| —"
Speed Up the Java Development Process

(yenerics

and Collections

Maurice Naftalin

O’REILLY" & Philip Wadler

vww allitebooks.conl

http://www.allitebooks.org

Java

O’REILLY*

Java Generics and Collections

‘A brilliant exposition of generics. By far the best book on the topic, it provides a
crystal-clear tutorial that starts with the basics and ends leaving the reader with
a deep understanding of both the use and design of generics.”

—Gilad Bracha, Java Generics Lead, Sun Microsystems

This comprehensive guide shows you how to master the most important changes to Java since
it was first released. Generics and the greatly expanded collection libraries have tremendously
increased the power of Java 5 and Java 6. But the libraries have also confused many developers
who haven't known how to take advantage of these new features.

Java Generics and Collections covers everything from the most basic uses of generics to the strangest
corner cases. It teaches you everything you need to know about the collections libraries, so you'll
always know how and when to use each collection for any given task.

Topics covered include:

e Fundamentals of generics: type parameters e Generics and reflection

and generic methods * Design patterns for generics
e Other new features: boxing and unboxing, e Sets, Queues, Lists, Maps, and their
foreach loops, varargs implementations

. . B] 1 ~ 3 = '
Subtyping and wildcards e Concurrent programming and thread

e Evolution not revolution: generic libraries safety with collections
1 T e 1 e reneric clie : Wi . i = > v gipe
with legacy clients and generic clients with e Performance implications of different
legacy libraries collectionis
Generics, and the new collection libraries they inspired, take Java to a new level. If you want to

take your software development practice to that level, this book is essential reading.

Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consultancy in the
United Kingdom. He most recently served as an architect and mentor at NSB Retail Systems ple, and
as the leader of the client development team of a major UK government social service system.

Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh, where
his research focuses on the design of programming languages. He is a co-designer of GJ, which is
work that became the basis for generics in Sun’s Java 5.0.

www.oreilly.com

US $34.99 CAN $48.99
ISBN-10: 0-596-52775-6

ISBN-13: 978-0-596-52775-4 --
534909 Safari incuudes
ERETAVAMFAAANE v teorreeme PREE 49-Day

780596

vww allitebooks.conl

http://www.allitebooks.org

Java Generics and Collections

Maurice Naftalin and Philip Wadler

O’REILLY"

Beijing - Cambridge + Farnham - KoIn - Sebastopol - Taipei - Tokyo

vww allitebooks.cond

http://www.allitebooks.org

Java Generics and Collections
by Maurice Naftalin and Philip Wadler

Copyright © 2007 O’Reilly Media . All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexers: Maurice Naftalin and Philip Wadler
Production Services: Windfall Software Cover Designer: Karen Montgomery
Printing History:

October 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Java Generics and Collections, the image of an alligator, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.

[
===F= This book uses RepKover™, a durable and flexible lay-flat binding.
ISBN: 978-0-596-52775-4

M] [2/09]
1233352047

vww allitebooks.cond

http://safari.oreilly.com
http://www.allitebooks.org

We dedicate this book to Joyce Naftalin, Lionel
Naftalin, Adam Wadler, and Leora Wadler

—Maurice Naftalin and Philip Wadler

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Prefaceooviiiiiiiii e Xi
Partl. Generics

T Introductionoovvvnniiii i e 3

1.1 Generics 4

1.2 Boxing and Unboxing 6

1.3 Foreach 9

1.4 Generic Methods and Varargs 10

1.5 Assertions 12

2. SubtypingandWildcardscooviiiiiiiiiiiii it 15

2.1 Subtyping and the Substitution Principle 15

2.2 Wildcards with extends 17

2.3 Wildcards with super 18

2.4 The Get and Put Principle 19

2.5 Arrays 22

2.6 Wildcards Versus Type Parameters 25

2.7 Wildcard Capture 27

2.8 Restrictions on Wildcards 28

3. ComparisonandBoundsc.coiiiiiiiiiiiiiii it i 31

3.1 Comparable 31

3.2 Maximum of a Collection 34

3.3 A Fruity Example 36

3.4 Comparator 37

3.5 Enumerated Types 42

3.6 Multiple Bounds 45

3.7 Bridges 47

3.8 Covariant Overriding 49

A

vww allitebooks.cond

http://www.allitebooks.org

S) =Y T 1 {11 1T 51

4.1 Constructors 51

4.2 Static Members 52

4.3 Nested Classes 53

4.4 How Erasure Works 55

5. Evolution, Not Revolutiono.vvrviniiiiiiiiiiiiiiiiiirennennennens 59
5.1 Legacy Library with Legacy Client 60

5.2 Generic Library with Generic Client 60

5.3 Generic Library with Legacy Client 62

5.4 Legacy Library with Generic Client 65

5.4.1 Evolving a Library using Minimal Changes 65

5.4.2 Evolving a Library using Stubs 68

5.4.3 Evolving a Library using Wrappers 68

5.5 Conclusions 71

6. Reificationc.cooviiiiiiiiii 73
6.1 Reifiable Types 73

6.2 Instance Tests and Casts 74

6.3 Exception Handling 79

6.4 Array Creation 80

6.5 The Principle of Truth in Advertising 82

6.6 The Principle of Indecent Exposure 86

6.7 How to Define ArrayList 89

6.8 Array Creation and Varargs 90

6.9 Arrays as a Deprecated Type? 92

6.10 Summing Up 95

7. Reflectionooovviiiiiiiiii 97
7.1 Generics for Reflection 97

7.2 Reflected Types are Reifiable Types 100

7.3 Reflection for Primitive Types 101

7.4 A Generic Reflection Library 101

7.5 Reflection for Generics 104

7.6 Reflecting Generic Types 105

8. EffectiveGenericsoovvviiiiiiiiiiiiiiiiiiiiii 109
8.1 Take Care when Calling Legacy Code 109

8.2 Use Checked Collections to Enforce Security 111

8.3 Specialize to Create Reifiable Types 112

8.4 Maintain Binary Compatibility 117

vi | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

9. DesignPatternsocvniiiiiiiiiiiiii ittt e aaaaa 123

9.1 Visitor 123

9.2 Interpreter 127

9.3 Function 128

9.4 Strategy 131

9.5 Subject-Observer 136
Partll. Collections

10. The Main Interfaces of the Java Collections Framework 145

11. Preliminariesoooviiiiiiiiiiiiiiiii 147

11.1 Tterable and Iterators 147

11.2 Implementations 149

11.3 Efficiency and the O-Notation 150

11.4 Contracts 152

11.5 Collections and Thread Safety 153

11.5.1 Synchronization and the Legacy Collections 155

11.5.2 JDK 1.2: Synchronized Collections and Fail-Fast Iterators 156

11.5.3 Concurrent Collections: Java 5 and Beyond 158

12. The CollectionInterfaceccooiiiiiiiiiiiiiiiiiiiiiiiiiins 161

12.1 Using the Methods of Collection 164

12.2 Implementing Collection 169

12.3 Collection Constructors 169

13, Sl it 7m

13.1 Implementing Set 171

13.1.1 HashSet 172

13.1.2 LinkedHashSet 174

13.1.3 CopyOnWriteArraySet 175

13.1.4 EnumSet 176

13.2 SortedSet and NavigableSet 178

13.2.1 NavigableSet 181

13.2.2 TreeSet 184

13.2.3 ConcurrentSkipListSet 186

13.3 Comparing Set Implementations 188

T4, QUEUES vttt ettt it it i i 191

14.1 Using the Methods of Queue 193

14.2 Implementing Queue 195

14.2.1 PriorityQueue 195

vww allitebooks.cond

Table of Contents | vii

http://www.allitebooks.org

14.2.2 ConcurrentLinkedQueue 197

14.3 BlockingQueue 198
14.3.1 Using the Methods of BlockingQueue 199

14.3.2 Implementing BlockingQueue 202

14.4 Deque 206
14.4.1 Implementing Deque 208

14.4.2 BlockingDeque 209

14.5 Comparing Queue Implementations 210

15, LiStS ettt 213
15.1 Using the Methods of List 215

15.2 Implementing List 218
15.2.1 ArrayList 218

15.2.2 LinkedList 221

15.2.3 CopyOnWriteArrayList 221

15.3 Comparing List Implementations 221

16, MaPS o \oiiii it tieitnietereeneasessenenasereresesoserosesesonnns 223
16.1 Using the Methods of Map 225

16.2 Implementing Map 226
16.2.1 HashMap 227

16.2.2 LinkedHashMap 227

16.2.3 WeakHashMap 229

16.2.4 IdentityHashMap 231

16.2.5 EnumMap 233

16.3 SortedMap and NavigableMap 234
16.3.1 NavigableMap 235

16.3.2 TreeMap 236

16.4 ConcurrentMap 237
16.4.1 ConcurrentHashMap 238

16.5 ConcurrentNavigableMap 238
16.5.1 ConcurrentSkipListMap 239

16.6 Comparing Map Implementations 239

17. TheCollections Classoovviiiiiiiiiiiiiiiiii i 241
17.1 Generic Algorithms 241
17.1.1 Changing the Order of List Elements 241

17.1.2 Changing the Contents of a List 242

17.1.3 Finding Extreme Values in a Collection 243

17.1.4 Finding Specific Values in a List 243

17.2 Collection Factories 244

17.3 Wrappers 245
17.3.1 Synchronized Collections 245

viii | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

17.3.2 Unmodifiable Collections 246

17.3.3 Checked Collections 246
17.4 Other Methods 247
... 251

Table of Contents | ix

Preface

Java now supports generics, the most significant change to the language since the ad-
dition of inner classes in Java 1.2—some would say the most significant change to the
language ever.

Say you wish to process lists. Some may be lists of integers, others lists of strings, and
yet others lists of lists of strings. In Java before generics this is simple. You can represent
all three by the same class, called List, which has elements of class Object:

list of integers List
list of strings List

list of lists of strings ~ List

In order to keep the language simple, you are forced to do some of the work yourself:
you must keep track of the fact that you have a list of integers (or strings or lists of
strings), and when you extract an element from the list you must cast it from Object
back to Integer (or String or List). For instance, the Collections Framework before
generics made extensive use of this idiom.

Einstein is reputed to have said, “Everything should be as simple as possible but no
simpler”. And some might say the approach above is too simple. In Java with generics
you may distinguish different types of lists:

list of integers List<Integer>
list of strings List<String>

listof lists of strings ~ List<List<String>>

Now the compiler keeps track of whether you have a list of integers (or strings or lists
of strings), and no explicit cast back to Integer (or String or List<String>) is required.
In some ways, this is similar to generics in Ada or templates in C++, but the actual
inspiration is parametric polymorphism as found in functional languages such as ML
and Haskell.

Part I of this book provides a thorough introduction to generics. We discuss the inter-
actions between generics and subtyping, and how to use wildcards and bounds; we

Xi

describe techniques for evolving your code; we explain subtleties connected with casts
and arrays; we treat advanced topics such as the interaction between generics and se-
curity, and how to maintain binary compatibility; and we update common design pat-
terns to exploit generics.

Much has been written on generics, and their introduction into Java has sparked some
controversy. Certainly, the design of generics involves swings and roundabouts: making
it easy to evolve code requires that objects not reify run-time information describing
generic type parameters, but the absence of this information introduces corner cases
into operations such as casting and array creation.We present a balanced treatment of
generics, explaining how to exploit their strengths and work around their weaknesses.

Part II provides a comprehensive introduction to the Collections Framework. Newton
is reputed to have said, “If I have seen farther than others, it is because I stand on the
shoulders of giants”. The best programmers live by this motto, building on existing
frameworks and reusable code wherever appropriate. The Java Collections Framework
provides reusable interfaces and implementations for a number of common collection
types, including lists, sets, queues, and maps. There is also a framework for comparing
values, which is useful in sorting or building ordered trees. (Of course, not all pro-
grammers exploit reuse. As Hamming said of computer scientists, “Instead of standing
on each other’s shoulders, we stand on each other’s toes.”)

Thanks to generics, code using collections is easier to read and the compiler will catch
more type errors. Further, collections provide excellent illustrations of the use of ge-
nerics. One might say that generics and collections were made for each other, and,
indeed, ease of use of collections was one of the main reasons for introducing generics
in the first place.

Java 5 and 6 not only update the Collections Framework to exploit generics, but also
enhance the framework in other ways, introducing interfaces and classes to support
concurrency and the new enum types. We believe that these developments mark the
beginning of a shift in programming style, with heavier use of the Collections Frame-
work and, in particular, increased use of collections in favor of arrays. In Part II, we
describe the entire framework from first principles in order to help you use collections
more effectively, flagging the new features of Java 5 and 6 as we present them.

Following common terminology, we refer to the successive versions of Java as 1.0 up
to 1.4 and then 5 and 6. We say ‘Java before generics’ to refer to Java 1.0 through 1.4,
and ‘Java with generics’ to refer to Java 5 and 6.

The design of generics for Java is influenced by a number of previous proposals—
notably, GJ, by Bracha, Odersky, Stoutamire, and Wadler; the addition of wildcards
to GJ, proposed by Igarashi and Viroli; and further development of wildcards, by Tor-
gersen, Hansen, Ernst, von der Ahé, Bracha, and Gafter. Design of generics was carried
outunder the Java Community Process by a team led by Bracha, and including Odersky,
Thorup, and Wadler (as parts of JSR 14 and JSR 201). Odersky’s GJ compiler is the
basis of Sun’s current javac compiler.

xii | Preface

Obtaining the Example Programs

Some of the example programs in this book are available online at:
ftp://ftp.oreilly.com/published/oreilly/javagenerics

If you can’t get the examples directly over the Internet but can send and receive email,
you can use ftpmail to get them. For help using ftpmail, send an email to
ftpmail@online.oreilly.com

with no subject and the single word “help” in the body of the message.

How to Contact Us

You can address comments and questions about this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

O’Reilly has a web page for this book, which lists errata and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javagenerics
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://lwww.oreilly.com

Conventions Used in This Book

We use the following font and format conventions:

* Code is shown in a fixed-width font, with boldface used for emphasis:

class Client {
public static void main(String[] args) {
Stack<Integer> stack = new ArrayStack<Integer>();
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[o, 1, 2, 3]");
}
}

Preface | xiii

ftp://ftp.oreilly.com/published/oreilly/javagenerics
http://www.oreilly.com/catalog/javagenerics
http://www.oreilly.com

* Weoften include code that corresponds to the body of an appropriate main method:
Stack<Integer> stack = new ArrayStack<Integer>();
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[o, 1, 2, 3]");
* Code fragments are printed in fixed-width font when they appear within a para-
graph (as when we referred to a main method in the preceding item).

* We often omit standard imports. Code that uses the Java Collection Framework
or other utility classes should be preceded by the line:

import java.util.*;

* Sample interactive sessions, showing command-line input and corresponding out-
put, are shown in constant-width font, with user-supplied input preceded by a
percent sign:

% javac g/Stack.java g/ArrayStack.java g/Stacks.java 1/Client.java

Note: Client.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

* When user-supplied input is two lines long, the first line is ended with a backslash:

% javac -Xlint:unchecked g/Stack.java g/ArrayStack.java \
% g/Stacks.java 1/Client.java
1/Client.java:4: warning: [unchecked] unchecked call
to push(E) as a member of the raw type Stack
for (int i = 0; i<4; i++) stack.push(new Integer(i));

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Java Generics and Collections, by Maurice
Naftalin and Philip Wadler. Copyright 2006 O’Reilly Media, Inc., 0-596-52775-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xiv | Preface

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments

The folks at Sun (past and present) were fantastically good about answering our ques-
tions. They were always happy to explain a tricky point or mull over a design tradeoft.
Thanks to Joshua Bloch, Gilad Bracha, Martin Buchholz, Joseph D. Darcy, Neal M.
Gafter, Mark Reinhold, David Stoutamire, Scott Violet, and Peter von der Ahé.

It has been a pleasure to work with the following researchers, who contributed to the
design of generics for Java: Erik Ernst, Christian Plesner Hansen, Atsushi Igarashi,
Martin Odersky, Mads Torgersen, and Mirko Viroli.

We received comments and help from a number of people. Thanks to Brian Goetz,
David Holmes, Heinz M. Kabutz, Deepti Kalra, Angelika Langer, Stefan Liebeg, Doug
Lea, Tim Munro, Steve Murphy, and C K Shibin.

We enjoyed reading Heinz M. Kabutz’s The Java Specialists’ Newsletter and Angelika
Langer’s Java Generics FAQ, both available online.

Our editor, Michael Loukides,was always ready with good advice. Paul C. Anagnos-
topoulos ofWindfall Software turned our LATEX into camera-ready copy, and Jere-
myYallop produced the index.

Our families kept us sane (and insane). Love to Adam, Ben, Catherine, Daniel, Isaac,
Joe, Leora, Lionel, and Ruth.

Preface | xv

http://safari.oreilly.com

PART |
Generics

Generics are a powerful, and sometimes controversial, new feature of the Java pro-
gramming language. This part of the book describes generics, using the Collections
Framework as a source of examples. A comprehensive introduction to the Collections
Framework appears in the second part of the book.

The first five chapters focus on the fundamentals of generics. Chapter 1 gives an over-
view of generics and other new features in Java 5, including boxing, foreach loops, and
functions with a variable number of arguments. Chapter 2 reviews how subtyping
works and explains how wildcards let you use subtyping in connection with generics.
Chapter 3 describes how generics work with the Comparable interface, which requires
anotion of bounds on type variables. Chapter 4 looks at how generics work with various
declarations, including constructors, static members, and nested classes. Chapter 5
explains how to evolve legacy code to exploit generics, and how ease of evolution is a
key advantage of the design of generics in Java. Once you have these five chapters under
your belt, you will be able to use generics effectively in most basic situations.

The next four chapters treat advanced topics. Chapter 6 explains how the same design
that leads to ease of evolution also necessarily leads to a few rough edges in the treat-
ment of casts, exceptions, and arrays. The fit between generics and arrays is the worst
rough corner of the language, and we formulate two principles to help you work around
the problems. Chapter 7 explains new features that relate generics and reflection, in-
cluding the newly generified type Class<T> and additions to the Java library that support
reflection of generic types. Chapter 8 contains advice on how to use generics effectively
in practical coding. We consider checked collections, security issues, specialized
classes, and binary compatibility. Chapter 9 presents five extended examples, looking
at how generics affect five well-known design patterns: Visitor, Interpreter, Function,
Strategy, and Subject-Observer.

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1
Introduction

Generics and collections work well with a number of other new features introduced in
the latest versions of Java, including boxing and unboxing, a new form of loop, and
functions that accept a variable number of arguments. We begin with an example that
illustrates all of these. As we shall see, combining them is synergistic: the whole is greater
than the sum of its parts.

Taking that as our motto, let’s do something simple with sums: put three numbers into
a list and add them together. Here is how to do it in Java with generics:

List<Integer> ints = Arrays.aslList(1,2,3);

int s = 0;

for (int n : ints) { s +=n; }

assert s == 6;

You can probably read this code without much explanation, but let’s touch on the key
features. The interface List and the class Arrays are part of the Collections Framework
(both are found in the package java.util). The type List is now generic; you write
List<E> to indicate a list with elements of type E. Here we write List<Integer> to indi-
cate that the elements of the list belong to the class Integer, the wrapper class that
corresponds to the primitive type int. Boxing and unboxing operations, used to convert
from the primitive type to the wrapper class, are automatically inserted. The static
method asList takes any number of arguments, places them into an array, and returns
a new list backed by the array. The new loop form, foreach, is used to bind a variable
successively to each element of the list, and the loop body adds these into the sum. The
assertion statement (introduced in Java 1.4), is used to check that the sum is correct;
when assertions are enabled, it throws an error if the condition does not evaluate to
true.

Here is how the same code looks in Java before generics:

List ints = Arrays.asList(new Integer[] {
new Integer(1), new Integer(2), new Integer(3)

})s

int s = 0;

for (Iterator it = ints.iterator(); it.hasNext();) {
int n = ((Integer)it.next()).intValue();

S += n;

}

assert s == 6;

Reading this code is not quite so easy. Without generics, there is no way to indicate in
the type declaration what kind of elements you intend to store in the list, so instead of
writing List<Integer>, you write List. Now it is the coder rather than the compiler
who is responsible for remembering the type of the list elements, so you must write the
cast to (Integer) when extracting elements from the list. Without boxing and unboxing,
you must explicitly allocate each object belonging to the wrapper class Integer and use
the intValue method to extract the corresponding primitive int. Without functions
that accept a variable number of arguments, you must explicitly allocate an array to
pass to the asList method. Without the new form of loop, you must explicitly declare
an iterator and advance it through the list.

By the way, here is how to do the same thing with an array in Java before generics:

int[] ints = new int[] { 1,2,3 };

int s = 0;

for (int i = 0; i < ints.length; i++) { s += ints[i]; }

assert s == 6;
This is slightly longer than the corresponding code that uses generics and collections,
is arguably a bit less readable, and is certainly less flexible. Collections let you easily
grow or shrink the size of the collection, or switch to a different representation when
appropriate, such as a linked list or hash table or ordered tree. The introduction of
generics, boxing and unboxing, foreach loops, and varargs in Java marks the first time
that using collections is just as simple, perhaps even simpler, than using arrays.

Now let’s look at each of these features in a little more detail.

1.1 Generics

An interface or class may be declared to take one or more type parameters, which are
written in angle brackets and should be supplied when you declare a variable belonging
to the interface or class or when you create a new instance of a class.

We saw one example in the previous section. Here is another:

List<String> words = new ArraylList<String>();

words.add("Hello ");

words.add("world!");

String s = words.get(0)+words.get(1);

assert s.equals("Hello world!");
In the Collections Framework, class ArrayList<E> implements interface List<E>. This
trivial code fragment declares the variable words to contain a list of strings, creates an
instance of an Arraylist, adds two strings to the list, and gets them out again.

In Java before generics, the same code would be written as follows:

4 | Chapter1: Introduction

List words = new ArraylList();

words.add("Hello ");

words.add("world!");

String s = ((String)words.get(0))+((String)words.get(1))

assert s.equals("Hello world!");
Without generics, the type parameters are omitted, but you must explicitly cast when-
ever an element is extracted from the list.

In fact, the bytecode compiled from the two sources above will be identical. We say
that generics are implemented by erasure because the types List<Integer>,
List<String>, and List<List<String>> are all represented at run-time by the same type,
List. We also use erasure to describe the process that converts the first program to the
second. The term erasure is a slight misnomer, since the process erases type parameters
but adds casts.

Generics implicitly perform the same cast that is explicitly performed without generics.
If such casts could fail, it might be hard to debug code written with generics. This is
why it is reassuring that generics come with the following guarantee:

Cast-iron guarantee: the implicit casts added by the compilation of generics never
fail.

There is also some fine print on this guarantee: it applies only when no unchecked
warnings have been issued by the compiler. Later, we will discuss at some length what
causes unchecked warnings to be issued and how to minimize their effect.

Implementing generics by erasure has a number of important effects. It keeps things
simple, in that generics do not add anything fundamentally new. It keeps things small,
in that there is exactly one implementation of List, not one version for each type. And
it eases evolution, since the same library can be accessed in both nongeneric and generic
forms.

This last point is worth some elaboration. It means that you don’t get nasty problems
due to maintaining two versions of the libraries: a nongeneric legacy version that works
with Java 1.4 or earlier, and a generic version that works with Java 5 and 6. At the
bytecode level, code that doesn’t use generics looks just like code that does. There is
no need to switch to generics all at once—you can evolve your code by updating just
one package, class, or method at a time to start using generics. We even explain how
you may declare generic types for legacy code. (Of course, the cast-iron guarantee
mentioned above holds only if you add generic types that match the legacy code.)

Another consequence of implementing generics by erasure is that array types differ in
key ways from parameterized types. Executing

new String[size]
allocates an array, and stores in that array an indication that its components are of type
String. In contrast, executing:

new Arraylist<String>()

1.1 Generics | 5

allocates a list, but does not store in the list any indication of the type of its elements.
In the jargon, we say that Java reifies array component types but does not reify list
element types (or other generic types). Later, we will see how this design eases evolution
(see Chapter 5) but complicates casts, instance tests, and array creation (see Chapter 6).

Generics Versus Templates Generics in Java resemble templates in C++. There are
just two important things to bear in mind about the relationship between Java generics
and C++ templates: syntax and semantics. The syntax is deliberately similar and the
semantics are deliberately different.

Syntactically, angle brackets were chosen because they are familiar to C++ users, and
because square brackets would be hard to parse. However, there is one difference in
syntax. In C++, nested parameters require extra spaces, so you see things like this:

List< List<String> >

In Java, no spaces are required, and it’s fine to write this:

List<List<String>>

You may use extra spaces if you prefer, but they’re not required. (In C++, a problem
arises because >> without the space denotes the right-shift operator. Java fixes the
problem by a trick in the grammar.)

Semantically, Java generics are defined by erasure, whereas C++ templates are defined
by expansion. In C++ templates, each instance of a template at a new type is compiled
separately. If you use a list of integers, a list of strings, and a list of lists of string, there
will be three versions of the code. If you use lists of a hundred different types, there will
be a hundred versions of the code—a problem known as code bloat. In Java, no matter
how many types of lists you use, there is always one version of the code, so bloat does
not occur.

Expansion may lead to more efficient implementation than erasure, since it offers more
opportunities for optimization, particularly for primitive types such as int. For code
that is manipulating large amounts of data—for instance, large arrays in scientific
computing—this difference may be significant. However, in practice, for most purposes
the difference in efficiency is not important, whereas the problems caused by code bloat
can be crucial.

In C++, you also may instantiate a template with a constant value rather than a type,
making it possible to use templates as a sort of “macroprocessor on steroids” that can
perform arbitrarily complex computations at compile time. Java generics are deliber-
ately restricted to types, to keep them simple and easy to understand.

1.2 Boxing and Unboxing

Recall that every type in Java is either a reference type or a primitive type. A reference
type is any class, interface, or array type. All reference types are subtypes of class
Object, and any variable of reference type may be set to the value null. As shown in the

6 | Chapter1: Introduction

following table, there are eight primitive types, and each of these has a corresponding
library class of reference type. The library classes are located in the package java.lang.

Primitive Reference

byte Byte
short Short
int Integer
long Long

float Float
double Double
boolean Boolean

char Character

Conversion of a primitive type to the corresponding reference type is called boxing and
conversion of the reference type to the corresponding primitive type is called unboxing.

Java with generics automatically inserts boxing and unboxing coercions where appro-

priate. If an expression e of type int appears where a value of type Integer is expected,

boxing converts it to new Integer(e) (however, it may cache frequently occurring val-

ues). If an expression e of type Integer appears where a value of type int is expected,

unboxing converts it to the expression e.intValue(). For example, the sequence:
List<Integer> ints = new ArraylList<Integer>();

ints.add(1);
int n = ints.get(0);

is equivalent to the sequence:

List<Integer> ints = new ArraylList<Integer>();

ints.add(Integer.value0f(1));

int n = ints.get(0).intValue();
The call Integer.value0f(1) is similar in effect to the expression new Integer(1), but
may cache some values for improved performance, as we explain shortly.

Here, again, is the code to find the sum of a list of integers, conveniently packaged as
a static method:
public static int sum (List<Integer> ints) {
int s = 0;
for (int n : ints) { s +=n; }
return s;

}

Why does the argument have type List<Integer> and not List<int>? Because type
parameters must always be bound to reference types, not primitive types. Why does
the result have type int and not Integer? Because result types may be either primitive

1.2 Boxing and Unboxing | 7

or reference types, and it is more efficient to use the former than the latter. Unboxing
occurs when each Integer in the list ints is bound to the variable n of type int.

We could rewrite the method, replacing each occurrence of int with Integer:

public static Integer sumInteger(List<Integer> ints) {
Integer s = 0;
for (Integer n : ints) { s +=n; }
return s;

}

This code compiles but performs a lot of needless work. Each iteration of the loop
unboxes the values in s and n, performs the addition, and boxes up the result again.
With Sun’s current compiler, measurements show that this version is about 60 percent
slower than the original.

Look Out for This! One subtlety of boxing and unboxing is that == is defined differ-
ently on primitive and on reference types. On type int, itis defined by equality of values,
and on type Integer, it is defined by object identity. So both of the following assertions
succeed using Sun’s JVM:

List<Integer> bigs = Arrays.aslList(100,200,300);

assert sumInteger(bigs) == sum(bigs);
assert sumInteger(bigs) != sumInteger(bigs); // not recommended

In the first assertion, unboxing causes values to be compared, so the results are equal.
In the second assertion, there is no unboxing, and the two method calls return distinct
Integer objects, so the results are unequal even though both Integer objects represent
the same value, 600.We recommend that you never use == to compare values of type
Integer. Either unbox first, so == compares values of type int, or else use equals to
compare values of type Integer.

A further subtlety is that boxed values may be cached. Caching is required when boxing
an int or short value between—128 and 127, a char value between '\u0000' and
"\uoo7f', a byte, or a boolean; and caching is permitted when boxing other values.
Hence, in contrast to our earlier example, we have the following:

List<Integer> smalls = Arrays.aslList(1,2,3);

assert sumInteger(smalls) == sum(smalls);
assert sumInteger(smalls) == sumInteger(smalls); // not recommended

This is because 6 is smaller than 128, so boxing the value 6 always returns exactly the
same object. In general, it is not specified whether boxing the same value twice should
return identical or distinct objects, so the inequality assertion shown earlier may either
fail or succeed depending on the implementation. Even for small values, for which ==
will compare values of type Integer correctly, we recommend againstits use. It is clearer
and cleaner to use equals rather than == to compare values of reference type, such as
Integer or String.

8 | Chapter1: Introduction

1.3 Foreach

Here, again, is our code that computes the sum of a list of integers.
List<Integer> ints = Arrays.aslList(1,2,3);
int s = 0;
for (int n : ints) { s +=n; }
assert s == 6;

The loop in the third line is called a foreach loop even though it is written with the
keyword for. It is equivalent to the following:
for (Iterator<Integer> it = ints. iterator(); it.hasNext();) {
int n = it.next();
s += n;

}

The emphasized code corresponds to what was written by the user, and the unempha-
sized code is added in a systematic way by the compiler. It introduces the variable it
of type Iterator<Integer> to iterate over the list ints of type List<Integer>. In general,
the compiler invents a new name that is guaranteed not to clash with any name already
in the code. Note that unboxing occurs when the expression it.next() of type Inte
ger is assigned to the variable n of type int.

The foreach loop can be applied to any object that implements the interface Itera
ble<E> (in package java.lang), which in turn refers to the interface Iterator<E> (in
package java.util). These define the methods iterator, hasNext, and next, which are
used by the translation of the foreach loop (iterators also have a method remove, which
is not used by the translation):

interface Iterable<E> {
public Iterator<E> iterator();

}

interface Iterator<k> {
public boolean hasNext();
public E next();
public void remove();

}

All collections, sets, and lists in the Collections Framework implement the Itera
ble<E> interface; and classes defined by other vendors or users may implement it as well.

The foreach loop may also be applied to an array:
public static int sumArray(int[] a) {
int s = 0;
for (int n : a) { s +=n; }
return s;

}

The foreach loop was deliberately kept simple and catches only the most common case.
You need to explicitly introduce an iterator if you wish to use the remove method or to

1.3 Foreach | 9

iterate over more than one list in parallel. Here is a method that removes negative
elements from a list of doubles:
public static void removeNegative(List<Double> v) {

for (Iterator<Double> it = v.iterator(); it.hasNext();) {
if (it.next() < 0) it.remove();

}
Here is a method to compute the dot product of two vectors, represented as lists of
doubles, both of the same length. Given two vectors, uy, ... , u, and vy, ... , v, it

computes uy *vi>+ ... +u, v,
public static double dot(List<Double> u, List<Double> v) {
if (u.size() != v.size())
throw new IllegalArgumentException("different sizes");
double d = 0;
Iterator<Double> ult = u.iterator();
Iterator<Double> vIt = v.iterator();
while (uIt.hasNext()) {
assert ult.hasNext() && vIt.hasNext();
d += ult.next() * vIt.next();

assert lult.hasNext() && !vIt.hasNext();
return d;

}

Two iterators, ult and vIt, advance across the lists u and v in lock step. The loop
condition checks only the first iterator, but the assertions confirm that we could have
used the second iterator instead, since we previously tested both lists to confirm that
they have the same length.

1.4 Generic Methods and Varargs

Here is a method that accepts an array of any type and converts it to a list:

class Lists {
public static <T> List<T> toList(T[] arr) {
List<T> list = new ArraylList<T>();
for (T elt : arr) list.add(elt);
return list;

}
}

The static method tolist accepts an array of type T[] and returns a list of type
List<T>, and does so for any type T. This is indicated by writing <T> at the beginning
of the method signature, which declares T as a new type variable. A method which
declares a type variable in this way is called a generic method. The scope of the type
variable T is local to the method itself; it may appear in the method signature and the
method body, but not outside the method.

The method may be invoked as follows:

10 | Chapter1: Introduction

List<Integer> ints = Lists.tolList(new Integer[] { 1, 2, 3 });
List<String> words = Lists.tolList(new String[] { "hello", "world" });

In the first line, boxing converts 1, 2, 3 from int to Integer.

Packing the arguments into an array is cumbersome. The vararg feature permits a spe-
cial, more convenient syntax for the case in which the last argument of a method is an
array. To use this feature, we replace T[] with T.. in the method declaration:
class Lists {
public static <T> List<T> toList(T... arr) {

List<T> list = new Arraylist<T>();

for (T elt : arr) list.add(elt);

return list;

}
}

Now the method may be invoked as follows:

List<Integer> ints = Lists.tolist(1, 2, 3);
List<String> words = Lists.toList("hello", "world");

This is just shorthand for what we wrote above. At run time, the arguments are packed
into an array which is passed to the method, just as previously.

Any number of arguments may precede a last vararg argument. Here is a method that
accepts a list and adds all the additional arguments to the end of the list:

public static <T> void addAll(List<T> list, T... arr) {
for (T elt : arr) list.add(elt);

}

Whenever a vararg is declared, one may either pass a list of arguments to be implicitly
packed into an array, or explicitly pass the array directly. Thus, the preceding method
may be invoked as follows:

List<Integer> ints = new ArraylList<Integer>();

Lists.addAll(ints, 1, 2);

Lists.addAll(ints, new Integer[] { 3, 4 });
assert ints.toString().equals("[1, 2, 3, 4]");

We will see later that when we attempt to create an array containing a generic type, we
will always receive an unchecked warning. Since varargs always create an array, they
should be used only when the argument does not have a generic type (see Section 6.8).

In the preceding examples, the type parameter to the generic method is inferred, but it
may also be given explicitly, as in the following examples:

List<Integer> ints = Lists.<Integer>tolList();
List<Object> objs = Lists.<Object>toList(1, "two");

Explicit parameters are usually not required, but they are helpful in the examples given
here. In the first example, without the type parameter there is too little information for
the type inference algorithm used by Sun's compiler to infer the correct type. It infers
that the argument to tolist is an empty array of an arbitrary generic type rather than

1.4 Generic Methods and Varargs | 11

an empty array of integers, and this triggers the unchecked warning described earlier.
(The Eclipse compiler uses a different inference algorithm, and compiles the same line
correctly without the explicit parameter.) In the second example, without the type
parameter there is too much information for the type inference algorithm to infer the
correct type. You might think that Object is the only type that an integer and a string
have in common, but in fact they also both implement the interfaces Serializable and
Comparable. The type inference algorithm cannot choose which of these three is the
correct type.

In general, the following rule of thumb suffices: in a call to a generic method, if there
are one or more arguments that correspond to a type parameter and they all have the
same type then the type parameter may be inferred; if there are no arguments that
correspond to the type parameter or the arguments belong to different subtypes of the
intended type then the type parameter must be given explicitly.

When a type parameter is passed to a generic method invocation, it appears in angle
brackets to the left, just as in the method declaration. The Java grammar requires that
type parameters may appear only in method invocations that use a dotted form. Even
if the method tolist is defined in the same class that invokes the code, we cannot
shorten it as follows:

List<Integer> ints = <Integer>tolList(); // compile-time error
This is illegal because it will confuse the parser.

Methods Arrays.aslList and Collections.addAll in the Collections Framework are
similar to toList and addA1l shown earlier. (Both classes are in package java.util.) The
Collections Framework version of asList does not return an ArraylList, but instead
returns a specialized list class that is backed by a given array. Also, its version of
addAll acts on general collections, not just lists.

1.5 Assertions

We clarify our code by liberal use of the assert statement. Each occurrence of assert
is followed by a boolean expression that is expected to evaluate to true. If assertions
are enabled and the expression evaluates to false, an AssertionError is thrown, in-
cluding an indication of where the error occurred. Assertions are enabled by invoking
the JVM with the -ea or -enableassertions flag.

We only write assertions that we expect to evaluate to true. Since assertions may not
be enabled, an assertion should never have side effects upon which any nonassertion
code depends. When checking for a condition that might not hold (such as confirming
that the arguments to a method call are valid), we use a conditional and throw an
exception explicitly.

12 | Chapter1: Introduction

vww allitebooks.cond

http://www.allitebooks.org

To sum up, we have seen how generics, boxing and unboxing, foreach loops, and
varargs work together to make Java code easier to write, having illustrated this through
the use of the Collections Framework.

1.5 Assertions | 13

CHAPTER 2
Subtyping and Wildcards

Now that we’ve covered the basics, we can start to cover more-advanced features of
generics, such as subtyping and wildcards. In this section, we’ll review how subtyping
works and we’ll see how wildcards let you use subtyping in connection with generics.
We'll illustrate our points with examples from the Collections Framework.

2.1 Subtyping and the Substitution Principle

Subtyping is a key feature of object-oriented languages such as Java. In Java, one type
is a subtype of another if they are related by an extends or implements clause. Here are
some examples:

Integer isasubtypeof Number

Double isasubtypeof Number
Arraylist<E> isasubtypeof List<E>
List<E> isasubtypeof Collection<E>

Collection<E> isasubtypeof Iterable<E>

Subtyping is transitive, meaning that if one type is a subtype of a second, and the second
is a subtype of a third, then the first is a subtype of the third. So, from the last two lines
in the preceding list, it follows that List<E> is a subtype of Iterable<E>. If one type is
a subtype of another, we also say that the second is a supertype of the first. Every

reference type is a subtype of Object, and Object is a supertype of every reference type.
We also say, trivially, that every type is a subtype of itself.

The Substitution Principle tells us that wherever a value of one type is expected, one
may provide a value of any subtype of that type:
Substitution Principle: a variable of a given type may be assigned a value of any subtype

of that type, and a method with a parameter of a given type may be invoked with an
argument of any subtype of that type.

15

Consider the interface Collection<E>. One of its methods is add, which takes a param-
eter of type E:

interface Collection<E> {
public boolean add(E elt);

}

According to the Substitution Principle, if we have a collection of numbers, we may
add an integer or a double to it, because Integer and Double are subtypes of Number.
List<Number> nums = new ArraylList<Number>();
nums.add(2);

nums.add(3.14);
assert nums.toString().equals("[2, 3.14]");

Here, subtyping is used in two ways for each method call. The first call is permitted
because nums has type List<Number>, which is a subtype of Collection<Number>, and 2
has type Integer (thanks to boxing), which is a subtype of Number. The second call is
similarly permitted. In both calls, the E in List<E> is taken to be Number.

It may seem reasonable to expect that since Integer is a subtype of Number, it follows
that List<Integer> is a subtype of List<Number>. But this is not the case, because the
Substitution Principle would rapidly get us into trouble. It is not always safe to assign
avalue of type List<Integer> to a variable of type List<Number>. Consider the following
code fragment:

List<Integer> ints = new Arraylist<Integer>();

ints.add(1);

ints.add(2);

List<Number> nums = ints; // compile-time error

nums.add(3.14);
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

This code assigns variable ints to point at a list of integers, and then assigns nums to
point at the same list of integers; hence the call in the fifth line adds a double to this
list, as shown in the last line. This must not be allowed! The problem is prevented by
observing that here the Substitution Principle does not apply: the assignment on the
fourth line is not allowed because List<Integer> is not a subtype of List<Number>, and
the compiler reports that the fourth line is in error.

What about the reverse? Can we take List<Number> to be a subtype of List<Integer>?
No, that doesn’t work either, as shown by the following code:

List<Number> nums = new ArraylList<Number>();
nums.add(2.78);

nums.add(3.14);

List<Integer> ints = nums; // compile-time error

assert ints.toString().equals("[2.78, 3.14]"); // uh oh!

16 | Chapter2: Subtyping and Wildcards

The problem is prevented by observing that here the Substitution Principle does not
apply: the assignment on the fourth line is not allowed because List<Number> is not a
subtype of List<Integer>, and the compiler reports that the fourth line is in error.

So List<Integer> is not a subtype of List<Number>, nor is List<Number> a subtype of
List<Integer>; all we have is the trivial case, where List<Integer> is a subtype of itself,
and we also have that List<Integer> is a subtype of Collection<Integer>.

Arrays behave quite differently; with them, Integer[] is a subtype of Number[]. We will
compare the treatment of lists and arrays later (see Section 2.5).

Sometimes we would like lists to behave more like arrays, in that we want to accept
not only a list with elements of a given type, but also a list with elements of any subtype
of a given type. For this purpose, we use wildcards.

2.2 Wildcards with extends

Another method in the Collection interface is addA11l, which adds all of the members
of one collection to another collection:

interface Collection<E> {

public boolean addAll(Collection<? extends E> c);

}

Clearly, given a collection of elements of type E, it is OK to add all members of another
collection with elements of type E. The quizzical phrase "? extends E" means that it is
also OK to add all members of a collection with elements of any type that is a subtype
of E. The question mark is called a wildcard, since it stands for some type that is a
subtype of E.

Here is an example. We create an empty list of numbers, and add to it first a list of
integers and then a list of doubles:

List<Number> nums = new ArraylList<Number>();

List<Integer> ints = Arrays.asList(1, 2);

List<Double> dbls = Arrays.asList(2.78, 3.14);

nums.addAll(ints);

nums.addAl1l(dbls);
assert nums.toString().equals("[1, 2, 2.78, 3.14]");

The first call is permitted because nums has type List<Number>, which is a subtype of
Collection<Number>, and ints has type List<Integer>, which is a subtype of Collec
tion<? extends Number>. The second call is similarly permitted. In both calls, E is taken
to be Number. If the method signature for addA11 had been written without the wildcard,
then the calls to add lists of integers and doubles to a list of numbers would not have
been permitted; you would only have been able to add a list that was explicitly declared
to be a list of numbers.

2.2 Wildcards with extends | 17

We can also use wildcards when declaring variables. Here is a variant of the example
at the end of the preceding section, changed by adding a wildcard to the second line:

List<Integer> ints = new ArraylList<Integer>();

ints.add(1);

ints.add(2);

List<? extends Number> nums = ints;

nums.add(3.14); // compile-time error

assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Before, the fourth line caused a compile-time error (because List<Integer> is not a
subtype of List<Number>), but the fifth line was fine (because a double is a number, so
you can add a double to a List<Number>). Now, the fourth line is fine (because
List<Integer> is a subtype of List<? extends Number>), but the fifth line causes a com-
pile-time error (because you cannot add a double to a List<? extends Number>, since it
might be a list of some other subtype of number). As before, the last line shows why
one of the preceding lines is illegal!

In general, if a structure contains elements with a type of the form ? extends E, we can
get elements out of the structure, but we cannot put elements into the structure. To
put elements into the structure we need another kind of wildcard, as explained in the
next section.

2.3 Wildcards with super

Here is a method that copies into a destination list all of the elements from a source
list, from the convenience class Collections:
public static <T> void copy(List<? super T> dst, List<? extends T> src) {
for (int i = 0; i < src.size(); i++) {
dst.set(i, src.get(i));
}
}

The quizzical phrase ? super T means that the destination list may have elements of
any type that is a supertype of T, just as the source list may have elements of any type
that is a subtype of T.

Here is a sample call.

List<Object> objs = Arrays.<Object>asList(2, 3.14, "four");
List<Integer> ints = Arrays.asList(5, 6);
Collections.copy(objs, ints);

assert objs.toString().equals("[5, 6, four]");

As with any generic method, the type parameter may be inferred or may be given ex-
plicitly. In this case, there are four possible choices, all of which type-check and all of
which have the same effect:

18 | Chapter2: Subtyping and Wildcards

Collections.copy(objs, ints);

Collections.<Object>copy(objs, ints);
Collections.<Number>copy(objs, ints);
Collections.<Integer>copy(objs, ints);

The first call leaves the type parameter implicit; it is taken to be Integer, since that is
the most specific choice that works. In the third line, the type parameter T is taken to
be Number. The call is permitted because objs has type List<Object>, which is a subtype
of List<? super Number> (since Object is a supertype of Number, as required by the
wildcard) and ints has type List<Integer>, which is a subtype of List<? extends Num
ber> (since Integer is a subtype of Number, as required by the extends wildcard).

We could also declare the method with several possible signatures.

public static <T> void copy(List<T> dst, List<T> src)

public static <T> void copy(List<T> dst, List<? extends T> src)

public static <T> void copy(List<? super T> dst, List<T> src)

public static <T> void copy(List<? super T> dst, List<? extends T> src)

The first of these is too restrictive, as it only permits calls when the destination and
source have exactly the same type. The remaining three are equivalent for calls that use
implicit type parameters, but differ for explicit type parameters. For the example calls
above, the second signature works only when the type parameter is Object, the third
signature works only when the type parameter is Integer, and the last signature works
(as we have seen) for all three type parameters—i.e., Object, Number, and Integer. Al-
ways use wildcards where you can in a signature, since this permits the widest range
of calls.

2.4 The Get and Put Principle

It may be good practice to insert wildcards whenever possible, but how do you decide
which wildcard to use? Where should you use extends, where should you use super,
and where is it inappropriate to use a wildcard at all?

Fortunately, a simple principle determines which is appropriate.

The Get and Put Principle: use an extends wildcard when you only get values out of a
structure, use a super wildcard when you only put values into a structure, and don’t use
a wildcard when you both get and put.

We already saw this principle at work in the signature of the copy method:

public static <T> void copy(List<? super T> dest, List<? extends T> src)

The method gets values out of the source src, so it is declared with an extends wildcard,
and it puts values into the destination dst, so it is declared with a super wildcard.

Whenever you use an iterator, you get values out of a structure, so use an extends
wildcard. Here is a method that takes a collection of numbers, converts each to a dou-
ble, and sums them up:

2.4 The Getand Put Principle | 19

public static double sum(Collection<? extends Number> nums) {
double s = 0.0;
for (Number num : nums) s += num.doubleValue();
return s;

}

Since this uses extends, all of the following calls are legal:

List<Integer> ints = Arrays.aslList(1,2,3);
assert sum(ints) == 6.0;

List<Double> doubles = Arrays.asList(2.78,3.14);
assert sum(doubles) == 5.92;

List<Number> nums = Arrays.<Number>asList(1,2,2.78,3.14);
assert sum(nums) == 8.92;

The first two calls would not be legal if extends was not used.

Whenever you use the add method, you put values into a structure, so use a super
wildcard. Here is a method that takes a collection of numbers and an integer n, and
puts the first n integers, starting from zero, into the collection:
public static void count(Collection<? super Integer> ints, int n) {
for (int i = 0; i < n; i++) ints.add(i);

}

Since this uses super, all of the following calls are legal:

List<Integer> ints = new ArraylList<Integer>();
count(ints, 5);
assert ints.toString().equals("[0, 1, 2, 3, 4]");

List<Number> nums = new ArraylList<Number>();
count(nums, 5); nums.add(5.0);
assert nums.toString().equals("[0, 1, 2, 3, 4, 5.0]");

List<Object> objs = new ArraylList<Object>();
count(objs, 5); objs.add("five");
assert objs.toString().equals("[o0, 1, 2, 3, 4, five]");

The last two calls would not be legal if super was not used.

Whenever you both put values into and get values out of the same structure, you should
not use a wildcard.
public static double sumCount(Collection<Number> nums, int n) {
count(nums, n);
return sum(nums);

}

The collection is passed to both sum and count, so its element type must both extend
Number (as sumrequires) and be super to Integer (as count requires). The only two classes
that satisfy both of these constraints are Number and Integer, and we have picked the
first of these. Here is a sample call:

20 | Chapter2: Subtyping and Wildcards

List<Number> nums = new ArraylList<Number>();
double sum = sumCount(nums,5);
assert sum == 10;

Since there is no wildcard, the argument must be a collection of Number.

If you don’t like having to choose between Number and Integer, it might occur to you
that if Java let you write a wildcard with both extends and super, you would not need
to choose. For instance, we could write the following:

double sumCount(Collection<? extends Number super Integer> coll, int n)
// not legal Java!

Then we could call sumCount on either a collection of numbers or a collection of integers.
But Java doesn’t permit this. The only reason for outlawing it is simplicity, and con-
ceivably Java might support such notation in the future. But, for now, if you need to
both get and put then don’t use wildcards.

The Get and Put Principle also works the other way around. If an extends wildcard is
present, pretty much all you will be able to do is get but not put values of that type;
and if a super wildcard is present, pretty much all you will be able to do is put but not
get values of that type.

For example, consider the following code fragment, which uses a list declared with an
extends wildcard:

List<Integer> ints = new ArraylList<Integer>();

ints.add(1);

ints.add(2);

List<? extends Number> nums = ints;

double dbl = sum(nums); // ok
nums.add(3.14); // compile-time error

The call to sum is fine, because it gets values from the list, but the call to add is not,
because it puts a value into the list. This is just as well, since otherwise we could add
a double to a list of integers!

Conversely, consider the following code fragment, which uses a list declared with a
super wildcard:

List<Object> objs = new ArraylList<Object>();

objs.add(1);

objs.add("two");

List<? super Integer> ints = objs;

ints.add(3); // ok

double dbl = sum(ints); // compile-time error

Now the call to add is fine, because it puts a value into the list, but the call to sumis not,
because it gets a value from the list. This is just as well, because the sum of a list
containing a string makes no sense!

The exception proves the rule, and each of these rules has one exception. You cannot
put anything into a type declared with an extends wildcard—except for the value
null, which belongs to every reference type:

2.4 The Getand Put Principle | 21

List<Integer> ints = new ArraylList<Integer>();
ints.add(1);

ints.add(2);

List<? extends Number> nums = ints;
nums.add(null); // ok

assert nums.toString().equals("[1, 2, null]");

Similarly, you cannot get anything out from a type declared with a super wildcard—
except for a value of type Object, which is a supertype of every reference type:

List<Object> objs = Arrays.<Object>asList(1,"two");
List<? super Integer> ints = objs;

String str = "";
for (Object obj : ints) str += obj.toString();
assert str.equals("1two");

You may find it helpful to think of ? extends T as containing every type in an interval
bounded by the type of null below and by T above (where the type of null is a subtype
of every reference type). Similarly, you may think of ? super T as containing every type
in an interval bounded by T below and by 0Object above.

It is tempting to think that an extends wildcard ensures immutability, but it does not.
As we saw earlier, given a list of type List<? extends Number>, you may still add null
values to the list. You may also remove list elements (using remove, removeAll, or retai
nAll) or permute the list (using swap, sort, or shuffle in the convenience class Collec
tions; see Section 17.1.1). If you want to ensure that a list cannot be changed, use the
method unmodifiablelist in the class Collections; similar methods exist for other col-
lection classes (see Section 17.3.2). If you want to ensure that list elements cannot be
changed, consider following the rules for making a class immutable given by Joshua
Bloch in his book Effective Java (Addison-Wesley) in Chapter 4 (item “Minimize mu-
tability”/“Favor immutability”); for example, in Part II, the classes CodingTask and
PhoneTask in Section 12.1 are immutable, as is the class PriorityTask in Section 13.2.

Because String is final and can have no subtypes, you might expect that
List<String> is the same type as List<? extends String>. But in fact the former is a
subtype of the latter, but not the same type, as can be seen by an application of our
principles. The Substitution Principle tells us it is a subtype, because it is fine to pass a
value of the former type where the latter is expected. The Get and Put Principle tells us
that it is not the same type, because we can add a string to a value of the former type
but not the latter.

2.5 Arrays

It is instructive to compare the treatment of lists and arrays in Java, keeping in mind
the Substitution Principle and the Get and Put Principle.

In Java, array subtyping is covariant, meaning that type S[] is considered to be a subtype
of T[] whenever S is a subtype of T. Consider the following code fragment, which al-

22 | Chapter2: Subtyping and Wildcards

vww allitebooks.cond

http://www.allitebooks.org

locates an array of integers, assigns it to an array of numbers, and then attempts to
assign a double into the array:

Integer[] ints = new Integer[] {1,2,3};

Number[] nums = ints;

nums[2] = 3.14; // array store exception
assert Arrays.toString(ints).equals("[1, 2, 3.14]"); // uh oh!

Something is wrong with this program, since it puts a double into an array of integers!
Where is the problem? Since Integer[] is considered a subtype of Number[], according
to the Substitution Principle the assignment on the second line must be legal. Instead,
the problem is caught on the third line, and it is caught at run time. When an array is
allocated (as on the first line), it is tagged with its reified type (a run-time representation
of its component type, in this case, Integer), and every time an array is assigned into
(as on the third line), an array store exception is raised if the reified type is not com-
patible with the assigned value (in this case, a double cannot be stored into an array of
Integer).

In contrast, the subtyping relation for generics is invariant, meaning that type List<S> is
not considered to be a subtype of List<T>, except in the trivial case where S and T are
identical. Here is a code fragment analogous to the preceding one, with lists replacing
arrays:

List<Integer> ints = Arrays.aslist(1,2,3);

List<Number> nums = ints; // compile-time error

nums.set(2, 3.14);
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Since List<Integer> is not considered to be a subtype of List<Number>, the problem is
detected on the second line, not the third, and it is detected at compile time, not run
time.

Wildcards reintroduce covariant subtyping for generics, in that type List<S»> is consid-
ered to be a subtype of List<? extends T> when S is a subtype of T. Here is a third
variant of the fragment:

List<Integer> ints = Arrays.aslist(1,2,3);

List<? extends Number> nums = ints;

nums.set(2, 3.14); // compile-time error
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Aswith arrays, the third line is in error, but, in contrast to arrays, the problem is detected
at compile time, not run time. The assignment violates the Get and Put Principle, be-
cause you cannot put a value into a type declared with an extends wildcard.

Wildcards also introduce contravariant subtyping for generics, in that type List<S> is
considered to be a subtype of List<? super T> when S is a supertype of T (as opposed
to a subtype). Arrays do not support contravariant subtyping. For instance, recall that
the method count accepted a parameter of type Collection<? super Integer> and filled
it with integers. There is no equivalent way to do this with an array, since Java does
not permit you to write (? super Integer)[].

2.5 Arrays | 23

Detecting problems at compile time rather than at run time brings two advantages, one
minor and one major. The minor advantage is that it is more efficient. The system does
not need to carry around a description of the element type at run time, and the system
does not need to check against this description every time an assignment into an array
is performed. The major advantage is that a common family of errors is detected by the
compiler. This improves every aspect of the program’s life cycle: coding, debugging,
testing, and maintenance are all made easier, quicker, and less expensive.

Apart from the fact that errors are caught earlier, there are many other reasons to prefer
collection classes to arrays. Collections are far more flexible than arrays. The only op-
erations supported on arrays are to get or set a component, and the representation is
fixed. Collections support many additional operations, including testing for contain-
ment, adding and removing elements, comparing or combining two collections, and
extracting a sublist of a list. Collections may be either lists (where order is significant
and elements may be repeated) or sets (where order is not significant and elements may
not be repeated), and anumber of representations are available, including arrays, linked
lists, trees, and hash tables. Finally, a comparison of the convenience classes Collec
tions and Arrays shows that collections offer many operations not provided by arrays,
including operations to rotate or shuffle a list, to find the maximum of a collection, and
to make a collection unmodifiable or synchronized.

Nonetheless, there are a few cases where arrays are preferred over collections. Arrays
of primitive type are much more efficient since they don’t involve boxing; and assign-
ments into such an array need not check for an array store exception, because arrays
of primitive type do not have subtypes. And despite the check for array store exceptions,
even arrays of reference type may be more efficient than collection classes with the
current generation of compilers, so you may want to use arrays in crucial inner loops.
As always, you should measure performance to justify such a design, especially since
future compilers may optimize collection classes specially. Finally, in some cases arrays
may be preferable for reasons of compatibility.

To summarize, it is better to detect errors at compile time rather than run time, but
Java arrays are forced to detect certain errors at run time by the decision to make array
subtyping covariant. Was this a good decision? Before the advent of generics, it was
absolutely necessary. For instance, look at the following methods, which are used to
sort any array or to fill an array with a given value:

public static void sort(Object[] a);
public static void fill(Object[] a, Object val);

Thanks to covariance, these methods can be used to sort or fill arrays of any reference
type. Without covariance and without generics, there would be no way to declare
methods that apply for all types. However, now that we have generics, covariant arrays
are no longer necessary. Now we can give the methods the following signatures, directly
stating that they work for all types:

public static <T> void sort(T[] a);
public static <T> void fill(T[] a, T val);

24 | Chapter2: Subtyping and Wildcards

In some sense, covariant arrays are an artifact of the lack of generics in earlier versions
of Java. Once you have generics, covariant arrays are probably the wrong design choice,
and the only reason for retaining them is backward compatibility.

Sections Section 6.4—Section 6.8 discuss inconvenient interactions between generics
and arrays. For many purposes, it may be sensible to consider arrays a deprecated
type.We return to this point in Section 6.9.

2.6 Wildcards Versus Type Parameters

The contains method checks whether a collection contains a given object, and its gen-
eralization, containsAll, checks whether a collection contains every element of another
collection. This section presents two alternate approaches to giving generic signatures
for these methods. The first approach uses wildcards and is the one used in the Java
Collections Framework. The second approach uses type parameters and is often a more
appropriate alternative.

Wildcards Here are the types that the methods have in Java with generics:

interface Collection<E> {

public boolean contains(Object o);
public boolean containsAll(Collection<?> c);

}...

The first method does not use generics at all! The second method is our first sight of
an important abbreviation. The type Collection<?> stands for:

Collection<? extends Object>

Extending Object is one of the most common uses of wildcards, so it makes sense to
provide a short form for writing it.

These methods let us test for membership and containment:

Object obj = "one";

List<Object> objs = Arrays.<Object>asList("one", 2, 3.14, 4);
List<Integer> ints = Arrays.aslist(2, 4);

assert objs.contains(obj);

assert objs.containsAll(ints);

assert lints.contains(obj);

assert lints.containsAll(objs);

The given list of objects contains both the string "one" and the given list of integers,
but the given list of integers does not contain the string "one", nor does it contain the
given list of objects.

The tests ints.contains(obj) and ints.containsAll(objs) might seem silly. Of course,
a list of integers won’t contain an arbitrary object, such as the string "one". But it is
permitted because sometimes such tests might succeed:

2.6 Wildcards Versus Type Parameters | 25

Object obj = 1;

List<Object> objs = Arrays.<Object>asList(1, 3);
List<Integer> ints = Arrays.aslList(1, 2, 3, 4);
assert ints.contains(obj);

assert ints.containsAll(objs);

In this case, the object may be contained in the list of integers because it happens to be
an integer, and the list of objects may be contained within the list of integers because
every object in the list happens to be an integer.

Type Parameters You might reasonably choose an alternative design for collections
—a design in which you can only test containment for subtypes of the element type:

interface MyCollection<E> { // alternative design

public boolean contains(E o0);
public boolean containsAll(Collection<? extends E> c);

}...

Say we have a class MyList that implements MyCollection. Now the tests are legal only
one way around:

Object obj = "one";

MyList<Object> objs = MylList.<Object>asList("one", 2, 3.14, 4);

MyList<Integer> ints = MylList.asList(2, 4);

assert objs.contains(obj);

assert objs.containsAll(ints)

assert lints.contains(obj); // compile-time error

assert lints.containsAll(objs); // compile-time error

The last two tests are illegal, because the type declarations require that we can only test
whether a list contains an element of a subtype of that list. So we can check whether a
list of objects contains a list of integers, but not the other way around.

Which of the two styles is better is a matter of taste. The first permits more tests, and
the second catches more errors at compile time (while also ruling out some sensible
tests). The designers of the Java libraries chose the first, more liberal, alternative, be-
cause someone using the Collections Framework before generics might well have writ-
ten a test such as ints.containsAll(objs), and that person would want that test to
remain valid after generics were added to Java. However, when designing a new generic
library, such as MyCollection, when backward compatibility is less important, the de-
sign that catches more errors at compile time might make more sense.

Arguably, the library designers made the wrong choice. Only rarely will a test such as
ints.containsAll(objs) be required, and such a test can still be permitted by declaring
ints to have type List<Object> rather than type List<Integer>. It might have been better
to catch more errors in the common case rather than to permit more-precise typing in
an uncommon case.

The same design choice applies to other methods that contain Object or Collection<?
> in their signature, such as remove, removeAll, and retainAll.

26 | Chapter2: Subtyping and Wildcards

2.7 Wildcard Capture

When a generic method is invoked, the type parameter may be chosen to match the
unknown type represented by a wildcard. This is called wildcard capture.

Consider the method reverse in the convenience class java.util.Collections, which
accepts a list of any type and reverses it. It can be given either of the following two
signatures, which are equivalent:

public static void reverse(List<?> list);
public static void <T> reverse(List<T> list);

The wildcard signature is slightly shorter and clearer, and is the one used in the library.

If you use the second signature, it is easy to implement the method:

public static void <T> reverse(List<T> list) {
List<T> tmp = new Arraylist<T>(list);
for (int i = 0; i < list.size(); i++) {
list.set(i, tmp.get(list.size()-i-1));
}
}

This copies the argument into a temporary list, and then writes from the copy back into
the original in reverse order.

If you try to use the first signature with a similar method body, it won’t work:

public static void reverse(List<?> list) {
List<Object> tmp = new ArraylList<Object>(list);
for (int i = 0; i < list.size(); i++) {
list.set(i, tmp.get(list.size()-i-1)); // compile-time error
}
}

Now it is not legal to write from the copy back into the original, because we are trying
to write from a list of objects into a list of unknown type. Replacing List<Object> with
List<?> won’t fix the problem, because now we have two lists with (possibly different)
unknown element types.

Instead, you can implement the method with the first signature by implementing a
private method with the second signature, and calling the second from the first:

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
List<T> tmp = new ArrayList<T>(list);
for (int i = 0; i < list.size(); i++) {
list.set(i, tmp.get(list.size()-i-1));
}
}

Here we say that the type variable T has captured the wildcard. This is a generally useful
technique when dealing with wildcards, and it is worth knowing.

2.7 Wildcard Capture | 27

Another reason to know about wildcard capture is that it can show up in error messages,

even if you don’t use the above technique. In general, each occurrence of a wildcard is

taken to stand for some unknown type. If the compiler prints an error message con-

taining this type, it is referred to as capture of ?. For instance, with Sun’s current

compiler, the incorrect version of reverse generates the following error message:
Capture.java:6: set(int,capture of ?) in java.util.lList<capture of ?>

cannot be applied to (int,java.lang.Object)
list.set(i, tmp.get(list.size()-i-1));

Hence, if you see the quizzical phrase capture of ? in an error message, it will come
from a wildcard type. Even if there are two distinct wildcards, the compiler will print
the type associated with each as capture of ?. Bounded wildcards generate names that
are even more long-winded, such as capture of ? extends Number.

