metaprogramming techniques that will give you more control over how you define
and operate them: the ES5 Object APIs, ESnext decorators, ES6 Proxies, the ES6
Reflection API and ES6 Symbols.

Follow me as we submerge ourselves into the depths of object internals in JavaScript
and unveil the deepest secrets of objects!

All your Objects Are Belong to Object
Nearly all objects22 in JavaScript descend from Object (Much in the same way that
all C# objects descend from System.Object). This means that all objects inherit
properties and methods from Object.prototype through the prototypical chain that
we described in previous chapters. Hence, augmenting the Object.prototype object
with new properties and methods results in all objects having access to these new
properties and methods.

In addition to acting as a base object, the Object constructor has a number of static
methods that give you a greater control over your objects and let you obtain

additional information about them. Using these methods you can, for instance, define
whether a given property is read-only or enumerable, define whether an object is
immutable or not, or find out which is the prototype of a given object.

Sounds interesting? Then let’s take a look at some of these methods.

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

Defining Properties with Object.defineProperty
Object.defineProperty allows you to define new properties and methods via
property descriptors. But what are property descriptors and how do they look like?
Let’s find out with an example.

Imagine that you have goat:

1 const goat = {};

At this point our goat is an empty object which it is not terribly interesting. We can
augment it with a property hitPoints that describes the proverbial life essence of
the goat by using the following property descriptor:

1 Object.defineProperty(goat, 'hitPoints', {
2 /* property descriptor */
3 value: 50,
4 writable: true,
5 enumerable: true,
6 configurable: true
7 });

This results in the goat object now having a hitPoints property with value 50.

Behold!

1 console.log(`Goat has ${goat.hitPoints} hit points`);
2 // => Goat has 50 hit points

http://bit.ly/javascriptmancy-object-internals
https://github.com/vintharas/javascriptmancy-code-samples

Ok, so we have added a property to an object. What’s new with that? We’ve been
augmenting objects with properties since day one.

Well, the important bit in the previous example is the property descriptor. It
provides some hints as to a higher degree of control we don’t have when we just
augment an object with a property:

1 goat.hitPoints = 50

Let’s take a look at property descriptors, go through each one of their properties and
learn how they affect the objects they’re applied on.

Property Descriptors: Data and Accessor Descriptors
A property descriptor is an object that describes how a property or method
within an object should behave. JavaScript has two types of property descriptors:
data and accessor descriptors.

You can use a data descriptor to describe a normal property or method within an
object. The descriptor we used in the previous example for the hitPoints property is
a great example:

1 {
2 /* data descriptor */
3 value: 50,
4 writable: true,
5 enumerable: true,
6 configurable: true
7 }

Taking advantage of data descriptors we can, for instance, make a property read only
by setting its writable property to false:

1 // using the very same goat
2 Object.defineProperty(goat, 'woolColor', {
3 value: 'brown',
4 writable: false,
5 enumerable: true,
6 configurable: true
7 });

If you now try to set the value of this read-only (or not writable) property, you’ll be
greeted by a TypeError 23:

1 goat.woolColor = 'black';
2 // => TypeError: Cannot assign to read only property 'woolColor'

3 // of object '#<Object>'"

In addition to data descriptors we have accessor descriptors. Accessor descriptors
represent property getters and setters and trade the value and writable properties
for get and set.

For instance, let’s say that we want to enforce some invariants in our hp property,
that is, we want to add some validation to ensure that the hp property doesn’t get an
invalid or inconsistent value.

Again, we start with a dangerous predator:

1 const sheep = {};

In this ocassion, we will define a backing field _hitPoints using a data descriptor in
a similar way to the previous example:

1 Object.defineProperty(sheep, '_hitPoints', {
2 /* property descriptor */
3 value: 50,
4 writable: true,
5 enumerable: false, // look here!
6 configurable: true
7 });

Noticed how we set the enumerable property to false? This denotes that we don’t
want this property to appear when you enumerate over the properties of this object
(making it a little harder to reach even though it is completely public at this point).

Now we can define the property hitPoints as a getter/setter pair using an accessor
descriptor:

 1 Object.defineProperty(sheep, 'hitPoints', {
 2 /* accessor descriptor */
 3 get(){ return this._hitPoints},
 4 set(value){
 5 if (value === undefined
 6 || value === null
 7 || value < 0)
 8 throw new Error(`Invalid value ${value}! Hit points` +
 9 `should be a number greater than 0!`);
10 this._hitPoints = value;
11 },
12 enumerable: true,
13 configurable: true
14 });

The get method just exposes the _hitPoints value as is, and the set method
contains our validation logic. We can test it and verify that it works as we expect.

When you provide a reasonable value the property behaves normally:

1 console.log(`Sheep has ${sheep.hitPoints} hit points`);
2 // => Sheep has 50 hit points
3
4 // Let's try something simple
5 sheep.hitPoints = 10;
6
7 console.log(`Sheep has ${sheep.hitPoints} hit points`);
8 // => Sheep has 10 hit points

But when you break the invariants you’ll get a well described exception:

1 // Now let's go into the danger zone
2 try{
3 sheep.hitPoints -= 20;
4 } catch (e){
5 console.log(e.message);
6 // => Invalid value -10! Hit points should
7 // be a number greater than 0!
8 }

Oops! And…

1 // And more danger!
2 try{
3 sheep.hitPoints = undefined;
4 } catch (e){
5 console.log(e.message);
6 // => Invalid value undefined! Hit points
7 // should be a number greater than 0!
8 }

Ouch!… Alright, let’s take a look at each one of the properties and what they mean.
Both data and accessor descriptors share two properties:

configurable: if true it let’s you modify the property descriptor and delete the
property from a given object. It defaults to false.
enumerable: if true it let’s you enumerate the property. If you are not familiar
with the concept of enumerability in JavaScript it means that the property shows
up when traversing the properties of an object using a for...in loop. It defaults
to false.

Data descriptors, which describe properties and methods, have these two additional
properties:

writable: if true it let’s you modify the value of the property. It defaults to
false.
value: contains the value of the property and it can be any JavaScript
expression. If it is a function then the resulting property is a method. It defaults
to undefined.

Accessor descriptors, which describe getters and setters, have these other two
additional properties:

get: function that represents a getter for the property. If it is undefined the
property returns undefined when you try to retrieve its value using the dot
notation. A property with no get method and a set method becomes effectively
a set-only property.
set: function that represents a setter for the property. If it is undefined the
property can’t be set. The function receives as argument a single value that is
assigned to the property. A property with a get method and no set method
becomes effectively a read-only property.

Defining Multiple Properties with Object.defineProperties
In addition to being able to define your properties one by one, you can extend an
object with many properties at once using the Object.defineProperties method.

Let’s say that we want to militarize and weaponize our most dangerous minion, the
goat. We can extend it with two new properties weapons and armor:

 1 Object.defineProperties(goat, {
 2 weapons: {
 3 value: ['knife', 'katana', 'hand-trebuchet'],
 4 enumerable: true,
 5 writable: true,
 6 configurable: true
 7 },
 8 armor: {
 9 value: ['templar helmet', 'platemail'],
10 enumerable: true,
11 writable: true,
12 configurable: true
13 }
14 });

And shit just goat serious:

1 console.log(goat.weapons);
2 // => ["knife", "katana", "hand-trebuchet"]
3 console.log(goat.armor);
4 // => ["templar helmet", "platemail"]

It is good to highlight how the second argument to the Object.defineProperties,
the one defining the new properties, is an object and not an array as you may have
expected. Each key of this object represents the name of a new property and each
value contains the property descriptor that describes its behavior.

A goat with a helmet and platemail, now that’s something…

Beautiful Property Manipulation with ESnext Decorators

Decorators Are Still on Proposal Stage
Although used in the JavaScript community both within TypeScript and ECMAScript
followers, decorators are still not a completed proposal and therefore aren’t officially part
of JavaScript. At the time of this writing, decorators in classes and methods are a proposal
level 2 which means that they’ll likely make it into the language in the near future, but that
the syntax and semantics may change. Decorators on parameters, object literals and
function expressions are still at a very early stage. I encourage you to keep updated with
the decorators proposal if the syntax in this chapter doesn’t work in the future.

Beware. Here Be Dragons
In the first examples of decorators in this chapter I will use decorators in object literals
because they are the simplest way to explain decorators and require the least cognitive
load. I will then move on to decorators within classes and class methods which represent
the most stable proposal. They are slightly more verbose that the object literal ones but by
that point you’ll have enough experience to digest them without problems.

Again, by the time you read this book the API for decorators may have changed, but I hope
that you can appreciate the beauty and usefulness of decorators regardless of the specific
way in which they are implemented in the final version.

Decorators 24 are a convenient declarative way to apply property descriptors to
classes, methods, properties and functions.

Using decorators we can rewrite the read-only property of our goat from:

http://tc39.github.io/proposal-decorators/
http://tc39.github.io/proposal-decorators/

1 const goat = {}
2 // using the very same goat
3 Object.defineProperty(goat, 'woolColor', {
4 value: 'brown',
5 writable: false,
6 enumerable: true,
7 configurable: true
8 });

to:

1 const goat = {
2 @readOnly
3 woolColor: 'brown'
4 }

Wow! That’s something! As you can appreciate from the example above, decorators
have a special syntax that consists in the name of the decorator preceded by an @
sign. The readOnly decorator above is just a simple function:

1 // Decorator parameters:
2 // - *target* object
3 // - decorated *property*
4 // - property *descriptor*
5 function readOnly(target, property, descriptor){
6 console.log(`Making ${property} read only!`);
7 descriptor.writable = false;
8 }

Much better right? The @readOnly decorator achieves two things:

By virtue of being a function it can encapsulate a piece of behavior that you can
then go and reuse across your application. In the example above, we can take
advantage of the @readOnly decorator to make any property read-only
It offers a beautiful, concise and terse declarative syntax clearly superior to the
imperative approach we were following before

Likewise, we can also create a decorator for the sheep example and rewrite this
accessor descriptor:

 1 const sheep = {};
 2 Object.defineProperty(sheep, 'hitPoints', {
 3 /* data descriptor */
 4 get(){ return this._hitPoints},
 5 set(value){
 6 if (value === undefined
 7 || value === null
 8 || value < 0)
 9 throw new Error(`Invalid value ${value}! Hit points` +
10 `should be a number greater than 0!`);
11 this._hitPoints = value;

12 },
13 enumerable: true,
14 configurable: true
15 });

as:

1 const sheep = {
2 @notNullUndefinedNorNegative
3 hitPoints
4 }

where the notNullUndefinedNorNegative decorator would look like this:

 1 function notNullUndefinedNorNegative(
 2 target, property, descriptor){
 3 console.log(`Adding validation to ${property}!`)
 4 const backingField = descriptor.initializer();
 5 return {
 6 /* data descriptor */
 7 get(){ return backingField},
 8 set(value){
 9 if (value === undefined
10 || value === null
11 || value < 0)
12 throw new Error(
13 `Invalid value ${value}! ${property}` +
14 `should be a number greater than 0!`);
15 backingField = value;
16 },
17 enumerable: true,
18 configurable: true
19 };
20 }

Initializer? Is that a Descriptor Property?
If you remember from earlier within this chapter, you won’t be able to recognize the
initializer property as a descriptor property. The initializer descriptor property is a
Babel artifact for interoperating between two experimental features: decorators and class
fields. In the current implementation, the initalizer property gives you access to the
object literal property value when the decorator is evaluated.

Take this code sample with a grain of salt.

That is, returning a new descriptor, replaces the original descriptor associated to the
original property. These brings us to the topic of composing decorators. A better

way of writing the previous example would be like this:

1 const sheep = {
2 @notNull
3 @notUndefined
4 @notNegative
5 hitPoints: 100
6 }

Or perhaps in the positive:

1 const sheep = {
2 @defined
3 @greaterThanZero
4 hitPoints: 100
5 }

Where we are essentially composing different operators and applying them to a
given property. This approach is better because it is easier to read, and because now
we can make better reuse of our decorators.

In this example, the @defined decorator could look like this:

 1 function defined(target, property, descriptor){
 2 return composeSetter(target, property, descriptor, {
 3 set(value){
 4 throwIfInvalid(value)
 5 }
 6 });
 7 function throwIfInvalid(value){
 8 if (value === undefined || value === null)
 9 throw new Error(`Invalid value ${value}! ` +
10 `${property} should be defined!`);
11 }
12 }

And this would be the @greaterThanZero decorator:

 1 function greaterThanZero(target, property, descriptor){
 2 return composeSetter(target, property, descriptor, {
 3 set(value){
 4 throwIfInvalid(value)
 5 }
 6 });
 7 function throwIfInvalid(value){
 8 if (value < 0)
 9 throw new Error(`Invalid value ${value}! ` +
10 `${property} should be a number ` +
11 `greater than 0!`);
12 }
13 }

Both of them making use of this auxiliary function to compose setter functions:

 1 function composeSetter(target, property, oldDesc, newDesc){
 2 const backingField = (oldDesc.get && oldDesc.get()) ||
 3 oldDesc.initializer(),
 4 defaultSetter = (value) => backingField = value;
 5
 6 return {
 7 get: () => backingField,
 8 set: before(oldDesc.set || defaultSetter, newDesc.set)
 9 };
10
11 // create a new function 'newF'
12 // that calles the decorator function
13 // before calling the original function `f`
14 function before(f, decorator){
15 return (...args) => {
16 decorator(...args);
17 f(...args);
18 }
19 }
20 }

A Lot More About Decorators To Come!
Explaining the composition of decorators we’ve come to the fringes of a different and
mysterious domain: the obscure realm of higher-order functions and functional
programming. We’ll dive deeper into functional programming and decorators in the
Functional Programming Tome of JavaScript-mancy later in the series.

Configurable Decorators With Decorator Factories
You can also pass parameters to your decorators adding one extra degree of
extensibility and configurability that makes them even more reusable. Imagine a
wise wizard:

1 const wizard = {
2 name: 'Wise Wizard'
3 };

who must go into battle to save mankind. She’ll need some armor:

1 const wizard = {
2 name: 'Wise Wizard',
3 armor: 'cloth vest'
4 };

And in the heat of battle she may be inclined to change the relatively unprotecting
cloth vest for a superior knight’s plate mail. However, she shall not! For wizards
can’t wear plate mails!

A beautiful way to represent this constraint is by using a decorator allowedArmors in
this fashion:

1 const wizard = {
2 name: 'Wise Wizard',
3 @allowedArmors('cloth', 'wool', 'silk')
4 armor: 'cloth vest'
5 };

The implementation of the allowedArmors decorator could be this one below:

 1 function allowedArmors(...armors){
 2 const decorator = (target, property, descriptor) => {
 3 console.log(descriptor);
 4 const backingField = descriptor.initializer();
 5 return {
 6 set: (value) => {
 7 if (value !== '' &&
 8 armors.every(a => !value.includes(a)))
 9 throw new Error(
10 `${target} can't wear armor ${value}.` +
11 ` She only can wear these armor classes ${armors}`);
12 backingField = value;
13 },
14 get: () => backingField
15 }
16 }
17 return decorator;
18 }

Where the allowedArmors function is essentially a decorator factory that when
called returns a new decorator that can be applied to our class methods. From now
on, when the wizard tries to wear an armor she shouldn’t wear she’ll be surprised by
the following error:

1 try {
2 wizard.armor = 'plate mail';
3 } catch (e) {
4 console.error(e.message);
5 // => Wise Wizard can't wear armor plate mail.
6 // She can only wear these armor classes cloth,wool,silk
7 }

Decorators aren’t limited to applying property descriptors on object literal properties,
you can use them within classes and methods as well.

Class And Method Decorators

Class and Method Decorators Are Pretty Stable
As I mentioned earlier, the class and method decorators proposal is pretty stable. The
examples in this decorator section onwards should be closer to the final decorators standard
(although you never know so remember to keep up with the decorators proposal).

Take a look at this example from the Angular framework:

1 @Component({
2 selector: 'app-root',
3 templateUrl: './app.component.html',
4 stylesUrl: './app.component.scss'
5 })
6 export class AppComponent{
7 }

Where we use the Component decorator to apply metadata to a component class and
tie it together with the template and styles that comprise a component in Angular.

Using a class syntax we could rewrite our wizard example as follows:

 1 class Wizard{
 2 constructor(name){
 3 this.name = name;
 4 this._armor = 'cloth vest';
 5 }
 6 toString(){
 7 return this.name;
 8 }
 9
10 get armor(){ return this._armor;}
11
12 @allowedArmorsMember('cloth', 'wool', 'silk')
13 set armor(value){ this._armor = value;}
14 }

where the allowedArmorsMember decorator:

 1 function allowedArmorsMember(...armors){
 2 const decorator = (target, property, descriptor) => {
 3 return {
 4 set: (value) => {
 5 if (value !== '' && armors.every(a => !value.includes(a)))
 6 throw new Error(`You can't wear armor ${value}.` +
 7 ` She only can wear these armor classes ${armors}`);
 8 descriptor.set(value);

http://tc39.github.io/proposal-decorators/

 9 },
10 get: descriptor.get
11 }
12 }
13 return decorator;
14 }

achieves the same effect than in previous examples:

1 const anotherWizard = new Wizard('unwise Wizard');
2 anotherWizard.armor = 'silk robes';
3 try {
4 anotherWizard.armor = 'steel chain mail';
5 } catch (e){
6 console.log(e.message);
7 // => "undefined can't wear armor steel chain mail.
8 // She only can wear these armor classes cloth,wool,silk"
9 }

We could also record how many times a wizard casts a spell:

 1 class WizardCount{
 2 constructor(name){
 3 this.name = name;
 4 this._armor = 'cloth vest';
 5 }
 6 toString(){
 7 return this.name;
 8 }
 9
10 get armor(){ return this._armor;}
11 @allowedArmorsMember('cloth', 'wool', 'silk')
12 set armor(value){ this._armor = value;}
13
14 @count('numberOfSpells')
15 castFireball(target){
16 console.log(`${this} casts fireball on ` +
17 `${target} burning it to ashes`);
18 }
19 }

That is, every time a wizard casts a fireball spell using the castFireball method we
will count it and store it inside a variable numberOfSpells. The decorator count can
help us achieve that:

 1 function count(countStorageField) {
 2 const decorator = (target, property, descriptor) => {
 3 const originalFunction = descriptor.value;
 4 descriptor.value = function(...args){
 5 if (!this[countStorageField]) {
 6 this[countStorageField] = 0;
 7 }
 8 this[countStorageField] += 1;
 9 originalFunction.apply(this, args);
10 }

11 }
12 return decorator;
13 }

If we now instantiate a new infamous wizard and put him to cast fireball spells to
and fro, we’ll be able to see how the count is kept inside the numberOfSpells
variable:

 1 const fieryWizard = new WizardCount('Fiery Wizard');
 2 fieryWizard.castFireball('rat');
 3 // => "Fiery Wizard casts fireball on rat burning it to ashes"
 4
 5 fieryWizard.castFireball('bat');
 6 // => "Fiery Wizard casts fireball on bat burning it to ashes"
 7
 8 console.log(`${fieryWizard} casted spells ` +
 9 `${fieryWizard.numberOfSpells} times`);
10 // => "Fiery Wizard casted spells 2 times"

Class Decorators
To wrap this section on decorators let’s see how we can apply a decorator to a
complete class. Imagine how cool it’d be to apply the mixins we saw in previous
chapters using a decorator. Let’s start by creating a mixin decorator to allow minions
to cast spells.

If you remember from previous chapters, we could represent a mixin like a simple
object that encapsulated a given behavior like casting spells:

 1 const canCastSpells = {
 2 castSpell(spell, target) {
 3 console.log(`${this} prepares to cast spell ${spell}...`);
 4 if (this.mana < spell.manaCost){
 5 console.log(`${this} doesn't have enough mana!` +
 6 `The spell fizzles out and ${this} gets ` +
 7 `damaged by the wild currents of magic`);
 8 this.hp -= (spell.manaCost - spell.mana);
 9 this.mana = 0;
10 } else {
11 this.mana -= spell.manaCost;
12 spell.cast(target);
13 }
14 }
15 }

And we could compose this mixin with any of these hero classes:

 1 class Warlock {
 2 constructor(name, hp=100, mana=100){
 3 this.name = name + ', the Warlock';
 4 this.hp = hp;
 5 this.mana = mana;

 6 }
 7 toString(){
 8 return this.name;
 9 }
10 }
11
12 class Bard {
13 constructor(name, hp=100, mana=50){
14 this.name = name + ', the Bard';
15 this.hp = hp;
16 this.mana = mana;
17 }
18 toString(){
19 return this.name;
20 }
21 }

By applying the mixin canCastSpells to each class prototype like this:

1 Object.assign(Warlock.prototype, canCastSpells);
2 // Now all warlocks can cast spells
3
4 Object.assign(Bard.prototype, canCastSpells);
5 // Now all bards can cast spells

The result is that every bard and warlock gain the ability to cast spells:

 1 const blizzardSpell = {
 2 toString(){ return 'blizzard';},
 3 manaCost: 10,
 4 cast(target) {
 5 console.log(`${target} gets hit by a blizzard`);
 6 target.hp -= 50;
 7 }
 8 };
 9
10 const giantSpider = {
11 name: 'Giant Spider',
12 toString(){ return this.name},
13 hp: 400
14 };
15
16 const kvothe = new Bard('Kvothe');
17 kvothe.castSpell(blizzardSpell, giantSpider);
18 // => "Kvothe, the Bard prepares to cast spell blizzard..."
19 // => "Giant Spider gets hit by a blizzard"

A nicer way to apply this mixin onto a class would be to use a class decorator. Take
a moment to appreciate the beauty of this example below:

 1 @spellCaster
 2 class Bard {
 3 constructor(name, hp=100, mana=50){
 4 this.name = name + ', the Bard';
 5 this.hp = hp;
 6 this.mana = mana;

 7 }
 8 toString(){
 9 return this.name;
10 }
11 }

Where the spellCaster decorator can be defined with a function:

1 function spellCaster(constructor){
2 Object.assign(constructor.prototype, canCastSpells);
3 }

It looks more readable and concise, and achieves the same result:

 1 const lightHealingSpell = {
 2 toString(){ return 'light healing';},
 3 manaCost: 5,
 4 cast(target){
 5 console.log(`${target} is healed lightly`);
 6 target.hp +=25;
 7 }
 8 };
 9 const jazz = new Bard("Jazz");
10
11 jazz.castSpell(lightHealingSpell, jazz);
12 // => "Jazz, the Bard prepares to " +
13 // "cast spell light healing..."
14 // "Jazz, the Bard is healed lightly"

We can also generalize the decorator above and create a new mixin decorator that we
can apply to any mixin and class:

 1 @mixin(canCastSpells)
 2 class Bard {
 3 constructor(name, hp=100, mana=50){
 4 this.name = name + ', the Bard';
 5 this.hp = hp;
 6 this.mana = mana;
 7 }
 8 toString(){
 9 return this.name;
10 }
11 }

This decorator mixin would be implemented like a factory function for class
decorators and would be able to apply an arbitrary number of mixins to any class:

1 function mixin(...args){
2 return function(constructor){
3 Object.assign(constructor.prototype, ...args);
4 }
5 }

Decorators are awesome, aren’t they? If you are interested in learning more about
them I suggest that you keep an eye at the current proposal on the ECMA262 GitHub
repository. I also encourage you to take a look at the core-decorators.js library that
contains a lot of useful decorators that can inspire you to write your own.

Create Objects With Object.create And Property Descriptors
By this point you’re no longer a stranger to the Object.create method. We have
used it in previous chapters to create new objects with a specific prototype and even
with traits and object composition. This second use case gives us a hint as to the true
capabilities of Object.create. Take a look at this example from earlier chapters:

 1 function MinionWithPosition(){
 2 const methods = {
 3 toString(){ return 'minion';}
 4 };
 5
 6 const minion = Object.create(
 7 /* prototype */ methods,
 8 /* traits (object properties) */ TPositionable);
 9 return minion;
10 }

The example above represents a factory MinionWithPosition that makes use of
Object.create to create a object minion with:

1. The methods object as prototype
2. A bunch of properties and methods defined by the TPositionable trait

But how are these trait properties and methods defined? Yes! With property
descriptors! Take a look at this:

1 console.log(Trait({weapons: ['knife']}).weapons);
2 // => Object {
3 // value: ['knife'],
4 // writable: true,
5 // enumerable: true,
6 // configurable: true
7 // }

The traits library Trait function decomposes your object into property descriptors
that it can then use to manage things like composability, required properties, conflict
resolution, etc.

Therefore the second argument of Object.create is an object whose properties are
property descriptors. This means that we can rewrite the goat example we used at

http://tc39.github.io/proposal-decorators/
https://github.com/jayphelps/core-decorators.js

the beginning of this article to illustrate Object.defineProperty using
Object.create and arrive to an equivalent solution:

 1 const anotherGoat = Object.create(Object.prototype, {
 2 _hitPoints: {
 3 /* accessor descriptor */
 4 value: 50,
 5 writable: true,
 6 enumerable: false, // look here!
 7 configurable: true
 8 },
 9 hitPoints: {
10 /* data descriptor */
11 get(){ return this._hitPoints},
12 set(value){
13 if (value === undefined
14 || value === null
15 || value < 0)
16 throw new Error(`Invalid value ${value}! Hit ` +
17 `points should be a number greater than 0!`);
18 this._hitPoints = value;
19 },
20 enumerable: true,
21 configurable: true
22 },
23 weapons: {
24 value: ['knife', 'katana', 'hand-trebuchet'],
25 enumerable: true,
26 writable: true,
27 configurable: true
28 },
29 armor: {
30 value: ['templar helmet', 'platemail'],
31 enumerable: true,
32 writable: true,
33 configurable: true
34 }
35 });

This is probably not going to be how you define objects in your day to day
programming but the Traits library provides some inspiration as to when property
descriptors and the various Object methods can be useful: Metaprogramming.

Metaprogramming
Metaprogramming is a programming technique where you have the ability to treat
programming constructs as the data of your program. That is, metaprogramming is
the art of programming programming (BOOM! - pause for effect).

Since all things meta can be pretty daunting at first, let’s go back to our earlier
examples in this chapter to explain metaprogramming through an example. In the
example with Object.defineProperty and our mighty defender the goat, we have

taken a programming construct, the property hitPoints, something that is typically
part of programming itself:

1 goat.hitPoints = 50;

And we have represented it as a piece of data (a property descriptor):

1 {
2 hitPoints: {
3 value: 50,
4 writable: true,
5 enumerable: true,
6 configurable: true
7 }
8 }

Then we have used that data as part of a new program to extend the object goat with
new properties:

1 Object.defineProperties(goat, {
2 hitPoints: {
3 value: 50,
4 writable: true,
5 enumerable: true,
6 configurable: true
7 }
8 });

This is a simple example of a metaprogramming. We’ve taken an everyday feature of
our programs - properties - and we’ve written a small program that operates on
object properties themselves.

Other examples of metaprogramming can often be seen in JavaScript web
frameworks and libraries. The first example that you found out about in this chapter
was Traits.js. Traits.js makes extensive use of property descriptors to define a new
way to do object oriented programming in JavaScript, one that allows object
composition with additional guarantees like required properties and conflict
resolution. The popular web framework vue.js uses a similar technique in their
change detection algorithm by replacing all the properties of your model for getters
and setters using Object.defineProperty. This allows the framework to observe
changes in your model properties and reflect them in the user interface.

These two use cases of property descriptors and Object.defineProperties are
pretty awesome aren’t they? I’m looking forward to see what you can do with this
newfound knowledge (malevolent laughter).

http://vuejs.org/

Other Useful Object Methods
Here’s a list of other useful Object methods:

Method name Method description
Object.getOwnPropertyDescriptor(obj,
prop)

Returns property descriptor for a given
property prop of object obj.

Object.getOwnPropertyDescriptors(obj) Returns an object that contains all
property descriptors of object obj.

Object.getOwnPropertyNames(obj)

Returns an array that contains all own
properties from an object obj, that is,
those that belong to the object itself and
not its prototype.

Object.getOwnPropertySymbols(obj) Like above but only symbol properties.
Object.getPrototypeOf(obj) Returns the prototype of an object obj.

Object.setPrototypeOf(obj, proto)

Sets the prototype of the object obj to
proto. This type of operation can be very
taxing in terms of performance due to
how JavaScript engines optimize
accessing properties.

Object.is(val1, val2)

Compares whether two values are equal
without type cohercion. It improves over
=== comparison by giving sane results
from NaN === NaN.

Object.keys(obj)
Returns an array containing the names of
all the enumerable properties owned by
object obj.

Concluding
In this chapter you learnt about the internal APIs provided by Object. You
discovered how to use Object.defineProperty and object descriptors to finely
control the behavior of a property or method within an object.

You also learned about decorators, a new feature in JavaScript that promises to
provide an awesome declarative API to manipulate objects and classes to your
heart’s content. We saw different examples of decorators to make any property read-
only, provide arbitrary validations or even compose classes with mixins.

We wrapped the chapter with Object.create and an introduction to the technique of
meta-programming, the art of programming your programs, reviewing real world
examples of meta-programming in Trait.js and Vue.js.

randalf.says("So even though you can't feel the winds of magic, " +
 "even though you can't access the source " +
 "nor cast spells...");

mooleen.says("...wait! I can still weakly perceive magic in " +
 "the world around me...");
randalf.says("Exactly!");

randalf.says("Now try to find a way to open " +
 "those shackles, and let's get out of here " +
 "before The Red Hand decides our fates for good");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsBin or
downloading the source code from GitHub.

Open The Shackles!
Use what you’ve learned about object internals to find a secret way to open the shackles
and free yourself.

1 console.log(shackles);
2 // => A pair of blood stained shackles slapped around your wrists.
3 // => They are painfully uncomfortable

Hints: Use Object.keys to inspect the shackles and find the first clue. You’ll need to use
the interactive examples on jsBin or GitHub since the shackles object has some hidden
state.

http://bit.ly/javascriptmancy-oop-object-internals-exercises
https://github.com/vintharas/javascriptmancy-code-samples
http://bit.ly/javascriptmancy-oop-object-internals-exercises
https://github.com/vintharas/javascriptmancy-code-samples

Solution
 1 // I've defined a shackles variable but don't look!
 2 console.log(shackles);
 3 // => A pair of blood stained shackles slapped
 4 // around your wrists.
 5 // => They are painfully uncomfortable
 6

 7 mooleen.says("Hmm... let's see...");
 8

 9 console.log(Object.keys(shackles));
10 // => [toString, open, readInstructions]
11

12 mooleen.says("Could it be this easy?");
13 shackles.open();
14 // => You try to pry the shackles open but
15 // they will not budge. Good try but no.
16
17

18 mooleen.says("Ok... Looks like there's " +
19 "something written here...");
20 shackles.readInstructions();
21 // => If how to open these shackles you forget,
22 // remember the hidden 'lever' to 'reset'.
23 // - Cloud
24

25 mooleen.says("Interesting, that sounds promising");
26 console.log(shackles.lever);
27 // => A mysterious lever
28 mooleen.says("Aha! Found it!");
29

30 console.log(Object.keys(shackles.lever));
31 // => [reset, toString]
32
33 shackles.lever.reset();
34 // => You find a hidden portrusion well hidden on
35 // the rough surface of the shackles and *click*,
36 // the shackles open.
37

38 mooleen.giggles();
39 mooleen.says("haha free!");

Unlock The Door Without Raising The Alarm!
After freeing everyone the next problem arises: A heavy wooden door reinforced with
veins of cold metal. How to open it without magic?

