
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Elliotte Rusty Harold

JavaMail API

www.allitebooks.com

http://www.allitebooks.org

JavaMail API

by Elliotte Rusty Harold

Copyright © 2013 Elliotte Rusty Harold. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette

Production Editor: Melanie Yarbrough

Proofreader: Nicole Shelby

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

July 2013: First Edition

Revision History for the First Edition:

2013-07-22: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449367244 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Java Mail API, the cover image of a little pied cormorant, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36724-4

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449367244
http://www.allitebooks.org

Table of Contents

Preface. v

1. Introducing the JavaMail API. 1

2. Sending Email. 5
Sending Email from an Application 10

3. Receiving Mail. 15

4. Password Authentication. 21

5. Addresses. 25
The Address Class 25
The InternetAddress Class 26
The NewsAddress Class 28

6. The URLName Class. 31
The Constructors 31
Parsing Methods 32

7. Messages and Parts. 35
Creating Messages 36

Replying to Messages 36
Getting Messages from Folders 36

Basic Header Info 37
The From Address 37
The Reply-to Address 38
The Recipient Addresses 38
The Subject of the Message 39

iii

www.allitebooks.com

http://www.allitebooks.org

The Date of the Message 39
Flags 42

Folders 46
Searching 46

The Part Interface 46
Attributes 47
Headers 51
Content 55

Multipart Messages and File Attachments 57
MIME Messages 61

8. Folders. 67
Opening Folders 68

Basic Folder Info 69
Managing Folders 70
Managing Messages in Folders 70
Subscriptions 71
Listing the Contents of a Folder 71
Checking for Mail 72
Getting Messages from Folders 73
Searching Folders 74
Flags 78

9. Event Handling. 79

Epilogue: Email Past and Future. 83

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Email was the Internet’s first killer app. One of the most frequently asked questions
about Java is how to send email from a Java applet or application. While it’s certainly
possible to write a Java program that uses sockets to communicate with mail servers,
this requires detailed knowledge of some fairly complicated protocols, such as SMTP,

POP, and IMAP. Just as the URL class makes interacting with HTTP servers a lot simpler
than it would be with raw sockets, so too can a class library dedicated to handling email
make writing email clients a lot simpler.

The JavaMail API is a standard extension to Java that provides a class library for email
clients. It’s a required component of the Java Platform, Enterprise Edition. The JavaMail
API can be implemented in pure Java using sockets and streams, and indeed Oracle’s
reference implementation is so implemented. Programs use the JavaMail API to com‐
municate with SMTP, POP, and IMAP servers to send and receive email. By taking
advantage of this API, you can avoid focusing on the low-level protocol details and focus
instead on what you want to say with the message. Custom providers can support the
proprietary features of mail systems such as Gmail and Microsoft Exchange. You can
even install providers that add support for NNTP, the protocol used to transport Usenet
news.

There’s no limit to the uses Java programs have for the JavaMail API. Most obviously,
you can write standard email clients such as Thunderbird. Or it can be used for email-
intensive applications such as mailing list managers, like listproc. But the JavaMail API
is also useful as a part of larger applications that simply need to send or receive a little
email. For instance, a server-monitoring application can periodically load pages from
a web server running on a different host and email the webmaster if the web server has
crashed. An applet can use email to send data to any process or person on the Internet
that has an email address, in essence using the web server’s SMTP server as a simple
proxy to bypass the usual security restrictions about whom an applet is allowed to talk
to. In reverse, an applet can talk to an IMAP server on the applet host to receive data
from many hosts around the Net. A newsreader could be implemented as a custom

v

www.allitebooks.com

http://www.allitebooks.org

service provider that treats NNTP as just one more means of exchanging messages. And
that’s just the beginning of the sort of programs the JavaMail API makes it very straight‐
forward to write.

Who You Are
This book assumes you are comfortable with the Java language and programming en‐
vironment, in addition to object-oriented programming in general. This book does not
attempt to be a basic language tutorial. You should be thoroughly familiar with the
syntax of Java. You should have written at least simple applications.

Java Versions
This book is written with the assumption that you are coding with at least Java 5.0. In
general, I use Java 5 features like generics and the enhanced for loop freely without
further explanation. With respect to the JavaMail API, the distinction between Java 5
and Java 6 is not large. Most examples look identical in the two versions.

Java 7 is a bit more of a stretch. I have not shied away from using features introduced
in Java 7 where they seemed especially useful or convenient—for instance, try-with-
resources and multicatch are both very helpful when fitting examples into the limited
space available in a printed book—but I have been careful to point out my use of such
features.

As to JavaMail itself, this book covers JavaMail 1.5 which requires Java 5 or later. If for
some reason you’re stuck on Java 1.4, JavaMail 1.4.1 is still available and will work with
your JDK. Whichever version you use, the JavaMail API is not bundled with the base
JDK or JRE, even in Java 8. You can download it separately from https://java.net/projects/
javamail/.

Conventions Used in This Book
Body text is Times Roman, normal, like you’re reading now.

A monospaced typewriter font is used for:

• Code examples and fragments

• Anything that might appear in a Java program, including keywords, operators, data
types, method names, variable names, class names, and interface names

• Program output

• Tags that might appear in an HTML document

A bold monospaced font is used for:

vi | Preface

www.allitebooks.com

https://java.net/projects/javamail/
https://java.net/projects/javamail/
http://www.allitebooks.org

• Command lines and options that should be typed verbatim on the screen

An italicized font is used for:

• New terms where they are defined

• Pathnames, filenames, and program names (however, if the program name is also
the name of a Java class, it is given in a monospaced font, like other class names)

• Host and domain names (java.oreilly.com)

• URLs (http://www.cafeaulait.org/slides/)

• Titles of other chapters and books (JavaI/O)

Significant code fragments and complete programs are generally placed into a separate
paragraph, like this:

Message msg = new MimeMessage(session);

Address elliotte = new InternetAddress("elharo@ibiblio.org");

msg.setFrom(elliotte);

When code is presented as fragments rather than complete programs, the existence of

the appropriate import statements should be inferred. For example, in the above code

fragment you may assume that javax.mail.Address and javax.mail.Message were
imported.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Request for Comments
I enjoy hearing from readers, whether with general comments about this book, specific
corrections, other topics you would like to see covered, or just war stories about your
own network programming travails. You can reach me by sending email to elharo@ibi
blio.org. Please realize, however, that I receive several hundred pieces of email a day and
cannot personally respond to each one. For the best chances of getting a personal re‐
sponse, please identify yourself as a reader of this book. If you have a question about a
particular program that isn’t working as you expect, try to reduce it to the simplest case
that reproduces the bug, preferably a single class, and paste the text of the entire program
into the body of your email. Unsolicited attachments will be deleted unopened. And

Preface | vii

www.allitebooks.com

mailto:elharo@ibiblio.org
mailto:elharo@ibiblio.org
http://www.allitebooks.org

please, please send the message from the account you want me to reply to and make
sure that your Reply-to address is properly set! There’s nothing quite so frustrating as
spending an hour or more carefully researching the answer to an interesting question
and composing a detailed response, only to have it bounce because my correspondent
was sending from a public terminal and neglected to set the browser preferences to
include their actual email address.

I also adhere to the old saying “If you like this book, tell your friends. If you don’t like
it, tell me.” I’m especially interested in hearing about mistakes. This is my eighth book.
I’ve yet to publish a perfect one, but I keep trying. As hard as I and the editors at O’Reilly
worked on this book, I’m sure there are mistakes and typographical errors that we missed
here somewhere. And I’m sure that at least one of them is a really embarrassing whopper
of a problem. If you find a mistake or a typo, please let me know so I can correct it. I’ll
post it on the O’Reilly website. Before reporting errors, please check one of those pages
to see if I already know about it and have posted a fix. Any errors that are reported will
be fixed in future printings.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JavaMail API by Elliotte Rusty Harold
(O’Reilly). Copyright 2013 Elliotte Rusty Harold, 978-1-449-36724-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

viii | Preface

www.allitebooks.com

http://www.oreilly.com/catalog/javamail/errata/
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.allitebooks.org

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/javamail-api.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people were involved in the production of this book.

Edward Wong, Alex Stangl, and Bill Shannon ably reviewed early drafts and substan‐
tially improved the coverage of many topics. Development editor Meghan Blanchette

Preface | ix

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/javamail-api
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

shepherded the book through the contract, writing, editing, and production process
with grace and aplomb. It isn’t customary to thank the publisher, but the publisher does
set the tone for the rest of the company, authors, editors, and production staff alike; and
I think Tim O’Reilly deserves special credit for making O’Reilly Media absolutely one
of the best houses an author can write for. If there’s one person without whom this book
would never have been written, it’s him. If you, the reader, find O’Reilly books to be
consistently better than most of the drek on the market, the reason really can be traced
straight back to Tim.

Finally, as always, I’d like to offer my largest thanks for my wife, Beth, without whose
love and support this book would never have happened.

—Elliotte Rusty Harold
elharo@ibiblio.org

June 19, 2013

x | Preface

CHAPTER 1

Introducing the JavaMail API

The JavaMail API is a fairly high-level representation of the basic components of any

email system. The components are represented by abstract classes in the javax.mail

package. For instance, the abstract class javax.mail.Message represents an email mes‐
sage. It declares abstract methods to get and set various kinds of envelope information
for the message, such as the sender and addressee, the date sent, and the subject. The

abstract class javax.mail.Folder represents a message container. It declares abstract
methods to retrieve messages from a folder, move messages between folders, and delete
messages from a folder.

These classes are all abstract because they don’t make many assumptions about how the
email is stored or transferred between machines. For instance, they do not assume that
messages are sent using SMTP or that they’re structured as specified in RFC 822. Con‐
crete subclasses of these classes specialize the abstract classes to particular protocols and

mail formats. If you want to work with standard Internet email, you might use jav

ax.mail.MimeMessage instead of javax.mail.Message, javax.mail.InternetAd

dress instead of javax.mail.Address, and com.sun.mail.imap.IMAPStore instead of

javax.mail.Store. If you were writing code for a Microsoft Exchange-based system,
you’d use different concrete implementation classes but the same abstract base classes.

The JavaMail API roughly follows the abstract factory design pattern. This pattern al‐
lows you to write your code based on the abstract superclasses without worrying too
much about the lower-level details. The protocols and formats used and the associated
concrete implementation classes are determined mostly by one line of code early in the
program that names the protocol. Changing the protocol name goes 90% of the way
toward porting your program from one protocol (say, POP) to another (say, IMAP).

Service providers implement particular protocols. A service provider is a group of con‐
crete subclasses of the abstract JavaMail API classes that specialize the general API to a
particular protocol and mail format. These subclasses are probably (though not

1

necessarily) organized into one package. Some of these (IMAP, SMTP) are provided

with the reference implementation in the undocumented com.sun.mail package. Oth‐
ers (NNTP, Exchange) are available from third parties. And some (POP) are available
from both Oracle and third parties. The purpose of the abstract JavaMail API is to shield
you from low-level details like this. You don’t write code to access an IMAP server or a
POP server; you write code that speaks to the JavaMail API. Then the JavaMail API uses
the service provider to speak to the server using its native protocol. This is middleware
for email. All you need to do to add a new protocol is install the service provider’s JAR
file. Simple, carefully designed programs that use only the core features of the JavaMail
API may be able to use the new provider without even being recompiled. Of course,
programs that make use of special features of individual protocols may need to be re‐
written.

Since mail arrives from the network at unpredictable times, the JavaMail API relies on
an event-based callback mechanism to handle incoming mail. This is exactly the same
pattern (even using some of the same classes) found in the Swing and JavaBeans. The

javax.mail.event package defines about half a dozen different kinds of mail events,
as well as the associated listener interfaces and adapter classes for these events.

While many people still fondly recall the early days of ASCII email and even ASCII
pictures, modern email messages contain a bewildering array of multilingual text and
multimedia data encoded in formats such as Base64, quoted-printable, BinHex, and
uuencode. To handle this, the JavaMail API uses the JavaBeans Activation Framework
(JAF) to describe and display this content.

This book covers Version 1.5 of the JavaMail API. The JavaMail API is a standard ex‐
tension to Java, not part of the core JDK or JRE class library, even in Java 8. (It is a
standard part of Java Enterprise Edition (JEE)). Consequently, you’ll need to download
it separately from Oracle and install it on your system. It’s freely available from Java. It
comes as a JAR archive named javax.mail.jar. This file contains the actual .class files
that implement the JavaMail API. To compile or run the examples in this book, you’ll
need to add this file to your class path, either by adding its path to the CLASSPATH
environment variable or by placing javax.mail.jar in your jre/lib/ext directory.

If you’re using Java 5, you will also need to install the JavaBeans Activation Framework.
(It’s bundled with the JDK starting in Java 6.) You can download it from Oracle’s web‐
site. This download contains the activation.jar archive, which you’ll also need to place
in your class path.

Finally, you may want to add some additional providers. Oracle’s implementation in‐
cludes POP3, SMTP, Gmail, and IMAP providers. However, third parties have written
providers for other protocols such as Hotmail, NNTP, Exchange, and more. Table 1-1
lists some of these.

2 | Chapter 1: Introducing the JavaMail API

https://java.net/projects/javamail/$$
http://www.oracle.com/technetwork/java/javase/index-jsp-136939.html$$
http://www.oracle.com/technetwork/java/javase/index-jsp-136939.html$$

Table 1-1. Mail providers

Product (company) URL Protocols License

JavaMail (Oracle) http://www.oracle.com/technetwork/java/java

mail

SMTP, IMAP, POP3,

Gmail

GPL with Classpath

Exception

J-Integra Exchange: (Intrinsyc

Software)

http://j-integra.intrinsyc.com/exchange.asp Microsoft Exchange

(DCOM)

Payware

exJello: (Eric Glass) http://www.exjello.org/ Microsoft Exchange

(WebDAV)

MIT License

ICE MH JavaMail Provider (ICE

Engineering, Inc.)

http://www.trustice.com/java/icemh MH Public domain

POPpers (Y. Miyadate) http://www2s.biglobe.ne.jp/~dat/java/project/

poppers/index_en.html

POP3 GPL

JDAVMail (Luc Claes) http://jdavmail.sourceforge.net Hotmail (WebDAV) LGPL

GNU JavaMail (FSF) http://www.gnu.org/software/classpathx/java

mail/

POP3, NNTP, SMTP,

IMAP, mbox, maildir

GPL with library

exception

mbox Store (Oracle) https://java.net/projects/javamail/pages/Mbox

Store

mbox

Introducing the JavaMail API | 3

http://www.oracle.com/technetwork/java/javamail
http://www.oracle.com/technetwork/java/javamail
http://j-integra.intrinsyc.com/exchange.asp
http://www.exjello.org/
http://www.trustice.com/java/icemh
http://www2s.biglobe.ne.jp/~dat/java/project/poppers/index_en.html
http://www2s.biglobe.ne.jp/~dat/java/project/poppers/index_en.html
http://jdavmail.sourceforge.net
http://www.gnu.org/software/classpathx/javamail/
http://www.gnu.org/software/classpathx/javamail/
https://java.net/projects/javamail/pages/MboxStore
https://java.net/projects/javamail/pages/MboxStore

CHAPTER 2

Sending Email

Sending messages is the most basic email need of a Java program. While email clients
like Thunderbird and mailing list managers like listproc are the only common programs
that receive messages, all sorts of programs send messages. For instance, web browsers
can submit HTML forms via email. Security scanning tools can run in the background
and email their results to the administrator when they’re done. When the Unix cron
program detects a misconfigured crontab file, it emails the error to the owner. Books &
Writers runs a popular service that tracks the sales rank of authors’ books on Ama‐
zon.com and notifies them periodically via email. A massively parallel computation like
the SETI@home project can submit individual results via email. Some multiplayer games
like chess can be played across the network by emailing the moves back and forth
(though this scheme wouldn’t work for speed chess). And these are just a few of the
different kinds of programs that send email. In today’s wired world, by far the simplest
way to notify users of an event when they’re not sitting in front of the computer that the
program is running on is to send them an email.

The JavaMail API provides everything programs need to send email. To send a message,
a program follows these steps:

1. Place properties for the session in a Properties object.

2. Start a mail session with the Session.getInstance() method.

3. Create a new Message object, probably by instantiating one of its concrete sub‐
classes.

4. Set the message’s From: address.

5. Set the message’s To: address.

6. Set the message’s Subject:.

7. Set the content of the message.

5

mailto:SETI@home

8. Get a Transport from the session.

9. Connect the transport to a named host using a username and password.

10. Send the message to all recipients over the transport.

Individually, each of the steps is quite simple.

The first step is to start a Session with a specified group of properties using the Ses

sion.getInstance() factory method, like this:

Properties props = new Properties();

Session session = Session.getInstance(props);

For the moment, we’ll just accept the default properties. For future reference, Table 2-1
lists the most common system properties that control sending messages. Note the gen‐

eral pattern that mail.foo sets the foo property for all protocols (SMTP, NNTP, IMAP,

etc.) while mail.protocol_name.foo overrides the foo property for the named protocol.

