
www.allitebooks.com

http://www.allitebooks.org

Timothy Fisher

Java™

ESSENTIAL CODE AND COMMANDS

P H R A S E B O O K

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240 USA

DEVELOPER’S

LIBRARY

www.allitebooks.com

http://www.allitebooks.org

Java™ Phrasebook
Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,

or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,

without written permission from the publisher. No patent liability is assumed with respect

to the use of the information contained herein. Although every precaution has been taken

in the preparation of this book, the publisher and author assume no responsibility for

errors or omissions. Nor is any liability assumed for damages resulting from the use of the

information contained herein.

International Standard Book Number: 0-672-32907-7

Library of Congress Catalog Card Number: 2006921449

Printed in the United States of America

First Printing: November 2006

09 08 07 06 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have

been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-

mation. Use of a term in this book should not be regarded as affecting the validity of any

trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,

but no warranty or fitness is implied. The information provided is on an “as is” basis. The

author and the publisher shall have neither liability nor responsibility to any person or enti-

ty with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk

purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

The Safari® Enabled icon on the cover of your favorite technology book means
the book is available through Safari Bookshelf. When you buy this book, you
get free access to the online edition for 45 days. Safari Bookshelf is an

electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and
wherever you need it.

To gain 45-day Safari Enabled access to this book:

n Go to http://www.samspublishing.com/safarienabled
n Complete the brief registration form
n Enter the coupon code 7FHA-KYEI-8DTH-5KIJ-2MXR

If you have difficulty registering on Safari Bookshelf or accessing the online
edition, please e-mail customer-service@safaribooksonline.com.

Acquisitions Editors
Jenny Watson
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Rhonda Tinch-Mize

Indexer
Tim Wright

Proofreader
Susan Eldridge

Technical Editor
Boris Minkin

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

www.allitebooks.com

http://www.samspublishing.com/safarienabled
http://www.allitebooks.org

Table of Contents

Introduction 1

1 The Basics 5

Compiling a Java Program 7

Running a Java Program 8

Setting the Classpath 8

2 Interacting with the Environment 11

Getting Environment Variables 12

Setting and Getting System Properties 13

Parsing Command-Line Arguments 14

3 Manipulating Strings 17

Comparing Strings 18

Searching For and Retrieving Substrings 21

Processing a String One Character at a Time 22

Reversing a String by Character 23

Reversing a String by Word 23

Making a String All Uppercase or All

Lowercase 25

Trimming Spaces from the Beginning or

End of a String 25

Parsing a Comma-Separated String 26

4 Working with Data Structures 29

Resizing an Array 30

Iterating Over a Collection 31

Creating a Mapped Collection 32

Sorting a Collection 34

Finding an Object in a Collection 36

Converting a Collection to an Array 38

www.allitebooks.com

http://www.allitebooks.org

5 Dates and Times 39

Finding Today’s Date 40

Converting Between Date and Calendar

Objects 40

Printing Date/Time in a Given Format 41

Parsing Strings into Dates 44

Adding to or Subtracting from a Date or

Calendar 45

Calculating the Difference Between Two

Dates 46

Comparing Dates 47

Finding the Day of Week/Month/Year or

Week Number 48

Calculating Elapsed Time 49

6 Pattern Matching with Regular Expressions 51

Regular Expressions in Java 52

Finding Matching Text Using a Regular

Expression 54

Replacing Matched Text 56

Finding All Occurrences of a Pattern 58

Printing Lines Containing a Pattern 59

Matching Newlines in Text 60

7 Numbers 63

Checking Whether a String Is a Valid Number 64

Comparing Floating Point Numbers 65

Rounding Floating Point Numbers 66

Formatting Numbers 67

Formatting Currencies 69

Converting an Integer to Binary, Octal, and

Hexadecimal 70

Generating Random Numbers 70

iv Contents

www.allitebooks.com

http://www.allitebooks.org

Calculating Trigonometric Functions 71

Calculating a Logarithm 72

8 Input and Output 73

Reading Text from Standard Input 74

Writing to Standard Output 74

Formatting Output 75

Opening a File by Name 80

Reading a File into a Byte Array 81

Reading Binary Data 81

Seeking in a File 82

Reading a JAR or Zip Archive 83

Creating a Zip Archive 84

9 Working with Directories and Files 87

Creating a File 88

Renaming a File or Directory 89

Deleting a File or Directory 90

Changing File Attributes 91

Getting the Size of a File 91

Determining if a File or Directory Exists 92

Moving a File or Directory 93

Getting an Absolute Filename Path from a

Relative Filename Path 94

Determining if a Filename Path is a File or

Directory 95

Listing a Directory 96

Creating a New Directory 99

10 Network Clients 101

Contacting a Server 102

Finding IP Addresses and Domain Names 102

Handling Network Errors 103

Reading Text 105

vContents

www.allitebooks.com

http://www.allitebooks.org

Writing Text 106

Reading Binary Data 106

Writing Binary Data 108

Reading Serialized Data 109

Writing Serialized Data 110

Reading a Web Page via HTTP 111

11 Network Servers 115

Creating a Server and Accepting a Request 115

Returning a Response 117

Returning an Object 118

Handling Multiple Clients 119

Serving HTTP Content 122

12 Sending and Receiving Email 125

Overview of JavaMail API 126

Sending Email 126

Sending MIME Email 128

Reading Email 131

13 Database Access 135

Connecting to a Database via JDBC 136

Sending a Query via JDBC 138

Using a Prepared Statement 139

Retrieving Results of a Query 141

Using a Stored Procedure 142

14 Using XML 145

Parsing XML with SAX 147

Parsing XML with DOM 149

Using a DTD to Verify an XML Document 151

Creating an XML Document with DOM 153

Transforming XML with XSLT 155

vi Contents

www.allitebooks.com

http://www.allitebooks.org

15 Using Threads 157

Starting a Thread 158

Stopping a Thread 160

Waiting For a Thread to Complete 161

Synchronizing Threads 162

Pausing a Thread 166

Listing All Threads 167

16 Dynamic Programming Through Reflection 171

Getting a Class Object 172

Getting a Class Name 173

Discovering Class Modifiers 174

Finding Superclasses 175

Determining the Interfaces Implemented

by a Class 176

Discovering Class Fields 177

Discovering Class Constructors 178

Discovering Method Information 180

Getting Field Values 182

Setting Field Values 183

Invoking Methods 184

Loading and Instantiating a Class

Dynamically 186

17 Packaging and Documenting Classes 189

Creating a Package 190

Documenting Classes with JavaDoc 192

Archiving Classes with Jar 194

Running a Program from a JAR File 196

Index 197

viiContents

www.allitebooks.com

http://www.allitebooks.org

About the Author
Timothy Fisher has been working professionally in

the Java software development field since 1997. He has

served in a variety of roles including developer, team

leader, and chief architect.Tim is currently a consultant

for the Compuware Corporation in Detroit, Michigan.

Tim also enjoys writing about technology and has

been a contributor to Java Developer’s Journal and XML

Journal.Along with his technology interests,Tim is also

passionate about education and the use of advanced

Internet technologies for education.You can contact

Tim and read his blog at: www.timothyfisher.com.

www.allitebooks.com

www.timothyfisher.com
http://www.allitebooks.org

Dedication

This book is dedicated to my parents
Thomas and Betty Fisher.They have

been my foundation throughout my life.
Without them I would not be where I

am today.

Acknowledgments
I would like to acknowledge everyone who helped me

in getting this book done. First of all I would like to

thank the staff at Pearson for sticking with me and

guiding me through this project. I have written many

articles and papers, but I am a first-time author when

it comes to book writing. Despite many missed dead-

lines and delays in writing, the editors stuck with me

and helped me to assure that my first book project was

indeed successful.The editors that I interacted with,

Songlin Qiu and Mandie Frank, were very helpful

throughout the process. I’d also like to thank the tech-

nical editor, Boris Minkin, who was also a big part of

this project. He provided needed technical review to

make sure what I was saying was correct. In a book

like this, there are many opportunities for errors and

without the work of Boris Minkin, the book quality

would have suffered.

Finally, I’d like to thank my family, Kerry,Timmy, and

Camden who provided me encouragement and com-

plete support in writing this book and thus accom-

plishing a significant goal of mine. My wife, Kerry,

stepped in to take over most of the household chores

www.allitebooks.com

http://www.allitebooks.org

while I dedicated many evenings to completing this

book.Timmy and Camden settled for a little less play

time with Dad. Finally, without my parents,Tom and

Betty Fisher, I wouldn’t be where I am today.They

have been my foundation and inspiration in life. Kerry,

Timmy, Camden, and Mom and Dad, I love you all…

We Want to Hear from You!
As the reader of this book, you are our most important

critic and commentator.We value your opinion and

want to know what we’re doing right, what we could

do better, what areas you’d like to see us publish in,

and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know

what you did or didn’t like about this book—as well as

what we can do to make our books stronger.

Please note that I cannot help you with technical problems

related to the topic of this book, and that due to the high vol-

ume of mail I receive, I might not be able to reply to every

message.

When you write, please be sure to include this book’s

title and author as well as your name and phone or

email address. I will carefully review your comments

and share them with the author and editors who

worked on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at

www.samspublishing.com/register for convenient

access to any updates, downloads, or errata that might

be available for this book.

www.samspublishing.com/register

This page intentionally left blank

Introduction

Earlier this year, I was asked by an editor at Pearson

to write this phrasebook focused on Java. It is one of

several in their Phrasebook series. Christian Wenz

wrote the first one in the series, the PHP Phrasebook.

The concept for the phrasebook series comes from the

foreign language phrasebooks. Foreign language

phrasebooks contain a list of common phrases that you

might want to say in the foreign language.These books

are very useful for visitors who do not know the local

language.The concept of technical phrasebooks is sim-

ilar.They show the reader how to accomplish common

tasks using the technology which is the subject of the

book.

The goal of this phrasebook is to provide you with a

guide book of commonly used Java programming

phrases.This book should be useful to both the sea-

soned Java programmer and the programmer who is

new to Java.Although the book can be read cover-to-

cover to get a good overview of the Java language, the

book is best used as an on-hand reference when the

programmer wants to know how to accomplish a

common task in the Java language.You may also wish

to explore the book to discover some Java features and

techniques that you may not have been aware of

before.

The book is not a Java language tutorial or introduc-

tion, nor is it a complete reference to the Java

language.There are many more classes and APIs than

what you will find covered in this book.There are

already many excellent learning Java style books and

Java reference books covering pretty much every tech-

nology you can think of. If your goal is to get a deeper

understanding of a specific technology, this is not the

book you are looking for.

Most of the phrases and sample code shown in this

book do not contain error handling code. Many of the

phrases may throw exceptions that you will have to

handle in any real applications that you write.The

error and exception handling code is not shown in this

book so that the reader can focus on the purpose of

the phrase or sample code without being distracted by

a lot of error handling code.When you include all of

the standard exception handling in a code sample, the

phrase can quickly become something much more

than a short concise phrase, and yet showing all of the

exception handling code will not have helped you to

understand the specific phrase any better. Not showing

the error handling code allows the phrases to be kept

short and concise.The JavaDoc for the Java JDK is an

excellent source for looking up which exceptions can

be thrown by any method contained in the Java classes

that you will come across in this book.You can access

the JavaDoc at: http://java.sun.com/j2se/1.5.0/

docs/api/.

The phrases contained in this book should be OS

independent.The Java platform’s motto of write-once-

run-anywhere should apply to all of the phrases and

sample code contained in this book.The phrases were

tested under JDK 1.5, also referred to as Java 5.0.

Most of the phrases will work well under earlier ver-

sions of the JDK as well, except where noted.

2 Java Phrasebook

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/

All of the phrases and sample code in this book have

been tested and should be error-free.While my hope is

that this book is 100% error-free, I do realize that most

technical books don’t quite meet that mark.Any errors

and other errata that are found will be made available

on www.samspublishing.com.

While writing this book, I have tried to come up with

what I considered to be the most useful phrases while

maintaining the concise format of the Phrasebook

series. I am certain that at some point you will be

looking for a certain phrase that you will not find in

this book. If you feel that a phrase should be included

in this book, I’d like to hear from you.Also, if you feel

that there are phrases contained in this book which are

less than useful, please tell me that as well.As a writer,

I always enjoy feedback from my readers. Perhaps at

some point in the future you will see a second edition

of this book that takes your feedback into account.You

can reach me through my website at www.

timothyfisher.com.

There is more to Java, of course, than can be covered

in a book this size.When you register this book at

www.samspublishing.com/register, you will find addi-

tional material as well as any updates.

3Introduction

www.samspublishing.com
www.timothyfisher.com
www.timothyfisher.com
www.samspublishing.com/register

This page intentionally left blank

1

The Basics

This chapter contains the phrases that you will need

to get you started in Java development.These are

things that you need to know before you can accom-

plish much of anything in Java.The basics include

compiling and running your Java code, and under-

standing the Java class path. Unlike languages such as

PHP and Basic, Java source code must be compiled

into what is called byte code before it can be exe-

cuted.The compiler places the byte code into Java class

files.Therefore, it is important for anyone program-

ming in Java to understand how to compile their

source code into class files, and then be able to execute

those class files. Knowledge of the Java class path is

important for both compiling and executing Java code.

Therefore it is with these phrases that we start.

Today it is common to do Java development within an

integrated development environment (IDE), such as

the freely available Eclipse project—see

http://www.eclipse.org.This chapter assumes that you

are performing the tasks at the command line.

Although realistically, you might use an IDE for most

of your development, every developer should be

http://www.eclipse.org

familiar with setting up and accomplishing these tasks

outside the IDE. Performing these tasks within the

IDE will vary with the IDE, and references for your

particular IDE are the best place to go for that help.

To execute the phrases contained in this chapter, you

should obtain a Java distribution from Sun. Sun makes

Java technology available in several popular forms.The

most common Java distributions are the Java Standard

Edition (SE), the Java Enterprise Edition (EE), and the

Java Micro Edition (ME).To complete all phrases in

this book, you will only need the Java SE package. Java

EE contains additional features for developing enter-

prise applications, and the Java ME is geared towards

developing applications for devices such as cell phones

and PDAs.All of these packages can be downloaded

from the Sun Java website at http://java.sun.com.The

J2SE 5.0 is the most recent version of the Java SE at

the time of this writing. Unless you have a reason to

use a previous version, this is the version you should

use with this book.Within the J2SE 5.0, you will find

two packages available for download, the JDK and the

JRE.The JDK is the Java development kit and is what

you will need to develop Java applications.The JRE is

the Java runtime edition and will only allow you to

run Java applications, but not build your own. So for

this book you will need the JDK distribution of the

J2SE 5.0 package.

NOTE: J2SE 5.0 and JDK 5.0 are also often referred to as

JDK 1.5. Sun decided to officially change the name of the

1.5 version to 5.0.

For assistance in installing the most recent version of the

Java J2SE JDK as of the writing of this book, see

http://java.sun.com/j2se/1.5.0/install.html.

6 CHAPTER 1 The Basics

http://java.sun.com
http://java.sun.com/j2se/1.5.0/install.html

Compiling a Java Program

7Compiling a Java Program

javac HelloWorld.java

In this phrase, we compile the HelloWorld.java source

file to bytecode. Bytecode is Java’s platform-independ-

ent representation of a program’s instructions.The out-

put will be placed in the HelloWorld.class file.

The javac executable is included with the Java JDK

distribution.This javac program is used to compile the

Java source files that you write into Java class files.A

java class file is a bytecode representation of the com-

piled java source. For more complete information

about the javac command, be sure to see the JDK

documentation.There are many options you can use

with javac that are not covered in this book.

For most programming projects, other than very small

and simple programs, you will most likely use an IDE

or a tool, such as the Ant build tool from Apache, to

perform your compiling. If you are compiling anything

other than a very small project with minimal source

files, I highly recommend that you become familiar

with Ant. If you are familiar with the Make build tool

commonly used by C programmers, you will under-

stand the importance of Ant.Ant is like a Make tool

for Java.With Ant you can create a build script that

will allow you to specify details of how a complex

application should be built, and with a single com-

mand you can automatically build the entire applica-

tion.You can get more information about Ant and

download it from http://ant.apache.org.

www.allitebooks.com

http://ant.apache.org
http://www.allitebooks.org

Running a Java Program

8 CHAPTER 1 The Basics

javac HelloWorld.java // compile source file

java HelloWorld // execute byte code

In this phrase, we first use the javac compiler to com-

pile our Java source into a HelloWorld.class file. Then,

we can execute the HelloWorld program using the

java command and passing the name of the compiled

class, HelloWorld. Note that you do not include the

.class extension when passing the name to the java

command.

The java executable is included with either the Java

JDK distribution or the Java JRE distribution.This

program is used to execute your compiled Java class

files.The Java executable can be thought of as the

interpreter that compiles your bytecode real-time into

executable native code that runs on the platform you

are executing on.The Java executable is a platform

dependent piece of Java. Each platform that supports

Java will have its own Java executable compiled specifi-

cally for that platform.This piece of Java is also called

the virtual machine.

Setting the Classpath

set CLASSPATH = /user/projects/classes

java –classpath =

CLASSPATH%;classes/classa.class;libs/stuff.jar

The classpath is used by the java executable and the

java compiler to find the compiled class files and any

libraries packaged as JAR files required to run or com-

pile a program. JAR files are the standard way of pack-

aging libraries into a single file resource.The preceding

phrase shows how the classpath can be set when exe-

cuting a java program at the command line. By default,

the classpath is obtained from the operating system

CLASSPATH environment variable. In the phrase, a specif-

ic class, classfile.class, located in the classes direc-

tory, is appended to the classpath set by the environ-

ment variable.A library called stuff.jar, located in the

libs directory, is also appended to the classpath.

If the CLASSPATH environment variable is not set, and

the –classpath option is not used, the classpath defaults

to the current directory. If you do set the classpath

using either of these options, the current directory is

not automatically included in the classpath.This is a

common source of problems. If you are setting the

classpath, you must explicitly add the current directory.

You can add the current directory to the classpath by

specifying it as “.” in the classpath.

CAUTION: Note that while any classes are found in a

directory that is included in the classpath, JAR files must

be explicitly included in the classpath to be found. They

will not be found just by including the directory in which

they reside, in the classpath.

Classpath-related problems are very common among

novice and even experienced programmers, and can

often be very frustrating to solve. If you take the time

to fully understand the classpath and how to set it,

then you should be able to avoid these types of prob-

lems in your applications. For additional information

about setting and using the classpath, see this URL -

http://java.sun.com/j2se/1.5.0/docs/tooldocs/

windows/classpath.html.

9Setting the Classpath

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/classpath.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/classpath.html

This page intentionally left blank

2

Interacting with
the Environment

This chapter provides phrases that help you interact

with the runtime environment which your Java appli-

cation is executing in. Many of the phrases in this

chapter make use of the Java System object. The System

object is a core Java object intended for interacting

with the environment surrounding your Java applica-

tion.You should take special caution when using this

object and in general when interacting with the envi-

ronment, for if you are not careful, this can lead to

platform dependent code.This is because the System

object interacts with the environment, which may be

different depending on the platform you are working

on. So the results of using a System method or proper-

ty on one platform may not be consistent across all

platforms.

Getting Environment Variables

12 CHAPTER 2 Interacting with the Environment

String envPath = System.getenv("PATH");

This phrase shows how you can retrieve an environ-

ment variable using the System.getenv() method.This

method was deprecated in versions of JDK 1.2

through 1.4. In JDK 1.5, Sun did something that they

don’t do too often and they undeprecated this method.

If you are using a version of the JDK that has this

method deprecated, at compile time, you will get dep-

recation warnings if you attempt to use this method. A

deprecated method is a method that should not be

used in new development projects, but is supported for

backward compatibility purposes.There is no guaran-

tee that deprecated methods will continue to be sup-

ported in future versions of the JDK. But again, in the

case of this method, in the most recent version of the

JDK, 1.5, the method is not deprecated, so you can

probably assume that it will indeed continue to be

supported.

In general, it is usually considered a bad practice to

rely on environment variables in your Java application.

This is because environment variables are a platform-

dependent concept, and Java strives to be platform

independent. Some Java platforms, most notably the

Macintosh, do not even have the concept of environ-

ment variables; thus in these environments, your code

would not behave as expected.The next phrase

describes how to get and set system properties.This

approach is preferred over using environment variables.

Setting and Getting System
Properties

13Setting and Getting System Properties

System.setProperty("timezone",

"EasternStandardTime");

String zone = System.getProperty("timezone");

System properties are key/value pairs that are external

to your Java application.The Java System object pro-

vides a mechanism for reading the names and values of

these external system properties into your Java applica-

tion.The preceding phrase shows how you can set and

get a system property using the Java System object.

You can also retrieve all the system properties into a

properties object using the following statement:

Properties systemProps = System.getProperties();

There is also a method for retrieving just the system

property names.The following code snippet shows

how you can retrieve all the system property names

and then retrieve each property using its name:

Properties props = System.getProperties();

Enumeration propertyNames = props.propertyNames();

String key = "";

while (propertyNames.hasMoreElements()) {

key = (String) propertyNames.nextElement();

System.out.println(key + "=" +

props.getProperty(key));

}

Parsing Command-Line
Arguments

14 CHAPTER 2 Interacting with the Environment

java my_program arg1 arg2 arg3

public static void main(String[] args) {

String arg1 = args[0];

String arg2 = args[1];

String arg3 = args[2];

}

In this phrase, we store the values of three command

line arguments into three separate string variables,

arg1, arg2, and arg3.

Any java class can have a main() method, which is exe-

cutable from the command line.The main() method

accepts a String array of command-line arguments.

The arguments are contained in the array in the order

in which they are entered at the command line. So, to

retrieve the command-line arguments, you simply have

to extract the elements of the arguments array passed

into the main() method.

If your application uses a lot of command-line argu-

ments, it is wise to spend the time to write a custom

command-line arguments parser to understand and

handle various types of command-line arguments, such

as single-character parameters, parameters that being

with a dash (-), parameters that are immediately fol-

lowed by another related parameter, and so on.

NOTE: Online, you can find many good examples of com-

mand-line argument processors to save you a lot of work.

Here are two good libraries that can get you started:

http://jargs.sourceforge.net

https://args4j.dev.java.net/

Both of these are small libraries that can parse complex

command-line arguments through a relatively simple inter-

face.

15Parsing Command-Line Arguments

http://jargs.sourceforge.net
https://args4j.dev.java.net/

This page intentionally left blank

3

Manipulating
Strings

Much of what you do in any programming language

involves the manipulation of strings. Other than

numeric data, nearly all data is accessed as a string.

Quite often, even numeric data is treated as a simple

string. It is difficult to imagine being able to write a

complete program without making use of strings.

The phrases in this chapter show you some common

tasks involving strings.The Java language has strong

built-in support for strings and string processing.

Unlike the C language, strings are built-in types in the

Java language. Java contains a String class that is used

to hold string data. Strings in Java should not be

thought of as an array of characters as they are in C.

Whenever you want to represent a string in Java, you

should use the String class, not an array.

An important property of the String class in Java is

that once created, the string is immutable.This means

that once created, a Java String object cannot be

changed.You can reassign the name you’ve given a

string to another string object, but you cannot change

www.allitebooks.com

http://www.allitebooks.org

the string’s contents. Because of this, you will not find

any set methods in the String class. If you want to cre-

ate a string that you can add data to, such as you might

in some routine that builds up a string, you should use

the StringBuilder class if you are using JDK 1.5, or the

StringBuffer class in older versions of Java, instead of

the String class.The StringBuilder and StringBuffer

classes are mutable; thus you are allowed to change

their contents. It is very common to build strings using

the StringBuilder or StringBuffer class and to pass or

store strings using the String class.

Comparing Strings

18 CHAPTER 3 Manipulating Strings

boolean result = str1.equals(str2);

boolean result2 = str1.equalsIgnoreCase(str2);

The value of result and result2 will be true if the

strings contain the same content. If the strings contain

different content, the value of result and result2 will

be false.The first method, equals(), is case sensitive.

The second method, equalsIgnoreCase(),will ignore

the case of the strings and return true if the content is

the same regardless of case.

String comparison is a common source of bugs for

novice Java programmers.A novice programmer will

often attempt to compare strings using the comparison

operator ==. When used with Strings, the comparison

operator == compares object references, not the con-

tents of the object. Because of this, two string objects

that contain the same string data, but are physically

distinct string object instances, will not compare as

equal when using the comparison operator.

The equals() method on the String class compares a

string’s contents, rather than its object reference.This is

the preferred string comparison behavior in most

string comparison cases. See the following example:

String name1 = new String("Timmy");

String name2 = new String("Timmy");

if (name1 == name2) {

System.out.println("The strings are equal.");

}

else {

System.out.println("The strings are not

equal.");

}

The output from executing these statements will be

The strings are not equal.

Now use the equals() method and see the results:

String name1 = new String("Timmy");

String name2 = new String("Timmy");

if (name1.equals(name2)) {

System.out.println("The strings are equal.");

}

else {

System.out.println("The strings are not

equal.");

}

The output from executing these statements will be

The strings are equal.

Another related method on the String class is the

compareTo() method.The compareTo() method com-

pares two strings lexographically, returning an integer

value—either positive, negative, or 0.The value 0 is

19Comparing Strings

returned only if the equals() method would evaluate

to true for the two strings.A negative value is returned

if the string on which the method is called alphabeti-

cally precedes the string that is passed as a parameter to

the method.A positive value is returned if the string

on which the method is called alphabetically comes

after the string that is passed as a parameter.To be pre-

cise, the comparison is based on the Unicode value of

each character in the strings being compared.The

compareTo() method also has a corresponding

compareToIgnoreCase() method that performs function-

ally the same with the exception that the characters’

case is ignored. See the following example:

String name1="Camden";

String name2="Kerry";

int result = name1.compareTo(name2);

if (result == 0) {

System.out.println("The names are equal.");

}

else if (result > 0) {

System.out.println(

"name2 comes before name1 alphabeti-

cally.");

}

else if (result < 0) {

System.out.println(

"name1 comes before name2 alphabetically.");

}

The output of this code will be

name1 comes before name2 alphabetically.

20 CHAPTER 3 Manipulating Strings

Searching For and Retrieving
Substrings

21Searching For and Retrieving Substrings

int result = string1.indexOf(string2);

int result = string1.indexOf(string2, 5);

In the first method shown, the value of result will

contain the index of the first occurrence of string2

within string1. If string2 is not contained within

string1, -1 will be returned.

In the second method shown, the value of result will

contain the index of the first occurrence of string2

within string1 that occurs after the fifth character

within string1.The second parameter can be any valid

integer greater than 0. If the value is greater than the

length of string1, a result of -1 will be returned.

Besides searching a string for a substring, there might

be times when you know where a substring is that you

are interested in and simply want to get at that sub-

string. So, in either case, you now know where a sub-

string is that you are interested in. Using the String’s

substring() method, you can now get that substring.

The substring() method is overloaded, meaning that

there are multiple ways of calling it. One way of call-

ing it is to pass a start index.This will return a sub-

string that begins at the start index and extends

through the end of the string.The other way of using

substring() is to call it with two parameters—a start

index, and an end index.

String string1 = "My address is 555 Big Tree Lane";

String address = string1.substring(14);

System.out.println(address);

This code will print out

555 Big Tree Lane

The first 5 character is at position 14 in the string; thus

it is the beginning of the substring. Note that strings

are always zero-based indexed, and the last character of

a string is at location (length of string) -1.