1 console.log(reinforcedWoodenDoor);
2 // => A solid, heavy wooden door reinforced
3 // with veins of cold metal

Hint: Inspect the door with Object.keys but beware to unlock the door because there’s a
hidden trap. Use Object.defineProperty to define a new unlock method that neutralizes
the alarm before opening the door.

Solution
 1 console.log(reinforcedWoodenDoor);
 2 // => A solid, heavy wooden door reinforced
 3 // with veins of cold metal
 4
 5 mooleen.says("Let's use the same trick...");
 6 console.log(Object.keys(reinforcedWoodenDoor));
 7 // => [toString, unlock]
 8

 9 console.log(reinforcedWoodenDoor.unlock);
10 // => function unlock() {
11 // if (this.alarmIsActive) {
12 // console.error("Sound explodes all around " +
13 // "alerting the dungeon guards");
14 // }
15 // console.info("The door opens");
16 // }
17
18 mooleen.says('A hidden alarm!');
19 rat.says('Devious bastards');
20

21 mooleen.says("I'll try to deactivate it without " +
22 "changing its apparent state... " +
23 "That way no one will notice we've left " +
24 "until it's too late");
25
26 Object.defineProperty(reinforcedWoodenDoor,
27 '_unlock', {
28 value: reinforcedWoodenDoor.unlock,
29 writable: true,
30 enumerable: false,
31 configurable: true
32 });
33

34 Object.defineProperty(reinforcedWoodenDoor,
35 'unlock', {
36 value(){
37 this.alarmIsActive = false;
38 this._unlock();
39 this.alarmIsActive = true;
40 },
41 writable: true,
42 enumerable: true,
43 configurable: true
44 })
45

46 mooleen.says('And now the door looks exactly the same: ');
47 console.log(Object.keys(reinforcedWoodenDoor));
48 // => [toString, unlock]
49

50 mooleen.says('but...');
51 reinforcedWoodenDoor.unlock();
52 // => The door opens
53

54 mooleen.says('I feel like a master burglar');
55 rat.says('A burrahobbit!');
56

57 mooleen.says('Did you say burrahobbit?');
58 rat.says('Yes master, the best burglars there be');
59

60 mooleen.pauses();
61 randalf.says("Quickly! There's not a moment to lose");

Deactive All the Alarms!
The dungeons doors are filled with alarms. Can you devise a way to reuse your alarm
deactivation logic? How would you deactivate the alarm in an object like this one without
modifying any method?

 1 class Door extends AlarmedDevice {
 2 toString(){
 3 return "A solid, heavy wooden door reinforced " +
 4 "with veins of cold metal"
 5 }
 6 unlock(){
 7 if (this.alarmIsActive){
 8 console.error("Sound explodes all around " +
 9 "alerting the dungeon guards");
10 }
11 console.info("The door opens");
12 }
13 }

Hint: Wrap your alarm deactivation logic in a decorator!

Solution
 1 class AlarmedDevice{
 2 constructor(){
 3 this.alarmIsActive = true;
 4 }
 5 }
 6

 7 class Door extends AlarmedDevice {
 8 toString(){
 9 return "A solid, heavy wooden door reinforced " +
10 "with veins of cold metal"
11 }
12 @deactivateAlarm
13 unlock(){
14 if (this.alarmIsActive){
15 console.error("Sound explodes all around " +
16 "alerting the dungeon guards");
17 }
18 console.info("The door opens");
19 }
20 }
21

22 function deactivateAlarm(target, property, descriptor){
23 const alarmedFunction = descriptor.value;
24 descriptor.value = function(...args){
25 this.alarmIsActive = false;

26 alarmedFunction.apply(this, args);
27 this.alarmIsActive = true;
28 }
29 }
30

31 const deactivatedDoor = new Door();
32 deactivatedDoor.unlock();
33 // => The door opens

More Metaprogramming with Reflect, Proxies
and Symbols

All you require to write a poem,
is to have your mind open,
to write four to seven sentences,
that capture the topic essences.

It helps to have some rhyme,
to make the reading chime.
That is all you need,
to write a poem and succeed.

 - Anonymous
 A meta-poem

mooleen.says('Not having power is frustrating,' +
 'and all these corridors look ' +
 'exactly the same...');
mooleen.curses();
mooleen.says('Why are there so many holes?');
mooleen.tripsAndFalls();

red.grabs(mooleen);
randalf.grabs(red);
bandalf.grabs(red);

/* They slowly pull Malin and Red
 out of the hole */

mooleen.says('Thank you... That was near');
red.says('The Red Stronghold is a flying fortress');
red.says('These holes serve many purposes...');

randalf.says('ventilation');
bandalf.says('cheap lighting');

red.says('and a very clean method of execution');

red.says('As to the corridors my dear, ' +
 'they are designed to be confusing ' +
 'so that if ever a prisoner should escape ' +
 "they'd die before reaching any of the exits");

mooleen.says('And how do you know so much about ' +
 'these passages?');

red.says("Well, that may be because we designed them. " +
 "Have you ever seen such a solid piece of work?")

randalf.says('And it occurs to you to tell us now?');

red.says('Oh, it amuses me seeing Mooleen out of sorts');
mooleen.says('What?!?');

red.says('Well, one has to enjoy the small victories...');
mooleen.says("I didn't take you as the rensentful type");

red.shrugs();
mooleen.says("Alright, how do you read these tunnels?");
red.says('How good are you at reflection?')

How Good Are You at Reflection?
In the previous chapter you entered the mysterious world of metaprogramming with
object internals, the numerous methods inside Object, and decorators, a stylish and
reusable way to extend or modify how classes, properties or methods behave.

In this chapter we’ll expand our incursion in the obscure kingdom of meta-
programming by introducing three new features of ES6: the Reflect API, proxies and
symbols. Ahead without fear!

ES6 Reflect

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

The ES6 Reflect API attempts to provide a revised and unified way to access
reflection features in JavaScript. It consists in a new object Reflect that exposes a
series of static methods you can call directly.

Reflection? What is reflection?
Reflection is the ability of a computer program to examine, introspect, and modify
its own structure and behavior at runtime25.

We’ve seen some of these features throughout this book already:

Object.defineProperty, Object.defineProperties allow us to create or
modify object properties at runtime
Object.getOwnPropertyDescriptor returns the property descriptor associated
to a given property
Object.keys returns an array that contains the enumerable properties owned by
an object
Object.getOwnPropertySymbols returns an array containing all symbols found
as object properties

The Reflect API attempts to formalize reflection in JavaScript and borrows
reflection methods that were previously sprinkled within Object,
Object.prototype, Function.prototype and several JavaScript operators (delete
and in). Let’s make a quick review of these methods:

Object Methods in Reflect

http://bit.ly/javascriptmancy-oop-meta
https://github.com/vintharas/javascriptmancy-code-samples

Reflect.defineProperty just like Object.defineProperty allows you to
define or configure properties within objects by using a property descriptor.
Instead of returning the object it returns a boolean that indicates whether the
operation succeeded or not.
Reflect.getOwnPropertyDescriptor like its Object counterpart returns the
property descriptor given the name of a property.
Reflect.getPrototypeOf like Object.getPrototypeOf gives you the
prototype of an object.
Reflect.setPrototypeOf like Object.setPrototypeOf allows you to change
the prototype of an object.
Reflect.preventExtensions like Object.preventExtensions prevents you
from adding new properties to an object.
Reflect.isExtensible like Object.isExtensible returns a boolean that
represents whether an object is extensible or not. An object is extensible when it
can be augmented with new properties.

These methods work just like their Object counterparts so where you would usually
call:

1 Object.defineProperty(goat, 'woolColor', {
2 value: 'brown',
3 writable: false,
4 enumerable: true,
5 configurable: true
6 });

Now you can write:

1 Reflect.defineProperty(goat, 'woolColor', {
2 value: 'brown',
3 writable: false,
4 enumerable: true,
5 configurable: true
6 });

All of the methods above behave just like their Object companions but for
defineProperty that returns a boolean when the method succeeds:

 1 const success = Reflect.defineProperty(goat, 'woolColor', {
 2 value: 'brown',
 3 writable: false,
 4 enumerable: true,
 5 configurable: true
 6 });
 7
 8 if (success) {
 9 // celebrate!
10 } else {

11 // cry
12 }

Function Methods in Reflect

Reflect.apply(target, context, arguments) works in a similar way to
Function.prototype.apply and allows you to call a function target giving a
context of execution and an array of arguments.

Imagine a Hero of Ages with one secret super power - to become invincible when
she is nearly dead:

 1 class HeroOfAges{
 2 constructor(hitPoints=100){
 3 this._hitPoints = hitPoints;
 4 }
 5
 6 get hitPoints() { return this._hitPoints;}
 7
 8 set hitPoints(value){
 9 this._hitPoints = value;
10 if (this._hitPoints < 10){
11 this.becomeInvincible()
12 }
13 }
14
15 toString(){
16 return 'Hero of Ages';
17 }
18
19 becomeInvincible(){
20 // give me your strength pegasus!
21 }
22 }

We can define the becomeInvincible method as follows:

1 becomeInvincible(){
2 this.invincibilitySpells.forEach(s => s.apply(this))
3 }

And configure it within the hero constructor with a series of invincibilitySpells:

 1 class HeroOfAges{
 2 constructor(hitPoints=100){
 3 this._hitPoints = hitPoints;
 4 this.invincibilitySpells = [
 5 stoneSkin,
 6 miraculousRecovery,
 7 rage,
 8 titanStrength
 9];
10 }

11 // etc...
12 }
13
14 function stoneSkin() {
15 this.defense = 1000;
16 }
17 function miraculousRecovery(){
18 this.hitPoints += 100;
19 }
20 function rage(){
21 this.attack = 1000;
22 }
23 function titanStrength(){
24 this.damage = 2000;
25 }

Now when the heroOfAges goes to battle and her hitPoints fall below the threshold
she’ll become invincible and kick ass:

 1 const heroOfAges = new HeroOfAges();
 2 heroOfAges.hitPoints -= 95;
 3 // => Hero of Ages becomes invincible!!!!
 4
 5 console.log(` ===heroOfAges===
 6 attack: ${heroOfAges.attack}
 7 defense: ${heroOfAges.defense}
 8 hitPoints: ${heroOfAges.hitPoints}
 9 damage: ${heroOfAges.damage}`)
10 /*
11 ===heroOfAges===
12 attack: 1000,
13 defense: 1000,
14 hitPoints: 105,
15 damage: 2000
16 */

Using Reflect.apply we can rewrite the becomeInvincible implementation as
follows:

1 becomeInvincible(){
2 this.invincibilitySpells
3 .forEach(s => Reflect.apply(s, this, [])));
4 }

JavaScript Operators in Reflect

Reflect.construct(target, args) is equivalent to using the new operator as
in new target(..args).
Reflect.delete(target, property) is equivalent to using the delete
operator to delete an object property as is delete target[property]. It returns
a boolean that represents whether the operation succeeded.

Reflect.has(target, property) is equivalent to using the in operator and
allows you to find whether an object target has a property property.

New Functions in Reflect
Reflect.get(target, property) and Reflect.set(target, property, value)
allow you to get/set properties within a target object.

Let’s reuse our previous goat example to illustrate these methods:

1 const wasAbleToSetValue = Reflect.set(goat, 'hitPoints', 42);
2 if (wasAbleToSetValue) {
3 console.log('I set the hitPoints property');
4 }
5 // => I set the hitPoints property
6
7 const hitPoints = Reflect.get(goat, 'hitPoints');
8 console.log(`The goath hadeth ${hitPoints} hit points`);
9 // => The goath hadeth 42 hit points

The most common use case of either of these is within proxies as we’ll soon see.

Reflect.ownKeys(target) returns an array of the target object own properties
including symbols. The resulting array is like a combination of the outputs of
Object.getOwnPropertyNames and Object.getOwnPropertySymbols concatenated.

Imagine a burrahobbit with a secretPouch:

 1 // A burrahobbit
 2 const secretPouch = Symbol.for('secretPouch');
 3
 4 const burrahobbit = {
 5 name: 'Birwo Baggins',
 6 hitPoints: 20,
 7 [secretPouch]: ['jewels', 'golden ring', '4 gold doublons'],
 8 disappear(){
 9 console.log(`${this.name} suddenly disappears!`);
10 }
11 };

We can retrieve its properties and symbols using the Object methods:

1 console.log(`Object.getOwnPropertyNames:`,
2 Object.getOwnPropertyNames(burrahobbit)});
3 // => Object.getOwnPropertyNames:
4 // ['name', 'hitPoints', 'disappear']
5
6 console.log(`Object.getOwnPropertySymbols: `,
7 Object.getOwnPropertySymbols(burrahobbit));
8 // => Object.getOwnPropertySymbols: [symbol]

Or take advantage of the new Reflect.ownKeys to achieve the same result in one go:

1 console.log(`Reflect.ownKeys: `, Reflect.ownKeys(burrahobbit));
2 // => Reflect.ownKeys: ['name', 'hitPoints', 'disappear', symbol]

So When is the ES6 Reflect API Useful?
The ES6 Reflect API is really useful when you are building your own libraries and
frameworks that operate on code. It provides a unified reflection API and marks a
clear distinction between application level programming and meta-programming
which will make your code more intentional.

Let’s try an slightly more involved example that can highlight the usefulness of
reflection. We’re going to extend JavaScript with our own semantics to provide a
safer way to apply mixins on objects, behold ConstrainedMixins! Mixins that allow
you to set constraints on the target object:

 1 class ConstrainedMixins {
 2
 3 // requirements via decorator
 4 @requires('mana', 'hp')
 5 static canCastSpells(obj) {
 6 return Object.assign(obj, {
 7 castSpell
 8 });
 9
10 function castSpell(spell, target) {
11 console.log(`${this} prepares to cast spell ${spell}...`);
12 if (this.mana < spell.manaCost){
13 console.log(`${this} doesn't have enough mana!` +
14 `The spell fizzles out and ${this} gets ` +
15 `damaged by the wild currents of magic`);
16 this.hp -= (spell.manaCost - spell.mana);
17 this.mana = 0;
18 } else {
19 this.mana -= spell.manaCost;
20 spell.cast(target);
21 }
22 }
23 }
24 }

The requires decorator represents our new constraint semantics and works by
changing the original mixin with a new function that includes a validation step
before the mixin gets applied to a target object:

 1 function requires(...props){
 2
 3 return function decorator(target, property, descriptor){
 4 const mixinFunction = descriptor.value;
 5 descriptor.value = function constrainedMixin(obj){

 6 throwIfRequirementsMissing(obj, props, property);
 7 return mixinFunction(obj);
 8 }
 9 }
10
11 function throwIfRequirementsMissing(obj, props, mixinName){
12 const objProperties = Reflect.ownKeys(obj);
13 const missingProps = props
14 .filter(p => !objProperties.includes(p))
15 if (missingProps.length > 0)
16 throw new Error(`Object ${obj} lacks properties: [` +
17 `${missingProps}] required for mixin ${mixinName}`);
18
19 }
20 }

Notice how we used the Reflect.ownKeys to get a list of the properties of the target
object and compare them to our required properties.

When we apply the constrained mixin canCastSpells to an unsuspecting bard
Sparrow the requirements will kick in and throw an error alerting the user of our new
library before further damage can occur:

 1 const sparrow = {
 2 name: 'Sparrow',
 3 toString() { return this.name; }
 4 };
 5
 6 try {
 7 ConstrainedMixins.canCastSpells(sparrow);
 8 } catch (e){
 9 console.log(e.message);
10 }
11 // => "Object Sparrow lacks properties: [mana,hp] required
12 // for mixin canCastSpells"

When the library user corrects his mistake and includes the necessary properties to
satisfy the required interface, the mixin can successfully augment the target object:

1 const sparrowTheGifted = {
2 name: 'Sparrow, the gifted',
3 toString() { return this.name; },
4 mana: 100,
5 hp: 200
6 };
7
8 ConstrainedMixins.canCastSpells(sparrowTheGifted);

And, as a result, SparrowTheGifted has now the new and enhanced ability of casting
spells:

1 sparrowTheGifted.castSpell({
2 toString(){ return 'bless'; },

3 manaCost: 10,
4 cast(target){
5 console.log(`You bless ${target} (+20 Luck)`);
6 }
7 }, sparrowTheGifted);
8 // => Sparrow, the gifted prepares to cast spell bless...
9 // You bless Sparrow, the gifted (+20 Luck)

Excellent! Now that you’ve seen several ways to take advantage of the new ES6
Reflect API let’s move onto another great meta-programming tool that was released
with ES6: proxies.

ES6 Proxies
Proxies provide you with a native way to intercept interactions with an object. They
act as wrappers and allow you to write custom logic that lives between the object
consumer interaction and the object itself.

By giving you complete access to all interactions within an object, proxies have a
seemingly infinite number of applications with your imagination as the only limit.
For instance:

Validation logic
Adapters to massage arguments before passing them to an object
Logging interactions with an object
Access permissions
Visibility of properties based on conventions
Prevent some operations with the object
Revoke access to a user of an API

But what better way to understand proxies than with an example:

The Goat Strikes Back: Creating Our First Proxy
Let’s bring out the goat that’s been the star of our meta-programming chapters:

 1 const goat = {
 2 hitPoints: 100,
 3 woolColor: 'brownish',
 4 toString() {return `A ${this.woolColor} goat `},
 5 bleats(){ console.log(`${this}: baaaaaaaa!`); },
 6 goesTo({x, y}) {
 7 this.x = x;
 8 this.y = y;
 9 console.log(`${this} goes to (${x}, ${y})`);
10 }
11 };

We can create a proxy for the goat object by using the new Proxy class:

1 let poat = new Proxy(goat, /*handler*/ {});

We create a proxy by combining the original object goat with a handler object that
will contain the intercepting logic. The resulting proxy has the exact same API of the
original object and can act as a stand-in without any additional code:

1 console.log(goat)
2 // => Object {hitPoints: 100, woolColor: "brownish",
3 // toString: function, bleat: function,
4 // goesTo: function}
5
6 console.log(ploat);
7 // => Proxy {hitPoints: 100, woolColor: "brownish",
8 // toString: function, bleat: function,
9 // goesTo: function}

But, of course, the usefulness of proxies arises when we start implementing the
handler object. Let’s say that we want to make sure of a couple of things:

the hitPoints property should never go below 0 or get in an inconsistent state
like null or undefined
the woolColor property should be read-only

We can define our handler object as follows:

 1 let handler = {
 2 set(target, key, value) {
 3 if (key === 'hitPoints') {
 4 if (value < 0) {
 5 throw new Error('must have positive value!');
 6 } else if (value === undefined ||
 7 value === null) {
 8 throw new Error('must have defined value!');
 9 }
10 }
11 if (key === 'woolColor') {
12 throw new Error('woolColor is read-only!');
13 }
14 Reflect.set(target, key, value);
15 // same as:
16 // target[key] = value;
17 }
18 }

The methods within a proxy handler object are called traps. In this particular
example, we have defined a set trap that allows us to intercept when an object
consumer attempts to set a property.

In our implementation, we check to see that the property is hitPoints and, in that
case, we apply our validation logic that will result in an error when the new value is
invalid. We also check whether the property is woolColor and we throw an error
message because it is supposed to be a read-only property. Whenever the new value
is a valid value or whenever we try to set any other property than hitPoints or
woolColor we’ll fallback to the default behavior and allow the consumer to set that
property.

If you take a close look at the example, you’ll appreciate how we used the Reflect
API to fallback to the default behavior and how the Reflect.set signature matches
the signature of the set proxy trap. This makes the Reflect API work perfectly in
tandem with proxies.

If we now create a new proxy using the handler with the set trap:

1 ploat = new Proxy(goat, handler);

And attempt to set the hitPoints to a valid value, we’ll see how everything works as
we would expect:

1 ploat.hitPoints = 50;
2 // value set as usual

And when we attempt to set hitPoints to a known invalid value, everything
explodes and we get a validation error:

1 console.log(`goat hitpoints: ${ploat.hitPoints}`);
2 // => goat hitPoints: 50
3 try {
4 ploat.hitPoints -= 100;
5 } catch (e){
6 console.error(e.message);
7 // => must have defined value!
8 }

Likewise when a consumer tries to set the woolColor property we get a succint error
message telling us that it is not possible:

1 try {
2 ploat.woolColor = "whiteish";
3 } catch (e) {
4 console.error(e.message);
5 // => woolColor is read-only!
6 }

Everything while every other property continues behaving normally:

1 // other properties behave normally
2 ploat.bleat = function(){ console.log('moooo');};
3 ploat.bleat();
4 // => moooo

Good! Now you have an idea about the basic mechanics of proxies. Let’s take a look
at the different traps available and how you can use them.

The Get Trap: Wizardy CIA Surveillance
The get traps allows us to intercept any time a consumer tries to get a property
value, that is, to access a property.

Imagine that we were to institute our own wizardy version of the CIA - the WIA -,
and we needed to start monitoring every time a consumer accesses one of the
properties of the goat (because clearly the goat could be a double-agent for The Red
Hand).

We could define our proxy handle as follows:

1 handler = {
2 get(target, key) {
3 wia.logEvent(target, key);
4 return Reflect.get(target, key)
5 }
6 }

Where we have a get trap that logs whenever a consumer accesses any property of
the target object using the obscure wia.logEvent method, and then forwards the
property access to the target object itself using the Reflect.get method.

We can define the WIA - Wizard Intelligence Agency - that will contain the
logEvent method as the class below:

 1 class WIA {
 2 constructor(){
 3 this.log = new WeakMap();
 4 }
 5
 6 logEvent(target, key){
 7 if (!Reflect.ownKeys(target).includes(key))
 8 return;
 9
10 let targetLog = this.log.get(target);
11 if (!targetLog) {
12 targetLog = this.log
13 .set(target, new Map())
14 .get(target);
15 }

16 this.addLogLine(key, targetLog);
17 }
18
19 addLogLine(key, targetLog){
20 if (!targetLog.has(key)) {
21 targetLog.set(key, []);
22 }
23
24 console.log('add key to targetLog', key, targetLog[key]);
25
26 targetLog.get(key).push({
27 timestamp: new Date() ,
28 toString(){ return `${this.timestamp}`}
29 });
30 }
31
32 showLogs(target){
33 const log = this.log.get(target)
34 console.log(`
35 ${[...log.entries()]
36 .map(([k,v]) => `\n${k}:\n${v.join('\n')}`)}
37 `);
38 }
39 }

The WIA class exposes a logEvent method that allows this secret agency to store
arbitrary interactions with objects inside a WeakMap. Inside this map, we’ll store a
single entry per object, and within the entry we’ll have key/value pairs, where the
key will be a property name and the value an array with timestamps referring to
when a property is accessed. The WIA class also provides a showLogs method that
allows the secret agents to retrieve the information regarding a given target.

Why use a WeakMap?
You may have noticed that in the example above we used a WeakMap instead of a Map. This
example is a great use case for a WeakMap because weak maps only hold weak references to
objects allowing them to be garbage collected and preventing memory leaks.

Remember that we will need to instantiate the WIA before we can use it within the
proxy handler:

1 const wia = new WIA();
2
3 handler = {
4 get(target, key) {
5 wia.logEvent(target, key);
6 return Reflect.get(target, key)

7 }
8 }

Now we can create a new proxy using this surveillance handler:

1 ploat = new Proxy(goat, handler);

And we’re ready to start recording a day in the life of a goat:

1 // A day in the life of a goat
2 ploat.bleats();
3 ploat.goesTo(1, 1);
4 ploat.bleats();
5 ploat.goesTo(2, 2);
6 ploat.bleats();
7 ploat.goesTo(3, 3);

Now let’s see what we’ve monitored:

 1 wia.showLogs(goat);
 2 /* => bleats:
 3 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
 4 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
 5 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST),
 6 goesTo:
 7 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
 8 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
 9 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST),
10 toString:
11 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
12 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
13 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST),
14 woolColor:
15 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
16 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
17 Wed Aug 02 2017 15:31:52 GMT+0200 (CEST)
18 */

Awesome! Thanks to the proxy get trap we now can monitor the comings and
goings of the suspicious goat and make sure he doesn’t share any confidential
information with the enemy.

Another great use case of the get trap is controlling the visibility of properties. Let’s
say that the goat is indeed a double agent and wants to keep part of its API private
and completely invisible to the prying eyes of the WIA.

The goat can use the common JavaScript convention of using properties prefixed
with _ to denote privacy and enforce that using a proxy.

Imagine the goat object had a private property containing secret plans for a super
powerful weapon:

 1 const goatSpy = {
 2 hitPoints: 100,
 3 woolColor: 'brownish',
 4 position: {x: 0, y: 0},
 5 toString() {return `A ${this.woolColor} goat `},
 6 bleats(){ console.log(`${this}: baaaaaaaa!`); },
 7 goesTo({x, y}) {
 8 this.x = x;
 9 this.y = y;
10 console.log(`${this} goes to (${x}, ${y})`);
11 },
12
13 // secret stuff
14 _secretCompartment: ['plans of the Death Star'],
15 _givesTip(target) {
16 console.log(`${this} tips the ${target}`);
17 target.takeDiscreetly(this._secretCompartment);
18 }
19 };

It could make those properties completely invisible to outside lookers by defining the
following proxy handler:

 1 handler = {
 2 get(target, key) {
 3 if (typeof key !== 'string' ||
 4 !key.startsWith('_'))
 5 return Reflect.get(target, key);
 6 },
 7 set(target, key, value) {
 8 if (typeof key !== 'string' ||
 9 !key.startsWith('_'))
10 Reflect.set(target, key, value);
11 }
12 }

And using it to create a proxy object that, for all intents and purposes, would lack the
_secretCompartment and _givesTip properties:

1 let regularLookingGoat = new Proxy(goatSpy, handler);
2
3 console.log(`Does the goat have a secret compartment? ${regularLooki\
4 ngGoat._secretCompartment}`);
5 // => "Does the goat have a secret compartment? undefined"

In order to use the “private” properties you’d need to make use of the original object
and not the proxied one:

 1 // You can use the unproxied goat
 2 // to carry out the spy deals
 3 const bartender = {

 4 toString() { return 'a bartender';},
 5 takeDiscreetly(things){
 6 console.log(`${this} receives ${things}`);
 7 }
 8 }
 9
10 goatSpy._givesTip(bartender);
11 // => A brownish goat tips the a bartender
12 // a bartender receives plans of the Death Star

In summary, following this approach, the proxy works as a facade over the original
object which only exposes part of its functionality. The “private” parts of the object
that we don’t want the rest of the world to see can remain within the boundaries that
we define, for instance, within a module.

Making the Goat Bulletproof with Has and ownKeys
The WIA is an enemy to be reckoned with, so the goat cannot be careless. After
some spy games it discovers a vulnerability in its previous proxy:

1 console.log('_secretCompartment' in regularLookingGoat)
2 // => true

And moreover:

1 console.log(Reflect.has(regularLookingGoat,
2 '_secretCompartment'));
3 // => true
4
5 console.log(Reflect.ownKeys(regularLookingGoat))
6 // => ["hitPoints", "woolColor", "position", "toString",
7 // "bleats", "goesTo", "_secretCompartment", "_givesTip"]

So it needs to define a better handler to make these properties completely invisible in
these operations. Fortunately, the ES6 proxy API has several traps that allow you to
intercept these interactions: has and ownKeys.

has intercepts the in operator used to find out whether an object has a specific
property. It also intercepts the Reflect.has method that performs the same
operation
ownKeys intercepts:

Reflect.ownKeys,
Object.keys

Object.getOwnPropertyNames

Object.getOwnPropertySymbols

If we update our original handler like this:

 1 handler = {
 2 get(target, key) {
 3 if (typeof key !== 'string' ||
 4 !key.startsWith('_'))
 5 return Reflect.get(target, key);
 6 },
 7 set(target, key, value) {
 8 if (typeof key !== 'string' ||
 9 !key.startsWith('_'))
10 Reflect.set(target, key, value);
11 },
12 has(target, key){
13 if (typeof key !== 'string' ||
14 !key.startsWith('_'))
15 return Reflect.has(target, key);
16 return false;
17 },
18 ownKeys(target){
19 return Reflect
20 .ownKeys(target)
21 .filter(k => typeof k !== 'string' ||
22 !k.startsWith('_'));
23 }
24 }

The goat becomes a bulletproof spy:

 1 regularLookingGoat = new Proxy(goatSpy, handler);
 2
 3 console.log('_secretCompartment' in regularLookingGoat)
 4 // => false
 5 console.log(Reflect.has(regularLookingGoat,
 6 '_secretCompartment'));
 7 // => false
 8
 9 console.log(Reflect.ownKeys(regularLookingGoat))
10 // => ["hitPoints", "woolColor", "position",
11 // "toString", "bleats", "goesTo"]

More Proxy Traps
I hope that the examples above have given you an idea as to the things that you can
achieve with proxies. In addition to the traps that you’ve seen thus far, proxies offer
many more traps that you can use to intercept a consumer interaction with an object.

Here’s a comprehensive list of the traps available which, as you’ll soon see, match
the methods in the Reflect API:

Proxy Trap Description

apply(target, ctx, args)
Allows you to intercept function calls and

Reflect.apply

construct(target, ctx, args) Intercepts the new operator (and
Reflect.construct)

defineProperty(target, prop,
descriptor)

Intercepts a call to Object.defineProperty or
Reflect.defineProperty

deleteProperty(target, prop) Intercepts the delete operator and
Reflect.deleteProperty

getOwnPropertyDescriptor(obj,
prop)

Intercepts Objet.getOwnPropertyDescriptor
and Reflect.getOwnPropertyDescriptor

getPrototypeOf(target) Intercepts Object.getPrototypeOf and
Reflect.getPrototypeOf

isExtensible(target) Intercepts Object.isExtensible and
Reflect.isExtensible

preventExtensions() Intercepts Object.preventExtensions and
Reflect.preventExtensions

setPrototypeOf() Intercepts Object.setPrototypeOf and
Reflect.setPrototypeOf

Revocable Proxies
An interesting add-on to ES6 Proxies are revocable proxies. Revocable proxies are a
special kind of proxy that can be revoked at any point in time. Revoking a proxy
renders the proxy completely useless and any subsequent interaction with a revoked
proxy will throw an error.

Imagine that the goat wants to stop its career in wizarding spionage and start a
business renting magic wool scissors. The rental period shouldn’t be longer than a
day and after that period the customer shouldn’t be able to use the scissors any
longer.

We start by defining the scissors themselves:

 1 class MagicWoolScissors{
 2 cutWool(target) {
 3 const numberOfBales = Math.floor(Math.random()*10);
 4
 5 console.log(`You use the magic scissor on ${target}` +
 6 `and obtain ${numberOfBales} bales of wool`);
 7
 8 return `${numberOfBales} bales of wool`;
 9 }
10 }

And then the goat business that creates scissors on demand, wraps them in a proxy
and revokes the proxy within an hour:

 1 class GoatBusiness {
 2 constructor() {
 3 this.purse = 0;
 4 }
 5 rentScissors() {
 6 console.log(
 7 'You rent a pair of scissors for 1 gold doublon');
 8 this.purse++;
 9
10 const scissors = new MagicWoolScissors();
11 const {proxy, revoke} = Proxy.revocable(scissors, {});
12
13 this.revokeWithinOneHour(revoke);
14
15 // return proxy;
16 // we will return the revoke token so that we
17 // don't need to wait for a day to test that it works
18 // :)
19 return {scissors:proxy, revoke};
20 }
21 revokeWithinOneHour(revoke){
22 setTimeout(() => revoke(), 1000*60*60*24);
23 }
24 }

In the example above we’ve cheated slightly. In order to be able to test the revoking
functionality right away, we return the proxied scissors and the revoke token right
away.