For instance, if mail.host is set to mail.example.com and mail.smtp.host is set to
smtp.gmail.com then IMAP and POP will retrieve messages from mail.example.com but
SMTP will send via smtp.gmail.com. In most cases, the default values provided by system
properties can be overridden when invoking a particular method.

Table 2-1. System properties used for sending mail

Property Default Value Purpose

mail.host Host name of the mail server

mail.smtp.host Host name of the SMTP server; overrides mail.host for SMTP connections

only

mail.protocol.host Host name of the server for the specified protocol. Overrides mail.host

mail.user Default username sent to mail servers

mail.protocol.user Default username sent to servers for the specified protocol; e.g.,

mail.smtp.user for an SMTP server or mail.smtps.user for an SMTPS

server; overrides mail.user

mail.smtp.port 25 Port on which the SMTP server is listening

mail.protocol.port default port for

the protocol

Port on which the server for the specified protocol is listening

mail.smtp.starttls.enable Upgrade the regular SMTP connection on the usual port to an encrypted

(TLS or SSL) connection

mail.smtp.connectiontimeout infinite Number of milliseconds to wait for a connection before hanging up

mail.debug false Print various debugging information to the console

mail.from The email address to use in the From: header

mail.mime.charset file.encoding Default character set used to send messages. You should always set

this to UTF-8

mail.transport.protocol.address-

type

The message transport protocol such as SMTP for the specified address

type; e.g., mail.transport.protocol.rfc822

6 | Chapter 2: Sending Email

Property Default Value Purpose

mail.protocol.class Fully package qualified class name of the provider for the specified

protocol

mail.transport.protocol first transport

provider in the

configuration file

Default protocol with which to send messages

mail.alternates Other email addresses for the current user that will not be included

when replying to a message

mail.replyallcc false When replying to all, put all recipients in the Cc list of the reply message

instead of the To field

This Session object is then used to construct a new Message object:

Message msg = new MimeMessage(session);

Here I specify the MimeMessage class in particular since I know I’m sending Internet
email. However, this is the one place where I do explicitly choose a format for the email
message.

Now that I have a Message object, I need to set up its fields and contents. The From:

address and To: address will each be javax.mail.internet.InternetAddress objects.
You can provide either an email address alone or an email address and a personal name:

Address bill = new InternetAddress("god@microsoft.com", "Bill Gates");

Address elliotte = new InternetAddress("elharo@ibiblio.org");

The setFrom() method specifies who’s sending the message by setting the From: header.
There’s no protection against forgery. It’s quite easy for me to masquerade as Bill Gates
at a (presumably) fictitious email address:

msg.setFrom(bill);

The setRecipient() method is slightly more complex. You not only have to specify the
address that the message will be sent to, but how that address is used; that is, as a To:
field, a Cc: field, or a Bcc: field. These are indicated by three mnemonic constants of the

Message.RecipientType class:

Message.RecipientType.TO

Message.RecipientType.CC

Message.RecipientType.BCC

For example:

msg.setRecipient(Message.RecipientType.TO, elliotte);

The subject is set as a simple string of text. For example:

msg.setSubject("You must comply.");

The body is also set as a single string of text. For example:

Sending Email | 7

msg.setText("Resistance is futile. You will be assimilated!");

Next we specify the transport we want. In 2013, smtps (SMTP over TLS) is the customary
choice:

Transport t = session.getTransport("smtps");

Once you have a transport, you connect it to a specified host with a given username and
password:

t.connect("smtp.gmail.com", "elharo", "mypassword");

SMTP connections used to be unauthenticated with no username or
password. However, spammer abuse made this sort of open relay in‐
feasible in the 21st century. Going forward, even usernames and pass‐
words are less than perfectly secure. I would not be surprised if this
example stops working during the lifetime of this book and some more
secure oAuth2 or two factor system becomes required to send email.

Next the send() method connects to the mail server and sends the message on its way:

t.sendMessage(msg, msg.getAllRecipients());

The second argument to sendMessage() is an array of addresses to send the message
to. Instead of using the addresses in the message itself, you could add additional email
addresses. For example:

Address[] addresses = {

 new InternetAddress("wilma@example.org"),

 new InternetAddress("fred@example.org"),

 new InternetAddress("daphne@example.org"),

 new InternetAddress("shaggy@example.org")

};

transport.sendMessage(msg, addresses);

Finally the close() method shuts down the connection. Transport does not implement

AutoCloseable, so even in Java 7 programs normally use the dispose pattern and close

the transport in a finally block:

Transport t;

try {

 // work with the transport...

} catch (MessagingException ex) {

 ex.printStackTrace();

} finally {

 if (t != null) {

 try {

 t.close();

 } catch (MessagingException ex) {

8 | Chapter 2: Sending Email

www.allitebooks.com

http://www.allitebooks.org

 }

 }

}

You can actually bundle almost all these steps up into a single static method call:

Transport.send(msg, "username", "password");

If you do this, the SMTP server is read from the system property mail.smtp.host.

Example 2-1 puts all these steps together into a standalone program that sends the
following message:

Date: Fri, 29 Nov 2013 15:55:42 -0500 (EST)

From: Bill Gates <god@microsoft.com>

To: elharo@ibiblio.org

Subject: You must comply.

Resistance is futile. You will be assimilated!

I’ve shown this message in standard RFC 822 format used for Internet email. However,
that isn’t necessary. You just need to know the recipient (elharo@ibiblio.org), the sender
(god@microsoft.com), and the subject and body of the message. The JavaMail API han‐
dles details of the underlying protocol.

Example 2-1. Sending a very simple mail message

import javax.mail.*;

import javax.mail.internet.*;

import java.io.UnsupportedEncodingException;

import java.util.*;

public class Assimilator {

 public static void main(String[] args) {

 Properties props = new Properties();

 Session session = Session.getInstance(props);

 MimeMessage msg = new MimeMessage(session);

 Transport t = null;

 try {

 Address bill = new InternetAddress("god@microsoft.com", "Bill Gates");

 Address elliotte = new InternetAddress("elharo@ibiblio.org");

 msg.setText("Resistance is futile. You will be assimilated!");

 msg.setFrom(bill);

 msg.setRecipient(Message.RecipientType.TO, elliotte);

 msg.setSubject("You must comply.");

 t = session.getTransport("smtps");

 t.connect("smtp.gmail.com", "erharold", "password");

 t.sendMessage(msg, msg.getAllRecipients());

 } catch (MessagingException | UnsupportedEncodingException ex) {

Sending Email | 9

mailto:elharo@ibiblio.org
mailto:god@microsoft.com

 ex.printStackTrace();

 } finally { // Transport does not implement AutoCloseable :-(

 if (t != null) {

 try {

 t.close();

 } catch (MessagingException ex) {

 }

 }

 }

 }

}

In this example I’ve taken advantage of multi-catch from Java 7. Unfortunately Trans

port does not implement AutoCloseable—the JavaMail API still needs to be compatible

with Java 6—so I do have to check whether the transport object is non-null, close it,

and catch and ignore any exceptions while closing, all in a finally block.

An alternative is to use the static Transport.send() method introduced in JavaMail
1.5, which does close itself internally. To do this, you configure the connection with
system properties.

Properties props = new Properties();

props.put("mail.smtp.host", "smtp.gmail.com");

props.put("mail.transport.protocol", "smtps");

Session session = Session.getInstance(props);

MimeMessage msg = new MimeMessage(session);

try {

 Address bill = new InternetAddress("god@microsoft.com", "Bill Gates");

 Address elliotte = new InternetAddress("elharo@ibiblio.org");

 msg.setText("Resistance is futile. You will be assimilated!");

 msg.setFrom(bill);

 msg.setRecipient(Message.RecipientType.TO, elliotte);

 msg.setSubject("You must comply.");

 Transport.send(msg, "erharold", "password");

} catch (MessagingException | UnsupportedEncodingException ex) {

 ex.printStackTrace();

}

Sending Email from an Application
Example 2-1 is a simple application that sends a fixed message to a known address with
a specified subject. Once you see how to do this, it’s straightforward to replace the strings
that give the message address, subject, and body with data read from the command line,
a GUI, a database, or some other source. For instance, Example 2-2 is a very simple GUI
for sending email. Figure 2-1 shows the program running.

10 | Chapter 2: Sending Email

Figure 2-1. A simple GUI mail program

The mail code is all tied up in the actionPerformed() method and looks very similar

to the main() method of Example 2-1. It is activated when the user presses the “Send
Message” button. The big difference is that now the host, username, password, subject,
From: address, To: address, and text of the message are all read from the GUI compo‐
nents at runtime rather than being hardcoded as string literals in the source code. The
rest of the code is related to setting up the GUI and has little to do with the JavaMail
API.

Example 2-2. A graphical SMTP client

import javax.mail.*;

import javax.mail.internet.*;

import java.util.*;

import javax.swing.*;

Sending Email from an Application | 11

import java.awt.event.*;

import java.awt.*;

public class SMTPClient extends JFrame {

 private JTextField fromField = new JTextField(40);

 private JTextField toField = new JTextField(40);

 private JTextField hostField = new JTextField(40);

 private JTextField subjectField = new JTextField(40);

 private JTextField usernameField = new JTextField(40);

 private JTextField passwordField = new JPasswordField(40);

 private JTextArea message = new JTextArea(40, 72);

 private JScrollPane jsp = new JScrollPane(message);

 public SMTPClient() {

 super("SMTP Client");

 Container contentPane = this.getContentPane();

 contentPane.setLayout(new BorderLayout());

 JPanel labels = new JPanel();

 labels.setLayout(new GridLayout(6, 1));

 JLabel hostLabel = new JLabel("SMTP Server: ");

 labels.add(hostLabel);

 JPanel fields = new JPanel();

 fields.setLayout(new GridLayout(6, 1));

 String host = System.getProperty("mail.host", "smtp.gmail.com");

 hostField.setText(host);

 fields.add(hostField);

 JLabel toLabel = new JLabel("To: ");

 labels.add(toLabel);

 fields.add(toField);

 String from = System.getProperty("mail.from", "");

 fromField.setText(from);

 JLabel fromLabel = new JLabel("From: ");

 labels.add(fromLabel);

 fields.add(fromField);

 JLabel subjectLabel = new JLabel("Subject: ");

 labels.add(subjectLabel);

 fields.add(subjectField);

 JLabel usernameLabel = new JLabel("Username: ");

 labels.add(usernameLabel);

 fields.add(usernameField);

 JLabel passwordLabel = new JLabel("Password: ");

12 | Chapter 2: Sending Email

 labels.add(passwordLabel);

 fields.add(passwordField);

 Box north = Box.createHorizontalBox();

 north.add(Box.createHorizontalStrut(5));

 north.add(labels);

 north.add(fields);

 contentPane.add(north, BorderLayout.NORTH);

 message.setFont(new Font("Monospaced", Font.PLAIN, 12));

 contentPane.add(jsp, BorderLayout.CENTER);

 JPanel south = new JPanel();

 south.setLayout(new FlowLayout(FlowLayout.CENTER));

 JButton sendButton = new JButton("Send Message");

 south.add(sendButton);

 sendButton.addActionListener(new SendAction());

 contentPane.add(south, BorderLayout.SOUTH);

 this.pack();

 }

 private class SendAction implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent evt) {

 try {

 Properties props = new Properties();

 final Session session = Session.getInstance(props);

 final Message msg = new MimeMessage(session);

 Address to = new InternetAddress(toField.getText());

 Address from = new InternetAddress(fromField.getText());

 msg.setContent(message.getText(), "text/plain");

 msg.setFrom(from);

 msg.setRecipient(Message.RecipientType.TO, to);

 msg.setSubject(subjectField.getText());

 final String hostname = hostField.getText();

 final String username = usernameField.getText();

 final String password = passwordField.getText();

 // Sending a message can take a non-trivial amount of time so

 // spawn a thread to handle it.

 Runnable r = new Runnable() {

 @Override

 public void run() {

 Transport t = null;

 try {

 t = session.getTransport("smtps");

Sending Email from an Application | 13

 t.connect(hostname, username, password);

 t.sendMessage(msg, msg.getAllRecipients());

 } catch (MessagingException ex) {

 ex.printStackTrace();

 } finally { // Transport does not implement Autocloseable :-(

 if (t != null)

 try {

 t.close();

 } catch (MessagingException e) {

 // ignore

 }

 }

 }

 };

 Thread t = new Thread(r);

 t.start();

 message.setText("");

 } catch (MessagingException ex) {

 JOptionPane.showMessageDialog(getRootPane(),

 "Error sending message: " + ex.getMessage());

 }

 }

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 SMTPClient client = new SMTPClient();

 // I set up the exit behavior here rather than in

 // the constructor since other programs that use this class

 // may not want to exit the application when the SMTPClient

 // window closes.

 client.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 client.setVisible(true);

 }

 });

 }

}

This is far from an ideal program. The GUI could be more cleanly separated from the
mailing code. And it would be better to bring up an error dialog if something went

wrong rather than just printing a stack trace of the exception on System.err. However,
since none of that would teach us anything about the JavaMail API, I leave it all as an
exercise for the interested reader.

14 | Chapter 2: Sending Email

CHAPTER 3

Receiving Mail

Receiving mail is considerably more complex than sending it. SMTP uses only 14 dif‐
ferent commands, and a simple email client can be implemented with just five of them.
POP3, however, has 12 commands, almost all of which a client must be able to handle;
IMAP4 has 24 different commands.

The JavaMail API is designed to retrieve messages from an IMAP or perhaps an NNTP
server. That is, it assumes the server can return headers separate from the messages they
belong to, search through mailboxes, provide the storage for the messages rather than
the client, and so forth. The JavaMail API provides less of what you need for client-
oriented mail access protocols, such as POP3, that assume the client stores and manages
the mail archive; but it still gives you the tools you need to download the mail from the
server. You just have to implement your own storage system on the client. (You can
check out the experimental POP3RemoteStore if you want to both store and retrieve.)

We’ll begin with the simpler POP3 protocol, then move on to IMAP. From the per‐
spective of JavaMail, IMAP can be viewed largely as POP plus some commands for
manipulating folders. For simple programs that operate only on the INBOX folder, POP
and IMAP clients are more or less the same.

There are about 12 steps to reading a remote mailbox (the number of steps can vary a
little, since some steps are optional or can be combined with or replaced by others):

1. Set up the properties you’ll use for the connection.

2. Construct the Authenticator you’ll use for the connection.

3. Get a Session object with Session.getInstance().

4. Use the session’s getStore() method to return a Store.

5. Connect to the store.

6. Get the INBOX folder from the store with the getFolder() method.

15

https://java.net/projects/javamail/pages/POP3RemoteStore

7. Open the INBOX folder.

8. Open the folder you want inside the INBOX folder. Repeat as many times as nec‐
essary to reach the folder you’re seeking.

9. Get the messages from the folder as an array of Message objects.

10. Iterate through the array of messages, processing each one in turn using the methods

of the Message class. For instance, you might print out each message or simply
display the sender, subject, and other vital information in a GUI for the user to
select from, as in Figure 3-1.

11. Close the folder.

12. Close the store.

Figure 3-1. A GUI for selecting mail messages

Each of these steps is individually quite simple. The first is to set up the properties for

the mail session. Properties you might want to set include mail.store.protocol,

mail.pop3.user, and mail.pop3.host:

Properties props = new Properties();

props.put("mail.pop3.host", "pop.gmail.com");

props.put("mail.store.protocol", "pop3");

props.put("mail.pop3.user", "erharold");

Alternatively you can provide this information in method calls, in which case an empty

Properties object is enough. Personally I prefer using method arguments instead of
system properties when possible since it avoids unexpected, hard-to-debug global con‐
figuration problems.

16 | Chapter 3: Receiving Mail

Next, you’ll want to create an instance of the javax.mail.Authenticator class (more

properly, an instance of a concrete subclass of the abstract Authenticator class) that
can ask the user for a password. For now, we’ll simply hardcode those values and pass

null instead of an actual Authenticator:

Authenticator a = null;

We’ll fill this piece in later when we discuss authentication.

Next, use these Properties and Authenticator objects to get a Session instance, like
this:

Session session = Session.getInstance(props, a);

Ask the session for a store for the provider. Here, we want a provider for POP3:

Store store = session.getStore("pop3");

Finally, you’re ready to connect to the store using the connect() method. You’ll need
to provide the host to connect to and the username and password to use:

store.connect("mail.cloud9.net", "elharo", "my_password");

You can pass null for the password to indicate that the previously specified Authenti

cator should be queried for the password.