Processing a String One
Character at a Time

22 CHAPTER 3 Manipulating Strings

for (int index = 0; index < string1.length();

index++) {

char aChar = string1.charAt(index);

}

The charAt() method allows you to obtain a single

character from the string at the specified index.The

characters are indexed 0 based, from 0 to the length of

the string-1.The phrase shown previously loops

through each character contained in string1.

An alternative method would be to use the

StringReader class, as follows:

StringReader reader = new StringReader(string1);

int singleChar = reader.read();

Using this mechanism, the read() method of the

StringReader class returns one character at a time, as an

integer. Each time the read() method is called, the

next character of the string will be returned.

Reversing a String by
Character

23Reversing a String by Word

String letters = "ABCDEF";

StringBuffer lettersBuff = new StringBuffer(let-

ters);

String lettersRev =

lettersBuff.reverse().toString();

The StringBuffer class contains a reverse() method

that returns a StringBuffer that contains the characters

from the original StringBuffer reversed.A

StringBuffer is easily converted into a String using the

toString() method of the StringBuffer. So by tem-

porarily making use of a StringBuffer, you are able to

produce a second string with the characters of an orig-

inal string in reverse order.

If you are using JDK 1.5, you can use the

StringBuilder class instead of the StringBuffer class.

The StringBuilder class has an API compatible with

the StringBuffer class.The StringBuilder class will

give you faster performance, but its methods are not

synchronized; thus it is not thread-safe. In multithread-

ed situations, you should continue to use the

StringBuffer class.

Reversing a String by Word

String test = "Reverse this string";

Stack stack = new Stack();

StringTokenizer strTok = new StringTokenizer(test);

while(strTok.hasMoreTokens()) {

stack.push(strTok.nextElement());

}

24 CHAPTER 3 Manipulating Strings

StringBuffer revStr = new StringBuffer();

while(!stack.empty()) {

revStr.append(stack.pop());

revStr.append(" ");

}

System.out.println("Original string: " + test);

System.out.println("\nReversed string: " + revStr);

The output of this code fragment will be

Original string: Reverse this string

Reversed string: string this Reverse

As you can see, reversing a string by word is more

complex than reversing a string by character.This is

because there is built-in support for reversing a string

by character, but there is no such built-in support for

reversing by word.To accomplish this task, we make

use of the StringTokenizer and the Stack classes. Using

StringTokenizer, we parse each word out of the string

and push it onto our stack.After we’ve processed the

entire string, we iterate through the stack, popping

each word off and appending to a string buffer that

holds the reversed string.A stack that has the property

of last item in becomes the first item out. Because of

this property, the stack is often referred to as a LIFO

(last in, first out) queue.This makes the reverse success-

ful.

See the phrase covered in the section,“Parsing a

Comma-Separated String” in this chapter for more

uses of the StringTokenizer class.

NOTE: I don’t cover it here, but you may also be interested

in checking out a new addition to JDK 1.5, the Scanner

class. The Scanner class is a simple text scanner which can

parse primitive types and strings using regular expressions.

Making a String All Uppercase
or All Lowercase

25Trimming Spaces from the Beginning or End of a String

String string = "Contains some Upper and some

Lower.";

String string2 = string.toUpperCase();

String string3 = string.toLowerCase();

These two methods transform a string into all upper-

case or all lowercase letters.They both return the

transformed result.These methods do not change the

original string.The original string remains intact with

mixed case.

A practical area in which these methods are useful is

when storing information in a database.There might

be certain fields that you always want to store as all

uppercase or all lowercase.These methods make the

conversion a snap.

Case conversion is also useful for processing user

logins.The user ID field is normally considered to be a

field that’s not case sensitive, whereas the password field

is case sensitive. So, when comparing the user ID, you

should convert to a known case and then compare to a

stored value.Alternatively, you can always use the

equalsIgnoreCase() method of the String class, which

performs a non case sensitive comparison.

Trimming Spaces from the
Beginning or End of a String

String result = str.trim();

The trim() method will remove both leading and

trailing whitespace from a string and return the result.

The original string will remain unchanged. If there is

no leading or trailing whitespace to be removed, the

original string is returned. Both spaces and tab charac-

ters will be removed.

This is very useful when comparing user input with

existing data.A programmer often racks his brain for

hours trying to figure out why what he enters is not

the same as a stored string, only to find out that the

difference is only a trailing space.Trimming data prior

to comparison will eliminate this problem.

Parsing a Comma-Separated
String

26 CHAPTER 3 Manipulating Strings

String str = "tim,kerry,timmy,camden";

String[] results = str.split(",");

The split() method on the String class accepts a reg-

ular expression as its only parameter, and will return an

array of String objects split according to the rules of

the passed-in regular expression.This makes parsing a

comma-separated string an easy task. In this phrase, we

simply pass a comma into the split() method, and we

get back an array of strings containing the comma-

separated data. So the results array in our phrase would

contain the following content:

results[0] = tim

results[1] = kerry

results[2] = timmy

results[3] = camden

Another useful class for taking apart strings is the

StringTokenizer class.We will repeat the phrase using

the StringTokenizer class instead of the split()

method.

String str = "tim,kerry,timmy,Camden";

StringTokenizer st = new StringTokenizer(str, ",");

while (st.hasMoreTokens()) {

System.out.println(st.nextToken());

}

This code example will print each of the names con-

tained in the original string, str, on a separate line, as

follows:

tim

kerry

timmy

camden

Notice that the commas are discarded and not output.

The StringTokenizer class can be constructed with

one, two, or three parameters. If called with just one

parameter, the parameter is the string that you want to

tokenize, or split up. In this case, the delimiter is

defaulted to natural word boundaries.The tokenizer

uses the default delimiter set, which is " \t\n\r\f": the

space character, the tab character, the newline charac-

ter, the carriage-return character, and the form-feed

character.

The second way of constructing a StringTokenizer

object is to pass two parameters to the constructor.

The first parameter is the string to be tokenized, and

the second parameter is a string containing the delim-

iters that you want to split the string on.This overrides

the default delimiters and sets them to whatever you

pass in the second argument.

Finally, you can pass a third argument to the

StringTokenizer constructor that designates whether

27Parsing a Comma-Separated String

www.allitebooks.com

http://www.allitebooks.org

delimiters should be returned as tokens or discarded.

This is a Boolean parameter.A value of true passed

here will cause the delimiters to be returned as tokens.

False is the default value, which discards the delimiters

and does not treat them as tokens.

You should also review the phrases in Chapter 6.With

the addition of regular expression support to Java in

JDK1.4, many of the uses of the StringTokenizer class

can be replaced with regular expressions.The official

JavaDoc states that the StringTokenizer class is a legacy

class and its use should be discouraged in new code.

Wherever possible, you should use the split() method

of the String class or the regular expression package.

28 CHAPTER 3 Manipulating Strings

4

Working with
Data Structures

A data structure is a mechanism for organizing data

used by your program.Whenever you are working

with groups of similar data items, it’s a good idea to

make use of a data structure. Java contains excellent

built-in support for many different types of data struc-

tures, including arrays, lists, maps, and sets. Java bundles

most of its classes for working with data structures into

what is called the Collections Framework.The

Collections Framework is a unified architecture for

representing and manipulating collections or data

structures.The most commonly used data structure

classes are the ArrayList and the HashMap, and those

classes are being focused on most in the phrases in this

chapter.

The term data structures can apply to the way data is

structured in a file or database as well as in-memory.

All the phrases in this chapter deal with in-memory

data structures.

NOTE: Sun makes available a document that gives a good

overview of the Collections Framework along with some

tutorials on how to use the various classes. You can view

this document at this link: http://java.sun.com/j2se/1.5.0/

docs/guide/collections/index.html

Resizing an Array

30 CHAPTER 4 Working with Data Structures

// use an ArrayList

List myArray = new ArrayList();

In Java, regular arrays of objects or primitives can not

be dynamically resized. If you want an array larger

than what was originally declared, you’d have to

declare a new larger array and copy the contents from

the original array to the new larger array. Here we

show how this is accomplished:

int[] tmp = new int[myArray.length + 10];

System.arraycopy(myArray, 0, tmp, 0,

myArray.length);

myArray = tmp;

In this example, we have an array of integers called

myArray, and we want to expand the size of the array

by 10 elements.We create a new array, which we call

tmp, and initialize it to the length of myArray + 10.We

then use the System.arrayCopy() method to copy the

contents of myArray to the tmp array. Finally, we set

myArray to point to the newly created tmp array.

Generally, the best solution to this problem is to use an

ArrayList object instead of a traditional array of

objects.An ArrayList can hold any type of objects, and

the major advantage of using it is that it dynamically

resizes itself when necessary.With an ArrayList, you

http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html

don’t have to worry about the size of your array and

whether you will run out of space.The ArrayList

implementation is also much more efficient than using

the method described previously to copy an array to a

new array for resizing.The ArrayList is part of the

java.util package.

Iterating Over a Collection

31Iterating Over a Collection

// For a set or list

// collection is the set or list object

for (Iterator it=collection.iterator();

it.hasNext();) {

Object element = it.next();

}

// For keys of a map

for (Iterator it =map.keySet().iterator();

it.hasNext();) {

Object key = it.next();

}

// For values of a map

for (Iterator it =map.values().iterator();

it.hasNext();) {

Object value = it.next();

}

// For both the keys and values of a map

for (Iterator it =map.entrySet().iterator();

it.hasNext();) {

Map.Entry entry = (Map.Entry)it.next();

Object key = entry.getKey();

Object value = entry.getValue();

}

The java.util package contains an Iterator class that

makes iterating over a collection a relatively simple

task.To iterate over a collection object, you first obtain

an Iterator object by calling the iterator() method

on the collection object. Once you have the Iterator

object, you can step though it using the next()

method.The next() method will return the next item

in the collection. Because the next() method returns a

generic Object type, you should cast the return value

to be the type you are expecting. Using the hasNext()

method, you can check to see if there are additional

elements that have not yet been processed.This makes

it convenient to create a “for” loop as shown in this

phrase to step through all the elements in a collection.

In the previous phrase, we show how to iterate over a

set or list, the keys of a map, the values of a map, and

both keys and values of a map.

NOTE: You might want to use iterators to expose collec-

tions through APIs. The advantage of exposing the data

through an iterator is that the calling code does not have

to know or care about how the data is stored. With this

implementation, you could change the collection type

without having to change the API.

Creating a Mapped Collection

32 CHAPTER 4 Working with Data Structures

HashMap map = new HashMap();

map.put(key1, obj1);

map.put(key2, obj2);

map.get(key3, obj3);

In this phrase, we use a HashMap to create a mapped

collection of objects.The HashMap has a put() method

that accepts two parameters.The first parameter is a

key value, and the second parameter is the object you

want to store in the map. So, in this phrase, we are

storing three objects—obj1, obj2, and obj3—indexed

by keys—key1, key2, and key3, respectively.The HashMap

class is one of the most commonly used Java classes. In

a HashMap, the objects put into a map should all be of

the same class type. So if obj1 is a String object, then

obj2 and obj3 should also be String objects.

To retrieve the objects that you put into the collec-

tion, you use the get() method of the HashMap.The

get() method takes a single parameter, which is the

key of the element you want to retrieve. If the element

is found, it will be returned as a generic Object, so you

would want to cast it to the type you are expecting. If

the element you are trying to retrieve does not exist, a

null value is returned.

NOTE: JDK 1.5 introduces a new language feature called

Generics which would allow you to retrieve items from a

HashMap without having to do any casting. Sun makes

available an excellent article on using Generics at this site:

http://java.sun.com/developer/technicalArticles/J2SE/gener-

ics/index.html

It is important that objects you are using as key values

in a HashMap implement the equals() and hashCode()

methods.These methods are used by the HashMap

implementation to find elements in the map. If an

object used as a key value does not have these methods

implemented, key objects will be matched by their

identity only, meaning that to find a matching key,

you’d have to pass in the identical object instance

when trying to retrieve an object.This is usually not

what you want.

33Creating a Mapped Collection

http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html

Sorting a Collection

34 CHAPTER 4 Working with Data Structures

// sorting an array

int[] myInts = {1,5,7,8,2,3};

Arrays.sort(myInts);

// sorting a List

List myList = new ArrayList();

myList.put(obj1);

myList.put(obj2);

Collections.sort(myList);

The Arrays class is a class in the java.util package that

contains a bunch of static methods for manipulating

arrays.The useful method here is the sort() method.

The sort() method takes an array of objects or primi-

tives along with optional from and to indexes.The

from index, if passed, would specify the index of the

first element to be sorted, and the to index would

specify the index of the last element to be sorted.

Primitives are sorted in ascending order.When using

this method to sort objects, all the objects must imple-

ment the Comparable interface, or alternatively a

Comparator object can be passed. In our phrase, we

have an array of integers of type int.We pass this array

to the Arrays.sort() method, and the array is sorted. It

is important to point out that the actual array that is

passed in is the array that is sorted and thus modified.

A new sorted array is not returned.The sort()

method has a void return type.

The Collections class is another class in the java.util

package, which contains static methods that operate on

other collection objects.The sort() method takes a

List object as input and sorts the items in the list into

ascending order, according to natural ordering of the

elements. Similar to the sort() method in the Arrays

object, all elements in the List passed into this method

must implement the Comparable interface, or alterna-

tively a Comparator object can be passed along with the

List.The list passed into the sort() method is modi-

fied. In the second part of our phrase, we create an

ArrayList object and use the Collections.sort()

method to sort it. In this example, since no Comparator

object was passed in, the objects obj1 and obj2 must

have implemented the Comparable interface.

If the default sort order is not what you want, you can

implement the Comparator interface to define your

own sorting mechanism.The comparator that you

define can then be passed as the second argument to

the sort() method of either Collections or Arrays

class.

In addition to the classes described, the Collections

Framework contains classes that are inherently sorted

such as the TreeSet and TreeMap. If you use these class-

es, the elements are automatically sorted when they are

placed into the collection. For a TreeSet, the elements

are sorted in ascending order according to the

Comparable interface or by the Comparator provided at

creation time. For a TreeMap, the elements are in

ascending key order according to the Comparable inter-

face or by the Comparator provided at creation time.

35Sorting a Collection

Finding an Object in a
Collection

36 CHAPTER 4 Working with Data Structures

// finding an object in an ArrayList

int index = myArrayList.indexOf(myStringObj);

// finding an object by value in a HashMap

myHashMap.containsValue(myStringObj);

// finding an object by key in a HashMap

myHashMap.containsKey(myStringObj);

The examples shown in this phrase illustrate how you

can find objects in the most commonly used collec-

tions—the ArrayList, and the HashMap. Using the

indexOf() method of the ArrayList, you are able to

find the position in the array where a given object is

located. If the object passed into the indexOf() method

is not found, a value of -1 is returned.A HashMap

indexes items by objects instead of by integer values as

an ArrayList does.You can use the containsValue() or

containsKey() methods to determine if a HashMap con-

tains the passed in object as either a value or a key in

the map.The containsValue() and containsKey()

methods will return a boolean value.

Some additional methods for finding objects in collec-

tions are the binarySearch() and contains() methods.

The binarySearch() method is a method in the utility

classes Arrays and Collections.This method searches

an array using the binary search algorithm. Prior to

calling the binarySearch() method of the Arrays class,

the array must be sorted. If it is not sorted, the results

will be undefined.The sorting of the array can be

done using the Arrays.sort() method. If an array con-

tains multiple items with the value specified as the

search value, there is no guarantee which one will be

found. Likewise, the binarySearch() method in the

Collections class should only be used on a collection

that is sorted into ascending order according to the

natural ordering of its elements.This can be done

using the Collections.sort() method.As with arrays,

using this method on an unsorted collection will yield

undefined results. If there are multiple elements equal

to the object being searched for, there is no guarantee

which one will be found.

If a collection is not already sorted, it is probably better

to use the indexOf() method rather than performing

the sort() followed by the binarySearch().The sort()

can be an expensive operation depending on your col-

lection.

Here we use the binarySearch() method to search an

array of integers:

int[] myInts = new int[]{7, 5, 1, 3, 6, 8, 9, 2};

Arrays.sort(myInts);

int index = Arrays.binarySearch(myInts, 6);

System.out.println("Value 6 is at index: " + index);

This will result in an output of

The value 6 is at index 4.

The ArrayList class also has a contains() method that

can be used to check if a given object is a member of

a given ArrayList.

37Finding an Object in a Collection

www.allitebooks.com

http://www.allitebooks.org

Converting a Collection to an
Array

38 CHAPTER 4 Working with Data Structures

// converting an ArrayList into an array of objects

Object[] objects = aArrayList.toArray();

// converting a HashMap into an array of objects

Object[] mapObjects = aHashMap.entrySet().toArray();

As you can see in this phrase, it is a relatively simple

task in Java to convert a collection, such as an

ArrayList or HashMap, into a regular array of objects.

The ArrayList has a toArray() method that returns an

array of objects. Converting a HashMap to an array is

slightly different. First, we must get the values stored in

the HashMap as an array, using the entrySet() method.

The entrySet() method returns us the data values as a

Java Set. Once we have the Set object, we can call the

toArray() method to get an array containing the values

that were stored in the HashMap.

5

Dates and Times

Most Java programs have to deal with dates and

times at one point or another. Fortunately, Java has

good built-in support for working with dates and

times.Three primary classes are used in most Java pro-

grams to store and manipulate times and dates.Those

classes are the java.util.Date class, the java.sql.Date

class, and the java.util.Calendar class.

Many of the methods in the java.util.Date class have

become deprecated, meaning that you should avoid

using them in new development.The deprecated

methods generally deal with the creation and manipu-

lation of dates. For these operations, the

java.util.Calendar class is the preferred mechanism to

use. It is also easy to convert between Date and

Calendar objects, so if you prefer to pass your dates

around as Date objects, you can still avoid using the

deprecated methods.You would simply convert the

dates to Calendar objects when it’s time to manipulate

the dates.A phrase in this chapter shows you how to

convert between Date and Calendar objects.

Finding Today’s Date

40 CHAPTER 5 Dates and Times

Date today = new java.util.Date();

System.out.println("Today's Date is " +

today.toString());

The Date object in the java.util package is a class that

you should be familiar with if your program deals with

dates and times, as it is commonly used. Getting the

current time and date is a very simple task.When you

create an instance of the Date object, it is initialized

with the current time and date.

An alternative method to getting the current date and

time is to use the Calendar class.The following code

will also get you the current date and time:

Calendar cal = Calendar.getInstance();

This will produce a Calendar object, cal, initialized

with the current date and time.

Converting Between Date and
Calendar Objects

// Date to Calendar conversion

Date myDate = new java.util.Date();

Calendar myCal = Calendar.getInstance();

myCal.setTime(myDate);

// Calendar to Date conversion

Calendar newCal = Calendar.getInstance();

Date newDate = newCal.getTime();

If you’re working with times and dates, you’ll often

find it necessary to convert between java Date and

Calendar objects. Fortunately, as shown in the phrase,

this is a very simple thing to do.A Calendar object has

a setTime() method that takes a java.util.Date object

as a parameter and sets the Calendar object to the date

and time contained in the Date object passed in.To

convert in the opposite direction, you can use the

getTime() method of the Calendar class, which returns

the date and time of the calendar as a java.util.Date

object.

In most Java applications, you’ll find uses of both the

Date and Calendar classes; thus knowing how to con-

vert from one to the other is something you want to

be familiar with. I’d recommend that you create utility

methods to perform these conversions so that you can

convert from any place in your code with a simple

method call. For example, below we show simple

methods for converting from a Calendar to a Date class,

and a Date to a Calendar class:

public static Date calToDate(Calendar cal) {

return cal.getTime();

}

public static Calendar dateToCal(Date date) {

Calendar myCal = Calendar.getInstance();

myCal.setTime(date);

return myCal;

}

Printing Date/Time in a Given
Format

41Printing Date/Time in a Given Format

Date todaysDate = new java.util.Date();

SimpleDateFormat formatter =

new SimpleDateFormat("EEE, dd MMM yyyy HH:mm:ss");

String formattedDate = formatter.format(todaysDate);

System.out.println("Today's Date and Time is: "

+ formattedDate);

Java contains formatting classes that can be used to for-

mat a date into a desired format.The most commonly

used class for formatting dates is the SimpleDateFormat

class.This class takes a format string as input to its con-

structor and returns a format object that can then be

used to format Date objects. Calling the format()

method of the SimpleDateFormat object will return a

string that contains the formatted representation of the

Date that is passed into the method as a parameter.

The output of the phrase shown will be the following:

Today's Date and Time is: Mon, 27 Feb 2006 11:18:33

The formatting string passed to the SimpleDateFormat

constructor can be a bit cryptic to read if you don’t

know the formatting codes to use.Table 5.1 shows the

formatting codes that can be passed into the

SimpleDateFormat constructor. In our phrase, we used

the following formatting string:

"EEE, dd MMM yyyy HH:mm:ss"

Referring to Table 5.1, let’s break down this format

string to understand what we are asking for.

EEE = 3 character representation of the day of the

week. (i.e. Tue)

, = puts a comma in the output.

dd = 2 character representation of the day of the

month. (i.e. 1 – 31)

MMM = 3 character representation of the month of

the year. (i.e. Feb)

yyyy = 4 digit year string. (i.e. 2006)

HH:mm:ss = The hour minute and seconds separated by

semi-colons. (i.e. 11:18:33)

When we put this all together, we get the date string of

Mon, 27 Feb 2006 11:18:33

42 CHAPTER 5 Dates and Times

Table 5.1 Time and Date Format Codes

Date or Time

Letter Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in Number 2

month

E Day in week Text Tuesday;

Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm Number 0

(0-11)

h Hour in am/pm Number 12

(1-12)

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General Pacific

time zone Standard

Time; PST;

GMT-

08:00

Z Time zone RFC 822 -0800

time zone

43Printing Date/Time in a Given Format

In addition to creating your own date formatting

strings, you can use one of several predefined format

strings by using the getTimeInstance(),

getDateInstance(), or getDateTimeInstance() methods

of the DateFormat class. For example, the following

code will return a formatter object that will use a date

format for your default locale:

DateFormat df = DateFormat.getDateInstance();

The df formatter can then be used in the same way

we used the SimpleDateFormat object in the phrase. See

the JavaDoc available for the DateFormat class for a

complete discussion of the available standard date/time

formatting objects at http://java.sun.com/j2se/1.5.0/

docs/api/java/text/DateFormat.html.

Parsing Strings into Dates

44 CHAPTER 5 Dates and Times

String dateString = "January 12, 1952 or 3:30:32pm";

DateFormat df = DateFormat.getDateInstance();

Date date = df.parse(dateString);

The DateFormat object is used to parse a String and

obtain a java.util.Date object. Getting a DateFormat

object using the getDateInstance() method will create

a DateFormat object using the normal date format for

your country.You can then use the parse() method of

the returned DateFormat object to parse a date string

into a Date object, as shown in the phrase.

The parse() method will also accept a second parame-

ter.The second parameter specifies a parse position in

the string to be parsed.This specifies a starting point in

the string to begin the parsing at.

http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormat.html

The java.sql.Date, java.sql.Time, and

java.sql.Timestamp classes contain a static method

called valueOf() which can also be used to parse sim-

ple date strings of the format:“yyyy-mm-dd”.This is

very useful for converting dates you might use in SQL

strings while using JDBC, into Date objects.

These are useful techniques for converting user input

date data into Java Date objects for further processing

in your application.Your view can return user entered

dates as strings, and using this technique, you can con-

vert them to Date objects.

Adding to or Subtracting from
a Date or Calendar

45Adding to or Subtracting from a Date or Calendar

// date arithmetic using Date objects

Date date = new Date();

long time = date.getTime();

time += 5*24*60*60*1000;

Date futureDate = new Date(time);

// date arithmetic using Calendar objects

Calendar nowCal = Calendar.getInstance();

nowCal.add(Calendar.DATE, 5);

If you are using a Date object, the technique for adding

or subtracting dates is to first convert the object to a

long value using the getTime() method of the Date

object.The getTime() method returns the time as

measured in milliseconds since the epoch (January 1,

1970, 00:00:00 GMT).You then perform the arith-

metic on the long values, and finally convert back to

date objects. In the phrase shown, we are adding 5 days

to the date object.We convert the 5 days to millisec-

onds by multiplying by the number of hours in a day

(24), the number of minutes in an hour (60), the num-

ber of seconds in a minute (60), and finally by 1,000 to

convert from seconds to milliseconds.

You can perform date arithmetic directly on Calendar

objects using the add() method.The add() method

accepts two parameters, a field, and an amount, both

int parameters.The quantity specified in the amount

field is added to the field specified in the field parame-

ter.The field could be any valid date field, such as day,

week, month, year, etc.To subtract time, you would set

the amount value to be a negative number. By setting

the field parameter to the appropriate Calendar con-

stant, you can directly add or subtract days, weeks,

months, years, and so on. In the second part of our

phrase, we show how to add 5 days to a Calendar

object.

Calculating the Difference
Between Two Dates

46 CHAPTER 5 Dates and Times

long time1 = date1.getTime();

long time2 = date2.getTime();

long diff = time2 – time1;

System.out.println("Difference in days = "

+ diff/(1000*60*60*24));

This phrase converts two date objects, date1 and date2,

into milliseconds—each represented as a long.The dif-

ference is calculated by subtracting time1 from time2.

We then print out the calculated difference in days by

performing the arithmetic necessary to convert the

millisecond difference into days difference.

Many times, you will want to know the time differ-

ence between two dates.A good example of this is in

calculating how many days are left before an item is set

to expire. If you have the expiration date of an item,

you can calculate the days until expiration by calculat-

ing the difference between the expiration date and the

current date. Below, we show an example of a simple

method for making this calculation:

public static void daysTillExpired(Date expDate) {

Date currentDate = new Date();

long expTime = expDate.getTime();

long currTime = currentDate.getTime();

long diff = expTime – currTime;

return diff/(1000*60*60*24);

}

This method takes an expiration date as input, and cal-

culates the number of days until the expiration date is

reached.This value in days is returned from the

method.This could be a negative number if the expi-

ration date is in the past.

Comparing Dates

47Comparing Dates

if (date1.equals(date2)) {

System.out.println("dates are the same.");

}

else {

if (date1.before(date2)) {

System.out.println("date1 before date2");

}

else {

System.out.println("date1 after date2");

}

}

In this phrase, we make use of the equals() and

before() methods of the Date class.The equals()

method will return true if the data values are the same;

www.allitebooks.com

http://www.allitebooks.org

otherwise it will return false.The dates must be the

same down to the millisecond in order for the

equals() method to return true.The before() method

returns true if the date on which it is called occurs

before the date passed as a parameter to this method.

The Date class also has an after() method, which is

used similarly to the before() method to determine if

the date on which it is called occurs after the date

passed in as a parameter.

Another useful method for comparing two dates is the

compareTo() method of the Date class.The compareTo()

method accepts a date argument and returns an integer

value.A value of 0 is returned if the date on which it is

called is equal to the date argument.A value less than 0

is returned if the date on which the method is called

occurs before the date argument, and a value greater

than 0 if the date occurs after the date argument.