We now instantiate a GoatBusiness, rent some scissors and get on shearing (that’s
how you call when you cut wool from sheep by the way):

1 const goatBusiness = new GoatBusiness();
2
3 const {scissors, revoke} = goatBusiness.rentScissors();
4 // => You rent a pair of scissors for 1 gold doublon
5
6 scissors.cutWool('sheep');
7 // => You use the magic scissor on sheepand obtain 4 bales of wool

After a day of hard work we revoke the scissors proxy terminating the rental period
which renders the scissors useless. No more shearing:

 1 // 1 day later...
 2 revoke();
 3
 4 try{
 5 scissors.cutWool('another sheep');
 6 } catch(e){
 7 console.error(e);
 8 // => TypeError: Cannot perform 'get' on a proxy that has been rev\

 9 oked
10 // ouch
11 }

Cool right? Using revokable proxies gives you a native way to revoke access to an
API using arbitrary rules of your own choosing.

ES6 Symbols and Meta-programming
In previous chapters you learned about Symbols and how you could use them to
achieve privacy in objects. If you remember, Symbols are a new primitive type in
Javascript whose main purpose is to act as identifier of properties within objects.

You can create a symbol using the Symbol function:

1 const rune = Symbol('rune');

And then you can use that symbol as a property identifier within an object:

1 const sword = {
2 [rune]: 'rune of fire'
3 }

As we saw in previous chapters, you can only access the rune property if you have a
reference to the symbol itself. This very virtue was what allowed us to achieve data
privacy.

In addition to being able to create your own symbols, ES6 comes with a series of so-
called well known symbols which have the interesting property of changing the
behavior of objects by their mere presence within these objects.

Again, this is better explained through an example. Imagine that we were given the
duty to administer a dungeon, with its cells, its torture chambers, its critters and, of
course, its unfortunate prisoners.

The Dungeon could be represented as a class with a constructor that would allow us
to build the foundations of the dungeon:

 1 // imagine a Dungeon
 2 class Dungeon {
 3 constructor(numberOfCells = 10, treasury = 20){
 4 this.numberOfCells = numberOfCells;
 5 this.treasury = treasury;
 6 this.prisoners = [];
 7 }
 8

 9 // more methods below...
10 }

Then we’d need a method to add new prisoners into the dungeon but only if we have
cells left:

 1 addPrisoner(prisoner){
 2 if (this.dungeonIsFull())
 3 throw Error('Dungeon is full. You need to build ' +
 4 'more cells oh master of evil and deceit!');
 5 else
 6 this.prisoners.push(prisoner);
 7 }
 8
 9 dungeonIsFull(){
10 return this.numberOfCells === this.prisoners.length;
11 }

We could also build more cells by spending some of the coins in our treasury:

 1 buildCell(){
 2 if (this.cellCost() > this.treasury)
 3 throw Error("You don't have enough money");
 4 else {
 5 this.treasury -= this.cellCost();
 6 this.numberOfCells++;
 7 }
 8 }
 9
10 cellCost(){
11 if (this.numberOfCells < 20) return 10;
12 else if (this.numberOfCells < 30) return 15;
13 else return 20;
14 }

And that’s it, we have a working dungeon where we can stowe our most bitter
enemies. Now it’d be nice if we could see and traverse at a glance all the prisoners
we have in our Dungeon. We could do that by traversing the this.prisoners array
itself, but what if we don’t want to expose how we’re storing our prisoners?
Wouldn’t it be nice to give the ability of being traversed to the Dungeon itself?

We can do that by taking advantage of the well known symbol Symbol.iterator.
Adding a new property Symbol.iterator to our class will allow us to use the
for...of loop like if it was any other iterable object such as an Array or a Map.

We can implement the Symbol.iterator method as any other method within our
Dungeon class:

1 // Adding this property all of the sudden gives
2 // Dungeon objects the possibility to be iterable
3 [Symbol.iterator](){

4 return this.prisoners[Symbol.iterator]();
5 }

The Symbol.iterator method must return an iterator that will be used by the
for...of loop to iterate over the elements of the collection. In this case, we delegate
iterating to the prisoners Array.

Now whenever we instantiate a Dungeon and populate it with some prisoners:

1 // by providing the object with an iterator
2 // now I can iterate over it using for...of
3 const dungeonOfFire = new Dungeon();
4 dungeonOfFire.addPrisoner('John doe');
5 dungeonOfFire.addPrisoner('Cersei L.');
6 dungeonOfFire.addPrisoner('Catelynn S.');

We can obtain a list of the dungeon’s current inhabitants by conveniently iterating
over the Dungeon itself:

 1 console.log('---prisoners in this dungeon---');
 2 for(let p of dungeonOfFire){
 3 console.log(p);
 4 }
 5 console.log('-------------------------------');
 6
 7 // ---prisoners in this dungeon---
 8 // John doe
 9 // Cersei L.
10 // Catelynn S.
11 // -------------------------------

So, by adding, a property with a well known symbol (Symbol.iterator) we were
able to alter how any instance of the Dungeon class behaves when used in
conjunction with a for...of loop. And this also applies to any object at runtime.
Behold! The goat!:

1 const goat = {
2 hitPoints: 100,
3 woolColor: 'black and white'
4 };

We can augment it at any point in time with a new property Symbol.iterator:

1 goat[Symbol.iterator] = function*() {
2 yield 'goat moves left';
3 yield 'goat moves up';
4 yield 'goat bleats';
5 yield 'goat moves right';
6 }

And it automagically gains the ability of supporting the use of for...of loops:

1 for(let moves of goatAgain){
2 console.log(moves);
3 }
4 // => goat moves left
5 // goat moves up
6 // goat bleats
7 // goat moves right

As you have probably deducted from the previous example, all well known symbols
live as static properties of the Symbol class. Below you can find an overview of all
these methods. First, there’s the iterator symbol that we’ve just seen:

Well known
Symbol Property Description

Symbol.iterator Method that returns a default iterator for a object that can be
used in conjunction with for...of

Then we have several symbols that let you provide regular expression operations to
any object. These were previously limited to strings via String.prototype.match,
String.prototype.replace, String.prototype.search and
String.prototype.split which delegate to previously internal methods within
regular expressions.

With these new methods we can match, replace, search and split strings using not
only regular expressions but any arbitrary objects:

Well known
Symbol
Property

Description

Symbol.match
Method that matches the object against a string. Originally you’d
match to a regular expression, this method allows you to match
any object. It is used by String.prototype.match

Symbol.replace

Method that replaces matched substrings for another string.
Originally we’d match to a regular expression, this method
allows you to match any object. It is used by
String.prototype.replace

Symbol.search
Method that returns the index within a string that matches the
object (originally a regular expression). It is used by
String.prototype.search

Symbol.split
Method that splits a string at the indices that match the object

(originally a regular expression).

For instance, let’s say that we want to write a CSV parser so that we can process the
ledgers of a magic shop legacy system. We can define a Separators class that
encapsulates all the valid separators we support in our system:

 1 class Separators {
 2 constructor(separators=[',', ':', ';']){
 3 this.separators = separators;
 4 }
 5
 6 [Symbol.split](str){
 7 const [separator,] = this.separators
 8 .filter(s => str.includes(s));
 9 console.log(`Found separator in string ${separator}`);
10 if (separator)
11 return str.split(separator);
12 else
13 return str;
14 }
15 }

By providing a Symbol.split property to this class we can now use it to process
CSV files and extract information from a raw string of characters. This same class
allows us to use any arbitrary separators in our system and its configurable via its
constructor (and public interface):

1 const validSeparators = new Separators();
2 console.log('this,works,well'.split(validSeparators));
3 // => ['this', 'works', 'well']
4
5 console.log('this;also;works'.split(validSeparators));
6 // => ['this', 'also', 'works']
7
8 console.log('and:this:woooot'.split(validSeparators));
9 // => ['and', 'this', 'woooot']

Symbol.split allowed us to write more modular, extensible and intentional code.
Awesome, isn’t it?

Finally, we have a series of well known symbols that allow us to perform
miscellaneous operations:

Well known Symbol
Property Description

Symbol.hasIntance

Used by instanceof. Method that determines
whether a constructor object Class recognizes
another object obj as its instance (obj instanceof

Class)

Symbol.isConcatSpreadable
Boolean that determines whether an object should
be flattened to its array elements when doing
Array.prototype.concat

Symbol.toPrimitive
Method that converts an object into a primitive
value. It lets you customize how an arbitrary object
is coerced to another type.

Symbol.toStringTag

Method that returns a string representation of an
object. It is used by Object.prototype.toString
and allows you to customize the string
representation of any object. For instance, the
default string representation of any custom type is
[object Object], with this symbol you can
customize the string representation of a Dungeon to
[object Dungeon.

Symbol.species

Constructor function that is used to create derive
objects. It allows you to override the default
constructor for derived objects used when calling
methods on the prototype chain like
Array.prototype.map.

Symbol.unscopables
If implemented in object target, it is an object with
properties that describe property names that are
excluded from the with environment of target.

Concluding
This was a huge chapter! Let’s make a quick summary of what we’ve learned thus
far. In this past two chapters we’ve dived into meta-programming in JavaScript, the
obscure art of programming your programs, of using programmatic features such as
classes, objects, properties and methods as the data of your programs. In the previous
chapter we learned about object internals and decorators, and in this chapter you’ve
learned about the new Reflect API, proxies and the meta-programming aspect of
Symbols.

The Reflect API is a new API that attempts to provide a unified way to access
reflection features in JavaScript. Reflection is the ability of a computer program to
examine, introspect, and modify its own structure and behavior at runtime. The new
Reflect API concentrates methods that were previously part of the Object prototype,
Function prototype and various operators and gathers them inside the single
Reflect object. This new API improves the usability of some of the old reflection

methods, gives you a more intentional way to write meta-programming style code in
your programs and opens the way to more meta-programming features in JavaScript.

ES6 proxies give you a native way to intercept interactions with any object and run
arbitrary logic of your choosing. With ES6 proxies you can define handler objects
that contain traps to “trap” specific object interactions: accessing a property, setting a
property, calling a function, constructing an object, etc. By having complete access
to all interactions with an object, proxies have a ton of applications like validation,
logging, access control, adapters, etc. Another interesting aspect of proxies are
revocable proxies. This type of proxies give you the ability to have an extra degree
of control over who, how and when your object APIs are accessed. This is achieved
by defining custom logic to decide whether and when a proxy is revoked which
results in removing access to the proxied object.

We first learned about Symbols as a means to achieve data hiding. Symbols are a
new primitive type in JavaScript that represent property identifiers. A less known
aspect of ES6 Symbols are their applications in meta-programming. The so-called
well known Symbols allow you to hook into JavaScript internal methods and alter
how objects behave. By adding new properties in your classes or objects using these
well known symbols you can add iterability to custom objects, string matching, and
more.

/*
As soon as Mooleen learns the power of reflection
She starts seeing signs and runes within the walls that
describe in great detail how to navigate these tunnels
*/

mooleen.says('Oh my');
red.says('I know');

mooleen.says('I can see how we can get out of here' +
 " but it'll be challenging without casting");
mooleen.says('...wait! Here it says something ' +
 'about a Totem of magic supression');
mooleen.says('is that what I think it is?');

red.says('Indeed it is');

mooleen.says('Then we must go there first');

randalf.says('I suggest that we do it quickly');
bandalf.says('swiftly');

red.says("I couldn't agree more. " +
 "The Red Hand has frequent patrols within the " +
 "dungeons and it is very unsettling that we " +
 "haven't run into any.")

/*
As if summoned by Red's comment footsteps and the
clinking of heavy armor resounds within the tunnels
*/

mooleen.says('Damn! Run!');

/*
The group speeds across the ancient tunnels
following Mooleen: left, right, right, left
and stop! They arrive to the end of the corridor,
where an armored door blocks the way forward.
*/

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsBin or
downloading the source code from GitHub.

Blast that Door Open!
The lights, footsteps and the cold sound of steel are approaching. There’s no way back, the
only way is forward. You need to open that door and neutralize the Totem of Magic
Supression to have a chance at escaping unscathed.

1 console.log(armoredDoor);
2 // => A heavily armored door stands in your way.
3 // Thick bars of black metal overlay a solid
4 // oak door. Over the metal, incandescent
5 // reddish runes promise unknown horrors for
6 // the arrogant one that tries to force it
7 // open without a proper key.

Hint: Use the Reflect API to find the first hint about how to open the door.

http://bit.ly/javascriptmancy-oop-meta-exercises
https://github.com/vintharas/javascriptmancy-code-samples

Solution
 1 console.log(armoredDoor);
 2 // => A heavily armored door stands in your way.
 3 // Thick bars of black metal overlay a solid
 4 // oak door. Over the metal, incandescent
 5 // reddish runes promise unknown horrors for
 6 // the arrogant one that tries to force it
 7 // open without a proper key.
 8

 9 mooleen.says('Ok...');
 10

 11 console.log(Object.keys(armoredDoor));
 12 //=> [toString, unlock]
 13

 14 console.info(armoredDoor.unlock);
 15 /* => function unlock(key) {
 16 if (this[trapsAreActive]) {
 17 throw new Error('\n
 18 You try to open the door with the key.\n
 19 You rotate the lock and hear a satisfying \n
 20 \'click\' that indicates that the door is unlocked.\n
 21 You open the door slightly and it suddenly burst open\n
 22 in a wail, a tremendous force sucks you and your \n
 23 comrades inside the blackest whole, and you keep falling,\n
 24 and falling, into the obscene surface of Yuggoth, its \n
 25 dark cities and and its unseen horrors where you die.\n');
 26 } if (secretPassword.match(key)) {
 27 console.info("The door opens");
 28 } else {
 29 console.info("You try opening the door with " +
 30 "the key but nothing happens");
 31 }
 32 }
 33 */
 34

 35 mooleen.says('Looks like the door is trapped');
 36

 37 rat.says("It is master! Let me volunteer for scouting " +
 38 "the approaching Red Hand and gather intel so " +
 39 "we can be prepared!");
 40 randalf.says("Great idea! You'll need help");
 41 bandalf.says("Lots of help!");
 42

 43 mooleen.says("haha What about you Red?");
 44 red.says("Oh, I haven't been to Yuggoth, " +
 45 "sounds like an exciting place");
 46

 47 mooleen.says("Hopefuly we won't have to visit. " +
 48 "I should be able to deactivate this...");
 49

 50 console.info(armoredDoor.trapsAreActive);
 51 // => undefined
 52

 53 mooleen.says('Interesting, looks like it is a Symbol!');
 54

 55 console.info(Reflect.ownKeys(armoredDoor));
 56 // => [toString, unlock, Symbol(trap switch)]

 57

 58 let [,,trapSwitch] = Reflect.ownKeys(armoredDoor);
 59

 60 mooleen.says("Let's make it look like we weren't here");
 61

 62 const untrappedDoor = new Proxy(armoredDoor, {
 63 get(target, property) {
 64 if (property === 'unlock') {
 65 return (...args) => {
 66 target[trapSwitch] = false;
 67 console.log(target[trapSwitch]);
 68 const result = Reflect.apply(target[property], target, args);
 69 target[trapSwitch] = true;
 70 return result;
 71 }
 72
 73 } else {
 74 return Reflect.get(target, property);
 75 }
 76 }
 77 });
 78

 79 mooleen.says('Ok now we will see if we blow up');
 80 red.says('Or fall down into the abyss');
 81

 82 try {
 83 untrappedDoor.unlock();
 84 } catch (e) {
 85 console.error(e.message);
 86 }
 87 // => You try opening the door with the key but nothing happens
 88

 89 mooleen.says('Good... now we need a key');
 90

 91 /* mooleen grabs a stone from the floor */
 92 const stone = {
 93 toString(){ return 'a stone';}
 94 };
 95

 96 mooleen.says("Now let's make this stone behave like a key");
 97

 98 stone[Symbol.match] = () => true
 99

100 untrappedDoor.unlock(stone);
101 // => The door opens
102

103 mooleen.shouts('Aha!');
104

105 rat.says('I knew you would make it!');
106 randalf.says('Yep, we were all certain of it');
107

108 mooleen.says('sure sure...');
109

110 /*
111 The group walks into the chamber and
112 the door closes itself behind them...
113 */

TypeScript

JavaScript-mancy is a dangerous art.
Get an incantation slightly wrong,
and anything can happen.

More than one young apprentice
has found out about this the hard way,
just a split second before
razing a village to the ground,
letting loose a bloodthirsty beast,
or making something unexpected explode.

That's generally the way it is.

There are records of an ancient order,
an order of disciplined warrior monks,
who were able to tame the wild winds of magic.
But too little of them remains.

Did they exist?
Or are they just wishful thinking and myth?

 - The Chronicler

/*
The group walks into the chamber and
the door closes itself behind them...

...the chamber is poorly lit. A metal brazier of eerie blue
flames lies in the middle of the room and bathes a strange
obsidian obelisk in a mysterious light. Huge columns
surround the obelisk at irregular intervals.
Under the dim light it is impossible to ascertain
the room proportions...
*/

mooleen.says('Something about this feels very wrong...');
red.says("I couldn't agree more");

randalf.says("Well, it's either destroy that totem and " +
 "escape aided by magic or go back and fight The Red Legion" +
 "with our bare fists");
rat.says("...and sharp claws");

mooleen.says("Alright, let's get this over with");

/*
 The group approaches the obelisk under an oppressive
 silence only broken by the sound of boots scraping
 the sand covered ground.
*/

red.says('Oh shit');
mooleen.says('Oh shit? I thought you ' +
 'were beyond that type of language');

/*
 Eerie blue and green lights start flaring around the
 group inundating the chamber with light and a ghastly
 atmosphere. Up and up they go to reveal enormous terraces
 filled with dark winged figures. A voice suddenly booms
 within the chamber:
*/

voice.thunders('Let the games begin!');
voice.thunders("In our next game we'll recreate " +
 "The Fall of the Order of The Red Moon " +
 "the sacred order of warrior monks" +
 "whose fierceness still echoes across the centuries");
voice.thunders('I give you: The Last Stand!');

/*
A thunderous applause mixed with screeches, screams and
shouts of joy and excitement follows the proclamation.
At the same time 4 humongous iron doors start slowly
opening and row after row of obscene four-legged reptilian
creatures start emerging from them. Their impossibly huge
mandibles and terrible wails freeze your blood.
*/

mooleen.says('Oh shit');

voice.thunders('The rules of the game:');
voice.thunders('#1. Fight or Die...');
voice.thunders('#2. You Shall Only Use Types!');
voice.thunders('#3. Only One Shall Remain');

You Shall Only Use Types!
Congratulations on making it to the end of the book! I have a special treat prepared
for you as a farewell present: TypeScript! TypeScript has been gaining momentum
over the past few years and it is used inside and outside of the .NET world even with
popular front-end frameworks such as Angular and React. TypeScript provides the
nearest experience to C# that you can find on the web. Enjoy!

JavaScript + Types = Awesome Dev Productivity
TypeScript is a superset of JavaScript that adds type annotations and, thus, static
typing on top of JavaScript.

If you are a C# or Java developer you’ll feel right at home writing TypeScript. If you
are a JavaScript developer or have a background in dynamic programming languages
you’ll encounter a slightly more verbose version of JavaScript that results in a safer
and better developer experience. Either way, you’ll be happy to know that everything
you’ve learned about JavaScript thus far also applies to TypeScript, that is, any
JavaScript is valid TypeScript.

Any JavaScript is Valid TypeScript

Experiment JavaScriptmancer!!
You can experiment with the examples in this section using the TypeScript playground or
downloading the source code from GitHub.

Any bit of JavaScript is valid TypeScript. Let’s say that we have the most basic piece
of JavaScript code that you can write, a simple variable declaration that represents
your reserve of mana:

1 var manaReserves = 10;

https://bit.ly/javascriptmancy-oop-typescript-basic
https://github.com/vintharas/javascriptmancy

And now let’s say that we want to recharge your mana reserves by drinking a magic
potion:

1 function rechargeMana(potion){
2 return potion.manaModifier * (Math.floor(Math.rand()*10) + 1);
3 }

So we go and write the following:

1 manaReserves += rechargeMana({
2 name: 'light potion of mana',
3 manaModifier: 1.5
4 });

When we execute the piece of code above, it explodes with the following error:

1 // => Uncaught TypeError: Math.rand is not a function

Which makes sense because there’s no such thing as a Math.rand function in
JavaScript. It is called Math.random. For some reason I mix this function with a C
function that has the same purpose, a slightly different name, and which I used in my
student days. Regardless, I make this mistake, again and again.

The code above is a very traditional piece of JavaScript. But it is also completely
valid TypeScript, with one difference. Writing the rechargeMana in TypeScript
would have automatically resulted in a compiler error that would’ve read:

1 Property 'rand' does not exist on type 'Math'.

This would have immediately alerted me to the fact that I’m making a mistake
(again), and I would have been able to fix it before executing the program. This is
one of the advantages of TypeScript: shorter feedback loops where you can detect
errors in your code at compile time instead of at runtime.

Let’s expand our previous example and drink another potion:

1 rechagreMana({
2 name: 'Greater Potion of Mana',
3 manaModifier: 2
4 })

Again. A simple typo, a classic mistake in JavaScript that would result in a
ReferenceError at runtime, is instantly caught by the TypeScript compiler:

1 Cannot find name 'rechagreMana'.

As we’ve seen thus far, the TypeScript compiler that sits between the TypeScript
code that you write and the output that runs in the browser can do a lot of things for
you on vanilla JavaScript. But it truly shines when you start adding type
annotations, that is, when you annotate your JavaScript code with additional bits of
information regarding the type of things.

For instance, let’s update our original rechargeMana function with some type
annotations:

1 function rechargeMana(potion: { manaModifier : number }) {
2 return potion.manaModifier * (Math.floor(Math.random()*10) + 1);
3 }

The example above contains a type annotation for the potion parameter
{manaModifier : number} . This annotation means that the potion parameter is
expected to be an object that has a property manaModifier of type number.

The type annotation does several things for us:

1. It can help the compiler discover errors when the object passed as an argument
to rechargeMana doesn’t have the expected interface. That is, when it lacks the
manaModifier property which is necessary for the function to work.

2. It can help the compiler discover typos or type errors when you use the potion
object within the body of the function.

3. It gives us statement completion when typing potion inside the rechargeMana
function which is a great developer experience26. If you aren’t familiar with
statement completion it consist on helpful in-editor information that pops up
and tells you how you can use an object, like which properties are methods are
available, which types are expected for the different parameters, etc.

Let’s illustrate 1) with an example. Imagine that in addition to potions of Mana you
had potions of Strength:

1 const potionOfStrength = {
2 name: 'Potion of Strength',
3 strengthModifier: 3,
4 duration: 10
5 };

At some point in our program we could end up calling this code by mistake:

1 rechargeMana(potionOfStrength);

Calling the rechargeMana function with a potionOfStrength as argument would
result in a runtime error in JavaScript or, perhaps even in an elusive bug since
multiplying undefined by a number results in NaN instead of crashing outright.

In TypeScript however, the example above would result in the following compiler
error:

1 // [ts]
2 // Argument of type '{ name: string; strengthModifier: number; }'
3 // is not assignable to parameter of type '{ manaModifier: number; }\
4 '.
5 // Property 'manaModifier' is missing
6 // in type '{ name: string; strengthModifier: number; }'.

This error would quickly tell me that the potion of strength lacks the required
contract to use rechargeMana and lots of tears and frustration would’ve been saved
right then and there. Also take a second to appreciate the quality and precision of the
error message above.

So any JavaScript is valid TypeScript. Change your code.js file into code.ts file,
run it by the TypeScript compiler and TypeScript will try to infer the most
information it can from your code and do its best to help you. Add type annotations
on top of that and TypeScript will be able to learn more about your code and
intentions, and provide you with better support.

So, What Are The Advantages and Disadvantages of
TypeScript?
By enhancing your JavaScript with new features, type annotations and static typing
TypeScript provides these advantages:

Better error detection. TypeScript can do static analysis of your code and
reveal errors before running the actual code. This provides a much shorter
feedback loop so that you can fix these errors as soon as they happen inside
your editor and not after they hit production.
Better tooling and developer productivity. The rich type information can be
used by editors and IDEs to provide great tooling to enhance your developer
productivity like in-editor compiler warnings, statement completion, safe
refactorings, inline documentation, etc… Visual Studio Code is a text editor
that has awesome TypeScript support out of the box.
Great API discoverability. Using statement completion provided by type
annotations is an outstanding way to discover about new APIs right inside your

https://code.visualstudio.com/

editor.
Write more intentional code. TypeScript type annotations and additional
features like access level keywords allow you to constrain how the APIs that
you design are meant to be used. This allows you to write more intentional
code.
ESnext features. TypeScript supports a lot of ESnext features like class
members, decorators and async/await.
Additional TypeScript Features. In addition to JavaScript and ESnext features
TypeScript has a small number of features that are not in the ECMA-262
specification which add a lot to the language like property access levels and
parameter properties.
Works with third-party libraries. Using type annotations in your application
code is awesome but what about all the third-party libraries that you use and are
reference throughout your application code? How does TypeScript interact with
them? Particularly, what happens when these libraries aren’t written in
TypeScript? In the worst case scenario TypeScript treats objects it doesn’t know
as of type any which basically means “this object can have any shape so just
behave as you would in JavaScript and don’t make any assumptions”. More
often, third-party libraries either come with declaration files that provide typing
information for TypeScript or you can find these declaration files through the
DefinitelyTyped project a repository of TypeScript type definitions. This means
that you’ll be able to enjoy the same level of TypeScript support (or even
greater) for third-party libraries that you do for your own code.
Great for large-scale applications and teams. TypeScript excels at supporting
multiple teams with large-scale applications. The type annotations and the
TypeScript compiler are awesome at catching breaking changes, subtle bugs
and with new APIs discoverability.

On the minus side:

TypeScript requires a transpilation step. TypeScript code is not supported
as-is in any browser. In order to be able to write your applications in TypeScript
you need to setup some sort of build pipeline to transpile your TypeScript code
into a version of JavaScript that can run in the browser. Fortunately, there is
great support for this in the open source community and you can find great
integrations for TypeScript in the most popular frameworks and build tools.
You need to learn type annotations syntax and related artifacts. The type
annotations, their syntax and related artifacts like interfaces, generics, etc… add
more cognitive load and an extra degree of complexity on top of all you need to
know to write JavaScript applications.

http://definitelytyped.org/

It is verbose. The addition of type annotations makes your JavaScript code
more verbose (call(person:Person)) which can be quite aesthetically
unpleasing (particularly at first). The TypeScript compiler does a great job at
inferring types and reducing the amount of type annotations you need to write
to the minimum but to make the most out of TypeScript you’ll need to add a fair
amount of type annotations yourself.
It sometimes falls out of line with the ECMAScript standard. Bringing
ESnext features to you today, although awesome, can have its drawbacks.
Implementing ESnext features before they’ve been formalized can lead to
TypeScript breaking with the standards as it happened with modules.
Fortunately, the core philosophy of TypeScript being a superset of JavaScript
led the TypeScript team to implement support for ES6 modules and to deprecate
the non-standard version. This is a great indicator of TypeScript’s allegiance to
JavaScript but still bears consideration when adopting ESnext features.

Setting up a Simple TypeScript project
The best way to get an idea of the full-blown TypeScript development experience is
to setup a simple TypeScript project from scratch and follow along for the rest of the
chapter. As usual, you can download the source code for these and all examples from
GitHub.

The easiest way to get started is to install node and npm in your development
computer. Once you’ve done that, we’ll install the TypeScript compiler using npm:

1 $ npm install -g typescript

You can verify that the installation has worked correctly by running:

1 $ tsc -v
2 Version 2.4.2

And accessing the TypeScript compiler help:

1 $ tsc -h
2 Version 2.4.2
3 Syntax: tsc [options] [file ...]
4
5 Examples: tsc hello.ts
6 tsc --outFile file.js file.ts
7 tsc @args.txt

I will use Visual Studio Code during these examples but you’re welcome to use any
editor that you prefer.

https://github.com/vintharas/javascriptmancy-code-samples
https://nodejs.org/en/
https://code.visualstudio.com/
http://www.typescriptlang.org/index.html#download-links

Typing this command below will create a new TypeScript file called hello-
wizard.ts and will open it on Visual Studio Code:

1 $ code hello-wizard.ts

Let’s write the canonical hello wizard in TypeScript with a sayHello function:

1 function sayHello(who: string) : void {
2 console.log(`Hello ${who}! I salute you JavaScript-mancer!`);
3 }

Notice how we have added a type annotation string to the who parameter of this
function. If we try to call the function with an argument that doesn’t match the
expected type of string the compiler will alert us with a compiler error inside our
editor:

1 sayHello(42);
2 // => [ts] Argument of type '42' is not assignable
3 // to parameter of type 'string'.

Let’s fix it by saluting yourself. Update the code above to include your name inside a
string:

1 sayHello('<Your name here>');

Now you can compile the TypeScript file using the compiler within the terminal
(Visual Studio comes with an embedded terminal that you can run inside the editor
which is very convenient). Type:

1 $ tsc hello-world.ts

This will tell the TypeScript compiler to transpile your TypeScript application into
JavaScript that can run in the browser. It will result in a vanilla JavaScript file
hello-world.js that contains the following code:

1 function sayHello(who) {
2 console.log("Hello " + who + "! I salute you JavaScript-mancer!");
3 }
4 sayHello('<Your name here>');

Beautiful vanilla JavaScript as if you had typed it with your bare hands. You can use
node to run this file:

1 $ node hello-world.js
2 Hello <Your name here>! I salute you JavaScript-mancer!

And TaDa! You’ve written, transpiled and run your first TypeScript program! World
here we come!

Since it can be slightly tedious to run the TypeScript compiler every time you make
changes in your ts files, you can setup the compiler in watch mode. This will tell
the TypeScript compiler to monitor your source code files and transpile them
whenever it detects changes. To setup the TypeScript compiler in watch mode just
type the following:

1 $ tsc -w hello-world.ts
2 10:55:11 AM - Compilation complete. Watching for file changes.

In the upcoming sections we will discover some of the great features you can use
within TypeScript, all you need to know about TypeScript type annotations and what
you need to think about when using TypeScript in real-world projects.

Visual Studio Code Works Great With TypeScript!
If you want to learn more about how to have a great setup in Visual Studio Code with
TypeScript I recommend you to take a look at this guide.

Cool TypeScript Features
In addition to type annotations, TypeScript improves JavaScript on its own right with
ESnext features and some features of its own.

TypeScript brings you a lot of ESnext features
A lot of the features that we’ll see in this section are ESnext features that are proposals at
different levels of maturity. You can find more information about all proposals currently
under consideration in the TC39 ECMA-262 GitHub repository.

Some of these features are available also when using Babel with experimental flags. The
fact that you have a team within Microsoft maintaining TypeScript gives you a lot of
confidence when using these features within TypeScript.

https://bit.ly/vscode-ts
http://bit.ly/ecma262-gh

TypeScript Classes
TypeScript classes come with several features that provide a much better developer
experience than ES6 classes. The first one is class members.