Now that the store is connected, you’re ready to open a folder in the store. This step is
really more oriented to IMAP than POP, since POP servers don’t keep track of different
folders. They simply provide all of a user’s incoming mail as one undifferentiated amal‐
gam. For purposes of the JavaMail API, POP3 providers use the folder name INBOX:

Folder inbox = store.getFolder("INBOX");

The folder is closed when you get it. You can perform some operations on a closed folder
including deleting or renaming it, but you can’t get the messages out of a closed folder.
First you have to open it. You can open a folder for read access by passing the mnemonic

constant Folder.READ_WRITE to the open() method for read access, or

Folder.READ_ONLY for read/write access:

inbox.open(Folder.READ_ONLY);

Now you’re ready to retrieve the messages with the getMessages() method, which
returns an array containing pointers to all the messages in the folder:

Message[] messages = inbox.getMessages();

This call is lazy. That is, it does not actually download the message headers and content.
That will be retrieved later when you ask each message for its data.

The Message class provides many methods for working with individual messages. It has
methods to get the various header fields of the message, get the content of the message,

reply to the message, and more. We’ll discuss these soon, when we talk about the Message

Receiving Mail | 17

and MimeMessage classes. For now, we’ll do just about the simplest thing imaginable:

print each message on System.out using the message’s writeTo() method:

for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 messages[i].writeTo(System.out);

}

Once you’re done with the messages, close the folder and then close the message store

with the aptly named close() methods:

inbox.close(false);

store.close();

The false argument to the folder’s close() method indicates that we do not want the
server to actually expunge any deleted messages in the folder. We simply want to break
our connection to this folder.

Example 3-1 puts this all together with a basic program that downloads and prints out

the contents of a specified POP mailbox. Messages are simply dumped on Sys

tem.out in the default encoding. The servers, usernames, and so forth are all hardcoded.
This quickly demonstrates most of the key points of receiving mail with the JavaMail
API. A more advanced program would include an appropriate GUI.

Example 3-1. POP3Client

import javax.mail.*;

import java.util.*;

import java.io.*;

public class POP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";

 String username = "eharold";

 String password = "mypassword";

 String provider = "pop3";

 try {

 // Connect to the POP3 server

 Session session = Session.getInstance(props);

 Store store = session.getStore(provider);

 store.connect(host, username, password);

 // Open the folder

 Folder inbox = store.getFolder("INBOX");

 if (inbox == null) {

 System.out.println("No INBOX");

18 | Chapter 3: Receiving Mail

www.allitebooks.com

http://www.allitebooks.org

 System.exit(1);

 }

 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = inbox.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 messages[i].writeTo(System.out);

 }

 // Close the connection

 // but don't remove the messages from the server

 inbox.close(false);

 store.close();

 } catch (MessagingException | IOException ex) {

 ex.printStackTrace();

 }

 }

}

Here’s some sample output I got when I pointed it at an account I don’t use much:

$ java POP3Client

------------ Message 1 ------------

Received: (from eharold@localhost)

 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728

 for eharold; Mon, 30 Nov 2009 16:14:29 -0500 (EST)

Date: Mon, 30 Nov 2009 16:14:29 -0500 (EST)

From: Elliotte Harold <eharold@utopia.poly.edu>

Message-Id: <200911302114.QAA05728@utopia.poly.edu>

To: eharold@utopia.poly.edu

Subject: test

Content-Type: text

X-UIDL: 87e3f1ba71738c8f772b15e3933241f0

Status: RO

hello you

------------ Message 2 ------------

Received: from russian.cloud9.net (russian.cloud9.net [

.4])

 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428

 for <eharold@utopia.poly.edu>; Tue, 1 Dec 2009 14:05:06 -0500 (

Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203

 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F

 for <eharold@utopia.poly.edu>; Tue, 1 Dec 2009 14:02:50 -0500

Mime-Version: 1.0

X-Sender: macfaq@mail.cloud9.net

Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>

Date: Tue, 1 Dec 2009 13:55:40 -0500

To: eharold@utopia.poly.edu

Receiving Mail | 19

From: Elliotte Rusty Harold <elharo@macfaq.com>

Subject: New system

Content-Type: text/plain; charset="us-ascii" ; format="flowed"

X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5

Just thought you'd be happy to know that now that I've got my desk

moved over from my old apartment, I've finally ordered the Windows NT

system I've been promising for months.

About the only change you’d need to make to port this program to IMAP would be

setting the provider variable to imap instead of pop3.

20 | Chapter 3: Receiving Mail

CHAPTER 4

Password Authentication

Hardcoding passwords in source code, as Examples 2-1 and 3-1 do, is a very bad idea
to say the least. If a password is required, you should ask the user for it at runtime.
Furthermore, when the user types the password, it should not be displayed on the screen.
Ideally, it should not even be transmitted in clear text across the network, although in
fact many current clients and servers do exactly that.

When you start a mail session, the JavaMail API allows you to provide a jav

ax.mail.Authenticator object that it can use to get the username and password. Au

thenticator is an abstract class:

public abstract class Authenticator extends Object

When the provider needs to know a username or password, it calls back to the getPass

wordAuthentication() method in a user-defined subclass of Authenticator. This re‐

turns a PasswordAuthentication object containing this information:

protected PasswordAuthentication getPasswordAuthentication()

These two classes are almost exactly the same as the java.net.Authen

ticator and java.net.PasswordAuthentication classes. Everything

you know about java.net.Authenticator and java.net.PasswordAu

thentication is true of javax.mail.Authenticator and jav

ax.mail.PasswordAuthentication. The only thing you have to watch

out for is that if you import both java.net.* and javax.mail.* in a
class, your source code will have to use fully qualified names like

java.net.Authenticator instead of short names like Authenticator.

To add runtime password authentication to your programs, subclass Authenticator

and override getPasswordAuthentication() with a method that knows how to

21

securely ask the user for a password. One useful tool for this process is the JPassword

Field component from Swing. Example 4-1 demonstrates a Swing-based Authentica

tor subclass that brings up a dialog to ask the user for their username and password.

Example 4-1. A GUI authenticator

import javax.mail.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class MailAuthenticator extends Authenticator {

 private JDialog passwordDialog = new JDialog(new JFrame(), true);

 private JTextField usernameField = new JTextField(20);

 private JPasswordField passwordField = new JPasswordField(20);

 private JButton okButton = new JButton("OK");

 public MailAuthenticator() {

 this("");

 }

 public MailAuthenticator(String username) {

 JLabel mainLabel = new JLabel(

 "Please enter your username and password: ");

 JLabel userLabel = new JLabel("Username: ");

 JLabel passwordLabel = new JLabel("Password: ");

 Container pane = passwordDialog.getContentPane();

 pane.setLayout(new GridLayout(4, 1));

 pane.add(mainLabel);

 JPanel p2 = new JPanel();

 p2.add(userLabel);

 p2.add(usernameField);

 usernameField.setText(username);

 pane.add(p2);

 JPanel p3 = new JPanel();

 p3.add(passwordLabel);

 p3.add(passwordField);

 pane.add(p3);

 JPanel p4 = new JPanel();

 p4.add(okButton);

 pane.add(p4);

 passwordDialog.pack();

 ActionListener listener = new HideDialog();

 okButton.addActionListener(listener);

 usernameField.addActionListener(listener);

 passwordField.addActionListener(listener);

 }

 class HideDialog implements ActionListener {

22 | Chapter 4: Password Authentication

 @Override

 public void actionPerformed(ActionEvent event) {

 passwordDialog.setVisible(false);

 }

 }

 public PasswordAuthentication getPasswordAuthentication() {

 passwordDialog.setVisible(true);

 // getPassword() returns an array of chars for security reasons.

 // We need to convert that to a String for

 // the PasswordAuthentication() constructor.

 String password = new String(passwordField.getPassword());

 String username = usernameField.getText();

 // Erase the password in case this is used again.

 // The provider should cache the password if necessary.

 passwordField.setText("");

 return new PasswordAuthentication(username, password);

 }

}

Most of this code is just for handling the GUI. Figure 4-1 shows the rather simple dialog
box this produces.

Figure 4-1. An authentication dialog

Interestingly, JPasswordField takes more pains to be secure than PasswordAuthenti

cation does. JPasswordField stores passwords as an array of chars so that when you’re
done with the password, you can overwrite it with nulls. This means the password exists
in memory for less time and the virtual memory system is less likely to swap the program

out to disk and leave the password there in clear text. However, PasswordAuthentica

tion stores passwords as strings, which are immutable and therefore are more likely to
be written to disk in a VM swap.

Modifying the POP client to support this style of authentication is straightforward, as
Example 4-2 demonstrates. We replace the hardcoded username and password with

nulls and pass an instance of MailAuthenticator as the second argument to con

nect(). The only other change is that we call System.exit() at the end of the main()

method, since the program will no longer exit when the main() method returns once
the event dispatch thread has been started.

Password Authentication | 23

Example 4-2. A POP client that asks the user for the password as necessary

import javax.mail.*;

import java.io.IOException;

import java.util.*;

public class SecurePOP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";

 String provider = "pop3";

 try {

 // Connect to the POP3 server

 Session session = Session.getInstance(props,

 new MailAuthenticator());

 Store store = session.getStore(provider);

 store.connect(host, null, null);

 // Open the folder

 Folder inbox = store.getFolder("INBOX");

 if (inbox == null) {

 System.out.println("No INBOX");

 System.exit(1);

 }

 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = inbox.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 messages[i].writeTo(System.out);

 }

 // Close the connection

 // but don't remove the messages from the server

 inbox.close(false);

 store.close();

 } catch (MessagingException | IOException ex) {

 ex.printStackTrace();

 }

 // since we brought up a GUI returning from main() won't exit

 System.exit(0);

 }

}

24 | Chapter 4: Password Authentication

CHAPTER 5

Addresses

The javax.mail.Address class is very simple. It’s an abstract class that exists mainly to
be subclassed by other, protocol-specific address classes:

public abstract class Address extends Object

There are two of these subclasses in the standard JavaMail API: InternetAddress for

SMTP email and NewsAddress for Usenet newsgroups:

public class InternetAddress extends Address

public class NewsAddress extends Address

Providers of other mail protocols also subclass Address with classes that represent their
style of address.

The Address Class
The Address class itself is extremely simple. It has only three methods, all abstract, two
of which are simple utility methods that override the corresponding methods in

java.lang.Object:

public abstract String getType()

public abstract String toString()

public abstract boolean equals(Object o)

Since all three of these methods are abstract, there aren’t any guarantees about the
methods’ semantics, since all must be overridden in subclasses. However, this does re‐

quire that subclasses provide their own implementations of equals() and to

String() rather than relying on the rather generic implementations available from

java.lang.Object (and as always when you override equals() you should override

hashCode() too). In general, the getType() method returns a string such as “rfc822”

or “news” that indicates the kind of Address object this is.

25

The InternetAddress Class
An InternetAddress object represents an RFC 822-style email address. This is the
standard Internet-style email address that is rapidly supplanting all other proprietary
formats. It looks like elharo@ibiblio.org or nuts@oreilly.com. However, it can contain a
name as well—for instance, elharo@ibiblio.org (Elliotte Harold).

The state of an InternetAddress object is defined by three protected fields:

protected String address

protected String personal

protected String encodedPersonal

The address field is the actual email address—for example, elharo@ibiblio.org. The

personal field is the name—for example, Elliotte Harold. Although Java strings are pure
Unicode that can express names like Erwin Schrödinger or 孔夫子, the strings used in
mail headers must be pure ASCII in order to pass through most existing mail software.
Consequently, Java’s Unicode strings need to be converted to pure ASCII using a sort of
hexadecimal escape. The details of this conversion are described in RFC 2047, MIME
(Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for

Non-ASCII Text. The encoded string is placed in the encodedPersonal field. All of these
fields will be initially set in the constructor. There are five overloaded constructors for

InternetAddress objects:

public InternetAddress()

public InternetAddress(String address) throws AddressException

public InternetAddress(String address, boolean strict)

 throws AddressException

public InternetAddress(String address, String personal)

 throws UnsupportedEncodingException

public InternetAddress(String address, String personal, String charset)

 throws UnsupportedEncodingException

They are used exactly as you’d expect. For example:

Address president = new InternetAddress("president@whitehouse.gov",

 "Barack Obama");

Although two of these methods are declared to throw UnsupportedEncodingExcep

tion, this should happen only in the last method and then only if the name of the
character set is not recognized by the VM.

The two constructors declared to throw AddressException make basic checks that the
string passed is a syntactically correct email address. For instance, they check that the
address does not contain white space. However they don’t check absolutely everything.
If you turn on strict checking, then a couple of other checks are made, primarily that
the address contains a domain name as well as a username. Otherwise raw names such
as “elharo” are allowed.

26 | Chapter 5: Addresses

There are also three static factory methods that convert a comma-separated string such

as "foo@example.com, bar@example.com" into an array of addresses:

public static InternetAddress[] parse(String addresses)

 throws AddressException

public static InternetAddress[] parse(String address, boolean strict)

 throws AddressException

public static InternetAddress[] parseHeader(String addresses, boolean strict)

 throws AddressException

Again all three methods make basic checks that the string passed is a syntactically correct

email address. Setting the strict argument to true makes a couple of extra checks that

the regular parse() method doesn’t. InternetAddress.parseHeader() is similar, ex‐

cept in this case setting strict argument to false makes even fewer checks than the

regular parse() method.

The validate() instance method strictly checks an address that already exists:

public void validate() throws AddressException

InternetAddress objects are mutable. You can change the value of their properties after
they are constructed. There are several getter and setter methods:

public String getAddress()

public void setAddress(String address)

public String getPersonal()

public void setPersonal(String name) throws UnsupportedEncodingException

public void setPersonal(String name, String charset)

 throws UnsupportedEncodingException

public String getType()

The setAddress() method sets the address field of the object to the specified value.

The setPersonal() method sets the personal and encodedPersonal fields to the

specified value (after encoding it, as necessary). The getAddress() returns the value of

the address field. The getPersonal() method returns the value of the decoded enco

dedPersonal field if it’s available, or the personal field if it’s not. Finally, the get

Type() method returns the string “rfc822”.

The toString() method returns an email address suitable for use in a To: or From: field
of an RFC 822 email message. It encodes non-ASCII characters as specified in RFC 822.

The toUnicodeString() method does the same except that it leaves non-ASCII char‐
acters unencoded:

public String toString()

public String toUnicodeString()

There are also two unusual static toString() methods that convert arrays of addresses
to strings:

public static String toString(Address[] addresses)

 throws ClassCastException

The InternetAddress Class | 27

public static String toString(Address[] addresses, int used)

 throws ClassCastException

The InternetAddress.toString() methods convert an array of Address objects into
a comma-separated list of addresses encoded in pure ASCII, possibly folded onto mul‐

tiple lines. The optional used argument gives the number of characters that will precede
this string in the header field, such as To: or Cc:, into which this string will be inserted.

This information lets toString() decide where it needs to break the lines. A

ClassCastException is thrown if any of the Address objects in the array are not more

specifically InternetAddress objects.

Finally, the getLocalAddress() method checks several system properties (mail.from,

mail.user, mail.host, and user.name) as well as InetAddress.getLocalName() to
determine the email address of the current user:

public static InternetAddress getLocalAddress(Session session)

For example, this code fragment tries to use the user’s own email address rather than
one hardcoded into the program as a string:

msg.setFrom(InternetAddress.getLocalAddress());

However, there’s no guarantee that any of these properties will necessarily give the user’s
true address.

The NewsAddress Class
Perhaps a little surprisingly, with an appropriate service provider, the JavaMail API can
also access Usenet news. The API is mostly the same as for reading a POP or IMAP

mailbox. However, instead of using an InternetAddress, you use a NewsAddress:

public class NewsAddress extends Address

A NewsAddress object represents a Usenet newsgroup name, such as
comp.lang.java.machine. It may include the hostname for the news server as well. The

state of a NewsAddress object is maintained by two protected fields:

protected String newsgroup

protected String host

The newsgroup field contains the name of the newsgroup—for example, netscape.devs-

java. The host field is either null or contains the hostname of the news server—for
example, secnews.netscape.com. Both of these fields are set in the constructor. There are

three overloaded constructors for NewsAddress objects:

public NewsAddress()

public NewsAddress(String newsgroup)

public NewsAddress(String newsgroup, String host)

They are used exactly as you’d expect. For example:

28 | Chapter 5: Addresses

www.allitebooks.com

http://www.allitebooks.org

Address recHumorFunny = new NewsAddress("rec.humor.funny",

 "nntp.aioe.org");

There are eight instance methods in this class—three getter methods, two setter meth‐
ods, and three utility methods:

public String getType()

public String getHost()

public String getNewsgroup()

public void setNewsgroup(String newsgroup)

public void setHost(String host)

public String toString()

public boolean equals(Object o)

public int hashCode()

The setNewsgroup() and setHost() methods set the newsgroup and host fields of the

object to the specified values. The getNewsgroup() and getHost() methods return the

values of the newsgroup and host fields. Finally, the getType() method returns the
string “news”.

The toString() method returns the newsgroup name in a form suitable for the News‐

groups: header field of a Usenet posting. The equals() and hashCode() methods have
their usual semantics.