2.8 Restrictions on Wildcards

Wildcards may not appear at the top level in class instance creation expressions (new),
in explicit type parameters in generic method calls, or in supertypes (extends and
implements).

Instance Creation In a class instance creation expression, if the type is a parameterized
type, then none of the type parameters may be wildcards. For example, the following
are illegal:

List<?> list = new ArraylList<?>(); // compile-time error

Map<String, ? extends Number> map
= new HashMap<String, ? extends Number>(); // compile-time error

This is usually not a hardship. The Get and Put Principle tells us that if a structure
contains a wildcard, we should only get values out of it (if it is an extends wildcard) or
only put values into it (if it is a super wildcard). For a structure to be useful, we must
do both. Therefore, we usually create a structure at a precise type, even if we use wild-
card types to put values into or get values from the structure, as in the following ex-
ample:

List<Number> nums = new ArraylList<Number>();

List<? super Number> sink = nums;

List<? extends Number> source = nums;

for (int i=0; i<10; i++) sink.add(i);

double sum=0; for (Number num : source) sum+=num.doubleValue();
Here wildcards appear in the second and third lines, but not in the first line that creates
the list.

Only top-level parameters in instance creation are prohibited from containing wild-
cards. Nested wildcards are permitted. Hence, the following is legal:

28 | Chapter2: Subtyping and Wildcards

List<List<?>> lists = new ArraylList<List<?>>();
lists.add(Arrays.aslist(1,2,3));
lists.add(Arrays.asList("four","five"));

assert lists.toString().equals("[[1, 2, 3], [four, five]]");

Even though the list of lists is created at a wildcard type, each individual list within it
has a specific type: the first is a list of integers and the second is a list of strings. The
wildcard type prohibits us from extracting elements from the inner lists as any type
other than Object, but since that is the type used by toString, this code is well typed.

One way to remember the restriction is that the relationship between wildcards and
ordinary types is similar to the relationship between interfaces and classes—wildcards
and interfaces are more general, ordinary types and classes are more specific, and in-
stance creation requires the more specific information. Consider the following three
statements:

List<?> list = new ArraylList<Object>(); // ok

List<?> list = new List<Object>() // compile-time error
List<?> list = new ArraylList<?>() // compile-time error

The first is legal; the second is illegal because an instance creation expression requires
a class, not an interface; and the third is illegal because an instance creation expression
requires an ordinary type, not a wildcard.

You might wonder why this restriction is necessary. The Java designers had in mind
that every wildcard type is shorthand for some ordinary type, so they believed that
ultimately every object should be created with an ordinary type. It is not clear whether
this restriction is necessary, but it is unlikely to be a problem. (We tried hard to contrive
a situation in which it was a problem, and we failed!)

Generic Method Calls If a generic method call includes explicit type parameters, those
type parameters must not be wildcards. For example, say we have the following generic
method:

class Lists {
public static <T> List<T> factory() { return new ArraylList<T>(); }

}

You may choose for the type parameters to be inferred, or you may pass an explicit
type parameter. Both of the following are legal:

List<?> list = Lists.factory();
List<?> list = Lists.<Object>factory();

If an explicit type parameter is passed, it must not be a wildcard:
List<?> list = Lists.<?>factory(); // compile-time error
As before, nested wildcards are permitted:

List<List<?>> = Lists.<List<?>>factory(); // ok

The motivation for this restriction is similar to the previous one. Again, it is not clear
whether it is necessary, but it is unlikely to be a problem.

2.8 Restrictions on Wildcards | 29

Supertypes When a class instance is created, it invokes the initializer for its supertype.
Hence, any restriction that applies to instance creation must also apply to supertypes.
In a class declaration, if the supertype or any superinterface has type parameters, these
types must not be wildcards.

For example, this declaration is illegal:

class Anylist extends ArraylList<?> {...} // compile-time error
And so is this:
class AnotherList implements List<?> {...} // compile-time error

But, as before, nested wildcards are permitted:

class NestedlList extends ArraylList<List<?»>> {...} // ok

The motivation for this restriction is similar to the previous two. As before, it is not
clear whether it is necessary, but it is unlikely to be a problem.

30 | Chapter2: Subtyping and Wildcards

CHAPTER 3
Comparison and Bounds

Now that we have the basics, let’s look at some more advanced uses of generics. This
chapter describes the interfaces Comparable<T> and Comparator<T>, which are used to
support comparison on elements. These interfaces are useful, for instance, if you want
to find the maximum element of a collection or sort a list. Along the way, we will
introduce bounds on type variables, an important feature of generics that is particularly
useful in combination with the Comparable<T> interface.

3.1 Comparable

The interface Comparable<T> contains a method that can be used to compare one object
to another:

interface Comparable<T> {
public int compareTo(T o);

}

The compareTo method returns a value that is negative, zero, or positive depending upon
whether the argument is less than, equal to, or greater than the given object. When a
classimplements Comparable, the ordering specified by this interface is called the natural
ordering for that class.

Typically, an object belonging to a class can only be compared with an object belonging
to the same class. For instance, Integer implements Comparable<Integer>:
Integer into = 0;

Integer int1 = 1;
assert into.compareTo(int1l) < 0;

The comparison returns a negative number, since 0 precedes 1 under numerical order-
ing. Similarly, String implements Comparable<String>:
String stro = "zero";

String stri = "one";
assert stro.compareTo(stri) > 0;

This comparison returns a positive number, since "zero" follows "one" under alphabetic
ordering.

31

The type parameter to the interface allows nonsensical comparisons to be caught at
compile time:

Integer i = 0;

String s = "one";

assert i.compareTo(s) <o; // compile-time error
You can compare an integer with an integer or a string with a string, but attempting to
compare an integer with a string signals a compile-time error.

Comparison is not supported between arbitrary numerical types:

Number m = new Integer(2);
Number n = new Double(3.14);
assert m.compareTo(n) < 0; // compile-time error

Here the comparison is illegal, because the Number class does not implement the Compa
rable interface.

Consistent with Equals Usually, we require that two objects are equal if and only if
they compare as the same:

x.equals(y) if and only if x.compareTo(y) ==
In this case, we say that the natural ordering is consistent with equals.

It is recommended that when designing a class you choose a natural ordering that is
consistent with equals. This is particularly important if you use the interfaces Sorted
Set or SortedMap in the Collections Framework, both of which compare items using
natural ordering. If two items that compare as the same are added to a sorted set, then
only one will be stored, even if the two items are not equal; the same is true for a sorted
map. (You may also specify a different ordering for use with a sorted set or sorted map,
using a comparator as described in Section 3.4; but in that case the specified ordering
should again be consistent with equals.)

Almost every class in the Java core libraries that has a natural ordering is consistent
with equals. An exception is java.math.BigDecimal, which compares as the same two
decimals that have the same value but different precisions, such as 4.0 and 4.00. Sec-
tion 3.3 gives another example of a class with a natural ordering that is not consistent
with equals.

Comparison differs from equality in that is does not accept a null argument. If x is not
null, x. equals(null) must return false, while x.compareTo(null) must throw a Null
PointerException.

We use standard idioms for comparison, writing x.compareTo(y) < 0 instead of x <
y, and writing x.compareTo(y) <= 0instead of x <= y. Itis perfectly sensible to use the
last of these even on types such as java.math.BigDecimal, where the natural ordering
is not consistent with equals.

32 | Chapter3: Comparison and Bounds

vww allitebooks.cond

http://www.allitebooks.org

Contract for Comparable The contract for the Comparable<T> interface specifies three
properties. The properties are defined using the sign function, which is defined such
that sgn(x) returns -1, 0, or 1, depending on whether x is negative, zero, or positive.

First, comparison is anti-symmetric. Reversing the order of arguments reverses the re-
sult:

sgn(x.compareTo(y)) == -sgn(y.compareTo(x))
This generalizes the property for numbers:x < yifand onlyif y > x. Itis also required

that x.compareTo(y) raises an exception if and only if y.compareTo(x) raises an excep-
tion.

Second, comparison is transitive. If one value is smaller than a second, and the second
is smaller than a third, then the first is smaller than the third:

if x.compareTo(y) < 0 and y.compareTo(z) < O then x.compareTo(z) < 0
This generalizes the property for numbers: if x < yandy < zthenx < z.
Third, comparison is a congruence. If two values compare as the same then they com-
pare the same way with any third value:

if x.compareTo(y) == 0 then sgn(x.compareTo(z)) == sgn(y.compareTo(z))
This generalizes the property for numbers: if x == y then x < z if and only ify < z.
Presumably, it is also required that if x.compareTo(y) == 0 then x.compareTo(z) raises

an exception if and only if y.compareTo(z) raises an exception, although this is not
explicitly stated.

It is strongly recommended that comparison be compatible with equality:
x.equals(y) if and only if x.compareTo(y) ==

As we saw earlier, a few exceptional classes, such as java.math.BigDecimal, violate this
constraint.

However, it is always required that comparison be reflexive. Every value compares as
the same as itself:

x.compareTo(x) ==
This follows from the first requirement, since taking x and y to be the same gives us
sgn(x.compareTo(x)) == -sgn(x.compareTo(x)).
Look Out for This! It’sworth pointing out a subtlety in the definition of comparison.
Here is the right way to compare two integers:

class Integer implements Comparable<Integer> {

public int compareTo(Integer that) {

return this.value < that.value ? -1 :
this.value == that.value ? 0 : 1 ;
}

3.1 Comparable | 33

The conditional expression returns — 1, 0, or 1 depending on whether the receiver is
less than, equal to, or greater than the argument. You might think the following code
would work just as well, since the method is permitted to return any negative integer
if the receiver is less than the argument:

class Integer implements Comparable<Integer> {

public int compareTo(Integer that) {
// bad implementation -- don't do it this way!
return this.value - that.value;

}
-

But this code may give the wrong answer when there is overflow. For instance, when
comparing a large negative value to a large positive value, the difference may be more
than the largest value that can be stored in an integer, Integer.MAX_VALUE.

3.2 Maximum of a Collection

In this section, we show how to use the Comparable<T> interface to find the maximum
element in a collection.We begin with a simplified version. The actual version found
in the Collections Framework has a type signature that is a bit more complicated, and
later we will see why.

Here is code to find the maximum element in a nonempty collection, from the class
Collections:
public static <T extends Comparable<T>> T max(Collection<T> coll) {
T candidate = coll.iterator().next();

for (T elt : coll) {
if (candidate.compareTo(elt) < 0) candidate = elt;
}

return candidate;

}

We first saw generic methods that declare new type variables in the signature in Sec-
tion 1.4. For instance, the method asList takes an array of type E[] and returns a result
of type List<E>, and does so for any type E. Here we have a generic method that declares
a bound on the type variable. The method max takes a collection of type Collec
tion<T> and returns a T, and it does this for any type T such that T is a subtype of
Comparable<T>.

The highlighted phrase in angle brackets at the beginning of the type signature declares
the type variable T, and we say that T is bounded by Comparable<T>. As with wildcards,
bounds for type variables are always indicated by the keyword extends, even when the
bound is an interface rather than a class, as is the case here. Unlike wildcards, type
variables must always be bounded using extends, never super.

34 | Chapter3: Comparison and Bounds

In this case, the bound is recursive, in that the bound on T itself depends upon T. It is
even possible to have mutually recursive bounds, such as:

<T extends C<T,U>, U extends D<T,U>>
An example of mutually recursive bounds appears in Section 9.5.

The method body chooses the first element in the collection as a candidate for the
maximum, and then compares the candidate with each element in the collection, setting
the candidate to the element when the element is larger.We use iterator().next()
rather than get(0) to get the first element, because get is not defined on collections
other than lists. The method raises a NoSuchElement exception when the collection is
empty.

When calling the method, T may be chosen to be Integer (since lnteger implements
Comparable<Integer>) or String (since String implements Comparable<String>):

List<Integer> ints = Arrays.aslList(0,1,2);
assert Collections.max(ints) == 2;

nwon

List<String> strs = Arrays.asList("zero","one","two");
assert Collections.max(strs).equals("zero");

But we may not choose T to be Number (since Number does not implement Comparable):

List<Number> nums = Arrays.aslList(0,1,2,3.14);
assert Collections.max(nums) == 3.14; // compile-time error

As expected, here the call to max is illegal.

Here’s an efficiency tip. The preceding implementation used a foreach loop to increase
brevity and clarity. If efficiency is a pressing concern, you might want to rewrite the
method to use an explicit iterator, as follows:
public static <T extends Comparable<T>> T max(Collection<T> coll) {

Iterator<T> it = coll.iterator();

T candidate = it.next();

while (it.hasNext()) {

T elt = it.next();

if (candidate.compareTo(elt) < 0) candidate = elt;
}

return candidate;

}
This allocates an iterator once instead of twice and performs one less comparison.

Signatures for methods should be as general as possible to maximize utility. If you can
replace a type parameter with a wildcard then you should do so. We can improve the
Signature of max by replacing:

<T extends Comparable<T>> T max(Collection<T> coll)
with:

<T extends Comparable<? super T>> T max(Collection<? extends T> coll)

3.2 Maximum of a Collection | 35

Following the Get and Put Principle, we use extends with Collection because we get
values of type T from the collection, and we use super with Comparable because we
put value of type T into the compareTo method. In the next section, we’ll see an example
that would not type-check if the super clause above was omitted.

If you look at the signature of this method in the Java library, you will see something
that looks even worse than the preceding code:

<T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

This is there for backward compatibility, as we will explain at the end of Section 3.6.

3.3 AFruity Example

The Comparable<T> interface gives fine control over what can and cannot be compared.
Say that we have a Fruit class with subclasses Apple and Orange. Depending on how
we set things up, we may prohibit comparison of apples with oranges or we may per-
mit such comparison.

Example 3-2 prohibits comparison of apples with oranges. Here are the three classes it
declares:
class Fruit {...}

class Apple extends Fruit implements Comparable<Apple> {...}
class Orange extends Fruit implements Comparable<Orange> {...}

Each fruit has a name and a size, and two fruits are equal if they have the same name
and the same size. Following good practice, we have also defined a hashCode method,
to ensure that equal objects have the same hash code. Apples are compared by com-
paring their sizes, and so are oranges. Since Apple implements Comparable<Apple>, it is
clear that you can compare apples with apples, but not with oranges. The test code
builds three lists, one of apples, one of oranges, and one containing mixed fruits. We
may find the maximum of the first two lists, but attempting to find the maximum of
the mixed list signals an error at compile time.

Example 3-1 permits comparison of apples with oranges. Compare these three class
declarations with those given previously (all differences between Examples Exam-
ple 3-2 and Example 3-1 are highlighted):

class Fruit implements Comparable<Fruit> {...}

class Apple extends Fruit {...}
class Orange extends Fruit {...}

As before, each fruit has a name and a size, and two fruits are equal if they have the
same name and the same size. Now any two fruits are compared by ignoring their names
and comparing their sizes. Since Fruit implements Comparable<Fruit>, any two fruits
may be compared. Now the test code can find the maximum of all three lists, including
the one that mixes apples with oranges.

36 | Chapter3: Comparison and Bounds

Recall that at the end of the previous section we extended the type signature of
compareTo to use super:

<T extends Comparable<? super T>> T max(Collection<? extends T> coll)

The second example shows why this wildcard is needed. If we want to compare two
oranges, we take T in the preceding code to be Orange:

Orange extends Comparable<? super Orange>

And this is true because both of the following hold:

Orange extends Comparable<Fruit> and Fruit super Orange

Without the super wildcard, finding the maximum of a List<Orange> would be illegal,
even though finding the maximum of a List<Fruit> is permitted.

Also note that the natural ordering used here is not consistent with equals (see Sec-
tion 3.1). Two fruits with different names but the same size compare as the same, but
they are not equal.

3.4 Comparator

Sometimes we want to compare objects that do not implement the Comparable interface,
or to compare objects using a different ordering from the one specified by that interface.
The ordering provided by the Comparable interface is called the natural ordering, so the
Comparator interface provides, so to speak, an unnatural ordering.

We specify additional orderings using the Comparator interface, which contains two
methods:
interface Comparator<T> {
public int compare(T o1, T o02);

public boolean equals(Object obj);
}

The compare method returns a value that is negative, zero, or positive depending upon
whether the first object is less than, equal to, or greater than the second object—just
as with compareTo. (The equals method is the one familiar from class Object;itisincluded
in the interface to remind implementors that equal comparators must have compare
methods that impose the same ordering.)

Example 3-1. Permitting comparison of apples with oranges

abstract class Fruit implements Comparable<Fruit> {
protected String name;
protected int size;
protected Fruit(String name, int size) {
this.name = name; this.size = size;

public boolean equals(Object o) {
if (o instanceof Fruit) {
Fruit that = (Fruit)o;

3.4 Comparator | 37

return this.name.equals(that.name) 8& this.size == that.size;
} else return false;

}
public int hashCode() {
return name.hashCode()*29 + size;

public int compareTo(Fruit that) {
return this.size < that.size ? - 1 :
this.size == that.size 2 0 : 1 ;
}

}
class Apple extends Fruit {

public Apple(int size) { super("Apple", size); }

class Orange extends Fruit {
public Orange(int size) { super("Orange", size); }

class Test {
public static void main(String[] args) {

Apple a1 = new Apple(1); Apple a2 = new Apple(2);
Orange 03 = new Orange(3); Orange o4 = new Orange(4);

List<Apple> apples = Arrays.aslList(a1,a2);
assert Collections.max(apples).equals(a2);

List<Orange> oranges = Arrays.aslList(o3,04);
assert Collections.max(oranges).equals(o4);

List<Fruit> mixed = Arrays.<Fruit>aslList(a1,03);
assert Collections.max(mixed).equals(o3); // ok
}
}

Example 3-2. Prohibiting comparison of apples with oranges

abstract class Fruit {
protected String name;
protected int size;
protected Fruit(String name, int size) {
this.name = name; this.size = size;

public boolean equals(Object o) {
if (o instanceof Fruit) {
Fruit that = (Fruit)o;
return this.name.equals(that.name) 8& this.size == that.size;
} else return false;

}
public int hashCode() {
return name.hashCode()*29 + size;
}
protected int compareTo(Fruit that) {
return this.size < that.size ? -1 :
this.size == that.size 2 0 : 1 ;

38 | Chapter3: Comparison and Bounds

class Apple extends Fruit implements Comparable<Apple> {
public Apple(int size) { super("Apple", size); }
public int compareTo(Apple a) { return super.compareTo(a); }

}

class Orange extends Fruit implements Comparable<Orange> {
public Orange(int size) { super("Orange", size); }
public int compareTo(Orange o) { return super.compareTo(o); }

}
class Test {
public static void main(String[] args) {

Apple a1 = new Apple(1); Apple a2 = new Apple(2);
Orange 03 = new Orange(3); Orange o4 = new Orange(4);

List<Apple> apples = Arrays.aslList(a1,a2);
assert Collections.max(apples).equals(a2);

List<Orange> oranges = Arrays.aslList(o3,04);
assert Collections.max(oranges).equals(o4);

List<Fruit> mixed = Arrays.<Fruit>aslList(a1,03);
assert Collections.max(mixed).equals(o3); // compile-time error
}
}

Here is a comparator that considers the shorter of two strings to be smaller. Only if two
strings have the same length are they compared using the natural (alphabetic) ordering.
Comparator<String> sizeOrder =
new Comparator<String>() {
public int compare(String si, String s2) {
return

si.length() < s2.length() ? -1 :

si.length() > s2.length() ? 1 :

s1.compareTo(s2) ;

}
};

Here is an example:

assert "two".compareTo("three") > 0;

assert sizeOrder.compare("two","three") < 0;

In the natural alphabetic ordering, "two" is greater than "three", whereas in the size
ordering it is smaller.

The Java libraries always provide a choice between Comparable and Comparator. For
every generic method with a type variable bounded by Comparable, there is another
generic method with an additional argument of type Comparator. For instance, corre-
sponding to:

public static <T extends Comparable<? super T>>
T max(Collection<? extends T> coll)

we also have:

3.4 Comparator | 39

public static <T>
T max(Collection<? extends T> coll, Comparator<? super T> cmp)

There are similar methods to find the minimum. For example, here is how to find the
maximum and minimum of a list using the natural ordering and using the size ordering;:
Collection<String> strings = Arrays.asList("from","aaa","to","zzz");
assert max(strings).equals("zzz");
assert min(strings).equals("aaa");

assert max(strings,sizeOrder).equals("from");
assert min(strings,sizeOrder).equals("to");

The string "from" is the maximum using the size ordering because it is longest, and
"to" is minimum because it is shortest.

Here is the code for a version of max using comparators:

public static <T>
T max(Collection<? extends T> coll, Comparator<? super T> cmp)

{

T candidate = coll.iterator().next();
for (T elt : coll) {
if (cmp.compare(candidate, elt) < 0) { candidate = elt; }

return candidate;

}

Compared to the previous version, the only change is that where before we wrote
candidate.compareTo(elt), now we write cmp.compare(candidate,elt). (For easy refer-
ence, this code and what follows is summarized in Example 3-3.)

It is easy to define a comparator that provides the natural ordering:

public static <T extends Comparable<? super T>>
Comparator<T> naturalOrder()

{

return new Comparator<T> {
public int compare(T o1, T 02) { return ol.compareTo(o2); }

}
}

Using this, it is easy to define the version of max that uses the natural ordering in terms
of the version that uses a given comparator:
public static <T extends Comparable<? super T>>
T max(Collection<? extends T> coll)

{

return max(coll, Comparators.<T>naturalOrder());

}

A type parameter must be explicitly supplied for the invocation of the generic method
naturalOrder, since the algorithm that infers types would fail to work out the correct
type otherwise.

Itis also easy to define a method that takes a comparator and returns a new comparator
with the reverse of the given ordering:

40 | Chapter3: Comparison and Bounds

public static <T> Comparator<T>
reverseOrder (final Comparator<T> cmp)

{

return new Comparator<T>() {
public int compare(T o1, T 02) { return cmp.compare(o2,01); }

1
}

This simply reverses the order of arguments to the comparator. (By the contract for
comparators, it would be equivalent to leave the arguments in the original order but
negate the result.) And here is a method that returns the reverse of the natural ordering:
public static <T extends Comparable<? super T>>
Comparator<T> reverseOrder()

{

return new Comparator<T>() {
public int compare(T o1, T 02) { return o2.compareTo(ol); }
};
}

Similar methods are provided in java.util.Collections, see Section 17.4.

Finally, we can define the two versions of min in terms of the two versions of max by
using the two versions of reverseOrder:

public static <T>
T min(Collection<? extends T> coll, Comparator<? super T> cmp)

return max(coll, reverseOrder(cmp));

}

public static <T extends Comparable<? super T>>
T min(Collection<? extends T> coll)

{

return max(coll, Comparators.<T>reverseOrder());

}
(This ends the code summarized in Example 3-3.)

The Collections Framework does provide two versions each of min and max with the
signatures given here, see Section 17.1. However, if you examine the source code of the
library, you will see that none of the four is defined in terms of any of the others; instead,
each is defined directly. The more direct version is longer and harder to maintain, but
faster. With Sun’s current JVM, measurements show a speedup of around 30 percent.
Whether such a speedup is worth the code duplication depends on the situation in
which the code is used. Since the Java utilities might well be used in a critical inner
loop, the designers of the library were right to prefer speed of execution over economy
of expression. But this is not always the case. An improvement of 30 percent may sound
impressive, but it’s insignificant unless the total time of the program is large and the
routine appears in a heavily-used inner loop. Don’t make your own code needlessly
prolix just to eke out a small improvement.

Asafinal example of comparators, here is a method that takes a comparator on elements
and returns a comparator on lists of elements:

3.4 Comparator | 41

public static <E>
Comparator<List<E>> listComparator(final Comparator<? super E> comp) {
return new Comparator<List<E>>() {
public int compare(List<E> list1, List<E> 1list2) {
int n1 = listi.size();
int n2 = list2.size();
for (int i = 0; i < Math.min(n1,n2); i++) {
int k = comp.compare(listi.get(i), list2.get(i));
if (k !'= 0) return k;

return (n1 < n2) ? -1 : (n1 ==n2) 20 : 1;
}
b
}
The loop compares corresponding elements of the two lists, and terminates when cor-
responding elements are found that are not equal (in which case, the list with the smaller
element is considered smaller) or when the end of either list is reached (in which case,
the shorter list is considered smaller). This is the usual ordering for lists; if we convert
a string to a list of characters, it gives the usual ordering on strings.

3.5 Enumerated Types

Java 5 includes support for enumerated types. Here is a simple example:
enum Season { WINTER, SPRING, SUMMER, FALL }

Each enumerated type declaration can be expanded into a corresponding class in a
stylized way. The corresponding class is designed so that it has exactly one instance for
each of the enumerated constants, bound to a suitable static final variable. For example,
the enum declaration above expands into a class called Season. Exactly four instances of
this class exist, bound to four static final variables with the names WINTER, SPRING,
SUMMER, and FALL.

Each class that corresponds to an enumerated type is a subclass of java.lang.Enum. Its
definition in the Java documentation begins like this:

class Enum<E extends Enum<E>>

You may find this frightening at first sight—both of us certainly did! But don’t pan-
ic.Actually, we’ve already seen something similar. The worrying phrase E extends
Enum<E> is a lot like the phrase T extends Comparable<T> that we encountered in the
definition of max (see Section 3.2), and we’ll see that they appear for related reasons.

To understand what’s going on, we need to take a look at the code. Example 3-4 shows
the base class Enum and Example 3-5 shows the class Season that corresponds to the
enumerated type declaration above. (The code for Enum follows the source in the Java
library, but we have simplified a few points.)

Here is the first line of the declaration for the Enum class:

public abstract class Enum<E extends Enum<E>> implements Comparable<E>

42 | Chapter3: Comparison and Bounds

vww allitebooks.cond

http://www.allitebooks.org

And here is the first line of the declaration for the Season class:

class Season extends Enum<Season>

Example 3-3. Comparators

class Comparators {
public static <T>
T max(Collection<? extends T> coll, Comparator<? super T> cmp)
{
T candidate = coll.iterator().next();
for (T elt : coll) {
if (cmp.compare(candidate, elt) < 0) { candidate = elt; }

return candidate;

public static <T extends Comparable<? super T>>
T max(Collection<? extends T> coll)

return max(coll, Comparators.<T>naturalOrder());

public static <T>
T min(Collection<? extends T> coll, Comparator<? super T> cmp)

return max(coll, reverseOrder(cmp));

}

public static <T extends Comparable<? super T>>
T min(Collection<? extends T> coll)

{

return max(coll, Comparators.<T>reverseOrder());

public static <T extends Comparable<? super T>>

Comparator<T> naturalOrder()
{

return new Comparator<T>() {
public int compare(T o1, T 02) { return ol.compareTo(o2); }
};
}
public static <T> Comparator<T>

reverseOrder(final Comparator<T> cmp)
{

return new Comparator<T>() {
public int compare(T o1, T 02) { return cmp.compare(o2,01); }
b
}
public static <T extends Comparable<? super T>>

Comparator<T> reverseOrder()
{

return new Comparator<T>() {
public int compare(T o1, T 02) { return o2.compareTo(ol); }
};

}
}

3.5 Enumerated Types | 43

Example 3-4. Base class for enumerated types

public abstract class Enum<E extends Enum<E>> implements Comparable<E> {
private final String name;
private final int ordinal;
protected Enum(String name, int ordinal) {
this.name = name; this.ordinal = ordinal;

public final String name() { return name; }
public final int ordinal() { return ordinal; }
public String toString() { return name; }
public final int compareTo(E o) {

return ordinal - o.ordinal;

}
}

Example 3-5. Class corresponding to an enumerated type

// corresponds to
// enum Season { WINTER, SPRING, SUMMER, FALL }
final class Season extends Enum<Season> {
private Season(String name, int ordinal) { super(name,ordinal); }
public static final Season WINTER = new Season("WINTER",0);
public static final Season SPRING = new Season("SPRING",1);
public static final Season SUMMER = new Season("SUMMER",2);
public static final Season FALL = new Season("FALL",3);
private static final Season[] VALUES = { WINTER, SPRING, SUMMER, FALL };
public static Season[] values() { return VALUES.clone(); }
public static Season valueOf(String name) {
for (Season e : VALUES) if (e.name().equals(name)) return e;
throw new IllegalArgumentException();

}
}

Matching things up, we can begin to see how this works. The type variable E stands for
the subclass of Enum that implements a particular enumerated type, such as Season.
Every E must satisfy:

E extends Enum<k>

So we can take E to be Season, since:

Season extends Enum<Season>

Furthermore, the declaration of Enum tells us that:

Enum<E> implements Comparable<E>

So it follows that:

Enum<Season> implements Comparable<Season>

Hence, we are allowed to compare two values of type Season with each other, but we
cannot compare a value of type Season with a value of any other type.

Without the type variable, the declaration of the Enum class would begin like this:

class Enum implements Comparable<Enum>

44 | Chapter3: Comparison and Bounds

And the declaration for the Season class would begin like this:

class Season extends Enum

This is simpler, but it is foo simple. With this definition, Season would implement
Comparable<Enum> rather than Comparable<Season>, which would mean that we could
compare a value of type Season with a value of any enumerated type, which is certainly
not what we want!

In general, patterns like T extends Comparable<T> and E extends Enum<E> often arise
when you want to pin down types precisely. We’ll see further examples of this when
we look at the Strategy and Subject-Observer design patterns, in Sections Section 9.4
and Section 9.5.

The rest of the definition is a straightforward application of the typesafe enum pattern
described by Joshua Bloch in Effective Java (Addison-Wesley), which in turn is an in-
stance of the singleton pattern described by Gamma, Helm, Johnson, and Vlissides in
Design Patterns (Addison-Wesley).

The base class Enum defines two fields, a string name and an integer ordinal, that are
possessed by every instance of an enumerated type; the fields are final because once
they are initialized, their value never changes. The constructor for the class is protected,
to ensure that it is used only within subclasses of this class. Each enumeration class
makes the constructor private, to ensure that it is used only to create the enumerated
constants. For instance, the Season class has a private constructor that is invoked exactly
four times in order to initialize the final variables WINTER, SPRING, SUMMER, and FALL.

The base class defines accessor methods for the name and ordinal fields. The toString
method returns the name, and the compareTo method just returns the difference of the
ordinals for the two enumerated values. (Unlike the definition of Integer in Sec-
tion 3.1, this is safe because there is no possibility of overflow.) Hence, constants have
the same ordering as their ordinals—for example, WINTER precedes SUMMER.

Lastly, there are two static methods in every class that corresponds to an enumerated
type. The values method returns an array of all the constants of the type. It returns a
(shallow) clone of the internal array. Cloning is vital to ensure that the client cannot
alter the internal array. Note that you don’t need a cast when calling the clone
method, because cloning for arrays now takes advantage of covariant return types (see
Section 3.8). The valueOf method takes a string and returns the corresponding constant,
found by searching the internal array. It returns an I1legalArgumentException if the
string does not name a value of the enumeration.

3.6 Multiple Bounds

We have seen many examples where a type variable or wildcard is bounded by a single
class or interface. In rare situations, it may be desirable to have multiple bounds, and
we show how to do so here.

3.6 Multiple Bounds | 45

To demonstrate, we use three interfaces from the Java library. The Readable interface
has a read method to read into a buffer from a source, the Appendable interface has an
append method to copy from a buffer into a target, and the Closeable interface has a
close method to close a source or target. Possible sources and targets include files,
buffers, streams, and so on.

For maximum flexibility, we might want to write a copy method that takes any source
that implements both Readable and Closeable and any target that implements both
Appendable and Closeable:

public static <S extends Readable & Closeable,
T extends Appendable & Closeable>
void copy(S src, T trg, int size)
throws IOException
{
try {
CharBuffer buf = CharBuffer.allocate(size);
int i = src.read(buf);
while (i >= 0) {
buf.flip(); // prepare buffer for writing
trg.append(buf);
buf.clear(); // prepare buffer for reading
i = src.read(buf);

}

} finally {
src.close();
trg.close();

}

}

This method repeatedly reads from the source into a buffer and appends from the buffer
into a target. When the source is empty, it closes both the source and the target. (This
example deviates from best practice in that the files are closed in a different block than
the one where they are opened.) The first line specifies that S ranges over any type that
implements both Readable and Closeable, and that T ranges over any type that imple-
ments Appendable and Closeable. When multiple bounds on a type variable appear,
they are separated by ampersands. You cannot use a comma, since that is already used
to separate declarations of type variables.

For example, this method may be called with two files as source and target, or with the
same two files wrapped in buffers as source and target:

int size = 32;

FileReader r = new FileReader("file.in");

FileWriter w = new FileWriter("file.out");

copy(r,w,size);

BufferedReader br = new BufferedReader(new FileReader("file.in"));
BufferedWriter bw = new BufferedWriter(new FileWriter("file.out"));
copy(br,bw,size);

46 | Chapter3: Comparison and Bounds

Other possible sources include FilterReader, PipedReader, and StringReader, and other
possible targets include FilterWriter, PipedWriter, and PrintStream. But you could not
use StringBuffer as a target, since it implements Appendable but not Closeable.

If you are picky, you may have spotted that all classes that implement both Readable
and Closeable are subclasses of Reader, and almost all classes that implement Appenda
ble and Closeable are subclasses of Writer. So you might wonder why we don’t simplify
the method signature like this:

public static void copy(Reader src, Writer trg, int size)

This will indeed admit most of the same classes, but not all of them. For instance,
PrintStream implements Appendable and Closeable but is not a subclass of Writer. Fur-
thermore, you can’t rule out the possibility that some programmer using your code
might have his or her own custom class that, say, implements Readable and Closea
ble but is not a subclass of Reader.

When multiple bounds appear, the first bound is used for erasure.We sawa use of this
earlier in Section 3.2:

public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

Without the highlighted text, the erased type signature for max would have Compara
ble as the return type, whereas in legacy libraries the return type is Object. Maintaining
compatibility with legacy libraries is further discussed in Chapter 5 and Section 8.4.

3.7 Bridges

As we mentioned earlier, generics are implemented by erasure: when you write code
with generics, it compiles in almost exactly the same way as the code you would have
written without generics. In the case of a parameterized interface such as Compara
ble<T>, this may cause additional methods to be inserted by the compiler; these addi-
tional methods are called bridges.

Example 3-6 shows the Comparable interface and a simplified version of the Integer
class in Java before generics. In the nongeneric interface, the compareTo method takes
an argument of type Object. In the nongeneric class, there are two compareTo methods.
The first is the naive method you might expect, to compare an integer with another
integer. The second compares an integer with an arbitrary object: it casts the object to
an integer and calls the first method. The second method is necessary in order to over-
ride the compareTo method in the Comparable interface, because overriding occurs only
when the method signatures are identical. This second method is called a bridge.

Example 3-7 shows what happens when the Comparable interface and the Integer class
are generified. In the generic interface, the compareTo method takes an argument of type
T. In the generic class, a single compareTo method takes an argument of type Integer.

3.7 Bridges | 47

The bridge method is generated automatically by the compiler. Indeed, the compiled
version of the code for both examples is essentially identical.

Example 3-6. Legacy code for comparable integers

interface Comparable {
public int compareTo(Object o);
}

class Integer implements Comparable {
private final int value;
public Integer(int value) { this.value = value; }
public int compareTo(Integer i) {
return (value < i.value) ? -1 : (value == i.value) ? 0 : 1;

}
public int compareTo(Object o) {
return compareTo((Integer)o);

}
}

Example 3-7. Generic code for comparable integers

interface Comparable<T> {
public int compareTo(T o);
}
class Integer implements Comparable<Integer> {
private final int value;
public Integer(int value) { this.value = value; }
public int compareTo(Integer i) {
return (value < i.value) ? -1 : (value == i.value) ? 0 : 1;
}
}

You can see the bridge if you apply reflection. Here is code that finds all methods with
the name compareTo in the class Integer, using toGenericString to print the generic
signature of a method (see Section 7.5).

for (Method m : Integer.class.getMethods())

if (m.getName().equals("compareTo"))
System.out.println(m.toGenericString());

Running this code on the generic version of the Integer class produces the following
output:

public int Integer.compareTo(Integer)
public bridge int Integer.compareTo(java.lang.Object)

This indeed contains two methods, both the declared method that takes an argument
of type Integer and the bridge method that takes an argument of type Object. (As of
this writing, the Sun JVM prints volatile instead of bridge, because the bit used in Java
bytecode to indicate bridge methods is also used to indicate volatile fields; this bug is
expected to be fixed in a future release.)

Bridges can play an important role when converting legacy code to use generics; see
Section 8.4.

48 | Chapter3: Comparison and Bounds

3.8 Covariant Overriding

Java 5 supports covariant method overriding. This feature is not directly related to
generics, but we mention it here because it is worth knowing, and because it is imple-
mented using a bridging technique like that described in the previous section.

InJava 1.4 and earlier, one method can override another only if the argument and return
types match exactly. In Java 5, a method can override another if the argument types
match exactly and the return type of the overriding method is a subtype of the return
type of the other method.

The clone method of class Object illustrates the advantages of covariant overriding:
class Object {

public Object clone() { ... }

In Java 1.4, any class that overrides clone must give it exactly the same return type,
namely Object:
class Point {
public int x;
public int y;
public Point(int x, int y) { this.x=x; this.y=y; }
public Object clone() { return new Point(x,y); }

Here, even though clone always returns a Point, the rules require it to have the return
type Object. This is annoying, since every invocation of clone must cast its result.

Point p = new Point(1,2);
Point q = (Point)p.clone();

In Java 5, it is possible to give the clone method a return type that is more to the point:

class Point {
public int x;
public int y;
public Point(int x, int y) { this.x=x; this.y=y; }
public Point clone() { return new Point(x,y); }

}

Now we may clone without a cast:

Point p = new Point(1,2);

Point q = p.clone();
Covariant overriding is implemented using the bridging technique described in the
previous section. As before, you can see the bridge if you apply reflection. Here is code
that finds all methods with the name clone in the class Point:

for (Method m : Point.class.getMethods())

if (m.getName().equals("clone"))
System.out.println(m.toGenericString());

3.8 Covariant Overriding | 49

Running this code on the covariant version of the Point class produces the following
output:

public Point Point.clone()
public bridge java.lang.Object Point.clone()

Here the bridging technique exploits the fact that in a class file two methods of the
same class may have the same argument signature, even though this is not permitted
in Java source. The bridge method simply calls the first method. (Again, as of this
writing, the Sun JVM prints volatile instead of bridge.)

50 | Chapter3: Comparison and Bounds

CHAPTER 4
Declarations

This chapter discusses how to declare a generic class. It describes constructors, static
members, and nested classes, and it fills in some details of how erasure works.

4.1 Constructors

In a generic class, type parameters appear in the header that declares the class, but not
in the constructor:
class Pair<T, U> {
private final T first;
private final U second;
public Pair(T first, U second) { this.first=first; this.second=second; }

public T getFirst() { return first; }
public U getSecond() { return second; }

}

The type parameters T and U are declared at the beginning of the class, not in the con-
structor. However, actual type parameters are passed to the constructor whenever it is
invoked:

Pair<String, Integer> pair = new Pair<String, Integer>(“one",2);
assert pair.getFirst().equals("one") 8& pair.getSecond() == 2;

Look Out for This! A common mistake is to forget the type parameters when invoking
the constructor:

Pair<String, Integer> pair = new Pair("one",2);
This mistake produces a warning, but not an error. It is taken to be legal, because
Pair is treated as a raw type, but conversion from a raw type to the corresponding

parameterized type generates an unchecked warning; see Section 5.3, which explains
how the -X1lint:unchecked flag can help you spot errors of this kind.

51

4.2 Static Members

Because generics are compiled by erasure, at run time the classes List<Integer>,
List<String>, and List<List<String>> are all implemented by a single class, namely
List. You can see this using reflection:

List<Integer> ints = Arrays.aslist(1,2,3);

List<String> strings = Arrays.asList("one","two");
assert ints.getClass() == strings.getClass();

Here the class associated with a list of integers at run time is the same as the class
associated with a list of strings.

One consequence is that static members of a generic class are shared across all instan-
tiations of that class, including instantiations at different types. Static members of a
class cannot refer to the type parameter of a generic class, and when accessing a static
member the class name should not be parameterized.

For example, here is a class, Cel1<T>, in which each cell has an integer identifier and a
value of type T:
class Cell<T> {

private final int id;

private final T value;

private static int count = 0;

private static synchronized int nextId() { return count++; }

public Cell(T value) { this.value=value; id=nextId(); }

public T getValue() { return value; }

public int getId() { return id; }

public static synchronized int getCount() { return count; }

}

A static field, count, is used to allocate a distinct identifier to each cell. The static
nextId method is synchronized to ensure that unique identifiers are generated even in
the presence of multiple threads. The static getCount method returns the current count.

Here is code that allocates a cell containing a string and a cell containing an integer,
which are allocated the identifiers 0 and 1, respectively:
Cell<String> a = new Cell<String>("one");

Cell<Integer> b = new Cell<Integer>(2);
assert a.getId() == 0 && b.getId() == 1 &8 Cell.getCount() == 2;

Static members are shared across all instantiations of a class, so the same count is
incremented when allocating either a string or an integer cell.

Because static members are independent of any type parameters, we are not permitted
to follow the class name with type parameters when accessing a static member:

Cell.getCount(); // ok
Cell<Integer>.getCount(); // compile-time error
Cell<?>.getCount(); // compile-time error

The count is static, so it is a property of the class as a whole, not any particular instance.

52 | Chapter4: Declarations

vww allitebooks.cond

http://www.allitebooks.org

For the same reason, you may not refer to a type parameter anywhere within a static
member. Here is a second version of Cell, which attempts to use a static variable to
keep a list of all values stored in any cell:
class Cell2<T> {

private final T value;

private static List<T> values = new ArraylList<T>(); // illegal

public Cell(T value) { this.value=value; values.add(value); }

public T getValue() { return value; }

public static List<T> getValues() { return values; } // illegal
}

Since the class may be used with different type parameters at different places, it makes
no sense to refer to T in the declaration of the static field values or the static method
getValues(), and these lines are reported as errors at compile time. If we want a list of
all values kept in cells, then we need to use a list of objects, as in the following variant:
class Cell2<T> {

private final T value;

private static List<Object> values = new ArraylList<Object>(); // ok

public Cell(T value) { this.value=value; values.add(value); }

public T getValue() { return value; }

public static List<Object> getValues() { return values; } // ok
}

This code compiles and runs with no difficulty:

Cell2<String> a = new Cell2<String>("one");
Cell2<Integer> b = new Cell2<Integer>(2);
assert Cell2.getValues().toString().equals("[one, 2]");

4.3 Nested Classes

Java permits nesting one class inside another. If the outer class has type parameters and
the inner class is not static, then type parameters of the outer class are visible within
the inner class.

Example 4-1 shows a class implementing collections as a singly-linked list. The class
extends java.util.AbstractCollection, so it only needs to define the methods size,
add, and iterator. The class contains an inner class, Node, for the list nodes, and an
anonymous inner class implementing Iterator<E>. The type parameter E is in scope
within both of these classes.

Example 4-1. Type parameters are in scope for nested, nonstatic classes

public class LinkedCollection<E> extends AbstractCollection<E> {
private class Node {
private E element;
private Node next = null;
private Node(E elt) { element = elt; }

private Node first = new Node(null);
private Node last = first;

4.3 Nested Classes | 53

private int size = 0;
public LinkedCollection() {}
public LinkedCollection(Collection<? extends E> c) { addAll(c); }
public int size() { return size; }
public boolean add(E elt) {
last.next = new Node(elt); last = last.next; size++;
return true;
}
public Iterator<E> iterator() {
return new Iterator<k>() {
private Node current = first;
public boolean hasNext() {
return current.next != null;

}
public E next() {
if (current.next != null) {
current = current.next;
return current.element;
} else throw new NoSuchElementException();

public void remove() {
throw new UnsupportedOperationException();

}
s
}
}

For contrast, Example 4-2 shows a similar implementation, but this time the nested
Node class is static, and so the type parameter E is not in scope for this class. Instead,
the nested class is declared with its own type parameter, T. Where the previous version
referred to Node, the new version refers to Node<E>. The anonymous iterator class in the
preceding example has also been replaced by a nested static class, again with its own
type parameter.

If the node classes had been made public rather than private, you would refer to the
node class in the first example as LinkedCollection<E>.Node, whereas you would refer
to the node class in the second example as LinkedCollection.Node<E>.

Example 4-2. Type parameters are not in scope for nested, static classes

class LinkedCollection<E> extends AbstractCollection<E> {
private static class Node<T> {
private T element;
private Node<T> next = null;
private Node(T elt) { element = elt; }

private Node<E> first = new Node<E>(null);
private Node<E> last = first;
private int size = 0;
public LinkedCollection() {}
public LinkedCollection(Collection<? extends E> c) { addAll(c); }
public int size() { return size; }
public boolean add(E elt) {
last.next = new Node<E>(elt); last = last.next; size++;

54 | Chapter4: Declarations

}

return true;

private static class LinkedIterator<T> implements Iterator<T> {

}

private Node<T> current;
public LinkedIterator(Node<T> first) { current = first; }
public boolean hasNext() {

return current.next != null;

}
public T next() {
if (current.next != null) {
current = current.next;
return current.element;
} else throw new NoSuchElementException();

public void remove() {
throw new UnsupportedOperationException();

}

public Iterator<E> iterator() {

}
}

return new LinkedIterator<E>(first);

Of the two alternatives described here, the second is preferable. Nested classes that are
not static are implemented by including a reference to the enclosing instance, since they
may, in general, access components of that instance. Static nested classes are usually
both simpler and more efficient.

4.4 How Erasure Works

The erasure of a type is defined as follows: drop all type parameters from parameterized
types, and replace any type variable with the erasure of its bound, or with Object if it
has no bound, or with the erasure of the leftmost bound if it has multiple bounds. Here
are some examples:

The erasure of List<Integer>, List<String>, and List<List<String>> is List.
The erasure of List<Integer>[] is List[].

The erasure of List is itself, similarly for any raw type (see Section 5.3 for an ex-
planation of raw types).

The erasure of int is itself, similarly for any primitive type.
The erasure of Integer is itself, similarly for any type without type parameters.

The erasure of T in the definition of asList (see Section 1.4) is Object, because T
has no bound.

The erasure of T in the definition of max (see Section 3.2) is Comparable, because T
has bound Comparable<? super T>.

The erasure of T in the final definition of max (see Section 3.6) is Object, because
Thasbound Object & Comparable<T> and we take the erasure of the leftmost bound.

4.4 How Erasure Works | 55

e The erasures of S and T in the definition of copy (see Section 3.6) are Readable and
Appendable, because S has bound Readable & Closeable and T has bound Append-
able & Closeable.

¢ The erasure of LinkedCollection<E>.Node or LinkedCollection.Node<E> (see Sec-
tion 4.3) is LinkedCollection.Node.

In Java, two distinct methods cannot have the same signature. Since generics are im-
plemented by erasure, it also follows that two distinct methods cannot have signatures
with the same erasure. A class cannot overload two methods whose signatures have the
same erasure, and a class cannot implement two interfaces that have the same erasure.

For example, here is a class with two convenience methods. One adds together every
integer in a list of integers, and the other concatenates together every string in a list of
strings:

class Overloaded {
public static int sum(List<Integer> ints) {
int sum = 0;
for (int i : ints) sum += i;
return sum;

public static String sum(List<String> strings) {
StringBuffer sum = new StringBuffer();
for (String s : strings) sum.append(s);
return sum.toString();
}
}

This works as intended:

assert sum(Arrays.aslList(1,2,3)) == 6;
assert sum(Arrays.asList("a","b")).equals("ab");

Here are the erasures of the signatures of the two methods:

int sum(List)
String sum(List)

The two methods have different return types, which is sufficient for Java to distinguish
them.

However, say we change the methods so that each appends its result to the end of the
argument list rather than returning a value:

class Overloaded2 {
// compile-time error, cannot overload two methods with same erasure
public static boolean allZero(List<Integer> ints) {
for (int i : ints) if (i != 0) return false;
return true;

public static boolean allZero(List<String> strings) {
for (String s : strings) if (s.length() != 0) return false;
return true;

56 | Chapter4: Declarations

}
}

We intend this code to work as follows:

assert allZero(Arrays.asList(0,0,0));
assert allZero(Arrays.asList("","",""));

However, in this case the erasures of the signatures of both methods are identical:
boolean allZero(List)

Therefore, a name clash is reported at compile time. It is not possible to give both
methods the same name and try to distinguish between them by overloading, because
after erasure it is impossible to distinguish one method call from the other.

For another example, here is a bad version of the integer class, that tries to make it
possible to compare an integer with either an integer or a long;:
class Integer implements Comparable<Integer>, Comparable<Long> {

// compile-time error, cannot implement two interfaces with same erasure

private final int value;

public Integer(int value) { this.value = value; }

public int compareTo(Integer i) {

return (value < i.value) ? -1 : (value == i.value) ? 0 : 1;
}

public int compareTo(Long 1) {
return (value < l.value) ? -1 : (value == l.value) ? 0 : 1;
}

}

If this were supported, it would, in general, require a complex and confusing definition
of bridge methods (see Section 3.7). By far, the simplest and most understandable op-
tion is to ban this case.

4.4 How Erasure Works | 57

CHAPTER5
Evolution, Not Revolution

One motto underpinning the design of generics for Java is evolution, not revolution. It
must be possible to migrate a large, existing body of code to use generics gradually
(evolution) without requiring a radical, all-at-once change (revolution). The generics
design ensures that old code compiles against the new Java libraries, avoiding the un-
fortunate situation in which half of your code needs old libraries and half of your code
needs new libraries.

The requirements for evolution are much stronger than the usual backward compati-
bility. With simple backward compatibility, one would supply both legacy and generic
versions for each application; this is exactly what happens in C#, for example. If you
are building on top of code supplied by multiple suppliers, some of whom use legacy
collections and some of whom use generic collections, this might rapidly lead to a
versioning nightmare.

What we require is that the same client code works with both the legacy and generic
versions of a library. This means that the supplier and clients of a library can make
completely independent choices about when to move from legacy to generic code. This
is a much stronger requirement than backward compatibility; it is called migration
compatibility or platform compatibility.

Java implements generics via erasure, which ensures that legacy and generic versions
usually generate identical class files, save for some auxiliary information about types.
It is possible to replace a legacy class file by a generic class file without changing, or
even recompiling, any client code; this is called binary compatibility.

We summarize this with the motto binary compatibility ensures migration compatibility
—or, more concisely, erasure eases evolution.

This section shows how to add generics to existing code; it considers a small example,
alibrary for stacks that extends the Collections Framework, together with an associated
client. We begin with the legacy stack library and client (written for Java before gener-
ics), and then present the corresponding generic library and client (written for Java with
generics). Our example code is small, so it is easy to update to generics all in one go,
but in practice the library and client will be much larger, and we may want to evolve

59

them separately. This is aided by raw types, which are the legacy counterpart of para-
meterized types.

The parts of the program may evolve in either order. You may have a generic library
with a legacy client; this is the common case for anyone that uses the Collections
Framework in Java 5 with legacy code. Or you may have a legacy library with a generic
client; this is the case where you want to provide generic signatures for the library
without the need to rewrite the entire library. We consider three ways to do this: min-
imal changes to the source, stub files, and wrappers. The first is useful when you have
access to the source and the second when you do not; we recommend against the third.

In practice, the library and client may involve many interfaces and classes, and there
may not even be a clear distinction between library and client. But the same principles
discussed here still apply, and may be used to evolve any part of a program independ-
ently of any other part.

5.1 Legacy Library with Legacy Client

We begin with a simple library of stacks and an associated client, as presented in
Example 5-1. This is legacy code, written for Java 1.4 and its version of the Collections
Framework. Like the Collections Framework, we structure the library as an interface
Stack (analogous to List), an implementation class ArrayStack (analogous to Array
List),and a utility class Stacks (analogous to Collections). The interface Stack provides
just three methods: empty, push, and pop. The implementation class ArrayStack provides
a single constructor with no arguments, and implements the methods empty, push, and
pop using methods size, add, and remove on lists. The body of pop could be shorter—
instead of assigning the value to the variable, it could be returned directly—but it will
be interesting to see how the type of the variable changes as the code evolves. The utility
class provides just one method, reverse, which repeatedly pops from one stack and
pushes onto another.

The client allocates a stack, pushes a few integers onto it, pops an integer off, and then
reverses the remainder into a fresh stack. Since this is Java 1.4, integers must be ex-
plicitly boxed when passed to push, and explicitly unboxed when returned by pop.

5.2 Generic Library with Generic Client

Next, we update the library and client to use generics, as presented in Example 5-2.
This is generic code, written for Java 5 and its version of the Collections Framework.
The interface now takes a type parameter, becoming Stack<E> (analogous to List<E>),
and so does the implementing class, becoming ArrayStack<E> (analogous to Array
List<E>), but no type parameter is added to the utility class Stacks (analogous to Col
lections). The type Object in the signatures and bodies of push and pop is replaced by
the type parameter E. Note that the constructor in ArrayStack does not require a type

60 | Chapter5: Evolution, Not Revolution

parameter. In the utility class, the reverse method becomes a generic method with
argument and result of type Stack<T>. Appropriate type parameters are added to the
client, and boxing and unboxing are now implicit.

In short, the conversion process is straightforward: just add a few type parameters and
replace occurrences of Object by the appropriate type variable. All differences between
the legacy and generic versions can be spotted by comparing the highlighted portions
of the two examples. The implementation of generics is designed so that the two ver-
sions generate essentially equivalent class files. Some auxiliary information about the
types may differ, but the actual bytecodes to be executed will be identical. Hence,
executing the legacy and generic versions yields the same results. The fact that legacy
and generic sources yield identical class files eases the process of evolution, as we dis-
Cuss next.

Example 5-1. Legacy library with legacy client

1/Stack.java:
interface Stack {
public boolean empty();
public void push(Object elt);
public Object pop();

1/ArrayStack.java:
import java.util.*;
class ArrayStack implements Stack {
private List list;
public ArrayStack() { list = new ArrayList(); }
public boolean empty() { return list.size() == 0; }
public void push(Object elt) { list.add(elt); }
public Object pop() {
Object elt = list.remove(list.size()-1);
return elt;
}
public String toString() { return "stack"+list.toString(); }

}

1/Stacks. java:
class Stacks {
public static Stack reverse(Stack in) {
Stack out = new ArrayStack();
while (!in.empty()) {
Object elt = in.pop();
out.push(elt);

return out;
}
}

1/Client.java:
class Client {
public static void main(String[] args) {
Stack stack = new ArrayStack();

5.2 Generic Library with Generic Client | 61

for (int i = 0; i<4; i++) stack.push(new Integer(i));

assert stack.toString().equals("stack[o, 1, 2, 3]");

int top = ((Integer)stack.pop()).intValue();

assert top == 3 & stack.toString().equals("stack[o, 1, 2]");
Stack reverse = Stacks.reverse(stack);

assert stack.empty();

assert reverse.toString().equals("stack[2, 1, 0]");

5.3 Generic Library with Legacy Client

Now let’s consider the case where the library is updated to generics while the client
remains in its legacy version. This may occur because there is not enough time to con-
vert everything all at once, or because the library and client are controlled by different
organizations. This corresponds to the most important case of backward compatibility,
where the generic Collections Framework of Java 5 must still work with legacy clients
written against the Collections Framework in Java 1.4.

In order to support evolution, whenever a parameterized type is defined, Java also
recognizes the corresponding unparameterized version of the type, called a raw type.
For instance, the parameterized type Stack<E> corresponds to the raw type Stack, and
the parameterized type ArrayStack<E> corresponds to the raw type ArrayStack.

Every parameterized type is a subtype of the corresponding raw type, so a value of the
parameterized type can be passed where a raw type is expected. Usually, it is an error
to pass a value of a supertype where a value of its subtype is expected, but Java does
permit a value of a raw type to be passed where a parameterized type is expected—
however, it flags this circumstance by generating an unchecked conversion warning. For
instance, you can assign a value of type Stack<E> to a variable of type Stack, since the
former is a subtype of the latter. You can also assign a value of type Stack to a variable
of type Stack<E>, but this will generate an unchecked conversion warning.

To be specific, consider compiling the generic source for Stack<E>, ArrayStack<E>, and

Stacks from Example 5-2 (say, in directory g) with the legacy source for Client from

Example 5-1 (say, in directory 1). Sun’s Java 5 compiler yields the following message:
% javac g/Stack.java g/ArrayStack.java g/Stacks.java 1/Client.java

Note: Client.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

The unchecked warning indicates that the compiler cannot offer the same safety guar-
antees that are possible when generics are used uniformly throughout. However, when
the generic code is generated by updating legacy code, we know that equivalent class
files are produced from both, and hence (despite the unchecked warning) running a
legacy client with the generic library will yield the same result as running the legacy
client with the legacy library. Here we assume that the only change in updating the

62 | Chapter5: Evolution, Not Revolution

library was to introduce generics, and that no change to the behavior was introduced,
either on purpose or by mistake.

Example 5-2. Generic library with generic client

g/Stack.java:
interface Stack<E> {
public boolean empty();
public void push(E elt);
public E pop();

g/ArrayStack.java:
import java.util.*;
class ArrayStack<E> implements Stack<E> {
private List<E> list;
public ArrayStack() { list = new ArrayList<E>(); }
public boolean empty() { return list.size() == 0; }
public void push(E elt) { list.add(elt); }
public E pop() {
E elt = list.remove(list.size()-1);
return elt;
}
public String toString() { return "stack"+list.toString(); }

}

g/Stacks. java:
class Stacks {
public static <T> Stack<T> reverse(Stack<T> in) {
Stack<T> out = new ArrayStack<T>();
while (!in.empty()) {
T elt = in.pop();
out.push(elt);

return out;

}
}

g/Client.java:
class Client {
public static void main(String[] args) {
Stack<Integer> stack = new ArrayStack<Integer>();
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[o, 1, 2, 3]");
int top = stack.pop();
assert top == 3 8& stack.toString().equals("stack[o, 1, 2]");
Stack<Integer> reverse = Stacks.reverse(stack);
assert stack.empty();
assert reverse.toString().equals("stack[2, 1, 0]");
}
}

If we follow the suggestion above and rerun the compiler with the appropriate switch
enabled, we get more details:

5.3 Generic Library with Legacy Client | 63

% javac -Xlint:unchecked g/Stack.java g/ArrayStack.java \
% g/Stacks.java 1/Client.java
1/Client.java:4: warning: [unchecked] unchecked call
to push(E) as a member of the raw type Stack
for (int i = 0; i<4; i++) stack.push(new Integer(i));

1/Client.java:8: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<E>
Stack reverse = Stacks.reverse(stack);
Y

1/Client.java:8: warning: [unchecked] unchecked method invocation:
<E>reverse(Stack<E>) in Stacks is applied to (Stack)

Stack reverse = Stacks.reverse(stack);
A

3 warnings

Not every use of a raw type gives rise to a warning. Because every parameterized type
is a subtype of the corresponding raw type, but not conversely, passing a parameterized
type where a raw type is expected is safe (hence, no warning for getting the result from
reverse), but passing a raw type where a parameterized type is expected issues a warn-
ing (hence, the warning when passing an argument to reverse); this is an instance of
the Substitution Principle. When we invoke a method on a receiver of a raw type, the
method is treated as if the type parameter is a wildcard, so getting a value from a raw
type is safe (hence, no warning for the invocation of pop), but putting a value into a raw
type issues a warning (hence, the warning for the invocation of push); this is an instance
of the Get and Put Principle.

Even if you have not written any generic code, you may still have an evolution problem
because others have generified their code. This will affect everyone with legacy code
that uses the Collections Framework, which has been generified by Sun. So the most
important case of using generic libraries with legacy clients is that of using the Java 5
Collections Framework with legacy code written for the Java 1.4 Collections Frame-
work.

In particular, applying the Java 5 compiler to the legacy code in Example 5-1 also issues
unchecked warnings, because of the uses of the generified class ArraylList from the
legacy class ArrayStack. Here is what happens when we compile legacy versions of all
the files with the Java 5 compiler and libraries:

% javac -Xlint:unchecked 1/Stack.java 1/ArrayStack.java \

% 1/Stacks.java 1/Client.java

1/ArrayStack.java:6: warning: [unchecked] unchecked call to add(E)

as a member of the raw type java.util.list
public void push(Object elt) list.add(elt);

1 warning

Here the warning for the use of the generic method add in the legacy method push is
issued for reasons similar to those for issuing the previous warning for use of the generic
method push from the legacy client.

64 | Chapter5: Evolution, Not Revolution

[tis poor practice to configure the compiler to repeatedly issue warnings that you intend
to ignore. It is distracting and, worse, it may lead you to ignore warnings that require
attention—just as in the fable of the little boy who cried wolf. In the case of pure legacy
code, such warnings can be turned off by using the -source 1.4 switch:

% javac -source 1.4 1/Stack.java 1/ArrayStack.java \
% 1/Stacks.java 1/Client.java

This compiles the legacy code and issues no warnings or errors. This method of turning
off warnings is only applicable to true legacy code, with none of the features introduced
in Java 5, generic or otherwise. One can also turn off unchecked warnings by using
annotations, as described in the next section, and this works even with features intro-
duced in Java 5.

5.4 Legacy Library with Generic Client

[t usually makes sense to update the library before the client, but there may be cases
when you wish to do it the other way around. For instance, you may be responsible for
maintaining the client but not the library; or the library may be large, so you may want
to update it gradually rather than all at once; or you may have class files for the library,
but no source.

In such cases, it makes sense to update the library to use parameterized types in its
method signatures, but not to change the method bodies. There are three ways to do
this: by making minimal changes to the source, by creating stub files, or by use of
wrappers. We recommend use of minimal changes when you have access to source and
use of stubs when you have access only to class files, and we recommend against use
of wrappers.

5.4.1. Evolving a Library using Minimal Changes

The minimal changes technique is shown in Example 5-3. Here the source of the library
has been edited, but only to change method signatures, not method bodies. The exact
changes required are highlighed in boldface. This is the recommended technique for
evolving a library to be generic when you have access to the source.

To be precise, the changes required are:
* Adding type parameters to interface or class declarations as appropriate (for in-
terface Stack<E> and class ArrayStack<E>)

* Adding type parameters to any newly parameterized interface or class in an extends
or implements clause (for Stack<E> in the implements clause of ArrayStack<E>),

* Adding type parameters to each method signature as appropriate (for push and
pop in Stack<E> and ArrayStack<E>, and for reverse in Stacks)

5.4 Legacy Library with Generic Client | 65

* Adding an unchecked cast to each return where the return type contains a type
parameter (for pop in ArrayStack<E>, where the return type is E)—without this cast,
you will get an error rather than an unchecked warning

* Optionally adding annotations to suppress unchecked warnings (for Array
Stack<E> and Stacks)

It is worth noting a few changes that we do not need to make. In method bodies, we
can leave occurrences of Object as they stand (see the first line of pop in ArrayStack),
and we do not need to add type parameters to any occurrences of raw types (see the
first line of reverse in Stacks). Also, we need to add a cast to a return clause only when
the return type is a type parameter (as in pop) but not when the return type is a para-
meterized type (as in reverse).