Finding the Day of
Week/Month/Year or Week
Number

48 CHAPTER 5 Dates and Times

Calendar cal = Calendar.getInstance();

System.out.println("Day of week: " +

cal.get(Calendar.DAY_OF_WEEK));

System.out.println("Month: " +

cal.get(Calendar.MONTH));

System.out.println("Year: " +

cal.get(Calendar.YEAR));

System.out.println("Week number: " +

cal.get(Calendar.WEEK_OF_YEAR));

You can easily determine values such as the day of the

week, the month, the year, the week number, and

more using the Calendar object’s get() method. In this

phrase, we get a Calendar object representing the cur-

rent date and time using the getInstance() method.

We then print out the day of the week, the month, the

year, and the week of the year by using the get()

method and passing the appropriate Calendar constant

to specify the field we want to get.

If you have a Date object and want to get these values,

you could convert the Date object to a Calendar object

by using the setTime() method of a Calendar instance

and passing in the Date object you want to convert.

This is shown in the converting between date and cal-

endar objects phrase earlier in this chapter.

Calculating Elapsed Time

49Calculating Elapsed Time

long start = System.currentTimeMillis();

// do some other stuff…

long end = System.currentTimeMillis();

long elapsedTime = end – start;

By calculating elapsed time, we can determine how

long it takes to do something or how long a process

takes to complete.To do this, we use the

System.currentTimeMillis() method to obtain the cur-

rent time in milliseconds.We use this method at the

start and end of the task we want to get the elapsed

time for, and then take the difference in times.The

actual value that is returned by the

System.currentTimeMillis() method is the time since

Janauary 1, 00:00:00, 1970 in milliseconds.

JDK 1.5 adds a nanoTime() method to the System class,

which allows you to get even more precise timing,

down to nanoseconds. In reality, not all platforms

support nanosecond resolution, so although the

nanoTime() method may be available, you can’t always

count on getting nanosecond resolution.

This is often useful for testing, profiling, and perform-

ance monitoring.

50 CHAPTER 5 Dates and Times

6

Pattern Matching
with Regular
Expressions

Regular expression support was introduced in Java

JDK 1.4. Regular expressions specify patterns that can

be matched within character sequences. Regular

expressions are extremely useful in parsing strings, and

will often save a programmer a lot of time and effort

in performing a task in comparison to a solution that

does not make use of regular expressions. Prior to

being added to Java, regular expressions had been used

for years by UNIX programmers. Standard UNIX

tools such as Sed and Awk make use of regular expres-

sions. Regular expressions are also commonly used in

the Perl programming language.The addition of regu-

lar expressions to the JDK is a powerful addition to

core Java capability.

In this chapter, you will learn how to use the regular

expression features of Java to find, match, and replace

text.With this knowledge you will be able to identify

areas where you can add regular expression processing

to your applications.

Regular Expressions in Java

The Java classes you will use to perform regular

expression operations are contained in the

java.util.regex package.The classes are the Matcher

and the Pattern classes.These classes allow you to both

find and match character sequences against regular

expression patterns.You might be wondering what the

difference is between finding and matching. The find

operation allows you to find matches in a string, and

the match operation requires the entire string to be an

exact match of the regular expression.Tasks for which

you might have used the StringTokenizer class in the

past are usually good candidates for exploring the pos-

sibility of simplifying your programming with regular

expressions.

NOTE: If you are not able to use a version of Java that

contains the regular expression package (>= 1.4), a

good alternative regular expression package available

is the Apache Jakarta Regular Expression package.

This book does not cover the Jakarta package, but you

can find information and complete documentation for it

at http://jakarta.apache.org/regexp.

Table 6.1 shows the common regular expression

matching characters.You might want to refer back to

this table as you read the phrases in this chapter.

Table 6.1 Regular Expressions Table—Commonly

Used Special Characters

Special Character Description

^ Beginning of the string.

$ End of the string.

52 CHAPTER 6 Pattern Matching with Regular Expressions

http://jakarta.apache.org/regexp

? 0 or 1 times (refers to the

previous expression).

* 0 or more times (refers to

the previous expression).

+ 1 or more times (refers to

the previous expression).

[…] Alternative characters.

| Alternative patterns.

. Any character.

\d A digit.

\D A non-digit.

\s A whitespace character

(space, tab, newline, form-

feed, carriage return).

\S A non-whitespace character.

\w A word character

[a-zA-Z_0-9].

\W A non-word character [^\w].

Notice that although the regular expression escape

characters are shown in Table 6.1 as being preceded by

a single backslash, when used in a Java string, they

must contain two backslashes.This is because in a Java

string, the backslash character has special meaning; thus

a double backslash escapes the backslash character and

is the equivalent of a single backslash character.

A more complete listing of regular expression charac-

ters can be found in the JavaDoc for the Pattern class.

This is available at this URL http://java.sun.com/j2se/

1.5.0/docs/api/java/util/regex/Pattern.html.

53Regular Expressions in Java

Table 6.1 Continued

Special Character Description

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Finding Matching Text Using a

Regular Expression

54 CHAPTER 6 Pattern Matching with Regular Expressions

String pattern = "[TJ]im";

Pattern regPat = Pattern.compile(pattern);

String text = "This is jim and Timothy.";

Matcher matcher = regPat.matcher(text);

if (matcher.find()) {

String matchedText = matcher.group();

}

In this pattern, we make use of the Pattern and the

Matcher classes.We use the static compile() method of

the Pattern class to compile a pattern string into a

Pattern object. Once we have the regPat Pattern

object, we use the matcher() method, passing in the

text string we want to match against.The matcher()

method returns an instance of the Matcher class. Finally,

we call the group() method of the Matcher class to

obtain the matched text.The matched text in this

phrase will be the character string "Tim". Note that the

string "jim" will not match because regular expressions

are case sensitive by default.To perform a non-case

sensitive search, we could slightly modify the code as

shown here:

String patt = "[TJ]im";

Pattern regPat =

Pattern.compile(patt, Pattern.CASE_INSENSITIVE);

String text = "This is jim and Timothy.";

Matcher matcher = regPat.matcher(text);

if (matcher.find()) {

String matchedText = matcher.group();

}

This matched text in this code will now be the char-

acter string "jim". Because the match is now non-case

sensitive, the first match "jim" occurs before the match

on "Tim".

Notice that the only difference in this example from

our original phrase is that we’ve added an additional

parameter to the compile() method when creating our

Pattern object. Here, we pass the CASE_INSENSITIVE flag

to denote that we want matching to be performed as

non-case sensitive.When we do not include this flag,

the default behavior is to perform case sensitive

matching.

If your code is required to run in different locales, you

would also want to pass the Unicode case flag. So the

compile line would look like this in that case:

Pattern regPat =

Pattern.compile(pattern,

Pattern.CASE_INSENSITIVE |

Pattern.UNICODE_CASE);

Notice how we pass multiple flags to the compile()

method by logically ORing them together. Pattern

flags must be passed at the time the Pattern is first

created using the compile() method. Once a Pattern

object is created, it is immutable—meaning that it

cannot be changed in any way.

In our examples so far, we’ve used the find() method

of the Matcher class to find the first match in our input

string. The find() method can be called repeatedly to

return successive matches in the input string.The

find() method will return true as long as a match is

found. It will return false when it does not find a

match. If you call find() again after having returned

55Finding Matching Text Using a Regular Expression

false, it will reset and find the first match again.There

is an alternative find() method that takes an int

parameter specifying an index from which to start a

search from. In all other ways, this find() method

behaves identically to the find() method without

parameters.

There is also an alternative for getting the match

result.We’ve been using the method group() on the

Matcher class.There are also useful methods named

start() and end().The start() method will return the

index at the beginning of the previous match. Then

the end() method will return the index after the last

character matched.

Replacing Matched Text

56 CHAPTER 6 Pattern Matching with Regular Expressions

String pattern = "[TJ]im";

Pattern regPat = Pattern.compile(pattern);

String text = "This is jim and Tim.";

Matcher matcher = regPat.matcher(text);

String string2 = matcher.replaceAll("John");

In this phrase, we replace text that is matched against

our pattern sting with alternate text.The value of

string2 at the end of this phrase will be the string

This is jim and John.

The occurrence of "jim" will not be replaced because

the regular expression matching is case sensitive by

default. See the previous phrase for non-case sensitive

matching.As in basic matching shown in the previous

phrase, we use the Pattern, and Matcher classes in the

same way.The new step here is our call to the

Matcher’s replaceAll() method.We pass the text we

want to use as replacement text as a parameter.This

text will then replace all occurrences of the matched

pattern.This is a powerful tool for replacing portions

of a string with an alternate string.

Another useful method of replacing text is through the

use of the appendReplacement() and appendTail()

methods of the Matcher class. Using these methods

together allows you to replace occurances of a sub-

string within a string.The code below shows an exam-

ple of this technique:

Pattern p = Pattern.compile("My");

Matcher m = p.matcher("My dad and My mom");

StringBuffer sb = new StringBuffer();

boolean found = m.find();

while(found) {

m.appendReplacement(sb, "Our");

found = m.find();

}

m.appendTail(sb);

System.out.println(sb);

The output of this code is the following line printed

from the System.out.println() method:

Our dad and Our mom

In this code, we create a Pattern object to match the

text “My”.The appendReplacement() method writes

characters from the input sequence (“My dad and my

mom”) to the string buffer sb, up to the last character

preceding the previous match. It then appends the

replacement string, passed as the second parameter, to

the string buffer. Finally, it sets the current string posi-

tion to be at the end of the last match.This repeats as

long as matches are found.When no more matches are

found, the appendTail() method is used to append the

57Replacing Matched Text

www.allitebooks.com

http://www.allitebooks.org

remaining portion of the input sequence to the string

buffer.

Finding All Occurrences of a

Pattern

58 CHAPTER 6 Pattern Matching with Regular Expressions

String pattern = "\\st(\\w)*o(\\w)*";

Pattern regPat = Pattern.compile(pattern);

String text =

"The words are town tom ton toon house.";

Matcher matcher = regPat.matcher(text);

while (matcher.find()) {

String matchedText = matcher.group();

System.out.println("match - " + matchedText);

}

In the previous phrases in this chapter, we found a sin-

gle match of a pattern. In this phrase, we find all the

occurrences of a given match pattern that occurs with-

in a string.The pattern we use for this phrase is

"\\st(\\w)*o(\\w)*".This regular expression will find

any words that begin with t and contain the letter o in

them.The output printed from our System.out.print-

ln()statements will be the following:

town

tom

ton

toon

Here we break down this regular expression and show

what each element gives us:

\\s Special regular expression character

matching a whitespace character.

t this matches the letter t.

\\w* Special regular expression character matching

zero or more word characters (non-whitespace).

o this matches the leter o.

\\w* Special regular expression character matching

zero or more word characters (non-whitespace).

This regular expression would not match the first

word of the string even if it started with a t and con-

tained an o.This is because the first piece of the regu-

lar expression matches on a whitespace character, and

typically the string will not start with a whitespace

character.

Printing Lines Containing a

Pattern

59Printing Lines Containing a Pattern

String pattern = "^a";

Pattern regPat = Pattern.compile(pattern);

Matcher matcher = regPat.matcher("");

BufferedReader reader =

new BufferedReader(new FileReader("file.txt"));

String line;

while ((line = reader.readLine()) != null) {

matcher.reset(line);

if (matcher.find()) {

System.out.println(line);

}

}

This phrase demonstrates how we might search

through a file to find all the lines that contain a given

pattern. Here we use the BufferedReader class to read

lines from a text file.We attempt to match each line

against our pattern using the find() method of the

Matcher class. The find() method will return true if

the pattern is found within the line passed as its

parameter.We print all the lines that match the given

pattern. Note that this piece of code can throw

FileNotFoundException and IOException, and these

would need to be handled in your real code. In this

phrase, the regular expression would match any lines

contained in our input file that start with the lower-

case letter a.

The regular expression pattern we use is broken down

as follows:

^ Special regular expression character

matching the beginning of a string.

a matches the character letter a.

Matching Newlines in Text

60 CHAPTER 6 Pattern Matching with Regular Expressions

String pattern = "\\d$";

String text =

"This is line 1\nHere is line 2\nThis is line

3\n";

Pattern regPat =

Pattern.compile(pattern, Pattern.MULTILINE);

Matcher matcher = regPat.matcher(text);

while (matcher.find()) {

System.out.println(matcher.group());

}

In this phrase, we use the Pattern.MULTILINE flag to

match newlines in a text string. By default, the regular

expression characters ^ and $ only match the begin-

ning and end of an entire string. So, if a string con-

tained multiple lines, distinguished with newline char-

acters, the ^ expression would still only match the

beginning of the string by default. If we pass the

Pattern.MULTILINE flag to the Pattern.compile()

method as we do in this phrase, the ^ will now match

the first character following a line terminator, and the

$ will match just before the line terminator. So, by

using the Pattern.MULTILINE flag, the ^ would now

match the start of every line in a string containing

multiple lines separating by newline characters.

The output of this phrase will be

1

2

3

We use the pattern "\\d$". In this regular expression,

the \\d matches any single digit. Because we are in

MULTILINE mode, the $ matches just before a line ter-

minator. So, the net effect is that our regular expression

will match the single digit character contained at the

end of any line.Thus, we get the output shown previ-

ously.

61Matching Newlines in Text

This page intentionally left blank

7

Numbers

Working with numbers in Java is a subject that every

programmer should become proficient in, as nearly

every program deals with numbers of one form or

another. In this chapter, we primarily use the basic

numeric Java types, their object wrappers, and the

java.lang.Math class.

Table 7.1 summarizes the built-in types that Java offers

and lists their wrapper objects available. Note that the

boolean type does not have a bit size because it can

contain only two discrete values, a value of true or false.

Table 7.1 Java’s Built-In Types

Type Size in bits Wrapper Object

byte 8 Byte

short 16 Short

int 32 Integer

long 64 Long

float 32 Float

double 64 Double

char 16 Character

boolean -- Boolean

The object wrapper classes are useful when you want

to treat a basic type like an object. For example, this

might be useful if you want to define an API in terms

of objects only.When wrapped as objects, the basic

types can also be serialized.

Checking Whether a String Is a

Valid Number

64 CHAPTER 7 Numbers

try {

int result = Integer.parseInt(aString);

}

catch (NumberFormatException ex) {

System.out.println(

"The string does not contain a valid

number.");

}

In this phrase, we use the parseInt() static method of

the Integer class to attempt to convert the string

parameter into an integer. If the string parameter can-

not be converted into a valid integer, the

NumberFormatException is thrown.Therefore, if we do

not get a NumberFormatException, we can safely assume

that the parseInt() method was able to parse the

string into an integer value.

You may want to consider declaring the int variable

outside of the try block so that if the

NumberFormatException is thrown, you can assign a

default value to the variable in the catch block.The

code for this technique would be as follows:

int result = 0;

try {

result = Integer.parseInt(aString);

}

catch (NumberFormatException ex) {

result = DEFAULT_VALUE;

}

Comparing Floating Point

Numbers

65Comparing Floating Point Numbers

Float a = new Float(3.0f);

Float b = new Float(3.0f);

if (a.equals(b)) {

// they are equal

}

Because of rounding errors that can occur when

working with floating point numbers, you have to be a

bit more careful when trying to compare them.

Therefore, instead of comparing the basic Java floating

point types of float and double using the == operator;

you should instead compare their object equivalents.

The equals() method on Float and Double will return

true only if the two values are exactly the same, bit for

bit, or if they are both the value NaN.The value NaN

stands for not a number.This value indicates a value

that is not a valid number.

In the real world, when comparing floating point

numbers, you might not want to compare for an exact

match, but within an acceptable difference range.This

acceptable range is usually referred to as a tolerance.

Unfortunately, there is no built-in capability to do this

using the Java standard classes or types, but you could

fairly easily create your own equals() method to

achieve this. Here we show some code that you could

use to create such a method:

float f1 = 2.99f;

float f2 = 3.00f;

float tolerance = 0.05f;

if (f1 == f2) System.out.println("they are equal");

else {

if (Math.abs(f1-f2) < tolerance) {

System.out.println("within tolerance");

}

}

We first compare the floating point numbers using the

== operator. If they are identically equal, we print an

appropriate message. If they are not equal, we check to

see if the absolute value of their difference is less than

the desired tolerance value. Using this technique, you

could create a useful method that would take two

floating point values and a tolerance, and return a

result indicating whether the values are equal within

the tolerance range.

Rounding Floating Point

Numbers

66 CHAPTER 7 Numbers

// rounding a double value

long longResult = Math.round(doubleValue);

// rounding a float value

int intResult = Math.round(floatValue);

If you want to convert a floating point number to an

integer, you have to be careful. If you simply cast the

floating point number to an int or long, Java will con-

vert it to an int or long by just truncating the decimal

portion. So even if you had a value such as 20.99999,

you’d end up with 20 after casting it to an int or long

value.The proper way to perform floating point num-

ber to integer conversion is to use the Math.round()

method. In this phrase, we show how to round a dou-

ble value and a float value. If you pass a double value

to the Math.round() method, a long result is returned.

If you pass a float value to the Math.round() method,

an int result is returned.The Math.round() method will

round a value up if the decimal portion of the floating

point number is 0.5 or greater, and it will be rounded

down for decimal numbers less than 0.5.

Formatting Numbers

67Formatting Numbers

double value = 1623542.765;

NumberFormat numberFormatter;

String formattedValue;

numberFormatter = NumberFormat.getNumberInstance();

formattedValue = numberFormatter.format(value);

System.out.format("%s%n", formattedValue);

In most applications, there is a need to display num-

bers. Fortunately, Java has built-in support for format-

ting numbers so that they will look as you want them

to when you display them in your application.

This phrase will generate the following formatted

number as output:

1,623,542.765

In this phrase, we use the NumberFormat class to format

a double value into a comma separated string represen-

tation of its value.The NumberFormat class is found in

the java.text package and is also very useful for code

that you will internationalize.The NumberFormat class

supports the formatting of numbers and currency, and

it also knows how to represent numbers and currency

in different locales.

The NumberFormat class can also be used to easily for-

mat percent values for display. Here, we show how you

can use the NumberFormat class to format a percent for

display:

double percent = 0.80;

NumberFormat percentFormatter;

String formattedPercent;

percentFormatter =

NumberFormat.getPercentInstance();

formattedPercent = percentFormatter.format(percent);

System.out.format("%s%n", formattedPercent);

The output of this code will be

80%

The NumberFormat class also has a parse() method that

you can use to parse strings containing numbers into a

Number object, from which you can get a numeric type.

JDK1.5 introduced a java.util.Formatter class, which

is a general-purpose formatting object that can format

a wide variety of types. In addition to numbers, this

class can also format dates and times.This class is docu-

mented very well in the JDK1.5 documentation at

http://java.sun.com/j2se/1.5.0/docs/api/java/util/For

matter.html.

JDK1.5 also added two utility methods to the

java.io.PrintStream class for easy formatting of an

OutputStream.The new methods are the format() and

printf() methods. Both of these methods take a for-

mat string and a variable number of Object arguments

as input parameters.These methods are very similar to

the traditional printf and scanf methods of formatting

strings in the C language. For details on using these

methods, refer to the JDK1.5 documentation at

68 CHAPTER 7 Numbers

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Print

Stream.html.

In the next phrase, we show how you can format cur-

rency values for display, also using the NumberFormat

class.

Formatting Currencies

69Formatting Currencies

double currency = 567123678.99;

NumberFormat currencyFormatter;

String formattedCurrency;

currencyFormatter =

NumberFormat.getCurrencyInstance();

formattedCurrency =

currencyFormatter.format(currency);

System.out.format("%s%n", formattedCurrency);

As with the previous phrase on formatting numbers,

here we make use of the NumberFormat class, but this

time to format a currency value.We use the

getCurrencyInstance() of the NumberFormat class to get

a currency formatting instance of the class. Using this

instance, we can pass a floating point value and it will

return a formatted currency value.The output of the

phrase shown will be the following string:

$567,123,678.99

In addition to placing commas in the appropriate

places, the currency formatter also automatically adds

the dollar sign character preceding the string.

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

Converting an Integer to

Binary, Octal, and Hexadecimal

70 CHAPTER 7 Numbers

int intValue = 24;

String binaryStr = Integer.toBinaryString(intValue);

String octalStr = Integer.toOctalString(intValue);

String hexStr = Integer.toHexString(intValue);

Using the Integer class, it is easy to convert an integer

value from decimal to binary, octal, or hexadecimal.

The relevant static methods on the Integer class are

the toBinaryString(), toOctalString(), and

toHexString() methods. In this phrase, we use each of

these methods—each time passing in an integer value

and getting a String returned that contains the integer

in binary, octal, and hex format, respectively.

Generating Random Numbers

Random rn = new Random();

int value = rn.nextInt();

double dvalue = rn.nextDouble();

To generate random numbers, we use the Random class

found in the java.util package. By default, the Random

class uses the current time of day as a seed value for its

random number generator.You can also set a seed

value by passing it as a parameter to the constructor of

Random.The nextInt() method will produce a 32-bit

integer random number.

An alternate way of generating random numbers is to

use the random() method of the Math class in the

java.lang package.

double value = Math.random();

This method will return a double value with a positive

sign, greater than or equal to 0.0 and less than 1.0.To

generate a value within a specific range, you could add

the lower bound to the result of Math.random() and

multiply by the range. For example, the following code

would give us a random number between 5 and 20:

double value = (5+Math.random())*15;

The Random class and the random() method of the Math

class will actually give you a pseudorandom number,

not a true random number.This means that the ran-

dom number is generated using a mathematical for-

mula and an input seed value. Given the seed value

and knowledge of the inner workings of the Random

class, it would be possible to predict these random val-

ues.Therefore, these classes are probably not the best

solution for a random number generator for use in

high security applications. For most applications,

though, these are perfectly acceptable random number

generators.

Calculating Trigonometric

Functions

71Calculating Trigonometric Functions

// calculating cosine

double cosine = Math.cos(45);

// calculating sine

double sine = Math.sin(45);

// calculating tangent

double tangent = Math.tan(45);

The Math class found in the java.lang package has

methods for easily calculating all the trigonometric

functions. In this phrase, we show how you can easily

determine the cosine, sine, and tangent of a given

angle.The Math class also has methods for calculating

the arc cosine, arc sine, and arc tangent, as well as the

hyperbolic sine, cosine, and tangent. Each of these

methods accepts a single input parameter of double

type and returns a result type of double.

Calculating a Logarithm

72 CHAPTER 7 Numbers

double logValue = Math.log(125.5);

In this phrase, we use the log() method of the

java.lang.Math class to calculate the logarithm of the

parameter passed in.We pass in a value of double type,

and the return value is also a double value.The log()

method calculates the natural logarithm, using base e,

where e is the standard value of 2.71828.

JDK1.5 added a new method to the Math class for

directly calculating a base 10 logarithm.This is the

log10() method. Similar to the log() method, this

method takes a double input parameter, and returns a

double result type.We can use this method to easily

calculate a base 10 logarithm as follows:

double logBase10 = Math.log10(200);

8

Input and Output

In most cases, input and output is the ultimate goal of

an application.An application is only useful if it can

spit out results and take in user or machine generated

input to process. In this chapter, we cover basic phrases

for performing input and output.

The java.io and java.util packages are home to most

of the classes that we will use in this chapter for per-

forming input and output tasks. In this chapter, we will

show you how to read and write files, work with zip

archives, format your output, and work with the stan-

dard operating system streams.

As you read the phrases in this chapter, keep in mind

that many of the phrases have the possibility of throw-

ing exceptions such as the java.io.IOException in any

real program. In the phrases, we do not include excep-

tion handling code. In any real application, exception

handling is a necessity.

Reading Text from Standard

Input

74 CHAPTER 8 Input and Output

BufferedReader inStream = new BufferedReader (

new InputStreamReader(System.in)

);

String inLine = "";

while (!(inLine.equalsIgnoreCase("quit"))) {

System.out.print("prompt> ");

inLine = inStream.readLine();

}

In a console program, it is common to read from the

standard input, typically the command line. In this

phrase, we show how you can read the standard input

into a Java String variable.

Java contains three streams that are connected to the

operating system streams.These are the standard input,

standard output, and standard error streams.

Respectively, they are defined in Java as the streams

System.in, System.out, and System.err.We can make

use of these streams to read or write to the operating

systems standard input and output.

In our phrase, we create a BufferedReader to read from

the System.in stream. Using this reader, we continue to

read input lines from the standard input until the user

types the word “quit.”

Writing to Standard Output

System.out.println("Hello, World!");

System.out is a PrintStream that will write output to

the standard output.This is typically the console.

System.out is one of the three streams that Java defines

to connect with the standard operating system’s

streams.The other streams are the System.in and the

System.err streams—for reading from standard input

and writing to standard error.

The System.out stream is probably the most often used

of all the standard operating system streams. System.out

has been put to use by nearly every programmer to

assist with debugging an application. Because this

stream writes to the console, it makes a handy tool to

see what’s going on at a particular point in your appli-

cation. In general though, System.out statements should

not be left in a code after initial debugging as they can

affect performance of the application.A better long-

term strategy for gathering debug information in your

application is to make use of a logging facility such as

what is available in java.util.logging, or the popular

Apache Log4J package.

Formatting Output

75Formatting Output

float hits=3;

float ab=10;

String formattedTxt =

String.format("Batting average: %.3f", hits/ab);

In this phrase, we use the format() method to format

an output string that prints a baseball batting average

in the standard format of three decimal places.The

batting average is defined as the number of hits, divid-

ed by the number of at-bats, ab.The format specifier

%.3f tells the formatter to print the average as a float-

ing point number with three digits following the deci-

mal point.

JDK1.5 introduced the java.util.Formatter class,

which can be used to easily format text.The Formatter

class works very similar to the printf function in the

C language, and provides support for layout justifica-

tion and alignment, common formats for numeric,

string, and date/time data, and locale-specific output.

An example of using the Formatter class directly is

shown here:

StringBuffer buffer = new StringBuffer();

Formatter formatter = new Formatter(buffer,

Locale.US);

formatter.format("Value of PI: %6.4f", Math.PI);

System.out.println(buffer.toString());

The corresponding output:

Value of PI: 3.1416

In this example, we create a Formatter instance and use

it to format the value of the standard mathematical

value PI.The value of PI contains an infinite amount

of decimal places, but you typically want to restrict it

to a small number of decimal places when printing it.

In this example, we used the format specifier of %6.4f.

The value 6 says that the output for this number

should be no more than 6 characters wide, including

the decimal point.The value 4 indicates that the preci-

sion of the decimal value should be 4 decimal places.

Thus the value printed is 6 characters in length and

has 4 decimal places: 3.1416.

In addition to using the Formatter class directly, you

can use the format() and printf() methods of the

System.out and System.err streams. For example, here

we print the local time using the format() method on

the System.out stream:

System.out.format("Local time: %tT",

Calendar.getInstance());

76 CHAPTER 8 Input and Output

This method will print the local time as shown here:

Local time: 16:25:14

The String class also contains a static format() method

that can be used to directly format strings.We can use

this static method, for example, to easily format a date

string as we do here:

Calendar c =

ew GregorianCalendar(1999, Calendar.JANUARY, 6);

String s =

String.format(

"Timmy's Birthday: %1$tB %1$te, %1$tY", c);

This will code create the following formatted String

value:

Timmy's Birthday: January 6, 1999

All the methods that produce formatted output that

we’ve discussed take a format string and an argument

list as parameters.The format string is a String that

might contain text and one or more format specifiers.