There are also two static utility methods for converting addresses to and from strings:

public static String toString(Address[] addresses)

 throws ClassCastException

public static NewsAddress[] parse(String newsgroups)

 throws AddressException

The toString() method converts an array of Address objects into a comma-separated

list of newsgroup names. A ClassCastException is thrown if any of the Address objects

in the array are not more specifically NewsAddress objects. The parse() method re‐

verses this operation, converting a comma-separated String of newsgroup names, such
as “comp.lang.java.programmer,comp.lang.java.gui,comp.lang.java.help”, into an array

of NewsAddress objects. It throws an AddressException if the newsgroups argument is
not a comma-separated list of newsgroup names.

The reference implementation of the JavaMail API does not include a service provider
for news, however; although you can create news addresses, before you can actually read
and post news you’ll need to install a service provider that supports it. Table 1-1 lists
some possible sources of news providers. Once you’ve got one, reading news is as
straightforward as talking to an IMAP server.

The NewsAddress Class | 29

CHAPTER 6

The URLName Class

javax.mail.URLName treats a URL as a string, but does not attempt to connect to or

resolve any of the parts of the string. It’s conceptually similar to java.net.URI but
predates it by several years.

URL names are mainly used as convenient ways to identify folders and stores with
nonstandard URLs (such as pop3://elharo:mypassword@mail.ibiblio.org:110/INBOX)
that don’t have a matching protocol handler:

public class URLName Object

The methods of URLName are very similar to those of java.net.URL, except that all those
involving actual connections have been deleted. What’s left is a bunch of methods for
breaking a URL string into its component parts or building a URL from pieces.

The Constructors
There are three overloaded URLName constructors. One takes the individual pieces of a

URL as arguments, another takes a java.net.URL object, and a third takes a String
containing a URL:

public URLName(String protocol, String host, int port, String file,

 String userName, String password)

public URLName(URL url)

public URLName(String url)

All the operations on the URLName take place with simple substring manipulation, al‐

lowing the URLName class to support nonstandard URLs such as pop3://eharold:pass‐
word@utopia.poly.edu/INBOX or imap://elharo@ibiblio.org/Speaking/SD2008West.

These URLName objects can be used to refer to particular folders on the server.

31

Parsing Methods
These seven getter methods are the main purpose for this class. They return individual
pieces of the URL:

public int getPort()

public String getProtocol()

public String getFile()

public String getRef()

public String getHost()

public String getUsername()

public String getPassword()

These methods can all be easily understood by analogy with the similarly named meth‐

ods in java.net.URL. Except for getPort(), these methods all return null if the piece

is missing. getPort() returns -1 if the port is not explicitly included in the URL.

There’s also a getURL() method that converts a URLName to a java.net.URL. Since doing
so requires that Java have a protocol handler for the URL’s scheme, this method can

throw a MalformedURLException:

public URL getURL() throws MalformedURLException

Finally, there are the usual three utility methods with the usual semantics:

public boolean equals(Object o)

public int hashCode()

public String toString()

The toString() method simply returns the string form of the URL. The equals()

method is underspecified but in practice any two URLName objects that are character-
by-character identical will compare equal. However, JavaMail does not consider case to

be significant in domain names. http://www.example.com and http://WWW.EXAM

PLE.COM are equal. Surprisingly, it does consider case to be significant in URL schemes.

That is, http://www.example.com is not equal to HTTP://www.example.com. Finally,

JavaMail recognizes / as the default path; for example, http://www.example.com is

equal to http://www.example.com/. The hashCode() method is implemented accord‐
ingly.

We can use the URLName class to provide an interface for an email client that is completely
protocol-independent. All information about protocol, host, and other details is pro‐
vided by a URL read from the command line. Example 6-1 demonstrates.

Example 6-1. A protocol-independent mail client

import javax.mail.*;

import java.io.IOException;

import java.util.*;

public class MailClient {

32 | Chapter 6: The URLName Class

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java MailClient protocol://username:password@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties());

 // Connect to the server and open the folder

 Folder folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 messages[i].writeTo(System.out);

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (IOException | MessagingException ex) {

 ex.printStackTrace();

 }

 }

}

URLName does make the code a little more compact since it moves some information
from the source code to the command line. Besides eliminating the obvious variables
and string literals for username, host, and so forth, we’ve managed to eliminate any

direct reference to the Store class. A typical run starts like this:

% java MailClient pop3://eharold:mypassword@utopia.poly.edu/INBOX

------------ Message 1 ------------

Received: (from eharold@localhost)

 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728

 for eharold; Mon, 30 Nov 2009 16:14:29 -0500 (EST)

Date: Mon, 30 Nov 2009 16:14:29 -0500 (EST)

From: Elliotte Harold <eharold@utopia.poly.edu>

Message-Id: <200911302114.QAA05728@utopia.poly.edu>

To: eharold@utopia.poly.edu

Parsing Methods | 33

Subject: test

Content-Type: text

X-UIDL: 87e3f1ba71738c8f772b15e3933241f0

Status: RO

hello you

For demonstration purposes, this program includes the password in the URL. In gen‐
eral, however, that’s a huge security risk. It would be much better to use a runtime

Authenticator.

34 | Chapter 6: The URLName Class

CHAPTER 7

Messages and Parts

The javax.mail.Message class is the abstract superclass for all individual emails, news
postings, and similar messages:

public abstract class Message extends Object implements Part

There’s one concrete Message subclass in the standard JavaMail API,

javax.mail.internet.MimeMessage. This is used for both email and Usenet news
messages. Service providers are free to add classes for their own message formats. For

instance, IBM might provide a NotesMessage class for IBM Notes.

The Message class mainly declares abstract getter and setter methods that define the
common properties of most messages. These properties include the addressees of the
message, the recipients of the message, the subject and content of the message, and
various other attributes. You can think of these as properties of the envelope that con‐
tains the message.

Furthermore, the Message class implements the Part interface. The Part interface
mostly handles the body of an email message. It declares methods for getting and setting
the content type of the message body, getting and setting the actual message body con‐
tent, getting and setting arbitrary headers from the message, and getting input streams
that are fed by the message body. The main body part of a message can contain other
parts. This is used to handle attachments, message bodies that are available in multiple

formats, and other multipart emails. Since the Message class is abstract and needs to be

subclassed by concrete classes such as MimeMessage, most of these methods are not

actually redeclared in Message but can be invoked by any actual instance of Message.

We’ll begin by discussing the methods actually declared in Message, then move on to

those declared in Part.

35

Creating Messages
The Message class has three constructors:

protected Message()

protected Message(Folder folder, int messageNumber)

protected Message(Session session)

Since all the constructors are protected, they are primarily for the use of subclasses such

as MimeMessage. If you’re sending a message, you’ll use one of the constructors in the

subclass instead. If you’re reading messages, the Folder or Session you’re reading from

will create the Message objects and pass them to you.

Replying to Messages
If you already have a Message object, one way to create a new Message object is to reply

to the existing one using the reply() method:

public abstract Message reply(boolean replyToAll)

 throws MessagingException

This method creates a new Message object with the same subject prefixed with “Re:”,

and addressed to the sender of the original message. If replyToAll is true, the message
is addressed to all known recipients of the original message. The content of the message
is empty. If you want to quote the original message, you’ll have to do that yourself.

Getting Messages from Folders
You’ve already seen that when you’re reading email, the JavaMail API creates Message
objects to represent the messages it finds on the server. The primary means of doing

this are the getMessage() and getMessages() methods in the Folder class:

public abstract Message getMessage(int messageNumber)

 throws MessagingException

public Message[] getMessages(int start, int end)

 throws MessagingException

public Message[] getMessages(int[] messageNumbers)

 throws MessagingException

public Message[] getMessages() throws MessagingException

The first three methods require the caller to specify which messages it wants. The last
simply returns all messages in the folder. What’s actually returned are stubs holding the
places of the actual messages. The text and headers of the message won’t necessarily be

retrieved until some method of the Message class is invoked that requires this infor‐
mation.

36 | Chapter 7: Messages and Parts

Basic Header Info
A typical RFC 822 message contains a header that looks something like this:

From levi@blazing.sunspot.noao.edu Tue Aug 5 10:57:08 2014

Date: Tue, 27 Aug 2014 10:57:04 +0700

From: levi@blazing.sunspot.noao.edu (Denise Levi)

To: volleyball@sunspot.noao.edu

Subject: Apologies

Content-Length: 517

Status: RO

X-Lines: 13

The exact fields in the header can vary, but most messages contain at least a From: field,
a To: field, a Date: field, and a Subject: field. Other common fields include Cc: (carbon
copies) and Bcc: (blind carbon copies). In general, these will be accessible through getter
and setter methods.

The From Address
These four methods get and set the From: field of a message:

public abstract Address[] getFrom() throws MessagingException

public abstract void setFrom() throws MessagingException,

 IllegalWriteException, IllegalStateException

public abstract void setFrom(Address address)

 throws MessagingException, IllegalWriteException, IllegalStateException

public abstract void addFrom(Address[] addresses)

 throws MessagingException, IllegalWriteException, IllegalStateException

The getFrom() method returns an array of Address objects, one for each address listed
in the From: header. (In practice, it’s rare for a message to be from more than one address.
It’s quite common for a message to be addressed to more than one address.) It returns

null if the From: header isn’t present in the message. It throws a MessagingException
if the From: header is malformed in some way.

The noargs setFrom() and addFrom() methods set and modify the From: headers of

outgoing email messages. The noargs setFrom() method sets the header to the current

value of the mail.user property or, as a fallback, the user.name property. The set

From() method with arguments sets the value of the From: header to the listed addresses.

The addFrom() method adds the listed addresses to any addresses that already exist in

the header. All three of these methods can throw a MessagingException if one of the

addresses they use isn’t in the right format. They can also throw an Illegal

WriteException if the From: field of the given Message object cannot be changed or an

IllegalStateException if the entire Message object is read-only.

Basic Header Info | 37

If the message object is more specifically a MimeMessage object, there is also a set

From() method that takes a String as an argument, so you don’t have to first construct

an Address object:

public void setFrom(String address)

 throws MessagingException, IllegalWriteException, IllegalStateException

The Reply-to Address
Some messages contain a Reply-to: header indicating that any replies should be sent to
a different address than the one that sent the message. There are two methods to set and
get these addresses:

public Address[] getReplyTo() throws MessagingException

public void setReplyTo(Address[] addresses) throws MessagingException,

 MethodNotSupportedException, IllegalWriteException,

 IllegalStateException

The semantics of these methods are the same as for the equivalent getFrom() and

setFrom() methods—in fact, the default implementation of getReplyTo() simply re‐

turns getFrom()—with the single caveat that an implementation that doesn’t support

separate Reply-to: addresses may throw a MethodNotSupportedException when

setReplyTo() is invoked.

The Recipient Addresses
Whereas the sender of the message is generally found only in the From: header, the
recipients of the message are often split across the To:, Cc:, and Bcc: fields. Rather than

providing separate methods for each of these fields, the various getRecipients() and

setRecipients() methods rely on a Message.RecipientType argument to determine

which field’s value is desired. RecipientType is a public inner class in jav

ax.mail.Message whose private constructor limits it to exactly these three static objects:

Message.RecipientType.TO

Message.RecipientType.CC

Message.RecipientType.BCC

There are two methods to find the addressees of the Message:

public abstract Address[] getRecipients(Message.RecipientType type)

 throws MessagingException

public Address[] getAllRecipients() throws MessagingException

The getRecipients() method returns an array of Address objects, one for each address

listed in the specified header. It returns null if the specified header isn’t present in the

message. It throws a MessagingException if the specified header is malformed in some

way. The getAllRecipients() method does the same thing, except that it combines
the contents of the To:, Cc:, and Bcc: headers.

38 | Chapter 7: Messages and Parts

www.allitebooks.com

http://www.allitebooks.org

There are two methods to set the recipients of the message while replacing any previous
recipients and two methods to add recipients to the message:

public abstract void setRecipients(Message.RecipientType type,

 Address[] addresses) throws MessagingException, IllegalWriteException,

 IllegalStateException

public void setRecipient(Message.RecipientType type, Address address)

 throws MessagingException, IllegalWriteException

public abstract void addRecipients(Message.RecipientType type,

 Address[] addresses) throws MessagingException,

 IllegalWriteException, IllegalStateException

public void addRecipient(Message.RecipientType type, Address address)

 throws MessagingException, IllegalWriteException

All four of these methods can throw a MessagingException, typically because one of

the addresses isn’t in the right format. They can also throw an IllegalWriteExcep

tion if the specified field of the given Message object cannot be changed or an Ille

galStateException if the entire Message object is read-only.

The Subject of the Message
Since the subject is simply a single string of text, it’s easy to get and set with these two
methods:

public abstract String getSubject() throws MessagingException

public abstract void setSubject(String subject) throws

 MessagingException, IllegalWriteException, IllegalStateException

As with earlier setter methods, the getter returns null if the subject field isn’t present

in the message. The setter throws an IllegalWriteException if the program isn’t al‐

lowed to set the value of the Subject: field and an IllegalStateException if the
program isn’t allowed to change the message at all.

The Date of the Message
Messages also have sent and received dates. Three methods allow programs to access
these fields:

public abstract Date getSentDate() throws MessagingException

public abstract void setSentDate(Date date) throws MessagingException,

 IllegalWriteException, IllegalStateException

public abstract Date getReceivedDate() throws MessagingException

The underlying implementation is responsible for converting the textual date format

found in a message header like “Wed, 20 Aug 2014 10:57:04 0700” to a java.util.Date

object. As usual, a MessagingException indicates some problem with the format of the

underlying message, an IllegalWriteException indicates that the field cannot be

changed, and an IllegalStateException indicates that the entire message cannot be
changed.

Basic Header Info | 39

Example 7-1 is a simple example program that follows the basic pattern of the last

several mail-reading programs. However, this one no longer uses writeTo(). Instead,
it uses the methods in this section to print just the headers. Furthermore, it prints them
in a particular order regardless of their order in the actual message on the server. Finally,
it ignores the less important headers such as X-UIDL: and Status:. The static

InternetAddress.toString() method converts the arrays that most of these methods
return into simple, comma-separated strings.

Example 7-1. A program to read mail headers

import javax.mail.*;

import javax.mail.internet.*;

import java.util.*;

public class HeaderClient {

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java HeaderClient protocol://username@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

 Folder folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 // Here's the big change...

 String from = InternetAddress.toString(messages[i].getFrom());

 if (from != null) System.out.println("From: " + from);

 String replyTo = InternetAddress.toString(

 messages[i].getReplyTo());

 if (replyTo != null) System.out.println("Reply-to: "

 + replyTo);

 String to = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.TO));

40 | Chapter 7: Messages and Parts

 if (to != null) System.out.println("To: " + to);

 String cc = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.CC));

 if (cc != null) System.out.println("Cc: " + cc);

 String bcc = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.BCC));

 if (bcc != null) System.out.println("Bcc: " + bcc);

 String subject = messages[i].getSubject();

 if (subject != null) System.out.println("Subject: " + subject);

 Date sent = messages[i].getSentDate();

 if (sent != null) System.out.println("Sent: " + sent);

 Date received = messages[i].getReceivedDate();

 if (received != null) System.out.println("Received: " + received);

 System.out.println();

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (MessagingException ex) {

 ex.printStackTrace();

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

 System.exit(0);

 }

}

Here’s some typical output. Several of the requested strings were null because the fields

simply weren’t present in the messages in the INBOX; for instance, Cc: and Bcc:. Head

erClient checks for the fields and simply omits them if they’re not present.

% java HeaderClient pop3://eharold@utopia.poly.edu/INBOX

------------ Message 1 ------------

From: Elliotte Harold <eharold@utopia.poly.edu>

Reply-to: Elliotte Harold <eharold@utopia.poly.edu>

To: eharold@utopia.poly.edu

Subject: test

Sent: Mon Nov 30 13:14:29 PST 2009

------------ Message 2 ------------

From: Elliotte Rusty Harold <elharo@macfaq.com>

Reply-to: Elliotte Rusty Harold <elharo@macfaq.com>

To: eharold@utopia.poly.edu

Subject: New system

Sent: Tue Dec 01 10:55:40 PST 2009

------------ Message 3 ------------

From: Dr. Mickel <Greatsmiles@mail.com>

Reply-to: Dr. Mickel <Greatsmiles@mail.com>

Basic Header Info | 41

To: eharold@utopia.poly.edu

Subject: Breath RX Products now available Online!

Sent: Wed Dec 02 03:45:52 PST 2009

Notice that none of these messages have received dates. That’s because the receive time
is not part of the message envelope itself. It has to be provided by the server, and POP
servers don’t provide it. An IMAP server would be much more likely to include a re‐
ceived date, as will be shown in Example 7-2.