With these changes, the library will compile successtully, although it will issue a num-
ber of unchecked warnings. Following best practice, we have commented the code to
indicate which lines trigger such warnings:
% javac -Xlint:unchecked m/Stack.java m/ArrayStack.java m/Stacks.java
m/ArrayStack.java:7: warning: [unchecked] unchecked call to add(E)

as a member of the raw type java.util.List
public void push(E elt) list.add(elt); // unchecked call

m/ArrayStack.java:10: warning: [unchecked] unchecked cast
found : java.lang.Object
required: E

return (E)elt; // unchecked cast

m/Stacks.java:7: warning: [unchecked] unchecked call to push(T)
as a member of the raw type Stack
out.push(elt); // unchecked call

m/Stacks.java:9: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>
return out; // unchecked conversion
A

4 warnings

To indicate that we expect unchecked warnings when compiling the library classes, the
source has been annotated to suppress such warnings.

@SuppressWarnings("unchecked");

(The suppress warnings annotation does not work in early versions of Sun’s compiler
for Java 5.) This prevents the compiler from crying wolf—we’ve told it not to issue
unchecked warnings that we expect, so it will be easy to spot any that we don’t expect.
In particular, once we’ve updated the library, we should not see any unchecked warn-
ings from the client. Note as well that we’ve suppressed warnings on the library classes,
but not on the client.

66 | Chapter5: Evolution, Not Revolution

Example 5-3. Evolving a library using minimal changes

m/Stack.java:
interface Stack<E> {
public boolean empty();
public void push(E elt);
public E pop();

m/ArrayStack.java:
@Suppressiarnings("unchecked")
class ArrayStack<E> implements Stack<E> {
private List list;
public ArrayStack() { list = new ArraylList(); }
public boolean empty() { return list.size() == 0; }
public void push(E elt) { list.add(elt); } // unchecked call
public E pop() {
Object elt = list.remove(list.size()-1);
return (E)elt; // unchecked cast

public String toString() { return "stack"+list.toString(); }
}

m/Stacks.java:
@SuppressWarnings("unchecked")
class Stacks {
public static <T> Stack<T> reverse(Stack<T> in) {
Stack out = new ArrayStack();
while (!in.empty()) {
Object elt = in.pop();
out.push(elt); // unchecked call

return out; // unchecked conversion
}
}

The only way to eliminate (as opposed to suppress) the unchecked warnings generated
by compiling the library is to update the entire library source to use generics. This is
entirely reasonable, as unless the entire source is updated there is no way the compiler
can check that the declared generic types are correct. Indeed, unchecked warnings are
warnings—rather than errors—largely because they support the use of this technique.
Use this technique only if you are sure that the generic signatures are in fact correct.
The best practice is to use this technique only as an intermediate step in evolving code
to use generics throughout.

Example 5-4. Evolving a library using stubs

s/Stack.java:
interface Stack<E> {
public boolean empty();
public void push(E elt);
public E pop();

5.4 Legacy Library with Generic Client | 67

s/StubException.java:
class StubException extends UnsupportedOperationException {}

s/ArrayStack.java:
class ArrayStack<E> implements Stack<E> {
public boolean empty() { throw new StubException(); }
public void push(E elt) { throw new StubException(); }
public E pop() { throw new StubException(); }
public String toString() { throw new StubException(); }
}

s/Stacks.java:
class Stacks {
public static <T> Stack<T> reverse(Stack<T> in) {
throw new StubException();

}
}

5.4.2. Evolving a Library using Stubs

The stubs technique is shown in Example 5-4. Here we write stubs with generic sig-
natures but no bodies.We compile the generic client against the generic signatures, but
run the code against the legacy class files. This technique is appropriate when the source
is not released, or when others are responsible for maintaining the source.

To be precise, we introduce the same modifications to interface and class declarations
and method signatures as with the minimal changes technique, except we completely
delete all executable code, replacing each method body with code that throws a Stu
bException (a new exception that extends UnsupportedOperationException).

When we compile the generic client, we do so against the class files generated from the
stub code, which contain appropriate generic signatures (say, in directory s). When we
run the client, we do so against the original legacy class files (say, in directory 1).

% javac -classpath s g/Client.java
% java -ea -classpath 1 g/Client

Again, this works because the class files generated for legacy and generic files are es-
sentially identical, save for auxiliary information about the types. In particular, the
generic signatures that the client is compiled against match the legacy signatures (apart
from auxiliary information about type parameters), so the code runs successfully and
gives the same answer as previously.

5.4.3. Evolving a Library using Wrappers

The wrappers technique is shown in Example 5-5. Here we leave the legacy source and
class files unchanged, and provide a generic wrapper class that accesses the legacy class
via delegation.We present this technique mainly in order to warn you against its use—
it is usually better to use minimal changes or stubs.

68 | Chapter5: Evolution, Not Revolution

This techique creates a parallel hierarchy of generic interfaces and wrapper classes. To
be precise, we create a new interface GenericStack corresponding to the legacy interface
Stack, we create a new class GenericWrapperClass to access the legacy implementation
ArrayStack, and we create a new class GenericStacks corresponding to the legacy con-
venience class Stacks.

The generic interface GenericStack is derived from the legacy interface Stack by the
same method used in the previous sections to update the signatures to use generics. In
addition, a new method unwrap is added, that extracts the legacy implementation from
a wrapper.

The wrapper class GenericStackiWrapper<E> implements GenericStack<E> by delegation
to a Stack. The constructor takes an instance that implements the legacy interface
Stack, which is stored in a private field, and the unwrap method returns this instance.
Because delegation is used, any updates made to the underlying legacy stack will be
seen through the generic stack view offered by the wrapper.

The wrapper implements each method in the interface (empty, push, pop) by a call to
the corresponding legacy method; and it implements each method in Object that is
overridden in the legacy class (toString) similarly. As with minimal changes, we add
an unchecked cast to the return statement when the return type contains a type pa-
rameter (as in pop); without this cast you will get an error rather than an unchecked
warning.

A single wrapper will suffice for multiple implementations of the same interface. For
instance, if we had both ArrayStack and LinkedStack implementations of Stack, we
could use GenericStackWrapper<E> for both.

The new convenience class GenericStacks is implemented by delegation to the legacy
class Stacks. The generic reverse method unwraps its argument, calls the legacy
reverse method, and wraps its result.

Required changes to the client in Example 5-5 are shown in boldface.

Wrappers have a number of disadvantages compared to minimal changes or stubs.
Wrappers require maintaining two parallel hierarchies, one of legacy interfaces and
classes and one of generic interfaces and classes. Conversion by wrapping and un-
wrapping between these can become tedious. If and when the legacy classes are gen-
erified properly, further work will be required to remove the redundant wrappers.

Example 5-5. Evolving a library using wrappers

// Don't do this---use of wrappers is not recommended!

1/Stack.java, 1/Stacks.java, 1/ArrayStack.java:
// As in Example 5.1

w/GenericStack.java:
interface GenericStack<E> {
public Stack unwrap();

5.4 Legacy Library with Generic Client | 69

public boolean empty();
public void push(E elt);
public E pop();

w/GenericStackWrapper.java:

@SuppressWarnings("unchecked")

class GenericStackWrapper<E> implements GenericStack<E> {
private Stack stack;
public GenericStackWrapper(Stack stack) { this.stack = stack; }
public Stack unwrap() { return stack; }
public boolean empty() { return stack.empty(); }
public void push(E elt) { stack.push(elt); }
public E pop() { return (E)stack.pop(); } // unchecked cast
public String toString() { return stack.toString(); }

}

w/GenericStacks. java:
class GenericStacks {
public static <T> GenericStack<T> reverse(GenericStack<T> in) {
Stack rawIn = in.unwrap();
Stack rawOut = Stacks.reverse(rawIn);
return new GenericStackWrapper<T>(rawOut);
}
}

w/Client.java:
class Client {
public static void main(String[] args) {
GenericStack<Integer> stack
= new GenericStackWrapper<Integer>(new ArrayStack());
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[o, 1, 2, 3]");
int top = stack.pop();
assert top == 3 88 stack.toString().equals("stack[o0, 1, 2]");
GenericStack<Integer> reverse = GenericStacks.reverse(stack);
assert stack.empty();
assert reverse.toString().equals("stack[2, 1, 0]");
}
}

Worappers also present deeper and subtler problems. If the code uses object identity,
problems may appear because the legacy object and the wrapped object are distinct.
Further, complex structures will require multiple layers of wrappers. Imagine applying
this technique to a stack of stacks! You would need to define a two-level wrapper, that
wraps or unwraps each second-level stack as it is pushed onto or popped from the top-
level stack. Because wrapped and legacy objects are distinct, it may be hard or even
impossible to always ensure that the wrapped objects view all changes to the legacy
objects.

The design of Java generics, by ensuring that legacy objects and generic objects are the
same, avoids all of these problems with wrappers. The design of generics for C# is very
different: legacy classes and generic classes are completely distinct, and any attempt to

70 | Chapter5: Evolution, Not Revolution

combine legacy collections and generic collections will bump into the difficulties with
wrappers discussed here.

5.5 Conclusions

To review, we have seen both generic and legacy versions of a library and client. These
generate equivalent class files, which greatly eases evolution. You can use a generic
library with a legacy client, or a legacy library with a generic client. In the latter case,
you can update the legacy library with generic method signatures, either by minimal
changes to the source or by use of stub files.

The foundation stone that supports all this is the decision to implement generics by
erasure, so that generic code generates essentially the same class files as legacy code—
a property referred to as binary compatibility. Usually, adding generics in a natural way
causes the legacy and generic versions to be binary compatible. However, there are
some corner cases where caution is required; these are discussed in Section 8.4.

It is interesting to compare the design of generics in Java and in C#. In Java, generic
types do not carry information about type parameters at run time, whereas arrays do
contain information about the array element type at run time. In C#, both generic types
and arrays contain information about parameter and element types at run time. Each
approach has advantages and disadvantages. In the next chapter, we will discuss prob-
lems with casting and arrays that arise because Java does not reify information about
type parameters, and these problems do not arise in C#. On the other hand, evolution
in C# is much more difficult. Legacy and generic collection classes are completely
distinct, and any attempt to combine legacy collections and generic collections will
encounter the difficulties with wrappers discussed earlier. In contrast, as we’ve seen,
evolution in Java is straightforward.

5.5 Conclusions | 71

CHAPTER 6
Reification

The Oxford English Dictionary defines reify thus: “To convert mentally into a thing;
to materialize.” A plainer word with the same meaning is thingify. In computing, rei-
fication has come to mean an explicit representation of a type—that is, run-time type
information. In Java, arrays reify information about their component types, while ge-
neric types do not reify information about their type parameters.

The previous chapter was, in a sense, about the advantages of not reifying parameter
types. Legacy code makes no distinction between List<Integer> and List<String> and
List<List<String>>, so not reifying parameter types is essential to easing evolution and
promoting compatibility between legacy code and new code.

But now the time has come to pay the piper. Reification plays a critical role in certain
aspects of Java, and the absence of reification that is beneficial for evolution also nec-
essarily leads to some rough edges. This chapter warns you of the limitations and de-
scribes some workarounds. The chapter deals almost entirely with things you might
wish you didn’t need to know—and, indeed, if you never use generic types in casts,
instance tests, exceptions, or arrays then you are unlikely to need the material covered
here.

We begin with a precise definition of what it means for a type in Java to be reifia-
ble.We then consider corner cases related to reification, including instance tests and
casts, exceptions, and arrays. The fit between arrays and generics is the worst rough
corner in the language, and we encapsulate how to avoid the worst pitfalls with the
Principle of Truth in Advertising and the Principle of Indecent Exposure.

6.1 Reifiable Types

In Java, the type of an array is reified with its component type, while the type of a
parameterized type is reified without its type parameters. For instance, an array of
numbers will carry the reified type Number[], while a list of numbers will carry the reified
type Arraylist, not ArraylList<Number>; the raw type, not the parameterized type, is
reified. Of course, each element of the list will have a reified type attached to it—say

73

Integer or Double—but this is not the same as reifying the parameter type. If every
element in the list was an integer, we would not be able to tell whether we had an
Arraylist<Integer>, ArraylList<Number>, or ArraylList<Object>; if the list was empty,
we would not be able to tell what kind of empty list it was.

In Java, we say that a type is reifiable if the type is completely represented at run time
— that is, if erasure does not remove any useful information. To be precise, a type is
reifiable if it is one of the following:
¢ A primitive type
(such as int)
* A nonparameterized class or interface type
(such as Number, String, or Runnable)
* A parameterized type in which all type arguments are unbounded wildcards
(such as List<?>, ArrayList<?>, or Map<?, ?>)
¢ Araw type
(such as List, ArrayList, or Map)
* An array whose component type is reifiable
(such as int[], Number[], List<?>[], List[], or int[][])

A type is not reifiable if it is one of the following:

* A type variable

(such as T)
* A parameterized type with actual parameters

(such as List<Number>, ArraylList<String>, or Map<String, Integer>)
* A parameterized type with a bound

(such as List<? extends Number> or Comparable<? super String>)

So the type List<? extends Object> is not reifiable, even though it is equivalent to
List<?>. Defining reifiable types in this way makes them easy to identify syntactically.

6.2 Instance Tests and Casts

Instance tests and casts depend on examining types at run time, and hence depend on
reification. For this reason, an instance test against a type that is not reifiable reports
an error, and a cast to a type that is not reifiable usually issues a warning.

As an example, consider the use of instance tests and casts in writing equality. Here is
a fragment of the definition of the class Integer in java.lang (slightly simplified from
the actual source):

public class Integer extends Number {
private final int value;

74 | Chapter6: Reification

public Integer(int value) { this.value=value; }
public int intValue() { return value; }
public boolean equals(Object o) {
if (o instanceof Integer) {
return value == ((Integer)o).intValue();
} else return false;

}
=

The equality method takes an argument of type Object, checks whether the object is
an instance of class Integer, and, if so, casts it to Integer and compares the values of
the two integers. This code works because Integer is a reifiable type: all of the infor-
mation needed to check whether an object is an instance of Integer is available at run
time.

Now consider how one might define equality on lists, as in the class AbstractList in
java.util. A natural—but incorrect—way to define this is as follows:
import java.util.*;
public abstract class AbstractList<E>
extends AbstractCollection<E> implements List<E>

public boolean equals(Object o) {
if (o instanceof List<E>) { // compile-time error
Tterator<E> it1 = iterator();
Tterator<E> it2 = ((List<E>)o).iterator(); // unchecked cast
while (it1.hasNext() & it2.hasNext()) {
E el = it1.next();
E e2 = it2.next();
if (!(e1 == null ? e2 == null : el.equals(e2)))
return false;
}

return !iti.hasNext() 8& !it2.hasNext();
} else return false;

}
—

Again, the equality method takes an argument of type Object, checks whether the object
is an instance of type List<E>, and, if so, casts it to List<E> and compares corresponding
elements of the two lists. This code does not work because List<E> is not a reifiable
type: some of the information needed to check whether an object is an instance of
List<E> is not available at run time. You can test whether an object implements the
interface List, but not whether its type parameter is E. Indeed, information on E is
missing doubly, as it is not available for either the receiver or the argument of the
equals method.

(Even if this code worked, there is a further problem. The contract for equality on lists
doesn’t mention types. A List<Integer> may be equal to a List<Object> if they contain
the same values in the same order. For instance, [1,2,3] should be equal to itself,
regardless of whether it is regarded as a list of integers or a list of objects.)

6.2 Instance Testsand Casts | 75

Compiling the preceding code reports two problems, an error for the instance test and
an unchecked warning for the cast:
% javac -Xlint:unchecked AbstractlList.java

AbstractList.java:6: illegal generic type for instanceof
if (!(o instanceof List<E>)) return false; // compile-time error
A

AbstractList.java:8: warning: [unchecked] unchecked cast
found : java.lang.Object
required: List<E>
Tterator<E> it2 = ((List<E>)o).iterator(); // unchecked cast
N

1 error
1 warning

The instance check reports an error because there is no possible way to test whether
the given object belongs to the type List<E>. The cast reports an unchecked warning;
it will perform the cast, but it cannot check that the list elements are, in fact, of type E.

To fix the problem, we replace the nonreifiable type List<E> with the reifiable type
List<?>. Hereisa corrected definition (again, slightly simplified from the actual source):
import java.util.*;
public abstract class AbstractlList<E>
extends AbstractCollection<E> implements List<E> {
public boolean equals(Object o) {
if (o instanceof List<?>) {
Tterator<E> it1 = iterator();
Iterator<?> it2 = ((List<?>)o).iterator();
while (it1.hasNext() & it2.hasNext()) {
E el = it1.next();
Object e2 = it2.next();
if (1(e1 == null ? e2 == null : el.equals(e2)))
return false;

return !iti.hasNext() && !it2.hasNext();
} else return false;

}
-

In addition to changing the type of the instance test and the cast, the type of the second
iterator is changed from Iterator<E> to Iterator<?>, and the type of the second element
is changed from E to Object. The code type-checks, because even though the element
type of the second iterator is unknown, it is guaranteed that it must be a subtype of
Object, and the nested call to equals requires only that its second argument be an object.

(This code properly satisfies the contract for equality on lists. Now a List<Integer> will
be equal to a List<Object> if they contain the same values in the same order.)

Alternative fixes are possible. Instead of the wildcard types List<?> and Iterator<?>,
you could use the raw types List and Iterator, which are also reifiable. We recommend
using unbounded wildcard types in preference to raw types because they provide stron-
ger static typing guarantees; many mistakes that are caught as an error when you use

76 | Chapter6: Reification

unbounded wildcards will only be flagged as a warning if you use raw types. Also, you
could change the declaration of the first iterator to Iterator<?> and of the first element
to Object, so that they match the second iterator, and the code will still type-check. We
recommend always using type declarations that are as specific as possible; this helps
the compiler to catch more errors and to compile more-efficient code.

Nonreifiable Casts An instance test against a type that is not reifiable is always an
error. However, in some circumstances a cast to a type that is not reifiable is permitted.

For example, the following method converts a collection to a list:

public static <T> List<T> asList(Collection<T> c)
throws InvalidArgumentException

{
if (c instanceof List<?>) {
return (List<T>)c;
} else throw new InvalidArgumentException("Argument not a list");

}

Compiling this code succeeds with no errors or warnings. The instance test is not in
error because List<?> is a reifiable type. The cast does not report a warning because
the source of the cast has type Collection<T>, and any object with this type that im-
plements the interface List must, in fact, have type List<T>.

Unchecked casts Only rarely will the compiler be able to determine that if a cast to a
nonreifiable type succeeds then it must yield a value of that type. In the remaining cases,
a cast to a type that is not reifiable is flagged with an unchecked warning, whereas an
instance test against a type that is not reifiable is always caught as an error. This is
because there is never any point to an instance test that cannot be performed, but there
may be a point to a cast that cannot be checked.

Type systems deduce facts about programs—for instance, that a certain variable always
contains a list of strings. But no type system is perfect; there will always be some facts
that a programmer can deduce but that the type system does not. To permit the pro-
grammer a workaround in such circumstances, the compiler issues warnings rather
than errors when performing some casts.

For example, here is code that promotes a list of objects into a list of strings, if the list
of objects contains only strings, and throws a class cast exception otherwise:

class Promote {
public static List<String> promote(List<Object> objs) {
for (Object o : objs)
if (!(o instanceof String))
throw new ClassCastException();
return (List<String>)(List<?>)objs; // unchecked cast
}
public static void main(String[] args) {
List<Object> objsi = Arrays.<Object>asList("one","two");
List<Object> objs2 = Arrays.<Object>asList(1,"two");
List<String> strsi = promote(objsi);
assert (List<?>)strsi == (List<?>)objsi;

6.2 Instance Testsand Casts | 77

boolean caught = false;

try {

List<String> strs2 = promote(objs2);
} catch (ClassCastException e) { caught = true; }
assert caught;

}
}

The method promote loops over the list of objects and throws a class cast exception if
any object is not a string. Hence, when the last line of the method is reached, it is safe
to cast the list of objects to a list of strings.

But the compiler cannot deduce this, so the programmer must use an unchecked cast.
It is illegal to cast a list of objects to a list of strings, so the cast must take place in two
steps. First, cast the list of objects into a list of wildcard type; this cast is safe. Second,
cast the list of wildcard type into a list of strings; this cast is permitted but generates an
unchecked warning:

% javac -Xlint:unchecked Promote.java

Promote.java:7: warning: [unchecked] unchecked cast

found : java.util.list

required: java.util.list<java.lang.String>
return (List<String>)(List<?>)objs; // unchecked cast
N

1 warning

The test code applies the method to two lists, one containing only strings (so it suc-
ceeds) and one containing an integer (so it raises an exception). In the first assertion,
to compare the object list and the string list, we must first cast both to the type List<?
> (this cast is safe), because attempting to compare a list of objects with a list of strings
raises a type error.

Exactly the same technique can be used to promote a raw list to a list of strings if the
raw list contains only strings. This technique is important for fitting together legacy
and generic code, and is one of the chief reasons for using erasure to implement generics.
A related technique is discussed in Section 8.1.

Another example of the use of unchecked casts to interface legacy and generic code
occurred in Section 5.4.1, where we needed an unchecked cast to the element type
(E) to make the type of the value returned by the legacy add method match its generic
signature.

You should minimize the number of unchecked casts in your code, but sometimes, as
in the case above, they cannot be avoided. In this book, we follow the convention that
we always place the comment unchecked cast on the line containing the cast, to docu-
ment that this is an intentional workaround rather than an unintended slip; and we
recommend you do the same. It is important to put the comment on the same line as
the cast, so that when scanning the warnings issued by the compiler it is easy to confirm
that each line contains the comment. If it does not, then you should regard the warning
as equivalent to an error!

78 | Chapter6: Reification

If a method deliberately contains unchecked casts, you may wish to precede it with the
annotation @SuppresshWarnings("unchecked") in order to avoid spurious warnings. We
saw an application of this technique in Section 5.4.1.

As another example of the use of unchecked casts, in Section 6.5 we will see code that
uses an unchecked cast from type Object[] to type T[]. Because of the way the object
array is created, it is, in fact, guaranteed that the array will always have the correct type.

Unchecked casts in C (and in its descendant C++) are much more dangerous than
unchecked casts in Java. Unlike C, the Java runtime guarantees important security
properties even in the presence of unchecked casts; for instance, it is never permitted
to access an array with an index outside of the array bounds. Nonetheless, unchecked
casts in Java are a workaround that should be used with caution.

6.3 Exception Handling

In a try statement, each catch clause checks whether the thrown exception matches a
given type. This is the same as the check performed by an instance test, so the same
restriction applies: the type must be reifiable. Further, the type in a catch clause is
required to be a subclass of Throwable. Since there is little point in creating a subclass
of Throwable that cannot appear in a catch clause, the Java compiler complains if you
attempt to create a parameterized subclass of Throwable.

For example, here is a permissible definition of a new exception, which contains an
integer value:

class IntegerException extends Exception {
private final int value;
public IntegerException(int value) { this.value = value; }
public int getValue() { return value; }

}

And here is a simple example of how to use the exception:

class IntegerExceptionTest {
public static void main(String[] args) {
try {
throw new IntegerException(42);
} catch (IntegerException e) {
assert e.getValue() == 42;
}
}
}

The body of the try statement throws the exception with a given value, which is caught
by the catch clause.

In contrast, the following definition of a new exception is prohibited, because it creates
a parameterized type:

class ParametricException<T> extends Exception { // compile-time error
private final T value;

6.3 Exception Handling | 79

public ParametricException(T value) { this.value = value; }
public T getValue() { return value; }

An attempt to compile the above reports an error:

% javac ParametricException.java

ParametricException.java:1: a generic class may not extend

java.lang.Throwable

class ParametricException<T> extends Exception { // compile-time error
Y

1 error

This restriction is sensible because almost any attempt to catch such an exception must
fail, because the type is not reifiable. One might expect a typical use of the exception
to be something like the following:

class ParametricExceptionTest {

public static void main(String[] args) {
try {
throw new ParametricException<Integer>(42);
} catch (ParametricException<Integer> e) { // compile-time error
assert e.getValue()==42;
}
}
}

This is not permitted, because the type in the catch clause is not reifiable. At the time
of this writing, the Sun compiler reports a cascade of syntax errors in such a case:
% javac ParametricExceptionTest.java

ParametricExceptionTest.java:5: <identifier> expected
} catch (ParametricException<Integer> e) {

ParametricExceptionTest.java:8: ')' expected

}

A

ParametricExceptionTest.java:9: '}' expected

}

A

3 errors

Because exceptions cannot be parametric, the syntax is restricted so that the type must
be written as an identifier, with no following parameter.

Type Variable in a Throws Clause Although subclasses of Throwable cannot be para-
metric, it is possible to use a type variable in the throws clause of a method declaration.
This technique is illustrated in Section 9.3.

6.4 Array Creation

Arrays reify their component types, meaning that they carry run-time information about
the type of their components. This reified type information is used in instance tests and

80 | Chapter6: Reification

casts, and also used to check whether assignments into array components are permit-
ted. Recall this example from Section 2.5.
Integer[] ints = new Integer[] {1,2,3};

Number[] nums = ints;
nums[2] = 3.14; // array store exception

The first line allocates a new array, with reified type information indicating that it is an
array of integers. The second line assigns this array to a variable containing an array of
numbers; this is permitted because arrays, unlike generic types, are covariant. The as-
signment on the third line raises an array store exception at run time because the as-
signed value is of type double, and this is not compatible with the reified type attached
to the array.

Because arrays must reify their component types, it is an error to create a new array
unless its component type is reifiable. The two main problems you are likely to en-
counter are when the type of the array is a type variable, and when the type of the array
is a parameterized type.

Consider the following (incorrect) code to convert a collection to an array:

import java.util.*;
class Annoying {
public static <T> T[] toArray(Collection<T> c) {
T[] a = new T[c.size()]; // compile-time error
int i=0; for (T x : c) a[i++] = x;
return a;
}
}

This is an error, because a type variable is not a reifiable type. An attempt to compile
this code reports a generic array creation error:
% javac Annoying.java
Annoying.java:4: generic array creation
T[] a = new T[c.size()]; // compile-time error
A

1 error

We discuss workarounds for this problem shortly.

As a second example, consider the following (incorrect) code that returns an array
containing two lists:

import java.util.*;
class AlsoAnnoying {
public static List<Integer>[] twolists() {
List<Integer> a = Arrays.aslList(1,2,3);
List<Integer> b = Arrays.aslList(4,5,6);
return new List<Integer>[] {a, b}; // compile-time error
}
}

This is an error, because a parameterized type is not a reifiable type. An attempt to
compile this code also reports a generic array creation error:

6.4 Array Creation | 81

% javac AlsoAnnoying.java
AlsoAnnoying.java:6: generic array creation
return new List<Integer>[] {a, b}; // compile-time error
Y

1 error

We also discuss workarounds for this problem shortly.

Inability to create generic arrays is one of the most serious restrictions in Java. Because
it is so annoying, it is worth reiterating the reason it occurs: generic arrays are prob-
lematic because generics are implemented via erasure, but erasure is beneficial because
it eases evolution.

The best workaround is to use ArraylList or some other class from the Collections
Framework in preference to an array. We discussed the tradeoffs between collection
classes and arrays in Section 2.5, and we noted that in many cases collections are pref-
erable to arrays: because they catch more errors at compile time, because they provide
more operations, and because they offer more flexibility in representation. By far, the
best solution to the problems offered by arrays is to “just say no”: use collections in
preference to arrays.

Sometimes this won’t work, because you need an array for reasons of compatibility or
efficiency. Examples of this occur in the Collections Framework: for compatibility, the
method toArray converts a collection to an array; and, for efficiency, the class Array
List is implemented by storing the list elements in an array. We discuss both of these
cases in detail in the following sections, together with associated pitfalls and principles
that help you avoid them: the Principle of Truth in Advertising and the Principle of
Indecent Exposure. We also consider problems that arise with varargs and generic array
creation.

6.5 The Principle of Truth in Advertising

We saw in the previous section that a naive method to convert a collection to an array
will not work. The first fix we might try is to add an unchecked cast, but we will see
shortly that this leads to even more perplexing problems. The correct fix will require
us to resort to reflection. Since the same issues arise when converting any generic struc-
ture to an array, it is worth understanding the problems and their solution. We will
study variations of the static toArray method from the previous section; the same ideas
apply to the toArray method in the Collection interface of the Collections Framework.

Here is a second attempt to convert a collection to an array, this time using an un-
checked cast, and with test code added:

import java.util.*;
class Wrong {
public static <T> T[] toArray(Collection<T> c) {
T[] a = (T[])new Object[c.size()]; // unchecked cast
int i=0; for (T x : c) a[i++] = x;
return a;

82 | Chapter6: Reification

public static void main(String[] args) {
List<String> strings = Arrays.asList("one","two");
String[] a = toArray(strings); // class cast error

}

The code in the previous section used the phrase new T[c.size()] to create the array,
causing the compiler to report a generic array creation error. The new code instead
allocates an array of objects and casts it to type T[], which causes the compiler to issue
an unchecked cast warning:

% javac -Xlint Wrong.java

Wrong.java:4: warning: [unchecked] unchecked cast

found : java.lang.Object[]

required: T[]

T[] a = (T[1)new Object[c.size()]; // unchecked cast

1 warning

As you might guess from the name chosen for this program, this warning should not
be ignored. Indeed, running this program gives the following result:
% java Wrong

Exception in thread "main" java.lang.ClassCastException: [Ljava.lang.Object;
at Wrong.main(Wrong.java:11)

The obscure phrase [Ljava.lang.0bject is the reified type of the array, where [L indi-
cates that it is an array of reference type, and java.lang.0Object is the component type
of the array. The class cast error message refers to the line containing the call to toAr
ray. This error message may be confusing, since that line does not appear to contain a
cast!

In order to see what went wrong with this program, let’s look at how the program is
translated using erasure. Erasure drops type parameters on Collection and List, re-
places occurrences of the type variable T with Object, and inserts an appropriate cast
on the call to toArray, yielding the following equivalent code:
import java.util.*;
class Wrong {
public static Object[] toArray(Collection c) {
Object[] a = (Object[])new Object[c.size()]; // unchecked cast
int i=0; for (Object x : c) a[i++] = x;
return a;

public static void main(String[] args) {
List strings = Arrays.aslList(args);
String[] a = (String[])toArray(strings); // class cast error

}

Erasure converts the unchecked cast to T[] into a cast to Object[], and inserts a cast to
String[] on the call to toArray. When run, the first of these casts succeeds. But even

6.5 The Principle of Truth in Advertising | 83

though the array contains only strings, its reified type indicates that it is an array of
Object, so the second cast fails.

In order to avoid this problem, you must stick to the following principle:

The Principle of Truth in Advertising: the reified type of an array must be a subtype
of the erasure of its static type.

The principle is obeyed within the body of toArray itself, where the erasure of T is
Object, but not within the main method, where T has been bound to String but the
reified type of the array is still Object.

Before we see how to create arrays in accordance with this principle, there is one more
point worth stressing. Recall that generics for Java are accompanied by a cast-iron
guarantee: no cast inserted by erasure will fail, so long as there are no unchecked warn-
ings. The preceding principle illustrates the converse: if there are unchecked warnings,
then casts inserted by erasure may fail. Further, the cast that fails may be in a different
part of the source code than was responsible for the unchecked warning! This is why code
that generates unchecked warnings must be written with extreme care.

Array Begets Array “Tis money that begets money,” said Thomas Fuller in 1732,
observing that one way to get money is to already have money. Similarly, one way to
get a new array of a generic type is to already have an array of that type. Then the reified
type information for the new array can be copied from the old.

We therefore alter the previous method to take two arguments, a collection and an
array. If the array is big enough to hold the collection, then the collection is copied into
the array. Otherwise, reflection is used to allocate a new array with the same reified
type as the old, and then the collection is copied into the new array.

Here is code to implement the alternative:

import java.util.*;
class Right {
public static <T> T[] Array(toCollection<T> c, T[] a) {
if (a.length < c.size())
a = (T[])java.lang.reflect.Array. // unchecked cast
newInstance(a.get Class().getComponentType(), c.size());
int i=0; for (T x : c¢) a[i++] = x;
if (i < a.length) a[i] = null;
return a;
}
public static void main(String[] args) {
List<String> strings = Arrays.asList("one", "two");
String[] a = toArray(strings, new String[o0]);
assert Arrays.toString(a).equals("[one, two]");
String[] b = new String[] { "x","x","x","x" };
toArray(strings, b);
assert Arrays.toString(b).equals("[one, two, null, x]");

84 | Chapter6: Reification

This uses three methods from the reflection library to allocate a new array with the
same component type as the old array: the method getClass (in java.lang.Object)
returns a Class object representing the array type, T[]; the method getComponentType
(from java.lang.Class) returns a second Class object representing the array’s compo-
nent type, T; and the method newInstance (in java.lang.reflect.Array) allocates a new
array with the given component type and size, again of type T[]. The result type of the
call to newInstance is Object, so an unchecked cast is required to cast the result to the
correct type T[].

In Java 5, the class Class has been updated to a generic class Class<T>; more on this
shortly.

(A subtle point: in the call to newInstance, why is the result type Object rather than
Object[]? Because, in general, newInstance may return an array of a primitive type such
as int[], which is a subtype of Object but not of Object[]. However, that won’t happen
here because the type variable T must stand for a reference type.)

The size of the new array is taken to be the size of the given collection. If the old array
is big enough to hold the collection and there is room left over, a null is written just
after the collection to mark its end.

The test code creates a list of strings of length two and then performs two demonstration
calls. Neither encounters the problem described previously, because the returned array
has the reified type String[], in accordance with the Principle of Truth in Advertising.
The first call is passed an array of length zero, so the list is copied into a freshly allocated
array of length two. The second call is passed an array of length four, so the list is copied
into the existing array, and a null is written past the end; the original array content after
the null is not affected. The utility method toString (in java.util.Arrays) is used to
convert the array to a string in the assertions.

The Collections Framework contains two methods for converting collections to arrays,
similar to the one we just discussed:

interface Collection<E> {

public Object[] toArray();
public <T> T[] toArray(T[] a)

The first method returns an array with the reified component type Object, while the
second copies the reified component type from the argument array, just as in the static
method above. Like that method, it copies the collection into the array if there is room
(and writes a null past the end of the collection if there is room for that), and allocates
a fresh array otherwise. A call to the first method, c.toArray(), returns the same result
as a call to the second method with an empty array of objects, c.toArray(new
Object[0]). These methods are discussed further at the beginning of Chapter 12.

Often on encountering this design, programmers presume that the array argument ex-
ists mainly for reasons of efficiency, in order to minimize allocations by reusing the

6.5 The Principle of Truth in Advertising | 85

array. This is indeed a benefit of the design, but its main purpose is to get the reified
types correct! Most calls to toArray will be with an argument array of length zero.

A Classy Alternative Some days it may seem that the only way to get money is to have
money. Not quite the same is true for arrays. An alternative to using an array to create
an array is to use an instance of class Class.

Instances of the class Class represent information about a class at run time; there are
also instances of this class that represent primitive types and arrays. In this text, we will
refer to instances of the Class class as class tokens.

In Java 5, the class Class has been made generic, and now has the form Class<T>. What
does the T stand for? An instance of type Class<T> represents the type T. For example,
String.class has type Class<String>.

We can define a variant of our previous method that accepts a class token of type
Class<T> rather than an array of type T[]. Applying newInstance to a class token of type
Class<T> returns a new array of type T[], with the component type specified by the class
token. The newInstance method still has a return type of Object (because of the same
problem with primitive arrays), so an unchecked cast is still required.
import java.util.*;
class RightWithClass {
public static <T> T[] toArray(Collection<T> c, Class<T> k) {
T[] a = (T[])java.lang.reflect.Array. // unchecked cast
newInstance(k, c.size());
int i=0; for (T x : c) a[i++] = x;
return a;

public static void main(String[] args) {
List<String> strings = Arrays.asList("one", "two");
String[] a = toArray(strings, String.class);
assert Arrays.toString(a).equals("[one, two]");

}
}

The conversion method is now passed the class token String.class rather than an array
of strings.

The type Class<T> represents an interesting use of generics, quite different from col-
lections or comparators. If you still find this use of generics confusing, don’t worry—
we’ll cover this subject in greater detail in Chapter 7.

6.6 The Principle of Indecent Exposure

Although it is an error to create an array with a component type that is not reifiable, it
is possible to declare an array with such a type and to perform an unchecked cast to
such a type. These features must be used with extreme caution, and it is worthwhile to
understand what can go wrong if they are not used properly. In particular, a library
should never publicly expose an array with a nonreifiable type.

86 | Chapter6: Reification

Recall that Section 2.5 presents an example of why reification is necessary:

Integer[] ints = new Integer[] {1};
Number[] nums = ints;

nums[0] = 1.01; // array store exception
int n = ints[0];

This assigns an array of integers to an array of numbers, and then attempts to store a
double into the array of numbers. The attempt raises an array store exception because
of the check against the reified type. This is just as well, since otherwise the last line
would attempt to store a double into an integer variable.

Here is a similar example, where arrays of numbers are replaced by arrays of lists of
numbers:

List<Integer>[] intlLists
= (List<Integer>[])new List[] {Arrays.asList(1)}; // unchecked cast
List<? extends Number>[] numLists = intlists;
numLists[0] = Arrays.aslList(1.01);
int n = intlLists[0].get(0); // class cast exception!

This assigns an array of lists of integers to an array of lists of numbers, and then attempts
to store a list of doubles into the array of lists of numbers. This time the attempted store
does not fail, even though it should, because the check against the reified type is inad-
equate: the reified information contains only the erasure of the type, indicating that it
is an array of List, not an array of List<Integer>. Hence the store succeeds, and the
program fails unexpectedly elsewhere.

Example 6-1. Avoid arrays of nonreifiable type

Deceptivelibrary.java:
import java.util.*;
public class Deceptivelibrary {
public static List<Integer>[] intLists(int size) {
List<Integer>[] intLists =
(List<Integer>[]) new List[size]; // unchecked cast
for (int i = 0; i < size; i++)
intLists[i] = Arrays.asList(i+1);
return ints;
}
}

InnocentClient.java:
import java.util.*;
public class InnocentClient {
public static void main(String[] args) {
List<Integer>[] intlLists = Deceptivelibrary.intLists(1);
List<? extends Number>[] numLists = intlists;
numLists[0] = Arrays.aslList(1.01);
int i = intlists[0].get(0); // class cast error!
}
}

6.6 The Principle of Indecent Exposure | 87

Example 6-1 presents a similar example, divided into two classes in order to demon-
strate how a poorly designed library can create problems for an innocent client. The
first class, called Deceptivelibrary, defines a static method that returns an array of lists
of integers of a given size. Since generic array creation is not permitted, the array is
created with components of the raw type List, and a cast is used to give the components
the parameterized type List<Integer>. The cast generates an unchecked warning:

%javac -Xlint:unchecked Deceptivelibrary.java

Deceptivelibrary.java:5: warning: [unchecked] unchecked cast

found : java.util.Llist[]

required: java.util.List<java.lang.Integer>[]
(List<Integer>[]) new List[size]; // unchecked cast

1 warning

Since the array really is an array of lists of integers, the cast appears reasonable, and
you might think that this warning could be safely ignored. As we shall see, you ignore
this warning at your peril!

The second class, called InnocentClient, has a main method similar to the previous
example. Because the unchecked cast appears in the library, no unchecked warning is
issued when compiling this code. However, running the code overwrites a list of inte-
gers with a list of doubles. Attempting to extract an integer from the array of lists of
integers causes the cast implicitly inserted by erasure to fail:

%java InnocentClient

Exception in thread "main" java.lang.ClassCastException: java.lang.Double
at InnocentClient.main(InnocentClient.java:7)

As in the previous section, this error message may be confusing, since that line does
not appear to contain a cast!

In order to avoid this problem, you must stick to the following principle:

Principle of Indecent Exposure: never publicly expose an array where the compo-
nents do not have a reifiable type.

Again, this is a case where an unchecked cast in one part of the program may lead to a
class cast error in a completely different part, where the cast does not appear in the
source code but is instead introduced by erasure. Since such errors can be extremely
confusing, unchecked casts must be used with extreme caution.

The Principle of Truth in Advertising and the Principle of Indecent Exposure are closely
linked. The first requires that the run-time type of an array is properly reified, and the
second requires that the compile-time type of an array must be reifiable.

It has taken some time for the importance of the Principle of Indecent Exposure to be
understood, even among the designers of generics for Java. For example, the following
two methods in the reflection library violate the principle:

TypeVariable<Class<T>>[] java.lang.Class.getTypeParameters()
TypeVariable<Method>[] java.lang.Reflect.Method.getTypeParameters()

88 | Chapter6: Reification

Following the preceding model, it is not hard to create your own version of Innocent
Client that throws a class cast error at a point where there is no cast, where in this case
the role of Deceptivelibrary is played by the official Java library! (At the time of going
to press, remedies for this bug are under consideration. Possible fixes are to delete the
type parameter from TypeVariable so that the methods return an array of reified type,
or to replace the arrays with lists.)

Don’t get caught out in the same way—be sure to follow the Principle of Indecent
Exposure rigorously in your own code!

6.7 How to Define ArrayList

We have argued elsewhere that it is usually preferable to use a list than to use an array.
There are a few places where this is not appropriate. In rare circumstances, you will
need to use an array for reasons of efficiency or compatibility. Also, of course, you need
to use arrays to implement Arraylist itself. Here we present the implementation of
Arraylist as a model of what to do in the rare circumstance where you do need to use
an array. Such implementations need to be written with care, as they necessarily involve
use of unchecked casts. We will see how the Principles of Indecent Exposure and of
Truth in Advertising figure in the implementation.

Example 6-2 shows the implementation. We have derived ArraylList by subclassing
from AbstractlList. Classes derived from this class need to define only four methods,
namely get, set, add, and remove; the other methods are defined in terms of these.We
also indicate that the class implements RandomAccess, indicating that clients of the class
will have more efficient access using get than using the list iterator.

The class represents a list with elements of type E by two private fields: size of type
int containing the length of the list, and arr of type E[] containing the elements of
the list. The array must have a length at least equal to size, but it may have additional
unused elements at the end.

There are two places where new instances of the array are allocated, one in the initializer
for the class and one in the method that increases the array capacity (which in turn is
called from the add method). In both places, the array is allocated as an Object[] and
an unchecked cast is made to type E[].

It is essential that the field containing the array is private; otherwise, it would violate
both the Principle of Truth in Advertising and the Principle of Indecent Exposure. It
would violate the Principle of Truth in Advertising because E might be bound to a type
(such as String) other than Object. It would violate the Principle of Indecent Exposure
because E might be bound to a type (such as List<Integer>) that is not a reifiable type.
However, neither of these principles is violated because the array is not public: it is
stored in a private field, and no pointer to the array escapes from the class.We might
call this the Principle of Anything Goes Behind Closed Doors.

6.7 How to Define ArrayList | 89

The way we’ve defined ArrayList here is close to the actual definition in the source
released by Sun. Recently, Neal Gafter, the coauthor of that library, has argued that he
used bad style—that it would have been better to declare the private array to have type
Object[] and use casts to type (E) when retrieving elements from the array. There is
something to be said for this point, although there is also something to be said for the
style we have used here, which minimizes the need for unchecked casts.

The method toArray does return an array in public, but it uses the techniques described
in Section 6.5 in accordance with the Principle of Truth in Advertising. As before, there
is an argument array, and if it is not big enough to hold the collection, then reflection
is used to allocate a new array with the same reified type. The implementation is similar
to the one we saw earlier, except that the more efficient arraycopy routine can be used
to copy the private array into the public array to be returned.

6.8 Array Creation and Varargs

The convenient vararg notation allows methods to accept a variable number of argu-
ments and packs them into an array, as discussed in Section 1.4. This notation is not
as convenient as you might like, because the arrays it creates suffer from the same issues
involving reification as other arrays.

Example 6-2. How to define ArrayList

import java.util.*;
class Arraylist<E> extends AbstractlList<E> implements RandomAccess {
private E[] arr;
private int size = 0;
public ArraylList(int cap) {
if (cap < 0)
throw new IllegalArgumentException("Illegal Capacity: "+cap);
arr = (E[])new Object[cap]; // unchecked cast

public ArraylList() { this(10); }
public ArraylList(Collection<? extends E> c) { this(c.size()); addAll(c); }
public void ensureCapacity(int mincap) {
int oldcap = arr.length;
if (mincap > oldcap) {
int newcap = Math.max(mincap, (oldcap*3)/2+1);
E[] oldarr = arr;
arr = (E[])new Object[newcap]; // unchecked cast
System.arraycopy(oldarr,0,arr,0,size);

}

public int size() { return size; }
private void checkBounds(int i, int size) {
if (i <0 || i>= size)
throw new IndexOutOfBoundsException("Index: "+i+", Size: "+size);
}

public E get(int i) { checkBounds(i,size); return arr[i]; }
public E set(int i, E elt) {

90 | Chapter6: Reification

checkBounds(i,size); E old = arr[i]; arr[i] = elt; return old;

}

public void add(int i, E elt) {
checkBounds (i,size+1); ensureCapacity(size+1);
System.arraycopy(arr,i,arr,i+1,size-i); arr[i] = elt; size++;

public E remove(int i) {
checkBounds(i,size); E old = arr[i]; arr[i] = null; size--;
System.arraycopy(arr,i+1,arr,i,size-i); return old;

}
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array. // unchecked cast
newInstance(a.getClass().getComponentType(), size);
System.arraycopy(arr,0,a,0,size);
if (size < a.length) a[size] = null;
return a;

}
public Object[] toArray() { return toArray(new Object[0]); }

In Section 1.4 we discussed the method java.util.Arrays.aslList, which is declared as
follows:

public static <E> List<E> asList(E... arr)

For instance, here are three calls to this method:

List<Integer> a = Arrays.aslList(1, 2, 3);
List<Integer> b = Arrays.aslList(4, 5, 6);
List<List<Integer>> x = Arrays.aslList(a, b); // generic array creation

Recall that an argument list of variable length is implemented by packing the arguments
into an array and passing that. Hence these three calls are equivalent to the following:
List<Integer> a = Arrays.asList(new Integer[] { 1, 2, 3 });
List<Integer> b = Arrays.aslList(new Integer[] { 4, 5, 6 });

List<List<Integer>> x
= Arrays.asList(new List<Integer>[] { a, b }); // generic array creation

The first two calls are fine, but since List<Integer> is not a reifiable type, the third
warns of an unchecked generic array creation at compile time.
VarargError.java:6: warning: [unchecked] unchecked generic array creation

of type java.util.lList<java.lang.Integer>[] for varargs parameter
List<List<Integer>> x = Arrays.aslList(a, b);

This warning can be confusing, particularly since that line of source code does not
contain an explicit instance of array creation!

A similar problem occurs if one attempts to create a list of a generic type. Here is a
method that uses Arrays.asList to create a list of length one containing a given element:

public static List<E> singleton(E elt) {
return Arrays.asList(elt); // generic array creation

}

6.8 Array Creation and Varargs | 91

This also generates a warning, which can be confusing for the same reasons.

Normally, generic array creation reports an error. As a workaround, one can create the
array at a reifiable type and perform an unchecked cast. That workaround is not avail-
able for the array creation that is implicit in the use of varargs, so in this case generic
array creation issues a warning rather than an error. A generic array creation warning
is just like an unchecked warning, in that it invalidates the cast-iron guarantee that
accompanies generics. It is not too difficult to take each of the previous examples where
a mishap occurs as the result of an unchecked warning, and create a similar example
using varargs where a generic array creation warning is issued instead.

In our opinion, the convenience offered by varargs is outweighed by the danger inherent
in unchecked warnings, and we recommend that you never use varargs when the ar-
gument is of a nonreifiable type. For instance, in both of the preceding examples, in-
stead of using Arrays.asList, we would have created a new ArraylList and used the
add method, even though this is less convenient and less efficient.

The need for generic array creation warnings and the associated workarounds would
not have arisen if the vararg notation had been defined to pack arguments into a list
rather than an array, taking T.. to be equivalent to List<T> rather than T[]. Unfortu-
nately, the vararg notation was designed before this problem was fully understood.

6.9 Arrays as a Deprecated Type?
We have seen that collections are superior to arrays in a number of ways:

* Collections provide more precise typing than arrays. With lists, one can write
List<T>, List<? extends T>,orList<? super T>; whereas with arrays, one can only
write T[], which corresponds to the second of the three options for lists. More-
precise typing enables more errors to be detected at compile time rather than run
time. This makes coding, debugging, testing, and maintenance easier, and also
improves efficiency. (See Section 2.5.)

* Collections are more flexible than arrays. Collections offer a variety of represen-
tations, including arrays, linked lists, trees, and hash tables, whereas arrays have a
fixed representation, and the libraries offer a larger variety of methods and con-
venience algorithms on collections than on arrays. (See Section 2.5.)

* Collections may have elements of any type, whereas arrays should only have com-
ponents of reifiable type. When creating an array, one must adhere to the Principle
of Truth in Advertising—the reified type must conform to the static type—and the
Principle of Indecent Exposure—never publicly expose an array where the com-
ponents do not have reifiable type. (See Sections Section 6.5 and Section 6.6).

In retrospect, there are several places in Java 5 where avoiding the use of arrays might
have improved the design:

92 | Chapter6: Reification

* Variable-length arguments (varargs) are represented by an array, and so are subject
to the same restrictions. If a vararg is bound to actual arguments of nonreifiable
type then a generic array creation warning is issued (which raises the same concerns
as an unchecked warning). For instance, the function Arrays.asList takes a var-
arg. There is no difficulty in applying this function to return a result of type
List<Integer>, but it is problematic to create a result of type List<List<Inte
ger>> or of type List<E>. This problem would not arise if lists had been used in
preference to arrays. (See Section 6.8.)

* Some methods in the Java library have signatures that violate the Principle of In-
decent Exposure:

TypeVariable<Class<T>>[] java.lang.Class.getTypeParameters()
TypeVariable<Method>[] java.lang.Reflect.Method.getTypeParameters()

It is possible for code that invokes these methods to violate the cast-iron guarantee
that accompanies generics: it may raise a class cast exception where there is no
explicit cast in the code, even though no unchecked warning is issued by the com-
piler. (A warning was issued—and wrongly ignored—when the library was com-
piled.) Again, this problem would not arise if lists had been used in preference to
arrays. (See Section 6.6.)

One reason for some of the complexities in the Java 5 design was to provide good
support for the use of arrays. In retrospect, it might have been better to choose a design
that was simpler, but made arrays not quite as convenient to use:

* Arrays must be created with components of reifiable type, so some attempt was
made to make the notion of reifiable type as general as possible in order to minimize
this restriction. If the designers had been willing to restrict the notion of reified
type, they could have simplified it by including raw types (such as List), but ex-
cluding types with unbounded wildcards (such as List<?>). Had they done so,
reifiable types would have become synonymous with unparameterized types (that
is, primitive types, raw types, and types declared without a type parameter).

This changewould simplify the types permitted in an instance test. Consider the
following three tests:
obj instanceof List

obj instanceof List<?>
obj instanceof List<? extends Object>

Currently, the first two are permitted, but the third is not. With the proposed
restriction, only the first would be permitted. Arguably, this might be easier to
understand. It would also be consistent with the treatment of class tokens, since
currently List.class is permitted but List<?>.class is illegal.

* Currently, array creation is restricted to arrays of reifiable type. But it is permitted
to declare an array of nonreifiable type or to cast to an array type thatis not reifiable,
at the cost of an unchecked warning somewhere in the code. As we have seen, such

6.9 Arrays as a Deprecated Type? | 93

warnings violate the cast-iron guarantee that accompanies generics, and may lead
to class cast errors even when the source code contains no casts.

A simpler and safer design would be to outlaw any reference to an array of non-
reifiable type (using the simpler form of reifiable type just described). This design
would mean that one could never declare an array of type E[], where E is a type
variable.

This change would make it more complicated to implement ArrayList<E> (or sim-
ilar classes). The type of the private variable must change from E[] to Object[],
and you must add an unchecked cast (E) to the result of get and similar methods.
But the complication is small, and arises only for the implementor of ArrayList (or
similar classes), not for the clients.

This change would also mean that you could not assign a generic type to the
toArray method for collections (or similar methods). Instead of:

public <T> T[] toArray(T[] arr)

we would have:

public Object[] toArray(Object[] arr)

and many uses of this method would require an explicit cast of the result. This does
make life more awkward for users, but arguably the improvement to simplicity and
safety would be worth it.

* The preceding changes would mean that often one would use lists in preference to
arrays. Use of lists could be made easier by permitting Java programmers to write
1[i] as an abbreviation for l.get(i), and 1[i] = v as an abbreviation for
1.put(i,v). (Some people like this sort of “syntactic sugar,” while others think of
it as “syntactic rat poison.”)

Some of these changes can still be adapted in a backward compatible manner.We
mentioned in Section 6.8 that it may be desirable to add a second form of vararg based
on lists rather than arrays. Permitting abbreviations to make list indexing look like array
indexing could easily be incorporated in a future version of Java.

But the window for some of these changes has closed. Too many users have written
code with generic toArrays to permit reverting to the nongeneric version. Nonetheless,
it seems worthwhile to record this alternate design. Perhaps understanding how the
current design might have been simpler can lead to better insight and a better future
design.

Just as the Java 5 design might have been improved if it had put less emphasis on arrays,
your own code designs may be improved if you use collections and lists in preference
to arrays. Perhaps the time has come to regard arrays as a deprecated type?

94 | Chapter6: Reification

6.10 Summing Up

We conclude by giving a checklist of places where reifiable types are required or rec-
ommended.
* An instance test must be against a reifiable type.

* A cast should usually be to a reifiable type. (A cast to a nonreifiable type usually
issues an unchecked warning.)

* A class that extends Throwable must not be parameterized.
* An array instance creation must be at a reifiable type.

* The reified type of an array must be a subtype of the erasure of its static type (see
the Principle of Truth in Advertising), and a publicly exposed array should be of a
reifiable type (see the Principle of Indecent Exposure).

* Varargs should be of a reifiable type. (A vararg of a nonreifiable type will issue an
unchecked warning.)

These restrictions arise from the fact that generics are implemented via erasure, and
they should be regarded as the price one pays for the ease of evolution that we explored
in the previous chapter.

For completeness, we also list restrictions connected with reflection:

* Class tokens correspond to reifiable types, and the type parameter in Class<T>
should be a reifiable type. (See Section 7.2.)

These are discussed in the next chapter.

6.10 SummingUp | 95

CHAPTER 7
Reflection

Reflection is the term for a set of features that allows a program to examine its own
definition. Reflection in Java plays a role in class browsers, object inspectors, debug-
gers, interpreters, services such as JavaBeans™ and object serialization, and any tool
that creates, inspects, or manipulates arbitrary Java objects on the fly.

Reflection has been present in Java since the beginning, but the advent of generics
changes reflection in two important ways, introducing both generics for reflection and
reflection for generics.

By generics for reflection we mean that some of the types used for reflection are now
generic types. In particular, the class Class becomes the generic class Class<T>. This
may seem confusing at first, but once understood it can make programs using reflection
much clearer. Class literals and the method Object.getClass use special tricks to return
more-precise type information. Generics are used to especially good effect in the re-
flection of annotations. We observe that the type parameter T in Class<T> should always
be bound to a reifiable type, and we present a short library that can help you avoid
many common cases of unchecked casts.

By reflection for generics we mean that reflection now returns information about generic
types. There are new interfaces to represent generic types, including type variables,
parameterized types, and wildcard types, and there are new methods that get the generic
types of fields, constructors, and methods.

We explain each of these points in turn. We don’t assume any previous knowledge of
reflection, but we focus on the aspects tied to generics.

7.1 Generics for Reflection

Java has supported facilities for reflection since version 1.0 and class literals since ver-
sion 1.1. Central to these is the class Class, which represents information about the
type of an object at run time. You may write a type followed by .class as a literal that
denotes the class token corresponding to that type, and the method getClass is defined

97

on every object and returns a class token that represents the reified type information
carried by that object at run-time. Here is an example:

Class ki = Integer.class;
Number n = new Integer(42);
Class kn = n.getClass();
assert ki == kn;

For a given class loader, the same type is always represented by the same class token.
To emphasize this point, here we compare class tokens using identity (the == operator).
However, in most situations it is more appropriate to use equality (the equals method).

One of the changes in Java 5 is that the class Class now takes a type parameter, so
Class<T> is the type of the class token for the type T. The preceding code is now written
as follows:

Class<Integer> ki = Integer.class;

Number n = new Integer(42);

Class<? extends Number> kn = n.getClass();
assert ki == kn;

Class tokens and the getClass method are treated specially by the compiler. In general,
if T is a type without type parameters, then T.class has type Class<T>, and if e is an
expression of type T then e.getClass() has type Class<? extends T>. (We’ll see what
happens when T does have type parameters in the next section.) The wildcard is needed
because the type of the object referred to by the variable may be a subtype of the type
of the variable, as in this case, where a variable of type Number contains an object of type
Integer.

For many uses of reflection, you won’t know the exact type of the class token (if you
did, you probably wouldn’t need to use reflection), and in those cases you can write
Class<?> for the type, using an unbounded wildcard. However, in some cases the type
information provided by the type parameter is invaluable, as in the variant of toArray
that we discussed in Section 6.5:

public static <T> T[] toArray(Collection<T> c, Class<T> k)

Here the type parameter lets the compiler check that the type represented by the class
token matches the type of the collection and of the array.

Further Examples of Generics for Reflection The class Class<T> contains just a few
methods that use the type parameter in an interesting way:

class Class<T> {
public T newInstance();
public T cast(Object o);
public Class<? super T> getSuperclass();
public <U> Class<? extends U> asSubclass(Class<U> k);
public <A extends Annotation> A getAnnotation(Class<A> k);
public boolean isAnnotationPresent(Class<? extends Annotation> k);

98 | Chapter7: Reflection

The first returns a new instance of the class, which will, of course, have type T. The
second casts an arbitrary object to the receiver class, and so it either throws a class cast
exception or returns a result of type T. The third returns the superclass, which must
have the specified type. The fourth checks that the receiver class is a subclass of the
argument class, and either throws a class cast exception or returns the receiver with its
type suitably changed.

The fifth and sixth methods are part of the new annotation facility. The methods are
interesting, because they show how the type parameter for classes can be used to good
effect. For example, Retention is a subclass of Annotation, so you can extract the re-
tention annotation on a class k as follows:

Retention r = k.getAnnotation(Retention.class);

Here the generic type gains two advantages. First, it means that no cast is required on
the result of the call, because the generic type system can assign it precisely the correct
type. Second, it means that if you accidentally call the method with a class token for a
class that is not a subclass of Annotation, then this is detected at compile time rather
than at run time.

Another use of class tokens, similar to that for annotations, appears in the getListen
ers method of the class Component in the package java.awt:

public <T extends EventListener>
T[] getlListeners(Class<T> listenerType);

Again, this means that the code of getListeners requires no cast, and it means that the
compiler can check that the method is called with a class token of an appropriate type.

As a final example of an interesting use of class tokens, the convenience class Collec
tions contains a method that builds a wrapper that checks whether every element added
to or extracted from the given list belongs to the given class. (There are similar methods
for other collection classes, such as sets and maps.) It has the following signature:

public static <T> List<T> checkedList(List<T> 1, Class<T> k)

The wrapper supplements static checking at compile time with dynamic checking at
run time, which can be useful for improving security or interfacing with legacy code
(see Section 8.1). The implementation calls the method cast in the class Class described
earlier, where the receiver is the class token passed into the method, and the cast is
applied to any element read from or written into the list using get, set, or add. Yet
again, the type parameter on Class<T> means that the code of checkedList requires no
additional casts (beyond calls to the cast method in the class Class), and that the com-
piler can check that the method is called with a class token of an appropriate type.

7.1 Generics for Reflection | 99

7.2 Reflected Types are Reifiable Types

Reflection makes reified type information available to the program. Of necessity, there-
fore, each class token corresponds to a reifiable type. If you try to reflect a parameterized
type, you get the reified information for the corresponding raw type:

List<Integer> ints = new ArraylList<Integer>();

List<String> strs = new Arraylist<String>();

assert ints.get Class() == strs.getClass();
assert ints.getClass() == Arraylist.class;

Here the type list of integers and the type list of strings are both represented by the
same class token, the class literal for which is written ArraylList.class.

Because the class always represents a reifiable type, there is no point in parameterizing
the class Class with a type that is not reifiable. Hence, the two main methods for pro-
ducing a class with a type parameter, namely the getClass method and class literals,
are both designed to yield a reifiable type for the type parameter in all cases.

Recall that the getClass method is treated specially by the compiler. In general, if ex-
pression e has type T, then the expression e.getClass() has type Class<? extends |T|
>, where |T| is the erasure of the type T. Here’s an example:

List<Integer> ints = new ArraylList<Integer>();

Class<? extends List> k = ints.getClass();
assert k == Arraylist.class;

Here the expression ints has type List<Integer>, so the expression int.getClass() has
type Class<? extends List>; this is the case because erasing List<Integer> yields the
raw type List. The actual value of k is ArrayList.class, which has type Class<Array
List>, which is indeed a subtype of Class<? extends List>.

Class literals are also restricted; it is not even syntactically valid to supply a type pa-
rameter to the type in a class literal. Thus, the following fragment is illegal:

class Classliteral {
public Class<?> k = List<Integer>.class; // syntax error

}

Indeed, Java’s grammar makes a phrase such as the preceding one difficult to parse,
and it may trigger a cascade of syntax errors:

% javac Classliteral.java
ClasslLiteral.java:2: illegal start of expression
public Class<?> k = List<Integer>.class; // syntax error
N

ClassLiteral.java:2: ';' expected
public Class<?> k = List<Integer>.class; // syntax error
A

Classliteral.java:2: <identifier> expected
public Class<?> k = List<Integer>.class; // syntax error
A

100 | Chapter7: Reflection

(ClassLiteral.java:4: '}' expected
A

4 errors

The parser has so much trouble with this phrase that it is still confused when it reaches

the end of the file!

This syntax problem leads to an irregularity. Everywhere else that a reifiable type is
required, you may supply either a raw type (such as List) or a parameterized type with
unbounded wildcards (such as List<?>). However, for class tokens, you must supply
a raw type; not even unbounded wildcards may appear. Replacing List<Integer> with
List<?> in the preceding code leads to a similar error cascade.

The restrictions on class tokens lead to a useful property. Wherever a type of the form
Class<T> appears, the type T should be a reifiable type. The same is true for types of the
form T[].

7.3 Reflection for Primitive Types

Every type in Java, including primitive types and array types, has a class literal and a
corresponding class token.