Instead of writing your classes like this:

 1 // ES6 class
 2 class Gladiator {
 3 constructor(name, hitPoints){
 4 this.name = name;
 5 this.hitPoints = hitPoints;
 6 }
 7 toString(){
 8 return `${this.name} the gladiator`
 9 }
10 }

You can extract the class members name and hitPoints to the body of the class
much like in statically typed languages:

 1 class Gladiator {
 2 name: string;
 3 hitPoints: number;
 4
 5 constructor(name: string, hitPoints: number){
 6 this.name = name;
 7 this.hitPoints = hitPoints;
 8 }
 9
10 toString(){
11 return `${this.name} the gladiator`
12 }
13 }

This can be slightly verbose so TypeScript comes with another feature called
parameter properties that allows you to specify a class member and initialize it via
the constructor all in one go.

An equivalent version to the one above using parameter properties would look like
this:

1 class SleekGladiator {
2 constructor(public name: string,
3 public hitPoints: number){}
4
5 toString(){
6 return `${this.name} the gladiator`
7 }
8 }

Better, isn’t it? The public keyword within the class constructor tells TypeScript
that name and hitPoints are class members that can be initialized via the
constructor.

Moreover, the public keyword gives us a hint as to the last improvement that
TypeScript brings to classes: access modifiers. TypeScript comes with four access
modifiers that determine how you can access a class member:

readonly: Makes a member read only. You must initialize it upon declaration
or within a constructor and it can’t be changed after that.
private: Makes a member private. It can only be accessed from within the class
itself.
protected: Makes a member protected. It can only be accessed from within teh
class or derived types.
public: Makes a member public. It can be accessed by anyone. Following
JavaScript ES6 class implementation, public is the default access modifier for
class members and methods if none is provided.

The readonly modifier saves us the necessity to define a @readonly decorator like
we did in previous chapters.

One shouldn’t be able to change one’s name once it’s been given so let’s make the
Gladiator name read-only:

 1 class FixedGladiator {
 2
 3 constructor(readonly name: string,
 4 public hitPoints: number){}
 5
 6 toString(){
 7 return `${this.name}, the gladiator`
 8 }
 9
10 }

Now when we create a new gladiator and we give him or her a name it’ll be written
in stone:

1 const maximo = new FixedGladiator('Maximo', 5000);
2
3 maximo.name = "Aurelia";
4 // => [ts] Cannot assign to 'name' because it is
5 // a constant or a read-only property.

An important thing to note here is that these access modifiers are only applicable in
the world of TypeScript. That is, the TypeScript compiler will enforce them when

you are writing TypeScript but they’ll be removed when your code is transpiled to
JavaScript.

The transpiled version of the FixedGladiator above results in the following
JavaScript:

 1 var FixedGladiator = (function () {
 2
 3 function FixedGladiator(name, hitPoints) {
 4 this.name = name;
 5 this.hitPoints = hitPoints;
 6 }
 7
 8 FixedGladiator.prototype.toString = function () {
 9 return this.name + ", the gladiator";
10 };
11
12 return FixedGladiator;
13 }());

As you can appreciate from the example above there’s no mechanism which ensures
that the name property is read-only.

Next let’s test the private access modifiers. In previous chapters we discussed
different approaches that you can follow to achieve privacy in JavaScript: closures
and symbols. With TypeScript you can achieve data hiding by using the private
(and protected) access modifiers.

This was the example we used in chapter 6. White Tower Summoning Enhanced:
The Marvels of ES6 Classes to showcase data hiding using closures:

 1 class PrivateBarbarian {
 2
 3 constructor(name){
 4 // private members
 5 let weapons = [];
 6 // public members
 7 this.name = name;
 8 this["character class"] = "barbarian";
 9 this.hp = 200;
10
11 this.equipsWeapon = function (weapon){
12 weapon.equipped = true;
13 // the equipsWeapon method encloses the weapons variable
14 weapons.push(weapon);
15 console.log(`${this.name} grabs a ${weapon.name} ` +
16 `from the cavern floor`);
17 };
18 this.toString = function(){
19 if (weapons.length > 0) {
20 return `${this.name} wields a ` +
21 `${weapons.find(w => w.equipped).name}`;

22 } else return this.name
23 };
24 }
25
26 talks(){
27 console.log("I am " + this.name + " !!!");
28 }
29
30 saysHi(){
31 console.log("Hi! I am " + this.name);
32 }
33 };

In this example we use closures to enclose the weapons variable which becomes
private for all effects and purposes. As you can appreciate, the use of closures forces
us to move the methods equipsWeapon and toString that make use of the weapons
variable from the body of the class to the body of the constructor function.

The equivalent of this class in TypeScript looks like this:

 1 class PrivateBarbarian {
 2 // private members
 3 private weapons = [];
 4
 5 // public members
 6 ["character class"] = "barbarian";
 7 hp = 200;
 8
 9 constructor(public name: string) {}
10
11 equipsWeapon(weapon) {
12 weapon.equipped = true;
13 // the equipsWeapon method encloses the weapons variable
14 this.weapons.push(weapon);
15 console.log(`${this.name} grabs a ${weapon.name} ` +
16 `from the cavern floor`);
17 }
18
19 toString() {
20 if (this.weapons.length > 0) {
21 return `${this.name} wields a ` +
22 `${this.weapons.find(w => w.equipped).name}`;
23 } else return this.name
24 };
25
26 talks(){
27 console.log("I am " + this.name + " !!!");
28 }
29
30 saysHi(){
31 console.log("Hi! I am " + this.name);
32 }
33 };

If you now instantiate an indomitable barbarian and try to access the weapons
property you’ll be greeted by the following error:

1 const conan = new PrivateBarbarian("shy Conan");
2 // const privateWeapons = conan.weapons;
3 // => [ts] Property 'weapons' is private and
4 // only accessible within class 'PrivateBarbarian'.

If you look back and compare both approaches I think that you’ll agree with me that
the TypeScript syntax reads better than the ES6 counterpart. Having all methods
within the body of the class is more consistent and easier to understand than having
methods split in two separate places.

On the flip side, the TypeScript private access modifier is a TypeScript feature that
disappears when the code is transpiled to JavaScript, that is, a library consumer that
had access to the output JavaScript would be able to access the weapons property of
this class. This won’t normally be a problem since most likely your whole
development team will be working with TypeScript but there can be some cases
where it could be problematic. For instance, I can see it being an issue for library
creators that create their library using TypeScript and make it accessible to
consumers that are using vanilla JavaScript.

Why Do I Get An TypeScript Error When Writing An ES6 class? Isn’t It Valid JavaScript?

Excellent question! When you type the code example with the ES6 Barbarian class
in your TypeScript editor of choice you’ll be surprised to find that the this.name,
this.hp and this.equipsWeapon declarations result in a TypeScript compiler error.
What? I thought that every piece of JavaScript was valid TypeScript and this is
perfectly valid ES6 code. What’s happening? Have I been living a lie?

The reasons for these errors is that TypeScript has different levels of correctness:

In the first level the TypeScript compiler examines whether the code is
syntactically correct before applying type annotations. If it is, then it is capable
of performing the transpilation and emitting correct JavaScript code (this is the
case for the issue we’ve just discovered regarding ES6 classes).
In the second level the TypeScript compiler takes a look at the type annotations.
According to TypeScript’s type system, the PrivateBarbarian doesn’t have
any property name (properties are declared within the body of a class) and
therefore it shows the error [ts] Property ‘name’ does not exist on type
‘PrivateBarbarian’.

In the third level enabled via the compiler flag --noImplicitAny the TypeScript
compiler will become very strict and won’t assume that the type of a non
annotated variable is any. That is, it will require that all variables, properties
and methods be typed.

So in our ES6 example, TypeScript understands your code as valid ES6 and will be
able to transpile your code into JavaScript but according to TypeScript’s type system
you should refactor your class and move the class members inside the class body.

Enums
Another great feature in TypeScript are enums. Enums are a common data type in
statically typed languages like C# and Java that are used to represent a finite number
of things in an strongly typed fashion.

Imagine that you want to express all the different Schools of Elemental Magic: Fire,
Water, Air and Earth. When you create diverse elemental spells, these will belong to
some of several of these schools and will have advantages and disadvantages against
spells of other schools. For instance, a fireball spell could look like this:

 1 const fireballSpell = {
 2 type: 'fire',
 3 damage: 30,
 4 cast(target){
 5 const actualDamage = target.inflictDamage(this.damage,
 6 this.type);
 7 console.log(`A huge fireball springs from your ` +
 8 `fingers and impacts ${target} (-${actualDamage}hp)`);
 9 }
10 };

The target.inflictDamage would calculate the actualDamage inflicted on a target
by taking into account the target resistance to a specific elemental magic or whether
it has protective spells against it.

The problem with this example is that strings aren’t very intentional nor provide a lot
of information about the Schools of Elemental Magic that are available. In the
example above it’d be very easy to have a typo and misspell the string 'fire' for
something else.

An improvement over the previous approach is to use an object to encapsulate all
available options:

1 const schoolsOfElementalMagic = {
2 fire: 'fire',

3 water: 'water',
4 air: 'air',
5 earth: 'earth'
6 };

And now we can rewrite our previous example:

 1 const fireballSpell = {
 2 type: schoolsOfElementalMagic.fire,
 3 damage: 30,
 4 cast(target){
 5 const actualDamage = target.inflictDamage(this.damage,
 6 this.type);
 7 console.log(`A huge fireball springs from your ` +
 8 `fingers and impacts ${target} (-${actualDamage}hp)`);
 9 }
10 };

Awesome! That’s much better than the magic string we had earlier. But it’s still
susceptible to typos and there’s nothing stopping you for writing type: 'banana'
inside your spell.

That’s were TypeScript enums come in. They give you an statically and strongly
typed way to represent a limited collection of things or states. A SchoolsOfMagic
enum could look like this:

1 enum SchoolsOfMagic {
2 Fire,
3 Water,
4 Air,
5 Earth
6 }

This enum allows us to specify an interface that represents the shape of a Spell.
Note how a valid Spell has a type property whose type is the enumeration
SchoolsOfMagic we just created:

1 // now we can define a Spell interface
2 interface Spell {
3 type: SchoolsOfMagic,
4 damage: number,
5 cast(target: any);
6 }

Interfaces?
Interfaces are another new feature in TypeScript. They allow you to define arbitrary types
that result in more intentional code and enrich your developer experience. We’ll learn more
about interfaces later in this chapter.

When we now define a new spell TypeScript will enforce that the type provided for
the spell is of type SchoolsOfMagic, and not only that, when using an editor such as
Visual Studio Code it will give us all the available options (Fire, Water, Air and
Earth) via statement completion.

 1 const enumifiedFireballSpell: Spell = {
 2 type: SchoolsOfMagic.Fire,
 3 damage: 30,
 4 cast(target){
 5 const actualDamage = target.inflictDamage(this.damage,
 6 this.type);
 7 console.log(`A huge fireball springs from your ` +
 8 `fingers and impacts ${target} (-${actualDamage}hp)`);
 9 }
10 }

If we were to type anything else than the SchoolOfMagic enum (for instance, a
string) TypeScript would warn us instantly with the following error message:

1 // providing other than a SchoolsOfMagic enum would result in error:
2 // [ts]
3 // Type '{ type: string; damage: number; cast(target: any): void; \
4 }'
5 // is not assignable to type 'Spell'.
6 // Types of property 'type' are incompatible.
7 // Type 'string' is not assignable to type 'SchoolsOfMagic'.

When transpiled to JavaScript enums result in the following code:

1 var SchoolsOfMagic;
2 (function (SchoolsOfMagic) {
3 SchoolsOfMagic[SchoolsOfMagic["Fire"] = 0] = "Fire";
4 SchoolsOfMagic[SchoolsOfMagic["Water"] = 1] = "Water";
5 SchoolsOfMagic[SchoolsOfMagic["Air"] = 2] = "Air";
6 SchoolsOfMagic[SchoolsOfMagic["Earth"] = 3] = "Earth";
7 })(SchoolsOfMagic || (SchoolsOfMagic = {}));

At first sight it may look a little bit daunting. But let’s decompose it into smaller
statements:

1 // Set 'Fire' property in SchoolsOfMagic to 0
2 SchoolsOfMagic["Fire"] = 0;
3
4 // it evaluates to 0 so that this:
5 SchoolsOfMagic[SchoolsOfMagic["Fire"] = 0] = "Fire";
6 // is equivalent to:
7 SchoolsOfMagic[0] = "Fire";
8 // which means set '0' property in SchoolsOfMagic to 0

So an enum represents a two-way mapping between numbers and strings with the
enum name. Just like you can specify the names, you can select the numbers when
declaring the enum:

 1 // Start in 1 and increase numbers
 2 enum SchoolsOfMagic {
 3 Fire=1,
 4 Water,
 5 Air,
 6 Earth
 7 }
 8
 9 // Explicitly set all numbers
10 enum SchoolsOfMagic {
11 Fire=2,
12 Water=4,
13 Air=6,
14 Earth=8
15 }
16
17 // Computed enums
18 enum SchoolsOfMagic {
19 Fire=1,
20 Water=Fire*2,
21 Air=2,
22 Earth=Air*2
23 }

Whenever we don’t want for the transpiled JavaScript to contain reference to enums
(for instance, in a constrained environment were we want to ship less code) we can
use const enums. The following enum definition will not be transpiled to JavaScript:

1 const enum SchoolOfMagic {
2 Fire,
3 Water,
4 Air,
5 Earth
6 }

Instead it will be inlined and any reference to Fire, Water, Air and Earth will be
replaced by a number. In this case 0, 1, 2, 3 respectively.

Still prefer strings? Check This String Literal Types

If you still prefer vanilla strings TypeScript has the ability to create types based of a
series of specific valid strings. An equivalent for our schools of magic could look
like this:

1 type SchoolsOfMagic = "fire" | "earth" | "air" | "water";

Again we define an interface in terms of this new type:

1 interface Spell {
2 type: SchoolsOfMagic,
3 damage: number,
4 cast(target: any);
5 }

And we’re ready to create spells. Using anything other than the allowed strings will
result in a transpilation error:

 1 const FireballSpell: Spell = {
 2 type: "necromancy",
 3 damage: 30,
 4 cast(target){
 5 const actualDamage = target.inflictDamage(this.damage, this.type\
 6);
 7 console.log(`A huge fireball springs from your ` +
 8 `fingers and impacts ${target} (-${actualDamage}hp)`);
 9 }
10 }
11 // => [ts]
12 // Type '{ type: "necromancy"; damage: number; cast(target: any): v\
13 oid; }'
14 // is not assignable to type 'SpellII'.
15 // Types of property 'type' are incompatible.
16 // Type '"necromancy"' is not assignable to type 'SchoolsOfMagicII'.

Object Spread and Rest
In JavaScript-mancy: Getting Started we saw rest paremeters and the spread
operator brought by ES6.

As you can probably remember, rest parameters improve the developer experience
of declaring functions with multiple arguments 27. Instead of using the arguments
object like we used to do prior to ES6:

 1 function obliterate(){
 2 // Unfortunately arguments is not an array :O
 3 // so we need to convert it ourselves
 4 var victims = Array.prototype.slice.call(arguments,
 5 /* startFromIndex */ 0);
 6
 7 victims.forEach(function(victim){
 8 console.log(victim + " wiped off of the face of the earth");

 9 });
10 console.log('*Everything* has been obliterated, ' +
11 'oh great master of evil and deceit!');
12 }

We can use rest syntax to collect all incoming arguments directly into an array
victims:

1 function obliterate(...victims){
2 victims.forEach(function(victim){
3 console.log(`${victim} wiped out of the face of the earth`);
4 });
5 console.log('*Everything* has been obliterated, ' +
6 'oh great master of evil and deceit!');
7 }

On the other hand the spread operator works sort of in an opposite way to rest
parameters. Instead of taking a variable number of arguments and packing them into
an array, the spread operator takes and array and expands it into its compounding
items.

Following this principle the spread operator has many use cases28. Like
concatenating arrays:

1 let knownFoesLevel1 = ['rat', 'rabbit']
2 let newFoes = ['globin', 'ghoul'];
3 let knownFoesLevel2 = [...knownFoesLevel1, ...newFoes];

Or cloning them:

1 let foes = ['globin', 'ghoul'];
2 let clonedFoes = [...foes];

Object Spread and Rest brings this same type of functionality that is available in
arrays to objects.

A great use case for the Object spread operator are mixins. In previous chapters we
used Object.assign to mix the properties of two or more different objects. For
instance, in this Wizard factory function we mix the wizard properties with mixins
that encapsulate behaviors to identify something by name and cast spells:

 1 function Wizard(element, mana, name, hp){
 2 let wizard = {element,
 3 mana,
 4 name,
 5 hp};
 6 Object.assign(wizard,
 7 canBeIdentifiedByName,

 8 canCastSpells);
 9 return wizard;
10 }

We can rewrite the example above using object spread as follows:

 1 function Wizard(element, mana, name, hp){
 2 let wizard = {element,
 3 mana,
 4 name,
 5 hp};
 6
 7 // now we use object spread
 8 return {...wizard,
 9 ...canBeIdentifiedByName,
10 ...canCastSpells
11 };
12 }

The object spread operator essentially says: get all properties of wizard,
canBeIdentifiedByName and canCastSpells and put them together within the same
object. If there are any properties that have the same name, the last one wins and
overwrites the first.

The opposite to object spread are object rest parameters. They work in a similar
fashion to ES6 rest parameters and are particularly helpful together with ES6
destructuring.

If you remember, we used destructuring and rest parameters to extract elements from
an array:

1 let [first, second, ...rest] = ['dragon', 'chimera', 'harpy', 'medus\
2 a'];
3 console.log(first); // => dragon
4 console.log(second); // => chimera
5 console.log(rest); // => ['harpy', 'medusa']

With the Object Spread Operator we can follow the same pattern to extract and
collect properties from objects:

 1 let {name, type, ...stats} = {
 2 name: 'Hammer of the Morning',
 3 type: 'two-handed war hammer',
 4 weight: '40 pounds',
 5 material: 'nephirium',
 6 state: 'well kept'
 7 };
 8 console.log(name); // => Hammer of Morning
 9 console.log(type); // => two-handed war hammer
10 console.log(stats);
11 // => {weight: '40 pounds',

12 // material: 'nephirium',
13 // state: 'well kept'}

And There’s More!
There’s a lot more features in TypeScript that expand on ES6 either via early
implementation of ESnext features that are currently in a proposal stage (like
async/await or decorators) or via entirely new features like the ones we’ve seen
related to classes and enums.

If you’re interested into learning more about TypeScript then I encourage you to take
a look at the TypeScript handbook and at the release notes both of which provide
detailed information about what TypeScript has in store for you.

Type Annotations In TypeScript
Type annotations are TypeScript’s bread and butter and provide yet a new level of
meta-programming in JavaScript: type meta-programming. Type annotations give
you the ability to create a better developer experience for you and your team by ways
of shorter feedback loops, compile time errors and API discoverability.

Type annotations in TypeScript don’t stop at simple primitive types like string or
number. You can specify the type of arrays:

1 // An array of strings
2 let saddleBag: string[] = [];
3 saddleBag.push('20 silvers');
4 saddleBag.push('pair of socks');
5
6 saddleBag.push(666);
7 // => [ts] Argument of type '666' is not assignable
8 // to parameter of type 'string'.

and tuples:

1 // A tuple of numbers
2 let position : [number, number];
3 position = [1, 1];
4 position = [2, 2];
5
6 // position = ['orange', 'delight'];
7 // => [ts] Type '[string, string]' is not
8 // assignable to type '[number, number]'.
9 // Type 'string' is not assignable to type 'number'.

functions:

http://bit.ly/ts-handbook
http://bit.ly/ts-whats-new

 1 // a predicate function that takes numbers and returns a boolean
 2 let predicate: (...args: number[]) => boolean;
 3 predicate = (a, b) => a > b
 4 console.log(`1 greated than 2? ${predicate(1, 2)}`);
 5 // => 1 greated than 2? false
 6
 7 predicate = (text:string) => text.toUpperCase();
 8 // => [ts] Type '(text: string) => string' is not assignable
 9 // to type '(...args: number[]) => boolean'.
10 // Types of parameters 'text' and 'args' are incompatible.
11 // Type 'number' is not assignable to type 'string'.

and even objects:

1 function frost(minion: {hitPoints: number}) {
2 const damage = 10;
3 console.log(`${minion} is covered in frozy icicles (- ${damage} hp\
4)`);
5 minion.hitPoints -= damage;
6 }

The {hitPoints: number} represents and object that has a hitPoints property of
type number. We can cast a frost spell on a dangerous foe that must comply with the
required contract - that of having a hitPoints property:

1 const duck = {
2 toString(){ return 'a duck';},
3 hitPoints: 100
4 };
5
6 frost(duck);
7 // => a duck is covered in frozy icicles (-10hp)

If the object frozen doesn’t satisfy the requirements, TypeScript will alert us
instantly:

1 const theAir = {
2 toString(){ return 'air';}
3 };
4 frost(theAir);
5 // => [ts] Argument of type '{ toString(): string; }'
6 // is not assignable to parameter of type '{ hitPoints: number; }\
7 '.
8 // Property 'hitPoints' is missing in type '{ toString(): string; }'.

An even better way to annotate objects is through interfaces.

TypeScript Interfaces
Interfaces are reusable and less verbose than straight object type annotations. A
Minion interface could be described as follows:

1 interface Minion {
2 hitPoints: string;
3 }

We could use this new interface to update our frost function:

1 function frost(minion: Minion){
2 const damage = 10;
3 console.log(`${minion} is covered in frozy icicles (-${damage} hp)\
4 `);
5 minion.hitPoints -= damage;
6 }

Looks nicer, doesn’t it? An interesting fact about interfaces is that they are entirely a
TypeScript artifact whose only application is within the realm of type annotations
and the TypeScript compiler. Because of that, interfaces are not transpiled into
JavaScript. If you transpile the code above you’ll be surprised to see that the
resulting JavaScript has no mention of Minion:

1 function frost(minion) {
2 var damage = 10;
3 console.log(minion + " is covered in frozy icicles (-" + damage \
4 + " hp)");
5 minion.hitPoints -= damage;
6 }

This points to the fact that interfaces are a lightweight approach to adding type
annotations to your codebase, reaping the benefits during development without
having any negative impact in the code that runs on the browser.

Let’s test our new frost function and the Minion interface with different types of
arguments and see how they behave. Bring on the duck from our previous example!

1 // const duck = {
2 // toString(){ return 'duck';},
3 // hitPoints: 100
4 // };
5 frosty(duck);
6 // => duck is covered in frozy icicles (-10hp)

That seems to work perfectly. If we try with a class that represents a Tower and has a
hitPoints and a defense property it seems to work as well:

1 class Tower {
2 constructor(public hitPoints=500, public defense=100){}
3 toString(){ return 'a mighty tower';}
4 }
5 const tower = new Tower();
6

7 frosty(tower);
8 // => a mighty tower is covered in frozy icicles (-10hp)

And so does a simple object literal with the hitPoints property:

1 frosty({hitPoints: 100});
2 // => [object Object] is covered in frozy icicles (-10hp)

However if we use an object literal that has another property in addition to
hitPoints the compiler throws an error:

1 frosty({hitPoints: 120, toString(){ return 'a bat';}})
2 // => doesn't compile
3 // => Argument of type '{ hitPoints: number; toString(): string; }'
4 // is not assignable to parameter of type 'Minion'.
5 // Object literal may only specify known properties,
6 // and 'toString' does not exist in type 'Minion'.

The error message seems to be very helpful. It says that with object literals I may
only specify known properties and that toString doesn’t exist in Minion. So what
happens if I store the object literal in a variable aBat?

1 let aBat = {
2 hitPoints: 120,
3 toString(){ return 'a bat';}
4 };
5 frosty(aBat);
6 // => a bat is covered in frozy icicles (-10hp)

It works! Interesting, from these experiments it looks like TypeScript will consider a
Minion to be any object that satisfies the contract specified by the interface, that is,
to have a hitPoints property of type number.

However, it looks like when you use an object literal TypeScript has a somewhat
more strict set of rules and it expects an argument that exactly matches the Minion
interface. So what is a Minion exactly? When TypeScript encounters an arbitrary
object, how does it determine whether it is a Minion or not?

It follows the rules of structural typing.

Structural Typing
Structural typing is a type system where type compatibility and equivalence are
determined by the structure of the types being compared, that is, their
properties.

For instance, following structural typing all of the types below are equivalent
because they have the same structure (the same properties):

 1 // an interface
 2 interface Wizard {
 3 hitPoints: number;
 4 toString(): string;
 5 castSpell(spell:any, targets: any[]);
 6 }
 7
 8 // an object literal
 9 const bard = {
10 hitPoints: 120,
11 toString() { return 'a bard';},
12 castSpell(spell: any, ...targets: any[]){
13 console.log(`${this} cast ${spell} on ${targets}`);
14 spell.cast(targets);
15 }
16 }
17
18 // a class
19 class MagicCreature {
20 constructor(public hitPoints: number){}
21 toString(){ return "magic creature";}
22 castSpell(spell: any, ...targets: any[]){
23 console.log(`${this} cast ${spell} on ${targets}`);
24 spell.cast(targets);
25 }
26 }

Which you can verify using this snippet of code:

1 let wizard: Wizard = bard;
2 let anotherWizard: Wizard = new MagicCreature(120);

In contrast, languages like C# or Java have what we call a nominal type system. In
nominal type systems, type equivalence is based on the names of types and explicit
declarations, where a MagicCreature is a Wizard, if and only if, the class
implements the interface explicitly.

Structural typing is awesome for JavaScript developers because it behaves very
much like duck typing that is such a core feature to JavaScript object-oriented
programming model. It is still great for C#/Java developers as well because they can
enjoy C#/Java features like interfaces, classes and compile-time feedback but with a
higher degree of freedom and flexibility.

There’s still one use case that doesn’t fit the structural typing rule we just described.
If you remember the examples from the previous section, object literals seem to be
an exception to the structural typing rule:

1 frosty({hitPoints: 120, toString(){ return 'a bat';}})
2 // => doesn't compile
3 // => Argument of type '{ hitPoints: number; toString(): string; }'
4 // is not assignable to parameter of type 'Minion'.
5 // Object literal may only specify known properties,
6 // and 'toString' does not exist in type 'Minion'.

Why does that happen? It happens in order to prevent developer mistakes.

The TypeScript compiler designers considered that using object literals like this can
be prone to errors and mistakes (like typos, imagine writing hitPoitns instead of
hitPoints). That is why when using object literals in this fashion the TypeScript
compiler will be extra diligent and perform excess property checking. Under this
special mode TypeScript will be inclined to be extra careful and will flag any
additional property that the function frosty doesn’t expect. Everything in the hopes
of helping you avoid unnecessary mistakes.

If you are sure that your code is correct, you can quickly tell the TypeScript compiler
that there’s no problem by explicitly casting the object literal to the desired type or
storing it in a variable as we saw earlier:

1 frosty({hitPoints: 120, toString(){ return 'a bat';}} as Minion);
2 // => a bat is covered in frozy icicles (-10hp)

Notice the as Minion? That’s a way we can tell TypeScript that the object literal is
of type Minion. This is another way:

1 frosty((<Minion>{hitPoints: 120, toString(){ return 'a bat';}}));
2 // => a bat is covered in frozy icicles (-10hp)

TypeScript Helps You With Type Annotations
Another interesting facet of TypeScript are its type inference capabilities. Writing
type annotations not only results in more verbose code but it’s also additional work
that you need to do. In order to minimize the amount of work that you need to put in
to annotate your code, TypeScript will do its best to infer the types used from the
code itself. For instance:

1 const aNumber = 1;
2 const anotherNumber = 2 * aNumber;
3
4 // aNumber: number
5 // anotherNumber:number

In this code sample we haven’t specified any types. Regardless, TypeScript knows
without the shadow of a doubt that the aNumber variable is of type number, and by
evaluating anotherNumber it knows that it’s also of type number. Likewise we can
write the following:

1 const double = (n: number) => 2*n;
2 // double: (n:number) => number

And TypeScript will know that the function double returns a number.

From Interfaces to Classes
So far we’ve seen how you can use type annotations in the form of primitive types,
arrays, object literals and interfaces. All of these are TypeScript specific artifacs that
disappear when you transpile your TypeScript code to JavaScript. We’ve also seen
how TypeScript attempts to infer types from your code so that you don’t need to
expend unnecessary time annotating your code.

Then we have classes. Classes are a ES6/TypeScript feature that we can use to
describe a domain model entity in structure and behavior, which contain a specific
implementation, and which also serve as a type annotation.

In previous sections we defined an interface Minion that represented a thing with a
hitPoints property. We can do the same with a class:

1 class ClassyMinion {
2 constructor(public hitPoints: number) {}
3 }

And create a new classyFrost function to use this class as the argument type:

1 function classyFrost(minion: ClassyMinion){
2 const damage = 10;
3 console.log(`${minion} is covered in frozy icicles (-${damage} hp)\
4 `)
5 minion.hitPoints -= damage;
6 }

We can use this function with our new ClassyMinion class and even with the
previous aBat and bard variables because following the rules of structural typing all
of these types are equivalent:

1 classyFrosty(new ClassyMinion());
2 // => a classy minion is covered in frozy icicles (-10hp)
3 classyFrosty(aBat);
4 // => a bat is covered in frozy icicles (-10hp)

5 classyFrosty(bard);
6 // => a bard is covered in frozy icicles (-10hp)

Normally we would have the class implement the desired interface. For instance:

1 class ClassyMinion implements Minion {
2 constructor(public hitPoints: number) {}
3 }

This wouldn’t make a change in how this class is seen from a structural typing point
of view but it does improve our developer experience. Adding the implements
Minion helps TypeScript tell us whether we have implemented an interface correctly
or if we’re missing any properties or methods. This may not sound like much in a
class with one single property but it’s increasingly helpful as our classes become
more meaty.

In general, the difference between using a class and using an interface is that the
class will result in a real JavaScript class when transpiled to JavaScript (although it
could be a constructor/prototype pair depending on the JavaScript version your are
targeting).

For instance, the class above will result in the following JavaScript in our current
setup:

 1 var ClassyMinion = (function () {
 2 function ClassyMinion(hitPoints) {
 3 if (hitPoints === void 0) { hitPoints = 100; }
 4 this.hitPoints = hitPoints;
 5 }
 6 ClassyMinion.prototype.toString = function () {
 7 return 'a classy minion';
 8 };
 9 return ClassyMinion;
10 }());

This makes sense because, unlike an interface which is a made up artifact used
only in the world of TypeScript type annotations, a class is necessary to run your
program.

When do you use interfaces and when do you use classes then? Let’s review what
both of these constructs do and how they behave:

Interface: Describes shape and behavior. It’s removed during transpilation
process.

Class: Describes shape and behavior. Provides a specific implementation. It’s
transpiled into JavaScript

So both interfaces and class describe the shape and behavior of a type. And
additionally, classes provide a concrete implementation.

In the world of C# or Java, following the dependency inversion principle we’d
advice to prefer using interfaces over classes when describing types. That would
afford us a lot of flexibility and extensibility within our programs because we would
achieve a loosely coupled system where concrete types don’t know about each other.
We then would be in a position to inject diverse concrete types that would fulfill the
contract defined by the interfaces. This is a must in statically typed languages like
C# or Java because they use a nominal type system. But what about TypeScript?