In our birthday formatting example, the format string

would be "Timmy's Birthday: %1$tm %1$te,%1$tY".The

%1$tm, %1$te, and 1tY elements are format specifiers.

The remainder of the string is static text.These format

specifiers indicate how the arguments should be

processed and where in the string they should be

placed. Referring to our birthday example again, the

argument list is just the Calendar object c.Although in

this case, we have only one argument, the argument list

might contain multiple items.All parameters passed to

the formatting methods after the format string are

considered arguments.

77Formatting Output

Format specifiers have the following format:

%[argument_index$][flags][width][.precision]conver-

sion

The argument_index references an argument in the list

of arguments passed to the formatting method.The list

is indexed starting at 1. So to reference the first argu-

ment, you would use 1$.

The flags element is a set of characters that modify

the output format.The set of valid flags depends on

the conversion.

The width is a nonnegative decimal integer indicating

the minimum number of characters to be written to

the output.

The precision is a nonnegative decimal integer nor-

mally used to restrict the number of characters.The

specific behavior depends on the conversion.

The conversion is a character indicating how the argu-

ment should be formatted.The set of valid conversions

for a given argument depends on the argument’s data

type.

All the specifier elements are optional except for the

conversion character.

Table 8.1 shows a list of valid conversion characters.

For details about date and time conversions, refer to

the JavaDoc for the Formatter class at:

http://java.sun.com/j2se/1.5.0/docs/api/.

78 CHAPTER 8 Input and Output

http://java.sun.com/j2se/1.5.0/docs/api/

Table 8.1 Formatter Format Codes

Code Description

b If the argument arg is null, the result is

"false". If arg is a boolean or Boolean, the

result is the string returned by

String.valueOf(). Otherwise, the result is

"true".

h If the argument arg is null, the result is

"null". Otherwise, the result is obtained by

invoking

Integer.toHexString(arg.hashCode()).

s If the argument arg is null, the result is

"null". If arg implements Formattable,

arg.formatTo is invoked. Otherwise, the

result is obtained by invoking

arg.toString().

c The result is a Unicode character.

d The result is formatted as a decimal integer.

o The result is formatted as an octal integer.

x The result is formatted as a hexadecimal

integer.

f The result is formatted as a decimal number.

e The result is formatted as a decimal number

in computerized scientific notation.

g The result is formatted using computerized

scientific notation or decimal format,

depending on the precision and the value

after rounding.

a The result is formatted as a hexadecimal

floating point number with a significand and

an exponent.

79Formatting Output

t Prefix for date and time conversion

characters.

n The result is the platform-specific line

separator.

% The result is a literal ‘%’.

Refer to the JavaDoc documentation of the Formatter

class for a complete list of the available format codes.

This is available at: http://java.sun.com/j2se/1.5.0/

docs/api/java/util/Formatter.html.

Opening a File by Name

80 CHAPTER 8 Input and Output

Table 8.1 Continued

Code Description

// opening a file for reading

BufferedReader is =

new BufferedReader(new FileReader("file.txt"));

// opening a file for writing

BufferedWriter out =

new BufferedWriter(new FileWriter("afile.txt"));

In this phrase, we show how you can create a

BufferedReader for reading input from a file specified

by a filename—in this case somefile.txt—and how

you can create a BufferedWriter for writing text to an

output file specified by name, afile.txt.

It is very easy to open a file by name in Java. Most of

the input and output stream and reader classes you will

use have an option of specifying the file by name in

the stream or reader’s constructor.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Reading a File into a Byte

Array

81Reading Binary Data

File file = new File(fileName);

InputStream is = new FileInputStream(file);

long length = file.length();

byte[] bytes = new byte[(int)length];

int offset = 0;

int numRead = 0;

while ((offset < bytes.length)

&&

((numRead=is.read(bytes,

offset,

bytes.length-offset))

>= 0)) {

offset += numRead;

}

is.close();

This phrase will read the file specified by fileName into

the bytes byte array. Notice that the file.length()

method returns us the length of the file in bytes as a

long value, but we must use an int value to initialize

the byte array, so we cast the long value to an int

value. In a real program, you would probably want to

be sure that the length value would indeed fit into an

int type before blindly casting it. Using the read()

method of the InputStream, we continue to read in

bytes from the file until either the byte array is filled

up, or there are no more bytes to read from the file.

Reading Binary Data

InputStream is = new FileInputStream(fileName);

int offset = 0;

int bytesRead =

is.read(bytes, offset, bytes.length-offset);

Using the read() method, we can read binary data

from a file into an array of bytes. In this phrase, we

read from the is input stream into the bytes byte

array. In this phrase, the bytes array is assumed to have

been previously initialized as a byte array, and the

fileName variable is the name of a valid file.The offset

variable points to a starting location in the bytes array

to begin writing the data to.This is useful when you

are in a loop reading data from a file and you don’t

want to overwrite previous data stored in the byte

array. For each iteration through the loop, you would

update the offset location.We’ve seen this in the previ-

ous phrase, Reading a File into a Byte Array. Here is the

relevant code example:

while ((offset < bytes.length)

&&

((numRead=is.read(bytes, offset,

bytes.length-offset)) >= 0)) {

offset += numRead;

}

In this code example, we are writing data from the

input stream is into the bytes array.We continue to

read from the file until we’ve either filled up the bytes

array, or there is no more data to read from the file.

Seeking in a File

82 CHAPTER 8 Input and Output

File file = new File("somefile.bin");

RandomAccessFile raf =

new RandomAccessFile(file, "rw");

raf.seek(file.length());

Using the seek() method of the RandomAccessFile

class, we can seek to any desired position within a file.

In this phrase, we first create a File object, which is

then used to create a RandomAccessFile instance. Using

the RandomAccessFile instance, raf, we seek to the end

of the file by passing in the file.length() value as a

parameter to the seek() method.

After using the seek() method to find the desired

position within a file, we can then use the read() or

write() methods of the RandomAccessFile class to read

or write data at that exact position.

Reading a JAR or Zip Archive

83Reading a JAR or Zip Archive

// reading a zip file

ZipFile file = new ZipFile(filename);

Enumeration entries = file.entries();

while (entries.hasMoreElements()) {

ZipEntry entry =

(ZipEntry)entries.nextElement();

if (entry.isDirectory()) {

// process directory

}

else {

// process file

}

}

file.close();

Java has built-in support for reading and writing Zip

archive files.A JAR file is a Zip file that contains spec-

ified content, so you can also use the Zip file classes

and methods to read a JAR file.The zip classes are

contained in the java.util.zip package, which is part

of the standard JDK. In this phrase, we first create a

ZipFile object by passing the filename of an existing

Zip file to the constructor of the ZipFile class.We

then get all the Zip file’s entries into an enumeration

type by calling the entries() method of the ZipFile

object. Once we have the Zip file entries as an enu-

meration, we can step through the entries and instanti-

ate a ZipEntry object for each entry. From the ZipEntry

object, we can determine if the particular entry being

processed is a directory or a file. Based on that knowl-

edge, we could then process the entry appropriately.

Creating a Zip Archive

84 CHAPTER 8 Input and Output

// writing a zip file

ZipOutputStream out =

new ZipOutputStream(

new FileoutputStream(zipFileName));

FileInputStream in = new

FileInputStream(fileToZip1);

out.putNextEntry(new ZipEntry(fileToZip1));

int len;

byte[] buf = new byte[1024];

while ((len = in.read(buf)) > 0) {

out.write(buf,0,len);

}

out.closeEntry();

in.close();

out.close();

In the previous phrase, we showed how you can read

from a Zip file. In this phrase, we create a Zip file.To

do this, we first construct a ZipOutputStream by passing

to its constructor a FileOutputStream object pointing

to the file we want to create as our Zip file.We then

create a FileInputStream for a file that we want to add

to our Zip file. We use the putNextEntry() method of

the ZipOutputStream to add the file to our Zip archive.

The putNextEntry() method takes a ZipEntry object as

input, so we must construct the ZipEntry from the

name of the file we are adding to our archive. In a

while loop, we then read in our file using the

FileInputStream and write it out to the

ZipOutputStream.After that is complete, we close the

entry using the closeEntry() method of the

ZipOutputStream, and then we close each of our open

streams.

In this phrase, we have added just one file to our Zip

archive, but the code would be easy to extend to add

an arbitrary number of files to our Zip archive.The

ZipOutputStream class supports both compressed and

uncompressed entries.

85Creating a Zip Archive

This page intentionally left blank

9

Working with
Directories and
Files

A common task in most Java applications is working

with the file system, which includes directories and

files. In this chapter, we present phrases to help you

work with files and directories in Java.

The main class we will use in this chapter is the

java.io.File class.This class allows you to list, create,

rename, and delete files, as well as work with

directories.

Many of the phrases in this chapter have the possibility

of throwing a SecurityException. In Java, the file sys-

tem is protected by the Security Manager. For some

applications, you might need to use a custom imple-

mentation of the Security Manager.Applets are the

most restricted types of Java applications in terms of

being able to access files and directories on the user’s

local machine. By taking advantage of the Security

Manager and the related Security Policy Framework

you can achieve fine-grained control over file and

directory access. For more information about the secu-

rity options available through Java, refer to the security

documentation available on the official Java site:

http://java.sun.com/javase/technologies/security.jsp

For more information about the Security Manager, see

the following tutorial available from Sun:

http://java.sun.com/docs/books/tutorial/essential/

system/securityIntro.html

Creating a File

88 CHAPTER 9 Working with Directories and Files

File f = new File("myfile.txt");

boolean result = f.createNewFile();

This phrase uses the createNewFile() method to create

a new file with the filename specified when construct-

ing the File object—in this case, myfile.txt.The

createNewFile() method will return a boolean value of

true if the file was successfully created and false if the

specified filename already exists.

Another method is available in the File class for creat-

ing a temporary file: It’s called createTempFile(). This

is a static method on the File class. Here, we show

how to use this method to create a temporary file:

File tmp =

File.createTempFile("temp", "txt", "/temp");

The parameters that we pass to the createTempFile()

method are the temp file’s prefix, suffix, and the temp

directory.Another version of this method is available

that takes just two parameters and uses the default

temp directory. For either form of the

http://java.sun.com/javase/technologies/security.jsp
http://java.sun.com/docs/books/tutorial/essential/system/securityIntro.html
http://java.sun.com/docs/books/tutorial/essential/system/securityIntro.html

createTempFile() method to work, the specified file

must not already exist.

If you are using temporary files, you’ll also be interest-

ed in the deleteOnExit() method of the File class.You

should call the deleteOnExit() method on a File

object that represents a temporary file. Calling the

deleteOnExit() method requests that the file be deleted

automatically when the Java virtual machine termi-

nates.

Renaming a File or Directory

89Renaming a File or Directory

File f = new File("myfile.txt");

File newFile = new File("newname.txt");

boolean result = f.renameTo(newFile);

In this phrase, we rename a file from myfile.txt to

newname.txt.To accomplish this task, we have to create

two File objects.The first File object is constructed

with the current name of the file. Next, we create a

new File object using the name we want to rename

the file.We then call the renameTo() method on the

original File object and pass in the File object that

specifies the new filename.The renameTo() method

will return a boolean value of true if the rename oper-

ation is successful and false if it fails for any reason.

This technique can also be used to rename a directory.

The code for renaming a directory is exactly the same,

except we pass the directory names to the File object

constructors instead of file names. Here we show how

this is done:

File f = new File("directoryA");

File newDirectory = new File("newDirectory");

boolean result = f.renameTo(newDirectory);

Remember that the new file or directory name must

be specified in a File object that is passed to the

renameTo() method.A common mistake is to attempt

to pass a String containing the new file or directory

name to the renameTo() method. Passing a String to

the renameTo() method will generate a compile error.

Deleting a File or Directory

90 CHAPTER 9 Working with Directories and Files

File f = new File("somefile.txt");

boolean result = f.delete();

Deleting a file using the File class is a simple task.We

first create a File object specifying the name of the file

that we want to delete.We then call the File object’s

delete() method.A boolean value of true is returned if

the file was deleted successfully; otherwise, a false is

returned.

The delete() method can also be used to delete a

directory.To delete a directory, you would create the

File object, specifying a directory name instead of a

filename. Here, we show how you would delete a

directory:

File directory = new File("files/images");

directory.delete();

The directory will only be deleted if it is empty. If the

directory you are trying to delete using this method is

not empty, the delete() method will return a boolean

false value. If the file or directory that you are trying

to delete does not exist, the delete() method will still

return a false value, without throwing an exception.

Another useful method available related to deleting

files and directories is the deleteOnExit() method of

the File class. Calling the deleteOnExit() method

requests that the file or directory represented by this

File object be deleted automatically when the Java

virtual machine terminates.

Changing File Attributes

91Getting the Size of a File

File f = new File("somefile.txt");

boolean result = f.setReadOnly();

long time = (new Date()).getTime();

result = f.setLastModified(time);

The File object makes it easy to change the last modi-

fied time stamp on a file and the read/write status of a

file.To perform these tasks, we use the setReadOnly()

and setLastModified() methods of the File class.The

setReadOnly() method, as you have probably guessed,

sets the read/write status of the file on which the

method is called to read-only.The setLastModified()

method accepts a single parameter, specifying a time in

milliseconds, and sets the file’s last modified time to

that time.The time value passed in is measured in mil-

liseconds since the epoch (January 1, 1970, 00:00:00

GMT). Both of these methods will return a boolean

value of true only if the operation is successful. If the

operation fails for any reason, a value of false will be

returned.

Getting the Size of a File

File file = new File("infilename");

long length = file.length();

In this phrase, we get the size of a file using the

length() method on the File object.The length()

method will return the size of the file in bytes. If the

file does not exist, a value of 0 is returned.

This method is often convenient to use prior to read-

ing a file into a byte array. Using the length() method,

you can determine the length of the file so that you

know how large of a byte array you will need to hold

the entire file contents. For example, the following

code is often used for reading a file into a byte array:

File myFile = new File("myfile.bin");

InputStream is = new FileInputStream(myFile);

// Get the size of the file

long length = myFile.length();

if (length > Integer.MAX_VALUE) {

// File is too large

}

byte[] bytes = new byte[(int)length];

int offset = 0;

int numRead = 0;

while (offset < bytes.length

&& (numRead=is.read(bytes, offset, bytes.length-

offset)) >= 0) {

offset += numRead;

}

is.close();

Determining if a File or

Directory Exists

92 CHAPTER 9 Working with Directories and Files

boolean exists = (new File("filename")).exists();

if (exists) {

// File or directory exists

}

else {

// File or directory does not exist

}

In this phrase, we use the exists() method on the File

object to determine if the file or directory represented

by the File object exists.The exists() method will

return true if the file or directory exists, otherwise it

will return false.

Moving a File or Directory

93Moving a File or Directory

File file = new File("filename");

File dir = new File("directoryname");

boolean success =

file.renameTo(new File(dir, file.getName()));

if (!success) {

// File was not successfully moved

}

The renameTo() method of the File class allows us to

move a file or directory into a different directory. In

this phrase, we create a File object to represent the file

or directory we are moving.We create another File

object representing the destination directory that we

are moving the file or directory into.We then call the

renameTo() method on the file being moved and pass it

a single File object parameter.The File object passed

as a parameter is constructed using the destination

directory and the original file name. If the move oper-

ation is successful, the renameTo() method will return a

boolean true value. If the move fails, a boolean false is

returned.

When you use the renameTo() method, keep in mind

that many aspects of its behavior are platform depend-

ent. Some of these platform dependent behaviours are

noted in the JavaDoc for this method.They include

the following:

n The rename operation might not be able to move

a file from one filesystem to another.

n The rename operation might not be atomic.This

means that the implementation of the rename

operation may consist of multiple steps at the

operating system level.This could lead to prob-

lems in severe conditions such as power failure

between steps.

n The rename operation might not succeed if a file

with the destination abstract pathname already

exists.

When using this method, you should always check the

return value to make sure that the rename operation

was successful.

Getting an Absolute Filename

Path from a Relative Filename

Path

94 CHAPTER 9 Working with Directories and Files

File file = new File("somefile.txt");

File absPath = file.getAbsoluteFile();

In this phrase, we get an absolute path for a file for

which we specify a relative path.An absolute pathname

gives the full path for a file starting from the file

system’s root directory, i.e. c:\project\book\

somefile.txt.A relative pathname specifies a file’s

name and path relative to the current directory, i.e.

somefile.txt if the current directory is c:\project\

book. In many cases, a relative pathname consists of

only the filename.The getAbsoluteFile() method of

the File class returns a File object representing the

absolute filename for the file represented by the File

object on which it is called.

There is a similar method called getAbsolutePath()

that returns the absolute path as a String instead of as

a File object.The code below shows this method:

File file = new File("filename.txt");

String absPath = file.getAbsolutePath();

In this example, absPath would contain the string

“c:\project\book\somefile.txt”.

Determining if a Filename Path

is a File or Directory

95Determining if a Filename Path is a File or Directory

File testPath = new File("directoryName");

boolean isDir = testPath.isDirectory();

if (isDir) {

// testPath is a directory

}

else {

// testPath is a file

}

In this phrase, we determine if a given File object rep-

resents a file or a directory.The isDirectory() method

of the File class will return true if the File object on

which it is called represents a directory, and it will

return false if the File object represents a file.

This method is useful when you want to write a

method that will traverse all of the files and directories

under a given directory. Perhaps you want to write a

method that will list all of the files under a specified

directory and you want the method to recurse into all

the subdirectories contained within the specified direc-

tory.As you step through each listing contained in a

directory, you would use the isDirectory() method to

determine if the listing represents a file or a directory.

Below is an example of such a method that makes use

of the isDirectory() method:

static void listAllFiles(File dir) {

String[] files = dir.list();

for (int i = 0; i < files.length; i++) {

File f = new File(dir, files[i]);

if (f.isDirectory()) {

listAllFiles(f);

}

else {

System.out.println(f.getAbsolutePath());

}

}

}

If you call this method and pass in a File object repre-

senting a directory, it will print the full-path names of

all files contained within that directory and all of its

subdirectories.

There is also an isFile() method on the File class that

will return true if the File object on which it is called

represents a file, otherwise it will return false.

Listing a Directory

96 CHAPTER 9 Working with Directories and Files

File directory = new File("users/tim");

String[] result = directory.list();

We can also use the File class to list the contents of a

directory. In this phrase, we use the list() method of

the File class to get a String array containing all the

files and subdirectories contained within the directory

specified by the File object. If the directory does not

exist, a null value is returned.The strings returned are

filenames and simple directory names; they are not

complete paths.Also, the results are not guaranteed to

be in any defined order.

An alternate implementation of the list() method is

also available. It accepts a java.io.FilenameFilter

parameter and allows you to filter the files and directo-

ries returned in the list results. Use of this method is

shown here:

File directory = new File("users/tim");

FilenameFilter fileFilter = new HTMLFileFilter();

String[] result = directory.list(fileFilter);

The corresponding implementation of the

HTMLFileFilter class used above is shown here:

class HTMLFileFilter extends FilenameFilter {

public boolean accept(File f) {

return f.isDirectory() || f.getName()

.toLowerCase() .endsWith(".html"));

}

public String getDescription() }

return "/html files";

}

FilenameFilter is an interface with one defined

method, accept().The accept() method takes two

parameters—a File object and a String object.The

File object specifies the directory in which the file

was found, and the String object specifies the name of

the file.The accept() method returns true if the file

should be included in the list; otherwise, it returns

false. In this example, we have created a filter that will

cause the list() method to include only files that end

with the .html extention.

97Listing a Directory

If the filter passed in is null, this method behaves

identical to the previous list() method with no

parameters.

In addition to the list() methods, the File class also

has two versions of a listFiles() method.The

listFiles() method returns an array of File objects

instead of a string array.The no parameter form of this

method is shown here:

File directory = new File("users/tim");

File[] result = directory.listFiles();

The resulting File objects contain relative or absolute

pathnames, depending on the File object from which

the listFiles() method was called. In the previous

example, if the directory File object contained an

absolute path, the results would contain absolute path-

names. If the directory File object contained a relative

pathname, the results would have relative pathnames.

There is also a version of listFiles() that accepts a

FileFilter parameter, similar to the example we

showed for the list() method.We show an example

of this here:

File directory = new File("users/tim");

FileFilter fileFilter = new HTMLFileFilter();

String[] result = directory.listFiles(fileFilter);

The corresponding implementation of the

HTMLFileFilter class used above is shown here:

class HTMLFileFilter extends FileFilter {

public boolean accept(File f) {

return f.isDirectory() ||

f.getName().toLowerCase().endsWith(".html");

}

public String getDescription() {

98 CHAPTER 9 Working with Directories and Files

return ".html files";

}

}

FileFilter is an interface with two defined methods,

accept() and getDescription(). Unlike the accept()

method of FilenameFilter, the accept() method of

FileFilter takes only one parameter, a File object.

The File object specifies either a file or directory.The

accept() method returns true if the file or directory

should be included in the list; otherwise, it returns

false. In this example, we have created a filter that will

cause the list() method to include only files that end

with the .html extention and directories.

Creating a New Directory

99Creating a New Directory

boolean success = (new File("users/tim")).mkdir();

In this phrase, we use the mkdir() method of the File

class to create a new directory.This method will return

true if the directory is successfully created. If the direc-

tory cannot be created, the method returns false.The

mkdir() method will only create a directory if all spec-

ified parent directories already exist. In the preceding

phrase, the users directory must already exist for this

execution of mkdir() to successfully create the

users/tim directory.

A similar method will allow you to create an entire

directory tree, including all parent directories, if they

do not exist.This is the mkdirs() method on the File

class. Here, we show an example using this method:

boolean success =

(new File("/users/tim/web")).mkdirs();

In the preceding example, the mkdirs() method will

create any of the directories (users, tim, web) that do

not exist.

100 CHAPTER 9 Working with Directories and Files

10

Network Clients

Most applications written today require some net-

work features.The standalone Java application is a rela-

tively rare occurrence.Therefore, this chapter on net-

work clients is valuable to most developers writing Java

applications today.

Network program involves communication between a

client and a server.The client is typically the applica-

tion making some request for content or services, and

the server is a network-based application that serves

content and services to many clients. In this chapter,

we focus on the client. In Chapter 11,“Network

Servers,” we’ll provide server-related phrases.

Except for a phrase that deals with reading a web page

via HTTP, the phrases in this chapter are all at the

level of socket-based programming. Sockets are a low-

level networking implementation. For most of your

needs, you will want to use a protocol that is at a layer

above sockets, such as HTTP, SMTP, or POP.

Additional Java or third-party APIs are available for

dealing with these higher level network protocols.

The java.net package provides the functionality for

client-side networking that we will use in this chapter.

J2EE, which is not covered in this book, offers many

more network-based services including full support for

server-side Java web development. Network-related

technologies included in J2EE include servlets, EJB,

and JMS.

Contacting a Server

102 CHAPTER 10 Network Clients

String serverName = "www.timothyfisher.com";

Socket sock = new Socket(serverName, 80);

In this phrase, we connect to a server via TCP/IP

using Java’s Socket class. During construction of the

sock instance in our phrase, a socket connection will

be made to the server specified by serverName—in this

case, www.timothyfisher.com and port 80.

Whenever a Socket is created, you must be sure to

close the socket when you are finished with it by call-

ing the close() method on the Socket instance you are

working with.

Java supports other ways of connecting to a server that

we won’t discuss details of here. For example, you

could use the URL class to open a URL and read from

it. See the phrase “Reading a Web Page via HTTP” in

this chapter for more details on using the URL class.

Finding IP Addresses and

Domain Names

// find IP address for given domain

String hostName = www.timothyfisher.com";

www.timothyfisher.com

103Handling Network Errors

String ip =

InetAddress.getByName(hostName).getHostAddress();

// find domain name for ip address

String ipAddress = "66.43.127.5";

String hostName =

InetAddres.getByName(ipAddress).getHostName();

In this phrase, we get a hostname when you know the

IP address of a remote host, and we get an IP address

when you start with the hostname of the remote host.

To accomplish both of these tasks, we rely on the

InetAddress class.

We use the getByName() static method of the

InetAddress class to create an InetAddress instance.We

can pass either an IP address or a hostname into the

getByName() method to create the InetAddress instance.

Once we have the InetAddress instance, we can call

the getHostAddress() method to return the IP address

as a String. If we already know the IP address, we can

call the getHostName() method to return the hostname

as a String. If the host name cannot be resolved, the

getHostName() method will return the IP address.

Handling Network Errors

try {

// connect to network host

// perform network IO

}

catch (UnknownHostException ex) {

System.err.println("Unknown host.");

}

catch (NoRouteToHostException ex) {

System.err.println("Unreachable host.");

}

In this phrase, we illustrate the series of exceptions you

should attempt to catch when performing network

operations.

The first exception we try to catch is the

UnknownHostException.This is a subclass of IOException

and is thrown to indicate that the IP address of a host

could not be determined.

NoRouteToHostException and the ConnectException are

subclasses of SocketException. NoRouteToHostException

signals that an error occurred while attempting to con-

nect a socket to a remote address and port.Typically,

the remote host cannot be reached because of a prob-

lem with an intervening firewall or router.

ConnectException is thrown if a connection is refused

to the remote host. IOException is a more general pur-

pose exception that can also be thrown from network-

ing calls.

The phrases throughout this chapter and Chapter 11,

“Network Servers,” do not include error handling.

Catching these exceptions is what you would do in

your Java applications that use networking functionality.

104 CHAPTER 10 Network Clients

catch (ConnectException ex) {

System.err.println("Connect refused.");

}

catch (IOException ex) {

System.err.println(ex.getMessage());

}

This phrase assumes that we’ve previously created a

socket to the server from which we want to read text.

See the phrase “Contacting a Server” in this chapter

for more details on creating the socket instance. Given

the socket instance, we call the getInputStream()

method to get a reference to the socket’s input stream.

With that, we create an InputStreamReader and use it

to instantiate a BufferedReader for reading in the text

across the network.The readLine() method of the

BufferedReader.

Using the BufferedReader as we do in this phrase

allows for efficient reading of characters, arrays, and

lines. If we were interested in reading only a very small

amount of data, we could do this directly from the

InputStreamReader, without using a BufferedReader.

Here, we show how you could read data into a charac-

ter array using only an InputStreamReader:

InputStreamReader in =

new InputStreamReader(socket.getInputStream()));

String text = in.read(charArray, offset, length);

In this example, data would be read from the input

stream into the array of characters specified by

charArray.The characters would be placed in the array

starting at an offset specified by the offset parameter,

and the maximum number of characters read is speci-

fied by the length parameter.

105Reading Text

BufferedReader in =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

String text = in.readLine();

Reading Text

Writing Text

106 CHAPTER 10 Network Clients

PrintWriter out =

new PrintWriter(socket.getOutputStream(), true);

out.print(msg);

out.flush();

This phrase assumes that we’ve previously created a

socket to the server from which we want to write text.

See the phrase “Contacting a Server” in this chapter

for more details on creating the socket instance. Given

the socket instance, we call the getOutputStream()

method to get a reference to the socket’s output

stream.With that, we instantiate a PrintWriter for

writing text across the network to the server with

which we are connected.The second parameter that

we pass to the PrintWriter constructor in this phrase

sets the auto-flush option. Setting this to true will

cause the println(), printf(), and format() methods to

automatically flush the output buffer. In our phrase, we

use the print() method; thus, we must follow that by a

call to the flush() method to force the data across the

network.