Flags
Mail programs can save extra information about the messages that are not part of the
messages themselves. For instance, Pine lets me know whether I’ve replied to or read a
message, and so on. As Figure 7-1 shows, this information is indicated by symbols and
letters in the lefthand column. D means a message has been deleted; A means it’s been
answered; N is a new message that hasn’t been read yet; and so forth. In the JavaMail

API, these are all represented as flags. A flag is an instance of the javax.mail.Flags
class:

public class Flags extends Object implements Cloneable

Seven flags are predefined as instances of the public static inner class Flags.Flag. These
are:

Flags.Flag.ANSWERED

Flags.Flag.DELETED

Flags.Flag.DRAFT

Flags.Flag.FLAGGED

Flags.Flag.RECENT

Flags.Flag.SEEN

Flags.Flag.USER

In addition, some implementations may allow arbitrary user-defined flags. If so, the
USER flag is set.

Figure 7-1. Pine shows flags as letters in the lefthand column

42 | Chapter 7: Messages and Parts

The getFlags() method returns the flags of a particular message:

public abstract Flags getFlags() throws MessagingException

The isSet() method tests whether a specified flag is set for the given message:

public boolean isSet(Flags.Flag flag) throws MessagingException

Finally, the setFlags() and setFlag() methods set or unset (depending on the second
argument) the flag indicated by the first argument:

public abstract void setFlags(Flags flag, boolean set)

 throws MessagingException, IllegalWriteException,

 IllegalStateException

public void setFlag(Flags.Flag flag, boolean set) throws

 MessagingException, IllegalWriteException, IllegalStateException

You delete messages by setting their Flags.Flag.DELETED flag to true. For example, to

delete message:

message.setFlag(Flags.Flag.DELETED, true);

This only marks the message as deleted. It does not actually expunge it from the file on
the server. Until the message is expunged, it can still be undeleted by setting

Flags.Flag.DELETED back to false.

Example 7-2 is a slight modification of Example 7-1, HeaderClient, which prints the
flags as well. As a general rule, POP servers won’t report flags. Only a protocol that stores
messages and forwards them, such as IMAP or mbox, will report flags.

Example 7-2. A program to read mailbox flags

import javax.mail.*;

import javax.mail.internet.*;

import java.util.*;

public class FlagsClient {

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java FlagsClient protocol://username@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

 Folder folder = session.getFolder(server);

Flags | 43

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 // Get the headers

 String from = InternetAddress.toString(messages[i].getFrom());

 if (from != null) System.out.println("From: " + from);

 String replyTo = InternetAddress.toString(

 messages[i].getReplyTo());

 if (replyTo != null) System.out.println("Reply-to: " + replyTo);

 String to = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.TO));

 if (to != null) System.out.println("To: " + to);

 String cc = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.CC));

 if (cc != null) System.out.println("Cc: " + cc);

 String bcc = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.BCC));

 if (bcc != null) System.out.println("Bcc: " + bcc);

 String subject = messages[i].getSubject();

 if (subject != null) System.out.println("Subject: " + subject);

 Date sent = messages[i].getSentDate();

 if (sent != null) System.out.println("Sent: " + sent);

 Date received = messages[i].getReceivedDate();

 if (received != null) System.out.println("Received: " + received);

 // Now test the flags:

 if (messages[i].isSet(Flags.Flag.DELETED)) {

 System.out.println("Deleted");

 }

 if (messages[i].isSet(Flags.Flag.ANSWERED)) {

 System.out.println("Answered");

 }

 if (messages[i].isSet(Flags.Flag.DRAFT)) {

 System.out.println("Draft");

 }

 if (messages[i].isSet(Flags.Flag.FLAGGED)) {

 System.out.println("Marked");

 }

 if (messages[i].isSet(Flags.Flag.RECENT)) {

 System.out.println("Recent");

 }

 if (messages[i].isSet(Flags.Flag.SEEN)) {

 System.out.println("Read");

 }

44 | Chapter 7: Messages and Parts

 if (messages[i].isSet(Flags.Flag.USER)) {

 // We don't know what the user flags might be in advance

 // so they're returned as an array of strings

 String[] userFlags = messages[i].getFlags().getUserFlags();

 for (String flag : userFlags) {

 System.out.println("User flag: " + flag);

 }

 }

 System.out.println();

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (MessagingException ex) {

 ex.printStackTrace();

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

 System.exit(0);

 }

}

Here’s a sample run. The first message has been read and deleted. The second message
has no set flags; it hasn’t been read, deleted, or answered. The third message has been
read and answered but not deleted. Notice that I’m using an IMAP server instead of a
POP server:

% java FlagsClient imap://elharo@mail.ibiblio.org/INBOX

------------ Message 1 ------------

From: Mike Hall <mikehall@spacestar.com>

Reply-to: Mike Hall <mikehall@spacestar.com>

To: mrj-dev@public.lists.apple.com

Subject: Re: dialog box, parents & X-platform

Sent: Sun Dec 13 05:24:38 PST 2009

Received: Sun Dec 13 06:33:00 PST 2009

Deleted

Read

------------ Message 2 ------------

From: Kapil Madan <kapil.madan@MIT-MISYS.COM>

Reply-to: XML-INTEREST@JAVA.SUN.COM

To: XML-INTEREST@JAVA.SUN.COM

Subject: Re: first mail to the list!

Sent: Sun Dec 13 06:19:46 PST 2009

Received: Sun Dec 13 06:40:00 PST 2009

------------ Message 3 ------------

From: Jim Jackl-Mochel <jmochel@foliage.com>

Reply-to: Jim Jackl-Mochel <jmochel@foliage.com>

To: elharo@ibiblio.org

Flags | 45

Subject: CPreProcessorStream

Sent: Sun Dec 13 07:14:00 PST 2009

Received: Sun Dec 13 07:08:00 PST 2009

Answered

Read

Folders
Messages received from the network (as opposed to sent to the network) generally be‐

long to some Folder. The getFolder() method returns a reference to the Folder object

that contains this Message:

public Folder getFolder()

It returns null if the message isn’t contained in a folder.

Within a folder, messages are organized from first (message 1) to last. The getMessage

Number() method returns the relative position of this Message in its Folder:

public int getMessageNumber()

Messages that aren’t in any folder have number 0.

One of the things you can do with a folder is expunge messages from it. This physically
deletes the message if it’s already been marked as deleted. (A merely deleted message
can be “undeleted”, whereas an expunged message cannot be.) If a message is expunged,

there may still be a Message object pointing to the message, but almost all methods on

the message will throw a MessagingException. Thus, it may be important to check

whether a message has been expunged before working with it. The isExpunged()
method does that:

public boolean isExpunged()

Searching
The final method left in the Message class is match(). The match() method determines

whether a Message satisfies particular search criteria. We’ll discuss this more in a bit
when we talk about searching folders:

public boolean match(SearchTerm term) throws MessagingException

The Part Interface
Both Message and BodyPart implement the Part interface. Every Message is a Part.

However, some parts may contain other parts. The Part interface declares three kinds
of methods:

• Methods for getting and setting the attributes of the part

46 | Chapter 7: Messages and Parts

• Methods for getting and setting the headers of the part

• Methods for getting and setting the contents of the part

The attributes of the part are details that aren’t explicitly specified in the message’s
header, such as the size of the message or the date it was received. The headers, by
contrast, are name-value pairs included at the front of the part. Finally, the content of
the part is the actual data that the message is trying to transmit.

Attributes
The JavaMail API defines five attributes for parts:

Size
The approximate number of bytes in the part

Line count
The number of lines in the part

Disposition
Whether the part is an attachment or should be displayed in-line

Description
A brief text summary of the part

Filename
The name of the file that the attachment came from

Not all parts have all attributes. For instance, a part that does not represent an attached
file is unlikely to have a filename attribute. Each attribute is mapped to a getter method:

public int getSize() throws MessagingException

public int getLineCount() throws MessagingException

public String getDisposition() throws MessagingException

public String getDescription() throws MessagingException

public String getFileName() throws MessagingException, ParseException

Generally, each getter method returns null or -1 if a part doesn’t possess the requested

attribute. It throws a MessagingException if there’s some problem retrieving the mes‐
sage; for instance, if the connection goes down while the message is being retrieved.

The getSize() method returns the approximate number of bytes in the part. Depending
on the server and protocol, this may or may not account for changes in the size caused
by operations such as Base64 encoding the data.

The getLineCount() method returns the approximate number of lines in the content
of the part or -1 if the number of lines isn’t known. Again, the number returned may or
may not account for changes in the size of the part caused by the part’s encoding.

The Part Interface | 47

The getDisposition() method returns a string indicating whether the content should

be presented in-line or as an attachment. The value returned should either be null (the

disposition is not known) or one of the two named constants, Part.INLINE or

Part.ATTACHMENT:

public static final String ATTACHMENT = "attachment";

public static final String INLINE = "inline";

If the disposition is Part.ATTACHMENT, getFileName() should return the name of the

file to save the attachment in. Otherwise, getFileName() probably returns null. How‐
ever, some email clients do not properly set the Content-disposition header for attach‐

ments. Consequently, when receiving messages with attachments, you’ll often get a null
disposition but a non-null filename. In practice, it seems more reliable to assume that
any body part with a non-null filename is an attachment regardless of the Content-
disposition header, and any body part with no filename and no Content-disposition
header should be displayed in-line if possible. If it’s not possible—for instance, if you
can’t handle the MIME type—you can either ask the user for a filename or pick some
reasonable default, such as attachment1.tif.

Normally, the filename includes only the actual name of the file but not any of the
directories the file was in. It’s up to the application receiving the message to decide where
to put the incoming file. For instance, Thunderbird generally stores attachments in the
Downloads folder inside the user’s home directory or on the desktop. However, the user
has an option to pick a different location.

You need to be careful before using a filename that arrives in an email message. In
particular make sure you escape or remove any illegal characters or hierarchy delimiters
such as /. Different systems have different rules for file names so what’s a legal file name
on Windows may not be on a Mac, and vice versa.

Furthermore, since it’s not uncommon to receive multiple attachments with the same
name over time, check to see whether a file with the attached file’s name already exists
before writing out the attachment. If a similarly named file does exist, you’ll have to
rename the attachment in some reasonable fashion—for instance, by appending a 1 or
a 2 to it: e.g., vcard1.vcf, vcard2.vcf, and so on.

The description, disposition, and filename attributes also have setter methods. However,
the size and line count attributes are determined by the content of the part rather than
a setter method:

public void setDisposition(String disposition) throws

 MessagingException, IllegalWriteException, IllegalStateException

public void setFileName(String filename) throws MessagingException,

 IllegalWriteException, IllegalStateException

public void setDescription(String description) throws

 MessagingException, IllegalWriteException, IllegalStateException

48 | Chapter 7: Messages and Parts

www.allitebooks.com

http://www.allitebooks.org

The setter methods all throw a MessagingException if there’s some problem while

changing the message. They can also throw an IllegalWriteException if the relevant

attribute of the part cannot be modified or an IllegalStateException if the part be‐
longs to a read-only folder.

The setDisposition() method determines whether the part is to be viewed in-line or

as an attachment. Although it’s declared to take a String as an argument, this String

should be one of the two named constants, Part.INLINE or Part.ATTACHMENT. Parts
that are attachments generally have a filename included in their metainformation. This

name can be set with the setFileName() method. Finally, the setDescription()

method can take any String at all to add a description to the part.

Example 7-3 is a simple program that connects to a mail server and reads the attributes
of the messages in the mailbox. Since each message is itself a part (even if it contains
other parts), we can invoke these methods on the entire message.

Example 7-3. A program to read mail attributes

import javax.mail.*;

import javax.mail.internet.*;

import java.util.*;

public class AttributeClient {

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java AttributeClient protocol://username@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

 Folder folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 String from = InternetAddress.toString(messages[i].getFrom());

The Part Interface | 49

 if (from != null) System.out.println("From: " + from);

 String to = InternetAddress.toString(

 messages[i].getRecipients(Message.RecipientType.TO));

 if (to != null) System.out.println("To: " + to);

 String subject = messages[i].getSubject();

 if (subject != null) System.out.println("Subject: " + subject);

 Date sent = messages[i].getSentDate();

 if (sent != null) System.out.println("Sent: " + sent);

 System.out.println();

 // Here's the attributes...

 System.out.println("This message is approximately "

 + messages[i].getSize() + " bytes long.");

 System.out.println("This message has approximately "

 + messages[i].getLineCount() + " lines.");

 String disposition = messages[i].getDisposition();

 if (disposition == null) ; // do nothing

 else if (disposition.equals(Part.INLINE)) {

 System.out.println("This part should be displayed inline");

 } else if (disposition.equals(Part.ATTACHMENT)) {

 System.out.println("This part is an attachment");

 String fileName = messages[i].getFileName();

 if (fileName != null) {

 System.out.println("The file name of this attachment is "

 + fileName);

 }

 }

 String description = messages[i].getDescription();

 if (description != null) {

 System.out.println("The description of this message is "

 + description);

 }

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (MessagingException ex) {

 ex.printStackTrace();

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

 System.exit(0);

 }

}

Here’s some typical output. I used an IMAP server because most of these methods don’t
work nearly as well with POP servers. IMAP servers can give you the attributes of a
message without making you download the entire message, but POP servers aren’t that
sophisticated:

50 | Chapter 7: Messages and Parts

% java AttributeClient imap://elharo@mail.ibiblio.org/INBOX

------------ Message 1 ------------

From: "Richman, Jeremy" <jrichman@hq.ileaf.com>

To: 'xsl-list' <XSL-List@mulberrytech.com>

Subject: Re: New twist: eliminating nodes with duplicate content

Sent: Thu Dec 06 08:37:51 PST 2012

This message is approximately 3391 bytes long.

This message has approximately 87 lines.

------------ Message 2 ------------

From: schererm@us.ibm.com

To: Unicode List <unicode@unicode.org>

Subject: Re: Number ordering

Sent: Thu Dec 06 11:00:28 PST 2012

This message is approximately 1554 bytes long.

This message has approximately 18 lines.

------------ Message 3 ------------

From: John Posner <jjp@connix.com>

To: 'Nakita Watson' <nakita@oreilly.com>

Subject: RE: Another conference Call

Sent: Thu Dec 06 11:16:38 PST 2012

This message is approximately 1398 bytes long.

This message has approximately 19 lines.

Headers
Classes that implement the Part interface—for example, Message—generally declare

methods to return specific headers such as To: or From:. The Part interface, by contrast,
declares methods to get and set arbitrary headers regardless of name.

The getHeader() method gets the values of all the headers with a name that matches

the name argument. Some headers such as Received: can have multiple values and can
be included in a message multiple times, so this method returns those values as an array

of strings. It returns null if no header with that name is present in this Part:

public String[] getHeader(String name) throws MessagingException

The setHeader() method adds a new header to an outgoing message:

public void setHeader(String name, String value) throws

 MessagingException, IllegalWriteException, IllegalStateException

If there’s already a header with this name, that header is deleted and the new one inserted
in its place—unless the folder in which the message resides is read-only, in which case

an IllegalStateException is thrown.

By contrast, the addHeader() method adds a header with the specified name without
replacing any that already exist:

The Part Interface | 51

public void addHeader(String name, String value) throws

 MessagingException, IllegalWriteException, IllegalStateException

The removeHeader() method deletes all instances of the named header from this Part:

public void removeHeader(String name) throws MessagingException,

 IllegalWriteException, IllegalStateException

The getAllHeaders() method returns a java.util.Enumeration object containing all
the headers in this message:

public Enumeration getAllHeaders() throws MessagingException

This method is annoyingly non-generic, and you’ll want to suppress generics warnings.

The Enumeration contains one javax.mail.Header object for each header in the mes‐
sage:

public class Header extends Object

The Header class is very simple, with just a constructor to set the name and value of the

header, and getName() and getValue() methods to return them:

public Header(String name, String value)

public String getName()

public String getValue()

Finally, the getMatchingHeaders() method returns an Enumeration containing all the

headers in this message with names that are one of the strings in the argument names

array. The getNonMatchingHeaders() method returns an Enumeration containing all
the headers in this message with names that are not one of the strings in the argument

names array. Again, the Enumeration contains Header objects:

public Enumeration getMatchingHeaders(String[] names)

 throws MessagingException

public Enumeration getNonMatchingHeaders(String[] names)

 throws MessagingException

Again, these methods are not genericized so you’ll probably want to suppress generics
warnings when invoking these methods.

You may recall that Example 7-1, HeaderClient, printed only a few prespecified headers,

such as To: and From:. With the methods of the Part interface (that Message imple‐
ments), it’s easy to expand this to cover all headers in the message, whether known in
advance or not. Example 7-4 demonstrates. This ability is important because email can
contain arbitrary headers; it’s not limited to just a few headers mentioned in the relevant
RFCs. For instance, some graphical mail clients for X Windows use a completely non‐
standard X-Face: header, whose value is a 48-pixel by 48-pixel, black-and-white,
uuencoded bitmap of the sender’s countenance. Other clients use custom headers for
purposes both more and less serious.

52 | Chapter 7: Messages and Parts

Example 7-4. A program to read mail headers

import javax.mail.*;

import java.util.*;

public class AllHeaderClient {

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java AllHeaderClient protocol://username@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

 Folder folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 // Here's the difference...