For instance, int.class denotes the class token for the primitive type for integers (this
token is also the value of the static field Integer.TYPE). The type of this class token
cannot be Class<int>, since int is not a reference type, so it is taken to be Class<Inte
ger>. Arguably, this is an odd choice, since according to this type you might expect the
calls int.class.cast(o) and int.class.newInstance() to return values of type Inte
ger, but in fact these calls raise an exception. Similarly, you might expect the call

java.lang.reflect.Array.newInstance(int.class,size)

to return a value of type Integer[], but in fact the call returns a value of type int[].
These examples suggest that it might have made more sense to give the class token
int.class the type Class<?>.

On the other hand, int[].class denotes the class token for arrays with components of
the primitive type integer, and the type of this class token is Class<int[]>, which is
permitted since int[] is a reference type.

7.4 A Generic Reflection Library

As we've seen, careless use of unchecked casts can lead to problems, such as violating
the Principle of Truth in Advertising or the Principle of Indecent Exposure (see Sections
Section 6.5 and Section 6.6). One technique to minimize the use of unchecked casts is
to encapsulate these within a library. The library can be carefully scrutinized to ensure
that its use of unchecked casts is safe, while code that calls the library can be free of

7.4 A Generic Reflection Library | 101

unchecked casts. Sun is considering adding library methods similar to the ones descri-

bed here.

Example 7-1 provides a library of generic functions that use reflection in a type-safe
way. It defines a convenience class GenericReflection containing the following meth-

ods:

public static <T> T newInstance(T object)

public static <T> Class<? extends T> getComponentType(T[] a)
public static <T> T[] new Array(Class<? extends T> k, int size)
public static <T> T[] newArray(T[] a, int size)

The first takes an object, finds the class of that object, and returns a new instance of
the class; this must have the same type as the original object. The second takes an array
and returns a class token for its component type, as carried in its run-time type infor-
mation. Conversely, the third allocates a new array with its component type specified
by a given class token and a specified size. The fourth takes an array and a size, and
allocates a new array with the same component type as the given array and the given
size; it simply composes calls to the previous two methods. The code for each of the
first three methods consists of a call to one or two corresponding methods in the Java
reflection library and an unchecked cast to the appropriate return type.

Unchecked casts are required because the methods in the Java reflection library cannot
return sufficiently accurate types, for various reasons. The method getComponentType
is in the class Class<T>, and Java provides no way to restrict the receiver type to be
Class<T[]> in the signature of the method (though the call raises an exception if the
receiver is not a class token for an array type). The method newInstance in
java.lang.reflect.Array must have the return type Object rather than the return type
T[], because it may return an array of a primitive type. The method getClass, when
called on a receiver of type T, returns a token not of type Class<? extends T> but of
type Class<?>, because of the erasure that is required to ensure that class tokens always
have a reifiable type. However, in each case the unchecked cast is safe, and users can
call on the four library routines defined here without violating the cast-iron guarantee.

Example 7-1. A type-safe library for generic reflection

class GenericReflection {
public static <T> T newInstance(T obj)
throws InstantiationException,
I1legalAccessException,
InvocationTargetException,
NoSuchMethodException
{
Object newobj = obj.getClass().getConstructor().newInstance();
return (T)newobj; // unchecked cast

public static <T> Class<? extends T> getComponentType(T[] a) {
Class<?> k = a.getClass().getComponentType();
return (Class<? extends T>)k; // unchecked cast

}

public static <T> T[] newArray(Class<? extends T> k, int size) {

102 | Chapter7: Reflection

if (k.isPrimitive())
throw new IllegalArgumentException
("Argument cannot be primitive: "+k);
Object a = java.lang.reflect.Array.newInstance(k, size);
return (T[])a; // unchecked cast

public static <T> T[] newArray(T[] a, int size) {
return newArray(getComponentType(a), size);
}
}

The first method uses Constructor.newInstance (in java.lang.reflect) in preference
to Class.newInstance, in order to avoid a known problem with the latter. To quote from
Sun’s documentation for Class.newInstance: “Note that this method propagates any
exception thrown by the nullary constructor, including a checked exception. Use of
this method effectively bypasses the compile-time exception checking that would oth-
erwise be performed by the compiler. The Constructor.newInstance method avoids this
problem by wrapping any exception thrown by the constructor in a (checked)
InvocationTargetException.”

The second method is guaranteed to be well typed in any program that obeys the

Principle of Indecent Exposure and the Principle of Truth in Advertising. The first
principle guarantees that the component type at compile time will be a reifiable type,
and then the second principle guarantees that the reified component type returned at
run time must be a subtype of the reifiable component type declared at compile time.

The third method raises an illegal argument exception if its class argument is a primitive
type. This catches the following tricky case: if the first argument is, say, int.class then
its type is Class<Integer>, but the new array will have type int[], which is not a subtype
of Integer[]. This problem would not have arisen if int.class had the type Class<?>
rather than Class<Integer>, as discussed in the preceding section.

As an example of the use of the first method, here is a method that copies a collection
into a fresh collection of the same kind, preserving the type of the argument:
public static <T, C extends Collection<T>> C copy(C coll) {

C copy = GenericReflection.newInstance(coll);
copy.addAll(coll); return copy;

Calling copy on an ArrayList<Integer> returns a new ArraylList<Integer>, while calling
copy on a HashSet<String> returns a new HashSet<String>.

As an example of the use of the last method, here is the toArray method of Sec-
tion 6.5, rewritten to replace its unchecked casts by a call to the generic reflection
library:
public static <T> T[] toArray(Collection<T> c, T[] a) {
if (a.length < c.size())
a = GenericReflection.newArray(a, c.size());
int i=0; for (T x : c¢) a[i++] = x;
if (i < a.length) a[i] = null;

7.4 A Generic Reflection Library | 103

return a;

}

In general, we recommend that if you need to use unchecked casts then you should
encapsulate them into a small number of library methods, as we’ve done here. Don’t
let unchecked code proliferate through your program!

7.5 Reflection for Generics

Generics change the reflection library in two ways. We have discussed generics for
reflection, where Java added a type parameter to the class Class<T>. We now discuss
reflection for generics, where Java adds methods and classes that support access to
generic types.

Example 7-2 shows a simple demonstration of the use of reflection for generics. It uses
reflection to find the class associated with a given name, and it prints out the fields,
constructors, and methods associated with the class, using the reflection library classes
Field, Constructor, and Method. Two different methods are available for converting a
field, constructor, or method to a string for printing: the old toString method and the
new toGenericString method. The old method is maintained mainly for backward
compatibility. A small sample class is shown in Example 7-3, and a sample run with
this class is shown in Example 7-4.

Example 7-2. Reflection for generics

import java.lang.reflect.*;
import java.util.*;
class ReflectionForGenerics {
public static void toString(Class<?> k) {
System.out.println(k + " (toString)");
for (Field f : k.getDeclaredFields())
System.out.println(f.toString());
for (Constructor c : k.getDeclaredConstructors())
System.out.println(c.toString());
for (Method m : k.getDeclaredMethods())
System.out.println(m.toString());
System.out.println();

public static void toGenericString(Class<?> k) {

System.out.println(k + " (toGenericString)");

for (Field f : k.getDeclaredFields())
System.out.println(f.toGenericString());

for (Constructor c : k.getDeclaredConstructors())
System.out.println(c.toGenericString());

for (Method m : k.getDeclaredMethods())
System.out.println(m.toGenericString());

System.out.println();

public static void main (String[] args)
throws ClassNotFoundException {
for (String name : args) {

104 | Chapter7: Reflection

Class<?> k = Class.forName(name);
toString(k);
toGenericString(k);

}
}
}

Example 7-3. A sample class

class Cell<E> {
private E value;
public Cell(E value) { this.value=value; }
public E getValue() { return value; }
public void setValue(E value) { this.value=value; }
public static <T> Cell<T> copy(Cell<T> cell) {
return new Cell<T>(cell.getValue());

}
}

Example 7-4. A sample run

% java ReflectionForGenerics Cell

class Cell (toString)

private java.lang.Object Cell.value

public Cell(java.lang.Object)

public java.lang.Object Cell.getValue()
public static Cell Cell.copy(Cell)

public void Cell.setValue(java.lang.Object)

class Cell (toGenericString)

private E Cell.value

public Cell(E)

public E Cell.getValue()

public static <T> Cell<T> Cell.copy(Cell<T>)
public void Cell.setValue(E)

The sample run shows that although the reified type information for objects and class
tokens contains no information about generic types, the actual bytecode of the class
does encode information about generic types as well as erased types. The information
about generic types is essentially a comment. It is ignored when running the code, and
it is preserved only for use in reflection.

Unfortunately, there is no toGenericString method for the class Class, even though
this would be useful. Sun is considering adding such a method in future. In the mean-
time, all the necessary information is available, and we explain how to access it in the
next section.

7.6 Reflecting Generic Types

The reflection library provides a Type interface to describe a generic type. There is one
class that implements this interface and four other interfaces that extend it, corre-
sponding to the five different kinds of types:

7.6 Reflecting Generic Types | 105

* The class Class, representing a primitive type or raw type

* The interface ParameterizedType, representing an application of a generic class or
interface to parameter types, from which you can extract an array of the parameter

types
* The interface TypeVariable, representing a type variable, from which you can ex-
tract the bounds on the type variable

* Theinterface GenericArrayType, representing an array, from which you can extract
the array component type

* The interface WildcardType, representing a wildcard, from which you can extract
a lower or upper bound on the wildcard

By performing a series of instance tests on each of these interfaces, you may determine
which kind of type you have, and print or process the type; we will see an example of
this shortly.

Methods are available to return the superclass and superinterfaces of a class as types,
and to access the generic type of a field, the argument types of a constructor, and the
argument and result types of a method.

You can also extract the type variables that stand for the formal parameters of a class
or interface declaration, or of a generic method or constructor. The type for type vari-
ables takes a parameter, and is written TypeVariable<D>, where D represents the type of
object that declared the type variable. Thus, the type variables of a class have type
TypeVariable<Class<?>>, while the type variables of a generic method have type Type
Variable<Method>. Arguably, the type parameter is confusing and is not very helpful.
Since it is responsible for the problem described in Section 6.6, Sun may remove it in
the future.

Example 7-5 uses these methods to print out all of the header information associated
with a class. Here are two examples of its use:

% java ReflectionDemo java.util.Abstractlist

class java.util.AbstractlList<E>

extends java.util.AbstractCollection<E>
implements java.util.List<E>

% java ReflectionDemo java.lang.Enum
class java.lang.Enum<E extends java.lang.Enum<E>>
implements java.lang.Comparable<E>,java.io.Serializable

The code in Example 7-5 is lengthy but straightforward. It contains methods to print
every component of a class: its superclass, its interfaces, its fields, and its methods. The
core of the code is the method printType, which uses a cascade of instance tests to
classify a type according to the five cases above.

Example 7-5. How to manipulate the type Type

import java.util.*;
import java.lang.reflect.*;

106 | Chapter7: Reflection

import java.io.*;
class ReflectionDemo {
private final static PrintStream out = System.out;
public static void printSuperclass(Type sup) {
if (sup != null 8& !sup.equals(Object.class)) {
out.print("extends ");
printType(sup);
out.println();
}

public static void printInterfaces(Type[] impls) {
if (impls != null &8 impls.length > 0) {
out.print("implements ");
int i = 0;
for (Type impl : impls) {
if (i++ > 0) out.print(",");
printType(impl);

out.println();

}

public static void printTypeParameters(TypeVariable<?>[] vars) {
if (vars != null && vars.length > 0) {

out.print("<");

int i = 0;

for (TypeVariable<?> var : vars) {
if (i++ > 0) out.print(",");
out.print(var.getName());
printBounds(var.getBounds());

out.print(">");

}
public static void printBounds(Type[] bounds) {
if (bounds != null && bounds.length > 0
8& !(bounds.length == 1 &% bounds[0] == Object.class)) {
out.print(" extends ");
int i = 0;
for (Type bound : bounds) {
if (i++ > 0) out.print("&");
printType(bound);

}

}

public static void printParams(Type[] types) {
if (types != null 83 types.length > 0) {
out.print("<");
int i = 0;
for (Type type : types) {

if (i++ > 0) out.print(",");
printType(type);

out.print(">");

7.6 Reflecting Generic Types | 107

public static void printType(Type type) {
if (type instanceof Class) {
Class<?> ¢ = (Class)type;
out.print(c.getName());
else if (type instanceof ParameterizedType) {
ParameterizedType p = (ParameterizedType)type;
Class ¢ = (Class)p.getRawType();
Type o = p.getOwnerType();
if (o != null) { printType(o); out.print("."); }
out.print(c.getName());
printParams(p.getActualTypeArguments());
else if (type instanceof TypeVariable<?>) {
TypeVariable<?> v = (TypeVariable<?>)type;
out.print(v.getName());
else if (type instanceof GenericArrayType) {
GenericArrayType a = (GenericArrayType)type;
printType(a.getGenericComponentType());
out.print("[1");
else if (type instanceof WildcardType) {
WildcardType w = (WildcardType)type;
Type[] upper = w.getUpperBounds();
Type[] lower = w.getLowerBounds();
if (upper.length == 1 && lower.length == 0) {
out.print("? extends ");
printType(upper[0]);
} else if (upper.length == 0 83 lower.length == 1) {
out.print("? super ");
printType(lower[0]);
} else throw new AssertionError();

-

—

—

—

}

public static void printClass(Class c) {
out.print("class ");
out.print(c.getName());
printTypeParameters(c.getTypeParameters());
out.println();
printSuperclass(c.getGenericSuperclass());
printInterfaces(c.getGenericInterfaces());
}
public static void main(String[] args) throws ClassNotFoundException {
for (String name : args) {
Class<?> ¢ = Class.forName(name);
printClass(c);

}
}

Much of this code would be unnecessary if the Type interface had a toGenericString
method. Sun is considering this change.

108 | Chapter7: Reflection

CHAPTER 8
Effective Generics

This chapter contains advice on how to use generics effectively in practical coding. We
consider checked collections, security issues, specialized classes, and binary compati-
bility. The title of this section is an homage to Joshua Bloch’s book, Effective Java
(Addison-Wesley).

8.1 Take Care when (alling Legacy Code

As we have seen, generic types are checked at compile time, not run time. Usually, this
is just what we want, since checking at compile time reports errors earlier and incurs
no runtime overhead. However, sometimes this may not be appropriate, either because
we can’t be sure that compile-time checks are adequate (say, because we are passing
an instance of a parameterized type to a legacy client or to a client we don’t trust), or
because we need information about types at run time (say, because we want a reifiable
type for use as an array component). A checked collection will often do the trick, and
when that will not do, we can create a specialized class. We consider checked collections
in this section, security issues in the next section, and specialized classes in the section
after that.

Consider a legacy library that contains methods to add items to a given list and to return
a new list containing given items:

class LegacylLibrary {
public static void addItems(List list) {
list.add(new Integer(1)); list.add("two");

public static List getItems() {
List list = new ArraylList();
list.add(new Integer(3)); list.add("four");
return list;

}
}

Now consider a client that uses this legacy library, having been told (incorrectly) that
the items are always integers:

109

class NaiveClient {
public static void processItems() {
List<Integer> list = new ArraylList<Integer>();
Legacy Library.addItems(list);
List<Integer> list2 = Legacylibrary.getItems(); // unchecked
// sometime later ...
int s = 0;
for (int i : list) s += i; // class cast exception
for (int i : list2) s += i; // class cast exception
}
}

There is no warning when passing the integer list to the method addItems, because the
parameterized type List<Integer> is considered a subtype of List. The conversion from
List to List<Integer> of the list returned by getItems does issue an unchecked warning.
At run-time, a class cast exception will be raised when attempting to extract data from
these lists, since the cast to type Integer implicitly inserted by erasure will fail. (The
failure of these casts does not constitute a violation of the cast-iron guarantee, because
this guarantee doesn’t hold in the presence of legacy code or unchecked warnings.)
Because the exception is raised far from the place where the strings are added to the
lists, the bug may be hard to pinpoint.

If the legacy library has been generified by applying the minimal changes or stubs tech-
niques (see Sections Section 5.4.1 and Section 5.4.2), then these problems cannot arise
as long as generic types have been assigned correctly.

A less-naive client may design code that catches the error earlier and is easier to debug.

class WaryClient {
public static void processItems() {
List<Integer> list = new ArraylList<Integer>();
List<Integer> view = Collections.checkedList(list, Integer.class);
LegacyLibrary.addItems(view); // class cast exception
List<Integer> list2 = Legacylibrary.getItems(); // unchecked
for (int i : list2) {} // class cast exception
// sometime later ...
int s = 0;
for (int i : list) s += i;
for (int i : list2) s += i;
}
}

The method checkedList in the convenience class Collections takes a list and a class
token and returns a checked view of the list; whenever an attempt is made to add an
element to the checked view, reflection is used to check that the element belongs to the
specified class before adding it to the underlying list (see Section 17.3.3). Using a
checked list view will cause a class cast exception to be raised inside the method addI
tems when it attempts to add a string to the list. Since the method getItems creates its
own list, the client cannot use a wrapper in the same way. However, adding an empty
loop at the point where the list is returned can guarantee that the error is caught close
to the offending method call.

110 | Chapter8: Effective Generics

Checked lists provide useful guarantees only when the list elements are of a reifiable
type. If you want to apply these techniques when the list is not of a reifiable type, you
might want to consider applying the specialization technique of Section 8.3.

8.2 Use Checked Collections to Enforce Security

It is important to be aware that the guarantees offered by generic types apply only if
there are no unchecked warnings. This means that generic types are useless for ensuring
security in code written by others, since you have no way of knowing whether that code
raised unchecked warnings when it was compiled.

Say we have a class that defines an order, with a subclass that defines an authenticated
order:

class Order { ... }
class AuthenticatedOrder extends Order { ... }

Interfaces specify suppliers and processors of orders. Here the supplier is required to
provide only authenticated orders, while the processor handles all kinds of orders:

interface OrderSupplier {
public void addOrders(List<AuthenticatedOrder> orders);

}

interface OrderProcessor {
public void processOrders(List<? extends Order> orders);

}

From the types involved, you might think that the following broker guarantees that
only authenticated orders can pass from the supplier to the processor:
class NaiveBroker {

public void connect(OrderSupplier supplier,
OrderProcessor processor)

List<AuthenticatedOrder> orders =

new ArraylList<AuthenticatedOrder>();
supplier.addOrders(orders);
processor.processOrders(orders);

}

But a devious supplier may, in fact, supply unauthenticated orders:

class DeviousSupplier implements OrderSupplier {
public void addOrders(List<AuthenticatedOrder> orders) {
List raw = orders;
Order order = new Order(); // not authenticated
raw.add(order); // unchecked call

}

Compiling the devious supplier will issue an unchecked warning, but the broker has
no way of knowing this.

8.2 Use Checked Collections to Enforce Security | 111

Incompetence can cause just as many problems as deviousness. Any code that issues
unchecked warnings when compiled could cause similar problems, perhaps simply
because the author made a mistake. In particular, legacy code may raise such problems,
as described in the previous section.

The correct solution is for the broker to pass a checked list to the supplier:

class WaryBroker {
public void connect(OrderSupplier supplier,
OrderProcessor processor)

List<AuthenticatedOrder> orders =

new ArraylList<AuthenticatedOrder>();
supplier.addOrders(

Collections.checkedList(orders, AuthenticatedOrder.class));
processor.processOrders(orders);

}

Now a class cast exception will be raised if the supplier attempts to add anything to the
list that is not an authenticated order.

Checked collections are not the only technique for enforcing security. If the interface
that supplies orders returns a list instead of accepting a list, then the broker can use the
empty loop technique of the previous section to ensure that lists contain only author-
ized orders before passing them on. One can also use specialization, as described in the
next section, to create a special type of list that can contain only authorized orders.

8.3 Specialize to Create Reifiable Types

Parameterized types are not reifiable, but some operations, such as instance tests, cast-
ing, and array creation apply only to reifiable types. In such cases, one workaround is
to create a specialized version of the parameterized type. Specialized versions can be
created either by delegation (that is, wrappers) or by inheritance (that is, subclassing),
and we discuss each in turn.

Example 8-1 shows how to specialize lists to strings; specializing to other types is sim-
ilar. We begin by specializing the List interface to the desired type:

interface ListString extends List<String> {}

Example 8-1. Specialize to create reifiable types

interface ListString extends List<String> {}

class ListStrings {
public static ListString wrap(final List<String> list) {
class Random extends Abstractlist<String>
implements ListString, RandomAccess
{
public int size() { return list.size(); }
public String get(int i) { return list.get(i); }

112 | Chapter8: Effective Generics

public String set(int i, String s) { return list.set(i,s); }
public String remove(int i) { return list.remove(i); }
public void add(int i, String s) { list.add(i,s); }

}

class Sequential extends AbstractSequentiallist<String>

implements

{
public int

ListString

size() { return list.size(); }

public ListIterator<String> listIterator(int index) {
final ListIterator<String> it = list.listIterator(index);
return new ListIterator<String>() {

public
public
public
public
public
public
public
public
public
1
}
}

void add(String s) { it.add(s); }

boolean hasNext() { return it.hasNext(); }

boolean hasPrevious() { return it.hasPrevious(); }
String next() { return it.next(); }

int nextIndex() { return it.nextIndex(); }

String previous() { return it.previous(); }

int previousIndex() { return it.previousIndex(); }
void remove() { it.remove(); }

void set(String s) { it.set(s); }

return list instanceof RandomAccess ? new Random() : new Sequential();

}
}

class ArraylListString extends ArraylList<String> implements ListString {
public ArraylListString() { super(); }
public ArraylListString(Collection<? extends String> c) { super(c); }
public ArraylListString(int capacity) { super(capacity); }

}

This declares ListString (an unparameterized type, hence reifiable) to be a subtype of
List<String> (a parameterized type, hence not reifiable). Thus, every value of the first
type also belongs to the second, but not conversely. The interface declares no new
methods; it simply specializes the existing methods to the parameter type String.

Delegation To specialize by delegation, we define a static method wrap that takes an
argument of type List<String> and returns a result of type ListString. The Java library
places methods that act on the interface Collection in a class called Collections, so we
place the method wrap in a class called ListStrings.

Here is an example of its use:

List<? extends List<?>> lists =
Arrays.asList(
ListStrings.wrap(Arrays.asList("one","two")),
Arrays.aslList(3,4),
Arrays.asList("five","six"),
ListStrings.wrap(Arrays.asList("seven","eight"))

)

ListString[] array = new ListString[2];

int i = 0;

8.3 Specialize to Create Reifiable Types | 113

for (List<?> list : lists)
if (list instanceof ListString)
array[i++] = (ListString)list;
assert Arrays.toString(array).equals("[[one, two], [seven, eight]]");
This creates a list of lists, then scans it for those lists that implement ListString and
places those into an array. Array creation, instance tests, and casts nowpose no prob-
lems, as they act on the reifiable type ListString rather than the nonreifiable type
List<String>. Observe that a List<String> that has not been wrapped will not be rec-
ognized as an instance of ListString; this is why the third list in the list of lists is not
copied into the array.

The ListStrings class is straightforward to implement, although some care is required
to preserve good performance. The Java Collections Framework specifies that when-
ever a list supports fast random access it should implement the marker interface Ran
domAccess, to allow generic algorithms to perform well when applied to either random
or sequential access lists. It also provides two abstract classes, AbstractList and
AbstractSequentiallist, suitable for defining random and sequential access lists. For
example, ArrayList implements RandomAccess and extends AbstractList, while Linked
List extends Abstract-Sequentiallist. Class AbstractlList defines the methods of the
List interface in terms of five abstract methods that provide random access and must
be defined in a subclass (size, get, set, add, remove). Similarly, class AbstractSequen
tiallist defines all methods of the List interface in terms of two abstract methods that
provide sequential access and must be defined in a subclass (size, listIterator).

The wrap method checks whether the given list implements the interface RandomAc
cess. If so, it returns an instance of class Random that extends AbstractList and imple-
ments RandomAccess, and otherwise it returns an instance of class Sequential that ex-
tends AbstractSequentiallist. Class Random implements the five methods that must be
provided by a subclass of AbstractList. Similarly, class Sequential implements the two
methods that must be provided by a subclass of AbstractSequentiallist, where the
second of these returns a class that implements the nine methods of the ListIterato
interface. Implementing the list iterator by delegation instead of simply returning the
original listiterator improves the security properties of the wrapper, as discussed below.
All of these methods are implemented straightforwardly by delegation.

Thewrap method returns a view of the underlying list that will raise a class cast exception
if any attempt is made to insert an element into the list that is not of type String. These
checks are similar to those provided by the checkedList wrapper. However, for wrap
the relevant casts are inserted by the compiler (one reason for implementing the nine
methods of the listIterator interface by delegation is to ensure that these casts are
inserted), while for checked lists the casts are performed by reflection. Generics usually
render these checks redundant, but they can be helpful in the presence of legacy code
or unchecked warnings, or when dealing with security issues such as those discussed
in Section 8.2.

114 | Chapter8: Effective Generics

The code shown here was designed to balance power against brevity (it’s only thiry-
three lines), but other variations are possible. A less complete version might implement
only random access if one could guarantee it was never applied to a sequential access
list, or vice versa. A more efficient version might skip the use of AbstractlList and
Abstract-Sequentiallist, and instead directly delegate all 25 methods of the List in-
terface together with the toString method (see the source code for Collections.check
edList for a model). You also might want to provide additional methods in the List
String interface, such as an unwrap method that returns the underlying List<String>,
or a version of subList that returns a ListString rather than a List<String> by recur-
sively applying wrap to the delegated call.

Inheritance To specialize by inheritance, we declare a specialized class that imple-
ments the specialized interface and inherits from a suitable implementation of lists.
Example 8-1 shows an implementation that specializes ArrayList, which we repeat
here:
class ArraylListString extends ArraylList<String> implements ListString {
public ArraylListString() { super(); }
public ArraylListString(Collection<? extends String> c) { super(c); }
public ArraylListString(int capacity) { super(capacity); }
}

The code is quite compact. All methods are inherited from the superclass, so we only
need to define specialized constructors. If the only constructor required was the default
constructor, then the class body could be completely empty!

The previous example still works if we create the initial list using inheritance rather
than delegation:

List<? extends List<?>> lists =
Arrays.asList(
new ArraylListString(Arrays.asList("one","two")),
Arrays.aslist(3,4),

Arrays.asList("five","six"),
new ArraylistString(Arrays.asList("seven","eight"))

)5
ListString[] array = new ListString[2];
int i = 0;

for (List<?> list : lists)
if (list instanceof ListString)
array[i++] = (ListString) list;
assert Arrays.toString(array).equals("[[one, two], [seven, eight]]");

As before, array creation, instance tests, and casts now pose no problem.

However, delegation and inheritance are not interchangeable. Specialization by dele-
gation creates a view of an underlying list, while specialization by inheritance constructs
anew list. Further, specialization by delegation has better security properties than spe-
cialization by inheritance. Here is an example:

List<String> original = new ArrayList<String>();
ListString delegated = ListStrings.wrap(original);

8.3 Specialize to Create Reifiable Types | 115

ListString inherited = new ArraylListString(original);
delegated.add("one");
inherited.add("two");

try {

((List)delegated).add(3); // unchecked, class cast error
} catch (ClassCastException e) {}
((List)inherited).add(4); // unchecked, no class cast error!
assert original.toString().equals("[one]");
assert delegated.toString().equals("[one]");
assert inherited.toString().equals("[two, 4]");

Here an original list serves as the basis for two specialized lists, one created by delegation
and one by inheritance. Elements added to the delegated list appear in the original, but
elements added to the inherited list do not. Type checking normally would prevent any
attempt to add an element that is not a string to any object of type List<String>, spe-
cialized or not, but such attempts may occur in the presence of legacy code or un-
checked warnings. Here we cast to a raw type and use an unchecked call to attempt to
add an integer to the delegated and inherited lists. The attempt on the delegated list
raises a class cast exception, while the attempt on the inherited list succeeds. To force
the second attempt to fail, we should wrap the inherited list using checkedList, as
described in Section 8.1.

Another difference is that inheritance can only be applied to a public implementation
that can be subclassed (such as ArrayList or LinkedList), whereas delegation can create
a view of any list (including lists returned by methods such as Arrays.asList or Collec
tions.immutableList, or by the subList method on lists).

The security properties of specialization by inheritance can be improved by declaring
aspecialized signature for any method that adds an element to the list or sets an element:

class ArraylistString extends ArraylList<String> implements ListString {
public ArraylListString() { super(); }
public ArraylListString(Collection<? extends String> c) { this.addAll(c); }
public ArraylListString(int capacity) { super(capacity); }
public boolean addAll(Collection<? extends String> c) {
for (String s : c) {} // check that c contains only strings
return super.addAll(c);

public boolean add(String element) { return super.add(element); }

public void add(int index, String element) { super.add(index, element); }
public String set(int index, String element) {

return super.set(index, element);

}
}

Now, any attempt to add or set an element that is not a string will raise a class cast
exception. However, this property depends on a subtle implementation detail, namely
that any other methods that add or set an element (for instance, the add method in
listIterator) are implemented in terms of the methods specialized above. In general,
if security is desired, delegation is more robust.

116 | Chapter8: Effective Generics

Other Types Specialization at other types works similarly. For example, replacing
String by Integer in Example 8-1 gives an interface ListInteger and classes ListInteg
ers and ArraylistInteger. This even works for lists of lists. For example, replacing
String by ListString in Example 8-1 gives an interface ListListString and classes
ListListStrings and ArraylListlistString.

However, specialization at wildcard types can be problematic. Say we wanted to spe-
cialize both of the types List<Number> and List<? extends Number>. We might expect
to use the following declarations:

// illegal

interface ListNumber extends List<Number>, ListExtendsNumber {}
interface ListExtendsNumber extends List<? extends Number> {}

This falls foul of two problems: the first interface extends two different interfaces with
the same erasure, which is not allowed (see Section 4.4), and the second interface has
a supertype with a wildcard at the top level, which is also not allowed (see Sec-
tion 2.8). The only workaround is to avoid specialization of types containing wildcards;
fortunately, this should rarely be a problem.

8.4 Maintain Binary Compatibility

As we have stressed, generics are implemented via erasure in order to ease evolution.
When evolving legacy code to generic code, we want to ensure that the newly-generified
code will work with any existing code, including class files for which we do not have
the source. When this is the case, we say that the legacy and generic versions are binary
compatible.

Binary compatibility is guaranteed if the erasure of the signature of the generic code is
identical to the signature of the legacy code and if both versions compile to the same
bytecode. Usually, this is a natural consequence of generification, but in this section
we look at some of the corner cases that can cause problems.

Some examples for this section were taken from internal Sun notes written by Mark
Reinhold.

Adjusting the Erasure One corner case arises in connection with the generification
of the max method in the Collections class. We discussed this case in Sections Sec-
tion 3.2 and Section 3.6, but it is worth a quick review.

Here is the legacy signature of this method:

// legacy version
public static Object max(Collection coll)

And here is the natural generic signature, using wildcards to obtain maximum flexibility
(see Section 3.2):

8.4 Maintain Binary Compatibility | 117

// generic version -- breaks binary compatibility
public static <T extends Comparable<? super T>>
T max(Collection<? extends T> coll)

But this signature has the wrong erasure—its return type is Comparable rather than

Object. In order to get the right signature, we need to fiddle with the bounds on the

type parameter, using multiple bounds (see Section 3.6). Here is the corrected version:
// generic version -- maintains binary compatibility

public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

When there are multiple bounds, the leftmost bound is taken for the erasure. So the
erasure of T is now Object, giving the result type we require.

Some problems with generification arise because the original legacy code contains less-
specific types than it might have. For example, the legacy version of max might have
been given the return type Comparable, which is more specific than Object, and then
there would have been no need to adjust the type using multiple bounds.

Bridges Another important corner case arises in connection with bridges. Again, Com
parable provides a good example.

Most legacy core classes that implement Comparable provide two overloads of the com
pareTo method: one with the argument type Object, which overrides the compareTo
method in the interface; and one with a more-specific type. For example, here is the
relevant part of the legacy version of Integer:

// legacy version

public class Integer implements Comparable {

public int compareTo(Object o) { ... }
public int compareTo(Integer i) { ... }

}

And here is the corresponding generic version:

// generic version -- maintains binary compatibility
public final class Integer implements Comparable<Integer> {
public int compareTo(Integer i) { ... }

}

Both versions have the same bytecode, because the compiler generates a bridge method
for compareTo with an argument of type Object (see Section 3.7).

However, some legacy code contains only the Object method. (Previous to generics,
some programmers thought this was cleaner than defining two methods.) Here is the
legacy version of javax.naming.Name.

// legacy version

public interface Name extends Comparable {
public int compareTo(Object o);

}

118 | Chapter8: Effective Generics

In fact, names are compared only with other names, so we might hope for the following
generic version:
// generic version -- breaks binary compatibility

public interface Name extends Comparable<Name> {
public int compareTo(Name n);

}...

However, choosing this generification breaks binary compatibility. Since the legacy
class contains compareTo(Object) but not compareTo(Name), it is quite possible that users
may have declared implementations of Name that provide the former but not the latter.
Any such class would not work with the generic version of Name given above. The only
solution is to choose a less-ambitious generification:

// generic version -- maintains binary compatibility

public interface Name extends Comparable<Object> {
public int compareTo(Object o) { ... }

}...

This has the same erasure as the legacy version and is guaranteed to be compatible with
any subclass that the user may have defined.

In the preceding case, if the more-ambitious generification is chosen, then an error will
be raised at run time, because the implementing class does not implement compar
eTo(Name).

But in some cases the difference can be insidious: rather than raising an error, a different
value may be returned! For instance, Name may be implemented by a class SimpleName,
where a simple name consists of a single string, base, and comparing two simple names
compares the base names. Further, say that SimpleName has a subclass ExtendedName,
where an extended name has a base string and an extension. Comparing an extended
name with a simple name compares only the base names, while comparing an extended
name with another extended name compares the bases and, if they are equal, then
compares the extensions. Say that we generify Name and SimpleName so that they define
compareTo(Name), but that we do not have the source for ExtendedName. Since it defines
only compareTo(Object), client code that calls compareTo(Name) rather than compar
eTo(Object) will invoke the method on SimpleName (where it is defined) rather than
ExtendedName (where it is not defined), so the base names will be compared but the
extensions ignored. This is illustrated in Examples Example 8-2 and Example 8-3.

The lesson is that extra caution is in order whenever generifying a class, unless you are
confident that you can compatibly generify all subclasses as well. Note that you have
more leeway if generifying a class declared as final, since it cannot have subclasses.

Also note that if the original Name interface declared not only the general overload
compareTo(Object), but also the more-specific overload compareTo(Name), then the leg-
acy versions of both SimpleName and ExtendedName would be required to implement
compareTo(Name) and the problem described here could not arise.

8.4 Maintain Binary Compatibility | 119

Covariant Overriding Another corner case arises in connection with covariant over-
riding (see Section 3.8). Recall that one method can override another if the arguments
match exactly but the return type of the overriding method is a subtype of the return
type of the other method.

An application of this is to the clone method:

class Object {
public Object clone() { ... }

}

Here is the legacy version of the class HashSet:

// legacy version
class HashSet {
public Object clone() { ... }

}
For the generic version, you might hope to exploit covariant overriding and choose a
more-specific return type for clone:

// generic version -- breaks binary compatibility
class HashSet {
public HashSet clone() { ... }

}

Example 8-2. Legacy code for simple and extended names

interface Name extends Comparable {
public int compareTo(Object o);
}

class SimpleName implements Name {
private String base;
public SimpleName(String base) {
this.base = base;
}
public int compareTo(Object o) {
return base.compareTo(((SimpleName)o).base);
}
}

class ExtendedName extends SimpleName {
private String ext;
public ExtendedName(String base, String ext) {
super(base); this.ext = ext;

public int compareTo(Object o) {
int c¢ = super.compareTo(o);
if (c == 0 & o instanceof ExtendedName)
return ext.compareTo(((ExtendedName)o).ext);
else
return c;

120 | Chapter8: Effective Generics

}
}

class Client {
public static void main(String[] args) {
Name m = new ExtendedName("a","b");
Name n = new ExtendedName("a","c");
assert m.compareTo(n) < 0;
}
}

Example 8-3. Generifying simple names and the client, but not extended names

interface Name extends Comparable<Name> {
public int compareTo(Name o);

class SimpleName implements Name {
private String base;
public SimpleName(String base) {
this.base = base;
}
public int compareTo(Name o) {
return base.compareTo(((SimpleName)o).base);
}
}

// use legacy class file for ExtendedName
class Test {
public static void main(String[] args) {
Name m = new ExtendedName("a","b");
Name n = new ExtendedName("a","c");
assert m.compareTo(n) == 0; // answer is now different!

}
}

However, choosing this generification breaks binary compatibility. It is quite possible
that users may have defined subclasses of HashSet that override clone. Any such subclass
would not work with the generic version of HashSet given previously. The only solution
is to choose a less-ambitious generification:

// generic version -- maintains binary compatibility

class HashSet {
public Object clone() { ... }

;
This is guaranteed to be compatible with any subclass that the user may have defined.

Again, you have more freedom if you can also generify any subclasses, or if the class is
final.

8.4 Maintain Binary Compatibility | 121

CHAPTER9
Design Patterns

This chapter reviews five well-known design patterns—Visitor, Interpreter, Function,

Strategy, and Subject-Observer—and shows how they can take advantage of generics.
The Function pattern generalizes the idea behind the Comparator interface. The other
four patterns are described in the seminal book Design Patterns, by Gamma, Helm,

Johnson, and Vlissides (Addison-Wesley).

9.1 Visitor

Often, a data structure is defined by case analysis and recursion. For example, a binary
tree of type Tree<E> is one of the following:

* A leaf, containing a single value of type E

* A branch, containing a left subtree and a right subtree, both of type Tree<E>

It is easy to think of many other examples: a shape may be either a triangle, a rectangle,
a combination of two shapes, or the transposition of a shape; an XML node is either a
text node, an attribute node, or an element node (which may contain other nodes); and
so on.

To represent such a structure in an object-oriented language, the data structure is rep-
resented by an abstract class, and each case is represented by a subclass. The abstract
class declares an abstract method for each possible operation on the data structure, and
each subclass implements the method as appropriate for the corresponding case.

Example 9-1 illustrates this technique applied to trees. There is an abstract class,
Tree<E>, with two abstract methods, toString and sum. (The former applies to any tree,
while the latter applies only to a tree of numbers—for simplicity, this restriction is
enforced by a cast at run time rather than a type at compile time, as discussed later.)
There are two static factory methods, one to construct a leaf and one to construct a
branch. Each of these contains a nested class that extends Tree<E> and implements each
of the methods toString and sum.

This approach is adequate if you know in advance all of the operations required on the
data structure, or can modify the classes that define the structure when the require-

123

ments change. However, sometimes this is not the case, particularly when different
developers are

Example 9-1. A simple tree and client

abstract class Tree<E> {
abstract public String toString();
abstract public Double sum();
public static <E> Tree<E> leaf(final E e) {
return new Tree<E>() {
public String toString() {
return e.toString();

}
public Double sum() {
return ((Number)e).doublevalue();

s

public static <E> Tree<E> branch(final Tree<E> 1, final Tree<E> r) {
return new Tree<E>() {
public String toString() {
return "("+1.toString()+"~"+r.toString()+")";

public Double sum() {
return 1.sum() + r.sum();

s
}
}

class TreeClient {
public static void main(String[] args) {
Tree<Integer> t =
Tree.branch(Tree.branch(Tree.leaf(1),
Tree.leaf(2)),
Tree.leaf(3));
assert t.toString().equals("((1%2)"3)");
assert t.sum() == 6;

}

responsible for the classes that define the structure and the classes that are clients of
the structure.

The Visitor pattern makes it possible to provide new operations without modifying the
classes that define the data structure. In this pattern, the abstract class that represents
the structure declares an abstract visit method, which takes a visitor as an argument.
The visitor implements an interface that specifies one method for each case in the
specification of the structure. Each subclass implements the visit method by calling
the method of the visitor for the corresponding case.

Example 9-2. A tree with visitors

abstract class Tree<E> {
public interface Visitor<E, R> {

124 | Chapter9: Design Patterns

public R leaf(E elt);
public R branch(R left, R right);

public abstract <R> R visit(Visitor<E, R> v);
public static <T> Tree<T> leaf(final T e) {
return new Tree<T>() {
public <R> R visit(Visitor<T, R> v) {
return v.leaf(e);
}

};
}

public static <T> Tree<T> branch(final Tree<T> 1, final Tree<T> r) {
return new Tree<T>() {
public <R> R visit(Visitor<T, R> v) {
return v.branch(l.visit(v), r.visit(v));
}

};
}
}

Example 9-2 illustrates this pattern applied to trees. Now the abstract class Tree<E> has
only one abstract method, visit, which accepts an argument of type Visitor<E, R>.
The interface Visitor<E, R> specifies two methods, a leaf method that accepts a value
of type E and returns a value of type R, and a branch method that accepts two values of
type R and returns a value of type R. The subclass corresponding to a leaf implements
visit by invoking the leaf method of the visitor on the element in the leaf, and the
subclass corresponding to a branch implements visit by invoking the branch method
of the visitor on the result of recursive calls of the visitor on the left and right subtrees.

Example 9-3 illustrates how to implement the toString and sum methods on trees within
the client, rather than within the class that defines the data structure. Whereas before
these were methods with the tree as the receiver, now they are static methods that take
the tree as an argument.

There is a pleasing duality between the two approaches. For simple trees, each factory
method (leaf and branch) groups together definitions for each operator method
(toString and sum). For trees with visitors, each operator method (toString and sum)
groups together definitions for each visitor method (leaf and branch).

With generics, each visitor has two type parameters, one for the element type of the
tree and one for the return type of the visitor. Without generics, each visitor would
have to return a result of type Object, and many additional casts would be required.
Because of this, when generics are not present, often visitors are designed not to return
avalue; instead, the result is accumulated in a variable local to the visitor, complicating
the flow of data through the program.

Example 9-3. A client with visitors

class TreeClient {
public static <T> String toString(Tree<T> t) {
return t.visit(new Tree.Visitor<T, String>() {

9.1 Visitor | 125

public String leaf(T e) {
return e.toString();

public String branch(String 1, String r) {
return "("+1+"A"4r+")";

}
b;
}
public static <N extends Number> double sum(Tree<N> t) {
return t.visit(new Tree.Visitor<N, Double>() {

public Double leaf(N e) {
return e.doubleValue();

}
public Double branch(Double 1, Double r) {
return l+r;

}
1

public static void main(String[] args) {
Tree<Integer> t =
Tree.branch(Tree.branch(Tree.leaf(1),
Tree.leaf(2)),
Tree.leaf(3));
assert toString(t).equals("((172)"3)");
assert sum(t) == 6;

}

[tis interesting to note that the generic type of the sum method can be more precise with
visitors. With simple trees, the sun method must have a type signature that indicates
that it works on any element type; a cast is required to convert each leaf to type Num
ber; and a class cast error is raised at run time if sum is invoked on a tree not containing
numbers. With visitors, the sum method may have a type signature that indicates that
it works only on elements that are numbers; no cast is required; and a type error is
reported at compile time if sum is invoked on a tree not containing numbers.

In practice, you will often use a combination of the simple approach and the Visitor
pattern. For instance, you might choose to define standard methods, such as
toString, using the simple approach, while using Visitor for other methods, such as sum.

Example 9-4. An interpreter with generics

class Pair<A, B> {
private final A left;
private final B right;
public Pair(A 1, B r) { left=1; right=r; }
public A left() { return left; }
public B right() { return right; }

abstract class Exp<T> {
abstract public T eval();
static Exp<Integer> lit(final int i) {
return new Exp<Integer>() { public Integer eval() { return i; } };

126 | Chapter9: Design Patterns

static Exp<Integer> plus(final Exp<Integer> el, final Exp<Integer> e2) {
return new Exp<Integer>() { public Integer eval() {
return el.eval()+e2.eval();

'L

static <A, B> Exp<Pair<A, B>> pair(final Exp<A> el, final Exp e2) {
return new Exp<Pair<A, B>>() { public Pair<A, B> eval() {
return new Pair<A, B>(el.eval(), e2.eval());

P
}

static <A, B> Exp<A> left(final Exp<Pair<A, B>> e) {
return new Exp<A>() { public A eval() { return e.eval().left(); } };

}
static <A, B> Exp right(final Exp<Pair<A, B>> e) {
return new Exp() { public B eval() { return e.eval().right(); } };

}
public static void main(String[] args) {

Exp<Integer> e = left(pair(plus(1lit(3),1it(4)),1it(5)));
assert e.eval() == 7;
}
}

9.2 Interpreter

One use of trees is to represent expressions in a programming language. As in the
previous section, the expression type is represented by an abstract class, with each kind
of expression represented by a subclass. There is an abstract method to evaluate an
expression, and each subclass implements the method as appropriate for the corre-
sponding kind of expression.

With generics, it is possible to parameterize the expression type by the type of the
expression. For example, Exp<Integer> is an expression that returns an integer, while
Exp<Pair<Integer, Integer>> is an expression that returns a pair of integers.

Example 9-4 demonstrates the Interpreter pattern with generics. It begins by defining
a class Pair<A, B>, with a constructor and two methods to select the left and right
components of a pair. It then declares an abstract class, Exp<A>, for an expression that
returns a value of type A, with an abstract method eval that returns a value of type A.
In our example, there are five kinds of expression:

* An integer literal, of type Exp<Integer>

* A sum expression, of type Exp<Integer>, which has two subexpressions, each of
type Exp<Integer>

* An expression to construct a pair, of type Exp<Pair<A, B>>, which has two subex-
pressions of type Exp<A> and Exp

* An expression to select the left component of a pair, of type Exp<A>, which has a
subexpression of type Exp<Pair<A, B>>

9.2 Interpreter | 127

* An expression to select the right component of a pair, of type Exp, which has a
subexpression of type Exp<Pair<A, B>>

There are five static methods corresponding to five kinds of expression, each returning
an instance of an appropriate subclass of the expression class, with an appropriate
definition of the eval method. Finally, the main method constructs and evaluates a
sample expression.

Generics in Java were inspired by similar features in functional languages such as ML
and Haskell. The generic Interpreter pattern is interesting because it shows a way in
which generics in Java are more powerful than generics in these other languages. It is
not possible to implement this pattern in the standard versions of ML and Haskell,
although a recent version of Haskell includes an experimental feature, generalized ab-
stract data types, designed specifically to support this pattern.

9.3 Function

The Function pattern converts an arbitrary method into an object. The relation between
a function and the corresponding method is similar to the relation between Compara
tor and the compareTo method.

The generic version of the Function pattern demonstrates how to use a type variable
in the throws clause of a method declaration. This may be useful when different in-
stances of a class contain methods that may raise different checked exceptions.

Recall that the class Throwable has two major subclasses, Exception and Error, and that
the first of these has another major subclass, RuntimeException. An exception is
checked if it is a subclass of RuntimeException or Error. The throws clause of a method
may list any subclass of Throwable, but must list any checked exception that might be
thrown by the method body, including any checked exceptions declared for the meth-
ods invoked within the body.

An example of the use of a type variable in a throws clause is shown in Example 9-5.
The example defines an interface, Function<A, B, X>, which represents a function. The
interface contains a method, apply, that accepts an argument of type A, returns a result
of type B, and may throw an exception of type X. There is also a class Functions con-
taining an applyAll method

Example 9-5. Type parameter in a throws clause

import java.util.*;

import java.lang.reflect.*;

interface Function<A, B, X extends Throwable> {
public B apply(A x) throws X;

class Functions {
public static <A, B, X extends Throwable>
List applyAll(Function<A, B, X> f, List<A> list) throws X {
List result = new ArraylList(list.size());

128 | Chapter9: Design Patterns

for (A x : list) result.add(f.apply(x));
return result;

public static void main(String[] args) {
Function<String, Integer, Error> length =
new Function<String, Integer, Error>() {
public Integer apply(String s) {
return s.length();
}
};
Function<String, Class<?>, ClassNotFoundException> forName =
new Function<String, Class<?>, ClassNotFoundException>() {
public Class<?> apply(String s)
throws ClassNotFoundException {
return Class.forName(s);
}
};
Function<String, Method, Exception> getRunMethod =
new Function<String, Method, Exception>() {
public Method apply(String s)
throws ClassNotFoundException,NoSuchMethodException {
return Class.forName(s).getMethod("run");
}
};
List<String> strings = Arrays.aslList(args);
System.out.println(applyAll(length, strings));

try { System.out.println(applyAll(forName, strings)); }
catch (ClassNotFoundException e) { System.out.println(e); }

try { System.out.println(applyAll(getRunMethod, strings)); }
catch (ClassNotFoundException e) { System.out.println(e); }
catch (NoSuchMethodException e) { System.out.println(e); }
catch (RuntimeException e) { throw e; }
catch (Exception e) { throw new AssertionError(); }
}
}

that accepts an argument of type List<A>, returns a result of type List, and again
may throw an exception of type X; the method invokes the apply method on each ele-
ment of the argument list to produce the result list.

The main method of the class defines three objects of this type. The first is length of
type Function<String, Integer, Error>. It accepts a string and returns an integer,
which is the length of the given string. Since it raises no checked exceptions, the third
type is set to Exrror. (Setting it to RuntimeException would work as well.)

The second is forName of type Function<String, Class<?>,ClassNotFoundException>. It
accepts a string and returns a class, namely the class named by the given string. The
apply method may throw a ClassNotFoundException, so this is taken as the third type
parameter.

9.3 Function | 129

The third is getRunMethod of type Function<String, Method, Exception>. It accepts a
string and returns a method, namely the method named run in the class named by the
given string. The body of the method might raise either a ClassNotFoundException or a
NoSuchMethodException, so the third type parameter is taken to be Exception, the small-
est class that contains both of these exceptions.

This last example shows the chief limitation of giving generic types to exceptions. Often
there is no suitable class or interface that contains all exceptions the function may raise,
and so you are forced to fall back on using Exception, which is too general to provide
useful information.

The main method uses applyAll to apply each of the three functions to a list of strings.
Each of the three invocations is wrapped in a try statement appropriate to the excep-
tions it may throw. The length function has no try statement, because it throws no
checked exceptions. The forName function has a try statement with a catch clause for
ClassNotFoundException, the one kind of exception it may throw. The getRunMethod
function requires a try statement with catch clauses for ClassNotFoundException and
NoSuchMethodException, the two kinds of exception it may throw. But the function is
declared to throw type Exception, so we need two additional “catchall” clauses, one to
rethrow any run-time exception that is raised, and one to assert that it is an error if any
exception is raised that is not handled by the previous three clauses. For this particular
example, re-raising runtime exceptions is not required, but it is good practice if there
may be other code that handles such exceptions.

For example, here is a typical run of the code, printing the list of lengths, the list of
classes, and the list of methods (the last list has been reformatted for readability, since
it doesn’t fit on one line):

% java Functions java.lang.Thread java.lang.Runnable
[16, 18]

[class java.lang.Thread, interface java.lang.Runnable]
[public void java.lang.Thread.run(),

public abstract void java.lang.Runnable.run()]

And here is a run that raises NoSuchMethodException, since java.util.List has no run
method:

% java Functions java.lang.Thread java.util.list

[16, 14]

[class java.lang.Thread, interface java.util.List]
java.lang.NoSuchMethodException: java.util.List.run()

And here is a run that raises ClassNotFoundException, since there is no class named Fred:

% java Functions java.lang.Thread Fred
[16, 4]

java.lang.ClassNotFoundException: Fred
java.lang.ClassNotFoundException: Fred

The exception is raised twice, once when applying forName and once when applying
getRunMethod.

130 | Chapter9: Design Patterns

9.4 Strategy

The Strategy pattern is used to decouple a method from an object, allowing you to
supply many possible instances of the method. Our discussion of the Strategy pattern
illustrates a structuring technique found in many object-oriented programs, that of
parallel class hierarchies. We will illustrate the Strategy pattern by considering how tax
payers may apply different tax strategies. There will be a hierarchy for tax payers, and
arelated hierarchy for tax strategies. For example, there is a default strategy that applies
to any tax payer. One subclass of tax payer is a trust, and one subclass of the default
strategy is one that applies only to trusts.

Our discussion will also illustrate a technique often used with generic types—the use
of type variables with recursive bounds.We have already seen this trick at work in the
definition of the Comparable interface and the Enum class; here we will apply it to clarify
the connection between tax payers and their associated tax strategies. We also explain
the getThis trick, which allows us to assign a more precise type to this when type
variables with recursive bounds appear.

First, we’ll look at a basic version of the Strategy pattern, which shows how to use
generics to design parallel class hierarchies. Next, we’ll look at an advanced version
where objects contain their own strategies, which uses type variables with recursive
bounds and explains the getThis trick.

The example in this section was developed in discussion with Heinz M. Kabutz, and
also appears in his online publication, The Java Specialists’ Newsletter.

Parallel Class Hierarchies A typical use of the Strategy pattern is for tax computation,
as shown in Example 9-6. We have a class TaxPayer with subclasses Person and Trust.
Every tax payer has an income, and, in addition, a trust may be nonprofit. For example,
we

Example 9-6. A basic Strategy pattern with parallel class hierarchies

abstract class TaxPayer {
public long income; // in cents
public TaxPayer(long income) { this.income = income; }
public long getIncome() { return income; }

class Person extends TaxPayer {
public Person(long income) { super(income); }

class Trust extends TaxPayer {
private boolean nonProfit;
public Trust(long income, boolean nonProfit) {
super(income); this.nonProfit = nonProfit;

public boolean isNonProfit() { return nonProfit; }

}

interface TaxStrategy<P extends TaxPayer> {

9.4 Strategy | 131

public long computeTax(P p);

class DefaultTaxStrategy<P extends TaxPayer> implements TaxStrategy<P> {
private static final double RATE = 0.40;
public long computeTax(P payer) {
return Math.round(payer.getIncome() * RATE);

}

}
class DodgingTaxStrategy<P extends TaxPayer> implements TaxStrategy<P> {

public long computeTax(P payer) { return 0; }

class TrustTaxStrategy extends DefaultTaxStrategy<Trust> {
public long computeTax(Trust trust) {
return trust.isNonProfit() ? 0 : super.computeTax(trust);

}
}

may define a person with an income of $100,000.00 and two trusts with the same
income, one nonprofit and one otherwise:
Person person = new Person(10000000);

Trust nonProfit = new Trust(10000000, true);
Trust forProfit = new Trust(10000000, false);

In accordance with good practice, we represent all monetary values, such as incomes
or taxes, by long integers standing for the value in cents (see the item “Avoid float and
double if exact answers are required”, in the General Programming chapter of Effective
Java by Joshua Bloch, Addison-Wesley).

For each tax payer P there may be many possible strategies for computing tax. Each
strategy implements the interface TaxStrategy<P>, which specifies a method compute
Tax that takes as argument a tax payer of type P and returns the tax paid. Class Default
TaxStrategy computes the tax by multiplying the income by a fixed tax rate of 40 per-
cent, while class DodgingTaxStrategy always computes a tax of zero:
TaxStrategy<Person> defaultStrategy = new DefaultStrategy<Person>();
TaxStrategy<Person> dodgingStrategy = new DodgingStrategy<Person>();

assert defaultStrategy.computeTax(person) == 4000000;
assert dodgingStrategy.computeTax(person) == 0;

Of course, our example is simplified for purposes of illustration—we do not recom-
mend that you compute taxes using either of these strategies! But it should be clear
how these techniques extend to more complex tax payers and tax strategies.

Finally, class TrustTaxStrategy computes a tax of zero if the trust is nonprofit and uses
the default tax strategy otherwise:
TaxStrategy<Trust> trustStrategy = new TrustTaxStrategy();

assert trustStrategy.computeTax(nonProfit) == 0;
assert trustStrategy.computeTax(forProfit) == 4000000;

Generics allow us to specialize a given tax strategy to a given type of tax payer, and
allow the compiler to detect when a tax strategy is applied to the wrong type of tax

payer:

132 | Chapter9: Design Patterns

trustStrategy.computeTax(person); // compile-time error

Without generics, the computeTax method of TrustTaxStrategy would have to accept
an argument of type TaxPayer and cast it to type Trust, and errors would throw an
exception at run time rather than be caught at compile time.

This example illustrates a structuring technique found in many object-oriented pro-
grams—that of parallel class hierarchies. In this case, one class hierarchy consists of
TaxPayer, Person, and Trust. A parallel class hierarchy consists of strategies corre-
sponding to each of these: two strategies, DefaultTaxStrategy and DodgingTaxStrat
egy apply to any TaxPayer, no specialized strategies apply to Person, and there is one
specialized strategy for Trust.

Usually, there is some connection between such parallel hierarchies. In this case, the
computeTax method for a TaxStrategy that is parallel to a given TaxPayer expects an
argument that is of the corresponding type; for instance, the computeTax method for
TrustTaxStrategy expects an argument of type Trust. With generics, we can capture
this connection neatly in the types themselves. In this case, the computeTax method for
TaxStrategy<P> expects an argument of type P, where P must be subclass of TaxPayer.
Using the techniques we have described here, generics can often be used to capture
similar relations in other parallel class hierarchies.

An Advanced Strategy Pattern with Recursive Generics In more advanced uses of
the Strategy pattern, an object contains the strategy to be applied to it. Modelling this
situation requires recursive generic types and exploits a trick to assign a generic type
to this.

The revised Strategy pattern is shown in Example 9-7. In the advanced version, each
tax payer object contains its own tax strategy, and the constructor for each kind of tax
payer includes a tax strategy as an additional argument:

Person normal = new Person(10000000, new DefaultTaxStrategy<Person>());

Person dodger = new Person(10000000, new DodgingTaxStrategy<Person>());

Trust nonProfit = new Trust(10000000, true, new TrustTaxStrategy());
Trust forProfit = new Trust(10000000, false, new TrustTaxStrategy());

Now we may invoke a computeTax method of no arguments directly on the tax payer,
which will in turn invoke the computeTax method of the tax strategy, passing it the tax
payer:

assert normal.computeTax() == 4000000;

assert dodger.computeTax() == 0;

assert nonProfit.computeTax() == 0;
assert forProfit.computeTax() == 4000000;

This structure is often preferable, since one may associate a given tax strategy directly
with a given tax payer.

Before, we used a class TaxPayer and an interface TaxStrategy<P>, where the type var-
iable P stands for the subclass of TaxPayer to which the strategy applies. Now we must
add the type parameter P to both, in order that the class TaxPayer<P> can have a field

9.4 Strategy | 133

of type TaxStrategy<P>. The new declaration for the type variable P is necessarily re-
cursive, as seen in the new header for the TaxPayer class:

class TaxPayer<P extends TaxPayer<P>>

We have seen similar recursive headers before:

interface Comparable<T extends Comparable<T>>
class Enum<E extends Enum<E>>

In all three cases, the class or interface is the base class of a type hierarchy, and the type
parameter stands for a specific subclass of the base class. Thus, P in TaxPayer<P> stands
for the specific kind of tax payer, such as Person or Trust; just as T in Comparable<T>
stands for the specific class being compared, such as String; or E in Enum<E> stands for
the specific enumerated type, such as Season.

The tax payer class contains a field for the tax strategy and a method that passes the
tax payer to the tax strategy, as well as a recursive declaration for P just like the one
used in TaxPayer. In outline, we might expect it to look like this:

// not well-typed!

class TaxPayer<P extends TaxPayer<P>> {

private TaxStrategy<P> strategy;
public long computeTax() { return strategy.computeTax(this); }

-

class Person extends TaxPayer<Person> { ... }
class Trust extends TaxPayer<Trust> { ... }

But the compiler rejects the above with a type error. The problem is that this has type
TaxPayer<P>, whereas the argument to computeTax must have type P. Indeed, within
each specific tax payer class, such as Person or Trust, it is the case that this does have
type P; for example, Person extends TaxPayer<Person>, so P is the same as Person within
this class. So, in fact, this will have the same type as P, but the type system does not
know that!

We can fix this problem with a trick. In the base class TaxPayer<P> we define an abstract
method getThis that is intended to return the same value as this but gives it the type
P. The method is instantiated in each class that corresponds to a specific kind of tax
payer, such as Person or Trust, where the type of this is indeed the same as the type
P. In outline, the corrected code now looks like this:

// now correctly typed

abstract class TaxPayer<P extends TaxPayer<P>> {

private TaxStrategy<P> strategy;

protected abstract P getThis();
public long computeTax() { return strategy.computeTax(getThis()); }

}
final class Person extends TaxPayer<Person> {
protected Person getThis() { return this; }

}

134 | Chapter9: Design Patterns

final class Trust extends TaxPayer<Trust> {
protected Trust getThis() { return this; }

}

The differences from the previous code are in bold. Occurences of this are replaced by
calls to getThis; the method getThis is declared abstract in the base class and it is
instantiated appropriately in each final subclass of the base class. The base class Tax
Payer<P> must be declared abstract because it declares the type for getThis but doesn’t
declare the body. The body for getThis is declared in the final subclasses Person and
Trust.

Since Trust is declared final, it cannot have subclasses. Say we wanted a subclass
NonProfitTrust of Trust. Then not only would we have to remove the final declaration
on the class Trust, we would also need to add a type parameter to it. Here is a sketch
of the required code:

abstract class Trust<T extends Trust<T>> extends TaxPayer<T> { ... }
final class NonProfitTrust extends Trust<NonProfitTrust> { ... }
final class ForProfitTrust extends Trust<ForProfitTrust> { ... }

Example 9-7. An advanced Strategy pattern with recursive bounds

abstract class TaxPayer<P extends TaxPayer<P>> {
public long income; // in cents
private TaxStrategy<P> strategy;
public TaxPayer(long income, TaxStrategy<P> strategy) {
this.income = income; this.strategy = strategy;

protected abstract P getThis();
public long getIncome() { return income; }
public long computeTax() { return strategy.computeTax(getThis()); }
}
class Person extends TaxPayer<Person> {
public Person(long income, TaxStrategy<Person> strategy) {
super(income, strategy);

protected Person getThis() { return this; }
}
class Trust extends TaxPayer<Trust> {
private boolean nonProfit;
public Trust(long income, boolean nonProfit, TaxStrategy<Trust> strategy){
super(income, strategy); this.nonProfit = nonProfit;

protected Trust getThis() { return this; }
public boolean isNonProfit() { return nonProfit; }

}

interface TaxStrategy<P extends TaxPayer<P>> {
public long computeTax(P p);

class DefaultTaxStrategy<P extends TaxPayer<P>> implements TaxStrategy<P> {
private static final double RATE = 0.40;
public long computeTax(P payer) {

9.4 Strategy | 135

return Math.round(payer.getIncome() * RATE);
}

class DodgingTaxStrategy<P extends TaxPayer<P>> implements TaxStrategy<P> {
public long computeTax(P payer) { return 0; }

class TrustTaxStrategy extends DefaultTaxStrategy<Trust> {
public long computeTax(Trust trust) {
return trust.isNonprofit() ? 0 : super.computeTax(trust);
}
}

Now an instance of NonProfitTrust takes a strategy that expects a NonProfitTrust as
an argument, and ForProfitTrust behaves similarly. It is often convenient to set up a
parameterized type hierarchy in this way, where classes with subclasses take a type
parameter and are abstract and classes without subclasses do not take a type parameter
and are final. A body for the getThis method is declared in each final subclass.