As we mentioned earlier, TypeScript uses a structural type system where types are
equivalent when they have the same structure, that is, the same members. In light of
that, you could say that it doesn’t really matter if we use interfaces or classes to
denote types. If interfaces, classes or object literals share the same structure, they’ll
be equally treated, so why would we need to use interfaces in TypeScript? Here are
some guidelines that you can follow when you consider using interfaces vs classes:

1. The single responsibility is a great rule of thumb to decrease the complexity of
your programs. Applying the single responsibility to the interface vs class
dilemma we can arrive to use interfaces for types and classes for
implementations. Interfaces provide a very concise way to represent the shape
of a type, whilst classes intermingle both the shape and the implementation
which can make it hard to ascertain what the shape of a type is by just looking
at a class.

2. interfaces give you more flexibility than classes. Because a class contains a
specific implementation, it is, by its very nature, more rigid than an interface.
Using interfaces we can capture finely grained details or bits of behavior that
are common between classes.

3. interfaces are a lightweight way to provide type information to data that may
be foreign to your application like data coming from web services

4. For types with no behavior attached, types that are merely data, you can use a
class directly. Using an interface in this case will often be overkill and
unnecessary. Using a class will ease object creation via the constructor.

So, in general, the same guidelines that we follow regarding interfaces in statically
typed languages like C# and Java also apply to TypeScript. Prefer to use interfaces to

describe types and use classes for specific implementations. If the type is just data
with no behavior you may consider using a class on its own.

Advanced Type Annotations
In addition to what we’ve seeing thus far TypeScript provides more mechanisms to
express more complex types in your programs. The idea is that, whichever
JavaScript construct or pattern you use, you should be able to express its type via
type annotations and provide helpful type information for you and other developers
within your team.

Some examples of these advanced type annotations are:

Generics
Intersection and Union Types
Type Guards
Nullable Types
Type Aliases
String-literal Types

Let’s take a look at each of them, why they are needed and how to use them.

Generics

Generics is a common technique used in statically typed programming languages
like C# and Java to generalize the application of a data structure or algorithm to
more than one type.

For instance, instead of having a separate Array implementation for each different
type: NumberArray, StringArray, ObjectArray, etc:

 1 interface NumberArray {
 2 push(n: number);
 3 pop(): number;
 4 [index: number]: number;
 5 // etc
 6 }
 7
 8 interface StringArray {
 9 push(s: string);
10 pop(): string;
11 [index: number]: string;
12 // etc
13 }
14
15 // etc...

We use generics to describe an Array of an arbitrary type T:

1 // note that `Array<T>` is already a built-in type in TypeScript
2 interface Array<T>{
3 push(s: T);
4 pop(): T;
5 [index: number]: T;
6 // etc
7 }

We can now reuse this single type definition by selecting a type for T:

1 let numbers: Array<number>;
2 let characters: Array<string>;
3 // and so on...

And just like we used generics with interfaces, we can use them with classes:

 1 class Cell<T> {
 2 private prisoner: T;
 3
 4 inprison(prisoner: T) {
 5 this.prisoner = item;
 6 }
 7
 8 free(): T {
 9 const prisoner = this.prisoner;
10 this.prisoner = undefined;
11 return prisoner;
12 }
13 }

Finally, you can constrain the type T to only a subset of types. For instance, let’s say
that a particular function only makes sense within the context of Minion. You can
write:

1 interface ConstrainedCell<T extends Minion>{
2 inprison(prisoner: T);
3 free(): T;
4 }

And now this will be a perfectly usable box:

1 let box: ConstrainedCell<MagicCreature>;

But this won’t because the type T doesn’t match the Minion interface:

1 let box: ConstrainedCell<{name: string}>;
2 // => [ts] Type '{ name: string; }' does not satisfy the constraint \
3 'Minion'.
4 // Property 'hitPoints' is missing in type '{ name: string; }'.

Intersection and Union Types

We’ve seen primitive types, interfaces, classes, generics, a lot of different ways to
provide typing information but flexible as these may be, there’s still a use case which
they have a hard time covering: Mixins.

When using mixins the resulting object is a mix of other different objects. The type
of this resulting object is not a known type in its own right but a combination of
existing types.

For instance, let’s go back to the Wizard example that we had earlier:

 1 function Wizard(element, mana, name, hp){
 2 let wizard = {element,
 3 mana,
 4 name,
 5 hp};
 6
 7 // now we use object spread
 8 return {...wizard,
 9 ...canBeIdentifiedByName,
10 ...canCastSpells
11 };
12 }

We can decompose this into separate elements:

 1 interface WizardProps{
 2 element: string;
 3 mana: number;
 4 name: string;
 5 hp: number;
 6 }
 7
 8 interface NameMixin {
 9 toString(): string;
10 }
11
12 interface SpellMixin {
13 castsSpell(spell:Spell, target: Minion);
14 }

How can we define the resulting Wizard type that is the combination of
WizardProps, NameMixin and SpellMixin? We use Intersection Types. An
Intersection Type allows us to define types that are the combination of other types.
For instance, we could represent our Wizard using the following type annotation:

1 WizardProps & NameMixin & SpellMixin

And we could use it as a return type of our factory function:

 1 let canBeIdentifiedByName: NameMixin = {
 2 toString(){ return this.name; }
 3 };
 4
 5 let canCastSpells: SpellMixin = {
 6 castsSpell(spell:Spell, target:Minion){
 7 // cast spell
 8 }
 9 }
10
11 function WizardIntersection(element: string, mana: number,
12 name : string, hp: number):
13 WizardProps & NameMixin & SpellMixin {
14 let wizard: WizardProps = {element,
15 mana,
16 name,
17 hp};
18
19 // now we use object spread
20 return {...wizard,
21 ...canBeIdentifiedByNameMixin,
22 ...canCastSpellsMixin
23 };
24 }
25
26 const merlin = WizardIntersection('spirit', 200, 'Merlin', 200);
27 // merlin.steal(conan);
28 // => [ts] Property 'steal' does not exist
29 // on type 'WizardProps & NameMixin & SpellMixin'.

In the same way that we have a Intersection Types that result in a type that is a
combination of other types we also have the ability to make a type that can be any of
a series of types, that is, either string or number or other type. We call these types
Union Types. They are often used when you have overloaded functions or methods
that may take a parameter with varying types.

Take a look at the following function that raises an skeleton army:

 1 function raiseSkeleton(numberOrCreature){
 2 if (typeof numberOrCreature === "number"){
 3 raiseSkeletonsInNumber(numberOrCreature);
 4 } else if (typeof numberOrCreature === "string") {
 5 raiseSkeletonCreature(numberOrCreature);
 6 } else {
 7 console.log('raise a skeleton');
 8 }
 9
10 function raiseSkeletonsInNumber(n){
11 console.log('raise ' + n + ' skeletons');
12 }
13 function raiseSkeletonCreature(creature){
14 console.log('raise a skeleton ' + creature);
15 };
16 }

Depending on the type of numberOrCreature the function above can raise skeletons
or skeletal creatures:

1 raiseSkeleton(22);
2 // => raise 22 skeletons
3
4 raiseSkeleton('dragon');
5 // => raise a skeleton dragon

We can add some TypeScript goodness to the raiseSkeletonTS function using
union types:

 1 function raiseSkeletonTS(numberOrCreature: number | string){
 2 if (typeof numberOrCreature === "number"){
 3 raiseSkeletonsInNumber(numberOrCreature);
 4 } else if (typeof numberOrCreature === "string") {
 5 raiseSkeletonCreature(numberOrCreature);
 6 } else {
 7 console.log('raise a skeleton');
 8 }
 9
10 function raiseSkeletonsInNumber(n: number){
11 console.log('raise ' + n + ' skeletons');
12 }
13 function raiseSkeletonCreature(creature: string){
14 console.log('raise a skeleton ' + creature);
15 };
16 }

The number | string is a Union Type that allows numberOrCreature to be of type
number or string. If we by mistake use something else, TypeScript has our backs:

1 raiseSkeletonTS(['kowabunga'])
2 // => [ts] Argument of type 'string[]' is not assignable
3 // to parameter of type 'string | number'.
4 // Type 'string[]' is not assignable to type 'number'.

Type Guards

Union types raise a special case inside the body of a function. If numberOrCreature
can be a number or a string, how does TypeScript now which methods are
supported? Number methods differ greatly from String methods, so what is allowed?

When TypeScript encounters a union type as in the function above, by default, you’ll
only be allowed to used methods and properties that are available in all the types
included. It is only when you do a explicit conversion or include a type guard that
TypeScript will be able to determine the type in use and be able to assist you.
Fortunately, TypeScript will recognize type guards that are common JavaScript
patterns, like the typeof that we used in the previous example. After performing a

type guard if (typeof numberOrCreature === "number") TypeScript will know
with certainty that whatever piece of code you execute inside that if block the
numberOrCreature will be of type number.

Type Aliases

Another helpful mechanism that works great with Intersection and Union Types are
Type Aliases. Type Aliases allow you to provide arbitrary names (aliases) to refer to
other types. Tired of writing this Intersection Type?

1 WizardProps & NameMixin & SpellMixin

You can create an alias Wizard and use that instead:

1 type Wizard = WizardProps & NameMixin & SpellMixin;

This alias will allow you to improve the Wizard factory from previous examples:

 1 function WizardAlias(element: string, mana: number,
 2 name : string, hp: number): Wizard {
 3 let wizard: WizardProps = {element,
 4 mana,
 5 name,
 6 hp};
 7
 8 // now we use object spread
 9 return {...wizard,
10 ...canBeIdentifiedByNameMixin,
11 ...canCastSpellsMixin
12 };
13 }

More Type Annotations!

Although I’ve tried to be quite comprehensive in covering TypeScript within this
final chapter of the book, there’s plenty more features and interesting things that I
won’t be able to cover unless I write a complete book on TypeScript.

If you are interested into learning more about all the cool stuff that you can do with
TypeScript type annotations then let me insist once more in the TypeScript handbook
and at the release notes.

Working with TypeScript in Real World Applications
So TypeScript is great, it gives you lots of great new features on top of ES6 and an
awesome developer experience via type annotations, but how do you start using it in
real world applications?

http://bit.ly/ts-handbook
http://bit.ly/ts-whats-new

The good news is that you’ll rarely need to create a TypeScript setup from scratch.
The most popular front-end frameworks have built-in support for TypeScript. For
instance, TypeScript is the main language of choice for Angular and starting a new
project with Angular and TypeScript is as easy as using the Angular cli and typing:

1 $ ng new my-new-app

Likewise using React and the Create React App tool (also known as CRA) starting a
React project with TypeScript takes only typing29:

1 $ create-react-app my-new-app --scripts-version=react-scripts-ts

If you use any of these options above you’re good to go. In either case a new app
will be bootstrapped for you and you’ll be able to start building your Angular or
React app with TypeScript.

On the other hand, if you, for some reason, need to start from scratch you’ll find that
there are TypeScript plugins for the most common task managers or module bundlers
like grunt, gulp or webpack. While integrating TypeScript into your tool chain
there’s one additional step that you may need to take in order to configure the
TypeScript compiler: setting up your tsconfig file.

The tsconfig.json File
The tsconfig.json file contains the TypeScript configuration for your project. It
tells the TypeScript compiler about all the details in needs to know to compile your
project like:

Which files to transpile
Which files to ignore
Which version of JavaScript to use as a target of the transpilation
Which module system to use in the output JavaScript
How strict the compiler should be. Should it allow implicit any? Should it
perform strict null checks?
Which third-party libraries types to load

If you don’t specify part of the information, the TypeScript compiler will try to do its
best. For instance, not specifying any files to transpile will prompt the TypeScript
compiler to transpile all TypeScript files (*.ts) within the project folder. Not
specifying any third-party types will lead the TypeScript compiler to look for type
definition files within your project (f.i. within ./node_modules/@types).

http://bit.ly/ts-plugins

This is an example tsconfig.json from the TypeScript documentation that can give
you an idea:

 1 {
 2 "compilerOptions": {
 3 "module": "system",
 4 "noImplicitAny": true,
 5 "removeComments": true,
 6 "preserveConstEnums": true,
 7 "outFile": "../../built/local/tsc.js",
 8 "sourceMap": true
 9 },
10 "include": [
11 "src/**/*"
12],
13 "exclude": [
14 "node_modules",
15 "**/*.spec.ts"
16]
17 }

For a full reference of all the available options take a look at the TypeScript
documentation.

In This Chapter’s Examples We Didn’t Use A tsconfig. How Come?
The TypeScript compiler tsc has two different modes of operation: with or without input
files. When you don’t specify input files while executing tsc the TypeScript compiler will
try to find an available tsconfig.json file with its configuration. When you do specify
input files the TypeScript compiler will ignore tsconfig.json. That is why in previous
sections we didn’t need to define a tsconfig.json file when we run tsc hello-wizard.ts.

TypeScript and Third Party Libraries
Starting from TypeScript 2.0 installing type declarations for third party libraries is as
easy as installing any other library via npm.

Imagine that you want to take advantage of ramda.js a library with helpful utility
functions with a strong functional programming flavor that we’ll see in-depth in the
functional programming tome of JavaScript-mancy.

You can add the library to your TypeScript project using npm:

http://bit.ly/tsc-options
http://ramdajs.com/

1 # create package.json
2 $ npm init
3
4 # install ramda and save dependency
5 $ npm install --save ramda

And you can install the type declarations for that library using @types/<name-of-
library-in-npm>:

1 $ npm install --save-dev @types/ramda

Now when you start working on your project within Visual Studio Code or your
editor of choice you should get full type support when using ramda.js. Try writing
the snippet below and verify how TypeScript helps you along the way:

1 import { add } from 'ramda';
2
3 const add5 = add(5);
4
5 console.log(`5 + 5: ${add5(5)}`);
6 console.log(`5 + 10: ${add5(1)}`);

All these type definitions come from the DefinitelyTyped project and are pushed
periodically to npm under the @types/ prefix as a convention. If you can’t find the
type declarations for a particular library use the TypeSearch web app to find it (You
can try stampit from the stamps chapter section for instance).

Concluding
And that is TypeScript! This was the longest chapter in the book but I hope that it
was entertaining and interesting enough to carry you to the end. Let’s make a quick
recap so you get a quick reminder that’ll help you remember all the TypeScript
awesomeness you’ve just learned.

TypeScript is a superset of JavaScript that includes a lot of ESnext features and type
annotations. By far, the defining feature of TypeScript are its use of types. Type
annotations allow you to provide additional metadata about your code that can be
used by the TypeScript compiler to provide a better developer experience for you
and your team at the expense of code verbosity.

TypeScript is a superset of ES6 and expands on its features with a lot of ESnext
improvements and TypeScript specific features. We saw several ESnext features like
class members and the new Objects spread and rest operators. We also discovered

http://definitelytyped.org/
http://bit.ly/ts-search

how TypeScript enhances classes with parameter properties and property accessors,
and brings a new Enum type that allows you to write more intentional code.

Type Annotations are TypeScript’s bread and butter. TypeScript extends JavaScript
with new syntax and semantics that allow you to provide rich information about your
application types. In addition to being able to express primitive types, TypeScript
introduces interfaces, generics, intersection and union types, aliases, type guards,
etc… All of these mechanisms allow you to do a new type of meta-programming that
lets you improve your development experience via type annotations. Still adding
type annotations can be a little daunting and a lot of work, in order to minimize this,
TypeScript attempts to infer as much typing as it can from your code.

In the spirit of JavaScript and duck-typing, TypeScript has a structural typing
system. This means that types will be equivalent if they share the same structure, that
is, if they have the same properties. This is opposed to nominal typing systems like
the ones used within C# or Java where type equivalence is determined by explicitly
implementing types. Structural typing is great because it gives you a lot of flexibility
and, at the same time, great compile-time error detection and improved tooling.

In the front-end development world we’re seeing an increased adoption of
TypeScript, particularly, as it has become the core language for development in
Angular. Moreover, it is also available in most of the common front-end
frameworks, IDEs, tex-editors and front-end build tools. It is also well supported in
third-party libraries through type definitions and the DefinitelyTyped project, and
installing type definitions for a library is as easy as doing an npm install.

From a personal perspective, one of the things I enjoyed the most about JavaScript
coming from the world of C# was its terseness and the lack of ceremony and
unnecessary artifacts. All of the sudden, I didn’t need to write PurchaseOrder
purchaseOrder or Employee employee any more, an employee was an employee,
period. I didn’t need to write a seemingly infinite amount of boilerplate code to
make my application flexible and extensible, or fight with the language to bend it to
my will, things just worked. As I saw the release of TypeScript I worried about
JavaScript losing its soul and becoming a language as rigid as C# or Java. After
experiencing TypeScript developing Angular applications, its optional typing, the
great developer experience and, above all, the fact that it has structural typing I am
hopeful. It’ll be interesting to follow its development in the upcoming months and
years. It may well be that all of us will end up writing TypeScript for a living.

mooleen.says('You shall only use types!?...');

bandalf.says("I've got my magic back... " +
 "but for some reason it won't... work");

mooleen.says("I, too, can feel the bond with the " +
 "currents of magic again");

randalf.says("The Order of the Red Moon...");

red.says("There are our weapons! Under the obelisk!");

/*
The group makes a precarious circle beside the obelisk as
the hordes of lizard-like beast surround them.
*/

randalf.says("types... Yes! " +
 "Now I remember, The Last Stand and the Sacred Order. " +
 "Their story lies between history and legend. " +
 "It is said that they cultivated an obscure " +
 "flavor of JavaScriptmancy. The legends say that " +
 "they expanded it and enriched it with types...");

bandalf.says("Excellent. And what does that mean?");

rat.says("It means we're dead");
red.says("A glorious death!");

randalf.says("Well they were a very guarded Order " +
 "and they were exterminated to the last woman " +
 "in The Last Stand or so the story says..." +
 "In the deep jungles of Azons.");

mooleen.whispers("Azons...");

/*
 The sisters surround her on the battlements,
 all wearing the black of the order in full armor.
 The fort has an excellent view of the thick,
 beautiful jungle below and of the unending hosts
 of lizardmen surrounding them.
 The Grand Commander shouts: 'To Arms sisters!'
 'For one last time!'
*/

mooleen.says("Types... Types... Types!");
mooleen.says("I remember...");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions downloading the
source code from GitHub.

Earn Some Time! A wall of ice!
The beasts are quickly approaching, gain some breathing room by erecting an ice wall
between them and the group. The wall should be at least 100 feet high, 7 feet deep and 700
feet long to be able to surround the group.

The Wall should satisfy the following snippet:

 1 const iceWall = new Wall(MagicElement.Ice, {
 2 height: 100,
 3 depth: 7,
 4 length: 700});
 5

 6 console.log(iceWall.toString());
 7 // => A wall of frozen ice. It appears to be about 100 feet high
 8 // and extends for what looks like 700 feet.
 9

10 iceWall.element = MagicElement.Fire;
11 // => [ts] Cannot assign to 'element' because it is
12 // a constant or a read-only property.
13 iceWall.wallOptions.height = 100;
14 // => [ts] Cannot assign to 'height' because it is
15 // a constant or a read-only property.

Hint: You can use an enum to represent the MagicElement, an interface to represent the
WallSpecifications and a class for the Wall itself. Remember to add type annotations!

Solution
 1 enum MagicElement {
 2 Fire = "fire",
 3 Water = "water",
 4 Earth = "earth",
 5 Air = "windy air",
 6 Stone = "hard stone",
 7 Ice = "frozen ice"

https://github.com/vintharas/javascriptmancy-code-samples

 8 }
 9

10 interface WallSpecs{
11 readonly height: number,
12 readonly depth: number,
13 readonly length: number
14 }
15

16 class Wall {
17 constructor(readonly element: MagicElement,
18 readonly specs: WallSpecs){ }
19

20 toString(){
21 return `A wall of ${this.element}. It appears to be about ` +
22 `${this.specs.height} feet high and extends for what ` +
23 `looks like ${this.specs.length} feet.`;
24 }
25 }
26

27 const iceWall = new Wall(MagicElement.Ice, {
28 height: 100,
29 depth: 7,
30 length: 700});
31

32 console.log(iceWall.toString());
33 // => A wall of frozen ice. It appears to be about 100 feet high
34 // and extends for what looks like 700 feet long.
35

36 // iceWall.element = MagicElement.Fire;
37 // => [ts] Cannot assign to 'element' because it is
38 // a constant or a read-only property.
39 // iceWall.wallOptions.height = 100;
40 // => [ts] Cannot assign to 'height' because it is
41 // a constant or a read-only property.
42

43 world.randalf.gapes()
44 // => Randalf gapes
45

46 world.randalf.says('How?');
47 world.mooleen.says('I just remembered...');
48

49 world.randalf.says('Remember?');
50 world.randalf.says("You look very young for being millennia old");
51

52 world.mooleen.shrugs();
53 // => Moleen shrugs
54 world.mooleen.says("Brace yourselves... they're coming " +
55 "beware if they open their jaws and seem to catch breath " +
56 "they breathe fire");

Freeze The Lizards!
You’ve earned some time. Now you can take this breather to observe the lizards, model
them appropriately and craft a frost spell that will send them to the lizard frozen hell.

This is what you can observe:

 1 giantLizard.jumps();
 2 // => The giant lizard gathers strength in its
 3 // 4 limbs and takes a leap through the air
 4 giantLizard.attacks(red);
 5 // => The giant lizard attacks Red with great fury
 6 giantLizard.breathesFire(red);
 7 // => The giant lizard opens his jaws unnaturally wide
 8 // takes a breath and breathes a torrent of flames
 9 // towards Red
10 giantLizard.takeDamage(Damage.Physical, 20);
11 // => The giant lizard has extremely hard scales
12 // that protect it from physical attacks (Damage 50%)
13 // You damage the giant lizard (-10hp)
14 giantLizard.takeDamage(Damage.Cold, 20);
15 // => The giant lizard is very sensitive to cold.
16 // It wails and screams. (Damage 200%)
17 // You damage the giant lizard (-40hp)

Create a frost spell that fulfills this snippet:

1 frost(giantLizard, /* mana */ 10);
2 // => The air surrounding the target starts quickly forming a
3 // frozen halo as the water particles start congealing.
4 // All of the sudden it explodes into freezing ice crystals
5 // around the giant lizard.
6 // The giant lizard is very sensitive to cold.
7 // It wails and screams. (Damage 200%)
8 // You damage the giant lizard (-2000hp)

Hint: Create a interface using the observations above and use that new type in your frost
function. Reflect about the required contract to cause damage on an enemy.

Solution
 1 enum DamageType {
 2 Physical,
 3 Ice,
 4 Fire,
 5 Poison
 6 }

 7

 8 // We only need an interface that
 9 // describes something that can be damaged
10 interface Damageable{
11 takeDamage(damageType: DamageType, damage: number);
12 }
13

14 function frost(target: Damageable, mana: number){
15 // from the example looks like damage
16 // can be calculated based on mana
17 const damage = mana * 100;
18 console.log(
19 `The air surrounding the target starts quickly forming a ` +
20 `frozen halo as the water particles start congealing. ` +
21 `All of the sudden it explodes into freezing ice crystals ` +
22 `around the ${target.toString()}.`);
23 target.takeDamage(DamageType.Ice, damage);
24 }
25

26 console.log('A giant lizard leaps inside the wall!');
27 // this method returns a Lizard object (see samples)
28 const giantLizard = world.getLizard();
29

30 world.mooleen.says('And that is as far as you go');
31

32 frost(giantLizard, /* mana */ 2);
33 // => The air surrounding the target starts quickly forming a
34 // frozen halo as the water particles start congealing.
35 // All of the sudden it explodes into freezing ice crystals
36 // around the giant lizard.
37 // The giant lizard is very sensitive to cold.
38 // It wails and screams. (Damage 200%)
39 // You damage the giant lizard (-400hp)
40 // The giant lizard dies.
41

42 world.mooleen.laughsWithGlee();
43 // => Mooleen laughs with Glee
44

45 /*
46 More and more lizards make it into the fortified area.
47 Mooleen, Red, randalf and bandalf form a semicircle against
48 the obsidian obelisk and fight fiercely for every inch.
49 When the lizards are about to overwhelm the group a huge furry
50 figure flashes in front of them charging through the lizard
51 front line and causing enough damage to let the company regroup.
52 */
53

54 world.mooleen.says('What?');
55 world.rat.says('Happy to serve!');
56

57 world.mooleen.says('You can do that?!');
58 world.rat.says('Err... we familiars are very flexible creatures');
59

60 world.mooleen.says("Why didn't you say it before?");
61 world.rat.says("Oh... the transformation is incredibly painful");
62 world.rat.says("And I bet you'd want to ride on my back." +
63 "I'm not putting up with that");

Wholesale Destruction!
Killing the beasts one by one won’t cut it. We need a more powerful spell that can
annihilate them in groups. Design an iceCone spell that can impact several targets at once.

It should fulfill the following snippet of code:

 1 iceCone(lizard, smallerLizard, greaterLizard);
 2 // => Cold ice crystals explode from the palm of your hand
 3 // and impact the lizard, smallerLizard, greaterLizard.
 4 // The lizard is very sensitive to cold.
 5 // It wails and screams. (Damage 200%)
 6 // You damage the giant lizard (-500hp)
 7 // The smaller lizard is very sensitive to cold.
 8 // It wails and screams. (Damage 200%)
 9 // You damage the giant lizard (-500hp)
10 // etc...

Hint: you can use rest parameters and array type annotations!

Solution
 1 function iceCone(...targets: Damageable[]){
 2 const damage = 500;
 3 console.log(`
 4 Cold ice crystals explode from the palm of your hand
 5 and impact the ${targets.join(', ')}.`);
 6 for(let target of targets) {
 7 target.takeDamage(DamageType.Ice, damage);
 8 }
 9 }
10

11 iceCone(getLizard(), getLizard(), getLizard());
12 // => Cold ice crystals explode from the palm of your hand
13 // and impact the giant lizard, giant lizard, giant lizard.
14 // The giant lizard is very sensitive to cold.
15 // It wails and screams. (Damage 200%)
16 // You damage the giant lizard (-1000hp)
17 // The giant lizard dies.
18 // etc...
19

20 world.mooleen.says('Yes!');
21

22 /*
23 Mooleen looks around. She's fending off the lizards fine but
24 her companions are having some problems.
25

26 Red is deadly with the lance and shield but his lance,
27 in spite of of his massive strength, hardly penetrates

28 the lizards' thick skin.
29

30 Bandalf is slowly catching up and crafting ice spells
31 and Randalf, though, a master with the quarterstaff can
32 barely fend off the attacks from a extremely huge lizard.
33

34 Things start to look grimmer and grimmer as more lizards jump over
35 the wall around the obelisk.
36 */
37

38 world.mooleen.says('I need to do something quick');

Empower Your Companions with Enchantments!
Things are looking grim. Your only chance is to empower your companions so that you can
offer a strong united front against the growing host of enemies. Craft an enchant spell that
can enchant weapons and armor with elemental properties.

The enchant spell should satisfy the following snippet of code:

 1 quarterstaff.stats();
 2 // => Name: Crimson Quarterstaff
 3 // => Damage Type: Physical
 4 // => Damage: d20
 5 // => Bonus: +20
 6 // => Description: A quarterstaff of pure red
 7

 8 enchant(quarterstaff, MagicElement.Ice);
 9 // => You enchant the Crimson Quarterstaff with a frozen
10 // ice incantation
11 // The weapon gains Ice damage and +20 bonus damage
12

13 quarterstaff.stats();
14 // => Name: Crimson Quarterstaff
15 // => Damage Type: Ice
16 // => Damage: d20
17 // => Bonus: +40
18

19 cloak.stats();
20 // => Name: Crimson Cloak
21 // => Type: cloak
22 // => Protection: 20
23 // => ElementalProtection: none
24 // => Description: A cloak of pure red
25

26 enchant(cloak, MagicElement.Fire);
27 // => You enchant the Crimson Cloak with a fire incantation
28 // The Crimson Cloak gains +20 fire protection
29

30 cloak.stats();
31 // => Name: Crimson Cloak
32 // => Type: cloak
33 // => Protection: 20
34 // => ElementalProtection: Fire (+20)
35 // => Description: A cloak of pure red

Hint: Use union types and type guards within the enchant spell to allow it to enchant both
Weapon and Armor

Solution

 1 class Weapon {
 2 constructor(public name: string,
 3 public damageType: DamageType,
 4 public damage: number,
 5 public bonusDamage: number,
 6 public description: string){}
 7 stats(){
 8 return `
 9 Name: ${this.name}
 10 Damage Type: ${this.damageType}
 11 Damage: d${this.damage}
 12 Bonus: +${this.bonusDamage}
 13 Description: ${this.description}
 14 `;
 15 }
 16

 17 toString() { return this.name; }
 18 }
 19

 20 enum ArmorType {
 21 Cloak = 'cloak',
 22 Platemail = 'plate mail'
 23 }
 24

 25 interface ElementalProtection {
 26 damageType: DamageType;
 27 protection: number;
 28 }
 29

 30 class Armor {
 31 elementalProtection: ElementalProtection[] = [];
 32 constructor(public name: string,
 33 public type: ArmorType,
 34 public protection: number,
 35 public description: string){}
 36 stats(){
 37 return `
 38 Name: ${this.name}
 39 Type: ${this.type}
 40 Protection: ${this.protection}
 41 ElementalProtection: ${this.elementalProtection.join(', ') || 'none'}
 42 Description: ${this.description}
 43 `;
 44 }
 45 toString() { return this.name; }
 46 }
 47

 48 function enchant(item: Weapon | Armor, element: MagicElement){
 49 console.log(`You enchant the ${item} with a ${element} incantation\
 50 `);
 51 if (item instanceof Weapon){
 52 enchantWeapon(item, element);
 53 } else{
 54 enchantArmor(item, element);
 55 }
 56

 57 function enchantWeapon(weapon: Weapon, element: MagicElement){
 58 const bonusDamage = 20;
 59 weapon.damageType = mapMagicElementToDamage(element);
 60 weapon.bonusDamage += bonusDamage;
 61 console.log(`The ${item} gains ${bonusDamage} ` +

 62 `${weapon.damageType} damage`);
 63 }
 64 function enchantArmor(armor: Armor, element: MagicElement){
 65 const elementalProtection = {
 66 damageType: mapMagicElementToDamage(element),
 67 protection: 20,
 68 toString(){ return `${this.damageType} (+${this.protection})`}
 69 };
 70 armor.elementalProtection.push(elementalProtection);
 71 console.log(`the ${item} gains ${elementalProtection.protection}\
 72 ` +
 73 ` ${elementalProtection.damageType} incantation`);
 74 }
 75 }
 76

 77 function mapMagicElementToDamage(element: MagicElement){
 78 switch(element){
 79 case MagicElement.Ice: return DamageType.Ice;
 80 case MagicElement.Fire: return DamageType.Fire;
 81 default: return DamageType.Physical;
 82 }
 83 }
 84

 85 let quarterstaff = getQuarterstaff();
 86 console.log(quarterstaff.stats());
 87 // => Name: Crimson Quarterstaff
 88 // Damage Type: Physical
 89 // Damage: d20
 90 // Bonus: +20
 91 // Description: A quarterstaff of pure red
 92

 93 enchant(quarterstaff, MagicElement.Ice);
 94 // => You enchant the Crimson Quarterstaff with a frozen ice incanta\
 95 tion
 96 // The Crimson Quarterstaff gains 20 Ice damage
 97

 98 console.log(quarterstaff.stats());
 99 // Name: Crimson Quarterstaff
100 // Damage Type: Ice
101 // Damage: d20
102 // Bonus: +40
103 // Description: A quarterstaff of pure red
104

105 let cloak = getCloak();
106 console.log(cloak.stats());
107 // Name: Crimson Cloak
108 // Type: cloak
109 // Protection: 20
110 // ElementalProtection: none
111 // Description: A cloak of pure red
112

113 enchant(cloak, MagicElement.Fire);
114 // You enchant the Crimson Cloak with a fire incantation
115 // the Crimson Cloak gains 20 Fire incantation
116

117 console.log(cloak.stats());
118 // Name: Crimson Cloak
119 // Type: cloak
120 // Protection: 20
121 // ElementalProtection: Fire (+20)
122 // Description: A cloak of pure red

123

124 world.mooleen.says('Awesome! This will do!');
125

126 /*
127

128 As soon as Mooleen enchants the group's weapons and
129 armor the battle takes a different turn. Where previously
130 a lizard would've remained impassible after receiving a wound
131 now there's wails and shouts of beast pain surrounding
132 the group...
133

134 */
135

136 world.mooleen.says('haha! To Arms Sisters!');
137 world.red.says('What?');

TOME II. EPILOGUE

/*
*
* The fighting ensues for hours, spell after spell,
* parrying after parrying, thrust after thrust.
* At the end the group stands exhausted, back
* against back. Each one supporting each other
* because no one can stand on its own.
*
* They look tired, bloodied but defiant, surrounded
* by seemingly unending numbers of lizard corpses.
* As the last lizard falls Red smacks his battle lance
* against his shield and starts laughing.
*/

red.says('This was glorious!');

mooleen.says('Now what... Do we gain our freedom back?' +
 "Isn't it how it typically works?");

mooleen.shouts("Isn't it how it works!!");

/*
The winged creatures in the alcoves and terraces above
shuffle and move disconcerted above.
*/

voice.thunders('#3. Only One Shall Remain');

mooleen.shouts("We won! We are the last one standing!");

voice.thunders('Only... **One**... Shall Remain');

randalf.says("Peachy. Now they want us to kill each other.");

End of book two. This one took me almost a year longer that I had anticipated. I
really hope that you enjoyed it and learned a lot of interesting stuff along the way.
Go JavaScript! :)

Have a wonderful day ahead! _

– Jaime, your humble servant

Thank you!