 @SuppressWarnings("unchecked")

 Enumeration<Header> headers = messages[i].getAllHeaders();

 while (headers.hasMoreElements()) {

 Header h = headers.nextElement();

 System.out.println(h.getName() + ": " + h.getValue());

 }

 System.out.println();

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (MessagingException ex) {

 ex.printStackTrace();

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

The Part Interface | 53

 System.exit(0);

 }

}

Here’s a typical run:

% java AllHeaderClient pop3://eharold@utopia.poly.edu/INBOX

------------ Message 1 ------------

Received: (from eharold@localhost)

 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728

 for eharold; Mon, 30 Nov 2009 16:14:29 -0500 (EST)

Date: Mon, 30 Nov 2009 16:14:29 -0500 (EST)

From: Elliotte Harold <eharold@utopia.poly.edu>

Message-Id: <200911302114.QAA05728@utopia.poly.edu>

To: eharold@utopia.poly.edu

Subject: test

Content-Type: text

X-UIDL: 87e3f1ba71738c8f772b15e3933241f0

Status: RO

------------ Message 2 ------------

Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])

 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428

 for <eharold@utopia.poly.edu>; Tue, 1 Dec 2009 14:05:06 -0500 (EST)

Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203.234])

 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F8

 for <eharold@utopia.poly.edu>; Tue, 1 Dec 2009 14:02:50 -0500 (EST)

Mime-Version: 1.0

X-Sender: macfaq@mail.cloud9.net

Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>

Date: Tue, 1 Dec 2009 13:55:40 -0500

To: eharold@utopia.poly.edu

From: Elliotte Rusty Harold <elharo@macfaq.com>

Subject: New system

Content-Type: text/plain; charset="us-ascii" ; format="flowed"

X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5

Status: RO

------------ Message 3 ------------

Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])

 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id HAA17345

 for <eharold@utopia.poly.edu>; Wed, 2 Dec 2009 07:55:04 -0500 (EST)

Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203.234])

 by russian.cloud9.net (Postfix) with ESMTP id C036A7630E

 for <eharold@utopia.poly.edu>; Wed, 2 Dec 2009 07:54:58 -0500 (EST)

Mime-Version: 1.0

X-Sender: elharo@luna.oit.unc.edu

Message-Id: <v04210100b46c0c686ecc@[168.100.203.234]>

Date: Wed, 2 Dec 2009 06:45:52 -0500

To: eharold@utopia.poly.edu

From: "Dr. Mickel" <Greatsmiles@mail.com>(by way of Elliotte Rusty Harold)

Subject: Breath RX Products now available Online!

Sender: elharo@ibiblio.org

54 | Chapter 7: Messages and Parts

Content-Type: text/plain; charset="us-ascii" ; format="flowed"

X-UIDL: 40fa8af2aca1a8c11994f4c56b792720

Status: RO

Content
Every part has content that can be represented as a sequence of bytes. For instance, in
a part that’s a simple email message, the content is the body of the message. However,
in multipart messages, this content may itself contain other parts. The content of each
of these parts can be represented as a sequence of bytes. Furthermore, this sequence of
bytes may represent some more specific content type, such as a uuencoded GIF image
or a Base64-encoded WAV audio clip.

Reading the contents of the part

The Part interface declares two methods for determining a part’s MIME content type.

The getContentType() method returns the MIME content type of the part as a string;

for example: text/plain; charset="us-ascii"; format="flowed". It returns null
if the content type can’t be determined:

public String getContentType() throws MessagingException

The isMimeType() method returns true if this part has the specified MIME type and
subtype. Additional parameters, such as charset, are ignored:

public boolean isMimeType(String mimeType) throws MessagingException

The Part interface also declares several methods that return the content as a variety of

different Java objects, including InputStream, String, DataHandler, and more. The

getInputStream() method returns an InputStream from which the part’s content can
be read:

public InputStream getInputStream()

 throws IOException, MessagingException

If the part’s content has been encoded in some way—for example, Base64-encoded—

then the InputStream reads the decoded content. The JavaMail API supports most
common encodings.

Another possibility is to request a DataHandler for the content with the getDataHan

dler() method. The DataHandler class comes from the Java Activation Framework. It
declares methods to help decide what to do with the content—for instance, by finding
the right Java bean or helper application to display the content:

public javax.activation.DataHandler getDataHandler()

 throws MessagingException

A third possibility is to request the content as an unspecified Java object using the

getContent() method:

The Part Interface | 55

public Object getContent() throws IOException, MessagingException

This is reminiscent of the getContent() method of java.net.URL. However, rather

than relying on the poorly designed content handler mechanism, this getContent()
method uses the Java Activation Framework, so the behavior is a little more clearly

specified. Most of the time, if the content type is text/plain, a String will be returned.

If the content type is multipart, then regardless of the subtype, a javax.mail.Multi

part object is returned. If the content type is some other type that is recognized by the

underlying DataHandler, an appropriate Java object is returned. Finally, if the type is

unrecognized, an InputStream is returned.

Another way to read the contents of a part is by writing them onto an OutputStream

using the writeTo() method. If necessary, it will encode the content using Base64,

quoted-printable, or some other format as specified by the DataHandler:

public void writeTo(OutputStream out)

 throws IOException, MessagingException

In fact, this not only writes the content of this Part, it also writes the attributes and
headers of the part. Example 6-1 used this to provide a simple way of getting an entire
email message in one fell swoop. It’s most convenient, though, when you want to send
an entire message to an SMTP server in one method call.

If the part is not just a part, but specifically a MimeBodyPart (and most attachments in

regular Internet email will be MimeBodyParts) then you can also use the saveFile()
method to write the decoded contents of the part into a file:

public void saveFile(File file) throws IOException, MessagingException

public void saveFile(String file) throws IOException, MessagingException

Writing the contents of the part

When sending a message, you naturally must set the message’s contents. Since email
messages are text, the most straightforward way is just to provide the text of the part

with setText():

public void setText(String text) throws MessagingException,

 IllegalWriteException, IllegalStateException

The setText() method sets the MIME type to text/plain. Other objects can be made

into content as well, provided the part has a DataHandler that understands how to

convert them to encoded text. This is done with the setContent() method:

public void setContent(Object o, String type) throws

 MessagingException, IllegalWriteException, IllegalStateException

Assuming you’re sending Internet email, the concrete Part subclass will likely be Mime

BodyPart, and in that case then you can also use the attachFile() method to encode
the contents of a file into the message:

56 | Chapter 7: Messages and Parts

public void attachFile(File file) throws IOException, MessagingException

public void attachFile(String file) throws IOException, MessagingException

public void attachFile(File file, String contentType, String encoding)

 throws IOException, MessagingException

public void attachFile(String file, String contentType, String encoding)

 throws IOException, MessagingException

Finally, multiple parts can be added to a part by wrapping them in a Multipart object

and passing that to setContent():

public void setContent(Multipart mp) throws MessagingException,

 IllegalWriteException, IllegalStateException

In this case, the entire message typically has a content type such as multipart/mixed,

multipart/signed, or multipart/alternative. The individual parts of the message
are all enclosed in one envelope but each part of the message has its own content type,
content encoding, and data. The multiple parts may be used to present different forms
of the same document (e.g., HTML and plain-text mail), a document and metainfor‐
mation about the document (e.g., a message and the MD5 digest of the message), or
several different documents (e.g., a message and several attached files). The next section
expands on this process.

Multipart Messages and File Attachments
The way all the different text and binary file types are encoded into raw text that can be
passed through 7-bit email gateways is fairly ingenious and rather detailed. Fortunately,
the JavaMail API shields you from those details, interesting as they are. To send a mul‐
tipart message using the JavaMail API, all you have to do is add the parts to a

MimeMultipart object, then pass that object to the Message’s setContent() method. To
receive a multipart message, you simply process each of the parts individually.

Most of the methods for building and deconstructing multipart messages are in the

abstract javax.mail.Multipart class:

public abstract class Multipart extends Object

However, since this class is abstract, you’ll generally start with a javax.mail.inter‐
net.MimeMultipart object instead:

public class MimeMultipart extends Multipart

Each part you add to a Multipart is an instance of the abstract javax.mail.Body

Part class that implements the Part interface of the last section:

public abstract class BodyPart extends Object implements Part

In Internet email, the concrete subclass of BodyPart you’ll use is javax.mail.inter‐
net.MimeBodyPart:

public class MimeBodyPart extends BodyPart implements MimePart

Multipart Messages and File Attachments | 57

Most of the methods you need in the MimeBodyPart and BodyPart classes are the ones

you’re already familiar with from the Part interface, methods such as setContent()

and setDataHandler(). There are also three methods to read the contents of a

Multipart object:

public String getContentType()

public int getCount() throws MessagingException

public BodyPart getBodyPart(int index)

 throws IndexOutOfBoundsException, MessagingException

The getContentType() method returns the MIME media type of the entire

Multipart, which is typically something like multipart/mixed or multipart/

alternative. This is not the same as the MIME types of the individual parts, which are

something like text/plain or image/gif.

The getCount() method returns the number of parts in this Multipart. The getBody

Part() method returns a particular part. Parts are numbered starting at 0, like the

components of an array. Example 7-5 is very similar to Example 7-4, AllHeader

Client. However, Example 7-5 adds the necessary code to handle the body of the mes‐

sage. If the message is a single-part message, it’s simply printed on System.out; but if
the message has multiple parts, each part is handled separately. If the part has a multipart

content type itself, processMultipart() is called recursively. If the part has no filename,

does not have the disposition Part.ATTACHMENT, and has MIME type text/plain, it’s

assumed to be an in-line message and is printed on System.out. Otherwise, it’s assumed
to be an attachment and is saved into an appropriate file. If necessary, the static

File.createTempFile() method generates a reasonable name for the file.

Example 7-5. A mail client that handles multipart messages with attached files

import java.util.*;

import java.io.*;

import javax.mail.*;

public class AllPartsClient {

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java AllPartsClient protocol://username@host:port/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

58 | Chapter 7: Messages and Parts

www.allitebooks.com

http://www.allitebooks.org

 Folder folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 // Get the messages from the server

 Message[] messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 // Print message headers

 @SuppressWarnings("unchecked")

 Enumeration<Header> headers = messages[i].getAllHeaders();

 while (headers.hasMoreElements()) {

 Header h = headers.nextElement();

 System.out.println(h.getName() + ": " + h.getValue());

 }

 System.out.println();

 // Enumerate parts

 Object body = messages[i].getContent();

 if (body instanceof Multipart) {

 processMultipart((Multipart) body);

 } else { // ordinary message

 processPart(messages[i]);

 }

 System.out.println();

 }

 // Close the connection

 // but don't remove the messages from the server

 folder.close(false);

 } catch (MessagingException| IOException ex) {

 ex.printStackTrace();

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

 System.exit(0);

 }

 public static void processMultipart(Multipart mp)

 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {

 processPart(mp.getBodyPart(i));

 }

 }

 public static void processPart(Part p) {

Multipart Messages and File Attachments | 59

 try {

 String fileName = p.getFileName();

 String disposition = p.getDisposition();

 String contentType = p.getContentType();

 if (contentType.toLowerCase().startsWith("multipart/")) {

 processMultipart((Multipart) p.getContent());

 } else if (fileName == null

 && (Part.ATTACHMENT.equalsIgnoreCase(disposition)

 || !contentType.equalsIgnoreCase("text/plain"))) {

 // pick a random file name.

 fileName = File.createTempFile("attachment", ".txt").getName();

 }

 if (fileName == null) { // likely inline

 p.writeTo(System.out);

 } else {

 File f = new File(fileName);

 // find a file that does not yet exist

 for (int i = 1; f.exists(); i++) {

 String newName = fileName + " " + i;

 f = new File(newName);

 }

 try (

 OutputStream out = new BufferedOutputStream(new FileOutputStream(f));

 InputStream in = new BufferedInputStream(p.getInputStream())) {

 // We can't just use p.writeTo() here because it doesn't

 // decode the attachment. Instead we copy the input stream

 // onto the output stream which does automatically decode

 // Base-64, quoted printable, and a variety of other formats.

 int b;

 while ((b = in.read()) != -1) out.write(b);

 out.flush();

 }

 }

 } catch (IOException| MessagingException ex) {

 ex.printStackTrace();

 }

 }

}

You can also get a part from a multipart message by passing an OutputStream to the

part’s writeTo() method:

public abstract void writeTo(OutputStream out)

 throws IOException, MessagingException

However, this differs from the approach taken in Example 7-4 in that it does not decode
the part before writing it. It leaves whatever Base64, quoted-printable, or other encoding
the sender applied to the attachment alone. Instead, it simply writes the raw data.

60 | Chapter 7: Messages and Parts

Attaching files (or other documents) to messages you send is more complicated. To

attach a file to a message, you first have to wrap the data in a BodyPart object and add

it to the Multipart using one of the two addBodyPart() methods:

public void addBodyPart(BodyPart part)

 throws IllegalWriteException, MessagingException

public void addBodyPart(BodyPart part, int index)

 throws IllegalWriteException, MessagingException

The first variant simply appends the part to the end of the message. The second variant
adds the given part at the specified position. If the position is greater than the number
of parts in the message, the part is simply added to the end. If it’s added somewhere in
the middle, this may cause the positions of other parts to change. If the message can’t

be changed, an IllegalWriteException is thrown.

The tricky part is creating the BodyPart object. You first need to guess a reasonable

MIME content type for the file (text/plain and application/octet-stream are the
most common types). Next, read the file and convert it into some class of Java object.

Then install a javax.activation.DataHandler class that knows how to convert your
data class according to your chosen MIME type. Once you’ve done all this, you can

create a new MimeBodyPart object and use the various methods of the Part interface to
set attributes such as the filename and the content disposition.

There are also two removeBodyPart() methods that delete a specified part from the
message, although these aren’t as commonly used:

public boolean removeBodyPart(BodyPart part)

 throws IllegalWriteException, MessagingException

public void removeBodyPart(int index)

 throws IndexOutOfBoundsException, MessagingException

If the message can’t be changed, an IllegalWriteException is thrown. If the specified

index doesn’t identify a part, an IndexOutOfBoundsException is thrown. If the specified

part isn’t present in the message, a MessagingException is thrown.

MIME Messages
MIME was designed mainly for Internet email and specifically organized to be
backward-compatible with existing protocols and software. Therefore, a typical Internet

email message is in fact a MIME message. The only concrete subclass of Message in the

JavaMail API is javax.mail.internet.MimeMessage :

public class MimeMessage extends Message implements MimePart

This class declares almost 70 public and protected methods. However, almost all of these

either override methods from the Message superclass or implement methods declared

MIME Messages | 61

by the Part interface. The only new methods are declared in the MimePart interface, a

subinterface of Part:

public interface MimePart extends Part

Most of these methods are very similar to methods in Part or Message. However, they
have features that are unlikely to be found in non-MIME messages. For instance, a
MIME part may have an MD5 digest, which would be encoded as an extra header inside

the part. Thus, the MimePart interface declares and the MimeMessage class implements
two methods to get and set this digest:

public String getContentMD5() throws MessagingException

public void setContentMD5(String md5) throws MessagingException,

 IllegalWriteException, IllegalStateException

The addHeaderLine() method adds a string of text to the header of the message. It’s up
to you to make sure that this string will actually make sense in the header:

public void addHeaderLine(String line) throws

 MessagingException, IllegalWriteException, IllegalStateException

The getHeader() method returns the value of every header in the message with the
given name. If there are multiple headers with this name, the string separates the values

of the different headers with the specified delimiter string:

public String getHeader(String name, String delimiter)

 throws MessagingException

The getAllHeaderLines() method returns a java.util.Enumeration containing

every header in the message. The Enumeration contains String objects, one per header.

Each String contains the full name and value; for example, “Subject: Re: Java 5 support”.
It is not divided into a separate name and value:

public Enumeration getAllHeaderLines() throws MessagingException

The getMatchingHeaderLines() method returns all header lines with names given in

the names argument array. The getNonMatchingHeaderLines() method does the re‐

verse; it returns the header lines with a name not mentioned in the names argument:

public Enumeration getMatchingHeaderLines(String[] names)

 throws MessagingException

public Enumeration getNonMatchingHeaderLines(String[] names)

 throws MessagingException

The getEncoding() method returns the encoding of this MIME part as a String as
given by the Content-transfer-encoding: header. The typical encoding for a plain-text
email is seven-bit or perhaps eight-bit or quoted-printable. The typical encoding for a
file attachment is Base64:

public String getEncoding() throws MessagingException

62 | Chapter 7: Messages and Parts

The getContentID() method returns a string that uniquely identifies this part as given

by the part’s Content-ID: field. A typical ID might look like <Pine.LNX.