Reading Binary Data

DataInputStream in =

new DataInputStream(socket.getInputStream());

in.readUnsignedByte();

In this phrase, we show how to read binary data across

a network.This phrase assumes that we’ve previously

created a socket to the server from which we want to

read text. See the phrase “Contacting a Server” in this

chapter for more details on creating the socket

instance.

In this phrase, we call the getInputStream() method of

the socket instance to obtain a reference to the socket’s

input stream. Passing the input stream as a parameter,

we instantiate a DataInputStream, which we can use to

read binary data across the network.We use the

readUnsignedByte() method to read a single unsigned

byte across the network.

If the volume of data that you are reading is large, it

will be more efficient to wrap the socket’s input stream

in a BufferedInputStream instance. Here, we show how

this is done:

DataInputStream in = new DataInputStream(

new BufferedInputStream(

socket.getInputStream()));

Here, instead of directly passing the socket’s input

stream to the DataInputStream constructor, we first cre-

ate a BufferedInputStream instance and pass that to the

DataInputStream constructor.

In this phrase, we used the readUnsignedByte()

method, but DataInputStream has many other methods

available to read data into any primitive Java data type.

The available methods for reading binary data include:

read(), readBoolean(), readByte(), readChar(),

readDouble(), readFloat(), readInt(), readLong(),

readShort(), readUnsignedByte(), and

readUnsignedShort(). See the JavaDoc for details on

using these methods and other methods of the

DataInputStream class: http://java.sun.com/j2se/1.5.0/

docs/api/java/io/DataInputStream.html

107Reading Binary Data

http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataInputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataInputStream.html

Writing Binary Data

108 CHAPTER 10 Network Clients

DataOutputStream out =

new DataOutputStream(socket.getOutputStream());

out.write(byteArray, 0, 10);

In a previous phrase in this chapter,“Writing Text,” we

showed how to write text data across a network. In

this phrase, we show how to write binary data across a

network.This phrase assumes that we’ve previously

created a socket to the server from which we want to

write text. See the phrase “Contacting a Server” in this

chapter for more details on creating the socket

instance.

In this phrase, we call the getOutputStream() method

of the socket instance to obtain a reference to the

socket’s output stream.We then instantiate a

DataOutputStream, which we can use to write binary

data across the network.We use the write() method to

write an array of bytes across the network.The write()

method takes three parameters.The first parameter is a

byte[] to get the bytes to write from.The second

parameter is an offset into the byte array to begin

writing from.The third parameter is the number of

bytes that you want to write. So, in this phrase, we

write bytes from the byteArray array, beginning at off-

set 0, and we write a total of 10 bytes.

If the volume of data that you are writing is large, it

will be more efficient to wrap the socket’s output

stream in a BufferedOutputStream instance. Here, we

show how this is done:

DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(

socket.getOutputStream()));

Here, instead of directly passing the socket’s output

stream to the DataOutputStream constructor, we first

create a BufferedOutputStream instance and pass that to

the DataOutputStream constructor.

In this phrase, we used the write() method, but the

DataOutputStream has many other methods available to

write data from any primitive Java data type.The avail-

able methods for writing binary data include: write(),

writeBoolean(), writeByte(), writeBytes(), writeChar(),

writeChars(), writeDouble(), writeFloat(), writeInt(),

writeLong(), and writeShort(). See the JavaDoc for

details on using these methods and other methods of

the DataOutputStream class: http://java.sun.com/j2se/

1.5.0/docs/api/java/io/DataOutputStream.html

Reading Serialized Data

109Reading Serialized Data

ObjectInputStream in =

new ObjectInputStream(socket.getInputStream());

Object o = in.readObject();

Java enables object instances to be serialized and writ-

ten either to a file or across a network. In this phrase,

we show how you can read from a network socket an

object that has been serialized.This phrase assumes that

we’ve previously created a socket to the server with

which we want to communicate. See the phrase

“Contacting a Server” in this chapter for more details

on creating the socket instance.

In this phrase, we call the getInputStream() method of

the socket instance to get a reference to the socket’s

input stream. Using this, we can instantiate an

ObjectInputStream instance.The ObjectInputStream

http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataOutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataOutputStream.html

class is used to deserialize primitive data and objects

previously written using an ObjectOutputStream.We use

the readObject() method of the ObjectInputStream to

read an object from the stream.We could then cast the

object to its expected type. For example, if we were

reading a Date object from the stream, we would use

the following line to read it:

Date aDate = (Date)in.readObject();

All data fields that are non-transient and non-static will

be restored to the value they had when the object was

serialized.

Only objects that support the java.io.Serializable or

java.io.Externalizable interface can be read from

streams.When implementing a serializable class it is

strongly recommended that you declare a

serialVersionUID data member.This field provides a

version number that is used during deserialization to

verify that the sender and receiver of a serialized

object have loaded classes for that object that are com-

patible with respect to serialization. If you do not

explicitly declare this field, a default serialVersionUID

will be calculated for you.The default

serialVersionUID is highly sensitive to all class details.

You may make minor changes in a class and wish to

keep the same version number as you consider it to

still be compatible with the current version, therefore

it is beneficial to declare your own serialVersionUID.

Writing Serialized Data

110 CHAPTER 10 Network Clients

ObjectOutputStream out =

new ObjectOutputStream(socket.getOutputStream());

out.writeObject(myObject);

Java enables object instances to be serialized and writ-

ten either to a file or across a network. In this phrase,

we show how you can write a serialized object to a

network socket.This phrase assumes that we’ve previ-

ously created a socket to the server with which we

want to communicate. See the phrase “Contacting a

Server” in this chapter for more details on creating the

socket instance.

In this phrase, we call the getOutputStream() method

of the socket instance to get a reference to the socket’s

output stream. Using this, we can instantiate an

ObjectOutputStream instance.The ObjectOutputStream

class is used to serialize primitive data and objects.We

use the writeObject() method of the

ObjectOutputStream to write an object to the stream.

All data fields that are non-transient and non-static will

be preserved in the serialization and restored when the

object is deserialized. Only objects that support the

java.io.Serializable interface can be written to

streams.

Reading a Web Page via HTTP

111Reading a Web Page via HTTP

URL url = new URL("http://www.timothyfisher.com");

HttpURLConnection http = new HttpURLConnection(url);

InputStream in = http.getInputStream();

In this phrase, we go beyond socket level network pro-

gramming and show you an additional way of reading

data from a network. Java supports communication

with a URL over HTTP with the HttpURLConnection

class.We instantiate a URL instance by passing a valid

URL string to the URL constructor.We then instantiate

an HttpURLConnection by passing the url instance into

the HttpURLConnection constructor.The

getInputStream() method is called to get an input

stream for reading data from the URL connection.

Using the input stream, we could then read the con-

tents of the web page.

You can also read the contents of a URL using the URL

class directly. Here is an example of how we do this

using only the URL class:

URL url = new URL("http://www.timothyfisher.com");

url.getContent();

The getContent() method returns an Object.The

object returned can be an InputStream or an object

containing the data.A common example would be for

the getContent() method to return a String object

containing the contents of a URL.The getContent()

method that we used here is actually shorthand for the

following code:

url.openConnection.getContent();

The openConnection() method of the URL class returns

an URLConnection object.This is the object that the

getContent() method is actually implemented in.

The HttpURLConnection provides HTTP specific meth-

ods not available in the more general URL or

URLConnection classes. For example, we can use the

getResponseCode() method to get the status code from

an HTTP response message. HTTP also defines a pro-

tocol for redirecting a request to a different server.The

HttpURLConnection class has methods that understand

this feature as well. For example, if you want to make a

request to a server and follow any redirects that the

112 CHAPTER 10 Network Clients

server returns, you can use the following code to set

this option:

URL url = new URL("http://www.timothyfisher.com");

HttpURLConnection http = new HttpURLConnection(url);

http.setFollowRedircts(true);

This option is actually set to be true by default, so a

more useful scenario might be setting the follow redi-

rects option to false if, for some reason, you do not

want to be automatically redirected to a server other

than the one that you initially made the request on.

For example, you might want to consider this for cer-

tain security applications from which you only trust

specified servers.

Web pages that contain sensitive data are usually pro-

tected by a security protocol called Secure Sockets

Layer, commonly referred to as SSL.An SSL protected

page is referred to using https in the URL string, as

opposed to http.The standard Java JDK does include

an implementation of SSL as part of the Java Secure

Socket Extension (JSSE). In order to retrieve an SSL

protected page, you would use the HttpsURLConnection

class instead of the HttpURLConnection class.The

HttpsURLConnection class transparently handles all of

the details of the SSL protocol for you. For more

details on using SSL and other security features pro-

vided by JSSE, see the JSSE reference guide provided

by Sun at: http://java.sun.com/j2se/1.5.0/docs/

guide/security/jsse/JSSERefGuide.html.

113Reading a Web Page via HTTP

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

This page intentionally left blank

11

Network Servers

In the real world, you are probably much more likely

to be writing network client code than network server

code. Many applications integrate both client and serv-

er features, and fortunately Java provides excellent sup-

port for both.

The java.net package provides the functionality for

server-side networking that we will use in this chapter.

J2EE, which is not covered in this book, offers many

more network-based services, including full support

for server-side Java web development. Network-related

technologies included in J2EE include servlets, EJB,

and JMS.

Creating a Server and

Accepting a Request

public static final short PORT = 9988;

ServerSocket server = new ServerSocket(PORT);

while ((clientSock = server.accept()) != null) {

// Process client request

}

In this phrase, we use a ServerSocket instance to create

a server listening on port 9988.We pass the port that

we want the server to listen on to the constructor of

the ServerSocket. Once the server socket is created, we

call the accept() method to wait for a client connec-

tion.The accept() method blocks until a connection

with a client is made.When a client connection is

made, a new Socket instance is returned.

If a security manager is being used, the security man-

ager’s checkAccept() method is called with

clientSock.getInetAddress().getHostAddress() and

clientSock.getPort() as its arguments to ensure the

operation is allowed.This could result in a

SecurityException.

The phrases in this chapter all make use of the

ServerSocket class.The ServerSocket class is used by a

server to wait for and make connections with a client.

As seen in this phrase, when you first create a

ServerSocket class, you specify a port to listen on for

incoming requests.The ServerSocket class itself is not

used for communication with a client, but only to

establish a connection with the client.When

ServerSocket accepts a client connection, a regular

Socket instance is returned.The Socket instance is what

you use to communicate with the client.

See the related phrase,“Handling Multiple Clients” for

information on how you should write your code

when you expect to handle many simultaneous client

requests.

116 CHAPTER 11 Network Servers

Returning a Response

117Returning a Response

Socket clientSock = serverSocket.accept();

DataOutputStream out =

new DataOutputStream(

clientSock.getOutputStream());

out.writeInt(someValue);

out.close();

This phrase shows an example of how to return a

response from a server to a client.The accept()

method of the ServerSocket instance will return a

Socket instance when a connection is made with a

client.We then get the socket’s output stream by call-

ing the getOutputStream() method of the socket.We

use the output stream to instantiate a DataOutputStream,

which we then call the writeInt() method on to write

an integer value, sending binary data to the client.

Finally, we close the socket using the close() method

of the Socket.

In this phrase, we use the write() method, but the

DataOutputStream has many other methods available to

write data from any primitive Java data type.The avail-

able methods for writing binary data include: write(),

writeBoolean(), writeByte(), writeBytes(), writeChar(),

writeChars(), writeDouble(), writeFloat(), writeInt(),

writeLong(), and writeShort(). See the JavaDoc for

details on using these methods and other methods of

the DataOutputStream class:http://java.sun.com/j2se/

1.5.0/docs/api/java/io/DataOutputStream.html

http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataOutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/DataOutputStream.html

If we wanted to write text data to the client, we could

use the following code:

Socket clientSock = serverSocket.accept();

PrintWriter out =

new PrintWriter(new OutputStreamWriter(

clientSock.getOutputStream()), true);

out.println("Hello World");

out.close();

Instead of creating a DataOutputStream, here we create

an OutputStreamWriter and a PrintWriter.We use the

print() method of the PrintWriter to write a text

string to the client.The second parameter that we pass

to the PrintWriter constructor sets the auto-flush

option. Setting this to true will cause the println(),

printf(), and format() methods to automatically flush

the output buffer. In our phrase, we use the println()

method; thus, it is not necessary to explicitly call the

flush() method.As always, when we are done using

the PrintWriter, we call the close() method to close

the stream.

Returning an Object

118 CHAPTER 11 Network Servers

Socket clientSock = serverSocket.accept();

ObjectOutputStream os = new ObjectOutputStream(

clientSock.getOutputStream());

// return an object

os.writeObject(new Date());

os.close();

In this phrase, we return a serialized object to a client.

We get a Socket instance returned from the accept()

method of the ServerSocket after making a connection

with a client.We then create an ObjectOutputStream

instance, passing the output stream obtained from the

client socket.An ObjectOutputStream is used to write

primitive datatypes and graphs of Java objects to an

OutputStream. In this example, we write a Date object

to the output stream and then close the stream.

The writeObject() method causes the object passed as

a parameter to be serialized. In this phrase, this is a

Date object.All data fields that are non-transient and

non-static will be preserved in the serialization and

restored when the object is deserialized. Only objects

that support the java.io.Serializable interface can be

serialized.

An interesting alternative to the ObjectOutputStream

and ObjectInputStream classes is an open source project

from codehaus.org called XStream. XStream provides

alternative implementations of ObjectInputStream and

ObjectOutputStream, enabling streams of objects to be

serialized or deserialized from XML.The standard

ObjectInputStream class uses a binary format for the

serialized data.The serialized output of the XStream

classes provides the serialized classes in easy-to-read

XML format.You can find more information about

XStream and download it from: http://xstream.

codehaus.org/index.html

Handling Multiple Clients

119Handling Multiple Clients

while (true) {

Socket clientSock = socket.accept();

new Handler(clientSock).start();

}

http://xstream.codehaus.org/index.html
http://xstream.codehaus.org/index.html

To handle multiple clients, we create a thread for each

incoming request that we are processing.

In this phrase, we create a new thread to handle the

incoming client connection immediately after

accepting the connection.This frees our server listener

thread to continue listening for other client connec-

tions. In the phrase, we are in an infinite while loop so

that after a thread is spawned to handle an incoming

request, the server immediately goes back to waiting

for another request.The Handler class that we use to

start the thread from must be a subclass of the Thread

class, or it must implement the Runnable interface.The

code used in the phrase would be correct if the

Handler class is a subclass of the Thread class. If the

Handler class instead implements the Runnable interface,

the thread start code would change to the following:

Thread thd = new Thread(new Handler(clientSock));

thd.start();

An example of a simple Handler class extending the

Thread class is shown here:

class Handler extends Thread {

Socket sock;

Handler(Socket socket) {

this.sock = socket;

}

public void run() {

DataInputStream in =

new DataInputStream(sock.getInputStream());

PrintStream out =

120 CHAPTER 11 Network Servers

new PrintStream(sock.getOutputStream(),

true);

// handle client request

sock.close();

}

}

This class could be used to handle incoming client

requests.We don’t show the details of handling a spe-

cific request in the code.When the start() method of

this class is called, as in our phrase, the run() method

that we have defined is executed.The start() method

is implemented in the Thread base class, and we do not

have to override that in our Handler implementation.

When creating a multi-threaded solution such as we’ve

outlined in this phrase, you might also want to consid-

er using thread pooling.With a thread pool, rather

than creating a new thread for each incoming request,

a pool of threads is created at application start time.

The thread pool has a fixed number of threads that

execute tasks. Using a thread pool will prevent the

application from creating an excessive number of

threads which could impede performance.A very good

article describing thread pooling is available from

http://www.informit.com/articles/article.asp?p=30483

&seqNum=3&rl=1

For more information about using threads, see Chapter

15,“Using Threads.”

121Handling Multiple Clients

http://www.informit.com/articles/article.asp?p=30483&seqNum=3&rl=1
http://www.informit.com/articles/article.asp?p=30483&seqNum=3&rl=1

Serving HTTP Content

122 CHAPTER 11 Network Servers

Socket client = serverSocket.accept();

BufferedReader in =

new BufferedReader(new InputStreamReader(

client.getInputStream()));

// before serving a response, typically you would

// read the client input and process the request.

PrintWriter out =

new PrintWriter(client.getOutputStream());

out.println("HTTP/1.1 200");

out.println("Content-Type: text/html");

String html = "<html><head><title>Test Response" +

"</title></head><body>Just a test</body></html>";

out.println("Content-length: " + html.length());

out.println(html);

out.flush();

out.close();

In this phrase, we show an example of serving a very

simple piece of HTML content via HTTP.We accept a

connection with a client, create a BufferedReader to

read the client’s request, and create a PrintWriter,

which we use to send HTML via HTTP back to the

client.The data that we write to the PrintWriter is the

minimum necessary to create a valid HTTP response

message. Our response consists of three HTTP header

fields and our HTML data.We start our response by

specifying the HTTP version and a response code in

this line:

out.println("HTTP/1.1 200");

We are returning HTTP version 1.1 and a response

code of 200.The response code of 200 indicates a suc-

cessful request. In the next line, we specify the content

type we are returning as HTML.We could return con-

tent types other than HTML and still have a valid

HTTP response message. For example, the following

would specify that our response is plaintext instead of

HTML:

out.println("Content-Type: text/plain");

The next thing we write is the Content-length header.

This specifies the length of the actual content being

returned and does not include the header fields.After

that, we write the actual HTML message that we are

returning. Finally, we flush and close the

BufferedReader stream using the flush() and close()

methods.

NOTE: Although this technique is useful for simple

HTTP serving requirements, I would not recommend try-

ing to write your own complete HTTP server from

scratch in Java. An excellent HTTP server is available

freely as open source that is part of the Apache

Jakarta project. This is the Tomcat server. You can get

more information about Tomcat and download it from

http://jakarta.apache.org/tomcat/. Not only does

Tomcat serve HTTP, but it also contains a servlet con-

tainer to handle Java Servlets and JSPs.

123Serving HTTP Content

http://jakarta.apache.org/tomcat/

This page intentionally left blank

12

Sending and
Receiving Email

Email has been called the killer application of the

Internet and is used in many applications. It is very

likely that at some point you will want to support

email in one of your own Java applications.

Fortunately, Java has excellent support for integrating

email into your Java applications using the JavaMail

API.The JavaMail API is an extension to the core Java.

Because of this, you have to download it separately. It

is not a part of the standard JDK download.The rele-

vant classes that make up the JavaMail API are in the

javax.mail package.The current JavaMail API requires

JDK 1.4 or newer. Earlier versions of the JDK require

an older version of the JavaMail API.

This chapter covers the topics of sending and receiving

email from a Java application. Integrating email capa-

bility into your Java application is a great addition to

many applications. Some real world examples of where

this might be useful included sending email alerts from

an application, automatic emailing of logs and reports,

and user communication.

Overview of JavaMail API

JavaMail provides functionality for sending and

receiving email. Service providers plug in to the

JavaMail API providing implementations of various

email protocols.The Sun implementation includes

service providers for IMAP, POP3 and SMTP. JavaMail

is also a part of enterprise Java in J2EE.

You can download the Java Mail extension from:

http://java.sun.com/products/javamail/downloads/

index.html

To use the JavaMail API, you must also download and

install the JavaBeans Activation Framework extension

(JAF). JAF can be downloaded from: http://java.sun.

com/products/javabeans/jaf/downloads/index.html

In addition to the phrases covered in this chapter, you

can find complete details on using the JavaMail API at

the JavaMail link on the Sun Developer Network:

http://java.sun.com/products/javamail/index.jsp

Sending Email

126 CHAPTER 12 Sending and Receiving Email

Properties props = new Properties();

props.put(“mail.smtp.host”, “mail.yourhost.com”);

Session session =

Session.getDefaultInstance(props, null);

Message msg = new MimeMessage(session);

msg.setFrom(new

InternetAddress(“tim@timothyfisher.com”));

InternetAddress toAddress =

new InternetAddress(“kerry@timothyfisher.com”);

http://java.sun.com/products/javamail/downloads/index.html
http://java.sun.com/products/javamail/downloads/index.html
http://java.sun.com/products/javabeans/jaf/downloads/index.html
http://java.sun.com/products/javabeans/jaf/downloads/index.html
http://java.sun.com/products/javamail/index.jsp

In this phrase, we send a plaintext email message using

an SMTP server.There are six basic steps that you

should always follow when you want to send email

using the JavaMail API.These steps are identified here:

1. Create a java.util.Properties object, which you

will use to pass information about the mail server.

2. Put the hostname of the SMTP mail server into

the Properties object.Also, put any other proper-

ties you want to set into the Properties object.

3. Create Session and Message objects.

4. Set recipients’ and sender’s email addresses and the

message subject in the Message object.

5. Set the message text in the Message object.

6. Call the Transport.send() method to send the

message.

We follow each of these steps in this phrase to create

and send an email message. Note that the From and To

addresses are created as InternetAddress objects.An

InternetAddress object represents a valid email address.

An exception will be thrown if you attempt to create

an InternetAddress object using an invalid email

address format.When you specify the To recipients,

you also specify the type of the recipient.Valid types

are TO, CC, and BCC.These are represented by the

following constants:

Message.RecipientType.TO

Message.RecipientType.CC

Message.RecipientType.BCC

127Sending Email

msg.addRecipient(Message.RecipientType.TO,

toAddress);

msg.setSubject(“Test Message”);

msg.setText(“This is the body of my message.”);

Transport.send(msg);

The Message class is an abstract class defined in the

javax.mail package.There is one subclass that imple-

ments the Message class that is part of the standard

JavaMail reference implementation.This is the

MimeMessage class, which is the implementation we use

in our phrase here.This implementation represents a

MIME style email message.You should be able to use

this for most, if not all, of your email needs.

In this phrase, we use the Properties object to pass

only the SMTP mail host.This is the only required

property that you must set.There are additional prop-

erties that you can set, though.

NOTE: See the javax.mail package overview in the

JavaDoc for additional detail on other email related

properties that you can pass in the Properties object:

http://java.sun.com/javaee/5/docs/api/javax/mail/

package-summary.html

Sending MIME Email

128 CHAPTER 12 Sending and Receiving Email

String html =

“<html><head><title>Java Mail</title></head>” +

“<body>Some HTML content.</body></html>”;

Multipart mp = new MimeMultipart();

BodyPart textPart = new MimeBodyPart();

textPart.setText(“This is the message body.”);

BodyPart htmlPart = new MimeBodyPart();

htmlPart.setContent(html, “text/html”);

mp.addBodyPart(textPart);

mp.addBodyPart(htmlPart);

msg.setContent(mp);

Transport.send(msg);

http://java.sun.com/javaee/5/docs/api/javax/mail/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/mail/package-summary.html

MIME stands for Multimedia Internet Mail

Extensions. MIME is supported by all major email

clients and is the standard way of including attach-

ments to messages. MIME allows you to attach a vari-

ety of media types, such as images, video, and .pdf files

to an email message.The JavaMail API also supports

MIME messages, and it is nearly as easy to create a

message with attachments as a MIME message as it is

to create a standard plaintext message.

In this phrase, we create and send a MIME message

containing a plaintext body and an HTML attach-

ment.To create a multipart message, we use the

MultiPart class, which is a part of the javax.mail pack-

age.The MimeMultiPart class, in the javax.mail.inter-

net package, provides a concrete implementation of the

MultiPart abstract class and uses MIME conventions

for the multipart data.The MimeMultiPart class allows

us to add multiple body parts, represented as

MimeBodyPart objects.We set a body part’s content

using the setText() method for plaintext body parts or

the setContent() method for other types of body parts.

When we use the setContent() method, we pass an

object that holds the body part, along with a string

specifying the MIME type we are adding. In our

phrase, we add an HTML body part, so we specify the

MIME type as text/html.

The code in shown in the phrase focusing on the

MIME specific parts of sending a MIME message.The

example below is a more complete example of sending

a MIME email message including all steps necessary to

accomplish the task:

Properties props = new Properties();

props.put(“mail.smtp.host”, “mail.yourhost.com”);

129Sending MIME Email

Session session =

Session.getDefaultInstance(props, null);

Message msg = new MimeMessage(session);

msg.setFrom(new

InternetAddress(“tim@timothyfisher.com”));

InternetAddress toAddress =

new InternetAddress(“kerry@timothyfisher.com”);

msg.addRecipient(Message.RecipientType.TO,

toAddress);

msg.setSubject(“Test Message”);

String html =

“<html><head><title>Java Mail</title></head>” +

“<body>Some HTML content.</body></html>”;

Multipart mp = new MimeMultipart();

BodyPart textPart = new MimeBodyPart();

textPart.setText(“This is the message body.”);

BodyPart htmlPart = new MimeBodyPart();

htmlPart.setContent(html, “text/html”);

mp.addBodyPart(textPart);

mp.addBodyPart(htmlPart);

msg.setContent(mp);

Transport.send(msg);

NOTE: The Internet Assigned Numbers Authority (IANA)

provides a good reference of all the standard MIME

media types on their website. The site also provides

an application for registering a new MIME type. If you

don’t feel that any existing MIME types are suitable for

your content, you can use this application to request a

new standard MIME media type be created that sup-

ports your content type. The IANA website is at: http://

www.iana.org

The MIME media types can be found on the IANA

site at: http://www.iana.org/assignments/

media-types/

130 CHAPTER 12 Sending and Receiving Email

http://www.iana.org
http://www.iana.org
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Reading Email

131Reading Email

Properties props = new Properties();

Session session =

Session.getDefaultInstance(props, null);

Store store = session.getStore(“pop3”);

store.connect(host, username, password);

Folder folder = store.getFolder(“INBOX”);

folder.open(Folder.READ_ONLY);

Message message[] = folder.getMessages();

for (int i=0, n=message.length; i<n; i++) {

System.out.println(i + “: “ +

message[i].getFrom()[0] + “\t” +

message[i].getSubject());

String content =

message[i].getContent().toString();

System.out.print(content.substring(0,100));

}

folder.close(false);

store.close();

In this phrase, we connect to a POP3 email server and

retrieve all messages in the INBOX folder.The

JavaMail API makes this task quite easy to perform.

Here are the general steps you perform when using

the JavaMail API to read messages from a POP mail

server:

1. Get a Session object.

2. Get a Store object from the Session object.

3. Create a Folder object for the folder that you

want to open.

4. Open the folder and get messages from it.A folder

may contain sub-folders, and you would want to

recursively get messages from those folders as well.

In the phrase, we get a default instance of the Session

object using the getDefaultInstance() static method.

The Session object represents a mail session.With the

Session object, we then get a Store object that imple-

ments the POP3 protocol.The Store object represents

a message store and its access protocol. If, for example,

we wanted to connect to an IMAP mail server instead

of a POP3 server, we could change this line of code to

get an IMAP store instead of the POP3 store.We’d

also have to include an additional JAR file that sup-

ports the IMAP protocol. Sun provides the imap.jar

file as part of the JavaMail distribution.We connect to

a POP3 store by calling the connect() method of the

Store object and passing a host, username, and pass-

word. In the remainder of the phrase, we retrieve the

INBOX folder and all the messages contained within

it.We print the message sender (From), the message

subject, and the first 100 characters of the message

body for each message in the INBOX folder.