Summary As we have seen, recursive type parameters often appear in Java:

class TaxPayer<P extends TaxPayer<P>>
Comparable<T extends Comparable<T>>
class Enum<E extends Enum<E>>

The getThis trick is useful in this situation whenever one wants to use this in the base
type with the more specific type provided by the type parameter.

We will see another example of recursive type parameters in the next section, applied
to two mutually recursive classes. However, although the getThis trick is often useful,
we will not require it there.

9.5 Subject-Observer

We finish with a more extended example, illustrating the generic Subject-Observer
pattern. Like the Strategy pattern, the Subject-Observer pattern uses parallel class hi-
erarchies, but this time we require two type variables with mutually recursive bounds,
one to stand for the specific kind of subject and one to stand for the specific kind of
observer. This is our first example of type variables with mutually recursive bounds.

The Java library implements a nongeneric version of the Subject-Observer pattern in
the package java.util with the class Observable and the interface Observer (the former
corresponding to the subject), signatures for which are shown in Example 9-8.

The Observable class contains methods to register observers (addObserver), to indicate
that the observable has changed (setChanged), and to notify all observers of any changes
(notifyObservers), among others. The notifyObservers method may accept an arbi-
trary argument of type Object that is to be broadcast to all the observers. The
Observer interface specifies the update method that is called by notifyObservers. This
method takes two parameters: the first, of type Observable, is the subject that has
changed; the second, of type Object, is the broadcast argument.

136 | Chapter9: Design Patterns

The appearance of Object in a method signature often indicates an opportunity to gen-
erify. So we should expect to generify the classes by adding a type parameter, A, corre-
sponding to the argument type. Further, we can replace Observable and Observer them-
selves with the type parameters S and 0 (for Subject and Observer). Then within the
update method of the observer, you may call on any method supported by the subject
S without first requiring a cast.

Example 9-9 shows how to specify corresponding generic signatures for the Observa
ble class and the Observer interface. Here are the relevant headers:
public class Observable<S extends Observable<S,0,A>,
0 extends Observer<S,0,A>,
A>
public interface Observer<S extends Observable<S,0,A>,

0 extends Observer<S,0,A>,
A>

Both declarations take the same three type parameters. The declarations are interesting
in that they illustrate that the scope of type parameters can be mutually recursive: all
three type parameters appear in the bounds of the first two. Previously, we saw other
examples of simple recursion—for instance, in the declarations of Comparable and
Enum, and in the previous section on the Strategy pattern. But this is the first time we
have seen mutual recursion.

Examining the bodies of the declarations, you can see that 0 but not S appears in the
body of the Observable class and that S but not 0 appears in the body of the Observer
interface. So you might wonder: could the declarations be simplified by dropping the
type parameter S from Observable and the type parameter 0 from Observer? But this
won’t work, since you need S to be in scope in Observable so that it can be passed as a
parameter to Observer, and you needs 0 to be in scope in Observer so that it can be
passed as a parameter to Observable.

The generic declarations use stubs, as explained in Section 5.4.2. We compile the client
against the generic signatures of Observable and Observer, but run the code against the
class files in the standard Java distribution. We use stubs because we don’t want to
make any changes to the source of the library, since it is maintained by Sun.

Example 9-8. Observable and Observer before generics

package java.util;

public class Observable {
public void addObserver(Observer o) {...}
protected void clearChanged() {...}
public int countObservers() {...}
public void deleteObserver(Observer o) {...}
public boolean hasChanged() {...}
public void notifyObservers() {...}
public void notifyObservers(Object arg) {...}
protected void setChanged() {...}

9.5 Subject-Observer | 137

package java.util;
public interface Observer {

public void update(Observable o, Object arg);
}

Example 9-9. Observable and Observer with generics

package java.util;
class StubException extends UnsupportedOperationException {}
public class Observable<S extends Observable<S,0,A>,

0 extends Observer<S,0,A>,

A>
{
public void addObserver(0 o) { throw new StubException(); }
protected void clearChanged() { throw new StubException(); }
public int countObservers() { throw new StubException(); }
public void deleteObserver(0 o) { throw new StubException(); }
public boolean hasChanged() { throw new StubException(); }
public void notifyObservers() { throw new StubException(); }
public void notifyObservers(A a) { throw new StubException(); }
protected void setChanged() { throw new StubException(); }

}

package java.util;

public interface Observer<S extends Observable<S,0,A>,
0 extends Observer<S,0,A>,
A>

{
}

public void update(S o, A a);

As a demonstration client for Observable and Observer, a currency converter is presen-
ted in Example 9-10. A screenshot of the converter is shown in Figure 9-1. The converter
allows you to enter conversion rates for each of three currencies (dollars, euros, and
pounds), and to enter a value under any currency. Changing the entry for a rate causes
the corresponding value to be recomputed; changing the entry for a value causes all the
values to be recomputed.

The client instantiates the pattern by declaring CModel to be a subclass of Observable,
and CView to be a subinterface of Observer. Furthermore, the argument type is instan-
tiated to Currency, an enumerated type, which can be used to inform an observer which
components of the subject have changed. Here are the relevant headers:

enum Currency { DOLLAR, EURO, POUND }

class CModel extends Observable<CModel, CView, Currency>
interface CView extends Observer<CModel, CView, Currency>

The classes RateView and ValueView implement CView, and the class Converter defines
the top-level frame which controls the display.

The CModel class has a method to set and get the rate and value for a given currency.
Rates are stored in a map that assigns a rate to each currency, and the value is stored
(as a long,

138 | Chapter9: Design Patterns

" ™

b Currency converter = 8%
currency rate value

DOLLAR 1.000000 25.00
EURO 0. 820000 20.75
kFOUND 0.560000 14.00

Figure 9-1. Currency converter

in cents, euro cents, or pence) together with its actual currency. To compute the value
foragiven currency, the value is divided by the rate for its actual currency and multiplied
by the rate for the given currency.

The CModel class invokes the update method of RateView whenever a rate is changed,
passing the corresponding currency as the argument (because only the rate and value
for that currency need to be updated); and it invokes the update method of ValueView
whenever a value is changed, passing null as the argument (because the values for all
currencies need to be updated).

We compile and run the code as follows. First, we compile the generic versions of
Observable and Observer:

% javac -d . java/util/Observable.java java/util/Observer.java

Since these are in the package java.util, they must be kept in the subdirectory java/
util of the current directory. Second, we compile Converter and related classes in
package com.eg.converter. By default, the Java compiler first searches the current di-
rectory for class files (even for the standard library). So the compiler uses the stub class
files generated for Observable and Observer, which have the correct generic signature
(but no runnable code):

% javac -d . com/eg/converter/Converter.java
Third, we run the class file for the converter. By default, the java runtime does not first
search the current directory for class files in the packages java and javax—for reasons
of security, these are always taken from the standard library. So the runtime uses the

standard class files for Observable and Observer, which contain the legacy code we want
to run (but do not have the correct generic signature):

% java com.eg.converter.Converter

Example 9-10. Currency converter

import java.util.*;
import javax.swing.*;

9.5 Subject-Observer | 139

import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

enum Currency { DOLLAR, EURO, POUND }

class CModel extends Observable<CModel,CView,Currency> {
private final EnumMap<Currency,Double> rates;
private long value = 0; // cents, euro cents, or pence
private Currency currency = Currency.DOLLAR;
public CModel() {
rates = new EnumMap<Currency,Double>(Currency.class);

public void initialize(double... initialRates) {
for (int i=0; i<initialRates.length; i++)
setRate(Currency.values()[i], initialRates[i]);

public void setRate(Currency currency, double rate) {
rates.put(currency, rate);
setChanged();
notifyObservers(currency);

public void setValue(Currency currency, long value) {
this.currency = currency;
this.value = value;
setChanged();
notifyObservers(null);

public double getRate(Currency currency) {
return rates.get(currency);

public long getValue(Currency currency) {
if (currency == this.currency)
return value;
else
return Math.round(value * getRate(currency) / getRate(this.currency));
}
}

interface CView extends Observer<CModel,CView,Currency> {}

class RateView extends JTextField implements CView {
private final CModel model;
private final Currency currency;

public RateView(final CModel model, final Currency currency) {
this.model = model;
this.currency = currency;
addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {
double rate = Double.parseDouble(getText());
model.setRate(currency, rate);
} catch (NumberFormatException x) {}

};

140 | Chapter9: Design Patterns

model.addObserver(this);
}

public void update(CModel model, Currency currency) {
if (this.currency == currency) {
double rate = model.getRate(currency);
setText(String.format("%10.6f", rate));
}
}
}

class ValueView extends JTextField implements CView {
private final CModel model;
private final Currency currency;

public ValueView(final CModel model, final Currency currency) {
this.model = model;
this.currency = currency;
addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {
long value = Math.round(100.0*Double.parseDouble(getText()));
model.setValue(currency, value);
} catch (NumberFormatException x) {}

}
1
model.addObserver(this);
}

public void update(CModel model, Currency currency) {
if (currency == null || currency == this.currency) {
long value = model.getValue(this.currency);
setText(String.format("%15d.%02d", value/100, value%100));
}
}
}

class Converter extends JFrame {
public Converter() {

(Model model = new CModel();

setTitle("Currency converter");

setlayout(new GridLayout(Currency.values().length+1, 3));

add(new JLabel("currency"));

add(new JLabel("rate"));

add(new JLabel("value"));

for (Currency currency : Currency.values()) {
add(new JLabel(currency.name()));
add(new RateView(model, currency));
add(new ValueView(model, currency));

model.initialize(1.0, 0.83, 0.56);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

public static void main(String[] args) {

9.5 Subject-Observer | 141

new Converter().setVisible(true);
}
}

So when we use stubs for standard library classes, we do not need to alter the classpath,
as we did in Section 5.4.2, because the correct behavior is obtained by default. (If you
do want to alter the standard library classes at runtime, you can use the -Xbootclass
path flag.)

This concludes our discussion of generics. You now have a thorough grounding that
enables you to use generic libraries defined by others, to define your own libraries, to
evolve legacy code to generic code, to understand restrictions on generics and avoid
the pitfalls, to use checking and specialization where needed, and to exploit generics
in design patterns.

One of the most important uses of generics is the Collection Framework, and in the
next part of this book we will show you how to effectively use this framework and
improve your productivity as a Java programmer.

142 | Chapter9: Design Patterns

PART 1l
Collections

The Java Collections Framework is a set of interfaces and classes in the packages
java.util and java.util.concurrent. They provide client programs with various mod-
els of how to organize their objects, and various implementations of each model. These
models are sometimes called abstract data types, and we need them because different
programs need different ways of organizing their objects. In one situation, you might
want to organize your program's objects in a sequential list because their ordering is
important and there are duplicates. In another, a set might be the right data type because
now ordering is unimportant and you want to discard the duplicates. These two data
types (and others) are represented by different interfaces in the Collections Framework,
and we will look at examples of their use in this chapter. But that's not all; none of these
data types has a single "best" implementation—that is, one implementation that is
better than all the others for all the operations. For example, a linked list may be better
than an array implementation of lists for inserting and removing elements from the
middle, but much worse for random access. So choosing the right implementation for
your program involves knowing how it will be used as well as what is available.

This part of the book starts with an overview of the Framework and then looks in detail
at each of the main interfaces and the standard implementations of them. Finally we
will look at the special-purpose implementation and generic algorithms provided in the
Collections class.

CHAPTER 10

The Main Interfaces of the Java
Collections Framework

Figure 10-1 shows the main interfaces of the Java Collections Framework, together
with one other—Iterable—which is outside the Framework but is an essential adjunct
to it. Its purpose is as follows:

Iterable defines the contract that a class has to fulfill for its instances to be usable
with the foreach statement.

And the Framework interfaces have the following purposes:

Collection contains the core functionality required of any collection other than a
map. It has no direct concrete implementations; the concrete collection classes all
implement one of its subinterfaces as well.

Set is a collection, without duplicates, in which order is not significant. Sorted
Set automatically sorts its elements and returns them in order. NavigableSet ex-
tends this, adding methods to find the closest matches to a target element.

Queue is a collection designed to accept elements at its tail for processing, yielding
them up at its head in the order in which they are to be processed. Its subinterface
Deque extends this by allowing elements to be added or removed at both head and
tail. Queue and Deque have subinterfaces, BlockingQueue and BlockingDeque respec-
tively, that support concurrent access and allow threads to be blocked, indefinitely
or for a maximum time, until the requested operation can be carried out.

List is a collection in which order is significant, accommodating duplicate ele-
ments.

Map is a collection which uses key-value associations to store and retrieve elements.
It is extended by ConcurrentMap, which provides support for concurrent access, by
SortedMap, which guarantees to return its values in ascending key order, by Navi
gable-Map which extends SortedMap to find the closest matches to a target element,
and by ConcurrentNavigableMap which extends ConcurrentMap and NavigableMap.

145

[terable<T> Map<K,V>
(java.lang)

SortedMap<K,V>

Collection<E>
ConcurrentMap<K,V>
. (java.util.concurrent)
NavigableMap<K, V>
Set<E> List<E> Queue<E>
SortedSet<E> ConcurrentNavigableMap<K,V>
Deque<E> (java.util.concurrent)

NavigableSet<E> BlockingQueue<E>
(java.util.concurrent)

BlockingDeque<E>
(java.util.concurrent)

Figure 10-1. The main interfaces of the Java Collections Framework

Chapters 12 through 16 will concentrate on each of the Collections Framework inter-
faces in turn. First, though, in Chapter 11, we need to cover some preliminary ideas
which run through the entire Framework design.

146 | Chapter10: The Main Interfaces of the Java Collections Framework

CHAPTER 11
Preliminaries

In this chapter, we will take time to discuss the concepts underlying the framework,
before we get into the detail of the collections themselves.

11.1 Iterable and Iterators

An iterator is an object that implements the interface Iterator:

public Iterator<E> {
boolean hasNext(); // return true if the iteration has more elements
E next(); // return the next element in the iteration
void remove(); // remove the last element returned by the iterator

}

The purpose of iterators is to provide a uniform way of accessing collection elements
sequentially, so whatever kind of collection you are dealing with, and however it is
implemented, you always know how to process its elements in turn. This used to require
some rather clumsy code; for example, in earlier versions of Java, you would write the
following to print the string representation of a collection’s contents:

// coll refers to an object which implements Collection

/] ----- not the preferred idiom from Java 5 on -------

for (Iterator itr = coll.iterator() ; itr.hasNext() ;) {

System.out.println(itr.next());
}

The strange-looking for statement was the preferred idiom before Java 5 because, by

restricting the scope of itr to the body of the loop, it eliminated accidental uses of it

elsewhere. This code worked because any class implementing Collection has an iter

ator method which returns an iterator appropriate to objects of that class. It is no longer

the approved idiom because Java 5 introduced something better: the foreach statement,

which you met in Part I. Using foreach, we can write the preceding code more concisely:
for (Object o : coll) {

System.out.println(o);
}

147

This code will work with anything that implements the interface Iterable—that is,
anything that can produce an Iterator. This is the declaration of Iterable:
public Iterable<T> {
Iterator<T> iterator(); // return an iterator over elements of type T

}

In Java 5 the Collection interface was made to extend Iterable, so any set, list, or queue
can be the target of foreach, as can arrays. If you write your own implementation of
Iterable, that too can be used with foreach. Example 11-1 shows a tiny example of
how Iterable can be directly implemented. A Counter object is initialized with a count
of Integer objects; its iterator returns these in ascending order in response to calls of
next().

Now Counter objects can be the target of a foreach statement:

int total = 0;
for (int i : new Counter(3)) {
total += i;

}

assert total == 6;

In practice, it is unusual to implement Iterable directly in this way, as foreach is most
commonly used with arrays and the standard collections classes.

The iterators of the general-purpose collections in the Framework—ArrayList, Hash
Map, and so on—can puzzle novice users by throwing ConcurrentModificationExcep
tion from single-threaded code. These iterators throw this exception whenever they
detect that the collection from which they were derived has been structurally changed
(broadly speaking, that elements have been added or removed). The motivation for this
behavior is that the iterators are implemented as a view of their underlying collection
so, if that collection is structurally changed, the iterator may well not be able to continue
operating correctly when it reaches the changed part of the collection. Instead of al-
lowing the manifestation of failure to be delayed, making diagnosis difficult, the gen-
eral-purpose Collections Framework iterators are fail-fast. The methods of a fail-fast
iterator check that the underlying collection has not been structurally changed (by
another iterator, or by the methods of the collection itself) since the last iterator method
call. If they detect a change, they throw ConcurrentModificationException. Although
this restriction rules out some sound programs, it rules out many more unsound ones.

Example 11-1. Directly implementing Iterable

class Counter implements Iterable<Integer> {

private int count;

public Counter(int count) { this.count = count; }

public Iterator<Integer> iterator() {

return new Iterator<Integer>() {

private int i = 0;
public boolean hasNext() { return i < count; }
public Integer next() { i++; return i; }
public void remove(){ throw new UnsupportedOperationException(); }

148 | Chapter11: Preliminaries

s
}
}

The concurrent collections have other strategies for handling concurrent modification,
such as weakly consistent iterators. We discuss them in more detail in Section 11.5.

11.2 Implementations

We have looked briefly at the interfaces of the Collections Framework, which define
the behavior that we can expect of each collection. But as we mentioned in the intro-
duction to this chapter, there are several ways of implementing each of these interfaces.
Why doesn’t the Framework just use the best implementation for each interface? That
would certainly make life simpler—too simple, in fact, to be anything like life really is.
If an implementation is a greyhound for some operations, Murphy’s Law tells us that
it will be a tortoise for others. Because there is no “best” implementation of any of the
interfaces, you have to make a tradeoff, judging which operations are used most fre-
quently in your application and choosing the implementation that optimizes those
operations.

The three main kinds of operations that most collection interfaces require are insertion
and removal of elements by position, retrieval of elements by content, and iteration
over the collection elements. The implementations provide many variations on these
operations, but the main differences among them can be discussed in terms of how they
carry out these three. In this section, we’ll briefly survey the four main structures used
as the basis of the implementations and later, as we need them, we will look at each in
more detail. The four structures are:

Arrays
These are the structures familiar from the Java language—and just about every
other programming language since Fortran. Because arrays are implemented di-
rectly in hardware, they have the properties of random-access memory: very fast
for accessing elements by position and for iterating over them, but slower for in-
serting and removing elements at arbitrary positions (because that may require
adjusting the position of other elements). Arrays are used in the Collections Frame-
work as the backing structure for ArraylList, CopyOnWriteArraylList, EnumSet and
EnumMap, and for many of the Queue and Deque implementations. They also form an
important part of the mechanism for implementing hash tables (discussed shortly).

Linked lists
As the name implies, these consist of chains of linked cells. Each cell contains a
reference to data and a reference to the next cell in the list (and, in some imple-
mentations, the previous cell). Linked lists perform quite differently from arrays:
accessing elements by position is slow, because you have to follow the reference
chain from the start of the list, but insertion and removal operations can be per-
formed in constant time by rearranging the cell references. Linked lists are the

11.2 Implementations | 149

primary backing structure used for the classes ConcurrentLinkedQueue, LinkedBlock
ingQueue, and LinkedList, and the new skip list collections ConcurrentSkipList
Set and ConcurrentSkipListMap. They are also used in implementing HashSet and
LinkedHashSet.

Hash tables

These provide a way of storing elements indexed on their content rather than on
an integer-valued index, as with lists. In contrast to arrays and linked lists, hash
tables provide no support for accessing elements by position, but access by content
is usally very fast, as are insertion and removal. Hash tables are the backing struc-
ture for many Set and Map implementations, including HashSet and LinkedHash
Set together with the corresponding maps HashMap and LinkedHashMap, as well as
WeakHashMap, IdentityHashMap and ConcurrentHashMap.

Trees
These also organize their elements by content, but with the important difference
that they can store and retrieve them in sorted order. They are relatively fast for
the operations of inserting and removing elements, accessing them by content and
iterating over them. Trees are the backing structures for TreeSet and TreeMap. Pri-
ority heaps, used in the implementation of PriorityQueue and PriorityBlocking
Queue, are treerelated structures.

11.3 Efficiency and the 0-Notation

In the last section, we talked about different implementations being “good” for different
operations. A good algorithm is economical in its use of two resources: time and space.
Implementations of collections usually use space proportional to the size of the col-
lection, but they can vary greatly in the time required for access and update, so that
will be our primary concern. It’s very hard to say precisely how quickly a program will
execute, as that depends on many factors, including some that are outside the province
of the programmer, such as the quality of the compiled code and the speed of the
hardware. Even if we ignore these and limit ourselves to thinking only about how the
execution time for an algorithm depends on its data, detailed analysis can be complex.
A relatively simple example is provided in Donald Knuth’s classic book Sorting and
Searching (Addison-Wesley), where the worst-case execution time for a multiple list
insertion sort program on Knuth’s notional MIX machine is derived as

3.5N? +24.5N + 4M +2
where N is the number of elements being sorted and M is the number of lists.

As a shorthand way of describing algorithm efficiency, this isn’t very convenient. Clear-
ly we need a broader brush for general use. The one most commonly used is the O-
notation (pronounced "big-oh notation”). The O-notation is a way of describing the
performance of an algorithm in an abstract way, without the detail required to predict
the precise performance of a particular program running on a particular machine. Our

150 | Chapter11: Preliminaries

main reason for using it is that it gives us a way of describing how the execution time
for an algorithm depends on the size of its data set, provided the data set is large enough.
For example, in the previous expression the first two terms are comparable for low
values of N; in fact, for N < 8, the second term is larger. But as N grows, the first term
increasingly dominates the expression and, by the time it reaches 100, the first term is
15 times as large as the second one. Using a very broad brush, we say that the worst
case for this algorithm takes time O(N?). We don’t care too much about the coefficient
because that doesn’t make any difference to the single most important question we
want to ask about any algorithm: what happens to the running time when the data size
increases—say, when it doubles? For the worst-case insertion sort, the answer is that
the running time goes up fourfold. That makes O(N?) pretty bad—worse than any we
will meet in practical use in this book.

Table 11-1. Some common running times

Time Common name Effect on the running time if N is doubled Example algorithms

0(1) Constant Unchanged Insertion into a hash table (Sec-
tion 13.1)

0O(log N) Logarithmic Increased by a constant amount Insertion into a tree (Sec-
tion 13.2.2)

O(N) Linear Doubled Linear search

O(NlogN) Doubled plus an amount proportional to N Merge sort (Section 17.1.1)

0N2) Quadratic Increased fourfold Bubble sort

Table 11-1 shows some commonly found running times, together with examples of
algorithms to which they apply. For example, many other running times are possible,
including some that are much worse than those in the Figure. Many important prob-
lems can be solved only by algorithms that take O(2N)—for these, when N doubles,
the running time is squared! For all but the smallest data sets, such algorithms are
infeasibly slow.

Sometimes we have to think about situations in which the cost of an operation varies
with the state of the data structure. For example, adding an element to the end of an
Arraylist can normally be done in constant time, unless the ArrayList has reached its
capacity. In that case, a new and larger array must be allocated, and the contents of the
old array transferred into it. The cost of this operation is linear in the number of ele-
ments in the array, but it happens relatively rarely. In situations like this, we calculate
the amortized cost of the operation—that is, the total cost of performing it n times
divided by n, taken to the limit as n becomes arbitrarily large. In the case of adding an

element to an Arraylist, the total cost for N elements is O(N), so the amortized cost
is O(1).

11.3 Efficiency and the O-Notation | 151

11.4 Contracts

In reading about software design, you are likely to come across the term contract, often
without any accompanying explanation. In fact, software engineering gives this term a
meaning that is very close to what people usually understand a contract to be. In ev-
eryday usage, a contract defines what two parties can expect of each other—their ob-
ligations to each other in some transaction. If a contract specifies the service that a
supplier is offering to a client, the supplier’s obligations are obvious. But the client, too,
may have obligations—besides the obligation to pay—and failing to meet them will
automatically release the supplier from her obligations as well. For example, airlines’
conditions of carriage—for the class of tickets that we can afford, anyway—release
them from the obligation to carry passengers who have failed to turn up on time. This
allows the airlines to plan their service on the assumption that all the passengers they
are carrying are punctual; they do not have to incur extra work to accommodate clients
who have not fulfilled their side of the contract.

Contracts work just the same way in software. If the contract for a method states pre-
conditions on its arguments (i.e., the obligations that a client must fulfill), the method
is required to return its contracted results only when those preconditions are fulfilled.
For example, binary search (see Section 17.1.4) is a fast algorithm to find a key within
an ordered list, and it fails if you apply it to an unordered list. So the contract for
Collections.binarySearch can say, “if the list is unsorted, the results are undefined”,
and the implementer of binary search is free to write code which, given an unordered
list, returns random results, throws an exception, or even enters an infinite loop. In
practice, this situation is relatively rare in the contracts of the core API because, instead
of restricting input validity, they mostly allow for error states in the preconditions and
specify the exceptions that the method must throw if it gets bad input. This design may
be appropriate for general libraries such as the Collections Framework, which will be
very heavily used in widely varying situations and by programmers of widely varying
ability. You should probably avoid it for less-general libraries, because it restricts the
flexibility of the supplier unnecessarily. In principle, all that a client should need to
know is how to keep to its side of the contract; if it fails to do that, all bets are off and
there should be no need to say exactly what the supplier will do.

It’s good practice in Java to code to an interface rather than to a particular implemen-
tation, so as to provide maximum flexibility in choosing implementations. For that to
work, what does it imply about the behavior of implementations? If your client code
uses methods of the List interface, for example, and at run time the object doing the
work is actually an ArrayList, you need to know that the assumptions you have made
about how Lists behave are true for ArrayLists also. So a class implementing an in-
terface has to fulfill all the obligations laid down by the terms of the interface contract.
Of course, a weaker form of these obligations is already imposed by the compiler; a
class claiming to implement an interface must provide concrete method definitions

152 | Chapter11: Preliminaries

matching the declarations in the interface. Contracts take this further by specifying the
behavior of these methods as well.

The Collections Framework separates interface and implementation obligations in an
unusual way. Some API methods return collections with restricted functionality—for
example, the set of keys that you can obtain from a Map can have elements removed but
not added (see Chapter 16). Others can have elements neither added nor removed (e.g.,
the list view returned by Arrays.asList), or may be completely read-only, for example
collections that have been wrapped in an unmodifiable wrapper (see Section 17.3.2).
To accommodate this variety of behaviors in the Framework without an explosion in
the number of interfaces, the designers labeled the modification methods in the Col
lection interface (and in the Iterator and ListIterator interfaces) as optional opera-
tions. If a client tries to modify a collection using an optional operation that the col-
lection does not implement, the method must throw UnsupportedOperationException.
The advantage to this approach is that the structure of the Framework interfaces is very
simple, a great virtue in a library that every Java programmer must learn. The drawback
is that a client programmer can no longer rely on the contract for the interface, but has
to know which implementation is being used and to consult the contract for that as
well. That’s so serious that you will probably never be justified in subverting interfaces
in this way in your own designs.

The contract for a class spells out what a client can rely on in using it, often including
performance guarantees. To fully understand the performance characteristics of a class,
however, you may need to know some detail about the algorithms it uses. In this part
of the book, while we concentrate mainly on contracts and how, as a client programmer,
you can make use of them, we also give some further implementation detail from the
platform classes where it might be of interest. This can be useful in deciding between
implementations, but remember that it is not stable; while contracts are binding, one
of the main advantages of using them is that they allow implementations to change as
better algorithms are discovered or as hardware improvements change their relative
merits. And of course, if you are using another implementation, such as GNU Class-
path, algorithm details not governed by the contract may be entirely different.

11.5 Collections and Thread Safety

When a Java program is running, it is executing one or more execution streams, or
threads. A thread is like a lightweight process, so a program simultaneously executing
several threads can be thought of as a computer running several programs simultane-
ously, but with one important difference: different threads can simultaneously access
the same memory locations and other system resources. On machines with multiple
processors, truly concurrent thread execution can be achieved by assigning a processor
to each thread. If, however, there are more threads than processors—the usual case—
multithreading is implemented by time slicing, in which a processor executes some
instructions from each thread in turn before switching to the next one.

11.5 Collections and Thread Safety | 153

There are two good reasons for using multithread programming. An obvious one, in
the case of multicore and multiprocessor machines, is to share the work and get it done
quicker. (This reason is becoming ever more compelling as hardware designers turn
increasingly to parallelism as the way of improving overall performance.) A second one
is that two operations may take varying, perhaps unknown, amounts of time, and you
do not want the response to one operation to await the completion of the other. This
is particularly true for a graphical user interface (GUI), where the response to the user
clicking a button should be immediate, and should not be delayed if, say, the program
happens to be running compute-intensive part of the application at the time.

Although concurrency may be essential to achieving good performance, it comes at a
price. Different threads simultaneously accessing the same memory location can pro-
duce unexpected results, unless you take care to constrain their access. Consider Ex-
ample 11-2, in which the class ArrayStack uses an array and an index to implement the
interface Stack, which models a stack of int (despite the similarity of names, this ex-
ample is different from Example 5-1). For ArrayStack to work correctly, the variable
index should always point at the top element of the stack, no matter how many elements
are added to or removed from the stack. This is an invariant of the class. Now think
about what can happen if two threads simultaneously attempt to push an element on
to the stack. As part of the push method, each will execute the lines //1 and //2, which
are correct in a single-threaded environment but in a multi-threaded environment may
break the invariant. For example, if thread A executes line //1, thread B executes
line //1 and then line //2, and finally thread A executes line //2, only the value added
by thread B will now be on the stack, and it will have overwritten the value added by
thread A. The stack pointer, though, will have been incremented by two, so the value
in the top position of the stack is whatever happened to be there before. This is called
a race condition, and it will leave the program in an inconsistent state, likely to fail
because other parts of it will depend on the invariant being true.

Example 11-2. A non-thread-safe stack implementation

interface Stack {
public void push(int elt);
public int pop();
public boolean isEmpty();
}

class ArrayStack implements Stack{
private final int MAX_ELEMENTS = 10;
private int[] stack;
private int index;
public ArrayStack() {
stack = new int[MAX_ELEMENTS];
index = -1;

public void push(int elt) {
if (index != stack.length - 1) {
index++; //1

154 | Chapter11: Preliminaries

stack[index] = elt; //2
} else {
throw new IllegalStateException(“stack overflow");

}

}
public int pop() {
if (index != -1) {
return stack[index];
index--;
} else {
throw new IllegalStateException(“stack underflow");

}

public boolean isEmpty() { return index == -1; }

}

The increasing importance of concurrent programming during the lifetime of Java has
led to a corresponding emphasis in the collections library on flexible and efficient con-
currency policies. As a user of the Java collections, you need a basic understanding of
the concurrency policies of the different collections in order to know how to choose
between them and how to use them appropriately. In this section, we’ll briefly outline
the different ways in which the Framework collections handle concurrency, and the
implications for the programmer. For a full treatment of the general theory of concur-
rent programming, see Concurrent Programming in Java by Doug Lea (Addison-Wes-
ley), and for detail about concurrency in Java, and the collections implementations, see
Java Concurrency in Practice by Brian Goetz et. al. (Addison-Wesley).

11.5.1. Synchronization and the Legacy Collections

Code like that in ArrayStack is not thread-safe—itworks when executed by a single
thread, but may break in a multi-threaded environment. Since the incorrect behavior
we observed involved two threads simultaneously executing the push method, we could
change the program to make that impossible. Using synchronized to modify the dec-
laration of the push method will guarantee that once a thread has started to execute it,
all other threads are excluded from that method until the execution is done:

public synchronized void push(int elt) { ... }

This is called synchronizing on a critical section of code, in this case the whole of the
push method. Before a thread can execute synchronized code, it has to get the lock on
some object—Dby default, as in this case, the current object. While a lock is held by one
thread, another thread that tries to enter any critical section synchronized on that lock
will block—that is, will be suspended—until it can get the lock. This synchronized
version of push is thread-safe; in a multi-threaded environment, each thread behaves
consistently with its behavior in a single-threaded environment.To safeguard the in-
variant and make ArrayStack as a whole thread-safe, the methods pop and isEmpty must
also be synchronized on the same object. The method isEmpty doesn’t write to shared
data, so synchronizing it isn’t required to prevent a race condition, but for a different
reason. Each thread may use a separate memory cache, which means that writes by one

11.5 Collections and Thread Safety | 155

thread may not be seen by another unless either they both take place within blocks
synchronized on the same lock, or unless the variable is marked with the volatile
keyword.

Full method synchronization was, in fact, the policy of the collection classes provided
in JDK1.0: Vector, Hashtable, and their subclasses; all methods that access their in-
stance data are synchronized. These are now regarded as legacy classes to be avoided
because of the high price this policy imposes on all clients of these classes, whether they
require thread safety or not. Synchronization can be very expensive: forcing threads to
queue up to enter the critical section one at a time slows down the overall execution of
the program, and the overhead of administering locks can be very high if they are often
contended.

11.5.2. JDK 1.2: Synchronized Collections and Fail-Fast Iterators

The performance cost of internal synchronization in the JDK 1.0 collections led the
designers to avoid it when the Collections Framework was first introduced in JDK 1.2.
Instead, the platform implementations of the interfaces List, Set, and Map widened the
programmer’s choice of concurrency policies. To provide maximum performance for
single-threaded execution, the new collections provided no concurrency control at all.
(More recently, the same policy change has been made for the synchronized class
StringBuffer, which was complemented in Java 5 by its unsynchronized equivalent,
StringBuilder.)

Along with this change came a new concurrency policy for collection iterators. In mul-
tithreaded environments, a thread which has obtained an iterator will usually continue
to use it while other threads modify the original collection. So iterator behavior has to
be considered as an integral part of a collection's concurrency policy. The policy of the
iterators for the Java 2 collections is to fail fast, as described in Section 11.1: every time
they access the backing collection, they check it for structural modification (which, in
general, means that elements have been added or removed from the collection). If they
detect structural modification, they fail immediately, throwing ConcurrentModificatio
nException rather than continuing to attempt to iterate over the modified collection
with unpredictable results. Note that this fail-fast behavior is provided to help find and
diagnose bugs; it is not guaranteed as part of the collection contract.

The appearance of Java collections without compulsory synchronization was a wel-
come development. However, thread-safe collections were still required in many sit-
uations, so the Framework provided an option to use the new collections with the old
concurrency policy, by means of synchronized wrappers (see Chapter 17). These are
created by calling one of the factory methods in the Collections class, supplying an
unsynchronized collection which it will encapsulate. For example, to make a synchron-
ized List, you could supply an instance of Arraylist to be wrapped. The wrapper
implements the interface by delegating method calls to the collection you supplied, but
the calls are synchronized on the wrapper object itself. Example 11-3 shows a synchron-

156 | Chapter11: Preliminaries

ized wrapper for the interface Stack of Example 11-2. To get a thread-safe Stack, you
would write:

Stack threadSafe = new SynchronizedArrayStack(new ArrayStack());

This is the preferred idiom for using synchronized wrappers; the only reference to the
wrapped object is held by the wrapper, so all calls on the wrapped object will be
synchronized on the same lock—that belonging to the wrapper object itself. It’s im-
portant to have the synchronized wrappers available, but you won’t use them more
than you have to, because they suffer the same performance disadvantages as the legacy
collections.

Example 11-3. A synchronized wrapper for ArrayStack

public class SynchronizedArrayStack implements Stack {
private final Stack stack;
public SynchronizedArrayStack(Stack stack) {
this.stack = stack;

public synchronized void push(int elt) { stack.push(elt); }
public synchronized int pop() { return stack.pop(); }
public synchronized boolean isEmpty() { return stack.isEmpty(); }

}

Using Synchronized Collections Safely Even a class like SynchronizedArrayStack,
which has fully synchronized methods and is itself thread-safe, must still be used with
care in a concurrent environment. For example, this client code is not thread-safe:

Stack stack = new SynchronizedArrayStack(new ArrayStack());

// don't do this in a multi-threaded environment
if (!stack.isEmpty()) {
stack.pop(); // can throw IllegalStateException

}

The exception would be raised if the last element on the stack were removed by another
thread in the time between the evaluation of isEmpty and the execution of pop. This is
an example of a common concurrent program bug, sometimes called test-then-act, in
which program behavior is guided by information that in some circumstances will be
out of date. To avoid it, the test and action must be executed atomically. For synchron-
ized collections (as for the legacy collections), this must be enforced with client-side
locking:
synchronized(stack) {

if (!stack.isEmpty()) {
stack.pop();

}

For this technique to work reliably, the lock that the client uses to guard the atomic
action should be the same one thatis used by the methods of the synchronized wrapper.
In this example, as in the synchronized collections, the methods of the wrapper are

11.5 Collections and Thread Safety | 157

synchronized on the wrapper object itself. (An alternative is to confine references to
the collection within a single client, which enforces its own synchronization discipline.
But this strategy has limited applicability.)

Client-side locking ensures thread-safety, but at a cost: since other threads cannot use
any of the collection’s methods while the action is being performed, guarding a long-
lasting action (say, iterating over an entire array) will have an impact on throughput.
This impact can be very large if the synchronized methods are heavily used; unless your
application needs a feature of the synchronized collections, such as exclusive locking,
the Java 5 concurrent collections are almost always a better option.

11.5.3. Concurrent Collections: Java 5 and Beyond

Java 5 introduced thread-safe concurrent collections as part of a much larger set of
concurrency utilities, including primitives—atomic variables and locks—which give
the Java programmer access to relatively recent hardware innovations for managing
concurrent threads, notably compare-and-swap operations, explained below. The con-
current collections remove the necessity for client-side locking as described in the pre-
vious section—in fact, external synchronization is not even possible with these collec-
tions, as there is no one object which when locked will block all methods. Where
operations need to be atomic—for example, inserting an element into a Map only if it is
currently absent—the concurrent collections provide a method specified to perform
atomically—in this case, ConcurrentMap.putIfAbsent.

If you need thread safety, the concurrent collections generally provide much better
performance than synchronized collections. This is primarily because their throughput
is not reduced by the need to serialize access, as is the case with the synchronized
collections. Synchronized collections also suffer the overhead of managing locks, which
can be high if there is much contention. These differences can lead to efficiency differ-
ences of two orders of magnitude for concurrent access by more than a few threads.

Mechanisms The concurrent collections achieve thread-safety by several different
mechanisms. The first of these—the only one that does not use the new primitives—
is copy-on-write. Classes that use copy-on-write store their values in an internal array,
which is effectively immutable; any change to the value of the collection results in a
new array being created to represent the new values. Synchronization is used by these
classes, though only briefly, during the creation of a new array; because read operations
donotneed to be synchronized, copy-on-write collections perform well in the situations
for which they are designed—those in which reads greatly predominate over writes.
Copy-on-write is used by the collection classes CopyOnWriteArrayList and CopyOnWri
teArraySet.

A second group of thread-safe collections relies on compare-and-swap (CAS), a fun-
damental improvement on traditional synchronization. To see howitworks, consider a
computation in which the value of a single variable is used as input to a long-running
calculation whose eventual result is used to update the variable. Traditional synchro-

158 | Chapter11: Preliminaries

nization makes the whole computation atomic, excluding any other thread from con-
currently accessing the variable. This reduces opportunities for parallel execution and
hurts throughput. An algorithm based on CAS behaves differently: it makes a local copy
of the variable and performs the calculation without getting exclusive access. Only
when it is ready to update the variable does it call CAS, which in one atomic operation
compares the variable’s value with its value at the start and, if they are the same, updates
it with the new value. If they are not the same, the variable must have been modified
by another thread; in this situation, the CAS thread can try the whole computation
again using the new value, or give up, or—in some algorithms— continue, because the
interference will have actually done its work for it! Collections using CAS include
ConcurrentLinkedQueue and ConcurrentSkipListMap.

The third group uses implementations of java.util.concurrent.locks.Lock, an inter-
face introduced in Java 5 as a more flexible alternative to classical synchronization. A
Lock has the same basic behavior as classical synchronization, but a thread can also
acquire it under special conditions: only if the lock is not currently held, or with a
timeout, or if the thread is not interrupted. Unlike synchronized code, in which an
object lock is held while a code block or a method is executed, a Lock is held until its
unlock method is called. Some of the collection classes in this group make use of these
facilities to divide the collection into parts that can be separately locked, giving im-
proved concurrency. For example, LinkedBlockingQueue has separate locks for the head
and tail ends of the queue, so that elements can be added and removed in parallel. Other
collections using these locks include ConcurrentHashMap and most of the implementa-
tions of BlockingQueue.

Iterators The mechanisms described above lead to iterator policies more suitable for
concurrent use than fail-fast, which implicitly regards concurrent modification as a
problem to be eliminated. Copy-on-write collections have snapshot iterators. These
collections are backed by arrays which, once created, are never changed; if a value in
the collection needs to be changed, a new array is created. So an iterator can read the
values in one of these arrays (but never modify them) without danger of them being
changed by another thread. Snapshot iterators do not throw ConcurrentModificatio
nException.

Collections which rely on CAS have weakly consistent iterators, which reflect some but
not necessarily all of the changes that have been made to their backing collection since
they were created. For example, if elements in the collection have been modified or
removed before the iterator reaches them, it definitely will reflect these changes, but
no such guarantee is made for insertions. Weakly consistent iterators also do not throw
ConcurrentModificationException.

The third group described above also have weakly consistent iterators. In Java 6 this
includes DelayQueue and PriorityBlockingQueue, which in Java 5 had fail-fast iterators.
This means that you cannot iterate over the Java 5 version of these queues unless they
are quiescent, at a time when no elements are being added or inserted; at other times
you have to copy their elements into an array using toArray and iterate over that instead.

11.5 Collections and Thread Safety | 159

CHAPTER 12
The Collection Interface

The interface Collection (see Figure 12-1) defines the core functionality that we expect
of any collection other than a map. It provides methods in four groups.

Adding Elements

boolean add(E e) // add the element e
boolean addAll(Collection<? extends E> c) // add the contents of c

The boolean result returned by these methods indicates whether the collection was
changed by the call. It can be false for collections, such as sets, which will be unchanged
if they are asked to add an element that is already present. But the method contracts
specify that the elements being added must be present after execution so, if the collec-
tion refuses an element for any other reason (for example, some collections don’t permit
null elements), these methods must throw an exception.

Collection<E>

+add(o0 :E) :boolean

+addAll{ c : Collection<? extends E>) : boolean
+remove(o : Object) : boolean

+clear() : void

+removeAll(¢ : Collection<?>) : boolean
+retainAll(¢ : Collection<?>) : boolean
+contains(0 : Object) : boolean
+containsAll{ ¢ : Collection<?>) : boolean
+isEmpty() : boolean

+size() :int

+iterator() : lterator<E>

+toArray() : Object(]

+<TI>toArray(T{] a) : T[]

Figure 12-1. Collection

161

The signatures of these methods show that, as you might expect, you can add elements
or element collections only of the parametric type.

Removing Elements

boolean remove(Object o) // remove the element o

void clear() // remove all elements

boolean removeAll(Collection<?> ¢) // remove the elements in c
boolean retainAll(Collection<?> ¢) // remove the elements *not* in c

If the element 0 is null, remove removes a null from the collection if one is present.
Otherwise, if an element e is present for which 0.equals(e), it removes it. If not, it
leaves the collection unchanged. Where a method in this group returns a boolean, the
value is true if the collection changed as a result of applying the operation.

In contrast to the methods for adding elements, these methods—and those of the next
group—will accept elements or element collections of any type. We will explain this
in a moment, when we look at examples of the use of these methods.

Querying the Contents of a Collection

boolean contains(Object o) // true if o is present
boolean containsAll(Collection<?> c) // true if all elements of ¢

// are present in the collection
boolean isEmpty() // true if no elements are present
int size() // return the element count (or

// Integer.MAX VALUE if that is less)

The decision to make size return Integer .MAX_VALUE for extremely large collections was
probably taken on the assumption that such collections—with more than two billion
elements—will rarely arise. Even so, an alternative design which raises an exception
instead of returning an arbitrary value would have the merit of ensuring that the con-
tract for size could clearly state that if it does succeed in returning a value, that value
will be correct.

Making a Collection’s Contents Available for Further Processing

Iterator<k> iterator() // return an Iterator over the elements
Object[] toArray() // copy contents to an Object[]
<T> T[] toArray(T[] t) // copy contents to a T[] (for any T)

The last two methods in this group convert collections into arrays. The first method
will create a new array of Object, and the second takes an array of T and returns an array
of the same type containing the elements of the collection.

These methods are important because, although arrays should now be regarded as a
legacy data type (see Section 6.9), many APIs, especially older ones that predate the
Java Collections Framework, have methods that accept or return arrays.

As discussed in Section 6.4, the argument of the second method is required in order to
provide at run time the reifiable type of the array, though it can have another purpose
as well: if there is room, the elements of the collection are placed in it—otherwise, a

162 | Chapter12: The Collection Interface

new array of that type is created. The first case can be useful if you want to allow the
toArray method to reuse an array that you supply; this can be more efficient, particularly
if the method is being called repeatedly. The second case is more convenient—a com-
mon and straightforward idiom is to supply an array of zero length:

Collection<String> cs = ...
String[] sa = cs.toArray(new String[o]);

A more efficient alternative, if a class uses this idiom more than once, is to declare a
single empty array of the required type, that can then be used as many times as required:
private static final String[] EMPTY_STRING_ARRAY = new String[o];

Collection<String> cs = ...
String[] sa = cs.toArray(EMPTY_STRING_ARRAY);

Why is any type allowed for T in the declaration of toArray? One reason is to give the
flexibility to allocate a more specific array type if the collection happens to contain
elements of that type:

List<Object> 1 = Array.aslList("zero","one");
String[] a = 1.toArray(new String[o]);

Here, a list of objects happens to contain only strings, so it can be converted into a
string array, in an operation analogous to the promote method described in Section 6.2.

If the list contains an object that is not a string, the error is caught at run time rather
than compile time:

List<Object> 1 = Array.asList("zero","one",2);
String[] a = l.toArray(new String[o]); // run-time error

Here, the call raises ArrayStoreException, the exception that occurs if you try to assign
to an array with an incompatible reified type.

In general, one may want to copy a collection of a given type into an array of a more
specific type (for instance, copying a list of objects into an array of strings, as we showed
earlier), or of a more general type (for instance, copying a list of strings into an array of
objects). One would never want to copy a collection of a given type into an array of a
completely unrelated type (for instance, copying a list of integers into an array of strings
is always wrong). However, there is no way to specify this constraint in Java, so such
errors are caught at run time rather than compile time.

One drawback of this design is that it does not work with arrays of primitive type:

List<Integer> 1 = Array.aslList(0,1,2);
int[] a = l.toArray(new int[0]); // compile-time error

This is illegal because the type parameter T in the method call must, as always, be a
reference type. The call would work if we replaced both occurrences of int with Inte
ger, but often this will not do because, for performance or compatibility reasons, we
require an array of primitive type. In such cases, there is nothing for it but to copy the
array explicitly:

The Collection Interface | 163

List<Integer> 1 = Array.aslList(0,1,2);

int[] a = new int[l.size()];

for (int i=0; i<l.size(); i++) a[i] = 1l.get(i);
The Collections Framework does not include convenience methods to convert collec-
tions to arrays of primitive type. Fortunately, this requires only a few lines of code.

12.1 Using the Methods of Collection

To illustrate the use of the collection classes, let’s construct a tiny example. Your au-
thors are forever trying to get organized; let’s imagine that our latest effort involves
writing our own to-do manager. We begin by defining a class to represent tasks, and
subclasses to represent different kinds of tasks, such as writing some code or making
a phone call.

Here is the definition of tasks that we shall use:

public abstract class Task implements Comparable<Task> {
protected Task() {}
public boolean equals(Object o) {
if (o instanceof Task) {
return toString().equals(o.toString());
} else return false;

}
public int compareTo(Task t) {
return toString().compareTo(t.toString());

public int hashCode() {
return toString().hashCode();

public abstract String toString();
}

We only require four operations on tasks: equals, compareTo, hashCode and toString.
Equality will be used to test whether a collection contains a given task, comparison will
be used by ordered collections (such as OrderedSet and OrderedMap) and the hash code
will be used by collections based on hash tables (such as HashSet and HashMap), and the
string representation of a task will be used whenever we show the contents of a collec-
tion. The first three methods are defined in terms of the toString method, which is
declared abstract, so it must be defined in each subclass of Task. We consider two tasks
equal if they are represented by the same string, and the natural ordering on tasks is
the same as the ordering on their strings. This guarantees that the natural ordering on
tasks is consistent with equality, as discussed in Section 3.1—that is, compareTo returns
0 exactly when equals returns true.

We define subclasses for two kinds of tasks, writing some code and making a phone call:

public final class CodingTask extends Task {
private final String spec;
public CodingTask(String spec) {
this.spec = spec;

164 | Chapter12: The Collection Interface

public String getSpec() { return spec; }
public String toString() { return "code

}

"

+ spec; }

public final class PhoneTask extends Task {
private final String name;
private final String number;
public PhoneTask(String name, String number) {
this.name = name;
this.number = number;

}

public String getName() { return name; }

public String getNumber() { return number; }

public String toString() { return "phone " + name; }

}

A coding task is specified by a string, and a phone task is specified by the name and
number of the person to be called. In each case we provide a constructor for the class,
methods to access its fields, and a way to convert it to a string. In accordance with good
practice, we have made both kinds of task immutable by declaring the fields to be
final, and we have declared both subclasses to be final so that no one can later define
mutable subclasses (see item “Minimize mutability”/“Favor immutability”) in Chapter
4 of Effective Java by Joshua Bloch, Addison-Wesley).

The toString method prefaces every coding task with the string "code" and every phone
task with the string "phone“. Since the first precedes the second in alphabetic order, and
since tasks are ordered according to the results returned by toString, it follows that
coding tasks come before phone tasks in the natural ordering on tasks. This suits our
needs—we are geeks, after all!

For compactness, the toString method on phone tasks only returns the name of the
person to call and not the phone number. We assume we never create two phone tasks
with the same name and different numbers; if we did, it would be wrong to test equality
using the result returned by toString.

We also define an empty task:

public class EmptyTask extends Task {
public EmptyTask() {}
public String toString() { return ""; }

}

Example 12-1. Example tasks and task collections for the task manager

PhoneTask mikePhone = new PhoneTask("Mike", "987 6543");
PhoneTask paulPhone = new PhoneTask("Paul", "123 4567");
CodingTask databaseCode = new CodingTask("db");
CodingTask interfaceCode = new CodingTask("gui");
CodingTask logicCode = new CodingTask("logic");

Collection<PhoneTask> phoneTasks = new ArraylList<PhoneTask>();

12.1 Using the Methods of Collection | 165

Collection<CodingTask> codingTasks = new ArraylList<CodingTask>();
Collection<Task> mondayTasks = new ArraylList<Task>();
Collection<Task> tuesdayTasks = new ArrayList<Task>();

Collections.addAll(phoneTasks, mikePhone, paulPhone);
Collections.addAll(codingTasks, databaseCode, interfaceCode, logicCode);
Collections.addAll(mondayTasks, logicCode, mikePhone);
Collections.addAll(tuesdayTasks, databaseCode, interfaceCode, paulPhone);

assert phoneTasks.toString().equals("[phone Mike, phone Paul]");
assert codingTasks.toString().equals("[code db, code gui, code logic]");
assert mondayTasks.toString().equals("[code logic, phone Mike]");
assert tuesdayTasks.toString().equals("[code db, code gui, phone Paull]");

Since the empty string precedes all others in the natural ordering on strings, the empty
task comes before all others in the natural ordering on tasks. This task will be useful
when we construct range views of sorted sets (see Section 13.2).

Example 12-1 shows how we can define a series of tasks to be carried out (even if, in a
real system, they would be more likely to be retrieved from a database). We’ve chosen
Arraylist as the implementation of Collection to use in this example, but we’re not
going to take advantage of any of the special properties of lists; we’re treating Array
List as an implementation of Collection and nothing more. As part of the retrieval
process, we have organized the tasks into various categories represented by lists, using
the methodCollections.addAll introduced in Section 1.4.

Now we can use the methods of Collection to work with these categories. The examples
we present here use the methods in the order in which they were presented earlier.

Adding Elements We can add new tasks to the schedule:

mondayTasks.add(new PhoneTask("Ruth", "567 1234"));
assert mondayTasks.toString().equals(
"[code logic, phone Mike, phone Ruth]");

or we can combine schedules together:

Collection<Task> allTasks = new ArraylList<Task>(mondayTasks);
allTasks.addAll(tuesdayTasks);
assert allTasks.toString().equals(

"[code logic, phone Mike, phone Ruth, code db, code gui, phone Paul]");

Removing Elements When a task is completed, we can remove it from a schedule:

boolean wasPresent = mondayTasks.remove(mikePhone);
assert wasPresent;
assert mondayTasks.toString().equals("[code logic, phone Ruth]");

and we can clear a schedule out altogether because all of its tasks have been done (yeah,
right):

mondayTasks.clear();
assert mondayTasks.toString().equals("[]");

166 | Chapter12: The Collection Interface

The removal methods also allow us to combine entire collections in various ways. For
example, to see which tasks other than phone calls are scheduled for Tuesday, we can
write:

Collection<Task> tuesdayNonphoneTasks = new ArraylList<Task>(tuesdayTasks);

tuesdayNonphoneTasks.removeAll(phoneTasks);
assert tuesdayNonphoneTasks.toString().equals("[code db, code guil");

or to see which phone calls are scheduled for that day:

Collection<Task> phoneTuesdayTasks = new ArraylList<Task>(tuesdayTasks);
phoneTuesdayTasks.retainAll(phoneTasks);
assert phoneTuesdayTasks.toString().equals("[phone Paul]");

This last example can be approached differently to achieve the same result:

Collection<PhoneTask> tuesdayPhoneTasks =

new ArraylList<PhoneTask>(phoneTasks);
tuesdayPhoneTasks.retainAll(tuesdayTasks);
assert tuesdayPhoneTasks.toString().equals("[phone Paul]");

Note that phoneTuesdayTasks has the type List<Task>, while tuesdayPhoneTasks has the
more precise type List<PhoneTask>.

This example provides an explanation of the signatures of methods in this group and
the next. We have already discussed (Section 2.6) why they take arguments of type
Object or Collection<?> when the methods for adding to the collection restrict their
arguments to its parametric type. Taking the example of retainAll, its contract requires
the removal of those elements of this collection which do not occur in the argument
collection. That gives no justification for restricting what the argument collection may
contain,; in the preceding example it can contain instances of any kind of Task, not just
PhoneTask. And itis too narrow even to restrict the argument to collections of supertypes
of the parametric type; we want the least restrictive type possible, which is Collection<?
>. Similar reasoning applies to remove, removeAll, contains, and containsAll.

Querying the Contents of a Collection These methods allow us to check, for exam-
ple, that the operations above have worked correctly. We are going to use assert here
to make the system check our belief that we have programmed the previous operations
correctly. For example the first statement will throw an AssertionError if tuesdayPho
neTasks does not contain paulPhone:

assert tuesdayPhoneTasks.contains(paulPhone);

assert tuesdayTasks.containsAll(tuesdayPhoneTasks);

assert mondayTasks.isEmpty();
assert mondayTasks.size() == 0;

Making the Collection Contents Available for Further Processing The methods
in this group provide an iterator over the collection or convert it to an array.

Section 11.1 showed how the simplest—and most common—explicit use of iterators
has been replaced in Java 5 by the foreach statement, which uses them implicitly. But
there are uses of iteration with which foreach can’t help; you must use an explicit iter-

12.1 Using the Methods of Collection | 167

ator if you want to change the structure of a collection without encountering Concur
rentModification-Exception, orif you want to process two lists in parallel. For example,
suppose that we decide that we don’t have time for phone tasks on Tuesday. It may
perhaps be tempting to use foreach to filter them from our task list, but that won’t work
for the reasons described in Section 11.1:

// throws ConcurrentModificationException
for (Task t : tuesdayTasks) {
if (t instanceof PhoneTask) {
tuesdayTasks.remove(t);
}
}

Using an iterator explicitly is no improvement if you still use the Collection methods
that modify the structure:

// throws ConcurrentModificationException
for (Iterator<Task> it = tuesdayTasks.iterator() ; it.hasNext() ;) {
Task t = it.next();
if (t instanceof PhoneTask) {
tuesdayTasks.remove(t);
}
}

But using the iterator’s structure-changing methods gives the result we want:

for (Iterator<Task> it = tuesdayTasks.iterator() ; it.hasNext() ;) {
Task t = it.next();
if (t instanceof PhoneTask) {
it.remove();

}

Example 12-2. Merging collections using natural ordering

public class MergeCollections {
static <T extends Comparable<? super T>>
List<T> merge(Collection<? extends T> c1, Collection<? extends T> c2)
{
List<T> mergedList = new ArraylList<T>();
Iterator<? extends T> itrl = cil.iterator();
Iterator<? extends T> itr2 = c2.iterator();
T clElement = getNextElement(itr1);
T c2Element = getNextElement(itr2);
// each iteration will take a task from one of the iterators;
// continue until neither iterator has any further tasks
while (ciElement != null || c2Element != null) {
// use the current c1 element if either the current c2
// element is null, or both are non-null and the c1 element
// precedes the c2 element in the natural order
boolean useCiElement = c2Element == null ||
ciElement != null &% ciElement.compareTo(c2Element) < 0;
if (useCiElement) {
mergedList.add(c1Element);
clElement = getNextElement(itr1);
} else {

168 | Chapter12: The Collection Interface

mergedList.add(c2Element);
c2Element = getNextElement(itr2);
}
}
return mergedList;

static <E> E getNextElement(Iterator<E> itr) {
if (itr.hasNext()){
E nextElement = itr.next();
if (nextElement == null) throw new NullPointerException();
return nextElement;
} else {
return null;
}
}
}

For another example, suppose we are fastidious people that like to keep all our lists of
tasks in ascending order, and we want to merge two lists of tasks into a single list, while
maintaining the order. Example 12-2 shows how we can merge two collections into a
third, provided that the iterators of each return their elements ascending in natural
order. This method relies on the fact that the collections to be merged contain no
null elements; if one is encountered, the method throws a NullPointerException. As it
happens, the collections mondayTasks and tuesdayTasks in Example 12-1 are both in
ascending order, and we can merge them as follows:
Collection<Task> mergedTasks =
MergeCollections.merge(mondayTasks, tuesdayTasks);

assert mergedTasks.toString().equals(
"[code db, code gui, code logic, phone Mike, phone Paul]");

12.2 Implementing Collection

There are no concrete implementations of Collection. The class AbstractCollection,
which partially implements it, is one of a series of skeletal implementations—including
AbstractSet, AbstractList, and so on—which provide functionality common to the
different concrete implementations of each interface. These skeletal implementations
are available to help the designer of new implementations of the Framework interfaces.
For example, Collection could serve as the interface for bags (unordered lists), and a
programmer implementing bags could extend AbstractCollection and find most of the
implementation work already done.

12.3 Collection Constructors

We will go on to look at the three main kinds of collection in the next three chapters,
but we should first explain two common forms of constructor which are shared by most
collection implementations. Taking HashSet as an example, these are:

12.3 Collection Constructors | 169

public HashSet()
public HashSet(Collection<? extends E> c)

The first of these creates an empty set, and the second a set that will contain the elements
of any collection of the parametric type—or one of its subtypes, of course. Using this
constructor has the same effect as creating an empty set with the default constructor,
and then adding the contents of a collection using addAll. This is sometimes called a
“copy constructor”, but that term should really be reserved for constructors which
make a copy of an object of the same class, whereas constructors of the second form
can take any object which implements the interface Collection<? extends E>. Joshua
Bloch has suggested the term “conversion constructor”.

Not all collection classes have constructors of both forms—ArrayBlockingQueue, for
example, cannot be created without fixing its capacity, and SynchronousQueue cannot
hold any elements at all, so no constructor of the second form is appropriate. In addi-
tion, many collection classes have other constructors besides these two, but which ones
they have depends not on the interface they implement but on the underlying imple-
mentation; these additional constructors are used to configure the implementation.

170 | Chapter12: The Collection Interface

CHAPTER 13
Sets

A setisacollection of items that cannot contain duplicates; adding an item if it is already
present in the set has no effect. The Set interface has the same methods as those of
Collection, but it is defined separately in order to allow the contract of add (and
addAll, which is defined in terms of add) to be changed in this way. Returning to the
task manager example in the previous chapter, suppose that on Monday you have free
time to carry out your telephone tasks. You can make the appropriate collection by
adding all your telephone tasks to your Monday tasks. Let mondayTasks and phone
Tasks be as declared in Example 12-1. Using a set (again choosing a conveniently com-
mon implementation of Set), you can write:

Set<Task> phoneAndMondayTasks = new TreeSet<Task>(mondayTasks);

phoneAndMondayTasks.addAll(phoneTasks);

assert phoneAndMondayTasks.toString().equals(
"[code logic, phone Mike, phone Paull");

This works because of the way that duplicate elements are handled. The task mike
Phone, which is in both mondayTasks and phoneTasks, appears as intended, only once,
inphoneAndMondayTasks—you definitely don’t want to have to do all such tasks twice
over!

13.1 Implementing Set

When we used the methods of Collection in the examples of Chapter 12, we empha-
sized that they would work with any implementation of Collection. What if we had
decided that we would use one of the Set implementations from the Collections Frame-
work? We would have had to choose between the various concrete implementations
that the Framework provides, which differ both in how fast they perform the basic
operations of add, contains, and iteration, and in the order in which their iterators
return their elements. In this section and the next we will look at these differences, then
at the end of the Chapter we will summarize the comparative performance of the dif-
ferent implementations.

There are six concrete implementations of Set in the Collections Framework. Fig-
ure 13-1 shows their relationship to Set and its subinterfaces SortedSet and Navigable

m

Set<F>

4424

SortedSet<E>

EnumSet<E extends Enum<E>> HashSet<E> EopyOnWriléﬁnaySet-:b NavigableSet<£>
{java.util.concurrent) AL

LinkedHashSet<E> TreeSet<E> ConcurrentSkipListSet<E>
(java.util.concurrent)

Figure 13-1. Implementations of the Set interface

Set. In this section, we will look at HashSet, LinkedHashSet, CopyOnWriteArraySet and
EnumSet. We will discuss SortedSet and NavigableSet, together with their implemen-
tations, TreeSet and ConcurrentSkipListSet, in Section 13.2.

13.1.1. HashSet

This class is the most commonly used implementation of Set. As the name implies, it
is implemented by a hash table, an array in which elements are stored at a position
derived from their contents. Since hash tables store and retrieve elements by their con-
tent, they are well suited to implementing the operations of Set (the Collections Frame-
work also uses them for various implementations of Map). For example, to implement
contains(Object o) you would look for the element o and return true if it were found.