4.10.9912290930220.8058@akbar.nevex.com>. It returns null if the part doesn’t have a
content ID:

public String getContentID() throws MessagingException

 IllegalWriteException, IllegalStateException

The getContentLanguage() method returns the value of the Content-language: header.
This is a comma-separated list of two (or more) letter abbreviations for languages, as

defined by RFC 1766. For example, English is “en” and French is “fr”. It returns null if
the part doesn’t have a Content-language: header.

public String[] getContentLanguage() throws MessagingException

There’s also a setContentLanguage() method that you might use when sending a mes‐
sage:

public void setContentLanguage(String[] languages) throws

 MessagingException, IllegalWriteException, IllegalStateException

Finally, the two setText() methods set the content of the part with the MIME type

text/plain. The second setText() method also lets you specify the character set—for
example, us-ascii or ISO 8859-1:

public void setText(String text) throws MessagingException

public void setText(String text, String charset)

 throws MessagingException

public void setText(String text, String charset, String subtype)

 throws MessagingException

In practice, a number of mail systems and libraries, especially Japanese ones, do not
correctly implement every detail of the relevant specifications. Consequently the Java‐
Mail API recognizes a number of system properties that control exactly how strictly
various rules are followed. Table 7-1 lists the various system properties that control
MIME parsing. With a couple of exceptions the default values provide standards con‐
formant behavior, and changing these breaks conformance to work better with some
mail agents encountered in the wild.

MIME Messages | 63

mailto:Pine.LNX.4.10.9912290930220.8058@akbar.nevex.com
mailto:Pine.LNX.4.10.9912290930220.8058@akbar.nevex.com

Table 7-1. MIME System Properties

Property Default Value Purpose

mail.mime.decodetext.strict true Do not decode messages that do not conform to RFC

2047

mail.mime.encodeeol.strict false Interpret a carriage return linefeed pair as a line break

when they occur in a mail message part that does

not have MIME media type of text.

mail.mime.address.strict true Throw an AddressException when parsing an

email address that is not spec conformant; e.g.

usernames without an “@domain” part.

mail.mime.charset file.encoding The character set to use when reading messages that

don’t specify their own character set.

mail.mime.decodefilename false Use MimeUtility.decodeText() to decode

non-ASCII characters in the filename.

mail.mime.encodefilename false Use MimeUtility.encodeText() to encode

non-ASCII characters in the filename.

mail.mime.decodeparameters false Decode non-ASCII parameters e.g., in a Content-

Type header, as specified by RFC 2231.

mail.mime.encodeparameters false Encode non-ASCII parameters, e.g., in a Content-

Type header, as specified by RFC 2231.

mail.mime.multipart.ignoremissingendboundary true Throw a MessagingException when a

message is missing the final end boundary line

mail.mime.multipart.ignoremissingboundaryparameter true Throw a MessagingException when a

Content-Type header does not have a boundary

parameter.

mail.mime.base64.ignoreerrors false The BASE64 decoder returns EOF and skips remaining

data on encountering an encoding error.

mail.mime.foldtext true Break header fields into 76 character lines.

mail.mime.setcontenttypefilename true setFileName() also sets the name parameter in

the Content-Type header.

mail.mime.setdefaulttextcharset true Add missing charset parameters.

mail.mime.parameters.strict true Header fields such as Content-Type are not allowed

to contain whitespace and other special characters

unless quoted.

mail.mime.windowsfilenames false Workaround bugs in the Content-Disposition header

of messages created by Internet Explorer 6.

mail.mime.ignoreunknownencoding false Treat unknown values in the Content-Transfer-

Encoding header as “8bit.”

mail.mime.uudecode.ignoreerrors false Ignore errors in the encoded format of a uuencoded

document.

mail.mime.uudecode.ignoremissingbeginend false Ignore a missing “begin” or “end” line in a uuencoded

document.

64 | Chapter 7: Messages and Parts

Property Default Value Purpose

mail.mime.multipart.allowempty false Do not throw a MessagingException when

writing or parsing a multipart message without a

body part.

mail.mime.multipart.ignoreexistingboundaryparameter false Workaround for broken anti-virus products that

rewrite messages.

mail.mime.multipart.ignorewhitespacelines false Allow a line containing only white space but not

empty to separate the header from the body.

mail.mime.ignoremultipartencoding true Use Content-Transfer-Encoding for multipart content

too.

mail.mime.allowencodedmessages false Use Content-Transfer-Encoding for message/*

content too to work around Outlook bugs.

MIME Messages | 65

CHAPTER 8

Folders

So far, we’ve worked mostly with the INBOX folder. This is the default folder in which
most mail resides until the user filters or saves it into some other folder. On some sys‐
tems, it may actually reside in a file called INBOX. On other systems, it may be called
something different. Nonetheless, you can always access it from the JavaMail API using
the name INBOX.

Most mail programs allow you to organize your messages into different folders. These
folders are hierarchical; that is, a folder may contain another folder. In particular, in the
IMAP protocol, servers store the messages in different folders from which clients re‐
trieve and manipulate the messages as necessary. POP servers, by contrast, generally
send all the messages to the user when the user connects and rely on the client to store
and manage them. The primary advantage of the IMAP approach over POP is that it
allows users to easily access their entire email archives from multiple client machines.

The JavaMail API represents IMAP-like folders as instances of the abstract Folder class:

public abstract class Folder extends Object

This class declares methods for requesting named folders from servers, deleting mes‐
sages from folders, searching for particular messages in folders, listing the messages in
a folder, and so forth. Most of these methods are declared abstract. When you ask a
session, a store, or a folder to give you one of the folders it contains, it will give you an
instance of a concrete subclass appropriate for the protocol in use: IMAP, POP, mbox,
or whatever. The reference implementation of the JavaMail API knows how to do these
operations only for IMAP servers. However, some third-party implementations provide
these operations in local mailbox folders stored on the client’s filesystem as well.

67

Opening Folders
You cannot create folders directly. The only constructor is protected. Instead, you get a

Folder from a Session, a Store, or another Folder like this:

Folder outbox = container.getFolder("sent-mail");

There are actually three getFolder() methods, one each in the Session, Store, and

Folder classes. They all have the same signature and behave similarly:

public abstract Folder getFolder(String name) throws MessagingException

These methods share an annoying idiosyncrasy with the File class. Getting a Folder

object doesn’t imply that the named Folder actually exists on the server. To tell whether

the folder is really present, you have to test for it with the exists() method:

public boolean exists() throws MessagingException

When you first get a folder, it’s closed. Before you can read the messages it contains, you

have to open the folder using the open() method:

public abstract void open(int mode)

 throws FolderNotFoundException, MessagingException

The mode argument should be one of the two named constants, Folder.READ_ONLY or

Folder.READ_WRITE. Some but not all implementations allow you to open multiple

connections to one real folder using multiple Folder objects.

Some operations discussed in this section, such as searching or retrieving messages from
a folder, can only be performed on an open folder. Others, such as deleting or changing

the name of a folder, can only be done to a closed folder. The isOpen() method returns

true if the folder is open, false if it’s closed:

public abstract boolean isOpen()

Generally, trying to do something with a closed folder that requires the folder to be open

or vice versa will throw a java.lang.IllegalStateException. This is a runtime ex‐
ception, so it doesn’t need to be explicitly caught or declared.

When you’re done with a folder, close it using the close() method:

public abstract void close(boolean expunge)

 throws FolderNotFoundException, MessagingException

If the expunge argument is true, any deleted messages in the folder are deleted from
the actual file on the server. Otherwise, they’re simply marked as deleted, but the mes‐
sages can still be undeleted.

Folder does not implement AutoCloseable so even in Java 7 you may want to use the

dispose pattern to close a folder in a finally block. You’ll want to check both that the
folder is not null and that it’s open.

68 | Chapter 8: Folders

Folder folder = null;

try {

 // Connect to the server and open the folder

 folder = session.getFolder(server);

 // work with the folder...

} catch (MessagingException | IOException ex) {

 ex.printStackTrace();

} finally {

 // Close the connection

 // but don't remove the messages from the server

 if (folder != null && folder.isOpen()) {

 try {

 folder.close(false);

 } catch (MessagingException e) {

 // ignore;

 }

 }

}

Basic Folder Info
The Folder class has eight methods that return basic information about a folder:

public abstract String getName()

public abstract String getFullName()

public URLName getURLName() throws MessagingException

public abstract Folder getParent() throws MessagingException

public abstract int getType() throws MessagingException

public int getMode() throws IllegalStateException

public Store getStore()

public abstract char getSeparator()

 throws FolderNotFoundException, MessagingException

The getName() method returns the name of the folder, such as “Reader Mail”, whereas

the getFullName() method returns the complete hierarchical name from the root, such
as “books/JNP4E/Reader Mail”. In this example, the slash character is the separator
between nested folders. The separator can vary from implementation to implementa‐

tion, but the getSeparator() method always tells you what it is.

The getURLName() method includes the server; for instance, “imap://
elharo@mail.ibiblio.org/books/JNP4E/Reader%20Mail”.

The getParent() method returns the name of the folder that contains this folder; e.g.,
“JNP4E” for the previous Reader Mail example.

The getType() method returns an int indicating whether the folder can contain mes‐

sages and/or other folders. If it can contain messages but not folders, getType() returns

the named constant Folder.HOLDS_MESSAGES. If it can contain folders but not messages,

getType() returns the named constant Folder.HOLDS_FOLDERS. If it can contain both

Opening Folders | 69

folders and messages, getType() returns the bitwise union Folder.HOLDS_FOLDERS |

Folder.HOLDS_MESSAGES.

The getMode() method tells you whether a folder allows writing. It returns one of the

two named constants (Folder.READ_ONLY or Folder.READ_WRITE) or -1 if the mode is

unknown. Finally, the getStore() method returns the Store object from which this
folder was retrieved.

Managing Folders
The create() method creates a new folder in this folder’s Store:

public abstract boolean create(int type) throws MessagingException

The type of the folder should be one of the named constants Folder.HOLDS_MESSAGES

or Folder.HOLDS_FOLDERS, depending on whether it will hold other folders or messages.

It returns true if the creation succeeded, false if it didn’t.

The delete() method deletes this folder, but only if the folder is closed. Otherwise, it

throws an IllegalStateException:

public abstract boolean delete(boolean recurse) throws

 IllegalStateException, FolderNotFoundException, MessagingException

If there are messages in this folder, they are deleted along with the folder. If the folder

contains subfolders, the subfolders are deleted if the recurse argument is true. If the

recurse argument is not true, the folder will only be deleted if it does not contain any
subfolders. If it does contain subfolders, the delete fails. If the folder does contain sub‐
folders and also contains messages, it’s implementation-dependent whether the mes‐
sages will be deleted even though the folder itself isn’t. If the delete succeeds, the method

returns true; otherwise, it returns false.

The renameTo() method changes the name of this folder. A folder must be closed to be

renamed. Otherwise, an IllegalStateException is thrown. This method returns true

if the folder is successfully renamed, false if it isn’t:

public abstract boolean renameTo(Folder f) throws

 IllegalStateException, FolderNotFoundException, MessagingException

Managing Messages in Folders
On occasion, you may find a need to put a message in a folder. For instance, after sending
a message, a mail program may place it in a “Sent” folder. There’s only one method to

do this, appendMessages():

public abstract void appendMessages(Message[] messages)

 throws FolderNotFoundException, MessagingException

70 | Chapter 8: Folders

As the name implies, the messages in the array are placed at the end of this folder.

The copyMessages() method copies messages from this folder into a specified folder
given as an argument:

public void copyMessages(Message[] messages, Folder destination) throws

 IllegalStateException, FolderNotFoundException, MessagingException

The copied messages are appended to the destination folder. They are not removed from
the source folder. To move a message, you have to copy it from the source to the desti‐
nation, delete it from the source folder, and finally expunge the source folder.

To delete a message from a folder, set its Flags.Flag.DELETED flag to true. To physically

remove deleted messages from a folder, you have to call its expunge() method:

public abstract Message[] expunge() throws MessagingException,

 IllegalStateException, FolderNotFoundException

After a message has been expunged, there may still be Message objects that refer to it.

In this case, almost any method call on such an object, except isExpunged() and get

MessageNumber(), will throw an exception.

Subscriptions
Some implementations allow you to subscribe to particular folders. This would be most
appropriate for an NNTP provider, where a typical server offers thousands of news‐
groups, but the typical user will want to retrieve messages from a few dozen of these, at

most. Each newsgroup would be represented as a Folder object. A subscription to the

newsgroup’s Folder indicates that the user wants to retrieve messages from that news‐
group:

public boolean isSubscribed()

public void setSubscribed(boolean subscribe)

 throws FolderNotFoundException, MethodNotSupportedException,

 MessagingException

Subscriptions are sometimes also used in IMAP to specify a subset of a user’s folders
that need to be cached locally or prefetched.

If a provider doesn’t support subscription, setSubscribed() throws a MethodNotSup

portedException and isSubscribed() returns false.

Listing the Contents of a Folder
There are four methods to list the folders that a folder contains:

public Folder[] list()

 throws FolderNotFoundException, MessagingException

public Folder[] listSubscribed()

Subscriptions | 71

 throws FolderNotFoundException, MessagingException

public abstract Folder[] list(String pattern)

 throws FolderNotFoundException, MessagingException

public Folder[] listSubscribed(String pattern)

 throws FolderNotFoundException, MessagingException

The first method returns an array listing the folders that this folder contains. The second
method returns an array listing all the subscribed folders that this folder contains.

The third and fourth methods repeat these first two, except they allow you to specify a
pattern. Only folders whose full names match the pattern will be in the returned array.
The pattern is a string giving the name of the folders that match. However, the string
can contain the % character, which is a wildcard that matches any sequence of characters
not including the hierarchy separator, and *, which matches any sequence of characters
including the hierarchy separator.

Checking for Mail
The getMessageCount() method returns the number of messages in this folder:

public abstract int getMessageCount()

 throws FolderNotFoundException, MessagingException

This method can be invoked on an open or closed folder. However, in the case of a closed
folder, this method may (or may not) return -1 to indicate that the exact number of
messages isn’t easily available.

The hasNewMessages() method returns true if new messages have been added to the
folder since it was last opened (not since the last time you checked!):

public abstract boolean hasNewMessages()

 throws FolderNotFoundException, MessagingException

The getNewMessageCount() method uses a slightly different approach for determining
how many new messages there are. It checks the number of messages in the folder whose
RECENT flag is set:

public int getNewMessageCount()

 throws FolderNotFoundException, MessagingException

Unlike hasNewMessages(), getNewMessageCount() can be invoked on either an open

or a closed folder. However, in the case of a closed folder, getNewMessageCount() may
return -1 to indicate that the real answer would be too expensive to obtain.

The getUnreadMessageCount() method is similar but returns the number of messages
in the folder that do not have a SEEN flag set:

public int getUnreadMessageCount()

 throws FolderNotFoundException, MessagingException

72 | Chapter 8: Folders

Like getNewMessageCount(), getUnreadMessageCount() can be invoked on either an
open or a closed folder. However, in the case of a closed folder, it may return -1 to indicate
that the real answer would be too expensive to obtain.

Getting Messages from Folders
The Folder class provides four methods for retrieving messages from open folders:

public abstract Message getMessage(int messageNumber) throws

 IndexOutOfBoundsException, FolderNotFoundException,

 IllegalStateException, MessagingException

public Message[] getMessages() throws FolderNotFoundException,

 IllegalStateException, MessagingException

public Message[] getMessages(int start, int end) throws

 IndexOutOfBoundsException, FolderNotFoundException,

 IllegalStateException, MessagingException

public Message[] getMessages(int[] messageNumbers) throws

 IndexOutOfBoundsException, FolderNotFoundException,

 IllegalStateException, MessagingException

The getMessage() method returns the nth message in the folder. The first message in
the folder is number 1 (not 0). Message numbers may change when messages are ex‐

punged from the folder. An IndexOutOfBoundsException is thrown if you ask for mes‐
sage n and there are n - 1 or fewer messages in the folder.

The first getMessages() method returns an array of Message objects representing all

the messages in this folder. The second getMessages() method returns an array of

Message objects from the folder, beginning with start and finishing with end, inclusive.

The third getMessages() method returns an array containing only those messages

specifically identified by number in the messageNumbers array.

All four of these methods only create the Message objects and fill in the minimal number
of fields in those objects. The actual text and other content of the message is fetched

from the server when the Message’s methods that use those things are invoked. This
means, for example, that you can’t get all the messages from the server, then get on an

airplane and work with them offline. There is, however, a fetch() method, which fills

in certain parts of the Message objects with actual data from the server:

public void fetch(Message[] messages, FetchProfile fp)

 throws IllegalStateException, MessagingException

The messages argument is an array containing the Message objects to be prefetched.

The FetchProfile argument specifies which headers in the messages to prefetch. How‐
ever, this is still just a suggestion. Implementations are free to ignore this request and
fetch the message content only when it’s actually needed.

You can request prefetching of individual headers such as Subject: by name. You can
also request prefetching of three predefined blocks of information: the envelope

Getting Messages from Folders | 73

(essentially the subject and addressees of the message), the flags of the message, or the
content info of the messages. The three groups you can ask for are given as constant

FetchProfile.Item objects. They are FetchProfile.Item.ENVELOPE, FetchPro

file.Item.FLAGS, and FetchProfile.Item.CONTENT_INFO.