The Folder class also contains a list() method, which

we do not use in this phrase, but can be used to obtain

an array of Folder objects representing all the sub-

folders of the folder on which it is called. So, for

example, if the INBOX folder had many sub-folders,

we could obtain a reference to each of those using the

following code:

Folder folder = store.getFolder(“INBOX”);

folder.open(Folder.READ_ONLY);

Folder[] subfolders = folder.list();

The subfolders array in this example would contain a

Folder object for each sub-folder under the INBOX

folder.We could then process the messages in each of

those, just as we did for the messages contained in the

132 CHAPTER 12 Sending and Receiving Email

INBOX folder.There is also a getFolder() method on

the Folder class, which takes a single string parameter

and returns a folder with a name matching the string

passed in.

Using the Folder class, you could write a method that

traversed an entire email account and read all messages

contained in all of the user’s folders.

133Reading Email

This page intentionally left blank

13

Database Access

A database provides persistent storage for application

data and is a critical part of many applications. Java has

excellent support for accessing a relational database

through the Java Database Connectivity (JDBC) API.

If your application has anything but a very simple data

model with limited database access requirements, you

might want to strongly consider using a database

framework instead of writing directly to the JDBC

API.The standard persistence framework for enterprise

applications is the Enterprise Java Beans (EJB) frame-

work. EJB is a part of the Java Enterprise Edition. EJB

is considered to be overly complex by many Java

developers, and thus open source alternatives are also

becoming very popular.The complexity and problems

with EJB fortunately have been partially addressed in

EJB 3.0. EJB 3.0 is a big step in the right direction in

terms of making EJB a more developer friendly tech-

nology.An excellent open source data persistence

framework that is becoming very popular is the

Hibernate framework.The Hibernate framework cre-

ates an object mapping layer of your relational data.

The object mapping layer allows you to treat your per-

sistent data in an object-oriented manner as opposed

to through a procedural SQL interface.You can find

more information about the Hibernate framework at:

http://www.hibernate.org.

This chapter focuses purely on database access through

JDBC. Even if you use a higher level persistence

framework, it is important to have a good understand-

ing of the JDBC API as this provides the foundation of

most of the higher level frameworks.

Connecting to a Database via

JDBC

136 CHAPTER 13 Database Access

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection conn =

DriverManager.getConnection(url, user, password);

To make a database connection using JDBC, you first

have to load a driver. In this phrase, we load the

JdbcOdbcDriver.This driver provides connectivity to an

ODBC data source. We load the driver using the

Class.forName() method. Database JDBC drivers are

generally provided by database vendors, although Sun

does provide several generic drivers such as the ODBC

driver that we use in this phrase.After we have the

driver loaded, we get a connection to the database

using the DriverManager.getConnection() method. We

use a URL-like syntax to specify the database that you

want to connect to.We also pass valid database login

name and password.The URL must begin with the

prefix jdbc:.After the prefix, the remainder of the

URL specification format is vendor specific.The URL

syntax for connecting to an ODBC database is shown

here:

jdbc:odbc:databasename

http://www.hibernate.org

Most drivers will require the URL string to include a

hostname, a port, and a database name. For example,

here is a valid URL for connecting to a MySQL data-

base:

jdbc:mysql://db.myhost.com:3306/mydatabase

This URL specifies a MySQL database on the host

db.myhost.com, connecting on port 3306, with the

database name of mydatabase.The general format for a

MySQL database URL is as follows:

jdbc:mysql://host:port/database

An alternative way of obtaining a database connection

is through the use of JNDI.This is the approach you’d

typically take if you were using an application server

such as BEA WebLogic or IBM WebSphere.

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

ht.put(Context.PROVIDER_URL, "t3://hostname:port");

Context ctx = new InitialContext(ht);

javax.sql.DataSource ds =

(javax.sql.DataSource) ctx.lookup

("myDataSource");

Connection conn = ds.getConnection();

When using JNDI, we create an InitialContext

instance and use that to look up a DataSource.We then

get the connection from the data source object.There

is also a version of the getConnection() method

available that allows you to pass a user name and pass-

word to the database to get the connection for a data-

base requiring user authentication.

It is important to always close a connection using the

Connection class’s close() method when you are fin-

ished using the Connection instance.

137Connecting to a Database via JDBC

Sending a Query via JDBC

138 CHAPTER 13 Database Access

Statement stmt = conn.createStatement();

ResultSet rs =

stmt.executeQuery(

"SELECT * from users where name='tim'");

In this phrase, we create a JDBC statement using the

Connection object’s createStatement() method and use

it to execute a query that returns a Java ResultSet.To

create a connection, see the previous phrase,

“Connecting to a Database via JDBC.”When per-

forming a SELECT query, we use the executeQuery()

method of the Statement object.

If we wanted to perform an UPDATE operation

rather than a SELECT query, we would use the

executeUpdate() method of the Statement object,

instead of the executeQuery() method.The

executeUpdate() method is used with SQL INSERT,

UPDATE, and DELETE statements.The

executeUpdate() method returns either the row count

for INSERT, UPDATE or DELETE statements, or 0

for SQL statements that return nothing. Here is an

example of how we would execute an UPDATE state-

ment:

Statement stmt = conn.createStatement();

int result =

stmt.executeUpdate(

"UPDATE users SET name='tim' where

id='1234'");

It is important to remember that only one ResultSet

object per Statement object can be open at the same

time.All the execution methods in the Statement inter-

face will close the current ResultSet object if there is

an open one.This is important to remember if you are

nesting database connections and queries. JDBC 3.0

introduced a feature called result set holdability.

Holdability allows you to keep more than one result

set open if you specify this option when the statement

object is created.To learn more about the new features

that were provided by JDBC 3.0, I’d recommend read-

ing this article available on IBM’s DeveloperWorks

site: http://www-128.ibm.com/developerworks/

java/library/j-jdbcnew/

When working with statements and results, it is

important to always close the Connection, the

Statement, and the ResultSet objects when finished

with them. Each of the Connection, the Statement, and

the ResultSet objects have a close() method used for

performing a close operation to free up memory and

release resources. Not closing these objects is a fre-

quent cause of memory leaks in Java applications. Not

closing a connection can also cause deadlock scenarios

in multithreaded applications.

If you have a SQL statement that will be executed

many times, it is more efficient to use a

PreparedStatement query. See the next phrase “Using a

Prepared Statement.”

Using a Prepared Statement

139Using a Prepared Statement

PreparedStatement stmnt =

conn.prepareStatement(

"INSERT into users values (?,?,?,?)");

stmnt.setString(1, name);

stmnt.setString(2, password);

stmnt.setString(3, email);

stmnt.setInt(4, employeeId);

stmnt.executeUpdate();

http://www-128.ibm.com/developerworks/java/library/j-jdbcnew/
http://www-128.ibm.com/developerworks/java/library/j-jdbcnew/

To create a prepared statement in JDBC, we use a

PreparedStatement object in place of a Statement

object.We pass the SQL into the prepareStatement()

method on the Connection object.This creates a

PreparedStatement object.When using a prepared state-

ment, data values in the SQL statement are specified

with a question mark.The actual values for these ques-

tion mark placeholders are set later using the

PreparedStatement set methods.The set methods avail-

able include setArray(), setAsciiStream(),

setBigDecimal(), setBinaryStream(), setBlob(),

setBoolean(), setByte(), setBytes(),

setCharacterStream(), setClob(), setDate(),

setDouble(), setFloat(), setInt(), setLong(), setNull(),

setObject(), setRef(), setShort(), setString(),

setTime(), setTimestamp(), and setURL(). Each of these

set methods is used to set a different type of data as a

parameter used in the SQL statement. For example, the

setInt() method is used to set integer parameters, the

setString() method is used to set String parameters,

and so on.

In this phrase, we set three string values and one inte-

ger value, using the setString() and setInt() methods.

For each question mark that appears in the query state-

ment, there must be a corresponding set statement to

set its value.The first parameter to the set statements

specifies the position of the parameter being set from

the query statement. For example, passing a value of 1

as the first parameter to a set statement will set the

value of the first question mark position in the query

statement.The second parameter to the set statements

specifies the actual value being set. In our phrase, the

variables name, password, and email are all assumed to be

of type String.The employeeId variable is of type int.

140 CHAPTER 13 Database Access

When you are creating a SQL statement that you will

reuse multiple times, it is more efficient to use a

PreparedStatement instead of a regular Statement

object.A prepared statement is a precompiled SQL

statement, which makes it faster to execute repeatedly

once it has been created.

Retrieving Results of a Query

141Retrieving Results of a Query

ResultSet rs = stmt.executeQuery(

"SELECT name, password FROM users

where name='tim'");

while (rs.next()) {

String name = rs.getString(1);

String password = rs.getString(2);

}

A JDBC query returns a ResultSet object.A ResultSet

represents a table of data containing the results of a

database query.We can step through the ResultSet

contents to get the results of the executed query.The

ResultSet maintains a cursor that points to the current

row of data.The ResultSet object has a next()

method, which moves the cursor to the next row.The

next() method will return false when there are no

more rows in the ResultSet object.This makes it easy

to use a while loop for stepping through all the rows

contained within a ResultSet.

The ResultSet has getter methods for retrieving col-

umn values from the current row. Data values can be

retrieved using either the index number of the column

or the name of the column. Column numbering

begins at 1. Column names as input to the getter

methods are not case sensitive.

In this phrase, we obtain a ResultSet from executing a

SELECT query.We loop through the rows contained

within the ResultSet using the next() method and a

while loop.We get name and password data values

using the getString() method.

Remember, it is good practice to close your ResultSet

instances when you are finished using them.A

ResultSet object is automatically closed when the

Statement object that generated it is closed, re-

executed, or used to retrieve the next result from a

sequence of multiple results.

Using a Stored Procedure

142 CHAPTER 13 Database Access

CallableStatment cs =

conn.prepareCall("{ call ListAllUsers }");

ResultSet rs = cs.executeQuery();

Stored procedures are database programs that are stored

and maintained within the database itself.You can call

one of these stored procedures from within Java using

the CallableStatement interface and the prepareCall()

method of the Connection object.A CallableStatement

returns a ResultSet object just as a Statement or

PreparedStatement does. In this phrase, we call the

stored procedure ListAllUsers with no parameters.

A CallableStatement object can take input parameters

also. Input parameters are handled exactly as they are

when using a Prepared Statement. For example, here

we show how you might call a stored procedure that

uses input parameters:

CallableStatment cs =

conn.prepareCall("{ call AddInts(?,?) }");

cs.setInt(1,10);

cs.setInt(2,50);

ResultSet rs = cs.executeQuery();

Unlike other kinds of JDBC statements, a

CallableStatement can also return parameters.These

are referred to as OUT parameters.When using OUT

parameters, the JDBC type of each OUT parameter

must be registered before the CallableStatement object

can be executed.The OUT parameters are registered

using the registerOutParameter() method.After the

statement has been executed, the OUT parameters can

be retrieved using the CallableStatement’s getter

methods.

CallableStatement cs =

con.prepareCall("{call getData(?, ?)}");

cs.registerOutParameter(1, java.sql.Types.INT);

cs.registerOutParameter(2, java.sql.Types.STRING);

ResultSet rs = cs.executeQuery();

int intVal = cs.getInt(1);

String strVal = cs.getString(2);

In this example, we call a stored procedure named

getData() which has two OUT parameters. One of

these OUT parameters is an int value, and the other is

a String value.After registering both of these parame-

ters, we execute the query, and then get their values

using the getInt() and getString() methods.

Another difference of functionality when using Stored

Procedures is that a stored procedure can return multi-

ple result sets. If a stored procedure returns more than

one result set, the getMoreResults() method of the

CallableStatement class is used to close the current

result set and point to the next result set.The

getResultSet() method is called after calling the

getMoreResults() method to retrieve the result set

143Using a Stored Procedure

being pointed to.An example that returns multiple

result sets and uses these methods to retrieve each

result set is shown below:

int i;

String s;

callablestmt.execute();

rs = callablestmt.getResultSet();

while (rs.next()) {

i = rs.getInt(1);

}

callablestmt.getMoreResults();

rs = callablestmt.getResultSet();

while (rs.next()) {

s = rs.getString(1);

}

rs.close();

callablestmt.close();

In this example, we set the int value i with results

from the first result set and the String variable s with

results from the second result set.

144 CHAPTER 13 Database Access

14

Using XML

XML, the Extensible Markup Language, is derived

from the Standard Generalized Markup Language

(SGML). Hypertext Markup Language (HTML) is also

a markup language derived from SGML. XML is simi-

lar in most ways to HTML, with the exception that, in

XML, you can define your own tags.You are not con-

strained to a predefined set of markup tags as you are

in HTML. XHTML is a version of HTML that is

XML compliant.

XML is commonly used as a general format for inter-

changing data across servers and applications. Common

uses of XML include in business-to-business processes

or storage of complex data such as a word processor

document or even graphics files.

XML has gained wide acceptance across all industries

and programming languages. Most programming lan-

guages now have some support for processing XML

data. Java is no different in that respect. Java has excel-

lent support available for processing XML docu-

ments—both creating and reading XML data.

This chapter assumes knowledge of XML. If you want

to learn XML or brush up on your XML knowledge,

a good book that is tailored to Java development is Java

and XML by Brett McLaughlin and Justin Edelson.A

new version of this book, the 3rd edition, should be

available by the time you read this.The ISBN for this

book is 059610149X.

Two common language-independent XML parsing

APIs are defined by the World Wide Web Consortium

(W3C). These are the DOM and SAX APIs. DOM,

which stands for Document Object Model, is a parser

that reads an entire XML document and builds a tree

of Node objects, which is referred to as the DOM of a

document.When using DOM, you end up with a

complete parsed representation of the XML document

and you can pull pieces of it out at any time. SAX,

which stands for Simple API for XML, is not really a

parser itself, but instead it is an API that defines an

event handling mechanism that can be used to parse

XML documents.When using SAX, you supply call-

back methods that are called by the SAX API when

various elements of the XML document are encoun-

tered.A SAX implementation scans through an XML

document calling the callback methods when it

encounters the start and end of the various XML doc-

ument elements.With SAX, the XML document is

never fully stored or represented in memory.

Java’s implementation of XML processing is referred to

as the Java API for XML Processing, or JAXP. JAXP

enables applications to parse and transform XML doc-

uments independent of a particular XML processing

implementation. JAXP bundles both a DOM and a

SAX parser and also includes an XSLT API for trans-

forming XML documents. XSLT stands for Extensible

Stylesheet Language Transformations. XSLT technolo-

gy allows you to transform an XML document from

146 CHAPTER 14 Using XML

one format into another. JAXP is a standard part of

JDK 1.4 and later.

Parsing XML with SAX

147Parsing XML with SAX

XMLReader parser =

XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

parser.setContentHandler(new MyXMLHandler());

parser.parse("document.xml");

The SAX API works by scanning through an XML

document from start to finish and providing callbacks

for events that occur within the XML document.The

events include things such as the start of an element,

the end of an element, the start of an attribute, the end

of an attribute, and so on. In this phrase, we create an

XMLReader instance using the SAXParser.After we have

created the parser instance, we then set a content han-

dler using the setContentHandler() method.The con-

tent handler is a class that defines the various callback

methods that will be called by the SAX parser when

an XML document is parsed. In this phrase, we create

an instance of MyXMLHandler, a class we then must

implement, to serve as our handler. Finally, we call the

parse() method, passing the name of an XML docu-

ment and the SAX processing kicks off.

Here we show an example implementation of the

MyXMLHandler class.The DefaultHandler class that we

extend is a default base class for SAX event handlers.

class MyXMLHandler extends DefaultHandler {

public void startElement(String uri,

String localName,

String qname,

Attributes attributes) {

// process start of element

}

public void endElement(String uri,

String localName,

String qname) {

// process end of element

}

public void characters(char[] ch,

int start,

int length) {

// process characters

}

public MyXMLHandler()

throws org.xml.sax.SAXException {

super();

}

}

In this example implementation, we implement only

three methods—the startElement(), endElement(), and

characters() methods. The startElement() method is

called by the SAX parser when the start of an element

in the XML document is encountered. Likewise, the

endElement() method is called when the end of an ele-

ment is encountered.The characters() method is

called to notify of character data inside an element.

See the DefaultHandler JavaDoc for a complete

description of all the methods that can be overridden

in the SAX handler: http://java.sun.com/j2se/1.5.0/

docs/api/org/xml/sax/helpers/DefaultHandler.html

148 CHAPTER 14 Using XML

http://java.sun.com/j2se/1.5.0/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/j2se/1.5.0/docs/api/org/xml/sax/helpers/DefaultHandler.html

In this phrase, the underlying Sax parser used is the

Xerces parser.We set this parser in the method call

shown below:

XMLReader parser =

XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

JAXP is designed to support pluggable parser imple-

mentations, and thus if you find a parser that you pre-

fer over the Xerces parser, you can still use that with

the code contained in this phrase.You do have to make

sure that whatever parser implementation you are

using is included in your class path.

SAX is generally more memory efficient than a DOM

parser because with SAX, the entire XML document is

not stored in memory all at once.The DOM API reads

the entire document into memory and it is then

processed in-memory.

Parsing XML with DOM

149Parsing XML with DOM

File file = new File("document.xml");

DocumentBuilderFactory f =

DocumentBuilderFactory.newInstance();

DocumentBuilder p = f.newDocumentBuilder();

Document doc = p.parse(file);

The DocumentBuilderFactory, DocumentBuilder, and

Document classes are the three classes that we use to

kick off the parsing of an XML document using a

DOM parser.We perform the parsing with the

DocumentBuilder class.The DocumentBuilder class defines

the API to obtain DOM Document instances from an

XML document.The DocumentBuilder class can parse

XML from a variety of input sources, including

InputStreams, Files, URLs, and SAXInputSources. In this

phrase, we parse the XML from a File input source.

The parse() method of the DocumentBuilder class pars-

es the XML document and returns a Document object.

A Document object represents the DOM of an XML

document. From the Document instance, you could then

pull the document apart and get at the components

that make up the XML document, such as its entities,

elements, attributes, etc.

The Document object is a container for a hierarchical

collection of Node objects that represent the XML doc-

ument’s structure. Nodes can have a parent, children or

attributes associated with them.There are three main

subclasses of the Node type that represent the major

parts of an XML document; these are the Element,

Text, and Attr classes. Next, we show an example of

further parsing a DOM using the Document class. Below

is the sample XML document that we will use:

<Location>

<Address>

<City>Flat Rock</City>

<State>Michigan</State>

</Address>

</Location>

Assuming that we’ve already obtained a Document

instance using the parse technique demonstrated in the

previous phrase, the Java code here will pull out the

city and state text values:

NodeList list =

document.getElementsByTagName("City");

Element cityEl = (Element)list.item(0);

String city =

((Text)cityEl.getFirstChild()).getData();

150 CHAPTER 14 Using XML

NodeList list =

document.getElementsByTagName("State");

Element stateEl = (Element)list.item(0);

String state =

((Text)stateEl.getFirstChild()).getData();

The method getElementsByTagName() that we use

returns a NodeList containing all the elements match-

ing the name passed in. Since our sample document

contains only one City element and one State ele-

ment, we just get the first (zero indexed) element out

of the node list and cast it as an Element type.The City

and State elements each have one child, which is a

Text type.We use the getData() method of the Text

type to get the actual value for the city and state.

Unlike a SAX parser, a DOM parser reads an entire

XML document into memory, and the document is

then parsed and processed from memory. In this

regard, a SAX parser is more memory efficient because

with SAX, the entire XML document is not stored in

memory.The document is scanned in a streaming style

when using SAX.

Using a DTD to Verify an XML

Document

151Using a DTD to Verify an XML Document

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

factory.setValidating(true);

DocumentBuilder builder =

factory.newDocumentBuilder();

A Document Type Definition (DTD) file defines how

a particular XML document type should be structured.

For example, a DTD will specify which elements,

attributes, and so on are permitted in a document.An

XML document that conforms to a DTD is consid-

ered to be valid.An XML document that is syntacti-

cally correct, but does not conform to a DTD, is said

to be well-formed.

To validate a document using a DTD, we simply need

to call the setValidating() method of the

DocumentBuilderFactory instance and pass a value of

true.Any XML documents that we parse will then be

validated against any DTDs that are specified in the

XML document header.The following is a typical

DTD declaration at the top of an XML document:

<!DOCTYPE people SYSTEM "file:baseball.dtd">

This declaration would attach the file baseball.dtd

stored on the local file system as a DTD to the XML

document in which it is declared.

When you specify DTD validation, if the XML docu-

ment that you are parsing does not conform to the

DTD, an exception will be thrown from the parse()

method of the DocumentBuilder class.

A newer technology offering the same advantages of

using a DTD is the XML Schema standard.An XML

Schema defines an XML document’s expected

markup, just as a DTD does. One advantage of a

schema document is that it is also an XML document,

so you don’t need yet another parser to read it, where-

as a DTD is not a valid XML document itself. Instead

of XML, DTDs are specified in XBNF (Extended

Backus-Naur Form) grammar.To use a schema, you

would use the setSchema() method of the

DocumentBuilderFactory instead of the setValidating()

method.This is shown here:

152 CHAPTER 14 Using XML

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

factory.setSchema(schema);

DocumentBuilder builder =

factory.newDocumentBuilder();

The setSchema() method takes an instance of a Schema

object.We will not go into detail on using schemas

here, but see the DocumentBuilderFactory’s JavaDoc for

more detail on implementing Schemas in Java: http://

java.sun.com/j2se/1.5.0/docs/api/javax/xml/parsers/

DocumentBuilderFactory.html

For more detailed information about schemas in

general, see the Schema standard documentation at

the following site: http://www.w3.org/TR/

xmlschema-1/

Creating an XML Document

with DOM

153Creating an XML Document with DOM

DocumentBuilderFactory fact =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder =

fact.newDocumentBuilder();

Document doc = builder.newDocument();

Element location = doc.createElement("Location");

doc.appendChild(location);

Element address = doc.createElement("Address");

location.appendChild(address);

Element city = doc.createElement("City");

address.appendChild(city);

line.appendChild(doc.createTextNode("Flat Rock"));

Element state = doc.createElement("State");

address.appendChild(state);

state.appendChild(doc.createTextNode("Michigan"));

((org.apache.crimson.tree.XmlDocument)doc).

write(System.out);

http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

In this phrase, we use the DOM API and JAXP to cre-

ate an XML document.The XML segment created in

this phrase is the following:

<Location>

<Address>

<City>Flat Rock</City>

<State>Michigan</State>

</Address>

</Location>

The main class we use here is the

org.w3c.dom.Document class.This class represents the

DOM of an XML document.We create an instance of

the Document class using a DocumentBuilder obtained

from a DocumentBuilderFactory. Each element of an

XML document is represented in the DOM as an

Element instance. In the XML document we are creat-

ing, we have build Location,Address, City, and State as

Element object.We append the root level element, the

Location, to the document object using the Document

object’s appendChild() method.The Element class also

contains an appendChild() method that we use to build

the hierarchy of the document beneath the root ele-

ment.

It is also relatively simple to create an Element with

attributes using the DOM API. For example, to add an

attribute of "id" with a value of "home" to the

Location element, we would use the following code:

location.setAttribute("id","home");

In this phrase, the underlying DOM parser used is the

Crimson parser. In the phrase, this implementation

shows up in the final line, also shown below.

((org.apache.crimson.tree.XmlDocument)doc).

write(System.out);

154 CHAPTER 14 Using XML

JAXP is designed to support pluggable parser imple-

mentations, and thus if you find a parser that you pre-

fer over the Crimson parser, you can still use that with

the code contained in this phrase.You do have to make

sure that whatever parser implementation you are

using is included on your class path.

An alternative to using the JAXP API for working with

XML is the JDOM API. JDOM is an open source proj-

ect that is being standardized through the Java

Community Process (JCP), under JSR 102. See

http://www.jdom.org for more information about the

JDOM API. JDOM provides a native Java API instead of

the standard DOM API for reading and creating XML

documents. Many find that JDOM is easier to use when

creating XML documents than the DOM API.

Transforming XML with XSLT

155Transforming XML with XSLT

StreamSource input =

new StreamSource(new File("document.xml"));

StreamSource stylesheet =

new StreamSource(new File("style.xsl"));

StreamResult output =

new StreamResult(new File("out.xml"));

TransformerFactory tf =

TransformerFactory.newInstance();

Transformer tx = tf.newTransformer(stylesheet);

tx.transform(input, output);

XSLT is a standard for transforming XML documents

from one format to another using an XSL stylesheet.

The javax.xml.transform package is the API for using

the XSLT transformation standard in Java. XSL stands

for Extensible Stylesheet Language. XSLT is XSL

Transformation, and it allows you to completely

restructure an XML document. In general, when using

http://www.jdom.org

XSLT, you have an input XML document and an

input XSL stylesheet; together, these produce an out-

put XML document. However, the output document

type is not limited to XML.You can produce many

types of output documents using an XSL transforma-

tion.

In this phrase, we create StreamSource instances for the

documents, which are input into the transformation

process.These are the XML document to be trans-

formed and the XSL stylesheet that contains the trans-

formation instructions.We also create a StreamResult

object, which will be used to write the output docu-

ment to.We then obtain an instance of a Transformer

object, generated from a TranformerFactory instance.

We pass the stylesheet stream into the newTranformer()

method of the TransformerFactory object to create our

Transformer object. Finally, we call the transform()

method of the Transformer to transform our input

XML document into the output document styled with

the stylesheet we selected.

We don’t go into details of what an XSL stylesheet

looks like or how to create one.An excellent reference

for learning more about XSL stylesheets and XSLT is

Java and XSLT by Eric Burke.

XSL can be a powerful technology for developers. For

example, suppose you have a web application that must

be accessed from a variety of devices, including a PDA,

a web browser on a PC, and a cell phone. Using XSLT,

you could transform your output to a format suitable

for each of these devices without having to specifically

code output for each device type separately. XSLT is

also very useful in creating multilingual sites.You can

transform XML output into a variety of languages

using XSLT transformations.

156 CHAPTER 14 Using XML

15

Using Threads

Threading is the way in which a software application

carries on multiple processes at the same time.A

thread in Java is a unit of program execution that runs

concurrently with other threads.

Threads are commonly used in GUI applications. In a

GUI application, one thread might be listening for

input from the keyboard or other input devices, while

another thread is processing the previous command.

Networking is another common area in which you

will find multithreading used. In network program-

ming, one thread might be listening for connection

requests, while another thread processes a previous

request.Timers are also common uses of threads.A

timer can be started as a thread running independently

from the rest of an application. In all these examples,

multithreading enables an application to carry on with

processing while also executing another task that

might take a longer amount of time and would cause

long delays if not for multithreading.

Java has very good built-in support for writing multi-

threaded applications.Writing a multithreaded applica-

tion was a very complex task in the C language, but in

Java, writing a multi-threaded application is a much

easier task.

Starting a Thread

158 CHAPTER 15 Using Threads

public class MyThread extends Thread {

public void run() {

// do some work

}

}

// code to use MyThread

new MyThread().start();

There are two primary techniques for writing code

that will run in a separate thread.You can either imple-

ment the java.lang.Runnable interface or extend the

java.lang.Thread class.With either approach, you must

implement a run() method.The run() method con-

tains the code that you want to execute in the thread.

In this phrase, we have extended the java.lang.Thread

class.At the point where we want to start the thread,

we instantiate our MyThread class and call the start()

method, which is inherited from the Thread class.