Thank you dear reader for choosing this book. You’ve given me the most
valuable thing you have on this earth, your time, and I really hope that you’ve
found that time that you’ve spent on this book valuable and enjoyable.

What follows is a recollection of all the people that have contributed to make this
book better.

I would like to start by thanking my beloved wife Malin who’s infinitely patient and
supportive of me. She’s the best listener in the history of mankind and an awesome
person to exchange ideas with. Also my son Teo who has taught me a new meaning
to the expression unconditional love, how infinitely cute babies are, that not all
babies look the same and how to be super productive in small intervals of 14 minutes
spread throughout the day.

My beloved parents Ricardo and Berta, and my sister Sofia. I’d like to thank my dad
Ricardo for been loving, for pushing me to be excellent, and for been The Scourge of
God all the times I slacked off throughout my life. I’d like to thank my mum Berta
for her infinite love and care, and for her love of books that I seem to have inherited.
Thank you Sofia for always taking care of me far better than I take care of you as an
older brother.

I would also like to thank all the people that in smaller or greater measure helped me
ensure the quality of this book. Infinite thanks to Artur Mizera for his numerous
notes, comments, improvements, thorough reviews of the code samples and
encouragement. Thank you Nathan Gloyn for being the first person to step up and
volunteer to help me review the JavaScript-mancy series. Thank you Andreas
Backlund for your helpful notes, advice, kind comments and encouragement. Thank
you Kari Helgason for your thorough reviews of the first chapters of the book,
thoughtful recommendations and encouraging comments.

Finally, I’d like to thank all the awesome members of the JavaScript, Angular and
.NET communities, you public speakers, you open source contributors, you platform
builders, you authors and bloggers, you conference or meetup organizers, you

meetup attendees, you anonymous developer sitting at home, thank you for making
the web such a wonderful and exciting place.

REFERENCES AND APPENDIX

Appendix A. On the Art of Summoning
Servants and Critters, Or Understanding The
Basics of JavaScript Objects

Things are ideas,
ideas are abstractions,
abstractions are objects,
objects are things.

That's the secret of JavaScript-mancy

 - Branden Iech,
 Meditations

 1 mooleen.says('So... am I supposed to fix the world?');
 2 randalf.says('Yep, you are our only hope. Let me show you something'\
 3);
 4

 5 /*
 6 * Randalf begins walking towards a nearby dune and signals Mooleen t\
 7 o follow.
 8 * After 20 minutes of crossing dunes, up and down, and up and down a\
 9 gain,
10 * they arrive to the top of higher dune and Randalf stops.
11 */
12

13 randalf.says('Tell me Mooleen. What do you see?');
14 mooleen.looksAround();
15 mooleen.says('I see sand... and more sand');
16

17 randalf.says("Welcome to the White City of Gigia, Gigia the magnific\
18 ent " +
19 "with its high white marble walls, its beautiful garden\
20 s, " +
21 "its bustling markets and its 1337 towers!!");
22

23 mooleen.looksAround();
24 /*
25 The wind blows and a tumbleweed slowly rolls beside them and cont\
26 inues
27 rolling until it disappears into the distance.
28 */
29

30 randalf.says("My point exactly... There's no trace of Gigia, of its \
31 walls," +
32 " its gardens, its markets, its towers, its people.");
33

34 mooleen.says("They did this?");
35

36 randalf.says("Yes, they did this and worse. That's why you'll need a\
37 n army");

An Army of Objects
Hello JavaScriptmancer! It is time to get an introduction to the basics of objects in
JavaScript. In this chapter you’ll learn the beauty of the object initializer and the nice
improvements ES6 brings to objects. If you think that you already know this stuff,
think twice! There is more than one surprise in this chapter and I promise that you’ll
learn something new by the end of it.

Let’s get started! We’ll start by concentrating our efforts in the humble object
initializer. This will provide a foundation that we can use later when we come to the
tome of object-oriented programming in JavaScript and prototypical inheritance.

Objects it is!

Object Initializers (a.k.a. Object Literals)

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsBin or
downloading the source code from GitHub.

The simplest way to create an object in JavaScript is to use an object initializer:

1 var critter = {}; // {} is an empty object initializer

You can add properties and methods inside your object initializer to your heart’s
content:

 1 critter = {
 2 position: {x: 0, y: 0},
 3 movesTo: function (x, y){
 4 console.log(this + ' moves to (' + x + ',' + y + ')');
 5 this.position.x = x;
 6 this.position.y = y;
 7 },
 8 toString: function(){
 9 return 'critter';
10 },
11 hp: 40
12 }

And, of course, if you call a method within the critter object it behaves as you
have come to expect from any good self-respecting method:

1 critter.moveTo(10, 10);
2 // => critter moves to (10,10)

As you saw in the introduction of the book, you can augment any1 object at any time
with new properties:

1 critter.damage = 1;
2 critter.attacks = function(target) {
3 console.log(this + ' rabidly attacks ' + target +
4 ' with ' + this.damage + ' damage');
5 target.hp-=this.damage;
6 };

http://bit.ly/javascriptmancy-objects-basics
https://github.com/vintharas/javascriptmancy

And use these new abilities to great devastation:

1 var rabbit = {hp:10, toString: function(){return 'rabbit';}};
2
3 critter.attacks(rabbit);
4 // => critter rabidly attacks rabbit with 1 damage

Alternatively, you can access any property and method within an object by using the
indexing notation via []:

1 critter['attacks'](rabbit);
2 // => critter rabidly attacks rabbit with 1 damage

Although a little bit more verbose, this notation lets you use special characters as
names of properties and methods:

 1 critter['sounds used when communicating'] = ['beeeeeh', 'grrrrr', 't\
 2 jjiiiiii'];
 3 critter.saysSomething = function(){
 4 var numberOfSounds = this['sounds used when communicating'].length,
 5 randomPick = Math.floor(Math.random()*numberOfSounds);
 6
 7 console.log(this['sounds used when communicating'][randomPick]);
 8 };
 9
10 critter.saysSomething();
11 // => beeeeeeh (random pick)
12 critter.saysSomething();
13 // => tjjiiiii (random pick)

As you can see in many of the examples above, you can use the this keyword to
reference the object itself and thus access other properties within the same object.

JavaScript Arcana: This in JavaScript
From my experience, this is the biggest source of problems for a C# developer moving to
JavaScript. We are so accustomed to work with classes and objects in C#, to be able to
blindly rely in the value of this, that when we move to JavaScript, where the behavior of
this is so completely undependable, we explode in frustration and anger.

Since this is such a big part of the JavaScript Arcana, I devote the whole next chapter to
demystifying it for you. For now, just remember that when calling a method on a object
using the dot notation, like in critter.moveTo, the value of this is mostly2 trustworthy.

Getters and Setters
Getters and setters are an often overlooked feature within object initializers. You’ll
even find fairly seasoned JavaScript developers that don’t know about their
existence. They work exactly like C# properties and look like this:

 1 var mouse = {
 2 strength: 1,
 3 dexterity: 1,
 4 get damage(){ return this.strength*die20() + this.dexterity*die8()\
 5 ;},
 6 attacks: function(target){
 7 console.log(this + ' ravenously attacks ' + target +
 8 ' with ' + this.damage + ' damage!');
 9 target.hp-=this.damage;
10 },
11 toString: function() { return 'mouse';}
12 }

Notice the strange get damage() function-like thingy? That’s a getter. In this case, it
represents the read-only property damage that is calculated from other two properties
strength and dexterity.

1 mouse.attacks(rabbit);
2 // => mouse ravenously attacks rabbit with 19 damage!
3 mouse.attacks(rabbit);
4 // => mouse ravenously attacks rabbit with 15 damage!

Getters are extremely useful when you need to define computed properties, that is,
properties described in terms of other existing properties. They save you from
needing to keep additional and unnecessary state that brings the additional burden of
keeping it in sync with the properties it depends on (in this case strength and
dexterity).

We can also use a backing field to perform additional steps or validation:

 1 var giantBat = {
 2 _hp: 1,
 3 get hp(){ return this._hp;},
 4 set hp(value){
 5 if (value < 0) {
 6 console.log(this + ' dies :(')
 7 this._hp = 0;
 8 } else {
 9 this._hp = value;
10 }
11 },
12 toString: function(){
13 if (this.hp > 0){
14 return 'giant bat';
15 } else {

16 return 'a dead giant bat';
17 }
18 }
19 };

In this example we ensure that the _hp property of the giant bat cannot go below 0
(because you can’t be deader than dead, unless you are a necromancer that is):

1 mouse.attacks(giantBat);
2 // => "mouse ravenously attacks giant bat with 23 damage!"
3 // => "giant bat dies :("
4 console.log(giantBat.toString());
5 // => a dead giant bat

JavaScript Arcana: Getters and Setters Are Not Augmenters
You may have noticed that I have created a couple of new objects for these two
examples instead of augmenting my beloved critter. Well, there was a reason for that.
You cannot augment objects with getters and setters in the same way that you add other
properties.

In this special case, you need to rely in the Object.defineProperty or
Object.defineProperties both methods also included in ES5. We will take a look at
these two low level methods later in the tome of OOP when we examine the mysteries
of object internals. Let’s go back to object initializers!

Method Overloading
Method overloading within object initializers works just like with functions. As we
saw in the previous chapter, if you try to overload a method following the same
pattern that you are accustomed to in C#:

 1 var venomousFrog = {
 2 toString: function(){
 3 return 'venomous frog';
 4 },
 5 jumps: function(meters){
 6 console.log(this + ' jumps ' + meters + ' meters in the air');
 7 },
 8 jumps: function(arbitrarily) {
 9 console.log(this + ' jumps ' + arbitrarily);
10 }
11 };

You’ll just succeed in overwriting the former jump method with the latter:

1 venomousFrog.jumps(10);
2 // => venomous frog jumps 10
3 // ups we have overwritten a the first jumps method

Instead, use any of the patterns that you saw in the previous chapter to achieve
method overloading. For instance, you can inspect the arguments being passed to the
jump function:

1 venomousFrog.jumps = function(arg){
2 if (typeof(arg) === 'number'){
3 console.log(this + ' jumps ' + arg + ' meters in the air');
4 } else {
5 console.log(this + ' jumps ' + arg);
6 }
7 };

This provides a naive yet functioning implementation of method overloading:

1 venomousFrog.jumps(10);
2 // => venomous frog jumps 10 meters
3 venomousFrog.jumps('wildly in front of you')
4 // => venomous frong jumps wildly in front of you

Creating Objects With Factories
Creating one-off objects through object initializers can be tedious, particularly
whenever you need more than one object of the same “type”. That’s why we often
use factories3 to encapsulate object creation:

 1 function monster(type, hp){
 2 return {
 3 type: type,
 4 hp: hp || 10,
 5 toString: function(){return this.type;},
 6 position: {x: 0, y: 0},
 7 movesTo: function (x, y){
 8 console.log(this + ' moves to (' + x + ',' + y + ')');
 9 this.position.x = x;
10 this.position.y = y;
11 }
12 };
13 }

Once defined, we can just use it to instantiate new objects as we wish:

1 var tinySpider = monster('tiny spider', /* hp */ 1);
2 tinySpider.movesTo(1,1);
3 // => tiny spider moves to (1,1)

1 var giantSpider = monster('giant spider', /* hp */ 200);
2 giantSpider.movesTo(10,10);

3 // => giant spider moves to (10,10);

There’s a lot of cool things that you can do with factories in JavaScript. Some of
them you’ll discover when you get to tome of OOP where we will see an alternative
to classical inheritance in the shape of object composition via mixins. In the
meantime let’s take a look at how to achieve data privacy.

Data Privacy in JavaScript
You may have noticed by now that there’s no access modifiers in JavaScript, no
private, public nor protected keywords. That’s because every property is
public, that is, there is no way to declare a private property by using a mere object
initializer. You need to rely on additional patterns with closures to achieve data
privacy, and that’s where factories come in handy.

Imagine that we have the previous example of our monster but now we don’t want to
reveal how we have implemented positioning. We would prefer to hide that fact from
prying eyes and object consumers. If we decide to change it in the future, for a three
dimensional representation, polar coordinates or who knows what, it won’t break any
clients of the object. This is part of what I call intentional programming, every
decision that you make, the interface that you build, the parts that you choose to
remain hidden or public, represent your intentions on how a particular object or API
should be used. Be mindful and intentional when you write code. Back to the
monster:

 1 function stealthyMonster(type, hp){
 2 var position = {x: 0, y: 0};
 3
 4 return {
 5 type: type,
 6 hp: hp || 10,
 7 toString: function(){return 'stealthy ' + this.type;},
 8 movesTo: function (x, y){
 9 console.log(this + ' moves stealthily to (' + x + ',' + y + ')\
10 ');
11 // this function closes over (or encloses) the position variab\
12 le
13 // position is NOT part of the object itself, it's a free vari\
14 able
15 // that's why you cannot access it via this.position
16 position.x = x;
17 position.y = y;
18 }
19 };
20 }

Let’s take a closer look to that example. We have extracted the position property
outside of the object initializer and inside a variable within the stealthyMonster
scope (remember that functions create scopes in JavaScript). At the same time, we
have updated the movesTo function, which creates its own scope, to refer to the
position variable within the outer scope effectively creating a closure.

Because position is not part of the object being returned, it is not accessible to
clients of the object through the dot notation. Because the movesTo becomes a
closure it can access the position variable within the outside scope. In summary, we
got ourselves some data privacy:

1 var darkSpider = stealthyMonster('dark spider');
2 console.log(darkSpider.position)
3 // now position is completely private
4 // => undefined
5
6 darkSpider.movesTo(10,10);
7 // => stealthy dark spider moves stealthily to (10,10)

ES6 Improves Object Initializers
ES6 brings some improvements to object initializers that reduce the amount of code
needed to create a new object. For instance, with ES6 you can declare methods
within objects using shorthand syntax:

 1 let sugaryCritter = {
 2 position: {x: 0, y: 0},
 3 // from movesTo: function(x, y) to...
 4 movesTo(x, y){
 5 console.log(`${this} moves to (${x},${y})`);
 6 this.position.x = x;
 7 this.position.y = y;
 8 },
 9 // from toString: function() to...
10 toString(){
11 return 'sugary ES6 critter';
12 },
13 hp: 40
14 };
15
16 sugaryCritter.movesTo(10, 10);
17 // => sugary ES6 critter moves to (10, 10)

As you can appreciate from the movesTo and toString methods in this example
above, using shorthand notation lets you skip the function keyword and collapse the
parameters of a function directly after its name.

Additionally you can apply shorthand syntax to object properties. When you write
factory functions you’ll often follow a pattern where you initialize object properties

based on the arguments passed to the factory function:

1 function simpleMonster(type, hp = 10){
2 return {
3 type: type,
4 hp: hp
5 };
6 }

Where you have a little bit of redundant code in type: type and hp: hp. Property
shorthand syntax removes the need to repeat yourself by letting you write the
property/value pair only once. So that the previous example turns into a much terser
factory method:

1 function simpleMonster(type, hp = 10){
2 return {
3 // with property shorthand we avoid the need to repeat
4 // the name of the variable twice (type: type)
5 type,
6 hp
7 };
8 }

And here you have a complete example where we use both method and property
shorthand to get the ultimate sugary monster:

 1 function sugaryStealthyMonster(type, hp = 10){
 2 let position = {x: 0, y: 0};
 3
 4 return {
 5 // with property shorthand we avoid the need to repeat
 6 // the name of the variable twice (type: type)
 7 type,
 8 hp,
 9 toString(){return `stealthy ${this.type}`;},
10 movesTo(x, y){
11 console.log(`${this} moves stealthily to (${x},${y})`);
12 position.x = x;
13 position.y = y;
14 }
15 };
16 }
17
18 let sugaryOoze = sugaryStealthyMonster('sugary Ooze', /*hp*/ 500);
19 sugaryOoze.movesTo(10, 10);
20 // => stealthy sugary Ooze moves stealthily to (10,10)

Finally, with the advent of ES6 you can use any expression as the name of an object
property. That is, you are no longer limited to normal names or using the square
brackets notation that handles special characters. From ES6 onwards you’ll be able
to use any expression and the JavaScript engine will evaluate it as a string (with the
exception of ES6 symbols which we’ll see in the next section). Take a look at this:

 1 let theArrow = () => 'I am an arrow';
 2
 3 let crazyMonkey = {
 4 // ES5 valid
 5 name: 'Kong',
 6 ['hates!']: ['mario', 'luigi'],
 7
 8 // ES6 computed property names
 9 [(() => 'loves!')()]: ['bananas'],
10 [sugaryOoze.type]: sugaryOoze.type
11 // crazier yet
12 [theArrow]: `what's going on!?`,
13 }

This example let’s you appreciate how any expression is valid. We’ve used the result
of evaluating a function (() => 'loves!')(), a property from another object
sugaryOoze.type and even an arrow function theArrow as property names. If you
inspect the object itself, you can see how each property has been intrepreted as a
string:

 1 console.log(crazyMonkey);
 2 // => [object Object] {
 3 // function theArrow() {
 4 // return 'I am an arrow';
 5 // }: "what's going on!?",
 6 // hates!: ["mario", "luigi"],
 7 // loves!: ["bananas"],
 8 // name: "Kong",
 9 // sugary Ooze: "sugary Ooze"
10 // }

And you can retrieve them with the [](indexing) syntax:

1 console.log(crazyMonkey[theArrow]);
2 // => "what's going on!?"

Use cases for this particular feature? I can only think of some pretty far-fetched edge
cases for dynamic creation of objects on-the-fly. That and using symbols as property
names wich gracefully brings us to ES6 symbols and how to take advantage of
them to simulate data privacy.

ES6 Symbols and Data Privacy
Symbols are a new type in JavaScript. They were conceived to represent constants
and to be used as identifiers for object properties. The specification even describes
them as the set of all non-string values that may be used as the key of an object
property 4. They are immutable and can have a description associated to them.

You can create a symbol using the Symbol function:

1 let anUndescriptiveSymbol = Symbol();
2 console.log(anUndescriptiveSymbol);
3 // => [object Symbol]
4 console.log(typeof anUndescriptiveSymbol);
5 // => symbol
6 console.log(anUndescriptiveSymbol.toString());
7 // => Symbol()

And you can add a description to the symbol by passing it as an argument to the
same function. This will be helpful for debugging since the toString method will
display that description:

1 // you can add a description to the Symbol
2 // so you can identify a symbol later on
3 let up = Symbol('up');
4 console.log(up.toString());
5 // => Symbol(up)

Each symbol is unique and immutable, so even if we create two symbols with the
same description, they’ll remain two completely different symbols:

1 // each symbol is unique and immutable
2 console.log(`Symbol('up') === Symbol('up')?? ${Symbol('up') === Symb\
3 ol('up')}`);
4 // => Symbol('up') === Symbol('up')?? false

ES6 symbols offer us a new approach to data privacy in addition to closures.
Properties that use a symbol as name (or key) can only be accessed by a reference to
that symbol (the very same symbol used to identify the property). Because of this
special characteristic, if you don’t expose a symbol to the outer world you have
provided yourself with data privacy. Let’s see how this works in practice:

 1 function flyingMonster(type, hp = 10){
 2 let position = Symbol('position');
 3
 4 return {
 5 [position]: {x: 0, y: 0},
 6 type,
 7 hp,
 8 toString(){return `stealthy ${this.type}`;},
 9 movesTo(x, y){
10 console.log(`${this} flies like the wind from` +
11 `(${this[position].x}, ${this[position].y}) to (${\
12 x},${y})`);
13 this[position].x = x;
14 this[position].y = y;
15 }
16 };
17 }
18
19 let pterodactyl = flyingMonster('pterodactyl');
20 pterodactyl.movesTo(10,10);
21 // => stealthy pterodactyl flies like the wind from (0,0) to (10,10)

Since outside of the flyingMoster function we don’t have a reference to the symbol
position (it is scoped inside the function), we cannot access the position property:

1 console.log(pterodactyl.position);
2 // => undefined

And because each symbol is unique we cannot access the property using another
symbol with the same description:

1 console.log(pterodactyl[Symbol('position')]);
2 // => undefined

If everything ended here the world would be perfect, we could use symbols for data
privacy and live happily ever after. However, there’s a drawback: The JavaScript
Object prototype provides the getOwnPropertySymbols method that allows you to
get the symbols used as properties within any given object. This means that after all
this trouble we can access the position property by following this simple procedure:

1 var symbolsUsedInObject = Object.getOwnPropertySymbols(pterodactyl);
2 var position = symbolsUsedInObject[0];
3 console.log(position.toString());
4 // => Symbol(position)
5 // Got ya!
6
7 console.log(pterodactyl[position]);
8 // => {x: 10, y: 10}
9 // ups!

So you can think of symbols as a soft way to implement data privacy, where you
give a clearer intent to your code, but where your data is not truly private. This
limitation is why I still prefer using closures over Symbols.

Concluding
In this chapter you learned the most straightforward way to work with objects in
JavaScript, the object initializer. You learned how to create objects with properties
and methods, how to augment existing objects with new properties and how to use
getters and setters. We also reviewed how to overload object methods and ease the
repetitive creation of objects with factories. We wrapped factories with a pattern for
achieving data privacy in JavaScript through the use of closures.

You also learnt about the small improvements that ES6 brings to object initializers
with the shorthand notation for both methods and properties. We wrapped the
chapter with a review of the new ES6 Symbol type and its usage for attaining a soft
version of data privacy.

 1 /*
 2

 3 This must be the weirdest piece of dune man has ever known. There's \
 4 two wizards surrounded by a critter, a mouse, a giant bat, a venomou\
 5 s frog, a monster, a teeny tiny and a giant spider, a stealthy monst\
 6 er, a crazy monkey, a dark spider, a sugary critter?, an ooze and a \
 7 ptero... a pterodactyl whatever that may be.
 8

 9 */
10

11 randalf.says("And that's how you summon creatures to your cause! An \
12 army!");
13

14 mooleen.says("Ahรก");
15 mooleen.says("Summon them from where?");
16

17 randalf.says("hmm... good question!");
18 randalf.says("Powerful javascriptmancers can create stuff out of not\
19 hing");
20 randalf.says("Initiates summon creatures from..." +
21 "wherever creatures come from");
22

23 randalf.says("There's a lot of sand here... why not create a sand go\
24 lem?");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Create a Sand Golem!
Use an object initializer to create a sand golem. You are welcome to use shorthand syntax
if you so choose! It should satisfy the following snippet of code:

 1 sandGolem.toString();
 2 // (returns) => Giant Sand Golem
 3 sandGolem.walksTo(1,1);
 4 // => Giant Sand Golem walks to (1,1);
 5 sandGolem.grabs('spider');
 6 // => Giant Sand Golem grabs spider
 7 sandGolem.grabs('monkey', 'venomous frog');
 8 // => Giant Sand Golem grabs monkey and venomous frog
 9 sandGolem.grabbedStuff;
10 // (returns) => ['spider', 'monkey', 'venomous frog']

Solution
 1 mooleen.concentrates();
 2

 3 /*
 4 A sudden wind appears from out of nowhere, a small whirlwind that su\
 5 cks
 6 the sand beside mooleen and grows, and grows, and grows until it bec\
 7 omes
 8 and imposing giant figure that vaguely resembles something human.
 9 */
10

11 let sandGolem = {
12 position: {x: 0, y: 0},
13 walksTo(x, y){
14 console.log(this + ' walks to (' + x + ',' + y + ')');
15 this.position.x = x;
16 this.position.y = y;
17 },
18 toString(){
19 return 'Giant Sand Golem';
20 },

http://bit.ly/javascriptmancy-objects-basics-exercises
https://github.com/vintharas/javascriptmancy-code-samples

21 grabbedStuff: [],
22 grabs(...items){
23 this.grabbedStuff.push(...items);
24 console.log(this + ' grabs ' + items.join(' and '));
25 }
26 }
27

28 console.log(sandGolem.toString());
29 // (returns) => Giant Sand Golem
30 sandGolem.walksTo(1,1);
31 // => Giant Sand Golem walks to (1,1);
32 sandGolem.grabs('spider');
33 // => Giant Sand Golem grabs spider
34 sandGolem.grabs('monkey', 'venomous frog');
35 // => Giant Sand Golem grabs monkey and venomous frog
36 console.log(sandGolem.grabbedStuff);
37 // (returns) => ['spider', 'monkey', 'venomous frog']
38

39 mooleen.says('voilรก!');

How Much More Weight Can it Carry?
By the immutable laws of physics, a sand golem can only lift up to 40 items at once. Create
a spaceAvailableOnBoard getter that retrieves the amount of space available in a golem at a
given time.

Solution
 1 let sandGolemImproved = {
 2 position: {x: 0, y: 0},
 3 walksTo(x, y){
 4 console.log(this + ' walks to (' + x + ',' + y + ')');
 5 this.position.x = x;
 6 this.position.y = y;
 7 },
 8 toString(){
 9 return 'Giant Sand Golem';
10 },
11 grabbedStuff: [],
12 grabs(...items){
13 this.grabbedStuff.push(...items);
14 console.log(this + ' grabs ' + items.join(' and '));
15 },
16 get spaceAvailableOnboard(){
17 const maxSpace = 40;
18 return maxSpace - this.grabbedStuff.length;
19 }

20 }
21

22 sandGolemImproved.grabs('pterodactyl');
23 // => Giant Sand Golem grabs pterodactyl
24 console.log(sandGolemImproved.spaceAvailableOnboard);
25 // => 39

Golems for Everyone!
Write a factory function that allows you to create as many golems as you like. You should
be able to name them during creation, otherwise it will be hard to keep track of them. You
are welcome to use ES6 short-hand syntax if you so choose.

Solution
 1 function SandGolem(name){
 2 return {
 3 name,
 4 position: {x: 0, y: 0},
 5 walksTo(x, y){
 6 console.log(this + ' walks to (' + x + ',' + y + ')');
 7 this.position.x = x;
 8 this.position.y = y;
 9 },
10 toString(){
11 return 'Giant Sand Golem (' + name + ')';
12 },
13 grabbedStuff: [],
14 grabs(...items){
15 this.grabbedStuff.push(...items);
16 console.log(this + ' grabs ' + items.join(' and '));
17 },
18 get spaceAvailableOnboard(){
19 const maxSpace = 40;
20 return maxSpace - this.grabbedStuff.length;
21 }
22 };
23 }
24

25 let sand = SandGolem('sand');
26 let dune = SandGolem('dune');
27 let beach = SandGolem('beach');
28 sand.grabs(dune);
29 // => Giant Sand Golem (sand) grabs Giant Sand Golem (dune)
30

31 mooleen.says('hehe that was fun');

Hide the Details
Update your sand golem to hide its position and grabbedStuff from external access.

Solution
 1 function SandGolem(name){
 2 let position = {x: 0, y: 0},
 3 grabbedStuff = [];
 4 return {
 5 name,
 6 walksTo(x, y){
 7 console.log(this + ' walks to (' + x + ',' + y + ')');
 8 position.x = x;
 9 position.y = y;
10 },
11 toString(){
12 return 'Giant Sand Golem (' + name + ')';
13 },
14 grabs(...items){
15 grabbedStuff.push(...items);
16 console.log(this + ' grabs ' + items.join(' and '));
17 },
18 get spaceAvailableOnboard(){
19 const maxSpace = 40;
20 return maxSpace - grabbedStuff.length;
21 }
22 };
23 }
24

25 var shy = SandGolem('shy');
26 console.log(shy.position);
27 // => undefined
28 shy.walksTo(1,1);
29 // => Giant Sand Golem (shy) walks to (1,1)
30 console.log(shy.grabbedStuff);
31 // => undefined
32 shy.grabs('ooze');
33 // => Giant Sand Golem (shy) grabs ooze
34

35 randalf.says('Excellent! Now we are ready to start our journey');
36 mooleen.says('Where are we going?');
37 randalf.says('To the north! I have some friends left there');
38 mooleen.says('To the north then...');
39

40 /*
41 And to the north started the weirdest procession anyone has ever see\
42 n. Two wizards, a sand golem, sand, dune and beach, shy, a critter, \

43 a mouse, a giant bat, a teeny tiny and a giant spider, a crazy monke\
44 y...
45 */

Appendix B. Mysteries of the JavaScript
Arcana: JavaScript Quirks Demystified

Beware of any assumptions,
distrust any preconceptions,
forgo your experience,
and think with the mind of a beginner.

 - Appa Ojnh
 The White Sage

/*
After weeks of travelling north Mooleen and Randalf arrive to a
green valley surrounded by majestic white-peaked mountains as
far as the eye can see. There's the beginning of a mountain trail
and two persons beside it waiting for them...
*/

randalf.says('Ah... the Misty Mountains. What a beautiful sight!');
randalf.says('Mooleen, I introduce you to zandalf and bandalf');
randalf.says('I trust them like if they were my brothers...');

randalf.says('...because they actually ARE my brothers');
mooleen.says('Ehem... I can see the resemblance');

/*
Randalf, Zandalf and Bandalf look nothing alike. Where Randalf is
tall and spindly, with a carefully trimmed beard and a good
natured resemblance, Zandalf is freakishly small and plump,
and Bandalf is... blue. Literally blue, like the sky in a
clear morning.
*/

randalf.says("Great! While we go up I'd like to tell you something");
randalf.says("I've noticed that some of your incantations have been \
misfiring");
mooleen.says('Misfiring? What? I know what I am doing... most of the\
 time');

randalf.says('So you meant to light that bale of hay on fire?');
mooleen.says('Yeeees');
randalf.says('And the cart beside it?');
mooleen.says('Yeeeeees');
randalf.says('And the two blocks of buildings surrounding it...');
mooleen.says('Yeee....');

randalf.says('What about my finest robes?');
mooleen.says('That was actually on purpose');

randalf.says('Mooleen...');
randalf.says('OK. I see that you are stumbling with some of the ' +
 'quirks and gotchas of JavaScript-mancy');
randalf.says('Let me give you a couple of tips');

A Couple of Tips About JavaScript Quirks and Gotchas
While JavaScript looks a lot like a C-like language, it does not behave like one in
many ways. This, I would say, is the biggest reason why C# developers get so
confused when they come to JavaScript.