The FetchProfile class has a simple noargs constructor as well as methods for con‐
structing a new profile, adding particular items and headers to the profile, and testing
whether a particular item is part of a particular profile:

public FetchProfile()

public void add(FetchProfile.Item item)

public void add(String headerName)

public boolean contains(FetchProfile.Item item)

public boolean contains(String headerName)

public FetchProfile.Item[] getItems()

public String[] getHeaderNames()

For example, suppose you wanted to download just the subjects, the To: addresses, and
the content information of a block of messages. Fetch them like this:

Message[] messages = folder.getMessages();

FetchProfile fp = new FetchProfile();

fp.add(FetchProfile.Item.CONTENT_INFO);

fp.add("Subject");

fp.add("To");

folder.fetch(messages, fp);

Searching Folders
If the server supports searching (as many IMAP servers do and most POP servers don’t),
it’s easy to search a folder for the messages meeting certain criteria. The criteria are

encoded in SearchTerm objects:

public abstract class SearchTerm extends Object

The SearchTerm class is abstract, but the JavaMail API provides many subclasses for
performing common searches:

public abstract class AddressTerm extends SearchTerm

public abstract class FlagTerm extends SearchTerm

public abstract class StringTerm extends SearchTerm

public final class FromTerm extends AddressTerm

public final class FromStringTerm extends AddressStringTerm

public final class RecipientTerm extends AddressTerm

public final class AddressStringTerm extends StringTerm

public final class BodyTerm extends StringTerm

public final class HeaderTerm extends StringTerm

public final class MessageIDTerm extends StringTerm

public final class SubjectTerm extends StringTerm

public abstract class DateTerm extends ComparisonTerm

74 | Chapter 8: Folders

public final class ReceivedDateTerm extends DateTerm

public final class SentDateTerm extends DateTerm

It also provides several classes for combining searches:

public final class AndTerm extends SearchTerm

public abstract class ComparisonTerm extends SearchTerm

public final class NotTerm extends SearchTerm

public final class OrTerm extends SearchTerm

Set up a SearchTerm matching your desired parameters and pass it to one of these two

search() methods in the Folder class:

public Message[] search(SearchTerm term) throws SearchException,

 FolderNotFoundException, IllegalStateException, MessagingException

public Message[] search(SearchTerm term, Message[] messages)

 throws SearchException, FolderNotFoundException,

 IllegalStateException, MessagingException

A SearchException indicates that the search term is more complicated than the im‐
plementation can handle.

For example, this search term seeks out all messages from billg@microsoft.com:

Address billg = new InternetAddress("billg@microsoft.com");

SearchTerm term = new FromTerm(billg);

This search term looks for all messages from billg@microsoft.com in 2012 or later:

Address billg = new InternetAddress("billg@microsoft.com");

SearchTerm term1 = new FromTerm(billg);

Calendar calendar = Calendar.getInstance();

calendar.set(2012, 0, 1);

Date date = calendar.getTime();

SearchTerm term2 = new SentDateTerm(ComparisonTerm.GE, date);

SearchTerm term = new AndTerm(term1, term2);

Example 8-1 is a simple variation of the MailClient program in Example 6-1. It allows
the user to list email addresses on the command line after the initial URL, like this:

% java SearchClient imap://elharo@mail.ibiblio.org/INBOX

 willis@nvx.com billg@microsoft.com

Only messages from the specified users will be returned. However, if no email addresses
are given, all messages will be returned.

Example 8-1. A mail client that searches by From: address

import javax.mail.*;

import javax.mail.search.*;

import javax.mail.internet.*;

import java.util.*;

import java.io.*;

public class SearchClient {

Searching Folders | 75

mailto:billg@microsoft.com
mailto:billg@microsoft.com

 public static void main(String[] args) {

 if (args.length == 0) {

 System.err.println(

 "Usage: java SearchClient protocol://username@host/foldername");

 return;

 }

 URLName server = new URLName(args[0]);

 Folder folder = null;

 try {

 Session session = Session.getInstance(new Properties(),

 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder

 folder = session.getFolder(server);

 if (folder == null) {

 System.out.println("Folder " + server.getFile() + " not found.");

 System.exit(1);

 }

 folder.open(Folder.READ_ONLY);

 SearchTerm term = null;

 if (args.length > 1) {

 SearchTerm[] terms = new SearchTerm[args.length-1];

 for (int i = 1; i < args.length; i++) {

 terms[i-1] = new FromTerm(new InternetAddress(args[i]));

 }

 if (terms.length > 1) term = new OrTerm(terms);

 else term = terms[0];

 }

 // Get the messages from the server

 Message[] messages;

 if (term == null) {

 messages = folder.getMessages();

 } else {

 messages = folder.search(term);

 }

 for (int i = 0; i < messages.length; i++) {

 System.out.println("------------ Message " + (i+1)

 + " ------------");

 // Print message headers

 @SuppressWarnings("unchecked")

 Enumeration<Header> headers = messages[i].getAllHeaders();

 while (headers.hasMoreElements()) {

 Header h = headers.nextElement();

 System.out.println(h.getName() + ": " + h.getValue());

 }

 System.out.println();

76 | Chapter 8: Folders

 // Enumerate parts

 Object body = messages[i].getContent();

 if (body instanceof Multipart) {

 processMultipart((Multipart) body);

 } else { // ordinary message

 processPart(messages[i]);

 }

 System.out.println();

 }

 } catch (MessagingException | IOException ex) {

 ex.printStackTrace();

 } finally {

 // Close the connection

 // but don't remove the messages from the server

 if (folder != null && folder.isOpen())

 try {

 folder.close(false);

 } catch (MessagingException e) {

 // ignore;

 }

 }

 // Since we may have brought up a GUI to authenticate,

 // we can't rely on returning from main() to exit

 System.exit(0);

 }

 public static void processMultipart(Multipart mp)

 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {

 processPart(mp.getBodyPart(i));

 }

 }

 public static void processPart(Part p) {

 try {

 // I'd prefer to test the Content-Disposition header here.

 // However, too many common email clients don't use it.

 String fileName = p.getFileName();

 if (fileName == null) { // likely inline

 p.writeTo(System.out);

 } else if (fileName != null) {

 File f = new File(fileName);

 // find a version that does not yet exist

 for (int i = 1; f.exists(); i++) {

 String newName = fileName + " " + i;

 f = new File(newName);

 }

 try (FileOutputStream out = new FileOutputStream(f);

 InputStream in = new BufferedInputStream(p.getInputStream())) {

Searching Folders | 77

 // We can't just use p.writeTo() here because it doesn't

 // decode the attachment. Instead we copy the input stream

 // onto the output stream which does automatically decode

 // Base-64, quoted printable, and a variety of other formats.

 int b;

 while ((b = in.read()) != -1) out.write(b);

 out.flush();

 }

 }

 } catch (MessagingException | IOException ex) {

 ex.printStackTrace();

 }

 }

}

Flags
It’s sometimes useful to change the flags for an entire group of messages at once. The

Folder class has three methods for doing this:

public void setFlags(Message[] messages, Flags flag, boolean value)

 throws IllegalStateException, MessagingException

public void setFlags(int start, int end, Flags flag, boolean value)

 throws IllegalStateException, MessagingException

public void setFlags(int[] messageNumbers, Flags flag, boolean value)

 throws IndexOutOfBoundsException, IllegalStateException,

 MessagingException

Ultimately, these are just conveniences. There’s nothing you can do with these methods

that you can’t do by setting the flags on each message individually with the set

Flags() method of the Message class. In fact, the default implementation simply invokes
that method on each message in the specified block of messages.

The Folder class also has a getPermanentFlags() method to return the flags that this
folder supports for all messages. This includes all the flags except the user-defined flags,
which are applied only to particular messages that the user has flagged. For instance,
not all folder implementations track whether messages have been answered:

public abstract Flags getPermanentFlags()

78 | Chapter 8: Folders

CHAPTER 9

Event Handling

Many email programs can periodically check for incoming email in the background.
One way to structure an email program is as a series of responses to unpredictable events.
This is much like programming for a graphical user interface, and indeed the JavaMail
API uses the same Observer pattern to handle mail events that JavaBeans and Swing
use to handle GUI events.

The JavaMail API defines six different kinds of mail events, all in the javax.mail.event

package. They are all subclasses of MailEvent:

public abstract class MailEvent extends EventObject

The six concrete kinds of mail events are:

ConnectionEvent

A Folder, Store, or Transport has been opened, closed, or disconnected.

FolderEvent

A Folder has been created, deleted, or renamed.

MessageChangedEvent

The message’s envelope or flags have changed.

MessageCountEvent

A message was added to or deleted from a Folder.

StoreEvent

A notification or alert from a Store.

TransportEvent

A notification from a Transport that a message was delivered, partially delivered,
or failed to be delivered.

There are six listener interfaces corresponding to the six kinds of events:

79

public interface ConnectionListener extends EventListener

public interface FolderListener extends EventListener

public interface MessageChangedListener extends EventListener

public interface MessageCountListener extends EventListener

public interface StoreListener extends EventListener

public interface TransportListener extends EventListener

Each of these interfaces declares one or more methods that must be provided by im‐

plementing classes. For example, the ConnectionListener class declares these three
methods:

public void opened(ConnectionEvent event)

public void disconnected(ConnectionEvent event)

public void closed(ConnectionEvent event)

The FolderListener interface declares these three methods:

public void folderCreated(FolderEvent event)

public void folderDeleted(FolderEvent event)

public void folderRenamed(FolderEvent event)

Four of these events can be fired by folders. Consequently, there are 8 addXXXListen

er() and removeXXXListener() methods in the Folder class:

public void addConnectionListener(ConnectionListener listener)

public void removeConnectionListener(ConnectionListener listener)

public void addFolderListener(FolderListener listener)

public void removeFolderListener(FolderListener listener)

public void addMessageCountListener(MessageCountListener listener)

public void removeMessageCountListener(MessageCountListener listener)

public void addMessageChangedListener(MessageChangedListener listener)

public void removeMessageChangedListener(MessageChangedListener listener)

The addXXXListener() methods add an implementation of the particular interface to

the list of listeners. The removeXXXListener() methods remove an implementation
from that list. All of this works exactly as it does in JavaBeans and Swing, just with
different events.

For example, suppose you want to be notified every time a new email message arrives.

First you implement the MessageCountListener interface with a class that responds to
message added events as shown in Example 9-1.

Example 9-1. Message Notifier

import javax.mail.*;

import javax.mail.event.*;

public class MessageArrival implements MessageCountListener {

 @Override

 public void messagesAdded(MessageCountEvent event) {

 Message[] newMessages = event.getMessages();

 for (Message message : newMessages) {

80 | Chapter 9: Event Handling

 try {

 System.out.println(message.getSubject());

 } catch (MessagingException e) {

 System.out.println("New message arrived!");

 }

 }

 }

 @Override

 public void messagesRemoved(MessageCountEvent event) {

 // ignore

 }

}

This class notifies the user by printing a message on the console. Of course, you could
pop up an alert in a GUI, ring a bell, or use any other technique you like.

Next you install this listener on the folder you wish to monitor as shown in Example 9-2.

Example 9-2. Mailbox Monitor

import java.util.*;

import javax.mail.*;

import javax.mail.event.*;

import com.sun.mail.imap.IMAPStore;

public class GMailMonitor {

 public static void main(String[] args) throws InterruptedException {

 String username = args[0];

 String password = args[1];

 try {

 Session session = Session.getInstance(new Properties());

 final IMAPStore store = (IMAPStore) session.getStore("imaps");

 store.connect("imap.gmail.com", username + "@gmail.com", password);

 final Folder inbox = store.getFolder("INBOX");

 if (inbox == null) {

 System.out.println("No INBOX");

 System.exit(1);

 }

 inbox.open(Folder.READ_ONLY);

 MessageCountListener countListener = new MessageArrival();

 inbox.addMessageCountListener(countListener);

 Runnable r = new Runnable() {

 @Override

 public void run() {

 while (true) {

 try {

 System.out.println(inbox.getMessageCount());

Event Handling | 81

 System.out.println("Idling");

 store.idle();

 } catch (MessagingException ex) {

 ex.printStackTrace();

 return;

 }

 }

 }

 };

 Thread t = new Thread(r);

 t.start();

 } catch (MessagingException ex) {

 ex.printStackTrace();

 }

 }

}

Note that in this case it’s not enough to simply install a listener. The server won’t push
information to the client. The client has to contact the server. To make this happen,

Example 9-2 spawns a separate thread that periodically sends idle() commands to the
IMAP server. The server can respond to one of these when it has something to say.
Otherwise the connection is just held open indefinitely.

Now every time a message arrives in the INBOX, its subject will be logged to System.out.

82 | Chapter 9: Event Handling

Epilogue: Email Past and Future

I’m dating myself here, but I remember a time when AOL was obviously going to replace
email (or at least that’s what the pundits and day traders told us). Standard Internet
email was clearly too anarchic, uncontrolled, and uncommercial to be suitable for real
business. Now that email was escaping the ivory towers of academia, it had to be owned
and managed by a corporation. That…didn’t happen.

A few years later, MySpace was obviously going to replace email. Email was only used
by old fogies like myself. Anyone under 18 didn’t send or read email; and as they grew
up, graduated from college, and joined the work force, email was going to fade away
much like Usenet news before it. That also…didn’t happen.

MySpace sold itself to Rupert Murdoch and promptly imploded. The teenagers who
made MySpace the new hotness rapidly defected to upstart Facebook. And for a few
years the same talking heads who had told us AOL and MySpace were going to replace
email were now saying that Facebook was going to replace email. Email had become
choked with spam and thus useless. Clearly Facebook was the wave of the future. By
this point the articles and blog posts were beginning to sound a little familiar, as if
someone had just done s/MySpace/Facebook and rerun the same pieces. In any case,
once again that…didn’t happen.

That’s only a brief selection of “email killers” that have been sold to us over the last decade
and a half. MSN, Twitter, text messages, YouTube, Skype, and more have all been her‐
alded as email replacements. I’d lay good money that email will outlast all of them. By
this point it should be obvious that email is here to stay. While SMTP, POP, IMAP, DNS,
MX records, and even TCP itself are imperfect, they hit a real sweet spot. They are more
than good enough to solve the fundamental problem of enabling people to communicate
asynchronously with written messages without being locked into any one network or
provider.

The protocols have evolved over time. Security has become vastly more important. More
connections are encrypted than ever before (and even more should be). Authentication
and authorization are enforced at most ingress points to the network which alleviates

83

some of the more casual spamming and forgery problems. Unicode has mostly replaced
ASCII and other national character sets. Attachments, MIME, and multipart messages
were added before some of the people reading this book were born. More changes are
likely in the future.

Nonetheless, the basic architecture of email communication has remained remarkably
consistent for more than 30 years and seems likely to continue for at least another 30.
People need email, and they need to send it to other people who don’t use the same ISP
or service they do. No single service, no single website, can hope to replace it.

As important as HTTP has become, it is not the only protocol needed on today’s or
tomorrow’s Internet. SMTP is just as important and POP and IMAP only slightly less
so. Programs that push information to people instead of waiting for people to request
it need email. Such programs written in Java need the JavaMail API.

84 | Epilogue: Email Past and Future

About the Author
Elliotte Rusty Harold is originally from New Orleans, to which he returns periodically
in search of a decent bowl of gumbo. However, he currently resides in the Prospect
Heights neighborhood of Brooklyn with his wife and dog Thor. He’s a frequent speaker
at industry conferences, including Software Development, Dr. Dobb’s Architecure &
Design World, SD Best Practices, Extreme Markup Languages, and too many user
groups to count. His open source projects include the XOM Library for processing XML
with Java and the Amateur media player.

Colophon
The animal on the cover of JavaMail API is a little pied cormorant.

The cover image’s origin is unknown. The cover font is Adobe ITC Garamond. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who You Are
	Java Versions
	Conventions Used in This Book
	Request for Comments
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing the JavaMail API
	Chapter 2. Sending Email
	Sending Email from an Application

	Chapter 3. Receiving Mail
	Chapter 4. Password Authentication
	Chapter 5. Addresses
	The Address Class
	The InternetAddress Class
	The NewsAddress Class

	Chapter 6. The URLName Class
	The Constructors
	Parsing Methods

	Chapter 7. Messages and Parts
	Creating Messages
	Replying to Messages
	Getting Messages from Folders

	Basic Header Info
	The From Address
	The Reply-to Address
	The Recipient Addresses
	The Subject of the Message
	The Date of the Message

	Flags
	Folders
	Searching

	The Part Interface
	Attributes
	Headers
	Content

	Multipart Messages and File Attachments
	MIME Messages

	Chapter 8. Folders
	Opening Folders
	Basic Folder Info

	Managing Folders
	Managing Messages in Folders
	Subscriptions
	Listing the Contents of a Folder
	Checking for Mail
	Getting Messages from Folders
	Searching Folders
	Flags

	Chapter 9. Event Handling
	Epilogue: Email Past and Future
	About the Author