Here, we show how running a thread is accomplished

using the other technique of implementing the

Runnable interface:

public class MyThread2 implements Runnable {

public void run() {

// do some work

}

}

// code to use MyThread2

Thread t = new Thread(MyThread2);

t.start();

Implementing the Runnable interface is often used in

situations in which you have a class that is already

extending another class, so it cannot extend the Thread

class. Java supports only single inheritance, making it

impossible for a class to extend from two different

classes.The method in which we start the thread is

slightly different. Instead of instantiating the class we

defined, as we did when we extended the Thread inter-

face, here we instantiate a Thread object and pass our

class that implements Runnable as a parameter to the

Thread constructor.We then call the Thread’s start()

method, which starts the thread and schedules it for

execution.

Anther common way of creating a thread is to imple-

ment the Runnable interface using an anonymous inner

class.We show this method here:

public class MyThread3 {

Thread t;

public static void main(String argv[]) {

new MyThread3();

}

public MyThread3() {

t = new Thread(new Runnable() {

public void run() {

// do some work

}

});

t.start();

}

}

In this example, all the code is contained within a sin-

gle class, so it is well encapsulated; this makes it easy to

159Starting a Thread

see what is going on. Our Runnable implementation is

defined as an inner class, rather than explicitly creating

a class that implements the Runnable interface.This

method is ideal for small run methods that don’t

require a lot of interaction with external classes.

Stopping a Thread

160 CHAPTER 15 Using Threads

public class StoppableThread extends Thread {

private boolean done = false;

public void run() {

while (!done) {

System.out.println("Thread running");

try {

sleep(500);

}

catch (InterruptedException ex) {

// do nothing

}

}

System.out.println("Thread finished.");

}

public void shutDown() {

done = true;

}

}

If you want to create a thread that you can stop at

some point prior to the completion of its execution—

that is, the return from the run() method—the best

way to do this is to use a boolean flag that you test at

the top of a main loop. In this phrase, we create a

thread by extending the Thread class with our

StoppableThread class.Within the run() method, we

have a while loop that checks the status of a boolean

done flag.As long as the done flag remains false, the

thread continues.To stop the thread, an external

process could set the done flag to true, and this would

cause the while loop in the run() method to exit and

thus terminate this thread.

The Thread class does contain a stop() method, which

some might be tempted to use to stop the thread, but

Sun actually recommends against using this method.

The reason is this: In case your thread is operating on

any of your data structure objects and you suddenly

call stop() on the thread, the objects will be left in an

inconsistent state. In case any of your other threads are

waiting for this particular object to be released, they

will get stuck waiting forever.This might eventually

lead to a deadlock situation.Also, the stop() method is

deprecated in JDK 1.2 and later, so if you do use the

stop() method in one of these JDKs, the compiler will

generate deprecation warnings.

A good reference to the reasons why stop() is depre-

cated can be found here: http://java.sun.com/j2se/

1.5.0/docs/guide/misc/threadPrimitiveDeprecation.

html

Waiting For a Thread to

Complete

161Waiting For a Thread to Complete

Thread t = new Thread(MyThread);

t.start();

// do some other processing

t.join();

// continues after thread t completes

It might be the case that you want one thread of exe-

cution to wait for another thread to complete before

continuing with the current thread. Joining threads is a

common method of causing one thread to wait for the

http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

completion of another thread. For example, in this

phrase, we start thread t from within the thread that is

executing these lines of code.We then, in most cases,

do some additional processing and call the join()

method on the thread object when we want to stop

execution of this thread and wait for the thread t to

complete. Once thread t completes, execution will

continue to the statements following the line in which

we called the join() method. If the thread t were

already completed when we called join(), the join()

method would return immediately.

An alternative form of the join() method is available

that takes a long parameter containing a value in mil-

liseconds.When this method is used, the calling thread

will wait up to a maximum of that number of millisec-

onds before continuing, even if the thread on which

the join() method is called has not completed.To be

complete, there is also a third implementation of the

join() method that takes two parameters, a long value

in milliseconds, and an int value in nanoseconds.This

method behaves exactly as the single parameter ver-

sion, except that the millisecond and nanosecond val-

ues are added together to determine the length of time

the calling thread should wait before continuing.This

gives you finer grained control over the wait time.

Synchronizing Threads

162 CHAPTER 15 Using Threads

public synchronized void myMethod() {

// do something

}

You perform synchronization when you want to pro-

tect sections of code from being accessed by more

than one thread at a time.The synchronized keyword,

which we show in this phrase, allows us to synchronize

a method or code block so that only one thread at a

time can execute this method or code block. In this

phrase, if one thread is currently executing myMethod(),

any other threads attempting to execute the same

method, myMethod(), on the same object instance will

be locked out of the method until the current thread

completes execution and returns from myMethod().

For non-static methods, the synchronization applies

only to the object instance that another thread is exe-

cuting the method on. Other threads may execute the

same method, if it is called on a different instance. On

the instance that is locked, the lock applies to all syn-

chronized methods of that instance. No thread may

call any synchronized methods on an instance for

which one thread is already executing a synchronized

method. For static methods, only one thread may exe-

cute the method at a time.

The synchronized keyword can also be applied to

blocks of code. It does not have to cover a complete

method. For example, the following block of code is

synchronized using this technique:

synchronized(myObject) {

// do something with myObject

}

When synchronizing a block of code, you also specify

an object to synchronize on. It often makes sense to

synchronize on the object containing the block of

code, so you would pass the this object as the object

being synchronized on, as shown here:

synchronized(this) {

// do something

}

163Synchronizing Threads

The object passed to the synchronized keyword is the

object that is locked while a thread is executing the

enclosed block of code.

Common places where you would want to use syn-

chronization are where concurrent access by multiple

threads might put shared data in an inconsistent state.

You have probably heard the term thread-safe.A

thread-safe class ensures that no thread uses an object

that is in an inconsistent state. In the next block of

code, we show an example of a class that could be

problematic if we did not make this class thread-safe

by using the synchronized keyword on the adjust()

method.A class that has instance data members is often

a sign of a class that can be problematic in a multi-

threaded environment. In this example, assume that

two threads are running the adjust() method, and it is

not synchronized.Thread A executes the line

size=size+1 and is interrupted after reading the size

value, but before completing the reassignment to size.

Thread B now executes and calls the reset() method.

This method sets the size variable to 0.Thread B is

then interrupted returning control to thread A, thread

A now continues executing the size=size+1 statement,

setting the value of size to be the value it was prior to

being reset, with the addition of 1.The end result is

that the reset() method will never appear to have

been called. Its effects have been negated by the ill side

effects of multithreading. By applying the synchronized

keyword to these methods, we prevent this scenario by

allowing only one thread to execute either of these

methods at a time.The other thread will wait until the

current thread has completed the method.

164 CHAPTER 15 Using Threads

public class ThreadSafeClass {

private int size;

public synchronized void adjust() {

size = size + 1;

if (size >= 100) {

size = 0;

}

}

public synchronized void reset() {

size = 0;

}

}

Thread-safe programming only applies to an applica-

tion that has multiple threads. If you are writing an

application that does not use multithreading, you have

nothing to worry about and do not need to concern

yourself with the concept of thread-safe. Before mak-

ing that decision though, keep in mind reuse of the

application or component that you are writing as well.

You might only use a single thread, but is it likely that

another project will use your component in a multi-

threaded environment?

Synchronization can be used to make an object

thread-safe, but bear in mind the performance trade-

off of using synchronized methods. Calling a synchro-

nized method is substantially slower than calling a

non-synchronized method because of the overhead of

object locking. So, make sure you only synchronize

methods that are truly required to be thread-safe.

165Synchronizing Threads

Pausing a Thread

166 CHAPTER 15 Using Threads

MyThread thread = new MyThread();

thread.start();

while (true) {

// do work…

synchronized (thread) {

thread.doWait = true;

}

// do work…

synchronized (thread) {

thread.doWait = false;

thread.notify();

}

}

class MyThread extends Thread {

boolean doWait = false;

public void run() {

while (true) {

// do work…

synchronized (this) {

while (doWait) {

wait();

}

catch (Exception e) {

}

}

}

}

}

}

This phrase shows you how to pause a thread from a

different thread. In the phrase, we use the variable

doWait as a flag to pause the execution of MyThread. In

the run() method of MyThread, we check the doWait

flag after performing some work in a loop to deter-

mine if we need to pause the thread’s execution. If the

doWait flag is set to true, we call the Object.wait()

method to pause the thread’s execution.

When we want to wake the thread up, we set the

doWait flag to false and call the thread.Notify()

method to wakeup the thread and continue its execu-

tion loop.

Having a thread pause itself is a simpler task.The code

below shows how you would pause the current thread:

long numMilliSecondsToSleep = 5000;

Thread.sleep(numMilliSecondsToSleep);

This code would pause the current thread for 5000

milliseconds which is the equivalent of five seconds.

In addition to the methods described above, the

Thread.suspend() and Thread.resume() methods pro-

vide a mechanism for pausing threads, however these

methods have been deprecated. Use of these methods

can often result in a deadlock. I only mention these

methods so that you know to avoid using them.

Because use of these methods is not recommended,

they are not discussed any further here.

Listing All Threads

167Listing All Threads

public static void listThreads() {

ThreadGroup root = Thread.currentThread()

.getThreadGroup().getParent();

while (root.getParent() != null) {

root = root.getParent();

}

visitGroup(root, 0);

}

public static void visitGroup(ThreadGroup group, int

level) {

In this phrase we list all running threads.All threads

exist in a thread group, and each thread group can

contain threads and other thread groups.The

ThreadGroup class allows you to group threads and call

methods on the ThreadGroup class that will affect all

threads in the thread group. ThreadGroups can also con-

tain child ThreadGroups. ThreadGroups organize all

threads into a hierarchy.

In this phrase we iterate through all thread groups to

print information about each thread.We start by find-

ing the root thread group.We then use the

visitGroup() method to recursively visit each thread

group that exists under the root group.Within the

visitGroup() method, we first enumerate all the

threads contained in that group.We call the

printThreadInfo() method, also contained in the

168 CHAPTER 15 Using Threads

int numThreads = group.activeCount();

Thread[] threads = new Thread[numThreads];

group.enumerate(threads, false);

for (int i=0; i<numThreads; i++) {

Thread thread = threads[i];

printThreadInfo(thread);

}

int numGroups = group.activeGroupCount();

ThreadGroup[] groups = new

ThreadGroup[numGroups];

numGroups = group.enumerate(groups, false);

for (int i=0; i<numGroups; i++) {

visitGroup(groups[i], level+1);

}

}

private static void printThreadInfo(Thread t) {

System.out.println("Thread: " + t.getName() +

" Priority: " + t.getPriority() +

(t.isDaemon()?" Daemon":"") +

(t.isAlive()?"":" Not Alive"));

}

phrase, to print the name, priority, daemon status, and

alive status of each thread.After having iterated

through all the threads in the current group, we enu-

merate all the groups contained within the current

group and make a recursive call to the visitGroup()

method for each group.This recursive method calling

continues until all the groups and all the threads have

been enumerated and information about each thread

has been printed.

Thread groups are commonly used to group threads

that are related or similar in some way, such as who

created them, what function they perform, or when

they should be started and stopped.

169Listing All Threads

This page intentionally left blank

16

Dynamic
Programming
Through
Reflection

Reflection is a mechanism for discovering data about

a program at runtime. Reflection in Java enables you

to discover information about fields, methods, and

constructors of classes.You can also operate on the

fields and methods that you discover. Reflection

enables what is commonly referred to as dynamic pro-

gramming in Java. Reflection in Java is accomplished

using the Java Reflection API.This API consists of

classes in the java.lang and the java.lang.reflect

packages.

The things that you can do with the Java Reflection

API include the following:

n Determine the class of an object

n Get information about a class’s modifiers, fields,

methods, constructors, and superclasses

n Find out what constants and method declarations

belong to an interface

n Create an instance of a class whose name is not

known until runtime

n Get and set the value of an object’s field

n Invoke a method on an object

n Create a new array, whose size and component

type are not known until runtime

The Java reflection API is commonly used to create

development tools such as debuggers, class browsers,

and GUI builders. Often in these types of tools, you

need to interact with classes, objects, methods, and

fields, and you do not know which ones at compile

time. So the application must dynamically find and

access these items.

Getting a Class Object

172 CHAPTER 16 Dynamic Programming Through Reflection

MyClass a = new MyClass();

a.getClass();

The most basic thing you usually do when doing

reflective programming is to get a Class object. Once

you have a Class object instance, you can obtain all

sorts of information about the class and even manipu-

late the class. In this phrase, we use the getClass()

method to get a Class object.This method of getting a

Class object is often useful in situations in which you

have the object instance but do not know what class it

is an instance of.

There are several other ways of obtaining a Class

object. If you have a class for which the type name is

known at compile time, there is an even easier way of

getting a class instance.You simply use the compiler

keyword .class, as shown here:

Class aclass = String.class;

If the class name is not known at compile time, but is

available at runtime, you can use the forName() method

to obtain a Class object. For example, the following

line of code will create a Class object associated with

the java.lang.Thread class.

Class c = Class.forName("java.lang.Thread");

You can also use the getSuperClass() method on a

Class object to obtain a Class object representing the

superclass of the reflected class. For example, in the fol-

lowing code, Class object a reflects the TextField class,

and Class object b reflects the TextComponent class

because TextComponent is the superclass of TextField.

TextField textField = new TextField();

Class a = textField.getClass();

Class b = a.getSuperclass();

Getting a Class Name

173Getting a Class Name

Class c = someObject.getClass();

String s = c.getName();

Getting the name of a Class object is an easy task.You

get the class name of any Class object using the

getName() method.The String returned by the

getName() method will be the fully qualified class

name. So for example, if in this phrase, the someObject

variable is an instance of the String class, the name

returned from the call to getName() will be

java.lang.String

Discovering Class Modifiers

174 CHAPTER 16 Dynamic Programming Through Reflection

Class c = someObject.getClass();

int mods = c.getModifiers();

if (Modifier.isPublic(mods))

System.out.println("public");

if (Modifier.isAbstract(mods))

System.out.println("abstract");

if (Modifier.isFinal(mods))

System.out.println("final");

In a class definition, keywords called modifiers can

precede the class keyword.The modifiers available are:

public, abstract, and final.To discover which modi-

fiers have been applied to a given class, you first get a

Class object representing that class using the

getClass() method. Next, you would call the

getModifiers() method on the class object to return a

bitmapped int value representing the modifiers.You

can then use static methods of the

java.lang.reflect.Modifier class to determine which

modifiers have been applied.The static methods avail-

able are: isPublic(), isAbstract(), and isFinal().

NOTE: If you have a class object that may represent an

interface, you might also want to use the

isInterface() method. This method will return true if

the modifiers passed in include the interface modifier.

The Modifier class also contains additional static meth-

ods for determining which modifiers have been applied

to class methods and variables. These methods

include: isPrivate(), isProtected(), isStatic(),

isSynchronized(), isVolatile(), isTransient(),

isNative(), and isStrict().

Finding Superclasses

175Finding Superclasses

Class cls = obj.getClass();

Class superclass = cls.getSuperclass();

The ancestors of a given class are referred to as that

class’s superclasses. Using reflection, you can determine

all of the ancestors of a given class.After you’ve

obtained a Class object, you can use the

getSuperclass() method to get the class’s superclass if

one exists. If a superclass exists, a Class object will be

returned. If there is not a superclass, this method will

return null. Remember that Java supports only single

inheritance, so for any given class, there can be only

one superclass.Actually to be clear, there can be only

one direct superclass.Technically, all ancestor classes are

considered to be superclasses of a given class.To

retrieve all ancestor superclasses, you would recursively

call the getSuperclass() method on each Class object

that is returned.

The method shown here will print all the superclasses

associated with the object passed in:

static void printSuperclasses(Object obj) {

Class cls = obj.getClass();

Class superclass = cls.getSuperclass();

while (superclass != null) {

String className = superclass.getName();

System.out.println(className);

cls = superclass;

superclass = cls.getSuperclass();

}

}

Often an Integrated Development Environment (IDE)

such as Eclipse will include a class browser as a feature.

The class browser allows the developer to visually nav-

igate through a hierarchy of classes.This technique is

one of the ways in which class browsers are construct-

ed. In order to build a visual class browser, your appli-

cation must be able to determine which classes are the

superclasses of any given class.

Determining the Interfaces

Implemented by a Class

176 CHAPTER 16 Dynamic Programming Through Reflection

Class c = someObject.getClass();

Class[] interfaces = c.getInterfaces();

for (int i = 0; i < interfaces.length; i++) {

String interfaceName = interfaces[i].getName();

System.out.println(interfaceName);

}

In the previous phrase, we show you how to find the

superclasses associated with a given class. Superclasses

are related to inheritance and the class extension

mechanism in Java. In addition to extending a class, in

Java you can implement an interface.Through reflec-

tion, you can also find which interfaces a given class

has implemented.After you’ve obtained a Class object,

you can use the getInterfaces() method to get the

class’s interfaces if indeed the class implements any

interfaces.The getInterfaces() method will return an

array of Class objects. Each object in the array repre-

sents one interface implemented by the given class.You

can use the getName() method on these Class objects

to get the name of the interfaces implemented.

Discovering Class Fields

177Discovering Class Fields

Class c = someObject.getClass();

Field[] publicFields = c.getFields();

for (int i = 0; i < publicFields.length; i++) {

String fieldName = publicFields[i].getName();

Class fieldType = publicFields[i].getType();

String fieldTypeStr = fieldType.getName();

System.out.println("Name: " + fieldName);

System.out.println("Type: " + fieldTypeStr);

}

You can discover the public fields that belong to a class

by using the getFields() method on a Class object.

The getFields() method returns an array of Field

objects containing one object per accessible public

field.The accessible public fields returned do not all

have to be fields contained directly within the class

you are working with.The following fields are also

returned:

n Fields contained in a superclass

n Fields contained in an implemented interface

n Fields contained in an interface extended from an

interface implemented by the class

Using the Field class, you can retrieve the field’s name,

type, and modifiers. In this phrase, we print out the

name and type of each field.You can also get and set

the value of a field. For more details on getting and

setting the value of fields, see the phrases “Getting

Field Values” and “Setting Field Values” also contained

in this chapter.

You can also get an individual field instead of all the

fields of an object if you know the field’s name.The

following example shows how you would get an indi-

vidual field:

Class c = someObject.getClass();

Field titleField = c.getField("title");

In this example, we get a Field object representing the

field with the name "title".

The getFields() and getField() methods return only

the public data members. If you want to get all the

fields of a class including private and protected fields,

you can use the getDeclaredFields() or

getDeclaredField() methods. These methods behave

like their getFields() and getField() counterparts

except that they return all of the fields including pri-

vate and protected fields.

Discovering Class Constructors

178 CHAPTER 16 Dynamic Programming Through Reflection

Class c = someObject.getClass();

Constructor[] constructors = c.getConstructors();

for (int i = 0; i < constructors.length; i++) {

Class[] paramTypes =

constructors[i].getParameterTypes();

for (int k = 0; k < paramTypes.length; k ++) {

String paramTypeStr = paramTypes[k].getName();

System.out.print(paramTypeStr + " ");

}

System.out.println();

}

You can get information about a class’s public con-

structors by calling the getConstructors() method on a

Class object.This method returns an array of

Constructor objects. Using the Constructor object, you

can then get the constructor’s name, modifiers, param-

eter types, and throwable exceptions.The Constructor

object also has a newInstance() method that allows you

to create a new instance of the constructor’s class.

In this phrase, we get all the constructors for the

someObject class. For each constructor found, we then

get an array of Class objects representing all the

parameters for that particular constructor. Finally, we

print out each of the parameter types for each con-

structor.

NOTE: Note that the first constructor contained in the

array of constructors returned will always be the

default no argument constructor, if one exists. If no

constructors exist, then the no argument constructor is

defined by default.

You can also get an individual public constructor

instead of all the constructors of an object if you know

the constructor’s parameter types.The following

example shows how you would get an individual

constructor:

Class c = someObject.getClass();

Class[] paramTypes = new Class[] {String.class};

Constructor aCnstrct = c.getConstructor(paramTypes);

In this example, we get a Constructor object represent-

ing the constructor that takes a single String para-

meter.

The getConstructors() and getConstructor() methods

return only the public constructors. If you want to get

all the constructors of a class including those that are

private, you can use the getDeclaredConstructors() or

179Discovering Class Constructors

getDeclaredConstructor() methods.These methods

behave like their getConstructors() and

getConstructor() counterparts except that they return

all of the constructors including those that are private.

Discovering Method

Information

180 CHAPTER 16 Dynamic Programming Through Reflection

Class c = someObject.getClass();

Method[] methods = c.getMethods();

for (int i = 0; i < methods.length; i++) {

String methodName = methods[i].getName();

System.out.println("Name: " + methodName);

String returnType =

methods[i].getReturnType().getName();

System.out.println("Return Type: " + returnType);

Class[] paramTypes =

methods[i].getParameterTypes();

System.out.print("Parameter Types:");

for (int k = 0; k < paramTypes.length; k ++) {

String paramTypeStr = paramTypes[k].getName();

System.out.print(" " + paramTypeStr);

}

System.out.println();

}

You can get information about a class’s public methods

by calling the getMethods() method on a Class object.

This method returns an array of Method objects. Using

the Method object, you can then get the method’s

name, return type, parameter types, modifiers, and

throwable exceptions.You can also use the

Method.invoke() method to call the method. For more

information about invoking methods, see the

“Invoking Methods” phrase also in this chapter.

In this phrase, after getting the array of methods, we

print the method name, the method’s return type, and

a list of the method’s parameter types.

You can also get an individual public method instead

of all the methods of an object if you know the

method’s name and parameter types.The following

example shows how you would get an individual

method:

Class c = someObject.getClass();

Class[] paramTypes =

new Class[] {String.class, Integer.class};

Method meth = c.getMethod("setValues", paramTypes);

In this example, we get a Method object representing

the method with the name setValue and taking two

parameters, a String and an Integer.

The methods we’ve discussed so far, getMethods() and

getMethod(), return all the public methods that can be

access through the class. Corresponding methods are

available to get all methods regardless of their access

type.The methods getDeclaredMethods() and

getDeclaredMethod() behave exactly like their counter-

parts, except that they return all the class’s methods,

regardless of access type.This allows you to get even

private methods.

Often an Integrated Development Environment (IDE)

such as Eclipse will include a class browser as a feature.

The class browser allows the developer to visually nav-

igate through a hierarchy of classes.This technique is

one of the ways in which class browsers are construct-

ed. In order to build a visual class browser, your appli-

cation must have a way of knowing all the methods of

any given class.

181Discovering Method Information

Getting Field Values

182 CHAPTER 16 Dynamic Programming Through Reflection

Class c = anObject.getClass();

Field titleField = c.getField("title");

String titleVal = (String) titleField.get(anObject);

In order to get a field value, you must first get a Field

object for the field you want to obtain the value of.

See the phrase “Discovering Class Fields” earlier in this

chapter for more information about getting Field

objects from a class.

The Field class has specialized methods for getting the

values of primitive types. Methods such as getInt(),

getFloat(), and getByte() allow you to get the values

of the primitive types. For complete details of the get-

ter methods available on the Field object, see the

JavaDoc at: http://java.sun.com/j2se/1.5.0/docs/api/

java/lang/reflect/Field.html.

To get fields that are stored as objects rather than

primitives, you use the more general get() method and

cast the return result to the correct object type. In this

phrase, we get the field named "title".After getting

the field as a Field object, we then get the field’s value

using the get() method and casting the result as a

String type.

In this phrase, we knew the name of the field that we

wanted to get the value for.We could get the value of

a field even if we didn’t know its name at compile

time by combining this phrase with the “Discovering

Class Fields” phrase. In that phrase, we show how to

get field names.This technique could be useful in a

tool such as a GUI builder, where you want to get the

value of various GUI object fields, and the field names

are not known until runtime.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Field.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Field.html

Setting Field Values

183Setting Field Values

String newTitle = "President";

Class c = someObject.getClass();

Field titleField = c.getField("title");

titleField.set(someObject, newTitle);

In order to set a field value, you must first get a Field

object for the field you want to set the value of. See

the phrase “Discovering Class Fields” in this chapter

for more information about getting Field objects from

a class.You should also refer to the phrase “Getting

Field Values” also contained in this chapter for more

information about getting field values.

The Field class has specialized methods for setting the

values of primitive types. Methods such as setInt(),

setFloat(), and setByte() allow you to set the values

of the primitive types. For complete details of the set

methods available on the Field object, see the JavaDoc

at: http://java.sun.com/j2se/1.5.0/docs/api/java/

lang/reflect/Field.html.

To set fields that are stored as objects rather than prim-

itives, you use the more general set() method, passing

the object instance for which you are setting field val-

ues and the value of the field as an object. In this

phrase, we set the field named "title".After getting

the field as a Field object, we then set the field’s value

using set(), passing the object instance we are setting

field values on and the new value for the title string.

In this phrase, we knew the name of the field that we

wanted to set the value for.We could set the value of a

field even if we didn’t know its name at compile time

by combining this phrase with the “Discovering Class

Fields” phrase presented earlier in this chapter. In that

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Field.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Field.html

phrase, we show how to get field names.This tech-

nique could be useful in a tool such as a GUI builder,

where you want to set the value of various GUI object

fields, and the field names are not known until run-

time.

Often, a debugger will let you change the value of a

field during a debugging session.To implement a fea-

ture like that, the developer of the debugger would use

this technique to set the fields value since the develop-

er would not know which field’s value you were set-

ting at compile time.

Invoking Methods

184 CHAPTER 16 Dynamic Programming Through Reflection

Baseball bbObj = new Baseball();

Class c = Baseball.class;

Class[] paramTypes =

new Class[] {int.class, int.class};

Method calcMeth =

c.getMethod("calcBatAvg", paramTypes);

Object[] args =

new Object[] {new Integer(30), new Integer(100)};

Float result = (Float) calcMeth.invoke(bbObj, args);

The reflection API allows you to dynamically invoke

methods even if the method name that you want to

invoke is not known at compile time. In order to

invoke a method, you must first get a Method object for

the method that you want to invoke. See the phrase

“Discovering Method Information” earlier in this

chapter for more information about getting Method

objects from a class.

In this phrase, we are trying to invoke a method that

calculates a baseball batting average.The method is

called calcBatAvg(), and it takes two integer parame-

ters, a batter’s hit count, and at-bat count.The method

returns a batting average as a Float object.We invoke

the method calcBatAvg() using the following steps:

- Get a Method object associated with the calcBatAvg()

method from the Class object that represents the

Baseball class.

- Invoke the calcBatAvg() method using the invoke()

method on the Method object.The invoke() method

takes two parameters:The first is an object whose class

declares or inherits the method, and the second is an

array of parameter values to be passed to the invoked

method. If the method is a static method, the first

parameter will be ignored and might be null. If the

method does not take any parameters, the argument

array might be of zero length, or null.

In the case of our phrase, we pass an instance of the

Baseball object as the first parameter to the invoke()

method and an object array containing two wrapped

integer values as our second parameter.The return

value returned from the invoke () method will be the

value returned from the method being invoked, in this

case the calcBatAvg() return value. If the method

returns a primitive, the value will first be wrapped in

as an object and returned as an object. If the method

has a return type of void, a null will be returned.The

calcBatAvg() method returns a Float value, so we cast

the returned object to be a Float object.