If you’ve followed the book closely, you may have noticed that I have decided to call
these unexpected behaviors the JavaScript Arcana. You have already seen several
examples of these shadowy features thus far. Let’s make a quick summary of them:

Function scope and variable hoisting
Array-like objects
Function overloading

We’ll start this chapter by making a short review of the quirks that you’ve already
learned (repetition is a great tool for learning). And we’ll continue by diving deeper
into these other parts of the JavaScript Arcana:

The sneaky this keyword
Global scope as a default
Type coercion madness
JavaScript strict mode

We will focus particularly in the obscure behavior of the this keyword, our most
dangerous foe. I expect that what you will learn in this chapter will save you from
unmeasurable frustration in the future.

A Quick Refresher of the JavaScript Arcana 101
In The Basics of JavaScript Functions we saw how JavaScript has function scope.
That is, as opposed to C# where every block of code creates a new scope, in
JavaScript it is only functions that create new scopes. Every time you declare a
variable through the var keyword it is scoped to its containing function. You also
learned the concept of hoisting and how the JavaScript runtime moves your variable
declarations to the top of a function body. Finally, you discovered how ES6 brings
the let and const keywords that give you the ability to declare block-scoped
variables and forget about the headaches of hoisting and function-scoped
variables.

In Function Patterns: Arbitrary Arguments you learned about the arguments object.
It can be accessed within every function to retrieve the arguments being passed to
that function at runtime. You saw how the arguments object, although it looks like
an array, it is actually what we call an array-like object. Array-like objects can be
enumerated, indexed and have a length property but they lack all array
methods. You also discovered how to convert these objects to actual arrays using

Array.prototype.slice (or Array.from) and how the new ES6 rest operator
solves the arguments issue completely.

In Function Patterns: Overloading you learned how you cannot overload JavaScript
functions or methods in the same way that you do in C#. Instead, you can use several
patterns to achieve the same effect: Argument inspection, options objects, ES6
default arguments or functional programming with polymorphic functions.

Now that we’ve warmed up to JavaScript weirdest features let’s take a look at the
behavior of this.

This, Your Most Dangerous Foe

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsFiddle or
downloading the source code from GitHub.

One of the most common problems when a C# developer comes to JavaScript is that
it expects this to work exactly as it does in C#. And She or He or Zie will write this
common piece of code unaware of the terrible dangers that lurk just one HTTP call
away…

 1 function UsersCatalog(){
 2 this.users = [];
 3 getUsers()
 4
 5 function getUsers(){
 6 $.getJSON('https://api.github.com/users')
 7 .success(function updateUsers(users){
 8 this.users.push(users);
 9 // BOOOOOOOM!!!!!
10 // => Uncaught TypeError:
11 // Cannot read property 'push' of undefined
12 });
13 }
14 }
15 var catalog = new UsersCatalog();

In this code example we are trying to retrieve a collection of users from the GitHub
API. We perform an AJAX5 request using jQuery getJSON and if the request is
successful the response is passed as an argument to the updateUsers function.

http://bit.ly/javascriptmancy-javascript-arcana
https://github.com/vintharas/javascriptmancy
http://bit.ly/github-api

The example throws an exception cannot read property 'push' of undefined
which is the JavaScript version of our well known nemesis: The
NullReferenceException (we meet again). Essentially, when we evaluate the
updateUsers function, the this.users expression takes the value of undefined.
When we try to execute this.users.push(users) we’re basically calling the
method push on nothing and thus the exception being thrown.

In order to understand why this is happening we need to learn how this works in
JavaScript. In the next sections we will do just that. By the end of the chapter, when
we have demystified this and become this-xperts, you’ll be able to understand what
is the cause of the error.

JavaScript Meets This
So this in JavaScript is weird. Unlike in other languages, the value of this in
JavaScript depends on the context in which a function is invoked. Repeat. The
behavior of this in JavaScript is not 100% stable nor reliable at all times, it depends
on the context in which a function is invoked.

This essentially means that depending on how you call a function, the value of this
inside that function will vary. We can distinguish between these four scenarios:

this and objects
this unbound
this explicitly
this bound

This And Objects
In the most common scenario for an OOP developer we call functions as methods.
That is, we call a function that is a property within an object using the dot notation.

If we have a hellHound spawned in the pits of hell with the ferocious ability of
breathing fire:

1 // #1. A function invoked in the context of an object (a method)
2 var hellHound = {
3 attackWithFireBreath: function(){
4 console.log(this + " jumps towards you and unleashes " +
5 "his terrible breath of fire! (-3 hp, +fear)");
6 },
7 toString: function (){ return 'Hellhound';}
8 }

When we call its attackWithFireBreath method using the dot notation this will
take the value of the object itself:

1 hellHound.attackWithFireBreath();
2 // => Hellhound jumps towards you and unleashes
3 // his terrible breath of fire! (-3 hp, +fear)
4 // 'this' is the hellHound object

Nothing strange here. This is the version of this we know and love from C#. Things
get a little bit trickier in the next scenario.

This Unbound
In JavaScript you can do crazy things. Things like invoking a method without the
context of the object in which it was originally defined. Since functions are values
we can just save the attackWithFireBreath method within a variable:

1 // #2. A function invoked without the context of its object
2 var attackWithFireBreath = hellHound.attackWithFireBreath;

And invoke the function via the newly created variable:

1 attackWithFireBreath();
2 // => [object Window] jumps towards you and unleashes
3 // his terrible breath of fire! (-3 hp, +fear)

Ooops! What did just happen here? this is no longer the hell hound but the Window
object. You may be asking yourself: What? And here comes the weird part that you
need to remember: Whenever you invoke a function without an object as context
the this automatically becomes the Window object.

The Window6 object in JavaScript represents the browser window and contains the
document object model (also known as DOM) an object representation of the
elements within a website.

JavaScript Strict Mode
From ES5 onwards you can use strict mode (http://bit.ly/mdn-strict-mode) to get a
better experience with JavaScript. Things that cause silent or unexpected errors and can
be a headache to debug prior to ES5 throw explicit errors when you enable strict mode.

You can enable strict mode by writing 'strict mode'; at the top of a JavaScript file or
function.

With strict mode enabled the this object in this scenario will get the value of
undefined. This will likely cause an error in your code and alert you about this
unwanted behavior. Fail early, fail fast and fix your code as soon as possible.

You can learn more about strict mode at the end of the chapter.

As a cool exercise, you can now take that free function and add it to another object
zandalf different from the original:

1 // we could add the same method to another object:
2 var zandalf = {
3 toString: function(){return 'zandalf';}
4 };
5 zandalf.attackWithFireBreath = attackWithFireBreath;

Then call it as a method with the dot notation:

1 zandalf.attackWithFireBreath();
2 // => zandalf jumps towards you and unleashes
3 // his terrible breath of fire! (-3 hp, +fear)
4 // => 'this' is the jaime object

And again, when we invoke the original function in the context of an object, even
when it is another one different from the original, this takes the value of that
object.

Let’s make a summary of what you’ve seen up until now:

1. Call a function in the context of an object and this will take the value of the
object

2. Call a function without context and this will take the value of the Window
object. Unless you are in strict mode in which case it will take the value of
undefined.

This Explicitly
All functions in JavaScript descend from the Function prototype. This prototype
provides two helpful methods that allow you to explicitly set the context in which to
execute a function: call and apply.

Take the attackWithFireBreath function from the last example. This time, instead
of calling it directly, we use its call method and pass the object zandalf as an
argument:

http://bit.ly/mdn-function-prototype

1 attackWithFireBreath.call(zandalf);
2 // => zandalf...
3 // => 'this' is zandalf

The object zandalf becomes the context of the function and thus the value of this.
Likewise, if we call the apply method on the same function and pass an object
hellHound as argument:

1 attackWithFireBreath.apply(hellHound);
2 // => hell hound...
3 // => 'this' is hellHound

We can verify how the object hellHound becomes the context of the function and the
value of this.

But, what happens if the original function has paremeters? Worry not! Both call and
apply take additional arguments that are passed along to the original function. Take
this function attackManyWithFireBreath that unleashes a terrible breath of fire on
many unfortunate targets:

1 function attackManyWithFireBreath(){
2 var targets = Array.prototype.slice.call(arguments, 0);
3 console.log(this + " jumps towards " + targets.join(', ') +
4 " and unleashes his terrible breath of fire! (-3 hp, +fear)");
5 }

The call method let’s you specify a list of arguments separated by commas in
addition to the value of this:

1 attackManyWithFireBreath.call(hellHound, 'you', 'me', 'the milkman');
2 // => Hellhound jumps towards you, me, the milkman and unleashes
3 // his terrible breath of fire! (-3 hp, +fear)

Likewise, apply takes an array of arguments:

1 attackManyWithFireBreath.apply(hellHound, ['me', 'you', 'irene']);
2 // => Hellhound jumps towards me, you, irene and
3 // unleashes his terrible breath of fire! (-3 hp, +fear)

And that’s how you can set the value of this explicitly. Let’s recapitulate what
we’ve learned so far:

1. Call a function in the context of an object and this will take the value of the
object

2. Call a function without context and this will take the value of the Window
object. Unless you are in strict mode in which case it will take the value of

undefined.
3. Call a function using call and apply passing the context explicitly as an

argument and this will take the value of whatever you pass in.

This Bound
As of ES5, the Function prototype also provides a very interesting method called
bind. bind lets you create new functions that always have a fixed context, that is, a
fixed value for this 7.

Bind Doesn’t Cause Side Effects
It is important to note that bind will not alter the original function at all. It will return a
new function that is bound to the object given as an argument.

Let’s use bind to set a fixed value for this in our original attackWithFireBreath
function. bind will return a new function attackBound that will have this with a
value of our choosing. In this case, it will be hellHound:

1 // As of ES5 we can bind the context of execution of a function
2 // FOR EVER
3 attackBound = attackWithFireBreath.bind(hellHound);

After using bind, the value of this is bound to the hellHound object even if you are
not using the dot notation:

1 attackBound();
2 // => Hellhound jumps towards you and unleashes
3 // his terrible breath of fire! (-3 hp, +fear)
4 // `this` is Hellhound even though I am not using the dot notation

Moreover, if you assign the attackBound method to another object and call it using
the dot notation, the attackBound method is executed in the context of the original
object hellHound. That is, after binding a function to a context with bind, the
context will remain the same even after assigning the function to another object:

1 // the function is bound even if I give the function to another obje\
2 ct
3 zandalf.attackBound = attackBound;
4
5 zandalf.attackBound();
6 // => Hellhound ...

7 // `this` is Hellhound even though I am using dot notation
8 // with another object

Once a function is bound it is not possible to un-bound it nor re-bind it to another
object:

1 // You cannot rebind a function that is bound
2 var attackReBound = attackBound.bind(zandalf);
3
4 attackReBound();
5 // => Hellhound ...
6
7 attackBound();
8 // => hellHound ...

But you can always use the original unbound function to create new bound versions
through subsequent calls to bind with different contexts:

1 // But you can still bind the original
2 var attackRebound = attackWithFireBreath.bind(zandalf);
3 attackRebound();
4 // => zandalf...

Concluding This
In summary, this can take different values based on how a function is invoked. It
can:

Be an object if we call a function within an object with the dot notation
Be the Window object or undefined (strict mode) if a function is invoked by
itself
Be whichever object we pass as argument to call or apply
Be whichever object we pass as argument to bind.

If now that you are a this-xpert we go back to the original example you will be able
to spot the problem at once. Since the updateUsers function is a callback, it is not
invoked in the context of the UsersCatalog object. Callbacks are invoked as normal
functions, and thus in the context of the Window object (or undefined in in strict
mode). Because of this, the value of this within updateUsers wouldn’t be catalog
but undefined8.

Because this is not the catalog object, it doesn’t have a users property and thus
the resulting cannot read property of undefined error:

 1 function UsersCatalog(type){
 2 this.users = [];

 3 getUsers()
 4
 5 function getUsers(){
 6 $.getJSON('https://api.github.com/users')
 7 .success(function(users){
 8 this.users.push(users);
 9 // BOOOOOOOM!!!!!
10 // => Uncaught TypeError:
11 // Cannot read property 'push' of undefined
12 // 'this' in this context is the jqXHR object
13 // not our original object
14 });
15 }
16 }
17 var catalog = new UsersCatalog();

You can solve this issue in either of two ways. You can take advantage of JavaScript
support for closures, declare a self variable that “captures” the value of this when
it refers to the UsersCatalog object and use it within the closure function as depicted
below (a very common pattern in JavaScript):

 1 function UsersCatalogWithClosure(){
 2 "use strict";
 3 var self = this;
 4
 5 self.users = [];
 6 getUsers()
 7
 8 function getUsers(){
 9 $.getJSON('https://api.github.com/users')
10 .success(function(users){
11 self.users.push(users);
12 console.log('success!');
13 });
14 }
15 }
16 var catalog = new UsersCatalogWithClosure();

Or you can take advantage of bind and ensure that the function that you use as
callback is bound to the object that you want:

 1 //#2. Using bind
 2 function UsersCatalogWithBind(){
 3 "use strict";
 4
 5 this.users = [];
 6 getUsers.bind(this)();
 7
 8 function getUsers(){
 9 $.getJSON('https://api.github.com/users')
10 .success(updateUsers.bind(this));
11 }
12
13 function updateUsers(users){
14 this.users.push(users);
15 console.log('success with bind!');

16 }
17 }
18 var catalog = new UsersCatalogWithBind();

Later within the book, you’ll see how ES6 arrow functions can also lend you a hand
in this type of scenario.

Global Scope by Default and Namespacing in JavaScript
As you will come to appreciate by the end of the book, JavaScript has a minimalistic
design. It has a limited number of primitive constructs that can be used and
composed to achieve higher level abstractions and other constructs that are native to
other languages. One of these constructs are namespaces.

What about ES6 Modules?
ES6 comes with modules which make this section somewhat obsolete. However, while
we have now native modules there is no standard module loader yet. That is, we have a
way to define modules but not a way to load them in the browser.

In order to do that you’ll need to setup a front-end build pipeline with one of the
existing community-driven module loaders which is not a trivial thing to do at this
point. Because of that, some of you may still appreciate this simple way to define
your own namespaces.

The remainder of this section will continue discussing namespaces in the absence of
modules. Later in the series you’ll learn everything about modules and how they help
you manage, encapsulate and distribute your code.

Since we do not have the concept of namespaces, variables that are declared in a
JavaScript file are part of the global scope where they are visible and accessible to
every JavaScript file within your application. Yey! Party!

1 var dice = "d12";
2 dice;
3 // => d12
4 window.dice
5 // => d12
6 // ups... we are in the global scope/namespace

The problems with global variables are well known: they tightly couple different
components of your application and they can cause name collisions. Imagine that
you have several JavaScript files declaring variables with the same names but

performing different tasks. Or imagine importing third party libraries that could
overwrite your own variables. Chaos and destruction!! Because of these problems
we want to completely avoid the use of global variables, yet we lack support for
namespaces in JavaScript… What to do?

We can use objects to emulate the construct of namespaces. A commonly used
pattern is depicted below where we use what we call an IIFE (immediately invoked
function expression) to create/augment a namespace:

 1 // IIFE - we invoke the function expression as soon as we declare it
 2 (function(armory){
 3 // the armory object acts as a namespace
 4 // we can add properties to it
 5 // these would constitute the API for
 6 // the 'armory' module/namespace
 7 armory.sword = {damage: 10, speed: 15};
 8 armory.axe = {damage: 15, speed: 8};
 9 armory.mace = {damage: 16, speed: 7};
10 armory.dagger = {damage: 5, speed: 20};
11
12 // additionally you could declare private variables and
13 // functions as well
14
15 // either augment or create the armory namespace
16 }(window.armory = window.armory || {}));
17
18 console.log(armory.sword.damage);
19 // => 10

An immediately-invoked function expression is just that, a function expression that
you invoke immediately. By virtue of being a function it creates a new scope
where you can safely have your variables and avoid name collisions with the
outside world. If you were to declare a variable with the same name of an existing
variable in an outer scope, the new variable would just shadow the outer variable.

By immediately invoking the function you can extend the window.armory object
with whichever properties you desire, creating a sort of public API for the armory
object that becomes a namespace or module. A container where you can place
properties and functions and expose them as services for the rest of your application.

We will come back to namespacing and higher level code organization in JavaScript
within the tome on JavaScript modules.

Type Coercion Madness
In the basic ingredients of javascript-mancy you learned a little bit about type
coercion in JavaScript. You learn how JavaScript provides the == and != abstract

http://en.wikipedia.org/wiki/Immediately-invoked_function_expression

equality operators that let you perform loose equality between values and the ===
and !== operators that perform strict equality.

By using the first set of operators JavaScript will try to coerce the types being
compared to a matching type before performing the comparison, whilst the second
set of operators expect a matching type. You also learned how type coercion creates
the concept of falsey and truthy by assigning true and false to different values and
types when being converted to boolean.

I thought it would be interesting for you to learn a little bit more about this
JavaScript feature and about its possible pitfalls.

JavaScript was designed to be an accessible language9, a language that even a
layman, someone with no prior programming experience could use to create
interactive websites. A welcoming language that would help anyone to write their
own web applications and solve their own problems. You can see this vision clearly
in many of the features of JavaScript, even in some of the most controversial ones. If
you think about it from this perspective, it doesn’t feel so weird that the following
statement evaluates to true:

1 > 42 == '42'
2 // => true

For is not 42 equal to '42'? Don’t both refer to the same number? Does it really
matter that they have different types? And so we have implicit conversion of types.

In my experience, taking advantage of type coercion usually results in more terse
code:

1 // as opposed to (troll !== null && troll !== undefined)
2 > if (troll) {
3 // do stuff
4 }

Taking advantage of the strict equality usually results in more correct, less bug-prone
code:

1 > if (troll !== null && troll !== undefined){
2 // do stuff
3 }

In the first case the condition will be satisfied as long as troll has a truthy value: It
could be an object, an array, a string, a number different than 0. In the second case,

the condition will be satisfied whenever troll is not null nor undefined (so even it
troll is equal to 0 as opposed to the previous example). Expressiveness or
correctness, choose the one that you prefer.

The truthy and falsey values for the most common types are as follow (note how we
use the !! to explicitly convert every value to booleans). Both arrays and objects are
truthy, even when they are empty:

1 > !![1,2,3]
2 // => true
3 > !![]
4 // => true
5 > !!{message: 'hello world'}
6 // => true
7 > !!{}
8 // => true

A non-empty string is truthy while an empty string is falsey:

1 > !!"hellooooo"
2 // => true
3 > !!""
4 // => false

Numbers are truthy but for 0 that is falsey:

1 > !!42
2 // => true
3 > !!0
4 // => false

undefined and null are always falsey:

1 > !!undefined
2 // => false
3 > !!null
4 // => false

Using JavaScript in Strict Mode
From ES5 onwards you can use strict mode to get a better experience with
JavaScript. One of the main goals of strict mode is to prevent you from falling into
common JavaScript pitfalls by making the JavaScript runtime more proactive in
throwing errors instead of causing silent ones or unwanted effects.

Take the example of the value of this in callbacks. Instead of setting the value of
this to the Window object, when you use strict mode the value of this becomes

http://bit.ly/mdn-strict-mode

undefined. This little improvement prevents you from accessing the Window object
or extending it by mistake, and will alert you with an error as soon as you try to do it.
Short feedback loops and failing fast are sure recipes for success.

Other improvements that come with strict mode are:

trying to create a variable without declaring it (with var, let or const) will
throw an error. Without strict mode it will add a property to the Window object.
trying to assign a variable to NaN, or to a read-only or non-writable property
within an object throws an exception
trying to delete non-deletable properties within an object throws an exception
trying to have duplicated names as arguments throws a syntax error
and more explicit errors that will help you spot bugs faster

Additionally with strict mode enabled the JavaScript runtime is free to make certain
assumptions and perform optimizations that will make your code run faster. If you
want to learn more about the nitty-gritty of strict mode I recommend that you take a
look at the MDN (Mozilla Developer Network), the best JavaScript resource in the
web.

Enabling Strict Mode
You can enable strict mode by writing 'strict mode'; at the top of a JavaScript
file. This will enable strict mode for the whole file:

1 'strict mode';
2 // my code ...
3 var pouch = {};

Alternatively, you can use the strict mode declaration at the top of a function. This
will result in the strict mode only being applied within that function:

1 (function(){
2 'strict mode';
3 // my code ...
4 var bag = {};
5
6 }());

Wrapping your strict mode declarations inside a function will prevent the strict mode
from being applied to code that may not be prepared to handle strict mode. This can
happen when concatenating strict mode scripts with non-strict mode scripts like
external third party libraries outside of your control.

http://bit.ly/mdn-strict-mode

ES6 modules always use strict mode semantics.

Concluding
In this chapter you learned about the weirdest bits of JavaScript, the mysterious
JavaScript Arcana. You started the chapter by reviewing parts of the JavaScript
Arcana that you read about in previous chapters: function scope and variable
hoisting, array-like objects and function overloading.

You continued taking a look at the sneaky this keyword, and understood how its
value depends on the context in which a function is executed:

If you invoke a function as a method using the dot notation, the this value will
be the object that holds that method.
If you call a function directly the value of this will be the Window object (or
undefined in strict mode).
If you call a function using either call, apply or bind, the value of this will be
set to the object that you pass as argument to either of these functions.
You can use bind to create a new version of a function that is bound to a
specific object. That is, in that new funtion this becomes the object for all
eternity.

You saw how JavaScript assumes global scope by default and how you can achieve a
similar solution to namespaces by using objects to represent them and organize your
code. You examined the concept of IIFE (Immediately Invoked Function
Expression) and how you can use it to create an isolated scope to declare your
variables and add them to a namespace object.

After that you reviewed type coercion in JavaScript to finally wrap the chapter
examining strict mode, a more restricted version of JavaScript that attempts to help
you find bugs faster by failing more loudly.

/*
The small group starts walking up the mountain trail slowly.
The path becomes narrower and steeper as they gain altitude,
the air colder and crispier until it starts snowing. All of
the sudden the group is surrounded by a thick mist that removes
any sense of time or orientation.

The group continues walking for what feels like an eternity.
Suddenly Bandalf stops. This makes Zandalf crash into him,
Randalf into Zandalf and Mooleen into Randalf, Zandalf and
Bandalf. Ordinarily this wouldn't have been a problem if it

weren't for the six sand golems, the crazy monkey, the
pterodactyl and the dozen of creatures that were following
right behind.
*/

mooleen.says("That was awkward");
bandalf.says("We're here!");

/*
As it by art of magic the mist starts disolving revealing
an inmense cavern.
*/

randalf.says("Welcome to The Caves of Infinity, " +
 "headquarters of the Resistance, last remnant " +
 "of the High Order of JavaScript-mancy")
randalf.says("Now we'll start your real training");

mooleen.says("Super");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Find The Bug! Get the JavaScript-NomiCon!
The following piece of code has a bug. Fix the problem and gain access to the oh-so-
powerful JavaScript-NomiCon! The most valued treaty of JavaScript-mancy known to
men, elves, dwarves and gnomes alike:

 1 function LibraryOfTheHighOrder(){
 2 this.books = [];
 3
 4 this.summonBooks = function(){
 5 $.getJSON('https://api.myjson.com/bins/3tp73')
 6 .then(function updateBooks(books){
 7 this.books.push(...books);
 8 // caBOOOOOOM!!!!
 9 // ERROOOOOORRRR!!!
10 // Cannot read property push of undefined
11 for(let book of books){
12 console.log(book.name + ": " + book.type);
13 }
14 });
15 };
16 }
17 var library = new LibraryOfTheHighOrder();
18 library.summonBooks();

Solution
 1 function LibraryOfTheHighOrder(){
 2 this.books = [];
 3
 4 this.summonBooks = function(){
 5 $.getJSON('https://api.myjson.com/bins/3tp73')
 6 .then(function updateBooks(books){
 7 this.books.push(...books);
 8 for(let book of books){
 9 console.log(book.name + ": " + book.type);
10 }
11 }.bind(this));

http://bit.ly/javascriptmancy-javascript-arcana-exercises
https://github.com/vintharas/javascriptmancy-code-samples

12 };
13 }
14 var library = new LibraryOfTheHighOrder();
15 library.summonBooks();
16 // => JavaScript-NomiCon: treaty of the dark and arcane arts
17 // of JavaSCript-mancy
18 // 30 minute meals with Jamie Oliver: comfort food that
19 // you can cook at home!
20 // Pride and Prejudice: Novel
21

22 mooleen.says('Yes! Pride and Prejudice! I love that one!');

Protect The Library From Name Collisions!
Protect the library from name collisions by creating a new namespace called
javascriptmacy.

If you are planning on using ES6 modules you can safely ignore this exercise.

Solution
 1 (function(javascriptmancy){
 2 javascriptmancy.LibraryOfTheHighOrder = LibraryOfTheHighOrder;
 3
 4 function LibraryOfTheHighOrder(){
 5 this.books = [];
 6 this.summonBooks = function(){
 7 $.getJSON('https://api.myjson.com/bins/3tp73')
 8 .then(function updateBooks(books){
 9 this.books.push(...books);
10 for(let book of books){
11 console.log(book.name + ": " + book.type);
12 }
13 }.bind(this));
14 };
15 }
16 }(window.javascriptmancy = window.javascriptmancy || {}));
17 var li = new window.javascriptmancy.LibraryOfTheHighOrder();
18 console.log(li);
19 // => LibraryOfTheHighOrder {books: Array[0]}

There’s a Hard To Detect Bug In This Snippet! Strict Mode To the
Rescue!
Enable strict mode in this function and find out the error

1 (function(){
2 secretBook = 'Diary of Mooleen';
3 }());

Solution
1 (function(){
2 "use strict";
3 secretBook = 'diary of mooleen';
4 // => Uncaught ReferenceError: secretBook is not defined;
5 // We were adding a property to the window object!!! :O
6 }());

Appendix C. More Useful Function Patterns:
Function Overloading

One same API,
to provide similar function,
that's a smart thing,
memorable, familiar, consistent

 - Siwelluap
 Chieftain of the twisted fangs

randalf.sighs();
randalf.says("it didn't last long at all");
randalf.says("You know? Not everyone could tap into the power of the\
 REPL...")

/*

Only a few could harness it. And some of them, some of them were cro\
oked,
either that or they just couldn't handle the power.

Before Branden could do anything about it, they shattered the world,
enslaved the normals, herded and annihilated those of us who opposed\
 them
and that's the state of things.

We are governed by a bunch of egocentric megalomaniac mad men and wo\
men.

*/

mooleen.says("How is it that you're still here then?");
randalf.says("Well they did something worse to me. They took it");

mooleen.says("You cannot cast spells any more?");
randalf.says("I cannot. But I do remember everything");
randalf.says("Talking about knowledge. " +
 "Have you heard about the marvels of overloading?");

Have you Heard About The Marvels Of Overloading?
In the last couple of chapters we learned some useful patterns with functions in
JavaScript that helped us achieve defaults and handling arbitrary arguments. We also
saw a common thread: The fact that ES6 comes with a lot of new features that make
up for past limitations of the language. Features like native defaults and rest
parameters that let you solve these old problems in a more concise style.

This chapter will close this section - useful function patterns - with some tips on how
you can achieve function overloading in JavaScript.

Function overloading helps you reuse a piece of functionality and provide a unified
API in those situations when you have slightly different arguments yet you want to
achieve the same thing. Unfortunately, there’s a problem with function overloading
in JavaScript.

The Problem with Function Overloading in JavaScript

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter directly within this jsFiddle or
downloading the source code from GitHub.

There’s a slight issue when you attempt to do function overloading in JavaScript like
you would in C#. You can’t do it.

Indeed, one does not simply overload functions in JavaScript willy nilly. Imagine a
spell to raise a skeleton army:

1 function raiseSkeleton(){
2 console.log('You raise a skeleton!!!');
3 }

And now imagine that you want to overload it to accept an argument mana that will
affect how many skeletons can be raised from the dead at once:

1 function raiseSkeleton(mana){
2 console.log('You raise ' + mana + ' skeletons!!!');
3 }

If you now try to execute the raiseSkeleton function with no arguments you would
probably expect the first version of the function to be called (just like it would
happen in C#). However, what you’ll discover, to your dismay, is that
raiseSkeleton has been completely overwritten:

1 raiseSkeleton();
2 // => You raise undefined skeletons!!!

In JavaScript, you cannot override a function by defining a new one with the same
name and a different signature. If you try to do so, you’ll just succeed in overwriting
your original function with a new implementation.

How Do We Do Function Overloading Then?
Well, as with many things in JavaScript, you’ll need to take advantage of the
flexibility and freedom the language gives you to emulate function overloading

http://bit.ly/javascriptmancy-function-overloading
https://github.com/vintharas/javascriptmancy

yourself. In the upcoming sections you’ll learn four different ways in which you can
achieve it, each with their own strengths and caveats:

1. Inspecting arguments
2. Using an options object
3. Relying on ES6 defaults
4. Taking advantage of polymorphic functions

Function Overloading by Inspecting Arguments
One common pattern for achieving function overloading is to use the arguments
object to inspect the arguments that are passed into a function:

 1 function raiseSkeletonWithArgumentInspecting(){
 2 if (typeof arguments[0] === "number"){
 3 raiseSkeletonsInNumber(arguments[0]);
 4 } else if (typeof arguments[0] === "string") {
 5 raiseSkeletonCreature(arguments[0]);
 6 } else {
 7 console.log('raise a skeleton');
 8 }
 9
10 function raiseSkeletonsInNumber(n){
11 console.log('raise ' + n + ' skeletons');
12 }
13 function raiseSkeletonCreature(creature){
14 console.log('raise a skeleton ' + creature);
15 };
16 }

Following this pattern you inspect each argument being passed to the overloaded
function(or even the number of arguments) and determine which internal
implementation to execute:

1 raiseSkeletonWithArgumentInspecting();
2 // => raise a skeleton
3 raiseSkeletonWithArgumentInspecting(4);
4 // => raise 4 skeletons
5 raiseSkeletonWithArgumentInspecting('king');
6 // => raise skeleton king

This approach can become unwieldy very quickly. As the overloaded functions and
their parameters increase in number, the function becomes harder and harder to read,
maintain and extend.

At this point you may be thinking: ”…checking the type of the arguments being
passed? seriously?!” and I agree with you, that’s why I like to use this next approach
instead.