An element’s position in a hash table is calculated by a hash function of its contents.
Hash functions are designed to give, as far as possible, an even spread of results (hash
codes) over the element values that might be stored. For example, here is code like that
used in the String class to calculate a hash code:
int hash = 0;
for (char ch : str.toCharArray()) {
hash = hash * 31 + ch;

}

Traditionally, hash tables obtain an index from the hash code by taking the remainder
after division by the table length. The Collections Framework classes actually use bit
masking rather than division. Since that means it is the pattern of bits at the low end
of the hash code that is significant, prime numbers (such as 31, here) are used in cal-
culating the hash code because multiplying by primes will not tend to shift information
away from the low end—as would multiplying by a power of 2, for example.

A moment’s thought will show that, unless your table has more locations than there
are values that might be stored in it, sometimes two distinct values must hash to the
same location in the hash table. For instance, no int-indexed table can be large enough

172 | Chapter13: Sets

1 //

2

3 \
. HESHE
5

6

7

Figure 13-2. A hash table with chained overflow

to store all string values without collisions.We can minimize the problem with a good
hash function—one which spreads the elements out equally in the table—but, when
collisions do occur, we have to have a way of keeping the colliding elements at the same
table location or bucket. This is often done by storing them in a linked list, as shown
in Figure 13-2. We will look at linked lists in more detail as part of the implementations
of ConcurrentSkipListSet (see Section 13.2.3) but, for now, it’s enough to see that
elements stored at the same bucket can still be accessed, at the cost of following a chain
of cell references. Figure 13-2 shows the situation resulting from running this code on
Sun’s implementation of Java 5:

Set<Character> s1 = new HashSet<Character>(8);

sl.add('a");

sl.add('b");
si.add('j");

The index values of the table elements have been calculated by using the bottom three
bits (for a table of length 8) of the hash code of each element. In this implementation,
a Character’s hash code is just the Unicode value of the character it contains. (In prac-
tice, of course, a hash table would be much bigger than this. Also, this diagram is
simplified from the real situation; because HashSet is actually implemented by a speci-
alized HashMap, each of the cells in the chain contains not one but two references, to a
key and a value (see Chapter 16). Only the key is shown in this diagram because, when
a hash table is being used to represent a set, all values are the same—only the presence
of the key is significant.)

As long as there are no collisions, the cost of inserting or retrieving an element is con-
stant. As the hash table fills, collisions become more likely; assuming a good hash
function, the probability of a collision in a lightly loaded table is proportional to its
load, defined as the number of elements in the table divided by its capacity (the number

13.1 Implementing Set | 173

of buckets). If a collision does take place, a linked list has to be created and subsequently
traversed, adding an extra cost to insertion proportional to the number of elements in
the list. If the size of the hash table is fixed, performance will worsen as more elements
are added and the load increases. To prevent this from happening, the table size is
increased by rehashing—copying to a new and larger table—when the load reaches a
specified threshold (its load factor).

Iterating over a hash table requires each bucket to be examined to see whether it is
occupied and therefore costs a time proportional to the capacity of the hash table plus
the number of elements it contains. Since the iterator examines each bucket in turn,
the order in which elements are returned depends on their hash codes, so there is no
guarantee as to the order in which the elements will be returned. The hash table shown
in Figure 13-2 yields its elements in order of descending table index and forward tra-
versal of the linked lists. Printing it produces the following output:

(3, b, a]

Later in this section we will look at LinkedHashSet, a variant of this implementation
with an iterator that does return elements in their insertion order.

The chief attraction of a hash table implementation for sets is the (ideally) constant-
time performance for the basic operations of add, remove, contains, and size. Its main
disadvantage is its iteration performance; since iterating through the table involves
examining every bucket, its cost is proportional to the table size regardless of the size
of the set it contains.

HashSet has the standard constructors that we introduced in Section 12.3, together with
two additional constructors:

HashSet(int initialCapacity)
HashSet(int initialCapacity, float loadFactor)

Both of these constructors create an empty set but allow some control over the size of
the underlying table, creating one with a length of the next-largest power of 2 after the
supplied capacity. Most of the hash table-based implementations in the Collections
Framework have similar constructors, although Joshua Bloch, the original designer of
the Framework, has told us that new classes will no longer usually have configuration
parameters like the load factor; they are not generally useful, and they limit the possi-
bilities of improving implementations at a later date.

HashSet is unsychronized and not thread-safe; its iterators are fail-fast.

13.1.2. LinkedHashSet

This class inherits from HashSet, still implementing Set and refining the contract of its
superclass in only one respect: it guarantees that its iterators will return their elements
in the order in which they were first added. It does this by maintaining a linked list of
the set elements, as shown by the curved arrows in Figure 13-3. The situation in the
figure would result from this code:

174 | Chapter13: Sets

start

1

Figure 13-3. A linked hash table

Set<Character> s2 = new LinkedHashSet<Character>(8);
Collections.addAll(s2, ‘a', 'b', 'j');

// iterators of a LinkedHashSet return their elements in proper order:
assert s2.toString().equals("[a, b, j]");

The linked structure also has a useful consequence in terms of improved performance
for iteration: next performs in constant time, as the linked list can be used to visit each
element in turn. This is in contrast to HashSet, for which every bucket in the hash table
must be visited whether it is occupied or not, but the overhead involved in maintaining
the linked list means that you would choose LinkedHashSet in preference to HashSet
only if the orde or the efficiency of iteration were important for your application.

The constructors for LinkedHashSet provide the same facilities as those of HashSet for
configuring the underlying hash table. Like HashSet, it is unsychronized and not thread-
safe; its iterators are fail-fast.

13.1.3. CopyOnWriteArraySet

In functional terms, CopyOnWriteArraySet is another straightforward implementation
of the Set contract, but with quite different performance characteristics from HashSet.
This class is implemented as a thin wrapper around an instance of CopyOnWriteArray
List, which in turn is backed by an array. This array is treated as immutable; a change
to the contents of the set results in an entirely new array being created. So add has
complexity O(n), as does contains, which has to be implemented by a linear search.
Clearly you wouldn’t use CopyOnWriteArraySet in a context where you were expecting
many searches or insertions. But the array implementation means that iteration costs
O(1) per element—faster than HashSet—and it has one advantage which is really com-
pelling in some applications: it provides thread safety (see Section 11.5) without adding

13.1 Implementing Set | 175

to the cost of read operations. This is in contrast to those collections which use locking
to achieve thread safety for all operations (for example, the synchronized collections
of Section 17.3.1). Such collections are a bottleneck in multi-threaded use because a
thread must get exclusive access to the collection object before it can use it in any way.
By contrast, read operations on copy-on-write collections are implemented on the
backing array, which is never modified after its creation, so they can be used by any
thread without danger of interference from a concurrent write operation.

When would you want to use a set with these characteristics? In fairly specialized cases;
one that is quite common is in the implementation of the Subject-Observer design
pattern (see Section 9.5), which requires events to be notified to a set of observers. This
set must not be modified during the process of notification; with locking set imple-
mentations, read and write operations share the overhead necessary to ensure this,
whereas with CopyOnWriteArraySet the overhead is carried entirely by write operations.
This makes sense for Subject-Observer; in typical uses of this pattern, event notifica-
tions occur much more frequently than changes to the listener set.

[terators for CopyOnWriteArraySet can be used only to read the set. When they are cre-
ated, they are attached to the instance of the backing array being used by the set at that
moment. Since no instance of this array should ever be modified, the iterators’
remove method is not implemented. These are snapshot iterators (see Section 11.5);
they reflect the state of the set at the time they were created, and can subsequently be
traversed without any danger of interference from threads modifying the set from which
they were derived.

Since there are no configuration parameters for CopyOnhriteArraySet, the constructors
are just the standard ones discussed in Section 12.3.

13.1.4. EnumSet

This class exists to take advantage of the efficient implementations that are possible
when the number of possible elements is fixed and a unique index can be assigned to
each. These two conditions hold for a set of elements of the same Enum; the number of
keys is fixed by the constants of the enumerated type, and the ordinal method returns
values that are guaranteed to be unique to each constant. In addition, the values that
ordinal returns form a compact range, starting from zero—ideal, in fact, for use as array
indices or, in the standard implementation, indices of a bit vector. So add, remove, and
contains are implemented as bit manipulations, with constant-time performance. Bit
manipulation on a single word is extremely fast, and a long value can be used to rep-
resent EnumSets over enum types with up to 64 values. Larger enums can be treated in a
similar way, with some overhead, using more than one word for the representation.

EnumSet is an abstract class that implements these different representations by means
of different package-private subclasses. It hides the concrete implementation from the
programmer, instead exposing factory methods that call the constructor for the ap-
propriate subclass. The following group of factory methods provide ways of creating

176 | Chapter13: Sets

EnumSets with different initial contents: empty, specified elements only, or all elements
of the enum.
<E extends Enum<E>> EnumSet<E> of(E first, E... rest)
// create a set initially containing the specified elements
<E extends Enum<E>> EnumSet<E> range(E from, E to)
// create a set initially containing all of the elements in
// the range defined by the two specified endpoints
<E extends Enum<E>> EnumSet<E> allOf(Class<E> elementType)
// create a set initially containing all elements in elementType
<E extends Enum<E>> EnumSet<E> noneOf(Class<E> elementType)
// create a set of elementType, initially empty

An EnumSet contains the reified type of its elements, which is used at run time for
checking the validity of new entries. This type is supplied by the above factory methods
in two different ways. The methods of and range receive at least one enum argument,
which can be queried for its declaring class (that is, the Enum that it belongs to). For
allof and none0f, which have no enum arguments, a class token is supplied instead.

Common cases for EnumSet creation are optimized by the second group of methods,
which allow you to efficiently create sets with one, two, three, four, or five elements of
an enumerated type.

<E extends Enum<E>> EnumSet<E> of(E e)

<E extends Enum<E>> EnumSet<E> of(E el, E e2)

<E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3)

<E extends Enum<E>> EnumSet<E> of(E el1, E e2, E e3, E e4)
<E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4, E e5)

The third set of methods allows the creation of an EnumSet from an existing collection:

<E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> s)
// create an EnumSet with the same element type as s, and
// with the same elements
<E extends Enum<E>> EnumSet<E> copyOf(Collection<E> c)
// create an EnumSet from the elements of c, which must contain
// at least one element
<E extends Enum<E>> EnumSet<E> complementOf(EnumSet<E> s)
// create an EnumSet with the same element type as s,
// containing the elements not in s

The collection supplied as the argument to the second version of copy0f must be non-
empty so that the element type can be determined.

In use, EnumSet obeys the contract for Set, with the added specification that its iterators
will return their elements in their natural order (the order in which their enum constants
are declared). It is not thread-safe, but unlike the unsynchronized general-purpose col-
lections, its iterators are not fail-fast. They may be either snapshot or weakly consistent;
to be conservative, the contract guarantees only that they will be weakly consistent (see
Section 11.5).

13.1 Implementing Set | 177

SortedSet<E>

+first() : E

+ast() : E

+comparator() : Comparator<? super >

+subSet(fromElement : <E>, toElement : <E>) : SortedSet<£>
+headSet(toElement : <E>) : SortedSet<E>

+tailSet(fromElement : <E>) : SortedSet<E>

Figure 13-4. SortedSet

13.2 SortedSet and NavigableSet

Set has one subinterface, SortedSet (Figure 13-4), which adds to the Set contract a
guarantee that its iterator will traverse the set in ascending element order. SortedSet
was itself extended in Java 6 by the interface NavigableSet (see Figure 13-5), which adds
methods to find the closest matches to a target element. The only implementation of
SortedSet before Java 6was TreeSet, which has been retrofitted with the methods re-
quired to implement the new interface. Since there is no platform implementation of
SortedSet in Java 6 that does not also implementNavigableSet, it makes sense to discuss
them in the same section. For new client code developed for the Java 6 platform, there
is no need to use the SortedSet interface at all, but for the benefit of readers still con-
strained to use Java 5 we shall present the methods of the two interfaces separately in
this section.

In Chapter 3 we saw that element ordering can either be defined by the element class
itself, if that implements Comparable, or it can be imposed by an external Comparator,
supplied by a constructor such as this one, for TreeSet:

TreeSet(Comparator<? super E> comparator)

Task does implement Comparable (its natural ordering is the natural ordering of its string
representation), so we don’t need to supply a separate comparator. Now merging two
ordered lists, which was quite tricky using parallel iterators, is trivial if we get a Sorted
Set to do the work. Using the task collections of Example 12-1, it requires two lines of
code:
Set<Task> naturallyOrderedTasks = new TreeSet<Task>(mondayTasks);
naturallyOrderedTasks.addAll(tuesdayTasks);

assert naturallyOrderedTasks.toString().equals (
"[code db, code gui, code logic, phone Mike, phone Paull]");

This simplicity comes at a price, though; merging two sorted lists of size n is O(n), but
adding n elements to a TreeSet of size n is O(n log n).

We could use SortedSet to add some function to the to-do manager. Until now, the
methods of Collection and Set have given us no help in ordering our tasks—surely one
of the central requirements of a to-do manager. Example 13-1 defines a class Priority
Task which attaches a priority to a task. There are three priorities, HIGH, MEDIUM, and

178 | Chapter13: Sets

LOW, declared so that HIGH priority comes first in the natural ordering. To compare two
PriorityTasks, we first compare their priorities; if the priorities are unequal, the higher
priority tasks comes first, and if the priorities are equal, we use the natural ordering on
the underlying tasks. To test whether two PriorityTasks are equal, we check whether
they have the same priority and the same task. These definitions ensure that the natural
ordering is consistent with equals (see Section 3.1). As when we defined tasks in Sec-
tion 12.1, we have followed good practice by making PriorityTask immutable.

Example 13-1. The class PriorityTask

public enum Priority { HIGH, MEDIUM, LOW }
public final class PriorityTask implements Comparable<PriorityTask> {
private final Task task;
private final Priority priority;
PriorityTask(Task task, Priority priority) {
this.task = task;
this.priority = priority;

public Task getTask() { return task; }
public Priority getPriority() { return priority; }
public int compareTo(PriorityTask pt) {

int ¢ = priority.compareTo(pt.priority);

return c != 0 ? c : task.compareTo(pt.task);

public boolean equals(Object o) {
if (o instanceof PriorityTask) {
PriorityTask pt = (PriorityTask)o;
return task.equals(pt.task) &3 priority.equals(pt.priority);
} else return false;

public int hashCode() { return task.hashCode(); }
public String toString() { return task + ": " + priority; }

}

The following code shows SortedSet working with a set of PriorityTasks (in fact, we
have declared a NavigableSet so that we can use the same set in later examples. But for
the moment, we will just use the methods of SortedSet):
NavigableSet<PriorityTask> priorityTasks = new TreeSet<PriorityTask>();
priorityTasks.add(new PriorityTask(mikePhone, Priority.MEDIUM));
priorityTasks.add(new PriorityTask(paulPhone, Priority.HIGH));

(
priorityTasks.add(new PriorityTask(databaseCode, Priority.MEDIUM));
(

ew
priorityTasks.add(new PriorityTask(interfaceCode, Priority.LOW));

assert(priorityTasks.toString()).equals(
"[phone Paul: HIGH, code db: MEDIUM, phone Mike: MEDIUM, code gui: LOW]");

Could you not simply compare the priorities of the tasks, without using the string
representation as a secondary key? A partial ordering like that would be useful if you
want to preserve some aspects of the original ordering; for example, you might wish to
sort tasks by priority but, within each priority, preserve the order in which they were
added to the set. But the contract for SortedSet (and, as we shall see later, SortedMap)

13.2 SortedSet and NavigableSet | 179

states that it will use the compare method of its Comparator—or, if it does not have one,
the compareTo method of its elements—instead of the elements’ equals method to de-
termine when elements are distinct. This means that if a number of elements compare
as the same, the set will treat them as duplicates, and all but one will be discarded.

The methods defined by the SortedSet interface fall into three groups:

Getting the First and Last Elements

E first() // return the first element in the set
E last() // return the last element in the set

If the set is empty, these operations throw NoSuchElementException.

Retrieving the Comparator

Comparator<? super E> comparator()

This method returns the set’s comparator if it has been given one at construction time.
The type Comparator<? super E> is used because a SortedSet parameterized on E can
rely for ordering on a Comparator defined on any supertype of E. For example, recalling
Section 3.3, a Comparator<Fruit> could be used with a SortedSet<Apple>.

Getting Range Views

SortedSet<E> subSet(E fromElement, E toElement)
SortedSet<E> headSet(E toElement)
SortedSet<E> tailSet(E fromElement)

The method subSet returns a set containing every element of the original set that is
greater than or equal to fromElement and less than toElement. Similarly, the method
headset returns every element that is less than toElement, and tailSet returns every
element that is greater than or equal to fromElement. Note that the arguments to these
operations do not themselves have to be members of the set. The sets returned are half-
open intervals: they are inclusive of the fromElement—provided it actually is a set mem-
ber, of course—and exclusive of the toElement.

In our example, these methods could be useful in providing different views of the ele-
ments in priorityTasks. For instance, we can use headSet to obtain a view of the high-
and medium-priority tasks. To do this, we need a special task that comes before all
others in the task ordering; fortunately, we defined a class EmptyTask for just this pur-
pose in Section 12.1. Using this, it is easy to extract all tasks that come before any low-
priority task:
PriorityTask firstLowPriorityTask =
new PriorityTask(new EmptyTask(), Priority.LOW);
SortedSet<PriorityTask> highAndMediumPriorityTasks =
priorityTasks.headSet(firstLowPriorityTask);

assert highAndMediumPriorityTasks.toString().equals(
"[phone Paul: HICH, code db: MEDIUM, phone Mike: MEDIUM]");

In fact, because we know that tasks with empty details will never normally occur, we
can also use one as the first endpoint in a half-open interval:

180 | Chapter13: Sets

PriorityTask firstMediumPriorityTask =
new PriorityTask(new EmptyTask(), Priority.MEDIUM);
SortedSet<PriorityTask> mediumPriorityTasks =
priorityTasks.subSet(
firstMediumPriorityTask, firstlLowPriorityTask);
assert mediumPriorityTasks.toString().equals(
"[code db: MEDIUM, phone Mike: MEDIUM]");

Not all orderings can be treated so conveniently; suppose, for example, that we want
to work with the set of all the medium-priority tasks up to and including the mike
Phone task. To define that set as a half-open interval, users of SortedSet would need to
construct the task that immediately follows the mikePhone task in the PriorityTask
ordering, and for that you would need to know that the string that succeeds "Mike" in
the natural ordering is "Mike\0" (that is, "Mike" with a null character appended). For-
tunately, users of NavigableSet have a much more intuitive way of defining this set, as
we shall see in a moment.

Notice that the sets returned by these operations are not independent sets but new
views of the original SortedSet. So we can add elements to the original set and see the
changes reflected in the view:
PriorityTask logicCodeMedium =
new PriorityTask(logicCode, Priority.MEDIUM);
priorityTasks.add(logicCodeMedium);

assert mediumPriorityTasks.toString().equals(
"[code db: MEDIUM, code logic: MEDIUM, phone Mike: MEDIUM]");

The reverse applies also; changes in the view are reflected in the original set:

mediumPriorityTasks.remove(logicCodeMedium);
assert priorityTasks.toString().equals(
"[phone Paul: HICH, code db: MEDIUM, phone Mike: MEDIUM, code gui: LOW]");

To understand how this works, think of all the possible values in an ordering as lying
on a line, like the number line used in arithmetic. A range is defined as a fixed segment
of that line, regardless of which values are actually in the original set. So a subset,
defined on a SortedSet and a range, will allow you to work with whichever elements
of the SortedSet currently lie within the range.

13.2.1. NavigableSet

NavigableSet (see Figure 13-5) was introduced in Java 6 to supplement deficiencies in
SortedSet. As we mentioned at the beginning of this section, new client code should
use it in preference to SortedSet. It adds methods in four groups.

Getting the First and Last Elements

E pollFirst() // retrieve and remove the first (lowest) element,
// or return null if this set is empty

E polllast() // retrieve and remove the last (highest) element,
// or return null if this set is empty

13.2 SortedSet and NavigableSet | 181

NavigableSet<E>

+pollFirst() : E
+pollLast() : E
+subSet(fromElement : E, frominclusive : boolean,
toFlement : E, tolnclusive : boolean) : NavigableSet<£>
+headSet(toElement : E, inclusive : boolean) : NavigableSet<E>
+tailSet(fromElement : £, inclusive : boolean) : NavigableSet<E>
+ceiling(e:E):E
+floor(e:E):E
+higher(e:E):E
+lower(e:E):E
+descendingSet() : NavigableSet<E>
+descendinglterator() : Iterator<E>

Figure 13-5. NavigableSet

These are analogous to the methods of the same name in Deque (see Section 14.4), and
help to support the use of NavigableSet in applications which require queue function-
ality. For example, in the version of the to-do manager in this section, we could get the
highest-priority task off the list, ready to be carried out, by means of this:

PriorityTask nextTask = priorityTasks.pollFirst();
assert nextTask.toString().equals("phone Paul: HIGH");

Notice that although Deque also contains methods peekFirst and peekLast—which al-
low clients to retrieve an element without removing it—NavigableSet has no need of
them, because their functions are already supplied by the methods first and last in-
herited from SortedSet.

Getting Range Views

NavigableSet<E> subSet(E fromElement, boolean fromInclusive,

E toElement, boolean toInclusive)
NavigableSet<E> headSet(E toElement, boolean inclusive)
NavigableSet<E> tailSet(E fromElement, boolean inclusive)

This group is an improvement on the methods of the same name in SortedSet, which
return subsets that are always inclusive of the lower bound and exclusive of the higher
one. The NavigableSet methods, by contrast, allow you to specify for each bound
whether it should be inclusive or exclusive. This makes it much easier to define range
views over some sets. We considered earlier the set containing all the medium-priority
tasks up to and including the (medium-prioritized) mikePhone task. To obtain that set
using SortedSet, we would have to define it as a half-open interval, using a little-known
technicality of string ordering. ButNavigableSet allows us to define itas a closed interval
simply by specifying that the higher bound should be inclusive:
PriorityTask mikePhoneMedium = new PriorityTask(mikePhone, Priority.MEDIUM);

NavigableSet closedInterval = priorityTasks.subSet(
firstMediumPriorityTask, true, mikePhoneMedium, true);

182 | Chapter13: Sets

assert(closedInterval.toString()).equals(
"[code db: MEDIUM, phone Mike: MEDIUM]");

Getting Closest Matches

E ceiling(E e) // return the least element in this set greater than
// or equal to e, or null if there is no such element
E floor(E e) // return the greatest element in this set less than
// or equal to e, or null if there is no such element
E higher(E e) // return the least element in this set strictly
// greater than e, or null if there is no such element
E lower(E e) // return the greatest element in this set strictly
// less than e, or null if there is no such element

These methods are useful for short-distance navigation. For example, suppose that we
want to find, in a sorted set of strings, the last three strings in the subset that is bounded
above by “x-ray”, including that string itself if it is present in the set. NavigableSet
methods make this easy:

NavigableSet<String> stringSet = new TreeSet<String>();

Collections.addAll(stringSet, "abc", "cde", "x-ray" ,"zed");

String last = stringSet.floor("x-ray");

assert last.equals("x-ray");

String secondTolast =

last == null ? null : stringSet.lower(last);
String thirdTolast =

secondTolast == null ? null : stringSet.lower(secondTolast);
assert thirdTolast.equals("abc");

Notice that in line with a general trend in the design of the Collections Framework,
NavigableSet returns null values to signify the absence of elements where, for example,
the first and last methods of SortedSet would throw NoSuchElementException. For
this reason, you should avoid null elements in NavigableSets, and in fact the newer
implementation, ConcurrentSkipListSet, does not permit them (though TreeSet must
continue to do so, for backward compatibility).

Navigating the Set in Reverse Order

NavigableSet<E> descendingSet() // return a reverse-order view of
// the elements in this set
Iterator<E> descendingIterator() // return a reverse-order iterator

Methods of this group make traversing a NavigableSet equally easy in the descending
(that is, reverse) ordering. As a simple illustration, let’s generalise the example above
using the nearest-match methods. Suppose that, instead of finding just the last three
strings in the sorted set bounded above by “x-ray”, we want to iterate over all the strings
in that set, in descending order:

NavigableSet<String> headSet = stringSet.headSet(last, true);
NavigableSet<String> reverseHeadSet = headSet.descendingSet();
assert reverseHeadSet.toString().equals("[x-ray, cde, abc]");
String conc = " ";

for (String s : reverseHeadSet) {

conc += s + ;

13.2 SortedSet and NavigableSet | 183

Figure 13-6. An ordered, balanced binary tree
}

assert conc.equals(" x-ray cde abc ");

If the iterative processing involves structural changes to the set, and the implementation
being used is TreeSet (which has fail-fast iterators), we will have to use an explicit
iterator to avoid ConcurrentModificationException:

for (Iterator<String> itr = headSet.descendingIterator(); itr.hasNext();) {
itr.next(); itr.remove();

assert headSet.isempty();

13.2.2. TreeSet

This is the first tree implementation that we have seen, so we should take a little time
now to consider how trees perform in comparison to the other implementation types
used by the Collections Framework.

Trees are the data structure you would choose for an application that needs fast inser-
tion and retrieval of individual elements but which also requires that they be held in
sorted order.

For example, suppose you want to match all the words from a set against a given prefix,
a common requirement in visual applications where a drop-down should ideally show
all the possible elements that match against the prefix that the user has typed. A hash
table can’treturn its elements in sorted order and a list can’t retrieve its elements quickly
by their content, but a tree can do both.

In computing, a tree is a branching structure that represents hierarchy. Computing trees
borrowa lot of their terminology from genealogical trees, though there are some dif-
ferences; the most important is that, in computing trees, each node has only one parent
(except the root, which has none). An important class of tree often used in computing
is a binary tree—one in which each node can have at most two children. Figure 13-6
shows an example of a binary tree containing the words of this sentence in alphabetical
order.

184 | Chapter13: Sets

binary

tree

unbalanced

Figure 13-7. An unbalanced binary tree

The most important property of this tree can be seen if you look at any nonleaf node
—say, the one containing the word the: all the nodes below that on the left contain
words that precede the alphabetically, and all those on the right, words that follow it.
To locate a word, you would start at the root and descend level by level, doing an
alphabetic comparison at each level, so the cost of retrieving or inserting an element is
proportional to the depth of the tree.

How deep, then, is a tree that contains n elements? The complete binary tree with two
levels has three elements (that’s 22—1), and the one with three levels has seven elements
(23-1). In general, a binary tree with n complete levels will have 2"-1 elements. Hence
the depth of a tree with n elements will be bounded by log 7 (since 2!°8™ =). Just as
n grows much more slowly than 2", log n grows much more slowly than n. So con
tains on a large tree is much faster than on a list containing the same elements. It’s still
not as good as on a hash table—whose operations can ideally work in constant time—
but a tree has the big advantage over a hash table that its iterator can return its elements
in sorted order.

Not all binary trees will have this nice performance, though. Figure 13-6 shows a
balanced binary tree—one in which each node has an equal number of descendants (or
as near as possible) on each side. An unbalanced tree can give much worse performance
—in the worst case, as bad as a linked list (see Figure 13-7). TreeSet uses a data type
called a red-black tree, which has the advantage that if it becomes unbalanced through
insertion or removal of an element, it can always be rebalanced in O(log n) time.

The constructors for TreeSet include, besides the standard ones, one which allows you
to supply a Comparator (see Section 3.4) and one which allows you to create one from
another SortedSet:
TreeSet(Comparator<? super E> c)
// construct an empty set which will be sorted using the

// specified comparator
TreeSet(SortedSet<E> s)

13.2 SortedSet and NavigableSet | 185

// construct a new set containing the elements of the
// supplied set, sorted according to the same ordering

The second of these is rather too close in its declaration to the standard "conversion
constructor” (see Section 12.3):

TreeSet(Collection<? extends E> c)

As Joshua Bloch explains in Effective Java (item “Use overloading judiciously” in the
chapter on Methods), calling one of two constructor or method overloads which take
parameters of related type can give confusing results. This is because, in Java, calls to
overloaded constructors and methods are resolved at compile time on the basis of the
static type of the argument, so applying a cast to an argument can make a big difference
to the result of the call, as the following code shows:

// construct and populate a NavigableSet whose iterator returns its

// elements in the reverse of natural order:

NavigableSet<String> base = new TreeSet<String>(Collections.reverseOrder());
Collections.addAll(base, "b", "a", "c");

// call the two different constructors for TreeSet, supplying the
// set just constructed, but with different static types:
NavigableSet<String> sortedSet1l = new TreeSet<String>((Set<String>)base);
NavigableSet<String> sortedSet2 = new TreeSet<String>(base);

// and the two sets have different iteration orders:

List<String> forward = new ArraylList<String>();
forward.addAll(sortedSet1);

List<String> backward = new ArraylList<String>();
backward.addAll(sortedSet2);

assert !forward.equals(backward);

Collections.reverse(forward);

assert forward.equals(backward);

This problem afflicts the constructors for all the sorted collections in the Framework
(TreeSet, TreeMap, ConcurrentSkipListSet, and ConcurrentSkipListMap). To avoid it in
your own class designs, choose parameter types for different overloads so that an ar-
gument of a type appropriate to one overload cannot be cast to the type appropriate to
a different one. If that is not possible, the two overloads should be designed to behave
identically with the same argument, regardless of its static type. For example, a Prior
ityQueue (Section 14.2.1) constructed from a collection uses the ordering of the original,
whether the static type with which the constructor is supplied is one of the Compara
tor-containing types PriorityQueue or SortedSet, or just a plain Collection. To achieve
this, the conversion constructor uses the Comparator of the supplied collection, only
falling back on natural ordering if it does not have one.

TreeSet is unsychronized and not thread-safe; its iterators are fail-fast.

13.2.3. ConcurrentSkipListSet

ConcurrentSkipListSet was introduced in Java 6 as the first concurrent set implemen-
tation. It is backed by a skip list, a modern alternative to the binary trees of the previous

186 | Chapter13: Sets

%l 15 | pL} | 31
Inserting an element Deleting an element
Y 4) Y
9| 15 b1 n '-9 %| 15 /lr._\| 31
bl
(a) (b)

Figure 13-8. Modifying a linked list

Level 2 ﬂ J _ﬂ
Level E _.Z;i \a

nsnensnsnsngnsn

Figure 13-9. Searching a skip list

_3_1]
ﬂ

section. A skip list for a set is a series of linked lists, each of which is a chain of cells
consisting of two fields: one to hold a value, and one to hold a reference to the next
cell. Elements are inserted into and removed from a linked list in constant time by
pointer rearrangement, as shown in Figure 13-8, parts (a) and (b) respectively.

Figure 13-9 shows a skip list consisting of three linked lists, labelled levels 0, 1 and 2.
The first linked list of the collection (level 0 in the figure) contains the elements of the
set, sorted according to their natural order or by the comparator of the set. Each list
above level 0 contains a subset of the list below, chosen randomly according to a fixed
probability. For this example, let’s suppose that the probability is 0.5; on average, each
list will contain half the elements of the list below it. Navigating between links takes a
fixed time, so the quickest way to find an element is to start at the beginning (the left-

13.2 SortedSet and NavigableSet | 187

hand end) of the top list and to go as far as possible on each list before dropping to the
one below it.

The curved arrows of Figure 13-9 shows the progress of a search for the element 55.
The search starts with the element 12 at the top left of level 2, steps to the element 31
on that level, then finds that the next element is 61, higher than the search value. So it
drops one level, and then repeats the process; element 47 is still smaller than 55, but
61 is again too large, so it once more drops a level and finds the search value in one
further step.

Inserting an element into a skip list always involves at least inserting it at level 0. When
that has been done, should it also be inserted at level 1? If level 1 contains, on average,
half of the elements at level 0, then we should toss a coin (that is, randomly choose
with probability 0.5) to decide whether it should be inserted at level 1 as well. If the
coin toss does result in it being inserted at level 1, then the process is repeated for level
2, and so on. To remove an element from the skip list, it is removed from each level in
which it occurs.

If the coin tossing goes badly, we could end up with every list above level 0 empty—or
full, which would be just as bad. These outcomes have very low probability, however,
and analysis shows that, in fact, the probability is very high that skip lists will give

performance comparable to binary trees: search, insertion and removal all take O(log
n). Their compelling advantage for concurrent use is that they have efficient lock-free
insertion and deletion algorithms, whereas there are none known for binary trees.

The iterators of ConcurrentSkipListSet are weakly consistent.

Table 13-1. Comparative performance of different Set implementations

add contains next notes
HashSet o) 0(1) 0(h/n) his the table capacity
LinkedHashSet 0(1) 0(1) 0(1)
CopyOnWriteArraySet 0(n) 0(n) o)
EnumSet o) 0(1) 0(1)
TreeSet O(logn) ~ O(logn) O(log n)
(

ConcurrentSkipListSet O(logn) Ollogn) 0(1)

*In the EnumSet implementation for enum types with more than 64 values, next has worst
case complexity of O(log m), where m is the number of elements in the enumeration.

13.3 Comparing Set Implementations

Table 13-1 shows the comparative performance of the different Set implementations.
When you are choosing an implementation, of course, efficiency is only one of the
factors you should take into account. Some of these implementations are specialized

188 | Chapter13: Sets

for specific situations; for example, EnumSet should always (and only) be used to rep-
resent sets of enum. Similarly, CopyOnWriteArraySet should only be used where set size
will remain relatively small, read operations greatly outnumber writes, thread safety is
required, and read-only iterators are acceptable.

That leaves the general-purpose implementations: HashSet, LinkedHashSet, TreeSet,
and ConcurrentSkipListSet. The first three are not thread-safe, so can only be used in
multi-threaded code either in conjunction with client-side locking, or wrapped in Col
lection.synchronizedSet (see Section 17.3.1). For single-threaded applications where
there is no requirement for the set to be sorted, your choice is between HashSet and
LinkedHashSet. If your application will be frequently iterating over the set, or if you
require access ordering, LinkedHashSet is the implementation of choice.

Finally, if you require the set to sort its elements, the choice is between TreeSet and
ConcurrentSkipListSet. Inamulti-threaded environment, ConcurrentSkipListSet is the
only sensible choice. Even in single-threaded code ConcurrentSkipListSet may not
show a significantly worse performance for small set sizes. For larger sets, however, or
for applications in which there are frequent element deletions, TreeSet will perform
better if your application doesn’t require thread safety.

13.3 Comparing Set Implementations | 189

CHAPTER 14
Queues

A queue is a collection designed to hold elements for processing, yielding them up in
the order in which they are to be processed. The corresponding Collections Framework
interface Queue (see Figure 14-1) has a number of different implementations embodying
different rules about what this order should be. Many of the implementations use the
rule that tasks are to be processed in the order in which they were submitted (First In
First Out, or FIFO), but other rules are possible—for example, the Collections Frame-
work includes queue classes whose processing order is based on task priority. The
Queue interface was introduced in Java 5, motivated in part by the need for queues in
the concurrency utilities included in that release. A glance at the hierarchy of imple-
mentations shown in Figure 14-2 shows that, in fact, nearly all of the Queue implemen-
tations in the Collections Framework are in the package java.util.concurrent.

One classic requirement for queues in concurrent systems comes when a number of
tasks have to be executed by a number of threads working in parallel. An everyday
example of this situation is that of a single queue of airline passengers being handled
by a line of check-in operators. Each operator works on processing a single passenger
(or a group of passengers) while the remaining passengers wait in the queue. As they
arrive, passengers join the tail of the queue, wait until they reach its head, and are then
assigned to the next operator who becomes free. A good deal of fine detail is involved
in implementing a queue such as this; operators have to be prevented from simultane-
ously attempting to process the same passenger, empty queues have to be handled
correctly, and in computer systems there has to be a way of defining queues with a
maximum size, or bound. (This last requirement may not often be imposed in airline
terminals, but it can be very useful in systems in which there is a maximum waiting
time for a task to be executed.) The Queue implementations in java.util.concurrent
look after these implementation details for you.

In addition to the operations inherited from Collection, the Queue interface includes
operations to add an element to the tail of the queue, to inspect the element at its head,
or to remove the element at its head. Each of these three operations comes in two
varieties, one which returns a value to indicate failure and one which throws an ex-
ception.

191

Queue<E>

+offer(e: E) :boolean
+element() :E
+removed() : E
+peek() :E

+poll() : E

Figure 14-1. Queue

PriorityQueue<E> LinkedList<E> ArrayDeque<E>

'
Java,util concurrent]
ConcurrentLinkedQueue <E=>
BlockingQueue<E> <} BlockingDeque<E>
sLLaL
ArmayBlockingQueve<E> | § } LinkedBlockingQueue<E> :
L P : E
PriorityBlockingQueue<E> E DelayQueue<E extends Delayed> LinkedBlockingDeque<E>
Synmmnmjsuueue-a:&

Figure 14-2. Implementations of Queue in the Collections Framework

Adding an Element to a Queue The exception-throwing variant of this operation is
the add method inherited from Collection. Although add does return a boolean signi-
fying its success in inserting an element, that value can’t be used to report that a boun-
ded queue is full; the contract for add specifies that it may return false only if the
collection refused the element because it was already present—otherwise, it must throw
an exception.

The value-returning variant is offer:

boolean offer (E e) // insert the given element if possible

The value returned by offer indicates whether the element was successfully inserted
or not. Note that offer does throw an exception if the element is illegal in some way

192 | Chapter14: Queues

(for example, the value null for a queue that doesn’t permit nulls). Normally, if
offer returns false, it has been called on a bounded queue that has reached capacity.

Retrieving an Flement from a Queue The methods in this group are peek and ele
ment for inspecting the head element, and poll and remove for removing it from the
queue and returning its value.

The methods that throw an exception for an empty queue are:

E element() // retrieve but do not remove the head element
E remove() // retrieve and remove the head element

Notice that this is a different method from the Collection method remove(Object). The
methods that return null for an empty queue are:

E peek() // retrieve but do not remove the head element
E poll() // retrieve and remove the head element

Because these methods return null to signify that the queue is empty, you should avoid
using null as a queue element. In general, the use of null as a queue element is dis-
couraged by the Queue interface, and the only standard implementation that allows it
is the legacy implementation LinkedList.

14.1 Using the Methods of Queue

Let’s look at examples of the use of these methods. Queues should provide a good way
of implementing a task manager, since their main purpose is to yield up elements, such
as tasks, for processing. For the moment we shall use ArrayDeque as the fastest and most
straightforward implementation of Queue (and also of Deque, of course). But, as before,
we shall confine ourselves to the methods of the interface—though you should note
that, in choosing a queue implementation, you are also choosing an ordering. With
ArrayDeque, you get FIFO ordering—well, our attempts to get organized using fancy
scheduling methods never seem to work very well; perhaps it’s time to try something
simpler.

ArrayDeque is unbounded, so we could use either add or offer to set up the queue with
new tasks.
Queue<Task> taskQueue = new ArrayDeque<Task>();

taskQueue.offer(mikePhone);
taskQueue.offer(paulPhone);

Any time we feel ready to do a task, we can take the one that has reached the head of
the queue:
Task nextTask = taskQueue.poll();
if (nextTask != null) {
// process nextTask

}

14.1 Using the Methods of Queue | 193

The choice between using poll and remove depends on whether we want to regard queue
emptiness as an exceptional condition. Realistically—given the nature of the applica-
tion—that might be a sensible assumption, so this is an alternative:

try {
Task nextTask = taskQueue.remove();

// process nextTask
} catch (NoSuchElementException e) {
// but we *never* run out of tasks!

}

This scheme needs some refinement to allow for the nature of different kinds of tasks.
Phone tasks fit into relatively short time slots, whereas we don’t like to start coding
unless there is reasonably substantial time to get into the task. So if time is limited—
say, until the next meeting—we might like to check that the next task is of the right
kind before we take it off the queue:

Task nextTask = taskQueue.peek();

if (nextTask instanceof PhoneTask) {
taskQueue.remove();
// process nextTask

These inspection and removal methods are a major benefit of the Queue interface;
Collection has nothing like them (though NavigableSet now does). The price we pay
for this benefit is that the methods of Queue are useful to us only if the head element is
actually one that we want. True, the class PriorityQueue allows us to provide a com-
parator that will order the queue elements so that the one we want is at the head, but
that may not be a particularly good way of expressing the algorithm for choosing the
next task (for example, if you need to know something about all the outstanding tasks
before you can choose the next one). So in this situation, if our to-do manager is entirely
queue-based, we may end up going for coffee until the meeting starts. As an alternative,
we could consider using the List interface, which provides more flexible means of
accessing its elements but has the drawback that its implementations provide much
less support for multi-thread use.

This may sound too pessimistic; after all, Queue is a subinterface of Collection, so it
inherits methods that support traversal, like iterator. In fact, although these methods
are implemented, their use is not recommended in normal situations. In the design of
the queue classes, efficiency in traversal has been traded against fast implementation
of the methods of Queue; in addition, queue iterators do not guarantee to return their
elements in proper sequence and, for some concurrent queues, will actually fail in nor-
mal conditions (see Section 14.3.2).

In the next section we shall look at the direct implementations of Queue—Priority
Queue and ConcurrentlLinkedList—and, in Section 14.3, at BlockingQueue and its im-
plementations. The classes in these two sections differ widely in their behavior. Most

194 | Chapter14: Queues

of them are thread-safe; most provide blocking facilities (that is, operations that wait
for conditions to be right for them to execute); some support priority ordering; one—
DelayQueue—holds elements until their delay has expired, and another—Synchronous
Queue—is purely a synchronization facility. In choosing between Queue implementa-
tions, you would be influenced more by these functional differences than by their per-
formances.

14.2 Implementing Queue
14.2.1. PriorityQueue

PriorityQueue is one of the two nonlegacy Queue implementations not designed pri-
marily for concurrent use (the other one is ArrayDeque). It is not thread-safe, nor does
it provide blocking behavior. It gives up its elements for processing according to an
ordering like that used by NavigableSet—either the natural order of its elements if they
implement Comparable, or the ordering imposed by a Comparator supplied when the
PriorityQueue is constructed. So PriorityQueue would be an alternative design choice
(obviously, given its name) for the priority-based to-do manager that we outlined in
Section 13.2 using NavigableSet. Your application will dictate which alternative to
choose: if it needs to examine and manipulate the set of waiting tasks, use Navigable
Set. If its main requirement is efficient access to the next task to be performed, use
PriorityQueue.

Choosing PriorityQueue allows us to reconsider the ordering: since it accommodates
duplicates, it does not share the requirement of NavigableSet for an ordering consistent
with equals. To emphasize the point, we will define a new ordering for our to-do man-
ager that depends only on priorities. Contrary to what you might expect, Priority
Queue gives no guarantee of how it presents multiple elements with the same value. So
if, in our example, several tasks are tied for the highest priority in the queue, it will
choose one of them arbitrarily as the head element.

The constructors for PriorityQueue are:

PriorityQueue() // natural ordering, default initial capacity (11)
PriorityQueue(Collection<? extends E> c)

// natural ordering of elements taken from c, unless

// ¢ is a PriorityQueue or SortedSet, in which case

// copy c's ordering
PriorityQueue(int initialCapacity)

// natural ordering, specified initial capacity
PriorityQueue(int initialCapacity, Comparator<? super E> comparator)

// Comparator ordering, specified initial capacity
PriorityQueue(PriorityQueue<? extends E> c)

// ordering and elements copied from c
PriorityQueue(SortedSet<? extends E> c)

// ordering and elements copied from c

14.2 Implementing Queue | 195

/

2

/\
3\5 4/6 8 6 8 (7

(a) (b) (4]

Figure 14-3. Adding an element to a PriorityQueue

Notice how the second of these constructors avoids the problem of the overloaded
TreeSet constructor that we discussed in Section 13.2.2. We can use PriorityQueue for
a simple implementation of our to-do manager with the PriorityTask class defined in
Section 13.2, and a new Comparator depending only on the task’s priority:
final int INITIAL_CAPACITY = 10;
Comparator<PriorityTask> priorityComp = new Comparator<PriorityTask>() {
public int compare(PriorityTask o1, PriorityTask o02) {
return ol.getPriority().compareTo(o2.getPriority());

}
};
Queue<PriorityTask> priorityQueue =

new PriorityQueue<PriorityTask>(INITIAL_CAPACITY, priorityComp);
priorityQueue.add(new PriorityTask(mikePhone, Priority.MEDIUM));
priorityQueue.add(new PriorityTask(paulPhone, Priority.HIGH));

PriorityTask nextTask = priorityQueue.poll();

Priority queues are usually efficiently implemented by priority heaps. A priority heap is
a binary tree somewhat like those we saw implementing TreeSet in Section 13.2.2, but
with two differences: first, the only ordering constraint is that each node in the tree
should be larger than either of its children, and second, that the tree should be complete
at every level except possibly the lowest; if the lowest level is incomplete, the nodes it
contains must be grouped together at the left. Figure 14-3(a) shows a small priority
heap, with each node shown only by the field containing its priority. To add a new
element to a priority heap, it is first attached at the leftmost vacant position, as shown
by the circled node in Figure 14-3(b). Then it is repeatedly exchanged with its parent
until it reaches a parent that has higher priority. In the figure, this required only a single
exchange of the new element with its parent, giving Figure 14-3(c). (Nodes shown
circled in Figures Figure 14-3 and Figure 14-4 have just changed position.)

Getting the highest-priority element from a priority heap is trivial: it is the root of the
tree. But, when that has been removed, the two separate trees that result must be re-
organized into a priority heap again. This is done by first placing the rightmost element
from the bottom row into the root position. Then—in the reverse of the procedure for
adding an element—it is repeatedly exchanged with the larger of its children until it

196 | Chapter14: Queues

3/ \? 8 7 0 7
ANVA YA VANV AWAN

(a) (b) ()

(6)

Figure 14-4. Removing the head of a PriorityQueue

has a higher priority than either. Figure 14-4 shows the process—again requiring only
a single exchange—starting from the heap in Figure 14-3(c) after the head has been
removed.

Apart from constant overheads, both addition and removal of elements require a num-
ber of operations proportional to the height of the tree. So PriorityQueue provides O(log
n) time for offer, poll, remove(), and add. The methods remove(Object) and contains
may require the entire tree to be traversed, so they require O(n) time. The methods
peek and element, which just retrieve the root of the tree without removing it, take
constant time, as does size, which uses an object field that is continually updated.

PriorityQueue is not suitable for concurrent use. Its iterators are fail-fast, and it doesn’t
offer support for client-side locking. A thread-safe version, PriorityBlockingQueue (see
Section 14.3.2), is provided instead.

14.2.2. ConcurrentLinkedQueue

The other nonblocking Queue implementation is ConcurrentLinkedQueue, an unboun-
ded, thread-safe, FIFO-ordered queue. It uses a linked structure, similar to those we
saw in Section 13.2.3 as the basis for skip lists, and in Section 13.1.1 for hash table
overflow chaining. We noticed there that one of the main attractions of linked struc-
tures is that the insertion and removal operations implemented by pointer rearrange-
ments perform in constant time. This makes them especially useful as queue imple-
mentations, where these operations are always required on cells at the ends of the
structure—that is, cells that do not need to be located using the slow sequential search
of linked structures.

ConcurrentLinkedQueue uses a CAS-based wait-free algorithm—that is, one that guar-
antees that any thread can always complete its current operation, regardless of the state
of other threads accessing the queue. It executes queue insertion and removal opera-
tions in constant time, but requires linear time to execute size. This is because the
algorithm, which relies on co-operation between threads for insertion and removal,
does not keep track of the queue size and has to iterate over the queue to calculate it
when it is required.

14.2 Implementing Queue | 197

BlockingQueue<E>

+offer(e: E, timeout: fong, unit : TimeUnit) : boolean
+put(e:E):void

+poll{ timeout : long, unit : TimeUnit) : E

+take(): £

+drainTo(¢: Collection<? super E>) : int

+drainTo(¢ : Colfection<? super E>, maxElements) : int
+remainingCapacity() : int

Figure 14-5. BlockingQueue

ConcurrentLinkedQueue has the two standard constructors discussed in Section 12.3. Its
iterators are weakly consistent.

14.3 BlockingQueue

Java 5 added a number of classes to the Collections Framework for use in concurrent
applications. Most of these are implementations of the Queue subinterface Blocking
Queue (see Figure 14-5), designed primarily to be used in producer-consumer queues.

One common example of the use of producer-consumer queues is in systems that per-
form print spooling; client processes add print jobs to the spool queue, to be processed
by one or more print service processes, each of which repeatedly “consumes” the task
at the head of the queue.

The key facilities that BlockingQueue provides to such systems are, as its name implies,
enqueuing and dequeueing methods that do not return until they have executed suc-
cessfully. So, for example, a print server does not need to constantly poll the queue to
discover whether any printjobs are waiting; it need only call the pol1 method, supplying
a timeout, and the system will suspend it until either a queue element becomes available
or the timeout expires. BlockingQueue defines seven new methods, in three groups:

Adding an Flement

boolean offer(E e, long timeout, TimeUnit unit)
// insert e, waiting up to the timeout
void put(E e) // add e, waiting as long as necessary

The nonblocking overload of offer defined in Queue will return false if it cannot im-
mediately insert the element. This new overload waits for a time specified using
java.util.concurrent.TimeUnit, an Enum which allows timeouts to be defined in units
such as milliseconds or seconds.

Taking these methods together with those inherited from Queue, there are four ways in
which the methods for adding elements to a BlockingQueue can behave: offer returns
false if it does not succeed immediately, blocking offer returns false if it does not

198 | Chapter14: Queues

succeed within its timeout, add throws an exception if it does not succeed immediately,
and put blocks until it succeeds.

Removing an Element

E poll(long timeout, TimeUnit unit)

// retrieve and remove the head, waiting up to the timeout
E take() // retrieve and remove the head of this queue, waiting

// as long as necessary

Again taking these methods together with those inherited from Queue, there are four
ways in which the methods for removing elements from a BlockingQueue can behave:
poll returns null if it does not succeed immediately, blocking poll returns null if it
does not succeed within its timeout, remove throws an exception if it does not succeed
immediately, and take blocks until it succeeds.

Retrieving or Querying the Contents of the Queue

int drainTo(Collection<? super E> c)
// clear the queue into c
int drainTo(Collection<? super E> c, int maxElements)
// clear at most the specified number of elements into c
int remainingCapacity()
// return the number of elements that would be accepted
// without blocking, or Integer.MAX_VALUE if unbounded

The drainTo methods perform atomically and efficiently, so the second overload is
useful in situations in which you know that you have processing capability available
immediately for a certain number of elements, and the first is useful—for example—
when all producer threads have stopped working. Their return value is the number of
elements transferred. RemainingCapacity reports the spare capacity of the queue, al-
though as with any such value in multi-threaded contexts, the result of a call should
not be used as part of a test-then-act sequence; between the test (the call of remaining
Capacity) and the action (adding an element to the queue) of one thread, another thread
might have intervened to add or remove elements.

BlockingQueue guarantees that the queue operations of its implementations will be
threadsafe and atomic. But this guarantee doesn’t extend to the bulk operations in-
herited from Collection—addAll, containsAll, retainAll and removeAll—unless the
individual implementation provides it. So it is possible, for example, for addAll to fail,
throwing an exception, after adding only some of the elements in a collection.

14.3.1. Using the Methods of BlockingQueue

A to-do manager that works for just one person at a time is very limited; we really need
a cooperative solution—one that will allow us to share both the production and the
processing of tasks. Example 14-1 shows StoppableTaskQueue, a simple version of a
concurrent task manager based on PriorityBlockingQueue, that will allow its users—
us—to independently add tasks to the task queue as we discover the need for them,
and to take them off for processing as we find the time. The class StoppableTaskQueue

14.3 BlockingQueue | 199

has three methods: addTask, getTask, and shutDown. A StoppableTaskQueue is either
working or stopped. The method addTask returns a boolean value indicating whether
it successfully added a task; this value will be true unless the StoppableTaskQueue is
stopped. The method getTask returns the head task from the queue. If no task is avail-
able, it does not block but returns null. The method shutDown stops the StoppableTask
Queue, waits until all pending addTask operations are completed, then drains the Stop
pableTaskQueue and returns its contents.

Example 14-1. A concurrent queue-based task manager

public class StoppableTaskQueue {
private final int MAXIMUM PENDING OFFERS = Integer.MAX VALUE;
private final BlockingQueue<PriorityTask> taskQueue =
new PriorityBlockingQueue<PriorityTask>();
private boolean isStopped = false;
private Semaphore semaphore = new Semaphore(MAXIMUM_PENDING OFFERS);

// return true if the task was successfully placed on the queue, false
// if the queue has been shut down.
public boolean addTask(PriorityTask task) {
synchronized (this) {
if (isStopped) return false;
if (! semaphore.tryAcquire()) throw new Error("too many threads");
}
try {
return taskQueue.offer(task);
} finally {
semaphore.release();
}
}

// return the head task from the queue, or null if no task is available
public PriorityTask getTask() {
return taskQueue.poll();

}

// stop the queue, wait for producers to finish, then return the contents
public Collection<PriorityTask> shutDown() {
synchronized(this) { isStopped = true; }
semaphore.acquireUninterruptibly (MAXIMUM_PENDING OFFERS);
Set<PriorityTask> returnCollection = new HashSet<PriorityTask>();
taskQueue.drainTo(returnCollection);
return returnCollection;

}
}

In this example, as in most uses of the java.util.concurrent collections, the collection
itself takes care of the problems arising from the interaction of different threads in
adding or removing items from the queue. Most of the code of Example 14-1 is instead
solving the problem of providing an orderly shutdown mechanism. The reason for this
emphasis is that when we go on to use the class StoppableTaskQueue as a component in
a larger system, we will need to be able to stop daily task queues without losing task

200 | Chapter14: Queues

information. Achieving graceful shutdown can often be a problem in concurrent sys-
tems: for more detail, see Chapter 7 of Java Concurrency in Practice by Brian Goetz et.
al. (Addison-Wesley).

The larger system will model each day’s scheduled tasks over the next year, allowing
consumers to process tasks from each day’s queue. An implicit assumption of the ex-
ample of this section is that if there are no remaining tasks scheduled for this day, a
consumer will not wait for one to become available, but will immediately go on to look
for a task in the next day’s queue. (In the real world, we would go home at this point,
or more likely go out to celebrate.) This assumption simplifies the example, as we don’t
need to invoke any of the blocking methods of PriorityBlockingQueue, though we will
use one method, drainTo, from the BlockingQueue interface.

There are a number of ways of shutting down a producer-consumer queue such as this;
in the one we’ve chosen for this example, the manager exposes a shutdown method that
can be called by a “supervisor” thread in order to stop producers writing to the queue,
to drain it, and to return the result. The shutdown method sets a boolean stopped, which
task-producing threads will read before trying to put a task on to the queue. Task-
consuming threads simply poll the queue, returning null if no tasks are available. The
problem with this simple idea is that a producer thread might read the stopped flag,
find it false, but then be suspended for some time before it places its value on the queue.
We have to prevent this by ensuring that the shutdown method, having stopped the
queue, will wait until all the pending values have been inserted before draining it.

Example 14-1 achieves this using a semaphore—a thread-safe object that maintains a
fixed number of permits. Semaphores are usually used to regulate access to a finite set
of resources—a pool of database connections, for example. The permits the semaphore
has available at any time represent the resources not currently in use. A thread requiring
a resource acquires a permit from the semaphore, and releases it when it releases the
resource. If all the resources are in use, the semaphore will have no permits available;
at that point, a thread attempting to acquire a permit will block until some other thread
returns one.

The semaphore in this example is used differently. We don’twant to restrict producer
threads from writing to the queue—it’s an unbounded concurrent queue, after all, quite
capable of handling concurrent access without help from us. We just want to keep a
count of the writes currently in progress. So we create the semaphore with the largest
possible number of permits, which in practice will never all be required. The producer
method addTask checks to see if the queue has been stopped—in which case its contract
says it should return false—and, if not, it acquires a permit using the semaphore
method tryAcquire, which does not block (unlike the more commonly used blocking
method acquire, tryAcquire returns false immediately if no permits are available). This
test-then-act sequence is made atomic to ensure that at any point visible to another
thread the program maintains its invariant: the number of unwritten values is no greater
than the number of permits available.

14.3 BlockingQueue | 201

The shutdown method sets the stopped flag in a synchronized block (the usual way of
ensuring that variable writes made by one thread are visible to reads by another is for
both writes and reads to take place within blocks synchronized on the same lock). Now
the addTask method cannot acquire any more permits, and shutdown just has to wait
until all the permits previously acquired have been returned. To do that, it calls
acquire, specifying that it needs all the permits; that call will block until they are all
released by the producer threads. At that point, the invariant guarantees that there are
no tasks still to be written to the queue, and shutdown can be completed.

14.3.2. Implementing BlockingQueue

The Collections Framework provides five implementations of BlockingQueue.

LinkedBlockingQueue

This class is a thread-safe, FIFO-ordered queue, based on a linked node structure. It is
the implementation of choice whenever you need an unbounded blocking queue. Even
for bounded use, it may still be better than ArrayBlockingQueue (linked queues typically
have higher throughput than array-based queues but less predictable performance in
most concurrent applications).

The two standard collection constructors create a thread-safe blocking queue with a
capacity of Integer.MAX VALUE. You can specify a lower capacity using a third con-
structor:

LinkedBlockingQueue(int capacity)

The ordering imposed by LinkedBlockingQueue is FIFO. Queue insertion and removal
are executed in constant time; operations such as contains which require traversal of
the array require linear time. The iterators are weakly consistent.

ArrayBlockingQueue

This implementation is based on a circular array—a linear structure in which the first
and last elements are logically adjacent. Figure 14-6(a) shows the idea. The position
labeled “head” indicates the head of the queue; each time the head element is removed
from the queue, the head index is advanced. Similarly, each new element is added at
the tail position, resulting in that index being advanced. When either index needs to
be advanced past the last element of the array, it gets the value 0. If the two indices
have the same value, the queue is either full or empty, so an implementation must
separately keep track of the count of elements in the queue.

A circular array in which the head and tail can be continuously advanced in this way
this is better as a queue implementation than a noncircular one (e.g., the standard
implementation of ArraylList, which we cover in Section 15.2) in which removing the
head element requires changing the position of all the remaining elements so that the
new head is at position 0. Notice, though, that only the elements at the ends of the

202 | Chapter14: Queues

(a) (b)

Figure 14-6. A circular array

queue can be inserted and removed in constant time. If an element is to be removed
from near the middle, which can be done for queues via the method Iterator.remove,
then all the elements from one end must be moved along to maintain a compact rep-
resentation. Figure 14-6(b) shows the element atindex 6 being removed from the queue.
As a result, insertion and removal of elements in the middle of the queue has time
complexity O(n).

Constructors for array-backed collection classes generally have a single configuration
parameter, the initial length of the array. For fixed-size classes like ArrayBlocking
Queue, this parameter is necessary in order to define the capacity of the collection. (For
variable-size classes like ArraylList, a defaultinitial capacity can be used, so constructors
are provided that don’t require the capacity.) For ArrayBlockingQueue, the three con-
structors are:

ArrayBlockingQueue(int capacity)

ArrayBlockingQueue(int capacity, boolean fair)
ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c)

The Collection parameter to the last of these allows an ArrayBlockingQueue to be ini-
tialized with the contents of the specified collection, added in the traversal order of the
collection’s iterator. For this constructor, the specified capacity must be at least as great
as that of the supplied collection, or be at least 1 if the supplied collection is empty.
Besides configuring the backing array, the last two constructors also require a boolean
argument to control how the queue will handle multiple blocked requests. These will
occur when multiple threads attempt to remove items from an empty queue or enqueue
items on to a full one. When the queue becomes able to service one of these requests,
which one should it choose? The alternatives are to require a guarantee that the queue
will choose the one that has been waiting longest—that is, to implement a fair sched-
uling policy—or to allow the implementation to choose one. Fair scheduling sounds
like the better alternative, since it avoids the possibility that an unlucky thread might
be delayed indefinitely but, in practice, the benefits it provides are rarely important

14.3 BlockingQueue | 203

enough to justify incurring the large overhead that it imposes on a queue’s operation.
If fair scheduling is not specified, ArrayBlockingQueue will normally approximate fair
operation, but with no guarantees.

The ordering imposed by ArrayBlockingQueue is FIFO. Queue insertion and removal
are executed in constant time; operations such as contains which require traversal of
the array require linear time. The iterators are weakly consistent.

PriorityBlockingQueue

This implementation is a thread-safe, blocking version of PriorityQueue (see Sec-
tion 14.2), with similar ordering and performance characteristics. Its iterators are fail-
fast, so in normal use they will throw ConcurrentModificationException; only if the
queue is quiescent will they succeed. To iterate safely over a PriorityBlockingQueue,
transfer the elements to an array and iterate over that instead.

DelayQueue

This is a specialized priority queue, in which the ordering is based on the delay time for
each element—the time remaining before the element will be ready to be taken from
the queue. If all elements have a positive delay time—that is, none of their associated
delay times has expired—an attempt to poll the queue will return null (although
peek will still allow you to see the first unexpired element). If one or more elements has
an expired delay time, the one with the longest-expired delay time will be at the head
of the queue. The elements of a DelayQueue belong to a class that implements
java.util.concurrent.Delayed:

interface Delayed extends Comparable<Delayed> {
long getDelay(TimeUnit unit);

The getDelay method of a Delayed object returns the remaining delay associated with
that object. The compareTo method (see Section 3.1) of Comparable must be defined to
give results that are consistent with the delays of the objects being compared. This
means that it will rarely be compatible with equals, so Delayed objects are not suitable
for use with implementations of SortedSet and SortedMap.

For example, in our to-do manager we are likely to need reminder tasks, to ensure that
we follow up e-mail and phone messages that have gone unanswered. We could define
anew class DelayedTask as in Example 14-2, and use it to implement a reminder queue.

BlockingQueue<DelayedTask> reminderQueue = new DelayQueue<DelayedTask>();
reminderQueue.offer(new DelayedTask (databaseCode, 1));
reminderQueue.offer(new DelayedTask (interfaceCode, 2));

// now get the first reminder task that is ready to be processed
DelayedTask t1 = reminderQueue.poll();
if (11 == null) {
// no reminders ready yet
} else {

204 | Chapter14: Queues

// process t1

Most queue operations respect delay values and will treat a queue with no unexpired
elements as if it were empty. The exceptions are peek and remove, which, perhaps sur-
prisingly, will allow you to examine the head element of a DelayQueue whether or not
it is expired. Like them and unlike the other methods of Queue, collection operations
on a DelayQueue do not respect delay values. For example, here are two ways of copying
the elements of reminderQueue into a set:

Set<DelayedTask> delayedTaskSet1l = new HashSet<DelayedTask>();

delayedTaskSet1.addAll(reminderQueue);

Set<DelayedTask> delayedTaskSet2 = new HashSet<DelayedTask>();
reminderQueue.drainTo(delayedTaskSet2);

The set delayedTaskSet1 will contain all the reminders in the queue, whereas the set
delayedTaskSet2 will contain only those ready to be used.

DelayQueue shares the performance characteristics of the PriorityQueue on which it is
based and, like it, has fail-fast iterators. The comments on PriorityBlockingQueue iter-
ators apply to these too.