An example of where this technique would be useful

is in the implementation of a debugger that allows a

user to select a method and invoke it. Since the

method being selected is not known until runtime, this

reflective technique would be used to invoke that

method.

185Invoking Methods

Loading and Instantiating a

Class Dynamically

186 CHAPTER 16 Dynamic Programming Through Reflection

Class personClass = Class.forName(personClassName);

Object personObject = personClass.newInstance();

Person person = (Person)personObject;

Using the Class.forName() and the newInstance()

methods of a Class object, you can dynamically load

and instantiate a class when you don’t know the class’s

name until runtime. In this phrase, we load the class

using the Class.forName() method, passing the name of

the class we want to load.This returns a Class object.

We then call the newInstance() method on the Class

object to instantiate an instance of the class.The

newInstance() method returns a generic Object type, so

in the last line, we cast the returned object to be the

type we are expecting to have.

This phrase is particularly useful in the scenario in

which you have one class that extends a base class or

implements an interface, and you might want to store

the name of the extension or implementation class in a

configuration file.This would allow the end user to

dynamically plug in different implementations without

having to recompile the application. For example, if we

had the code from the phrase in our application, and

the following code in a plug-in to the application, we

could have the application dynamically instantiate a

BusinessPerson object at runtime by specifying the full

class name of the BusinessPerson object in a configura-

tion file. Before executing our phrase, we would read

the class name from the configuration file and set the

personClassName variable to that value.

public class BusinessPerson extends Person {

//class body, extends the behaviour of Person class

}

The application code in this case would have no hard-

coded references to the actual BusinessPerson class.As

a result, in your application you only have to hard-

code the more generic base class or interface, and you

can dynamically configure a specific implementation at

run-time by editing a configuration file.

187Loading and Instantiating a Class Dynamically

This page intentionally left blank

17

Packaging and
Documenting
Classes

A Java application will typically consist of many class-

es, sometimes hundreds, or even thousands of classes.

Because Java requires each public class to be defined in

a separate file, you end up with at least as many files as

you have classes.This can easily become unmanageable

when it comes to working with your classes, finding

files, or installing and distributing your application.

Fortunately, this was considered when Java was created,

and Sun has defined a standard packaging mechanism

for placing related classes into packages. Packages in

Java are a way of organizing classes according to func-

tionality.The packaging mechanism also organizes Java

source files into a known directory structure based on

the package names used.

There is also a standard mechanism in Java for packag-

ing Java classes into standard archive files.Applications

can be executed directly from the archive file, or

libraries can be distributed as an archive. The standard

Java archive file is the JAR file, and these files end with

a .jar extension.The JAR file uses the Zip archive

protocol, and JAR files can be extracted using any tool

that supports unzipping an archive. Sun also provides

the jar tool for creating and expanding JAR archives.

The jar tool is part of the standard JDK distribution.

JAR stands for Java Archive.

Creating a Package

190 CHAPTER 17 Packaging and Documenting Classes

package com.timothyfisher.book;

In a large application or library, Java classes are usually

organized into packages.To put a class into a package,

you simply include a package statement, such as the

one shown in this phrase, at the beginning of the class

file.The package statement must be the first non-com-

ment line of a class file.The example in this phrase

would assign the class contained in the file to the

package com.timothyfisher.book.

The package name of a class becomes a part of its full

name. For example, if we had a class named MathBook

in the com.timothyfisher.book package, the fully speci-

fied class name would be

com.timothyfisher.book.MathBook. Package names also

dictate the directory structure in which the class

source files are stored. Each element of the path name

represents a directory. For example, if your source code

root directory is at project/src, the source code for

the MathBook class would be stored in the following

directory path:

project/src/com/timothyfisher/book/

The Java standard libraries are all organized into pack-

ages that you are most likely familiar with.These pack-

ages include java.io, java.lang, java.util, and so on.

Classes stored in a package can also be easily imported

into a file. For example, you can import an entire

package into your Java source file with the following

syntax:

import java.util.*;

This import statement will import all the classes con-

tained in the java.util package. Be aware, though, that

this will not import classes contained in packages

beneath java.util, such as those contained in the

package java.util.logging.A separate import state-

ment is needed to also import those classes.

Java 5.0 introduced a new feature related to importing

classes called static imports.A static import allows you

to import static members from classes, allowing them

to be used without class qualification. For example, to

reference the cos() method in the java.lang.Math

package, you would have to refer to it as follows:

double val = Math.cos(90);

If you import the java.lang.Math package using a static

import like this:

import static java.lang.Math.*;

you can refer to the cos() method as follows:

double val = cos(90);

When executing a Java application from the command

line using the Java executable, you must include the

full package name when specifying the main exe-

cutable class. For example, to run a main() method in

191Creating a Package

the MathBook example discussed previously, you would

type the following:

java com.timothyfisher.book.MathBook

This command would be executed from the root of

the package structure. In this case, the directory above

the com directory.

Classes that are not specifically assigned to a package

using a package statement are considered to be includ-

ed in a “default” package. It is a good practice to

always put your classes in packages that you define.

Classes that are in the default package can not be

imported or used within classes in other packages.

Documenting Classes with

JavaDoc

192 CHAPTER 17 Packaging and Documenting Classes

javadoc -d \home\html

-sourcepath \home\src

-subpackages java.net

JavaDoc is a tool for generating API documentation in

HTML format from comments placed in Java source

code files.The JavaDoc tool is a standard part of the

JDK installation. In this phrase, we show one sample

usage of the JavaDoc tool. JavaDoc has many com-

mand-line options and flags that can be used to docu-

ment classes and packages. For a full description of the

options available when using JavaDoc, refer to the Sun

documentation at: http://java.sun.com/j2se/1.5.0/

docs/guide/javadoc/index.html.

http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html

The javadoc command used in this phrase will gener-

ate JavaDoc documentation for all classes contained in

the java.net package and all of its subpackages.The

source code is assumed to be in the \home\src directo-

ry.The output of the command will be written to the

\home\html directory.

Inside a Java source file, a typical JavaDoc comment

looks like this:

/**

* A comment describing a class or method

*

* Special tags preceded with the @ character to

* document method parameters, return types,

* Method or class author name, etc. Below is an

* example of a parameter being documented.

* @parameter input The input data for this method.

*/

The /** and */ character sequences denote the begin-

ning and end of a JavaDoc comment.

The output of the JavaDoc tool is the standard Java

class documentation that you are most likely used to

seeing if you’ve viewed any Java documentation online

in the past.The JDK itself is thoroughly documented

using JavaDoc documentation.You can view the

JavaDoc for the JDK at: http://java.sun.com/j2se/

1.5.0/docs/api/index.html

JavaDoc generated documentation makes it easy to

browse through the classes that make up an application

or library.An index page is provided that indexes all

the classes with hyperlinks to each class. Indexes are

also provided for each package.

It is common to integrate the creation of JavaDoc

documentation with an application’s build process. So,

193Documenting Classes with JavaDoc

http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html

for example, if you are using the Ant build tool, there

is an Ant task available for generating JavaDoc as part

of your build.

The technology that enables JavaDoc to work has also

been used recently to create other tools to perform

tasks that go beyond just documenting Java files.The

Doclet API powers JavaDoc and these third-party

tools. One of the most popular third-party uses of the

Doclet API is the open source project XDoclet.

XDoclet is an engine that enables attribute-oriented

programming.With XDoclet, you can add metadata to

your source code to automate tasks such as EJB cre-

ation.To find out more about XDoclet, you can find it

online at: http://xdoclet.sourceforge.net/.

Another API for working with JavaDoc style com-

ments that is part of standard Java is the Taglet API.

Using the Taglet API, you create programs called

Taglets.Taglets can modify and format JavaDoc style

comments contained in your source files. For more

information about the Taglet API see: http://java.sun.

com/j2se/1.4.2/docs/tooldocs/javadoc/taglet/

overview.html

Archiving Classes with Jar

194 CHAPTER 17 Packaging and Documenting Classes

jar cf project.jar *.class

The jar utility is included with the JDK, and is used to

package groups of classes into a bundle. Using the jar

tool, you can create, update, extract, list, and index a

JAR file. In this phrase, all the classes contained in the

http://xdoclet.sourceforge.net/
http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/taglet/overview.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/taglet/overview.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/taglet/overview.html

current directory from which the jar command is run

will be put into a JAR file with the name project.jar.

The c option tells the jar utility to create a new

archive file.The f option is always followed by a file-

name specifying the name of the JAR file to use.

Complete applications can be distributed as JAR files.

Applications can also be executed out of a JAR file

without having to first extract them. See the phrase

“Running a Program from a JAR File” contained in

this chapter for more information about doing this.

All classes contained in a JAR file can be easily includ-

ed on the CLASSPATH when running or compiling a

Java application or library.To include the contents of a

JAR file in the CLASSPATH, you simply include the

path to the JAR file instead of a directory. For exam-

ple, your CLASSPATH statement might be similar to

the following:

CLASSPATH=.;c:\projects\fisher.jar;c:\projects\

classes

This would include all the classes contained in the

archive fisher.jar in your CLASSPATH. It is impor-

tant to note that to include the classes in a JAR file,

you must specify the name of the JAR file in the class-

path.You cannot just point to a directory containing

multiple JAR files as you can for .class files.

For more detailed information about using the jar

tool, refer to the official JAR documentation from Sun

available at: http://java.sun.com/j2se/1.5.0/docs/

guide/jar/index.html.

195Archiving Classes with Jar

http://java.sun.com/j2se/1.5.0/docs/guide/jar/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/index.html

Running a Program from a JAR

File

196 CHAPTER 17 Packaging and Documenting Classes

java –jar Scorebook.jar

Using the java command-line executable, you can exe-

cute a Java application that is packaged in a JAR file.

To do this, you use the –jar switch when running the

java command.You must also specify the name of the

JAR file that contains the application you want to exe-

cute.

You must specify the class containing the main()

method that you want to execute in a manifest file. For

example, to execute the com.timothyfisher.Scorebook

class, you would use a manifest file with the following

contents:

Manifest-Version: 1.2

Main-Class: com.timothyfisher.Scorebook

Created-By: 1.4 (Sun Microsystems Inc.)

The manifest file is placed in the JAR file along with

your classes.

This functionality allows Java developers to be able to

distribute an application in a single JAR file and

include a script file such as a Windows BAT file, or a

UNIX shell script that can be used to launch the

application using syntax similar to what is shown in

this phrase.

Symbols

== operator, 18, 66

A

absolute filename path,

obtaining, 94

accept() method, 97, 116

ancestor superclasses,

retrieving, 175

Ant build tool, 7

API documentation, gener-

ating with JavaDoc,

192-193

appendChild() method, 154

appendReplacement()

method, 57

appendTail() method, 57

applications, executing

from within JAR files, 196

archive files, JAR, 189

archiving classes with jar,

194-195

arrays

creating from collec-

tions, 38

resizing, 30-31

attributes of files, chang-

ing, 91

B

binary data

reading, 82

on remote servers,

106-107

writing to remote

servers, 108

binarySearch() method, 36

Burke, Eric, 156

byte code, 5

C

calcBatAvg() method, 185

calculating

elapsed time, 49

logarithms, 72

time differences

between dates, 46-47

trigonometric functions,

71

Calendar objects

converting to Date

objects, 40-41

date arithmetic, per-

forming, 45

calling stored procedures,

142

Index

case of strings, changing,

25

changing file attributes, 91

characters() method, 148

class browsers, 176, 181

class constructors, discov-

ering, 178-180

Class object

name, retrieving, 173

retrieving, 172

Class.forName() method,

136

classes

archiving with jar,

194-195

dynamic instantiation,

186

modifiers, 174

packages, 190-192

public fields, discover-

ing, 177-178

static imports, 191

superclasses, 175

classpath, 8-9

client server connections,

accepting, 116

client-side networking, 101

servers, contacting,

102

close() method, 102, 137

closing

database connections,

137-139

sockets, 102

collections

converting to arrays, 38

iterating through ele-

ments, 31-32

locating objects in,

36-37

objects, retrieving, 33

sorting, 34-35

Collections Framework, 29

comma-separated strings,

parsing, 26-28

command-line arguments,

parsing, 14

comments, generating with

JavaDoc, 192-193

compareTo() method, 19,

48

comparing

dates, 47

floating point numbers,

65

strings, 18-20

comparison operator (==),

18

compile() method, 54-55

compiling Java programs, 7

connecting to POP3 stores,

132

connections (databases),

closing, 139

constructing

StringTokenizer class, 27

contacting servers, 102

case of strings, changing198

contains() method, 37

content handlers, 147

contents of directories, list-

ing, 96-99

conversion characters, 79

converting

between Calendar and

Date objects, 40-41

collections to arrays,

38

createNewFile() method,

88

createStatement() method,

138

createTempFile() method,

88

creating

directories, 99

files, 88

mapped collections, 32

MIME multipart email

messages, 129

threads, 158-160

XML documents with

DOM, 153-155

Zip archives, 84-85

currencies, formatting, 69

current date, returning, 40

D

data structures, 29

databases

connections

closing, 137-139

creating with JDBC,

136

Hibernate framework,

135

querying via JDBC,

138-139

SQL, prepared state-

ments, 141

stored procedures,

142-143

UPDATE operation, per-

forming, 138

Date object, 40

converting to Calendar

object, 40-41

date/time values

arithmetic, performing,

45

comparing, 47

formatting, 41-42, 44

returning, 48

default packages, 192

delete() method, 90

deleteOnExit() method, 89

deleting files, 90

deprecated methods, 12,

39

How can we make this index more useful? Email us at indexes@samspublishing.com

deprecated methods 199

directories

contents of, listing,

96-99

creating, 99

moving, 93

discovering

class constructors,

178-180

public fields, 177-178

public method informa-

tion, 180-181

Doclet API, 194

documentation, generating

with JavaDoc, 192-193

DOM (Document Object

Model), 146, 149-151

XML documents,

creating, 153-155

domain names, obtaining,

103

DriverManager.getConnecti

on() method, 136

drivers, JdbcOdbcDriver,

136

DTDs (Document Type

Definitions), 151

dynamic class instantia-

tion, 186

dynamic programming,

171

E

Edelson, Justin, 146

EJB (Enterprise Java

Beans) framework, 135

elapsed time, calculating,

49

email

JavaMail API, 126

email, reading,

131-133

email, sending, 127

MIME

creating, 129

sending, 128-130

end() method, 56

endElement() method, 148

entries() method, 83

environment variables,

retrieving, 12

equals() method, 19

equalsIgnoreCase()

method, 25

error handling on network-

ing calls, 104

executeQuery() method,

138

executeUpdate() method,

138

executing

applications within JAR

files, 196

Java programs, 8

exists() method, 93

F

field values

returning, 182

setting, 183

directories200

file.length() method, 81

files

absolute pathnames,

obtaining, 94

creating, 88

deleting, 90

Jar archives, reading,

83

moving, 93

opening by name, 80

reading into byte array,

81

renaming, 89

seeking in specific loca-

tion, 83

size of, returning, 91

Zip archives

creating, 84-85

reading, 83

find() method, 55, 59

finding

matched patterns with-

in strings, 58

matching text with regu-

lar expressions,

54-55

objects in collections,

36-37

versus matching, 52

floating point numbers

comparing, 65

rounding, 66

tolerance, 65

format specifiers, 77

format() method, 75-77

formatting

currencies, 69

date/time, 41-44

numbers, 67-69

output, 75-77

G

generating

API documentation with

JavaDoc, 192-193

random numbers,

70-71

getAbsolutePath() method,

95

getByName() method, 103

getConnection() method,

137

getConstructor() method,

179

getContent() method, 112

getContstructors() method,

178

getData() stored procedure,

143

getDeclaredField() method,

178

getElementsbyTagName()

method, 151

getFields() method, 177

getFolder() method, 132

How can we make this index more useful? Email us at indexes@samspublishing.com

getFolder() method 201

getInputStream() method,

105, 109

getInterfaces() method,

176

getMethods() method, 180

getMoreResults() method,

144

getName() method, 173

getOutputStream() method,

106

getSuperclass() method,

175

group() method, 56

GUI applications, threads,

157

H

handling

multiple clients,

120-121

network errors, 104

HashMap class, 32

Hibernate framework, 135

hierarchical thread groups,

listing threads within,

168

hostnames, obtaining, 103

HTTP

content, serving,

122-123

web pages, reading,

111

I

IDE (integrated develop-

ment environment), 5

importing, classes into

packages, 191-192

InetAddress class, 103

input, reading text from, 74

input parameters for

stored procedures, 142

integers, converting to

binary, octal, or hexadeci-

mal, 70

invoking methods, 184-185

IP addresses, obtaining

hostnames, 103

isDirectory() method, 96

isInterface() method, 174

iterating through collection

elements, 31-32

J-K

J2EE, 102

JAF (JavaBeans Activation

Framework) extension,

126

JAR (Java archive) files,

8-9, 189

executing applications

within, 196

reading, 83

jar utility, archiving classes,

194-195

getInputStream() method202

Java

class files, 7

distributions, download-

ing, 6

dynamic programming,

171

java.io.File class, 87

javac command, 7

JavaDoc, 192-193

JavaMail API, 126

email

reading, 131-133

sending, 127

MIME email, sending,

128-130

JAXP (Java API for XML

Processing), 146

JDBC

database connection,

creating, 136

OUT parameters, 143

queries, sending,

138-139

results, returning,

141-142

JdbcOdbcDriver, 136

JDOM API, 155

JNDI database connection,

obtaining, 137

join() method, 162

joining threads, 161

JSSE (Java Secure Socket

Extension), 113

L

launching applications

within JAR files, 196

length() method, 91

LIFO (last in, first out), 24

listing

directory contents,

96-99

threads, 167-169

loading classes dynamical-

ly, 186

locating objects in collec-

tions, 36-37

locating substrings, 21-22

logarithms, calculating, 72

lowercase strings, changing

to uppercase, 25

M

main() method, 14

managing classes with

packages, 190-192

mapped collections, creat-

ing, 32

markup languages, 145

matched patterns

finding with regular

expressions, 54-55

finding within strings,

58

printing, 59-60

replacing, 56-58

How can we make this index more useful? Email us at indexes@samspublishing.com

matched patterns 203

matching

newlines in text strings,

60

versus finding, 52

math.round() method, 66

McLaughlin, Brett, 146

Message class, 128

methods

accept(), 97, 116

appendChild(), 154

appendReplacement(),

57

appendTail(), 57

binarySearch(), 36

calcBatAvg(), 185

characters(), 148

Class.forName(), 136

close(), 102, 137

command-line argu-

ments, parsing, 14

compareTo(), 19, 48

compile(), 54-55

contains(), 37

createNewFile(), 88

createTempFile(), 88

delete(), 90

deleteOnExit(), 89

deprecated, 39

DriverManager.getConn

ection(), 136

end(), 56

endElement(), 148

entries(), 83

equals(), 19

equalsIgnoreCase(), 25

executeQuery(), 138

executeUpdate(), 138

exists(), 93

file.length(), 81

find(), 55, 59

format(), 75-77

getAbsolutePath(), 95

getByName(), 103

getConnection(), 137

getConstructors(),

178-179

getContent(), 112

getDeclaredField(), 178

getElementByTagName(

), 151

getFields(), 177

getFolder(), 132

getInputStream(), 105,

109

getInterface(), 176

getMethods(), 180

getMoreResults(), 144

getName(), 173

getOutputStream(), 106

getSuperclass(), 175

group(), 56

information, retrieving,

180-181

invoke(), 185

invoking, 184-185

isDirectory(), 96

matching204

isInterface(), 174

join(), 162

length(), 91

main(), 14

math.Round(), 66

mkdir(), 99

nanoTime(), 49

newInstance(), 186

next(), 141

Object.wait(), 167

openConnection(),

112-113

parseInt(), 64

Pattern.compile(), 60

prepareCall(), 142

printIn(), 118

putNextEntry(), 84

read(), 22, 81-82

readUnsignedByte(),

107

registerOutParameter(),

143

renameTo(), 89, 93

reverse(), 23

run(), 158

seek(), 82

setContent(), 129

setInt(), 140

setLastModified(), 91

setReadOnly(), 91

setSchema(), 153

setString(), 140

setText(), 129

setValidating(), 152

sort(), 34

split(), 26-28

start(), 56

startElement(), 148

stop(), 161

toBinaryString(), 70

toHexString(), 70

toOctalString(), 70

write(), 109, 117

writeObject(), 119

MIME (Multimedia Internet

Mail Extensions) email,

129

multipart messages,

creating, 129

sending, 128-130

MimeMessage class, 128

mkdir() method, 99

modifiers, 174

modifying file attributes,

91

moving files, 93

multiple server clients,

handling, 120-121

multithreaded applications,

157

N

nanoTime() method, 49

network errors, handling,

104

newInstance() method, 186

How can we make this index more useful? Email us at indexes@samspublishing.com

newInstance() method 205

newlines in text string,

matching, 60

next() method, 141

numbers, formatting,

67-69

O

Object.wait() method, 167

objects, returning to server

clients, 118-119

obtaining

absolute pathnames,

94

domain names, 103

hostnames, 103

openConnection() method,

112-113

opening files by name, 80

operating system streams

System.out, 75

writing to standard out-

put, 74

OUT parameters, 143

output, formatting, 75-77

P

packages, 190-192

parseInt() method, 64

parsing

comma-separated

strings, 26-28

command-line argu-

ments, 14

strings into dates,

44-45

XML

DOM, 149-151

SAX API, 147-148

pattern matching, 51,

58-59

Pattern.compile() method,

60

pausing thread execution,

161, 166-167

performing

date arithmetic, 45

searches with regular

expressions, 54-55

UPDATE operation on

database, 138

POP mail servers, reading

email, 131-133

prepareCall() method, 142

prepared statements, 141

printIng() method, 118

printing matched patterns,

59-60

processing strings, 22

public fields, discovering,

177-178

putNextEntry() method, 84

Q-R

queries (JDBC) via JDBC,

138-139

returning results,

141-142

newlines in text string, matching206

random numbers, generat-

ing, 70-71

read() method, 22, 81-82

reading

binary data, 82

on remote servers,

106-107

email, 131-133

files into byte array, 81

Jar archive files, 83

serialized data on

remote servers,

109-110

text

from input, 74

on remote servers,

105

web pages via HTTP,

111

Zip archive files, 83

readUnsignedByte()

method, 107

reflection, 171

registerOutParameter()

method, 143

regular expressions, 51

commonly used charac-

ters, 52-53

matching newlines in

text strings, 60

matching text

finding, 54-55

replacing, 56-58

pattern matching,

58-59

relative pathnames, 94

removing

files, 90

leading/trailing white-

space from strings,

25

renameTo() method, 89, 93

renaming files, 89

replacing matching text

with regular expressions,

56-58

requests, handling multi-

ple, 120-121

resizing arrays, 30-31

responding to clients,

117-118

results, returning from

JDBC query, 141-142

retrieving

ancestor superclasses,

175

Class object, 172

Class object name,

173

date values, 48

environment variables,

12

objects from collec-

tions, 33

public method informa-

tion, 180-181

substrings, 21-22

system properties, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

retrieving 207

returning

field values, 182

file size, 91

HTTP content, 122-123

objects to clients,

118-119

reverse() method, 23

reversing strings, 23-24

rounding floating point

numbers, 66

run() method, 158

runnable interfaces,

158-160

running Java programs, 8

running threads, listing,

168

S

SAX (Simple API for XML),

146-148

schema, 152

searches, performing with

regular expressions,

54-55

pattern matching,

58-59

replacing matched text,

56-58

seek() method, 82

sending

email, 127

MIME email, 128-130

queries via JDBC,

138-139

serialized data

reading on remote

servers, 109-110

writing to remote

servers, 110-111

servers

binary data

reading, 106-107

writing, 108

client connections,

accepting, 116

contacting, 102

HTTP content,

returning, 122-123

multiple clients,

handling, 120-121

responding to clients,

117-118

returning objects to

clients, 118-119

serialized data

reading, 109-110

writing, 110-111

text, writing to, 106

ServerSocket class, 116

setContent() method, 129

setInt() method, 140

setLastModified() method,

91

setReadOnly() method, 91

setSchema() method, 153

setString() method, 140

setText() method, 129

returning208

setting

classpath, 8-9

field values, 183

setValidating() method,

152

SGML (Standard

Generalized Markup

Language), 145

SimpleDateFormat class,

42

single-line parameters, 14

size of files, returning, 91

sockets, 101

binary data

reading on remote

servers, 106-107

writing to remote

servers, 108

closing, 102

network errors, han-

dling, 104

serialized data

reading on remote

servers, 109-110

writing to remote

servers, 110-111

servers, contacting,

102

SSL, 113

text, writing on remote

server, 106

sort() method, 34

sorting collections, 34-35

special characters, 53

split() method, 26

SQL, prepared statements,

141

SSL (Secure Sockets

Layer), 113

start() method, 56

startElement() method,

148

starting threads, 158-160

static imports, 191

stop() method, 161

stopping threads, 160-161

stored procedures, 142

getData(), 143

input parameters, 142

storing classes in pack-

ages, 190-192

strings

case, changing, 25

comma-separated,

parsing, 26-28

comparing, 18, 20

format specifiers, 77

leading/trailing white-

space, removing, 25

matched patterns, find-

ing, 58

parsing into dates,

44-45

pattern matching,

58-59

printing matched

patterns, 59-60

How can we make this index more useful? Email us at indexes@samspublishing.com

strings 209

processing, 22

reversing, 23-24

substrings, 21-22

valid numbers,

verifying, 64

StringTokenizer class, con-

structing, 27

substrings, 21-22

Sun Java website, 6

superclasses, 175

synchronizing threads, 162

System object, 11

system properties, retriev-

ing, 13

System.out streams, 75

T

Taglets, 194

terminating threads,

160-161

text

reading on remote serv-

er, 105

writing to remote

servers, 106

thread pools, 121

threads, 157

execution, pausing,

161

joining, 161

listing, 167-169

pausing, 166-167

Runnable interfaces,

158-160

starting, 158-160

stopping, 160-161

synchronizing, 162

time, formatting, 41-42, 44

time difference between

dates, calculating, 46-47

toBinaryString() method,

70

toHexString() method, 70

tolerance, 65

toOctalString() method, 70

transforming

string case, 25

XML documents with

XSLT, 155

trigonometric functions,

calculating, 71

U-V

UPDATE operation, per-

forming on database,

138

uppercase strings, chang-

ing to lowercase, 25

URLs, connecting to MySQL

database, 137

verifying valid numbers in

strings, 64

viewing email, 131-133

virtual machine, 8

strings210

W

web pages, reading via

HTTP, 111

websites

Ant build tool, 7

Sun Java, 6

whitespace, removing from

strings, 25

write() method, 109, 117

writeObject() method, 119

writing

binary data to remote

servers, 108

serialized data to

remote servers,

110-111

text to remote servers,

106

to standard output, 74

X

XDoclet, 194

XML (Extensible Markup

Language), 145

documents

creating with DOM,

153-155

transforming with

XSLT, 155

DOM, 149-151

DTDs, 151

parsing APIs, 146

SAX API, 147-148

Schema, 152

XSLT (Extensible Stylesheet

Language

Transformations), 146

transforming XML docu-

ments, 155

Y-Z

Zip archives

creating, 84

reading, 83

How can we make this index more useful? Email us at indexes@samspublishing.com

Zip archives 211

http://www.samspublishing.com/safarienabled