Using an Options Object
A better way to achieve function overloading is to use an options object. This object
acts as a container for the different parameters a function can consume:

 1 function raiseSkeletonWithOptions(spellOptions){
 2 spellOptions = spellOptions || {};
 3 var armySize = spellOptions.armySize || 1,
 4 creatureType = spellOptions.creatureType || '';
 5
 6 if (creatureType){
 7 console.log('raise a skeleton ' + creatureType);
 8 } else {
 9 console.log('raise ' + armySize + ' skeletons ' + creatureType);
10 }
11 }

This allows you to call a function with different arguments:

1 raiseSkeletonWithOptions();
2 // => raise a skeleton
3 raiseSkeletonWithOptions({armySize: 4});
4 // => raise 4 skeletons
5 raiseSkeletonWithOptions({creatureType:'king'});
6 // => raise skeleton king

It is not strictly function overloading but it provides the same benefits: It gives you
different possibilities in the form of a unified API, and additionally, named
arguments and easy extensibility. That is, you can add new options without breaking
any existing clients of the function.

Here is an example of both argument inspecting and the options object patterns in
the wild, the jQuery ajax function:

 1 ajax: function(url, options) {
 2 // If url is an object, simulate pre-1.5 signature
 3 if (typeof url === "object") {
 4 options = url;
 5 url = undefined;
 6 }
 7
 8 // Force options to be an object
 9 options = options || {};
10
11 var transport,
12 // URL without anti-cache param
13 cacheURL,
14 // Response headers
15 responseHeadersString,
16 responseHeaders,
17 // timeout handle
18 timeoutTimer,

http://bit.ly/jquery-ajax-js

19 // etc...
20 }

Relying on ES6 Defaults
Although ES6 doesn’t come with classic function overloading, it brings us default
arguments which give you better support for function overloading than what we’ve
had so far.

If you reflect about it, default arguments are a specialized version of function
overloading. A subset of it, if you will, for those cases in which you can use an
increasing number of predefined arguments:

1 function castIceCone(mana=5, {direction='in front of you'}={}){
2 console.log(`You spend ${mana} mana and casts a ` +
3 `terrible ice cone ${direction}`);
4 }
5 castIceCone();
6 // => You spend 5 mana and casts a terrible ice cone in front of you
7 castIceCone(10, {direction: 'towards Mordor'});
8 // => You spend 10 mana and casts a terrible ice cone towards Mordor

Taking Advantage of Polymorphic Functions
Yet another interesting pattern for achieving function overloading is to rely on
JavaScript great support for functional programming. In the world of functional
programming there is the concept of polymorphic functions, that is, functions
which exhibit different behaviors based on their arguments.

Let’s illustrate them with an example. Our starting point will be this function that we
saw in the inspecting arguments section:

 1 function raiseSkeletonWithArgumentInspecting(){
 2 if (typeof arguments[0] === "number"){
 3 raiseSkeletonsInNumber(arguments[0]);
 4 } else if (typeof arguments[0] === "string") {
 5 raiseSkeletonCreature(arguments[0]);
 6 } else {
 7 console.log('raise a skeleton');
 8 }
 9
10 function raiseSkeletonsInNumber(n){
11 console.log('raise ' + n + ' skeletons');
12 }
13 function raiseSkeletonCreature(creature){
14 console.log('raise a skeleton ' + creature);
15 };
16 }

We will take it and decompose it into smaller functions:

 1 function raiseSkeletons(number){
 2 if (Number.isInteger(number)){ return `raise ${number} skeletons`;}
 3 }
 4
 5 function raiseSkeletonCreature(creature){
 6 if (creature) {return `raise a skeleton ${creature}`;}
 7 }
 8
 9 function raiseSingleSkeleton(){
10 return 'raise a skeleton';
11 }

And now we create an abstraction (functional programming likes abstraction) for a
function that executes several other functions in sequence until one returns a valid
result. Where a valid result will be any value different from undefined:

 1 // This is a higher-order function that returns a new function.
 2 // Something like a function factory.
 3 // We could reuse it to our heart's content.
 4 function dispatch(...fns){
 5
 6 return function(...args){
 7 for(let f of fns){
 8 let result = f.apply(null, args);
 9 if (exists(result)) return result;
10 }
11 };
12 }
13
14 function exists(value){
15 return value !== undefined
16 }

dispatch lets us create a new function that is a combination of all the previous ones:
raiseSkeletons, raiseSkeletonCreature and raiseSingleSkeleton:

1 let raiseSkeletonFunctionally = dispatch(
2 raiseSkeletons,
3 raiseSkeletonCreature,
4 raiseSingleSkeleton);

This new function will behave in different ways based on the arguments it takes. It
will delegate any call to each specific raise skeleton function until a suitable result is
obtained.

1 console.log(raiseSkeletonFunctionally());
2 // => raise a skeleton
3 console.log(raiseSkeletonFunctionally(4));
4 // => raise 4 skeletons
5 console.log(raiseSkeletonFunctionally('king'));
6 // => raise skeleton king

Note how the last raiseSingleSkeleton is a catch-all function. It will always return
a valid result regardless of the arguments being sent to the function. This will ensure
that however you call raiseSkeletonFunctionally you’ll always have a default
implementation or valid result.

A super duper mega cool thing that you may or may not have noticed is the
awesome degree of composability of this approach. If we want to extend this
function later on, we can do it without modifying the original function. Take a look
at this:

1 function raiseOnSteroids({number=0, type='skeleton'}={}){
2 if(number) {
3 return `raise ${number} ${type}s`;
4 }
5 }
6
7 let raiseAdvanced = dispatch(raiseOnSteroids, raiseSkeletonFunctiona\
8 lly);

We now have a raiseAdvanced function that augments
raiseSkeletonFunctionally with the new desired functionality represented by
raiseOnSteroids:

1 console.log(raiseAdvanced());
2 // => raise a skeleton
3 console.log(raiseAdvanced(4));
4 // => raise 4 skeletons
5 console.log(raiseAdvanced('king'));
6 // => raise skeleton king
7 console.log(raiseAdvanced({number: 10, type: 'ghoul'}))
8 // => raise 10 ghouls

This is the OCP (Open-Closed Principle)10 in all its glory like you’ve never seen
it before. Functional programming is pretty awesome right? We will take a deeper
dive into functional programmming within the sacred tome of FP later in the book
and you’ll get the chance to experiment a lot more with both higher-order functions
and function composition alike. But if you can’t wait, don’t let me stop you, by all
means, jump on!

Concluding
Although JavaScript doesn’t support function overloading you can achieve the same
behavior by using different patterns: inspecting arguments, using an options object,
relying on ES6 defaults or taking advantage of polymorphic functions.

You can use the arguments object and inspect the arguments that are being passed
to a function at runtime. You should only use this solution with the simplest of
implementations as it becomes unwieldly and hard to maintain as parameters and
overloads are added to a function.

Or you can use an options object as a wrapper for parameters. This is both more
readable and maintanaible than inspecting arguments, and provides two additional
benefits: named arguments and a lot of flexibility to extend the function with new
parameters.

ES6 brings improved support for function overloading in some situations with native
default arguments.

Finally, you can take advantage of functional programming, compose your functions
from smaller ones and use a dispatching mechanism to select which function is used
based on the arguments.

randalf.says("haha! And that's what you need to known about overload\
ing!");
mooleen.says("What am I doing here?");

randalf.says("Oh yeah that...");
randalf.says("You are the Chosen one!");

mooleen.says("Yes, yes, the chosen for what?");

randalf.says("You are going to fix everything! " +
 "Bring balance to the force and all that");

randalf.says("But first you need to learn!");
randalf.says("Right now you wouldn't stand a chance");

mooleen.says("Well I reckon that 'Great' wouldn't agree on that note\
.");

randalf.says("Oh child, that was just an avatar");
randalf.says("Do you think that this paranoid psychotic megalomaniac\
 " +
 "would come to you in the flesh??");

Exercises

Experiment JavaScriptmancer!
You can experiment with these exercises and some possible solutions in this jsFiddle or
downloading the source code from GitHub.

Create Your Own Avatar
Write a function createAvatar using function overloading by inspecting arguments. It
should satisfy the following snippet:

1 createAvatar(/* description */ 'a blue wisp hovering around');
2 // => you create an avatar in the form of a blue wisp hovering around
3

4 createAvatar({ appearance: 'a blue wisp', stance: 'hovering around'}\
5);
6 // => you create an avatar in the form of a blue wisp hovering around

Solution
 1 mooleen.says('An avatar...');
 2 mooleen.says('Let me see if I can do it myself...');
 3

 4 function createAvatar(){
 5 if (typeof arguments[0] === "string"){
 6 var description = arguments[0];
 7 console.log('you create an avatar in the form of ' + description\
 8);
 9 } else {
10 var attributes = arguments[0],
11 appearance = attributes.appearance,
12 stance = attributes.stance;
13 console.log('you create an avatar in the form of '
14 + appearance + " " + stance);
15 }
16 }
17

18 mooleen.weaves("createAvatar('a blue wisp hovering around')");
19 // => you create an avatar in the form of a blue wisp hovering around
20 mooleen.weaves("createAvatar(" +
21 "{ appearance: 'a blue wisp', stance: 'hovering aroun\
22 d'})");
23 // => you create an avatar in the form of a blue wisp hovering around

http://bit.ly/javascriptmancy-function-overloading-exercises
https://github.com/vintharas/javascriptmancy-code-samples

Options
Update the createAvatar function to use an options object that satisfies the following:

1 createAvatar({ description: 'a blue wisp hovering around'});
2 // => you create an avatar in the form of a blue wisp hovering around
3

4 createAvatar({ appearance: 'a blue wisp', stance: 'hovering around'}\
5);
6 // => you create an avatar in the form of a blue wisp hovering around

Solution
 1 function createAvatarOptions(options){
 2 var appearance = options.appearance || 'no form',
 3 stance = options.stance || 'standing',
 4 description = options.description || appearance + " " + stance;
 5 console.log('you create an avatar in the form of ' + description);
 6 }
 7

 8 mooleen.weaves("createAvatarOptions("+
 9 "{ description: 'a blue wisp hovering around'})");
10 // => you create an avatar in the form of a blue wisp hovering around
11
12 mooleen.weaves("createAvatarOptions("+
13 { appearance: 'a blue wisp', stance: 'hovering aroun\
14 d'})");
15 // => you create an avatar in the form of a blue wisp hovering around

And Now Create an Avatar Like Mooleen
Write a createAvatar function that is a polymorphic function. It should satisfy the
following snippet:

 1 createAvatar('a beautiful freckled young woman standing defiantly');
 2 // => you create an avatar in the form of a beautiful freckled
 3 young woman standing defiantly
 4

 5 createAvatar({ appearance: 'a beautiful young woman',
 6 stance: 'standing defiantly'});
 7 // => you create an avatar in the form of a beautiful freckled
 8 young woman standing defiantly
 9

10 createAvatar();
11 // you create an avatar in shapeless form

Solution
 1 function dispatch(...fns){
 2 return function(...args){
 3 for(let f of fns){
 4 let result = f.apply(null, args);
 5 if (exists(result)) return result;
 6 }
 7 };
 8 }
 9

10 function exists(value){
11 return value !== undefined
12 }
13

14 function createByDescription(description){
15 if (typeof description === "string"){
16 return 'you create an avatar in the form of ' + description;
17 }
18 }
19

20 function createByAttributes(attributes){
21 if (typeof attributes === 'object'){
22 var attributes = arguments[0],
23 appearance = attributes.appearance,
24 stance = attributes.stance;
25 return 'you create an avatar in the form of ' + appearance + " "\
26 + stance;
27 }
28 }
29

30 function createDefault(){
31 return 'you create an avatar in a shapeless form';

32 }
33

34 function createAvatarFp(){
35 var createFn = dispatch(
36 createByDescription,
37 createByAttributes,
38 createDefault);
39 console.log(createFn.apply(null, arguments));
40 }
41

42 createAvatarFp('a beautiful freckled young woman standing defiantly'\
43);
44 // => you create an avatar in the form of a beautiful freckled
45 // young woman standing defiantly
46

47 createAvatarFp({ appearance: 'a beautiful young woman',
48 stance: 'standing defiantly'});
49 // => you create an avatar in the form of a beautiful freckled
50 // young woman standing defiantly
51

52 createAvatarFp();
53 // => you create an avatar in a shapeless form
54

55 mooleen.says('Damn! That was creepy');

Appendix D. Setting Up Your Developing
Environment For ES6

The best way to get started with ES6 is by using an interactive online REPL. Here is
a list of some of my favorites:

Babel REPL - bit.ly/babel-repl. Babel is a ES6 transpiler that let’s you take
advantage of ES6 and ESnext features today. It is the de facto ES6 transpiler.
jsBin - jsbin.com. JsBin is a very popular web prototyping tool with a
customizable set of pans to visualize HTML, CSS, JavaScript, a console and the
output.
jsFiddle - jsfiddle.net. JsFiddle is yet another popular prototyping tool that let’s
you look at your HTML, CSS, JavaScript and output at a glance.
CodePen - codepen.io is a web prototyping tool and community.
ES6 Katas - es6katas.org is a collection of interactive katas to learn ES6.

Using ES6 with Node.js
In addition to using prototyping tools for the web, node.js has great support for ES6
as you can appreciate in these compatibility table. But it you want to be able to use
all features of ES6 and ESnext you can take advatange of babel.js and the babel-
node REPL.

You can install it using the following command:

1 $ npm install -g babel

And start it using babel node:

1 $ babel-node

This will open a REPL that has complete support for ES6.

ES6 and Modern Browsers

http://bit.ly/babel-repl
http://www.jsbin.com
http://www.jsfiddle.net
http://www.codepen.io
http://es6katas.org/
http://kangax.github.io/compat-table/es6/
https://babeljs.io

Modern browsers also have an increasing support for ES6. The ES6 compability
table can give you a general idea as to how the efforts from the different vendors are
going.

The problem with developing for the browser is that you cannot control the runtime
in which your application is running like you do when developing a backend in
node.js. This means that you cannot rely on your user’s browser having the features
that you need or want to use. Because of that, transpiling your application from ES6
to ES5 becomes crucial in these environments to make sure that it works in a myriad
of devices and can reach as many users as possible.

There’s a wide variety of tools that let you transpile your ES6 code to something that
can work on any browser and setup a real world ES6 development environment.

Real-World ES6 Development Environments
The de facto standard for transpiling ES6 is babel.js. It is very extensible and can be
plugged into any of the modern front-end build pipelines. It uses a plugin system that
lets you easily decide which features of ES6 and ESnext you want to enable.

Depending on your build tooling of choice you’ll need to follow different steps to
start using Babel. You can find numerous and extensive guides for Gulp, WebPack,
Grunt, Broccoli, etc at bit.ly/setup-es6.

https://bit.ly/es6-compatibility
http://bit.ly/setup-es6

Appendix E. Fantasy Glossary

If you are not familiar with the genre of fantasy you may have a hard time
understanding some of the words I use in this book. Hopefully this glossary will give
you some guidance in this respect.

Arcane: Something that is mysterious or secret. Known or understood by very
few people.
Alchemy: A science that was used in the Middle Ages with the goal of
changing ordinary metals into gold. Also a power or process that changes or
transforms something in a mysterious or impressive way.
Cimmerian barbarian: Barbarian from the extreme confines of Cimmeria.
Conan: “Hither came Conan, the Cimmerian, black-haired, sullen-eyed, sword
in hand, a thief, a reaver, a slayer, with gigantic melancholies and gigantic
mirth, to tread the jeweled thrones of the Earth under his sandalled feet.”
Balefire: Balefire is a weapon of the One Power. When a target is struck with
balefire, its thread in the Pattern is destroyed, in an amount proportional to the
power of the balefire strike. This translates to both the target’s existence, and
actions up to a certain point, being retroactively erased.
Gandalf: Mighty wizard that has the magic ability to always be on time.
Goblin: An ugly and sometimes evil creature that likes to cause trouble.
Golem: An artificial creature being endowed with life by magic. It is often
associated to different elements and materials: fire, earth, sand, etc.
Hobbit: Hobbits are similar to humans, but about half their size. They’re
chubby, furry-footed home-bodies with a penchant for dwelling in hollowed out
hillsides and a racial talent for burglary.
Halfling: see Hobbit.
JavaScript-mancer: Person that has mastered the art of writing awesome
JavaScript and has an intimate knowledge of it.
JavaScript-mancy: The arcane art of using JavaScript to alter the world around
you.
Kender: A race of wizened 14-year-olds that, unlike halflings, wear shoes.
Mana: For those of you not familiar with magic, mana can be seen as a measure
of magical stamina. As such, doing magic (like summoning minions) spends
oneâ€™s mana. An empty reservoir of mana means no spellcasting just as a
empty reserve of stamina means no more running.

Minion: Someone who is not powerful or important and who obeys the orders
of a powerful leader or boss.
Saruman: Powerful wizard prone who likes white clothing and prone to evil
deeds
Scepter: A staff or baton borne by a sovereign as an emblem of authority. It can
be imbued in magic powers.
Spell: A spoken word or form of words held to have magic power.
Spellcasting (casting): Performing magic by reciting a spell.
Summon: To bid a creature to come to your aid with the help of magic. It can
also create a creature from nothingness.
Troll: An evil giant creature than inhabitates caves, hills and bridges. Some of
them show weakness to sunlight.
Teleport: Transfer ones location by using magic
Orc: A race of human-like creatures, characterized as ugly, warlike, and
malevolent.
Orb: A circular object that possess unbound magic power.
Wand: A long, thin stick used by a magician to channel its powers.
Weave: See spellcasting.

References

There’s a lot of books that have inspired me while writing JavaScript-mancy. Here is
a non exhaustive list of the most influential.

Specifications

ECMAScript 6 Specification
Stamps specification

Books

JavaScript Allonge - Reginald Braithwaite
You don’t know JS - Kyle Simpson
Functional JavaScript - Michael Fogus
Effective JavaScript - David Herman
Understanding ECMAScript 6 - Nicholas C. Zackas
Secrets of the JavaScript Ninja - John Resig, Bear Bibeault
Programming JavaScript Applications - Eric Elliott
Principles of Object Oriented JavaScript - Nicholas C. Zackas
Eloquent JavaScript - Adam Freeman
JavaScript the Good Parts - Douglas Crockford

White papers

Traits: Composable Units of Behaviour - ECOOP’2003, LNCS 2743, pp. 248–
274, Springer Verlag, 2003

Articles

Traits: Robust Object Composition and High-integrity Objects for ECMAScript
5

http://www.ecma-international.org/ecma-262/6.0
https://github.com/stampit-org/stamp-specification
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
http://traitsjs.github.io/traits.js-website/files/traitsJS_PLASTIC2011_final.pdf

NOTES

1 “Any sufficiently advanced technology is indistinguishable from magic.” Arthur
C. Clarke. Love that quote :)↩

2 The ECMAScript standard in which JavaScript is based is evolved by the TC39
(Technical Committee 39) composed of several companies with strong interest in
JavaScript (all major browser vendors) and distinguished members of the
community. You can take a look at their GitHub page for a sneak-peek into how they
work and what they are working in↩

3 Previously known as Angular 2 and later re-branded to just Angular. The former
version of Angular 1.x is now known as Angular.js↩

4 Really, A LOT :)↩

5 For those of you that are not fantasy nerds I have included a small glossary at the
end of the book where you can check words that you find strange. You should be
able to understand the book and examples without the glossary, but I think it’ll be
more fun if you do↩

https://github.com/tc39

TOME II. JAVASCRIPTMANCY AND OOP: THE PATH OF

THE SUMMONER

1 In Fantasy, wizards of all sorts and kinds summon or call forth creatures to act as
servants, or warriors, and follow the wizard’s commands. As a JavaScript-mancer
you’ll be able to use Object Oriented Programming to summon your own objects
into reality and do with them as you please.↩

2 In this section I am going to make a lot of generalizations and simplifications in
order to give a simple and clear introduction to OOP in JavaScript. I’ll dive into each
concept in greater detail and with an appropriate level of correctness in the rest of the
chapters ahead.↩

3 They are also safer to use: They aren’t hoisted and JavaScript will alert you if you
try to call a class constructor without the new operator.↩

4 The Liskov substitution principle is one of the S.O.L.I.D. principles of object-
oriented design. It states that derived classes must be substitutable for their base
classes. This means that a derived class should behave as portrayed by its base class
and not break the expectations created by its interface. In this particular example if
you have a castsSpell and a steals method in the base class, and a derived class
throws an exception when you call them you are violating this principle. That’s
because the derived class breaks the expectations established by the base class (i.e.
that you should be able to use both methods).↩

5 It works both for custom and built-in types. So ya know.↩

6 Although closures do exist in C# they are not used as a mechanism of data
hiding… if you do use them for that purpose, respect, you’re a trendsetter…↩

7 In this case I use interface in a loose sense to denote interfaces, abstract classes or
even concrete classes that are a generalized version of more specific classes.↩

8 We’ll look into more into duck typing and polymorphism in the next chapter.↩

9 And, in some cases, even as a means of memory optimization.↩

10 The __proto__ property has been available in some browsers prior to ES6 but it
wasn’t part of the ECMA standard until ES6. Because it not being part of any
standard and thus not having a specific defined behavior it was very unreliable to
use. With ES6 you can use it with your object initializers as it makes the prototype
chain very apparent and easy to understand. __proto__ only works on browsers, if
you are working with node you can use Object.create and follow a very similar
flow.↩

11 The constructor will be responsible for at least part of that class definition. The
rest of the class definition will be specified by the prototype as we’ll soon see. In the
absence of a prototype the constructor will represent the complete class definition.↩

12 You’ll be happy to know that there’s an early ECMA-262 proposal that aims to
bring private members to classes. Yippi! Also, in the last chapter of the book you’ll
discover how one of the killer features of TypeScript are access mofidiers.↩

13 Remember that you can get access to all symbols used within an object via
Object.getOwnPropertySymbols() or Reflect.ownKeys() and therefore symbols
don’t offer true privacy like closures do.↩

14 This is not entirely true! What!? Liar! Let me clarify. Although methods
declared within the body of a class may feel like per-instance methods, they are not.
They are actually defined as part of the prototype of a class and therefore shared
across all instances. The difference with static methods is that these are attached to
the constructor function.↩

15 You’ll be happy to know that there is an active proposal to bring class members
and private fields to JavaScript. Wiii!↩

16 Remember that you can get access to all symbols used within an object via
getOwnPropertySymbols and therefore symbols don’t offer true privacy like closures
do.↩

17 Douglas Crockford talks about this idea of class-free inheritance in his excellent
talk at nordic.js http://bit.ly/douglas-crockford-nordicjs↩

18 Domain Driven Design (http://bit.ly/wiki-ddd)↩

19 Redux is a state management framework for JavaScript applications that is very
popular in the React community↩

20 Stamps were initially devised by a mythical figure in the JavaScript world: Eric
Eliott. If you have some time to spare go check his stuff at ericelliottjs.com or
JavaScript Scene.↩

21 These properties or methods are part of the object itself as opposed to being part
of the prototype. Therefore they won’t be shared across all instances created using a
stamp.↩

22 All objects in JavaScript have Object.prototype in their prototypical chain but
for Object.prototype itself and null (although I don’t know whether we sould
consider null an object).↩

23 The TypeError will be thrown if you’re in strict mode, otherwise it’ll just fail
silently. So use strict mode! :)↩

24 Yes! If you are familiar with C# or Java, decorators are like attributes and
annotations in either of these languages.↩

25 This definition from wikipedia was too good not to use http://bit.ly/reflection-
programming↩

26 The editor that you use should have a good integration with the TypeScript
compiler to provide this type of service. Many of the most common IDEs and text
editors have that support.↩

https://ericelliottjs.com/
https://medium.com/javascript-scene

27 Like params in C#.↩

28 Go back and review JavaScript-mancy: Getting Started for lots more of use
cases! ↩

29 This command uses the TypeScript React Started in the background
http://bit.ly/ts-react-starter↩

REFERENCES AND APPENDIX

1 As long as it is not frozen via Object.freeze, which makes an object immutable
to all effects and purposes.↩

2 I say mostly because if you have a this keyword within a method and within a
callback function (which I dare say is pretty common) then you are screwed. But
worry not! You’ll learn everything there is to learn about this in the next chapter.↩

3 or the new operator that we’ll see when we get to glorious tome of OOP ↩

4 that’s from the one and only JavaScript specification ECMA-262
(http://bit.ly/es6-spec-symbols)↩

5 AJAX stands for Asynchronously JavaScript and XML and is a technology that
allows you to get data from a server even after a web page has already been loaded.
The significance and impact of AJAX in modern web development is huge because
not only does it let you create highly interactive websites but also deliver a website
in chunks as they are needed. Since its inception, browsers have implemented
support for AJAX via the XMLHttpRequest object. Because of its complexity, I
decided to use the simpler $.getJSON. In the near future, you’ll be able to do AJAX
requests using the improved fetch API. Yey!↩

6 You can find more information about the Window object and the DOM at MDN
(http://bit.ly/mdn-window-object)↩

7 Another cool use of bind is partial application, but we’ll take a look at that when
we get to the tome of functional programming.↩

8 In this particular case however, because we are using jQuery to perform an AJAX
request, the value of this is jQuery jqXHR object, an object that represents the AJAX

request itself (we can assume that jQuery calls the updateUsers callback in the
context of a jqXHR object).↩

9 Check this awesome jsJabber chapter to learn more about the origins of
JavaScript from the very illustrious Brendan Eich http://bit.ly/js-origin.↩

10 Open for extension and closed for modification. http://bit.ly/ocp-wikipedia↩

	About The Author
	About the Technical Reviewers
	Prelude
	A Note to the Illustrious Readers of JavaScript-mancy: Getting Started
	A Story About Why I Wrote This Book
	Why Should You Care About JavaScript?
	What is the Goal of This Book?
	What is the Goal of The JavaScript-mancy Series?
	Why JavaScript-mancy?
	Is This Book For You?
	How is The Book Organized?
	How Are The JavaScript-mancy Series Organized? What is There in the Rest of the Books?
	Understanding the Code Samples in This Book
	A Note About ECMAScript 5 (ES5) and ES6, ES7, ES8 and ESnext within The Book
	A Note Regarding the Use of var, let and const
	A Note About the Use of Generalizations in This Book
	Do You Have Any Feedback? Found Any Error?
	A Final Word From the Author

	Once Upon a Time…
	Tome II. JavaScriptmancy and OOP: The Path of The Summoner
	Introduction to the Path of Summoning and Commanding Objects (aka OOP)
	Let me Tell You About OOP in JavaScript
	C# Classes in JavaScript
	OOP Beyond Classes
	Combining Classes with Object Composition
	The Path of the Object Summoner Step by Step
	Concluding

	Summoning Fundamentals: Encapsulation and Information Hiding
	Let’s get Started With The Basics of OOP!
	Encapsulation: Creating Objects in JavaScript
	Object Initializers
	Constructor Functions and the New Operator
	Data Hiding in JavaScript
	Object Initializers vs Constructor Functions
	Object Factories vs Constructor Functions
	Concluding
	Exercises

	Summoning Fundamentals: Prototypical Inheritance
	You Don’t Repeat Yourself. Inheritance!
	Classical Inheritance vs Prototypical Inheritance
	JavaScript Prototypical Inheritance
	Object Prototypes
	Object Prototypes with Object.Create or OLOO
	Defining Prototypes with Constructor Functions
	Creating Longer Prototype Chains
	What About Concatenative Protypical Inheritance?
	Object Initializers vs Object.create vs Constructor Functions
	Concluding
	Exercises

	Summoning Fundamentals: Polymorphism
	Polymorphism Means Many Forms
	Polymorphism in C#
	Polymorphism in JavaScript
	Concluding
	Exercises

	White Tower Summoning: Mimicking C# Classical Inheritance in JavaScript
	Ever Heard of Classical Inheritance?
	Emulating a C# Class in JavaScript
	Constructor Function + Prototype = Class
	Mimicking Classical Inheritance in JavaScript
	Simplifying Classical Inheritance in ES5
	Concluding
	Exercises

	White Tower Summoning Enhanced: The Marvels of ES6 Classes
	Create These Units Faster with ES6 Classes!
	From ES5 “Classes” to ES6 Classes
	Prototypical Inheritance via Extends
	Overriding Methods in ES6 Classes
	Static Members and Methods
	ES6 Classes and Information Hiding
	ES6 Classes Behind the Curtain
	Concluding
	Exercises

	Black Tower Summoning: Objects Interweaving Objects with Mixins
	The Problem With Classes and Classical Inheritance…
	Free Yourself From Classes With Object Composition and Mixins
	Limitations of Mixins as Objects
	Functional Mixins
	Combining Mixins with ES6 Classes
	Object.assign in Depth
	Object.assign Alternatives for ES5 JavaScript-mancers
	Concluding
	Exercises

	Black Tower Summoning: Safer Object Composition with Traits
	An Improvement Over Mixins
	Traits
	Traits with traits.js
	Composing Traits
	What Happens When You Miss Required Properties?
	Resolving Name Conflicts
	Traits and Data Privacy
	High Integrity Objects With Immutable Traits
	Traits vs Mixins
	Concluding
	Exercises

	Black Tower Summoning: Next Level Object Composition With Stamps
	I Call Them Stamps
	What are Stamps?
	Stamps OOP Embraces JavaScript
	Stamps By Example
	Stamp Composition
	Stamp Fluent API
	Concluding: Stamps vs Mixins vs Traits
	Exercises

	Object Internals: The Secrets of Objects
	A Nifty Trick… Object Internals
	All your Objects Are Belong to Object
	Defining Properties with Object.defineProperty
	Defining Multiple Properties with Object.defineProperties
	Beautiful Property Manipulation with ESnext Decorators
	Class And Method Decorators
	Create Objects With Object.create And Property Descriptors
	Metaprogramming
	Other Useful Object Methods
	Concluding
	Exercises

	More Metaprogramming with Reflect, Proxies and Symbols
	How Good Are You at Reflection?
	ES6 Reflect
	Reflection? What is reflection?
	ES6 Proxies
	ES6 Symbols and Meta-programming
	Concluding
	Exercises

	TypeScript
	You Shall Only Use Types!
	JavaScript + Types = Awesome Dev Productivity
	Any JavaScript is Valid TypeScript
	So, What Are The Advantages and Disadvantages of TypeScript?
	Setting up a Simple TypeScript project
	Cool TypeScript Features
	Type Annotations In TypeScript
	Working with TypeScript in Real World Applications
	Concluding
	Exercises

	Tome II. Epilogue
	Thank you!

	References and Appendix
	Appendix A. On the Art of Summoning Servants and Critters, Or Understanding The Basics of JavaScript Objects
	An Army of Objects
	Object Initializers (a.k.a. Object Literals)
	Creating Objects With Factories
	Data Privacy in JavaScript
	ES6 Improves Object Initializers
	ES6 Symbols and Data Privacy
	Concluding
	Exercises

	Appendix B. Mysteries of the JavaScript Arcana: JavaScript Quirks Demystified
	A Couple of Tips About JavaScript Quirks and Gotchas
	A Quick Refresher of the JavaScript Arcana 101
	This, Your Most Dangerous Foe
	Global Scope by Default and Namespacing in JavaScript
	Type Coercion Madness
	Using JavaScript in Strict Mode
	Concluding
	Exercises

	Appendix C. More Useful Function Patterns: Function Overloading
	Have you Heard About The Marvels Of Overloading?
	The Problem with Function Overloading in JavaScript
	How Do We Do Function Overloading Then?
	Function Overloading by Inspecting Arguments
	Using an Options Object
	Relying on ES6 Defaults
	Taking Advantage of Polymorphic Functions
	Concluding
	Exercises

	Appendix D. Setting Up Your Developing Environment For ES6
	Using ES6 with Node.js
	ES6 and Modern Browsers
	Real-World ES6 Development Environments

	Appendix E. Fantasy Glossary
	References
	Specifications
	Books
	White papers
	Articles

	Notes