SynchronousQueue

At first sight, you might think there is little point to a queue with no internal capacity,
which is a short description of SynchronousQueue. But, in fact, it can be very useful; a
thread that wants to add an element to a SynchronousQueue must wait until another
thread is ready to simultaneously take it off, and the same is true—in reverse—for a
thread that wants to take an element off the queue. So SynchronousQueue has the func-
tion that its name suggests, that of a rendezvous—a mechanism for synchronizing two
threads. (Don’t confuse the concept of synchronizing threads in this way—allowing
them to cooperate by exchanging data—with Java’s keyword synchronized, which pre-
vents simultaneous execution of code by different threads.) There are two constructors
for SynchronousQueue:

SynchronousQueue()
SynchronousQueue(boolean fair)

Example 14-2. The class DelayedTask

public class DelayedTask implements Delayed {
public final static long MILLISECONDS IN DAY = 60 * 60 * 24 * 1000;
private long endTime; // in milliseconds after January 1, 1970
private Task task;
DelayedTask(Task t, int daysDelay) {
endTime = System.currentTimeMillis() + daysDelay * MILLISECONDS IN DAY;
task = t;

public long getDelay(TimeUnit unit) {
long remainingTime = endTime - System.currentTimeMillis();
return unit.convert(remainingTime, TimeUnit.MILLISECONDS);

}

14.3 BlockingQueue | 205

public int compareTo(Delayed t) {
long thisDelay = getDelay(TimeUnit.MILLISECONDS);
long otherDelay = t.getDelay(TimeUnit.MILLISECONDS);
return (thisDelay < otherDelay) ? -1 : (thisDelay > otherDelay) ? 1 : 0;

Task getTask() { return task; }

A common application for SynchronousQueue is in work-sharing systems where the de-
sign ensures that there are enough consumer threads to ensure that producer threads
can hand tasks over without having to wait. In this situation, it allows safe transfer of
task data between threads without incurring the BlockingQueue overhead of enqueuing,
then dequeuing, each task being transferred.

As far as the Collection methods are concerned, a SynchronousQueue behaves like an
empty Collection; Queue and BlockingQueue methods behave as you would expect for
a queue with zero capacity, which is therefore always empty. The iterator method
returns an empty iterator, in which hasNext always returns false.

14.4 Deque

A deque (pronounced “deck”) is a double-ended queue. Unlike a queue, in which ele-
ments can be inserted only at the tail and inspected or removed only at the head, a

deque can accept elements for insertion and present them for inspection or removal at
either end. Also unlike Queue, Deque’s contract specifies the ordering it will use in pre-
senting its elements: itis a linear structure in which elements added at the tail are yielded
up in the same order at the head. Used as a queue, then, a Deque is always a FIFO
structure; the contract does not allow for, say, priority deques. If elements are removed
from the same end (either head or tail) at which they were added, a Deque acts as a stack
or LIFO (Last In First Out) structure.

Deque and its subinterface BlockingDeque were introduced in Java 6. The fast Deque
implementation ArrayDeque uses a circular array (see Section 14.3.2), and is now the
implementation of choice for stacks and queues. Concurrent deques have a special role
to play in parallelization, discussed in Section 14.4.2.

The Deque interface (see Figure 14-7) extends Queue with methods symmetric with re-
spect to head and tail. For clarity of naming, the Queue methods that implicitly refer to
one end of the queue acquire a synonym that makes their behavior explicit for Deque.
For example, the methods peek and offer, inherited from Queue, are equivalent to
peekFirst and offerlLast. (First and last refer to the head and tail of the deque; the
JavaDoc for Deque also uses “front” and “end”.)

Collection-like Methods

void addFirst(E e) // insert e at the head if there is enough space
void addLast(E e) // insert e at the tail if there is enough space
void push(E e) // insert e at the head if there is enough space

boolean removeFirstOccurrence(Object o0);

206 | Chapter14: Queues

Deque<E>

+addFirst(e:E) : void

+addlast(e:E) : void

+push(e:E):void

+removeFirstOccurrence(o : Object) : boolean
+removeLastOccurrence(0 : Object) : boolean
+descendinglterator() : Iterator<E>
+offerFirst(e: E) : boolean

+offerlast(e: E) : boolean

+peekFirst() : E

+peeklast() : E

+pollirst() : E

+polllast() : E

+getFirst() : E

+getlast() : E

+removeFirst() : E

+removelast() : E

+pop() : E

Figure 14-7. Deque

// remove the first occurrence of o
boolean removelastOccurrence(Object o);
// remove the last occurrence of o
Iterator<E> descendingIterator()
// get an iterator, returning deque elements in
// reverse order

The contracts for the methods addFirst and addLast are similar to the contract for the
add method of Collection, but specify in addition where the element to be added should
be placed, and that the exception to be thrown if it cannot be added is I11legalState-
Exception. As with bounded queues, users of bounded deques should avoid these
methods in favor of offerFirst and offerLast, which can report “normal” failure by
means of a returned boolean value.

The method name push is a synonym of addFirst, provided for the use of Deque as a
stack. The methods removeFirstOccurrence and removelastOccurrence are analogues of
Collection.remove, but specify in addition exactly which occurrence of the element
should be removed. The return value signifies whether an element was removed as a
result of the call.

Queue-like Methods

14.4 Deque | 207

boolean offerFirst(E e) // insert e at the head if the deque has space
boolean offerlast(E e) // insert e at the tail if the deque has space

The method offerlLast is a renaming of the equivalent method offer on the Queue in-
terface.

The methods that return null for an empty deque are:

E peekFirst() // retrieve but do not remove the first element
E peekLast() // retrieve but do not remove the last element
E pollFirst() // retrieve and remove the first element

E polllLast() // retrieve and remove the last element

The methods peekFirst and pollFirst are renamings of the equivalent methods peek
and poll on the Queue interface.

The methods that throw an exception for an empty deque are:

E getFirst() // retrieve but do not remove the first element
E getlast() // retrieve but do not remove the last element
E removeFirst() // retrieve and remove the first element

E removelast() // retrieve and remove the last element

E pop() // retrieve and remove the first element

The methods getFirst and removeFirst are renamings of the equivalent methods ele
ment and remove on the Queue interface. The method name pop is a synonym forremove
First, again provided for stack use.

14.4.1. Implementing Deque

ArrayDeque

Along with the interface Deque, Java 6 also introduced a very efficient implementation,
ArrayDeque, based on a circular array like that of ArrayBlockingQueue (see Sec-
tion 14.3.2). It fills a gap among Queue classes; previously, if you wanted a FIFO queue
to use in a single-threaded environment, you would have had to use the class Linked
List (which we cover next, but which should be avoided as a general-purpose Queue
implementation), or else pay an unnecessary overhead for thread safety with one of the
concurrent classes ArrayBlockingQueue or LinkedBlockingQueue. ArrayDeque is now the
general-purpose implementation of choice, for both deques and FIFO queues. It has
the performance characteristics of a circular array: adding or removing elements at the
head or tail takes constant time. The iterators are fail-fast.

LinkedList

Among Deque implementations LinkedList is an oddity; for example, it is alone in per-
mitting null elements, which are discouraged by the Queue interface because of the
common use of null as a special value. It has been in the Collections Framework from
the start, originally as one of the standard implementations of List (see Section 15.2),
and was retrofitted with the methods of Queue for Java 5, and those of Deque for Java 6.
It is based on a linked list structure similar to those we saw in Section 13.2.3 as the

208 | Chapter14: Queues

)
/

head—>{ 7 ! / N / , e

Figure 14-8. A doubly linked list

basis for skip lists, but with an extra field in each cell, pointing to the previous entry
(see Figure 14-8). These pointers allow the list to be traversed backwards—for example,
for reverse iteration, or to remove an element from the end of the list.

As an implementation of Deque, LinkedList is unlikely to be very popular. Its main
advantage, that of constant-time insertion and removal, is rivalled in Java 6—for queues
and deques—by the otherwise superior ArrayDeque. Previously you would have used it
in situations where thread safety isn’t an issue and you don’t require blocking behavior.
Now, the only likely reason for using LinkedList as a queue or deque implementation
would be that you also needed random access to the elements. With LinkedList, even
that comes at a high price; because random access has to be implemented by linear
search, it has time complexity of O(n).

The constructors for LinkedList are just the standard ones of Section 12.3. Its iterators
are fail-fast.

14.4.2. BlockingDeque

Figure 14-9 shows the methods that BlockingDeque adds to BlockingQueue (see Fig-
ure 14-5). Each of the two blocking insertion methods and two removal methods of
BlockingQueue is given a synonym to make explicit which end of the deque it modifies,
together with a matching method to provide the same action at the other end. So
offer, for example, acquires a synonym offerLast and a matching method offer
First. As a result, the same four basic behaviors that were defined for BlockingQueue
—returning a special value on failure, returning a special value on failure after a timeout,
throwing an exception on failure, and blocking until success—can be applied for ele-
ment insertion or removal at either end of the deque.

Good load balancing algorithms will be increasingly important as multicore and mul-
tiprocessor architectures become standard. Concurrent deques are the basis of one of
the best load balancing methods, work stealing. To understand work stealing, imagine
a load-balancing algorithm that distributes tasks in some way—round-robin, say—to
a series of queues, each of which has a dedicated consumer thread that repeatedly takes
a task from the head of its queue, processes it, and returns for another. Although this

14.4 Deque | 209

BlockingDeque<E>

+offerFirst(e : E, timeout : long, unit : TimeUnit) : boolean
+offerlast(e : E, timeout : long, unit : TimeUnit) : boolean
+putirst(e:E): E

+putlast(e:£): F

-+pollFirst(timeout : long, unit : TimeUnit) : E

+poliLast{ timeout : long, unit : TimeUnit) : E

+takeFirst() : E

+takelast() : E

Figure 14-9. BlockingDeque

scheme does provide speedup through parallelism, it has a major drawback: we can
imagine two adjacent queues, one with a backlog of long tasks and a consumer thread
struggling to keep up with them, and next to it an empty queue with an idle consumer
waiting for work. It would clearly improve throughput if we allowed the idle thread to
take a task from the head of another queue.Work stealing improves still further on this
idea; observing that for the idle thread to steal work from the head of another queue
risks contention for the head element, it changes the queues for deques and instructs
idle threads to take a task from the tail of another thread’s deque. This turns out to be
a highly efficient mechanism, and is becoming widely used.

Implementing BlockingDeque

The interface BlockingDeque has a single implementation, LinkedBlockingDeque. Link
edBlockingDeque is based on a doubly linked list structure like that of LinkedList. It
can optionally be bounded so, besides the two standard constructors, it provides a third
which can be used to specify its capacity:

LinkedBlockingDeque(int capacity)

It has similar performance characteristics to LinkedBlockingQueue—queue insertion
and removal take constant time and operations such as contains, which require tra-
versal of the queue, require linear time. The iterators are weakly consistent.

14.5 Comparing Queue Implementations

Table 14-1 shows the sequential performance, disregarding locking and CAS over-
heads, for some sample operations of the Deque and Queue implementations we have
discussed. These results should be interesting to you in terms of understanding the
behavior of your chosen implementation but, as we mentioned at the start of the chap-
ter, they are unlikely to be the deciding factor. Your choice is more likely to be dictated
by the functional and concurrency requirements of your application.

210 | Chapter14: Queues

In choosing a Queue, the first question to ask is whether the implementation you choose
needs to support concurrent access; if not, your choice is straightforward. For FIFO
ordering, choose ArrayDeque; for priority ordering, PriorityQueue.

If your application does demand thread safety, you next need to consider ordering. If
you need priority or delay ordering, the choice obviously must be PriorityBlocking
Queue or DelayQueue, respectively. If, on the other hand, FIFO ordering is acceptable,
the third

Table 14-1. Comparative performance of different Queue and Deque implementations

offer peek poll size
PriorityQueue O(logn) 0(1) O(logn) 0(1)
ConcurrentLinkedQueue 0(1) 0(1) 0(1) 0(n)
ArrayBlockingQueue 0(1) 0(1) 0(1) 0(1)
LinkedBlockingQueue o om o o)
PriorityBlockingQueue O(logn) O(1) O(logn) 0(1)
DelayQueue O(logn) 0(1) O(logn) 0(1)
LinkedList 0(1) 0(1) 0(1) 0(1)
ArrayDeque 0(1) 0(1) 0(1) 0(1)
LinkedBlockingDeque 0(1) 0(1) 0(1) 0(1)

question is whether you need blocking methods, as you usually will for producer-con-
sumer problems (either because the consumers must handle an empty queue by wait-
ing, or because you want to constrain demand on them by bounding the queue, and
then producers must sometimes wait). If you don’t need blocking methods or a bound
on the queue size, choose the efficient and wait-free ConcurrentLinkedQueue.

If you do need a blocking queue, because your application requires support for pro-
ducer-consumer cooperation, pause to think whether you really need to buffer data, or
whether all you need is to safely hand off data between the threads. If you can do
without buffering (usually because you are confident that there will be enough con-
sumers to prevent data from piling up), then SynchronousQueue is an efficient alternative
to the remaining FIFO blocking implementations, LinkedBlockingQueue and Array
BlockingQueue.

Otherwise, we are finally left with the choice between these two. If you cannot fix a
realistic upper bound for the queue size, then you must choose LinkedBlockingQueue,
as ArrayBlockingQueue is always bounded. For bounded use, you will choose between
the two on the basis of performance. Their performance characteristics in Fig-
ure 14-1 are the same, but these are only the formulae for sequential access; how they
perform in concurrent use is a different question. As we mentioned above, LinkedBlock
ingQueue performs better on the whole than ArrayBlockingQueue if more than three or
four threads are being serviced. This fits with the fact that the head and tail of a Link

14.5 Comparing Queue Implementations | 211

edBlockingQueue are locked independently, allowing simultaneous updates of both
ends. On the other hand, an ArrayBlockingQueue does not have to allocate new objects
with each insertion. If queue performance is critical to the success of your application,
you should measure both implementations with the benchmark that means the most
to you: your application itself.

212 | Chapter14: Queues

CHAPTER 15

Lists

Lists are probably the most widely used Java collections in practice. A list is a collection
which—unlike a set—can contain duplicates, and which—unlike a queue—gives the
user full visibility and control over the ordering of its elements. The corresponding
Collections Framework interface is List (see Figure 15-1).

In addition to the operations inherited from Collection, the List interface includes
operations for the following;:

Positional Access Methods that access elements based on their numerical position in

the list:

void add(int index, E e)

boolean addAll(int index, Collection<? extends E> c)
// add contents of c at given index

E get(int index)
E remove(int index)
E set(int index, E e)

// add element e at given index

// return element with given index
// remove element with given index
// replace element with given index by e

List<E>

+add(index : int, element) : boolean

+addAll(index : int, ¢ : Collection<? extends E>) : boolean
+get(index) : E

+remove(index) : £

+set(index, element) : E

+indexOf{ o) : int

HastindexOf{ o) : int

+sublist(fromindex, tolndex) : List<E>

+istlterator() : Listlterator<E>

Histlterator(index) : Listlterator<f>

Figure 15-1. List

213

Search Methods that search for a specified object in the list and return its numerical
position. These methods return -1 if the object is not present:

int index0f(Object o) // return index of first occurrence of o
int lastIndexOf(Object o) // return index of last occurrence of o

Range-View A method that gets a view of a range of the list:

List<E> subList(int fromIndex, int toIndex)
// return a view of a portion of the list

The method subList works in a similar way to the subSet operations on SortedSet (see
Section 13.2), but uses the position of elements in the list rather than their values: the
returned list contains the list elements starting at fromIndex, up to but not including
toIndex. The returned list has no separate existence—it is just a view of part of the list
from which it was obtained, so changes in it are reflected in the original list. There is
an important difference from subSet, though; changes you make to the sublist write
through to the backing list, but the reverse is not always true. If elements have been
inserted into or removed from the backing list by directly calling one of its “structure
changing” methods (Section 12.1), any subsequent attempts to use the sublist will result
in a ConcurrentModificationException.

List Iteration Methods that return a ListIterator, which is an Iterator with extended
semantics to take advantage of the list’s sequential nature:
ListIterator<E> listIterator() // return a ListIterator for this list,

// initially positioned at index 0
ListIterator<E> listIterator(int indx)

// return a ListIterator for this list,
// initially positioned at index indx

The methods added by ListIterator support traversing a list in reverse order, changing
list elements or adding new ones, and getting the current position of the iterator. The
current position of a ListIterator always lies between two elements, so in a list of
length n, there are n+1 valid list iterator positions, from 0 (before the first element) to
n (after the last one). The second overload of listIterator uses the supplied value to
set the initial position of the listIterator to one of these positions (calling listItera
tor with no arguments is the same as supplying an argument of 0.)

To the Iterator methods hasNext, next, and remove, ListIterator adds the following
methods:

public interface ListIterator<E> extends Iterator<E> {
void add(E e); // insert the specified element into the list
boolean hasPrevious(); // return true if this list iterator has further
// elements in the reverse direction
int nextIndex(); // return the index of the element that would be
// returned by a subsequent call to next

E previous(); // return the previous element in the list
int previousIndex(); // return the index of the element that would be

214 | Chapter15: Lists

element indices
0 1 2

11
0 1 2 3
Listiterator positions

Figure 15-2. Listlterator positions

// returned by a subsequent call to previous
void set(E e); // replace the last element returned by next or
// previous with the specified element
}

Figure 15-2 shows a list of three elements. Consider an iterator at position 2, either
moved there from elsewhere or created there by a call to listIterator (2). The effect
of most of the operations of this iterator is intuitive; add inserts an element at the current
iterator position (between the elements at index 1 and 2), hasPrevious and hasNext
return true, previous and next return the elements at indices 1 and 2 respectively, and
previousIndex and nextIndex return those indices themselves. At the extreme positions
of the list, 0 and 3 in the figure, previousIndex and nextIndex would return -1 and 3
(the size of the list) respectively, and previous or next, respectively, would throw NoSu
chElementException.

The operations set and remove work differently. Their effect depends not on the current
position of the iterator, but on its “current element”, the one last traversed over using
next or previous: set replaces the current element, and remove removes it. If there is
no current element, either because the iterator has just been created, or because the
current element has been removed, these methods will throw I1legalStateException.

15.1 Using the Methods of List

Let’s look at examples of the use of some of these methods in the to-do manager. In
the last chapter we considered representing the organization of a single day’s tasks in
a queue-based class with shutdown capabilities. One useful way of enlarging the scope
of the application is to have a number of objects of this type, each one representing the
tasks that are scheduled for a day in the future. We will store references to these objects
inaList, which (to keep things simple and to avoid grappling with the distasteful details
of java.util.Calendar) will be indexed on the number of days in the future that it
represents. So the queue of tasks scheduled for today will be stored at element O of the
list, the queue scheduled for tomorrow at element 1, and so on. Example 15-1 shows
the scheduler.

15.1 Using the Methods of List | 215

Example 15-1. A list-based task scheduler

public class TaskScheduler {
private List<StoppableTaskQueue> schedule;
private final int FORWARD_PLANNING DAYS = 365;

public TaskScheduler() {
List<StoppableTaskQueue> temp = new ArraylList<StoppableTaskQueue>();
for (int i = 0 ; i < FORWARD_PLANNING DAYS ; i++) {
temp.add(new StoppableTaskQueue());

schedule = new CopyOnWriteArraylList<StoppableTaskQueue>(temp); //1
}

public PriorityTask getTask() {
for (StoppableTaskQueue daysTaskQueue : schedule) {
PriorityTask topTask = daysTaskQueue.getTask();
if (topTask != null) return topTask;

return null; // no outstanding tasks - at alll!?

}

// at midnight, remove and shut down the queue for day 0, assign its tasks
// to the new day 0, and create a new day's queue at the planning horizon
public void rollOver() throws InterruptedException{
StoppableTaskQueue oldDay = schedule.remove(0);
Collection<PriorityTask> remainingTasks = oldDay.shutDown();
StoppableTaskQueue firstDay = schedule.get(0);
for (PriorityTask t : remainingTasks) {
firstDay.addTask(t);
}
StoppableTaskQueue lastDay = new StoppableTaskQueue();
schedule.add(lastDay);
}

public void addTask(PriorityTask task, int day) {
if (day < 0 || day >= FORWARD PLANNING DAYS)
throw new IllegalArgumentException("day out of range");
StoppableTaskQueue daysTaskQueue = schedule.get(day);
if (daysTaskQueue.addTask(task)) return; //2
// StoppableTaskQueue.addTask returns false only when called on
// a queue that has been shut down. In that case, it will also
// have been removed by now, so it's safe to try again.
if (! schedule.get(0).addTask(task)) {
throw new IllegalStateException("failed to add task " + task);
}
}
}

Although the example aims primarily to show the use of List interface methods rather
than to explore any particular implementation, we can’t set it up without choosing one.
Since a major factor in the choice will be the concurrency requirements of the appli-
cation, we need to consider them now. They are quite straightforward: clients con-
suming or producing tasks only ever read the List representing the schedule, so (once

216 | Chapter15: Lists

it is constructed) the only occasion that it is ever written is at the end of a day. At that
point the current day’s queue is removed from the schedule, and a new one is added
at the end (the “planning horizon”, which we have set to a year in the example). We
don’t need to exclude clients from using the current day’s queue before that happens,
because the StoppableTaskQueue design of Example14.1 ensures that they will be able
to complete in an orderly way once the queue is stopped. So the only exclusion required
is to ensure that clients don’t try to read the schedule itself while the rollover procedure
is changing its values.

If you recall the discussion of CopyOnWriteArraylList in Section 11.5.3, you may see that
it fills these requirements very nicely. It optimizes read access, in line with one of our
requirement. In the event of a write operation, it synchronizes just long enough to create
anew copy ofits internal backing array, thus filling our other requirement of preventing
interference between read and write operations.

With the implementation chosen, we can understand the constructor of Examplel5.1;
writing to the list is expensive, so it is sensible to use a conversion constructor to set it
up with a year’s worth of task queues in one operation (line //1).

The getTask method is straightforward; we simply iterate over the task queues, starting
with today’s queue, looking for a scheduled task. If the method finds no outstanding
tasks, it returns null—and if finding a task-free day was noteworthy, how should we
celebrate a task-free year?

At midnight each day, the system will call the method roll0ver, which implements the
sad ritual of shutting down the old day’s task queue and transferring the remaining
tasks in it to the new day. The sequence of events here is important; rollOver first
removes the queue from the list, at which time producers and consumers may still be
about to insert or remove elements. It then calls the StoppableTaskQueue.shutDown
which, as we saw in Example 14-1 returns the remaining tasks in the queue and guar-
antees that no more will be added. Depending on how far they have progressed, calls
of addTask will either complete or will return false, indicating that they failed because
the queue was shut down.

This motivates the logic of addTask: the only situation in which the addTask method of
StoppableTaskQueue can return false is that in which the queue being called is already
stopped. Since the only queue that is stopped is the day 0 queue, a return value of
false from addTask must result from a producer thread getting a reference to this queue
just before a midnight rollover. In that case, the current value of element 0 of the list is
by now the new day 0, and it is safe to try again. If the second attempt fails, the thread
has been suspended for 24 hours!

Notice that the roll0ver method is quite expensive; it writes to the schedule twice, and
since the schedule is represented by a CopyOnWriteArraylList (see Section 15.2.3), each
write causes the entire backing array to be copied. The argument in favour of this
implementation choice is that rol10ver is very rarely invoked compared to the number
of calls made on getTask, which iterates over the schedule. The alternative to CopyOn

15.1 Using the Methods of List | 217

WriteArraylList would be a BlockingQueue implementation, but the improvement that
would provide in the rarely-used rollOver method would come at the cost of slowing
down the frequently-used getTask method, since queue iterators are not intended to
be used in performance-critical situations.

Using Range-View and Iterator Methods Of the four List method groups above,
Example 15-1 makes use of the methods of one group, positional access, in several
places. To see how range-view and iterator methods could also be useful, consider how
the TaskScheduler could export its schedule, or a part of it, for a client to modify. You
would want the client to be able to view this subschedule and perhaps to insert or
remove tasks, but you would definitely want to forbid the insertion or removal of ele-
ments of the list itself, since these represent the sequence of days for which tasks are
being scheduled. The standard way to achieve this would be by means of an unmodi-
fiable list, as provided by the Collections class (see Section 17.3.2). An alternative in
this case would be to return a list iterator, as the snapshot iterators for copy-on-write
collections do not support modification of the backing collection. So we could define
a method to provide clients with a “planning window”:

listIterator<StoppableTaskQueue> getSubSchedule(int startDay, int endDay) {
return schedule.subList(startDay, endDay).listIterator();

}

This view will be fine for today, but we have to remember to discard it at midnight,
when the structural changes of removing and adding entries will invalidate it.

15.2 Implementing List

There are three concrete implementations of List in the Collections Framework (see
Figure 15-3), differing in how fast they perform the various operations defined by the
interface and how they behave in the face of concurrent modification; unlike Set and
Queue, however, List has no subinterfaces to specify differences in functional behavior.
In this and the following section we look at each implementation in turn and provide
a performance comparison.

15.2.1. ArrayList

Arrays are provided as part of the Java language and have a very convenient syntax, but
their key disadvantage—that, once created, they cannot be resized—makes them in-
creasingly less popular than List implementations, which (if resizable at all) are indef-
initely extensible. The most commonly used implementation of List is, in fact, Array
List—that is, a List backed by an array.

The standard implementation of ArrayList stores the List elements in contiguous array
locations, with the first element always stored at index O in the array. It requires an
array at least large enough (with sufficient capacity) to contain the elements, together
with a way of keeping track of the number of “occupied” locations (the size of the

218 | Chapter15: Lists

Collection<E>

CopyOnWriteArrayList<E> LinkedList<E> ArrayList<E>
(java.util.concurrent)

Figure 15-3. Implementations of the List interface

List). If an Arraylist has grown to the point where its size is equal to its capacity,
attempting to add another element will require it to replace the backing array with a
larger one capable of holding the old contents and the new element, and with a margin
for further expansion (the standard implementation actually uses a new array that is
double the length of the old one). As we explained in Section 11.3, this leads to an
amortized cost of O(1).

The performance of ArraylList reflects array performance for "random-access” opera-
tions: set and get take constant time. The downside of an array implementation is in
inserting or removing elements at arbitrary positions, because that may require adjust-
ing the position of other elements. (We have already met this problem with the
remove method of the iterators of array-based queues—for example, ArrayBlocking
Queue (see Section 14.3.2). But the performance of positional add and remove methods
are much more important for lists than iterator.remove is for queues.)

For example, Figure 15-4(a) shows a new ArraylList after three elements have been
added by means of the following statements:

List<Character>; charlList = new ArraylList<Character>();
Collections.addAll(charList, ‘'a', 'b', 'c');

If we now want to remove the element at index 1 of an array, the implementation must
preserve the order of the remaining elements and ensure that the occupied region of
the array is still to start at index 0. So the element at index 2 must be moved to index
1, that at index 3 to index 2, and so on. Figure 15-4(b) shows our sample ArrayList
after this operation has been carried out. Since every element must be moved in turn,
the time complexity of this operation is proportional to the size of the list (even though,
because this operation can usually be implemented in hardware, the constant factor is
low).

15.2 Implementing List | 219

@ Empty locations o
T]
HERR I

L — /N
Occupied
locations
3 2
Size Size

(@) (b)

Figure 15-4. Removing an element from an ArrayList

Even so, the alert reader, recalling the discussion of the circular arrays used to imple-
ment ArrayBlockingQueue and ArrayDeque (see Section 14.4.1) may wonder why a cir-
cular array was not chosen for the implementation of ArraylList, too. It is true that the
add and remove methods of a circular array show much better performance only when
they are called with an index argument of 0, but this is such a common case and the
overhead of using a circular array is so small, that the question remains.

Indeed, an outline implementation of a circular array list was presented by Heinz

Kabutz in The Java Specialists’ Newsletter (http://www.javaspecialists.co.za/archive/ls
sue027.html). In principle it is still possible that ArrayList may be reimplemented in
this way, possibly leading to real performance gains in many existing Java applications.
A possible alternative is that the circular ArrayDeque may be retrofitted to implement
the methods of List. In the meantime, if your application is using a List in which the
performance of element insertion and removal from the beginning of a list is more
important than that of randomaccess operations, consider writing to the Deque interface
and taking advantage of its very efficient ArrayDeque implementation.

As we mentioned in the discussion of ArrayBlockingQueue (Section 14.2), variable-size
array-backed collection classes can have one configuration parameter: the initial length
of the array. So besides the standard Collections Framework constructors, ArraylList
has one that allows you to choose the value of the initial capacity to be large enough
to accommodate the elements of the collection without frequent create-copy opera-
tions. The initial capacity of an ArraylList created by the default constructor is 10, and
that of one initialized with the elements of another collection is 110% of the size of that
collection.

The iterators of ArraylList are fail-fast.

220 | Chapter15: Lists

http://www.javaspecialists.co.za/archive/Issue027.html
http://www.javaspecialists.co.za/archive/Issue027.html

15.2.2. LinkedList

We discussed LinkedList as a Deque implementation in Section 14.4.1. You will avoid
itasaListimplementation if your application makes much use of random access; since
the list must iterate internally to reach the required position, positional add and
remove have linear time complexity, on average. Where LinkedList does have a per-
formance advantage over ArraylList is in adding and removing elements anywhere other
than at the end of the list; for LinkedList this takes constant time, against the linear
time required for noncircular array implementations.

15.2.3. CopyOnWriteArrayList

In Section 13.1 we met CopyOnhriteArraySet, a set implementation designed to provide
thread safety together with very fast read access. CopyOnWriteArraylist is a List im-
plementation with the same design aims. This combination of thread safety with fast
read access is useful in some concurrent programs, especially when a collection of ob-
server objects needs to receive frequent event notifications. The cost is that the array
which backs the collection has to be treated as immutable, so a new copy is created
whenever any changes are made to the collection. This cost may not be too high to pay
if changes in the set of observers occur only rarely.

The class CopyOnWriteArraySet in fact delegates all of its operations to an instance of
CopyOnWriteArraylist, taking advantage of the atomic operations addIfAbsent and
addAllAbsent provided by the latter to enable the Set methods add and addAll to avoid
introducing duplicates to the set. In addition to the two standard constructors (see
Section 12.3), CopyOnWriteArraylList has an extra one that allows it to be created using
the elements of a supplied array as its initial contents. Its iterators are snapshot iterators,
reflecting the state of the list at the time of their creation.

15.3 Comparing List Implementations

Table 15-1 gives the comparative performance for some sample operations on List
classes. Even though the choice here is much narrower than with queues or even sets,
the same process of elimination can be used. As with queues, the first question to ask
is whether your application requires thread safety. If so, you should use CopyOnWriteAr
raylList, if you can—that is, if writes to the list will be relatively infrequent. If not, you
will have to use a synchronized wrapper (see Section 17.3.1) around Arraylist or
Linkedlist.

For most list applications the choice is between ArraylList and LinkedList, synchron-
ized or not. Once again, your decision will depend on how the list is used in practice.
If set and get predominate, or element insertion and removal is mainly at the end of
the list, then ArraylList will be the best choice. If, instead, your application needs to
frequently insert and remove elements near the start of the list as part of a process that
uses iteration, LinkedList may be better. If you are in doubt, test the performance with

15.3 Comparing List Implementations | 221

each implementation. A Java 6 alternative for single-threaded code that may be worth
considering in the last case—if the insertions and removals are actually at the start of
the list—is to write to the Deque interface, taking advantage of its very efficient Array
Deque implementation. For relatively infrequent random access, use an iterator, or copy
the ArrayDeque elements into an array using toArray.

Table 15-1. Comparative performance of different list implementations

get add contains next remove(0) iterator.remove

Arraylist oM o0 0 0(1) 0(n) 0(n)
LinkedlList O 0(1) 0(n) 0(1) 001 0(1)
CopyOnWrite-ArrayList 0(1) 0O 0(n) 0(1) 0 0(n)

It is possible that, in a future release, ArrayDeque will be retrofitted to implement the
List interface; if that happens, it will become the implementation of choice for both
Queue and List in single-threaded environments.

222 | Chapter15: Lists

CHAPTER 16
Maps

The Map interface is the last of the major Collections Framework interfaces, and the
only one that does not inherit from Collection. It defines the operations that are sup-
ported by a set of key-to-value associations in which the keys are unique. These oper-
ations are shown in Figure 16-1 and fall into the following four groups, broadly parallel
to the four operation groups of Collection—adding elements, removing elements,
querying collection contents, and providing different views of the contents of a collec-
tion.

Adding Associations

V put(K key, V value) // add or replace a key-value association
// return the old value (may be null) if the
// key was present; otherwise returns null
void putAll(Map<? extends K,? extends V> m)
// add each of the key-value associations in
// the supplied map into the receiver

The operations in this group are optional; calling them on an unmodifiable map will
result in an UnsupportedOperationException.

Removing Associations

void clear() // remove all associations from this map

V remove(Object key) // remove the association, if any, with the
// given key; returns the value with which it
// was associated, or null

The signature of Map.remove is like that of the Collection.remove (see Section 12.1) in

that it takes a parameter of type Object rather than the generic type. We discussed
alternatives to this design in Section 2.6.

Like the addition operations of the previous group, these removal operations are op-
tional.

Querying the Contents of a Map

V get(Object k) // return the value corresponding to k, or
// null if k is not present as a key
boolean containsKey(Object k) // return true if k is present as a key

223

Map<K,V>

+put(key : K, value :V) :V
+putAll(t) : void

+dlear() : void

+remove(key : Object) :V

+get(key : Object) :V

+containsKey(key : Object) : boolean
+containsValue(value : Object) : boolean
+size() :int

+isEmpty() : boolean
+entrySet() : Set<Map.Entry<K.V>>
+keySet() : Set<K>

+values() : Collection< V>

Figure 16-1. Map

boolean containsValue(Object v) // return true if v is present as a value
int size() // return the number of associations
boolean isEmpty() // return true if there are no associations

The arguments to containsKey and containsValue may be null for Map implementations
that allow null keys or values (respectively). An implementation that does not allow
nulls will throw NullPointerException if supplied with a null argument to these meth-

ods.

As with the size method of Collection, the largest element count that can be reported
1s Integer .MAX VALUE.

Providing Collection Views of the Keys, Values, or Associations:

Set<Map.Entry<K, V>> entrySet() // return a Set view of the associations
Set<k> keySet() // return a Set view of the keys
Collection<V> values() // return a Collection view of the values

The collections returned by these methods are backed by the map, so any changes to
them are reflected in the map itself, and vice versa. In fact, only limited changes can be
made via the view: elements can be removed, either directly or via an iterator over the
view, but cannot be added; you will get an UnsupportedOperationException if you try.
Removing a key removes the single corresponding key-value association; removing a
value, on the other hand, removes only one of the associations mapping to it; the value
may still be present as part of an association with a different key. An iterator over the
view will become undefined if the backing map is concurrently modified.

The members of the set returned by entrySet implement the interface Map. Entry, which
represents a key-value association and provides a setValue method which can be used
to change values in the backing map. The documentation for Map.Entry is unusually
specific in specifying that objects implementing the interface can only be created during

224 | Chapter16: Maps

iteration of the view resulting from a call of entrySet, and that such objects become
invalid if the backing map is modified during this iteration. In Java 6 this restricted
scenario for the creation of Map.Entry objects is insufficient, as it is the return type for
a number of methods of NavigableMap (see Section 16.3).

16.1 Using the Methods of Map

One problem with basing the to-do manager on priority queues, as we have done in
the last two chapters, is that priority queues are unable to preserve the order in which
elements are added to them (unless that can be incorporated in the priority ordering,
for example as a timestamp or sequence number). To avoid this, we could use as an
alternative model a series of FIFO queues, each one assigned to a single priority. A
Map would be suitable for holding the association between priorities and task queues;
EnumMap in particular is a highly efficient Map implementation specialized for use with
keys which are members of an enum.

This model will rely on a Queue implementation that maintains FIFO ordering. To focus
on the use of the Map methods, let’s assume a single-threaded client and use a series of
ArrayDeques as the implementation:
Map<Priority,ArrayDeque<Task>> taskMap =
new EnumMap<Priority,ArrayDeque<Task>>(Priority.class);

for (Priority p : Priority.values()) {
taskMap.put(p, new ArrayDeque<Task>());

// populate the lists, for example:

taskMap.get(Priority.MEDIUM).add(mikePhone);

taskMap.get (Priority.HIGH).add(databaseCode);
Now, to get to one of the task queues—say, the one with the highest-priority tasks—
we can write:

Queue<Task> highPriorityTaskList = taskMap.get(Priority.HIGH);

Polling this queue will now give us the high priority to-dos, in the order in which they
were entered into the system.

To see the use of some of the other methods of Map, let’s extend the example a little to
allow for the possibility that some of these tasks might actually earn us some money
by being billable. One way of representing this would be by defining a class Client:

class Client {...}
Client acme = new Client("Acme Corp.",...);

and creating a mapping from tasks to clients:

Map<Task,Client> billingMap = new HashMap<Task,Client>();
billingMap.put(interfaceCode, acme);

We need to ensure that the system can still handle nonbillable tasks.We have a choice
here: we can either simply not add the name of a nonbillable task into the billing

16.1 Using the Methods of Map | 225

Map, or we can map it to null. In either case, as part of the code for processing a task
t, we can write:
Task t = ...
Client client = billingMap.get(t);
if (client != null) {
client.bill(t);

When we have finally finished all the work we were contracted to do by our client Acme
Corp., the map entries that associate tasks with Acme can be removed:
Collection<Client> clients = billingMap.values();
for (Iterator<Client> iter = clients.iterator() ; iter.hasNext() ;) {
if (iter.next().equals(acme)) {
iter.remove();

}
}

A neater alternative takes advantage of the method Collections.singleton (see Sec-
tion 17.2), a factory method which returns an immutable Set containing only the
specified element:

clients.removeAll(Collections.singleton(acme));

Both ways cost O(n), with similar constant factors in Sun’s current implementation.

16.2 Implementing Map

The implementations, eight in all, that the Collections Framework provides for Map are
shown in Figure 16-2. We shall discuss HashMap, LinkedHashMap, WeakHashMap, Identity
HashMap, and EnumMap here; the interfaces NavigableMap, ConcurrentMap, and Concurrent
NavigableMap are discussed, along with their implementations, in the sections following
this one.

For constructors, the general rule for Map implementations is like that for Collection
implementations (see Section 12.3). Every implementation excluding EnumMap has at
least two constructors; taking HashMap as an example, they are:

public HashMap()
public HashMap(Map<? extends K,? extends V> m)

The first of these creates an empty map, and the second a map that will contain the
key-value mappings contained in the supplied map m. The keys and values of map m
must have types that are the same as (or are subtypes of) the keys and values, respec-
tively, of the map being created. Using this second constructor has the same effect as
creating an empty map with the default constructor, and then adding the contents of
map m using putAll. In addition to these two, the standard implementations have other
constructors for configuration purposes.

226 | Chapter16: Maps

§
]
7

ADLA
WeakHashMap<K,V>-- - E ,:. E java.util.concurrent
IdentityHashMap<K,V>---- - L
EnumMap<K extends Enum<K> V> === ===+ !
HashMap<KVoewmmaanaad — ConcurrentMap<K, V>
SortedMap<K, V> ¢
LinkedHashMap<K,V> tr * - - - ConcurrentHashMap <K, V>
Hawgamgqod, V>
: = cmmgmgawm V>
TreeMap<K, V> :
[uncumntSlI:iplistMapA:K,U::

Figure 16-2. The structure of Map implementations in the Collections Framework

16.2.1. HashMap

In discussing HashSet in Section 13.1.1, we mentioned that it delegates all its operations
to a private instance of HashMap. Figure 16-3(a) is similar to Figure 13-2, but without
the simplification that removed the value elements from the map (all elements in a
HashSet are stored as keys with the same constant value). The discussion in Sec-
tion 13.1 of hash tables and their performance applies equally to HashMap. In particular,
HashMap provides constant-time performance for put and get. Although in principle
constant-time performance is only attainable with no collisions, it can be closely ap-
proached by the use of rehashing to control the load and thereby to minimize the num-
ber of collisions.

[teration over a collection of keys or values requires time proportional to the capacity
of the map plus the number of key-value mappings that it contains. The iterators are
fail-fast.

Two constructors allow the programmer to configure a new instance of HashMap:

public HashMap(int initialCapacity)
public HashMap(int initialCapacity, float loadFactor)

These constructors are like those of HashSet, allowing specification of the initial ca-
pacity and, optionally, the load factor at which the table will be rehashed.

16.2.2. LinkedHashMap

Like LinkedHashSet (Section 13.1.2), the class LinkedHashMap refines the contract of its
parent class, HashMap, by guaranteeing the order in which iterators return its elements.
Unlike LinkedHashSet, however, LinkedHashMap offers a choice of iteration orders; ele-
ments can be returned either in the order in which they were inserted in the map, or in

16.2 Implementing Map | 227

5 5
6 6
7 7
(@ (b)

Figure 16-3. HashMap and WeakHashMap

the order in which they were accessed (from least-recently to most-recently accessed).
An accessordered LinkedHashMap is created by supplying an argument of true for the
last parameter of the constructor:

public LinkedHashMap(int initialCapacity,

float loadFactor,
boolean accessOrder)

Supplying false will give an insertion-ordered map. The other constructors, which are
just like those of HashMap, also produce insertion-ordered maps. As with LinkedHash
Set, iteration over a LinkedHashMap takes time proportional only to the number of ele-
ments in the map, not its capacity.

Access-ordered maps are especially useful for constructing Least Recently Used (LRU)
caches. A cache is an area of memory that stores frequently accessed data for fast access.
In designing a cache, the key issue is the choice of algorithm that will be used to decide
what data to remove in order to conserve memory. When an item from a cached data
set needs to be found, the cache will be searched first. Typically, if the item is not found
in the cache, it will be retrieved from the main store and added to the cache. But the
cache cannot be allowed to continue growing indefinitely, so a strategy must be chosen
for removing the least useful item from the cache when a new one is added. If the
strategy chosen is LRU, the entry removed will be the one least recently used. This
simple strategy is suitable for situations in which an access of an element increases the
probability of further access in the near future of the same element. Its simplicity and
speed have made it the most popular caching strategy.

Cache construction with LinkedHashMap is further aided by removeEldestEntry, the sin-
gle method that it adds to those inherited from HashMap:

228 | Chapter16: Maps

protected boolean removeEldestEntry(Map.Entry<K,V> eldest)

The contract for removeEldestEntry states that the methods put and putAll will call
removeEldestEntry whenever a new entry is added to the map, passing to it the “eldest”
entry. In an insertion-ordered map, the eldest entry will be the one that was least re-
cently added to the map, but in an access-ordered map it is the one least recently ac-
cessed (and if some entries have never been accessed, it is the one amongst these which
was least recently added). In LinkedHashMap itself, removeEldestEntry does nothing and
returns false, but subclasses can override it to return true under some circumstances.
The contract for this method specifies that although it may itself remove the eldest
entry, it must return false if it has done so, since it is expected that a return value of
true will cause its calling method to do the removal. A simple example of removeEldes
tEntry would allow a map to grow to a given maximum size and then maintain that
size by deleting the eldest entry each time a new one is added:
class BoundedSizeMap extends LinkedHashMap {
private int maxEntries;
public BoundedSizeMap(int maxEntries) {
super(16, 0.75f, true);
this.maxEntries = maxEntries;

}
protected boolean removeEldestEntry(Map.Entry eldest) {

return size() > maxEntries;

}

A refinement of this simple example could take into account the entry supplied as the
argument to removeEldestEntry. For example, a directory cache might have a set of
reserved names which should never be removed, even if the cache continues to grow
as a result.

Notice that an insertion-ordered LinkedHashMap that overrides removeEldestEntry as
shown above will implement a FIFO strategy. FIFO caching has often been used in
preference to LRU because it is much simpler to implement in maps that do not offer
access ordering. However LRU is usually more effective than FIFO, because the reduced
cost of cache refreshes outweighs the overhead of maintaining access ordering.

Iteration over a collection of keys or values returned by a LinkedHashMap is linear in the
number of elements. The iterators over such collections are fail-fast.

16.2.3. WeakHashMap

An ordinary Map keeps ordinary (“strong”) references to all the objects it contains. That
means that even when a key has become unreachable by any means other than through
the map itself, it cannot be garbage collected. Often, that’s exactly what we want; in
the example at the beginning of this chapter, where we mapped tasks to clients, we
wouldn’t have wanted a mapping to disappear just because we weren’t holding a ref-
erence to the task object that we had put into the HashMap. To look up the value asso-

16.2 Implementing Map | 229

ciated with a supplied key, the HashMap will look for a key that matches (in the sense of
equals) the supplied one—they don’t have to be physically the same object.

But suppose that the objects of the key class are unique—that is, object equality is the
same as object identity. For example, each object might contain a unique serial number.
In this case, once we no longer have a reference—from outside the map—to an object
being used as a key, we can never look it up again, because we can never re-create it.
So the map might as well get rid of the key-value pair and, in fact, there may be a strong
advantage in doing so if the map is large and memory is in short supply. That is the
idea that WeakHashMap implements.

Internally WeakHashMap holds references to its key objects through references of the class
java.lang.ref.WeakReference (see Figure 16-3(b)). A WeakReference introduces an extra
level of indirection in reaching an object. For example, to make a weak reference to to
the string "code gui" you would write:

WeakReference<String> wref = new WeakReference<String>("code gui");

And at a later time you would recover a strong reference to it using the get method of
WeakReference:

String recoveredStringRef = wref.get();

If there are no strong references to the string "code gui" (or to any substring of it
returned from its subString method), the existence of the weak reference will not by
itself prevent the garbage collector from reclaiming the object. So the recovered refer-
ence value recoveredStringRef may, or may not, be null.

To see how WeakHashMap can be useful, think of a tracing garbage collector that works
by determining which objects are reachable, and reclaiming all others. The starting
points for a reachability search include the static variables of currently loaded classes
and the local variables currently in scope. Only strong references are followed to de-
termine reachability, so the keys of a WeakHashMap will be available to be reclaimed if
they are not reachable by any other route. Note that a key cannot be reclaimed if it is
strongly referenced from the corresponding value. (including from the values they cor-
respond to).

Before most operations on a WeakHashMap are executed, the map checks which keys have
been reclaimed. (It’s not enough to check if a key is null, because null is a legal value
for keys in a WeakHashMap. The WeakReference mechanism allows you to tell the garbage
collector to leave information in a ReferenceQueue each time it reclaims a weakly ref-
erenced object.) The WeakHashMap then removes every entry of which the garbage col-
lector has reclaimed the key.

What is a WeakHashMap good for? Imagine you have a program that allocates some tran-
sient system resource—a buffer, for example—on request from a client. Besides passing
a reference to the resource back to the client, your program might also need to store
information about it locally—for example, associating the buffer with the client that
requested it. That could be implemented by means of a map from resource to client

230 | Chapter16: Maps

objects. But now, even after the client has disposed of the resource, the map will still
hold a reference that will prevent the resource object from being garbage collected—
if, that is, the reference is strong. Memory will gradually be used up by resources which
are no longer in use. But if the reference is weak, held by a WeakHashMap, the garbage
collector will be able to reclaim the object after the last strong reference has gone away,
and the memory leak is prevented.

A more general use is in those applications—for example, caches—where you don’t
mind information disappearing if memory is low. Here, WeakHashMap is useful whether
or not the keys are unique, because you can always re-create a key if necessary to see
if the corresponding value is still in the cache. WeakHashMap isn’t perfect for this purpose;
one of its drawbacks is that it weakly references the map’s keys rather than its values,
which usually occupy much more memory. So even after the garbage collector has
reclaimed a key, the real benefit in terms of available memory will not be experienced
until the map has removed the stale entry. A second drawback is that weak references
are too weak; the garbage collector is liable to reclaim a weakly reachable object at any
time, and the programmer cannot influence this in any way. (A sister class of WeakRe
ference, java.lang.ref.SoftReference, is treated differently: the garbage collector
should postpone reclaiming these until it is under severe memory pressure. Heinz
Kabutz has written a SoftReference-based map using generics; see http://www.javaspe
cialists.co.zalarchive/Issue098.html.)

WeakHashMap performs similarly to HashMap, though more slowly because of the over-
heads of the extra level of indirection for keys. The cost of clearing out unwanted key-
value associations before each operation is proportional to the number of associations
that need to be removed. The iterators over collections of keys and values returned by
WeakHashMap are fail-fast.

16.2.4. IdentityHashMap

An IdentityHashMap differs from an ordinary HashMap in that two keys are considered
equal only if they are physically the same object: identity, rather than equals, is used
forkey comparison. That sets the contract for IdentityHashMap at odds with the contract
for Map, the interface it implements, which specifies that equality should be used for
key comparison. An alternative design could have avoided this problem by providing
a weaker contract for Map, with two different subinterfaces strengthening the contract
to specify the type of key comparison to use. This is another example of the problem
we discussed in Section 11.4, of balancing the tradeoff between a framework’s com-
plexity and its precision in implementing its contracts.

IdentityHashMap is a specialized class, commonly used in operations such as serializa-
tion, in which a graph has to be traversed and information stored about each node. The
algorithm used for traversing the graph must be able to check, for each node it en-
counters, whether that node has already been seen; otherwise, graph cycles could be
followed indefinitely. For cyclic graphs, we must use identity rather than equality to
check whether nodes are the same. Calculating equality between two graph node ob-

16.2 Implementing Map | 231

http://www.javaspecialists.co.za/archive/Issue098.html
http://www.javaspecialists.co.za/archive/Issue098.html

Lﬂ hashes to 0 kS X ey X e
—+—>valuel —F—>valuel —F—>valuel
key2 hashes to 4 BN ltﬁi also hashes 1.
— v C — > value
———>key3
—t—>valuel
(@ (b) ©

Figure 16-4. Resolving collisions by linear probing

jects requires calculating the equality of their fields, which in turn means computing
all their successors—and we are back to the original problem. An IdentityHashMap, by
contrast, will report a node as being present only if that same node has previously been
put into the map.

The standard implementation of IdentityHashMap handles collisions differently than
the chaining method shown in Figure 13-2 and used by all the other variants of Hash
Set and HashMap. This implementation uses a technique called linear probing, in which
the key and value references are stored directly in adjacent locations in the table itself
rather than in cells referenced from it. With linear probing, collisions are handled by
simply stepping along the table until the first free pair of locations is found. Fig-
ure 16-4 shows three stages in filling an IdentityHashMap with a capacity of 8. In (a) we
are storing a key-value pair whose key hashes to 0, and in (b) a pair whose key hashes
to 4. The third key, added in (c), also hashes to 4, so the algorithm steps along the table
until it finds an unused location. In this case, the first one it tries, with index 6, is free
and can be used. Deletions are trickier than with chaining; if key2 and value2 were
removed from the table in Figure 13-2, key3 and value3 would have to be moved along
to take their place.

Out of all the Collections Framework hash implementations, why does IdentityHash
Map alone use linear probing when all the others use chaining? The motivation for using
probing is that it is somewhat faster than following a linked list, but that is only true
when a reference to the value can be placed directly in the array, as in Figure 16-4. That
isn’t practical for all other hash-based collections, because they store the hash code as
well as the value. This is for reasons of efficiency: a get operation must check whether
it has found the right key, and since equality is an expensive operation, it makes sense

232 | Chapter16: Maps

to check first whether it even has the right hash code. Of course, this reasoning doesn’t
apply to IdentityHashMap, which checks object identity rather than object equality.

There are three constructors for IdentityHashMap:

public IdentityHashMap()
public IdentityHashMap(Map<? extends K,? extends V> m)
public IdentityHashMap(int expectedMaxSize)

The first two are the standard constructors found in every general-purpose Map imple-
mentation. The third takes the place of the two constructors that in other HashMaps
allow the user to control the initial capacity of the table and the load factor at which it
will be rehashed. IdentityHashMap doesn’t allow this, fixing it instead (at .67 in the
standard implementation) in order to protect the user from the consequences of setting
the load factor inappropriately: whereas the cost of finding a key in a table using chain-
ing is proportional to the load factor [, in a table using linear probing it is proportional
to 1/(1-1). So avoiding high load factors is too important to be left to the programmer!
This decision is in line with the policy, mentioned earlier, of no longer providing con-
figuration parameters when new classes are introduced into the Framework.

16.2.5. EnumMap

Implementing a mapping from an enumerated type is straightforward and very efficient,
for reasons similar to those described for EnumSet (see Section 13.1.4); in an array im-
plementation, the ordinal value of each enumerated type constant can serve as the index
of the corresponding value. The basic operations of get and put can be implemented
as array accesses, in constant time. An iterator over the key set takes time proportional
to the number of constants in the enumerated type and returns the keys in their natural
order (the order in which the enum constants are declared). Although, as with EnumSet,
this class is not thread-safe, the iterators over its collection views are not fail-fast but
weakly consistent.

EnumMap has three public constructors:

EnumMap (Class<K> keyType) // create an empty enum map

EnumMap (EnumMap<K, ? extends V> m) // create an enum map, with the same
// key type and elements as m

EnumMap (Map<K, ? extends V> m) // create an enum map using the elements
// of the supplied Map, which (unless it
// is an EnumMap) must contain at least
// one association

An EnumMap contains a reified key type, which is used at run time for checking the validity
of new entries being added to the map. This type is supplied by the three constructors
in different ways. In the first, it is supplied as a class token; in the second, it is copied
from the specified EnumMap. In the third, there are two possibilities: either the specified
Map is actually an EnumMap, in which case it behaves like the second constructor, or the
class of the first key of the specified Map is used (which is why the supplied Map may not
be empty).

16.2 Implementing Map | 233

SortedMap<K, V>

+firstKey() : K

+lastKey() : K

-+comparator() : Comparator<? super K>

+subMap(fromKey : K, toKey : K) : SortedMap<K,V>
+headMap(toKey : K) : SortedMap<K,V>
+tailMap(fromKey : K) : SortedMap<K,V>

Figure 16-5. SortedMap

16.3 SortedMap and NavigableMap

Like SortedSet, the subinterface SortedMap (see Figure 16-5) adds to its contract a guar-
antee that its iterators will traverse the map in ascending key order. Its definition is
similar to that of SortedSet, with methods such as firstKey and headMap corresponding
to the SortedSet methods first and headSet. Also like SortedSet, the SortedMap inter-
face has been extended in Java 6 by the subinterface NavigableMap (see Figure 16-6).
This section is structured like Section 13.2 for the same reasons: SortedMap has been
made obsolete by NavigableMap, but it may be helpful for developers prevented for the
moment from using Java 6 to have the two interfaces treated separately.

A SortedMap imposes an ordering on its keys, either that of their natural ordering or of
a Comparator; but in either case the compare method must be consistent with equals, as
the SortedMap will use compare to determine when a key is already in the map.

The extra methods defined by the SortedMap interface fall into three groups:

Getting the First and Last Elements

K firstKey()
K lastKey()

If the set is empty, these operations throw a NoSuchElementException.
Retrieving the Comparator
Comparator<? super K> comparator()
This method returns the map’s key comparator if it has been given one, instead of
relying on the natural ordering of the keys. Otherwise, it returns null.
Finding Subsequences

SortedMap<K,V> subMap(K fromKey, K toKey)
SortedMap<K,V> headMap(K toKey)
SortedMap<K,V> tailMap(K fromKey)

These operations work like the corresponding operations in SortedSet: the key argu-
ments do not themselves have to be present in the map, and the sets returned include
the fromKey— if, in fact, it is present in the map—and do not include the toKey.

234 | Chapter16: Maps

NavigableMap<K,V>

+pollfirstEntry() : Map.Entry<K, V>

+polllastentry() : Map.Entry<K V>

+HirstEntry() : Map.Entry<K, V>

+HastEntry() : Map.Entry<K V>

+subMap(fromKey : K, frominclusive : boolean, toKey : K, tolnclusive : boolean) : NavigableMap <K V>
+headMap(toKey : K, tolnclusive : boolean) : NavigableMap <K, V>
+taitMap(fromKey : K, frominclusive : boolean) : NavigableMap <K, V>
+ceilingEntry(key : K) : Map.Entry<K,V>

+ceilingKey(key :K) : K

+floorEntry(key : K) : Map.Entry<K,V>

+floorkey(key :K) :K

+higherEntry{ key :K) : Map.Entry<K,V>

+higherkey(key :K) : K

+HowerEntry(key : K) : Map.Entry<K, V>

+owerKey(key :K) :K

+descendingMap() : NavigableMap <K, V>

+descendingKeySet() : NavigableSet<K>

+navigableKeySet() : NavigableSet<K>

Figure 16-6. NavigableMap

16.3.1. NavigableMap

NavigableMap (see Figure 16-6) extends and replaces SortedMap, in the same way as
NavigableSet replaces SortedSet. Its methods correspond almost exactly to those of
NavigableSet, regarding the map as a set of key-value associations represented by
Map.Entry objects. So where a NavigableSet method returns an element of the set, the
corresponding NavigableMap method return a result of type Map.Entry. Until now, ob-
jects of this type were only obtainable by iterating over the set returned by Map.entry
Set, and were specified to become invalid in the face of concurrent modification of the
map. This specification is not appropriate to Map.Entry objects returned by the new
methods, and the contract for NavigableMap acknowledges this by specifying that the
Map.Entry objects returned by its methods are snapshot objects reflecting the state of
the map at the time they were produced, and do not support setValue.

The methods added by NavigableMap can be divided into four groups.

Getting the First and Last Elements

Map.Entry<K,V> pollFirstEntry()
Map.Entry<K,V> polllastEntry()
Map.Entry<K,V> firstEntry()
Map.Entry<K,V> lastEntry()

The first two methods are analogous to pollFirst and polllast in NavigableSet. The
last two were introduced because the emphasis in NavigableMap on making map entries

16.3 SortedMap and NavigableMap | 235

available requires entry-returning methods corresponding to the key-returning meth-
ods first and last inherited from SortedMap.

Getting Range Views

NavigableMap<K,V> subMap(

K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)
NavigableMap<K,V> headMap(K toKey, boolean inclusive)
NavigableMap<K,V> tailMap(K fromKey, boolean inclusive)

Like the NavigableSet methods, these provide more flexibility than the range-view
methods of SortedMap. Instead of always returning a half-open interval, these methods
accept boolean parameters that are used to determine whether to include the key or
keys defining the interval.

Getting Closest Matches

Map.Entry<K,V> ceilingEntry(K Key)
K ceilingKey(K Key)

Map.Entry<K,V> floorEntry(K Key)

K floorKey(K Key)

Map.Entry<K,V> higherEntry(K Key)
K higherKey(K Key)

Map.Entry<K,V> lowerEntry(K Key)

K lowerKey(K Key)

These are similar to the corresponding closest-match methods of NavigableSet, but
they return Map. Entry objects. If you want the key belonging to one of these entries, use
the corresponding convenience key-returning method, with the performance benefit of
allowing the map to avoid the unnecessary creation of a Map.Entry object.

Navigating the Map

NavigableMap<K,V> descendingMap() // return a reverse-order view of the map
NavigableSet<K> descendingKeySet() // return a reverse-order key set

There is also a new method defined to obtain a NavigableSet of keys:

NavigableSet<K> navigableKeySet() // return a forward-order key set

You might wonder why the method keySet, inherited from Map, could not simply be
overridden using a covariant return type to return a NavigableSet. Indeed, the platform
implementations of NavigableMap.keySet do return a NavigableSet. But there is a com-
patibility concern: if TreeMap.keySet were to have its return type changed from Set to
NavigableSet, any existing TreeMap subclasses which override that method would now
fail to compile unless they too changed their return type. (This concern is similar to
those discussed in Section 8.4.)

16.3.2. TreeMap

SortedMap is implemented in the Collections Framework by TreeMap. We met trees as
a data structure for storing elements in order when we discussed TreeSet (see Sec-
tion 13.2.2). In fact, the internal representation of a TreeSet is just a TreeMap in which

236 | Chapter16: Maps

every key is associated with the same standard value, so the explanation of the mech-
anism and performance of red-black trees given in Section 13.2.2 applies equally here.

The constructors for TreeMap include, besides the standard ones, one that allows you
to supply a Comparator and one that allows you to create one from another SortedMap,
using both the same comparator and the same mappings:

public TreeMap(Comparator<? super K> comparator)
public TreeMap(SortedMap<K, ? extends V> m)

Notice that the second of these constructors suffer from a similar problem to the cor-
responding constructor of TreeSet (see Section 13.2.2), because the standard conver-
sion constructor always uses the natural ordering of the keys, even when its argument
is actually a SortedMap.

TreeMap has similar performance characteristics to TreeSet: the basic operations (get,
put, and remove) perform in O(log n) time). The collection view iterators are fail-fast.

16.4 ConcurrentMap

Maps are often used in high-performance server applications—for example, as cache
implementations—so a high-throughput thread-safe map implementation is an essen-
tial part of the Java platform. This requirement cannot be met by synchronized maps
such as those provided by Collections.synchronizedMap, because with full synchroni-
zation each operation needs to obtain an exclusive lock on the entire map, effectively
serializing access to it. Locking only a part of the collection at a time—lock striping—
can achieve very large gains in throughput, as we shall see shortly with ConcurrentHash
Map. But because there is no single lock for a client to hold to gain exclusive access,
client-side locking no longer works, and clients need assistance from the collection itself
to carry out atomic actions.

That is the purpose of the interface ConcurrentMap. It provides declarations for methods
that perform compound operations atomically. There are four of these methods:

V putIfAbsent(K key, V value)
// associate key with value only if key is not currently present.
// return the old value (may be null) if the key was present,
// otherwise return null

boolean remove(Object key, Object value)
// remove key only if it is currently mapped to value. Returns
// true if the value was removed, false otherwise

V replace(K key, V value)
// replace entry for key only if it is currently present. Return
// the old value (may be null) if the key was present, otherwise
// return null

boolean replace(K key, V oldValue, V newValue)
// replace entry for key only if it is currently mapped to oldValue.
// return true if the value was replaced, false otherwise

16.4 ConcurrentMap | 237

16.4.1. ConcurrentHashMap

ConcurrentHashMap provides an implementation of ConcurrentMap and offers a highly
effective solution to the problem of reconciling throughput with thread safety. It is
optimized for reading, so retrievals do not block even while the table is being updated
(to allow for this, the contract states that the results of retrievals will reflect the latest
update operations completed before the start of the retrieval). Updates also can often
proceed without blocking, because a ConcurrentHashMap consists of not one but a set
of tables, called segments, each of which can be independently locked. If the number
of segments is large enough relative to the number of threads accessing the table, there
will often be no more than one update in progress per segment at any time. The con-
structors for ConcurrentHashMap are similar to those of HashMap, but with an extra one
that provides the programmer with control over the number of segments that the map
will use (its concurrency level):

ConcurrentHashMap ()

ConcurrentHashMap(int initialCapacity)

ConcurrentHashMap(int initialCapacity, float loadFactor)

ConcurrentHashMap(

int initialCapacity, float loadFactor, int concurrencylLevel)
ConcurrentHashMap(Map<? extends K,? extends V> m)

The class ConcurrentHashMap is a useful implementation of Map in any application where
it is not necessary to lock the entire table; this is the one capability of Synchronized
Map which it does not support. That can sometimes present problems: for example, the
size method attempts to count the entries in the map without using locks. If the map
is being concurrently updated, however, the size method will not succeed in obtaining
a consistent result. In this situation, it obtains exclusive access to the map by locking
all the segments, obtaining the entry count from each, then unlocking them again. The
performance cost involved in this is a justifiable tradeoff against the highly optimized
performance for common operations, especially reads. Overall, ConcurrentHashMap is
indispensable in highly concurrent contexts, where it performs far better than any
available alternative.

Disregarding locking overheads such as those just described, the cost of the operations
of ConcurrentHashMap are similar to those of HashMap. The collection views return weakly
consistent iterators.

16.5 ConcurrentNavigableMap

ConcurrentNavigableMap (see Figure 16-7) inherits from both ConcurrentMap and Navi
gableMap, and contains just the methods of these two interfaces with a few changes to
make the return types more precise. The range-view methods inherited from Sorted
Map and NavigableMap now return views of type ConcurrentNavigableMap. The compat-
ibility concerns that prevented NavigableMap from overriding the methods of Sorted
Map don’t apply here to overriding the range-view methods of NavigableMap or Sorted

238 | Chapter16: Maps

ConcurrentNavigableMap <K, V>

+subMap(fromKey : K, frominclusive : boolean, toKey : K, tolnclusive : boolean) : ConcurrentNavigableMap<K, V>
+subMap(fromKey : K, toKey : K) : ConcurrentNavigableMap <K, V>

+headMap(toKey : K, inclusive : boolean) : ConcurrenthavigableMap <K, V>

+headMap(toKey : K) : ConcurrentNavigableMap <K, V>

+tailMap(fromKey : K, inclusive : boolean) : ConcurrentNavigableMap <K, V>

+tailMap(fromKey : K) : ConcurrentNavigableMap<K,V>

+descendingMap() : ConcurrentNavigableMap <K, V>

+keySet() : NavigableSet<£>

Figure 16-7. ConcurrentNavigableMap

Map; because neither of these has any implementations that have been retrofitted to the
new interface, the danger of breaking implementation subclasses does not arise. For
the same reason, it is now possible to override keySet to return NavigableSet.

16.5.1. ConcurrentSkipListMap

The relationship between ConcurrentSkipListMap and ConcurrentSkipListSet is like
that between TreeMap and TreeSet; a ConcurrentSkipListSet is implemented by a Con
currentSkipListMap in which every key is associated with the same standard value, so
the mechanism and performance of the skip list implementation given in Sec-
tion 13.2.3 applies equally here: the basic operations (get, put, and remove) perform
inO(log n) time); iterators over the collection views execute next in constant time. These
iterators are fail-fast.

16.6 Comparing Map Implementations

Table 16-1 shows the relative performance of the different platform implementations
of Map (the column headed “next” shows the cost of the next operation of iterators over
the key set). As with the implementations of queue, your choice of map class is likely
to be influenced more by the functional requirements of your application and the con-
currency properties that you need.

Some specialized situations dictate the implementation: EnumMap should always (and
only) be used for mapping from enums. Problems such as the graph traversals described
in Section 16.2.4 call for IdentityHashMap. For a sorted map, use TreeMap where thread
safety is not required, and ConcurrentSkipListMap otherwise.

16.6 Comparing Map Implementations | 239

Table 16-1. Comparative performance of different Map implementations

get containskey next Notes

HashMap 0(1) 0(1) 0(h/n) his the table capacity
LinkedHashMap 0(1) 0(1) 0(1)

IdentityHashMap 0(1) o O(h/n) histhe table capacity
EnumMap 0(1) 0(1) 0(1)

TreeMap O(logn) O(logn) O(log n)

ConcurrentHashMap 0(1) 0(1) O(h/n) his the table capacity
ConcurrentSkipListMap O(logn) O(logn) 0(1)

That leaves the choice of implementation for general-purpose maps. For concurrent
applications, ConcurrentHashMap is the only choice. Otherwise, favor LinkedHashMap
over HashMap (and accept its slightlyworse performance) if you need to make use of
the insertion or access order of the map—for example, to use it as a cache.

240 | Chapter16: Maps

CHAPTER 17
The Collections Class

The class java.util.Collections consists entirely of static methods that operate on or
return collections. There are three main categories: generic algorithms, methods that
return empty or prepopulated collections, and methods that create wrappers. We dis-
cuss these three categories in turn, followed by a number of other methods which do
not fit into a neat classification.

All the methods of Collections are public and static, so for readability we will omit
these modifiers from the individual declarations.

17.1 Generic Algorithms

The generic algorithms fall into four major categories: changing element order in a list,
changing the contents of a list, finding extreme values in a collection, and finding spe-
cific values in a list. They represent reusable functionality, in that they can be applied
to Lists (or in some cases to Collections) of any type. Generifying the types of these
methods has led to some fairly complicated declarations, so each section discusses the
declarations briefly after presenting them.

17.1.1. Changing the Order of List Elements

There are seven methods for reordering lists in various ways. The simplest of these is
swap, which exchanges two elements and, in the case of a List which implements
RandomAccess, executes in constant time. The most complex is sort, which transfers the
elements into an array, applies a merge sort to them in time O(n logn), and then returns
them to the List. All of the remaining methods execute in time O(n).

void reverse(List<?> list)
// reverse the order of the elements
void rotate(List<?> list, int distance)
// rotate the elements of the list; the element at index
// i is moved to index (distance + i) % list.size()
void shuffle(List<?> list)
// randomly permute the list elements
void shuffle(List<?> list, Random rnd)

24

// randomly permute the list using the randomness source rnd
<T extends Comparable<? super T>> void sort(List<T> list)

// sort the supplied list using natural ordering
<T> void sort(List<T> list, Comparator<? super T> c)

// sort the supplied list using the supplied ordering
void swap(List<?> list, int i, int j)

// swap the elements at the specified positions

For each of these methods, except sort and swap, there are two algorithms, one using
iteration and another using random access. The method sort transfers the List ele-
ments to an array, where they are sorted using—in the current implementation—a
mergesort algorithm with 7 log n performance. The method swap always uses random
access. The standard implementations for the other methods in this section use either
iteration or random access, depending on whether the list implements the RandomAc
cess interface (see Section 8.3). If it does, the implementation chooses the random-
access algorithm; even for a list that does not implement RandomAccess, however, the
random-access algorithms are used if the list size is below a given threshold, determined
on a per-method basis by performance testing.

17.1.2. Changing the Contents of a List

These methods change some or all of the elements of a list. The method copy transfers
elements from the source list into an initial sublist of the destination list (which has to
be long enough to accommodate them), leaving any remaining elements of the desti-
nation list unchanged. The method fill replaces every element of a list with a specified
object, and replaceAll replaces every occurrence of one value in a list with another—
where either the old or new value can be null—returning true if any replacements were
made.
<T> void copy(List<? super T> dest, List<? extends T> src)
// copy all of the elements from one list into another
<T> void fill(List<? super T> list, T obj)
// replace every element of list with obj

<T> boolean replaceAll(List<T> list, T oldval, T newVal)
// replace all occurrences of oldval in list with newval

The signatures of these methods can be explained using the Get and Put Principle (see
Section 2.4). The signature of copy was discussed in Section 2.3. It gets elements from
the source list and puts them into the destination, so the types of these lists are, re-
spectively, ? extends T and ? super T. This fits with the intuition that the type of the
source list elements should be a subtype of the destination list. Although there are
simpler alternatives for the signature of copy, Section 2.3 makes the case that using
wildcards where possible widens the range of permissible calls.

For fill, the Get and Put Principle dictates that you should use super if you are putting
values into a parameterized collection and, for replaceAll, it states that if you are put-
ting values into and getting values out of the same structure, you should not use wild-
cards at all.

242 | Chapter17: The Collections Class

17.1.3. Finding Extreme Values in a Collection

The methods min and max are supplied for this purpose, each with two overloads—one
using natural ordering of the elements, and one accepting a Comparator to impose an
ordering. They execute in linear time.
<T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll) // return the maximum element
// using natural ordering
<T> T max(Collection<? extends T> coll, Comparator<? super T> comp)
// return the maximum element
// using the supplied comparator
<T extends Object & Comparable<? super T>>
T min(Collection<? extends T> coll) // return the minimum element
// using natural ordering
<T> T min(Collection<? extends T> coll, Comparator<? super T> comp)
// return the minimum element
// using the supplied comparator

Sections Section 3.6 and Section 8.4 explain these methods and the types assigned to
them.

17.1.4. Finding Specific Values in a List

Methods in this group locate elements or groups of elements in a List, again choosing
between alternative algorithms on the basis of the list’s size and whether it implements
RandomAccess.
<T> int binarySearch(List<? extends Comparable<? super T>> list, T key)
// search for key using binary search
<T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c)
// search for key using binary search
int indexOfSubList(List<?> source, List<?> target)
// find the first sublist of source which matches target
int lastIndexOfSubList(List<?> source, List<?> target)
// find the last sublist of source which matches target

The signature of the first binarySearch overload says that you can use it to search for a
key of type T in a list of objects that can have any type that can be compared with objects
of type T. The second is like the Comparator overloads of min and max except that, in this
case, the type parameter of the Collection must be a subtype of the type of the key,
which in turn must be a subtype of the type parameter of the Comparator.

Binary search requires a sorted list for its operation. At the start of a search, the range
of indices in which the search value may occur corresponds to the entire list. The binary
search algorithm samples an element in the middle of this range, using the value of the
sampled element to determine whether the new range should be the part of the old
range above or the part below the index of the element. A third possibility is that the
sampled value is equal to the search value, in which case the search is complete. Since
each step halves the size of the range, m steps are required to find a search value in a
list of length 2, and the time complexity for a list of length n is O(log n).

17.1 Generic Algorithms | 243

The methods index0fSubList and lastIndexOfSubList do not require sorted lists for
their operation. Their signatures allow the source and target lists to contain elements
of any type (remember that the two wildcards may stand for two different types). The
design decision behind these signatures is the same as that behind the Collection
methods containsAll, retainAll, and removeAll (see Section 2.6).

17.2 Collection Factories

The Collections class provides convenient ways of creating some kinds of collections
containing zero or more references to the same object. The simplest possible such
collections are empty:

<T> List<T> emptylist() // return the empty list (immutable)
<K, V> Map<K,V> emptyMap() // return the empty map (immutable)
<T> Set<T> emptySet() // return the empty set (immutable)

Empty collections can be useful in implementing methods to return collections of val-
ues, where they can be used to signify that there were no values to return. Each method
returns a reference to an instance of a singleton inner class of Collections. Because
these instances are immutable, they can safely be shared, so calling one of these factory
methods does not result in object creation. The Collections fields EMPTY_SET,
EMPTY_LIST, and EMPTY MAP were commonly used for the same purpose in Java before
generics, but are less useful now because their raw types generate unchecked warnings
whenever they are used.

The Collections class also provides you with ways of creating collection objects con-
taining only a single member:
<T> Set<T> singleton(T o)
// return an immutable set containing only the specified object
<T> List<T> singletonList(T o)
// return an immutable list containing only the specified object
<K,V> Map<K,V> singletonMap(K key, V value)
// return an immutable map, mapping only the key K to the value V

Again, these can be useful in providing a single input value to a method that is written
to accept a Collection of values.

Finally, it is possible to create a list containing a number of copies of a given object.

<T> List<T> nCopies(int n, T o)
// return an immutable list containing n references to the object o

Because the list produced by nCopies is immutable, it need contain only a single physical
element to provide a list view of the required length. Such lists are often used as the
basis for building further collections—for example, as the argument to a constructor
or an addAll method.

244 | Chapter17: The Collections Class

17.3 Wrappers

The Collections class provides wrapper objects that modify the behavior of standard
collections classes in one of three ways—by synchronizing them, by making them un-
modifiable, or by checking the type of elements being added to them. These wrapper
objects implement the same interfaces as the wrapped objects, and they delegate their
work to them. Their purpose is to restrict the circumstances under which that work
will be carried out. These are examples of the use of protection proxies (see Design
Patterns by Gamma, Helm, Johnson, and Vlissides, Addison-Wesley), a variant of the
Proxy pattern in which the proxy controls access to the real subject.

Proxies can be created in different ways. Here, they are created by factory methods that
wrap the supplied collection object in an inner class of Collections that implements
the collection’s interface. Subsequently, method calls to the proxy are (mostly) dele-
gated to the collection object, but the proxy controls the conditions of the call: in the
case of the synchronized wrappers, all method calls are delegated but the proxy uses
synchronization to ensure that the collection is accessed by only one thread at a time.
In the case of unmodifiable and checked collections, method calls that break the con-
tract for the proxy fail, throwing the appropriate exception.

17.3.1. Synchronized Collections

As we explained in Section 11.5, most of the Framework classes are not thread-safe—
by design—in order to avoid the overhead of unnecessary synchronization (as incurred
by the legacy classes Vector and Hashtable). But there are occasions when you do need
to program multiple threads to have access to the same collection, and these synchron-
ized wrappers are provided by the Collections class for such situations.

There are six synchronized wrapper factory methods, corresponding to the six pre-Java
6 interfaces of the Collections Framework. (No synchronized wrappers were provided
in Java 6 for NavigableSet or NavigableMap. If they had been provided, there would be
very few situations in which you would choose them over the thread-safe collections
ConcurrentSkipListSet and ConcurrentSkipListMap.)

<T> Collection<T> synchronizedCollection(Collection<T> c);

<T> Set<T> synchronizedSet(Set<T> s);

<T> List<T> synchronizedList(List<T> list);

<K, V> Map<K, V> synchronizedMap(Map<K, V> m);

<T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s);

<K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> m);

The classes that provide these synchronized views are conditionally thread-safe (see
Section 11.5); although each of their operations is guaranteed to be atomic, you may
need to synchronize multiple method calls in order to obtain consistent behavior. In
particular, iterators must be created and used entirely within a code block synchronized
on the collection; otherwise, the result will at best be failure with ConcurrentModifica

17.3 Wrappers | 245

tionException. This is very coarse-grained synchronization; if your application makes
heavy use of synchronized collections, its effective concurrency will be greatly reduced.

17.3.2. Unmodifiable Collections

An unmodifiable collection will throw UnsupportedOperationException in response to
any attempt to change its structure or the elements that compose it. This can be useful
when you want to allow clients read access to an internal data structure. Passing the
structure in an unmodifiable wrapper will prevent a client from changing it. It will not
prevent the client from changing the objects it contains, if they are modifiable. In some
cases, you may have to protect your internal data structure by providing clients instead
with a defensive copy made for that purpose, or by also placing these objects in un-
modifiable wrappers.

There are six unmodifiable wrapper factory methods, corresponding to the six major
interfaces of the Collections Framework:

<T> Collection<T> unmodifiableCollection(Collection<? extends T> c)

<T> Set<T> unmodifiableSet(Set<? extends T> s)

<T> List<T> unmodifiableList(List<? extends T> list)

<K, V> Map<K, V> unmodifiableMap(Map<? extends K, ? extends V> m)

<T> SortedSet<T> unmodifiableSortedSet(SortedSet<? extends T> s)

<K, V> SortedMap<K, V> unmodifiableSortedMap(SortedMap<K, ? extends V> m)

17.3.3. Checked Collections

Unchecked warnings from the compiler are a signal to us to take special care to avoid
runtime type violations. For example, after we have passed a typed collection reference
to an ungenerified library method, we can’t be sure that it has added only correctly
typed elements to the collection. Instead of losing confidence in the collection’s type
safety, we can pass in a checked wrapper, which will test every element added to the
collection for membership of the type supplied when it was created. Section 8.2 shows
an example of this technique.

Checked wrappers are supplied for the main interfaces:

static <E> Collection

checkedCollection(Collection<E> c, Class<E> elementType)
static <E> List

checkedList(List<E> c, Class<E> elementType)
static <E> Set

checkedSet (Set<E> ¢, Class<E> elementType)
static <E> SortedSet

checkedSortedSet(SortedSet<E> c, Class<E> elementType)
static <K, V> Map

checkedMap (Map<K, V> c, Class<K> keyType, Class<V> valueType)
static <K, V> SortedMap

checkedSortedMap(SortedMap<K, V> c, Class<K> keyType,Class<V> valueType)

246 | Chapter17: The Collections Class

17.4 Other Methods

The Collections class provides a number of utility methods, some of which we have
already seen in use. Here we review them in alphabetical order.

addAll

<T> boolean addAll(Collection<? super T> c, T... elements)
// adds all of the specified elements to the specified collection.

We have used this method a number of times as a convenient and efficient way of
initializing a collection with individual elements, or with the contents of an array.

asLifoQueue

<T> Queue<T> asLifoQueue(Deque<T> deque)
// returns a view of a Deque as a Last-in-first-out (Lifo) Queue.

Recall from Chapter 14 that while queues can impose various different orderings on
their elements, there is no standard Queue implementation that provides LIFO ordering.
Dequeue implementations, on the other hand, all support LIFO ordering if elements are
removed from the same end of the dequeue as they were added. The method asLifo
Queue allows you to use this functionality through the conveniently concise Queue in-
terface.

disjoint
boolean disjoint(Collection<?> c1, Collection<?> c2)
// returns true if c1 and c2 have no elements in common

Careis needed in using this method; implementations may iterate over either collection,
testing elements of one for containment in the other. So if the two collections determine
containment differently, the result of this method is undefined. This could arise if, say,
one collection is a SortedSet, for which containment is decided by natural ordering or
a comparator, and the other is a Set, for which containment is decided by the equals
method of its elements.

enumeration

<T> Enumeration<T> enumeration(Collection<T> c)
// returns an enumeration over the specified collection

This method is provided for interoperation with APIs whose methods take arguments
of type Enumeration, a legacy version of Iterator. The Enumeration it returns yields the

same elements, in the same order, as the Iterator provided by c. This method forms a
pair with the method 1list, which converts an Enumeration value to an Arraylist.

frequency

int frequency(Collection<?> c, Object o)
// returns the number of elements in c that are equal to o

If the supplied value o is null, then frequency returns the number of null elements in
the collection c.

17.4 Other Methods | 247

list

<T> ArraylList<T> list(Enumeration<T> e)
// returns an ArraylList containing the elements returned by the specified Enumeration

This method is provided for interoperation with APIs whose methods return results of
type Enumeration, a legacy version of Iterator. The ArraylList that it returns contains
the same elements, in the same order, as provided by e. This method forms a pair with
the method enumeration, which converts a Framework collection to an Enumeration.

newSetFromMap

<E> Set<E> newSetFromMap(Map<E, Boolean> map)
// returns a set backed by the specified map.

As we saw earlier, many sets (such as TreeSet and NavigableSkipListSet) are imple-
mented by maps, and share their ordering, concurrency, and performance character-
istics. Some maps, however (such as WeakHashMap and IdentityHashMap) do not have
standard Set equivalents. The purpose of the method newSetFromMap is to provide
equivalent Set implementations for such maps. The method newSetFromMap wraps its
argument, which must be empty when supplied and should never be subsequently
accessed directly. This code shows the standard idiom for using it to create a weak
HashSet, one whose elements are held via weak references:

Set<Object> weakHashSet = Collections.newSetFromMap(
new WeakHashMap<Object, Boolean>());

reverseOrder

<T> Comparator<T> reverseOrder()
// returns a comparator that reverses natural ordering

This method provides a simple way of sorting or maintaining a collection of Compara
ble objects in reverse natural order. Here is an example of its use:
SortedSet<Integer> s = new TreeSet<Integer>(Collections.reverseOrder());

Collections.addAll(s, 1, 2, 3);
assert s.toString().equals("[3, 2, 1]");

There is also a second form of this method.

<T> Comparator<T> reverseOrder(Comparator<T> cmp)

This method is like the preceding one, but instead of reversing the natural order of an
object collection, it reverses the order of the Comparator supplied as its argument. Its
behaviour when supplied with null is unusual for a method of the Collections class.
The contract for Collections states that its methods throw a NullPointerException if
the collections or class objects provided to them are null, but if this method is supplied
with null it returns the same result as a call of reverseOrder()—that is, it returns a
Comparator that reverses the natural order of a collection of objects.

248 | Chapter17: The Collections Class

Conclusion This completes our tour of the convenience methods provided by the
Collections class, and our discussion of the Collections Framework. We have presen-
ted collections, sets, lists, queues, and maps, and given you the information you need
to choose which interface and implementation best fits your needs.

Generics and the improved Collections Framework are possibly the most significant
change to Java since its inception.We are excited about these changes, and hope we
have conveyed some of this excitement to you.We hope you will see that generics and
collections fit together well to make a powerful addition to your repertory of Java pro-
gramming skills.

17.4 Other Methods | 249

Index

SymbOIS BlockingQueue, 199
& 47 55 Collection, 12, 17, 161, 244
> T Collections, 12, 166, 247
<, 32 .
List, 213
<=,32
3208 Set, 221
2,17, 18, 19,22, 23, 25,37, 47, 55, 74 addéHAbsem . _
@SuppressWarnings, 79 prOnerteArrayLlst, 221
addFirst
Deque, 206, 207
A addIfAbsent
abstract, 164 CopyOnWriteArrayList, 221
abstract class, 123, 127 addLast
abstract method, 123 Deque, 206, 208
AbstractCollection, 53 addObserver
AbstractList, 89, 114 Observable, 136
add, 89 allof
get, 89 EnumSet, 177
remove, 89 alphabetic ordering, 31, 39
set, 89 ampersands, 46
AbstractSequentialList, 114 angle brackets, 4, 12
listlterator, 114 Annotation, 99
size, 114 annotations, 66, 99
acquire reflection of, 97
Semaphore, 201 Anything Goes Behind Closed Doors, 89
add append
Collection, 16, 20, 53, 161, 207 Appendable, 46
CopyOnWriteArraySet, 176 Appendable, 46, 56
EnumSet, 177 append, 46
HashSet, 174 argument, 7, 15, 21, 27, 90
List, 213,214 Array, 3
Listlterator, 214 asList, 163, 164
PriorityQueue, 197 newlnstance, 102
Queue, 191, 193 array, 11, 17,22, 24,73, 74, 81, 83, 84, 89, 92,
Set, 171, 221 93, 106, 148, 149, 162, 163, 242
addAll argument, 85

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

251

as implementation for List, 218
component type, 106
creation, 81, 112,114, 115
deprecated type, 25, 92
store exception, 23, 24, 87
subtyping, 24
types, 101
vs collections, 92
ArrayBlockingQueue, 202, 219
blocked requests, 203
constructors, 203
FIFO, 204
performance, 202
weakly consistent iterators, 204
ArrayDeque, 193, 208, 220, 225
fail-fast iterators, 208
performance, 208
ArrayList, 4, 12, 15, 60, 74, 89, 94, 100, 114,
148, 165, 203, 218, 220-222, 221,
222
capacity, 219
constructors, 220
fail-fast iterators, 220
get, 218
initial capacity, 220
performance, 219, 220
set, 219
Arrays, 24
asList, 12,91, 92, 153
ArrayStoreException, 163
asList
Array, 163
Arrays, 12, 90, 92, 153
assert, 3, 167
AssertionError, 167
atomic operations, 157, 237, 245
compound, 237
atomic variables, 158

B

backward compatibility, 59
big-O notation, 150
BigDecimal, 32
binary compatibility, 59, 117, 118
binary search, 152, 243
binary tree, 123, 184, 186, 188, 196
Bloch, 22,45, 109, 132, 165, 174, 186
blocking

lock, 155

queue, 194
BlockingDeque, 145, 206, 209
BlockingQueue, 145, 197, 198

addAll, 199

containsAll, 199

drainTo, 199

implementations, 202

offer, 198

poll, 198, 199

put, 198

remainingCapacity, 199

remove, 199

removeAll, 199

retainAll, 199

take, 199
bounds, 31, 118

recursive, 35
boxing, 3, 4, 7, 8, 11, 24
bridge, 47, 48, 118
bucket, 174
buffer, 230
bytecode, 5,117, 118

C
C,78
C#, 59
C++,6,79
cache, 8, 228, 231, 237
caching, 8
capture of ?, 28
cast-iron guarantee, 5, 84, 93, 103, 110
casts, 5,74, 114, 115, 125
catch, 79, 130
ceiling
NavigableSet, 182
ceilingEntry
NavigableMap, 236
Character, 173
checked collections, 109, 112
for security, 111
checked exceptions, 128, 129
checked lists, 111
checkedCollection
Collections, 246
checkedList
Collections, 110, 115, 116, 246
checkedMap
Collections, 246
circular array, 202, 204, 206, 220

252 | Index

performance, 220 contains, 25, 162

class containsAll, 25, 26, 162, 244
anonymous, 54 isEmpty, 162
argument, 103 iterator, 53, 147, 162
browsers, 97 maximum of, 34
cast exception, 77, 78, 88, 93, 99, 110, 112 remove, 162, 207
declarations, 65 removeAll, 162, 244
files, 62, 68, 137 retainAll, 162, 244
legacy, 68 size, 53, 162, 224
inner, 53 toArray, 82, 85, 162, 163
literals, 97, 100 Collections, 24, 27, 34, 60, 99, 152, 241, 244
loader, 98 addAll, 11, 166, 247
nested, 54, 55 asLifoQueue, 247
nested static, 54 binarySearch, 152, 243
outer, 53 checkedCollection, 246
singleton, 244 checkedList, 99, 110, 114, 246
token, 86, 98, 99, 101, 233 checkedMap, 246
wrapper, 68 checkedSet, 246
Class, 84, 86, 97, 98, 100, 103, 105 checkedSortedMap, 246
getComponentType, 84, 102 checkedSortedSet, 246
newlnstance, 84, 86, 103 copy, 18, 19, 242
ClassCastException, 77, 83 disjoint, 247
ClassNotFoundException, 129, 130 emptyList, 244
clear emptyMap, 244
Collection, 162 emptySet, 244
Map, 223 fill, 242
client, 64 frequency, 247
client-side locking, 157, 158, 237 indexOfSubList, 243, 244
clone lastIndexOfSubList, 243, 244
Object, 49 max, 41, 47, 117, 243
close min, 41, 243
Closeable, 46 nCopies, 244
Closeable, 46, 56 newSetFromMap, 248
close, 46 replaceAll, 242
closest matches, 183 reverse, 27, 241
code bloat, 6 rotate, 241
coercions, 7 shuffle, 241
collection, 3, 4, 24, 25, 83, 84, 162 singleton, 226, 244
and thread safety, 153 singletonList, 244
checked, 246 singletonMap, 244
classes, 82 sort, 241, 242
elements, 147 swap, 241, 242
Collection, 15, 16, 17, 25, 34, 35, 37, 82, 145, synchronizedCollection, 245
147, 148, 152, 161, 164, 165, 167, synchronizedList, 245
171,178, 191, 194, 203, 213, 223, synchronizedMap, 237, 245
241, 243 synchronizedSet, 245
add, 16, 20, 53, 161, 207 synchronizedSortedMap, 245
addAll, 11, 17, 161, 244 synchronizedSortedSet, 245
clear, 162 unmodifiableCollection, 246

Index | 253

unmodifiableList, 246
unmodifiableMap, 246
unmodifiableSet, 246
unmodifiableSortedMap, 246
unmodifiableSortedSet, 246
Collections Framework, 4, 12, 15, 25, 26, 32,
34,41, 60, 62, 64, 82, 85, 114, 146,
149, 153, 156, 162, 164, 171, 172,
174,183, 191, 198, 202, 208, 213,
218,223,226, 232, 236, 246
Comparable, 12, 31, 33, 34, 35, 36, 39, 44, 47,
118,131, 178, 195, 204
compareTo, 31, 32, 36, 48, 118, 128, 180
Comparator, 31,37,39,41, 123,178,194, 195,
234,243
compare, 36, 179, 234
comparator
on lists, 41
SortedSet, 180
compare
Comparator, 37, 180, 234
compare-and-swap, 158
compareTo
Comparable, 31, 32, 35,48, 118
Delayed, 204
Enum, 44
comparison, 31
anti-symmetric, 33
compatible with equality, 33
congruence, 33
permit, 36
prohibit, 36
reflexive, 33
transitive, 33
compatibility, 24, 47
compile time, 109
compile-time errors, 18, 32, 52, 56, 77, 81,
133
compiler flag
-source 1.4, 65
complementOf
EnumSet, 177
Component, 99
getListeners, 99
component type, 73, 80, 86
concurrency, 154, 156, 216
policy, 156
utilities, 191
concurrent

collections, 149, 158

modification, 149
concurrent collections, 158
Concurrent Programming in Java, 155
ConcurrentHashMap, 150, 237, 238

constructors, 238

performance, 238

segment locking, 238

size, 238

weakly consistent iterators, 238
ConcurrentHashMapthread safety, 238
ConcurrentLinkedQueue, 150, 197

constructors, 198

removal, 197

size, 197

weakly consistent iterators, 198
ConcurrentMap, 145, 226, 237

putlfAbsent, 158, 237

remove, 237

replace, 237
ConcurrentModificationException, 148, 168,

184, 204, 214, 246

ConcurrentNavigableMap, 145, 226

keySet, 239

range-view methods, 238
ConcurrentSkipListMap, 150, 186, 239

fail-fast iterators, 239

get, 239

performance, 239

put, 239

remove, 239
ConcurrentSkipListSet, 150, 173, 239

weakly consistent iterators, 188
consistent with equals, 32
constant (time), 151
Constructor

newlnstance, 103

toGenericString, 48, 105
constructor, 51, 69
consumer threads, 206
contains

Collection, 25, 162

CopyOnWriteArraySet, 176

EnumSet, 177

HashSet, 174

List, 25

PriorityQueue, 197

Set, 171

TreeSet, 185

254 | Index

containsAll
BlockingQueue, 200
Collection, 25, 26, 162, 244
List, 25
containsKey
Map, 223
containsValue
Map, 224
contract, 152, 153, 207
contravariant subtyping, 23
conversion constructor, 186
Converter, 139
copy
Collections, 18
copy-on-write, 158
copyOf
EnumSet, 177
CopyOnWriteArrayList, 149, 176, 217, 221
addAllAbsent, 221
addIfAbsent, 221
constructors, 221
snapshot iterators, 221
thread safety, 221
CopyOnWriteArraySet, 158, 172, 176, 221
add, 176
constructors, 176
contains, 176
immutable, 175
iterators, 176
performance, 175
snapshot iterators, 176
thread safety, 175
covariant
array subtyping, 24
arrays, 22, 24, 80
return types, 45, 49, 119, 236
subtyping, 23
critical section, 156

D

data structure, 123
debuggers, 97
defensive copy, 246
delay time
DelayQueue, 204
Delayed, 204
compareTo, 204
getDelay, 204
DelayQueue, 204, 205

delay time, 204
fail-fast iterators, 205
performance, 205
poll, 204
delegation, 68, 112, 113, 115
Deque, 145, 149, 193, 206, 207, 208, 220
addFirst, 206, 207
addLast, 206, 207
descendinglterator, 207
getFirst, 208
getLast, 208
offer, 206
offerFirst, 207
offerLast, 206
peek, 206
peekFirst, 206
peekLast, 208
performance, 210
pollFirst, 208
pollLast, 208
pop, 208
push, 206, 207
removeFirst, 208
removeFirstOccurrence, 206
removelast, 208
removelLastOccurrence, 207
deque, 206, 208
concurrent, 206
head, 208
insertion, 206
removal, 206
tail, 208
Dequeue, 247
dequeueing
BlockingQueue, 198
descendinglterator
Deque, 206
descendingKeySet
NavigableMap, 236
descendingMap
NavigableMap, 236
descendingSet
NavigableSet, 183
design pattern, 45, 123
Function, 123, 128
Interpreter, 123, 127, 128
Proxy, 245
Singleton, 45
Strategy, 45, 123, 131, 133

Index | 255

Subject-Observer, 45, 123, 136, 176
Visitor, 123, 124, 125
Design Patterns, 45, 123, 245
dot product, 10
Double, 15
subtype of Number, 16
double-ended queue, 206

E

Effective Java, 22, 45, 109, 132, 165, 186
efficiency, 35, 85, 92, 158, 175, 194
element
PriorityQueue, 197
Queue, 193, 208
element order, 241
empty deque, 208
empty loop technique, 112
emptyList
Collections, 244
emptyMap
Collections, 244
emptySet
Collections, 244
end
of deque, 206
enqueuing
BlockingQueue, 199
entrySet
Map, 224, 225
enum, 42, 176, 177,225, 233
Enum, 42, 44, 131, 176, 198
compareTo, 45
name, 45
ordinal, 45, 176
toString, 45
enumerated constant, 42, 45
enumerated type, 42, 45, 138, 177
valueOf, 45
values, 44
enumeration class, 45
EnumMap, 149, 225, 226
constructors, 226, 233
get, 233
iterators not fail-fast, 233
put, 233
thread safety, 233
weakly consistent iterators, 233
EnumSet, 149, 172, 176, 233
add, 176

allOof, 177
complementOf, 177
contains, 176
copyOf, 177
iterators not fail-first, 177
noneOf, 177
of, 177
range, 177
remove, 176
snapshot iterators, 177
thread safety, 177
weakly consistent iterators, 177
equality, 32, 74,75, 76, 98, 164, 231
equals
Object, 32, 98, 196, 230, 231, 234, 247
erasure, 5, 47, 55, 56, 59, 74, 78, 83, 88, 110,
117-119, 117, 119
signature, 56
Error, 128
error messages, 28
syntax, 80
evolution, 59, 62, 64, 73, 117
exception, 79, 101, 110, 133, 157, 191, 199,
245
array store, 23, 24, 87
class cast, 77, 78, 88, 93, 94, 99, 110, 112
ClassNotFoundException, 129, 130
ConcurrentModificationException, 148,
168
Exception, 128, 130
handling, 79
NoSuchMethodException, 130
NullPointerException, 169
RuntimeException, 128
store, 24
StubException, 68
UnsupportedOperationException, 68, 224
Exception, 128, 129
exclusive access, 237
expansion, 6
explicit representation, 73
explicit type parameters, 19, 28
extends, 15, 17, 19, 28, 34-37, 35, 37
wildcard, 19, 21, 23, 27

F

factory methods, 245, 246

fail-fast iterators, 149, 156
ArrayDeque, 208

256 | Index

ArrayList, 219
ConcurrentSkipListMap, 239
HashMap, 227
HashSet, 174
LinkedHashMap, 229
LinkedHashSet, 175
LinkedList, 209
TreeMap, 237
TreeSet, 184
WeakHashMap, 231
fair scheduling, 203

FIFO
LinkedHashMap, 229
vs LRU, 229
final
classes, 164
fields, 165
first

SortedSet, 180, 234

First In First Out, 191, 193, 197, 202, 206, 208,
211,224

firstEntry

NavigableMap, 235
firstKey

SortedMap, 234
floor

NavigableSet, 182
floorEntry

NavigableMap, 236
for, 9
foreach, 3, 35, 147, 168
Fortran, 149
Fuller, 84

G

Gafter, 90
Gamma, 45, 123, 245
garbage collection, 229-231, 230, 231
tracing, 230
generalized abstract data types, 128
generic
algorithms, 114, 241
array creation, 82, 88, 91, 93
array creation error, 83
class, 47, 51, 52, 84, 86, 106
client, 60, 65, 68
code, 78, 117
declarations, 137
functions, 102

interface, 47, 69, 105
library, 60, 62
method, 9, 10, 11, 26, 34, 39, 64
method invocation, 12, 28, 40
reflection
library, 103
signature, 117, 139
signatures, 25, 67, 68, 136, 137
type, 5, 11, 80, 99, 109, 111, 131
types, 133
generic array creation error, 81
generic array creation warning, 92
GenericArrayType, 106
generics, 3, 4, 6, 15, 23, 24, 25, 26, 31, 47, 48,
56,59, 62,67,78, 84, 94,97, 114,
123,125,127, 132
for reflection, 97, 98
get
ArrayList, 219
ConcurrentSkipListMap, 239
EnumMap, 233
HashMap, 227
List, 213
Map, 224
TreeMap, 237
WeakReference, 230
Get and Put Principle, 19, 22, 23, 28, 36, 242
getClass
Object, 85, 97, 98
getComponentType
Class, 85, 102
getDelay
Delayed, 204
getFirst
Deque, 208
getLast
Deque, 208
Goetz, 155
graph, 231
GUI, 154

H

half-open interval, 180

hash code, 36, 172

hash function, 172, 173

hash table, 4, 149, 150, 172, 174, 184
access by content, 150
insertion, 150
iterating, 174

Index | 257

key, 173 keys, 231

load, 173 load factor, 233

removal, 150 illegal argument exception, 103

value, 173 Illegal ArgumentException, 45
hashCode method, 36 IllegalStateException, 215
HashMap, 148, 173, 226-233, 228, 231, 232, immutable, 179, 244

233 implements, 15

constructors, 226, 227 in, 202

get, 227 Indecent Exposure, 73, 82, 86, 88, 89, 92, 101,

load factor, 227 103

performance, 227 indexOf

put, 227 List, 214
HashSet, 150, 172, 173, 174, 227 indexOfSubList

add, 174 Collections, 244

constructors, 174 inequality assertion, 8

contains, 174 inheritance, 112, 115

fail-first iterators, 174 specialize by, 115

iteration, 174 inner class, 53

not thread-safe, 174 insertion

remove, 174 ConcurrentLinkedQueue, 197

size, 174 insertion by position, 149
Hashtable, 156, 245 instance creation, 28-30, 28, 30
hashtable instance tests, 74, 106, 112, 114, 115

load factor, 174 int, 11

rehashing, 174 Integer, 3, 8, 11, 15, 17, 18, 47, 48
Haskell, 128 implements Comparable<Integer>, 35
hasNext, 9, 147, 214 interface, 65, 152

Iterator, 9, 147, 214 interpreters, 97

Listlterator, 215 intervals
hasPrevious half-open, 180

ListIterator, 214 invariant subtyping, 23
head, 191 InvocationTargetException, 103
headMap isEmpty

NavigableMap, 236 Collection, 162

SortedMap, 234 Map, 224
headSet ITterable, 9, 15, 145, 147, 148

NavigableSet, 182 iterator, 9

SortedSet, 180, 234 iteration, 149
Helm, 45, 123, 245 Iterator, 9, 53, 77, 147, 148, 214
hierarchy, 184 iterator, 9, 35, 147, 156, 167, 174
higher Collection, 53, 147, 162

NavigableSet, 182 Iterable, 9
higherEntry Queue, 194

NavigableMap, 236

J

I Java
identity, 98, 231 1.0 (version), 97, 156
IdentityHashMap, 150, 226 1.1 (version), 97

constructors, 233 1.2 (version), 156

258 | Index

1.4 (version), 3, 5, 49, 62
5 (version), 4, 48, 60, 62, 65, 66, 93, 98, 147,
148, 158, 167, 178, 198, 208
6 (version), 178, 181, 186, 206, 208, 209,
225,234
Java Concurrency in Practice, 155
Java Specialists’ Newsletter, 131, 220
java.awt, 99
java.lang, 9
java.lang.ref, 230, 231
java.util, 9
java.util.concurrent, 191
JavaBeans, 97
Johnson, 45, 123, 245

K

Kabutz, 131, 220, 231
keys, 176
Map, 224
keySet
ConcurrentNavigableMap, 239
Map, 224
TreeMap, 236
Knuth, 150

L

last
SortedSet, 180
Last In First Out, 206, 247
lastEntry
NavigableMap, 235
lastIndexOf
List, 214
lastIndexOfSubList
Collections, 244
lastKey
SortedMap, 234
Lea, 155
Least Recently Used, 229
legacy
class, 68, 118, 156
client, 60, 62
code, 59, 60, 62, 78, 109, 112, 116, 117
interface, 69
library, 60, 65, 109, 110
method, 64
signature, 68
legacy collections, 155-158, 157, 158

legacy data type, 162
library, 5, 59, 62, 65, 66, 86
generic reflection, 102
lightweight process, 153
linear (time), 151
linear probing, 232
linked list, 4, 53, 149, 174, 187, 208
LinkedBlockingDeque, 210
constructors, 210
performance, 210
weakly consistent iterators, 210
LinkedBlockingQueue, 150, 202, 208
constructors, 202
weakly consistent iterators, 202
LinkedHashMap, 150, 226, 228, 229
access-ordered, 228
constructors, 228
insertion-ordered, 228, 229
iteration orders, 227
put, 229
putAll, 229
removeEldestEntry, 228
LinkedHashSet, 150, 172, 174
constructors, 175
fail-first iterators, 175
not thread-safe, 175
performance, 175
unsychronized, 175
LinkedList, 114, 150, 193, 221
constructors, 209
thread safety, 209
List, 3,4,8,9,15,16,17,18,19,23,27,52,55,
73,75,76,77,82,87,93,101, 110,
145, 152, 156, 194, 213, 214, 217,
219,221,241, 242, 243
add, 213, 214
addAll, 213
contains, 25
containsAll, 25
get, 213
implementations of, 218
indexOf, 214
lastIndexOf, 214
LinkedList implementation, 209
operations, 213
performance, 218, 221
remove, 213
set, 213, 221
subList, 214

Index | 259

list, 213 put, 223

adding elements, 214 putAll, 223, 226
changing contents, 241, 242 querying contents, 224
changing elements, 214 remove, 223
iterator, 218 removing associations, 223
linked, 53 size, 224
positional access, 213 thread safety, 237, 239
range-view, 214, 218 unreachable keys, 229
search, 214 values, 224
traversing, 214 views, 224
usual ordering, 42 Map.Entry, 224, 225
listIterator setValue, 225
AbstractSequentialList, 114 max
Listlterator, 214 Collections, 41, 117
Listlterator, 153, 214 maximum, 40
add, 214 Collection, 34
hasNext, 215 memory, 231
hasPrevious, 214, 215 memory locations, 153
listIterator, 214 merge sort, 241
next, 215 performance, 242
nextlndex, 214, 215 Method, 105
previous, 214 method body, 10
previousIndex, 214 method signature, 10, 65
remove, 215 methods, 56
set, 215 migration compatibility, 59
lock, 156, 157, 237 minimum, 40
lock striping, 237 ML, 128
lock-free deletion, 188 multicore, 154
locking multiple bounds, 45, 55, 118
client-side, 158 multiprocessor, 154
locks, 158 multithread, 153
loop, 9 mutually recursive bounds, 35
loop condition, 10
lower N
NavigableSet, 182
name
Enum, 44
M natural order, 168
Map, 145, 150, 172,223, 224, 231, 236 natural ordering, 31, 32, 37, 40, 164, 178, 179,
adding associations, 223 186, 234, 237
clear, 223 consistent with equality, 164
containsKey, 223 reverse of, 40
containsValue, 224 NavigableMap, 145, 225
entrySet, 224, 225 ceilingEntry, 236
get, 223 closest matches, 236
implementations of, 226 descendingKeySet, 236
isEmpty, 224 descendingMap, 236
iterator over view, 224 firstEntry, 235
keySet, 224 floorEntry, 236
performance, 239 headMap, 236

260 | Index

higherEntry, 236

keySet, 236

lastEntry, 235

lowerEntry, 236

range views, 236

subMap, 236

tailMap, 236
NavigableSet, 172, 182, 194

ceiling, 183

descendingSet, 183

floor, 183

headSet, 182

higher, 182

lower, 182

pollFirst, 181

pollLast, 181

reverse order navigation, 183

subSet, 182

tailSet, 182

vs NavigableMap, 235
NavigableSkipListSet, 248
nCopies

Collections, 244
nested classes, 53, 55
new, 28
newlnstance

Array, 102

Class, 85,103

Constructor, 103
next, 9, 147,214, 239

Iterator, 9, 214, 239
nextIndex

Listlterator, 214
Node, 53
noneOf

EnumSet, 177
nonparameterized, 74
nonreifiable

casts, 77

type, 76, 86, 92,93, 113
nonreifiable type, 114
NoSuchElement, 35
NoSuchElementException, 180, 215, 234
NoSuchMethodException, 130
null, 21, 32, 84, 161, 168, 183, 193, 230, 242
NullPointerException, 32, 169, 224
Number, 15, 17
numerical ordering, 31

0

O-notation, 150
Object, 7, 11, 15, 19, 22, 47, 48, 75, 85, 117,
118, 125,162,223
clone, 45
equals, 32, 98, 180, 195, 230, 247
getClass, 97, 98, 100
toString, 11, 16, 17, 18, 20, 22, 23, 29, 105,
115

object inspectors, 97

object serialization, 97

Observable, 136-139, 137, 138, 139
addObserver, 136
notifyObservers, 136
setChanged, 136

Observer, 136-139, 137, 138, 139
update, 136

of
EnumSet, 177

offer
Deque, 206
Queue, 191, 193, 208

offerFirst
Deque, 208

offerLast
Deque, 206

optional operations, 153

ordered tree, 4

ordinal
Enum, 44, 176

outer class, 53

override, 120

P

parallel class hierarchies, 131, 136
parallelism, 154
parameter, 15
parameter types, 73
parameterized
collection, 242
interface, 47
type, 27, 51, 55, 62, 64, 65, 66, 74, 81, 88,
99,110, 112,113
type hierarchy, 136
Parameterized Type, 106
parametric type, 167
peek
Deque, 206

Index | 261

Queue, 193, 204, 208
peekFirst
Deque, 206, 208
peekLast
Deque, 208
performance, 24, 114, 150, 153, 156, 158, 163,
174,176, 185, 188, 221, 242
ArrayBlockingQueue, 202
ArrayList, 219
binary search, 243
circular array, 208, 220
ConcurrentHashMap, 238
ConcurrentSkipListMap, 239
Deque, 210
HashMap, 227
LinkedBlockingDeque, 210
List, 218, 221
Map, 239
Queue, 210
Set, 171
TreeMap, 237
WeakHashMap, 231
performance cost, 156
platform compatibility, 59
Point, 49
poll
DelayQueue, 204
Queue, 193, 208
pollFirst
Deque, 209
NavigableSet, 182
pollFirstEntry
NavigableMap, 236
pollLast
Deque, 209
NavigableSet, 182
previous
Listlterator, 215
primitive type, 7, 74, 103, 106, 163
Arrays of, 24
primitive types, 7, 93, 101
reflection, 102
Principle of Anything Goes Behind Closed
Doors, 89
Principle of Indecent Exposure, 73, 82, 86, 88,
89,93, 101, 103
Principle of Truth in Advertising, 73, 82, 84, 85,
89, 92,101, 103
print spooling, 198

PrintStream, 47
priority heap, 196
priority queue, 194, 204
PriorityBlockingQueue, 150, 200, 204
fail-fast iterators, 204
PriorityQueue, 150, 186, 195
add, 197
constructors, 195
element, 197
fail-fast iterators, 197
offer, 197
peek, 197
poll, 197
remove, 197
size, 197
unsuitable for concurrent use, 197
probability, 187
producer threads, 206
producer-consumer queue, 198, 201
protection proxies, 245
proxy, 245
pull
Queue, 193
push
Deque, 206
put
EnumMap, 233
HashMap, 227
Map, 223
TreeMap, 237
putAll
Map, 223, 226
putlfAbsent
ConcurrentMap, 158, 237

Q

querying, 167
Queue, 145, 149, 191, 193, 194, 197, 198, 204,
206, 207, 208, 225, 247
add, 191, 193
adding an element, 192
choosing a, 211
element, 193, 208
implementations of, 195
iterator, 194
nonblocking implementation, 197
offer, 192, 208
peek, 193, 208
performance, 211

262 | Index

poll, 193, 208

remove, 193, 208, 219

retrieving an element, 191

thread safety, 208, 211
queue, 191, 206

concurrent, 201

head, 206

tail, 206

traversal, 194

unbounded, 201

R

race condition, 155
random access, 209, 219, 221, 242
RandomAccess, 89, 114, 241-243
range, 181
EnumSet, 177
range views, 180
raw type, 51, 62, 64, 74, 76, 93, 100, 101, 106,
116, 244
read
Readable, 46
Readable, 46, 56
read, 46
Reader, 47
recursion, 123
recursive
bounds, 34, 131
calls, 125
declaration, 134
generics, 133
type parameters, 136
red-black tree, 185, 237
reference type, 6, 7, 15, 21, 22, 24
ReferenceQueue, 230
reflection, 48, 52,82, 84, 97,100,101, 102, 110,
114
for generics, 97, 104
library, 104
reifiable type, 74, 75, 76, 79, 81, 86, 88, 89, 91,
93,97, 100, 101, 103, 111, 112, 114,
162
reification, 73, 74, 87, 90
reified component type, 85, 103
reified type, 23, 80, 84, 87, 89, 233
information, 84, 100
Reinhold, 117
removal by position, 149
remove, 9, 147,176, 202, 214

Collection, 162, 207

EnumSet, 177

HashSet, 174

Iterator, 9, 10, 176, 202, 214

List, 213

Map, 225

Queue, 193, 204, 219

TreeMap, 237
removeAll

Collection, 162, 244
removeEldestEntry

LinkedHashMap, 228
removeFirstOccurrence

Deque, 206
removelLastOccurrence

Deque, 206
rendezvous, 205
retainAll

Collection, 162, 244
Retention, 99
retention annotation, 99
retrieval by content, 149
return clause, 66
return type, 66
reverse

Collections, 241
rotate

Collections, 241
runtime

type violations, 246
runtime type information, 73
RuntimeException, 128

S

security properties, 115
segment locking
ConcurrentHashMap, 238
segments, 238
Semaphore
acquire, 201
tryAcquire, 201
semaphore, 201
permit, 201
Sequential, 114
Serializable, 12
serialization, 231
server applications, 237
Set, 145, 150, 171, 172, 175, 226, 247
add, 171, 221

Index | 263

addAll, 221 SortedSet, 32, 172, 181, 186, 204, 214

contains, 171 comparator, 180
implementations of, 171 first, 180, 183, 234
iteration, 171 headSet, 180, 234
performance, 171 last, 180, 183
set, 171 subSet, 180, 214
ArrayList, 219 tailSet, 180
List, 213, 221 vs SortedMap, 234
setChanged Sorting and Searching, 150
Observable, 136 -source 1.4 flag, 65
setValue specialization, 112
Map.Entry, 235 specialize, 112
sgn, 33 Stack, 154
shuffle stacks, 206
Collections, 241 static member, 52
sign function, 33 static methods, 128
signature, 19, 26, 56, 65 static typing, 76
erasure, 55 String, 8, 172
singleton implements Comparable<String>, 35
Collections, 226, 244 subString, 230
size StringBuffer, 156
Collection, 53, 162, 224 StringBuilder, 156
ConcurrentHashMap, 238 stub files, 65, 139
ConcurrentLinkedQueue, 197 StubException, 68
HashSet, 174 stubs, 68, 110, 137
size ordering, 39 subclass, 99, 112, 123, 124, 125, 138
skip list, 187 subList
inserting, 188 List, 214
skip lists, 209 subMap
snapshot iterators, 218 SortedMap, 234
CopyOnWriteArrayList, 221 subSet
CopyOnWriteArraySet, 176 NavigableSet, 183
EnumSet, 177 SortedSet, 180
snapshot objects, 235 Substitution Principle, 15, 16, 22, 23, 64
SoftReference, 231 subString
software engineering, 152 String, 230
sorted lists subtype, 15, 17, 22, 23, 24, 34, 49, 62, 243
merging, 178 subtyping, 15
sorted map, 32 contravariant, 23
sorted set, 32 covariant, 23
SortedMap, 32, 145, 180, 204, 234 transitive, 15
ascending key order, 234 super, 18, 19, 34, 35, 242
firstKey, 234 wildcard, 22
headMap, 234 super wildcard, 19, 20, 28
lastKey, 234 superclass, 99, 106, 115
obsolete, 234 superinterface, 106
subMap, 234 supertype, 15,22, 62, 180
subsequences, 234 suppress warnings annotation, 66
tailMap, 234 SuppressWarnings, 66

264 | Index

synchronization, 155-158, 156, 158
coarse-grained, 246
overhead, 245

synchronized, 52, 155, 205
block, 201
collections, 156, 158
wrapper, 156

SynchronizedArrayStack, 157

synchronizedCollection
Collections, 245

synchronizedList
Collections, 245
synchronizedMap
Collections, 237, 245
synchronizedSet
Collections, 245
synchronizedSortedMap
Collections, 245
synchronizedSortedSet
Collections, 245

synchronizing, 156, 205

SynchronousQueue, 205
constructors, 205
iterator, 206

syntax errors, 100

system resources, 153

T
tail, 191
tailMap
SortedMap, 234
tailSet
NavigableSet, 183
SortedSet, 180
templates, 6
thread, 153, 201, 205
producer, 201
thread safety, 156, 157, 158, 202, 245
collections, 158
ConcurrentHashMap, 238
CopyOnWriteArrayList, 221
EnumMap, 233
LinkedList, 209
Map, 237, 239
Queue, 208, 210
Throwable, 79, 128
parameterized subclass of, 79
throws clause, 80, 129
type variable in, 128

time slicing, 153
timeout, 198
TimeUnit, 198
toArray
Collection, 82, 85, 94, 162
top-level parameters, 28
toString
Enum, 45
Object, 11, 18, 20, 22, 29, 105
tree, 123, 150
binary, 184, 188
descendants, 185
expression, 127
TreeMap, 150, 186, 237
constructors, 237
get, 237
keys, 237
keySet, 236
performance, 237
put, 237
remove, 237
TreeSet, 150, 178, 237, 248
constructors, 185
contains, 185
fail-fast iterators, 184
not thread-safe, 186
unsychronized, 186
Truth in Advertising, 73, 82, 89, 101
try, 79, 130
tryAcquire
Semaphore, 201
type, 42
type declaration, 4, 77
type error, 134
type parameter, 4, 5, 7, 11, 18, 25, 26, 27, 28,
32, 35,40, 51, 52, 53, 54, 65, 66, 73,
97,98, 99, 100, 106, 125, 136, 137,
243
implicit, 19
mutually recursive, 137
type safety, 246
type variable, 31, 34, 39, 45, 74, 106
bound, 34
type violations
runtime, 246
TypeVariable, 106

U

unbalanced binary tree, 185

Index | 265

unbounded wildcard, 76, 93, 98, 101

unboxing, 3, 4,7, 8,9

unchecked cast, 66, 69, 77, 78, 82, 84, 86, 87,
88, 89,92, 94,97, 101, 102, 103,
104

unchecked conversion, 62

unchecked warning, 5, 12, 51, 64, 66, 69, 76,
77,82,84,88,92,110,111, 116, 244,
246

Unicode, 173

unnatural ordering, 37

unparameterized type, 93, 113

UnsupportedOperationException, 68, 153,
223,246

update

Observer, 136

vV
valueOf
enumerated type, 45
values
enumerated type, 45
finding extreme, 241, 243
finding specific, 241
varargs, 4, 10, 82, 90, 91
variable
static final, 42
Vector, 156, 245
versioning, 59
Vlissides, 45, 123, 245
volatile, 48, 156

]

wait-free algorithm, 197
warnings, 77, 78, 92
weak reference, 230
WeakHashMap, 150, 226, 230
key-value pair, 230
keys, 230, 231
values, 231
weakly consistent iterators, 149
ArrayBlockingQueue, 203
ConcurrentHashMap, 238
ConcurrentLinkedQueue, 198
ConcurrentSkipListSet, 188
EnumMap, 233
EnumSet, 177
LinkedBlockingQueue, 202

WeakReference, 230, 231
get, 230
wildcard, 15, 17, 18, 19, 23, 25, 27, 28, 34, 353,
37,45,76,98, 106, 117
bounded, 28
capture, 27
restrictions on, 28
specialization at, 117
type, 28, 29,78
unbounded, 76, 101
wrapper, 65, 68, 99, 112, 156, 175, 241, 245
class, 68
synchronization, 245
type checking, 245
Writer, 47

X

-Xlint:unchecked flag, 51

266 | Index

About the Authors

Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consul-
tancy in the United Kingdom. He has most recently served as an architect and mentor
at NSB Retail Systems plc, and as the leader of the client development team of a major
UK government social service system. He has taught Java since 1998 at both basic and
advanced level for Learning Tree and Sun Educational Services.

Philip Wadler is professor of theoretical computer science at the University of Edin-
burgh, Scotland, where his research focuses on functional and logic programming. He
co-authored the Generic Java standard that became the basis for generics in Sun's Java
5.0 and also contributed to the XQuery language standard base. Professor Wadler re-
ceived his Ph.D., in computer science from Carnegie-Mellon University and co-wrote
"Introduction to Functional Programming" (Prentice-Hall).

Colophon

The animal on the cover of Java Generics and Collections is an alligator. Alligators are
found only in southern parts of the U.S. and in China. They are rare in China, native
only to the Yangtze River Basin. Alligators generally cannot tolerate salt water and
therefore live in freshwater ponds, swamps, and the like.

When first born, alligators are tiny, measuring only about six inches. However, it grows
extremely fast in the first years of life—a foot each year. A fully grown female is usually
around 9 feet and between 150 and 200 pounds, while an adult male typically reaches
11 feet and weighs about 350 to 400 pounds. The largest known alligator on record,
found in Louisiana in the early 1900s, was 19 feet, 2 inches. A key identifying charac-
teristic of an alligator’s appearance is its short, broad snout. An adult alligator’s skin
is a gray-black color, which turns dark black when wet, and it has a white underbelly.
Young alligators have yellow and white stripes across their backs. The shape of the
snout and skin color provide physical characteristics that differentiate alligators from
crocodiles, which have long, thin snouts and are a tan color.

Alligators are mainly nocturnal and do most of their hunting and feeding after the sun
sets. They are carnivores and eat a large variety of food, such as turtles, fish, frogs, birds,
snakes, small mammals, and even smaller alligators. However, once an alligator grows
into adulthood, it really faces no threats—other than humans.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCon-
densed.

	Table of Contents
	Preface
	Obtaining the Example Programs
	How to Contact Us
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Acknowledgments

	Part I. Generics
	Chapter 1. Introduction
	1.1 Generics
	1.2 Boxing and Unboxing
	1.3 Foreach
	1.4 Generic Methods and Varargs
	1.5 Assertions

	Chapter 2. Subtyping and Wildcards
	2.1 Subtyping and the Substitution Principle
	2.2 Wildcards with extends
	2.3 Wildcards with super
	2.4 The Get and Put Principle
	2.5 Arrays
	2.6 Wildcards Versus Type Parameters
	2.7 Wildcard Capture
	2.8 Restrictions on Wildcards

	Chapter 3. Comparison and Bounds
	3.1 Comparable
	3.2 Maximum of a Collection
	3.3 A Fruity Example
	3.4 Comparator
	3.5 Enumerated Types
	3.6 Multiple Bounds
	3.7 Bridges
	3.8 Covariant Overriding

	Chapter 4. Declarations
	4.1 Constructors
	4.2 Static Members
	4.3 Nested Classes
	4.4 How Erasure Works

	Chapter 5. Evolution, Not Revolution
	5.1 Legacy Library with Legacy Client
	5.2 Generic Library with Generic Client
	5.3 Generic Library with Legacy Client
	5.4 Legacy Library with Generic Client
	5.4.1. Evolving a Library using Minimal Changes
	5.4.2. Evolving a Library using Stubs
	5.4.3. Evolving a Library using Wrappers

	5.5 Conclusions

	Chapter 6. Reification
	6.1 Reifiable Types
	6.2 Instance Tests and Casts
	6.3 Exception Handling
	6.4 Array Creation
	6.5 The Principle of Truth in Advertising
	6.6 The Principle of Indecent Exposure
	6.7 How to Define ArrayList
	6.8 Array Creation and Varargs
	6.9 Arrays as a Deprecated Type?
	6.10 Summing Up

	Chapter 7. Reflection
	7.1 Generics for Reflection
	7.2 Reflected Types are Reifiable Types
	7.3 Reflection for Primitive Types
	7.4 A Generic Reflection Library
	7.5 Reflection for Generics
	7.6 Reflecting Generic Types

	Chapter 8. Effective Generics
	8.1 Take Care when Calling Legacy Code
	8.2 Use Checked Collections to Enforce Security
	8.3 Specialize to Create Reifiable Types
	8.4 Maintain Binary Compatibility

	Chapter 9. Design Patterns
	9.1 Visitor
	9.2 Interpreter
	9.3 Function
	9.4 Strategy
	9.5 Subject-Observer

	Part II. Collections
	Chapter 10. The Main Interfaces of the Java Collections Framework
	Chapter 11. Preliminaries
	11.1 Iterable and Iterators
	11.2 Implementations
	11.3 Efficiency and the O-Notation
	11.4 Contracts
	11.5 Collections and Thread Safety
	11.5.1. Synchronization and the Legacy Collections
	11.5.2. JDK 1.2: Synchronized Collections and Fail-Fast Iterators
	11.5.3. Concurrent Collections: Java 5 and Beyond

	Chapter 12. The Collection Interface
	12.1 Using the Methods of Collection
	12.2 Implementing Collection
	12.3 Collection Constructors

	Chapter 13. Sets
	13.1 Implementing Set
	13.1.1. HashSet
	13.1.2. LinkedHashSet
	13.1.3. CopyOnWriteArraySet
	13.1.4. EnumSet

	13.2 SortedSet and NavigableSet
	13.2.1. NavigableSet
	13.2.2. TreeSet
	13.2.3. ConcurrentSkipListSet

	13.3 Comparing Set Implementations

	Chapter 14. Queues
	14.1 Using the Methods of Queue
	14.2 Implementing Queue
	14.2.1. PriorityQueue
	14.2.2. ConcurrentLinkedQueue

	14.3 BlockingQueue
	14.3.1. Using the Methods of BlockingQueue
	14.3.2. Implementing BlockingQueue
	LinkedBlockingQueue
	ArrayBlockingQueue
	PriorityBlockingQueue
	DelayQueue
	SynchronousQueue

	14.4 Deque
	14.4.1. Implementing Deque
	ArrayDeque
	LinkedList

	14.4.2. BlockingDeque
	Implementing BlockingDeque

	14.5 Comparing Queue Implementations

	Chapter 15. Lists
	15.1 Using the Methods of List
	15.2 Implementing List
	15.2.1. ArrayList
	15.2.2. LinkedList
	15.2.3. CopyOnWriteArrayList

	15.3 Comparing List Implementations

	Chapter 16. Maps
	16.1 Using the Methods of Map
	16.2 Implementing Map
	16.2.1. HashMap
	16.2.2. LinkedHashMap
	16.2.3. WeakHashMap
	16.2.4. IdentityHashMap
	16.2.5. EnumMap

	16.3 SortedMap and NavigableMap
	16.3.1. NavigableMap
	16.3.2. TreeMap

	16.4 ConcurrentMap
	16.4.1. ConcurrentHashMap

	16.5 ConcurrentNavigableMap
	16.5.1. ConcurrentSkipListMap

	16.6 Comparing Map Implementations

	Chapter 17. The Collections Class
	17.1 Generic Algorithms
	17.1.1. Changing the Order of List Elements
	17.1.2. Changing the Contents of a List
	17.1.3. Finding Extreme Values in a Collection
	17.1.4. Finding Specific Values in a List

	17.2 Collection Factories
	17.3 Wrappers
	17.3.1. Synchronized Collections
	17.3.2. Unmodifiable Collections
	17.3.3. Checked Collections

	17.4 Other Methods

	Index

